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Abstract

A cutset (fibre) of a poset is a subset which meets every maximal chain (an-
tichain). We examine posets in which every cutset contains a maximal antichain,
determining some operations which preserve or destroy this property. We examine
the question of what properties guarantee that fence-free is equivalent to every
minimal cutset being an antichain or every minimal fibre being a chain. We de-
scribe a method for partitioning any antichain-finite poset into three subsets so
that the union of any two is a fibre. We also summarise what is known about

cutsets for elements.
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Chapter 1

Introduction

“An ancestor of mine maintained that if you eliminate the impossible,
whatever remains, however improbable, must be the truth.”
— Spock [1991] quoting Sherlock Holmes [1890]

A binary relation “<” on a set P is called a partial order if it satisfies the

following conditions.
(i) Forallz,y,z€ P,z <y and y < z implies z < z.
(ii) There are no z,y € P such that ¢ <y and y < =.
Notice that a consequence of (ii) is that there is no = € P such that z < z.
A set P with which a partial order is associated is called a partially ordered set,
which we will usually abbreviate to poset.
Suppose P is a poset with partial order <. The following symbols will be
convenient. For any =,y € P,
r<ymeansz <Yyorz =4y,
T>ymeansy <z,
a:Zyrmeans:v >yorz =y, and

z|ymeansz #y,z £y, and y £ z.

For subsets X, Y C P, X <Y meansthat z < yforallz€ X andyeY. X <Y,

X>Y, X >Y,and X || Y are defined similarly. When X or Y is a singleton,



we may write just the element rather than the set. For instance, if X = {z}, then
z <'Y means {z} < Y. If a poset P has nonempty disjoint subsets X and Y such
that X < Y and X UY = P, then we say that P is linearly decomposable and
write P=X @Y.

To denote set difference, we will use “~”. That is, AN B is the set of elements
of A which are not elements of B.

Define the following notation when X is a subset of P.

X1t={y€ P:y>czforsomez e X},
Xl={yeP:y>zforsomezec X} X,
Xl ={y € P:y<zforsomez € X},
X]={yeP:y<azforsomezec XX,

Xl=X1UX|.

Actually, the symbols | and ] will only be used with antichains in this thesis,
making the “~X” parts of the definitions unnecessary. We will abbreviate this
notation slightly for z € P: z1 = {z}1, 2] = {z}], z| = {z}|, ] = {z}], and
z] = {z}]. '

If P is a poset, then the dual of P, denoted P¢, is the poset having the same
elements as P, but with the elements ordered so that z < y in P4 if and only if
y<zin P.

If C C P then Ciscalled a chainifforallz,y € C,x <yory < z. A subset A
of P is called an antichain if for all distinct 2,y € A, z || y. A chain (respectively,
antichain) S of P is called a mazimal chain (respectively, mazimal antichain) of P if

there is no S’ C P such that .S’ is also a chain (respectively, antichain) and S C §'.



(In this thesis, the symbol C will always mean “is a proper subset of”.) It is an
easy consequence of Zorn’s Lemma that if S is a chain (respectively, antichain) in a
poset P, then there exists S’ a maximal chain (respectively, maximal antichain) of
P which contains S. An antichain A in a poset P is a maximal antichain if and only
if AJ = P. In set theory, authors tend to keep track of the use of Zorn’s Lemma
so that they know what can be achieved without it. In this thesis, maximal chains
and antichains are so important that there is no hope of doing anything without
Zorn’s Lemma, so there is no point making a fuss about using it.

If P is a poset with subset K, then K is called a cutset of P if K has non-empty
intersection with every maximal chain of P. A cutset K is called a minimal ;utset
if no proper subset of K is a cutset. A cutset K is a minimal cutset of P if and only
if for every = € K, there is a maximal chain C such that C N K = {z}. Similarly,
a subset F of P is called a fibre of P if F' has non-empty intersection with every
maximal antichain of P. A fibre F is called a minimal fibre if no proper subset
of F' is a fibre. A fibre F' is a minimal fibre of P if and only if for every z € F,
there is a maximal antichain A such that ANF = {z}. In an infinite poset, a fibre
(respectively, cutset) might not contain any minimal fibre (respectively, minimal
cutset). It is fairly easy to see that when a fibre (respectively, cutset) is a chain
(respectively, antichain), it is a minimal fibre (respectively, minimal cutset) and a
maximal chain (respectively, maximal antichain).

Suppose P is a poset and X C P. Then max X is the set of points z € X
such that there is no y > = where y € X as well. min X is defined dually. We will
call max P the set of mazimal elements of P, or just the mazimals of P, and the

minimals dually. Sometimes when max X is a singleton set, we will use max X to



refer just to the element of the singleton set rather than the set.
A poset is called chain-finite (respectively, antichain-finite) if all of its chains
(respectively, antichains) are finite. Using the usual definition of sup for cardinal-

ities, define the height and width of a poset P by
height(P) = sup{|C] : C is a chain in P}, and
width(P) = sup{|A| : A is an antichain in P}.

A chain-finite poset may have infinite height, and an antichain-finite poset may
have infinite width. A poset P is called well-founded if it contains no infinite
decreasing chain z1 > z; > 23 > .... This is equivalent to saying that for every
non-empty chain C in P, |minC| =1. If C' is a chain, X = {z € P: 2 > C}, and
there exists y € X such that X = yT, then we sé,y that y is the supremum of C,
abbreviated y = sup C. The infimum of C, denoted inf C, is defined dually. We
say that a poset is chain-complete if every chain has a supremum and an infimum.

A graph G is a set of vertices V(G) and a set of edges E(G). Each edge is
a 2-element subset of V(G). We will write edges delimited by parentheses rather
than curly braces. Readers who insist that (z,y) is not the same as (y,z) can use
the implicit assumption that E(G) is a symmétric set. That is, for any z,y € V(G).
such that (z,y) € E(G), (y,z) is also in E(G). C C V(G) is called a cliqde of
the graph G if (z,y) € E(G) for all distinct z,y € C. C C V(G) is called a
maztmal clique of G if C is a clique and C' is not properly contained in any clique.
By Zorn’s Lemma, any clique is contained in a maximal clique. A trensversal
of a graph G is a subset of V(@) which has non-empty intersection with every
maximal clique. A minimal transversalis a transversal which does not properly

contain any transversal. A transversal T' of a graph G is a minimal transversal if



and only if for every € T, there is a maximal clique C such that C N T = {z}.
In infinite graphs, transversals do not always contain minimal transversals. A
subset S C V(G) is called independent if for all z,y € S, (z,y) & E(G). When a
transversal is independent, it is a minimal transversal and a maximal independent
set.

The comparability graph G of a poset P is the graph such that V(G) = P and
for all distinct z,y € P, (z,y) € E(G) if and onlyif z < y or y < z in P. Any
subset C of P is a (maximal) chain of P if and only if C C V(G) is a (maximal)
clique of G. Any subset K of P is a (minimal) cutset of P if and only if K C V(QG)
is a (minimal) transversal of G. The complement of a graph G is the graph G’
such that V(@) = V(@) and for all distinct z,y € V(G), (z,y) € V(G) if and
only if (z,y) &€ V(G). Let P be a poset with comparability graph G, and G’ the
complement of G. A subset A of P is a (maximal) antichain of P if and only if
A C V(G) is a (maximal) independent set of G, which is equivalent to A C V(&)
being a (maximal) clique of G'. F is a (minimal) fibre of P if and only if F C V(@)
is a (minimal) transversal of G'.

A poset which is a chain will be called a totally orderedset. Some totally ordered
sets which warrant names are the set of natural numbers, N, whose elements are
1 <2<3<...; the set of whole numbers, w, whose elements are 0 < 1 <2< 3 <
...; the set of the first n whole numbers, n, whose elements are 0 < 1 <2< ... <
n—1; and the set of integers, Z, whose elementsare...—2 < -1 <0<1<2< ...
Also, the symbol 7 will denote an n-element antichain. Ordinarily, when we talk
about elements of a dual poset, we will use the same labels as in the original poset.

The only exception is w9, whose elements we will label by 0 > -1 > -2 > -3 > ....



(a,b,c¢,d) is called a 4-fence of a poset P if a, b, ¢, and d are distinct elements
of P such that a < b > ¢ < d and these elements are otherwise not comparable
to each other. A poset is called fence-free if it has no 4-fence. If a poset is not
fence-free, we will save a syllable by saying that it has a fence, rather than saying
it has a 4-fence. The poset consisting of just a 4-fence will be called Fy. z <y
(read “z is covered by y”) means that < y and 2] Nyl = 0. = > y (read “z
coversy”) means y < . (a,b,¢,d) is called an N of a poset P if a, b, ¢, and d are
distinct elements of P such that ¢ < b > ¢ < d and these elements are otherwise
not comparable to each other. A poset is called N-free if it has no N. Every

fence-free poset is N-free, but the N-free poset below is not fence-free.

(a,b,c,d) is called a P; (a path with 3 edges) of a graph G if the edges on these
vertices are just (a,b), (b,¢), and (c,d). A graph is called P;-free if it has no P;.
If G is the comparability graph of a poset P, then G is Ps-free if and only if P is
fence-free. A graph is Ps-free if and only if its complement is Ps-free.

The earliest paper this author has found which mentions a result concerning
cutsets and/or fibres is a 1969 paper by Grillet [G69]. We refer the reader to
the chapter on cutset- and fibre-straight posets (Chapter 3) for the definition of
“regular”, since we will not prove and will quickly forget the following result.
Suffice it to say, for now, that all finite posets are regular. The equivalence of
conditions (i)-(iii) below is trivial. The main relevant result of [(G69] is that for

any regular poset P, these conditions are equivalent to (iv):



(i) Every maximal chain of P meets every maximal antichain of P.
(ii) Every maximal chain of P is a fibre.

(iii) Every maximal antichain of P is a cutset.

(iv) P is N-free.

Actually, Grillet never used the words “cutset” or “fibre”, but he did coin the
term chain-antichain-complete, abbreviated CAC, for posets satisfying conditions
(i)-(iii). A 1973 paper by Leclerc and Monjardet [LM73] characterised finite CAC
lattices and finite CAC graded posets in terms less convenient than N-free. A result
by Rival and Zaguia [RZ87] is a direct extension of Grillet’s theorem. They define
a structure more general than /V and show that in any poset, (i)-(iii) above hold if
and only if the poset does not contain this more general forbidden configuration.
Aside from [LM73] and [RZ87], Grillet’s paper seems to have been quite ineffective
at generating interest in cutsets and fibres.

The paper which seems to have initiated most current cutset research is the
1984 paper by Bell and Ginsburg [BG84|. This paper and the majority of those
since which have mentioned cutsets have been concerned primarily or exclusively
with cutsets for elements. We refer the reader to the chapter on that subject
(Chapter 5) for more information since that subject has nothing to do with most
of this thesis.

The genesis of this thesis was research relating to a paper by Duffus, Sands,
and Winkler [DSW90], showing that Boolean lattices are hockey posets, one char-
acterisation of which is that every cutset contains a maximal antichain. In the
summer of 1990, Peter Gibson and I looked into what else could be said about

hockey posets. The majority of the results in the chapter on hockey posets (Chap-



ter 2) are products of this research. A finite poset is hockey if and only if every
minimal cutset contains a maximal antichain. I got to wondering what could be
said about posets in which every minimal cutset is a maximal antichain. Hence,
the chapter on the subject of cutset-straight and fibre-straight posets (Chapter 3).

On the whole, cutsets have been a much more popular topic of research than
fibres have. However, the chapter on “Partitions and Fibres” (Chapter 4) is exclu-
sively about fibres, and the questions addressed really are fibre questions. Many
questions about fibres, cutsets, or transversals can trivially be rephrased using ei-
ther of the other two terms, but this does not apply to material in the “Partitions

and Fibres” chapter.



Chapter 2

Hockey Posets

comprising research undertaken with Peter Gibson

“Ad hoc, ad loc, and quid pro quo. So little time, so much to know.”
— Jeremy Hillary Boob, Ph.D. in Yellow Submarine [1968]

2.1 Introduction

Call a poset a hockey poset if it satisfies the following equivalent conditions:

(i) Every fibre intersects every cutset.

(ii) Every red-blue coloring of the elements of the poset has a red
maximal chain 01; a blue maximal antichain.

(i) Every fibre contains a maximal chain.

(iv) Every cutset contains a maximal antichain.

The equivalence of (ii), (iii), and (iv) is explained in [DSW90]. It is easy to see
that (iil) implies (i). Conversely, if (iii) is false then so is (i) since there is a fibre
whose complement is a cutset.

The property of hockeyness was discussed in [DSW90] but it was not given
a name. Also, characterisation (i) was not mentioned. We introduce the term
“hockey” with the following motivation. By (ii), a poset is hockey if and only if ‘
every red-blue coloring of its elements results in a red maximal chain — that is, a

red line going all the way across the poset vertically — or a blue maximal antichain
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— that is, a blue line going all the way across the poset horizontally. The only
naturally-occurring object with red and blue lines going all the way across it is
a hockey rink. There is a weakness here in that the lines on a hockey rink are
parallel rather than orthogonal, but this seems to be the best we can do.

In the remainder of the chapter, we will determin;a when sums of posets are
hockey. We will classify certain direct products of posets as being hockey or not
hockey. Among other results, we find that if a direct product of two posets is
hockey, where one is well-founded and the other chain-complete, then the well-
founded factor must be hockey. We will show that the only finite exponents 2F
of the two-element chain that are hockey are those in which P is a linear sum of

antichains. We will also determine which zigzags and cycles are hockey.

2.2 Lexicographic Sums

Let P be a poset with a poset @, associated with each € P and such that
Ry N Q. = 0 for all distinct y,z € P. The lexicographic sum ¥ ,cp @, is the set
Uzep @z with the following ordering. If a,b € @, then ¢ < bin } ,cp Q. if and
onlyifa<bin @, Ifa€ @y, b€ Q,, and y # z, then a < bif and only if y < 2.

The lexicographic sum can be used to describe both disjoint (cardinal) and
linear (ordinal) sums:

Q0+--c+Qn—1 = ZQ:I:)

€N
QO@---@Qn—l = ZQ:B
. TEN

(In the case of the n-element chain, we are using the conventional labelling 0 <

1<2<...<n-1)
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Lemma 2.2.1 Let A C Y,cp Qs. A is a mazimal antichain of Yyep @y if and
only if both of the following are true:

(i) for everyy € P, ANQy is either empty or a mazimal antichain of Q,.
(ii) {z € P:ANQ, # 0} is a mazimal antichain of P.

Proof. Let A be a maximal antichain of Y ,cp Q.. Let y € P such that
ANQy # 0. Then AN Q, is an antichain. Suppose 4 N @, is not a maximal
antichain of @;. Then there is some z € @), such that 2 ¢ (AN Q,)]. Leta € A
such that z € aJ. Then a € Q for some y’ € y[~{y}. But this is impossible since
it would imply AN @, C aJ. Thus, AN Q, must be a maxima.i antichain of @,
and so A satisfies (i). |

Clearly, {z € P : AN Q. # 0} is an antichain in P, but suppose it is not a
maximal antichain of P. Let y € P such that y ¢ {z€P:ANQ, # 0}]. Then
QyNA] =0, impossible. Thus, {z € P: ANQ, # 0} must be a maximal antichain
of P and so A satisfies (ii).

We now prove the converse. Let A C ¥ cp @, satisfying (i) and (ii). First we
prove that A is an antichain. Suppose that z,2’ € A such that z > 2. Lety,y’' € P
be such that z € @, and 2’ € Q. By (i), it is impossible to havey = y'. Soy > ¢/'.
But then y and y’ are comparable elements of {z € P : ANQ, # 0}, violating (ii).
So A is an antichain. Now assume that A is not a maximal antichain. So there
exists some z € (Y ep @) N AJ. Let y € P such that z € Q. By (ii), there is some
y’' € Psuchthat ANQy # 0 and y € y']. If ¥’ # y, then Q, < @y or Qy > @y,
either of which yields z € @, C (AN Qy )], contradicting z ¢ AJ. So y’ = y. That
is, AN Qy # 0. Since z ¢ (AN Q,)], AN Q, is not a maximal antichain of @,.

But this violates (i). Thus, A must be a maximal antichain. o
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Lemma 2.2.2 Let C C Y pep Qs C is @ mazimal chain of T yep Q2 if and only
if both of the following are true:

(i) for everyy € P, C'NQy is either empty or a mazimal chain of Q..
(1) {z € P:CNQ,F# 0} is a mazimal chain of P.

Proof. Similar to proof of Lemma 2.2.1. a

Theorem 2.2.3 The poset Y ,cp @ s hockey if and only if P and each of the
components Q. are hockey.
Proof. Suppose @), is not. hockey for some fixed y € P. Let F, be a fibre of

@y which contains no maximal chain of @),. Let

F=F,U{Q::z eyl {y}}.

F is a fibre of 3" cp Qs by thé following argument. Let A be a maximal antichain
of Yzep @z By Lemma 2.2.1,if AN Q, # 0, then AN @, is a maximal antichain
of @y and so meets Fy, and F'. So suppose ANQ, =0 and ¢ € Q. Let a € ANg].
Then a € @, for some z € y[>{y} and so a € F. Thus, F is a fibre.

If C C F were a maximal chain of ¥ ,cp @, then by Lemma 2.2.2,as CNQ, #
0, C N @y would be a maximal chain of @, contained in F,, a contradiction. So F
contains no maximal chain. This shows that if }",cp 5 is hockey, then so is each
Q- |

Suppose P is not hockey. Let S be a cutset of P which contains no maximal

antichain of P. Let
K= Qs

z€S
K is a cutset of Y-, cp @ by the following. Let C' be a maximal chain of 3" cp Q¢

By Lemma 2.2.2, {x € P : C N Q, # 0} is a maximal chain of P, and therefore
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meets 5. Thus, C' must meet K. However, by Lemma 2.2.1, K contains no
maximal anticha,iq of Ygep @z This shows that if ,cp Q. is hockey, then so is
P.

It remains to show that Y ,cp Qs is hockey if P and each of the components
Q= are hockey. Suppose then that P is hockey and @, is hockey for each z € P.
Let K be a cutset of " cp Q5. Define the subset S of P by

S={ze€P:KNQ,is a cutset of Q,}.

Its Qere not a cutset of P, we could fix C' C P~S such that C’ is a maximal
chain of P, and let C; C @, K be a maximal chain of Q, for each € C’. By
Lemma 2.2.2, Uzecr Cr would be a maximal chain of 3 ,cp @, and it would be
disjoint from K. Since this is impossible, S must be a cutset of P.

Since P is hockey, S contains a maximal antichain T' of P. For each z € T,
@z N K is a cutset of @, which is hockey, and so @, N K contains a maximal
antichain A, of Q.. By Lemma 2.2.1,

A=J A
zeT
is a maximal antichain of " cp @, which is contained in K. a

Finite series-parallel posets are defined recursively as follows. 1 is series-
parallel. If Q¢ and Q1 are series-parallel then so are Q¢ + @; and Qo @ @Q,. Only

the posets which can be constructed in this manner are termed series-parallel.

Corollary 2.2.4 Every finite series-parallel poset is hockey.

Proof. The singleton 1 is series-parallel and hockey. If Qo and @, are series-

parallel and hockey, then Qo + @1 = 3,5 Qx and Qo ® @1 = Y42 Q. are each
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hockey by Theorem 2.2.3 and series-parallel by definition. The result follows by

induction. O

A finite poset is series-parallel if and only if it is fence-free [Ri86] [S73] [VTL82].
(Although everybody seems to think infinite series-parallel posets are a viable
concept, there seems to be no widely accepted definition of them, or, for that
matter, any definition of them anywhere in the literature.) One might wonder
whether all fence-free posets are hockey. The answer is no. The poset shown
below is fence-free but the hollow points form a cutset which contains no maximal

antichain.

2.3 Products

For any posets P and (), define the direct product P x @) to be the set of ordered
pairs (p,¢) with p € P and ¢ € Q ordered by: (p,q) < (¢',¢') if and onlyif p < p’in
P and ¢ £ ¢’ in Q). Note that, up to isomorphism, direct product is a commutative
and associative binary operation on posets. For S C P x @, define m(S5) = {p €
P : (p,q) € S for some g € Q} and m(S) = {g € Q : (p,q) € S for some p € P}.
These maps are just the projections from P x @ to P and @), respectively.

For any chain C in any poset P, a point z is said to be the supremum of C if

{z} = min{y € P :y > c for every c € C'}. We denote this by writing z = sup C.
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The infimum of C, denoted “inf C”, is defined dually. A chain need not have a
supremum or infimum. But if a poset P is such that every chain does have a

supremum and an infimum, then P is called chain-complete.

Lemma 2.3.1 If () is chain-complete and C' is a mazimal chain in P X Q, then
m(C) s a mazimal chain in P.

Proof. Let C' be a maximal chain of P x Q. Let C; = 71(C). Obviously,
C: is a chain. Is Cy a maximal chain of P? Assume not; i.e. assume there
exists z € P such that C; C z™{z}. So C C (#] X Q) U (2] x Q). Either
CN(@lxQ) # 0or CN(z] xQ)# 0. Assume the former without loss of
generality. Let C* = CN (2] x Q) # 0. Let y - inf(m2(C*)). Is C U {(z,y)}
a chain? (z,y) < (p,q) for every (p,q) € C*. If (p,q) € C~C* then p < z and
g < inf(me(C*)) = y. So (p,q) < (z,y). So CU {(z,y)} is a chain. But (z,y) € C

a maximal chain, a contradiction. So m1(C') is a maximal chain of P. o

Chain-completeness is necessary in Lemma 2.3.1. C' = {(0,0), (0,1), (1,1),(1,2),
(2,2),(2,3),...} is a maximal chain of (w & {o0}) X w, but 7(C) = w is not a

maximal chain of w @ {co}.

Lemma 2.3.2 If A is a mazimal antichain of Q1 X Q2, where Qy is well-founded
and Q2 has a mazimal element (not necessarily unique), then w1 (A) contains a
mazimal antichain of Q).

Proof. Let yo € max@Q,. Let A be a maximal antichain of 3 X Q2, Ao =
{(z,y) € A:y < o}, a,nd.Al = m1(Ap). For any (q1,¥0) € 4, ¢1 € min(4,) since
otherwise there is some (g1,y’) € Ao with ¢} < ¢1 and y’' < yo, contradicting that

A is an antichain. Obviously, min(A;) is an antichain. In fact, it is a maximal
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antichain of @); by the following. For each ¢ € @1, we can pick an (z,y) €
AN (g,90)]. Then either (z,y) > (¢,y0) or (z,¥) < (¢g,¥0)- If (z,¥) > (¢,0) then
Y = Yo, ¢ € min(4,), and z > ¢. If (z,y) < (¢,y0) then z € A;, so there is some
¢’ € min(A;) such that o’ < z < ¢. Therefore @1 = (min(A4,))]. : |

Theorem 2.3.3 If the direct product P, X P, is hockey where Py is chain-complete
and Py is well-founded, then Py is hockey.

I;roof. Suppose P, X P, is hockey. Let K; be a cutset of P;. Then, by Lemma
2.3.1, K; x P, is a cutset of P, X P;. So K; x P, contains a maximal antichain
of Py x P, call it A. By Lemma 2.3.2, 71(A) contains a maximal antichain of P;

which is obviously contained in K. So P; is hockey. o

The converse of Theorem 2.3.3 is not true. That is, it is possible for P and @ to
be hockey posets while P X () is not hockeyl The next theorem gives a whole class
of posets whose products with anything chain-complete (other than an antichain)
are r;ot hockey. Notice that this class includes one of the simplest types of hockey
posets — chains of height 3 or more; in particular, the simple product 3 X 2 of two

hockey posets is not hockey.

Theorem 2.3.4 Let P be a hockey poset containing a chain a > b > ¢ such that
al = b} and c] = b]. Then for any chain-complete poset Q), P x Q) is hockey if
and only if Q) is an antichain.

Proof. If @ is an antichain, then P X Q = Y ,co P so P x @ is hockey by
Theorem 2.2.3.

Now suppose that“Q is not an antichain. We color the elements of P as follows.

If p € bI\{b}; then color p red. Otherwise, color p blue. So P contains no red



17

maximal chain. Now, color each (p,¢) in P x @ with the color of p in P. Then,
by Lemma 2.3.1, P x @ contains no red maximal chain.
Suppose B is a blue maximal antichain of P X Q.. Let m € min(Q) and

M € max(Q) such that M > m. Then B must include a blue point comparable to
(¢, M), say (p,9)-

CASE (1): (p,q) < (¢, M)= p < ¢ = p red. Impossible.

CASE (11): (p,q) > (e, M)=>qg=M,p>c=p>b=p=> (since p > b= (p,q)
red).

So (b,M) € B. Similarly, (b,m) € B. But this is impossible since B is an

antichain. So P X @ does not have a blue maximal antichain. O

Notice that the hypothesis for P in Theorem 2.3.4 applies to any chain-finite
poset P which has an element b not in max(P) U min(P) such that 6] = P. The
next two theorems defy the general difficulty of finding hockey products. HoWever,
the difficulty of finding hockey products is evidenced to some extent by the fact
that all the hockey poset products mentioned in this thesis have only factors of
height 2.

Theo.rem 2.3.5 If P is a hockey poset of height two, then P X 2 is hockey.
Proof. Let I be the set of isolated points of P; thatis, I = {z € P: z] = {z}}.

Then P x 2= ((P )+ 1) x2=((P I)x2)+ (I x2)=((P ]) X 2) + per 2.

Because of Theorem 2.2.3 and the fact that chains (in particular, 2) and antichains

are hockey, P X 2 is hockey if and only if (P~I) X 2 is‘hockey. Therefore, it suffices
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to prove the theorem for posets with no isolated points. So assume that P has no

isolated points. 7

Let E = {(2,0) € Px 2:z € min(P)} U{(y,1) € P x 2:y € max(P)}. Fix a
coloring of P X 2 so that it has no red maximal chain. Let R denote the set of red
points, and B the set of blue points. Let R’ = {r € RNE:r{NRNE = {r}}.
No two points in R’ are comparable, so R’ contains no maximal chain of E. Since
E=>~PandPis hoci(ey, this tells us that R’ is not a fibre and so there exists, A4, a
maximal antichain of E, such that ANR' = §. Let By = AN(R']). So B; C E and
B; is a blue antichain with R’ C B;]. Let B, be an antichain maximal in BN E
with By C By. Let By = By U (B B;]) € B2 U ((P X 2)NE). Then Bj is a blue
antichain and B C Bs]. Furthermore, by the following, R C B3], and therefore
Bs is a maximal antichain.

We know that R' C B;] C B,] C Bs].

Suppose (z,0) € EN R NR'. Then z € min P and there exists y € max P such
that (y,1) > (z,0) and (y,1) € RN E. Since {(z,0),(z,1),(y,1)} is a maximal
chain, and P x 2 has no red maximal chain, (z,1) must be blue. So (z,1) € Bs].
In fact, since the only ];;oint less than (z,1) is (z,0) which is red, we know that
(z,1) € Bs|. But then (z,0) must be in Bs| also. Similarly, any (z,1) € ENR\R'
must be in B3{. Therefore, E N R~NR' C Bs]. Since R’ C B;], it remains only to
show that RNE C Bs].

Suppose (z,1) € RNE, so z € min P. Now, {(z,0),(z,1),(y,1)} is a maximal
chain of P x 2 for every y > = in P. Therefore, if (z,0) is red, then (y,1) is blue
for every y > z and (z,0) € R’ C B;[. If this were the case, then the element of

B, comparable to (z,0) would have to be some (y, 1) such that (y,1) > (z,0), but
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then (y,1) > (z,1) also and thus (z,1) € B;] C B,] C Bs]. So assume (z,0) is
blue. Then (2,0) € Byl. If (z,0) € B, then (z,1) € Byl and if (y, 1) € B, such
that (y,1) > (,0) then (z,1) € (y,1)| C B,|. Therefore, R C Bs]. a

It may be possible to generalise this result as indicated in Question 2.3.6. A
positive answer to Question 2.3.6 would provide more evidence in favor of a positive

answer to Question 2.3.9.

Question 2.3.6 Is P x 2™ hockey for every hockey poset P of height 2 and every
neN?

Define K, , = 7@, which is hockey by Corollary 2.2.4. The Hasse diagram of

VY

Theorem 2.3.7 Ki, X K1, is hockey for any cardinals m,n.

K 3, for instance, is:

a a1 ... ai€n) bo b ... bi(jem)

0 0

Proof. Label the elements of K, and Ky, as above. Let P = K , X Ky .
“Let A = {(a:,0) : ¢ € n} and B = {(0,b;) : j € m}. Notice that AU B is a
maximal antichain. Let F be a fibre of P. So (0,0) € F since {(0,0)} is a maximal

antichain of P. If we can show that F' contains a maximal chain, then P is hockey.
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CasE 1: FNA#0, FNB#0.

In this case, let M = ((AU B)F) U {(as,b;) : (a;,0) € F,(0,b;) € F}. Since
M is a maximal antichain, we know that M N F # 0. Let 2 € M N F. So z is of
the form (ay, ;). But then (a,0) € F. So {(0,0), (ai,0), (@i, b;)} is a maximal

chain contained in F.

CASE 2: BN F =0.
Let M = (ANF) U {(ai, bo) : (a;,0) € F}U(B~{(0,b)}). Since M is a maximal
antichain, we know that M N F # 0. Let z € M N F. So z is of the form (as, bo).

But then (ai,0) € F. So {(0,0),(ax,0), (ai, bo)} is 2 maximal chain contained in
F.

CASE 3: AN F = (. This is analogous to Case 2.

So F' contains a maximal chain. Hence, P is hockey. (]

The previous two theorems show some cases where products of hockey height-2
posets are hockey. One might start wondering if the product of é,ny two hockey
height-2 posets is hockey. But this turns out not to be true. For a co'ﬁnterexa,m-
ple, we need look no further than the simplest product we have not yet classified:
Ky, x K3,1. The fact that this product is not hockey is a corollary of the following

theorem.

Theorem 2.3.8 Let P be a poset with py,p; € min(P)> max(P), p1 # p2, and

p1] € pol. Let Q be a poset with g1, ¢ € max(Q)> min(Q), g1 # g2, and ¢:] C ¢al.
If P and Q are chain-finite, then P x Q) is not hockey.
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Proof. Color (p1,q1) blue. For every other (p,q) € P x @, color (p,q) blue
unless p = p; or ¢ = ¢;. In those cases color (p,q) red. That is, the set of red
points is ({p1} x @) U (P x {&:H)> {(p1, )}-

Does P x @ have a red maximal chain? Suppose it does, call it B. Each point
in R has p; or ¢, as a coordinate. Each point of R having q; as a coordinate is
greater than each point of R having p; as a coordinate. Let (p,q:) be the least
point of R héving q1 as a coordinate. Let (p1,q) be the greatest point of R having
p1 as a coordinate. So (p,q1) > (p,q) > (p1,¢). But then RU {(p,q)} is a chain.
This contradicts our assumption that R is a maximal chain since (p,q) € B. So
P x @) does not have a red maximal chain.

Does P x @ have a blue maximal antichain? Suppose it does. Call it B. B
must include a point comparable to or equal to (p2,¢1). But B cannot include
(P2, q1) itself since it is red. And B cannot include a point greater than (ps,q:)
since (p,q) > (p2,¢1) = ¢ = ¢1,p # p1 = (p,¢) red. So if (p,q) € B is comparable
to (p2,¢1), then (p,q) < (p2,q1). So p = p2, ¢ < ¢1. That is, (ps,q) € B for some
9<aq.

Similarly, B must include a point (p/,¢s) with p’ > p;. By hypothesis, p’ >
pr=>p >p,and ¢ < @1 = g < g2 So (P,q2) > (p2,q2) > (p2,¢). Thisis a

contradiction since (ps, q) and (p/, ¢2) are in B, an antichain. O

Remark Theorems 2.3.5, 2.3.7, and 2.3.8 show that K, X Ky m is not hockey

if and only if n,m’ > 1 or (symmetrically) n/,m > 1.

There may be more interesting theorems like 2.3.5, 2.3.7, and 2.3.8 which apply

to products of height-2 posets. For instance, the diagram below shows that the
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direct product of the five-element fence (z1 < z3 > z3 < z4 > z35) with itself is
not hockey, and this result is not covered by Theorems 2.3.5, 2.3.7,and 2.3.8. The
points marked with hollow circles obviously do not yield any maximal chains, and
they form a fibre by the following. Call the set of hollow points F'. Suppose A is a
maximal antichain disjoint from F. 1{~F = {1’} so 1’ € A. Then 2]\(F U A]) C
{2} so 2/ € A, thus 3]~ (F U A]) C {3’} so 3’ € A. This makes 4] (F U A]) = 0.
Therefore, it is impossible for a maximal antichain to be disjoint from Fandso F

1s a fibre.

Question 2.3.9 Is it true 'that for any posets Py, P2, P3 such that P; x P; is hockey
for all distinct i,j in {1,2,3}, P, x P, X P3 is hockey also?

We have been unable to find a counterexample. But, by induction, if the
answer is yes, then it is yes for the product of any finite number of posets, not
just 3. Furthermore, if the answer to this question is yes, then so are the answers
to Questions 2.3.6 and 2.4.1. In Section 2.5, we get a positive answer to Question

2.3.9 for finite posets representable as powers of 2 (i.e. distributive lattices).

Question 2.3.10 If Q) is not an antichain and P X Q is hockey, is P x 2 necessarily

hockey?
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2.4 Products of Claws

Question 2.4.1 Is Ky m, X ... X Ky m, hockey for everymy,...,mi € N2

Corollary 2.2.4 and Theorem 2.3.7 show that the answer to Question 2.4.1 is
yes if k& < 2. Duffus, Sands, and Winkler [DSW90] showed that the answer is yes
when my = ... =my =1 (i.e. for 2x...x 2). We will now prove positive answers
in two more special cases. We abbreviate Ky; X ... x K1 (r times) by (K1,1)". In
the first case, we adapt the method of [DSW90] to show that two of the factors of

(K1,1)" may be replaced by K 1, X K 5.

Theorem 2.4.2 Letr, m, and n be natural numbers. Then (Ky1)" X K1m X K1
is hockey.

Proof. Assume for a contradiction that the theorem is false. Then there is
some (r,m,n) € N x N x N for which the theorem fails. Pick (r,m,n) minimal
in N x N x N so that (K1,1)" X Kym X K1, is not hockey. Since direct product is
commutative, we may assume without loss of generality that n > m.

Let s=r+1landt =r+2 Let Ey = {1}, E, = {2}, ..., E. = {r},
Es={s1,...,8m}, and E; = {t1,...,t,}. Define P = (K;11)" X K1m X K1, by

P={XC OE,-:|XOE,-| <lfori=1,...,t}
i=1
ordered by set containment.

Since P is not hockey, it has a fibre F which contains no maximal chain. § € F
since {0} is a maximal antichain. Furthermore, if m > 1 then {s;} € F for each
¢ € {1,...,m} by the following argument. Suppose m > 1,: € {1,...,m}, and
{si} € F. Let P' = P {s;}1. So P' = (K11)" X Kim—1 X Ki1n. P' is hockey
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by the minimality of (r,m,n). F NP is a fibre of P’ since if A is a maximal
antichain of P’ disjoint from F, then AU {{s;}} is a maximal antichain of P and
(AU {{s;}}) N F = 0, impossible. So there exists C C P’ N F a maximal chain
of P'. But then C C F is a maximal chain of P, a contradiction. Thus, if m > 1
then {s;} € F for each ¢ = 1,...,m. Similarly, if n > 1 then {#;} € F for each
1=1,...,n.

We now proceed with the method of [DSW90]. We define sets X§ analogous
to the “lexical chains” used in [DSW90]. Let X € P. Define

X?II = {X>X\E17X\(E1 UE2),---,X\(E1UE2U-..UEt) = 0},

Xt ={X,XUE,XUEUE,...,.XUEUEU...UE,}U
{XUEU...UE U{s;} eP:1<i<m}U
{XUEU...UE U{s;}U{t;} eP:1<i<m,1<j<n}.

Put Xi = XTUX|, so every Xi is a union of maximal chains of P. Forall X C P,

define XT = Uyex XT, X} = Uxex X{, and X = XFU X
For any § C F, call § critical if there do not exist 4,8 C ’P such that
(1) AU B is an antichain disjoint from F;
(2) § C ALUBT;
(8) AC ST, BC S|
Since F is a fibre, no A,B C P can satisfy (1) and (2) for § = F, so F is
critical. §§ is not critical since A = B = § satisfy (1)-(3) for § = . Since F is

finite, 7 must contain a minimal critical set M. That is, M is critical but no

proper subset of M is critical.
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For each X € M and each Y € X{\F, define rank(X,Y) to be the least 4
such that Y C X U Ey U...U E;. For each X € M and each Y € X[\ F, define
rank(X,Y) to be the least ¢ such that Y = X~ (B UE,U. . .UE;). Foreach X € M,
define rank(X) = min{rank(X, V) : ¥ € X} F} — we know that X4 F # 0 since
X i is a union of maximal chains of P, and F contains no maximal chain of P.

Let M € M be such that rank(M) < rank(X) for every X € M. Let M’ €
M3~M be such that rank(M, M') = rank(M). Since M~{M} is not critical, we
can pick A, B satisfying conditions (1)~(3) for S = M~{M}. Then A, B satisfy
(1) and (3) for § = M also. A, B cannot also satisfy (2) since M is critical, so
M ALUBT.

There are two cases to consider: M C M’ and M’ C M.

First suppose M C M'. Let A' = (ANM'}) U {M'}. We now derive a con-
tradiction by showing that A’,B satisfy (1)-(3) for § = M. Since M’ € MF
and AN{M'} C A C MF, we know that A’ C MF. And we already knew that
B C M|, so (3) is satisfied. 7

AlUBT=((AAM)U{MNHIUBTD AlUBT D2 M N{M},and M € M'| C
A’l. So M C A’'| UB1T. That is, (2) is satisfied.

It is obvious that A’UB is disjoint from F. Since AUB is aﬁ antichain, we only
need to verify that M’ ¢ (A~N{M'})] and M' ¢ B] to show that (1) is satisfied.
Since M C M' and M ¢ Al|, we know that M’ ¢ A] D (A~N{M'})]. Since
AN{M'} = AN{M'}], obviously M’ & (A'~N{M'})T. So A’ is an antichain. Why
is M' € B impossible? Let B € B. B € M{xM and so BN E; = 0. But M’ €
MFN{M} and so |M' N Ey| = 1. Hence M’ € B. Since there exists B’ € M such
that B € B'| and rank(B’) > rank(M), we know that BN(E1U. ..U Epnan)) = 0.
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S0 BSM' 2 BN(MUEUE,U. . .U Euan) = (BN(ByUEU. ..U Eppian) )N M =
B~M. Since M ¢ BT, thissays BN\M' 2 BNM # (. So B € M’ and thus M’ ¢ B].
But then A, B satisfy (1)-(3) for § = M, a contradiction. So the case M C M’
cannot occur.

Now suppose that M’ C M. So M' = M~(E; U Ey U ... U Enqar)). Let
B'=(B~xM'T)U{M'}. Let S = M. Then, dually to the case M C M’, (2) and (3)
are satisfied by A, B’. That AUB’ is disjoint from F and B'NM'] = {M'} are also
dual to facts in the case M C M’. But to show that AN M’'] = @ and therefore
(1) is satisfied requires more work in this case. Let A € 4. A € MT\M and so
|ANE;|=1. But M' € M{>{M} and so M'N E; = 0. Hence A € M'. We know
that M ¢ A. Assume M’ C A. Then (M ~M')NA = M~(M'U A) = M~A # 0.
M-~M' C EyU...U Epuqy). So (By U E;U ... U Egan)NA # 0. But since
there exists A’ € M such that A € A’} and rank(A’) > rank(M), we know that
|ANE| =1, |ANE,| =1, ..., |AN Eqnan] = 1. Therefore, there must be some ¢
such that 1 < ¢ < rank(M) for which |E;| > 1. Since |Ey| = |Eo| =... = |E| =1,
this tells us that rank(M) > ¢ > r 4+ 1. Since M’ = M N(Ey U ... U Eranr)),
this tells us that M’ either is a singleton subset of E,., = E; or is . Since
§ € F and M' ¢ F, M’ must be a singleton subset of E; and rank(M) must be
i=s=t—1. So |E;] =n > m = |Es| > 1. But recall the first result following
from the minimality of (r,m,n): if n = |E;| > 1 then every singleton subset of E;
isin F. So M’ € F, a contradiction. So the case M’ C M cannot occur.

With this contradiction, we have proven that F contains a maximal chain. O

Theorem 2.4.8 Let [, m, and n be natural numbers. Then Ki; X Ky m X K1 15

hockey.
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Proof. Assume for a'contradiction that the theorem is false. Then there is
some (I,m,n) € N x N x N for which the theorem fails. Pick ({,m,n) minimal in
N x N x N so that K;; X Kin X Ky, is not hockey. We know that I,m,n > 1
since otherwise K X Kj m X Kj, is hockey by Theorem 2.4.2.

Let By = {11,1s,..., i}, B2 = {21,22,...,2n}, and E3 = {31,32,...,3,}. Let
P={XCULE :|XNE;]| <1fori:=1,2,3}. Order P by set containment.
Then P = Ky X Ki,m X K1,n. The two diagrams on the previous page are the Hasse
diagram of K 3 X K3 X Kj 5, and a less cluttered diagram of K33 X K14 X K 5,
graphically embellished to illuminate the proof. We will abbreviate set notation
by omitting commas and parentheses. For instance, 112; will stand for {1;,2;}.

Let F be a fibre of P which contains no maximal chain of P. Then § € F since
{0} is a maximal antichain of P. As in the proof of Theorem 2.4.2, the minimality
of (I,m,n) tells us that F must include every singleton in P by the following.
P~(L47) & Kij-1 X Ky m X Ky, is hockey by the minimality of (I,m,n). So if
F~(117) is a fibre of P~ (117), then it contains a maximal chain of P, contradicting
our assumption that F contains no maximal chain of P. Thus, there is some A
a maximal antichain of P~(1,7) which is disjoint from F. But then AU {1,} is a
maximal antichain of P and so 1; must be in F. By symmetry, every singleton in
P must be in F.

Since the set of all doubletons in P is a maximal antichain, one of them must
be in F. Assume without loss of generality that 1,2; is in F. In the diagram, the
points marked with hollow circles are éome points of a particular choice of F for
Ki3x K14 %X Ky 5.

We will now construct a maximal antichain of P disjoint from F. Make the
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following definitions.
Ap = {1i2;3x € P: 125 € F}, Pr = Ay,
By ={2;:2; ¢ Al}, Pz = BiT,
Pz =P~(PLUP,).

It is easy to see that {Py,P;,Ps} is a partition of P. P, & T3(Kiy x K1),
where b = |By]. In the diagram, the points in A; are surrounded by double-walled
rectangles. The points in P; are surrounded by rectangles. The points in P, are
surrounded by ovals.

Obviously, A; is an antichain and P; = A;]. A4, is disjoint from F since § and
all the singletons are in F, and F contains no maximal chain, so each 1;2; € F
implies 1,2;3, & F for k=1,...,n.

Next, we find an analogous antichain A, in P,. That is, we will find an antichain
A, disjoint from F such that P, C A4,]. To do this, we shall break down P, into
smaller pieces. For each 2; € P;, define P;; = 2;T. Then P; = |J; Ps,;. Choose a
particular P, ;. We want to find an antichain A;; C Py ; such that Py ; C Ay ;]
and A, ; is disjoint from F. {2;} is not a satisfactory choice for A, ; since 2; € F
(remember that all singletons are in F). The next obvious choice to check is the
set of all doubletons in P, ;. We know that each 1;2; ¢ F since otherwise we would
have 2; € P;. Unfortunately, there is no guarantee that every 2;3; € F. But we

will make this choice whenever possible; that is, if {2;3; € F} = 0 then let
Az,j = {lizj € 'P} U {23'31: € 'P}

When {2;3; € F} # 0, we will choose A, ; as close as possible to the choice
just described. We will modify the choice by replacing 2;3; by 1:2;3; for each

2;3; € F. Since F contains no maximal chain of P, we know that 1,2;3; ¢ F
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whenever 2;3; € F. This choice necessitates dropping 112; from A, ; to keep it an

antichain. To put this in the proper notation, if {2;3; € F} # 0, then let
Az ={1123r € P : 23, € FIU {23, € P: 2,3, ¢ F} U{L;2; € P:4 > 1}.

By either definition, A; ; is an antichain disjoint from F, and 2;1 C A ;1. We have
just described the choice of a particular A, ;. Apply the same method for every j
for which P, ; is defined. Then let 4; be the union of the A, ;’s. A, is an antichain
since every element of any A, ; includes 2; and no 2; for any j' # j. Thus A, is
an antichain disjoint from F and P, C A,]. In fact, 4; U A; is an antichain since
A; C maxP and each element of A; includes a 2; such that 2; & A;|. So A; U A,
is an antichain disjoint from F and P; U Pz C (A; U Ap)].

Another fact we will need is that A,J NP3z C F. Ay C Pol = Pa, leaving
just Ay] NP3 C F to be verified. Since §§ and all singletons are in F, the only
way this could fail is if there is some X € (Az] N P3) > F where | X| = 2. Assume
such an X exists. Then there exists Y € A; such that X C Y and |Y| = 3.
Y| =3 and Y € A, imply that Y = 1,2;3; for some j, k such that 2;3; € F. So
X € {112;,113k,2;3;}. We' can eliminate the case X = 2;3; since 2;3; € F (also
2;3; € P;). We can eliminate the case X = 1,3 since 112; € F, s0 1,213, € 4,
and 1,3 € A1l = P1. So X = 1,2;. 1,2, = X € P; implies 1,2; € Ps, so
2; € Al. But Y =1,2;3; € A2 C P, implies 2; &€ A;|. With this contradiction,
we conclude that 4, NPs C F.

Finale, we find an antichain A3 in P3 such that Aj is disjoint from F and
Ps C As]. Foreachi € {1,...,(} such that 1,7 NP; # 0, 1,7 NP5 is hockey as
the following two cases show. If ,T NPy = @, then 1,1 NPz = LN(PLUP,) =
LTNPy 2 Ky X Kine I LTN Py # 0, then 1,7 NP3 = Y5 Ky where
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r =m — |By| — |{1;2; € F}|. The correctness of these claims is fairly clear if one
consults the diagram. If 1;TN P3N F is a fibre of 1,7 N P; # 0, then it contains
a maximal chain of 1;T N P; whose union with {§,1;} is a maximal chain of P
contained in F, a contradiction. Thus, 1;TNPs N F is not a fibre of 1,7 N P and
we can pick As; a maximal antichain of 1;T N P; disjoint from F. Let Az; = 0
for each ¢ € {1,...,1} such that 1,TNPs = 0. Let Az = Ui; As;. As is an
antichain since each As; is an antichain, and each element of any As; includes 1;,
making it impossible for elements of distinct A3 ;’s to be comparable. So A3 is an
antichain disjoint from F and P3 C As]. Recall 4, NPz C F, and A1 = Py, so
Az C P3>(A1JUAL]). Thus, 41UA2UA3 is a maximal antichain of P = PiUPUP;
and is disjoint from F, which we assumed was a fibre.

This contradiction completes the proof. o

2.5 Exponentiation

For posets P and @, a function f : @ — P is called order-preservingif ¢ < ¢’
in @ implies f(¢) < f(¢') in P. Define the exponent P? to be the set of order-
preserving functions f : Q — P ordered as follows: for f,g € P9, f < g if and
only if f(¢q) < g{(q) in P for every ¢ € @. Notice that 2 x 2 X ... X 2 (n times),
which was shown to be hockey in [DSW90], is isomorphic to 2%, a Boolean lattice.

For any posets P, and P, with subsets P| and P; such that P, = 1@ P/ &1
and P, = 1®P,®1, define PLOP, = 1® P ®1® P;® 1. In other words, if P; and
P, are bounded posets, then P,@P; is the poset obtained by placing a copy of P,
above a copy of P; and identifying the top point of P; with the bottom point of Ps.

Notice that @ is associative, so it makes sense to write P& P® ... ®F, without
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parentheses. Py@P, is hockey if and only if both P, and P, are. This follows
from Theorem 2.2.3 with the observation that P, @ P, = ¥ cpgp, C= Where each

Crz = 1 except for Cp,, = 2 where m is the middle (so to speak) element of P,@P;.

Furthermore, for any posets @; and Qg, 291992 = 2€232%,

Theorem 2.5.1 For any finite poset P, 2% is hockey if and only if P is a linear

sum of antichains.

Proof. Suppose that P = A; @ ... ® A where each A; is a finite antichain.
Then

2P — 2(A1G3...®Ak) — 2(A2$...63Ak)§2/11 — 2Ak—6§2‘4k__1@-. ) .@2A2@2A1.

The subposets 24 are finite Boolean lattices. From [DSW90], or Theorem
2.4.2, we know that every finite Boolean lattice is hockey; therefore 2F is hockey.
Now suppose that P is not a linear sum of antichains. Then it has three points

z,y,z such that z < z, y || 2, and y | . Define

K ={f €2 f(t) =1 for every t > z, f(z) = 0}.

K is a cutset of 2F since any maximal chain in 27 has a greatest element mapping
z to 0 and this element is in K. However, K contains no maximal antichain by

the following.

Define f, g,k € 2F by
f(t)=11if and only if ¢t > z.
g(t)=1if and only if ¢t > .

h(t) =1 if and only if ¢ > y.
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Suppose A C K is a maximal antichain of 2F. Since gJ N K = {f}, we must
have f € A. But {f} = min K, so we must have A = {f }."This is impossible since
h || f and so {f} is not a maximal antichain. Thus, K is a cutset of 2P which

contains no maximal antichain. a

The finite distributive lattices are precisely the posets which can be expressed
as 2P for a finite poset P ([DP90] Corollary 8.18 and Exercise 8.18). Thus the
finite distributive lattices which are hockey are characterized. They are the ones
which are isomorphic to linear sums of Boolean lattices with 0’s and 1’s of vertically
adjacent lattices identified.

For any posets P, and Py, 2Pt x 2P = 2P1+FP: So Theorem 2.5.1 shows that
271 x 2% is hockey if and only if P, and P, are antichains. This gives us the

following positive answer to Question 2.3.9 for finite distributive lattices.

Corollary 2.5.2 Let @y, Q2, and Q3 be finite distributive lattices. If Q1 X @2,
@2 X @3, and Q1 X Q3 are all hockey, then Q1 X Q2 X Q3 is hockey.

Proof. Since @1, @2, and @3 are finite distributive lattices, there are finite
posets P;, P;, and P; such that Q; =2 271, Q3 = 272, and Q5 = 2. For all distinct
i,7 €{1,2,3}, Qi x Q; & 2F x 2F = 2P+F5 50 P; 4+ P; must be an antichain by
Theorem 2.5.1. But then P, + P, + P3 is an antichain and so @3 X @2 X Q3 &

2P x 2P x 2P = 2Pi+Pe+Ps i hockey by Theorem 2.5.1. O
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2.6 Zigzags and Cycles

A fence is a connected subset of:

An endpoint of a fence is just what one would expect. A fence has zero, one,
or two endpoints, according as it is two-way infinite, one-way infinite, or finite.

A crown is constructed by identifying the two endpoints of a finite fence which
has an odd number of elements, at least 5. Any crown has an even number of

elements. Some crowns are:

P O XA

Zigzags and cycles are constructed by adding points on edges of the Hasse
diagrams of fences and crowns, respectively. These added edge-points, together
with endpoints of zigzags, are called e-points.

In the-next two diagrams, the e’s indicate the e-points. An example of a zigzag

is:

An example of a cycle is:
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A finite fence P’ is said to be e-embedded in a zigzag or a crown P if P’ is a
subposet of P and both endpoints of P’ are e-points in P. The distance between
two distinct points in a zigzag (respectively, cycle) is the number of maximal and
minimal points strictly between the two points on the path (respectively, a path)
connecting them. For d € {0,1,2}, two points are said to be at reduced distance
d from each other if the distance between them (either distance in the case of a

cycle) is congruent to d modulo 3.

Lemma 2.6.1 Suppose k > 1 and P is the k-element fence 21 < o > z3 < ...T%.
P is hockey if and only if k £ 1 (mod 8). Furthermore, when k =1 (mod 3), the
only fibre of P containing no mazimal chain is {z1, T4, T7,..., Tk}

Proof. The lemma is true for k € {2,3} by Corollary 2.2.4.

Consider the case k = 4. {z1,z3} and {z3, 4} are maximal antichains. Clearly
any set other than {z,, 4} which meets both these maximal antichains contains a
maximal chain. And {z1,z4} is a fibre since any maximal antichain disjoint from
it would have to meet z1]>{z1} = {22} and z4]{z4} = {23}, but z2 > z;5. So
the lemma is true up to k = 4.

Pick k such that the lemma holds for all lesser values of k. Suppose F is
a fibre of P containing no maximal chain of P. Then z; € F since otherwise

A = {z;-y : 2; € F} would be an antichain such that FF C AJ~A and so A could
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be extended to a maximal antichain disjoint from F. So z; € F and z, € F. If
Fx{z1, %3, 23} is not a fibre of P~{z;, 29,23}, then we can choose A‘a, maximal
antichain of P~{z1,2s,23} disjoint from F~{zy,z2,z3} and then AU {z;} is a
maximal antichain of P disjoint from F, a contradiction. So F'~{zy, 2,23} is a fibre
of P~{z1, 22, 23} containing no maximal chain. Since the lemma holds for £—3, this
tells us that k = k—3 = 1(mod 3) and F~{z1, 22,23} = {24, 27, Z10,--.,%x}. Then
z3 & F since {z3,24} is a maximal chain and z4 € F. So F' = {21, 24, %7,...,Zk}.
It remains to show that F = {z1,z4,27,..., 2k} actually is a fibre.

Assume for a contradiction that A is a maximal antichain disjoint from F.
Since A is disjoint from F'~{z:} a fibre of P\{$1,$2;$3}, A~N{zy, 29,23} is noOt a
maximal antichain of P>{xy,22,23}. So (AN{z1, 29, 23})] # P\ {21, 22, 23}. Since
Al = P and {z1, 23,23} {21, 22,23} = {z4}, the only way this can happen is
if 24J N A = {z3}. We must also have z;J N A # §. Since z1] = {z1,z2} and
z1 € F, this tells us that o € A. But then z; and z3 are comparable elements of
A, impossible.

The lemma follows by induction. a

Maltby (aka Your Humble Narrator) and Williamson stated Theorem 2.6.1
without proof in [MW92]. They went on to examine the following generalisation
of fences different from zigzags. Any fence with an odd number of elements can
be expressed as the union of two consecutive levels of w?. Maltby and Williamson
addressed the question of when a union of two consecutive levels of w® is hockey
and found that any two consecutive levels of w? form a hockey poset, except for
the n** and (n + 1)** levels of w? when n = 2 (mod 3) (where the lowest level is

called the 0! level). This leaves mostly open the question of which unions of levels
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of w* form hockey posets. This question is made a little less open by Maltby and
Williamson’s result that for any r > ¢, the union of levels 2 and r in w' is not a

hockey poset [MW92].

Getting back to the main subject of this section (zigzags and cycles):

Lemma 2.6.2 Let P and P’ be posets such that P' C P and every mazimal chain
of P contained in P'] intersects P' in a mazimal chain of P'. If P is hockey, then
so is P'.

Proof. Let " be a fibre of P'. Let F = F'U(P']>P') in P. We show first that
F is a fibre of P. Let A be a maximal antichain of P which does not meet P'J~ P’
Then, foreachz € P', ) # 2JNA C P'NA. Therefore, P'NA is a maximal antichain
of P’ and so meets F’. So any maximal antichain of P meets either P'{~ P’ or F'.
This shows that F' = F' U (P'[NP’) is a fibre of P. Since F' is a fibre of P and P
is hockey, F' must contain a maximal chain of P, callit C. C C F C P']. So C
contains some C’ a maximal chainof P/. C'=CNP CFNP =F'". So(C"is a
maximal chain of P’ contained in F”.

Thus, P’ is hockey. ﬂ 0

Theorem 2.6.3 A zigzag 18 hockey if and only if it has no two e-points at reduced
distance 2 from each other.

Proof. If P is a zigzag with comparable e-points, then there is a zigzag ¢ with
no comparable e-points and a set of chains {C, : z € Q} such that Y ,cq Cr = P.
The zigzag () is obtained by identifying comparable e-points in P. This means
that the maximals and minimals of () are the same as those of P, and the distance

between any two e-points in () is the same as the distance between their antecedents
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in P. Since we know chains are hockey, Theorem 2.2.3 tells us that P is hockey

if and only if @ is hockey. Therefore, it suffices to prove this theorem for posets

having no comparable e-points.

Let P be a zigzag with no comparable e-points which has two e-points at
reduced distance 2 from each other. Label these e-points and the maximals and
minimals between them zy,...,z; so that 21 < z > 23 <mp (or z1 >z <
&3 > ...x) with z; and zj the e-points. Then P’ = {z;: 1 < < k} is a fence of
size k = 1 (mod 3). By Lemma 2.6.1, P’ is not hockey. It is easy to see that every
maximal chain of P contained in P'J intersects P’ in a maximal chain of P’. Thus,
by Lemma 2.6.2, P is not hockey. An example is shown below. z; and zi0 are at
reduced distance 2 from each other. The z;’s are the points of P', a 10-element
fence. The points marked with hollow circles form a fibre containing no maximal
chain, constructed according to the proofs of Lemmas 2.6.1 and 2.6.2.

T2 T4 T8

Te
I z3 T10

Zs5 z7 T9

It remains to prove the “if” part of the theorem. Let P be a zigzag having no
comparable e-points and no two e-points at reduced distance 2 from each other.
This implies that P can be e-embedded in one of the two posets pictured below
by the following.

It is easy to see that if all pairs of e-points in P are at reduced distance 0, then
P can be e-embedded in the first of the two posets below, Fy. But suppose P has
two e-points at reduced distance 1 from each other. Let p and ¢ be two e-points at

minimum distance from each other such that their reduced distance is 1. Then P
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can be e-embedded in the second of the posets below, Py, (or its‘dua,l, Pg, which is
not illustrated) with p as by and g as b, for some negative n. We know that all the
other e-points in P will coincide with ones in the diagram because: an e-point on
any c-d edge to the left of by would be at reduced distance 2 from by, an e-point on
any c-d edge to the right of by would be at reduced distance 2 from b,, an e-point
on any a-d edge to the left ‘of b, would be at reduced distance 2 from b,,, an e-point
on any a-d edge to the right of by would be at reduced distance 2 from &g, and an
e-point on any a-d edge between b, and by would be at reduced distance 1 from b,

and violate the condition that no e-points at reduced distance 1 are closer together

than by and b,.

Therefore, by Lemma 2.6.2, the theorem is true if P, and P; are hockey.

Let X be a subset of Py containing no maximal chain. We will prove that X
cannot be a fibre by constructing a maximal antichain A disjoint from X. For each

1 €72
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if ¢; € X then put ¢; € A,
if ¢; € X and b; € X then put b; € A,

if ¢;,b; € X then put a; € A.

Then A is an antichain disjoint from X and X~NA] C {d; : ¢; € X} C P~ X.
This implies that X~ Al = 0. Therefore, A can be extended to a maximal antichain
disjoint from X. So X is not a fibre, and F, is hockey.

We deal with P; in pretty much the same way as Pé. Let X be a subset of P,
containing no maximal chain. If d; € X for every ¢ > 0 then put A} = {a;:7 > 1}.
Otherwise let ' = min{z : ¢ > 0,d; ¢ X}, and put A} = {a; : 1 < i <4} I
d; € X for every ¢ < 0 then put A7 = {a; : ¢ < —2}. Otherwise let 1" = max{s :
i < —1,d; ¢ X}, and put A7 = {a; : i <1 < —2}. Then for each i ¢ {0,~1}

such that a; € AT U A7:

if ¢; & X then put ¢; € A,
if ¢; € X and b; € X then put b; € A,

if ¢;, b; € X then put a; € A.

Let Ao be a maximal antichain of {c_1,b_1,a_1=ao,bo,co} disjoint from X
and let A’ = AgU A} U A7 UA. Then A’ is an antichain disjoint from X and
X~NATC{d;:¢; € X} C P~ X. This implies that X~ A’] = §. Therefore, A’ can
be extended to a maximal a,nt%chain disjoint from X. So X is not a fibre, and P;

is hockey. 0

Before going on to the general result for cycles, we will examine separately each

cycle with only 2 or 4 extreme points.
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The only cycle with exactly 2 extreme points is 1 @ 2 @ 1 which is hockey.

Actually, one might not want to consider this a cycle, but this is a trivial matter.

The cycle with exactly 4 extreme points and no e-points is isomorphic to 2 2

AN

The cycle with 4 extreme points and one e-point is easily verified to be hockey.

AN

There are two non-isomorphic cycles with 4 extreme points and 2 e-points.

and so is hockey.

Both are easily verified to be hockey. The second one would violate Theorem 2.6.4

if the hypothesis did not exclude cycles with only 4 extreme points.

A Y

Cycles with 4 extreme points and 3 or 4 e-points are not hockey. The points

drawn as hollow circles comprise fibres not containing maximal chains.
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Theorem 2.6.4 A cycle with more than 4 extreme points is hockey if and only
if it has no two distinct e-points at reduced distance 2 from each other.

Proof. We will consider only cycles with no two comparable e-points. This is
sufficient for the same reason here as it was in the proof of Theorem 2.6.3. Let P
be a cycle with two points at reduced distance 2 from each other; Then P has a
k-element fence P’ e-embedded in it for some k£ > 1, £k = 1 (mod 3). By Lemma
2.6.1, P’ is not hockey. If every maximal chain of P contained in P'] intersects P’
in a maximal chain of P’, then, by Lemma 2.6.2, P is not hockey. It is easy to see
that the only case where this does not happen is when only two extreme points of
P are not in P/, as in the diagram below where the points of P’ are marked with
hollow circles, and the eﬁdpoints of P’ are labelled a and d. It should be clear
that this diagram and the ones that follow in this proof are to be interpreted as
wrapping around. That is, if you go past one end of the diagram, you eventually

come back on at the other end of the diagram.
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In such a case, one may let P” be the 4-element fence consisting of the two end-
points of P’ and the two extreme points of P not in P’. Since we have specified
that the cycle has more than 4 extreme points, we know that there are more than
2 extreme points of P which are not in P”. So every maximal chain of P contained
in P"] contains a,’ma,xima,l chain of P”, so we can apply Theorem 2.6.2 to see that
the cycle is not hockey.

It remains to prove the “if” part of the theorem. Let P’ be a cycle having no
two e-points at reduced distance 2 from each other. Then, for some k € N, P’ can
be e-embedded in Py(k), Pi(k), or P;(k)?, as described by the diagrams below, so
that any maximal chain which is contained in P'J contains a maximal chain of P'.
Therefore, by Lemma 2.6.2, the theorem is true if Po(k) and Py(k) are hockey for

all £ € N for which they are defined. (Each diagram requires & to have a certain

parity.)

. Let P be Py(k) or Py(k) for some k € N. Let X be a subset of P containing

no maximal chain. Then for each ¢ € {0,..., k}:
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if ¢; € X then put ¢; € A,
if ¢; € X and b; € X then put b; € A,

if ¢;,b; € X then put a; € A.

A is an antichain disjoint from X. Suppose P is Po(k). Then XNATJC {d;i: i €
X} C P X,s0 XNA] = 0. Therefore, A can be extended to a maximal antichain
disjoint from X. So X is not a fibre, P is hockey, and we are done. So suppose we
have the case where P is Py(k). XNAJ C{d;: ¢; € X}U{=z,y} C (P X)U{z,y},
so XNAJ C {z,y}. If ap € A, then X NA] = 0, so A can be extended to a maximal
antichain disjoint from X, which therefore cannot be a fibre and we are done. So
assume ao ¢ A. If o ¢ X thenlet A'= AU {z}. Ifz € X and y ¢ X then let
A" = AU {y}. In either of these cases, we get A’ an antichain disjoint from X
and X C A'J~A’, making it impossible for X to be a fibre and thus making P
hockey. So assume we have neither of these cases. That is, we have z,y € X and,
therefore, ag € X. In this case, we can relabel the points of P, keeping the same
ag, but putting by for the old z, ¢y for the old y, and so on as below. This time
the construction must work since, using the new labels, we have by, co € X and so

ap € A.




Chapter 3

Cutset- and Fibre-Straight Posets

“Outside of a dog, a book is a man’s best friend — inside of a dog, it’s too
dark to read.”
— Groucho Marx

3.1 Introduction

In this chapter, we consider the following three conditions on a poset P:

(z) P is fence-free.
(¢t) Every minimal cutset of P is an antichain.

(¢4¢) Every minimal fibre of P is a chain.
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For finite posets, each of (¢7) and (4¢¢) is a strengthening of a characterisation

of hockeyness. Rival and Zaguia [RZ85] used the condition:

(¢2) Every finite minimal cutset of P is an antichain.

They showed that (z) = (i2)'. Higgs [H85] achieved the more general result

(2)* G is Ps-free.

(¢)* Every minimal transversal of G is independent.

(¢) = (¢7). He also showed that (17) = (¢) if P is finite and presented an infinite
poset which satisfies (¢¢) but not (z). These implications are corollaries of a theorem

of Lonc and Rival [LR87] concerning the following two conditions on a graph G:
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They showed that (¢)* = (i7)* and that if G is finite, then (ii)* = (:)*. In
fact, their proof that (i7)* = (7)* does not require G to be finite — only that
every transversal contains a minimal transversal. Applying their result to the
comparability graph of a poset P shows that (i) = (4¢), and that if every cutset
of P contains a minimal cutset then (i) = (¢). Applying their result to the
complement of the comparability graph of a poset P shows that (i) = (441), and
that if every fibre of P contains a minimal fibre, then (i3i) = (i). Before presenting
Lonc and Rival’s proof, we will introduce some definitions to express the problem
more succinctly.

Call a poset P cutset-straight if it satisfies (4¢), i.e. every minimal cutset of P
is an antichain. Call a poset P fibre-straight if it satisfies (417), i.e. every minimal
fibre of P is a chain. The results mentioned above tell us that all fence-free posets
are cutset-straight and fibre-straight. The problem we address in this chapter is to
find as many classes as possible of posets for which cutset-straight implies fence-
free or fibre-straight implies fence-free. It is this author’s opinion that a poset has
no business being cutset- or fibre-straight if it has a fence, yet such posets exist.
Our objective is to find classes in which no such posets exist. One of the main
difficulties in finding these classes is that any poset P which has no minimal cutset
(respectively, fibre) is vacuously cutset-straight (respectively, fibre-straight), and

so is P + F} (respectively P @ Fy) which has a fence.

3.2 Some Old Results and Easy Corollaries

We begin by presenting Lonc and Rival’s graph-theoretic results [LR87].
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Theorem 3.2.1 If G is a Ps-free graph, then every minimal transversal of G is
independent.

Proof. Let G be a Ps-free graph and assume for a contradiction that G has a
minimal transversal T' which is not independent. Let b, ¢ € T such that (b,¢) is an
edge. Since T is a minimal transversal, there are maximal cliques Cy and C, such
that C,NT = {0} and C.NT = {c}.

Let C} = Con{v € V(G) : (v,¢) € E(@)}. Clearly C} # 0, or else we would have
ce€Cy Let CL=C.N{veV(Q): (v,b) & E(G)} # 0. Notice that C; N C’ = §.
For every u € Cj and v € C, (u,v) must be an edge, otherwise (u, b, ¢, v) would be
a Ps. So C{UC! s a clique. But (C;UC)NT C ((Co{b}) U(CN{c))NT = 0.
So Cp U C! is not a maximal clique. Let C’ be a clique maximal in Cy U C, with
CjuClL C C'. Let C be a maximal clique of G with C’ C C. Notice C' # C since
C'NT =0 while CNT #0.

Let z € C~NC'. So z & CyU C,, otherwise {z} UC’ C C, U C, would be a clique
properly containing C’. Since z € C5, we know there 1s some by € () such that
(bo, ) is not an edge. Then by & C, so by & C’, so by € Cy>C,. Similarly, there is
a cg € C, such that (co, ) is not an edge. Since ¢p & C’, ¢g € CNCy. So by # co.

We cannot be sure yet whether (b, ¢o) is an edge.

G C

bo Co

Since by ¢ C’, we know that there exists y € C’ such that (y, bo) is not an edge.

Then y‘ € C:~Cy and y # ¢ since (y,z) is an edge (since z,y € C) but (co, ) is



48

not. So (y,co) is an edge. The diagram below shows y & C! but this may not be

true.

bo Co

Since (z,y, co, bo) cannot be a Ps, (b, ¢o) is not an edge. Since (co,z) is not an
edge, we know that co € C’. So there exists a z € C’ such that (2,¢) is not an
edge. Then z € C,~C.. And z # by since (z,z) is an edge but (bo,z) is not. So

(2,bo) is an edge. (z,y) is an edge since {z,y} C C".

{
So (bo, 2,y, co) is a Ps. This contradiction completes the proof. 0O

The following two corollaries are immediate.

Corollary 3.2.2 Fvery fence-free poset is cutset-straight.
Proof. Let P be a fence-free poset and apply Theorem 3.2.1 to the compara-
bility graph of P. a

Corollary 3.2.3 Every fence-free poset is fibre-straight.
Proof. Let P be a fence-free poset and apply Theorem 3.2.1 to the complement

of the comparability graph of P. o
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In reading the next theorem, remember that any independent transversal must
be a'minimal transversal. A graph @ satisfies the hypothesis of this theorem if and
only if every transversal of G contains a minimal transversal, and every minimal

transversal is independent.

Theorem 3.2.4 Let G be a graph in which every transversal contains an indepen-
dent transversal. Then G is Ps-free.

Proof. Assume for a contradiction that G has a P; (a,b,¢c,d). Let Cj,C.
be maximal cliques with {a,b8} C Cy and {c,d} C C.. Let S = (V(G)(C, U
Cc)) U {b,c}. Then SNCy, = {b} and SN C, = {c}. So any minimal transversal
contained in S must include b and ¢, and therefore not be independent. So, by
hypothesis, S is not a transversal. Therefore, there must be a Iﬁa,ximal clique
C C (CyU C)~{b,c}. Since (a,d) & E(G), a and d cannot both be in C. Assume
without loss of generality that d & C.

{b}u{v € V(G) : (b,v) & E(G)} is a transversal and any maximal clique which
includes b meets this transversal only at b. So any minimal transversal contained
in this one includes b. Let T" be a minimal transversal with b € T'. (Similarly, it is
clear that every vertex is contained in a minimal transversal.) Let z € TNC. Then
z # b (since b ¢ C) and (b, z) is not an edge (since T is independent). So z & Cs,
z € C.. Let T' be a minimal transversal with d € T'. Let y € CNT". Theny #d
(since d € C) and (d,y) is not an edge (since T" is independent). Soy & C;, y € C;.
So (b,y,z,d) is a Py with TN {b,y,z,d} = {b,z} and T" N {b,y,z,d} = {y,d}.
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Let To = (T'U T")~{b,d}. The only way a maximal clique K could fail to
meet To would be if K NT" = {d} and K N T = {b}. This cannot happen since
(b,d) is not an edge. So Tj is a transversal. Let C, be a maximal clique with
b,y € Cy. Then C, N Ty = {y} since C, is a clique and nothing in Ty is adjacent
to both y and b. Let C, be a maximal clique with z,d € C,. Then C, N T, = {z}.
So any minimal transversal contained in Ty includes z and y and therefore is not
independent. But our hypothesis says every transversal contains an independent

transversal, a contradiction. O
The following two corollaries are immediate.

Corollary 3.2.5 If P is a cutset-straight poset in which every cutset contains a
minimal cutset, then P is fence-free.

Proof. Apply Theorem 3.2.4 to the comparability graph of P. a

Corollary 3.2.6 If P is a fibre-straight poset in which every fibre contains a min-
imal fibre, then P is fence-free.

Proof. Apply Theorem 3.2.4 to the complement of the comparability graph of
P. 0

Lonc and Rival present an infinite cutset-straight poset, and an infinite fibre-

straight poset, each having a fence. Higgs [H85] presents an infinite cutset-straight



51

poset with a fence from which a fibre-straight poset with a fence may be con-
structed. Before examining these counterexamples, we will consider a relevant and
relatively easily recognised property which implies that every transversal of a par-

ticular graph contains a minimal one. The following lemma is a special case of a

theorem of Li [L89].

Lemma 3.2.7 If T is a transversal of a graph G such that every clique contained
in T is finite, then T contains a minimal transversal.

Proof. Let P be the partial order whose elements are the transversals of G
which are subsets of T'. Order P by set containment. Let 7 be a maximal chain
(of nested transversals) in P. Let To = N7. Let K be any maximal clique in G.
Since K N T is a clique contained in T, K N T is finite. iThen {KNT":T"eT}is
a nested sequence of non-empty finite subsets of T. So KN (N7) = K NT, # 0.
So T is a transversal, and clearly Ty must be a minimal transversal and Ty C T
0

Applying this lemma to the comparability graph of a poset and the graph’s

complement, we get these corollaries.

Corollary 3.2.8 If K is a cutset of a poset P such that every chain contained in

K is finite, then K contains a minimal cutset. !

Corollary 3.2.9 If F' is a fibre of a poset P such that every antichain contained

in F is finite, then F' contains a minimal fibre. o
Applying these corollaries to Corollaries 3.2.5 and 3.2.6, we get:

Corollary 3.2.10 Every chain-finite, cutset-straight poset is fence-free. o
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Corollary 3.2.11 Every antichain-finite, fibre-straight poset is fence-free. a

Frorﬁ these corollaries it seems that if P is a poset which is chain-finite and
antichain-finite, then P is quite well-behaved indeed. But this does not give us any
new information about the issue at hand since any poset which is both chain-finite
and antichain-finite is finite — a situation we have already mentioned.

Before trying to find more classes of posets in which cutset-straight implies
fence-free or fibre-straight implies fence-free, we will examine some counterex-
amples, beginning with two fibre-straight examples with fences. Lon(; and Rival
[LR87] showed that if P is the rooted binary tree of height w9, then P contains no

minimal fibre, and, therefore, P @ F} is fibre-straight, even though it has a fence.

Example 3.2.12 The binary tree of height wd shown below, call it P, is con-
structed as follows. The elements of P are the finite 0-1 strings, including the
empty string §. For any z,y € P such that z = z125...2¢ and y = y1y2... 41,
z>yifandonlyif k <land z; =y; for:=1,2,...,k. Then P @ F, has a fence,

but is fibre-straight.

Proof. Suppose that F' is a minimal fibre of P. Since P is fence-free, F' is a
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chain by Corollary 3.2.3. And any fibre which is a chain must be a maximal chain.
But no maximal chain of P is a fibre. To see this, suppose that F' is a fibre of
P which is a maximal chain. Then we can pick ej, ez, e3,... an w-sequence of 0’s
and 1’s such that FF = {} U {b;: 7 =1,2,3,...} where each b; = e;e;...¢;. But
then A = {8} : ¢ = 1,2,3,...}, where each b} = eje;...e;_1(l-€;), is a maximal
antichain disjoint from F'. So F' is not a fibre.

This shows that P contains no minimal fibre. So P @ ¢ has no minimal fibre
for any poset @. In particular, P @ Fy has no minimal fibre and so is fibre-straight,

but it has a fence. ' m|

Lonc and Rival’s proof of the correctness of Example 3.2.12 is unnecessarily
long. Rather than applying Corollary 3.2.3, which they proved earlier in the same
paper, they essentially prove Corollary 3.2.3 all over again in the context of the
special case of Example 3.2.12. They may have avoided using Corollary 3.2.3
since they formally stated it for finite posets only, although they observed before
presenting Example 3.2.12 that their proof of Corollary 3.2.3 works for all posets,
not just finite ones.

As in Example ?;.2.12, any poset P having no minimal fibre gives us P @ Fy,
a fibre-straight poset (because it has no minimal fibre) which is not fence-free.
Similarly, if P is a poset having no minimal cutset, then P + Fy is a cutset-
straight poset (because it has no minimal cutset) which is not fence-free. From
the facts we have already mentioned about comparability graphs, we know that
if P and @) are posets with complementary comparability graphs, and P has no
minimal fibre (respectively, cutset), tilen @ has no minimal cutset (respectively,

fibre). To make use of this fact, we would like to know: For what posets do posets
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with complementary comparability graphs exist? Dushnik and Miller [DM41] have
shown that these posets are precisely the posets of dimension < 2, where dimension
is defined as follows.

Let P be a poset with partial order <p. Let <y, <s,...,<i be total orderings
defined on the set P. We call {<1,<s,...,<i} a realiser of P if for all z,y € P:
z <p y if and only if z <; yforalli=1,...,k For any poset P, if thereis a
finite k such that P has a realizer consisting of k£ total orderings of P, then the
least such k is called the dimension of P. We can now state Dushnik and Miller’s

theorem, but we will not prove it.

Theorem 3.2.13 A poset P has dimension < 2 if and only if there exists a poset

Q whose comparability graph is complementary to that of P. O

One property common to all the examples in the literature of posets without
minimal fibres or without minimal cutsets is that they are fence-free (until the
author adds a fence to get a relevant example). We willnnow prove that all fence-
free posets have dimension < 2, thereby getting more examples from those already
known. The following resulvt is not new — a complete characterisation of the posets
of dimension < 2 using a list of forbidden configurations was found by Kelly [K77]
and, using a different method, by Trotter and Moore [TM76]. But their proofs are

much harder to read than the following one for the simple case of fence-free posets.

Lemma 3.2.14 Every fence-free poset has dimension < 2.
Proof. We begin by proving the lemma in the case of finite posets. Any finite
fence-free poset is series-parallel [VTL82] [Ri86]. Therefore, since the singleton

poset has dimension 1, it suffices to prove that if P and @ are (disjoint) finite
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posets each having dimension < 2, then P & @ and P 4 Q both have dimension
<2.
Let P and @ be finite posets each having dimension < 2. Let {<p1,<p2} be

a realiser of P and {<¢q,1, <g,2} be a realiser of Q. For i € {1,2}, define <; a total

order on PU Q by z <; y if and only if:

(¢) =z,y€Pandz<p;y,
(¢7) =,y € @ and z <g,; y, or

(¢43) z€Pandye€Q.

Define <}, a total order on P U @ by z <) y if and only if:

() =z,y€Pandz<pyy,

(¢t) z,y€Qand z<gsy,or

(i) z€@Qandy € P.
Then {<1, <2} is a realiser of P & @ and {<y,<}} is a realiser of P + Q. So the
- lemma holds in the case of finite posets.

Extending the lemma to infinite posets is a straightforward application of the
compactness theorem. Let P be an infinite fence-free poset. We define a set S of
sentences as follows. For all z,y € P such that ¢ <p y, put the following sentence
in S:

Ligy& Loy

For all z,y € P such that z ||p y, put the following sentence in S:
(Ligy & Loye) V (L1ye & Lagy)

Each variable L; ;4 is to be interpreted as “z <3 y”, and similarly for Ly ,. So if

we can give all the variables L;;, truth-values so that the above sentences are all
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true and <; and <, are total orders, then we will have a realiser of P. To get the

total order condition, put the following sentences in S for all dist'inct z,Yy,2 € P

and ¢ € {1,2}: |
(Liwy & Lipy,2) = Lig,,

Lisxyy = ﬂLi,yyx
Li,x,y \ Li,y,z

This completes the definition of S. Let V be the set of variables appearing in S. By
the compactness theorem [Appendix A}, there is an assignment of truth-functional
values to the elements of V' which makes all the sentences in S true if and only if
for every finite subset of S there is an assignment of truth-values to its associated
variables making every sentence in the subset true.

Let S’ be a finite subset of S and let V' be the set of variables appearing in
S'. Let P’ be the set of elements of P which appear in the names of variables in
V!. V' and P’ are finite. Consider P’ as a subposet of P. Since P is fence-free,
P’ must also be fence-free. Since P’ is fence-free and finite, Lemma 3.2.14 tells us
that P’ has dimension < 2 and therefore has a realiser {<;, <2}. Therefore, there
is an assignment of truth-values to the elements of V’ that makes all the sentences
in &' trllle. So, by the compactness theorem, there is an assignment of truth-values
to the elements of V which makes all the sentences in S true. This is equivalent

to saying that P has dimension < 2. A a

By applying this lemma to Example 3.2.12, Lonc and Rival get some informa-

tion about the question dealing with cutset-straight posets.

Example 3.2.15 Let P be the binary tree P of height w? as described in Example
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3.2.12. By Lemma 3.2.14, P has dimension 2, so there is a poset @ whose com-
parability graph is complementary to that of P. Since P has no minimal fibre, Q

has no minimal cutset. So @ + Fj is cutset-straight but not fence-free.

Unfortunately, this author has been completely stymied by the problem of
drawing an enlightening Hasse diagram of @ in Example 3.2.15. The diagram which
Lonc and Rival presented was simple enough but incorrect. The incorrectness of
their diagram is clear from the fact that the poset it shows is not fence-free, even
though its comparability graph is supposed to be complementary to that of the
binary tree of height w which is fence-free. The dira,gra,m below depicts @ in a
reasonably comprehensible, but unorthodox, format. In the diagram, the points
are the points of the poset, and the horizontal lines indicate comparability. For
each horizontal line, every point directly above the line is greater than every point
directly below the line. Here “directly above” means that a vertical line going
~ down from the point would hit the horizontal line in question, although it may
also hit other lines and points along the way. If two points have no such line

between them, then they are not comparable.
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This poset has infinite antichains as well as infinite chains. Furthermore, the
maximal chain indicated below by hollow circles is isomorphic to w @ w?, showing
that the poset is not chain-complete, and also that there are chains not embeddable

in the chain of integers. That is, this poset has none of the popular nice properties.

O
L J
®
L
®
®
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The only other example in the literature of a cutset-straight poset with a fence
is due to Higgs [H85]. It is just as devoid of nice properties as Example 3.2.15, and
is also constructed by adding a fence to a fence-free poset with no minimal cutset.

Furthermore, the construction is harder to describe than that of Example 3.2.15,

so we will not say any more about it.

3.3 A Height-3 Poset With No Minimal Fibre

We have already seen that if a poset is antichain-finite and fibre-straight, then it
is fence-free. One might hope to find a more general condition on antichains which,
“when combined with ﬁbre;straight, guarantees fence-free. But since an antichain
has no structure, the only conditions one can place on individual antichains use
cardinality. Example 3.2.12 is a fibre-straight poset with a fence in which every
antichain is countable. So it seems the antichain-finite condition is the best possible
condition on individual antichains for assuring fibre-straight implies fence-free.
What about a condition on chains? In Example 3.2.12, every maximal chain is
an w-chain. Is every chain-finite fibre-straight poset fenée—free"? We now present a
new example of height‘ 3 to show that the answer is no.

The example which is the basis of Example 3.3.1 is the set {0} U {(@) : 1 €
N}U{(j) : s € N} ordered by 0 < (¢) for each 2 € N and (¢) > (j) forall: < jin
N.
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0 is not in any minimal fibre by the following. Suppose F is a minimal fibre
with 0 € F. Sincg {{n) : n € N} is a maximal antichain, there must be some
(m) € F. For every n > m, (n)]>(m)] = {(n)}, so (n) is in every maximal
antichain (m) is in, and (n) cannot be in F, since F{{m)} would be a smaller
fibre. Since F' is a minimal fibre with 0 € F', there must be a maximal antichain
A such that AN F = {0}. Since the only maximal antichain which includes 0
is {0} U {(n) : n € N}, this tells us that {(r) : n € N} N F is empty. So

{(z) ;22 m+1}U{(j) : j £ m} is a maximal antichain disjoint from F.

Example 3.3.1 Let P be the poset shown on the following page whose elements
are the finite round-bracketed and angle-bracketed tuples all of whose coordinates
are natural numbers. Order P as follows so that every maximal chain has 3 el-
ements. The maximal elements are the angle-bracketed odd-tuples, the minimal -

elements are the angle-bracketed even-tuples, and the remaining elements are the

round-bracketed tuples. For any (z1,z3,%s,...,%2) € P, the only upper cov-
ers are (z1,T2,Zs,...,%ok—1) and (1,22, Z3,...,Z2k-1,y) for each y > zq. For
any (z1,%,3,...,Zok+1) € P, the only lower covers are (z1,z2,23,...,Z%) and

(21,2, 23, ..., 2%, y) for each y > Z9x41. P has no minimal fibre.
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This side up —
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The correctness of this example requires a relatively lengthy explanation. We

will proceed with two lemmas.

Lemma 38.3.2 Let F be a fibre of P (from Ezample 3.8.1) which includes two
points (T1, Tz, .., L1, k) and (T1,Tg, ..., Th—1,T}) With z} < zx. Then F is not
a minimal fibre.

Proof. Let A be a maximal antichain which includes (21,2, ..., zf-1,2}).

AN (zy,2s,...,2r)] cannot be empty. Therefore, since

(1,22, .., ze) IN@1, T2y oy ket L) ] = (@1, 22, ..+ 2) ],

(®1,2g,...,25) € A. So there is no maximal antichain which meets F only at

(T1,29,...,Tp—1,2%). So FN{{®1,22,...,Tk-1,%%)} is a fibre. O

Lemma 3.3.3 Let X C P (from Ezample 3.3.1) such that, for all k, X does not
include any two points (x1, Ta, ..., Tr-1,Zk) and (21, ;'02, oo oy Tho1, Z}) With T}, < T
Then X is not a fibre.

Proof. We will construct an antichain A such that X C AJ> A.

Let A = U2, Ax where the A’s are defined inductively as follows, starting

with Ag = 0. (Define (z1,...,2,N) = {{z1,...,%k,n) : n € N}.)

Bi = {(z1,...,zk) : {(®1,...,2k) € X, (21,...,7k) € X}
Ce = {21, ., 26, 1) : (21, .., 2k) € XN Apr T, (21, .. -2k, N) N X = 0}
Dy = {{z1,.. ., Te, o1 + 1) ¢ (21, .-, 2k) € XN Apal, (Z1, - -, Ty Thg) € X}
Ar = B, UC,U Dy
Is it possible that two points of A are comparable? The answer is no; it is clear

that each Ay is an antichain. It is clear that if two points of A are comparable, then
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they are of the form (z1,...,2x) € Ag—y and (1,...,2k-1,yx) € Ag with 5 > 24 or
the second point is some (21, ..., Z-1, Yk, Ykt+1) € Ax With yx > zx. The only way
to get (z1, .. . Tk-1,Yx) € Ak is if (z1,...,24-1,yx) € X, in which case (zy,...,zs)
would not have been chosen in Ax_;. (Maybe (z1,...,%5-1,y% + 1) would be in
Aj_1, see the definition of Dy.) The only way to get (z1,...,Tk-1, Yk, Uk+1) € A
is if (@1,...,%k-1,y%) € X >Ag—1]. This would not happen if (zi,...,z;) € Ap_s
since (z1,...,%k—1,Yk) € (Z1,...,2k)]. So A is an antichain.

Is any point of X not in AJ? Obviously, each round-bracketed tuple in X
is in AJ] because of the definitions of By and C;. But suppose there is some
(1,...,2%) € X. I (z4,...,2) € X, then (24,...,2k) € By, 50 (z1,...,2%) € Al
So suppose (z1,...,zx) € X. If (z1,...,2) & Ag-1] then By or Cj will provide ;
a point in A comparable to (zy,...,z;) as well as (z1,...,2%). So assume that
(%1,...,2k) € Ag-1]. The point in Ag_y to which (z1,...,2) is comparable must
be of the form (z1, ..., k-1, yx) With yx < zr. But, because of the definition of C,
since (z1,...,%k-1,%k) € X, the only (z1,..., 2,1, yx) which might be in Ay_; is
the one with y; = z; + 1. With this contradiction, we may conclude that X C AJ.

That AN X = @ is clear from the construction. m]

With these lemmas the correctness of Example 3.3.1 is clear. Since Example
3.3.1 has no minimal fibre, it is fibre-straight, but it is not fence-free. In one
respect, Example 3.3.1 is nicer than Example 3.2.12. In Example 3.2.12, it is the
fence-free part of the poset that makes the poset fibre-straight. In Example 3.3.1,
fences are a vital part of the construction making the poset fibre-straight.

It seems to this author that there is not much left to do in investigating when

" fibre-straight implies fence-free, since there is a fibre-straight poset of height 3
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which is not fence-free, and any antichain-finite fibre-straight poset is known to be
fence-free while there is a countable fibre-straight poset which is not fence-free.

It would be nice if we could use Example 3.3.1 to construct a poset of width 3
with complementary comparability graph and having no minimal cutset, as Lonc
and Rival used Example 3.2.12 to make Example 3.2.15. Because of Theorem
3.2.13, this is only possible if Example 3.3.1 has dimension < 2. By [K77], Example

3.3.1 has dimension > 3 since it contains the suborder

(1) 3,1) (2,1) (1,1)

(3,1) (2,1) (1,1)

So there is no poset having a comparability graph complementary to that of Ex-
ample 3.3.1. 1

Posets of height 1 are antichains which are fence-free. Example 3.3.1 shows
that a fibre-straight poset with fences may have height as little as 3. This leaves

the following question unanswered.
Question 3.3.4 Is every fibre-straight poset of height 2 fence-free?

Since posets of height 2 may have dimension > 3, an answer to this question
need not provide an answer to the following question which we will return to at

the end of the chapter.

Question 3.3.5 Is every cutset-straight poset of width 2 fence-free?
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3.4 A New Example With No Minimal Cutset

The examples of cutset-straight posets with fences by Higgs and Lonc & Rival
are both of the form P + F; where P is a fence-free poset having no minimal
cutset. This is somewhat unsatisfying since it is the fence-free part of the poset that
prevents the existence of a minimal cutset which is not an antichain. One might
hope to get a more satisfying example by finding a poset with no minimal cutset
and having this fact due to fences in the construction. The literature is no help
here (as far as this author has been able to ascertain) since [H85] and [LR87] are
the only pépers describing posets with no minimal cutsets. (In a survey paper, El-
Zahar and Zaguia [EZ86] incorrectly list [G84] as another paper describing a poset
having no minimal cutset. What [G84] describes is a poset having no antichain
cutset.) We now present a new example of a poset having no minimal cutset in

which fences are a vital part of the construction which prevents minimal cutsets.

Example 3.4.1 Let P be the poset shown on the following page. The points of

P are the elements of the cartesian product w x wd

as well as the angle-bracketed
versions of the same pairs. On the round-bracketed pairs, impose the lexicographic
total order. That is, (z,y) < (¢/,y') if z < &’ or if z = 2’ and y < y’. For angle-
bracketed pairs (z,y) < (2/,y’) if and only if z = 2z’ and y < y’. The only way
to get (z,y) < (¢/,y') is if (z,y) < (2',y') in which case it follows by transitivity.

No round-bracketed pair is less than any angle-bracketed pair. Then P has no

minimal cutset.
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Proof. Suppose for a contradiction that K is a minimal cutset of P. {(z,y) :
T € w,y € w?} is a maximal chain of P. Therefore, for some 2 € wand y € wd, we
have (z,y) € K. There must be a maximal chain C such that C N K = {(z,y)}.
Since (z,y)T is a chain, C N (z,y)] = (z,y)]. Let Co be the maximal chain
(z+1,00tU{{z+1,¥') : ¥’ € wi}. Then CoNK # 0, but (z 4+ 1,0)T C (z,y)T, so
(z+1,0)TNK =0. Let (z+1,y") € CoN K. Then there must be a maximal chain
C’ such that KNC' = {{z+1,y’)}. Since (z+1,y')] is a chain, C'N{z+1,y')| =
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{(z +1,%’)|. Let C; be the maximal chain (z 4+ 1,y ~ 1)TU (z + 1,3’ — 1)|. Then

CiN K =0, a contradiction. a

3.5 Regular Posets

A poset P is called regular if it is chain-complete (i.e. every chain has a
supremum and an infimum) and for every chain C C P, (supC)] C C| and
(inf C)] € CT. That is, in a regular poset; a supremum of a chain is not above
anything that is not lbelow an element of the chain, and dually for infima. Other
than the results by Higgs and Lonc & Rival already mentioned, the only class of
cutset-straight posets identified in the literature as fence-free is the class of regular,
well-founded, cutset-straight posets. This result is due to Rival and Zaguia [RZ87].
In the context of their paper, this result is secondary. Their main concern is with
the similar question: In a regular, well-founded poset, is every point in a minimal
cutset? They show that the answer to this question is yes and then go on to apply
their technique to show that every regular, well-founded, cutset-straight poset is
fence-free. We will prove the same two results, but using a simpler construction.

Before stating the theorem, we will explain some notation. Let P l;e a regular

poset and let € P. Define

A(z) = {sup(C~21) : C is a maximal chain of P}.
Since no maximal chain of P is contained in z{, A(z) is a cutset of P. In fact,
A(z)>{z} is a cutset for z. That is, A(z) is a cutset and A(z)>{z} C P~z]. Using
A(z) to meet maximal chains where they exit # is easy since the boundary of ]

is sharp in the sense that for any maximal chain C, sup(C~21) = max(C~z1) and

whenever C'Nz] # 0, inf(CNz]) = min(CNz7). In the diagram below, the hollow
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points represent A(z).

Q ’ ) Q

It is worthwhile contrasting this approach with that of Rival and Zaguia. Rival
and Zaguia used a similar idea, but it does not take advantage of regularity as
effectively as the construction of A(z). What they did was to pick a maximal
chain C, through z, and then try to pick a cutset which meets other maximal
chains as they diverge from C,. This plan falls apart quite hopelessly without

their additional assumption that the poset is well-founded. The cutset they use is

{min(C~(C; Nz])) : C is a maximal chain of P}.

If one replaces “min” in this definition with “inf” to use in regular posets which
are not well—founded, then one may get infs in C, N z], so that the cutset does
not meet C; only at z. In this situation, it may be impossible to find a minimal
cutset contained in this one which includes z. Even with the condition of well-

foundedness, rather a lot of work is required to find a minimal cutset contained in
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this one. But we will see that it is quite is easy to use
A(z) = {sup(C~z1) : C is a maximal chain of P}

to get
K(z) = {min(C N A(z)) : C is a maximal chain of P}

a minimal cutset contained in A(z).

Suppose K is a cutset of a poset P. If max(C N K) exists for every maximal

chain C of P, define
r(K) = {max(C N K) : C is a maximal chain of P}.
- Ifr(K) is defined and min(C'Nr(K)) exists for every maximal chain C' of P, define

s(K) = {min(C N r(K)) : C is a maximal chain of P}.

Theorem 3.5.1 If K is a cutset of a poset P and s(K) is defined, then s(K) is a
minimal cutset contained in K.

Proof. It is clear that s(K) is a cutset contained in K. It remains only to
verify that s(K) is a minimal cutset. Let a € s(K). We have to find a maximal
chain C such that C N s(K) = {a}. Since a € r(K), there is a maximal chain C;
such that ¢ = max(C; N K). Since a € s(K), there is a maximal chain C; such
that ¢ = min(C; N r(K)). Let C = (C1Nal) U (C2Nal). C is a maximal chain
and CNr(K) = {a} = CNs(K). Therefore, s(K) is a minimal cutset. ]

The proof above is a (superior, I think) alternative to that already given for
Corollary 3.2.8, but does not so readily yield Theorem 3.2.7 and Corollary 3.2.9.

But, to get back to the issue at hand:
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Corollary 3.5.2 Let P be a regular poset and let z € P. If min(CNA(z)) exists for |
every mazimal chain C, then each K(z) is a minimal cutset of P with z € K(z).

Proof. Let Ky be the cutset {2} U (P>2]). By regularity, max(C N K) exists
for every maximal chain C. So A(z) = r(K;). So Theorem 3.5.1 tells us that
K(z) = s(K;) is a minimal cutset. Furthermore, z € K(z) since if C is any

maximal chain with z € C, then C'N A(z) = {z}. o

In the following proof, we use these definitions:
UC() = {y :y = =}

LC(z) ={y :y < =}

For every chain X C P, define
C(X) to be the set of all maximal chains containing X.

We may abbreviate, for instance, C({z,y}) to just C(z,y).

Theorem 3.5.8 Let P be a regular poset which is not fence-free. If min(C'N A(z))
exists for every x € P and every mazimal chain C, then P has a minimal cutset
which is not an antichain.

Proof. This proof will be easier if we can pick (a,b,¢,d) an N. If this is not
possible (¢.e. if P is N-free), pick a fence a < b > ¢ < d as follows. Let o’ < &' >
¢’ < d' be a fence. Let b € min(a’TN¢']), a € max(a’TNb]), c € max(b]Nd']), and
d € min(d'} N c]). Regularitj;l guarantees that this construction is possible. This
shows P contains a fence of the form a < 6 > ¢ < d.

By Corollary 3.5.2, K(c) is a minimal cutset containing c. Is it possible that

a & K(c)? The answer is that it is possible only if P has an N by the following.
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We know that a € A(c) by applying the definition of A(c) to any maximal chain
which includes a and b.

Suppose a & K(c). Then there exists z € K(c) Nal. z || ¢ since K(c)>{c} C
P~c]. Since z € K(c) C A(c), we can let C be a maximal chain of P such that
z = sup(C~c]). Since P is regular, w‘e know that y = inf(CNc]) > ¢,s0c <y > .

Y
b d

By regularity, y > = implies that there exist ” € UC(z)Nal and ¢” € LC(y) Nct.

B

Then (a”,z,y,c") is an N, so we may also assume that (a,bd,c,d) is an N. So we

have:

Now we can verify that K(a) is a minimal cutset which is not an antichain. K(a) is

a minimal cutset. Let C, be a maximal chain having b, ¢ € C,. Then C;NK(a) # 0
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but K(a)Na = 0. So C.NK(a) C ¢l. Let Cy be a maximal chain having z,y € C,,.
Then C, N K (a) # @ but K(a)Na]=10. So C,N K(a) C yT. Thus, K(a) includes
an element of yT and an element of ¢| and cannot be an antichain. That is, the
conclusion of the theorem holds if a ¢ K(c).

Now consider what happens if a € K (c) We will find that this case also
implies that P has an N or that the conclusion of the theorem holds. Since K(c)
is a minimal cutset, we will assume that it is an antichain, since otherwise the

conclusion of the theorem holds. By regularity, b > a implies that for every z > a,

there is a y such that z > y > a. Let
Ky = (K(e){a}) U UC(a),

K = Kon{z € K(¢) : CNUC(a) # 0 for every C € C(z)}.

We know that b € K} since b > a implies that b € K, and b & K(c).

Since K(c) is a cutset, it is clear that K, and K} are cutsets. In fact, K} is a
minimal cutset by the following. Let z € K} C K. Then z € K(c¢)N{a} or z > a.
If z € K(c)>{a}, then, since K(c) is a minimal cutset, there is a maximal chain
C which meets K(c) only at z. There must be some such chain C' which does not
meet UC(a) or else z would have been thrown out of K, to make K, and this
C is a maximal chain which meets K} only at z. Now consider what happens if
z > 'a. Let C, be a maximal chain with {a,2} C C,. Then C, N K(c) = {a} and
C.NUC(a) = {2}, so C, N K} = {z}. Thus, K} is a minimal cutset.

If ¢ € K] then the conclusion of the theorem holds (rlamember b € Kj) and we
‘are done, so assume c ¢ K. Since ¢ € K(c), we know that ¢ € K3, so ¢ € Kj tells

us that every maximal chain through ¢ includes an upper cover of a. Extend {c, d}



73

to a maximal chain and let e be the point of UC(a) that it meets. Then there is a

point f such that e > f > d. Now, b is not comparable to f.

e

f
b d
a c

So (f,e,a,b) is an N. But at the start of this proof we said we would pick
(a,b,¢,d) an N if possible and now we see that it was possible. So assume that
(a,b,¢,d) is an N.

Consider K as defined earlier in this proof. The only way K} could fail to
witness the conclusion of the theorem is if the diagram above holds. So assume
the diagram is correct. We may also assume that b > c.

By Corollary 3.5.2, K(f) is a minimal cutset. Let C, be a maximal chain with
a,e € Co. K(f)Nfl=0s00+#K(f)NC, C CyNal. Let Cp be a maximal chain
with b,c € Cp. K(f)Nfl =050 0 +# K(f)NCy C CyNbY. Since b > a, this tells

us that K(f) is a minimal cutset which is not an antichain. o
Thus, we have recovered, by an easier method, Rival and Zaguia’s result [RZ87]:

dorollarsf 3.5.4 Every regular, well-founded, cutset-straight poset is fence-free. O
Another f.a,irly easy corollary is:

Corollary 3.5.5 If P is a regular, antichain-finite, cutset-straight poset, then P

is fence-free.
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Proof. Let z € P. Suppose C' is a maximal chain of P and CNA(z) has no least
element. Let ap > a3 > a2 > a3 > ... be an infinite descending chain in C N A(z).
For each 1 € N, let C; be a maximal chain of P such that a; = max(Ci~z]), and
let b; = min(C; N z7), so b; > a;. (We need ¢ > 1 to make sure that a; € max P so

that b; exists.)

The b;’s are all distinct so there are infinitely many of them. Since all antichains
in P are finite, there is an infinite chain of ;’s. These b;’s and the corresponding
a;’s must contain a copy of w¢x 2, which we will now show is impossigle in a regular
poset. We may assume that we chosé the a;’s and b;’s so that all of them together

form a copy of w® X 2 as in the diagram below. Let a = inf; a; and b = inf; b;.

bo
ao by
ai by
as bs

as

o

Clearly, b > a. By regularity, if b > o = inf; a;, then b > a; for some particular
a;. But then we would have a; < b < b; for every b; which obviously is not the

case. Therefore, b = a. So each a; > a = b = inf; b;. By regularity, this says that



75

each a; is greater than some b;, which obviously is not true. So P cannot contain

any copy of wd x 2.

With this contradiction, we have shown that Theorem 3.5.3 applies to P. O

This author believes that if one wishes to prove that every regular cutset-
straight poset is fence-free, then the proof above is the most promising starting
point. Were it not for this, it would have been more expedient to replace some of
this proof with references to certain facts in the literature. This author has not
found any mention in the literature of the fact that a regular poset cannot contain
any copy ofw X 2 or its dual, but Ginsburg [G84] showed that if an antichain-finite
poset P contains no copy of w x 2 or its dual, then M(P) is compact, and this is
equivalent to saying that every cutset of P contains a finite cutset [BG84]. With
Corollary 3..2.5, this gives us Corollary 3.5.5.

Although we will not use the term “special” for a little while yet, we define it
here to avoid disrupting the beautifully written paragraph where it appears. Let
P b;a a poset and C a chainin P. If z = sup C, then z is called a special supremum
if there exists ¢ € C such that ¢] C z]. Special infimum is defined dually. A poset
is called special if all its suprema and infima are special.

We are concerned in this chapter with finding minimal cutsets of a certain form.
In posets with fences, we try to find miﬁimal cutsets which are not antichains. A
similar problem is to find classes of posets in which every element is contained in

a minimal cutset. In [RZ87], Rival and Zaguia tackled the following question.

Question 3.5.6 Is every element of a regular poset contained in a minimal cutset?

Rival and Zaguia achieved an answer only with the additional condition of
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well-foundedness, as we just did in Corollary 3.5.2 using a different construction.
Rival and Zaguia [RZ87] conjectured that the answer to this question is yes. Li
erroneously attributes more to these authors. Paraphrasing Li [L89]: Rival and
Zaguia [RZ8T7] observed that if, in addition to being regular, a poset P has the
property that every element of P belongs to some minimal cutset, then there is
a positive answer to every minimal cutset is an antichain implies P is fence-free.
(This isl as close to a direct quote as is conveniently possible.) There is no such
observation in [RZ87] and Li repeats this error in [L92]. It seems Li was confusing
[RZ87] with [EZ86], in which El-Zahar and Zaguia say: “if we could generalize
[Bvery element of a regular, well-founded poset is in a minimal cutsef] to regular
posets, then the same proof [as in [RZ87]] of [Every regular, well-founded, cutset-
straight poset is fence-free] could be generalized to regular ordered sets too.” But
regardless of where Li picked up this idea, it is odd that he did not use it to
state: Every regular, special, cutset-straight poset is fence-free, since in [L89] he
proved: Every point in a regular, special poset is in a minimal cutset. One possible
problem is that El-Zahar and Zaguia [EZ86] gave no reference or justification for
their statement, and it seems to this author that the proof in [RZ87] to which
El-Zahar and Zaguia were referring would require considerable enhancement to
achieve what they say it could achieve, if it could be made to work at all in a
more general context. Perhaps a regular, cutset-straight poset is fence-free if every
element is in a minimal cutset of a type similar to that used in [RZ87], or some
other special type. For instance, it seems reasonable to think that previously known
constructions could be used to show that a regular, cutset-straight poset is fenrce-

free if every element z is contained in a minimal cutset K such that K Nz] = {z}
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(¢-e. there is a minimal cutset for z), but in fact, Li [L89] shows that every element
z in a regular, special poset is in a minimal cutset K such that K N z] = {z}. So
maybe this “reasonable” idea is not as simple as it seems, and apparently Question

3.5.7 is still open, along with the more difficult Question 3.5.8.
Question 3.5.7 Is every regular, special, cutset-straight poset fence-free?
Question 3.5.8 Is every regular, cutset-straight poset fence-free?

Example 3.4.1 has some relevance to Question 3.5.8. If P is the poset in
Example 3.4.1, then P @ {1} is cutset-straight but has a fence. But it is sup-
regular according to Grillet’s definition [G69]. That is, every chain C in P @ {1}
has a supremum and (sup C)] C C|.

Question 3.5.8 was first raised by Higgs [H85] who observed that his proof that
finite cutset-straight posets are fence-free would also work for regular posets if they
had the property that every cutset of a particular form contains a minimal cutset.
In [H85], Higgs says “I do not know whether [cutset-straight implies fence-free]
for all regular posets”. This author sees no way to interpret Higgs’s statement
as a conjecture. However, El-Zahar and Zaguia [EZ86], and Li [L.89] have said
that Higgs conjectured that all regular, cutset-straight posets are fence-free and
they give only [H85] as a reference. (Li does not list [EZ86] as a reference.) This
questionable interpretation does not appear in [RZ87] which extends Higgs’s result

to regular, well-founded posets.

3.6 Posets with Integer Chains

The literature does not address the question of whether all well-founded cutset-
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straight posets are fence-free. In the question for well-founded, regular posets,
progress began with finding that every element is a member of a minimal cutset.
If we only have the condition that a poset is well-founded, then we cannot get the
same result. Below is a well-founded poset in which the point (w) does not belong
to any minimal cutset. The comparability gra;;h of this poset is the complement

of the one on which Example 3.3.1 is based.

(w) o

(4)
(4) (3)
(3) (2)
(2) (1)
(1) (0)
(0)

This author has been unable to make any progress with respect to the question

of cutset-straight implying fence-free in well-founded posets in general. However,

the following theorem solves a simple case, and improves slightly on the result

(Corollary 3.2.10) that all chain-finite cutset-straight posets are fence-free.

Theorem 3.6.1 Let P be a poset all of whose chains are embeddable in w and

which has a fence. Then P has a minimal cutset which is not an antichain.
Proof. Since every chain is embeddable in w, P has a fence of the form

a < b>c=<d. Infact, choose (a,b,c,d) an N if possible. Let Cj, C. be maximal

chains with a,b € C} and ¢,d € C..
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Ch C.

Let Cj = C,Nb] and C! = C.Nel. So Cf and C" are finite chains. Let
K; ={y:y > z for some z € C}},

K; ={y:y > z for some z € C'},
K = ((min P) U K1 U Ko)N(Cp U CY).

Notice b,c € K. We prove that K is a cutset. Let C' be a maximal chain of P. If
min C ¢ {min Cj,minC.}, then minC € K. So assume that min C is min Cj or
min C,. Let z = max((Cf U C!) N C). (Since C} and C! are finite, this maximum
exists. Also, z #2 maxC.) Lety =z in C. Then y € K. So K is a cutset. For any
z € P, UC(z) is an antichain. So K; and K, are each a union of a finite number
of antichains. So K contains no infinite chain. Therefore, by Corollary 3.2.8, K
contains a minimal cutset K'.

If K’ is not an antichain, then we are done. So assume that K’ is an antichain.
Theﬁ we cannot have both b and c¢in K’. Since KNCj = {b}, we know that b € K’
and ¢ ¢ K'. But ¢ € K. ;Therefore, C.NK # {c}. Let e = min(C, N K~{c}).
KNC'=0,s0e> c. Since e € K, there is an f € C] such that e > f. The
diagram below should be taken with a grain of salt, since it is possible that f = a or
e = d, but not both since a || d. Let g = f in C} and A < ein C.. Then (g, f, e, h)

is an N. We said at the start of this proof that we would choose (a, b, ¢,d) an N if
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possible. So we may assume that b > c. So we have the situation depicted below

with the possibility that f = @ or e = d, but not both.

Ch
b

g
f

Ce

€

We may assume without loss of generality that f # a and henceforth use the

following simpler diagram with all points shown as distinct guaranteed to actually

be distinct.

Cy

b e
gx
f c

Let C)=CyN fland C =C.N c]. Let

K{={y&C”:y > z for some z € C"},
1 g g

K, ={y ¢ C!:y»> zfor some z € C},

L = ((min P) U K] U K3)~(Cj U CY).
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By the same argument as for K, we can say that L is a cutset which contains a

minimal cutset L.

Let C. = (CcNef) U CY. Then C, is a maximal chain and C. N L = {e}.
Therefore, e € I'. Let C* = (C, NbT) U (C: Ncl). Then C is a maximal chain
and C*N L = {c}. Therefore, c € L'. Since c,e € L', L’ is a minimal cutset which

is not an antichain. O

Because of Corollary 3.2.5, the next theorem is stronger than a “cutset-straight

implies fence-free” theorem.

Theorem 3.6.2 Let P be a poset in which every chain is embeddable in the chain

of integers and every antichain is finite. Then every cutset of P contains a finite

cutset.

Proof. Let A be a maximal antichain of P. Then for any maximal chain C,

CNAT#0and CNAL#0. Let
Xo = {min(C N AY) : C is a maximal chain of P}.

Then, obviously, X, is a cutset of P. A less obvious fact is that Xo is finite, which
We NOW prove.

Suppose for a contradiction that X, is infinite. Since Xy C AT and A is
finite, this tells us that there is some a € A such that |aT N Xo| is infinite. Let
B = Xo N al, obviously B is infinite. For each b € B, there is a maximal chain C
such that b = min(C N AT). So for each b € B, we can choose some f(b) < b such
that f(b) € A]l. B is an infinite set having no infinite antichains. Therefore, B
contains an infinite chain B’. Let C' = f(B’). Since b} # b, = f(b}) # f(b},) for

by, b, € B’, C' is also infinite. Since C’ cannot contain any infinite antichains, this
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tells us that C’ contains an infinite chain C*”. There must be some d € A such that
C"Cd|. Let B" = {be B': f(b) € C"}. Then f determines a 1-1 correspondence
between B” and C”. In fact, f determines an order-isomorphism between B” and
C". Since B” is an infinite chain, and every chain is embeddable in the integers,
B" must be isomorphic to w, wd, or the chain of integers. Since a is a lower bound

of B”, and every chain is embeddable in the integers, this tells us that B” & w.

Similarly, we get C” = w9, But this contradicts B” = C”. Therefore, Xj is finite.

BII

IS

The rest of this proof is like a proof of Konig’s Lemma.

Let Lo = Xo. Define subsequent L;’s by L; = min(Lol™ Uje; L;) and L7 =
max(Lo|™ Uj«; L-;) for each 7 € w. So every L; is an antichain except for Lo, and
every L; is finite. Since every chain is embeddable in Z, P = {J;cz L;.

Let K be a cutset of P. For each chain X C P, define g(X) in w @ {oo} by

9(X) =sup{k:3C €C(X)suchthat CNKN( |J L) =0}

—k<i<k
So g(X) tells us how far we can extend X before hitting K. If g({z}) is finite

for every € X then, since Xj is a finite cutset, there exists £ = max{g({z}) :
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z € Xo}, and K N (U-g<ick L:) is a finite cutset of P. So assume there is some
zo € Xo.such that g({zo}) = o0, so zo & K. Clearly, g({zo}) = sup{g9({z0o, z1}) :
z1 > Zo}, unless zo € max P. Since UC(zo) is an antichain and therefore finite,
this tells us that if zo & max P, then there exists z; > zo such that g({zo,2:}) =
00, so 1 ¢ K. Similarly, if zo € min P, then there exists z_; < o such that
g({z-1,%0,21}) = oo with z_; € K, and so on. So we have a chain ... < z_5 <
Ty < xg < 21 < T2 < ... disjoint from K with the possible restriction that this
chain terminates at a minimal or maximal element of P or both. Since every chain
in P is embeddable in the integers, this chain must be maximal, and therefore

must meet K, a contradiction. So K contains a finite cutset. o
Applying Corollary 3.2.5 to Theorem 3.6.2, we get:

Corollary 3.6.3 If P is an antichain-finite, cutset-straight poset in which every

chain is embeddable in the chain Z, then P is fence-free. 0

It is unknown whether the antichain-finite condition in Corollary 3.6.3 can be

dropped:

Question 3.6.4 Is every cutset-straight poset in which every chain is embeddable
in the integers fence-free?

3.7 Summarising the Known and the Unknown

As mentioned earlier, the following question is not addressed in the literature,

and this author has not been able to find an answer.

Question 3.7.1 [s every well-founded, cutset-straight poset fence-free?
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Another surprisingly slippery question is:

Question 3.7.2 Is every antichain-finite, cutset-straight poset fence-free?
In fact, as mentioned earlier, it is even unknown whether every cutset-straight
poset of width 2 is fence-free. One might hope to get an easier question by com-

bining the last two. The following is also unknown.

Question 3.7.3 Is every well-founded, antichain-finite, cutset-straight poset fence-

free?

To summarise the posets we do know about, a cutset-straight poset is fence-free
if it satisfies any of the following conditions, none of which implies either of the

others.

(i)  every cutset contains a minimal cutset (Corollary 3.2.5)
(it) regular and well-founded (Corollary 3.5.4)

(¢13) every chain embeddable in w (Theorem 3.6.1)

We could also put the following three conditions in this list, but they would be

redundant since each of them implies (z).

(tv) chain-finite (Corollary 3.2.8)
(v) regular and antichain-finite (comments following Corollary 3.5.4)
(vi) antichain-finite and every chain embeddable in Z (Theorem 3.6.2)
The only nicély-deﬁned condition for which it is known that cutset-straight does

not imply fence-free is sup-regular.

As mentioned before, if a poset P has no minimal cutset, then P + F; has no

minimal cutset and so is cutset-straight, but it is not fence-free. Thus, a negative
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answer to Question 3.7.4 or 3.7.5 implies a negative answer to the corresponding

one of Question 3.6.4 or 3.7.2.

Question 3.7.4 Does every poset in which every chain is embeddable in the integers

have a minimal cutset?
Question 3.7.5 Does every antichain-finite poset have a minimal cutset?

Since the set of minimal elements of a well-founded poset is a minimal cutset,
the issue addressed in Questions 3.7.4 and 3.7.5 is not an issue for the posets in

Questions 3.7.1 and 3.7.3.
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Chapter 4

Partitions and Fibres

“The footprints of delivery vans corrugated the slush.”
— Salman Rushdie, The Satanic Verses [1988]

In this chapter we look at some of the research which has followed from a paper
by Aigner and Andreae [AA86]. It is perhaps surprising how many interesting
results have followed from the paper considering it was never published in a journal.
The main point of the paper was a proof of a conjecture of Gallai which was
communicated to Aigner and Andreae by Exdés: Let G be a triangulated graph on
n vertices without isolated points. Then there is a set of at most & vertices that
meets all mazimal cliques of G.

In [AA86], Aigner and Andreae prove the following theorem. The reader does
not need to know the meanings of all the terms mentioned in the theorem to discern

the pattern that gives rise to a question.

Theorem 4.1 A finite graph G with no isolated points contains a set of at most
Mgll vertices that meets all mazimal cliques of G if G satisfies any of the following

conditions:

(1) G is a triangulated graph.

(22) G is the complement of a triangulated graph.



87

(1ie) G is a bipartite graph.

(1v) G is the complement of a bipartite graph.

(v) G is the line graph of a bipartite graph.

(vi) @ is the complement of the line graph of a bipartite graph.

(vit) G is the comparability graph of a poset. m

The question which immediately leaps to mind is: What about the complement
of the comparability graph of a poset? Aigner and Andreae left this as an open
question. Call a point z in a poset P a splitting elementif 2] = P. Then in terms

of fibres, the question is:

Question 4.2 Does every finite poset P with no splitting element have a fibre of
size < ng? '

Lonc and Rival [LR87] erroneously reported that Aigner and Andreae conjec-
tured in [AA86] that the answer to this question is yes. In fact, Aigner and Andreae
expressed no opinion regarding the answer. But Lonc and Rival [LR87] made a
conjecture even stronger than a positive answer to Question 4.2 [AA86]. Their
conjecture was: For every ordered set P without any splitting element, there is a
subset F' such that both F' and P~F are fibres. Although this conjecture turned
out to be false in general [DSSW91], Lonc and Rival described four cases in which

it is true. One of these brings the following question to mind:

Question 4.3 What is the least possible height of a finite poset P with no splitting
element and no fibre F' such that PNF is also a fibre?
The relevant result of Lonc and Rival [LR87] shows that the answer is at least

5, but we will not repeat the proof here since it is quite long. In [DSSW91], Duffus,
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Sands, Sauer, and Woodrow presented Example 4.4, a 17-element poset in which
every fibre has at least 9 elements. So Example 4.4 disproves the conjecture of
Lonc and Rival and gives a negative answer to Question 4.2. Example 4.4 has

height 7 and so the cases of heights 5 and 6 are left unanswered for Question 4.3.

Example 4.4 [DSSW91] Let P be the poset whose Hasse diagram appears below.

P has 17 glements but has no fibre with fewer than 9 elements.

14
8
12
6

10

Proof. Each of {1,2}, {2,3}, {3,4}, ..., {16,17} is a maximal antichain. The
only set with fewer than 9 elements that meets all of these maximal antichains is
{2,4,6,8,10,12,14,16}. So this 8-element set is the only candidate to be a fibre
having fewer than 9 elements. But this set is not a fibre since it does not meet
the maximal antichain {1,9,17}. Thus, every fibre of this poset has at least 9

elements. Notice that {1,3,5,7,...,17} is a fibre having exactly 9 elements. O
This result led to the following question in [DSSW91]:

Question 4.5 Let A be the smallest real number such that every finite poset P with

no splitting element has a fibre of size at most A|P|. What is the exact value of \?
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Example 4.4 shows that A > 1% ~ .5294. Later on we will see a result of Duffus,

Kierstead, and Trotter showing that A < 2. But first we will examine an example
by this author [M92], showing how to stack copies of Example 4.4 to demonstrate
that A > & ~ .5333.

Example 4.6 Let n be a positive integer. Let P, = {(4,5):1<i<n,1<j <17}
with each (7, 3) identified with (¢ —1,15) and each (¢,4) identified with ( —1,14).
Let the ordering on P be the transitive closure of that induced by putting (z,5) <
(,7') in P whenever j < j' in Example 4.4. Then P, has 15n + 2 elements, but
has no fibre with fewer than 8n + 1 elements.

Proof. P; is shown below as an example of the construction.
(2,14)

(2,8)

(2,12)

(2,6)

(2,10)

(2,4)=(1,14)

(1,8)

(1,12)

(1,6)

(1,10)

(1,4)

Forl<i<m,let Q= {(3,5):7=1,2,5,6,7,...,17}. Let (0,15) be another
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label for (1,3) and (0,14) another label for (1,4). Let Qo = {(0,14), (0,15)}.
Then {Q; : 0 < ¢ < n} is a partition of P, and each |@;| = 15 except for |Qo] = 2.
When referring to points in a particular @;, it will be convenient to refer to the
points using only their second coordinates. Suppose F is a fibre of P,. Since
Qo is a maximal antichain of P,, we know that |F'N Qo > 1. Now suppose
i€ {1,...,n} and consider Q;NF'. In Q;, {1,2}, {5,6}, {6,7}, {7,8}, ..., {16,17}
are maximal antichains of ();, and in fact are maximal antichains of P, since
P~Q; C (max@;)T U (min@;)]. Thus, F must include one of {1,2} and six of
{5,6,7,...,17}. So |[F'NQ;| > 7. If we could show that [FFNQ;| > 8 then we would
be done. In fact, it is not quite that simple. What we shall do instead is to show
that if |FNQ;| < 8 then |[FNQ;| =7 and |[FNQ;—1| > 9, unless ¢ = 1 in which case
we will get |F'N Q;—1| = 2. Suppose |F'N Q| < 8. Since F includes one of {1,2}
and at least six of {5,6,...,17}, the only way this can happen is if F' contains
exactly six of {5,6,...,17}. And since {5,6}, {6,7}, ..., {16,17} are maximal
antichains, these six points in F ‘must be 6,8,10,12,14,16. And since {1,9,17} is
a maximal antichain, this means that 1 must be the point of {1,2} which is in F.
{2,3} and {4,5} are maximal antichains and 2 and 5 are not in F'. So 3,4 € F.
That is, (1 — 1,15),(: — 1,14) € F. If = 1 then this shows that |[FF N Q;—1| = 2
as we wanted. So assume that : > 1. {(z —1,16),(¢,5)} is a maximal antichain
and (2,5) & Fso (1 —1,16) € F. {(:—1,13),(¢,2)} is a maximal antichain and
(¢,2) € Fso (i —1,13) € F. So far we have 13,14,15,16 € ;-1 N F. Because of
the maximal antichains {1,2}, {5,6}, {6,7}, ..., {11,12}, Q;—1 N F must include
one of 1,2 and four of 5,6,...,12. Thus, |@;-1 N F| > 9, and we are done. That

is, it is clear that |P,| = 15n + 2 and we have shown that every fibre of P, has at
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least 8n + 1 points.
Notice that {(2,5):1 <4< n,1 <j <17, odd} is a fibre of P, of size exactly

8n + 1. ‘ 0

Example 4.6 gives the best known lower bound for the value A of Question 4.5,
that bound being . The best known upper bound of A is . This result was
achieved by Duffus, Kierstead, and Trotter [DKT91] using a coloring technique.
They described a way to partition any finite poset with no splitting element into
three color classes so that the union of any two of the classes is a fibre. Taking
the two smallest color classes yields a fibre of size at most 2 the size of the whole
poset. In infinite cases, such fractions are meaningless, but we can find interesting
results about colorings. For any poset P, a good [G92] coloring is one such that
P has no monochromatic maximal antichain with more than one element. In a
poset with no splitting element, a good k-coloring is one such that the union of any
k — 1 of the color classes is a fibre. (A splitting element comprises a one-element

maximal antichain.) Goddard [G92] determined a class of infinite posets to which

the construction in [DKT91] may be applied:

Theorem 4.7 Let P be a well-founded (finite or infinite) poset which contains an
element x such that no mazimal antichain of P is contained in zT. If P cannot be
expressed as a linear sum of non-empty subsets, then P has a good 3-coloring.
Proof. Notice that the hypothesis implies that P has no splitting element,
and that |P| > 1. |
Let o € P such that there is no maximal antichain of P contained in zof.

Then we choose z; > z, > ... as follows until we choose some z; € min P.
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Suppose z; has been chosen, z;1+; has not, and z; € min P. Then we choose ;41
as follows. First, notice that by the following there must be an element y < z;
such that P~(z;T U yl) # 0. Suppose for a contradiction that no such y exists.
Then P z;] C y] for every y < z;. In fact, this means that P 2;] C yT for every
y < ;. Thus P = ;] ® (P~z;]). This contradicts our hypothesis that P cannot
be expressed as a linear sum of non-empty subsets. Therefore, there is some y < z;
such that P~(z;J U y]) # 0. Choose z;11 to be a minimal such y. In this way we
get a decreasing sequence zo > 1 > 3 > ... > &, such that no maximal antichain
is contained in z¢T and z, € min P. The sequence must reach =, € min P in a
finite number of steps since P is well-founded.

Next, we partition P into 3 color classes. Color z € P red if & is comparable
to all the z;’s. Denote the set of red points by R. If £ € P~ R, then color z blue

or green according as the least ¢ such that z || ; is odd or even.

R

Zo G

A B

) G

.'173‘ B

Suppose A is a red maximal antichain. Then A € zoT. Since A is an antichain
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and {0, %1,...,2,} is a chain with z,, € min P, there exists i € {0,...,n -1}
such that 2,47 < A < z;. But now A cannot be a maximal antichain since
Al = ATUA| C ;41T U 2;]. We chose z; and Z;4+1 o that there are elements
comparable to neither of them, so these elements will not be in AJ. Therefore,
there is no red maximal antichain.

Let D be a set of blue points such that D] = P. For each b € D, there is a
least ¢ such that b || z;. These ¢’s cannot all be the same. Let b,¢ € D, and let 3
least such that & || z; and j least such that c || ;. We may assume that we chose
b and c so that 7 < j. Since b and c are blue, ¢ and j are both odd, so in fact we
have 1 < j — 1. Our choice of j ensures that ¢ < z;_; < 241 < ;. Since ;41 was
chosen minimal having incomparable points in common with z;, this tells us that
there are no points incomparable to both ¢ and z;. Since b || z;, b and ¢ must be
comparable. So D is not an antichain. Thus, there is no blue maximal antichain.

The argument that there is no green maximal antichain is analogous to that

for blue. ’ O

Lemma 4.8 Let P = Y ceo P be a poset where C is a chain and each P, has a
good 3—colorin§. Then so does P.
Proof. For each F;, choose a good 3-coloring using red, blue, and green. Then

the 3-coloring induced on P is good. a
The following corollary is Duffus, Kierstead, and Trotter’s result [DKT91].

Corollary 4.9 If P is a finite poset, then it has a good 3-coloring.
Proof. Let Y .. P; be the linear decomposition of P. By Lemma 4.8, it

suffices to prove this corollary for each P,. Let ¢ € C. If P, = 1, then any coloring
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is a good 3-coloring. If P, # 1, then P, has more than one maximal element, so

any maximal element of P, can stand for z so that Theorem 4.7 may be applied.

O

The next corollary is due to Goddard [G92].

Corollary 4.10 Every antichain-finite poset P has a good 3-coloring.
Proof. Apply the compactness theorem and Corollary 4.9 to the following set
of sentences §. For each z € P, let R, G, and B, be truth-functional variables

and put the following sentence in S:
(R; V Gy V By) & (R, & Gy) & ~(R; & By) & ~(B, & Gy)

R, is to be interpreted as “z is red”, and B, and G, similarly for blue and green.
Thus, any assignment of truth-functional values to all the R;’s, G;’s, and B,’s
which makes all the above sentences true corresponds to a 3-coloring of P.

Also put the following sentence in S for every {zi,22,...,%,} a maximal an-

tichain of P:
(Ryy & Ry & ... & Ry ) & (G &Gy & ... &Gy, )& (Byy & B, & ... & By,,)

This completes the description of S.

Let V ={R,:z € P}U{G, : ¢ € P}U{B, : z € P}. Thereis an assignment of
truth values to all the elements of V which makes all the sentences in & true if and
only if there is a good 3-coloring of P. By the compactness theorem [Appendix A},
there is an assignment of truth values to all the elements of V which makes all the
sentences in S true if and only if the same is true for every finite subset of S and its

associated variables. Let &’ be a finite subset of S, and let V' be the set of variables
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appearing in sentences in §’. Let X be the set of points € P such that R, By,
or G, appears in §. (In fact, if one appears, they all do, but this is not important.)
Consider X as a poset with the ordering induced by P. By Corollary 4.9, X has
a good 3-coloring. With this coloring is associated an assignment of truth-values
to the elements of V'’ which makes all th¢ sentences in &’ true. Therefore, by the
compactness theorem, there is an assignment of truth-values to all the elements of
V which makes every sentence in S true. This is equivalent to saying that P has

a good 3-coloring. a

The proof above shows that a good 3-coloring e>‘<ists, but. it does not give one
any sort of image of how the coloring looks. We now present a more constructive
proof of Corollary 4.10. This proof involves picking maximal chains. According
to Woodrow, the necessity of using Zorn’s Lemma to be sure that maximal chains
exist disqualifies this step from being considered constructive, but he claims that
it is “not too terribly sinful, either”. If one agrees with this assessment, it seems
the following proof is about as close to being constructive as one could hope for.

Proof. By Lemma 4.8, we may assume that P is not linearly decomposable.

Let Cp be a singleton subset of P. Define sequences of C,’s, X4’s, and Y, ’s

indexed by ordinals > 1 as follows. Let
X, ={z € P:z > Cg for every f < a},

Y, ={y € X, : y| N X, contains no maximal antichain of P}, and
C, a chain maximal in Y.

Apply these definitions by transfinite induction until X, = 0. Notice that X,T =

X, for every X,. In other words (for those who like such words) X, is an up-set
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or a dual order ideal. Notice that whenever Y, # 0§ and 8 > o, we get X C X,
and Cp > C,. We should verify that Y, # 0 whenever X, # 0. Suppose « is an
ordinal such that X, is not empty but Y, is. Let ¢ € X, and b € P~X,. Since
a ¢ Y,, there is a maximal antichain A of P contained in a| N X,. Then b € Al.
Since b € X,, we cannot have b € AT. So b € A]. Since A C al, this tells us
that a > b. So P = (P X,) ® Xa. Thié contradicts our assumption that P is not
linearly decomposable, and so Y, # 0 whenever X, # 0. So for each X, # 0, we
also have Cy # 0. And the C,’s are disjoint since each C, C X, and each X,
is defined to be disjoint from all previous C,’s. Therefore, we will eventually get
Xo = 0 for some ordinal @ such that || < |P.

Before trusting the following diagram, we should verify that the Y,’s are dis-
joint. Suppose y € Y, and f < . Then y € X,, so y > Cp. Thus, CpU {y} is a
chain strictly containing Cs which is a chain maximal in Yp, so y € Ys. Therefore,

YoNYs = 0.

Cs

Cy

Co )
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Next, define sequences dual to these according to the following. Let C} = Cy,
Xy ={z € P:z < Cpfor every f < o},

Y, = {y € X, : yT N X}, contains no maximal antichain of P}, and
C/, a chain maximal in Y.

Apply these definitions by transfinite induction until X, = 0.

For each «a for which X, is defined, let R, = X, N C;al, and for each « for
which X, is defined, let R, = X, N C.T. Let Ry = Ry = Co = C{. Notice that
whenever 8 > «, Rg > Ry and Ry < R),. Let R = (UypRa) U (Us R,). For
each ordinal o # 0, let Qo = Xo™(RU Xo41) and let @, = X, N(RU XL, ). Let
Qo = Qb = P~Cp]. Notice that {Qq : Qo # 0} U {Q’, : @), # 0} is a partition of
P~R.

Any ordinal has a unique representation « + k£ where « is a limit ordinal or 0
and k is ‘a, finite ordinal. Call a+ & even or odd according as k is even or odd in the

usual sense. Let B = (Ua even Qa) U (Ua even Qla)’ G = (Ua odd Qa) U (Uoz odd Q;)
Color the elements of R red, B blue, and G green.
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Is there a red maximal antichain? Suppose A is a red antichain. Then, clearly
A C Ry or A C R, for some a. Assume without loss of generality that A C R,
for some . That is, A C Xo N Cyl. Say A = {ay,a,...,a;r}. Foreach a; € A, let
¢; € Cy such that a;.< ¢;. Then let ¢ = max{c;:i=1,...,k}. Soce C, CY,. So
A C X, Ncl cannot be a maximal antichain. Therefore, there is no red maximal
antichain.

Is there a blue maximal antichain? First, we show that any antichain contained

in the Q,’s and @/,’s must be contained in two consecutive such sets. Since all the

Qq’s other than Qo = @ are contained in CyT and all the Q,’s other than Q) = Qo
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are contained in Col, we know that any antichain contained in (U, Qo) U (Uy Q%)
must, in fact, be contained in Uy Qo or Uy @,- We will consider the |, Qo case,
the other is dual. Let a € Qy and b€ Qg where f > a+1. b€ Qp C X C Xyt1-
b € X implies b > Cuq1. Since Cuqq is a maximal chain of Y., this tells us
that b &€ Y,41. So b € Xoq41 Yos1. Therefore, by the definition of Y41, there
exiéts A C b} N X,41 such that A is a maximal antichain of P. a € P = A[.
A7 C Xop1T = Xas1, 50 a € AT. So a € A] C b]. That is, a < b. So any antichain
contained in (Uy Qo) U (Us @) must, in fact, be contained in two consecutive Q4 ’s

or @ ’s. This information allows us to improve the accuracy of the diagram.

Since any two consecutive Q4 ’s or @’,’s have different colors, we can prove that
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there is no monochromatic maximal antichain by showing that there is no maximal
antichain contained in any single Qo or Q. Suppose A is a maximal antichain
contained in some (J,. The case where a maximal antichain is contained in some
Q% is dual, so it suffices to prove only the case just described. Obviously a # 0
since Cp ¢ Qol. Since A C Qo C X4, we know that Uz, Cs < A. Also, C, C AJ
but Cy N AT must be empty since A C X, and C,|N X, C R. So Cy C A]. Since
A is finite and Ug<, Cp is a chain contained in Al, there exists a € A such that
Us<a Cs < a. But then @ € Xo41, a contradiction. So no maximal antichain is

contained in a single Q4. So there is no blue or green maximal antichain. O

In [G92], Goddard presented several results about good colorings, but we will
not mention any more of them here. A question he was unable to answer is the

following:

Question 4.11 Does every poset have a good 3-coloring?

In fact, it is even unknown whether there is a poset which has no good finite-
coloring, and this seems to be quite a difficult point to resolve. Superficially,
Lemma 2.3.2 seems to indicate that products are unlikely to make useful examples
of posets requiring many colors for a good coloring. This is because if P has no
splitting element and P and @ satisfy the hypothesis of Lemma 2.3.2 (@ has a
maximal element and P is well-founded), then it is easy to see by Lemma 2.3.2
that any good coloring of P provides a good coloring of P X @) by coloring each
(p,q) in P x @ with the color of p in P. Thus, P X @ requires no more colors
for a good coloring than P does. However, any posets satisfying the hypothesis of

Lemma 2.3.2 are probably not posets one would try to use to resolve this issue.
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So I suspect that this observation will be irrelevant to any reasonable attempt to

resolve this issue.

Another antichain-coloring result is: Fvery poset has a 2-coloring so that every
2-element mazimal antichain is 2-colored. This result is due to Duffus, Sands,
Sauer, and Woodrow [DSSW91]. One might wonder whether the 2’s in this state-
ment could be replaced by any natural number k. An unpublished example by
Sands shows that this is not possible for £ > 3. The example for £ = 3 is the

8-element crown. For larger values of k, add k — 3 isolated points to the 8-element

The other open question in [AA86] pushes the boundary of relevance to this

crown.

thesis. However, I think it is worth mentioning, since f;he only journal article to
make relevant comments made apparently contradictory comments which might
leave a reader wondering whether there is any point looking at the question. We
need a couple of definitions for this question. The chromatic number of a graph G
is the least number k so that the vertices of the graph can be k-colored so that no
edge connects two vert.ices of the same color. A perfect graph is one in which every

induced subgraph has its chromatic number equal to the size of its largest clique.

Question 4.12 Suppose G is a perfect graph with no isolated points and T is a
. . o . . IT| o
minimum-sized transversal of G. What is the greatest possible value of Ok
In [LR87], Lonc and Rival say: “As every connected comparability graph [with

n vertices] is perfect it contains a subset of at most % vertices which meets every

maximal clique”. This statement seems implicitly to contradict something they
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say three sentences earlier: “..

. not every perfect graph [with n vertices] has a
subset of at most % vertices which meets every maximal clique.” Can a minimum-
sized transversal of a finite perfect graph include more than half the vertices? The

following example in [AA86] shows that the answer is yes.

1 2
3
3 3
1 2
2 1

The graph above has only one 3-element clique and a 3-coloring is indicated
which does not give the same color to any adjacent vertices. Thus any induced
subgraph which contains the 3-element clique has chromatic number 3. And any
induced subgraph which does not contain the 3-element clique is bipartite and
so has chromatic number equal to the size of the largest clique. So the graph is
perfect. However, we will now show that the graph has no transversal of fewer
than 5 elements. Let T be a transversal of the graph. T must include one of
the vertices of the triangle in the center of the diagram — assume without loss of
generality that it includes the one marked with a hollow circle. T must also include
one of the vertices in the edge most distant in the diagram from the vertex just
mentioned — assume without loss of generality that T includes the other point
marked with a hollow circle. Now the edges marked with double lines indicate
three maximal cliques having no elements in common with each other or with the
two points marked with hollow circles. Thus every transversal of this graph has at

least 5 vertices.
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Chapter 5

Cutsets for Elements

“...1it is very easy to be blinded to the essential uselessness of them by
the sense of achievement you get from getting them to work at all.”
— Douglas Adams, So Long, And Thanks For All The Fish [1984]

In this chapter we look at some results concerning cutsets for elements. This
author has not found cutsets for elements a particularly exciting concept, but
because of their popularity with other authors, they warrant some discussion here.
If P is a poset and ¢ € P, then we say that K is a cutset for z if K C P~z and
K U {z} is a cutset of P. We say that a poset P has the n-cutset property if for
every ¢ € P, there is some K C P which is a cutset for 2 and |K| < n. We say
that a poset P has the finite-cutset property if for every z € P, there is a cutset
for « which is finite. (In [LR87], Lonc and Rival accidentally omitted the word
“ﬁnite” from their definition of the finite-cutset property.)

These concepts were first discussed by Bell and Ginsburg [BG84] who related
them to a topology. For any poset P, let M(P) be the set of maximal chains of
P, and recall that for any z € P, C(z) is the set of maximal chains which include

z. Impose on M(P) the topology with subbase {C(z): z € P}.

Theorem 5.1 [BG84] For any poset P, the following are equivalent:
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(t)  Bvery cutset of P contains a finite cutset of P.
(¢2) P has the finite-cutset property.
(i5) M(P) is compact. ' |

Actually, Bell and Ginsburg proved the analogous theorem for graphs, getting
Theorem 5.1 as an immediate corollary by way of comparability graphs. They also
showed that for chain-complete posets, the following characterisation can be added

to the theorem, where the interval [z, y] is the subposet zT N y|.

(iv) P is special and for all z <y in P, there is a finite cutset of [z,y].

Part of this result applies to posets in general, regardless of whether they are

chain-complete:
Theorem 5.2 Every poset with the finite-cutset property is special. O

El-Zahar and Zaguia mentioned Theorem 5.2 in the introduction to their survey
paper [EZ86], but when they stated it in the main body of the paper [EZ86,
Proposition 2.4], they added the unnecessary condition that the poset be chain-
complete.

Aharoni, Brochet, and Pouzet [ABP88] related the finite-cutset property to an

adaptation of the Menger property for graphs. For P any poset, define
cut(P) = min{|K| : K is a cutset of P}, and

disj(P) = sup{|C| : C is a set of pairwise disjoint maximal chains of P}.

Call P Mengerif disj(P) = eut(P), and finitely Menger if these numbers ate equal

and finite. The most popular way of stating Menger’s Theorem is: If V; and V; are
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disjoint sets of vertices in a finite graph G, and k is the size of the smallest subset
of V(G)~ (V41 U V) which meets every path beginning in Vi and ending in Va, then
there are k paths from Vy to V, which do not meet pairwise except in Vi UVs. Most
authors cite [M27] as the source of this theorem, but the formulation in [M27] is
in the context of one-dimensional spaces. This author prefers the graph-theoretic
description given by Konig [K36], but those who do not read German will probably
not have a preference. Menger’s Theorem tells us that any finite poset P is Menger
by applying the theorem to the graph whose vertices are the points of 1 P& 1
and in which (z,y) is an edge if and only if z < y or y < z. Apply the theorem
with V; the singleton set containing just the maximal element and V5 the singleton
set containing just the minimal element.

Aharoni, Brochet, and Pouzet [ABP88] showed that:

Theorem 5.3 If P is a poset with the finite-cutset property, then P is finitely

Menger. a
Another Menger result was proved by Li [L89]:
Theorem 5.4 If P is chain-complete and special, then P is Menger. O

The next two theorems concern situations where disj(P) = cut(P) = 1. The
results bear some intuitive resemblance to the one-dimensional version of Helly’s
Theorem: If {K;} is a finite set of intervals in R such that no two are disjoint,
then (; K; # § [CFGI1]. The following results were proved by Sands (unpublished)

and Brochet and Pouzet [BP88], respectively:

Theorem 5.5 If a poset P is chain-complete and no two mazimal chains of P are
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disjoint, then NM(P) # 0. : o

Theorem 5.6 If a poset P has finite width and no two mazimal chains of P are

disjoint, then N M(P) # 0. m]

In [K88], Kierstead proved a related result for intersections of maximal chains
with arbitrary subsets.

Nobody seems to have addressed the issue of whether the finite-width condition
in Theorem 5.6 can be weakened to antichain-finite, but we do know that the finite-

width condition cannot be dropped altogether, as this example shows:

In [N86], Nowakowski found the smallest cutsets for elements of Boolean lat-
tices. In almost all cases, the smallest cutset for an element z in a Boolean lattice
is {y € P 2T :y < z for some z € 21} or, dually, {y € P z| :y > z for some z €
z]}. Griggs and Kleitman [GK89] gave a different proof of the same result. At
the other extreme, Firedi, Griggs, and Kleitman [FGK89] found minimal cutsets
of Boolean lattices whose size as a fraction of the lattice’s size approaches 1 as the
lattice’s size goes to infinity. The issue of finding bounds on the size of minimal
fibres of Boolean lattices was mentioned by Lonc & Rival in [LR87] and Duffus,
Sands, & Winkler in [DSW91], but neither of these papers has a complete solution.

Ginsburg, Rivai, and Sands [GRS86] showed that if a chain-finite poset h'as

the finite-cutset property, then it must be finite. Lonc and Rival [LR87] defined
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analogous properties for transversals and fibres and proved related results. Say that
a graph G has the finite-transversal property if for every z € V(G), there is some
finite ' C V(@) such that {z} UT is a transversal and there is no (z,y) € E(G)
where y € T. A poset P has the finite-fibre property if for every = € P, there is.
some finite F' C P~z] such that {z} U F is a fibre. Lonc and Rival showed:

Theorem 5.7 If G is a graph in which every clique is finite and G has the finite-

transversal property, then G is finite. o

Lonc and Rival observed that applying this result to the comparability graph
of a poset yields the aforementioned result of Ginsburg, Rival, and Sands, and
applying it to the complement of the comparability graph of a poset shows that if
a poset has the finite-fibre property and every antichain is finite, then the poset is
finite. This is the only mention of the finite-fibre property in the literature. The
n-fibre property appears nowhere in the literature in spite of the popularity of the
n-cutset property which has been mentioned in at least nine articles.

It is clear that a poset has the 0-cutset property if and only if it is a chain.
A poset with the 1-cutset property has width 1 or 2. Ginsburg [G] calls this fact
“well-known and often rediscovered”. Interesting results regarding the n-cutset

property begin at n = 2.
In [G86b], Ginsburg describes a simple configuration which he calls a ladder,
and shows that a poset P with the 2-cutset property must contain a ladder of
height |$(width(P) —3)] + 1.
The first result to say something about the n-cutset property for arbitrary finite

n was proven by Ginsburg [G87]. He showed that if P has the n-cutset property,
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where n is any natural number, then |max P| < 2". Later, Arpin and Ginsburg

[AGI1] improved this result by weakening the hypothesis:

Theorem 5.8 Let P be a poset and n € N such that for every ¢ € max P, there

is a cutset K for x satisfying |K| < n. Then |max P| < 2", o
Two similar results in the same paper are:

Theorem 5.9 Letn € N and P a poset with the n-cutset property satisfying
| max P| = 2". Then P contains a complete binary tree T of height n such that

maxT = max P. O

Theorem 5.10 Let P be a poset with the Ro-cutset property satisfying | max P| =

2%, Then P contains a complete binary tree of height w. i

Other questions have been posed concerning the n-cutset property for arbitrary
n but answered in only a few cases. For one of these questions, the few cases that
have been aﬁswered are the only interesting ones. Sauer and Woodrow [SW84]
addressed the question: For n a natural number, what is the least m such that for
every poset P with the n-cutset property, every x € P is contained in o mazimal
antichain of < m points? They showed that for n = 0, m = 1; for n = 1,
m = 2; forn = 2, m = 4; and for n = 3, m > Ry. Call a poset P conditionally
chain-complete if every bounded chain has a supremum and an infimum. Sauer
and Woodrow [SW84| showed that if a conditionally chain-complete poset P has
the finite-cutset property, then every finite antichain of P is contained in a finite
maximal antichain.

A similar question is: What is the mazimum possible width of a poset P with the
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n-cutset property? Sauer and Woodrow [SW84] provide the following best possible
answers: for n = 0, width(P) = 1; for n = 1, width(P) < 2; and for n = 2,
no bound exists. Kezdy, Markert, and West [KMW90] examined the question of
approximating the maximum possible width of a poset for finite fixed n-cutset
property and height. Hajnal and Sauer [HS93] addressed the same question for
infinite fixed k-cutset property and height. An early result was proved by El-Zahar
& Zaguia [EZ86] and Ginsburg, Sands, & West [GSW89] using different methods: '

Theorem 5.11 width(P) < height(P) + 2 for any poset P with the 2-cutset prop-

erty. : |

The dimension of a poset cannot exceed its width if its width is finite. We
will use this fact in the next paragraph, but first we will say something about
the difficulty of attributing it. This fact is stated without proof in [D50] (in a
footnote!), which causes this author to question the judgement of Trotter who
listed only [D50] as a reference when he stated and proved this fact in [T92]. Also,
this seems to indicate some change of opinion since Trotter and Kelly listed only
Hiraguchi’s [H55] as a reference when they stated and proved this fact in [KT82].
The rest of the literature is also divided between attribution to [H55] and [D50].
I cannot say which attribution is more appropriate since I have not seen [H55]
and its description in Mathematical Reviews does not specifically mention this
result. Furthermore, many authors have not bothered to explicitly mention the
finite width condition, without which the statement is false; Nation, Pickering, and
Schmer] have shown that a poset with no infinite antichains may have arbitrarily

large infinite dimension [NPS88].
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Ginsburg [G] addressed a simple question without a éimple answer: Ifn € N
and P is a poset with the n-cutset property, then what is the mazimal possible
dimension of P? For n = 0, the answer is trivially 1. For n = 1, the answer is
2 as is easily verified using the knowledge that posets with the 1-cutset property
all have width less than 3, and posets of dimension 3 all have width at least 3.
The first interesting case is n = 2, for which Ginsburg shows that the answer is no
more than 41 and says that this result “can undoubtedly be improved”. In fact,
the greatest dimension for which a poset with the 2-cutset property is known to
exist is 4.

In [G89], Ginsburg characterises by means of forbidden configurations the finite
posets which can be embedded in posets with the 1-cutset property. A shorter
version of the proof is provided by Rutkowski [Ru92].

Say that a pc;set P has the chain-cutset property if for every ¢ € P, there is a
cutset for £ which is a chain. Ginsburg, Rival, and Sands [GRS86] ask: What is the
mazimum possible width (if any exists) of a poset with the chain-cutset property?
It is known only that the answer is at least 4, as demonstrated by examples in

[GRS86] (on the left) and El-Zahar and Zaguia’s [EZ86] (on the right).

In his Ph.D. dissertation [Z85], Zagﬁia showed that the answer to this question

restricted to lattices is 2.
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Appendix A

The Compactness Theorem

The compactness theorem is used twice in the thesi§. Even though anyone
likely to read this thesis probably already knows the compactness theorem, I think
the following proof is worthy of being included in this thesis since it is both correct
and comprehensible, and this is more than I can say of a,ny of the proofs I read in
the literature.

We will not subject ourselves to the tedium of a rigorous description of sen-
tential logic. We will just point out, although it probably is already clear, that
the sentences referred to in the theorem have no quantifiers, only truth-functional
variables and the usual unary and binary truth-functional operators.

For any set S of sentences, let V(S) be the set of truth-functional variables
appearing in the sentences in §. Call § satisfiable if there is an assignment of
truth-functional values to the elements of V(S) making all elements of S evaluate

to true. Call S finitely satisfiable if every finite subset of S is satisfiable.

Theorem (The Compactness Theorem)

Let S be any set of sentences. S is satisfiable if and only if S is finitely satis-
fiable.

Proof. The theorem is obvious when S is finite, so assume S is infinite. The
-“only if” part is obvious in any case, so we will prove only the “if” part.

Let £ = [V(S)|. Let f: & — V(S) be one-to-one and onto. For each o € /c;

write vy for f(a). So V(S8) = {va : @ < &}. Define two increasing (with respect
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to C) sequences of finitely satisflable sets of sentences by transfinite induction as
follows. Let S = §. For each a < & such that a # 0, let So = Upcq Zp. For
each o € &, put T, = Sy U “v” if S U “v,” is finitely satisfiable, otherwise put
Ta = Sa U “,”. I claim that, in fact, all the 7,’s and S, ’s are finitely satisfiable.
If there is any o € k such that 7, is not finitely satisfiable, then Sy4; = 75, is not
finitely satisfiable. Thus, to show that all the 8,’s and 7,’s are finitely satisfiable,
it suffices just to show that all the S,’s are finitely satisfiable. Suppose rfor a
contradiction that there is some a < & such that S, is not finitely satisfiable.
We may assume that « is least so that S, is not finitely satisfiable. Let A be a
finite subset of S, which is not satisfiable. Then there exists § < o such that
A C T So ’]}3 is not finitely satisfiable, but Sp is, so “vs”, “7vg” & Sp. Since Tp
is not finitely satisfiable, neither Sg U {“vg”} nor Sp U {“~vg”} is. Let B and C
be finite unsatisfiable subsets of SgU {“vs”} and SpU {“~vg" } respectively. Since
Sp is finitely satisfiable, we know that “vg” € B and “~wg” € C. Furthermore, we
know tha.t vg € V(B {“vg”}) and every assignment of truth-functional values to
the elements of V(B~{“vs”}) that makes every sentence in B~ {“vg"} true assigns
vp false. Similarly, vg € V(C~{“"vs”}) and every assignment of truth-functional
values to the elements of V(C>{“7vg”}) that makes every sentence in C~N{“7vg"} -
true assigns vg true. But then (B™“vg”) U (CN“7wpg”) is a finite subset of Sp
such that there is no assignment of truth-functional values to the elements of
V((B~“vg”)U(C~ “vp”)) making all the sentences in Sp true. So Sp is not finitely
satisfiable, a contradiction. So all the S, ’s are finitely satisfiable. In particular, S

is finitely satisfiable.

For each o < &, let S(vy) be either “v,” or “7w,”, whichever of these is in
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Sk. For each a < £, assign v, the value true or false according as S(vy) is “v,” or
“=104”. Does this assignment of truth-values make every sentence in S, evaluate
to true? Let A € S,. Let A = {A} U {S(v) : v € V({A})}. A is a finite subset
of Sy, so there is a way to assign.truth-values to the elements of V(.A) so that all
the sentences in A evaluate to true. Obviously, this assignment is the one which
coincides with the one we have chosen for all of V(S,). So this assignment does
make A evaluate to true. That is, the assignment makes every sentence in Sy true.

So it makes every sentence in S true.

Q(uite) E(asily) D(one). (Not really.)O
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Appendix B

permission from Peter Gibson to use joint research

To whom it may concern:

Most of the results in Chapter 2 of Roy Maltby’s Master’s thesis (results which
are concerned with posets in which every cutset meets every fibre) are from joint
research undertaken by me (Peter Gibson) and Roy Maltby during the summer of
1990, except for the theorem concerning posets of the form (K1,1)" X Ki;m X K10
and the theorem concerning posets of the form Ki; X Ky X K1, which are more
recent results obtained by Roy Maltby alone. Roy Maltby has my permission to

use results from our joint research in his Master’s thesis.

Peter Gibson




antichain (maximal)
antichain-finite

Boolean lattice

CAC
cardinal sum
chain (maximal)

chain-antichain-complete

chain-complete
chain-cutset property
chain-finite
chromatic number
clique (maximal)
comparability graph
complement graph

conditionally chain-complete

cover

crown

cutset (minimal)
cutset for
n-cutset property
cutset-straight
cycle

dimension

direct product
disjoint sum
distance (reduced)
distributive lattice

e-embedded
endpoint
exponent

fence
fence (has a)

Index

31
10

4,15
110
4
101
4

5

5
108
-6
34
3
103
103
46
34

54
14
10
35
33

35
34
31

34
6

fence-free:

fibre (minimal)
finite-cutset property
finite-fibre property

finite-transversal property

4-fence
fibre-straight

good coloring
graph

height
hockey

independent
infimum

lexicographic sum

linearly decomposable

linear sum

maximal element
Menger (finitely)
minimal element

N
N-free

order-preserving
ordinal sum

Ps

Ps-free

partially ordered set
perfect graph

poset

product
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103
107
107

46

2



realiser 54
regular ' 67
satisfiable (finitely) 118
series-parallel 13
special 75
special infimum 75
special supremum 75
splitting element 87
sup-regular 7
supremum 4,14
totally ordered set 5
transversal (minimal) 4
well-founded 4
width 4

zigzag 34
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No animals were harmed in the typing of this thesis.
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Have a nice day.



