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Abstract

Power transmission lines are the vital links in power systems providing the essential

in a power system it is imperative that any fault in the transmission system be
identified by protective relays and the faulted line be isolated from the network with
minimal delay.

Faults on transmission lines need to be detected, classified and cleared as fast
as possible. Moreover, the fault direction should be identified. Development of
different modules of a transmission line protective relaying system is outlined in this
dissertation. Different modules such as fault direction identification, fault detection
and phase selection modules are designed, implemented and tested.

Neural network technique is employed to design the transmission line fault di-
rection identification module. Different neural network structures are used and four
different directional modules are proposed.

A new high speed algorithm, based on impedance measurement is proposed for
fault detection and phase selection. Adaptive features are also added to the proposed
relaying modules to enable them to track the changing operation conditions of the
system.

Off-line studies are performed with the proposed relaying modules on a simulated
power system model. The system is subjected to different types of disturbances
while it is operating at different operating conditions, and the performance of the

proposed modules is evaluated. The results obtained indicate that the proposed



relaying modules perform rapidly and correctly for different system conditions.

The relaying algorithm has been implemented on a digital signal processor board.
Using a power system model consisting of a micro-alternator connected to a constant
voltage system extensive experimental studies are conducted and the performance of
the relaying algorithm is investigated.

The performance of the proposed modules is investigated further using recorded
fault data from a high voltage power system. In this way, the performance of the
newly designed relaying modules can be further verified in a more realistic environ-
ment. Results using various recorded field data are presented.

The results presented in this dissertation confirm the feasibility of the proposed

relaying modules.

iv



Acknowledgments

I would like to express my sincere gratitude to my supervisor, Dr. O. P. Malik, for his
constant guidance, support and valuable suggestions throughout the whole program.
His fruitful supervision enabled me to present this dissertation in this form.

I would also like to thank all the professors and the support staff in the Depart-
ment of Electrical and Computer Engineering, The University of Calgary, for their
help during my study here. I am also indebted to the professors in the Electrical
Engineering Department, Tehran University. I have learned a lot from them.

Special thanks go to Mr. G. Hancock and Mr. P. Walsh for their assistance
during the laboratory work. Special appreciation also goes to the fellow students in
our research group, specially Mr. M. Calvo for their consultation from time to time.

I am greatly indebted to my wife, who has always been patient and encouraging.
Without her constant support, I could not have finished this dissertation. My special
thanks go to my children, my parents and my parents-in-law for their patience and
encouragement through the course of this work.

I also wish to acknowledge the financial support of the Ministry of Culture and
Higher Education of I. R. Iran which enabled me to pursue my graduate studies.
Partial support of NSERC Canada is also acknowledged.

I am also grateful for the recorded field data provided by the Alberta Power Ltd..



Dedication

To

My Family



Table of Contents

Approval Page il
Abstract i
Acknowledgments v
Dedication vi
Table of Contents vii
List of Tables xii
List of Figures xiii
List of Symbols xix
1 Introduction 1
1.1 Power System Protection . . . . .. .. .. ... ... ......... 1
1.1.1 Roleof Protection . . ... ... ... ... ... ....... 1
1.1.2 Historical Background . .. .. .. ... ............ 2
1.1.3 DigitalRelaying . . . . . .. .. .. ... ... ........ 3
1.2 Transmission Line Protection . . ... .. .. ... .......... 6
1.2.1 Overcurrent Protection . . . . . .. . . . ... ... ...... 6
1.2.2 Distance Protection . . . . . .. . . . .. ... . ... . .... 7
1.2.3 Unit Protection . . . . ... .. .. . . ... ... ..., 8
1.3 Dissertation Objectives . . . . . .. .. ... .. ... . ........ 12
1.4 Organization of the Dissertation . . . . ... ... ........... 14
I Theoretical Developments & Simulation Results 17
2 Transmission Line Directional Protection - Neural Networks Solu-
tion 18
2.1 Imtroduction . . . . . . . . . . 18
2.2 Transmission Line Fault Direction Discrimination . . ... ... ... 19
2.2.1 Directional Protection . .. .. .. ... ... ... ...... 19
2.2.2 Directional Comparison Scheme . . . . ... ... ....... 20

2.2.3 Fault Direction Identification



2924 Neural Network Solution . . . . .. . . . .. ... ... ....

2.3 Artificial Neural Networks . . . . . . . .. ... ... ... .....
2.3.1 Neural Networks - An Overview . . . . .. ... .. ......
2.3.2 Benefits of Neural Networks . . .. .. ... ... ... ....
2.3.3 Neural Networks Applications in Power Systems . . . . . . ..

2.3.4 Use of Neural Networks in Power System Protection
2.4 Directional Relay Algorithms

2.4.1 Digital Techniques and Their Limitations . . . . . .. ... ..
2.4.2 ANN-Based Directional Algorithm . . . ... ... .. ....
2.5 SUMMATY . .« v v v v e e e e e e e e e e e e e e e

Directional Protection using Feedforward Neural Networks
3.1 Imtroduction . . . . .. .. . .. ... ...

3.2 A Feedforward ANN-Based Directional Module . . ... ... . ...
3.2.1 PowerSystemModel . ... .. ... ... .. ... .. ..
3.2.2 Input Selection of the Network . . ... ... ... .. ....
3.2.3 Training Algorithm . . . . . . . ... ... ... . ...
3.2.4 Suitable Network Structure . ... ... ... .........

33 TestResults . . . . .. . . ... .. . .. .

3.4 A New Network using LessInputs . . . . . ... ..... ... ....
34.1 Feature Selection . ... ... . ... .. ... ... .....
3.4.2 Input Selection for a New Network . . ... .. ... .....

3.5 Reduced Size Network Simulation Studies . . . .. ... ... ....
35.1 TestResults . . .. ... ... ... .. ... ...
3.5.2 Faults at the Relay Location . . . . . . ... ... ... .. ...
3.53 DirectionalRelay . . ... ... ... ... . ........

3.6 Summary . . . . o .. e e e e e e e e e e e e e

A Recurrent Network Directional Module

4.1 Introduction . . . . .. . . .. . ... ... e

42 Temporal Processing . . . ... ... ... .. ... .. ... ...
4.2.1 Feedforward Neural Networks
4.2.2 Temporal Sequence Processing
4.2.3 Recurrent Neural Networks . ... ... ............

4.3 Proposed Recurrent Network Architecture
43.1 Knowledge Representation . . . . ... ... ..........
43.2 Specialized Structure Network . . ...............
4.3.3 Fault Direction Detection Network’s Structure

4.4 Direction Detection Network Design
4.4.1 Generation of Training Data

..................

..................

...............

.........

...................

...................



442 Network’s Inputs and Qutput . .. .. ... ... ....... 69

4.4.3 Network Structure and Training . . . . ... ... ... .... 70

4.5 Performance Evaluation Studies . . . . .. .. ... ... ....... 72
4.5.1 Faults Away from the Relay Location . . . . .. .. ... ... 73
4.5.2 Faults at the Relay Location . . . . .. ... ... ....... 79

4.6 SUMMATY . .« v v v o v e e e e e e e e e e e e e e 81
Directional Protection using an Elman Network 82
5.1 Imtroduction . . .. .. .. ... . ... ... 82
5.2 Temporal Pattern Recognition . . . . . . ... ... ... ... ... .. 83
5.2.1 Static Neural Networks . . . .. .. .. ... ... ... ... 83
5.2.2 Temporal Processing . . ... ... .. ... ... ....... 83
52.3 ElmanNetwork . . ... ... ... .. ... .. ... ... 84

5.3 The Proposed Elman Network Design . . . . . ... ... ....... 86
5.3.1 FeatureSelection . ... ... ... ... ... ... ... ... 86
5.3.2 Network’s Inputs and Qutput . . . .. ... ... ... .... 87
5.3.3 Directional Elman Network . . .. .. ... ... ... . ... 87

5.4 Test Resultsand Discussion . . . . .. .. .. ... .......... 88
5.4.1 Faults Away from the Relay Location . . . . . ... ... ... 89
5.4.2 FPaults at the Relay Location . . . . .. ... ... ....... 93
54.3 SequentialFaults . ... ..................... 94
54.4 Cross-Country Faults . . . . .. .. ............... 96
5.4.5 Measurements at Both Terminals . . . ... ... ... ... .. 97

55 Summary . .. ... ... ... e 99
High Speed Fault Detection & Phase Selection 101
6.1 Introduction . ... . ... ... ... . ... ... 101
6.2 Starting Systems . . ... ... ... ... . .. 102
6.2.1 Current/Voltage Starters . . . . . ... ... ... ....... 104
6.2.2 Impedance Starters . .. ..................... 105
6.2.3 Fault Resistance Considerations . . .. ... ... ....... 106

6.3 Measurement Errors . . . . .. .. ... .. 107
6.3.1 Fault Resistance . ........................ 107
6.3.2 ZeroSequence . . . ... .. ... ... ... ... 110

6.4 The New Starter Module Design . . . . . ... ... ... ....... 111
' 6.4.1 Least-square Error Algorithm . . . .. ... ... ....... 114
6.4.2 Impedance Comparison. .. .. ................. 116
6.4.3 AdaptiveSettings . . . . ... ... ... ... ... 118

6.5 Simulation Studies .. ............. ... ... . ... ... 121
6.5.1 SimulationModel . . .. ... ... ............... 121



6.5.2 FaultStudies . ... ...... ... ... .. . . ...,
6.5.3 Sequential Faults . . . ... ... ... ... ...........
6.5.4 Cross-Country Faults . . .. ... ... .............
6.5.5 LineCharging . . . . . ... ... ... .............
6.6 SUMMATY . . . . . v vt e v e e e e e e e e e e

II Real-Time Implementation

7 Laboratory Experimental System

7.1 Imtroduction . . . . . . .. . . . ... . .
7.2 Experimental System Set-up . .. ... ... ... ... .. .. ..
7.2.1 Power System Physical Model . . . . . . .. ... ... .. ..
7.2.2 Current and Potential Transformers . . . . . .. .. ... ...
723 AnalogFilter . .. ... ... ... .. .. ... . .
7.2.4 Digital Signal Processor Board . . . . . . .. ... .......
7.2.5 Data AcquisitionSystem . . . . .. .. ... .. ... ... ..
7.3 Embedded Software Structure . . . . . .. .. ... oL
7.4 Digital Relay Real-time Implementation . .. . ... ... ... ...
7.5 Summary . . .. . . .. e e e e e e e e

Experimental Studies
81 Imtroduction . . . . .. .. . .. .. . . ...
8.2 Feedforward Network Directional Module . . . . . . .. ... ... ..
8.2.1 Thirty-Input Network . ... ... .. ... .. ... ....
8.2.2 Twenty-Input Network . . . .. .. ... ... ... . ....
8.3 Recurrent Network Directional Module . . . . ... ... ... ....
83.1 Forward Faults ... . ... .... ... .. .........
832 Backward Faults . . .. ... ... ... ... .........
8.3.3 Faults at the Relay Location . . . . .. ... .. ... .....
8.4 Elman Network Directional Module . . . . .. ... ... .. .....
84.1 Forward Faults ... .. .. ... ... .. .. .........
842 Backward Faults .. .......................
8.4.3 Faults at the Relay Location . . . . .. ... ... ... ....
8.4.4 Directional Comparison Protection .. .............
85 StarterModule . .. ... ... ... ... ... ... ... . ...
8.5.1 Relay at the Generator End . . .. .. .. ... ... .....
85.2 RelayattheOtherEnd ... ... ... .. ... ... ....
8.6 Summary . .. . . .. . v it it e e e e e e



III Recorded Field Data Tests

9 Digital Relay Evaluation using Field Data

9.1 Imtroduction . . . . . . . . . o i i i e e e e e e e e e
9.2 Recorded Field Faults . . ... .. ... ... .............

9.2.1 Fault Data Exchange Sampling Rate . . .. .. .. .. .. ..

9.2.2 DecimationFilter . . . . . . . . . . ... ... . ... ...
9.3 Performance Evaluation Studies . . . . . . .. ... ... ... ...,
9.4 Feedforward Network Directional Module . . . . . ... .. ... ...
9.5 Recurrent Network Directional Module . . . . .. ... .. .. ...
9.6 Elman Network Directional Module . . . . . . ... ... ... ....
9.7 Starter Module . . . ... ... .. . . ... . . ...
9.8 Summary . . . ... e e e e e e e e

10 Conclusions and Future Work
10.1 Summary and Conclusions . . . . . . . . . .. ... .. ... ... ..
10.2 Recommendations for Future Work

...................

References

A Electro-Magnetic Transient Programs
A.l EMTP Transient Program ... .. ... ... ... .. ........
A.2 EMTDC Transient Program

.......................

B Transmission Line Parameters for Simulation Studies

C Training Algorithms
C.1 Back-Propagation Training Algorithm
C.2 Marquardt-Levenberg Algorithm

..................

......................

D Physical Model Power System
E Analog Bandpass Filter

186

187
187
188
192
193
194
196
199
204
209
213

217
217
221

223

234
234
235

237

239
239
241

243

244



List of Tables

4.1 Comparison of Different Neural Networks . . . . . ... ... ... ..
4.2 Fault direction detectiontime (ms) . . . . .. ... .. ... .....
4.3 Fault direction detection time for faults at the relay location (ms) . .



List of Figures

2.1 A transmission line interconnecting a local and a remote system . .. 19
2.2 Nonlinear modelof aneuron . . . .. . ... ... .. .. ...... 25
2.3 A sample two hidden layers feedforward network . . . . . . . .. ... 26
3.1 One-line diagram of the power system model . . . . .. .. ...... 37
3.2 Amplitude response of the bandpass filter. . . ... .. .. ... ... 38
3.3 30-input ANN response to forward faults at 95 km, fault resistance

50 2, power direction from send. to receiv., inception time 9 ms . .. 44
3.4 30-input ANN response to backward faults at 80 km, fault resistance

50 §2, power direction from send. to receiv., inception time 14 ms . . 45
3.5 30-input ANN response to backward faults at 80 km, fault resistance

50 €2, power direction from send. to receiv., inception time 14 ms . . 46
3.6 30-input ANN response to forward faults at 50 km, fault resistance

50 2, power direction from send. to receiv., inception time9ms . .. 46

3.7 30-input ANN averaged response to backward faults at 80 km, fault
resistance 50 {2, power direction from send. to receiv., inception time

Idms . . . . e e e e e e 47
3.8 Normalized filtered voltage and current of phase A for two different
forward and backward faults with identical system conditions . . . . . 51

3.9 Normalized filtered voltage and current of phase 4 for two different
forward and backward faults with different power flow directions and

fault inception times . . . . .. .. ... ... ... ... .. ... .. 52
3.10 20-input ANN response to backward faults at 70 km, fault resistance

100 2, power direction from receiv. to send., inception time 9 ms .. 55
3.11 20-input ANN response to backward faults at 80 km, fault resistance

50 §2, power direction from send. to receiv., inception time 14 ms .. 55

3.12 20-input ANN averaged response to forward faults at 95 km, fault
resistance 50 {2, power direction from send. to receiv., inception time
SIS . e e e e e e e 56

3.13 20-input ANN averaged response to backward faults at 5 km, fault
resistance 5 {2, power direction from receiv. to send., inception time
12ms . . . 57

3.14 20-input ANN response to forward faults at the relay location, fault
resistance 1 {2, power direction from send. to receiv., inception time
12ms . .. e e e 58

4.1 A schematic diagram of the proposed recurrent network structure .. 68



4.7

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

5.10

5.11 Elman network response to the B-G fault, measurements at both ends

6.1

Recurrent ANN response to forward faults at 95 km, fault resistance
50 €, power direction from send. to receiv., inception time 3ms . . .
Recurrent ANN response to forward faults at 50 km, fault resistance
zero, power direction from send. to receiv., inception time zero ms . .
Recurrent ANN response to forward faults at 95 km, fault resistance
100 Q, power direction from send. to receiv., inception time 1 ms
Recurrent ANN response to backward faults at 5 km, fault resistance
zero, power direction from receiv. to send., inception time 1 ms
Recurrent ANN-based directional relay response to backward faults
at 5 km, fault resistance zero, power direction from receiv. to send.,
inception time 1 ms, fault detection 2 samples after fault inception
Recurrent ANN response to forward faults at the relay location, fault
resistance zero, power direction from send. to receiv., inception time
ZETO TS  « o v i e v e o e e e e e e e e e e e e e e e e

Elman network architecture, solid lines represent the trainable coz-
NECtIONS . . . . . . .. e e e e e e e e e e e e e
Elman network response to forward faults at 95 km, fault resistance
50 2, power direction from send. to receiv., inception time 5 ms . .
Elman network response to backward faults at 5 km, fault resistance
zero, power direction from receiv. to send., inception time 1 ms
Elman network response to forward faults at 95 km, fault resistance
100 €2, power direction from send. to receiv., inception time 12 ms . .
Elman network response to forward faults at 90 km, fault resistance
zero, power direction from send. to receiv., inception time 12 ms,
send. source imp. reduced by 20 . . . . . ... ... L Lo
Elman network response to forward faults at the relay location, fault
resistance zero, power direction from send. to receiv., inception time
ZETO TMS & o v v e e e e e e e e e e e e e e e e e e e e e
Elman network response to the C-G and B-C-G sequential forward
faults . . . . . . L e e
Elman network response to the B-G and A-B-G sequential forward
faults . . . . . L e e
Elman network response to the B-G and C-G cross-country forward
faults . . . . . . L e e e e
Elman network response to the A-G and C-G evolving cross-country
forward faults . . . . . .. ... L L o o o

A two-bus system with generation only atoneend . . . . . .. .. ..

75

75

76

7

78

80

85

90

91

92

99



6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

6.10

6.11

6.12

6.13

6.14

6.15

6.16

6.17

7.1
1.2
7.3
7.4

8.1
8.2
8.3
8.4
8.5

8.6
8.7

A two-bus system with generation at bothends ... ... ... ... 108

Effect of fault resistance on the measured impedance . . ... .. .. 109
Impedance regions of the impedance startingunit . . . . ... .. .. 113
Block diagram of the proposed underimpedance starters. . . . . . . . 114
Block diagram showing the outputs of phase starters and fault detector118
Adaptive changing of the settings of the underimpedance starters . . 120
Power System Model . . . . . ... ... ... ... ... .. ..., 121
Phase A starter and detector outputs for faults at 50 km, fault resis-

tance 20 Q for ground faults, SCC ratio 2, angle zero degree . . . . . 123
Phase A starter and detector outputs for faults at relay location, fault

resistance 1 §) for ground faults, SCC ratio 1, angle 30 degrees . . . . 125
Phase A starter and detector outputs for faults at 50 km, fault resis-

tance 80 2 for ground faults, SCC ratio 1/5, angle 30 degrees ... . 126
Phase A impedance trajectory for two A-G faults with zero and 80 Q

fault resistance . . . . ... ... ... L L . 127

Phase A starter and detector outputs for faults at receiving-end, fault
resistance 10  for ground faults, SCC ratio 1/10, angle 30 degrees . 129
Phase A impedance trajectory for the A-G fault in comparison with

two adaptive and constant saferegions ... .............. 130
Phase starters and detector outputs for the A-G and A-B-G sequential

faults . . . . ... 131
Phase starters and detector outputs for the A-G and C-G cross-country

faults . . . . . 133
Phase starters and detector outputs for the line charging case . ... 135
Schematic diagram of the experimental system set-up . . .. ... .. 140
Analog filtercircuit . . . . ... ... ... .. L. 143
Schematic diagram of the data acquisition system . . . ... ... .. 145
Application program structure for the digitalrelay . . . . . ... ... 147

Thirty-input feedforward network averaged response to two different

forward faults . . . . ... ... ... ... 153
Twenty-input feedforward network averaged response to two different
forward faults . . . .. .. ... ... ... ... .. 155
Twenty-input feedforward network averaged response to two different
forward and backward faults . . . . . ... ... ... ..., ..... 155

Recurrent network response to two different forward faults at 100 km 157
Recurrent network response to two different forward faults at 150 km 158
Recurrent network response to two different forward faults at 50 km . 158
Recurrent network response to two different backward faults at 50 km 159



8.8 Recurrent network response to two different forward faults at the relay
location . . . . . . .. e e
8.9 Recurrent network response to two different backward faults at the
relaylocation . . . . . .. ..o
8.10 Elman network response to two different forward faults at 100 km . .
8.11 Elman network response to two different forward faults at 150 km . .
8.12 Elman network response to two different forward faults at 50 km . . .
8.13 Elman network response to two different backward faults at 50 km . .
8.14 Elman network response to two different forward faults at the relay
location . ... ... ... . ... ..
8.15 Elman network response to two different backward faults at the relay
location . ... ... ... ...
8.16 Elman network response to two different forward faults at 100 km,
relay located at the otherend . . . .. ... ... ... ... .....
8.17 Phase starters and detector outputs for the A-C-G forward fault at
50 km

...................................

170

8.18 Phase starters and detector outputs for the C-G forward fault at 100 km172

8.19 Phase A impedance trajectory for two A-G faults with and without
fault resistance . . . . .. ... L Lo
8.20 Phase starters, detector and Elman network-based directional relay
outputs for the A-G forward fault at 100 km . . . . .. ... ... ..
8.21 Phase starters, detector and recurrent network-based directional relay
outputs for the A-B forward fault at 150 km . . . . .. ... ... ..
8.22 Phase starters, detector and Elman network-based directional relay
outputs for the A-B-C forward fault at 50 km . . ... ... ... ..
8.23 Phase A, B and C impedance trajectories for the A-B-C forward fault
at 100 km . . . .. e
8.24 Phase starters, detector and Elman network-based directional relay
outputs for the A-G forward fault at the relay location . ... .. ..
8.25 Phase starters, detector and Elman network-based directional relay
outputs for the A-G backward fault at the relay location . . ... ..
8.26 Phase starters, detector and recurrent network-based directional relay
outputs for the A-B backward fault at 50 km . . . . .. .. .. .. ..
8.27 Phase starters and detector outputs for the A-C-G forward fault at
: 50 km, relay located at the otherend . . . .. ... .. ... .....
8.28 Phase starters and detector outputs for the A-G forward fault at
150 km, relay located at the other end

.................

9.1 Schematic diagram of the Alberta 240 ¥V power transmission system



9.2

9.3

9.4

9.5
a8

e

9.7

9.8

9.9

9.10

9.11

9.12

9.13

9.14

9.15

9.16

9.17

9.18

9.19

9.20

9.21

9.22

Three phase recorded currents and voltages for a A-G fault on the 135

km transmission line . . . . .. ... ... ... .. L L.
Three phase recorded currents and voltages for a A-B-G fault on the

135 km transmission line . . . . .. .. ... L.
General system for sampling rate reduction by M . . . ... ... ..
Frequency response of the Kaiser decimation filter . . . . . .. . . ..
Processing of the fault data by the DSP board

Vi vade A

Twenty-input feedforward ANN response to the phase C to ground
forward fault on the 112 km transmissionline ... .. .. ... ...
Twenty-input feedforward ANN averaged response to the phase A to
ground forward fault on the 135 km transmission line . . . . . .. ..
Twenty-input feedforward ANN averaged response to the phase A to
ground forward fault on the 135 km transmission line, measurement
at theotherend . . . . . . . ... ... . ... .. .
Twenty-input feedforward ANN averaged response to the phase A to
phase B to ground forward fault on the 135 km transmission line .
Recurrent ANN response to the phase A to phase B to ground forward
fault on the 135 km transmissionline . . . .. .. ... ........
Recurrent ANN response to the phase C to ground forward fault on
the 112 km transmission line . . . . . . . ... ... .. ........
Recurrent ANN response to the phase C to ground forward fault on
the 135 km transmission line . . . . . . . ... ... . ... ... ...
Recurrent ANN response to the phase A to ground forward fault on
the 135 km transmission line . . . . . . . .. ... ... ... .....
Recurrent ANN response response to the phase Bto phase Cbackward
fault behind the 135 km transmission line . . . .. ... ... ....
Elman network response to the phase B to ground forward fault on
the 135 km transmission line . . . . . . ... ... ... .. .. ....
Elman network response to the phase A to phase B to ground forward
fault on the 135 km transmission line, measurements at both ends . .
Elman network response to the phase C to ground forward fault on
the 112 km transmission line . . . . . . ... ... ... ........
Elman network response to the phase B to phase C backward fault
behind the 135 km transmission line . . . .. ... ..........
Elman network response to the phase A to ground forward fault on
the 135 km transmission line, measurements at bothends . . . . . . .
Phase starters and detector outputs for the C-G fault on the 112 km
transmission line . . ... ...... ... . ... ... . ... ...
Phase starters and detector outputs for the A-G fault on the 135 km
tramsmission line . .. ... ... ... ... ... ...,

v



9.93 Phase starters and detector outputs for the A-G fault on the 135 km

transmission line, relay located at the otherend . . . . .. ... ... 212
9.24 Phase starters and detector outputs for the A-B-G fault on the 135

km tramsmission line . . .. ... ... ... ... o L. 214
9.25 Phase starters and detector outputs for the A-B-G fault on the 135

km transmission line, relay located at the otherend . . . . . . . . .. 215
B.l Transmission line detailed parameters . . . . . . .. .. ... ..... 238
E.l Anpalog filtercircuit . . . . .. . ... ... ... o 244



A/D

AIC

CHA, CHB
DAS

DMA

DSP

1/0

ISA

MUX

PC

RAM

ROM

S/H
TMS320C30

ANN

Avg

List of Symbols

Computer

Analog to Digital conversion
Analog Input Card

I/O channels of the DSP board
Data Acquisition System
Direct Memory Access

Digital Signal Processor
Input/Output

Industry Standard Architecture PC bus
Multiplexer

Personal Computer

Random Access Memory

Read Only Memory

Sample and Hold

Texas Instruments DSP chip

Neural Networks & Signal Processing

Artificial Neural Network

Average



fl)

J(w)
J—l

OR

PCA

T

tanh, tansig

TDNN

Yj

Back-Propagation

desired response of neuron j

exponential function

error signal at the output of neuron j
error vector

instantaneous value of the sum of squared errors
mapping function

Finite-duration Impulse Response
Identity matrix

Jacobian matrix of derivatives of each error to each weight
inverse of matrix J

transpose of matrix J

down-sampling factor

Maximum

Minimum

Marquardt-Levenberg training algorithm
sampling number

OR logical function

Principal Component Analysis

sampling period

hyperbolic tangent sigmoid function
Time Delay Neural Network

net internal activity level of neuron j



1-&-g

2-9

2-9-g

3-0-g

ab, A-B

abeg, A-B-C-G
abg, A-B-G

ac

synaptic weight of synapse j belonging to neuron k&
input signal of neuron &

output signal of neuron k

unit-delay operator

momentum factor

learning-rate parameter

local gradient of neuron j at iteration n
small change applied to weight w
gradient vector

Hessian matrix

activation function

learning parameter

threshold applied to neuron k

Power System

1-phase to ground faults

2-phase faults

2-phase to ground faults

3-phase to ground fault

phase A to phase B fault

three phase to ground fault

phase A to phase B to ground fault

alternating current



ac, A-C
acg, A-C-G
ag, A-G
be, B-C
beg, B-C-G
bg, B-G
BPA

CB

cg, C-G
CT

dc

DFR
EHV
EMTDC
EMTP
FACTS
GVA

HVDC
iA,iB, iC

I4, I8

phase A to phase C fault

phase A to phase C to ground fault
phase A to ground fault

phase B to phase C fault

phase B to phase C to ground fault
phase B to ground fault

Bonneville Power Administration
Capacitance

Circuit Breaker

phase C to ground fault

Current Transformer

direct current

Digital Fault Recorder

Extra High Voltage
Electro-magnetic transients simulation program
Electro-Magnetic Transients Program
Flexible AC Transmission Systems
Giga-Volt-Amperes

horse power

High Voltage Direct Current

phase A, B and C currents
adaptive setting of current

fault currents measured at points A and B



I>

I. >

kEVA

MVA
PSCAD
PT

pu

R1,---,R5

SCC
TCR
vA, vB, vC

VT

Zo
2y
ZA, ZB, ZC

Zadp

fault current

phase overcurrent unit
neutral overcurrent unit
residual current factor
kilo-Volt-Amperes
Inductance

Mega-Volt-Amperes

Power System Computer Aided Design

Potential Transformer
per-unit

Resistance

analog filter resistances

fault resistance

Short Circuit Capacity
Time Constant Regulator
phase A, B and C voltages
voltage measured at point A
Voltage Transformer
Reactance

zero sequence impedance
positive sequence impedance
phase A, B and C impedances

adaptive setting of impedance



Z
Zra,ZrB
Ziine

Zicad

load impedance

line impedance, sections A and B
line impedance

impedance under load condition
minimum impedance under load condition
replica impedance

source impedance

impedance seen by the relay
underimpedance unit

deviation of current

deviation of voltage

power system frequency, rad/s

xxiv



Chapter 1

Introduction

1.1 Power System Protection

1.1.1 Role of Protection

The extensive use of electric energy has made reliable operation of electric power
systems a problem of special importance. The function of a power system is to
supply electrical energy to customers as reliably and economically as possible. One
of the best ways to do this is to have large-scale interconnected power systems.
Thus, there has been a trend towards an interconnected network of transmission
lines linking generators and loads into large integrated systems, some of which span
entire continents [1].

In a large electric power system comprising of hundreds of complex interacting
elements, there always exists a possibility of disturbance and fault. The advent of
large generating stations and highly interconnected power systems makes early fault
identification and rapid equipment isolation imperative to maintain system integrity
and stability.

Faults are generally caused by failure of insulation. Some other causes of faults

include breaking of conductors and accidents. Such faults may cause:



e interruption in the power supply to the customers
e instability in system operation
e extensive damage to the equipment

e serious hazard to the personnel

To minimize these effects, power system equipment must be protected adequately.
Protective relays are used in power systems to protect equipment from excessive
damage and to maintain system integrity and stability [2, 3, 4]. A good protective

relay should have the following features:
e speed
e accuracy
o reliability
e sensitivity
o selectivity
o ecase of maintenance

¢ minimum cost
1.1.2 Historical Background

Protective relaying is a task of fundamental importance in a modern power system.

Early relays for protection of power systems used electro-mechanical technology.



Consequently, they suffered from several associated disadvantages like long oper-
ating times due to inertia of moving parts, high burden on Current and Voltage
Transformers (CTs and VTs), contact pitting and high maintenance cost. This ne-
cessitated the use of more sophisticated relaying techniques.

The next generation used static relays. Static relays fabricated using solid state
components were an improvement over the electro-magnetic relays. The use of static
relays eliminated some of the drawbacks of the electro-mechanical relays; but there
were other limitations such as temperature sensitivity, aging of components, sensi-
tivity to voltage spikes and damage due to overloading.

In their early version they were built assuming pure sinusoidal waveforms as
inputs. That is why many utilities did not accept these relays. Later, some modifi-
cations were done and their use increased gradually during sixties and early seventies
(5]

Recently, computer relaying techniques have been introduced in relaying design.
Many individual investigators and manufacturers are developing microprocessor-

based devices for the protection of power systems and some devices have become

commercially available (5].

1.1.3 Digital Relaying

In a pioneering paper (6], Rockefeller undertook the study of protection of all the
power equipment in a substation with a digital computer. Since then, there has been
a considerable amount of research work in the area of digital computer relaying. It is

evident that a single computer for the protection of all the equipment in a substation



is not a viable concept in view of the presently available computer hardware. The
solution to this problem is to use a number of microprocessors dedicated to individual
equipment relaying tasks with an inter-computer data exchange facility.

The concept of digital computer relaying has grown rapidly as digital computers
have become more powerful, cheaper and reliabie. Advances in computer hardware
have been accompanied by analytical developments in the field of relaying (7). Re-
search, design and economics of microprocessor-based relays reached a level where
commercial production began several years ago. Successful attempts have been made
in designing and developing various microprocessor-based relays (7, 8, 9, 10, 11, 12].

Besides the benefits of digital technology, properly designed microprocessor relays
are superior to conventional electro-mechanical and static relays in several ways.

Some of the expected benefits of a digital protection scheme include [5]:

e Economy: The cost of digital hardware has been steadily decreasing. The cost
of a digital relay is now less than the cost of a comparable analog relay [13].
Although the software development costs for a digital relay are high, as with
the development cost of any new device, these would be distributed over many

similar devices.

e Performance: The performance of the commercial digital relay is considered to
be as good as the corresponding perfect analog relay. A digital relay has some
inherent features such as memory action and complex shaping of operational

characteristics which lead to better performance.

e Reliability: A high level of diagnostic functions can be realized in a digital relay
which makes the relay much more reliable. The digital relay, for example, can



perform self-checking at regular intervals.

¢ Flexibility: The same hardware with minimal change can be used for different

functions by changing only the software program.

e Background tasks: The relaying computer can take over some other tasks such
as measuring voltages and currents and monitoring power flows, controlling the
opening and closing of circuit breakers and switches and providing backup for

other devices (7].

A typical digital relay has a measurement unit and a computation unit. The
measurement unit is comprised of data acquisition, conversion and storage. The
computation unit uses the data provided by the measuring unit to execute the re-
laying algorithm. The measurements, fault computations and decision making must
be completed within the time available between consecutive data sampling instants.

The analog input power system signals are sampled continuously, the sampling
rate is dependent on the application and algorithm used. The raw data samples
are stored in the memory of the digital relay. Power system signals include high
frequency components during system faults. Depending on the rate at which a
signal is sampled, some high frequencies can appear to be a component of the power
frequency. This is called alias problem. Anti-aliasing filtering is required in a digital

relaying algorithm to minimize the effect this problem [14].



1.2 Transmission Line Protection

Power transmission lines are the vital links providing the essential continuity of
service from generating plants to the end users. About two-thirds of the faults in
power systems occur in the transmission line network [15]. To maintain stability in a
power system it is imperative that any fault in the transmission system be identified
and the faulted line be isolated from the network with minimal delay.
Transmission line protection is the most elaborate and challenging function in
power system protection. Consequently, it has received extensive attention from the
researchers and designers in the area of power system protection. Also, the high cost
of conventional transmission line relays naturally makes them a worthwhile research
problem to tackle. Moreover, the cost of digital hardware has been steadily decreas-
ing. This is why digital relaying of transmission lines has attracted the attention of
many researchers (5]. Computer relaying techniques have been introduced in relaying
design and microprocessor-based transmission line relays have been proposed [5, 14].
The most common methods used for transmission line protection include over-
current, distance, current differential, phase comparison and directional comparison

protection schemes.
1.2.1 Overcurrent Protection

One of the earliest and simplest types of protective relays is overcurrent relay. This
relay assumes a fault has occurred if the input measured current exceeds its threshold

value. The relay tripping time can be made inversely proportional to the amount of



overcurrent [15, 16]. Overcurrent relays get confused when load current is significant
compared to fault current.

Fault resistance is one common problem in transmission line protection. Most
of the faults on transmission lines are accompanied by fault resistance. For faults
between different phases of the line which do not involve the ground, the fault re-
sistance is mainly due to the resistance of arc. For faults involving the ground,
however, the fault resistance includes arc resistance as well as the ground resistance.
For some ground faults such as contact with trees fault resistance could be very large.
Overcurrent relays may not be able to detect faults including high amount of fault
resistance.

Directional relay modules are used to limit relay operation to a specified direction.
When there is a source at both ends of a transmission line, the relays protecting the
line are subjected to fault current flowing in either direction. If nondirectional relays
are used, they have to be co-ordinated not only with the relays at the remote end
but also with the relays behind them.

Directional-overcurrent relays are combination of directional and overcurrent re-
lay modules. Being simple and less expensive than other transmission line relays,

these relays could be used as backup protection for transmission lines.

1.2.2 Distance Protection

Distance relays measure the apparent impedance between the relay and the fault
location using the fundamental frequency components of the voltage and current

signals. The apparent impedance is compared with the relay setting to determine



whether the fault is in the protected zone area. Fourier transform approach {17, 18],
the least square approach [19, 20] and numerical solution of differential equation
[21, 22] are some of the numerous digital impedance protection techniques available
in the literature.

Impedance protection techniques have operating times of the order of one cycle
[23]. Also, distance relays have to be co-ordinated with relays at other substations
which might result in complex relay co-ordination programs. Under earth fault con-
ditions on a transmission line, the presence of another nearby circuit in parallel with
the transmission line might cause distance protection relays to measure incorrectly.
The error is due to the inductive coupling between the two circuits.

For transmission lines supplied from both ends, the voltage drop in the fault
from the remote end magnifies the fault resistance as seen at the local bus. It could
shift the apparent impedance measured by a distance relay from inside to its outside
characteristic and therefore, cause maloperation.

The various limitations of impedance relaying have been highlighted in Ref. [23].
According to this reference, there is an uncertainty associated with the impedance
estimated by the relay and this uncertainty depends upon the speed with which these

estimates are made.
1.2.3 Unit Protection

Unit protection with its advantage of fast selective fault clearance has been used
in power systems from the early stages. The problems of adequately protecting

modern power systems with their high degree of interconnection and with the need



of fast clearance times have led some countries to consider adopting unit protection
compared with distance protection [15].

Distance relays could be used to trip faults within their first protective zone
without any intentional delay. Due to the measurement errors, the first protective
zone of a distance relay is usually set to about 80% of the length of the protected
transmission line. Faults on the remaining end section of the line are cleared after
some time delay. To provide high speed clearing for the remaining end section of the
transmission line a pilot communication channel between the line terminals should
be used. Unit protection schemes using pilot relays could clear faults on the whole
length of the line without any intentional delay.

An essential feature of transmission line unit protection is the provision of a
pilot channel over which information can be transmitted between two ends of the
line. The communication channels commonly used are power line carrier, leased
lines, microwave and fiber optics. There is a tradeoff regarding the bandwidth of
the communication channel used. Wideband channels are faster so they enhance
the performance but they are also more expensive. Narrowband channels are less
expensive but are also slower. The advent of digital communication has enhanced
the prospects of wholly digital relays.

Different unit protection schemes have been proposed which transmit different

types of information over the communication channel.

1.2.3.1 Current Differential Protection

A current differential protection scheme compares currents at transmission line ter-

minals to discriminate between internal and through fault conditions on the line.
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Current differential relays use a single signal, exchanged between terminals to em-
body the current information for the three phase system. At each line end, summa-
tion CT's are used to derive a single phase quantity which is a function of the three
phase currents. The sensitivity of the relay can vary with different types of faults and
some schemes are known not to perform adequately for certain types of faults such
that failure to operate for some internal faults and maloperation for some external
faults may occur. The solution appears to be to transmit the instantaneous current
information on a per phase basis and make differential measurement for each indi-
vidual phase [24]. This would involve dependable communication channels linking

the various circuit ends.
1.2.3.2 Phase Comparison Protection

In a phase comparison protection scheme, the relative phases of the currents at the
ends of the transmission line are compared over a communication channel. When the
currents at the terminals are relatively in phase, an internal fault is indicated and
the line is tripped. When the currents at the terminals are relatively 180 degrees out
of phase, an external fault is indicated and the line is not tripped. Phase comparisoa
protection techniques have been proposed [25], but protection principles of this kind
make use of a very reliable communication channel as they involve the exchange of

quantitative information across the ends of the protected line.

1.2.3.3 Directional Comparison Protection

A directional comparison protection scheme is based on exchanging directional or

command information over the communication channel and therefore pose small
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demand on the channel; the channel could act in a simple switching sense. The
directional decisions, forward or reverse, are made independently by directional relays
at each terminal of the transmission line and then compared over the channel to
provide a tripping signal for internal faults or blocking for external faults and loads.
Power flow into the line at both terminals indicates an internal fault and the line
is tripped. If the power flow is into the line in one end and out of the line at the
other end the fault is considered to be external and the line is not tripped. Since
directional relays operate only when the fault current flows in the specified tripping
direction, they avoid complex co-ordination and the possibility of compromising line
protection [26].

Directional comparison relays are set to respond to faults in the protection zone
without intentional time delay and therefore, are used where high-speed fault clearing
is necessary. Such a scheme detects faults along the whole length of a transmission
line quickly and selectively (8]. This type of protection has been widely applied
and is becoming popular in modern schemes of system protection particularly where
difficult earth-fault conditions prevail [15].

There are several advantages to high speed clearing of faults at both line ter-
minals. The principle advantage of high speed relaying is improvement of stability
of the system. Other benefits of high speed relaying are reduced fault damage to
insulators, conductors and hardware, reduced safety hazards to substation personnel
and line crew from step and touch potentials, reduced stresses on major substation
equipment, generators and turbines and the possibility of faster reclosure due to less

arc ionization as a result of faster fault clearance.
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1.3 Dissertation Objectives

A power system is a very complicated and highly nonlinear system. Advent of new
methods and equipment introduced in power systems such as HVDC, FACTS, power
electronics equipment and control methods and capacitor-compensated transmission
lines has made the power system even more complex. New trends in power system
such as deregulation of electric utilities are under way. Deregulation gives consumers
the possibility to buy power from any producer in the market. New methods and
skills are required in design and analysis of power systems to achieve new solutions
for possible new emerging problems as well as some of the old-standing ones.

The main objective of this dissertation is to develop different modules of a trans-
mission line protective relaying system. Different modules such as fault direction
identification, fault detection and phase selection modules are designed, implemented
and tested. With the increasing magnitude of short-circuit MV A in modern power
systems, shorter fault clearing times are becoming necessary. The proposed modules
should be fast and robust. Their performance should not be affected by changes in
power system conditions and parameters such as source impedance, fault location,
fault type, fault inception time and pre-fault power flow direction. The proposed
schemes should perform reliably for fault with high amount of fault resistance.

Since the advent of digital protection and its use in industry, many different
methods and algorithms have been investigated and developed. Most of the digital
relaying algorithms use digital signal processing techniques to process input signals.
Rapid development in microcomputer technology, coupled with an equally dramatic

cost reduction has provided the opportunity to study and develop new microprocessor
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based-relays.

Artificial Neural Networks (ANN), as an alternative approach, have been ap-
plied recently to many engineering applications. Successful applications of ANNs
in the power engineering area have demonstrated that they could be utilized as an
alternative method to solve certain long-standing problems where conventional tech-
niques have experienced difficulties. In this research work, neural network technique
is employed to design the transmission line fault direction discrimination module.
Different neural network structures are used and four different directional modules
are proposed.

A new algorithm, based on impedance measurement and covering a wide range of
impedance plane, is proposed for fault detection and phase selection. A fast method
to estimate the fundamental frequency power system voltage and current phasors
is used. The proposed approach is able to detect faults with high amount of fault
resistance.

A protective relaying system responds to faults in a fixed predetermined man-
ner. The predetermined manner, embodied in the characteristics and settings of
the relay, is based upon certain assumptions made about power system operating
conditions. In time, if the system conditions change the settings of the relay may
be inappropriate and the relay might maloperate. Adaptive protection systems per-
mit the protection functions to be adapted automatically in real-time to changing
power system conditions. Such procedures maintain optimum protection quality and
performance. Adaptive features are also added to the proposed relaying modules to
enable them to track the changing operation conditions of the system.

The proposed modules can be employed individually as transmission line protec-
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tive modules or together in a directional comparison protection scheme by employing

a relay at each end of the line.
1.4 Organization of the Dissertation

There are 10 chapters in this dissertation which are divided into 3 parts:

e Part I - Theoretical Developments & Simulation Results

This part consists of five chapters. Proposed transmission line protective re-
laying modules are presented and the function of each module is described.

Detailed simulation studies of the proposed modules are also presented.

Transmission line fault direction discrimination problem is discussed in Chap-
ter 2. Neural network approach is proposed as a solution for fault direction
identification. A brief review of artificial neural networks is also given in this

chapter.

Neural network technique is employed and two different feedforward networks
are proposed to act as the directional module of a transmission line relaying
system. Design procedure of the proposed neural network-based directional
modules is described in Chapter 3. A typical power system model is used to
examine the proposed directional modules under different system conditions.
Results of performance studies with the proposed neural network-based ap-

proaches are also presented in Chapter 3.

An important class of neural networks has a recurrent structure. Processing

of temporal sequences and signals by recurrent neural networks is discussed
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in Chapter 4. A novel recurrent neural network is proposed to determine the
direction of faults on transmission lines. Details of the design procedure and
the results of off-line performance studies with the proposed recurrent network

are given and analysed in Chapter 4.

A different recurrent neural network based on the structure proposed by Elman
is presented in Chapter 5. A recurrent network with temporal processing abil-
ities is designed and trained to determine the fault direction on transmission
lines rapidly. Test results obtained from the simulation studies under different

power system conditions are presented and discussed in this chapter.

It is desirable to develop a fast and reliable method to detect faults on a trans-
mission line and to select faulty phases. A new high speed adaptive module is
proposed in Chapter 6 for fault detection and phase selection. Different types
of fault starter units are also described in this chapter. The proposed algorithm
is tested to evaluate its performance under different operating conditions in-
cluding faults with high resistance. The design procedure and the results of

the simulation studies with the proposed approach are presented in Chapter 6.

Part II - Real-Time Implementation

Another phase of the project involves implementation of the proposed relay
modules in real-time. The performance of the proposed relaying modules is

investigated further on a physical model of a power system.

The laboratory experimental system set-up is described in Chapter 7. The
hardware and software required for implementation are also discussed. Details

of implementation of the proposed modules are presented in this chapter.
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Results of experimental studies performed on the power system model with the
different proposed modules are given in Chapter 8. A wide range of various
types of forward and backward faults were applied at different locations on the
modelled transmission line and the performance of different proposed modules

was extensively investigated. The effect of fault resistance was also studied.

Part III - Field Data Tests

The performance of the proposed modules is investigated further using recorded
fault data from a high voltage power system. The real world complex effects of
the power system elements are already included in the recorded real fault data.
In this way, the performance of the newly designed relaying modules can be
further verified in a more realistic environment than pure simulation. Results

using various recorded field data are presented in Chapter 9.

Finally, conclusions and recommendations for further research are presented in

Chapter 10.
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Chapter 2

Transmission Line Directional Protection -

Neural Networks Solution

2.1 Introduction

Artificial neural networks have been studied for many years and have been used in
various applications. It has been shown that they are powerful in pattern recognition
and classification, and possess generalization capabilities.

The ability of neural networks to learn complex nonlinear input/output relation-
ships reveals them as viable candidates for solving significant power system problems.
ANN techniques have been used in power system area in general and in protection
area in particular and encouraging results were obtained [27, 28|.

The forward or backward fault location with respect to the measurement point
on a transmission line should be identified rapidly and reliably. A fault direction
identification problem on a transmission line can be treated as a pattern classification
problem, and ANNs can be used for determining the direction of a fault on the given
transmission line.

The problem of fault direction identification and the need for directional relays

in a power system is described in this chapter. Previously proposed directional
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algorithms are briefly described and their limitations are discussed. Neural network
approach is proposed as a solution for fault direction identification. A brief overview

of neural networks is also given in this chapter.

2.2 Transmission Line Fault Direction Discrimination

2.2.1 Directional Protection

Directional units are fundamental to power system protection performing such criti-
cal tasks as supervising distance elements and controlling overcurrent elements. Di-
rectional relays are used for protection of ring or loop systems as well as radial
circuits with sources at both ends (8, 12].

Relays protecting a transmission line, with sources at both ends, are subjected to
fault current flowing in either direction (Fig. 2.1). If nondirectional relays are used,
they have to be co-ordinated not only with the relays at the remote end but also with
the relays behind them. Since directional relays operate only when the fault current
causes a power flow in the specified tripping direction, they avoid complex relaying

co-ordination and the possibility of compromising line protection. It is, therefore,
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Figure 2.1: A transmission line interconnecting a local and a remote system
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desirable to develop directional relays which are able to determine the direction of

the fault rapidly and correctly for different operating conditions of the power system.

2.2.2 Directional Comparison Scheme

A directional comparison protection scheme greatly simplifies co-ordination problems
and permits high speed tripping. The need for precise relay settings and correspond-
ing calculated system fault currents and voltages is eliminated.

A directional comparison scheme consists of directional relays at each terminal of
the transmission line. Using the locally measured quantities, the direction to a fault
is independently determined by the relay at each end of the transmission line. These
directional decisions are then compared over a communication channel to arrive at a
combined trip/block decision. Thus the overall decision time is determined by both
the directional relay and the communication link.

In the directional comparison scheme the need for data transmission is low. Unlike
some other pilot protection schemes which may call for a great deal of data to be
obtained from the remote location, directional comparison requires just to transmit
an on/off signal through the channel. Fiber optic channels could be used for high
speed communication between the two ends of the transmission line.

In a directional comparison system, a further characteristic could be used to
detect high fault levels close to the relay location. For such a case, tripping could be
made independent of the directional unit in the station at the opposite end of the
transmission line. According to the configuration of power system, this technique
enables faults at locations up to 40% of the line length to be tripped without signals
being exchanged between the relays at the ends of the line [8].
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To ensure that the protection system can trip the line in the case of any possible
communication channel failure, provision is made for the relay to trip its local circuit

breaker without any directional comparison after a delay determined by a timer [8].
2.2.3 Fault Direction Identification

Direction of a fault on a transmission line can be determined from the relative phase
angles of the voltage and current phasors. To determine the direction of the fault, a
directional relay uses a reference against which line current can be compared. This
reference is known as the polarizing quantity.

With zero sequence component of line current, either a zero sequence current or
voltage or both must be used. In power systems with mutual induction problems,
the trend is toward the use of negative sequence quantities for the ground directional
unit {12].

Conventional negative sequence directional elements base their decision on the
phase angle between the negative sequence voltage and current. The directional ele-
ment measures the negative of the negative sequence source impedance for forward
faults. It is an incremental measurement since it is not available unless an unbal-
anced disturbance hits the system. It will however not be available for a balanced
disturbance, i.e. it does not cover three phase faults. Positive sequence is present
for all possible faults. Therefore, a conventional directional unit which can be used

in all circurnstances must be based on positive sequence quantities.
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2.2.4 Neural Network Solution

With the present techniques of designing power systems protective relays, one can ob-

tain reasonable performance for more common faults than with the older protection

extreme cases. Relaying decisions are made based on some pre-assumptions about
power system conditions. If the system conditions change, the relaying performance
is not guaranteed. Digital-based protective relays might need to perform extensive
computations to obtain accurate estimate of the system states and therefore, would
not be able to make a quick trip decision. They maloperate in some fault cases as
well.

At the same time, the power systems continue to grow in size and complexity
and also new components are being introduced. Also the present day tendency of
operating generators with small stability margins has made the stability problem
even more serious, thus requiring very fast fault clearing time. In this way, one
encounters more complicated systems with new dynamic power system problems.
Thus one should be ready to meet a new problem with new ideas and techniques.

The majority of power system protection techniques are involved in defining the
system state through identifying the pattern of the associated voltage and current
waveforms. This means that the development of a protection algorithm can be
essentially treated as a problem of pattern recognition/classification. However, due
to the many possible causes of faults and the nonlinear operation of some power
system devices, conventional pattern recognition methods may not be satisfactory in

applications involving complex power systems [29].
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Artificial neural networks have been studied for many years and have been used in
various applications. It has been shown that they are powerful in pattern recognition
and classification, and possess generalization capabilities.

The direction of a fault on a transmission line can be determined from the rel-
ative phase angles of the voltage and current phasors. Voltage is usually used as
the reference polarizing quantity. The fault current phasor lies within two distinct
forward and backward regions with respect to the reference phasor, depending on the
power system and fault conditions. The fault direction identification problem car be
treated as pattern classification problem, and ANNs can be used for determining the
direction of a fault on the given transmission line. The neural network-based direc-
tional identifier does not explicitly use the phase information to make its decision. It
uses samples of the instantaneous values of the voltage and current waveforms and

tries to recognize and classify the input patterns of the network as the forward or

backward faults.

2.3 Artificial Neural Networks

Artificial neural networks have a quite long and extensive history. The history of
neural network computing is not that long and can be traced to some recent origins
[30]. According to some survey articles some major fundamental concepts for neural
network computing were introduced in the early 1960s [31]. Since then, much research
has been done and today several well defined network architectures are available
to apply to a variety of problems. A variety of new implementation ideas were

introduced and neural network computing became a well established field by the late
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1980s [32, 33].
As detailed introduction about neural networks is already available [31, 33, 34,
35, 36, 37], only a brief summary of some of the concepts of neural networks is given

in this section.
2.3.1 Neural Networks - An Overview

Interest in artificial neural networks has been motivated by the recognition that
the brain computes in an entirely different manner than the conventional digital
computer. In recent years, interest in studying the mechanism and structure of the
brain has increased.

The human brain outperforms modern digital computers in pattern recognition
and classification of real world data. It can discriminate objects into various pattern
classes. Artificial neural networks are systems simulating parts of the human brain
[34]. They have been studied for many years in the hope of achieving human-like
performance. Neural computing is now one of the most promising technologies in all
fields of engineering, resulting in the development of a number of different networks
by different researchers.

To achieve good performance, neural networks employ 2 massive interconnection
of simple computing cells referred to as neurons or processing units. Therefore the
following definition of a neural network viewed as an adaptive machine may be offered
(35]:

“A neural network is a massively parallel distributed processor that has a natural

propensity for storing experimental knowledge and making it available for use”.
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Figure 2.2: Nonlinear model of a neuron

Neurons are the basis of neural networks. The model of a neuron is shown in Fig.

2.2. Each neuron model consists of three basic elements described as (35]:

1. Synaptic Weights: The neuron input signals are multiplied by a set of synaptic
weights connected to the neuron. These weights are used to store the presented

information to the network.

2. Adder: This linear combiner is used for summing the input signals each weighted

by the respective synapse of the neuron.

3. Activation Function: This nonlinear function simulates the chemical process
in biological neurons. It limits the permissible amplitude range of the output

signal to some finite value.

The model of a neuron also includes an externally applied threshold that has the
effect of lowering the net input of the activation function.
The manner in which the neurons of a neural network are connected results in

different network architectures. A feedforward neural network is a simple layered
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Figure 2.3: A sample two hidden layers feedforward network

collection of processing units connected only in forward direction by links of vari-
able weights. A schematic illustration of a sample feedforward network with two
hidden layers is shown in Fig. 2.3. A recurrent network distinguishes itself from a
feedforward network in that it has at least one feedback loop.

One of the most important properties of ANNs lies in the fact that they learn from
examples, rather than being programmed. Knowledge is acquired by the network
through a learning process in which a number of input /output pairs are presented to
the network. The procedure used to perform the learning process is called learning
algorithm. The function of learning algorithm is to modify the network parameters

in a way that the network would be adapted to the presented information.
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2.3.2 Benefits of Neural Networks

A neural network derives its computing power through its massively parallel dis-
tributed structure and its ability to learn and generalize. The use of neural networks
offers a variety of useful properties and capabilities. Some ¢

of ANNs include [35]:
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o Nonlinearity: A neuron is basically a nonlinear device. Consequently, a network
made up of interconnection of neurons, is itself nonlinear. A properly trained

neural network can perform highly nonlinear mappings.

o Learning: Neural network can learn from the interaction with the environment;
it learns from the examples by constructing an input/output mapping for the

problem at hand.

o Generalization capability: If a network is trained properly, it would be able
to generalize the training information to similar situations which it has never

experienced before.

¢ Complex mappings: Neural networks can synthesize complex mappings which

may be very difficult or even impossible to be expressed in mathematical form.

o Robustness and fault tolerance: Neural networks are robust. Even if the input
data is incomplete or noisy, the network can still provide satisfactory results.
Due to distribution of computational load across many processing units, the

network possess some degree of fault tolerance with respect to processor fail-

ures.
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o High speed: Due to the parallel mechanism, once a neural network is trained,
it can provide the ability to solve the mapping problem much faster than con-

ventional methods and other intelligence methods such as expert systems.

2.2.3 Neural Networks Applications in Power Systems

Artificial neural networks have made a significant impact on the industry with the
applications in various areas such as process control, optimization nonlinear pro-
cess and human operator modeling, automatic plant knowledge elicitation and fault
detection and monitoring [38].

The application of neural network approach in the power engineering area has a
relatively short time span of about 10 years [27, 39]. Various applications have been
tried and some field implementations have been realized [40]. However, the initial im-
plementation activity was not equally strong in different countries. Some countries,
in particular Japan, were leading in terms of number and variety of implementations
[41].

Some applications of artificial neural networks in the power engineering area

include {27, 39, 42, 43]:
o Load forecasting
e Power system monitoring and control
o Economic load dispatching
o Unit commitment

e Security assessment
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o Power system protection

o Fault detection and classification
2.3.4 Use of Neural Networks in Power System Protection

The number of neural networks applications in power engineering is quite impres-
sive. However, the implementations are not equally spread over the power system
applications [40]. While in some areas such as load forecasting a number of practical
solutions may have already been implemented, some other areas such as protective
relaying and fault analysis are still at an exploratory stage [27].

Neural networks techniques have been proposed by different researchers for solv-
ing different power system protection problems. Most of the proposed ANN-based
protection algorithms use voltage and current signals in one form or another as the
inputs to the network. Using the provided information to the network, the network is
trained to learn different patterns presented to it. The trained network is then used
to distinguish between different power system conditions. Based on its application,
the trained network could be used by the protection system to perform different
tasks such as fault detection and classification, fault location and fault direction
identification.

The structure of a neural network is application specific. Structural differences
might come on account of the number and type of inputs, number and type of outputs
and the complexity of the application which would then govern the number of layers
and the number of neurons in different layers. These parameters of the network are

decided by experimentation which involves training and testing a number of network
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configurations. The process is terminated when a suitable network with satisfactory
performance is established.

With the recent advances in the area of ANNs, many different ANN architectures
and learning methods have been proposed. ANN techniques have been used in power

system protection and encouraging results were obtained in various areas such as

[9, 28):
¢ Transmission line Protection
o Transformer protection
o Generator and Motor protection
o Fault detection and classification
o Fault direction identification
e Fault locating
e High impedance fault detection

e Adaptive autoreclosure

A Neural network is an interconnection of simple computing elements. As these
computing elements involve additions and multiplications the network can be imple-
mented on some commonly used processors in digital protection area, e.g. digital

signal processors.
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2.4 Directional Relay Algorithms

2.4.1 Digital Techniques and Their Limitations

Various digital techniques have been proposed in the literature by different re-
searchers to accomplish the task of transmission line directional relaying. Some
of these algorithms are summarized in Refs. [14, 26, 44]. Some of the proposed
algorithms use postfault voltage and current phasors following a fault on the system,
while others use incremental voltage and current signals.

One of the algorithms using postfault voltage and current signals is presented in
Ref. [45]. The proposed algorithm makes use of fundamental frequency components
of compensated voltages to make a decision. The direction of a fault is determined
by phase angle comparison between two phasors of the compensated voltages. Fun-
damental frequency components are extracted using one cycle Fourier algorithm. In
this algorithm extensive signal processing is used to process the input signals and
make a decision. It takes up to 24 ms to determine the fault direction. For faults
with fault resistance more than 33% of the line impedance, this algorithm may not
operate correctly [45].

In recent years, protection principles have been developed which are capable of
determining the fault direction from the evaluation of nonsteady-state variables [8].
The inception of a fault on a transmission line causes the voltage and current signals
to deviate from their pre-fault values to their post-fault values. Some directional
algorithms use the deviation signals of the voltage and current, i.e. Av and A

These deviation signals are the signals which would result at the measuring location
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if a voltage equal and opposite to the pre-fault voltage is imposed at the fault location.
The deviation signals consist of three major components including system frequency,
decaying dc and traveling wave components.

Some high speed algorithms use traveling wave components present in the devia-
tion signals {14]. A constraint associated with protection principles utilizing traveling
waves is inadequacy of standard current and voltage transformers in terms of high
frequency response. It has been shown that the relaying decisions made on the basis
of traveling wave components are valid just for a very short duration and are also
quite sensitive to noise in relaying signals and transducers [46]. Another basic prob-
lem is that traveling waves of sufficient magnitude are not generated for a fault at
zero voltage. Also, extremely high sampling rates, of the order of 13 kHz are required
(14].

The Vitins algorithm considers the fault trajectory in the AwKAi plane, where
Kis a constant [47]. For a forward fault the trajectory moves from the origin into the
second or fourth quadrant depending on the fault incidence angle. A reverse fault
moves from the origin into the first or third quadrant. A decision about the direction
of a farlt is based upon whether the trajectory crosses appropriate thresholds in the
AvK Aiplane. This algorithm apart from its starting point is more based on the non-
traveling wave components. The current deviation signal includes a dc component.
The magnitude of the decaying dc component is a function of fault incidence angle
which is not known in advance. Due to the dc component it is not possible to define
an operating characteristic with a constant reach in the A KA plane.

A different approach using the power system frequency of the deviation signals is

proposed in [48]. This approach proposes an improvement to the algorithm described
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in [47). The constant K is set equal to a replica source impedance Z,. The power
frequency components of Av and Ai are related by the source impedance for a
forward fault. If the current deviation signal is made to flow through the replica
impedance, a voltage difference is obtained which can be used in conjunction with
the Av to determine the fault direction. These two signals are in phase or in anti-
phase with each other depending upon whether the fault is in front or behind of the
relay location.

Both of the algorithms presented in Refs. [47, 48] as well as some other sim-
ilar methods reported in the literature (14, 44], do not have the ability to adapt
dynamically to the system operating conditions. These algorithms have operating
characteristics in the form of trajectories which depend upon some parameters such
as source impedance and fault resistance. Certain assumptions about the system
conditions have to be considered for setting the operating characteristics of the re-
lay. If the system conditions become different the performance of the algorithm will

be affected and the relay may not respond correctly.
2.4.2 ANN-Based Directional Algorithm

For the problem of transmission line directional relaying, the direction of various
kinds of faults at different locations of the line and under different system conditions
should be identified. Complex interactions exist amongst voltage and current signals
of different phases of the transmission line. Neural networks are able to model com-
plex nonlinear functions and have generalization capability. These capabilities makes

them a suitable candidate for solving directional relaying problem using current and



34

voltage signals as the inputs. Neural networks techniques have been used and ANN-
based directional modules are proposed. The proposed modules are discussed in

detail in the following chapters.

2.5 Summary

The current and voltage waveforms during a short circuit in a power system are dis-
torted. To determine whether the system is faulty or healthy, an extensive amount
of filtering is performed by some digital algorithms to obtain accurate estimates of
phasors. This prevents the relay from making a quick trip decision. These algorithms
are not able to adapt to the system operating conditions. Neural networks could be
considered as a new approach for solving power system protection problems. Inclu-
sion of a neural network in a protection scheme allows the direct use of instantaneous
data to determine the state of the power system. In addition, the data window can
be quite short and does not need to satisfy particular rules as in the case of digital
techniques [9, 27]. This approach maintains the advantages which are inherent in

ANNs, such as robustness, speed and generalization capability.



Chapter 3

Directional Protection using Feedforward Neural

Networks

3.1 Introduction

Faults on tra.nsmissién lines need to be detected, classified and cleared as fast as
possible. Moreover, the fault direction should be identified. In this chapter a new
approach to the transmission line fault direction identification problem is presented
and its effectiveness is demonstrated.

Artificial neural networks, composed of many simple neuron-like processing units,
have been studied for many years. It has been shown that they are powerful in
pattern recognition and classification and can draw complex decision boundaries. To
classify forward and backward faults on a given transmission line, neural network’s
abilities in pattern recognition and classification could be considered as a solution. To
demonstrate the applicability of this solution, neural network technique is employed
and two feedforward networks are designed and trained.

Details of the design procedure of the two neural network-based directional mod-
ules are given in this chapter. Results of performance studies with the proposed

modules are also presented in the chapter.

35
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3.2 A Feedforward ANN-Based Directional Module

A feedforward network has been designed to act as the fault direction identification

module of a transmission line relaying system. Details of the design procedure are

given below.

3.2.1 Power System Model

The training data set of an ANN should contain the necessary information to gen-
eralize the problem. Using an electro-magnetic transient program, EMTDC [49] a
three phase 240 kV sample power system was simulated and the input/output pair
patterns for training and testing the network were generated. A brief introduction
about EMTDC program is given in Appendix A.

The one-line diagram of the modeled power system is shown in Fig. 3.1. The
simulated power system consists of two equivalent sources labeled as sending-end
and receiving-end sources and two 100 km transmission lines connected in series in
between the sources. The transmission lines are modeled by frequency dependent
parameters and have two conductors per bundle. Details of the transmission lines
parameters are given in Appendix B.

The measurement devices are located at the point of connection of transmission
lines and look forward towards the receiving-end source. Thus, the line section
between the relaying point and the receiving-end source is the forward protection
zone and the line section between the relaying point and the sending-end source
is the backward line section. Faults in the forward protection section are called

forward faults whereas faults occurring on the opposite side of the relay are labeled
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Figure 3.1: One-line diagram of the power system model

as backward faults.

Training patterns were generated by simulating different types of faults on for-
ward and backward regions of the power system. Different parameters and conditions
such as fault location, fault resistance, fault inception time and pre-fault power flow
direction were changed to obtain training patterns belonging to a wide range of dif-
ferent conditions of the power system. Faults including high amount of resistance,
up to 100 £, were also considered. In total, 7200 patterns were generated for training

the directional neural network.

3.2.2 Input Selection of the Network

Most of the necessary information for determining the disturbances and transients in
power systems is usually contained in the voltage and current waveforms. Moreover,
being measured by VTs and CTs, the voltage and current waveforms are the most
available information in power systems. Therefore, the sampled normalized voltage
and current signals measured at the relay location were considered as the input in-
formation to the neural network. However, the raw data is often noisy and might

provide redundant information. In addition, when a fault occurs on a transmis-
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sion line, voltage and current signals develop a decaying dc offset component whose
magnitude depends on many factors that are random in nature.

In a pattern recognition/classification problem it is important to represent the
raw input data set by a reduced number of effective features while retaining most
of the intrinsic information con‘ent of the data. In other words, the data set should
undergo a dimensionality reduction.

Pre-processing is an useful method to reduce the dimensionality of the input data
set. A simple wide 2nd-order Butterworth bandpass filter was used to attenuate the
dc component and high frequency noise. The amplitude response of the filter is
shown in Fig. 3.2. The passband of the filter is chosen to be 80 Hz. This value
allows a considerable reduction of the high frequency and dc components with a small
time delay. This pre-processing enhances the training capabilities of the network and

decreases the number of required patterns for training the network.
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Figure 3.2: Amplitude response of the bandpass filter
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It is common to use consecutive samples of all three phase voltages and currents
as the inputs to the neural network {50, 51, 52]. To ensure that the network is
able to estimate the fault direction in a timely fashion, three phase voltage and
current waveforms were sampled at a rate of 20 samples/cycle in this application.
This sampling rate is compatible with the sampling rates commonly used in digital
relays.

The appropriate data window length is also 2 major factor which should be
considered. It was decided to cover the information of 1/4 of the cycle of the voltage
and current inputs. Thus, each phase voltage and current was represented by its
5 consecutive samples. This data window length meets both requirements of speed

and reliable operation. Hence, the network’s input consists of:

1a(R)T,ta(n — 1)T, ..., ta(n — 4)T, va(n)T,va(n — 1)T, ..., va(n — 4)T
iw(n)T,i(n — 1)T, ..., 5(n — 4)T, w(n)T,uw(n - 1)T,...,u(n —4)T
1(n)T,ie(n — )T, ..., 1(n — 4)T, v(n)T,ve(n - 1)T,...,v{n —4)T

A 30-input network with a single neuron output layer was chosen as the fault
direction identification network. The network needs just one output to classify be-
tween forward and backward faults. The network’s output should be +1 for the case
of forward faults and —1 for the case of backward faults.

With the 30-input neural network, each input pattern of the sampled current
and voltage signals could be represented by a point in a 30-dimensional Euclidean
space. The decision surface would be a hyper-surface in the 30-dimensional space.
The neural network classifies different input patterns to identify the direction of a

fault on a given transmission line.
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3.2.3 Training Algorithm

Back-propagation (BP) is one of the most popular learning algorithms. The con-

vergence of BP learning algorithm progresses slowly in general. To speed up the

orithm many technig:
niques roughly fall into two categories. The first category includes such ideas as
varying the learning rate, using momentum and rescaling variables. The second
category of research has focused on numerical optimization techniques. The most
famous approaches from this category have used conjugate gradient or quasi-Newton
methods.

While back-propagation is a steepest descent algorithm, the Marquardt-Levenberg
(ML) algorithm is an approximation to the Newton’s method. Gradient descent is
simply the technique where parameters such as weights and biases are moved in
the opposite direction to the error gradient. Each step down the gradient results in
smaller errors until an error minima is reached. The rate of convergence could be
slightly increased by using momentum or varying the learning rate. ML algorithm,
on the other hand, is a nonlinear least squares algorithm applied to the batch learn-
ing of multilayer perceptrons. The key step in the ML algorithm is the computation
of Jacobian matrix [53]. The ML algorithm update rule for the weight change , Aw
is:

Aw = [JT(w)J(w) + pI)" T (w)e(w) (3.1)

where J(w) is the Jacobian matrix of derivatives of each error to each weight, uis a
scalar and e(w) is the error vector. When p is large, the algorithm becomes steepest

descent, while for small x the algorithm becomes Gauss-Newton.
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If enough memory is available, the ML algorithm can result in dramatically re-
duced training times in comparison with the required training times for either of
the variable learning rate and conjugate gradient algorithms. It has also been found
that in many cases the ML algorithm converged, while the variable learning rate
and conjugate gradient algorithms failed to converge [53]. The major drawback of
the ML algorithm is that it requires more memory. For very large networks, the
memory requirements of the algorithm make it impractical for some of the current
available computers. However, for networks with a few hundred weights the algo-
rithm is very efficient [53]. A brief description of BP and ML training algorithms is

given in Appendix C.

3.2.4 Suitable Network Structure

A few different network structures, all having 30 inputs and one output but with dif-
ferent number of neurons in their hidden layers were considered and trained. Training
and test patterns were generated by simulating different types of faults on forward
and backward regions of the simulated power system.

In basic terms, for multilayer perceptrons differentiability is the only requirement
that an activation function would have to satisfy. On the other hand, a multilayer
perceptron trained with the back-propagation algorithm in general learns faster when
the sigmoidal activation function is asymmetric than when it is nonsymmetric [35].
The activation function ¢(v) is asymmetric if:

¢(—v) = —4(v) (3-2)

A popular example of an asymmetric function is a sigmoidal nonlinearity in the
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form of a hyperbolic tangent, defined by:
é(v) = atanh(bv) (3.3)

where a and b are constants. The following function is used as the activation function

of the neurons of the network used in this study:

2

1 (3.4)

Various networks considered were trained both with the BP and the ML algo-
rithms. It was found that the networks trained with the ML algorithm provide better
results compared with the results of the networks trained with the BP algorithm.
Although the computational requirements are much higher for each iteration of the
ML algorithm, this is more than compensated by the increased efficiency of the algo-
rithm. The ML algorithm is capable of reducing the network error to a pre-specified
value in just about 60 epochs, while the BP algorithm needs a few thousands epochs
to decrease the error to the same level. In some cases, even after many thousands
of epochs, the BP algorithm is not able to decrease the error to the same level as
obtained by the ML algorithm. Therefore, it was decided to use the ML training
algorithm for this application.

Different networks with one and two hidden layers were considered and their
performance was evaluated in terms of computational requirements, generalization
capabilities and response time. It was found that the networks with reasonable
number of neurons in one hidden layer can not cover some of the extreme cases
such as faults with very high amount of resistance and faults near the relay location.

On the other hand, networks with two hidden layers provide better results without
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having to have high number of neurons in their hidden layers. The network which
showed satisfactory results, while not having a big size, had 30 inputs, 10 neurons
in the first hidden layer, 5 neurons in the second hidden layer and one output, fully
connected in feedforward structure. Simulation tests were carried out to evaluate
the performance of the ANN-based algorithm under different fault conditions and

some of the simulation results are presented in the next section.

3.3 Test Results

The proposed neural network was tested with different independent test patterns and
promising results were obtained. The results show that the identification of the fault
direction by the network is very fast. In most cases, the network is able to classify
the fault direction correctly during first two sampling times after the inception of
the fault. Determination of fault direction is not affected by the type and location
of the fault, fault inception time, pre-fault power flow condition, and the presence of
fault resistance.

As an example, the network’s output for four different types of forward faults
applied at far end of the protection area is shown in Fig. 3.3. In this case the fault
location was 95 km from the relay location, with fault resistance of 50 €2, pre-fault
power direction from sending-end to receiving-end and fault inception time 9 ms
after phase A voltage zero crossing. For each fault, the output of the network is
shown during the first cycle (20 samples) after fault inception at sample number 1.
Different faults involve different phases and ground as well. Fault type ag indicates

a single phase to ground fault (phase A to G), while fault type ab indicates a phase
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Figure 3.3: 30-input ANN response to forward faults at 95 km, fault resistance 50 {2,
power direction from send. to receiv., inception time 9 ms

to phase fault (phase A to phase B).

In all cases, the directional network correctly identifies the fault direction. After
the fault inception, for some cases the network’s output might oscillate for a very
short time. However, in all cases the network’s output becomes equal to 1 two
samples after the inception of the fault and then remains stable. Thus, the network
identifies the fault direction as forward fault. It shows that the proposed directional
module performed correctly and rapidly for far end faults even in the presence of
high fault resistance.

The next example tests the network’s performance for different types of backward
faults on the power system. The network’s output for four types of backward faults
at 80 km from the relay point is shown in Fig. 3.4. This figure shows that the

determination of fault direction is very fast and reliable.
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Figure 3.4: 30-input ANN response to backward faults at 80 km, fault resistance
50 2, power direction from send. to receiv., inception time 14 ms

Different types of faults including 1-phase to ground faults (A-G, B-G, C-G),
2-phase to ground faults (A-B-G, A-C-G, B-C-G), 2-phase faults (4-B, A-C, B-C)
and 3-phase to ground fault (A-B-C-G) may occur on a transmission line.

Under the same conditions as those presented in the previous example different
backward faults were applied and the output of the feedforward network is shown in
three-dimensional space in Fig. 3.5. Using three-dimensional plots makes it possible
to show the output of the network for various types of faults at the same fault
location.

The network’s output for different types of forward faults on transmission line at
50 km from the relay location is shown in Fig. 3.6. The directional network identifies

the fault direction correctly and rapidly for different types of faults.
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Figure 3.5: 30-input ANN response to backward faults at 80 km, fault resistance
50 Q, power direction from send. to receiv., inception time 14 ms
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Figure 3.6: 30-input ANN response to forward faults at 50 km, fault resistance 50 2,
power direction from send. to receiv., inception time 9 ms
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In order to further increase the reliability of the fault direction decision, four
consecutive outputs of the network may be averaged. Averaged outputs of this post-
processing unit which fall above 0.5 and below -0.5 are interpreted as forward and
backward faults, respectively.

To demonstrate the direction identification network’s capabilities including a
post-processing moving average filter, different types of backward faults were ap-
plied using the same condition as the case presented in Fig. 3.5. Fig. 3.7 shows the
network output with output averaging, while the network output without averaging

is shown in Fig. 3.5.
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o
1

10
Sample no.

acg abg b

Fault type

Figure 3.7: 30-input ANN averaged response to backward faults at 80 km, fault
resistance 50 (2, power direction from send. to receiv., inception time 14 ms

The directional module output is set equal to zero prior to the fault inception
time. For the first samples after the fault inception, the post-processing unit averages

network’s output with zeros. Therefore, the speed of the direction decision initially
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decreases. For the faults shown in Fig. 3.7, it takes at most six and at least two
samples after the fault inception for the output of the moving average filter to fall
inside the backward fault area. On average the directional module including an
output averager needs just about 2.5 ms to classify the fault direction correctly,
even for the case of the fault at the end of transmission line with high resistance

which is slow in nature.
3.4 A New Network using Less Inputs

3.4.1 Feature Selection

Neural networks have the ability to classify different input patterns into desired out-
put classes. The application of a pattern classification technique requires a selection
of features that contain the information needed to discriminate between classes, and
which permit efficient computation to limit the amount of the required training data
and size of the network. In general, whether or not a feature can be selected is
problem dependent.

A key problem in pattern recognition/classification is to represent the raw input
data set by a reduced number of effective features and yet retain most of the intrinsic
information content of the data. In other words, the data set should undergo a
dimensionality reduction in the feature selection stage.

' Pre-processing is an useful method to reduce the dimensionality of the input
data set. Principal Component Analysis (PCA) provides another technique for di-

mensionality reduction [35]. The main idea in PCA technique is to project each
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waveform along its eigenvectors and only retain the projections corresponding to the
principal eigenvalues of the covariance matrix of the input waveforms. If a few of
the eigenvectors contain a majority of the overall energy, then the dimensionality of
the data can be greatly reduced, without losing much information.

Ref. [54] describes a novel method for input variable selection for artificial neural
network-based short-term load forecasting. To test the viability of the method, real
load data for two US-based electric utilities are used. Results obtained compare
favorably to the ones reported in the literature, indicating that more parsimonious
set of input variables can be used in load forecasting without sacrificing the accuracy
of the forecast. This allows more compact ANNs, smaller training sets and easier

training [54].
3.4.2 Input Selection for a New Network

The direction of a fault on a transmission line can be determined from the rela-
tive phase angles of the voltage and current phasors. Voltage is usually used as the
reference polarizing quantity. The fault current phasor lies within two distinct for-
ward and backward regions with respect to the reference phasor, depending on the
power system and fault conditions. The neural network-based directional identifier
does not explicitly use the phase information to make its decision. It uses samples
of the voltage and current waveforms and tries to learn and recognize the hidden
relationships that may exist in the input patterns.

It is common to present samples of all three phase voltage and current information

to the classification network as its inputs. However, there may be some redundant
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information in this whole set of inputs. The network may be able to use a subset of
the voltage and current data to identify the direction of the fault. In such a case,
the network’s size would be reduced and a smaller size network with less number of
connection weights could perform the direction estimation job.

Different types of forward and backward faults were applied to the power system
and the voltages and currents at the relay location were studied. Fig. 3.8 shows
the filtered voltage and current of phase A for two different forward and backward
faults. All other conditions, like fault location, fault resistance, phases involved in
the fault and pre-fault power direction are similar for these forward and backward
faults. Both faults were applied at time 212 ms. As is shown in the figure, both pre-
fault voltages and pre-fault currents are the same for both cases. Post-fault voltages
are very similar for forward and backward faults, while post-fault currents are about
180 degrees out of phase. Investigations reveal that the forward and backward fault
voltages of the other two phases have very similar pattern as well.

It seems that for this example the input voltages provide the same information
to the network for both cases of forward and backward faults. Therefore, it might
be concluded that the network should be able to distinguish between different input
patterns without using the voltage inputs. However, more studies indicate that just
current inputs do not provide enough information to the network to distinguish be-
tween forward and backward faults in all possible combinations of different conditions
the power system may encounter.

Fig. 3.9 shows the filtered current and voltage of phase A for two different forward
and backward faults. In this case, all conditions for the two faults were the same

except that for the first fault the pre-fault power flow direction was from sending-end
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Figure 3.8: Normalized filtered voltage and current of phase A for two different
forward and backward faults with identical system conditions
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Figure 3.9: Normalized filtered voltage and current of phase A for two different
forward and backward faults with different power flow directions and fault inception
times
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to receiving-end , while for the other fault the direction was from receiving-end to
sending-end. Moreover, for the forward case, the fault was applied to the system at
time 214 ms, while for the backward case the fault hit the power system about half
a cycle earlier. As shown in Fig. 3.9, forward and backward faults have different
inception times. However, considering its own inception time as the origin in each
case, both pre-fault and post-fault currents for the two cases have a very similar
pattern. Therefore, the network using just current information inputs may become
confused in identifying these two cases.

Phase A voltage for the two cases is also shown in Fig. 3.9. It is clear that the two
waveforms are different after the fault inception times. So, they could provide some
extra information to the network to help it to distinguish between these two different
cases. It shows that for a fault directional module a voltage signal is required as a
polarizing reference, thus supporting the theory used in classical directional relays.

Extensive studies were performed and it was found that a feedforward network,
which uses all three phase currents information but just one phase voltage informa-
tion is able to classify forward and backward faults correctly. The phase A voltage

was used in this case as the reference.

3.5 Reduced Size Network Simulation Studies

3.5.1 Test Results

A few different network structures, all having 20 inputs (5 consecutive samples of all

currents and just one of the voltages) and one output but with different number of
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neurons in their hidden layers were considered and trained. A new network with 20
inputs, two hidden layers with 10 and 5 neurons, respectively and a single neuron
output layer showed satisfactory results and was considered for the studies in this
section.

The new network was trained using the ML training algorithm. Compared with
the previous 30-input network, the new 20-input network has a smaller size. As
a result, the memory and computational requirements are reduced and therefore,
the network training time for each iteration decreases considerably. Also the new
network’s convergence speed is faster. Compared with the number of epochs needed
for the previous 30-input network, the new smaller network needs 30% less number
of epochs to reduce the error to the same level. For the same number of epochs, the
validation set error for the smaller network is 15% less. Therefore, the new network
not only has a smaller structure, but also provides better quality compared with the
network which uses all three phase currents and voltages data. Due to a smaller size,
the new network has less operation time as well.

To examine the capabilities of this new network, different faults were applied
on the system and some of the test results are presented. The network output for
different backward faults at 70 km behind the relay point is shoﬁ in Fig. 3.10. The
network is able to classify faults with 100 Q fault resistance very fast.

With the same condition as the case presented in Fig. 3.5, the network response
for the same backward faults is shown in Fig. 3.11. This figure shows that the
network responds very fast and correctly. Moreover, comparing Fig. 3.11 with Fig.
3.5, it is found that the new network performed faster than the previous 30 inputs

network.
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Figure 3.10: 20-input ANN response to backward faults at 70 km, fault resistance
100 (2, power direction from receiv. to send., inception time 9 ms
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Figure 3.11: 20-input ANN response to backward faults at 80 km, fault resistance
50 Q, power direction from send. to receiv., inception time 14 ms
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Figure 3.12: 20-input ANN averaged response to forward faults at 95 km, fault
resistance 50 ), power direction from send. to receiv., inception time 3 ms

The network was tested for faults at 95% of the transmission line’s length. The
averaged output of the network is shown in Fig. 3.12. It shows that the network
performed correctly for the far end faults even in the presence of high amount of
fault resistance.

Using conventional methods, it is not easy to identify the direction of faults that
occur near the relay location [50]. Different faults with a small amount of resistance
were simulated at 5% of the line’s length on the backward area of the power system
and the network’s performance is presented in Fig. 3.13. It shows that the network
is able to classify the faults near the relay location correctly in a timely fashion. The

average time needed to classify the fault direction is less than 2.5 ms.
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Figure 3.13: 20-input ANN averaged response to backward faults at 5 km, fault
resistance 5 {2, power direction from receiv. to send., inception time 12 ms

3.5.2 Faults at the Relay Location

Identification of the direction of faults which occur at the relay location is a difficult
task. For the faults at the relay location, depending upon the fault type, input
voltages to a directional module may become zero which might cause maloperation.
For a three phase to ground fault all the voltages go to zero. The directional module
input voltages initially remain non-zero due to the front-end anti-aliasing filters.
However, the output of the anti-aliasing voltage filters goes to zero after some time
from fault inception time. Memory action can be used in the design of a fault
directional module in order to properly discriminate the fault direction with zero

input voltages.

The capabilities of the directional network were also examined for faults at the
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Figure 3.14: 20-input ANN response to forward faults at the relay location, fault
resistance 1 , power direction from send. to receiv., inception time 12 ms

relay location. The output of the network for different types of forward faults at
the relay location is shown in Fig. 3.14. After fault inception the network initially
identifies the fault direction correctly in all cases. However, for some cases after some
time the output of the network begins to oscillate.

Through different studies it was found that the network is able to correctly iden-

tify the fault direction for faults at the relay location for at least half cycle after the

fault inception.
3.5.3 Directional Relay

The directional relay has two components. The first component is the proposed

neural network-based fault direction discrimination module. The second component
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is a fast fault detector module which works in parallel with the ANN-based directional
module. When the system is healthy, the fault detector output is zero and the
directional module output is deactivated, i.e. set equal to zero.

When a fault happens in the system, the fault detector module senses the fault
quickly and activates the output of the directional module. [t was found through
different tests that the fault detector module in most cases is able to detect the fault
during the first two samples after the occurrance of the fault.

For the examples presented in this chapter, it was assumed that the fault detector
instantly detected the fault after its inception and activated the directional module
output. Thus, the time needed to identify the fault direction was determined by the
directional module alone.

It is assumed now that for a fault case, the fault detector needs two sampling
periods (about 1.7 ms) to detect the fault. So, it seems that the operation of the
directional relay to detect the fault and discriminate its direction would be delayed
by 1.7 ms due to this extra time for detecting the fault.

After the fault inception the output of the ANN-based directional module might
oscillate for a short time before the input data window of the network enters the post-
fault data region. During this period the currents and voltages of the faulty circuits
have not increased/decreased considerably from their pre-fault values. This time
period overlaps with the detection time of the detector module. When the detector
module detects the fault, the directional module identifies the fault direction very
fast without oscillation because the input data to the network are mostly from post-
fault data. As a result, the delay in detecting the fault does not have much effect on

the total operation time of the directional rely.
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Different studies were performed using the fault detector and directional modules
working together as a directional relay. It was found that the detection time of the
detector module usually has 2 minor effect on the time needed to identify the fault

direction.
3.6 Summary

A transmission line fault direction identification method based on neural network
approach is described in this chapter. A feedforward network is designed and trained
to act as the directional module of a transmission line relaying system. The designed
neural network uses samples of all three phase voltages and currents to identify the
fault direction. Simulation studies are performed and the performance of the ANN-
based directional module is evaluated. Influence of changing different parameters
such as fault type, fault location, fault inception time, pre-fault power flow condition
and fault resistance on the network’s performance is investigated. Results obtained
indicate that the network is able to classify forward and backward faults very rapidly.

Next, a reduced size network using a subset of the voltage and current informa-
tion is proposed as a fault directional module. Extensive simulation studies have
been performed and promising results are obtained. Results obtained show that the

proposed network is able to detect the fault direction very fast and reliably.



Chapter 4

A Recurrent Network Directional Module

4.1 Introduction

The direction of a fault on a transmission line needs to be identified rapidly and
correctly. A fault direction discrimination problem on a transmission line can be
treated as a pattern classification problem, and ANNs can be used for determining
the direction of a fault on the given transmission line.

With the recent advances in ANNs, many different ANN structures and learning
methods have been proposed. An important class of neural networks has a recur-
rent structure. This class of neural networks distinguishes itself from a feedforward
network in that it has feedback loops in its structure.

In this chapter, a novel recurrent neural network is proposed to determine the
direction of fault on transmission lines [55]. The proposed neural network uses in-
stantaneous values of the three phase line currents and one of the phase voltages
to make the decision. The ANN-based algorithm is tested and its performance is
evaluated. Details of the design procedure and the results of performance studies

with the proposed recurrent network are given and analysed in this chapter.

61
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4.2 Temporal Processing

4.2.1 Feedforward Neural Networks

the traditional model of the neuron can be considered as a static structure mapping
input to output. A limitation of this model is that it only accounts for the spatial
behavior of a neuron by incorporating a set of fixed synaptic weights at the input
end of the model. A common configuration is to arrange a feedforward structure
using the model neurons. While this increases the class of functional mappings, it
is still a static mapping from input to output. This form of static input-output
mapping is well suited for pattern recognition applications where both the input and
output vectors represent spatial patterns that are independent of time. To extend
the usefulness of this model for temporal processing, it is necessary to modify it so

as to account for the temporal nature of the input data.
4.2.2 Temporal Sequence Processing

Time is clearly an important factor in many of the cognitive tasks encountered in
practice. It is inextricably bound up with many behaviors which express themselves
as temporal sequences. Thus, the question of how to represent time in connectionist
models and, in particular, how to extend the design of a feedforward network so
that it assumes a time-varying form and therefore will be able to deal with time-
varying signals and sequences is very important. The answer to these questions

is to allow time to be represented by the effect it has on signal processing. This
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means providing the mapping network dynamic properties that make it responsive
to time-varying signals [35].

In short, for a neural network to be dynamic, it must be given memory [56]. One
way to accomplish this requirement is to introduce time delays into the synaptic
structure of the network in one form or another. One popular technique which
uses time delays is the Time Delay Neural Network (TDNN). TDNN is a multilayer
feedforward network whose hidden and output neurons are replicated across time
(57]-

The TDNN topology is in fact embodied in a feedforward network in which each
synapse is represented by a Finite-duration Impulse Response (FIR) filter. This
latter network is referred to as FIR neural network. The FIR neural network uses

temporal model of the neuron to construct a feedforward network [58].
4.2.3 Recurrent Neural Networks

Another way in which a neural network can assume dynamic behavior is to make it
recurrent. A recurrent neural network distinguishes itself from a feedforward network
in that it uses at least one feedback loop in its structure. Feedback is said to exist
in a dynamic system whenever the output of an element in the system influences in
part the input applied to that particular element.

Different types of recurrent networks have been proposed by different researchers.
The difference between these networks lies in their structures and the way they handle
the feedback. For example, a recurrent network may consist of a single layer of

neurons with each neuron feeding its output signal back to the inputs of all the other
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neurons. In this structure, there are no self-feedback loops in the network. Another
class of recurrent networks uses both hidden neurons and self-feedback connections
in their structure.

The presence of feedback loops has a profound impact on the learning capability
of the network and its performance. The recurrent connections allow the hidden units
of the network to see their own previous output, so that the subsequent behavior can
be shaped by the previous response. These recurrent connections are what give the
network memory. Moreover, the use of feedback loops results in a nonlinear dynamic
behavior of the network by virtue of the nonlinear nature of the neurons.

Samples of phase voltage and current waveforms are usually used as the inputs to
a neural network-based protective relay. The voltage and current are time-varying
signals. Therefore, a network with temporal processing abilities should be considered.

The conventional static neural network architectures and algorithms are not well
suited for patterns that vary over time. The prototypical use of neural networks is
in structural pattern recognition. In such a task, the network uses a collection of
features presented to it to classify the input feature patterns into different classes. In
this method, the network is presented with all relevarnt information simultaneously.
In contrast, temporal pattern recognition involves processing of patterns which evolve
over time. In the present work, a novel recurrent neural network is proposed as the

directional module of a transmission line protection system.
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4.3 Proposed Recurrent Network Architecture

A neural network is a massively parallel distributed processor that has a natural
propensity for storing experiential knowledge and making it available for use [35]. A
key point is how to represent knowledge in the network. In real world applications of
intelligent machines, including neural networks, it can be said that a good solution

depends on a good representation of knowledge.

4.3.1 Knowledge Representation

A major task for a neural network is to learn a model of the world (environment) in
which it is embedded. Knowledge of the world consists of two kinds of information
[35], observation examples and the known states of the environment. Each example
consists of an input and the desired output of the network. The known world state is
represented by facts about what is and what has been known about the environment.
This form of knowledge is referred to as prior information.

Learning from a set of training examples deals with an unknown input-output
mapping function f(.). In effect, the learning process exploits the information con-
tained in the examples about the function f{.) to infer an approximate implemen-
tation of it. When feasible, learning from examples is a convenient approach. In
many practical situations, some knowledge about the function f{.) is available. In
these cases it would be inefficient to take blind examples without taking advantage
of what is already known about the function.

A hint is any piece of information about the function f{.). It may take the form of

a global constraint on f(.) or may be partial information about its implementation.
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The process of learning from examples may be generalized to include learning from
hints, which is achieved by allowing the prior information that is available about the
function f(.) to be included in the learning process {59, 60]. Such information may
include any knowledge about the function f(.) that may be used to accelerate the

search for its approximate realization [35].

4.3.2 Specialized Structure Network

Interneuron connections of the network are used to store the knowledge. The spe-
cialized structure built into the design of a neural network reflects prior information
about the characteristics of the activation pattern being classified. Therefore, any
information about the function can be used as a hint to structure the network.

An important issue that has to be addressed, of course, is how to develop a
specialized structure by building prior information into its design. To do this, un-
fortunately there are no well defined rules. The manner in which the neurons of
a recurrent network are structured and connected is problem dependent. One may
use engineering judgment and analysis to find the suitable network structure for the
problem at hand.

A specialized structure recurrent network is proposed next to perform as a trans-

mission line fault direction detection module.

4.3.3 Fault Direction Detection Network’s Structure

Samples of the voltage and current waveforms are used in a neural network-based

direction detection relay to determine the fault direction. The network learns from
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experience gained during training and recognizes the hidden relationships that exist
in the pattern observed during the learning phase. An equation of the decision
boundary describing the classification is embedded in the network.

When a fault occurs, the network should be able to initially recognize the fault
direction and as the time passes the output of the network should remain stabie for
the incoming samples after the fault inception. The output of a feedforward network
at each sampling time only depends on the input data set of the network at the same
sampling time. To consider the effect of time in the network structure, it would be
appropriate to make the network recurrent. The output of the network could be
made dependent on the new set of the input data as well as the previous amounts of
the output to make it stable after the fault inception time.

Feedforward neural networks have been already proposed as transmission line
fault direction discriminators [50, 51, 61]. A feedforward network structure classifies
different input patterns independently. The order in which the patterns are presented
to the network is not considered. There is a possibility that for some cases two
consecutive input patterns would be classified into different classes. The network’s
output may become oscillatory in some extreme cases [50]. In order to further
increase the reliability of the fault direction decision, a post processing unit, e.g.
an output averager is usually used to smooth up the output of the feedforward
network-based fault directional module.

For the problem at hand, it was decided to use a feedforward neural network
structure with the addition of a self-feedback connection from the output of the last
layer of the network to itself. This way, the output of the recurrent network depends

on both the inputs and the previous outputs. It helps the output of the network
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Figure 4.1: A schematic diagram of the proposed recurrent network structure

to remain stable after inception of the fault. Moreover, the network’s output track
becomes smooth. The network can be used as a stand alone unit, without averaging,
to determine the fault direction.

A schematic diagram of the suggested network structure is shown in Fig. 4.1. In

the next section this recurrent structure is used to design a transmission line fault

direction detection network.

4.4 Direction Detection Network Design

4.4.1 Generation of Training Data

One of the main properties of ANNs is that they learn from examples, rather than

being programmed. A set of training data including input/output pairs is usually
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presented to the network and the network tries to learn and generalize these exam-
ples.

The training data set of an ANN should contain the necessary information to
generalize the problem. Using the power system model shown in Fig. 3.1 training
patterns were generated by simulating different types of faults on forward and back-
ward regions of the power system. Fault location, fault resistance, fault inception
time and pre-fault power flow direction were changed to obtain training patterns be-
longing to a wide range of different conditions of the power system. Faults including
high amount of resistance were also considered. The training data set used for train-

ing the recurrent network is the same as the one used for training the feedforward

networks.
4.4.2 Network’s Inputs and Output

Consecutive samples of phase voltages and currents are usually chosen as the inputs
to the neural network. The appropriate input data window length is 2 major factor
which should be considered. Through a series of studies, it was found that a window
length of 4 samples sampled at 1.2 kH z provides enough information to the recurrent
network in this application. This sampling rate is compatible with the sampling rates
commonly used in digital relays.

It is common to present samples of all three phase voltage and current information
to the classification network as its inputs [50, 51, 61]. However, there may be some
redundant information in this whole set of inputs. The network may be able to use

a subset of the voltage and current data to identify the direction of the fault. In
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such a case, the network’s size would be reduced and a smaller size network with less
number of connection weights could perform the direction detection job.

Different types of forward and backward faults were applied to the power system
and the voltages and currents at the relay location were studied.

Extensive studies were performed and it was found that a recurrent network with
the suggested structure, which uses all three phase current information but just one
phase voltage information is able to classify forward and backward faults correctly.
The recurrent network therefore, should have 16 inputs. The phase A voltage was

used in this case as the reference. Hence, the network’s input consists of:

ta(n)T, ta(n — 1)T,24(n — 2)T,ia(n — 3)T, 4(n)T,i(n — 1)T,ip(n - 2)T,is(n — 3)T
te(n)T,ic(n — 1)T,i(n — 2)T,i(n — 3)T, va(n)T,va(n — 1)T,vs(n — 2)T,va(n — 3)T

The voltage and current input signals are filtered using the filter shown in Fig.
3.2 before being fed to the network.
The network needs just one output to classify between forward and backward

faults. The network’s output should be +1 for the case of forward faults and —1 for
the case of backward faults.

4.4.3 Network Structure and Training

A few different networks, all having 16 inputs and one output but with different
number of neurons in the hidden layer and different number of tap delays in the
self-feedback loop were considered and trained. Training patterns were generated

by simulating different types of faults on forward and backward regions of the sim-
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ulated power system. Independent test patterns were also generated to validate the
network’s performance. Faults including very high amount of resistance, up to 100
2, were also considered.

The directional module output is set equal to zero prior to detection of the fault.
For the recurrent network, the output of the network depends on the present input
as well as the previous history of the output. Its track is gradual; it does not
jump from zero to 1/—1. Depending upon the fault type, the output gradually
increases/decreases from zero towards 1/-—-1.

In the training stage, the output track can be considered suitably. This way, the
network learns the transition as it is specified, not as it decides by itself. So, one can
decide about appropriate pattern of the transition period.

Different networks with one and two hidden layers were considered. It was found
that the networks with reasonable number of neurons in one hidden layer can not
cover some of the very extreme cases such as faults with very high resistance. On the
other hand, networks with two hidden layers provide better results without having
to have high number of neurons in their hidden layers.

Various networks considered were trained to estimate the direction of a fault on
power transmission lines. The network which showed satisfactory results, while not
having a big size, had just 16 inputs (4 consecutive samples of each of the three
currents and any one of the three voltages), 8 neurons in the first hidden layer, 4
neurons in the second hidden layer and one single output neuron. The feedback loop
contained 3 tap delays of the output.

The proposed structure results in a small size network. Feedforward neural net-

works have been proposed in the literature to detect the direction of faults on trans-
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Table 4.1: Comparison of Different Neural Networks

[ Neural Network || Ref. [50] [ Ref. [51] | Ref. [61] | Recurrent |

Structure 24-20-12-1 | 30-12-4-1 | 30-10-5-1 | 16-8-4(+3)-1
No of inputs 24 30 30 16
No of neurons 33 17 16 13
No of weights & biases 765 429 371 180

mission lines [50, 51, 61]. The size of the proposed recurrent network is compared
with the size of these feedforward networks in Table 4.1.

The trained recurrent network was tested with different independent test patterns
and promising results were obtained. The results obtained indicate that the proposed
network is able to detect the fault direction very fast and reliably. The determination
of direction is not affected by the type and location of the fault, power flow condition,
and the presence of fault resistance. Some of the simulation results are presented in
the next section. For these examples, it is assumed that the fault detector instantly

detects the fault after its inception and activates the directional module output.

4.5 Performance Evaluation Studies

The proposed recurrent network has been used to determine the fault direction from
the temporal input patterns of voltage and currents. The network outputs which fall
above 0.5 and below -0.5 are interpreted as forward and backward faults, respectively.
A validation data set consisting of different types of forward and backward faults, 170
faults away from the relay location and 30 faults at the relay location, was generated
using the power system model shown in Fig. 3.1. The fault patterns of the validation

set were different than the fault patterns used to train the network.
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For different faults of the validation set, fault location, fault resistance, fault
inception time, source impedance and pre-fault power flow direction were changed
to investigate the effects of these factors on the performance of the network. Extreme
cases like faults at the far ends of the transmission line with high amount of fault
resistance and also faults near the relay location with zero fault resistance were also

included in the validation data set.

4.5.1 Faults Away from the Relay Location

To evaluate its capabilities, the proposed network was tested using the validation
data set. In all 170 fault cases away from the relay location the network was able
to determine the fault direction correctly. Determination of the fault direction is
not affected by the various changes in the power system. Table 4.2 summarizes
the fault direction detection time for different types of faults. The average overall
direction detection time is 4.5 ms. It shows that the trained network only takes
about one-fourth of a cycle to correctly determine the fault direction. Most of the
faults included in the validation data set had high amount of fault resistance, such as
50 Q. In general, the time needed to identify the direction of more usual faults with
small amount of fault resistance is even less. Some of the test results are presented

in the following subsections.

Table 4.2: Fault direction detection time (ms)

| Fault type [ 1-8-g |29 |2-$-g[3-&-g [ Avg. |
[ Detection Time ]| 49 [4.8 [ 47 [ 39 | 4.5 |
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4.5.1.1 Forward Faults

Network’s output for different types of forward faults applied on the power system
is shown in Fig. 4.2. In this case the fault location was 95 km from the relay
location, with fault resistance of 50 2, pre-fault power direction from sending-end
to receiving-end and fault inception time 3 ms after phase A voltage zero crossing.
For each fault, the output of the recurrent network is represented during the first
cycle after fault inception (20 samples). Different faults involve different phases and
ground as well. Fault type ag indicates a single phase to ground fault (phase A to
ground), while fault type bc indicates a phase to phase fault (phase B to phase C).
This figure shows that the determination of fault direction is fast and reliable.

The output of the 20-input feedforward network for the same faults and under the
same system condition is presented in Fig. 3.12. Comparing Fig. 4.2 with Fig. 3.12,
it is found that the new network performed better than the feedforward network.
The network’s output smoothly increases from its pre-fault value of zero towards
one.

Fig. 4.3 shows the output of the network for different forward faults at 50 km
from the relay location. The network output smoothly increases towards 1 and stays
stable afterwards. For the faults presented in Fig. 4.3, it takes at most six and at
least four samples for the output of the recurrent network to fall inside the forward
fault area. For this case, the average time needed to classify the fault direction is
3.8 ms.

The network was tested with the faults at far end of the protection zone with

100 Q fault resistance. Different forward faults were applied at 95% of the forward
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Figure 4.2: Recurrent ANN response to forward faults at 95 km, fault resistance
50 ), power direction from send. to receiv., inception time 2 ms
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Figure 4.3: Recurrent ANN response to forward faults at 50 km, fault resistance
zero, power direction from send. to receiv., inception time zero ms
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Figure 4.4: Recurrent ANN response to forward faults at 95 km, fault resistance
100 Q, power direction from send. to receiv., inception time 1 ms

line’s length and the results are shown in Fig. 4.4. Outputs of the network in all
cases classify the fault direction correctly and rapidly. It shows that the network
performed correctly for the far end faults even in the presence of very high amount

of fault resistance.

4.5.1.2 Backward Faults

Using conventional methods, it is not easy to estimate the direction of faults that
occur near the relay location [50]. Different backward faults with zero fault resistance
were simulated at 5% of the backward line’s length and the network’s performance
is presented in Fig. 4.5. This study demonstrates that the network is able to classify
the faults near the relay location correctly in a timely fashion. On average, the

directional module needs just about 3.9 ms to classify the fault direction correctly.



7

0.5+

Recurrent network output

Fault type

Figure 4.5: Recurrent ANN response to backward faults at 5 km, fault resistance
zero, power direction from receiv. to send., inception time 1 ms

With the same condition as the case presented in Fig. 4.5, the recurrent ANN-
based directional relay response for the same backward faults is shown in Fig. 4.6.
For the faults presented in Fig. 4.5, it was assumed that the fault detector instantly
detected the fault after its inception and activated the directional module output.
For the faults presented in Fig. 4.6, it is assumed that the fault detector needs two
samples to detect the fault. Therefore, the directional relay output would be zero
for the first two samples after fault inception.

Comparing Fig. 4.5 with Fig. 4.6, it is found that the overall response in both
cases is very similar. As a result, the delay in detecting the fault does not have much

effect on the total operation time of the directional rely.
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1 ms, fault detection 2 samples after fault inception
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4.5.2 Faults at the Relay Location

The capabilities of the new network were also examined for faults at the relay loca-
tion.

Memory action should be used in the design of 2 fault direction detection module
in order to properly discriminate the fault direction with zero input voltages. The
proposed recurrent network uses feedback loops in its structure. The output of the
network depends both on the input and the previous outputs of the network. There-
fore, using its built-in memory the network should be able to correctly determine
the direction of fault at the relay location and remain stable at least for some time
after the fault inception.

Thirty different forward and backward faults with different power system condi-
tions were applied at the relay location and the network’s performance was investi-
gated. In all cases except one of the three phase to ground faults, the directional
module performed correctly. Three phase to ground faults rarely occur on trans-
mission lines. The frequency of occurrance of such faults on a power system is just
about 3% [16]. Even for this case, the network initially classified the fault direction
correctly and the output indicated the correct class for more than three-fourth of
the cycle. The fault direction detection time for different types of faults is shown in

Table 4.3. The overall direction detection time average is 4.6 ms.

Table 4.3: Fault direction detection time for faults at the relay location (ms)

| Fault type || 1-®-g | 2-® | 2-&-g | 3-®-g | Avg. |
[Detection time || 5.6 |44 [ 43 | 3.6 | 4.6 |
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Figure 4.7: Recurrent ANN response to forward faults at the relay location, fault
resistance zero, power direction from send. to receiv., inception time zero ms

The output of the recurrent network for different types of forward faults at the
relay location with zero fault resistance is shown Fig. 4.7. Although the network
uses just one of the phase voltages as the input, Fig. 4.7 shows that the network is
able to correctly classify all the fault types at the relay location.

The network output for a few faults with different power system conditions is
presented in this section. The main emphasis is on checking the network’s perfor-
mance under extreme fault cases. In general, the network performs better and faster

for more usual fault cases.
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4.6 Summary

In this chapter a novel transmission line direction detection module is proposed.
Neural network’s abilities in pattern recognition and classification are used to design
a recurrent neural network-based directional module. The internal feedback loop
of the recurrent network provides the network with memory. Simulation studies
are performed and the network’s performance is investigated. Influence of changing
system parameters such as fault location, fault resistance, fault inception time, and
pre-fault power flow direction is studied. The performance of the proposed network
is also checked for faults including high amount of resistance and also faults at the
relay location.

The designed neural network uses samples of all three phase current information
but just one phase voltage information to identify the fault direction. Through
extensive studies it is found that although the proposed network has a small size, it
is able to classify forward and backward faults correctly and rapidly. The network
can be used as a stand alone unit to determine the fault direction.

Compared with the feedforward neural network-based directional modules, the
proposed recurrent module performs better specially for extreme fault cases and

faults at the relay location.



Chapter 5

Directional Protection using an Elman Network

5.1 Introduction

Detection of the direction of a fault on a transmission line is essential to the proper
performance of a power system. It would be desirable to develop a high speed and
accurate approach to determine the fault direction for different power system con-
ditions. The objective of this chapter is to design an ANN-based system capable of
providing a fast and reliable estimate of the direction of a fault on power transmission
lines.

Samples of phase voltage and current waveforms are usually used as the inputs
to the neural network. The voltage and current are time-varying signals. Therefore,
a network with temporal processing abilities should be considered. In the present
work, use of an Elman recurrent neural network to determine the fault direction on
transmission lines is investigated [62].

The ANN-based algorithm is tested to evaluate the performance of the proposed
method in terms of accuracy, robustness and speed. Details of the design procedure
and the results of performance studies with the proposed network are given and
analysed in this chapter. System simulation studies show that the proposed approach

is able to detect the direction of a fault on a transmission line rapidly and correctly.
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5.2 Temporal Pattern Recognition

5.2.1 Static Neural Networks

The feedforward algorithm has established itself as the most popular method for
the design of neural networks. However, a major limitation of standard feedforward
algorithm is that it can only learn input-output mapping that is static [35]. Con-
sequently, the traditional feedforward network has a static structure that maps an
input vector onto an output vector. This form of static input-output mapping is well
suited for pattern recognition applications where both the input and output vectors
represent spatial patterns that are independent of time.

Time is an important factor in many of the cognitive tasks encountered in practice
as it allows one to deal with time-varying signals and sequences. Time in mapping
networks provides dynamic properties that make them responsive to time-varying
signals.

The conventional static neural network architectures and algorithms are not well
suited for patterns that vary over time. A feedforward neural network structure
classifies different input patterns independently. The order in which the patterns are
presented to the network is not considered. In contrast, temporal pattern recognition

technique involves processing of patterns which evolve over time.
5.2.2 Temporal Processing

In parallel distributed processing models, the processing of sequential inputs has

been accomplished in several ways. The most common solution is to attempt to
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parallelize time by giving it a spatial representation. Time is explicitly represented
by associating the serial order of the pattern with the dimensionality of the pattern
vector. The first temporal event is represented by the first element in the pattern
vector, the second temporal event is represented by the second position in the pattern
vector, and so on. The entire pattern vector is processed in paraiiei by the modei.
However, there are problems with this approach and it is ultimately not the
best solution. This approach requires that there be some interface with the world
which buffers the input so that it can be represented all at once. Furthermore,
it suggests that all the input vectors be of the same length which is particularly
troublesome in domains such as language. Most seriously, this approach does not
easily distinguish relative temporal position from absolute temporal position [56]. A
better approach would be to represent time implicitly rather than explicitly. That

is, time is represented by the effect it has on processing and not as an additional

dimension of the input.
5.2.3 Elman Network

A neural network can assume dynamic behavior by making it recurrent, that is, to
build feedback into its structure. The recurrent connections allow the hidden units
of the network to see their own previous output, so that the subsequent behavior can
be shaped by previous response. A few different types of recurrent networks have
been proposed by different researchers, including Real-Time Recurrent Network [63],
Partially Recurrent Network [64] and Elman Network {56]. The difference between

these networks lies in their structures and the way they handle the feedback.
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Elman network is a two-layer feedforward network with the addition of a recurrent
connection from the output of the hidden layer to its input. The delay in this
connection stores values from the previous time step, which can be used in the current
time step. This feedback path allows the Elman network to learn to recognize and
generate temporal patterns.

The architecture of the Elman network is shown in Fig. 5.1. The network is
augmented at the input level by additional units, called contezt units. These units
are also hidden in the sense that they interact exclusively with other nodes internal

to the network, and not the outside world [56].

input
units
hidden output
units units
inputs

O---00

O outputs

o 10

Ceee 1

context
units

Figure 5.1: Elman network architecture, solid lines represent the trainable connec-
tions
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The augmented input units, including both the input units and the context units
activate the hidden units. The hidden units feed forward to activate the output units
as well as they feed back to activate the context units. The number of context units
is equal to the number of hidden units. Activations are copied from hidden layer to
the context layer on a one-for-one basis with fixed weights of 1.0. The context unit
values at time step n + 1 are exactly the same as the hidden unit values at time step

n. Therefore, the context units provide the network with memory.

5.3 The Proposed Elman Network Design

An Elman recurrent network was designed to act as the fault direction detection

module of a transmission line relaying system. Details of the design procedure are

given below.

5.3.1 Feature Selection

The application of a pattern classification technique requires a selection of features
that contain the information needed to discriminate between classes, and which
permit efficient computation to limit the amount of the required training data and
size of the network. The sampled normalized voltage and current signals measured at
the relay location are considered as the appropriate input information to the neural
network. Voltage and current waveforms are sampled at a rate of 20 samples/cycle.

Preprocessing is a useful method to reduce the dimensionality of the input data
set. The sampled waveforms are filtered before being fed to the network. The filter

shown in Fig. 3.2 has been used to attenuate the dc component and high frequency
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noise. This preprocessing enhances the training capabilities of the network and

decreases the number of required patterns for training the network.

5.3.2 Network’s Inputs and Output

It is common to present samples of all three phase voltage and current information
to the classification network as its inputs. Various studies were performed and it was
found that an Elman network, which uses all three phase currents information but
just one phase voltage information is able to classify forward and backward faults
correctly. The phase A voltage was used in this case as the reference. Therefore,
samples of all three phase currents and just phase A voltage were considered as the
inputs to the network.

The network needs just one output to classify between forward and backward
faults. The network’s output should be +1 for the case of forward faults and —1 for
the case of backward faults. So, the tansig nonlinear function was chosen for both

hidden and output layers of the network.

5.3.3 Directional Elman Network

A few different network structures, all having one output but with different number
of inputs and different number of neurons in the hidden layer were considered and
trained. Training and test patterns were generated by simulating different types of
faults on forward and backward regions of the simulated power system.
Consecutive samples of three phase voltages and currents are usually chosen as
the inputs to the neural network. The appropriate input data window length is

a major factor which should be considered. In Refs. [51, 61] each phase voltage



88

and current was represented by its 5 consecutive samples and 30-input feedforward
networks with two hidden layers were designed.

The Elman network has some kind of memory in its structure. Therefore, com-
pared with the previously proposed 30-input networks, it should be able to use a
smaller size of window and less number of inputs to cover the necessary input infor-
mation to the network.

Different networks with different input data window lengths were considered. As
the length of the input data decreases, more hidden neurons should be added in
the only hidden layer of the network to capture and save enough information in the
network’s memory. This in turn results in increasing the size of the network.

Various networks considered were trained to estimate the direction of a fault on
power transmission lines. The network which showed satisfactory results, while not
having a big size, had just 12 inputs (3 consecutive samples of all currents and just

one of the voltages), 12 hidden neurons and one single output neuron.

5.4 Test Results and Discussion

Using the power system model shown in Fig. 3.1 different types of faults were
simulated and the performance of the proposed directional network was investigated.
The trained network was tested with 340 different independent test patterns and
promising results were obtained. It was found that the network’s overall performance
average was about 99.5%. Some of the simulation results are presented in this section.
For the examples presented, it is assumed that the fault detector instantly detects

the fault after its inception and activates the directional module output.
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5.4.1 Faults Away from the Relay Location

The proposed network was tested with a set of 300 different faults including extreme
cases like faults near the relay location with zero fault resistance and also faults at
the far ends of the transmission line with high amount of fault resistance. In all cases
except one of the extreme cases, which was a rare fault with 100 Q fault resistance,
the network was able to determine the fault direction correctly. The network output
for a few faults with different power system conditions is presented in this subsection.

The network’s output for different types of forward faults on the transmission
line is shown in Fig. 5.2. Fault location was 95 km from the relay location, with
fault resistance of 50 Q, pre-fault power direction from sending-end to receiving-end
and fault inception time 5 ms after phase A voltage zero crossing. For each fault,
the output of the recurrent network is represented during the first cycle after the
fault inception. Different faults involve different phases and ground as well. This
figure shows that the identification of fault direction is very fast and reliable.

A feedforward network structure classifies different input patterns independently.
The order in which the patterns are presented to the network is not considered. There
is a possibility that for some cases two consecutive input patterns would be classified
into different classes. The network’s output may become oscillatory in some extreme
cases [50]. In order to further increase the reliability of the fault direction decision, a
post processing unit, e.g. an output averager is usually used to smooth up the output
of the feedforward network-based fault directional module. For the recurrent Elman
network, the output of the network depends on the present input as well as the

previous history of the inputs. Its track is smooth; it does not jump from one region
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Figure 5.2: Elman network response to forward faults at 95 km, fault resistance
50 Q, power direction from send. to receiv., inception time 5 ms

to another region. The output smoothly increases/decreases from its pre-fault value
of zero towards 1/—1. For the recurrent network, therefore, averaging would not be
necessary. It can be used as a stand alone unit to determine the fault direction.

The network outputs which fall above 0.5 and below -0.5 are interpreted as for-
ward and backward faults, respectively. For the faults presented in Fig. 5.2, it takes
at most five and at least three samples for the output of the recurrent network to fall
inside the forward fault area. On average the directional module needs just about
3 ms to classify the fault direction correctly.

_The next example tests the network for faults that occur near the relay location.
Different backward faults with zero fault resistance were simulated at 5% of the
backward line’s length and the network’s performance is presented in Fig. 5.3. It

shows that the network is able to classify the faults near the relay location correctly
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Figure 5.3: Elman network response to backward faults at 5 km, fault resistance
zero, power direction from receiv. to send., inception time 1 ms

in a timely fashion. The average time needed to classify the fault direction is 3.1 ms.

The next example tests the network’s performance for faults at the far end of the
protection area with 100 Q2 fault resistance. Different forward faults were applied at
95 km from the relay location and the results are shown in Fig. 5.4. It shows that
the network performed correctly for the far end faults even in the presence of very
high amount of fault resistance.

Fig. 5.5 shows the output of the network for different forward faults during
four cycles (80 samples) after the inception of the fault. The sending-end source
impedance was reduced by a factor of 20. Qutputs of the network in all cases classify
the fault direction correctly. The fault direction detection is very fast. The output
of the network is stable for four cycles, although the network was trained just with

the data samples of the first cycle after the fault inception. This study demonstrates
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Figure 5.5: Elman network response to forward faults at 90 km, fault resistance

zero, power direction from send. to receiv., inception time 12 ms, send. source imp.
reduced by 20
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that the proposed method is not affected by the variation of source impedance.
The results presented in this subsection mainly demonstrate the network’s per-

formance for some extreme fault cases. In general, the network performs better and

faster for more usual cases such as low resistance faults around the middle of the

protected areas.
5.4.2 Faults at the Relay Location

Identification of the direction of a fault located at the relay by using conventional
methods is difficult. Memory action should be used in the design of a fault direction
detection module in order to properly discriminate the fault direction with zero input
voltages. The Elman network uses built-in memory in its structure and the output
of the network depends on the previous history of the inputs. Therefore, it should
have some ability to detect the direction of faults at the relay location correctly.

The capabilities of the new network were examined for faults at the relay location.
Forty different forward and backward faults at the relay location were applied to the
system and the network’s performance was investigated. In all cases except one
backward fault, the directional module performed correctly. Even for this case, the
network initially classified the fault direction correctly and the output indicated the
correct class for about two-thirds of the cycle.

The output of the network for different types of forward faults at the relay location
with zero fault resistance is shown Fig. 5.6. Although the network uses just one of
the phase voltages as the input, Fig. 5.6 shows that the network is able to correctly
classify all the fault cases at the relay location.
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Figure 5.6: Elman network response to forward faults at the relay location, fault
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5.4.3 Sequential Faults

Evolving faults might occur one after another before a protective relay has made its
decision and sent the appropriate trip signal to the circuit breaker. The performance
of the proposed network was evaluated for different evolving sequential faults on the
power system shown in Fig. 3.1.

Fig. 5.7 illustrates the results obtained for the following conditions: two C-G and
B-C-G sequential faults in front of the relay at 60 km, fault resistance 1 Q, pre-fault
power direction from receiving-end source to sending-end source. It is assumed that
first an C-G fault happens on the transmission line and then, after 4 ms, it changes
to a B-C-G fault.

Network’s output is shown in Fig. 5.7 during three cycles after the inception of
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Figure 5.7: Elman network response to the C-G and B-C-G sequential forward faults

the fault at sample number 1. It shows that the network detects the fault direction
correctly and very rapidly for these sequential faults.

For the next example the test conditions were: two B-G and A-B-G sequential
faults in front of the relay at 80 km, pre-fault power direction from receiving-end
source to sending-end source, the receiving-end source impedance reduced by a factor
of 2. First a high resistive B-G fault with fault resistance of 50  occurs on the line
and then 10 ms later it changes to a A-B-G fault with 1 Q fault resistance.

The output of the network is shown in Fig. 5.8. The network initially identifies
the fault direction for the high resistive fault correctly. Network’s output remains

stable after the fault changes from a single phase to ground fault to a double phase
to ground fault.
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Figure 5.8: Elman network response to the B-G and A-B-G sequential forward faults

5.4.4 Cross-Country Faults

The proposed algorithm was tested to check its performance during cross-country
faults. The term cross-country faults is used to describe simultaneous earth faults
which occur on different line sections and on different phases (8].

As an example, two different faults were applied in front of the relay at different
locations on the transmission line and the network’s output is shown in Fig. 5.9. For
this example the test conditions were: phase B to ground fault at 70 km, phase C to
ground fault at 100 km, fault resistance 3  for both faults, pre-fault power direction
from sending-end to receiving-end. As shown in Fig. 5.9, the network detects the
direction correctly in just about 1.6 ms after the inception of faults.

For the next example the test conditions were: phase A to ground fault at 80
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Figure 5.9: Elman network response to the B-G and C-G cross-country forward faults

km, phase C to ground fault at 100 km, fault resistance 1  for both faults, pre-fault
power direction from sending-end to receiving-end. It is assumed that first the C-G
fault occurs on the transmission line and then 4 ms later the A-G fault occurs on a
different location of the line.

Network’s output is shown in Fig. 5.10 for this evolving cross-country fault.

The network performs correctly and rapidly when tested with two different faults at

different locations and with different inception times.
5.4.5 Measurements at Both Terminals

A directional comparison protection scheme uses directional relays at both ends of
the transmission line to identify the fault direction at each terminal of the line. The

Elman network module was installed at both ends of the right hand side transmission
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Figure 5.10: Elman network response to the A-G and C-G evolving cross-country
forward faults

line of the power system model shown in Fig. 3.1. Simulation studies were performed
and it was found that for an internal fault on the transmission line, networks at both
ends of the transmission line rapidly identify the fault direction as a forward fault.

As an example the network’s output for a single phase to ground B-G fault on
the transmission line during three cycles after the inception of the fault is shown Fig.
5.11 . For this example the test conditions were: phase B to ground fault at 60 km
from the left hand side terminal, fault resistance 5 Q, pre-fault power direction from
sending-end to receiving-end.

Fault data from both ends of the transmission line was processed by the Elman
network. As shown in Fig. 5.11, the network identifies the forward fault in both
cases correctly and rapidly. It shows that the proposed module can be used for high

speed directional comparison relaying.
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Figure 5.11: Elman network response to the B-G fault, measurements at both ends

5.5 Summary

A novel directional detection module for protecting transmission line is described in
this chapter. The proposed approach is based on the use of recurrent neural network
technique. The recurrent connections provide the neural network with memory. The
designed neural network uses samples of all three phase current information but just
one phase voltage information to identify the fault direction. The directional module
network is extensively tested by independent test fault patterns and promising results
are obtained. The performance of the proposed network is also checked for high
resistance faults and also for faults at the relay location. Extensive studies indicate
that the network is able to classify forward and backward faults very rapidly. The

determination of direction is not affected by the type and location of the fault, pre-
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fault power flow condition, source impedance variation and the presence of fault
resistance. It shows that the proposed network is very powerful in processing the
voltage and current temporal input signals.

Compared with the feedforward neural network-based directional modules, the
proposed recurrent module performs better specially for extreme fault cases and
faults at the relay location. Based on the simulation results, it was found that the
performance of two recurrent networks proposed in Chapters 4 and 5 are comparable,
though the Elman network is faster.

Neural network based approaches can be used as a part of a new generation of
high-speed directional relays for power systems. They are suitable to realize a very

fast transmission line directional comparison protection scheme.



Chapter 6

High Speed Fault Detection & Phase Selection

6.1 Introduction

Faults on transmission lines need to be detected rapidly, classified correctly and
cleared as fast as possible. A fault detector module is used in several protective
relays. This module can be used to start other relaying modules.

Phase selector module is also an important part of a protective relay. Fault clas-
sification is essential for single pole auto-reclosure schemes. Autoreclosure schemes
as applied to EHV systems have, by offering benefits such as maintenance of system
stability and synchronism, been the major cause of a substantial improvement in
the continuity of the supply. It is desirable to develop a fast and reliable method to
detect faults on a transmission line and to select faulty phases.

Most of the faults on power systems result in a substantial increase in current
flow towards the fault point. However, for faults including high amount of fault
resistance the current may not increase substantially. Thus, they can not be reliably
detected by conventional based starters.

Fault resistance is an operational problem and is dependent on various factors
such as voltage level, tower footing resistance, resistivity of soil, etc. Fault resistance

produces an error in the impedance measurement and thus could affect the accuracy

101
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of underimpedance starters severely.

A new underimpedance starter which covers a wider area of impedance plane is
proposed for fault detection and phase selection. The suggested starting algorithm
is not subject to the limitations of conventional underimpedance starters in response
to faults with high resistance.

The proposed starter is able to rapidly and correctly detect and classify different
fault types on the protected transmission line under different power system condi-
tions. This module in conjunction with a directional module could be used in a
directional comparison transmission line protection scheme (55, 62].

The proposed algorithm is tested to evaluate its performance under different op-
erating conditions. The design procedure and the results of the performance studies

with the proposed approach are presented in this chapter.

6.2 Starting Systems

An important part of a protective relay is its starter/selector module. A total of
ten possible faults including 1-phase to ground faults (A-G, B-G, C-G), 2-phase to
ground faults (A-B-G, A-C-G, B-C-G), 2-phase faults (4-B, A-C, B-C) and 3-phase
fault (A-B-C) may occur on a transmission line. The selector module is responsible
for classifying the type of fault that has occurred on the system.

The fault type is not known a priori. Therefore, the simplest distance relaying
algorithms would have to process six single-phase distance equations corresponding
to three phase to ground faults and three phase to phase faults. Early and even some

modern microprocessors would be hard pressed to process all six equations between
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successive samples [7].

A considerable saving in computation time can be achieved by utilizing a first
stage which determines the fault type. In general, only one of the six equations
would be processed for any fault, and considerable computational efficiency would be
achieved. The main purpose of the starters in distance relays with a single measuring
system is to select and apply to the measuring system the correct currents and
voltages according to the type of fault. Switched distance relays, with a single
measuring element lie in this category of distance relays. Such relays, having fewer
components and being cheaper than the full scheme, have been widely applied in
some countries particularly in medium voltage levels [15].

Fault detectors or starters are used not only in relays with single measurement
system but also in the relays with six measurement systems. Selecting the correct
currents and voltages according to the type of the fault is no longer necessary in
distance relays with six measurement systems. Nevertheless, they are still included
to perform other functions. Starting relays are necessary where the communication
channel used for unit protection is not continuously employed. Other tasks performed
by the starters are [8]: reversal of measuring direction at a definable time after fault
incidence, enabling the fault digital recorders, switching the reach of first zone of
distance relays, enabling tripping by other functional units of the relay and redundant
back-up protection for the measuring systems.

In addition, starter output information could be used for single pole auto-reclosure
schemes. Single pole auto-reclosure has long been recognized as an effective means
of improving system security and reliability and is quite extensively used by many

utilities. It involves tripping only the faulted phase under single-phase to ground



104

fault condition. The benefits of single pole auto-reclosure are particularly apparent
in applications where economic and/or stability considerations preclude the use of

three-phase auto-reclosure.
6.2.1 Current/Voltage Starters

Phase selector schemes based upon currents and/or voltages produce correct fault
classification under most reasonable conditions but do misclassify in a significant
number of cases.

The simplest form of the phase selector module uses instantaneous overcurrent
starting elements. Under the fault condition, the phase current exceeds the current
setting of the starter, causing the starter element to operate. Current based classifiers
get confused when load current is significant compared to fault current. Conventional
overcurrent based starters may not be able to detect the fault including high amount
of fault resistance.

Undervoltage starting is sometimes used together with overcurrent starting. The
undervoltage setting is constrained by the need for reliable operation for remote
faults (undetected by the overcurrent feature) while maintaining stability of the
sound-phase elements during close-in earth fault conditions. For remote low current
faults, no clear undervoltage condition arises at the relay location. In the case of a

close-in fault on a weak system, all voltages deviate significantly from the nominal

value [15)].
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6.2.2 Impedance Starters

Fault detection and classification schemes based upon impedance starters are used
in several practical relaying algorithms [8]. Various types of impedance starters have
been used, but the most common type has been the plair impedance having a circular
characteristic centered on the origin of the impedance plane. The starter compares
the magnitude of the apparent impedance with the radius of the circle. The term
apparent impedance is defined as the loop impedance when the voltages and currents
entering the relay are used to calculate the impedance to the fault.

Using plain impedance starters, difficulties may sometimes be encountered on
long lines where load encroachment may be a problem. This may be overcome to
some extent by using offset impedance starting relays although the benefits may not
be too significant for large lagging loads. Some other starters use a so-called polygon
characteristic. Based on the application, the reach of the impedance starters could
be selected for each unit individually.

Six-unit distance units with circular or polygon characteristics may get confused
for phase selection. Although distance elements have been designed with a definite
type of fault detection, they will respond to other types of faults as well [12]. A
measuring unit for detecting phase faults must not emit a trigger signal in response
to an earth fault. However, depending on the system conditions and parameters
it could happen that the covering area of a phase unit largely coincides with the
covering area of an earth unit, thus causing spurious classification.

The starter should accommodate as much fault resistance as possible consistent

with stability under load condition. This is particularly so where the application is
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to a system without an earth wire. In the case of the remote faults, fed from a local
weak source the infeed effect of a remote strong source magnifies the fault resistance

effect considerably.
8.2.3 Fault Resistance Considerations

Of essential importance in assessing the effectiveness of the polar characteristics of
impedance starting schemes is the range of fault resistance they can cover. This is
especially important in the case of earth-fault conditions.

Generally, there is always some resistance at the location of a fault on an overhead
line. Unless the fault is solid, an arc whose resistance varies with the arc length and
magnitude of the fault current is usually drawn through the air. Arc resistance is
usually not an important factor in phase faults. For ground faults, arc resistance may
be an important factor because of the longer arcs that can occur. Also, relatively
high tower footing may appreciably increase the fault resistance and limit the fault
current.

If the towers are connected by a ground conductor, the fault resistance is the
equivalent resistance of all footing resistances. Ta.kiné all the factors into account,
the fault resistance will normally be in the range of 1 to 10 Q [8]. Higher values up
to a few hundred ohms are to be expected for ground faults via wooden masts or
trees (lines without ground conductor) or broken conductors lying on the ground.

Although the majority of faults with high fault resistance involve ground, a high
resistance fault may also exist between two phase conductors as the case of a tree

limb lying across two phase conductors.



107

Neither of the circular or polygon characteristics could cover some faults with

high resistance.

6.3 Measurement Errors

6.3.1 Fault Resistance

Impedance starters measure the positive sequence impedance as seen at the point of
relay location in the forward direction.

For a simple two-bus system with generation only at one end, the error in the
measured positive sequence impedance is due to the magnitude of the fault resistance
[65]. Under normal condition, the impedance seen by the relay at point A in Fig.

6.1. is given by:

Zp=2p4 +Z1B + 2 (6.1)

For a fault with fault resistance of Ry, the apparent impedance seen by the relay

at point A is:

Zr =214 + Zi5 (6.2)

_ (ZLB + Zx)Rf
Zi + 21 + Ry

With R; =0, Zy = 0 and, therefore, the fault impedance seen by the relay is

Ziy

(6.3)

correct. However, when Ry is not equal to zero, the relay measures Zp as given by

eqn. 6.2 which is obviously not correct.
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Figure 6.1: A two-bus system with generation only at one end

The situation becomes more complicated for a two-bus system with generation
at both ends (Fig. 6.2). The error term Zy in this case is very complicated and can
have uncertain values.

For a fault with fault resistance R; fed from both A and B points, currents
I4 and Ip will have a phase relationship determined by the prefault load transfer
conditions. Assuming the measurement is at point A and the current I and voltage
V4 are measured, the fault resistance causes the relay to measure an impedance
other than the effective one to the fault location, Z;4. The impedance measurement
thus includes an error which because of phase-shift between the currents I4 and Ip

falsifies both the resistance and reactance of the fault loop. In general terms, the

Station A Station B

Figure 6.2: A two-bus system with generation at both ends
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Fault b

(2}

a. Power flow from B to A
b. Zero power flow
c. Power flow from A to B

v

A R

Figure 6.3: Effect of fault resistance on the measured impedance

apparent impedance presented to relay at point A is given by:

Zr =214 +kRy (6.4)

where k is a complex factor which depends on the through-load transfer at the instant
of fault inception [15].

The apparent reactive component may be positive or negative depending on the
direction of power transfer as illustrated in Fig. 6.3, which shows the loci of measured
impedance for different load conditions at a particular fault location.

There is a basic problem of accommodating fault resistance, the value of which
as seen by the relay may be larger than the real value as a result of remote fault
infeeds. For a fault at the end of the transmission line (near to the B station) fed

from a strong B source and a weak A source, the ratio of I;/I4 could be very high.



110

This in turn, can increase the fault resistance effect by an order of magnitude or even

more.
6.3.2 Zero Sequence

It is common to compensate the measured impedance for correct earth fault mea-
surements, using for example residual current compensation [12]. For earth faults the
measurement system is fed with the phase current plus kg times the residual current.
The value of the residual current factor, kg, depends on the ratio of the positive and
zero sequence impedances. In this way, the starter measures the phase impedance
(positive sequence impedance). In many applications this compensation results in
incorrect operation of sound-phase starters for close-in earth fault conditions. For
this reason, such compensation sometimes is omitted from impedance starters. This
in turn, introduces some error in the impedance measurement of the earth faults.

Another problem which makes the earth fault measurement complicated is the
uncertainty of determining accurately the zero-sequence impedance. The system
impedance can vary due to changes in earth resistivity or because of mutual coupling
between parallel lines. Practical levels of mismatch between relay zero-sequence
setting and system zero-sequence impedance for practical values of positive-sequence
to zero-sequence current ratio can yield measurement errors of up to 10% {15].

For the phase faults, mutual coupling effects and fault resistance have little in-
fluence, and the apparent impedance is the same as the impedance to the fault.
However, for the earth faults the influence of mutual coupling and fault resistance is

more severe. Fault resistance and zero sequence mutual effects from other lines tend
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to make the apparent impedance different from the actual impedance to the fault
(66, 67].
Some other errors in the measurement of the positive sequence impedance include

[65]:

e proximity to generators, changes in the topology of the network, changes in

the number of generating units operating in the system, etc.

e variation in the overhead line parameters due to a variety of factors such as

operating temperature, relative permability, conductivity and corona.

e neglecting the mutual coupling between phases and between adjacent lines.
On an untransposed line, the errors due to this assumption could have some

impact.

e inaccurate measurement due to the transient response of current and voltage

transformers [68] and their transformation errors.

e presence of dc offset transients.

o ineffective filtering of the fundamental components of the transient voltage and

current signals for different network topologies [69].
6.4 The New Starter Module Design

A new underimpedance starter which accommodates larger fault resistance and its

performance is more immune to the measurement errors is proposed in this section.
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Under the load condition, the measured impedance seen by the relay lies in a region
around the horizontal axis of the impedance plane. The minimum load impedance
Zomin is reached at the maximum load current. Depending on the power flow direction
and the load power factor, the measured impedance lies on one of the four quadrants.
The region covering the load impedance loci at different conditions is defined as the
load region. A region covering the load region with a margin is considered and
defined as the safe region. Fig. 6.4. shows the right hand side of the impedance
plane including these regions. Under no load or very small load transfer condition,
the relay measures a small reactive current flowing into or out of transmission line.
The measured impedance in this case lies around the imaginary axis of the impedance
plane. The reach of the impedance starter is limited by a big circle to keep these
measurements out of its reach.

Detection of faults on the transmission system is based on the fact that the
impedance measured at the relay location under normal condition (i.e. load
impedance = quotient of load voltage divided by load current) is inside the safe
region. Under abnormal conditions the measured impedance vector moves out of
this region. It is assumed that if the apparent impedance seen by the relay lies in
the safe region the system is healthy, otherwise unhealthy (faulty). The proposed un-
derimpedance starter is able to detect most of the faults unseen by underimpedance
starters of the circular and other suggested characteristics.

Fig. 6.5 shows a simplified block diagram of the proposed algorithm. The selector
module comprises of three impedance starters, each responsible for one of the 3 phases
of the transmission line. After being filtered and sampled, the phase voltages and

currents are processed using a fast and simple method to estimate the impedance.
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Figure 6.4: Impedance regions of the impedance starting unit
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Figure 6.5: Block diagram of the proposed underimpedance starters

Then the measured impedance is compared with the safe region of the impedance
plane.

A simple wide bandpass 2nd-order Butterworth filter was used to attenuate the dc
component and high frequency noise (Fig. 3.2). The passband of the filter is chosen
to be 80 Hz. This value allows a considerable reduction of the high frequency and
dc components. This preprocessing helps the impedance measurement algorithm to

calculate the fundamental frequency voltage and current phasors more accurately.

6.4.1 Least-square Error Algorithm

A number of algorithms can be regarded as impedance calculations in that the fun-
damental frequency components of both voltages and currents are obtained from the
samples. The ratio of appropriate voltages and currents then provides the impedance
to the fault. The performance of all of theses algorithms is dependent on obtaining
fast and accurate estimates of the fundamental frequency components of a signal
from a few samples.

Least-square error algorithm was used in this work to estimate voltage and current
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phasors. This algorithm involves processing a total number of measurements that
exceeds the number of parameters to be determined. In its simplest form such a

problem can be cast as that of solving an overdefined set of equations of the form of

[7):

Az =b (6.5)
where A and b are known and z is to be determined. The equation is overdefined if
there are more b's than z’s.

A more reasonable approach to the solution of this equation is to recognize that

there is an error and write:

b=Az +e (6.6)

The solution z which minimizes eTe can be obtained from:

&= (ATA) 1 ATh (6.7)

The calculation in the above equation is sometimes referred to as pseudo inverse.

Assume that the voltage and current waveforms can be written in the form of:

y(t) = Yo coswpt + Y, sinwept (6.8)

where y() is the instantaneous value of voltage and/or current waveform, wy is the
fundamental power system frequency and Y. and Y, are real numbers.

To obtain the voltage and current phasors, 2 moving 4 point sample data window
was considered and based on the least-square error algorithm the parameters of 4
point FIR filters were calculated. This method provides a fast and simple method

to estimate the impedance.
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Voltage and current in power systems are generally not pure sinusoidal under
transient conditions. They may contain harmonics, noise and decaying dc compo-
nents. Therefore, using a short window of 4 points may not provide quite accurate
impedance measurement. However, it should be noticed that voltage and current
signals are passed through a bandpass filter before being fed to the 4 point FIR
filters. This bandpass filter attenuates high frequencies as well as dc components.
Moreover, even if the impedance measurement is not completely accurate and is a
little oscillatory, it should be considered that this module is just responsible for dis-
tinguishing between healthy and non-healthy cases and detecting the faulty cases
rapidly and not for accurate impedance measurement. A different distance module,
if necessary, by using a more sophisticated impedance measurement scheme would be

responsible for precise impedance measurement and preventing from overreaching.

6.4.2 Impedance Comparison

Depending on the magnitude of the power system parameters and the power system
condition, for some cases a single-phase to ground fault could result in the impedance
measurement of the healthy phases being out of the safe region, thereby activating
the starters of the healthy phases.

To overcome this problem, it is suggested that the measured apparent impedances
of the phases be compared with each other. In the case that the measured impedance
of one of the phases enters the fault region of the impedance plane but its magnitude
is much greater than the magnitude of the measured impedances of the other phases,

the output of the relevant starter would be deactivated. This modification improves
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the performance of the phase selection algorithm.

Three high-setting overcurrent starting elements were also considered. The mag-
nitudes of phase currents are already calculated for impedance phasor estimation and
are available. They should just be compared with a setting value in an overcurrent
scheme.

In the case this module is used in a directional comparison protection scheme,
if 2 high level fault near the relay is detected by the overcurrent starters tripping
would be independent of the directional unit at the other end of the transmission
line. This method eliminates the necessary time delay to receive the confirmation
signal from the other end of the transmission line. Heavy faults at locations up to
one third of the line’s length are set to be tripped without any communication time
delay. Using different settings, the overcurrent module may also be used to provide
backup protection in the case of a failure in the transmission channel.

The output of the three impedance starters were ORed with the output of three
overcurrent starting elements. This combination could speed up fault detection and
classification for close-in high current faults. The combined output of each individual
set of underimpedance and overcurrent starters for each phase is the starter signal
for that specific phase. For example, the ORed outputs of phase A underimpedance
and overcurrent starters determine the phase A starter output signal.

The outputs of three phase starters are ORed together and the resultant signal
is ORed with the output of a2 neutral current overcurrent unit. The sensitivity of
the neutral current unit is limited due to the mutual couplings and untransposed
transmission lines effects. The resultant signal is considered as the fault detection

signal. A block diagram showing output signals of the phase starters and detector is
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depicted in Fig. 6.6.

This combination of underimpedance and overcurrent starters results in a fast
and reliable starter scheme which is able to detect and classify faults for different
power system conditions with wide system parameters.

This scheme, using just 3 impedance measurement units, is able to correctly
detect and classify all types of faults including 1-phase to ground, 2-phase to ground,
2-phase and 3-phase faults.

Z'adp
Impedance > Z< Starter A
Setting id I > >
Inputs > Z < :}:D Starter B
I>
Z < :\,:)3 Starter C
Iadp
Current Detector
Setting In>

Figure 6.6: Block diagram showing the outputs of phase starters and fault detector

6.4.3 Adaptive Settings

Adaptive protection systems permit the protection functions to be adapted automat-
ically in real time to changing power system conditions. Such procedures maintain

optimum protection quality and performance. Adaptive relaying is a subject of rel-
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atively recent origin. It has been defined as follows [70]:

“Adaptive protection is a protection philosophy which permits and seeks to make
adjustments to various protection functions in order to make them more attuned to
prevailing power system conditions”.

The key concept in adaptive protection is to vary the settings or configuration of
the protection system in response to changes in the power system caused by changing
loads, network switching operations or faults [7]. As one begins to modify relay
performance based upon changing conditions on the power system, one approaches
the classic concept of feed-back control. Indeed, adaptive relaying is a feed-back
control system.

Settings of the underimpedance and overcurrent starter units were adaptively
changed based on the transmission line power flow amount. For large amounts of
power transfer, the measured current at the relay location is big and the measured
impedance vector lies in the load region somewhere around the Zn;, point. For small
amounts of load transfer, however, the measured current is small and the impedance
measurement algorithm measures an impedance much bigger than the Z,;, and well
inside the load region. For low power transfers the setting of the current starters
is reduced and the safe region of the underimpedance stater in impedance plane is
moved towards the right.

The three measured phase impedance and current magnitudes were sampled and
averaged with a frequency of 10 Hz. The current setting is adjusted at 1.5 times the
averaged measured current and the impedance setting is adjusted at 0.7 times the
averaged measured impedance.

For the case of small amount of load transfer, the load could increase by more
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than 50% in a short period of time. To prevent the current and underimpedance
starters to detect these kinds of load jumps as a faulty case, 2 minimum amount
for current setting and a maximum amount for impedance setting are considered.
These two limits are determined by the biggest possible jump in the load transfer
level. The current and impedance settings are aiso compared with the maximum
possible amount of load transfer settings. The block diagram of the adaptive setting
procedure of the underimpedance starters is shown in Fig. 6.7.

This adaptive setting modification results in covering a bigger category of system

faulty cases and detecting faults more rapidly as well.

ZA
——>{ Sample |—
ZB ——
——>{ Sample Avg >1*(.7
—>|
_Z£9 Sample |— Min
P Setting Max
zadp
Max 3 >N
Setting ~ Min i

Figure 6.7: Adaptive changing of the settings of the underimpedance starters

In the next section, a two-bus power system fed from both ends is considered and

the capabilities of the proposed starter algorithm are examined.
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6.5 Simulation Studies

6.5.1 Simulation Model

To investigate the performance of the proposed algorithm, a 240 £V power system
with two sending end and receiving end sources was considered. A 200 km trans-
mission line, modeled by frequency dependent parameters, connects two sources and
the measurement devices are located at 50 km from the sending end source. Using
this power system model, shown in Fig. 6.8, simulation studies were performed and

the results are presented.

6.5.2 Fault Studies

A wide range of faults was applied in order to assess the performance of the pro-
posed algorithm. Different faults with different instants in the cycle, different source
impedances and fault resistances and at different locations were performed. The mag-
nitude of source impedance in practice may vary significantly as different elements
of the network are switched and the system is reconfigured to meet the prevailing

demand. The performance of the algorithm has been evaluated for varying source

"FCa

Figure 6.8: Power System Model
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impedance values. High amount of fault resistances were also considered. Some of
the results are presented in this section.

Fig. 6.9 shows the results of a study for the detector and phase A starter. Ten
different ground and phase faults were applied in front of the relay at 50 km. For
ground fauits, the fauit resistance was 20 Q. The Short Circuit Capacity (SCC =
v/3 * nominal voltage * short circuit current) of the sending-end source was 6 GV A4,
while receiving-end SCC was 3 GV A. The relative phase angle difference for the two
sources was zero degrees prior to the fault.

A phase to ground A-G fault was applied to the system at 0.2 s and then cleared
at 0.25 s. Next, a B-G fault was applied at 0.3 s and cleared at 0.35 s. In the same
manner, at each 0.1 s time interval a different fault was applied and then cleared
after 50 ms.

The phase A current is shown in the top of Fig. 6.9. The outputs of the detector
and phase A starter for different fault types are also shown in this figure. Normally
the two outputs will overlap each other as their magnitude is the same. Therefore,
for clarity in display, the starter output is multiplied by a factor of 0.85. It shows
that phase A starter was able to classify the faults involving phase A, while being
stable for other phase to ground faults. The fault detector detects the fault in all
cases rapidly. On average, it takes just about 3 sampling periods to detect a fault
after its inception.

The next example evaluates the performance of the algorithm for heavy faults
at relay location. To make an extreme case, the SCC of the sending-end source
was taken as 10 GV A. This is indicative of a very strong source. Moreover, the

length of the line behind the relay was decreased to 20 km. The relative angle of the
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Figure 6.9: Phase 4 starter and detector outputs for faults at 50 km, fault resistance
20 § for ground faults, SCC ratio 2, angle zero degree
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receiving-end source with respect to sending-end source was 30 degrees. The ratio
of the SCC of the sending-end source to the SCC of the receiving-end source was
taken to be 1. Similar to the previous case, ten different types of faults were applied
in front of the relay at the relay location with fault resistance of 1 {2 for the ground
faults and the resulits are shown in Fig. 6.10. In ail cases, fauiis are detecied and
classified correctly and very rapidly.

The performance of the algorithm was checked for faults with high amount of
fault resistance. Fig. 6.11 illustrates the results obtained for the following conditions:
ten different faults in front of the relay at 50 km, fault resistance 80 § for ground
faults, SCC ratio 1/5, relative angle 30 degrees. It shows that the algorithm is able
to detect faults with very high amount of fault resistance. Moreover, the phase A
starter responds to faults involving phase A.

With the conditions similar to that of Fig. 6.11, an A-G fault with zero fault
resistance was applied. Phase A measured impedance for two A-G faults with zero
and 80  fault resistance are compared with the safe region of the impedance plane
in Fig. 6.12.

The next example tests the algorithm for faults at the end of the transmission
line. The test conditions were: ten different faults at the receiving-end source, fault
resistance 10 Q for ground faults, SCC ratio 1/10, relative angle 30 degrees. The
sending-end source was chosen as a weak source, while the receiving-end source was
very strong. These set of parameters result in a very extreme case for the power
system. In this case, the fault resistance is magnified considerably. For a phase A to
ground fault (A-G) , the ratio of the fault currents from two sources is about 100.

The phase A current is shown in the top of Fig. 6.13. It shows that for the A-G
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Figure 6.10: Phase A starter and detector outputs for faults at relay location, fault
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Figure 6.11: Phase A starter and detector outputs for faults at 50 km, fault resistance
80 Q2 for ground faults, SCC ratio 1/5, angle 30 degrees
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Figure 6.12: Phase A impedance trajectory for two A-G faults with zero and 80 Q
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fault, the phase A current is even less than the normal load current.

Phase A starter and detector outputs for different fault types are shown in Fig.
6.13. On average the detection module needs just about 4 ms to detect different
faults correctly, even for the case of the fault at the end of transmission line with
high resistance which is siow in nature. The phase starters using adaptive routine
perform faster and better compared with the starters using fixed setting values.

The adaptive routine adjusts the settings to the proper values. For the next
example the test conditions were: phase A to ground fault at the receiving-end source,
fault resistance 4 Q, SCC ratio 1/10, relative angle zero degree. The infeed effect
of the receiving-end source magnifies the fault resistance. The phase A measured
impedance trajectory for the A-G fault is compared with the two safe regions, one
with adaptive setting and the other one with constant setting in Fig. 6.14. Unless the
adaptive settings is used, the trajectory settles in the safe region of the impedance

plane and the fault could not be detected.

6.5.3 Sequential Faults

The performance of the algorithm was evaluated for two sequential faults. Sequential
faults could happen in the case the lightning hits the transmission line or one of the
conductors breaks.

Fig. 6.15 illustrates the results obtained for the following conditions: two A-G
and A-B-G sequential faults in front of the relay at 70 km, fault resistance 10 2, SCC
ratio 1/2, relative angle -30 degrees. It is assumed that first an A-G fault happens
at 0.2 s and then, after 5 ms, it changes to a A-B-G fault. For clarity in display, the

phase A and B starter outputs are multiplied by 0.9 and 0.8, respectively. It shows
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that the algorithm detects the fault rapidly and the starters classify the fault type

accordingly.
6.5.4 Cross-Country Faults

The proposed algorithm was tested to check its performance during cross-country
faults.

For this example the test conditions were: phase A to ground fault at 70 km,
phase C to ground fault at 100 km, fault resistance 2 Q2 for both faults, SCC ratio
2, relative angle 20 degrees. The measured voltage and current signals at the relay
location and the outputs of the detector and three starters are shown in Fig. 6.16.
As shown in this figure, the detector detects the faults very fast and the appropriate

phase starters respond to the faults accordingly.

6.5.5 Line Charging

During line charging, breakers at one end of a transmission line are closed for some
time before the breakers of the other end are closed. In the period in-between, a
considerable inrush current is normally observed. It is desired that the relay installed
at the energized end of the transmission line prevent tripping in such a case. The
performance of the proposed scheme was checked for a line energization case. A three
phase source with SCC of 5 GV A was closed on a 150 km transmission line. After
some oscillation, the trajectories of the measured impedances settled inside the safe

region of the impedance plane and none of the three starters detected this case as a

faulty case.
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For the first few cycles after energization, the measured currents and voltages
at the relay location develop high amounts of nonfundamental power system fre-
quency components. This is specially more severe for the current signals. The
impedance measurement algorithm uses a short length window. Therefore, the mea-
sured impedance initially oscillates. The proposed algorithm covers a wide area of
the impedance plane. The measured impedance might enter the nonhealthy area of
the impedance plane during its initial oscillation. A few other line energization tests
were performed and it was found that, in some cases during the first cycle after the
energization, the measured impedance trajectory enters the nonhealthy area once or
twice.

During line energization the coverage area of the impedance plane could be re-
duced by decreasing the radius of the outer circle. It prevents the starters to operate
under line energization case. A power system similar to that used in Fig. 6.8 was
used and a line energization study was performed. The sending-end source breakers
were closed while the receiving-end source was disconnected from the end of the
transmission line. The radius of the outer circle was decreased to 500 §2. The mea-
sured voltage and current signals at the relay location and the outputs of the detector
and three starters are shown in Fig. 6.17. The transient effect is considerable for
current signals specially during the first 40 ms after line energization at 0.3 s. It
shows that the detector and starters outputs remain stable during the line charging
transients.

The simulation study results show that the proposed algorithm is able to detect
and classify different faults correctly and very rapidly with wide changes in power

system parameters and conditions like fault resistance changes, source impedance
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changes and different power flow directions. The results presented in this section
mainly demonstrate the algorithm’s performance for some extreme fault cases. In
general, the proposed algorithm performs better and faster for more usual cases such

as low resistance faults around the middle of the protected areas.

6.6 Summary

A new underimpedance starter which covers a wider area of impedance plane is pro-
posed in this chapter. The measured impedance vector is compared with the safe
region of the impedance plane to detect faults on a transmission line and to clas-
sify the fault type. Simulation studies are performed and the performance of the
proposed scheme is investigated. Influence of changing system parameters such as
fault location, fault resistance, source impedance and pre-fault power flow direction
is studied. The performance of the proposed scheme is also checked for extreme
cases like faults including high amount of resistance and also faults at the relay loca-
tion. Adaptive features are also included to enable the starter to track the changing
operating conditions of the system. Through extensive studies it is found that the
proposed algorithm is able to detect and classify different fault types correctly and

rapidly.



Part 11

Real-Time Implementation
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Chapter 7

Laboratory Experimental System

7.1 Introduction

Theoretical development and simulation studies of different modules of a transmis-
sion line protective relay are described in Chapters 2 to 6. Simulation studies show
that the proposed modules are able to perform rapidly and correctly for a wide range
of different changing system conditions.

Mathematical model of any real plant is always based on some assumptions and
simplifications. Thus, although the computer simulation studies play an important
role in the design of a new algorithm, on-line tests on a physical model are necessary
before its practical use.

After the theoretical development and computer simulation studies, the perfor-
mance of different modules of the proposed relay is investigated further on a physical
model of a power system. Scaled physical model is able to emulate the behavior of
the actual power plant in the laboratory environment. The relay modules have been
implemented on a Digital Signal Processor (DSP) board mounted on a Personal
Computer (PC). Details of implementation of the proposed modules are presented
in this chapter. The laboratory set-up and experimental power system are also given.

Results of experimental studies will be presented in Chapter 8.
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7.2 Experimental System Set-up

A single-machine infinite bus power system was physically modeled in the power
laboratory. This physical model represents a large system of approximately 600
MV A. An overall schematic diagram of the experimental system set-up is showz in
Fig. 7.1.

The current and voltage signals from the power system are obtained through
Current Transformers (CTs) and Potential Transformers (PTs). The low level output
voltage signals from the CTs are amplified and then filtered. The PTs outputs are
filtered as well. The Data Acquisition System (DAS) receives the analog signals
through the Analog Input Card (AIC). The analog filtered signal is then transferred
to the DSP board and is converted to digital by internal Analog to Digital (A/D)

converters. Details of these blocks are presented in the following sections.
7.2.1 Power System Physical Model

A three-phase 3 kV A, 208 V synchronous micro-alternator driven by a 7.5 hp sepa-
rately excited dc machine is employed to model the generating station. The station
is connected to a constant voltage system (infinite bus) through a transmission line.
In this model, the micro-alternator and the dc motor act as the generating unit and
the turbine, respectively (Fig. 7.1).

- The micro-alternator is designed to achieve, in most respects, an adequate model
of a large generator. Because of size limitation, the field time constant is smaller than
that of a corresponding large machine. To improve the performance during transient

conditions, a Time Constant Regulator (TCR) designed to change the effective field
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Figure 7.1: Schematic diagram of the experimental system set-up

time constant of the micro-alternator has been used.

The transmission line was modeled by a lumped element physical model. It

was modeled by 6 identical w-sections, each section representing 50 km of a 500

kV transmission line, cascaded together to form a 300 km line length [71]. The

parameters of the actual and the equivalent 7-section model are given in Appendix

D.
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A system of 3 three-phase Circuit Breakers (CBs) controlled by a ROM based
logic circuit is used. Of the three sets of breakers, two sets are used at the ends of
the transmission line and the third is used to apply the fault at any distance. The
contact open and close timings and their sequencing can be programmed.

Different types of faults including 1-phase to ground, 2-phase to ground, phase
to phase and 3-phase can be applied to the power system model. Fault location and
fault resistance could also be changed. By changing the armature and field current

of the dc motor the active output power of the micro-alternator can be changed.

7.2.2 Current and Potential Transformers

The directional relay uses line to neutral voltage and line current input signals. The
line to neutral voltages are obtained by the use of 115/6.3 V isolating potential
transformers. The line currents are obtained through 15/5 A current transformers.
The CT secondaries are connected to a shunt impedance to obtain an equivalent
voltage signal. The output voltage signal is in the range of mili-volts. Therefore,
it should be passed through an amplification stage before being converted to digital
form. |

Analysing the spectrum of the signals before and after the current transformer,
it was found that the CTs used in the laboratory do not pass all frequencies in the
signal. It was found that although the CTs change the shape of the signal to some

extent, however, this effect is minor specially for the main frequency component [72].
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7.2.3 Analog Filter

The sampling process is essential for microprocessor protection in that the analog
signals must be converted into appropriate form so that the digital hardware can
perform calculations and reach relaying decisions. A low-pass anaiog filter is required
to limit the input signal frequency to avoid aliasing errors.

For the implementation of the scheme, a suitable sampling rate should be selected.
The sampling frequency used in this work is 1200 Hz. According to the Nyquist
theorem (73], signals with finite bandwidth can be completely described by sampling
them at a rate at least as high as twice the highest frequency in the spectrum. In
other words, the highest frequency allowed to pass by the analog filter must be less
than half of the sampling frequency. In practice, the sampling rate must be chosen to
be somewhat greater to ensure that the signal can be recovered considering practical
hardware limitations.

When a fault occurs on a transmission line, voltage and current signals develop
a decaying dc offset component whose magnitude depends on many factors that are
random in nature. The dc components of the voltage and current signals are also
required to be removed. This preprocessing enhances the training capabilities of the
proposed neural networks and decreases the number of required patterns for training
the networks.

An active 2nd-order Butterworth band-pass filter has been used to attenuate the
dc component and high frequency components. The Butterworth filter has maximally
flat response in the pass band. The filter is centered at the nominal system frequency

and its passband is chosen to be 30 Hz. This value allows a considerable reduction
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of the high frequency and dc components with a small time delay. The filter circuit
used is shown in Fig. 7.2.

An array of six circuits simultaneously filters the current and voltage signals
before being fed to the data acquisition system. For current signals, the filter unit
circuit is preceded by an amplifier circuit. The filter's parameters values have been

calculated and are given in Appendix E [74].

7.2.4 Digital Signal Processor Board

Development of the real-time digital algorithm environment is based on a DSP board
supplied by SPECTRUM Signal Processing Inc.. The board contains a TMS320C30
DSP chip which is a 32-bit floating-point device with 60 ns single cycle instruction
execution time. Its performance is further enhanced through its large on-chip mem-
ory, concurrent Direct Memory Access (DMA) controller, two external interface ports

and instruction cache. Furthermore, the two 200 kHz, 16-bit analog I/O channels on
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board, coupled with direct access to all serial and parallel I/O channels of the DSP
chip, provide the exterior input-output functions. The DSP board is installed on

a PC with corresponding development software and debugging application program
(75].

7.2.5 Data Acquisition System

The purpose of the DAS is to convert the analog data into a form usable by a digital
processor. For the sampling rate of 1200 Hz, the time interval between the samples is
about 0.83 ms which needs a fast DAS to acquire current and voltage signal inputs
in less than 0.1 ms. Appropriate software and hardware setup for accomplishing
fast data acquisition were designed and fabricated in the Power System Research
Laboratory at the University of Calgary.

Using the two I/O channels of the DSP board, CHA and CHB, and an inter-
rupt based routine, the data acquisition system was designed. The interrupt based
program reads, scales and stores the data from DAS hardware. The DAS could han-
dle up to 9 inputs and 2 outputs. The standard un-buffered DSP analog channel
CHB acts as the first analog input. Using some external hardware, the DSP analog
channel CHA was expanded to act as the inputs 2 to 9. The DSP standard analog
outputs CHA and CHB could be directly used as two analog outputs.

The schematic diagram of the DAS hardware is shown in Fig. 7.3. Analog input
1 could be directly connected to the DSP analog channel CHB. Analog inputs 2 to 9
are first passed through a gain stage. The analog inputs to the DSP board should be
limited to £ 3 V. Appropriate gains should be used for each input to limit the DSP
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Figure 7.3: Schematic diagram of the data acquisition system

inputs to the desired specified range. Next, each analog input is passed through a
high speed Sample & Hold (S/H) amplifier. The outputs of eight S/H amplifiers are
routed to an 8 channel analog multiplexer. The DSP’s input channel CHA receives
the multiplexer’s output signal. Using the built-in analog to digital converter, this
signal is then converted to digital form internally.

A £ 3 V analog input range to the DSP provides full scale operation of the
16 bit A/D. In the area of power system digital protection, both 12 and 16 bit
A/D converters are in use. The large difference between load and fault current is a
driving force behind the need for more precision in the A/D conversion. It is difficult

to measure load current accurately while not saturating for fault current with only

12 bits [9].
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The DAS also features a possibility for 2 analog outputs. The analog outputs
could be used to trip the circuit breakers or to trigger an alarm signal. They could
also be used for sending trip/block signals between relays at each end of the trans-
mission line.

The characteristic of the DSP board hardware is such that the same register is
used for input and output. Therefore, any input is mapped to the respective output
unless something is written to that register before the next A/D conversion. So,

prior to reading anything to the DSP board, the outputs must be updated.

7.3 Embedded Software Structure

With the PC accommodating the DSP board, the digital relay program is developed
in a modular form using the C programming language. The real time application
program is primarily interrupt driven, with a basic structure as shown in Fig. 7.4.

Any project using the DSP board has two software modules, the DSP module
and the PC module, that run in parallel. One primary function of the PC module
is to download the running code for the DSP into its RAM, since there is no ROM
storage on the DSP board. The control system is initiated by the execution of the PC
module code on the personal computer. This in turn boots the DSP by loading the
compiled DSP module code into the digital signal processor board memory through
the personal computer’s ISA bus.

After downloading the DSP program to the board, the PC program waits for
the DSP signal to begin the main control loop. The DSP acknowledges by sending

a message back confirming the application program is running on the DSP board.
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The personal computer then enters a loop communicating with the DSP board. It
receives input-output signals of the application program running on the DSP board
and records the data for further reference. A human-machine interface could be
further added to display real-time graphs on screen.

The DSP boot procedure initializes the board and establishes the communica-
tion between PC and DSP processors. The required matrices and vectors for the
application program are also allocated and initialized. After initialization, the DSP
enables the interrupt service mechanism and the control executes as an interrupt
service routine.

At each sampling time, the interrupt service routine is called which contains the
protection application program. The interrupt routine first using the DAS hardware
acquires, scales and stores all the input channel data. When the data collection
is completed, DSP would return the DAS hardware to sampling mode and proceed
with the protection scheme using saved inputs. When the processing is completed the
input-output data would be communicated to the personal computer. The output
signal computed by the application program could also be sent to the circuit breakers
timing circuit using the DAS. Upon the arrival of the next sampling interval this

process begins again.

7.4 Digital Relay Real-time Implementation

One of the most important tasks in designing a new protective relay for a power
system is the performance of on-line tests. In this way, the performance of the newly

designed digital relay can be further verified in a more realistic environment than
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pure simulation.

A DSP board is used to implement the proposed digital relay modules. At each
sampling point the input data window is moved forward by one point and the new
set of the input data is presented to the DSP. The DSP board should complete
processing of the new input information within one sampling period.

The implementation software for realizing the relay modules was programmed in
the C language. After compilation and assembly it was down-loaded to the DSP
board. The appropriate neural network’s weights and biases were also loaded to the
board. Floating-point arithmetic was used in the implementation.

Any one of the proposed neural networks could be chosen to act as the relay’s
directional module. Using different networks, it was found that it took only about
0.4 ms at most to execute the total directional module network. Given that the
sampling interval is 0.8333 ms, this execution time is well within the available inter-
sampling time. This leaves more than 0.4 ms for the acquisition of the current and
voltage inputs through DAS and for the execution of the remaining modules of the
relay which are in series with the directional module. For the conventional relay-
ing programming, conditional statements tend to make the execution time variable.

However, for the neural network based directional module execution time for all the

input patterns is the same.

7.5 Summary

Real-time implementation of the proposed digital relay modules is presented in this

chapter. A DSP board is used for realizing different modules of the relaying algo-
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rithm. A physical model of a power system is used to test the relaying algorithm
performance on-line. Various types of faults can be applied at different locations of
the transmission line model and the relay performance could be investigated.
Experimental studies to test the relay modules performance have been performed
on the micro-alternator power system model. Some of the results are presented in

the next chapter.



Chapter 8

Experimental Studies

8.1 Introduction

The proposed relay modules have been implemented on a DSP board and their
performance tested on a physical power system model. Results of experimental
studies performed on the power system model with the different proposed modules
are given in this chapter.

The laboratory power system set-up shown in Fig. 7.1 was used for the experi-
mental studies and for simulating various types of faults. The micro-alternator was
first synchronized with the system and then the desired operating condition was set
up by adjusting the field and the armature currents of the drive motor and the field
current of the micro-alternator. Faults were applied by means of the CBs’ timing
control circuit.

The measurement devices are located at 50 km (one w-section) from the gener-
ating station and look forward towards the infinite bus station (point A in Fig. 7.1).
Thus, the transmission line between the relaying point and point B at one 7-section
from the infinite bus station is the forward protection zone and the transmission
line between the relaying point and the generating station is the backward line sec-

tion. Faults in the forward protection zone are called forward faults whereas faults
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occurring on the opposite side of the relay are labeled as backward faults.

Different neural networks were proposed as the relay’s directional module. These
networks were originally trained for a different transmission line with different length
and characteristics than that in the laboratory. They were not retrained for the
laboratory implementation studies.

The trained networks were used to determine the direction of faults on the model
transmission line. The ANN-based algorithms were tested to evaluate the perfor-
mance of the proposed networks in terms of generalization, robustness and speed.
The networks were tested with different independent test patterns which were not
included in the training pattern set and promising results were obtained. The effect
of fault resistance was also studied. The performance of the proposed starter module
was also evaluated under different system conditions. Some of the test results are

presented in the following sections.

8.2 Feedforward Network Directional Module

8.2.1 Thirty-Input Network

The thirty-input trained network of Ref. [61] was used and realized using the DSP
board. This network was used to determine the direction of faults on the power
system model in the laboratory. Although the voltages and currents of the power
system model are different from voltage and current levels of the power system on
which the directional module was originally trained, it was possible to use the same

network because the voltage and current samples were normalized before being fed
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to the neural network.

Various types of forward and backward faults were applied at different locations
and at random instants in the ac cycle. Since the transmission line is made up of
lumped 7-sections faults may only be applied at discrete points on the line.

As an example, the network’s output for two different types of forward fauits is
shown in Fig. 8.1. The faults were a double phase to ground A-C-G fault and a three
phase A-B-C fault at 100 km and 50 km from the relay location, respectively. Four
consecutive outputs of the network are considered and averaged. Averaged outputs
of this post-processing unit which fall above 0.5 and below -0.5 are interpreted as
forward and backward faults, respectively. The averaged output is shown for the
first 20 samples after the fault detection (sample number 1). This figure shows that

for both faults the network performs correctly and rapidly.
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Figure 8.1: Thirty-input feedforward network averaged response to two different
forward faults
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8.2.2 Twenty-Input Network

The proposed twenty-input feedforward network of Ref. [61] is considered as the
directional module of a transmission line protection system and its performance is

investigated. Test results for four different forward and backward faults are pre-

sented.

The averaged network’s output for a double phase to ground A-C-G forward fault
at 100 km from the relay location is shown in Fig. 8.2a. A B-G forward fault was
applied at 50 km from the relay location and the averaged output is shown in Fig.
8.2b.

Two different types of forward and backward faults were applied at 50 km from
the relay location and the averaged output of the network is shown in Fig. 8.3.
The first fault was a double phase to ground A-C-G forward fault including fault
resistance, while the second fault was a phase to phase A-B backward fault without
fault resistance. In the case of the A-C-G fault the amount of fault resistance was
0.3 Q using the 208 V', 3 kV A model power system. In an equivalent 500 £V, 600
MYV A system this amount translates to an equivalent resistance of about 9 Q.

The directional network in all four cases classifies the fault direction correctly.

The direction decision is made fast, as in the case of simulation studies.

8.3 Recurrent Network Directional Module

The proposed small size recurrent network has been implemented on a digital signal
processor board and its behavior is investigated on the physical power system model

[76]. Based on the structure of the proposed recurrent network, the implementation
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software was programmed in the C language. After compilation and assembly it was
down-loaded to the DSP board. Network’s weights and biases were also loaded to
the board.

It was found that it took only about 0.25 ms to execute the total network.
Given that the sampling interval is 0.8333 ms, this execution time is well within
the available inter-sampling time. This leaves about 0.58 ms for the acquisition of
the current and voltage inputs through DAS and for the execution of the remaining
modules of a protection scheme which might be in series with the directional module.
For the conventional relaying programming, conditional statements tend to make the
execution time variable. However, for the neural network-based directional module

execution time for all the input patterns is the same.

8.3.1 Forward Faults

The trained recurrent network was used to determine the direction of faults on the
model transmission line. Various types of forward and backward faults were applied
at different locations and at random instants in the ac cycle.

As an example, two different types of forward faults were applied at 100 km
from the relay location and the network’s output for the first three cycles after the
detection of the fault (sample number 1) is shown in Fig. 8.4. The first fault was
a three phase A-B-C fault, while the second fault was a single phase to ground
C-G fault including fault resistance. In the case of C-G fault the amount of fault
resistance was more than 0.3 2 (equivalent to 9 2 for the 500 £V system).

The network outputs which fall above 0.5 and below -0.5 are interpreted as for-

ward and backward faults, respectively. For the faults presented in Fig. 8.4, it takes
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Figure 8.4: Recurrent network response to two different forward faults at 100 km

three samples after the fault detection for the output of the recurrent network to fall
inside the forward fault area. The directional module needs just about 2.5 ms to
classify the fault direction correctly after fault detection. As can be seen from Fig.
8.4, for both faults the fault direction identification is very fast and reliable.

Fig. 8.5 shows the output of the network for two different forward faults far from
the relay location at 150 km. The first fault was a phase to phase A-B fault and the
second fault was a double phase to ground A-B-G fault. It shows that the network
performed correctly for the remote faults in a timely fashion.

Results of the tests for two different forward faults at the nearest possible location
to the relay at 50 km are shown in the Fig. 8.6. Two different faults, a A-B-C fault
and a C-G fault were applied and the network’s output for these two faults is shown

in Figs. 8.6a and 8.6b, respectively. The C-G fault involved 1.7 Q (equivalent to
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49 Q) fault resistance. For both faults the fault direction identification is fast and
reliable. The network performs correctly even for the case of the fault with very high
amount of fault resistance. Although the network just uses the phase A voltage as

its input, it correctly identifies the direction of the phase C to ground fault.

8.3.2 Backward Faults

Two different backward faults including 0.5 § (equivalent to 14 Q) fault resistance
were applied at 50 km from the relay location and the network’s performance is
presented in Fig. 8.7. The first fault was a single phase to ground A-G fault and the
second fault was a double phase to ground A-C-G fault. The network identifies the
fault direction very fast and its output remains stable for three cycles. It takes less

than 3 ms to classify the fault direction.
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Figure 8.7: Recurrent network response to two different backward faults at 50 km
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8.3.3 Faults at the Relay Location

Several faults were applied at the line side and bus side of the relay location and the
capabilities of the new network were examined for faults at the relay location.

Results of the tests for two different forward faults at the relay location. a A-B
fault and a A-C-G fault are presented in Fig. 8.8. The A-C-G fault involved 0.5 {2
(equivalent to 14 Q) fault resistance.

The next example tests the network’s performance for two different backward
faults at the relay location. Two different faults, A-G fault and A-B-G fault were
applied and the network’s output for these two faults is shown in Figs. 8.9a and
8.9b, respectively.

These tests demonstrate that the network is able to classify forward and backward
faults at the relay location correctly and rapidly. On average the directional module

needs just about 3 ms to classify the fault direction correctly.
8.4 Elman Network Directional Module

The proposed Elman network has been used to determine the fault direction from
the voltage and currents temporal input patterns. To evaluate the capabilities of
the proposed network, it was tested by applying different faults on the laboratory
model power system (77]. For different test faults, fault location, fault type, fault
reéista.nce, fault inception time, and pre-fault power flow condition were changed to

investigate the effects of these factors on the performance of the network.
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8.4.1 Forward Faults

As an example, the network’s output for two different types of forward faults at
100 km from the relay location is shown in Fig. 8.10. The faults were a single phase
to ground A-G fault and a double phase to ground A-C-G fault, respectively. The
output is shown for the first three cycles after the fault detection (sample number
1). This figure shows that for both faults the fault direction identification is very
fast and reliable.

The network outputs which fall above 0.5 and below -0.5 are interpreted as for-
ward and backward faults, respectively. For the faults shown in Fig. 8.10, it takes
two samples for the output of the Elman recurrent network to fall inside the forward
fault area. The directional module needs just 1.7 ms to classify the fault direction
correctly.

The next example tests the network’s performance for faults at 150 km from the
relay location. Two different faults, A-G fault and A-B-G fault were applied and the
network’s output for these two faults is shown in Figs. 8.11a and 8.11b, respectively.
The network identifies the fault direction very fast and its output remains stable for
three cycles.

Results of the tests for two different forward faults at the nearest possible location
to the relay at 50 km are shown in the Fig. 8.12. Fig. 8.12a shows the network’s
output for a very high resistive phase to ground C-G fault, while the network’s output
for a phase to phase A-C fault involving no resistance is shown in Fig. 8.12b.

In the case of C-G fault the amount of fault resistance was about 1.7 2 (equivalent

to 49 Q). The directional module needs just about 5 ms to classify the fault direction
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correctly, even for the case of the fault with such high resistance. For the case of
A-C fault without fault resistance it is even faster; it takes 2.5 ms to determine the
fault direction. Although the network just uses the phase A voltage as its input, it

correctly identifies the direction of the phase C to ground fault.

8.4.2 Backward Faults

Two different backward faults with 0.5 Q (equivalent to 14 Q) fault resistance were
applied at 50 km from the relay location and the network’s performance is presented
in Fig. 8.13. The first fault was a single phase to ground B-G fault and the second
fault was a double phase to ground A-C-G fault. This study demonstrates that the
network is able to classify the backward faults near the relay location correctly in a

timely fashion.
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o

8.4.3 Faults at the Relay Location

Estimating the direction of a fault located at the relay location by using conventional
methods is difficult. Memory action should be used in the design of a fault direction
detection module in order to properly identify the fault direction with zero input
voltages.

Commercially available directional relays use either voltage memory, cross-
polarisation or a superimposed technique to prevent maloperation on close-up faults.
In the proposed Elman recurrent network, the output depends both on the input and
the previous outputs of the network. Therefore, using its built-in memory, provided
by the feedback loops in its structure, the network should be able to correctly deter-
mine the direction of faults at the relay location and remain stable at least for some

time after the fault inception.
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The capabilities of the new network were also examined for faults at the relay
location. Results of the tests for two different forward faults at the relay location, a
A-C-G fault and a A-G fault are presented in Fig. 8.14. Both faults involved 0.5 Q
(equivalent to 14 ) fault resistance.

The network’s output for two different backward fauits ai the reiay location is
shown in Fig. 8.15. The faults were a single phase to ground A-G fault and a double
phase to ground A-B-G fault, respectively and involved no fault resistance.

These tests demonstrate that the network is able to classify forward and backward
faults at the relay location correctly and rapidly. On average the directional module

needs just about 2.3 ms to classify the fault direction correctly.

1 -
5075 b
i3
=3
o oS8k - - /- -
Z
Z
<025+ <
or 4
0 8 12 16 20
Sample number
(a) ACG
1 -
5075+ -
=)
=3
© 05+ e
2
2o} d
or 4
I3 4 L
0 4 8 12 16 20
Sample number
(b) AG

Figure 8.14: Elman network response to two different forward faults at the relay
location



167

(=4
T

ANN oulp!u:l
b
S5 bR

i I 1

12 16 20
Sample number
(a) AG
or 4
E-025- q
3
> —05F 4
Z
<0751 .
-1 C L 1
0 4 8 12 16 20
Sample number
(b) ABG

Figure 8.15: Elman network response to two different backward faults at the relay
location

8.4.4 Directional Comparison Protection

A directional comparison protection scheme consists of directional relays at each ter-
minal of the transmission line. Using the locally measured quantities, the direction
to a fault is independently determined by the relay at each end of the transmission
line. The relay hardware was installed at the other end of transmission line. The
passband of the analog filter was chosen to be 20 Hz. Some more tests were per-
formed and similar results were obtained confirming that for an internal fault, relays
at both ends of the transmission line rapidly identify the fault direction as a for-
ward fault. It shows that the proposed relay can be used for high speed directional
comparison relaying.

As an example, two different forward faults were applied at 100 km from the relay
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location and the network’s output is shown in Fig. 8.16. Both of the faults were
single phase to ground A-G fault without and with fault resistance, respectively. For
the second fault, the amount of fault resistance was about 0.3 Q (equivalent to 9 Q).
It shows that for both faults the fault direction identification is very fast and reliable

as in the case of other studies in which the relay was located at the generator end.

8.5 Starter Module

The starter module was implemented on the DSP board. It was found that it took
less than 0.3 ms for the acquisition of the current and voltage inputs through DAS
and for the execution of the starter module. The necessary time to execute any

one of the proposed directional module networks on the DSP board is about 0.4
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ms at most, while the sampling interval time is 0.8333 ms. Therefore, any of the
proposed neural network-based directional modules in conjunction with the starter
module could be used as a directional relay. The combined directional relay is able
to classify the fault type as well.

In order to assess the performance of the proposed starter module a wide range
of faults on the laboratory power system model was applied. The performance of the
algorithm has been evaluated for different system conditions. High amount of fault

resistance was also considered. Some of the test results are presented in this section.
8.5.1 Relay at the Generator End

The measurement devices are located at 50 km (one m-section) from the generator
and look forward towards the infinite bus station.

The first example evaluates the performance of the algorithm for a forward fault
at the nearest possible location to the relay at 50 km from the relay point. A
double phase to ground A-C-G fault with fault resistance of 0.3 © (equivalent to 9
§)) was applied and the results are illustrated in Fig. 8.17. The filtered three phase
currents and voltages are shown in Figs. 8.17a and 8.17b, respectively. The detector
and phase starters outputs are also shown in Figs. 8.17c and 8.17d, respectively. As
shown in this figure, the fault is detected rapidly and the appropriate starter outputs
classify the fault type accordingly. The starter detects the fault momentarily and
needs just about one quarter of a cycle to classify the fault type.

The performance of the algorithm was checked for faults with high amount of

fault resistance. The next example tests the algorithm’s performance for a single
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phase to ground (C-G) fault at 100 km from the relay location. Fig. 8.18 shows the
results of this case study. For this case the amount of fault resistance was about 1 Q
(equivalent to 29 Q). The fault is detected very rapidly. The starter module needs
just about 7.5 ms to classify the fault type correctly, even for the case of the fault
with such high resistance.

Two different A-G faults with and without fault resistance were applied at 100 km
from the relay location. Measured impedance of phase A for two A-G faults with
zero and 0.5 Q fault resistance is compared with the safe region of the impedance
plane in Fig. 8.19. For both cases, the impedance trajectory begins from the same
point. However, for the fault including fault resistance, the trajectory settles at a
point that indicates a fault resistance of about 2.6 £ (0.18 pu). It shows that the
fault resistance is magnified due to the effect of high fault current from the powerful
end source.

Fig. 8.20 shows the results of another fault study at 100 km from the relay
location. A single phase to ground A-G fault with fault resistance of 0.5 Q (equivalent
to 14 Q) was applied and the voltage and current signals were presented to both of the
starter and Elman network-based directional relay and their outputs are illustrated
in Fig. 8.20. The fault is detected and classified very rapidly in 2.5 ms by the starter
module. Moreover, the fault direction is determined by the directional relay in just
about 2 ms after the fault detection.

The next example tests the algorithm for faults occurred far from the measure-
ment point. A phase to phase A-B fault with no resistance was applied at 150 km
from the relay location and the performance of the starter module was investigated.

Moreover, the same fault data was processed by the recurrent network-based direc-
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tional relay. The results obtained from both units are shown in Fig. 8.21. It shows
that it takes just three and five sampling periods to detect and classify the fault,
respectively after the fault inception. Fault direction is correctly determined by the
directional recurrent network as a forward fault.

The starter and Elman network-based directional relay outputs for a three pahse
A-B-C fault at 50 km from the relay location are illustrated in Fig. 8.22. It shows
that although the voltage input signals are noisy, the fault is detected and classified
correctly and very rapidly. Fault direction is also determined very fast.

With the conditions similar to that of Fig. 8.22, another three pahse A-B-C
fault at 100 km from the relay location was applied. Phase A, B and C measured
impedances for this fault are compared with the safe region of the impedance plane
in Fig. 8.23. All three measured impedances are located inside the safe region before
the fault inception. However, after the inception of the fault, they all move outside
the safe region quickly.

The capabilities of the algorithm were also examined for faults at the relay loca-
tion. A single phase to ground A-G fault with fault resistance of 0.5  (equivalent to
14 Q) was applied in front of the relay location and the starter and Elman directional
relay were evaluated. The outputs of these modules are shown in Fig. 8.24.

The same fault without fault resistance was applied at the relay location. How-
ever, this time the fault was applied behind the measurement point. Fig. 8.25
illustrates the outputs of the starter and Elman directional relay for this fault. For
both forward and backward fault cases at the relay location the fault is detected and
classified rapidly and correctly. The Elman network-based directional relay identifies

the fault direction very fast and its output remains stable during the fault.
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Figure 8.21: Phase starters, detector and recurrent network-based directional relay
outputs for the A-B forward fault at 150 km
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A backward phase to phase A-B fault with no fault resistance was applied at
50 km from the relay location. The starter and recurrent network-based directional
relay outputs are presented in Fig. 8.26. It shows that the fault is identified correctly

in a timely fashion.

8.5.2 Relay at the Other End

The relay hardware was installed at the other end of transmission line. The mea-
surement devices are located at 50 km (one 7-section) from the infinite bus station
and look forward towards the generator (point B in Fig. 7.1).

Some more tests were performed and similar results as of the results presented
in the previous subsection were obtained. As an example the detector and phase
starters outputs for a fault at 50 km from the relay location are shown in Fig. 8.27.
The faults was a double phase to ground A-C-G fault without fault resistance. It
shows that the starter module performs rapidly and correctly for this heavy fault.
The A and C outputs of the phase selector classify the fault correctly while the B
output remains stable during the the fault.

The next example tests the algorithm for faults occured far from the relay point
including high fault resistance. A phase to ground A-G fault with fault resistance
of 0.5 Q (equivalent to 14 Q) was applied at 150 km from the relay location and
the performance of the starter module was investigated. The starter module results
are presented in Fig. 8.28. Similar to the previous results, it shows that the fault is

detected and classified correctly and very rapidly by the starter module.
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Figure 8.27: Phase starters and detector outputs for the A-C-G forward fault at
50 km, relay located at the other end
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Figure 8.28: Phase starters and detector outputs for the A-G forward fault at 150 km,
relay located at the other end
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8.6 Summary

The performance of the different modules of the proposed relaying algorithm has
been extensively evaluated in real-time using a laboratory model power system. A
wide range of various types of forward and backward fauits were appiied at different
locations on the modelled transmission line and the performance of different pro-
posed modules was investigated. These results confirm the simulation studies results
reported in the previous chapters, and show that the proposed modules performed
correctly and reliably when tested in real-time. The proposed modules are able to
perform very fast and reliably for different types of faults. Influence of changing
system parameters such as fault location, fault resistance and fault inception time is
studied. The performance of the proposed modules is also checked for faults including
high amount of resistance and also faults at the relay location.

Results obtained show that the proposed directional neural networks are able
to identify, without any further training, the direction of faults on a transmission
line which has never been presented to them before. It indicates that the proposed
neural network-based direction discrimination algorithms could be trusted as reliable
algorithms for transmission line fault direction detection.

Comparing experimental studies performance of different proposed neural network-
based directional modules, it was found that the recurrent and Elman networks per-
formed better in comparison with the feedforward networks. Overall, it was found
that the Elman network directional module performs as the most robust network

when tested with the laboratory power system model.
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Chapter 9

Digital Relay Evaluation using Field Data

9.1 Introduction

Simulation and experimental studies presented in previous chapters showed that the
proposed digital relay modules were able to perform rapidly and correctly for a wide
range of system conditions.

Testing of a newly designed digital relay using real field fault data is important
in evaluating the relay performance. Performance of the proposed relay modules is
investigated further using recorded fault data from a high voltage power system. The
real world complex effects of the power system elements, which might have not been
completely considered in the mathematical model of the power system, are already
included in the recorded real fault data. In this way, the performance of the newly
designed relaying modules can be further verified in a more realistic environment
than pure simulation.

The recorded voltage and current fault signals are down-sampled and normalized
and then presented to the relay modules. The performance of the proposed modules
was checked in play back mode. Results obtained indicate that the proposed algo-
rithms are robust, fast and accurate. Results of some of the test studies are reported

in this chapter.

187



188

9.2 Recorded Field Faults

Alberta Power Ltd. records fault data on its 240 kV transmission system. A
schematic diagram of the Province of Alberta 240 kV power transmission system
is shown in Fig. 9.l. Performance of the proposed starter and ANN-based direc-
tional modules was investigated using the recorded fault data provided by Alberta
Power Ltd.. Effects of the current transformers saturation, time-varying fault resis-
tance and complex transients and nonlinearities of the power system elements are
already included in the recorded real fault data. Therefore, the performance of the
proposed modules can be further evaluated using more realistic field data.

Recorded current and voltage signals for two different faults on the Alberta trans-
mission system are presented as two examples. The first fault was a single phase
to ground A-G fault on the 135 km transmission line connecting Battle River and
Sheerness substations. Recorded three phase current and voltage waveforms are
shown in Fig. 9.2a and Fig. 9.2b, respectively. After the fault inception, the voltage
and current signals contain considerable high frequency components.

The second fault was a double phase to ground A-B-G fault on the 135 km
transmission line and the recorded current and voltage signals are shown in Fig. 9.3.
For this fault, after about two cycles from the inception of the fault, the system
encounters another transient and evolves to a different condition.

The recorded current and voltage fault signals are used to test the proposed

relaying modules.
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9.2.1 Fault Data Exchange Sampling Rate

Digital Fault Recorders (DFR) are used to monitor power system voltages, currents
and events. These devices record analog signals by periodically sampling them and
converting the measured signals to digital values. Tvpical recorders monitor 16-64
analog channels and a comparable number of event (contact status) inputs [78].

Samples of voltage and current waveforms are usually captured at a high sampling
rate. However, a lower sampling rate is usually required by the digital protective
relays. The simple expedient of sampling rate reduction by an integer factor, called
sampling rate compression, is not the correct way of making the conversion.

In general, the operation of reducing the sampling rate (including any prefilter-
ing) is called down-sampling. Down-sampling can be done without aliasing if the
bandwidth of the signal is reduced before sampling rate reduction. A general sys-
tem for down-sampling includes a lowpass filter and a compressor. Such a system is
called a decimator and down-sampling by lowpass filtering followed by compression
has been termed decimation {73]. A decimator for down-sampling by a factor of M

is shown in Fig. 9.4.

Input Lo Output
—_— wpass | ____ 3 i M —
Filter
Sampling Sampling
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Figure 9.4: General system for sampling rate reduction by M
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9.2.2 Decimation Filter

Decimation filters can be designed using finite-duration impulse response lowpass
filters. The simplest method of FIR filter design is called the window method [73)].
The basic principle of the window design methed is te truncate the ideal impulse
response with a finite-length window such as Kaiser window.

The original voltage and current waveforms are sampled with a rate of 6 kHz. A
decimator is used to decrease the sampling rate to 1.2 kHz. In this study, the Kaiser
window filter design method was used to calculate the coefficients of the decimation
filter. An FIR filter with cutoff frequency of 360 Hz was selected. The frequency

response of the decimation filter is shown in Fig. 9.5.
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Figure 9.5: Frequency response of the Kaiser decimation filter
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9.3 Performance Evaluation Studies

Different neural networks were proposed as the relay’s directional module. The ANN-
based algorithms were tested to evaluate the performance of the proposed networks
in terms of generalization, robustness and speed.

The trained networks were used to determine the direction of faults on the trans-
mission system shown in Fig. 9.1. These networks were originally trained for a
different transmission line with different length and characteristics than those shown
in Fig. 9.1. They were not retrained for the recorded field data studies. The perfor-
mance of the proposed starter module was also evaluated using the same transmission
system fault data.

The starter and directional modules have been implemented on a DSP board.
The implementation software was programmed in the C language. After compilation
and assembly it was down-loaded to the DSP board. Any of the proposed neural
networks could be considered as the directional module and its performance could be
investigated. Based on the structure of the selected network, appropriate network’s
weights and biases were also loaded to the board.

The performance of the starter and ANN-based directional modules was checked
in play back mode using recorded field data. The field data is first preprocessed the
same way as in the case of simulation studies. Then, it is down-sampled and read to
the DSP board. The starter and directional module could be processed on the DSP
board simultaneously or separately. The DSP board processes the input data and
calculates the modules’ outputs. The outputs are sent back to the PC to be saved

on a file for further investigation (Fig. 9.6).
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Figure 9.6: Processing of the fault data by the DSP board

The normalized voltage and current signals were presented to the relaying mod-
ules in a sequential manner. At each sampling point the input data window was
moved forward by one point and the new set of the input data was presented to the
modules, outputs were calculated and then saved.

The same data files were processed by a unix workstation off-line and the starter
and neural network outputs were observed. The DSP board uses floating-point
arithmetic to process the fault data. Therefore, it should be able to process the
input data accurately. It was found that the results obtained from processing the
input data using the DSP board and the unix workstation were very similar.

The proposed modules were tested with a set of 9 different faults. These faults
occurred at different locations of different transmission lines of the Alberta power
grid (Fig. 9.1), had different initial power flow conditions, occurred at different
random instants in the ac cycle and involved different phases. Test results for a few

faults are presented in the following sections.
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9.4 Feedforward Network Directional Module

The proposed twenty-input feedforward network is considered as the directional mod-
ule of a transmission line protection system and its performance is investigated [79].
For the examples presented in this section, the directicnal medule is processed on
the DSP board separately (not in conjunction with the detector module) and it is
assumed that each fault is detected instantly after its inception.

The network’s output for a forward fault on the 112 km transmission line between
Metiskow and Battle River substations is shown in Fig. 9.7. The measurements were
recorded at the Battle River substation. The Metiskow substation is connected to
generation sources through the 138 kV transmission system. The fault was a single
phase to ground C-G fault. The output is shown for the first cycle after the fault
detection (sample number 1). This figure shows that the fault direction identification
is very fast and reliable. Although the network just uses the phase A voltage as its
input, it correctly identifies the direction of the phase C to ground fault.

Four consecutive outputs of the network are considered and averaged by a post-
processing unit. Averaged outputs of this post-processing unit which fall above 0.5
and below -0.5 are interpreted as forward and backward faults, respectively.

To demonstrate the direction detection network’s capabilities including a post-
processing moving average filter, the network was tested with the fault presented
in Fig. 9.2. The fault was a single phase to ground A-G forward fault on the 135
km transmission line connecting Battle River and Sheerness substations and the
measurements were recorded at the Battle River substation. The averaged output

of the network is shown in Fig. 9.8.
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Figure 9.7: Twenty-input feedforward ANN response to the phase C to ground for-
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Figure 9.8: Twenty-input feedforward ANN averaged response to the phase A to
ground forward fault on the 135 km transmission line
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The directional module output is set equal to zero prior to the fault detection. For
the first samples after fault detection, the post-processing unit averages network’s
output with zeros. Therefore, the speed of the direction decision initially decreases.
For the faults shown in Fig. 9.8, it takes three samples for the output of the moving
average filter to fall inside the forward fault area.

The performance of the feedforward directional module was evaluated using the
same A-G fault with the measurements recorded at the other end of the transmission
line, at the Sheerness substations. The averaged output of the network is shown in
Fig. 9.9. The network correctly determines the fault direction two samples after the
fault detection.

Fig. 9.10 shows the output of the network for the double phase to ground A-B-G

0.8

Averaged ANN output

02 b

8 12 16 20
Sample number
Figure 9.9: Twenty-input feedforward ANN averaged response to the phase A to

ground forward fault on the 135 km transmission line, measurement at the other
end
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Figure 9.10: Twenty-input feedforward ANN averaged response to the phase A to
phase B to ground forward fault on the 135 km transmission line

forward fault shown in Fig. 9.3. The output is shown during three cycles (60
samples) after the detection of the fault. It shows that the network detects the fault

very fast and its output remains stable for three cycles.

9.5 Recurrent Network Directional Module

The proposed recurrent network-based fault direction discriminator module is tested
with the recorded fault data [80]. For the examples presented in this section and the
next section, the starter and directional module are processed simultaneously.

The recurrent network’s output for a forward fault on the 135 km transmission
line connecting Battle River and Sheerness substations is shown in Fig. 9.11. The

measurements were recorded at the Sheerness substation. The fault was a double
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Figure 9.11: Recurrent ANN response to the phase 4 to phase B to ground forward
fault on the 135 km transmission line

phase to ground A-B-G forward fault. The output is shown for the first cycle after
the fault detection (sample number 1). The network outputs which fall above 0.5
and below -0.5 are interpreted as forward and backward faults, respectively. This
figure shows that the fault direction identification is very fast and reliable. For this
case, it takes just one sample after the fault detection for the output of the recurrent
network to fall inside the forward fault area.

The proposed recurrent network-based directional module forms one component
of a directional comparison relay. A fast fault detector module works in parallel with
the ANN-based directional module. When the system is healthy, the fault detector
output is zero and the directional module output is deactivated, i.e. set equal to
zero. When a fault happens in the system, the fault detector module senses the fault

quickly and activates the output of the directional module.
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Figure 9.12: Recurrent ANN response to the phase C to ground forward fault on the
112 km transmission line

For this case, it was found that the fault detector needs two sampling periods
(about 1.7 ms) to detect the fault. Therefore, in total the time needed to classify
the fault direction is about 2.5 ms after the occurrance of the fault.

Fig. 9.12 shows the output of the network for a single phase to ground C-G
forward fault on the 112 km transmission line between Metiskow and Battle River
substations. The measurements were recorded at the Battle River substation. It
shows that the network identifies the fault direction very fast and its output remains
stable. The network correctly determines the fault direction just one sample after
the fault detection. Although the network just uses the phase A voltage as its input,
it correctly identifies the direction of the phase C to ground fault.

The next example tests the recurrent network’s performance for a single phase

to ground C-G forward fault on the 135 km transmission line. Network’s output is
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Figure 9.13: Recurrent ANN response to the phase C to ground forward fault on the
135 km transmission line

shown in Fig. 9.13 during three cycles after the detection of the fault. The directional
module needs just about 1.7 ms after the fault detection to classify the fault direction
correctly. The fault detector detects the fault in two sampling periods (about 1.7
ms). Therefore, in total the directional relay needs about 3.3 ms to detect the fault
and discriminate its direction.

Fig. 9.14 shows the output of the network for the single phase to ground A-G
forward fault illustrated in Fig. 9.2. It shows that the network classifies the fault
direction very fast and its output remains stable for three cycles.

The output of the network for a phase to phase B-C backward fault behind the

135 km transmission line is shown in Fig. 9.15. It shows that the network performs

correctly and rapidly.
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Figure 9.14: Recurrent ANN response to the phase A to ground forward fault on the
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9.6 Elman Network Directional Module

The performance of the proposed Elman network-based fault directional module is
tested with the recorded fault data [81].

Output of the network for a forward fault on the i35 &m transmission line con-
necting Battle River and Sheerness substations is shown in Fig. 9.16. The measure-
ments were recorded at the Battle River substation. The fault was a single phase
to ground B-G forward fault. The output is shown for the first three cycles after
the fault detection (sample number 1). This figure shows that the fault direction
identification is very fast and reliable. For this case, it takes two samples after the

fault detection for the output of the recurrent network to fall inside the forward fault

area.

Elman network output

[+] 10 20 30 40 50 60
Sample number

Figure 9.16: Elman network response to the phase B to ground forward fault on the
135 km transmission line
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Figure 9.17: Elman network response to the phase A to phase B to ground forward
fault on the 135 km transmission line, measurements at both ends

The output of the network for a double phase to ground A-B-G forward fault on
the same 135 km transmission line is shown in Fig. 9.17a. The measurements were
recorded at the Battle River substation. It shows that the network identifies the fault
direction very fast and its output remains stable for three cycles. Similar results are
observed for the same fault with the measurements recorded at the other end of the
transmission line as evident from Fig. 9.17b. The network correctly determines the
fault direction just one sample after the fault detection. Therefore, as shown in Fig.
9.17 the A-B-G fault is correctly identified as a forward (internal) fault at both ends
of the transmission line.

In the next case, the Elman recurrent network’s performance for a single phase

to ground C-G fault on the 112 km transmission line between Metiskow and Battle
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River substations is assessed. The measurements were recorded at the Battle River
substation. Network’s output is shown in Fig. 9.18 during three cycles after the
detection of the fault. The directional module classifies the fault direction correctly
just 2 samples after the fault detection. For this fault, the fault detector detects the
fault just one sample after the fault inception. Therefore, in total it takes 3 samples
to detect the fault and discriminate its direction.

Based on calculations from using the DFR currents on a fault location program
it was found that the C-G fault distance from the measurement point was 16 km
(about 14% of the transmission line’s length). It shows that the directional module
is able to correctly identify faults near to the relay location. Although the network
just uses the phase A voltage as its input, it correctly identifies the direction of the

phase C to ground fault.
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Figure 9.18: Elman network response to the phase C to ground forward fault on the
112 km transmission line
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Elman network response to a double phase B-C backward fault behind the 135
km transmission line is shown in Fig. 9.19. The network output is shown after the
detection of fault. It takes 3 sampling periods to identify the fault direction after
detection of the fault. It shows that the network performs correctly and rapidly.

Fig. 9.20 shows the output of the network for a singie phase to ground A-G
forward fault on the 135 km transmission line during three cycles after the detection
of the fault. Recorded fault data from both ends of the transmission line were
presented to the Elman network. The network correctly identifies the forward fault
in both cases. The directional relay could be used in a directional comparison relaying

scheme.
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Figure 9.19: Elman network response to the phase B to phase C backward fault
behind the 135 km transmission line

Using the other remaining recorded data files provided by Alberta Power Ltd.

some more tests were performed and similar results were obtained. OQutput of the
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Figure 9.20: Elman network response to the phase A to ground forward fault on the
135 km transmission line, measurements at both ends

network in all cases classified the fault direction correctly. On average, it takes just
about 3.2 ms to detect the fault and classify its direction.

These results confirm the simulation studies results and show that the pro-
posed neural network-based directional module performed correctly and reliably
when tested with field data. The decision is made very fast, as in the case of simu-
lation studies. It indicates that the proposed neural network could be trusted as a

robust scheme for transmission line fault direction estimation.
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9.7 Starter Module

The performance of the proposed starter module was assessed using the recorded
field fault data. Some of the results are presented in this section.

The first example evaluates the performance of the algorithm for a heavy C-G
fault on the 112 km transmission line between Metiskow and Battle River substations
near the measurement point. The measurements were recorded at the Battle River
substation. The filtered three phase currents and voltages are shown in Figs. 9.21a
and 9.21b, respectively.

The detector and phase starters outputs are also shown in Figs. 9.21c and 9.21d,
respectively. The detector output could be used in conjunction with one of the
proposed ANN-based directional modules to form a directional relay. The selector
outputs could be used to classify the fault type. As shown in Fig. 9.21, the fault
is detected rapidly and the appropriate starter output classifies the fault type ac-
cordingly. The fault is detected momentarily and it takes just two sampling times
to classify the fault type.

The next example tests the algorithm’s performance for the single phase to ground
A-G forward fault illustrated in Fig. 9.2. Fig. 9.22 shows the results of this case
study.

Similar results are observed for the same fault with the measurements recorded
at the other end of the transmission line as evident from Fig. 9.23. In both cases,
the starter detects and classifies the fault rapidly and correctly in two samples after
the inception of the fault.
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Figure 9.23: Phase starters and detector outputs for the A-G fault on the 135 km
transmission line, relay located at the other end
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The starter performance for the double phase to ground A-B-G forward fault
shown in Fig. 9.3 is presented in Fig. 9.24. The measurements were recorded at
the Battle River substation. Recorded fault data from other end of the transmission
line at Sheerness substation were presented to the starter module and the results are
shown in Fig. 9.25.

The fault was more towards the Sheerness substation. As shown in Figs. 9.24 and
9.25, fault is detected and classified very fast from both ends of the transmission line.
For the case with measurements at the Battle River substation, the starter detects
and classifies the fault in five samples after the inception of the fault. However, for
the case with measurements at the Sheerness substation, the fault is detected and

classified in three samples. The starter module outputs remain stable for three cycles

after the fault inception.

9.8 Summary

Performance of the proposed relay modules was evaluated using recorded field data.
Results obtained indicate that the proposed modules give promising results. It was
found through different studies that the proposed starter module is able to detect
and classify different faults correctly and very rapidly. The neural network-based al-
gorithms have been tested to evaluate their performance in terms of generalization,
robustness and speed. Investigations showed that the ANN-based directional mod-
ules are able to classify forward and backward recorded faults very rapidly. Results

presented in this chapter confirm the simulation and experimental studies presented

in previous chapters.
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Figure 9.25: Phase starters and detector outputs for the A-B-G fault on the 135 km
transmission line, relay located at the other end
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It was found that the recurrent network-based directional modules performed
better compared with the feedforward directional module. The recurrent networks
are more robust schemes when tested with the field data which has never been
presented to them before.

The proposed directional relay used alone can be empioyed as a transmission iine
directional module or in a directional comparison protection scheme by employing a

relay at each end of the line.



Chapter 10

Conclusions and Future Work

10.1 Summary and Conclusions

Protective relays are used in power systems to protect equipment and to maintain
stability by isolating the faulted equipment from the power system. The advent of
large generating stations and highly interconnected power systems makes early fault
identification and rapid equipment isolation imperative to maintain system integrity
and stability.

Transmission line protection is a task of fundamental importance in a modern
power system. It is also the most elaborate and challenging function in power system
protection. Faults in the transmission system must be identified and the faulted line
must be isolated from the network with minimal delay.

If faster clearance times are to be achieved, it is generally less expensive, on an
existing system, to provide high speed relaying than to retain conventional relaying
and use faster circuit breakers. One of major advantages of high speed relaying
is increasing the system stability. Another main advantage is lesser arc ionization
due to faster opening of the circuit breakers. This leads to the possibility of faster
reclosure of the circuit breakers.

The concept of digital computer relaying has grown rapidly. Microcomputer-

based relays are recommended for the protection task at the substation level. These
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microcomputer relays can work in conjunction with the mainframe computers used
for the overall power system control. A microprocessor relay offers the advantages
such as reliability, flexibility, performance and economy.

It is desirable to develop fast and reliable transmission line relaying modules to
identify faults on a given transmission line. The proposed modules should be fast
and robust and their performance should not be affected by changes in power system
conditions and parameters.

This dissertation is devoted to the development of different modules of a trans-
mission line protection system. It has made contribution to different stages of de-
veloping such relaying modules namely theoretical development, simulation studies,
experimental tests and performance evaluation using recorded real fault data.

Successful applications of neural networks in other areas of power engineering has
demonstrated that they cc;uld be employed as alternative methods for solving certain
long-standing problems where conventional techniques have experienced difficulties
or have not achieved the desired performance such as speed, accuracy and efficiency.
In this dissertation transmission line fault direction identification modules based on
neural networks are developed. The proposed modules use the principles of neural
networks to determine the direction of a fault on the basis of pattern classification.
Neural network technique is employed and two feedforward directional modules are
designed and trained.

An important class of neural networks has a recurrent structure. The recurrent
connections of the neural network provide the network with memory. Two novel re-
current neural networks with temporal processing abilities are proposed to determine

the direction of faults on transmission lines.
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Simulation studies are performed and the performance of the proposed directional
networks is investigated. Influence of changing system parameters such as fault
location, fault resistance, fault inception time, source impedance and pre-fault power
flow direction is studied. The performance of the proposed networks is also checked
for faults including high amount of resistance and also faults at the relay location.

The directional modules are extensively tested by independent test fault patterns
and promising results are obtained. It is found through extensive studies that the
proposed networks are able to classify forward and backward faults correctly and
very rapidly.

This research work and other published literature in the same area have estab-
lished that different architectures of neural networks present a good potential for
power system protection applications. The neural network-based approaches could
be used as a part of a new generation of very high speed directional protection relays.

Despite all their advantages, ANNs have few acceptability issues associated with
them. The major drawback of a neural network is its black-box characteristic. It
is not easy to understand the knowledge stored in an ANN. Analytical methods
to explain and modify the weights of a trained network are not readily available
yet. Few definite rules exist for choosing optimal network training parameters and
structure. The selection of number of hidden layers and number of neurons in each
layer is not a trivial task.

The application of neural networks in power system protection is a new area. As
protective relays must be highly reliable, the relay engineers are hesitant to embrace
neural networks because their results are difficult to be explained using conventional

analytical methods. In-spite of the above mentioned drawbacks, neural networks
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have been successfully applied in different areas of power systems and the number of
neural networks applications in power engineering is quite impressive. The research
in the areas of neural networks and ANN-based protection techniques is continuing
to overcome the above mentioned roadblocks.

It is desirable to develop a fast and reliable method to detect faults on a transmis-
sion line and to select faulty phases. A new high speed adaptive scheme is proposed
for fault detection and phase selection. The proposed fault detector and phase se-
lector modules are tested to evaluate their performance under different operating
conditions. The performance of the proposed scheme is also checked for extreme
cases like high resistance faults and faults at the relay location.

The proposed starter is able to rapidly and correctly detect and classify different
fault types on the protected transmission line under different power system con-
ditions. This starter in conjunction with a directional module could be used in a
directional comparison transmission line protection scheme.

The ample results obtained from simulation studies show that the proposed re-
laying modules have many promising features. This makes them a strong candidate
to complement the conventional relaying algorithms.

Next stage in the development process is the implementation of the device. Im-
plementation is a critical step towards practical application of a newly proposed
algorithm. By utilizing a DSP board mounted on a personal computer, a real-time
digital environment has been established to implement the proposed relaying mod-
ules. Using a physical power system model various experiments have been conducted.
Experimental studies have produced results consistent with the simulation studies,

proving the capabilities of the proposed modules.
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The operation time of the proposed modules implemented on the DSP board is
well within the available inter-sampling time. This shows that the proposed mod-
ules are within the reach of the present technology and can be used for high speed
protection relaying.

Testing of a newly designed digital relay using real field data is another impor-
tant stage in evaluating the relay performance. Performance of the proposed relay
modules is investigated further using recorded fault data from a high voltage power
system. Results obtained confirm the simulation and experimental studies results.
The proposed modules are able to perform correctly and rapidly when tested with
real fault data.

The proposed directional neural networks were originally trained for a different
transmission line with different length and characteristics. They were not retrained
for the experimental and field data studies, and still are able to estimate the direction
of faults on different transmission lines which have never been presented to them
before. It indicates that the proposed neural networks could be trusted as robust
schemes for transmission line fault direction estimation. It may be stated that neural
network-based approaches could be used as a part of a new generation of high speed

directional comparison relays.

10.2 Recommendations for Future Work

Research on neural networks has advanced rapidly in recent years and ANNs have
found numerous applications in power engineering. Neural networks-based schemes

have been employed in some parts of this dissertation. The results presented demon-
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strate the feasibility of using neural networks for possible applications in power sys-
tem protection. Since the application of neural networks in protection is 2 new
area, some more investigations should be performed to further prove their industrial
implementation.

Based on the work done in this dissertation, the followings are recommended as

further research topics:

o Different neural network structures have been proposed and investigated in this
research work. Other network structures could be considered and studied for

performing different tasks in a protection system.

o The performance of the proposed relaying modules could be verified for a dou-
ble transmission line configuration. Some prelin inary studies and investiga-
tion have been already performed and encouraging results have been obtained.
More investigations should be performed and necessary parts of the proposed
modules should be modified.

o A complement module to identify the fault distance from the measurement
point could be employed or developed. This distance module in conjunction
with the other proposed modules could be employed in a transmission line
distance protection scheme. This module could be based on neural networks

or other available digital relaying techniques.

e Series-compensated transmission lines could be considered and studied. Dif-
ferent transmission line protective relay modules could be designed and inves-

tigated for this system model.
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Appendix A
Electro-Magnetic Transient Programs

Simulation is but one method of analysis which can be used to examine a compli-
cated or nonlinear model or process. The operation of that model can be tested
by subjecting it to disturbances and parameter variations and the system response
can be observed. Electromagnetic transient simulation is a fascinating field of study
allowing exploration into uncharted areas of electric circuit and system analysis.
Concepts, ideas and models of portions of planned or existing power systems can
be evaluated quantitatively. The confidence one can place in such studies develops
with understanding of the tool of analysis being used as well as familiarity with the
operation and performance of the system under study. This section gives a brief

description of two electromagnetic transient programs, EMTP and EMTDC.

A.1 EMTP Transient Program

The EMTP (82] was developed in the public domain at the Bonneville Power Ad-
ministration (BPA), Portland, Oregon. The transient program can be used to solve
the ordinary differential and/or algebraic equations associated with an arbitrary in-
terconnection of elements such as lumped resistance, inductance and capacitance,
multiphase pi-equivalents, multiple distributed parameter transmission lines, non-

linear resistors and inductors, voltage and current sources, switches and dynamic

synchronous machines.
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Trapezoidal rule (second order) implicit integration is used on the describing
equations of the component elements so as to form an associated set of real simul-
taneous algebraic equations that must be solved at each time step. Program output

consists of voltages and currents as function of time for those variables requested by

the user.

A.2 EMTDC Transient Program

The EMTDC transient program [49] was used in this study to generate simulated
fault data for training the neural network. The power of EMTDC lies in its ease of
preparing user or already available functions or models and interfacing them with an
electric circuit or control system. The program allows the user to graphically sketch
the power system circuit to be simulated.

EMTDC is structured so that the electric circuit parameters such as circuit ele-
ments are easily addressed by the user during the course of a time-domain simulation.
Voltages at nodes and currents in branches are easily accessible. Since the interface
to the electric circuit is straightforward, the user can assemble or build models which
detect voltages and currents, calculate power, reactive power and relative phase an-
gles, process such inputs and control switches and sources using standard control
functions or user written statements.

With the flexible modelling capability, complex power system networks can be
modelled and studied. A graphical user interface called Power System Computer
Aided Design (PSCAD) enables the user to select preprogrammed models of power

system apparatus to graphically build the power system networks. PSCAD comes
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complete with a built-in library of voltage and current sources, transmission line
models, switches, transformers, machine models, etc. User defined components such
as control blocks and protection relays can be added to the library. Examples of the
type of problems which have been investigated using EMTDC program include con-
trol systems, subharmonic problems of ac systems, flexible ac transmission systems,

dc transmission systems and power system protection studies.



Appendix B

Transmission Line Parameters for Simulation

Studies

The parameters of the three-phase transmission line used for the simulation studies

are given below:

Nomiral voltage = 240 kV
Measured Z; = 0.362(83°) Q/km
Measured Zg = 1.370(71°) Q/km

The detailed parameters of transmission line are given in the next page.
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Height at Tower Y(m):
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PS-CAD - Transmission Line Analysis Program

Version 10
2 Wed Apr 15 21:14:59 1998
3
e Summary of Main Data
N a GWI 2 G?'Z Line Name: Linel00r
; 3 3 3 Line Length(km): 100.0
Gnd Resist.(ohm-m):  100.0
; Low Freq(Hz): 5
High Freq(Hz): 1e+06
E‘ Ideally-Transposed Conductors
Travel Times are Interpolated
=) : Transform Freq.(Hz): 2000
-15.0 -9.9 -3.0 3.0 9.0 15.0
Horiz. Dist. X(m):
Summary of Conductor Data
Conductor #(1-3) —-> 1 2 3
Conductor Name: Dove Dove Dove
Conductor Type (AC/DC): AC AC AC
V&VXAC:L-L,rms/DC:L-G,pk): 240.0 2490.0 240.0
V Phase(Deg.): 0.0 -120.0 120.0
Line I (kAXAC:rms/DC:pk): 5.0 50 5.0
Line I Phase(Deg.): 20.0 -100.0 140.0
# of Sub-Conductors: 2 2 2
Sub-Coand Radius(cm): 117729 117729 117729
Sub-Cond Spacing(cm): 3048 30.48 3048
Horiz. Dist. X(m): 6.0 0.0 6.0
Height at Tower Y(m): 22,0 22,0 220
Sag at Midspan(m): 70 7.0, 7.0
DC Resistance(ohms/km): 0.10336 0.10336 0.10336
Summary of Ground Wire Data
Ground Wire#(1-2) —> 1 2
Conductor Name: 7/16 Steel 7/16 Steed
Coud Radius(cm): 055245 0.55245
Horiz. Dist. X(m): -3.0 3.0
Height at Tower Y(m): 250 25.0
Sag at Midspan(m): 70 7.0
DC Resistance(ohms/km): 2.3645 2.8645

Figure B.1: Transmission line detailed parameters



Appendix C

Training Algorithms

C.1 Back-Propagation Training Algorithm

Error back-propagation algorithm is a popular algorithm for training multilayer feed-
forward neural networks. This algorithm is based on the error-correction learning
rule. As such, it may be viewed as a generalization of the least-mean-square algo-
rithm [35].

The squared-error cost function most frequently used in the ANN literature is

defined as:

B(n) = 5 X (n) (C.1)

The symbol e;(n) refers to the error signal at the output of neuron j at iteration

n (presentation of the nth training pattern to the network) and is defined by:

ej(n) = dj(n) — yj(n), neuron jis an output node (C.2)

where d;(n) and y;(n) are the desired and actual responses respectively of neuron j
for pattern n.

The back-propagation algorithm is a gradient descent method to minimize the

squared-error cost function. The method of steepest descent for synaptic learning

can be expressed as:
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wi(n + 1) = we(n) + 7(—=Vy, E(n)) (C.3)

where wi(n) and wi(n + 1) are the weights at iterations n and n + 1, respectively,
is the learning-rate parameter and V,, E(n) is the gradient of the error surface with
respect to the w; weight.

Weights wj; (synaptic weight connecting the output of neuron i to the input of
neuron j) of a neural network are adjusted to minimize E(n) for a set of training
patterns presented to the network. The weights are adjusted using a recursive al-
gorithm starting at the output layer of the network and working back to the input

layer, as per the following equation:

wji(n + 1) = wji(n) + Aws(n) (C.4)

where Awj;, the correction applied to weight wy is:

Awjs(n) = 16;(n)yi(n) (C.5)

where the local gradient §;(n) is itself defined by:

5i(n) = yi(n)

mez‘(n), neuron j is an output node (C.6)

-2

> 8x(n)wk;(n), neuron j is a hidden node (C.7)
k

In the above equations, v;(n) refers to the net internal activity level of neuron j
at iteration n, and 6x(n) is for the neurons in the next hidden or output layer which

are connected to neuron j.
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A momentum term is usually included to speed up the training algorithm and to

avoid local minima. In such a case the weight update is:

Awji(n) = aBwj(n — 1) + 16,(r)yi(n) (C.8)

where a is the momentum factor. The incorporation of momentum factor could
result in better convergence of the algorithm by preventing the learning process

from terminating in a shallow local minimum of the error surface.

C.2 Marquardt-Levenberg Algorithm

While back-propagation is a steepest descent algorithm, the ML algorithm is an
approximation to the Newton’s method [53]. Suppose that a function V(z) is to

be minimized with respect to the parameter vector z. Then, the Newton’s method

would be:

A(z) = —[V?V(2)]"'VV(z) (C.9)

where V2V(z) is the Hessian matrix and VV(z) is the gradient. If it is assumed

that V(z) is a sum of squares function in the form of:

V(z) = Ze?(z) (C.10)

then it can be shown that

VV(z) = J¥(z)e(z) (C.11)
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V3V (z) = J¥(z)J(z) + S(z) (C.12)

where J(z) is the Jacobian matrix and

S(z) = E ei(z)V3ei(z) (C.13)

For the Gauss-Newton method it is assumed that S(z) = 0 and the update

becomes:

Az = [JT(z)J(z)] 2 (z)e(z) (C.14)

The Marquardt-Levenberg modification to the Gauss-Newton method is:

Az = [JT(z)J(z) + uI]72 T (z)e(z) (C.15)

where p is a scalar. This parameter is multiplied by some factor 8 whenever a step
results in an increased V(z). For a step which results in a reduction of V(z), u is
divided by 5. When p is large, the algorithm becomes steepest descent, while for
small 4 the algorithm becomes Gauss-Newton.



Appendix D

Physical Model Power System

The parameters of the three-phase 500 £V transmission line and that of the equiva-

lent w-section model [71] used for the experimental studies are:

500 kV line
R=1.8%10"%2Q/km
L=9.4%10"* H/km
C=1.13*x10"% F/km
T-section

R=3.18%10"2 Q
L=165+10"3 H
C=803*10"°F

The direct axis synchronous reactance of the micro-alternato is:

Xa=349Q
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Appendix E

Analog Bandpass Filter

The analog filter parameters are:

R, =106 kQ R, =38 k0 R =22 kQ
Re=75kQ Rs=75kQ C=0.1puF

Op-Amp. : Dual 1458

R,
%
R, C
—AM, —¢ +
PO
\% C = Rz§
1mn JH\A
Vout
Ry R;
O— l o]

Figure E.1: Analog filter circuit
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