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Abstract 

A mathematical model is developed to describe a particular feedback queueing 

situation with priority and the solution is obtained using time dependent and Markov 

chain techniques. The characteristics of such a model are presented in this thesis. 

Moreover the same queueing situation is simulated using the language S-PLUS 

and checked against the theoretical values and the results are presented. 
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Chapter 1 

Introduction 

Queueing situations arise in all aspects of work and life. In normal context, 

they mean to most of us delays which, though some-what unpleasant, can at least 

be tolerated. Basically, a queueing or waiting-line phenomenon is described by the 

following model: Units emanating from a source arrive at a service facility, wait if 

necessary, and depart after receiving service. So understanding queueing theory and 

its concepts is thus basic to all personnel concerned with service situations. 

The basic elements of a queueing problem are 

1) input process - the manner in which customers arrive. 

2) queue discipline - the order in which customers are served. 

3) service mechanism - the manner in which the queue is being resolved. 

These three can vary as follows: 

Input Process  

The number of customers emanate from finite or infinite sources. Also, the cus-

tomers may arrive at the service facility in batches of fixed size or of variable size or 

one by one. In the case when more than one arrival is allowed to enter the system 

simultaneously, the input is said to occur in batches. 

If the customer decides not to enter the queue because of its huge length, he is 

said to have balked. On the other hand, a customer may enter the queue, but after 

sometime loses patience and decides to leave. In this case he is said to have reneged. 

In the case when there are two or more parallel queues, customers may move from 
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one queue to another for their personal economic gain, that is jockey for position. 

The Queue Discipline 

It is a rule according to which customers are selected for service when a queue has 

been formed. The most common discipline is the "first come, first served" (FCFS) 

under which the customers are serviced in the strict order of their arrivals. Other 

queue disciplines include: "Last in First out" (LIFO) rule according to which the last 

arrival in the system is serviced first, "Selection for service in Random Order" (SIRO) 

rule according to which the arrivals are serviced randomly irrespective of their arrival 

times in the system. Customers may also be given priorities, so that a customer of 

priority higher than another is always served before the other. Priority service may 

be pre-emptive, in which case a service is interrupted if a customer of higher priorities 

arrives. Non-preemptive priority means a service is always completed before taking 

the next highest priority customer. 

The Service Mechanism 

This means the arrangement of server's facility to serve the customers. If there 

are infinite number of servers then all the customers are served instantaneously on 

arrival and there will be no queue. 

If the number of servers are finite, then the customers are served according to 

a specific order. Further, the customers may be served in batches of fixed size or 

of variable size rather than individually by the same server, this service system is 

termed as bulk service system. 
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1.1 Thesis Objective 

The objective of this thesis is to develope a mathematical model to describe 

a particular queueing situation, and to find a solution using time-dependent and 

Markov chain techniques. Further the same queueing situation is simulated and 

checked against the theoretical results. 

1.2 Thesis Outline 

1) Chapter 2, describes a particular queueing situation and a mathematical model 

that has been developed using time dependent techniques. 

2) Chapter 3, describes a mathematical model and associated solutions that are 

obtained using imbedded Markov chain techniques. 

3) Chapter 4, deals with the simulated results that are obtained using time de-

pendent techniques as described in Chapter 2 using the language S_PLUS. 

4) Chapter 5, deals with the simulated results that are obtained using imbedded 

Markov chain techniques as described in chapter three using the language S-PLUS. 

5) Chapter 6, describes the variance reduction techniques that are applied to the 

simulation and the results are presented. 

6) In the final chapter simulation results are compared with the theory. 



Chapter 2 

Single Channel With Priority 

2.1 Introduction 

In the mechanism of a queueing process, customers arrive at service counter and 

are attended by one or more of the servers. As soon as a customer is served, they 

depart from the system. Thus a queueing system can be described as composed of 

customers arriving for service, waiting for service if not immediate, and if having 

waited for service, leaving the system after being served. 

Sometimes the queue discipline may be such that some types of customer receive 

priority. For example, the cost per unit time of keeping certain customers queueing 

may be particularly high and it may then be reasonable to give them priority. 

Any priority discipline must therefore, specify the rules for making the following 

two decisions: 

(1) Which unit to select for service once the server has completed a service. 

(2) Whether to continue or discontinue the service of the unit being serviced. 

The decision of selecting the next unit for service may depend only upon the 

knowledge of the priority class to which a unit belongs. 

The priority system in which a customer, once at the service-point remains there 

until his service is complete is called the non-preemptive priority. In other words, 

if a customer of higher priority arrives when a customer of lower priority is being 

served,the server never interrupts the current service. The service principle is as 
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follows:If there are customers in the system, upon the service completion the server 

chooses the customer who has arrived first among the customers of highest priority 

present in the system. 

The serving principle for the preemptive priority is as follows:If there are 

customers in the system,the server is busy and is serving the customer who arrived 

first among the customers of highest priority in the system. 

2.2 Statement Of The Problem 

Assumptions: 

1. Poisson arrival 

2. Exponential service 

3. Single channel 

4. FCFS queue discipline 

5. Customers arrive in Poisson fashion at a single channel facility. As they come 

in they put on a black hat and join the queue. At the service counter they get served. 

The service time is defined by an exponential distribution. Upon completion of the 

service they put on a white hat and rejoin the queue. After the next service, the 

customer leaves the system. 

Poisson Arrivals -  BWWBWB -f Single Server" Hat B? 
YES 

change hat to W 

leave the system 
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2.3 Symbols And Notations 

m = number of customers wearing black hats in the system. 

n = number of customers wearing white hats in the system. 

= arrival rate of customers. 

= service rate of customers. 

= p = traffic intensity. 

= the state in which there are x customers wearing black hats and y customers 

wearing white hats in the queueing system. 

= the state in which there are zero customers wearing black hats and zero 

customers wearing white hats in the queueing system. 

Pmn (t) = probability that there are exactly m customers wearing black hats and 

n customers wearing white hats in the system at time t. 

QMknk = probability that there are exactly m customers wearing black hats and 

n customers wearing white hats in the queueing system at the completion of the kth 

service. 

PW = probability that there is exactly one customer wearing a white and zero 

customers wearing black hats in the system. 

probability that there are exactly two customers wearing white hats and 

zero customers wearing black hats in the system, where a customer wearing a white 

hat is at the service counter and a customer wearing a white hat is in the queue 

waiting for service. 

Pwww = probability that there are exactly three customers wearing white hats 

and zero customers wearing black hats in the system, where a customer wearing a 
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white hat is at the service counter and the other two customers wearing white hats 

are waiting in the queue for their service. 

Pbb = probability that there are exactly two customers wearing black hats in 

the system, where a customer wearing a black hat is at the service counter and a 

customer wearing a black hat is in the queue waiting for service. 

Pwb = probability that there are exactly two customers in the system, one wearing 

a black hat and the other wearing a white hat, where the customer wearing a black 

hat is at the service counter and the customer wearing a white hat is waiting for 

service. 

= probability that there are exactly three customers in the system, one 

wearing a black hat and two wearing a white hat, where a customer wearing a black 

hat is at the service counter, the customer wearing a white hat is waiting for the 

next service, and other customer wearing white hat is waiting in the queue for his 

service. 

Pbb = probability that there are exactly three customers in the system, one 

wearing a white hat and two wearing a black hat, where a customer wearing a. black 

hat is at the service counter, the customer wearing a black hat is waiting for the next 

service and the customer wearing a white hat is waiting behind for his service. 

Po = probability that exactly zero customers are in the system = P(E00 ). 

E(m) = average number of customers wearing black hats waiting for service in 

the system. 

E(n) = average number of customers wearing white hats waiting for service in 

the system. 

V(m) = variance of the number of customers wearing black hats in the system. 
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V(n) = variance of the number of customers wearing white hats in the system. 

TTT = average number of customers wearing black hats in the system using simu-

lation. 

average number of customers wearing white hats in the system using simu-

lation. 

= sample variance in the number of customers wearing black hats in the 

system using simulation. 

Smi = sample variance in the number of customers wearing black hats in the 

system using variance reduction technique.. 

S sample variance in the nuniber of customers wearing white hats in the 

system using simulation. 

= sample variance in the number of customers wearing white hats in the 

system using variance reduction technique. 

% = percentage of variance reduction. 

2.4 Model One 

Customers are being served on the 'first come first served basis' (i.e.) Served cus-

tomers with a black hat change to a white hat and rejoin the end of the queue. 

To be in state E00 at time t+Lt, the system could have been in state E00 at time 

t and no arrivals during At. (no service since the system is empty), or the system 

could have been in E01 at time t and have no arrivals during At but one service 

completion during At. So we can easily see that, 

.Poo (t + At) = .Poo(t)P[ no arrivals during At] + .P(t)P{ one service during Lt} 
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This equation can be rewritten as: 

P00 (t + t) = P00 (t) [1 - )t + o(t)] + .P(t) [,ut + o(t)] 

Or in the limit, 

Poo = —)Poo + jP where P00 = (dPoo(t)dt  

Similarly, 

A 
IbWW = —)P - [LPww + pPwww + itP& 

= - -  YPWWW  + YPWWWW + itP& 

Pb = —,\Pb - /Pb + l2Pbb 

Pwwb = Pwwb - [4Pb + /2Pbb 

To find Pw we should know P; to find Pww we need Pwww and Pwb. So it is not 

possible by known techniques to solve these difference equations and find a solution 

for this model. So we will take cases that are solvable using known techniques such 

as priority models. 

2.5 Model Two 

Customers wearing white hats have higher 'non-preemptive) priority over customers 

wearing black hats. 

Let 

mt = number of black hats worn by customers at time t. 

nt = number of white hats worn by customers at time t. 

P(mt = m, nj= n) = Pmn (t). 

Let Pmn (t) be the probability that there are m customers wearing black hats and 
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n customers wearing white hats in the system at time t. Then to write the difference 

equation for Poo we first consider how the system can get to state E00 at time t+t. 

To be in state E00 at time t+t, the system could have been in E00 at time t and 

no arrivals during At. (no service since the system is empty), or the system can he 

in E01 at time t and have no arrivals but one service completion during At. Since 

arrival and service are independent of each other, we can easily see that, 

E00= Poo+ [LPO1 

1m O_ —AP1110 - pPmo+)Pm....i.o+,uPmi 

E01 —\P01 - /APOi+f1PiO 

m1 =  — PM1 - /2Pmi +.\Pm_i,i +/iPm+i.o 

To solve the differential-difference equation, we make use of the generating func-

tion defined as, 
00 1 

Gt(zi,z2) = 
nO n=0 

On multiplying the above differential difference equations by the corresponding 

powers of z,, i = 1,2 and taking the summation over m=0 to oo and n = 0 to 1 and 

using the generating function defined above, we get 

/dG\ ziG+(1 G+P00—( 
\dt) = — AO—ÜG+ \z21 \Z21 

Pmoz IZ2 ) p00 (LZ2 ) 

Z1 m _o 

Note that after a sufficiently long period of time the state probabilities are in-

dependent of the initial conditions. Now the system is said to be in statistical 

equilibrium. And an important characteristic of this is that it is stationary; that is, 

the state probabilities do not vary with time. 

So when .A <LL/2 and t— oo, then Pmn (t) Pmn and d P,,(t) - 0. 
dt 

When (-) = 0 then, 



11 

L.,m=O 2 mOZ1 G = (Pooz2(zi - z2) + (z - z1) V' D 

pz1z2(1—zi)+zi(z2-1) ) 

When the denominator is zero then z2 = (1+p  _z,)) or z1 = 0 where it is obvious 

that z2 < 1, for all 0 < zj < 1. Now by definition G(zi, z2) is analytic and 0 ≤ 

G(zi, z2) < 1 for 0 < zi ≤ 1. Hence by Rouche's theorem the numerator must vanish 

when denominator vanishes. Hence, 

00 1—zi[1+p(1—zi)] 
PMOZIM = Poo 

m=O 1 - zi [1 + p(l - 

Therefore, 

G(zi,z2) - (Poo {z2(zl -  z2)(1 -  z1[]. + p(1 - zi)]2) + (4 -  z1)(1 -  zi[1 + p(1 -  zi)])}) 

- zi(z2p(1—zi)+z2-1) (1—zi[1+p(1--zi)]2) 

2.6 Characteristics Of Model Two 

1) Average number of customers wearing black hats in the system. 

First by substituting z1= z and z2 = 1 in the generating function defined above 

we get, 

G(z, 1) = E(zm) = ((1 - 2p) (1+p(1 - 
1 - 2pz - p2z(1 - z)) 

Now, 

E(m) (p(1+p) = 1_2p) 

2) The fluctuation (variance) in the customers wearing black hats in the system. 

(p+2p3-3p4  
V(m) = 1_22 ) 
3) Average number of customers wearing white hats in the system. 
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By substituting z1 = 1 and z2 = z we get, 

G(1, z) = E(zm) = 1—p+pz 

Now, 

E(n) = p 

4) The fluctuation in the customers wearing white hats in the system. 

V(n) = p - p2 

5) Covariance 

Cov(m,n) = E(mn) - E(m)E(n) = p2 

6) Correlation 

(vv(n?.)I/r(n) 

Cov(m,n)  \ (  p2 r(m,n) (1-2p) 
= ) \/(p - p2)(p + 2p3 - 3p4) 

where the range is 0 r(m,n) ≤ .1368, for 0 < p < .5 

2.7 Model Three 

Customers wearing black hats have higher (non-preemptive) priority than customers 

wearing white hats. 

The differential difference equations for this model are as follows: 

-T oo = —)Poo + 1d 01 

'DOn = —APO - /2PO + I1 1,fl_l + 1O,n+1 ,n ≥ 1 

'mO = - ILPrnO + '\Pm_i,o,m ≥ 1 

1mn = Pmn iPmn + [LPrn+i,n_i + APm_1,n,fl ≥ 1,m > 1 

To solve the above differential-difference equations we make use of the generating 

function define as 
00 00 

Gj(zi,z2) = z4Pmn(t) 
m=O n0 
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On multiplying the above differential difference equations by the corresponding 

powers of zi i = 1,2 and taking the summation over n = 0 to oo and m = 0 to oo 

and also using the generating function defined above we get, 

() = )(zi-1)G+IL[() —1]G-l-it.Poo [1— (i-)] [(-) - ()] 
Note that after a sufficiently long period of time the state probabilities are in-

dependent of the initial conditions. Now the system is said to be in statistical 

equilibrium. And an important characteristic of this is that it is stationary; that is, 

the state probabilities do not vary with time. 

So when .X <L/2 and t— , then Pmn (t) " Pmn and dt F,,,,,(t) ; 0. 

When () = 0 then, dt 

P00z1 [1 -  z2] + zP0 [z - z1] 
G(zi,z2 =) 

z2[pz—zl(1+p)+z2} 

When the denominator equals to zero then, z1 = 2,, )0rz2=0 

where it is obvious that z1 < 1 for all 0 < z2 < 1. Now by definition G(zj, z2) is 

analytic and 0 ≤ G(zi, z2) 1 for 0 ≤ zi ≤ 1. Hence by Rouche's theorem the 

numerator must vanish when the denominator vanishes. Hence, 

00 -n - Poo (  [1 + p1 - (1 + p)2 - 4pz2  - (z2 - 1) 
\2pz2 - (1 + p) + (1 + p)2 - 4pz2 

Therefore, 

I  Poo [h(z2) + 2pz1] [z2 - 4]  
G(zi,z2) = - (1 + p)zi + z2] [2pz + h(z2)]) 

where h(z2) =(1 + p)2 - 4p-Z2 - (1 + p) 
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2.8 Characteristics Of Model Three 

.1) Average number of customers wearing black hats in the system. 

By substituting z1 = z, z2 = 1 we get, 

G(z,1) E(zm) = (':pz 
Therefore, 

E(m)= () 
E) The fluctuation in the customers wearing black hats in the system. 

V(m) = ((1 p)2) 

3) Average number of customers wearing white hats in the system. 

By substituting z1 = 1, z2 = z,we get, 

G(1,z)=E(zm) (1_2P z (l_p_VI(1+p)2_4pz) 
2pz2_1_p+/(1+p)2_4pz 

Now, 

E(n) = 

4) The fluctuation in the customers wearing white hats in the system. 
(p (p4-8p3+2p2+1)  

V(M) (1—p) (1_:3p+2p2)2) 

5) Covariance 

p2  
Cov(m,n) = E(mn) - E(m)E(n) =  p)3) 

6,) Correlation 

(VV(m)V(n 
Cov(m, n)    p(l - 2p)  

r(m,n) = ) = \/1+ p - 2p2 - 8p3 + 9p4 - p5) 

where the range is 0 ≤ r(m,n) ≤ .1216 for 0 < p < .5. 

(  p + p 2  
\ 1 - 3p + 2p2 
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2.9 Number In The System 

In our system customers wearing black hats get served twice while customers 

wearing white hats get the service once. 

Let K = number of services in the system = 2(number of customers wearing black 

hats) + (number of customers wearing white hats) = 2m + n. 

We can also think of K as the number of customers in a queue who arrive in 

batches of two where the customers within a batch are served one at a time, and, 

the service times of the customers are independent identically distributed random 

variables. This random variable K does not depend on any queue discipline. 

For batch arrivals of two the differential difference equations are as follows: 

1-so = —\P0 + 1aP1 

P1= —\Pl—pPl+PP2 

P2—_—AP2—pP2+AP0+,aPs 

Similarly 

- /4P + + iP 4 

We define the generating function G(z) as 

00 G(z) = E z'P, 
n=O 

On multiplying the above defined differential difference equations by the corre-

sponding powers of z and taking summation over ii = 0 to cc and using the generating 

function defined above, we get G(z) =  1 2P  
1 - pz - pz2 

In our system we have K = 2m + n. 

Taking expectation we get, E(z') = E(z2m) = E( [z2} r4 z") 
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Since the number in the system is not affected by the priority, substituting z1 = 

and z2 = z in G(zi, z2) both white hat priority and black hat priority yields 

G(z2,z) 1 - =  
1 - pz - pz2 

as they should. 

Now K = 2m+n 

Therefore, 

E(K) = 2E(m) + E(ñ) = (I 3P) 
V(K) = 4V(m) + V(n) + 4COV(m, n) = 

(p(5 - p)  
(1_2p) 2 

So it is clear that both E(K) and V(K) are independent of the queue discipline. 



Chapter 3 

Imbedded Markov Chain 

3.1 Introduction 

Let us consider the system at the moment following the completion of a service. 

(say, the kth service completion by the server). 

Let us define, 

m. = number of customers wearing a black hat in the queue at the completion 

of the kth service. 

nk = number of customers wearing a white hat in the queue at the completion 

of the kth service. 

1 = number of arrivals in the system during the (k+1)th service. 

Now we have, 

mk+1 Mk + 1 -  61 

k+1 flk + 62 

where s, and e2 depend on the queue discipline. 

Here rn and nk+1 depends upon the current value mk and nk respectively 

and not upon any previous values. Moreover it behaves like a Markov chain at the 

completion of each service, so it is called the imbedded Markov chain. 

17 
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3.2 Model One 

Customers are being served on the 'first come and first served' basis. 'i.e)Served 

customers with a black hat change to a white hat and rejoin the end of the queue. 

We define the generating function 

00 00 

Hk(zl,z2) = E ZZQmknk 
mO ThkO 

When we assume no priority in our model we get the following table which gives 

the values for E and 62. 

The table  

mk flk 61 62 

0 001 

+ 011 

0 + 0 -1 

+ + 

+ + 

Since the model does not use all the information available in the queue, we can 

not fill the table. Therefore we can not solve this by this method. 

3.3 Model Two 

Customers wearing white hats have higher (non-preemptive) priority over customers 

wearing black hats. 

The table  
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Mk ilk 61 62 

0 001 

+ 011 

0 + 0 -1 

+ + 0 -1 

Define the generating function as 

00 

Hk(zj,z2) = 
mjO njO 

Now, 

z1 m1 - z1 mk+l—e, nk+e2 
jj1Z1 Z2 j - £JLZ1 Z2 

Since 1 is independent of Mk and €1 we have, 
00 1 

k 1) 
2 mknI 

2 E[z'z' 1] = z 1z 2, 

?flk 0 n=O 

00  
where E[z] = [00 +PI— dt - ( ) 

Jo 1! ) - 1pzi 
00 

Therefore E [zz1] = 1 + , - pzi j z2Qoo + E zl' Z2QmkO + Qoi + ZQmk1 
mj=1 

Now, hmk E[_m1 fl.r+li —OO L1 Z2 j = limk.00E{zikz2 Ic] = H(zi, z2), 

when k —4 00. 

Hence, 
oo 

H(1 2) = (Q004(zi - 1) + -' m0 1 m Qmo(Z - z1) 

- ' zi(z2 - 1) + pz1z2(1 - z1) 

When the denominator is zero then z2 = (  1  , where it obvious that 
1 + p(l - zi)) 

and Qmkmk —4 Q?nfl 

Z2 < 1 for all 0 < z1 < 1. Now by definition H(zi, z2) is analytic and 0 ≤ H(zi, z2) ≤ 

1 for 0 ≤ zi ≤ 1. Hence by Rouche's theorem the numerator must vanish when the 

denominator vanishes.Hence, 
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00 / Qoo(1—zi)  ) 
= 1_zi(1+p(1_zi))2 

m=O 

Therefore, 

H(zi,z2) - (Qoo{(4 —z— 4(1 - 2pz1 - p2z1(1 - z1))) + zz(1 - 2p2i - p2z(1 -  

(zl(Z2 —1) + pz1z2 (1 - 21)) (1— 2p21 - p2zi(l - 

3.4 Characteristics Of Model Two 

1) Average number of customers wearing black hats in the system. 

By substituting z1 = z, z2 = 1 in H(zi, z2) we get, 

H(z,1) = E(zm) = (2pz (1_2P)  (2pz+p2z(l—z))(1 - 2pz - p2z (1 - z))) 

Therefore, 

E(m) = (2(1 — 2)) 

2) The fluctuation in the customers wearing black hats in the system. 

(p (4p2-5p+6)  
4(l-2p) 

3,) Average number of customers wearing white hats in the system. 

By substituting 21 = 1, 22 = 

/z+1  
H(1,z) = E(z') = 2 ) 

z in H(z1,z2) we get, 

Therefore, 

E(n) = () 
) The fluctuation in the customers wearing white hats in the system. 

V(n) = (2) 
5, Covariance 

Cov(m, n) = E(mn) - E(m)E(n) = (—P 
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6) Correlation 

(VV(-n-z)V(n) 

Cov(rn,n) —p(1-2)v'  
r(rn,n) = ) 26p - 5p2 ± 4p3j 

where the range is 0 ≤ r(m,n) ≤ —.0415 for 0 < p < .5. 

3.5 Model Three 

Customers wearing black hats have higher (non-preemptive) priority than customers 

wearing white hats. 

The table  

ink flk 6 1 C2 

0 001 

+ 01 i 

0 + 0 -1 

+ +11 

We define the generating function H(zi, Z2) as 

00 00 

Mk 
Hk(zl,z2) = 2 Qmknk 

Mk. =Onk=O - 

Now, 

2 [z'' z'] = E [z+11 z +2] 

Since 1 is independent of Mk and s, we have, 
00 00 

E[z'az' 1] = E[z].[ > nk+e2,-) 1 Z2 '',jmnk 

mkO n.=O 

00 00 00 00 ( 1  [z2Qoo + z2 Z 'QmkO + z 'Qoflk + 'iMA; 2 Qmknk 

i±p-pz1j L mk1 mk1flk1 

Now limk00E[zl'z2''] = limk 00E[zz] = H(-,,, z2), and when k — f 

Qmknk Qmn' 
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Therefore, 

= (Qoozi(4 —1) +>IozQo,(zi -4)  
H(zi,z2) 

(l+p—pzi)z1z2-4 ) 
When the denominator is zero we get, 

(1+ p _J(1± p)2_4pz2\ 
  where it obvious that z1 < 1 for all 0 < z2 < 

j 

1.Now by definition H(zi, z2) is analytic and 0 < H(zi, z2) ≤ 1 for 0 < zi ≤ 1. Hence 

by Rouche's theorem the numerator must vanish when the denominator vanishes. 

Hence, 

00 

V' ii ç2 
L. z2fl = OOV2 - 

Therefore, 

H(zi,z2) = 

( 1p_/(1+p)2_4pz2 ) 
24p-1 _p+(1+p)2 _4pz2 

(Qoo (2pz1 _ 1 _p+J(1 +p)2 -4pz2(z2 - z))  

(p   ) z—zj(1+p)+z2) (2p4p+/(1+p)2_4pz2) 

3.6 Characteristics Of Model Three 

.1) Average number of customers wearing black hats in the system. 

By substituting z1 = z, z2 = 1 in H(zi, z2)we get, 

H(z, 1) = E(z-) = pz) () 
Now, 

The fluctuation in the number of customers wearing black hats in the system. 

V(m) = (1 p)2) 

3) Average number of customers wearing white hats in the system. 

By substituting z1 = 1, z2 = z in H(zi, z2) we get, 
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((1 - 2p)z(z + 1){1 - p - (1+ p)2 - 4pz}\ 

H(1, z) = E(z) =  2{2pz2 —1—p+ J(1+p)2 4pz} ) 
Now, 

E(n) = (1 — p + 4 p 2  \ 
2_6p+4p2) 

) The fluctuation in the number of customers wearing white hats in the system. 
V(n) - (1_3P+19P2_17 3_16P4 

- 4(1—p)(2p2-3p+l)2 ) 
5,) Covariance 

\ 
Cov(m,n) = E(mn) - E(m)E(n) = ((I -p2 p)3) 

6) Correlation 

(VV(7n)V(77.) 
Cov(m,n)  \  p - 4p 2p2(1-2p)  

n) = ) - 2 + 22p3 - 36p4 + p.5 + 16P) 

where the range is 0 ≤ r(m,n) ≤ .1422 for 0 <p < ..5. 



Chapter 4 

Simulation For The Time Dependent Model 

4.1 Introduction 

Simulation is a word with which many people are familiar, at least in a general 

way. Experimentation of the real system, simulation and mathematical modeling 

are the set of three alternatives that can be used in problem solving. When we 

experiment with the real system realism can be achieved, however the real system 

must exist before experiments can be performed on it, whereas the objective might 

be to design a system that does not yet exist. When we consider mathematical 

modeling, it involves a high degree of abstraction. The disadvantage of mathematical 

modeling is that it can require a relatively high level of mathematical sophistication 

on the part of the problem solver. Now consider simulation, which we regard as "an 

experiment in which we attempt to understand how something will behave in reality 

by imitating its behavior in an artificial environment that approximates reality as 

closely as possible". Between the two extremes of real-system experimentation and 

mathematical modeling, simulation has some of advantages and disadvantages of the 

two extremes. Some of the advantages of simulation are time compression, non-

existent systems and training. The main disadvantage is the cost for providing a 

simulation capability. 

To simulate the mathematical model in chapter two, we use the language S-PLUS. 

S-PLUS is useful for data analysis and graphics. It encourages to look at the data, 

24 
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and program interactively, with quick feedback to learn and understand. It is useful 

in financial analysis, statistical research and also for analytical computing and data 

analysis. 

Simulating the equivalent of eight hours of real-system operation on a computer 

with different values of p, and doing 500 simulation runs, the results are given below. 

The equivalent of eight hours of real-system operation can be simulated in five 

minutes on a computer. 

4.2 Model One 

Customers are being served on the 'first come first served basis'. 

Even though it is not possible by standard methods to develop a mathematical 

model for this case it is quite easy to simulate. The program for this case is given in 

appendix A. 

4.3 Results 

(a) The mean, variance and covariances for the number of white and black hats in 

the system. 

P TTT Sm TT S, COV(mn) 

.1 .1132 .1284 .1333 .1523 .0093 

.2 .3521 .4273 .4458 .3858 .0457 

.3 .8971 .9821 .8746 1.1721 .0922 

.4 2.589 3.3656 1.9211 5.8302 .1849 
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(b) 90 % confidence interval for the mean using simulation. 

P .1 .2 .3 .4 

E(rn) [.0868, .1396] [.3040,.4002] [.8242, .9700] [2.4540,2.7240] 

E(n) [.1046) *1620] [.4001,.4915] [.7950,.9542] [1.7447,2.0987] 

4.4 Model Two 

Customers wearing white hats having higher priority over customers wearing black 

hats. 

Simulation program for this is given in appendix B. 

4.5 Results 

(a) The meant variance and the covariances for the number of white and black hats 

in the system using simulation. 

P M Sm S,- COV(mn) 

.1 .1237 .1348 .1034 .0983 .0096 

.2 .3986 .4679 .2151 .1458 .0399 

.3 .9082 2.0021 .3021 .1986 .0743 

.4 2.6678 8.7516 .4126 .2253 .1489 

(b) Results from the theory. 



27 

p E(m) V(m) E(n) V(n) COV(mn) 

.1 .1375 .1589 .1 .09 .01 

.2 .4 .5867 .2 .16 .04 

.3 .975 2.0606 .3 .21 .09 

.4 2.8 11.28 .4 .24 .16 

(c) 90% confidence intervals for the mean. 

P .1 .2 .3 .4 

E(m) [.0967,.1507] [.3483,.4489] [.8041,1.0123] [2.4502,2.8854] 

E(r) [.0803,. 1265] [.1870, .2432] [.2693,.3349] [.3377,.4475] 

4.6 Model Three 

Customers wearing black hats have higher priority than customers wearing white 

hats. 

Simulation program for this model is given in appendix C. 

4.7 Results 

(a) The mean, variance and the covariances for the number of white and black hats 

in the system using simulation. 



28 

P S. TT S COV(mn) 

.1 .1048 .1046 .1436 .1998 .0092 

.2 .265 .39 .5243 1.3203 .0768 

.3 .412 .5879 1.3283 5.2420 .2181 

.4 .6862 .9987 5.0226 34.5108 .5524 

(b) Results from the theory. 

p E(m) V(m) E(n) V(n) COV(mn) 

.1 .1111 .1235 .1528 .2169 .0137 

.2 .25 .3125 .5 1.1042 .0781 

.3 .4286 .6122 1.3929 5.312 .2624 

.4 .6667 1.1111 4.6669 :38.5926 .7407 

(c) 90% confidence interval for the mean. 

P .1 .2 .3 .4 

E(m) [.081,.1286] [.2191,.3109] [.3556,.4684] [.6125,.7595] 

E(n) [.1107,.1765] [.4398,.6088] [1.1599,1.4967] [4.5904,5.4548] 

In each case the confidence interval spans the theoretical value. 



Chapter 5 

Simulation For The Markov Chain Model 

5.1 Introduction 

We simulate the model given in chapter three using S-PLUS. Simulating this 1000 

times for different values of p the results are given below. 

We have, 

= Mk- + 1 -  61 

k+1 = k + 62 

5.2 Model One 

Customers wearing white hats have higher priority over customers wearing black 

hats. 

The simulation program for this case is given in appendix D. 

5.3 Results 

(a) Mean and variance and covariances for the number of white and black hats in 

the system for different values of p using simulation. 
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P Sm i Sn COV(mn) 

.1 .185 .1930 .5 .2503 -.0214 

.2 .461 .6182 .5 .2503 -.0502 

.3 1.058 2.2388 .5 .2503 -.0685 

.4 2.856 9.2617 .5 .2503 -.7982 

(b) Results from the theory. 

p E(rn) V(m) E(n) V(n) COV(rnn) 

.1 .1875 .2164 .5 .5 -.025 

.2 .5 .7167 .5 .5 -.05 

.3 1.125 2.2781 .5 .5 -.075 

.4 3 11.6 .5 .5 -.1 

(c) 90 % confidence intervals for th mean. 

P .1 .2 .3 .4 

E(m) [.1621,.2079] [.42,.502] [.9802,1.1358] [2.6977,3.0143] 

E(n) [.474,.526] [.474,.526] [.474,.526] [.474,.526] 

5.4 Model Two 

Customers wearing black hats have higher priority than customers wearing white 

hats. 

The program for this case is given in appendix E. 
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5.5 Results 

(a) Mean, variance and covariances for the number of white and black hats in the 

system for different values of p using simulation. 

P TT S. Sn COV(mn) 

.1 .102 .1037 .622 .3935 .0086 

.2 .279 .3912 1.054 1.5040 .0682 

.3 .409 .5843 1.85 4.4059 .2186 

.4 .683 .9955 5.4114 32.996 .5041 

(b) Results from the theory. 

p E(m) V(rn) E(n) V(m) COV(rnn) 

.1 .111 .1235 .6528 .4669 .0137 

.2 .25 .3125 1 1.3542 .0781 

.3 .4286 .6122 1.8929 5.5640 .2624 

.4 .6667 1.111 5.1667 38.7977 .7407 

(c) 90 % confidence intervals for the mean. 

P .1 .2 .3 .4 

E(m) [.0852,.1188] [.2465,.3115] [..3692,.4488] [.6311,.7349] 

E(n) [.5894,.6546] [.9902,1.1178] [1.7408,1.9592] [5.1126,5.7102] 

In each case the confidence interval spans the theoretical value. 



Chapter 6 

VARIANCE REDUCTION TECHNIQUE 

6.1 Introduction 

Suppose we have generated U1 and U2, identically distributed random variables, 

then 

Var (u1 +u2 ) - - (Var(Ui)+Vwr(U2)+2Cov(Ui ,U2)  
\. 2 4 

Now the variance would be reduced if U1 and U2 are negatively correlated. 

Suppose that U1 is a function is given as, U1 = g(Vj..... . Vk) where V1..... , Vk are k 

independent random numbers. If V is a random number that is uniformly distributed 

on (0,1) - then so is 1-V. Hence the random variable U2 = 9(1 - Vi, 1 - V) has 

the same distribution as U1. Moreover 1-V is negatively correlated with V so U1 will 

be negatively correlated with U2 when "g" is a monotonic function in most of its 

variables. To compute U1, we first generate Vi..... , Vk then to generate U2 we just 

use the set 1 - V1, , 1 - Vk. By doing this we not only save the time but also the 

resulting estimator will have smaller variance. 

6.2 Variance Reduction Technique For The Markov Chain 

Model 

Simulating the model for 1000 times with different values of p, the results are given 

below. 
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Model One Customers wearing white hats having higher priority over customers 

wearing black hats. 

The program for this is given in appendix F. 

P V(m) Sm Smi % 

.1 .2164 .1930 .0920 52.3 

.2 .7167 .6182 .3396 45.1 

.3 2.2781 2.3817 .6018 73.1 

.4 11.6 9.2617 3.829 58.7 

p V(n) S S 1 % 

.1 .5 .2503 .2503 0 

.2 ..5 .2503 .2503 0 

.3 .5 .2503 .2503 0 

.4 .5 .2503 .2503 0 

Model Two Customers wearing black hats have higher priority than customers 

wearing white hats. 

The program for this given in appendix G. 

P V(m) Sm Smi % 

.1 .1235 .1037 .0405 61 

.2 .3125 .3912 .0997 74.5 

.3 .6122 .5843 .2599 55.5 

.4 1.111 .9955 .3974 60.1 
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P V(n) S S 1 % 

.1 .4669 .3935 .2803 28.8 

.2 1.3542 1.5040 .6706 55.4 

.3 5.5645 4.4059 2.3784 46 

.4 38.7977 32.996 5.7581 82.5 

6.3 Variance Reduction Technique For The Time Depen-

dent Model 

Simulating the model for eight hours with different values of p and 500 runs the 

results are given below. 

Model one Customers wearing white hats have higher priority over customers 

wearing black hats. 

The program for this simulation is given in appendix H. 

P V(m) Sm Smi % 

.1 .1589 .1348 .0427 68.3 

.2 .5867 .4679 .2119 54.7 

.3 2.0606 2.0021 .4351 78.3 

.4 11.28 8.7516 1.8613 78.7 
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p V(n) S S 1 % 

.1 .09 .0983 .0362 63.2 

.2 .16 .1458 .0783 46.3 

.3 .21 .1986 .0982 50.1 

.4 .24 .2253 .1068 52.6 

Model Two Customers wearing black hats have higher priority than customers 

wearing white hats. 

The program for this case is given in appendix I. 

P 117 (M) Sm Sm1 % 

.1 .1235 .1046 .0321 69.3 

.2 .3125 .390 .1002 74.3 

.3 .6122 .5879 .2947 49.9 

.4 1.1111 .9987 .3316 66.8 

P V(n) S. S.1 % 

.1 .2169 .1998 .0673 66.3 

.2 1.1042 1.3203 .5028 61.9 

.3 5.312 5.2420 1.2374 76.4 

.4 38.5926 34.5108 5.2897 84.7 



Chapter 7 

VERIFICATION OF THE RESULTS 

7.1 Introduction 

In this chapter we verify that the results for the theory and simulation are close to 

each other by showing that the 90 % confidence interval for the means spans the 

theoretical value.. 

7.2 Model One 

7.3 Time Dependent Technique 

(a) Customers wearing white hats have higher priority over customers wearing black 

hats. 

P E(m) 75T E(n) 90% 0.1 for E(m) 90% 0.1 for E(n) 

.1 .1375 .1237 .1 .1034 [.0967,.1597] [.0803;.1265] 

.2 .4 .3986 .2 .2151 [.3483,.4489] {.1870,.2432] 

.3 .975 .9082 .3 .3021 [.8041,1.0123] [.2693,.3349] 

.4 2.8 2.6678 .4 .4126 [2.4502,2.8854] [.3777,.4475] 

(b) Customers wearing black hats have higher priority over customers wearing 

white hats. 
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p E(m) TiT E(n) T 90% C.I for E(m) 90% C.I for E(n) 

.1 .1111 .1048 .1528 .1436 [.0810,.1286] [.1107,.1765] 

.2 .25 .26.5 .5 .5243 [.2191,.3109] [.4398,.6088] 

.3 .4286 .412 1.3929 1.3283 [.3556,.4684] [1.1599,1.4967] 

.4 .6667 .6862 4.6669 5.0226 [.6125,.7595] [4.5904,5.4548] 

7.4 Model Two 

7.5 Imbedded Markov Chain Technique 

(a) Customers wearing white hats having higher priority than customers wearing 

black hats. 

p E(rn) WE E(n) T 90% C.I for E(m) 90% C.I for E(n) 

.1 .1875 .185 .5 .5 [.1621,.2079] [.474,.526] 

.2 .5 .461 .5 .5 [.4200,.5020] [.474,.526] 

.3 1.125 1.038 .5 .5 [.9602,1.116] [.474,.526] 

.4 3 2.856 .5 .5 [2.6977,3.0143] [.474,.526] 

(b) Customers wearing black hats have higher priority over customers wearing 

white hats. 

p E(m) TTT E(n) TT 90% C.I for E(m) 90% C.I for E(n) 

.1 .111 .102 .6528 .622 [.0852,.1188] [.5894,.6546] 

.2 .25 .279 1 1.054 [.2465,.3115] [.9902,1.1178] 

.3 .4286 .409 1.8929 1.850 [.3692,.4488] [1.7408,1.9592] 

.4 .6666 .683 5.1667 5.4114 [.6311,.7349] [5.1126,5.7102] 
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The above tables show that the 90 % confidence intervals span the theoretical 

means. 

7.6 Conclusions 

Mathematical models have been presented in this thesis for a particular queueing 

problem using time dependent and Markov chain techniques. Since it was not pos-

sible to find a solution by known techniques for both time dependent and Markov 

chain model for the assumption that the customers are serviced in the strict order of 

their arrivals, a solution was determined using a certain type of priority condition. 

The characteristics of such a model have been presented in this Thesis. 

The queueing situation using priority conditions was simulated using the language 

S-PLUS and verified that the 90 % confidence interval spans the theoretical means 

for all cases. 

Finally I do not understand the difference in the variances V(n) and S for the 

white hat priority in the Markov chain model. 

Directions Of Future Research  

The following changes can be implemented in the queueing situation. 

1. Instead of changing hats twice from black to white, a customer can change his 

hats thrice from black to white hat and then to a blue hat, and upon completion of 

the service leave the system. 

2. Instead of a nonpreemptive priority one can assume a preemptive priority in 

the model. 

3. Research new methods that may allow us to solve the FCFS model theoreti-



39 

cally. 



Appendix A 

The simulation program for the time dependent model where customers are being 

served on the "first come first served basis". 

Notation  

arri.time = arrival time 

ser.time = service time 

stime = simulation time 

ctime = current time 

num = total number of simulation runs 

vector ("numeric" ,num) = represents a vector which contaiiis numeric values and 

the size of the vector is determined by the input value "num". 

rexp(1,arri.rate) = generate an exponential random variable with rate A = arri.rate 

append (Q,O) = attach zero to the vector Q. 

Q[-1] = except the first element of the vector Q. 

Input  

The main function "simu" takes arrival time, service time, total simulation time 

and number of simulation we want to do as an input. Every time it calls the sub-

routine "queue" iteratively. The function "queue" takes arrival rate, service rate and 

the total simulation time as an input. 

Output  

It outputs the number of black hats and the number of white hats in a vector 
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form with number of black hats in the first column and the number of white hats 

in the second column. We then assign the first column to a variable and the second 

column to another variable. We can find the mean and variances of the number of 

black and white hats in the system [(i.e) E(m),V(m),E(n) and V(n)] by using the 

commands summary() and var( ). To find E(mn), we should multiply the columns 

and then use the command summary. From that we can the covariance. 

Program  

Function "simu"  

function (arri.time,serv.time,stime,num) 

{ 
arri.rate 1/arri.time 

serv.rate 1/serv.time 

B +- vector( "numeric" ,num) 

W <- vector("numeric",num) 

for(i in 1: num) 

{ 
A - queue(arri .rate,serv.rate,stime) 

B[i}+—A[1] 

W[i] - A[2] 

} 
cbind(B,W) 

} 
Sub-routine "queue"  

function (arri .rate,serv.rate,stime) 
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{ 
Q 4-- vector(" numeric" ,O) 

ctime 0 

arrive - rexp(1,arri.rate) 

serve - stime+1 

while(ctime + arrive < stime ctime + serve < stime) 

{ 
if (length(Q) = 0) 

{ 
ctime - ctime + arrive 

arrive - rexp(1,arri.rate) 

serve - rexp(1,serv.rate) 

Q 4- appened(Q,0) 

print ("B arrives") 

} 

else 

{ 
if (arrive < serve) 

{ 

ctime - ctime + arive 

serve - serve - arrive 

arrive - rexp (1, arri. rate) 

Q - appened(Q,0) 

print(" B arrives") 
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} 
else 

{ 
ctime <- ctime + serve 

arrive - arrive - serve 

serve - rexp(1,serv.rate) 

if(Q[1] = = 0) 

{ 

Q - appened(Q{-1},1) 

print(" B served") 

} 
else 

{ 

Q - QE-'] 

print("W served") 

} 

} 

} 
c(length(Q[Q = = 0]), length(Q[Q = = 1])) 

} 



Appendix B 

The simulation program for the time dependent case where customers wearing white 

hats have higher priority over customers wearing black hats. 

Notation  

arri.time = arrival time 

ser.time = service time 

stime = simulation time 

ctime = current time 

num = total number of simulation runs. 

numB = number of customers wearing black hats 

numW = number of customers wearing white hats 

nex = represents the next customer who is going to get the service 

A[1] = first element of A. 

cbind = column bind. 

rexp(1,arri.time) = generate an exponential random variable with rate ). 

arri.rate. 

Input  

The function "simu" takes arrival time, service time, total simulation time and 

number of simulation we want to do as an input Every time it calls the sub-routine 

"queuew" iteratively. The function "queuew" takes arrival rate, service rate and the 

total simulation time as an input. 
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Output  

It outputs the number of black hats and the number of white hats in a vector 

form with number of black hats in the first column and the number of white hats 

in the second column. We then assign those two columns to two different variables. 

We can find the mean and variances of the number of black hats and white hats 

in the system [(i.e) E(m),E(n),V(m)and V(n)] by using the commands summary( ) 

and var( ). To find E(mn), we multiply the columns and then use the command 

summary(). From that we can find the covariance. 

Program  

Function "simu"  

function (arri.time,serv.tirne,stime,num) 

{ 
arri.rate +- 1/arri.time 

serv.rate - 1/serv.time 

B +- vector(" numeric" ,num) 

W - vector("numeric",num) 

for(i in 1: num) 

{ 
A - queuew(arri.rate,serv.rate,stime) 

B[ij 4- A[i] 

W[i] —A[2] 

} 
cbind(B,W) 

} 
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Sub-routine "queuew"  

function (arri.rate,serv. rate,stime) 

{ 
numB <- 0 

numW - 0 

ctime <- 0 

arrive - rexp(1,arri.rate) 

serve <- stime+1 

while(ctime + arrive < stime ctime + serve < stime) 

{ 
if (numB + numW = = 0) 

{ 
ctime +- ctime + arrive 

arrive - rexp (1,arri. rate) 

serve - rexp(1,serv.rate) 

numB +- 1 

nex +- "B" 

print ("B arrives") 

} 
else 

{ 
if (arrive < serve) 

{ 
ctime - ctime + arrive 
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serve f- serve - arrive 

arrive - rexp(1,arri.rate) 

numB - numB + 1 

print(" B arrives") 

} 
else 

ctime - ctime + serve 

arrive i- arrive - serve 

serve rexp(1,serv.rate) 

if (nex = = 

{ 
numB <- numB —1 

numW - numW +1 

print("B served") 

} 
else 

{ 
numW - numW —1 

print("W served") 

} 
if (numW > 0) 

else nex - "B" 
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} 

} 

} 

} 
c(numB,numW) 

} 



Appendix C 

The simulation program for the time dependent case where customers wearing black 

hats have 

higher priority than a customers wearing white hats. 

Notation  

arri.time = arrival time 

ser.time = service time 

stime = simulation time 

ctime = current time 

num = total number of simulation runs. 

numB = number of customers weaHng black hats 

numW = number of customers wearing white hats 

nex = represents the next customer who is going to get the service. 

A[1] = first element of A. 

cbind = column bind. 

rexp(1,arri.rate) = generate an exponential random variable with rate A = arri.rate. 

Input  

The function "simu" takes arrival time, service time, total simulation time and 

number of simulation we want to do as an input. Every time it calls the sub-routine 

"queueb" iteratively. The function."queueb" takes arrival rate, service rate and the 

total simulation time as an input. 
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Output  

It outputs the number of black hats and the white hats in the system in a vector 

form with number of black hats in the first column and the number of white hats 

in the second column. We then assign the number of black hats and white hats to 

two different variables. Then we find the mean and variances of the number of black 

hats and white hats in the system {(i.e) E(m),V(m),E(n) and V(n)] by using the 

commands summary() and var(). To find E(mn), we should multiply both columns 

and then use the command summary(). From that we can find the covariance. 

Program  

Function "simu"  

function (arri.time, sery .time, stime,num) 

{ 
arri.rate +- 1/arri.time 

serv.rate - 1/serv.time 

B - vector(" numeric", num) 

W - vector(" numeric", num) 

for(i in 1: num) 

{ 
A - queuew(arri.rate, serv.rate, stime) 

B[i]—A[1] 

W[i] <--A[2] 

} 
cbind(B, W) 

} 
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Sub-routine "queueb"  

function (arri.rate, serv.rate, stime) 

{ 
numB - 0 

numW <-- 0 

ctime i- 0 

arrive <- rexp(1, arri.rate) 

serve - stime+1 

whule(ctime + arrive < stime I ctime + serve < stime) 

{ 
if (numB + numW = = 0) 

{ 
ctime - ctime + arrive 

arrive - rexp(1, arri.rate) 

serve - rexp(1, serv.rate) 

numB - 1 

nex - "B" 

print ("B arrives") 

} 
else 

{ 
if (arrive < serve) 

{ 
ctime - ctime + arrive 
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serve - serve - arrive 

arrive <-- rexp(1, arri.rate) 

numB - numB + 1 

print(" B arrives") 

} 
else 

{ 
ctime i- ctime + serve 

arrive i- arrive - serve 

serve - rexp(1, serv.rate) 

if (nex = = ))B)7) 

{ 
numB +- numB - 1 

numW - numW + 1 

print(" B served") 

} 
else 

{ 
numW - numW - 1 

print("W served") 

} 
if (numB >0) 

nex - "B" 

else nex i-  "W" 
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} 

} 

} 

} 
c(numB, numW) 

} 
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Appendix D 

Simulation program for the white hat priority using imbedded Markov chain tech-

nique. 

Notations  

m,n = vectors 

rep(O,z) = repeat the vector with "z" zeros. 

r[1] = first element of r. 

cbind = column bind. 

runif(1) = generate an uniformly distributed random number. 

trunc = represents integer division. 

Input  

The main function "gen" takes p and the number of simulation we want to do 

as an input. It iteratively calls the sub-routine "it" which calculates the values "m" 

and "n" and returns them back to the main function. 

Output  

It outputs the number of black hats and the number of white hats in the system 

in a vector form with number of black hats in the first column and the number of 

white hats in the second column. we then assign the black hats and white hats to 

two different variables, then find the mean and variances of the number of black hats 

and white hats in the system by using the commands summary() and var(). To find 

E(mn), we should multiply the columns then use the command summary(). From 
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that we can find the covariance. 

Program  

Function "gen"  

function(p, z) 

{ 
m <- rep( 0, z ) 

ii i- rep( 0, z ) 

for (1 in 1:(z-1) ) 

r +- it ( p,m[i],n[i] ) 

m[i+1] <-- r[1J 

n[i+1] <- r[2] 

} 
cbind(m,n) 

} 
Sub-routine "it"  

function(p, m, n) 

{ 
u - runif(1) 

1 - trunc ((log(u) / loo-(P/(' + p))) 

if( m==0&&n==0) 

{ 
r - c( m+l, n+1) 

} 
else if (n >0 && n == 0) 
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{ 
r <- c(m + 1— i,n + 1) 

} 
else if(m==O&&n>O) 

{ 
r— c(m + l,n— 1) 

} 
else if (in >0 && n > 0) 

{ 
r - c( m+l , n—i ) 

} 
r 

} 



Appendix E 

Simulation for the black hat priority using the imbedded Markov chain technique. 

Notations  

Same as in appendix D. 

Input  

The main function "geni" takes the value for p and the number of simulation 

we want to do as an input. It calls the sub-routine "iti" iteratively which takes the 

values of p "rn" and "n" as an input. 

Output  

It outputs the number of black hats and the white hats in the system in a vector 

form with number of black hats in the first column and the number of white hats in 

the second column. We then assign the black hats and the white hats to two different 

variables. We find the mean and variances of the number of black hats and white 

hats in the system by using the commands summary() and var( ). To find E(mn), 

we should multiply the columns and then use the command summary(). From that 

we can find the covariance. 

Program  

Function "geni" 

function(p, z) 

{ 
m - rep( 0, z) 
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n - rep( 0, z ) 

for (i in 1:(z-1) ) 

r <- it  ( p,m[i],n[i] ) 

m{i+i} - r[i] 

n[i+i] - r[2] 

} 
cbind(rn, n) 

} 
Sub-routine "Al"  

function(p, rn, n) 

{ 
u <- runif(i) 

1 <-- trunc ((log(u) / log(p/(i ± p)))) 

if( m==0&&n==0) 

{ 
r <- c( m±l , n+i ) 

} 
else if(m> O&n==0) 

{ 

r - c( m+l—i , n+1) 

} 
else if(m= =0&&n>0) 

{ 

r +- c( m+l , n—i ) 
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} 
else if(m>0&&n>0) 

{ 
r - c( m+l-1 , n +1) 

} 
r 

} 



Appendix F 

Simulation program for the variance reduction technique using imbedded Markov 

chain method for the white hat priority. 

Notations  

U, 1—u = random numbers. 

rn = vector containing the number of black hats in the queue using u. 

n = vector containing the number of white hats in the queue using u. 

a = vector containing the number of black hats in the queue using (1— u). 

b = vector containing the number of white hats in the queue using (1— u). 

p = the input value 

z = the number of simulation runs we want to do. 

rep(O, z) = repeat the vector with "z" zeros. 

r[1] = first element of the vector r. 

cbind = column bind. 

runif = generate an uniformly distributed random number. 

Input  

The main function "GENE" takes the values of p the number of simulation we 

want to do as an input. It calls the sub-routine"ITRATE" iteratively. The main 

function takes the value for p and the number of simulation run we want to do as 

an input which calculates the values of m, n, a, b and returns them back to the main 

function. 
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Output  

It outputs the values of "m", "n", "a" and "b" in a vector form with "m" in 

the first column, "n" in the second column, "a" in the third column and "b" in the 

fourth column. Now add columns one and three, then divide by two then assign a 

new variable to it. Similarly, we add columns two and four and divide by two then 

assign a new variable to it. We then find the mean and variances for the number of 

black and white hats in the system by using the commands summary() and var( ). 

Program  

Function "GENE"  

function (p, z) 

{ 
m +- rep(O,z) 

n +- rep(O,z) 

a - rep(O,z) 

b €- rep(O,z) 

for (1 in 1:(z-1) ) { 

r <- ITRATE(p, m[i], n[i], a[i], b[i]) 

m[i+1] - r[1] 

n[i-j-1] - r[2] 

a[i+1] - r[3] 

b[i+1] - r[4] 

} 
cbind(m,n,a,b) 

} 
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Sub-routine "ITRATE"  

function (p, m, n, a, b) 

{ 
u <- runif(i) 

1 trunc(log(u)/log(p/1 + p))) 

if(m==0&&n==0) 

{ 
r - c(m+l , n+1) 

} 
else if(m> 0&&n= =0) 

{ 
r —c(m+l—1 , n+i) 

} 
else if (m = = 0 && n> 0) 

{ 
c(m+l , n—i) 

} 
else if (m> 0 && n > 0) 

{ 
c(m+l , n—i) 

} 
k - trunc(log(i—u)/log(p/(i + p))) 

if (a = = 0 && b = = 0) 

{ 
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s +- c(a+k , b+1) 

} 
else if (a> 0 && b = = 0) 

{ 
s - c(a+k—i , b+i) 

} 
else if(a==0&&b>0) 

{ 
s - c(a+k , b—i) 

} 
else if ( a> 0 && b > 0) 

{ 
s - c(a+k , b—i) 

} 



Appendix G 

Simulation program for the variance reduction technique using imbedded Markov 

chain method for the black hat priority. 

Notations  

U, 1—u = random numbers. 

m = vector containing the number of black hats in the queue using u. 

n = vector containing the number of white hats in the queue using (1—u). 

a = vector containing the number of black hats in the queue using u. 

b = vector containing the number of white hats in the queue using (1—u). 

p = the input value 

z = the number of simulation runs we want to do. 

rep = repeat the vector with "z" zeros. 

r[1] = first element of the vector r 

cbind = column bind 

runif = generate a uniformly distributed random number. 

Input  

The main function "gene" takes the value for p and the number of simulation 

run we want to do as an input. It iteratively calls the sub-routine "itrate" which 

calculates the values of m,n,a,b and returns them back to the main function. 

Output  

It outputs values of "m", "n", "a" and "b" in a vector form with "m" in the first 
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column, "n" in the second column, "a" in the third column and "b" in the fourth 

column. Add columns one and three then divide it by two and assign a new variable 

to it. Similarly we add columns two and four and divide it by two then assign a new 

variable to it. Now we can find the mean and variance of the number of white and 

black hats in the system by using the command summary() and var( ) respectively. 

Program  

Function "gene  

function (p, Z) 

{ 
m - rep(O,z) 

n - rep(O,z) 

a <- rep(O,z) 

b - rep(O,z) 

for (1 in 1:(z-1) ) { 

r +- itrate(p, m[i], n[i], a[i], b[ij) 

m[i+1] - r[1] 

n[i+1] r[2] 

a[i+1] - r[3] 

b[i+1] - r[4] 

} 
cbind(m,n,a,b) 

} 
Sub-routine "itrate"  

function(p, m, n, a, b) 
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{ 
u - runif(1) 

1 +- trunc(log(u)/log(p/i + p))) 

if(m==0&&n==0) 

{ 

r - c(m+l , n+l) 

} 
else if(m> 0&&n= =0) 

{ 
r 4—c(m+l—1 , n+l) 

} 
else if (m = = 0 && n > 0) 

{ 
c(m+l , n—i) 

} 
else if (m> 0 && n> 0) 

{ 
r - c(m+l—i , n+i) 

} 
k - trunc(log(1—u)/log(p/(i + p))) 

if (a = = 0 && b = = 0) 

{ 
s *- c(a+k , b+1) 

} 
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else if(a> 0&b==O) 

{ 
s - c(a+k-1 , b+1) 

} 
else if(a==0&&b >0) 

{ 
s - c(a+k , b—i) 

} 
else if(a>0&&b>0) 

{ 
s - c(a+k—1 , b+i) 

} 
c(r,$) 

} 



Appendix H 

The simulation program for the variance reduction technique for the time dependent 

case where customers wearing white hats have higher priority over customers wearing 

black hats. 

Notations  

u,1—u, v, 1—v = random numbers. 

numB = number of customers wearing a black hat -in the system using u. 

numBi = number of customers wearing a black hat in the system using 1—u. 

numW = number of customers wearing a white hat in the system using v. 

numWl = number of customers wearing a white hat in the system using 1—v. 

vector(" numeric" ,num) = vector containing numeric values whose size is deter-

mined by the input "num" 

cbind() = column bind. 

arr.time = arrival time 

ser.time = service time 

stime = simulation time 

ctime = current time 

append(u,w) = attach w to u. 

u[-1] = except the first element of u. 

nex = represents the next customer who is going to get the service. 

Input  
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The main function "simW" takes arrival time, service time, simulation time and 

the number of simulation we want to do as an input. At each run it calls the sub-

routine "QUEUEW" which takes the arrival time, service time, the simulation time 

as an input. 

Output  

It returns the values of numB, numW, numBi, mumWl in a vector form with 

values of numB in column one, values of numW in column two, values of numB 1 in 

column three, and the values of numWl in column four. We then add column one 

and three the divide it by two. We then assign a new variable to it. Similarly we 

add columns two and four, divide it by two then assign a new variable to it. Now 

we an find the mean and the variances of the number of black hats and the umber 

of white hats in the system by using the commands summary() and varQ. 

Function "simW"  

function (arr.time,serv.time,stime,num) { 

B = vector(" numeric",num) 

BI = vector( "numeric" ,num) 

W = vector(" numeric",num) 

Wi = vector(" numeric",num) 

for ( i in 1:num) { 

A - QUEUEW(arr.time,serv.time,stime) 

B[i] <- A[1] 

W[i] - A[2] 

B1[i] - A[3] 

W1[i] +- A[4] 
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cbind(B,W,B1,W1) 

} 
Sub-routine QUEUEW  

function (arr.time, serv.time, stime) 

{ 
numB - 0 

numW - 0 

numBi - 0 

numWl - 0 

u - runif (10) 

ul - u 

arrive : (—arr.time) * (log(u[i]) 

arrivel +- (—arr.time) * log (1—ul[1]) 

U 4- u[-1] 

u14—ul[-1] 

runif (10) 

V1 - v 

serve +- stime + 1 

servel - stime +1 

nex - "B" 

nexi - "B" 

while (ctime + arrive < stime ctime + serve < stime ctime + arrivel < stime 

ctime + servel < stime) { 

if(length(u) <311 length(ui) < 3) { 
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w - runif (10) 

u - append (u, w) 

ul - append (Ui, w) 

} 
if(length(v) <311 length (vi) < 3) { 

runif (10) 

v - append (v, w) 

vi - append (vi, w) 

} 
if(arrive < serve && arrive < arrivel && arrive < servel) { 

ctime +- ctime + arrive 

if(numB + numW> 0) 

serve - serve - arrive 

else { 

serve <- (—serv.time) * log(v[1]) 

v - v[—i} 

} 
arrivei - arrivei - arrive 

servel <-- servel - arrive 

arrive - (—arr.time) * log(u[i]) 

u - u[—i] 

numB i- numB + 1 

print(" B arrives") 

} 



73 

else if (serve < arrivel && serve < servel) { 

ctime •- ctime +serve 

arrive <--arrive - serve 

arrivel f- arrivel - serve 

servel servel - serve 

serve - (—serve.time) log (V[I]) 

v - v[-1] 

if (nex == "B") { 

numB - numB —1 

numW numW +1 

print("B served") 

} 

else { 

numW numW —1 

print (" W served") 

} 
if (numW> 0) 

nex •--

else nex - "B" 

if (numB + numW == 0) { 

serve - stime 

nex - "B" 

} 

} 
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else if (arrivel < servel) { 

ctime - ctime + arrive! 

if(numBl + numWi > 0) 

serve! <- servel - arrive! 

else { 

servel +- (—serv.tme) * log(1— vl[1]) 

VI - vl[-1] 

} 
arrive - arrive - arrivel 

serve +- serve - arrivel 

arrivel - (—arr.time) * log(1 - ul[1]) 

ul - ul[-1] 

numB! - numBi +1 

print(" B arrives") 

} 
else { 

ctime - ctime + servel 

arrive! - arrivel— serve! 

arrive - arrive - servel 

serve - serve - servel 

serve! +- (—serv.time) * log (1 —vl[1]) 

V1 +- vi[-1] 

if (nexi == "B") { 

numB! <- numB 1 —1 
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numWl - numWl +1 

print("B served") 

} 

else { 

numWl - numWl —1 

print("W served') 

} 
if (numWl > 0) 

nex1 

else nexi - 

if(numBl +numWl == 0) { 

servel - stime 

nexi <- "B" 

} 

} 

} 
c(numB, numW, numBi, numWl) 

} 



Appendix I 

The simulation program for the variance reduction technique for the time dependent 

case where customers wearing black hats have higher priority than customers wearing 

white hats. 

Notations  

u,1—u, v, 1—v = random numbers. 

numB = number of customers wearing a black hat in the system using u. 

numBi = number of customers wearing a black hat in the system using i—u. 

numW = number of customers wearing a white hat in the system using v. 

numWl = number of customers wearing a white hat in the system using 1—v. 

vector(" numeric" ,num) = vector containing numeric values whose size is deter-

mined by the input "nurn" 

cbind() = column bind. 

arr.time = arrival time 

ser.time = service time 

stime = simulation time 

ctime = current time 

append(u,w) = attach w to u. 

u[-1] = except the first element of u. 

nex = represents the next customer who is going to get the service. 

Input  
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The main function "simB" takes arrival time, service time, simulation time and 

the number of simulation runs as an input. At each run it calls the sub-routine 

"QTJEUEB" which takes arrival time, service time and simulation time as an input. 

Output  

It outputs the numB, numW, numB 1 and numWl in a vector form with numB in 

column one, numW in column two, numB 1 in column three and numWl in column 

four. We then add columns one and three then divide it by two. We then assign 

a new variable to this. Similarly,add columns two and four divide it by two then 

assign a new variable to it. Now we can find the mean and variances of the number 

of white and black hats in the system by using the commands summary() and var( 

) respectively. 

Function "simB"  

function (arr.time,serv.time,stime,num) { 

B = vector(" numeric",num) 

Bi = vector("numeric",num) 

W = vector(" numeric",num) 

WI. = vector(" numeric",num) 

for ( i in 1:num) { 

A - QUEUEB (arr.time,serv.time,stime) 

B[ij - A[1] 

W{i} - A[2] 

B1[i] - A[3] 

W1[i] - A[4] 

cbind(B,W,B1,W1) 
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} 
Function QUEUEB  

function (arr.time, serv.time, stime) 

{ 
numB <- 0 

numW <- 0 

numBi - 0 

numVvl - 0 

u +- runif (10) 

ul +- U 

arrive - (—arr.time) * (log(u[i]) 

arrivel - (—arr.time) * log (1—ul[i]) 

u +- u[—iJ 

ul +- ul[—l] 

v - runif (10) 

VI - V 

serve - stime + 1 

servel - stime +1 

nex - "B" 

nexi - "B" 

while (ctime + arrive < stime ctime + serve < stime ctime + arrivel < stime 

ctime + servel < stime) { 

if (length(u) < 3 11 length(ul) < 3) { 

w - runif (10) 
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u - append (u, w) 

ul - append (ul, w) 

} 
if(length(v) < 3 II length (vi) < 3) { 

w - runif (10) 

V - append (v, w) 

vi +- append (vi, w) 

} 
if(arrive < serve && arrive < arrivel && arrive < servel) { 

ctime - ctime + arrive 

if(numB + numW> 0) 

serve +- serve - arrive 

else { 

serve +- (—serv.time) * log(v[1]) 

v <- v[-1] 

} 
arrivel - arrivel -arrive 

servel - servel - arrive 

arrive <- (—arr.time) * log(u[1]) 

U - u[-1] 

numB i-. numB + 1 

print(" B arrives") 

} 
else if (serve < arrivel && serve < servel) { 
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ctime - ctime +serve 

arrive 4—arrive - serve 

arrivel - arrivel - serve 

servel - servel - serve 

serve - (—serve.time) * log (v[1]) 

v - v[-1] 

if (nex == "B") { 

numB +- numB —1 

numW - numW +1 

print(" B served") 

} 

else { 

numW - numW —1 

print("W served") 

} 
if (numB> 0) 

nex +- "B" 

else nex <-

if (numB + numW == 0) { 

serve +- stime 

nex <--

else if (arrivel < servel) { 
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ctime - ctime +arrivel 

if(numBl + numWl > 0) 

servel <- servel - arrivel 

else{ 

servel +- (- serv.tme) * log(1—vl[1]) 

VI - VI[-1] 

} 
arrive i- arrive - arrivel 

serve - serve - arrivel 

arrivel - (—arr.time) * log(i. - ul[1]) 

ul - ui[-1] 

numBi - numBi +1 

print ("B arrives") 

} 

else { 

ctime - ctime + servel 

arrivel - arrivel— servel 

arrive +- arrive —servel 

serve - serve —servel 

servel - (—serv.time) * log (1 —vl[1]) 

VI - vl[-1] 

if (nexi == "B") { 

numB 1 - numB 1 —1 

numWl - numWl +1 
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print("B served") 

} 

else { 

numWl +- numWl —1 

print ("W served") 

} 
if (numB 1> 0) 

nexi - "B" 

else nexi - "W" 

if(numBl +numWl == 0) { 

servel <--stime 

nexi - "B" 

} 

} 

} 
c(numB, numW, numBi, numWl) 

} 



Appendix J 

Important Results 

Model One 

White Hat Priority. 

Time Dependent Technique. 

E(m) ((i+)  = \ 
1_2p) 

V(M) (P+2P3_3P4\ 

= (1-2p)2 ) 
E(n) = p 

V(n) = p - p2 

COV(mn) = p2 
p2(1-2p) 

(V(p - pl)(p + 2p' - 3p4)) 

Markov Chain Technique. 

E(rn) ( 3p  
= 2(1-2p)) 
(p (6_5+4 2)) 

V(m) = 4 (1 - 2p)2 

E(n) = (2) 

(V(n) = 1) 

(±)COV(mm) = 

r(m,n) = - 2p) 
(26p_5p2+4p3! 

Model Two 
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Black Hat Priority. 

Time Dependent Technique  

(p \\ 

( \ 
V(m)= p p)2) 

/ 
E(n)= p+p2  

1_3p +2p2) 

(p(1+2p2-8p3+p4)  (1 V(n)= —p) (1_3p+2p2)2) 

COV(mn) = ( (1 _p)3) 

r(m, n) - (.\/I p(1 - 2p)  
+p-2p2-8p3+9p4 P5) 

Markov Chain Technique  

E(m) (\ 
= i—p) 

V(m) ( = (1_p)2) 

E(n) (1—p+4p2\ = 2_6p+4p2) 

(1 - 3p + 19p2 - 17p3 - 16p4\ 
V(n= 4(1—p)(1-3p+2p2)2 ) 

/  p2  
COV(mn) = - p)3) 

(  2p2(1-2p)  
r(m, n) = - 42 + 22p3 - 36p4 + p5 + 16p6) 
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