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Abstract 

A cutset (fibre) of a poset is a subset which meets every maximal chain (an-

tichain). We examine posets in which every cutset contains a maximal antichain, 

determining some operations which preserve or destroy this property. We examine 

the question of what properties guarantee that fence-free is equivalent to every 

minimal cutset being an antichain or every minimal fibre being a chain. We de-

scribe a method for partitioning any antichain-finite poset into three subsets so 

that the union of any two is a fibre. We also summarise what is known about 

cutsets for elements. 
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Chapter 1 

Introduction 

"An ancestor of mine maintained that if you eliminate the impossible, 
whatever remains, however improbable, must be the truth." 

- Spock [1991] quoting Sherlock Holmes [1890] 

A binary relation "<" on a set P is called a partial order if it satisfies the 

following conditions. 

(i) For all x,y,zEP,w < y and y < z implies x < z. 

(ii) There are no x, y E P such that x <y and y < x. 

Notice that a consequence of (ii) is that there is no x E P such that x < x. 

A set P with which a partial order is associated is called a partially ordered set, 

which we will usually abbreviate to poset. 

Suppose P is a poset with partial order <. The following symbols will be 

convenient. For any x,y E P, 

x ≤ y means x <y or x = 

x > y means y < x, 

x ≥ y means x > y or x = y, and 

For subsets X, Y C P,X <Y means that x < y for all x E X and  E Y. X _<Y, 

X > Y, X ≥ Y, and X 11 Y are defined similarly. When X or Y is a singleton, 
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we may write just the element rather than the set. For instance, if X = {x}, then 

x means {x} <Y. If a poset P has nonempty disjoint subsets X and Y such 

that X < Y and X U Y = F, then we say that P is linearly decomposable and 

write P = X ED Y. 

To denote set difference, we will use ". That is, A' B is the set of elements 

of A which are not elements of B. 

Define the following notation when X is a subset of P. 

XI={yEP:y≥x for some xEX}, 

X={yEP :y > x for some x EX}\X, 

XI={yEP:y≤x for some xEX}, 

XI={yEP:y<x for some xEX}X, 

xI=xluxt 

Actually, the symbols j' and I will only be used with antichains in this thesis, 

making the "-, X"  parts of the definitions unnecessary. We will abbreviate this 

notation slightly for x E F: x' = {x}1, xl = {x}I, xl = {x}J,, xj. = {x}I, and 

If P is a poset, then the dual of F, denoted pd is the poset having the same 

elements as F, but with the elements ordered so that x < y in pd if and only if 

y < x in P. 

If  C P then C is called  chain if for all x, y E C, x < y or  ≤ x. A subset A 
of P is called an antichain if for all distinct x, y e A, x 11 y. A chain (respectively, 

antichain) S of P is called a maximal chain (respectively, maximal antichain) of P if 

there is no S' C P such that S' is also a chain (respectively, antichain) and S C 5'. 
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(In this thesis, the symbol C will always mean "is a proper subset of".) It is an 

easy consequence of Zorn's Lemma that if S is a chain (respectively, antichain) in a 

poset P, then there exists S' a maximal chain (respectively, maximal antichain) of 

P which contains S. An antichain A in a poset P is a maximal antichain if and only 

if Al = P. In set theory, authors tend to keep track of the use of Zorn's Lemma 

so that they know what can be achieved without it. In this thesis, maximal chains 

and antichains are so important that there is no hope of doing anything without 

Zorn's Lemma, so there is no point making a fuss about using it. 

If P is a poset with subset K, then K is called a cutset of P if K has non-empty 

intersection with every maximal chain of P. A cutset K is called a minimal cutset 

if no proper subset of K is a cutset. A cutset K is a minimal cutset of P if and only 

if for every x E K, there is a maximal chain C such that C fl K = {x}. Similarly, 

a subset F of P is called a fibre of P if F has non-empty intersection with every 

maximal antichain of P. A fibre F is called a minimal fibre if no proper subset 

of F is a fibre. A fibre F is a minimal fibre of P if and only if for every x E F, 

there is a maximal antichain A such that An F = {x}. In an infinite poset, a fibre 

(respectively, cutset) might not contain any minimal fibre (respectively, minimal 

cutset). It is fairly easy to see that when a fibre (respectively, cutset) is a chain 

(respectively, antichain), it is a minimal fibre (respectively, minimal cutset) and a 

maximal chain (respectively, maximal antichain). 

Suppose P is a poset and X C P. Then max  is the set of points x E X 
such that there is no y > x where y E X as well. min  is defined dually. We will 

call max  the set of maximal elements of P, or just the maximals of P, and the 

minimals dually. Sometimes when max X is a singleton set, we will use max X to 
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refer just to the element of the singleton set rather than the set. 

A poset is called chain-finite (respectively, antichain-finite) if all of its chains 

(respectively, antichains) are finite. Using the usual definition of sup for cardinal-

ities, define the height and width of a poset P by 

height(P) = sup{ ICI : C is a chain in P}, and 

width(P) = supJJAJ A is an antichain in P}. 

A chain-finite poset may have infinite height, and an anti chain-finite poset may 

have infinite width. A poset P is called well-founded if it contains no infinite 

decreasing chain x1 > x2 > x3 > .... This is equivalent to saying that for every 

non-empty chain Gin F, I min Ci = 1. If C is a chain, X = {x E F: x ≥ C}, and 

there exists y E X such that X = yl, then we say that y is the supremum of C, 

abbreviated y = sup C. The infimurn of C, denoted inf C, is defined dually. We 

say that a poset is chain-complete if every chain has a supremum and an infimum. 

A graph G is a set of vertices V(G) and a set of edges E(G). Each edge is 

a 2-element subset of V(G). We will write edges delimited by parentheses rather 

than curly braces. Readers who insist that (x, y) is not the same as (y, x) can use 

the implicit assumption that E(G) is a symmetric set. That is, for any x, y E V(G). 

such that (x,y) E E(G), (y,x) is also in E(G). C C V(G) is called a clique of 

the graph C if (x, y) E E(G) for all distinct x,y E C. C C_ V(G) is called a 

maximal clique of G if C is a clique and C is not properly contained in any clique. 

By Zorn's Lemma, any clique is contained in a maximal clique. A transversal 

of a graph C is a subset of V(G) which has non-empty intersection with every 

maximal clique. A minimal transversal is a transversal which does not properly 

contain any transversal. A transversal T of a graph C is a minimal transversal if 
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and only if for every s E T, there is a maximal clique C such that c fl T = {x}. 

In infinite graphs, transversals do not always contain minimal transversals. A 

subset S C V(G) is called independent if for all x, y E S, (x, y) V E(G). When a 
transversal is independent, it is a minimal transversal and a maximal independent 

set. 

The comparability graph C of a poset P is the graph such that V(G) = P and 

for all distinct x,y E F, (x, y) E E(G) if and only ifs < y or y < s in P. Any 

subset C of P is a (maximal) chain of P if and only if C C V(G) is a (maximal) 

clique of C. Any subset K of P is a (minimal) cutset of P if and only if K C V(G) 

is a (minimal) transversal of G. The complement of a graph C is the graph G' 

such that V(G') = V(G) and for all distinct s,y E V(G'), (x, y) E V(G') if and 

only if (x, y) % V(G). Let P be a poset with comparability graph C, and G' the 

complement of G. A subset A of P is a (maximal) antichain of P if and only if 

A C: V(G) is a (maximal) independent set of C, which is equivalent to A C V(G') 

being a (maximal) clique of G. F is a (minimal) fibre of P if and only if F C V(G') 
is a (minimal) transversal of G'. 

A poset which is a chain will be called a totally ordered set. Some totally ordered 

sets which warrant names are the set of natural numbers, N, whose elements are 

1 <2<3<...; the set of whole numbers, w, whose elements are 0<1<2<3< 

..; the set of the first n whole numbers, n, whose elements are 0 < 1 <2 < ... 

n—i; and the set of integers, Z, whose elements are . . .-2 < —1 <0 < 1 <2 < 

Also, the symbol will denote an n-element antichain. Ordinarily, when we talk 

about elements of a dual poset, we will use the same labels as in the original poset. 

The only exception is wd, whose elements we will label by0> —i > —2> —3> 
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(a, b, c, d) is called a 4-fence of a poset P if a, b, c, and d are distinct elements 

of P such that a < b > c < d and these elements are otherwise not comparable 

to each other. A poset is called fence-free if it has no 4-fence. If a poset is not 

fence-free, we will save a syllable by saying that it has a fence, rather than saying 

it has a 4-fence. The poset consisting of just a 4-fence will be called F4. x -< y 

(read "x is covered by y") means that x < y and xJ fl yJ = 0. x >- y (read "x 

covers y") means y - X. (a, b, c) d) is called an N of a poset P if a, b, c, and d are 

distinct elements of P such that a -< b >- c - d and these elements are otherwise 

not comparable to each other. A poset is called N-free if it has no N. Every 

fence-free poset is N-free, but the N-free poset below is not fence-free. 

(a, b, c) d) is called a P3 (a path with 3 edges) of a graph G if the edges on these 

vertices are just (a, b), (b, c), and (c, d). A graph is called P3-free if it has no P3. 

If G is the comparability graph of a poset F, then G is P3-free if and only if P is 

fence-free. A graph is P3-free if and only if its complement is P3-free. 

The earliest paper this author has found which mentions a result concerning 

cutsets and/or fibres is a 1969 paper by Grillet [G69]. We refer the reader to 

the chapter on cutset- and fibre-straight posets (Chapter 3) for the definition of 

"regular", silice we will not prove and will quickly forget the following result. 

Suffice it to say, for now, that all finite posets are regular. The equivalence of 

conditions (i)—(iii) below is trivial. The main relevant result of [G69} is that for 

any regular poset F, these conditions are equivalent to (iv): 
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(i) Every maximal chain of P meets every maximal antichain of P. 

(ii) Every maximal chain of P is a fibre. 

(iii) Every maximal antichain of P is a cutset. 

(iv) P is N-free. 

Actually, Grillet never used the words "cutset" or "fibre", but he did coin the 

term chain-antichain-complete, abbreviated CAC, for posets satisfying conditions 

(i)—(iii). A 1973 paper by Leclerc and Monjardet [LM73] characterised finite GAO 

lattices and finite GAG graded posets in terms less convenient than N-free. A result 

by Rival and Zaguia [RZ87] is a direct extension of Grillet's theorem. They define 

a structure more general than N and show that in any poset, (i)—(iii) above hold if 

and only if the poset does not contain this more general forbidden configuration. 

Aside from [LM73] and [RZ87], Grillet's paper seems to have been quite ineffective 

at generating interest in cutsets and fibres. 

The paper which seems to have initiated most current cutset research is the 

1984 paper by Bell and Ginsburg [B084]. This paper and the majority of those 

since which have mentioned cutsets have been concerned primarily or exclusively 

with cutsets for elements. We refer the reader to the chapter on that subject 

(Chapter 5) for more information since that subject has nothing to do with most 

of this thesis. 

The genesis of this thesis was research relating to a paper by Duffus, Sands, 

and Winkler [DSW9O], showing that Boolean lattices are hockey posets, one char-

acterisation of which is that every cutset contains a maximal antichain. In the 

summer of 1990, Peter Gibson and I looked into what else could be said about 

hockey posets. The majority of the results in the chapter on hockey posets (Chap-
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ter 2) are products of this research. A finite poset is hockey if and only if every 

minimalcutset contains a maximal antichain. I got to wondering what could be 

said about posets in which every minimal cutset is a maximal antichain. Hence, 

the chapter on the subject of cutset-straight and fibre-straight posets (Chapter 3). 

On the whole, cutsets have been a much more popular topic of research than 

fibres have. However, the chapter on "Partitions and Fibres" (Chapter 4) is exclu-

sively about fibres, and the questions addressed really are fibre questions. Many 

questions about fibres, cutsets, or transversals can trivially be rephrased using ei-

ther of the other two terms, but this does not apply to material in the "Partitions 

and Fibres" chapter. 
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Chapter 2 

Hockey Posets 

comprising research undertaken with Peter Gibson 

"Ad hoc, ad bc, and quid pro quo. So little time, so much to know." 
- Jeremy Hillary Boob, Ph.D. in Yellow Submarine [1968] 

2.1 Introduction 

Call a poset a hockey poset if it satisfies the following equivalent conditions: 

(i) Every fibre intersects every cutset. 

(ii) Every red-blue coloring of the elements of the poset has a red 

maximal chain or a blue maximal antichain. 

(iii) Every fibre contains a maximal chain. 

(iv) Every cutset contains a maximal antichain. 

The equivalence of (ii), (iii), and (iv) is explained in [DSW9O]. It is easy to see 

that (iii) implies (i). Conversely, if (iii) is false then so is (i) since there is a fibre 

whose complement is a cutset. 

The property of hockeyness was discussed in [DSW9O] but it was not given 

a name. Also, characterisation (i) was not mentioned. We introduce the term 

"hockey" with the following motivation. By (ii), a poset is hockey if and only if 

every red-blue coloring of its elements results in a red maximal chain - that is, a 

red line going all the way across the poset vertically - or a blue maximal antichain 
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- that is, a blue line going all the way across the poset horizontally. The only 

naturally-occurring object with red and blue lines going all the way across it is 

a hockey rink. There is a weakness here in that the lines on a hockey rink are 

parallel rather than orthogonal, but this seems to be the best we can do. 

In the remainder of the chapter, we will determine when sums of posets are 

hockey. We will classify certain direct products of posets as being hockey or not 

hockey. Among other results, we find that if a direct product of two posets is 

hockey, where one is well-founded and the other chain-complete, then the well-

founded factor must be hockey. We will show that the only finite exponents 2 

of the two-element chain that are hockey are those in which P is a linear sum of 

antichains. We will also determine which zigzags and cycles are hockey. 

2.2 Lexicographic Sums 

Let P be a poset with a poset Q associated with each x E P and such that 

Q. fl Q2 = 0 for all distinct y, z C P. The lexicographic sum >xEP Q, is the set 

UEP Q with the following ordering. If a, b E Q, then a < b in EEP Q if and 

only if a< bin Q,. If a E Q,, b E Q, and y z, then a< b if and only if y < z. 

The lexicographic sum can be used to describe both disjoint (cardinal) and 

linear (ordinal) sums: 

= 

xGY 

rEfl 

(In the case of the n-element chain, we are using the conventional labelling 0 < 

1<2<...<n-1.) 
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Lemma 2.2.1 Let A C EP Q. A is a maximal antichain of >XEP Q if and 

only if both of the following are true: 

(i) for every  E F, An Qy is either empty or a maximal antichain of Qy. 

(ii) {x E F : A fl Qx =A O} is a maximal antichain of P. 

Proof. Let A be a maximal antichain of ExEP Q. Let y E P such that 

A fl Q, 0 0. Then A fl Q, is an antichain. Suppose A n Q,, is not a maximal 

antichain of Q,. Then there is some z E Q,, such that z 0 (A n Q1)t. Let a E A 

such that z E at. Then a E Q,,i for some y' E y\ {y}. But this is impossible since 

it would imply A n Q. ç at. Thus, A fl Q,, must be a maximal antichain of Q 

and so A satisfies (i). 

Clearly, {x E P : A fl Q 0} is an antichain in F, but suppose it is not a 

maximal antichain of F. Let y E P such that y {x E F : A n 0}. Then 

QflAt = 0, impossible. Thus, {x E. F AflQ, 54 0} must be a maximal antichain 

of F and so A satisfies (ii). 

We now prove the converse. Let A C >Ep Q satisfying (i) and (ii). First we 
prove that A is an antichain. Suppose that z, z' E A such that z > z'. Let y, y' E F 

be such that z E Q,, and z' E Q v,. By (i), it is impossible to have y = y '. So y > y'. 

But then y and y' are comparable elements of {x E F : A n Q 0}, violating (ii). 

So A is an antichain. Now assume that A is not a maximal antichain. So there 

exists some z E (E-EP Q)" AI. Let Y E P such that z E Q. By (ii), there is some 

Y' E P such that A n Q, 0 0 and y E y'. If y' 0 y, then Q,, < Q,,i or Qv > Qi, 

either of which yields z E Q, C (An Q')1 contradicting z 0 Al. So y' = y. That 

is, A n Q. 0. Since z 0 (A fl Q)t, A n Q, is not a maximal antichain of Q,. 

But this violates (i). Thus, A must be a maximal antichain. 0 
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Lemma 2.2.2 Let C C >SEP Q. C is a maximal chain of >XEP Q if and only 

if both of the following are true: 

(i) for every y E F, c fl Q, is either empty or a maximal chain of Q,. 

(ii) {x E F: C fl Q Ø} is a maximal chain of P. 

Proof. Similar to proof of Lemma 2.2.1. 0 

Theorem 2.2.3 The poset >xEP Q is hockey if and only if P and each of the 

components Qx are hockey. 

Proof. Suppose Q is not. hockey for some fixed y E P. Let F be a fibre of 

Q, which contains no maximal chain of Q,. Let 

F=FU{Q,, :x Ey\{y}}. 

F is a fibre of EEP Q by the following argument. Let A be a maximal antichain 

of EEP Q. By Lemma 2.2.1, if A fl Q, =A 0, then A fl Q, is a maximal antichain 

of Qv and so meets F and F. So suppose AflQ = 0 and q E Q,. Let a E Aflq. 

Then a E Q2 for some z E y1" {y} and so a E F. Thus, F is a fibre. 

If C C F were a maximal chain of >IVEP Q, then by Lemma 2.2.2, as c fl Q, 

0, C fl Q,, would be a maximal chain of Q, contained in F, a contradiction. So F 

contains no maximal chain. This shows that if EP Q is hockey, then so is each 

Q. 

Suppose P is not hockey. Let S be a cutset of P which contains no maximal 

antichain of P. Let 

K= U Q. 
xES 

K is a cutset of ."EP Q by the following. Let C be a maximal chain of EP 

By Lemma 2.2.2, {x E P : C fl Q O} is a maximal chain of F, and therefore 
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meets S. Thus, C must meet K. However, by Lemma 2.2.1, K contains no 

maximal antichain of >xEP Q. This shows that if >iEp Q is hockey, then so is 

F. 

It remains to show that >Ep Q is hockey if F and each of the components 

Q are hockey. Suppose then that F is hockey and Q is hockey for each x E F. 

Let K be a cutset of E.IEP Q• Define the subset S of F by 

S={xEF:KflQisa cutset ofQ}. 

If S were not a cutset of F, we could fix C' C F S such that C' is a maximal 

chain of F, and let C,, be a maximal chain of Q for each x E C'. By 

Lemma 2.2.2, U xEC' C .1 would be a maximal chain of EP Qx and it would be 

disjoint from K. Since this is impossible, S must be a cutset of F. 

Since F is hockey, S contains a maximal antichain T of F. For each x E T, 

Qx fl K is a cutset of Q which is hockey, and so Qx fl K contains a maximal 

antichain Ax of Q. By Lemma 2.2.1, 

A=UA3, 
sET 

is a maximal antichain of EP Qs which is contained in K. 0 

Finite series-parallel posets are defined recursively as follows. 1 is series-

parallel. If Qo and Qi are series-parallel then so are Qo + Q and Qo Q. Only 

the posets which can be constructed in this manner are termed series-parallel. 

Corollary 2.2.4 Every finite series-parallel poset is hockey. 

Proof. The singleton 1 is series-parallel and hockey. If Qo and Q are series-

parallel and hockey, then Qo + Qi = sE Q5 and Qo Qi = IsE2 Q. are each 
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hockey by Theorem 2.2.3 and series-parallel by definition. The result follows by 

induction. 0 

A finite poset is series-parallel if and only if it is fence-free [Ri86] [S73] [VTL82]. 

(Although everybody seems to think infinite series-parallel posets are a viable 

concept, there seems to be no widely accepted definition of them, or, for that 

matter, any definition of them anywhere in the literature.) One might wonder 

whether all fence-free posets are hockey. The answer is no. The poset shown 

below is fence-free but the hollow points form a cutset which contains no maximal 

antichain. 

2.3 Products 

For any posets P and Q, define the direct product P x Q to be the set of ordered 

pairs (p, q) with p e P and q E Q ordered by: (p, q) ≤ (p', q') if and only if p p' in 

P and q q' in Q. Note that, up to isomorphism, direct product is a commutative 

and associative binary operation on posets. For S C P x Q, define 7r1(S) = {p E 
F: (p,q) E S for some q E Q} and 'ir2(S) = {q E Q : (p,q) E S for some p E P}. 

These maps are just the projections from P x Q to P and Q, respectively. 

For any chain C in any poset F, a point x is said to be the supremum of C if 

{x} = min{y E P : y ≥ c for every c E C}. We denote this by writing x = sup C. 
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The infimum of C, denoted "inf C", is defined dually. A chain need not have a 

supremum or infimum. But if a poset P is such that every chain does have a 

supremum and an infimum, then P is called chain-complete. 

Lemma 2.3.1 If Q is chain-complete and C is a maximal chain in P x Q, then 

iri(C) is a maximal chain in P. 

Proof. Let C be a maximal chain of P x Q. Let C1 = irj(C). Obviously, 

C1 is a chain. Is C1 a maximal chain of P? Assume not; i.e. assume there 

exists x E P such that C1 C xt'.{x}. So C C (xl x Q) U (x. x Q). Either 

C fl (xl x Q) 0 0 or c fl (xj x Q) 0 0. Assume the former without loss of 

generality. Let C* = C fl (xl x Q) 54 0. Let y = inf(ir2(C*)). Is C U {(x, y)} 

a chain? (x, y) < (p, q) for every (p, q) E C". If (p, q) E C\ C* then p < x and 

q ≤ inf(ir2(C*)) =y. So (p, q) <(x,y). So CU {(x,y)} is a chain. But (x, y) 0 C 

a maximal chain, a contradiction. So 7r1(C) is a maximal chain of P. 0 

Chain-completeness is necessary in Lemma 2.3.1. C = {(O, 0), (0, 1), (1, 1), (1, 2)) 

(2,2),(2,3) . . . .} is a maximal chain of (w {oo}) x w, but iri(C) = w is not a 

maximal chain of w loo}. 

Lemma 2.3.2 If A is a maximal antichain of Qi X Q2, where Qi is well-founded 

and Q2 has a maximal element (not necessarily unique), then iri(A) contains a 

maximal antichain of Q. 

Proof. Let Yo E max Q2. Let A be a maximal antichain of Qi X Q2, A0 = 

(X) Y) E A y < yo}, and A1 = iri(Ao). For any (qi,yo) E A, qi E min(Ai) since 

otherwise there is some (q, y') E A0 with q < qi and y' ≤ Yo, contradicting that 

A is an antichain. Obviously, min(Ai) is an antichain. In fact, it is a maximal 
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antichain of Qi by the following. For each q E Qi, we can pick an (x, y) E 

A fl (q, yo). Then either (x, y) ≥ (q, yo) or (x, y) < (q, yo). If (x, y) ≥ (q, yo) then 

y = Yo, X E min(Ai), and x ≥ q. If (x, y) < (q, yo) then x E A1, so there is some 

X' E min(Al) such that x' ≤ x ≤ q. Therefore Qi = (min(Ai))t. 0 

Theorem 2.3.3 If the direct product P1 x P2 is hockey where P2 is chain-complete 

and P1 is well-founded, then P1 is hockey. 

Proof. Suppose P1 x P2 is hockey. Let K1 be a cutset of P1. Then, by Lemma 

2.3.1, K1 x P2 is a cutset of P1 x P2. So If, x P2 contains a maximal antichain 

of P1 x P2, call it A. By Lemma 2.3.2, 'iri(A) contains a maximal antichain of P1 

which is obviously contained in If,. So P1 is hockey. 0 

The converse of Theorem 2.3.3 is not true. That is, it is possible for P and Q to 

be hockey posets while P x Q is not hockey. The next theorem gives a whole class 

of posets whose products with anything chain-complete (other than an antichain) 

are not hockey. Notice that this class includes one of the simplest types of hockey 

posets - chains of height 3 or more; in particular, the simple product 3 x 2 of two 

hockey posets is not hockey. 

Theorem 2.3.4 Let P be a hockey poset containing a chain a >- b >- c such that 

al = bj and cl = bI. Then for any chain-complete poset Q, P x Q is hockey if 

and only if Q is an antichain. 

Proof. If Q is an antichain, then P x Q EqlcQ P SO P x Q is hockey by 

Theorem 2.2.3. 

Now suppose that Q is not an antichain. We color the elements of P as follows. 

If p E b' {b}, then color p red. Otherwise, color p blue. So P contains no red 
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maximal chain. Now, color each (p, q) in P x Q with the color of p in P. Then, 

by Lemma 2.3.1, P x Q contains no red maximal chain. 

Suppose B is a blue maximal antichain of P x Q. Let m E min(Q) and 

M E max(Q) such that M > m. Then B must include a blue point comparable to 

(c, M), say (p, q). 

CASE (I): (p, q) ≤ (c, M)=, p < c = p red. Impossible. 

CASE (II): (p,q)> (c,M) q= M,p> c p ≥ b = p = b (since p> b= (p,q) 

red). 

So (b, M) E B. Similarly, (b, in) E B. But this is impossible since B is an 

antichain. So P x Q does not have a blue maximal antichain. 0 

Notice that the hypothesis for P in Theorem 2.3.4 applies to any chain-finite 

poset P which has an element b not in max(P) U min(P) such that bl = P. The 

next two theorems defy the general difficulty of finding hockey products. However, 

the difficulty of finding hockey products is evidenced to some extent by the fact 

that all the hockey poset products mentioned in this thesis have only factors of 

height 2. 

Theorem 2.3.5 If P is a hockey poset of height two, then P x 2 is hockey. 

Proof. Let I be the set of isolated points of F; that is, I = {x E P : xj = {x}}. 

Then P x 2 = ((P ,, I) + I) x 2 = ((P ,, 1) x 2) + (I x 2) = ((P\ 1) x 2) + >S€i2. 

Because of Theorem 2.2.3 and the fact that chains (in particular, 2) and antichains 

are hockey, P x 2 is hockey if and only if (P\ I) x 2 is hockey. Therefore, it suffices 
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to prove the theorem for posets with no isolated points. So assume that P has no 

isolated points. 

Let E = {(x,0) E P x 2:-x E min(P)}U{(y,1) E P x 2: y  max(P)}. Fix a 

coloring of P x 2 so that it has no red maximal chain. Let R denote the set of red 

points, and B the set of blue points. Let R' = {r E R fl E : rt fl R fl E = {r}}. 

No two points in R' are comparable, so R' contains no maximal chain of E. Since 

E P and P is hockey, this tells us that R' is not a fibre and so there exists, A, a 

maximal antichain of E, such that AflR' = 0. Let B1 = Afl(R'). So B1 C E and 

B1 is a blue antichain with R' C B1 . Let B2 be an antichain maximal in B fl E 

with B1 9 B2. Let 133 = B2 U (B\B2 ) 9 B2 U ((P x 2)".E). Then B3 is a blue 

antichain and B C B31. Furthermore, by the following, R C B3t, and therefore 

B3 is a maximal antichain. 

We know that R' C B1 19 B21 9 B31. 

Suppose (, 0) E E fl .R R. Then X E min P and there exists y E max P such 

that (y, 1) > (x, 0) and (y, 1) E R fl E. Since {(x, 0), (r, 1), (y, 1)} is a maximal 

chain, and P  2 has no red maximal chain, (x, 1) must be blue. So (x, 1) E B4. 

In fact, since the only point less than (x, 1) is (x, 0) which is red, we know that 

(x) 1) E B3J,. But then (x, 0) must be in B3.j. also. Similarly, any (z, 1) .E En R if 

must be in .831. Therefore, E fl RR' C B31. Since R' C B31, it remains only to 

show that R'E C B4. 

Suppose (x,1) E RE, so x E min P. Now, {(x,0),(x,1),(y,1)} is a maximal 

chain of P x 2 for every y > x in P. Therefore, if (x, 0) is red, then (y, 1) is blue 

for every y > x and (x, 0) E M C B11. If this were the case, then the element of 

B1 comparable to (x, 0) would have to be some (y, 1) such that (y, 1)> (x, 0), but 



19 

then (y, 1) > (x,1) also and thus (x,1) E B1 I c B2t 9 B4. So assume (x, 0) is 
blue. Then (x, 0) E B21. If (x, 0) E B2 then (x,1) E B21 and if (y, l) e B2 such 

that (y,1)> (x, 0) then (x,1) E (y,1) c BJ. Therefore, R  B4. 11 

It may be possible to generalise this result as indicated in Question 2.3.6. A 

positive answer to Question 2.3.6 would provide more evidence in favor of a positive 

answer to Question 2.3.9. 

Question 2.3.6 Is P >< T4 hockey for every hockey poset P of height 2 and every 

mEN? 

Define Kr,s = , which is hockey by Corollary 2.2.4. The Hasse diagram of 

K2,3, for instance, is: 

Theorem 2.3.7 Ifi,n X Ki,m is hockey for any cardinals m, n. 

a(i E n) 

= 

0 0 

b(jEm) 

Proof. Label the elements of K1, and Ki,m as above. Let P = Ki,n X It'i,m. 

• Let A = {(a,O) i E n} and B = {(0,b) : j E m}. Notice that A U B is a 

maximal antichain. Let F be a fibre of P. So (0,0) E F since {(0, 0)} is a maximal 

antichain of P. If we can show that F contains a maximal chain, then P is hockey. 
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CASE 1: FflAø,FflB0.  

In this case, let M = ((AU B) ,, F) U {(a,b) : (a,0) E F,(O,b) E F}. Since 

M is a maximal antichain, we know that m fl F 0. Let x E M fl F. So x is of 

the form (ai, But then (ai;, 0) E F. So {(0, 0), (ai, 0), (ai, b1)} is a maximal 

chain contained in F. 

CASE 2: I3nF=0.  

Let M = (A\F)U{(a,bo) : (a,0) E F}U(B\{(0,b0)}). Since Mis a maximal 

antichain, we know that M fl F 54 0. Let x € M fl F. So x is of the form (ad:, bo). 

But then (ai, 0) E F. So {(0, 0), (av, 0), (at;, bo)} is a maximal chain contained in 

F. 

CASE 3: A fl F = 0. This is analogous to Case 2. 

So F contains a maximal chain. Hence, P is hockey. 0 

• The previous two theorems show some cases where products of hockey height-2 

posets are hockey. One might start wondering if the product of any two hockey 

height-2 posets is hockey. But this turns out not to be true. For a counterexam-

ple, we need look no further than the simplest product we have not yet classified: 

K1,2 x K2,1. The fact that this product is not hockey is a corollary of the following 

theorem. 

Theorem 2.3.8 Let P be a poset with P1,P2 € min(P)\ max(P), p, 54 P2, and 

pu c p21. Let Q be a poset with q, q2 E max(Q)". rnin(Q), q q, and qj. 9 q21-

If P and Q are chain-finite, then P x Q is not hockey. 
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Proof. Color (p,qi) blue. For every other (p, q) E P x Q, color (p, q) blue 

unless p = pi or q = q1. In those cases color (p, q) red. That is, the set of red 

points is (({pi} x Q) U (P x 

Does P x Q have a red maximal chain? Suppose it does, call it R. Each point 

in R has p or qi as a coordinate. Each point of R having qi as a coordinate is 

greater than each point of R having p' as a coordinate. Let (p, qi) be the least 

point of R having q as a coordinate. Let (p', q) be the greatest point of R having 

pi as a coordinate. So (p,qi) > (p, q) > (pj,q). But then RU {(p,q)} is a chain. 

This contradicts our assumption that R is a maximal chain since (p, q) 0 R. So 

P x Q does not have a red maximal chain. 

Does P x Q have a blue maximal antichain? Suppose it does. Call it B. B 

must include a point comparable to or equal to (p2, qi). But B cannot include 

(p2, qi) itself since it is red. And B cannot include a point greater than (p2, qi) 

since (p, q) > (p,qi) q = qi,p pi = (p, q) red. So if (p, q) E B is comparable 

to (p, q), then (p, q) < (p2,qi). Sop = P2, q < q1. That is, (P2, q) e B for some 

q < q1. 

Similarly, B must include a point (p', q) with p' > Pi By hypothesis, p' > 

Pi = p' > P2, and q < qi = q < q. So (p', q) > (p2, q2) > (p2, q). This is a 

contradiction since (p2, q) and (p', q) are in B, an antichain. 0 

Remark Theorems 2.3.5, 2.3.7, and 2.3.8 show that Kn,m X Kni,m' is not hockey 

if and only ifn, m'> 1 or (symmetrically) n', m> 1. 

There may be more interesting theorems like 2.3.5, 2.3.7, and 2.3.8 which apply 

to products of height-2 posets. For instance, the diagram below shows that the 
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direct product of the five-element fence (x1 < x2 > x3 < x4 > x5) with itself is 

not hockey, and this result is not covered by Theorems 2.3.5, 2.3.7, and 2.3.8. The 

points marked with hollow circles obviously do not yield any maximal chains, and 

they form a fibre by the following. Call the set of hollow points F. Suppose A is a 

maximal antichain disjoint from F. 1I".F = {1'} so 1' E A. Then 21"(F U A) ç 

{2'} so 2' E A, thus 3t (F U AX) 9 {3'} so 3' E A. This makes 4t (F U AX) = 0. 

Therefore, it is impossible for a maximal antichain to be disjoint from F and so F 

is a fibre. 

2' 3 

Question 2.3.9 Is it true that for any posets F1, F2, F3 such that F x F is hockey 

for all distinct i,j in {1,2,3}, F1 x F2 x F3 is hockey also? 

We have been unable to find a counterexample. But, by induction, if the 

answer is yes, then it is yes for the product of any finite number of posets, not 

just 3. Furthermore, if the answer to this question is yes, then so are the answers 

to Questions 2.3.6 and 2.4.1. In Section 2.5, we get a positive answer to Question 

2.3.9 for finite posets representable as powers of 2 (i.e. distributive lattices). 

Question 2.3.10 If Q is not an antichain and F x Q is hockey, is F x 2 necessarily 

hockey? 
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2.4 Products of Claws 

Question 2.4.1 Is Ki,mi X ... X K1,,,,, hockey for everym1,. . . ,mj EN? 

Corollary 2.2.4 and Theorem 2.3.7 show that the answer to Question 2.4.1 is 

yes if k < 2. Duffus, Sands, and Winkler [DSW9O] showed that the answer is yes 

when m1 = ... = mk = 1 (i.e. for 2 x ... x 2). We will now prove positive answers 

in two more special cases. We abbreviate K j x ... x K (r times) by (K1,1)'. In 

the first case, we adapt the method of [DSW9O] to show that two of the factors of 

(Ki,1 )T may be replaced by K11 x K1,. 

Theorem 2.4.2 Let r, rn, and n be natural numbers. Then (K1,1)r X Ki,m X K1, 

is hockey. 

Proof. Assume for a contradiction that the theorem is false. Then there is 

some (r, rn, n) E N x N x N for which the theorem fails. Pick (r, in, n) minimal 

in N x N x N so that (K1,1)T X Ki,m X Kl,n is not hockey. Since direct product is 

commutative, we may assume without loss of generality that n > m. 

Lets = r+1 and  = r+2. Let El = {1}, E2 = {2}, ..., Er = {r}, 

= {s,. . ., 8m}, and Et = {t1,.. .,i}. Define P (K1,1)' X Ki,m X Ki,n by 

2= {XcUE: ixflE1I ≤ 1 for i= 1, ... ,t} 

ordered by set containment. 

Since P is not hockey, it has a fibre F which contains no maximal chain. 0 E F 

since 10  is a maximal antichain. Furthermore, if m > 1 then {s} E F for each 

i E {1,.. . ,m} by the following argument. Suppose m > 1, i E {1,. . . ,m}, and 

{s} .T. Let 2' = 2{s}1. So 2' (K1,1)r x Ki,m _i x 2' is hockey 
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by the minimality of (r, m, n). .F fl 7' is a fibre of 7" since if A is a maximal 

antichain of 7" disjoint from J, then A U {{.s}} is a maximal antichain of 2 and 

(A U {{s}}) fl = 0, impossible. So there exists C ç 7" n T a maximal chain 

of P. But then C C F is a maximal chain of 2, a contradiction. Thus, if in > 1 
then {s} E T for each i = 1,. . . , m. Similarly, if n > 1 then {t} E F for each 

i=l, ... ,n. 

We now proceed with the method of [DSW9O]. We define sets X'i analogous 

to the "lexical chains" used in [DSW9O]. Let X E P. Define 

X={X,X\ El, X\ (El UE2),...,X\ (El UE2U ... U Et) = 0}, 

X?  IX, XU El, XUE1UE2,... ,XUE1UE2U ... UEr}U 

{X U E1U ... U Er U {.s} EP:l<i< m}U 

{XUE1U ... UErU{si}U{tj}EP:1≤i≤m,1≤j≤n}. 

Put XJ = X?U X, so every XJ is a union of maximal chains of P. For all X c 
define XT = UXEX X, XI = UXEX X, and XT = XT U X. 

For any S C T, call S critical if there do not exist A, B C P such that 

(1) A U B is an antichain disjoint from .F; 

(2)SCA.j.UBT; 

(3)Acs?,BcS. 

Since T is a fibre, no A, B C P can satisfy (1) and (2) for S = F , so F is 

critical. 0 is not critical since A = B = 0 satisfy (1)—(3) for S = 0. Since F is 

finite, 9 must contain a minimal critical set M. That is, M is critical but no 

proper subset of M is critical. 
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For each X E M and each Y E define rank(X, Y) to be the least i 

such that YCXUE1U ... UE. For each XEM and each YEX".T,define 

rank(X, Y) to be the least  such that Y = X  (El UE2U ... UE). For each  EM, 

define rank(X) = min{rank(X, Y) : Y E X' .F} - we know that .F 0 0 since 

Xf is a union of maximal chains of 2, and F contains no maximal chain of P. 

Let M E M be such that rank(M) < rank(X) for every X E M. Let M' E 

MM be such that rank(M,M') = rank(M). Since M'{M} is not critical, we 

can pick A,13 satisfying conditions (1)—(3) for S = M\{M}. Then A,5 satisfy 

(1) and (3) for S = M also. A, B cannot also satisfy (2) since M is critical, so 

MØAIUBT. 

There are two cases to consider: M C M' and M' C M. 

First suppose M C M'. Let A' = (A'. M'I.) U {M'}. We now derive a con-

tradiction by showing that A',13 satisfy (1)—(3) for S = M. Since M' E M 

and A' \ f MI 19 A ç M, we know that A' C M. And we already knew that 

B C M, so (3) is satisfied. 
All U 131= ((A'M'J) U JMl})J U 13 Al U BT Q M\{M}, and M E M'j. 

All. So M C All U 13j'. That is, (2) is satisfied. 
It is obvious that A'UB is disjoint from J. Since AUB is an antichain, we only 

need to verify that M' 0 (A'\{M'})t and M' 0 BI to show that (1) is satisfied. 

Since M C M' and M 0 Al, we know that M' 0 Al D (A" {M'}). Since 

A'\{M'} = A{M'}.J., obviously M' 0 (A'\{M'}fl. So A' is an antichain. Why 

is M' E BI impossible? Let B E B. B E M"M and so B fl E1 = 0. But M' E 

M'.{M} and so IM' nEil = 1. Hence M' V= B. Since there exists B' E M such 

that B E BI and rank(B) ≥ rank(M), we know that Bfl (El U ... UEranlc(M)) = 0. 
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SOB\M'DB\(MUElUE2U ... UEr (M))=(B\ (El UE2U ... UErk(M)))'M 

BM. Since M OBT, this says B,,M'D B,,M 540. SoB M'andthusM 'B:t. 

But then A',B satisfy (1)—(3) for S = M, a contradiction. So the case M C M' 

cannot occur. 

Now suppose that M' C M. So M' = M , (El U E2 U ... U Eranic(M)). Let 

B' = (B\MT) U {M'}. Let S = M. Then, dually to the case M C M', (2) and (3) 

are satisfied by A,B'. That AUB' is disjoint from .F and B'flM't = {M'} are also 

dual to facts in the case M C M. But to show that A fl MIJ = 0 and therefore 

(1) is satisfied requires more work in this case. Let A E A. A E M?'.M and so 

IAflE1I= 1. But M' E M' {M} and so M'flE1=0. Hence  Z M'. We know 

that M A. Assume M' C A. Then (M\M')\A = M -- (MI U A) = MA 54 0. 

MM' C E1 U ... U Erank(M). So (E1 U E2 U ... U Era jc(M))'A 0 0. But since 

there exists A' E M such that A E A'? and rank(A') ≥ rank(M), we know that 

IAn Ell = 1, IAflE2I = 1, ..., IA1Eranic(M)I = 1. Therefore, there must be some i 

such that 1 <i <rank(M) for which lEI > 1. Since lEll = IE2I = ... = lEn 1, 

this tells us that rank(M) ≥ i ≥ r + 1. Since M' = M'.(E1 U ... U ErJc(M)), 

this tells us that M' either is a singleton subset of Er+2 = Et or is 0. Since 

0 E F and M' V 1, M' must be a singleton subset of Et and rank(M) must be 

i = .s = t - 1. So lEti = n > m = 1E31 > 1. But recall the first result following 

from the minimality of (r, m, n): if n = IE4 > 1 then every singleton subset of E 

is in .F. So M' E F, a contradiction. So the case M' C M cannot occur. 

With this contradiction, we have proven that .T contains a maximal chain. 0 

Theorem 2.4.3 Let 1, m, and n be natural numbers. Then K1,1 X Ki,m X K1, is 

hockey. 
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Proof. Assume for a contradiction that the theorem is false. Then there is 

some (1, m, n) E N x N x N for which the theorem fails. Pick (1, m, n) minimal in 

N x N x N so that If,,, X Ki,m x K1, is not hockey. We know that 1, m, n> 1 

since otherwise K1,1 x Ki,m x K1, is hockey by Theorem 2.4.2. 

Let E1 = 111, 12, . .,li}, E2 = {21,22,. . .,2m }, and E3 = {31,32,. . .,3,}. Let 

P = {X c U=1E2 : IX fl EI ≤ 1 for i = 1, 2,3}. Order P by set containment. 

Then 'P If,,, X Ki,m X Ki,n. The two diagrams on the previous page are the Hasse 

diagram of K1,2 x K1,3 x K1,5, and a less cluttered diagram of i(j,3 x K1,4 >< K1,5, 

graphically embellished to illuminate the proof. We will abbreviate set notation 

by omitting commas and parentheses. For instance, 1121 will stand for {1, 2}. 

Let F be a fibre of P which contains no maximal chain of P. Then 0 E F since 

{0} is a maximal antichain of P. As in the proof of Theorem 2.4.2, the minimality 

of (1, in, n) tells us that .F must include every singleton in P by the following. 

K1,1_1 X Ki,m x K1, is hockey by the minimality of (l,'m,n). So if 

T' (l1) is a fibre of 2' (1T), then it contains a maximal chain of 2, contradicting 

our assumption that T contains no maximal chain of P. Thus, there is some A 

a maximal antichain of 2' (11 T) which is disjoint from F. But then AU 111  is a 

maximal antichain of P and so 11 must be in F. By symmetry, every singleton in 

P must be in F. 

Since the set of all doubletons in P is a maximal antichain, one of them must 

be in T. Assume without loss of generality that 1121 is in F. In the diagram, the 

points marked with hollow circles are some points of a particular choice of T for 

K1,3 X K1,4 X K1,5. 

We will now construct a maximal antichain of P disjoint from F. Make the 
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following definitions. 

A1 = {1123k E P : li2j E 1}, 'Pi = Ail, 

Bi={2:2ØA1J,}, 22 B11, 

-P3 =P(P uP2). 

It is easy to see that {21,22,23} is a partition of P. P2 x 

where b = 13i1. In the diagram, the points in Al are surrounded by double-walled 

rectangles. The points in P are surrounded by rectangles. The points in 22 are 

surrounded by ovals. 

Obviously, Al is an antichain and P = All. A1 is disjoint from ..7 since 0 and 

all the singletons are in F, and .F contains no maximal chain, so each l2j 

implies li2j3k 0 Jfor k = 1,... ,n. 

Next, we find an analogous antichain A2 in 22. That is, we will find an antichain 

A2 disjoint from F such that 22 C A2 . To do this, we shall break down 22 into 

smaller pieces. For each 22 E 22, define 22,j = 2 1. Then 22 = Uj 22,j. Choose a 

particular 22,3. We want to find an antichain A2,3 C 22,j P2,j such that 22,3 

and A2,3 is disjoint from J. {2} is not a satisfactory choice for A2,3 since 2j E ..F 

(remember that all singletons are in Jr). The next obvious choice to check is the 

set of all doubletons in 22,j. We know that each 1i23 0 T since otherwise we would 

have 2j E 2i. Unfortunately, there is no guarantee that every 233k 0 F. But we 

will make this choice whenever possible; that is, if {233k E .F} = 0 then let 

A2,3 = J1i2j E 2} U {233k E 2}. 

When {233k E '} 0, we will choose A2,3 as close as possible to the choice 

just described. We will modify the choice by replacing 233k by 112j3k for each 

233k E F. Since .F contains no maximal chain of 2, we know that 11233k 0 
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whenever 2j3k E F. This choice necessitates dropping l2j from A2, to keep it an 

antichain. To put this in the proper notation, if {23k E .T} 0, then let 

EP:i>1}. 

By either definition, A2, is an antichain disjoint from T, and 2 1' c A2,I. We have 
just described the choice of a particular A2,. Apply the same method for every j 

for which 22,j is defined. Then let A2 be the union of the A2,'s. A2 is an antichain 

since every element of any A2, includes 2j and no 2s for any j' 0 j. Thus A2 is 

an antichain disjoint from .F and P2 9 421. In fact, A1 U A2 is an antichain since 

A1 C max 7 and each element of A2 includes a 2i such that 2j 0 A1 .. So Al U A2 

is an antichain disjoint from .F and 2 U P (Al U A2). 

Another fact we will need is that A21 fl P3 C F. A21 C P21 = 22, leaving 

just A2j. n23 nP3 C .F to be verified. Since 0 and all singletons are in F, the only 

way this could fail is if there is some X E (A21 fl P3)-,.F where IXI = 2. Assume 

such an X exists. Then there exists Y E A2 such that X C Y and II = 3. 

IYI = 3 and Y E .42 imply that Y = '1 2j3k for some j, k such that 2j3k E F. So 

X € 111 2j, 113 k, 23k}. We can eliminate the case X = 2j3k since 2j 3k e .F (also 

2j3k E P2). We can eliminate the case X = 113k since 12 € , so 11213k e Ai 

and ll3k E A1. = P. So X = li2. 12j = X E P3 implies 112j 0 P, so 

2j E A1.j,. But Y = 112j3k E .4 2 C 22 implies 2j 0 All. With this contradiction, 

we conclude that A2JnP3 C F. 

Finally, we find an antichain A3 in P3 such that A3 is disjoint from F and 

23 C A4. For each  E {1,...,l} such that lil n P30 0, ljlfl2s is hockey as 

the following two cases show. If 11 fl Pj = 0, then 11 fl P3 = 11(2i U 22) 

lil'22 Ki,m_1811 x K1,,,,. If 11 fl Pi 54 0, then lit fl P3 = where 
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r = m - I13I - I{12a E F} 1. The correctness of these claims is fairly clear if one 

consults the diagram. If 14 fl P3 fl Jr is a fibre of 14 fl P3 =h 0, then it contains 

a maximal chain of 14 fl P3 whose union with {0, 1} is a maximal chain of P 

contained in Jr, a contradiction. Thus, 14 fl 23 fl Jr is not a fibre of 14 fl P3 and 

we can pick A3,i a maximal antichain of 14 fl P3 disjoint from Jr. Let A3,i = 0 

for each i E III ... , l} such that 14 fl 23 = 0. Let A3 = U=1 A3,. A3 is an 

antichain since each A3,i is an antichain, and each element of any A3,i includes l, 

making it impossible for elements of distinct A3,'s to be comparable. So A3 is an 

antichain disjoint from Jr and P3 c A. Recall A2Jn P3 C Jr, and All = P, so 
A3 C 23"(A11UA21). Thus, A1UA2UA3 is a maximal antichain of P = P1UP2U7'3 

and is disjoint from Jr, which we assumed was a fibre. 

This contradiction completes the proof. 0 

2.5 Exponentiation 

For, posets P and Q, a function f: Q - 4P is called order-preserving if q q' 

in Q implies f(q) ≤ f(q') in P. Define the exponent PQ to be the set of order-

preserving functions f : Q -+ P ordered as follows: for f, g E PQ, f g if and 

only if f(q) ≤ g(q) in P for every q E Q. Notice that 2 x 2 x ... x 2 (n times), 

which was shown to be hockey in [DSW9O], is isomorphic to 2, a Boolean lattice. 

For any posets P1 and P2 with subsets Pl and P such that P1 = 1 Pl ED 1 

and P2 = 1P1, define P1 P2 = 1EIPEB1EPEB1. In other words, if P1 and 

are bounded posets, then P1 P2 is the poset obtained by placing a copy of P2 

above a copy of P1 and identifying the top point of Pj with the bottom point of P2. 

Notice that T is associative, so it makes sense to write P1 P2 . . . without, 
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parentheses. P1 P2 is hockey if and only if both P1 and P2 are. This follows 

from Theorem 2.2.3 with the observation that P1 P2 >,EP1P2 C where each 

C = 1 except for Cm = 2 where m is the middle (so to speak) element of P1 P2. 

Furthermore, for any posets Q and Q2, 2'12 2Q22Q1. 

Theorem 2.5.1 For any finite poset P, 2P is hockey if and only if P is a linear 

sum of antichains. 

Proof. Suppose that P = A1 ... ED  Aj where each Ai is a finite antichain. 

Then 

= = 2(A2  ... Ak)2Al = 2A/c 2Ak_ 

The subposets 2Ai are finite Boolean lattices. From [DSW9O], or Theorem 

2.4.2, we know that every finite Boolean lattice is hockey; therefore 2P is hockey. 

Now suppose that P is not a linear sum of antichains. Then it has three points 

x,y,z such that z <x, y 11 z, and  11 x. Define 

K = If f(t) = 1 for every t > z, f(z) = O}. 

K is a cutset of 2° since any maximal chain in 2P has a greatest element mapping 

z to 0 and this element is in K. However, K contains no maximal antichain by 

the following. 

Define f,g,h E 2 by 

f(t) = 1 if and only if t> z. 

g(t) = 1 if and only if t ≥ z. 

h(t) = 1 if and only if t ≥ y. 
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Suppose A C K is a maximal antichain of 2. Since gJ fl K = {f}, we must 

have f E A. But {f} = min K, so we must have A = {f}. This is impossible since 

h 11 f and so {f} is not a maximal antichain. Thus, K is a cutset of 2P which 

contains no maximal antichain. 

The finite distributive lattices are precisely the posets which can be expressed 

as 2° for a finite poset P ([DP9O] Corollary 8.18 and Exercise 8.18). Thus the 

finite distributive lattices which are hockey are characterized. They are the ones 

which are isomorphic to linear sums of Boolean lattices with 0's and l's of vertically 

adjacent lattices identified. 

For any posets P1 and F2, 21 x 2P2 21+2. So Theorem 2.5.1 shows that 

x 22 is hockey if and only if P1 and P2 are antichains. This gives us the 

following positive answer to Question 2.3.9 for finite distributive lattices. 

Corollary 2.5.2 Let Q, Q2, and Q3 be finite distributive lattices. If Q1 X Q2, 

Q2 x Q, and Qi X Q3 are all hockey, then Q X Q2 X Q3 is hockey. 

Proof. Since Qi, Q2, and Q3 are finite distributive lattices, there are finite 

posets F1, F2, and P3 such that Q 2'1, Q2 22, and Q 23. For all distinct 

i,j E {1, 2, 3}, Qj x 2Pi x 2PJ 2P1+P1, so P + Fj must be an antichain by 

Theorem 2.5.1. But then Pi + P2 + P3 is an antichain and so Q1 x Q2 X Q 

X 2P2 X 2P3 2P1+P2+P3 is hockey by Theorem 2.5.1. 0 
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2.6 Zigzags and Cycles 

A fence is a connected subset of: 

An endpoint of a fence is just what one would expect. A fence has zero, one, 

or two endpoints, according as it is two-way infinite, one-way infinite, or finite. 

A crown is constructed by identifying the two endpoints of a finite fence which 

has an odd number of elements, at least 5. Any crown has an even number of 

elements. Some crowns are: 

XX M 

Zigzags and cycles are constructed by adding points on edges of the Hasse 

diagrams of fences and crowns, respectively. These added edge-points, together 

with endpoints of zigzags, are called c-points. 

In the- next two diagrams, the e's indicate the e-points. An example of a zigzag 

is: 

An example of a cycle is: 
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ex x XSe 

e\Te 

A finite fence F' is said to be c-embedded in a zigzag or a crown P if F' is a 

subposet of P and both endpoints of F' are e-points in P. The distance between 

two distinct points in a zigzag (respectively, cycle) is the number of maximal and 

minimal points strictly between the two points on the path (respectively, a path) 

connecting them. For d E (0, 1, 2}, two points are said to be at reduced distance 

d from each other if the distance between them (either distance in the case of a 

cycle) is congruent to d modulo 3. 

Lemma 2.6.1 Suppose k > 1. and P is the k-element fence x1 <x2 > x3 < . . . Xk-

P is hockey if and only if k 1 (mod 3). Furthermore, when k 1 (mod 3), the 

only fibre of P containing no maximal chain is {x1,x4,x7,. . . ,xi}. 

Proof. The lemma is true for k E 12,3} by Corollary 2.2.4. 

Consider the case k = 4. {x1, x3} and {x2, x4} are maximal antichains. Clearly 

any set other than {x1, x4} which meets both these maximal antichains contains a 

maximal chain. And {x1, x4} is a fibre since any maximal antichain disjoint from 

it would have to meet xit\{xi} = {x2} and x4I{x4} = {x3}, but x > x3. So 

the lemma is true up to k = 4. 

Pick k such that the lemma holds for all lesser values of k. Suppose F is 

a fibre of P containing no maximal chain of P. Then x1 E F since otherwise 

A = : x E F} would be an antichain such that F C At" A and so A could 



36 

be extended to a maximal antichain disjoint from F. So x1 E F and X2 F. If 

F\{xi,x2,x3} is not a fibre of P"{xi,x2,x3}, then we can choose A a maximal 

antichain of P\{xi,x2,x3} disjoint from F"{xi,x2,x3} and then Au {x2} is a 

maximal antichain of P disjoint from F, a contradiction. So F {x1, X2, x3} is a fibre 

of F' {x1, x2, x3} containing no maximal chain. Since the lemma holds for k-3, this 

tells us that k k-3 1(mod 3) and F\{ xi, x2,x3} = {x4,x7,x 10 ,. . . ,xj,}. Then 

0 F since {x3, x4} is a maximal chain and x4 E F. So F = {x1, x4, x7,. . . , xk}. 

It remains to show that F = {x1, x4, x7,. .. . x,} actually is a fibre. 

Assume for a contradiction that A is a maximal antichain disjoint from F. 

Since A is disjoint from F\{xi} a fibre of P"{xi,x2,x3}, A\{xi,x2,xs} is not a 

maximal antichain of P\ {x1, x2, x3}. So (A\ {x1, x2, x3})j 0 P' {x1, x2, x3}. Since 

Al = P and {x1, x2, x3}\ {x1, x2, x3} = {x4}, the only way this can happen is 

if x4 fl A = {x.}. We must also have x fl A 54 0. Since x1 I = {x1, x2} and 

Xi E .F, this tells us that x2 e A. But then x2 and x3 are comparable elements of 

A, impossible. 

The lemma follows by induction. 0 

Maltby (aka Your Humble Narrator) and Williamson stated Theorem 2.6.1 

without proof in [MW92]. They went on to examine the following generalisation 

of fences different from zigzags. Any fence with an odd number of elements can 

be expressed as the union of two consecutive levels of w2. Maltby and Williamson 

addressed the'question of when a union of two consecutive levels of Wt is hockey 

and found that any two consecutive levels of wl form a hockey poset, except for 

the n th and (n + i)th levels of w2 when n 2 (mod 3) (where the lowest level is 

called the 0th level). This leaves mostly open the question of which unions of levels 
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of w form hockey posets. This question is made a little less open by Maltby and 

Williamson's result that for any r > t, the union of levels 2 and r in W1 is not a 

hockey poset [MW92]. 

Getting back to the main subject of this section (zigzags and cycles): 

Lemma 2.6.2 Let P and P' be posets such that F' C P and every maximal chain 
of  contained in P'J intersects P' in a maximal chain of F'. If P is hockey, then 

so is F. 

Proof. Let F' be a fibre of F'. Let F = F' U (P'I" P') in P. We show first that 

F is a fibre of P. Let A be a maximal antichain of P which does not meet PT, F'. 

Then, for each x E P', 0 o xflA P'flA. Therefore, P'flA is a maximal antichain 

of F' and so meets F'. So any maximal antichain of P meets either P't F' or F'. 

This shows that F = F U (P't"P') is a fibre of P. Since F is a fibre of P and P 

is hockey, F must contain a maximal chain of F, call it C. C C F C P'. So C 

contains some C' a maximal chain of F'. C' = C fl P' C F fl F' = F. So C' is a 

maximal chain of F' contained in F'. 

Thus, P' is hockey. 

Theorem 2.6.3 A zigzag is hockey if and only if it has no two e-points at reduced 

distance 2 from each other. 

Proof. If P is a zigzag with comparable e-points, then there is a zigzag Q with 

no comparable e-points and a set of chains {C : x E Q} such that EQ C P. 

The zigzag Q is obtained by identifying comparable e-points in P. This means 

that the maximals and minimals of Q are the same as those of F, and the distance 

between any two e-points in Q is the same as the distance between their antecedents 
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in P. Since we know chains are hockey, Theorem 2.2.3 tells us that P is hockey 

if and only if Q is hockey. Therefore, it suffices to prove this theorem for posets 

having no comparable e-points. 

Let P be a zigzag with no comparable e-points which has two e-points at 

reduced distance 2 from each other. Label these e-points and the maximals and 

minimals between them x1,. .. , xk so that x1 < x2 > x3 < . . . X/, (or x1 > x2 < 

X3 > ... xk) with x1 and xk the e-points. Then P = {x: 1 < i < k} is a fence of 

size k 1 (mod 3). By Lemma 2.6.1, F' is not hockey. It is easy to see that every 

maximal chain of P contained in Pj intersects F in a maximal chain of P. Thus, 

by Lemma 2.6.2, P is not hockey. An example is shown below. x1 and xic are at 

reduced distance 2 from each other. The xi's are the points of F', a 10-element 

fence. The points marked with hollow circles form a fibre containing no maximal 

chain, constructed according to the proofs of Lemmas 2.6.1 and 2.6.2. 

X5 Xg 

It remains to prove the "if" part of the theorem. Let P be a zigzag having no 

comparable e-points and no two e-points at reduced distance 2 from each other. 

This implies that P can be e-embedded in one of the two posets pictured below 

by the following. 

It is easy to see that if all pairs of e-points in P are at reduced distance 0, then 

P can be e-embedded in the first of the two posets below, Po. But suppose P has 

two e-points at reduced distance 1 from each other. Let p and q be two e-points at 

minimum distance from each other such that their reduced distance is 1. Then P 
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can be e-embedded in the second of the posets below, F1, (or its dual, Pt', which is 

not illustrated) with p as b0 and q as b for some negative n. We know that all the 

other e-points in P will coincide with ones in the diagram because: an e-point on 

any c-d edge to the left of b0 would be at reduced distance 2 from b0, an e-point on 

any c-d edge to the right of b0 would be at reduced distance 2 from b, an e-point 

on any a-d edge to the left of b would be at reduced distance 2 from b, an e-point 

on any a-d edge to the right of b0 would be at reduced distance 2 from b0, and an 

e-point on any a-d edge between b and b0 would be at reduced distance 1 from b 

and violate the condition that no e-points at reduced distance 1 are closer together 

than bo and b. 

Therefore, by Lemma 2.6.2, the theorem is true if P0 and P1 are hockey. 

P1 

Let X be a subset of P0 containing no maximal chain. We will prove that X 

cannot be a fibre by constructing a maximal antichain A disjoint from X. For each 

i E Z: 
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if ci 0 X then put c E A, 

if Ci E X and bi 0 X then put bi E A, 

if c, bi E X then put ai E A. 

Then A is an antichain disjoint from X and XAI g {d : ci E X} 9 Po- X. 

This implies that X Al = 0. Therefore, A can be extended to a maximal antichain 

disjoint from X. So X is not a fibre, and Po is hockey. 

We deal with P1 in pretty much the same way as P0. Let X be a subset of P1 

containing no maximal chain. If di E X for every i ≥ 0 then put At = {a : i 1}. 

Otherwise let i' = min{i i ≥ 0, di X}, and put At = {a : 1 ≤ i ≤ i'}. If 

di E X for every i < 0 then put A = {a : i —2}. Otherwise let i" = max{i 

i ≤ —1,d % X}, and put A = {a : i" ≤ i ≤ —2}. Then for each i {0,-1} 

such that ai 0 At U A: 

if c X then put ci E A, 

if Ci E X and bi 0 X then put b1 E A, 

if c, bi E X then put ai E A. 

Let A0 be a maximal antichain of {c_1, b_1, a_1=a0, b0, co} disjoint from X 

and let A' = A0 U At U A U A. Then A' is an antichain disjoint from X and 

X\A't c {d ci E X} ç P1 X. This implies that XA't = 0. Therefore, A' can 

be extended to a maximal antichain disjoint from X. So X is not a fibre, and P1 

is hockey. El 

Before going on to the general result for cycles, we will examine separately each 

cycle with only 2 or 4 extreme points. 
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The only cycle with exactly 2 extreme points is 1 1 which is hockey. 

Actually, one might not want to consider this a cycle, but this is a trivial matter. 

The cycle with exactly 4 extreme points and no e-points is isomorphic to 

and so is hockey. 

The cycle with 4 extreme points and one e-point is easily verified to be hockey. 

There are two non-isomorphic cycles with 4 extreme points and 2 e-points. 

Both are easily verified to be hockey. The second one would violate Theorem 2.6.4 

if the hypothesis did not exclude cycles with only 4 extreme points. 

A 
r.J 

Cycles with 4 extreme points and 3 or 4 e-points are not hockey. The points 

drawn as hollow circles comprise fibres not containing maximal chains. 
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Theorem 2.6.4 A cycle with more than 4 extreme points is hockey if and only 

if it has no two distinct e-points at reduced distance 2 from each other. 

Proof. We will consider only cycles with no two comparable e-points. This is 

sufficient for the same reason here as it was in the proof of Theorem 2.6.3. Let P 

be a cycle with two points at reduced distance 2 from each other. Then P has a 

k-element fence F' e-embedded in it for some k > 1, k 1 (mod 3). By Lemma 

2.6.1, F is not hockey. If every maximal chain of P contained in F1 intersects F' 

in a maximal chain of F', then, by Lemma 2.6.2, F is not hockey. It is easy to see 

that the only case where this does not happen is when only two extreme points of 

P are not in F, as in the diagram below where the points of P' are marked with 

hollow circles, and the endpoints of F' are labelled a and d. It should be clear 

that this diagram and the ones that follow in this proof are to be interpreted as 

wrapping around. That is, if you go past one end of the diagram, you eventually 

come back on at the other end of the diagram. 
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In such a case, one may let F" be the 4-element fence consisting of the two end-

points of P and the two extreme points of P not in P. Since we have specified 

that the cycle has more than 4 extreme points, we know that there are more than 

2 extreme points of P which are not in F". So every maximal chain of P contained 

in P"I contains a maximal chain of F", so we can apply Theorem 2.6.2 to see that 

the cycle is not hockey. 

It remains to prove the "if" part of the theorem. Let F' be a cycle having no 

two e-points at reduced distance 2 from each other. Then, for some k E N, F' can 

be e-embedded in P0(k), P1(k), or F1(k)d, as described by the diagrams below, so 

that any maximal chain which is contained in Pj contains a maximal chain of P. 

Therefore, by Lemma 2.6.2, the theorem is true if Po(k) and P1(k) are hockey for 

all k E N for which they are defined. (Each diagram requires lv to have a certain 

parity.) 

Let P be Po(k) or P1(k) for some lv E N. Let X be a subset of P containing 

no maximal chain. Then for each i e {O,. .. , 
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if ci 0 X then put ci E A, 

if Ci E X and bi 0 X then put bi E A, 

if c, b E X then put ai E A. 

A is an antichain disjoint from X. Suppose P is Po(k). Then X Al ç {d ci E 

X} ç P,, X, so X ,, Al = 0. Therefore, A can be extended to a maximal antichain 

disjoint from X. So X is not a fibre, P is hockey, and we are done. So suppose we 

have the case where P is P1(k). XAt 9 {d : ci E X} U {x, y} 9 (P\X) U {x, y}, 

so X -, Al ç {x, y}. If a0 E A, then X , Al = 0, so A can be extended to a maximal 

antichain disjoint from X, which therefore cannot be a fibre and we are done. So 

assume a0 A. If  Ø,X then let A' = AU{x}. If  E X and  0 X then let 

A' = A U {y}. In either of these cases, we get A' an antichain disjoint from X 

and X C AT, A', making it impossible for X to be a fibre and thus making P 

hockey. So assume we have neither of these cases. That is, we have a, y E X and, 

therefore, a0 0 X. In this case, we can relabel the points of F, keeping the same 

a0, but putting b0 for the old x, Co for the old y, and so on as below. This time 

the construction must work since, using the new labels, we have b0, co E X and so 

a0 E A. 

ak_i 

k-2 

Ck_2 

0 
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Chapter 3 

Cutset- and Fibre-Straight Posets 

"Outside of a dog, a book is a man's best friend - inside of a dog, it's too 
dark to read." 

- Groucho Marx 

3.1 Introduction 

In this chapter, we consider the following three conditions on a poet P: 

(i) P is fence-free. 

(ii) Every minimal cutset of P is an antichain. 

(iii) Every minimal fibre of P is a chain. 

For finite posets, each of (ii) and (iii) is a strengthening of a characterisation 

of hockeyness. Rival and Zaguia [RZ85] used the condition: 

(ii)' Every finite minimal cutset of P is an antichain. 

They showed that (i) = (ii)'. Higgs [H85] achieved the more general result 

(i) (ii). He also showed that (ii) = (i) if P is finite and presented an infinite 

poset which satisfies (ii) but not (i). These implications are corollaries of a theorem 

of Lonc and Rival [LR87] concerning the following two conditions on a graph G: 

()* G is P3-free. 

()* Every minimal transversal of G is independent. 
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They showed that (i)* => ()* and that if G is finite, then ()* (i). In 

fact, their proof that (ii )* ()* does not require G to be finite - only that 

every transversal contains a minimal transversal. Applying their result to the 

comparability graph of a poset P shows that (i) = (ii), and that if every cutset 

of P contains a minimal cutset then (ii) = (i). Applying their result to the 

complement of the comparability graph of a poset P shows that (i) = (iii), and 

that if every fibre of P contains a minimal fibre, then (iii) = (i). Before presenting 

Lonc and Rival's proof, we will introduce some definitions to express the problem 

more succinctly. 

Call a poset P cutset-straight if it satisfies (ii), i.e. every minimal cutset of P 

is an antichain. Call a poset P fibre-straight if it satisfies (iii), i.e. every minimal 

fibre of P is a chain. The results mentioned above tell us that all fence-free posets 

are cutset-straight and fibre-straight. The problem we address in this chapter is to 

find as many classes as possible of posets for which cutset-straight implies fence-

free or fibre-straight implies fence-free. It is this author's opinion that a poset has 

no business being cutset- or fibre-straight if it has a fence, yet such posets exist. 

Our objective is to find classes in which no such posets exist. One of the main 

difficulties in finding these classes is that any poset P which has no minimal cutset 

(respectively, fibre) is vacuously cutset-straight (respectively, fibre-straight), and 

so is P + F4 (respectively P F4) which has a fence. 

3.2 Some Old Results and Easy Corollaries 

We begin by presenting Lonc and Rival's graph-theoretic results [LR87]. 
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Theorem 3.2.1 If G is a P3-free graph, then every minimal transversal of G is 

independent. 

Proof. Let G be a P3-free graph and assume for a contradiction that G has a 

minimal transversal T which is not independent. Let b, c E T such that (b, c) is an 

edge. Since T is a minimal transversal, there are maximal cliques Cb and Cc such 

that C, fl T = {b} and C fl T = {c}. 

Let C = Cbfl{v E V(G) : (v, c) 0 E(G)}. Clearly Cb' 0, or else we would have 

CE C. Let C = C0 fl {v e V(G) : (v, b) V E(G)} 0. Notice that Cb' fl Cc, = 0. 

For every u E Cl and V E C, (u, v) must be an edge, otherwise (u, b, c, v) would be 

a P3. So CIU C is a clique. But (CIUC) n  C ((Cb{ b}) U(C".{c})) n  = 0. 

So Cl U C is not a maximal clique. Let C' be a clique maximal in Cb U Cc with 

Cl U C C C'. Let C be a maximal clique of G with C' C. Notice C' =A C since 

C'flT=O while CflT 34 0. 

Let X E C C'. So x V Cb U C, otherwise {x} U C' C Cb U C would be a clique 

properly containing C'. Since x V Cb, we know there is some bo C Cb such that 

(bo,x) is not an edge. Then b0 0 C, so b0 0 C', so b0 C CbC. Similarly, there is 

a c0 C C such that (co, x) is not an edge. Since co V C', c0 C Cc" Cb. So b0 co. 

We cannot be sure yet whether (b0, e0) is an edge. 

Since b0 0 C', we know that there exists y C C' such that (y, b0) is not an edge. 

Then y C Cc-, Cb and y 0 c0 since (y, x) is an edge (since x,y C C) but (co, x) is 
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not. So (y, co) is an edge. The diagram below shows y C but this may not be 

true. 

Since (x, y, c0, bo) cannot be a F3, (b0, co) is not an edge. Since (co, x) is not an 

edge, we know that c0 0 C'. So there exists a z E C' such that (z, CO) is not an 

edge. Then z E CbC0. And z 0 b0 since (z, x) is an edge but (bo,x) is not. So 

(z,bo) is an edge. (z, y) is an edge since {z,y} ç C'. 

So (b0, z, y, c0) is a F3. This contradiction completes the proof. 0 

The following two corollaries are immediate. 

Corollary 3.2.2 Every fence-free poset is cutset-straight. 

Proof. Let F be a fence-free poset and apply Theorem 3.2.1 to the compara-

bility graph of P. 0 

Corollary 3.2.3 Every fence-free poset is fibre-straight. 

Proof. Let P be a fence-free poset and apply Theorem 3.2.1 to the complement 

of the comparability graph of P. 0 
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In reading the next theorem, remember that any independent transversal must 

be a' minimal transversal. A graph G satisfies the hypothesis of this theorem if and 

only if every transversal of G contains a minimal transversal, and every minimal 

transversal is independent. 

Theorem 3.2.4 Let G be a graph in which every transversal contains an indepen-

dent transversal. Then C is P3-free. 

Proof. Assume for a contradiction that G has a P3 (a, b, c, d). Let Cb, C 

be maximal cliques with {a, b} 9 Cb and {c, d} C. Let S = (V(G) (C& U 

Ce)) U {b, c}. Then S fl Cb = {b} and S fl C = {c}. So any minimal transversal 

contained in S must include b and c, and therefore not be independent. So, by 

hypothesis, S is not a transversal. Therefore, there must be a maximal clique 

C C (Cb U C) {b, c}. Since (a, d) % E(G), a and d cannot both be in C. Assume 

without loss of generality that d 0 C. 

{b}u {v E V(G): (b, v) 0 E(G)} is a transversal and any maximal clique which 

includes b meets this transversal only at b. So any minimal transversal contained 

in this one includes b. Let T be a minimal transversal with b e T. (Similarly, it is 

clear that every vertex is contained in a minimal transversal.) Let x E TflC. Then 

b (since b 0 C) and (b, x) is not an edge (since T is independent). So x 0 

x E C. Let T' be a minimal transversal with d E T'. Let y E C fl T'. Then y 54 d 

(since d 0 C) and (d, y) is not an edge (since T' is independent). So y 0 C, y E C&. 

So (b,y,x,d) is a P3 with Tn {b,y,x,d} = {b,x} and T'fl {b,y,x,d} = {y,d}. 
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Let To = (T U T') I {b, d}. The only way a maximal clique K could fail to 

meet To would be if K fl T' = {d} and K fl T = {bj.. This cannot happen since 

(b, d) is not an edge. So To is a transversal. Let C be a maximal clique with 

b, y E C. Then C, fl To = {y} since C, is a clique and nothing in To is adjacent 

to both y and b. Let C, be a maximal clique with x, d E C,. Then C fl To = {x}. 

So any minimal transversal contained in To includes x and y and therefore is not 

independent. But our hypothesis says every transversal contains an independent 

transversal, a contradiction. 

The following two corollaries are immediate. 

Corollary 3.2.5 If P is a cutset-straight poset in which every outset contains a 

minimal cutset, then P is fence-free. 

Proof. Apply Theorem 3.2.4 to the comparability graph of P. 0 

Corollary 3.2.6 If P is a fibre-straight poset in which every fibre contains a min-

imal fibre, then P is fence-free. 

Proof. Apply Theorem 3.2.4 to the complement of the comparability graph of 

P. 0 

Lonc and Rival present an infinite cutset-straight poset, and an infinite fibre-

straight poset, each having a fence. Higgs [1185] presents an infinite cutset-straight 
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poset with a fence from which a fibre-straight poset with a fence may be con-

structed. Before examining these counterexamples, we will consider a relevant and 

relatively easily recognised property which implies that every transversal of a par-

ticular graph contains a minimal one. The following lemma is a special case of a 

theorem of Li [L89]. 

Lemma 3.2.7 If T is a transversal of a graph G such that every clique contained 

in T is finite, then T contains a minimal transversal. 

Proof. Let P be the partial order whose elements are the transversals of G 

which are subsets of T. Order P by set containment. Let T be a maximal chain 

(of nested transversals) in P. Let To = fl T. Let K be any maximal clique in G. 

Since K fl T is a clique contained in T, K fl T is finite. Then {K fl T': T' E T} is 

a nested sequence of non-empty finite subsets of T. So K fl (fl T) = K fl To 0. 

So To is a transversal, and clearly To must be a minimal transversal and To ç T. 

0 

Applying this lemma to the comparability graph of a poset and the graph's 

complement, we get these corollaries. 

Corollary 3.2.8 If K is a cutset of a poset P such that every chain contained in 

K is finite, then K contains a minimal cutset. 0 

Corollary 3.2.9 If F is a fibre of a poset P such that every antichain contained 

in F is finite, then F contains a minimal fibre. 

Applying these corollaries to Corollaries 3.2.5 and 3.2.6, we get: 

Corollary 3.2.10 Every chain-finite, cutset-straight poset is fence-free. 

0 

0 
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Corollary 3.2.11 Every antichain-finite, fibre-straight poset is fence-free. 0 

From these corollaries it seems that if P is a poset which is chain-finite and 

anti chain-finite, then P is quite well-behaved indeed. But this does not give us any 

new information about the issue at hand since any poset which is both chain-finite 

and antichain-finite is finite - a situation we have already mentioned. 

Before trying to find more classes of posets in which cutset-straight implies 

fence-free or fibre-straight implies fence-free, we will examine some counterex-

amples, beginning with two fibre-straight examples with fences. Lonc and Rival 

[LR87] showed that if P is the rooted binary tree of height Wd , then P contains no 

minimal fibre, and, therefore, P E) F4 is fibre-straight, even though it has a fence. 

Example 3.2.12 The binary tree of height WC shown below, call it F, is con-

structed as follows. The elements of P are the finite 0-1 strings, including the 

empty string 0. For any x, y E P such that x = X1X2 .. . xk and y = Y1Y2 . . . 

x>yif and only ifk<l and x=y for i=1,2,...,1c. Then PF4 has afence, 

but is fibre-straight. 

0 

0 

00 01 10 11 

000 001 010 011 100 101 110 111 

Proof. Suppose that F is a minimal fibre of P. Since P is fence-free, F is a 
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chain by Corollary 3.2.3. And any fibre which is a chain must be a maximal chain. 

But no maximal chain of P is a fibre. To see this, suppose that F is a fibre of 

P which is a maximal chain. Then we can pick 6i, e2, e3,... an w-sequence of 0's 

and l's such that F = {0} U {b1 : i = 1,2,3 .. .. } where each bi = e1e2... ej. But 

then A = {b : i = 1,2,3, ... }, where each b = e1e2. .. e_1(1—e), is a maximal 

antichain disjoint from F. So F is not a fibre. 

This shows that P contains no minimal fibre. So P ED Q has no minimal fibre 

for any poset Q. In particular, P F4 has no minimal fibre and so is fibre-straight, 

but it has a fence. 0 

Lonc and Rival's proof of the correctness of Example 3.2.12 is unnecessarily 

long. Rather than applying Corollary 3.2.3, which they proved earlier in the same 

paper, they essentially prove Corollary 3.2.3 all over again in the context of the 

special case of Example 3.2.12. They may have avoided using Corollary 3.2.3 

since they formally stated it for finite posets only, although they observed before 

presenting Example 3.2.12 that their proof of Corollary 3.2.3 works for all posets, 

not just finite ones. 

As in Example 3.2.12, any poset P having no minimal fibre gives us P F4, 

a fibre-straight poset (because it has no minimal fibre) which is not fence-free. 

Similarly, if P is a poset having no minimal cutset, then P + F4 is a cutset-

straight poset (because it has no minimal cutset) which is not fence-free. From 

the facts we have already mentioned about comparability graphs, we know that 

if P and Q are posets with complementary comparability graphs, and P has no 

minimal fibre (respectively, cutset), then Q has no minimal cutset (respectively, 

fibre). To make use of this fact, we would like to know: For what posets do posets 
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with complementary comparability graphs exist? Dushnik and Miller [DM41] have 

shown that these posets are precisely the posets of dimension < 2, where dimension 

is defined as follows. 

Let P be a poset with partial order <p. Let <, <2,... , <k be total orderings 

defined on the set P. We call {<1,<2,...,<k} a realiserof P if for all x,y E P: 

x <p y if and only if x <i yfor all i = 1,...,k. For any poset F, if there is a 

finite Ic such that F has a realizer consisting of k total orderings of P, then the 

least such Ic is called the dimension of P. We can now state Dushnik and Miller's 

theorem, but we will not prove it. 

Theorem 3.2.13 A poset P has dimension ≤ 2 if and only if there exists a poset 

Q whose comparability graph is complementary to that of P. 

One property common to all the examples in the literature of posets without 

minimal fibres or without minimal cutsets is that they are fence-free (until the 

author adds a fence to get a relevant example). We will now prove that all fence-

free posets have dimension ≤ 2, thereby getting more examples from those already 

known. The following result is not new - a complete characterisation of the posets 

of dimension ≤ 2 using a list of forbidden configurations was found by Kelly [K77] 

and, using a different method, by Trotter and Moore [TM76]. But their proofs are 

much harder to read than the following one for the simple case of fence-free posets. 

Lemma 3.2.14 Every fence-free poset has dimension ≤ 2. 

Proof. We begin by proving the lemma in the case of finite posets. Any finite 

fence-free poset is series-parallel [VTL82] {Ri86]. Therefore, since the singleton 

poset has dimension 1, it suffices to prove that if P and Q are (disjoint) finite 
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posets each having dimension ≤ 2, then P ED Q and P + Q both have dimension 

<2. 

Let P and Q be finite posets each having dimension < 2. Let {<p,, <P,2} be 

a realiser of P and {<Q,i, <Q,2} be a realiser of Q. For i E {1, 2}, define <j a total 

order on P U Q by x <j y if and only if: 

(i) x,yEP and x<p,y, 

(ii) x,y E Q and x <Q,i y, or 

(iii) xEP and yEQ. 

Define <'2 a total order on P U Q by x <'2 y if and only if: 

(i) x,y E P and x <P,2 Y, 

x,y E Q and x <Q,2 y, or 

ccEQ and yEP. 

Then {<, <2} is a realiser of P E) Q and {<, <} is a realiser of P + Q. So the 
lemma holds in the case of finite posets. 

Extending the lemma to infinite posets is a straightforward application of the 

compactness theorem. Let P be an infinite fence-free poset. We define a set $ of 

sentences as follows. For all x, y E P such that x <p y, put the following sentence 

in 8: 

For all x, y E P such that x lip y, put the following sentence in 8: 

& V & 

Each variable is to be interpreted as "x <i y", and similarly for So if 

we can give all the variables Li,x,y truth-values so that the above sentences are all 
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true and <, and <2 are total orders, then we will have a realiser of P. To get the 

total order condition, put the following sentences in S for all distinct x, y, z E P 

and iE{1,2}: 

V Lj,y,a 

This completes the definition of S. Let V be the set of variables appearing in S. By 

the compactness theorem [Appendix A], there is an assignment of truth-functional 

values to the elements of V which makes all the sentences in S true if and only if 

for every finite subset of S there is an assignment of truth-values to its associated 

variables making every sentence in the subset true. 

Let 5' be a finite subset of S and let V' be the set of variables appearing in 

5'. Let F' be the set of elements of P which appear in the names of variables in 

V'. V' and F' are finite. Consider F' as a subposet of P. Since P is fence-free, 

F' must also be fence-free. Since F'is fence-free and finite, Lemma 3.2.14 tells us 

that F' has dimension < 2 and therefore has a realiser {<i, <2}. Therefore, there 

is an assignment of truth-values to the elements of V' that makes all the sentences 

in 5' true. So, by the compactness theorem, there is an assignment of truth-values 

to the elements of V which makes all the sentences in S true. This is equivalent 

to saying that P has dimension ≤ 2. 0 

By applying this lemma to Example 3.2.12, Lonc and Rival get some informa-

tion about the question dealing with cutset-straight posets. 

Example 3.2.15 Let F be the binary tree P of height w' as described in Example 
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3.2.12. By Lemma 3.2.14, P has dimension 2, so there is a poset Q whose com-

parability graph is complementary to that of P. Since P has no minimal fibre, Q 

has no minimal cutset. So Q + F4 is cutset-straight but not fence-free. 

Unfortunately, this author has been completely stymied by the problem of 

drawing an enlightening Hasse diagram of Q in Example 3.2.15. The diagram which 

Lonc and Rival presented was simple enough but incorrect. The incorrectness of 

their diagram is clear from the fact that the poset it shows is not fence-free, even 

though its comparability graph is supposed to be complementary to that of the 

binary tree of height w which is fence-free. The diagram below depicts Q in a 

reasonably comprehensible, but unorthodox, format. In the diagram, the points 

are the points of the poset, and the horizontal lines indicate comparability. For 

each horizontal line, every point directly above the line is greater than every point 

directly below the line. Here "directly above" means that a vertical line going 

down from the point would hit the horizontal line in question, although it may 

also hit other lines and points along the way. If two points have no such line 

between them, then they are not comparable. 
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The only other example in the literature of a cutset-straight poset with a fence 

is due to Higgs [1185]. It is just as devoid of nice properties as Example 3.2.15, and 

is also constructed by adding a fence to a fence-free poset with no minimal cutset. 

Furthermore, the construction is harder to describe than that of Example 3.2.15, 

so we will not say any more about it. 

3.3 A Height-3 Poset With No Minimal Fibre 

We have already seen that if a poset is antichain-finite and fibre-straight, then it 

is fence-free. One might hope to find a more general condition on antichains which, 

when combined with fibre-straight, guarantees fence-free. But since an antichain 

has no structure, the only conditions one can place on individual antichains use 

cardinality. Example 3.2.12 is a fibre-straight poset with a fence in which every 

antichain is countable. So it seems the antichain-finite condition is the best possible 

condition on individual antichains for assuring fibre-straight implies fence-free. 

What about a condition on chains? In Example 3.2.12, every maximal chain is 

an w-chain. Is every chain-finite fibre-straight poset fence-free? We now present a 

new example of height 3 to show that the answer is no. 

The example which is the basis of Example 3.3.1 is the set {O} U {(i) : i E 

N} U {(j) : j E N} ordered by 0 < (i) for each i E N and (i) > (j) for all i < j in 

N. 
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0 is not in any minimal fibre by the following. Suppose F is a minimal fibre 

with 0 E F. Since {(n) : n E N) is a maximal antichain, there must be some 

(m) E F. For every n > m, (n)1'" (m) = {(n)}, so (n) is in every maximal 

antichain (m) is in, and (n) cannot be in F, since F' {(m)} would be a smaller 

fibre. Since F is a minimal fibre with 0 E F, there must be a maximal antichain 

A such that A fl F = {0}. Since the only maximal antichain which includes 0 

is {0} U {(n) : n E N}, this tells us that {(n) n E N) fl F is empty. So 

{(i) i ≥ m + 1) U {(j) ≤ m} is a maximal antichain disjoint from F. 

Example 3.3.1 Let P be the poset shown on the following page whose elements 

are the finite round-bracketed and angle-bracketed tuples all of whose coordinates 

are natural numbers. Order P as follows so that every maximal chain has 3 el-

ements. The maximal elements are the angle-bracketed odd-tuples, the minimal 

elements are the angle-bracketed even-tuples, and the remaining elements are the 

round-bracketed tuples. For any (x1, x2 ) x3,. .. , X2k) E F, the only upper cov-

ers are (x1,x2,x3,. . .,x2k_1) and (x1,x2,x3,. ..,x2k_1,y) for each y ≥ X2k. For 

any (x1, x2, x3,. . . , X2k+1) E F, the only lower covers are (x1, x2, x3,.. . , X2k) and 

(x1, x2, x3,. . . , X2k, y) for each y ≥ x2k+1. P has no minimal fibre. 
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This side up -* 
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The correctness of this example requires a relatively lengthy explanation. We 

will proceed with two lemmas. 

Lemma 3.3.2 Let F be a fibre of P (from Example 3.3.1) which includes two 

points (x1, x2). .. , xk) and (x1, x2,. . . , xk_, x) with X'k < xk. Then F is not 

a minimal fibre. 

Proof. Let A be a maximal antichain which includes (x1, x2,. . . , xk_, X'k). 

An (x1, x2,.. . , xi)j cannot be empty. Therefore, since 

(xi, x2,. . . , xk) E A. So there is no maximal antichain which meets F only at 

(x 1)x2, ... . xk_1,x). So F"{(xi,x2,. . . ,x_,x)} is a fibre. 0 

Lemma 3.3.3 Let X C P (from Example 3.3.1) such that, for all k, X does not 

include any two points (x1, x2). .. , xk) and (x1, x2,. . . , xj_, x) with X'k < xk. 

Then  is not afibre. 

Proof. We will construct an antichain A such that X C AI  A. 

Let A = U1 Aj where the Ak's are defined inductively as follows, starting 

with A0 = 0. (Define (x1,. . . ,xk,N) = {(x1,. . . ,xi,n) : n E N}.) 

Bk = {(X1,...,Xk) : (x1,...,Xk) E X,(xl,...,Xk) V X} 

Ck = {(x1,. . . , xk, 1): (x1,. . . , xk) E XAk_lI, (x1,.. . , xk, N) fl X = O} 

Dk = {(x1,. . . Xk, Xk+1 + 1) : (x1,. . . Xk) E X Ak_it, (X1... . Xk) Xk+1) E X} 

Ak=BkUCkUDk 

Is it possible that two points of A are comparable? The answer is no; it is clear 

that each Ak is an antichain. It is clear that if two points of A are comparable, then 
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they are of the form (xl,...,Xk) E Ak_i and (xi,...,xk_i )yk) E AA; with yk ≥ x/,or 

the second point is some (x1,. .. . Xk_) yk, yk+i) E Ak with yk ≥ Xk. The only way 

to get (Xi,. . . , Xk-1, yk) E Ak is if (Xi, . . . , Xk_, Ilk) E X, in which case (Xi, . . . , Xk) 

would not have been chosen in Ak_i. (Maybe (Xi,... ,Xk_i,yk + 1) would be in 

Ak-1, see the definition of Dk.) The only way to get (Xi,... )xk_i,yk,yk+i) E Ak 

is if (Xi,. . . , Ilk) E XAk_it. This would not happen if (x1,.. . , x) E Ak-1 

since (Xi,... ,xk_1,yk) € (Xi,... , Xk) t. So A is an antichain. 

Is any point of X not in At? Obviously, each round-bracketed tuple in X 

is in Al because of the definitions of Bk and Ck. But suppose there is some 

(Xi,. -- ,Xk)  E X. If (Xj,. . . , xiv) 0 X, then (xl,. . - ,Xk)  E Bk, so (x1,. . . , xk) E Al. 

So suppose (x1,. . . , Xk) E X. If (x1,.. . ,xk) 0 Ak-11 then Bk or Ck will provide 

a point in Ak comparable to (Xi,. . . , x) as well as (x1,. . - ,Xk)-  So assume that 

(x1,. . . , x) E Ak-11. The point in Ak-1 to which (x1,. . . , Xk) is comparable must 

be of the form (x1,. . . ,Xk_i, yk) with Ilk ≤ Xk. But, because of the definition of Ck, 

since (x1,.. .,Xk_i,Xk) E X, the only (x1,. . . ,xk_i,yk) which might be in Ak-1 is 

the one with Ilk Xk +1. With this contradiction, we may conclude that X C At. 

That A fl X = 0 is clear from the construction. 0 

With these lemmas the correctness of Example 3.3.1 is clear. Since Example 

3.3.1 has no minimal fibre, it is fibre-straight, but it is not fence-free. In one 

respect, Example 3.3.1 is nicer than Example 3.2.12. In Example 3.2.12, it is the 

fence-free part of the poset that makes the poset fibre-straight. In Example 3.3.1, 

fences are a vital part of the construction making the poset fibre-straight. 

It seems to this author that there is not much left to do in investigating when 

fibre-straight implies fence-free, since there is a fibre-straight poset of height 3 
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which is not fence-free, and any antichain-finite fibre-straight poset is known to be 

fence-free while there is a countable fibre-straight poset which is not fence-free. 

It would be nice if we could use Example 3.3.1 to construct a poset of width 3 

with complementary comparability graph and having no minimal cutset, as Lonc 

and Rival used Example 3.2.12 to make Example 3.2.15. Because of Theorem 

3.2.13, this is only possible if Example 3.3.1 has dimension < 2. By [K77], Example 

3.3.1 has dimension ≥ 3 since it contains the suborder 

(1) (3,1) (2,1) (1, 1) 

(3,1) (2,1) 

So there is no poset having a comparability graph complementary to that of Ex-

ample 3.3.1. 

Posets of height 1 are antichains which are fence-free. Example 3.3.1 shows 

that a fibre-straight poset with fences may have height as little as 3. This leaves 

the following question unanswered. 

Question 3.3.4 Is every fibre-straight poset of height 2 fence-free? 

Since posets of height 2 may have dimension ≥ 3, an answer to this question 

need not provide an answer to the following question which we will return to at 

the end of the chapter. 

Question 3.3.5 Is e'very' cutset-straight poset of width 2 fence-free? 
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3.4 A New Example With No Minimal Cutset 

The examples of cutset-straight posets with fences by Higgs and Lonc & Rival 

are both of the form P + F4 where P is a fence-free poset having no minimal 

cutset. This is somewhat unsatisfying since it is the fence-free part of the poset that 

prevents the existence of a minimal cutset which is not an antichain. One might 

hope to get a more satisfying example by finding a poset with no minimal cutset 

and having this fact due to fences in the construction. The literature is no help 

here (as far as this author has been able to ascertain) since [1185] and [LR87] are 

the only papers describing posets with no minimal cutsets. (In a survey paper, El-

Zahar and Zagui [EZ86J incorrectly list [G84] as another paper describing a poset 

having no minimal cutset. What [G84] describes is a poset having no antichain 

cutset.) We now present a new example of a poset having no minimal cutset in 

which fences are a vital part of the construction which prevents minimal cutsets. 

Example 3.4.1 Let P be the poset shown on the following page. The points of 

P are the elements of the cartesian product w x wd as well as the angle-bracketed 

versions of the same pairs. On the round-bracketed pairs, impose the lexicographic 

total order. That is, (x, y) < (x', y') if x < x' or if x = x' and y < y'. For angle-

bracketed pairs (x, y) (x', y') if and only if x = x' and y ≤ y'. The only way 

to get (x, y) ≤ (x', y') is if (x, y) ≤ (x', y') in which case it follows by transitivity. 

No round-bracketed pair is less than any angle-bracketed pair. Then P has no 

minimal cutset. 
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(2,0) 

(2,—i) 

(2,-2) 

(2,-3) 

(2,-4) 

(0,0) 

(0,—i) 

(0,-2) 

(0,-3) 

(0,-4) 

Proof. Suppose for a contradiction that K is a minimal cutset of P. {(x, y): 

x E w, y EW '} is a maximal chain of P. Therefore, for some x E w and y E w1, we 

have (x, y) E K. There must be a maximal chain C such that C fl K = {(x, y)}. 

Since (x,y)1 is a chain, C fl (x,y)1 = (x,y)1. Let CO be the maximal chain 

(x+1,0)IU {(x+ 1, Y') : E Then C0flK 0, but (x+1,0)1 C (x,y), so 

(x + i, 0)1 fl K = 0. Let (x + i, y') E CO fl K. Then there must be a maximal chain 

C' such that KflC' = {(x + l,y')}. Since (x+ i,y')j. is a chain, C'fl(x+ i,y')J. = 
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(x + 1,y')i,. Let C1 be the maximal chain (x + 1,y' -   1)1 U (x + l,y' - 1)1. Then 

C1 fl K = 0, a contradiction. 

3.5 Regular Posets 

C1 

A poset P is called regular if it is chain-complete (i.e. every chain has a 

supremum and an infimum) and for every chain C C F, (sup C)I g CJ. and 

(infC)1 9 C. That is, in a regular poset, a supremum of a chain is not above 

anything that is not below an element of the chain, and dually for infima. Other 

than the results by Higgs and Lonc & Rival already mentioned, the only class of 

cutset-straight posets identified in the literature as fence-free is the class of regular, 

well-founded, cutset-straight posets. This result is due to Rival and Zaguia [RZ87]. 

In the context of their paper, this result is secondary. Their main concern is with 

the similar question: In a regular, well-founded poset, is every point in a minimal 

cutset? They show that the answer to this question is yes and then go on to apply 

their technique to show that every regular, well-founded, cutset-straight poset is 

fence-free. We will prove the same two results, but using a simpler construction. 

Before stating the theorem, we will explain some notation. Let P be a regular 

poset and let x E P. Define 

A(x) = {sup(C\xfl : C is a maximal chain of P}. 

Since no maximal chain of P is contained in x, A(x) is a cutset of P. In fact, 

A(x)'.{x} is a cutset for x. That is, A(x) is a cutset and A(x)\{x} c PxI. Using 
A(x) to meet maximal chains where they exit xI is easy since the boundary of x 

is sharp in the sense that for any maximal chain C, sup (C\xfl = max(C"xl) and 

whenever Cflx1 54 0, inf(Cflxl) = min(Cflxfl. In the diagram below, the hollow 
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points represent A(x). 

X 

It is worthwhile contrasting this approach with that of Rival and Zaguia. Rival 

and Zaguia used a similar idea, but it does not take advantage of regularity as 

effectively as the construction of A(x). What they did was to pick a maximal 

chain C. through x, and then try to pick a cutset which meets other maximal 

chains as they diverge from C. This plan falls apart quite hopelessly without 

their additional assumption that the poset is well-founded. The cutset they use is 

{min(C\ (C fl xl)) C is a maximal chain of P}. 

If one replaces "mill" in this definition with "inf" to use in regular posets which 

are not well-founded, then one may get infs in cx fl x, so that the cutset does 

not meet C only at x. In this situation, it may be impossible to find a minimal 

cutset contained in this one which includes x. Even with the condition of well-

foundedness, rather a lot of work is required to find a minimal cutset contained in 
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this one. But we will see that it is quite is easy to use 

A(s) = {sup(C"s) : C is a maximal chain of P} 

to get 

K(s) = {min(C fl A(s)) : C is a maximal chain of P} 

a minimal cutset contained in A(s). 

Suppose K is a cutset of a poset P. If max(C fl K) exists for every maximal 

chain C of F, define 

r(K) = {max(C fl K) : C is a maximal chain of P}. 

If r(K) is defined and min(C fl r(K)) exists for every maximal chain C of F, define 

.s(K) = {min(C fl r(K)) : C is a maximal chain of P}. 

Theorem 3.5.1 If K is a cutset of a poset P and s(K) is defined, then .s(K) is a 

minimal cutset contained in K. 

Proof. It is clear that s(K) is a cutset contained in K. It remains only to 

verify that s(K) is a minimal cutset. Let a E s(K). We have to find a maximal 

chain C such that C fl s(K) = {a}. Since a E r(K), there is a maximal chain C1 

such that a = max(Ci fl K). Since a Es(K), there is a maximal chain C2 such 

that a = min(C2 fl r(K)). Let C = (Cl fl aT) U (C2 fl al). C is a maximal chain 

and C fl r(K) = {a} = C fl s(K). Therefore, s(K) is a minimal cutset. 0 

The proof above is a (superior, I think) alternative to that already given for 

Corollary 3.2.8, but does not so readily yield Theorem 3.2.7 and Corollary 3.2.9. 

But, to get back to the issue at hand: 
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Corollary 3.5.2 Let  be a regular poset and let  E P. Ifmin(CnA(x)) exists for 

every maximal chain C, then each K(x) is a minimal cutset of  with x G K(x). 

Proof. Let K be the cutset {x} U (Pxt). By regularity, max(C fl K1) exists 

for every maximal chain C. So A(x) = r(Ki). So Theorem 3.5.1 tells us that 

K(x) = s(Ki) is a minimal cutset. Furthermore, x E K(x) since if C is any 

maximal chain with x E C, then C fl A(x) = {x}. 0 

In the following proof, we use these definitions: 

UC(x) = {y : y >- x} 

LC(x) = {y : y -< x} 

For every chain X C F, define 

C(X) to be the set of all maximal chains containing X. 

We may abbreviate, for instance, C({x,y}) to just C(x,y). 

Theorem 3.5.3 Let  be a regular poset which is not fence-free. Ifmin(CflA(x)) 

exists for every x E P and every maximal chain C, then P has a minimal cutset 

which is not an antichain. 

Proof. This proof will be easier if we can pick (a, b, c, d) an N. If this is not 

possible (i.e. if P is N-free), pick a fence a -< b> c -< d as follows. Let a' < b' > 

C' < d' be a fence. Let b E min(a't fl c'I), a E max(a'I fl bj.), c E max(bj. fl d'j), and 

d E min(d'l fl ci). Regularity guarantees that this construction is possible. This 

shows P contains a fence of the form a -< b> c -< d. 

By Corollary 3.5.2, K(c) is a minimal cutset containing c. Is it possible that 

a K(c)? The answer is that it is possible only if P has an N by the following. 
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We know that a E A(c) by applying the definition of A(c) to any maximal chain 

which includes a and b. 

Suppose a V K(c). Then there exists x E K(c) fl aj. x 11 c since K(c)\{c} C 

P'cI. Since x E K(c) 9 A(c), we can let C be a maximal chain of P such that 

x = sup(C\ c ). Since P is regular, we know that y = inf(Cncl) > C, so c < y >- S. 

S 

By regularity, y >- x implies that there exist a" E TiC(s) fl a. and c" E LC(y) fl c. 

Y 

'1 

Then (a", x, y, c") is an N, so we may also assume that (a, b, c) d) is an N. So we 

have: 

S 

Now we can verify that K(a) is a minimal cutset which is not an antichain. K(a) is 

a minimal cutset. Let Cc be a maximal chain having b, c E C. Then CflK(a) 54 0 
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but K(a)flal = 0. So CflK(a) C cJ,. Let C, be a maximal chain having x, E C. 

Then Ci,, fl K(a) 0 0 but K(a) fl a.1, = 0. So C, fl K(a) 9 y. Thus, K(a) includes 

an element of yT and an element of c, and cannot be an antichain. That is, the 

conclusion of the theorem holds if a V K(c). 

Now consider what happens if a E K(c). We will find that this case also 

implies that P has an N or that the conclusion of the theorem holds. Since K(c) 

is a minimal cutset, we will assume that it is an antichain, since otherwise the 

conclusion of the theorem holds. By regularity, b >'- a implies that for every x > a, 

there is a y such that x ≥ y >- a.Let 

K2 = (K(c)', {a}) U UC(a), 

= K2-, {z E K(c) : C fl UC(a) 54 0 for every CE C(z)}. 

We know that b E K since b >- a implies that b E K2 and b V K(c). 

Since K(c) is a cutset, it is clear that K2 and K are cutsets. In fact, K is a 

minimal cutset by the following. Let z E K C K2. Then z E K(c){a} or z >- a. 

If z E K(c)', {a}, then, since K(c) is a minimal cutset, there is a maximal chain 

C which meets K(c) only at z. There must be some such chain C which does not 

meet UC(a) or else z would have been thrown out of K2 to make K, and this 

C is a maximal chain which meets K only at z. Now consider what happens if 

z >-'a. Let C2 be a maximal chain with {a, z} 9 C2. Then C2 fl K(c) = {a} and 

C2 fl UC(a) = {z}, so C2 fl K = {z}. Thus, K is a minimal cutset. 

If c E K then the conclusion of the theorem holds (remember b E K) and we 

are done, so assume c 0 I<. Since c E K(c), we know that c E K2, so c V K tells 

us that every maximal chain through c includes an upper cover of a. Extend {c, d} 
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to a maximal chain and let e be the point of UC(a) that it meets. Then there is a 

point f such that e >- f ≥ d. Now, b is not comparable to f. 

So (f, e, a, b) is an N. But at the start of this proof we said we would pick 

(a, b, c) d) an N if possible and now we see that it was possible. So assume that 

(a, b, c) d) is an N. 

Consider K as defined earlier in this proof. The only way K could fail to 

witness the conclusion of the theorem is if the diagram above holds. So assume 

the diagram is correct. We may also assume that b >- c. 

By Corollary 3.5.2, K(f) is a minimal cutset. Let Ca be a maximal chain with 

a,eE Ca. K(f)flflOSoO 54 K(f)flCa cCaflal. Let C&bea maximal chain 

with b,c E Cb. K(f) nfl = 0 so 0 h K(f) fl Cb c Cbfl 14. Since b> a, this tells 
us that K(f) is a minimal cutset which is not an antichain. 

Thus, we have recovered, by an easier method, Rival and Zaguia's result [RZ87]: 

Corollary 3.5.4 Every regular, well-founded, cutset-straight poset is fence-free. 0 

Another fairly easy corollary is: 

Corollary 3.5.5 If P is a regular, antichain-finite, cutset-straight poset, then P 

is fence-free. 
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Proof. Let x E P. Suppose C is a maximal chain of P and CflA(x) has no least 

element. Let a0 > a1 > a2 > a3> ... be an infinite descending chain in c fl A(x). 

For each i E N, let Ci be a maximal chain of P such that ai = max(C"xfl, and 

let bi = min(C fl xi'), so bi >- a. (We need i ≥ 1 to make sure that ai 0 max  so 

that bi exists.) 

a1 

X 

The b's are all distinct so there are infinitely many of them. Since all antichains 

in P are finite, there is an infinite chain of b's. These b's and the corresponding 

ai's must contain a copy of w" x 2, which we will now show is impossible in a regular 

poset. We may assume that we chose the a's and b's so that all of them together 

form a copy of w' x 2 as in the diagram below. Let a = inf1 ai and b = infi b. 

bo 
ao .4 b1 
aiV4 b2 
a2 
a3 

b 

b 

Clearly, b ≥ a. By regularity, if b> a = infi a, then b> aj for so-me particular 

a. But then we would have aj < b < bi for every bi which obviously is not the 

case. Therefore, b = a. So each aj > a = b = inf i b. By regularity, this says that 
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each aj is greater than some b, which obviously is not true. So P cannot contain 

any copy of w" x 2. 

With this contradiction, we have shown that Theorem 3.5.3 applies to P. 13 

This author believes that if one wishes to prove that every regular cutset-

straight poset is fence-free, then the proof above is the most promising starting 

point. Were it not for this, it would have been more expedient to replace some of 

this proof with references to certain facts in the literature. This author has not 

found any mention in the literature of the fact that a regular poset cannot contain 

any copy of w x 2 or its dual, but Ginsburg [G84] showed that if an antichain-finite 

poset P contains no copy of w x 2 or its dual, then M(P) is compact, and this is 

equivalent to saying that every cutset of P contains a finite cutset [BG84]. With 

Corollary 3.2.5, this gives us Corollary 3.5.5. 

Although we will not use the term "special" for a little while yet, we define it 

here to avoid disrupting the beautifully written paragraph where it appears. Let 

P be a poset and C a chain in P. If x = sup C, then x is called a special suprem'um 

if there exists c E C such that cl 9 x. Special infimum is defined dually. A poset 

is called special if all its suprema and infima are special. 

We are concerned in this chapter with finding minimal cutsets of a certain form. 

In posets with fences, we try to find minimal cutsets which are not antichains. A 

similar problem is to find classes of posets in which every element is contained in 

a minimal cutset. In [RZ87], Rival and Zaguia tackled the following question. 

Question 3.5.6 Is every element of a regular poset contained in a minimal cutset? 

Rival and Zaguia achieved an answer only with the additional condition of 
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well-foundedness, as we just did in Corollary 3.5.2 using a different construction. 

Rival and Zaguia [RZ87] conjectured that the answer to this question is yes. Li 

erroneously attributes more to these authors. Paraphrasing Li [L89]: Rival and 

Zaguia [RZ87] observed that if, in addition to being regular, a poset P has the 

property that every element of P belongs to some minimal cutset, then 'there is 

a positive answer to every minimal cutset is an antichain implies P is fence-free. 

(This is as close to a direct quote as is conveniently possible.) There is no such 

observation in [RZ87] and Li repeats this error in [L92]. It seems Li was confusing 

[RZ87] with [EZ86], in which El-Zahar and Zaguia say: "if we could generalize 

[Every element of a regular, well-founded poset is in a minimal cutset] to regular 

posets, then the same proof [as in [RZ87]] of [Every regular, well-founded, cutset-

straight poset is fence-free] could be generalized to regular ordered sets too." But 

regardless of where Li picked up this idea, it is odd that he did not use it to 

state: Every regular, special, cutset-straight poset is fence-free, since in [L89] he 

proved: Every point in a regular, special poset is in a minimal cutset. One possible 

problem is that El-Zahar and Zaguia [EZ86] gave no reference or justification for 

their statement, and it seems to this author that the proof in [RZ87] to which 

El-Zahar and Zaguia were referring would require considerable enhancement to 

achieve what they say it could achieve, if it could be made to work at all in a 

more general context. Perhaps a regular, cutset-straight poset is fence-free if every 

element is in a minimal cutset of a type similar to that used in [RZ87], or some 

other special type. For instance, it seems reasonable to think that previously known 

constructions could be used to show that a regular, cutset-straight poset is fence-

free if every element x is contained in a minimal cutset K such that K fl xT = {x} 
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(i.e. there is a minimal cutset for x), but in fact, Li [L89] shows that every element 

x in a regular, special poset is in a minimal cutset K such that K fl xT = {x}. So 

maybe this "reasonable" idea is not as simple as it seems, and apparently Question 

3.5.7 is still open, along with the more difficult Question 3.5.8. 

Question 3.5.7 Is every regular, special, cutset-straight poset fence-free? 

Question 3.5.8 Is every regular, cutset-straight poset fence-free? 

Example 3.4.1 has some relevance to Question 3.5.8. If P is the poset in 

Example 3.4.1, then P {1} is cutset-straight but has a fence. But it is sup-

regular according to Grillet's definition [069]. That is, every chain C in P {1} 

has a supremum and (sup C)1 C CJ,. 

Question 3.5.8 was first raised by Higgs [H85] who observed that his proof that 

finite cutset-straight posets are fence-free would also work for regular posets if they 

had the property that every cutset of a particular form contains a minimal cutset. 

In [1185), Higgs says "I do not know whether [cutset-straight implies fence-free] 

for all regular posets". This author sees no way to interpret Higgs's statement 

as a conjecture. However, El-Zahar and Zaguia [EZ86], and Li [L89] have said 

that Higgs conjectured that all regular, cutset-straight posets are fence-free and 

they give only [1185] as a reference. (Li does not list [EZ86] as a reference.) This 

questionable interpretation does not appear in [RZ87] which extends Higgs's result 

to regular, well-founded posets. 

3.6 Posets with Integer Chains• 

The literature does not address the question of whether all well-founded cutset-
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straight posets are fence-free. In the question for well-founded, regular posets, 

progress began with finding that every element is a member of a minimal cutset. 

If we only have the condition that a poset is well-founded, then we cannot get the 

same result. Below is a well-founded poset in which the point (w) does not belong 

to any minimal cutset. The comparability graph of this poset is the complement 

of the one on which Example 3.3.1 is based. 

(4) 
(4) VT_(3) 

(2) t• 2) • (1) 
(1) -'(0) 
(0) 

This author has been unable to make any progress with respect to the question 

of cutset-straight implying fence-free in well-founded posets in general. However, 

the following theorem solves a simple case, and improves slightly on the result 

(Corollary 3.2.10) that all chain-finite cutset-straight posets are fence-free. 

Theorem 3.6.1 Let P be a poset all of whose chains are embeddable in w and 

which has a fence. Then P has a minimal cutset which is not an antichain. 

Proof. Since every chain is embeddable in w, P has a fence of the form 

a -< b> c -< d. In fact, choose (a, b, c, d) an N if possible. Let Cb, Cc be maximal 

chains with a, b E C,, and c, d E C. 
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Let C = Cb n bj. and C = C, fl 4. So C and C are finite chains. Let 

Ki={y:y>-.x for some xEC}, 

K2={y:y>-x for some xEC}, 

K = ((minP)U If, U 1f2) \ (Cbl U C). 

Notice b, c E K. We prove that K is a cutset. Let C be a maximal chain of P. If 

min C 0 {min Cb, min C}, then min C E K. So assume that min C is min Cb or 

min C,. Let x = max((C U C) fl C). (Since C and C are finite, this maximum 

exists. Also, x 54 max C.) Let y >— x in C. Then Y E K. So K is a cutset. For any 

z E F, UC(z) is an antichain. So If, and K2 are each a union of a finite number 

of antichains. So K contains no infinite chain. Therefore, by Corollary 3.2.8, K 

contains a minimal cutset K. 

If K' is not an antichain, then we are done. So assume that K' is an antichain. 

Then we cannot have both b and c in K. Since KflCb = {b}, we know that b E K' 

and c 0 K'. But C E K. Therefore, cc fl K 54 {c}. Let e = min(cc fl K\{c}). 

K fl C = 0, so e > c. Since e E K1, there is an f E C such that e >— f. The 

diagram below should be taken with a grain of salt, since it is possible that f = a or 

e = d, but not both since a lid. Let  >— fin Ci, and h —< e in C. Then (g,f,e,h) 

is an N. We said at the start of this proof that we would choose (a, b, c, d) an N if 
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possible. So we may assume that b >- c. So we have the situation depfcted below 

with the possibility that f = a or e = d, but not both. 

We may assume without loss of generality that f 0 a and henceforth use the 

following simpler diagram with all points shown as distinct guaranteed to actually 

be distinct. 

Let q, = Cb fl f  and C' = cc fl 4. Let 

K={yC':y>.-x for some xEC'}, 

K={yØC':y>-x for some xEC'}, 

L=((minP)UK UK)\(C'UC'). 
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By the same argument as for K, we can say that L is a cutset which contains a 

minimal cutset L'. 

Let Ce = (C fl e) U Ct'. Then Ce is a maximal chain and Ce fl L 

Therefore, e E L'. Let C = (Cb fl bfl U (C fl cj). Then C is a maximal chain 

and C fl L = {c}. Therefore, c E L'. Since c, e E L', 1/ is a minimal cutset which 

is not an antichain. 0 

Because of Corollary 3.2.5, the next theorem is stronger than a "cutset-straight 

implies fence-free" theorem. 

Theorem 3.6.2 Let P be a poset in which every chain is embeddabic in the chain 

of integers and every antichain is finite. Then every cutset of P contains a finite 

cutset. 

Proof. Let A be a maximal antichain of P. Then for any maximal chain C, 

CflAlOandCflAJO. Let 

X0 = {min(C fl AI') : C is a maximal chain of P}. 

Then, obviously, Xo is a cutset of P. A less obvious fact is that Xo is finite, which 

we now prove. 

Suppose for a contradiction that Xo is infinite. Since Xo c Al and A is 

finite, this tells us that there is some a E A such that JaT fl xol is infinite. Let 

B = X0 fl al, obviously B is infinite. For each b E B, there is a maximal chain C 

such that b = min(C fl Al). So for each b E B, we can choose some f(b) - b such 

that f(b) E Al. B is an infinite set having no infinite antichains. Therefore, B 

contains an infinite chain B'. Let C' = f(B'). Since b'1 b'2 f(b) f(b) for 

b'1, b'2 E B', C' is also infinite. Since C' cannot contain any infinite antichains, this 
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tells us that C' contains an infinite chain C". There must be some d E A such that 

C" c d.j. Let B" = {b E B' : f(b) E C"}. Then f determines a 1-1 correspondence 
between B" and C". In fact, f determines an order-isomorphism between B" and 

C". Since B" is an infinite chain, and every chain is embeddable in the integers, 

B" must be isomorphic to w, or the chain of integers. Since a is a lower bound 

of B", and every chain is embeddable in the integers, this tells us that B" W. 

Similarly, we get C" we'. But this contradicts B" C". Therefore, Xo is finite. 

The rest of this proof is like a proof of König's Lemma. 

Let LO = X0. Define subsequent Li's by Li = min(L0I" U< L) and L = 

max(Loj." U< L.2) for each i E w. So every Li is an antichain except for Lo, and 

every Li is finite. Since every chain is embeddable in Z, P = UiEZ L. 

Let K be a cutset of P. For each chain X C F, define g(X) in w {oo} by 

g(X) = sup{lc: 3C E C(X) such that C fl K ( U L) = ø}. 
—k<i<k 

So g(X) tells us how far we can extend X before hitting K. If g({ x}) is finite 

for every x E X0 then, since Xo is a finite cutset, there exists k = max{g({x}) 
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X E X0}, and K fl (U-k<<k L) is a finite cutset of P. So assume there is some 

Xo E X0, such that g({xo}) = 00, so xo 0 K. Clearly, g({ xo}) = sup{g({xo,xi}) 

X1 >- x0}, unless xo E maxP. Since UC(xo) is an antichain and thereforefinite, 

this tells us that if xo 0 max P, then there exists x1 '- xo such that g({xo,x1}) = 

00 so x1 0 K. Similarly, if xo 0 min P, then there exists x_1 -.< xo such that 

g({x_j,xo,xi}) = oo with x_1 0 K, and so on. So we have a chain ... -< x_2 -< 

X-1 -< x0 -.< x1 - x2 -< ... disjoint from K with the possible restriction that this 

chain terminates at a minimal or maximal element of P or both. Since every chain 

in P is embeddable in the integers, this chain must be maximal, and therefore 

must meet K, a contradiction. So K contains a finite cutset. 

Applying Corollary 3.2.5 to Theorem 3.6.2, we get: 

0 

Corollary 3.6.3 If P is an antichain-finite, cutset-straight poset in which every 

chain is embeddable in the chain Z, then P is fence-free. 0 

It is unknown whether the antichain-finite condition in Corollary 3.6.3 can be 

dropped: 

Question 3.6.4 Is every cutset-straight poset in which every chain is embeddable 

in the integers fence-free? 

3.7 Summarising the Known and the Unknown 

As mentioned earlier, the following question is not addressed in the literature, 

and this author has not been able to find an answer. 

Question 3.7.1 Is every well-founded, cutset-straight poset fence-free? 
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Another surprisingly slippery question is: 

Question 3.7.2 Is every antichain-finite, cutset-straight poset fence-free? 

In fact, as mentioned earlier, it is even unknown whether every cutset-straight 

poset of width 2 is fence-free. One might hope to get an easier question by com-

bining the last two. The following is also unknown. 

Question 3.7.3 Is every well-founded, antichain-finite, cutset-straight poset fence-

free? 

To summarise the posets we do know about, a cutset-straight poset is fence-free 

if it satisfies any of the following conditions, none of which implies either of the 

others. 

(i) every cutset contains a minimal cutset (Corollary 3.2.5) 

(ii) regular and well-founded (Corollary 3.5.4) 

(iii) every chain embeddable in w (Theorem 3.6.1) 

We could also put the following three conditions in this list, but they would be 

redundant since each of them implies (i). 

(iv) chain-finite (Corollary 3.2.8) 

(v) regular and antichain-finite (comments following Corollary 3.5.4) 

(vi) anti chain-finite and every chain embeddable in Z (Theorem 3.6.2) 

The only nicely-defined condition for which it is known that cutset-straight does 

not imply fence-free is sup-regular. 

As mentioned before, if a poset P has no minimal cutset, then P + F4 has no 

minimal cutset and so is cutset-straight, but it is not fence-free. Thus, a negative 
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answer to Question 3.7.4 or 3.7.5 implies a negative answer to the corresponding 

one of Question 3.6.4 or 3.7.2. 

Question 3.7.4 Does every poset in which every chain is embeddable in the integers 

have a minimal cutset? 

Question 3.7.5 Does every antichain-finite poset have a minimal cutset? 

Since the set of minimal elements of a well-founded poset is a minimal cutset, 

the issue addressed in Questions 3.7.4 and 3.7.5 is not an issue for the posets in 

Questions 3.7,1 and 3.7.3. 
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Chapter 4 

Partitions and Fibres 

"The footprints of delivery vans corrugated the slush." 
- Salman Rushdie, The Satanic Verses [1988] 

In this chapter we look at some of the research which has followed from a paper 

by Aigner and Andreae [AA86]. It is perhaps surprising how many interesting 

results have followed from the paper considering it was never published in a journal. 

The main point of the paper was a proof of a conjecture of Gallai which was 

communicated to Aigner and Andreae by Erd8s: Let G be a triangulated graph on 

n vertices without isolated points. Then there is a set of at most E vertices that 

meets all maximal cliques of G. 

In [AA86], Aigner and Andreae prove the following theorem. The reader does 

not need to know the meanings of all the terms mentioned in the theorem to discern 

the pattern that gives rise to a question. 

Theorem 4.1 A finite graph C with no isolated points contains a set of at most 

V(G)I vertices that meets all maximal cliques of C if C satisfies any of the following 

conditions: 

(i) C is a triangulated graph. 

(ii) C is the complement of a triangulated graph. 
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(iii) G is a bipartite graph. 

(iv)' G is the complement of a bipartite graph. 

(v) G is the line graph of a bipartite graph. 

(vi) G is the complement of the line graph of a bipartite graph. 

(vii) G is the comparability graph of a poset. ci 

The question which immediately leaps to mind is: What about the complement 

of the comparability graph of a poset? Aigner and Andreae left this as an open 

question. Call a point x in a poset P a splitting element if xJ = P. Then in terms 

of fibres, the question is: 

Question 4.2 Does every finite poset P with no splitting element have a fibre of 

size _<119 

Lonc and Rival [LR87] erroneously reported that Aigner and Andreae conjec-

tured in [AA86] that the answer to this question is yes. In fact, Aigner and Andreae 

expressed no opinion regarding the answer. But Lonc and Rival [LR87] made a 

conjecture even stronger than a positive answer to Question 4.2 [AA86]. Their 

conjecture was: For every ordered set P without any splitting element, there is a 

subset F such that both F and P\ F are fibres. Although this conjecture turned 

out to be false in general [DSSW91], Lonc and Rival described four cases in which 

it is true. One of these brings the following question to mind: 

Question 4.3 What is the least possible height of a finite poset P with no splitting 

element and no fibre F such that P'F is also a fibre? 

The relevant result of Lonc and Rival [LR87] shows that the answer is at least 

5, but we will not repeat the proof here since it is quite long. In [DSSW91], Duffus, 
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Sands, Sauer, and Woodrow presented Example 4.4, a 17-element poset in which 

every fibre has at least 9 elements. So Example 4.4 disproves the conjecture of 

Lonc and Rival and gives a negative answer to Question 4.2. Example 4.4 has 

height 7 and so the cases of heights 5 and 6 are left unanswered for Question 4.3. 

Example 4.4 [DSSW91] Let P be the poset whose Hasse diagram appears below. 

P has 17 elements but has no fibre with fewer than 9 elements. 

15 
14 

8 

12 

6 

10 

4 

13 

7 
9 
11 

5 

3 

Proof. Each of 11, 2}, {2,3}, {3,4}, ..., {16,17} is a maximal antichain. The 

only set with fewer than 9 elements that meets all of these maximal antichains is 

{2, 4, 6, 8, 10, 12, 14, 16}. So this 8-element set is the only candidate to be a fibre 

having fewer than 9 elements. But this set is not a fibre since it does not meet 

the maximal antichain {1, 9,171. Thus, every fibre of this poset has at least 9 

elements. Notice that {1, 3,5,7,. .. , 17} is a fibre having exactly 9 elements. 0 

This result led to the following question in {DSSW91}: 

Question 4.5 Let A be the smallest real number such that every finite poset P with 

no splitting element has a fibre of size at most AIPI. What is the exact value of AV 



89 

Example 4.4 shows that A ≥ .5294. Later on we will see a result of Duffus17  

Kierstead, and Trotter showing that A ≤ . But first we will examine an example 

by this author [M92], showing how to stack copies of Example 4.4 to demonstrate 

that A ≥ 

Example 4.6 Let n be a positive integer. Let F,,, = (i, j) 1 < i < n, 1 ≤ j ≤ 17} 

with each (i, 3) identified with (i - 1, 15) and each (i, 4) identified with (i - 1, 14). 

Let the ordering on P be the transitive closure of that induced by putting (i, j) < 

(i, j') in P whenever j j' in Example 4.4. Then F,,, has 15n + 2 elements, but 

has no fibre with fewer than 8n + 1 elements. 

Proof. P2 is shown below as an example of the construction. 

(2,14) 

(2,8) -' (2,13) ff 
(2,12) (2,7) 

(2,9) 
(2,6) ,, w ' (2,11) 

1 4  
(2,10) 2) (2,5) 

h6wa 1 

(2,4)=(1,14) (1,15)=(2,3) 

(1,8) 16) (1,13) 

(1,12) L  A  (1,7) 
(1,9) 

(1,6) gw% (1,11) 

(1,10) 4  (1,5) 

(1,4) 

(2,15) 

(1,3) 

For 1 ≤ i ≤ n, let Qj = {(i,j) j = 1,2,5,6,7,... ,17}. Let (0,15) be another 
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label for (1, 3) and (0,14) another label for (1, 4). Let Qo = {(0,14),(0,15)}. 

Then {Q 0 ≤ i < n} is a partition of P and each IQI = 15 except for I Q0  = 2. 

When referring to points in a particular Q, it will be convenient to refer to the 

points using only their second coordinates. Suppose F is a fibre of P. Since 

Qo is a maximal antichain of P, we know that IF fl Qol ≥ 1. Now suppose 

i E {1,...,n} and consider QflF. In Q, {1,2}, {5,6}, {6,7}, f7) 8}1 ..., {16,17} 

are maximal antichains of Q, and in fact are maximal antichains of P,- since 

ç (maxQj)1 U (minQ)j. Thus, F must include one of {1,2} and six of 

{5, 6, 7, . . . , 17}. So IFfl QI ≥ 7. If we could show that IFfl QI ≥ 8 then we would 

be done. In fact, it is not quite that simple. What we shall do instead is to show 

that if IFflQI <8 then IFnQjI = 7 and IFflQ_1I ≥ 9, unless i = 1 in which case 

we will get IFfl Q..iI = 2. Suppose IFfl Qj I <8. Since F includes one of {1,2} 

and at least six of {5, 6,. . . , 17}, the only way this can happen is if F contains 

exactly six of {5, 6,. . . , 17}. And since {5, 6}, {6, 7}, ..., {16, 17} are maximal 

antichains, these six points in F must be 6,8, 10, 12, 14, 16. And since {1, 9,17} is 

a maximal antichain, this means that 1 must be the point of {1, 2} which is in F. 

12,3} and 14,5} are maximal antichains and 2 and 5 are not in F. So 3,4 E F. 

That is, (i - 1,15), (i - 1,14) E F. If i = 1 then this shows that IF fl = 2 

as we wanted. So assume that i > 1. {(i - 1, 16), (i, 5)} is a maximal antichain 

and (i, 5) 0 F so (i - 1, 16) E F. {(i - 1, 13), (i, 2)} is a maximal antichain and 

(i, 2) 0 F so (i - 1, 13) E F. So far we have 13, 14, 15, 16 E Q-i fl F. Because of 

the maximal antichains {1, 2}, {5, 6}, {6, 7}, ..., {11, 12}, Q_1 fl F must include 

one of 1,2 and four of 5,6,... , 12. Thus, lQ-1 fl Ft ≥ 9, and we are done. That 

is, it is clear that IP,,I = 15n + 2 and we have shown that every fibre of P,, has at 
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least 8n + 1 points. 

Notice that {(i,j) : 1 ≤ i ≤ n, 1 < j 17,j odd} is a fibre of P, of size exactly 

8n+1. D 

Example 4.6 gives the best known lower bound for the value ). of Question 4.5, 

that bound being g• The best known upper bound of ) is . This result was 

achieved by Duffus, Kierstead, and Trotter [DKT91] using a coloring technique. 

They described a way to partition any finite poset with no splitting element into 

three color classes so that the union of any two of the classes is a fibre. Taking 

the two smallest color classes yields a fibre of size at most a the size of the whole 

poset. In infinite cases, such fractions are meaningless, but we can find interesting 

results about colorings. For any poset P, a good [G92] coloring is one such that 

P has no monochromatic maximal antichain with more than one element. In a 

poset with no splitting element, a good k-coloring is one such that the union of any 

k - 1 of the color classes is a fibre. (A splitting element comprises a one-element 

maximal antichain.) Goddard [092] determined a class of infinite posets to which 

the construction in [DKT91] may be applied: 

Theorem 4.7 Let P be a well-founded (finite or infinite) poset which contains an 

element x such that no maximal antichain of P is contained in xl. If P cannot be 

expressed as a linear sum of non-empty subsets, then P has a good 3-coloring. 

Proof. Notice that the hypothesis implies that P has no splitting element, 

and that JPJ> 1. 

Let x0 E P such that there is no maximal antichain of P contained in xol. 

Then we choose x1 > x2 > ... as follows until we choose some xi E min P. 
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Suppose xi has been chosen, x.1 has not, and xi 0 min P. Then we choose x 1 

as follows. First, notice that by the following there must be an element y < x 

such that P" (x4 U y) 0 0. Suppose for a contradiction that no such y exists. 

Then Pxj1 ç yj for every y < x. In fact, this means that Pxa c yT for every 
y <xi. Thus P = x1 (P"xI). This contradicts our hypothesis that P cannot 

be expressed as a linear sum of non-empty subsets. Therefore, there is some y <x 

such that F" (xI U y) 54 0. Choose x 1 to be a minimal such y. In this way we 

get a decreasing sequence xo> xi > x2> ... > x such that no maximal antichain 

is contained in xol and x, E min P. The sequence must reach x,-, E min P in a 

finite number of steps since P is well-founded. 

Next, we partition P into 3 color classes. Color a E P red if s is comparable 

to all the xi's. Denote the set of red points by R. If x E PR, then color x blue 

or green according as the least i such that x 11 xi is odd or even. 

Suppose A is a red maximal antichain. Then A V. xol. Since A is an antichain 
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and {x0, XI) .. . , x,} is a chain with x E minP, there exists i E f0,- .. ,n- 1} 

such that Xj1 < A < x. But now A cannot be a maximal antichain since 

Al = Al U Al c xj ' U x. We chose xi and x41 so that there are elements 

comparable to neither of them, so these elements will not be in Al. Therefore, 

there is no red maximal antichain. 

Let D be a set of blue points such that DX = P. For each b E D, there is a 

least i such that b 11 x. These i's cannot all be the same. Let b, c E D, and let i 

least such that b 11 xi and j least such that c 11 xj. We may assume that we chose 

b and c so that i <j. Since b and c are blue, i and j are both odd, so in fact we 

have i <j - 1. Our choice of j ensures that c < xj..4 ≤ x+i <xe. Since x 1 was 

chosen minimal having incomparable points in common with x, this tells us that 

there are no points incomparable to both c and x. Since b 11 x, b and c must be 

comparable. So D is not an antichain. Thus, there is no blue maximal antichain. 

The argument that there is no green maximal antichain is analogous to that 

for blue. 0 

Lemma 4.8 Let P = >.CEC P be a poset where C is a chain and each P has a 

good 3-coloring. Then so does P. 

Proof. For each P, choose a good 3-coloring using red, blue, and green. Then 

the 3-coloring induced on P is good. 0 

The following corollary is Duffus, Kierstead, and Trotter's result [DKT91J. 

Corollary 4.9 If P is a finite poset, them it has a good 3-coloring. 

Proof. Let E r .,EcPr, be the linear decomposition of P. By Lemma 4.8, it 

suffices to prove this corollary for each P. Let c E C. If P = 1, then any coloring 
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is a good 3-coloring. If P 1, then P has more than one maximal element, so 

any maximal element of P can stand for x so that Theorem 4.7 may be applied. 

0 

The next corollary is due to Goddard [G92]. 

Corollary 4.10 Every antichain-finite poset P has a good 3-coloring. 

Proof. Apply the compactness theorem and Corollary 4.9 to the following set 

of sentences S. For each a E P, let R, G, and Bx be truth-functional variables 

and put the following sentence in S: 

(Rv G 

R is to be interpreted as "x is red", and .B and G similarly for blue and green. 

Thus, any assignment of truth-functional values to all the Ri's, G's, and .B's 

which makes all the above sentences true corresponds to a 3-coloring of P. 

Also put the following sentence in S for every {x1, x2,... , x,} a maximal an-

tichain of F: 

& R 2 & ... & R) & -'(Gm, & G 2 & ... & Gx,) & '(Bai & B 2 & ... & B) 

This completes the description of S. 

Let V={R:xEP}U{G.:xEP}U{B :xEP}. There is an assignment of 

truth values to all the elements of V which makes all the sentences in S true if and 

only if there is a good 3-coloring of P. By the compactness theorem [Appendix A], 

there is an assignment of truth values to all the elements of V which makes all the 

sentences in S true if and only if the same is true for every finite subset of S and its 

associated variables. Let 5' be a finite subset of 5, and let V be the set of variables 
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appearing in sentences in S'. Let X be the set of points x E P such that R, .B, 

or G appears in S. (In fact, if one appears, they all do, but this is not important.) 

Consider X as a poset with the ordering induced by P. By Corollary 4.9, X has 

a good 3-coloring. With this coloring is associated an assignment of truth-values 

to the elements of V which makes all the sentences in 5' true. Therefore, by the 

compactness theorem, there is an assignment of truth-values to all the elements of 

V which makes every sentence in S true. This is equivalent to saying that P has 

a good 3-coloring. 0 

The proof above shows that a good 3-coloring exists, but it does not give one 

any sort of image of how the coloring looks. We now present a more constructive 

proof of Corollary 4.10. This proof involves picking maximal chains. According 

to Woodrow, the necessity of using Zorn's Lemma to be sure that maximal chains 

exist disqualifies this step from being considered constructive, but he claims that 

it is "not too terribly sinful, either". If one agrees with this assessment, it seems 

the fcillowing proof is about as close to being constructive as one could hope for. 

Proof. By Lemma 4.8, we may assume that P is not linearly decomposable. 

Let Co be a singleton subset of P. Define sequences of Cc's, Xa's, and Y's 

indexed by ordinals > 1 as follows. Let 

X ={xEP:x >C  for every 8<a}, 

Y ='I , E X y.1. fl x,,, contains no maximal antichain of P}, and 

C a chain maximal in Y. 

Apply these definitions by transfinite induction until X = 0. Notice that X1 = 

Xc, for every Xc,. In other words (for those who like such words) Xc, is an up-set 
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or a dual order ideal. Notice that whenever Ya 0 and ,8 > a, we get Xp C 

and Op> C. We should verify that Ya 54 0 whenever 0. Suppose a is an 

ordinal such that Xa is not empty but Y is. Let a E X0, and b E PXc. Since 

a 0 Y, there is a maximal antichain A of P contained in aj. fl Xa. Then b E At. 

Since b 0 Xa, we cannot have b E Al. So b E Al. Since A C al, this tells us 

that a> b. So P = (P\X) & X. This contradicts our assumption that P is not 

linearly decomposable, and so Y,, 0 0 whenever X 0. So for each Xc, 0, we 

also have Cc, 0 0. And the Cc,'s are disjoint since each Cc, X. and each Xc, 

is defined to be disjoint from all previous Cc,'s. Therefore, we will eventually get 

= 0 for some ordinal a such that I a I < I P1. 

Before trusting the following diagram, we should verify that the Yc,'s are dis-

joint. Suppose Y E Yc, and 9 < a. Then y E Xc,, so y> C. Thus, Cp U {y} is a 

chain strictly containing C,3 which is a chain maximal in Y,3, so y Y,3. Therefore, 

Yc,flY13O. 
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Next, define sequences dual to these according to the following. Let CO'= Co, 

X={xEP:x<C  for every /3<al, 

= {y E X 1 fl x,,,,  no maximal antichain of P}, and 

C,111 a chain maximal in 1'. 

Apply these definitions by transfinite induction until X = 0. 

For each a for which X is defined, let R,, = X fl Cc4, and for each a for 

which X is defined, let R = X fl C1. Let R0 = = Co = C. Notice that 

whenever /3 > a, Rp > Ro, and R' < R. Let R = (U R) U (U R). For 

each ordinal a 54 0, let Q = X o, (R U X 1) and let Q = X (R U X 1). Let 

Qo = Q'0 = PCot. Notice that {Q : 0} U {Q : 0} is a partition of 

PR. 

Any ordinal has a unique representation a + lc where a is a limit ordinal or 0 

and k is a finite ordinal. Call a + k even or odd according as k is even or odd in the 

usual sense. Let B = (Ua even Q0) U (Uoe even Q), C = (Uci oddQa) U (Ua odd Q). 

Color the elements of R red, B blue, and C green. 
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Is there a red maximal antichain? Suppose A is a red antichain. Then, clearly 

A C R or A C R'c, for some a. Assume without loss of generality that A C R 

for some a. That is, A C Xc fl CJ. Say A - {ai, a2,. . . , ak}. For each a E A, let 

ci E C such that a< ci. Then let c=max{c :i = 1,...,k}. So  E Ca 9 Ya. So 

A C Xc, fl ci cannot be a maximal antichain. Therefore, there is no red maximal 

antichain. 

Is there a blue maximal antichain? First, we show that any antichain contained 

in the Qc,'s and Q,'s must be contained in two consecutive such sets. Since all the 

Qc,'s other than Qo = are contained in CoT and all the Q' 's other than Q'o = Qo 
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are contained in Col, we know that any antichain contained in (U Qa) U (Ua Q) 

must, in fact, be contained in u Q or W Q. We will consider the Ua Qa case, 
the other is dual. Let a E Q1 and b E Q6 where 3 > a + 1. b E Qg C X,6 C X 1. 

b E Xp implies b > Ca+i. Since C 1 is a maximal chain of Ya+i, this tells us 

that b Ya+i. So b E X 1'Y 1. Therefore, by the definition of Ya i, there 

exists A C bl fl x,,,+, such that A is maximal antichain of P. a E P = A. 

Al C X.1j' = Xa+i, so a 0 Al. So a E Al C bi. That is, a < b. So any antichain 

contained in (Ua Qa) U (Ua Q) must, in fact, be contained in two consecutive Qa's 

or Q's. This information allows us to improve the accuracy of the diagram. 

Since any two consecutive Qa's or Q's have different colors, we can prove that 
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there is no monochromatic maximal antichain by showing that there is no maximal 

antichain contained in any single Q or Q. Suppose A is a maximal antichain 

contained in some Q. The case where a maximal antichain is contained in some 

Q is dual, so it suffices to prove only the case just described. Obviously a 0 0 

since Co 0 Qol. Since A C Q C X1, we know that U<a Cp <A. Also, Ca C Al 

but c,, fl Al must be empty since A C Xa and C4 fl X, c R. So Ca C Al. Since 

A is finite and U<a Cçi is a chain contained in Al, there exists a E A such that 

U<,,, Cp < a. But then a E X 1, a contradiction. So no maximal antichain is 

contained in a single Q. So there is no blue or green maximal antichain. 0 

In [G92], Goddard presented several results about good colorings, but we will 

not mention any more of them here. A question he was unable to answer is the 

following: 

Question 4.11 Does every poset have a good '-coloring? 

In fact, it is even unknown whether there is a poset which has no good finite-

coloring, and this seems to be quite a difficult point to resolve. Superficially, 

Lemma 2.3.2 seems to indicate that products are unlikely to make useful examples 

of posets requiring many colors for a good coloring. This is because if P has no 

splitting element and P and Q satisfy the hypothesis of Lmma 2.3.2 (Q has a 

maximal element and P is well-founded), then it is easy to see by Lemma 2.3.2 

that any good coloring of P provides a good coloring of P x Q by coloring each 

(p, q) in P x Q with the color of p in P. Thus, P x Q requires no more colors 

for a good coloring than P does. However, any posets satisfying the hypothesis of 

Lemma 2.3.2 are probably not posets one would try to use to resolve this issue. 
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So I suspect that this observation will be irrelevant to any reasonable attempt to 

resolve this issue. 

Another antichain- coloring result is: Every poset has a 2-coloring so that every 

2-element maximal antichain is 2-colored. This result is due to Duffus, Sands, 

Sauer, and Woodrow [DSSW91]. One might wonder whether the 2's in this state-

ment could be replaced by any natural number k. An unpublished example by 

Sands shows that this is not possible for k ≥ 3. The example for k = 3 is the 

8-element crown. For larger values of k, add k - 3 isolated points to the 8-element 

crown. 

. . . 

The other open question in [AA86] pushes the boundary of relevance to this 

thesis. However, I think it is worth mentioning, since the only journal article to 

make relevant comments made apparently contradictory comments which might 

leave a reader wondering whether there is any point looking at the question. We' 

need a couple of definitions for this question. The chromatic number of a graph G 

is the least number k so that the vertices of the graph can be k-colored so that no 

edge connects two vertices of the same color. A perfect graph is one in which every 

induced subgraph has its chromatic number equal to the size of its largest clique. 

Question 4.12 Suppose G is a perfect graph with no isolated points and T is a 

minimum-sized transversal of G. What is the greatest possible value of ITI I)I? 

In [LR87], Lonc and Rival say: "As every connected comparability graph [with 

n vertices] is perfect it contains a subset of at most R vertices which meets every 

maximal clique". This statement seems implicitly to contradict something they 
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say three sentences earlier: "... not every perfect graph [with n vertices] has a 

subset of at most 2 vertices which meets every maximal clique." Can a minimum-

sized transversal of a finite perfect graph include more than half the vertices? The 

following example in [AA86] shows that the answer is yes. 

The graph above has only one 3-element clique and a 3-coloring is indicated 

which does not give the same color to any adjacent vertices. Thus any induced 

subgraph which contains the 3-element clique has chromatic number 3. And any 

induced subgraph which does not contain the 3-element clique is bipartite and 

so has chromatic number equal to the size of the largest clique. So the graph is 

perfect. However, we will now show that the graph has no transversal of fewer 

than 5 elements. Let T be a transversal of the graph. T must include one of 

the vertices of the triangle in the center of the diagram - assume without loss of 

generality that it includes the one marked with a hollow circle. T must also include 

one of the vertices in the edge most distant in the diagram from the vertex just 

mentioned - assume without loss of generality that T includes the other point 

marked with a hollow circle. Now the edges marked with double lines indicate 

three maximal cliques having no elements in common with each other or with the 

two points marked with hollow circles. Thus every transversal of this graph has at 

least 5 vertices. 
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Chapter 5 

Cutsets for Elements 

"... it is very easy to be blinded to the essential uselessness of them by 
the sense of achievement you get from getting them to work at all." 

- Douglas Adams, So Long, And Thanks For All The Fish [1984] 

In this chapter we look at some results concerning cutsets for elements. This 

author has not found cutsets for elements a particularly exciting concept, but 

because of their popularity with other authors, they warrant some discussion here. 

If P is a poset and x E P, then we say that K is a cutset for x if K C P -, xT and 

K U {x} is a cutset of P. We say that a poset P has the n-cutset property if for 

every x E F, there is some K C P which is a cutset for x and JKJ ≤ n. We say 

that a poset P has the finite-cutset property if for every x E F, there is a cutset 

for x which is finite. (In [LR87], Lonc and Rival accidentally omitted the word 

"finite" from their definition of the finite-cutset property.) 

These concepts were first discussed by Bell and Ginsburg [BG84] who related 

them to a topology. For any poset F, let M(P) be the set of maximal chains of 

F, and recall that for any x E F, C(x) is the set of maximal chains which include 

x. Impose on M(P) the topology with subbase {C(x) : x E P}. 

Theorem 5.1 [BG84] For any poset F, the following are equivalent: 
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(i) Every cutset of P contains a finite cutset of P. 

(ii) P has the finite-cutset property. 

(iii) M(P) is compact. 0 

Actually, Bell and Ginsburg proved the analogous theorem for graphs, getting 

Theorem 5.1 as an immediate corollary by way of comparability graphs. They also 

showed that for chain-complete posets, the following characterisation can be added 

to the theorem, where the interval [x, y] is the subposet xl fl y.j.. 

(iv) P is special and for all x ≤ y in P, there is a finite cutset of [x, y]. 

Part of this result applies to posets in general, regardless of whether they are 

chain-complete: 

Theorem 5.2 Every poset with the finite-cutset property is special. 0 

El-Zahar and Zaguia mentioned Theorem 5.2 in the introduction to their survey 

paper [EZ86], but when they stated it in the main body of the paper [EZ86, 

Proposition 2.4], they added the unnecessary condition that the poset be chain-

complete. 

Aharoni, Brochet, and Pouzet [ABP88] related the finite-cutset property to an 

adaptation of the Menger property for graphs. For P any poset, define 

cut (P) = min{IKI : K is a cutset of P}, and 

disj(P) = sup{C : C is a set of pairwise disjoint maximal chains of P}. 

Call P Mengerif disj(P) = cut(P), and finitely Mengerif these numbers are equal 

and finite. The most popular way of stating Menger's Theorem is: If V1 and V2 are 
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disjoint sets of vertices in a finite graph G, and k is the size of the smallest subset 

of V(G) (V1 U V2) which meets every path beginning in V1 and ending in V2, then 

there are k paths from V1 to V2 which do not meet pairwise except in V1 U V2. Most 

authors cite [M27] as the source of this theorem, but the formulation in [M27] is 

in the context of one-dimensional spaces. This author prefers the graph-theoretic 

description given by König [K36], but those who do not read German will probably 

not have a preference. Menger's Theorem tells us that any finite poset P is Menger 

by applying the theorem to the graph whose vertices are the points of 1 P 1 

and in which (x, y) is an edge if and only if x - y or y -< x. Apply the theorem 

with V1 the singleton set containing just the maximal element and V2 the singleton 

set containing just the minimal element. 

Aharoni, Brochet, and Pouzet [ABP88] showed that: 

Theorem 5.3 If P is a poset with the finite-cutset property, then P is finitely 

Menger. D 

Another Menger result was proved by Li [L89]: 

Theorem 5.4 If P is chain-complete and special, then P is Menger. 0 

The next two theorems concern situations where disj(P) = cut(P) = 1. The 

results bear some intuitive resemblance to the one-dimensional version of Helly's 

Theorem: If {K} is a finite set of intervals in R such that no two are disjoint, 

thenni K 0 [CFG91]. The following results were proved by Sands (unpublished) 

and Brochet and Pouzet [BP88], respectively., 

Theorem 5.5 If a poset P is chain-complete and no two maximal chains of P are 
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disjoint, then flM(P) 54 0. 0 

Theorem 5.6 If a poset P has finite width and no two maximal chains of P are 

disjoint, then flM(P) o 0. 0 

In [K88], Kierstead proved a related result for intersections of maximal chains 

with arbitrary subsets. 

Nobody seems to have addressed the issue of whether the finite-width condition 

in Theorem 5.6 can be weakened to antichain-.finite, but we do know that the finite-

width condition cannot be dropped altogether, as this example shows: 

In [N86], Nowakowski found the smallest cutsets for elements of Boolean lat-

tices. In almost all cases, the smallest cutset for an element x in a Boolean lattice 

is{yEP"xl:y -.<z for some zExl} or, dually, {yEP\xl:y>.-z for some zE 

x1}. Griggs and Kleitman [GK89] gave a different proof of the same result. At 

the other extreme, Fiiredi, Griggs, and Kleitman [FGK89] found minimal cutsets 

of Boolean lattices whose size as a fraction of the lattice's size approaches 1 as the 

lattice's size goes to infinity. The issue of finding bounds on the size of minimal 

fibres of Boolean lattices was mentioned by Lonc & Rival in [LR87] and Duffus, 

Sands, & Winkler in [DSW91], but neither of these papers has a complete solution. 

Ginsburg, Rival, and Sands [GRS86] showed that if a chain-finite poset has 

the finite-cutset property, then it must be finite: Lonc and Rival [LR87] defined 
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analogous properties for transversals and fibres and proved related results. Say that 

a graph G has the finite-transversal property if for every x E V(G), there is some 

finite T C V(G) such that {a} U T is a transversal and there is no (x, y) E E(G) 

where y E T. A poset P has the finite-fibre property if for every x E F, there is 

some finite F C P\xt such that {x} U F is a fibre. Lonc and Rival showed: 

Theorem 5.7 If G is a graph in which every clique is finite and G has the finite-

transversal property, then G is finite. 0 

Lonc and Rival observed that applying this result to the comparability graph 

of a poset yields the aforementioned result of Ginsburg, Rival, and Sands, and 

applying it to the complement of the comparability graph of a poset shows that if 

a poset has the finite-fibre property and every antichain is finite, then the poset is 

finite. This is the only mention of the finite-fibre property in the literature. The 

n-fibre property appears nowhere in the literature in spite of the popularity of the 

n-cutset property which has been mentioned in at least nine articles. 

It is clear that a poset has the 0-cutset property if and only if it is a chain. 

A poset with the 1-cutset property has width 1 or 2. Ginsburg [G] calls this fact 

"well-known and often rediscovered". Interesting results regarding the n-cutset 

property begin at n = 2. 

In [G86b], Ginsburg describes a simple configuration which he calls a ladder, 

and shows that a poset P with the 2-cutset property must contain a ladder of 

height. L(width(P) - 3)] + 1. 

The first result to say something about the n-cutset property for arbitrary finite 

n was proven by Ginsburg [G87]. He showed that if P has the n-cutset property, 
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where n is any natural number, then I max Pi ≤ 2. Later, Arpin and Ginsburg 

[AG91] improved this result by weakening the hypothesis: 

Theorem 5.8 Let P be a poset and n E N such that for every x E max P, there 

is a cutset K for x satisfying IKI ≤ n. Then I max PI ≤ 2. 0 

Two similar results in the same paper are: 

Theorem 5.9 Let n E N and P a poset with the n-cutset property satisfying 

I max  = 2Th. Then P contains a complete binary tree T of height n such that 

max T= max P. 0 

Theorem 5.10 Let P be a poset with the 0-cutoet property satisfying I max P = 

2°. Then P contains a complete binary tree of height w. 0 

Other questions have been posed concerning the n-cutset property for arbitrary 

n but answered in only a few cases. For one of these questions, the few cases that 

have been answered are the only interesting ones. Sauer and Woodrow [SW84] 

addressed the question: For n a natural number, what is the least m such that for 

every poset P with the n-cutset property, every x E P is contained in a maximal 

antichain of < m points? They showed that for n = 0, m = 1; for n = 1, 

m = 2; for n = 2, m = 4; and for n = 3, m Call a poset P conditionally 

chain-complete if every bounded chain has a supremum and an infimum. Sauer 

and Woodrow [SW84] showed that if a conditionally chain-complete poset P has 

the finite-cutset property, then every finite antichain of P is contained in a finite 

maximal antichain. 

A similar question is: What is the maximum possible width of a poset P with the 
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n-cutset property Sauer and Woodrow [SW84] provide the following best possible 

answers: for n = 0, width(P) = 1; for n = 1, width(P) ≤ 2; and for n = 2, 

no bound exists. Kezdy, Markert, and West [KMW9O] examined the question of 

approximating the maximum possible width of a poset for finite fixed n-cutset 

property and height. Hajnal and Sauer [HS93] addressed the same question for 

infinite fixed K-cutset property and height. An early result was proved by El-Zahar 

& Zaguia [EZ86] and Ginsburg, Sands, & West [GSW89] using different methods: 

Theorem 5.11 width(P) ≤ height(P) + 2 for any poset P with the 2-cutset prop-

erty. 0 

The dimension of a poset cannot exceed its width if its width is finite. We 

will use this fact in the next paragraph, but first we will say something about 

the difficulty of attributing it. This fact is stated without proof in [D50] (in a 

footnote!), which causes this author to question the judgement of Trotter who 

listed only [D50] as a reference when he stated and proved this fact in [T92]. Also, 

this seems to indicate some change of opinion since Trotter and Kelly listed only 

Hiraguchi's [H55] as a reference when they stated and proved this fact in [KT82]. 

The rest of the literature is also divided between attribution to [H55] and [D50]. 

I cannot say which attribution is more appropriate since I have not seen [1155] 

and its description in Mathematical Reviews does not specifically mention this 

result. Furthermore, many authors have not bothered to explicitly mention the 

finite width condition, without which the statement is false; Nation, Pickering, and 

Schmerl have shown that a poset with no infinite antichains may have arbitrarily 

large infinite dimension [NPS88]. 
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Ginsburg [G] addressed a simple question without a simple answer: If n E N 

and P is a poset with the n-cutset property, then what is the maximal possible 

dimension of P? For n = 0, the answer is trivially 1. For n = 1, the answer is 

2 as is easily verified using the knowledge that posets with the 1-cutset property 

all have width less than 3, and posets of dimension 3 all have width at least 3. 

The first interesting case is n = 2, for which Ginsburg shows that the answer is no 

more than 41 and says that this result "can undoubtedly be improved". In fact, 

the greatest dimension for which a poset with the 2-cutset property is known to 

exist is 4. 

In [G89], Ginsburg characterises by means of forbidden configurations the finite 

posets which can be embedded in posets with the 1-cutset property. A shorter 

version of the proof is provided by Rutkowski [Ru92]. 

Say that a poset P has the chain-cvtset property if for every x E F, there is a 

cutset for x which is a chain. Ginsburg, Rival, and Sands [GRS86] ask: What is the 

maximum possible width (if any exists) of a poset with the chain-cutset property? 

It is known only that the answer is at least 4, as demonstrated by examples in 

[GRS86] (on the left) and El-Zahar and Zaguia's [EZ86] (on the right). 

In his Ph.D. dissertation [Z85], Zaguia showed that the answer to this question 

restricted to lattices is 2. 
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Appendix A 

The Compactness Theorem 

The compactness theorem is used twice in the thesis. Even though anyone 

likely to read this thesis probably already knows the compactness theorem, I think 

the following proof is worthy of being included in this thesis since it is both correct 

and comprehensible, and this is more than I can say of any of the proofs I read in 

the literature. 

We will not subject ourselves to the tedium of .a rigorous description of sen-

tential logic. We will just point out, although it probably is already clear, that 

the sentences referred to in the theorem have no quantifiers, only truth-functional 

variables and the usual unary and binary truth-functional operators. 

For any set S of sentences, let V(S) be the set of truth-functional variables 

appearing in the sentences in S. Call S satisfiable if there is an assignment of 

truth-functional values to the elements of V(S) making all elements of S evaluate 

to true. Call S finitely satisfiable if every finite subset of S is satisfiable. 

Theorem (The Compactness Theorem) 

Let S be any set of sentences. S is satisfiable if and only if  is finitely satis-

fiable. 

Proof. The theorem is obvious when S is finite, so assume S is infinite. The 

"only if" part is obvious in any case, so we will prove only the "if" part. 

Let r. = V(S)I. Let f —* V(S) be one-to-one and onto. For each a E , 

write v for f(a). So V(S) = {Vc, : a < ic}. Define two increasing (with respect 



119 

to ) sequences of finitely satisfiable sets of sentences by transfinite induction as 

follows. Let 5o = S. For each a < ic such that a 0 0, let Sa = U,3<a 7. For 

each a E Ic, put 2; = Sa U "v " if S U "va" is finitely satisfiable, otherwise put 

Te, = Sa U " 'va " . I claim that, in fact, all the Ta's and SaS are finitely satisfiable. 

If there is any a E ic such that Ta is not finitely satisfiable, then Sa = 2; is not 

finitely satisfiable. Thus, to show that all the Sa's and 2;'s are finitely satisfiable, 

it suffices just to show that all the Sa's are finitely satisfiable. Suppose for a 

contradiction that there is some a < ic such that Sa is not finitely satisfiable. 

We may assume that a is least so that Sa is not finitely satisfiable. Let A be a 

finite subset of Sa which is not satisfiable. Then there exists ff3 < a such that 

A C 23. So 23 is not finitely satisfiable, but S3 is, so "va" , "'v,3" 0 S,. Since T,3 

is not finitely satisfiable, neither 8,3 U {" v,3" } nor 8,3 U {" 'v13" } is. Let 13 and C 

be finite unsatisfiable subsets of 5,3 U { "v,3" } and S,3 U { "'v,3" } respectively. Since 

5,3 is finitely satisfiable, we know that "vp" E 23 and " 'v,3" E C. Furthermore, we 

know that V,3 E V(t3 { "vp" }) and every assignment of truth-functional values to 

the elements of V(23"{"vp"}) that makes every sentence in 5\{"v,3"} true assigns 

v0 false. Similarly, V,6 E V(C\ { "'va" }) and every assignment of truth-functional 

values to the elements of V(C\ {" 'v,3 " }) that makes every sentence in C' {"vp" } 

true assigns V13 true. But then (13' "v,3") U (C" " 'vp" ) is a finite subset of Sp 

such that there is no assignment of truth-functional values to the elements of 

V((5\ "v,3") U (C\ "'vp")) making all the sentences in S,3 true. So S,6 is not finitely 

satisfiable, a contradiction. So all the SaS are finitely satisfiable. In particular, S, 

is finitely satisfiable. 

For each a < ic, let S(Va) be either "Va " or " 'Va " , whichever of these is in 
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S,. For each a < i, assign v the value true or false according as S(va) is "va" or 

"'va". Does this assignment of truth-values make every sentence in SK evaluate 

to true? Let A E S,ç. Let A = {A} U {S(v) : v E V({ A})}. A is a finite subset 

of S,, so there is a way to assign truth-values to the elements of V(A) so that all 

the sentences in A evaluate to true. Obviously, this assignment is the one which 

coincides with the one we have chosen for all of V(Sk). So this assignment does 

make A evaluate to true. That is, the assignment makes every sentence in S,ç true. 

So it makes every sentence in $ true. 

Q(uite) E(asily) D(one). (Not really.)D 



121 

Appendix B 

permission from Peter Gibson to use joint research 

To whom it may concern: 

Most of the results in Chapter 2 of Roy Maitby's Master's thesis (results which 

are concerned with posets in which every cutset meets every fibre) are from joint 

research undertaken by me (Peter Gibson) and Roy Maltby during the summer of 

1990, except for the theorem concerning posets of the form (K1,1)" X K,m X K1, 

and the theorem concerning posets of the form K1,1 x Ki,m x K1, which are more 

recent results obtained by Roy Maltby alone. Roy Maltby has my permission to 

use results from our joint research in his Master's thesis. 

Peter Gibson 

LAL 
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Index 

antichain (maximal) 
anti chain-finite 

Boolean lattice 

GAG 
cardinal sum 
chain (maximal) 
chain-antichain-complete 
chain-complete 
chain-cutset property 
chain-finite 
chromatic number 
clique (maximal) 
comparability graph 
complement graph 
conditionally chain-complete 
cover 
crown 
cutset (minimal) 
cutset for x 
n-cutset property 
cutset-straight 
cycle 

dimension 
direct product 
disjoint sum 
distance (reduced) 
distributive lattice 

e-embedded 
endpoint 
exponent 

fence 
fence (has a) 

7 
10 
2 
7 

4,15 
110 
4 

101 
4 
5 
5 

108 

34 
3 

103 
103 
46 
34 

54 
14 
10 
35 
33 

2 fence-free• 
4 fibre (minimal) 

finite-cutset property 
31 finite-fibre property 

finite-transversal property 
4-fence 
fibre-straight 

good coloring 
graph 

height 
hockey 

independent 
infimum 

lexicographic sum 
linearly decomposable 
linear sum 

maximal element 
Menger (finitely) 
minimal element 

N 
N-free 

order-preserving 
ordinal sum 

6 
3 

103 
107 
107 
6 

46 

91 
4 

4 
7,9 

5 
4,15 

10 
2 

10 

3 
104 
3 

6 

31 
10 

35 P3 6 
34 P3-free 6 
31 partially ordered set 1 

perfect graph 101 
34 poset 1 
6 product 14 
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realiser 54 
regular 67 

satisfiable (finitely) 118 
series-parallel 13 
special 75 
special infimum 75 
special supremum 75 
splitting element 87 
sup-regular 77 
supremum 4,14 

totally ordered set 
transversal (minimal) 4 

5 

well-founded 4 
width 4 

zigzag 34 
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No animals were harmed in the typing of this thesis. 
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Have a nice day. 


