Practical Graphics for 3D Computer Animation. 1

Introduction

Many algorithms in computer graphles consume conslderable machine resources and are
difticult and time consuming to implcment. Unlversity rescarch ldboratories and similar
facilities often have a minimum of hardware and human resources, yet still wish to contribute to
this growing area. An animation infrastructure is required to support in depth research in any
one specialty within this field. We present here some examples of practical graphies techniques
which help provide eflicient realism though not necessarily of the highest quality without the
investment of large machine and human resources. We start with a description of the
underlying animation system and then present some practical graphics examples as further
building blocks.

An overview of Graphicsland
Animation can be broadly split into three areas:

Modeclling
Motion control
Rendering

Graphicsland is a layered system which provides an animation substructure in the above
three areas. On top of this substructure may be built tools for particular applications. Figure
one shows how the practical graphles examples discussed in this paper relate to the animation

Fractal Mountains

The method for generating fractals in our fractal mountain package Is largely based on
[Fournier 82]. A recursive algorithm 1is employed to subdivide an initial polygon. After each
subdivision the coordinates of the vertices of the new polyzons are modifled by a random value
constrained by a roughness factor. The main advantages of our approach are the use of Integer
arithmetic for parts of the subdlivision process, and a data structure that guarantees no gaps in
the generated polygon mesh without attempting to generate identical coordinates for corner
points sharced by two or more polygons, which is what Fournier suggests.

Polygon Subdivision Algorithm

Input is a list containing the polygon to be subdivided, output is a list of the four
resulting polygons. Polygons consist of lists of pointers into a global points list. A centre polnt is
generated, based on the averages of the vertex coordinates. Each edge of the input polygon is
split into two edges by generating a point based on the average of the two endpoints, if the edge
has not already been split previously while subdividing an adjacent polygon. Each point has its
own list of "partner” points used previously to spit edges; this list is checked first before an edge
is split. If such a point is found, then the previous result Is used. The order in which the new
points are used to construct new polygons is important if the orientation of all polygons is to be
preserved. The final output routine writes out two triangular polygons for each four-sided one
passed Lo it so that non-planar polygons will not have to be rendered.

This scheme is rather more general than required for this particular application, and
probably could be optimised to decrease the number of cross-reference pointers. Note also that
a non-recursive algorithm may be more efficient. However, for our purposes the current
performance is sufficient. To generate a mountain consisting of 32K triangular polygons took 2
minutes 40 seconds CPU time on our VAX 780, and used 3.7 Megabytes of mcmory, while a
128K polygon mountain took 13 minutes 4 seconds, using 10 Megabytes. See slides 3 and 4.

Motion Control

The motion specification and contirol system, ANI, supports animation of object types in
Graphicsland. Currently this includes particles, polygons, fractals and heirarchies of any
combination of these objects. Motion may be applied to camera(s), light(s), or to any object in
the hierarchy. Thus a node representing a hundred objects could be given a global motion that
would be added to any local motions applied lower in the hierarchy. Motion controls include
geometric transformations, special effects such as wobble, bounce, scrape, fade, etc. Each motion
effect follows a chosen acceleration curve which are useful in a large variety of different
animation situations. There is also the facility of using beta splines to define a path, for
motions that are more complex similar to the scheme outlined by [Kochanek 84].

The system is implemented to run as a co-process with PG, and in fact uses PG as would
any other user. It is very easy to switch from the animation system to PG, and communicate
directly with that package. The animation system was designed to be an open system, one -
which could easily accept the cutput from more specifie, task orlented systems. The reason for
this is that the command set is too low level for defining something as complex as say a walk

Practical Graphics for 3D Computer Animation. 6

motion. Thus it is recognised that special purpose programs will be necessary to describe these
motions and provision has been made for communication between the animation system and
such programs as described below.

For any serious animation project it is essential to prototype the sequences before golng to
the expense of rendering each frame. We achieve this by loading low resolution monochrome
images into the-frame buffer. Using 128 by 128 pixel resolution, provides 384 frames (about
sixteen seconds) of preview. Such a system is by necessity largely device dependent, we take
advantage of this in our system by emulating the frame buffer, using as Input code from any
system which can produce output for that device. (Raster Technology Model 1/20 24 bits/pixel)

A three legged gait

Many computer animation systems allow a user to deseribe motions for three dimensional
objects either by geometric descriptions or by inbetweening. However to deflne a realistic
walking sequence is difficult since the graphies must be controlled by the motion dynamics of
the walking object. Others have approached this problem by assigning constraints to the limbs
that relate to the constraints found in nature and using goal directed techniques to compute
individual movements on the way to a final motion goal. [Korein 82] Such techniques are
computationally expensive. A simple approach to the problem is described which falls between
these two extremes. A limited set of parameters is provided which give the animator control
over particular facets of the gait but allow him to deseribe physically unlikely gaits. However,
the program allows quick previews of gaits, permitting easy selection of those which appear
natural. The system is called MAWP since it originally applied to a 3 legged martian and thus
named; Martian Walk Program; supplies a crude wire frame skeleton figure which will walk in
real time. MAWP has been Integrated into Graphicsland so the walk previewed as a wire frame
can be transferred into a complete scene for rendering, providing an intcractive interface
between the animator and Graphicsland.

The martian itself has a small elliptical body with 3 legs which come out of the equator of
its body at equal angles of 120 degrees, with the back leg going stralght back. There is one knee
joint in each leg.

The ability to gencrate virtually any concelvable Martian gait through a small set of user-
delined parameters permits design flexibility. The user can quickly approximate the gait he
desircs and refine the parameters until thoroughly saticfied with the results, or he may
alternatively experiment with various gaits until one or more catch his interest.

MAWRP is given eight parameters to define the martian gait. A wide spectrum of gaits can
be defined, including some which are physically unlikely.

The first pair of parameters defines the resting stance of the martian:
bodyx - the horizontal component of distance between foot and body
bodyy - the vertical component of distance between foot and body

The next pair defines the magnitude of the step:
stepx - the distance travelled In one step
stepy - the height the foot is lifted

¥

Prectical Graphics for 3D Computer Animation. 7

The last four parameters define the phase relations between the three legs and the body.

MAWP provides immediate feedback on the gait by displaying a stick figure through one
walking cycle. Code is automatically generated for each gait, in a form suitable for input to
ANI. This generates a short sequence of the gait on a fleshed-out martian, prototyping the
martian’s gait as it would appear In an actual film sequence. If the user is satisfled with the
results, the code can then be incorporated as part of the final animation sequence.

The use of a parameterized specification of the gait much reduces the computational
overhead and thus allows real-time checking of the gait. Although some experimentation is
necessary Lo get a realistic and natural galt the immedlate feedback makes this easy.

MAWRP has been extended to allow for definition of turns. In addition, a second version of
MAWP has created a four-legged creature model with which to emulate animal gaits. Features
such as flexibility (namely the parameterization of the gaits), immediate feedback and automatic
generation of animation code have significantly facllitated the accurate and stralght-forward
~definition of gaits.

Rendering

Graphicsland offers the user a choice of several rendering algorithms. These have to deal
with all the primitives that are currently supported.

Particles

Particles present an interesting problem particularly when ray tracing. A sophisticated
treatment of ray tracing particles using density models Is given by [Kajiya 1984]. Our approach
is directed towards producing special effects at low computational cost.

Each particle Is considered to be spherical, and optionally a light source. Since it was
desired to gauss filter the particles, the distance of any given ray from the centre of the particle
is required. Deriving this distance has also lead us to an efficient equation for calculating sphere

Practical Graphics for 3D Computer Animation. 8

e

interseetions in raytracing. Both results are summarised below.

);'&y (l, m, Yl)

{eentre eof perzicle)

Figure 2

To find the distance d in Figure 2. from the centre point C to the ray (I, m, n) we observe
that the line d lies in a plane with (l, m, n) as a normal, and passing through point C (Xc’ Yc,
Zc)' The length of the ray from it’s origin (XO, Yo, Zo), to it’s intersection point with the line d
is then:

-P = (‘ * (Xp_Xo)) + (m ¥ (Yp“‘.yo)) + ("' * (Zp_Zo))
where (l, m, n} are the normalized direction cosines of the ray and -P is the distance of
the plane from the origin of the ray, or rather the length of the ray to it’s nearest

approach to the particle’s centre.

At this point, if the simple test P < —(r) is true, where r is the radius of the
particle, then the particle is behind the origin of the ray.

The distance from the centre of the particle to the origin of the ray is obtained
from

d® = ¢?- P2,
where

e?=(X,-X,)+ (Y,-Y,) +(2,-2,)}

Practical Graphics for 3D Computer Animation. 11

Rendering Haze

The apparent realism of pictures such as landscapes which show some sort of
distant background scene can be greatly enhanced by introducing a very simple hazing
algorithm. A haze colour is defined by the user and then added to the frame in
proportion to the distance from the yon plane. Best results have been found with a
medium grey haze colour. This method is very easy to implement in Z-buffer without
adding significantly to the rendering time. The formula used for haze at each pixel is as
follows:

Heze = 7 + H, 4
Pizel,,y =Haze +((1- Haze)*P,,d)
where
Z - The depth of the pixel, this value is between 0 and 1.

H - The haze colour for red.
red

P - The red component of the pixel before the haze calculation.

red

Plxell_e q- The colour of the pixel after the haze calculation.

Similarly for green and blue. Integer arithmetic can be used throughout with minor
modifications.

The Z depth used in calculating haze is based on a linear function, that is, a depth
halfway between the hither and yon planes should be assigned one half of the maximum
depth value. This is not a characteristic of the depth in the screen coordinate system
outlined in [Newman 79).

Conclusion

We have presented a collection of practical graphics which offer some refinements
to various methods for modeling and rendering scenes for 3D animation. These build on
the animation system, Graphicsland. The system has been used to make several short
sequences of animated film amounting to about three minutes.

Practical Graphics for 3D Computer Animation. 12

Acknowledgements

The JADE project at the University of Calgary has been supportive of our work in
distributed graphics. This work and JADE is supported by the Natural Science and
Engineering Research Council of Canada. We would also like to acknowledge the help
of all the students who have written software for Graphicsland and built models. In
particular Breen Liblong, Norman Hutchinson and Danny Freedman.

References

Cleary, J., Wyvill, B.L.M., Birtwistle, G., and Vatti, R. (1983) "MULTIPROCESSOR
RAY TRACING” Research Report No. 83/128/17 University of Calgary, Dept. of
Computer Science..

Dippe, M. and Swensen, J. (July 1984) " An adaptive subdivision algorithm and parallel
architecture for realistic image synthesis.” Computer Graphics. Proc. ACM

SIGGRAPH 8}, 149-158.

Fournier, A., Fussell, and Carpenter (June 1982) "Computer Rendering of Stochastic
Models” CACM, 25 (8).

Kajiya, J. and Von Herzen, B. (July 1984) "Ray Tracing Volume Densities” Computer
Graphics. Proc. ACM SIGGRAPH 8}, 185-175.

Kawaguchi, Y. (July 1982) ”A Morphological Study of the Form of Nature” Computer
Graphics 16(3). Proc. ACM SIGGRAPH 82, 223-232.

Kochanek, D. (July 1984) "Interpolating Splines with local Tension, Continuity and Bias
Control.” Proc. ACM SIGGRAPH 8§ pp33-41.

Marshall, R, Wilson, R, and Carlson, W (July 1980) "Procedure Models for Generating
Three-Dimensional Terrain” Computer Graphics, Proc. ACM SIGGRAPH 80, 223-
232.

Newman, W.M. and Sproull, R.F. (1979) "Principles of Interactive Computer Graphics”
._Second edition, McGraw-Huill..

Reeves, William. (Apr 1983) "Particle systems- A technique for modeling a class of fuzzy
objects” ACM Transactions on Graphics, 2, 91-108.

Wyvill, B.L.M., Liblong, B., and Hutchinson, N. (June 1984) "Using Recursion to
Describe Polygonal Surfaces.” Proc. Graphics Interface 84, Ottawa..

