THE UNIVERSITY OF CALGARY

Multiuser Detection and Channel Estimation for
Synchronous CDMA Systems
by

Mohsen Hosseinian

A DISSERTATION
SUBMITTED TO THE FACULTY OF GRADUATE STUDIES
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE
DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

CALGARY, ALBERTA
FEBRUARY, 1999

© Mohsen Hosseinian 1999



L |

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Bibliothéque nationale
du Canada

Acquisitions et
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
Our file Notre réfdrence
The au.thor‘ has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.
The author retains ownership of the L’auteur conserve la propriété du

cop}fright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it  Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canadi

0-612-38474-8



Abstract

In a code-division multiple-access (CDMA) system, several users transmit simul-
taneously over a common channel. Several different multiuser detectors for CDMA
systems have been suggested by researchers. In this dissertation the most celebrated
multiuser detectors are studied in terms of the bit-error-rate (BER) and the com-
putational complexity. We also propose a multiuser detection scheme, namely the
two-level threshold detection, for coherent demodulation in a synchronous CDMA
system. The proposed method has a computational complexity that is linear in the
number of users, and exhibits a performance that is close to that of the optimum
detector whose complexity grows exponentially with the number of users.

Also a decorrelating-type detector is considered for multiuser detection in fre-
quency selective synchronous CDMA channels. This detector operates on the out-
puts of matched filters which are matched to the original spreading codes of the
system. A maximum likelihood estimation (MLE) to estimate parameters of the
decorrelating-type filter is proposed and derived. The estimation method is based
on inserting known training sequences into the information data by all users simulta-
neously. To achieve minimum mean-square-error (MMSE) in estimation, a criterion
for selecting the training sequences is suggested. Orthogonal training sequences will
be good candidates to approach MMSE. The estimation method requires a matrix
inversion at the end of each training period. An iterative matrix inversion algorithm
is introduced to distribute the computational load of the matrix inversion over the
training period. The simulation results exhibit BER floor, which is due to the pres-
ence of intersymbol interference (ISI). The performance of the detector depends on

the channel rms delay spread.



In order to cancel the existing ISI, a decorrelating-type decision-feedback de-
tector is proposed. This detector consists of two filters: a forward filter to cancel
the interchannel interference (ICI) and a feedback filter to cancel ISI. The MLE
estimates of the coefficients of these two filters is proposed and derived. MMSE
sequences are also obtained. The simulation results show no BER floor. The per-

formance of the detector does not depend severely on the channel rms delay spread.
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Chapter 1

Introduction

Over the last decade the interest in wireless communications has dramatically in-
creased. Existing forms of wireless communications: cellular mobile telephones,
wireless networks, cordless phones and radio pagers, continue to experience an ex-
plosive growth, showing a large increase in the number of users. Capacity, radio
spectrum utilization efficiency and service quality are of primary concern, but also
other factors have to be considered for wireless communication. An important is-
sue is the complexity of the technology which will affect cost, power consumption,
and complexity of the control functions required for proper network operation [3].
Digital modulation, detection and multiple access techniques are essential compo-
nents in the design of any communication system. During the last decade, many
known techniques have been analyzed and re-evaluated for mobile communications.
Spread-spectrum communication is a well-known technique which has found a place
in cellular mobile systems. In particular, direct-sequence code-division multiple-
access (DS-CDMA) systems have attracted much interest. A variety of new tech-
niques have also been investigated. The work in this dissertation concentrates on

issues relating to multiuser modulation and detection schemes. The terminology



Introduction

multiuser detection refers to techniques which detect the transmitted information
of several users jointly. Multiuser modulation refers to multiple access schemes. The

research work underlying this dissertation aims at achieving the following goals:

1. to study the most actively researched multiuser detectors, which have been
proposed by researchers recently, and to compare their performances in terms

of bit-error-rate and computational complexity.

2. to develop a low complexity multiuser detection structure that can achieve

near-optimum performance for all users.

3. to design a channel estimation scheme that is simple and does not require

extensive computational load.

CDMA has been widely applied in military communications. The original moti-
vation for spread-spectrum systems was both to conceal transmission and to combat
intentional jamming [4]. In commercial mobile communications, CDMA systems
have many benefits such as interference suppression, a higher spectrum reuse fac-
tor, soft capacity, soft hand-over, wideband multipath diversity, and voice activity
utilization [5]. For these reasons, CDMA has attracted much attention recently.
One of the current second-generation cellular communications systems, IS-95, is
based on narrowband DS-CDMA technology [5]. The most promising candidate for
the new third-generation mobile communications systems, called International Mo-
bile Telecommunications-2000 (IMT-2000), is wideband CDMA (W-CDMA) [6-10].
Recently the European Telecommunications Standards Institute (ETSI) decided to
adopt W-CDMA technology for frequency-division duplex (FDD) bands [11]. In
Japan, the Association of Radio Industries and Businesses (ARIB), the standard-

ization body of the radio sector, is now developing a W-CDMA air interface stan-
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dard [12].

In this dissertation the focus is mainly on DS-CDMA systems. The performance
evaluation of CDMA systems is a complicated task, even on Gaussian channels [13].
CDMA systems have many benefits [5]. However, DS-CDMA systems with single-
user detection suffer two major drawbacks: the near-far problem and an interference
limitation on network capacity. The near-far problem is a situation in which users
near the receiver are received at higher powers than those far away, and those further
away suffer a degradation in performance, i.e. bit-error-rate. A single-user detector
for each user consists of a matched filter and a decision device. Since the output of
each matched filter contains a spurious component which is linear in the amplitude
of each of the interfering users, the strongest user often severely interferes with the
other users. Consequently, the bit-error-rate and the anti-jamming capability of the
weakest user are degraded substantially. Thus, in order to maintain an acceptable
level of bit-error-rate for all users, DS-CDMA often requires a strict control of
the transmitter power for each user, which is often very difficult to realize. The
interference limitation refers to the fact that the number of simultaneous users is
limited to approximately 10% of the processing gain, even for the case of perfect
power control [5]. These drawbacks, caused by the fact that single-user detection
treats multiuser interference as noise, severely impair the performance of the CDMA
system. It is not surprising that DS-CDMA does not provide a significantly higher
spectrum utilization efficiency than TDMA [14].

The drawbacks of single-user detection have initiated recent interests into more
sophisticated receiver structures such as multiuser joint detection, in which the mul-
tiuser interference is treated as a part of the information rather than noise. The

work of Verdid [15-18] has shown that an optimum maximum likelihood multiuser
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detector can achieve optimum near-far resistance and a significant performance im-
provement over the conventional (single-user) detector. The improvement, however,
is obtained at the expense of a dramatic increase in computational complexity, which
grows exponentially with the number of users. Thus, when the number of users
is large, the optimum detector becomes infeasible. Many suboptimum multiuser
detectors have been proposed [17,19-25]. Some of them can approach optimum bit-
error-rate performance for the weakest user [19-21]. Some achieve near optimum
performance for all users at the expense of more computational complexity [25]. In
this dissertation, a suboptimum linear complexity detector is proposed, which can
achieve near-optimum performance.

Multiuser detection can significantly improve the spectrum utilization efficiency
and the performance of CDMA systems. The number of users jointly decoded in DS-
CDMA systems could be very large, since each user occupies the entire bandwidth
and is thus fully overlapped with all other users. Multiuser detection may then only
be feasible at the base station. In general, it is easier to apply Multiuser detection
into a system with short spreading codes since cross-correlation does not change
every symbol as with long spreading codes. Due to implementation issues multiuser
detection, at least currently, is not considered for W-CDMA downlink systems [10].
The dissertation is organized as follows.

Chapter 2 focuses on the multiuser detection in additive white Gaussian noise
(AWGN) channels. Previous work on multiuser detection in the literature is pre-
sented. The significance of the multiuser detection and its advantages are pointed
out. Six different multiuser detection schemes are studied and compared in terms
of bit-error-rate and computational complexity. On one hand, the conventional de-

tector is vulnerable to the near-far problem. On the other hand the computational
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complexity of the optimum detector is so high that it is infeasible, at least with
existing technology. Four other suboptimum multiuser detectors are studied. The
computational complexity of these detectors is linear in terms of the number of
users, while their performances are near-optimum. In an AWGN channel, provided
that a set of spreading codes with good cross-correlation properties is used, all sub-
optimum multiuser detection schemes yield satisfactory bit-error-rate performances.

In Chapter 3 a new suboptimum multiuser detector, namely the two-level thresh-
old detector, is introduced. Previous work in the area is summarized and the contri-
bution of this present work is emphasized. In this work we develop and investigate
the two-level threshold detector, whose complexity is linear in the number of users.
The bit-error-rate performance of this detector is close to that of the optimum de-
tector whose complexity grows exponentially with respect to the number of users.
The two-level threshold detector uses a decorrelating filter to remove the multipath
access interference (MAI) completely. If the output of the decorrelating filter is
in the vicinity of decision regions’ boundary, e.g. ¢, then the idea of the optimum
detector with some simplifications is used. This way with some increase in the
computational complexity, compared to the decorrelating detector, a near-optimum
performance can be achieved. The radius € has a crucial impact on the performance
of this detector.

Chapter 4 includes a review of the radio propagation channels. Since we intend
to investigate the performance of the multiuser detectors in the multipath fading
channels, we need a simple and reliable model for such channels. The discrete-
time channel impulse response is explained. Some useful parameters of multipath
channels are put into perspective. It is shown that the two-ray Rayleigh model can

achieve a large variety of multipath fading channels from flat fading to frequency
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fading. The two-ray model has some drawbacks, but since our intention in this
dissertation is to compare the behavior of several multiuser detectors, it seems
appropriate to use this model.

In Chapter 5 an investigation of multiuser detection in multipath channels is pre-
sented. It concentrates on frequency selective channels. A two-ray model for such
channels is used. The channel characteristics are assumed to be known perfectly.
Two general strategies, namely channel-matched and path-by-path are explained.
Due to the better bit-error-rate performance, the channel-matched approach is pre-
ferred. Using this strategy all multiuser detectors are modified and deployed in a
multipath channel. The two-level threshold detector shows a better near-optimum
performance compared to the other detectors. The optimum value for the radius e
is also obtained in this chapter.

Chapters 6 and 7 are concerned mostly with the estimation of channel parame-
ter. In Chapter 6 a decorrelating-type detector is considered for multiuser detection.
The decorrelating-type filter operates on the outputs of matched filters which are
matched to the original spreading codes of system. A maximum likelihood estima-
tion to estimate parameters of the decorrelating-type filter is proposed and derived.
The estimation method is based on inserting known training sequences into the
information data by all users simultaneously. To achieve minimum mean-square-
error (MMSE) in estimation, a criterion for how to select the training sequences
is suggested. Orthogonal training sequences are shown to be good candidates to
approach MMSE. The estimation method requires a matrix inversion at the end
of each training period. An iterative matrix inversion algorithm is introduced to
distribute the computational load of the matrix inversion over the training period.

The simulation results show some degradations in system performance compared to
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the case where the perfect knowledge of the channel is assumed. This degradation
is clearly due to errors in the channel estimation.

In Chapter 7 a decorrelating-type decision-feedback detector is considered for
multiuser detection for frequency-selective channels. The feedback filter is used to
remove intersymbol interference (ISI). A maximum likelihood estimation method is
developed to estimate parameters of both forward filter and feedback filter. Similar
to the estimation method suggested in Chapter 6, the estimation method is based
on inserting known training sequences into the information data by all users simul-
taneously. The training sequences, however, are longer. MMSE training sequences
are obtained and used.

In Chapter 8 a brief summary of the accomplished work, with an emphasis
on the contributions to the area of detection and estimation methods for wireless
communications, is presented. Some possible extensions of this work and directions
for future research are also presented.

Four conference papers, [26-29], have been published based on this work.



Chapter 2

Multiuser Detection in AWGN
Channel

The idea of interference cancellation arises in many contexts, e.g., noise cancellation
in speech [30] and adaptive interference canceling [31, Chapter 12]. There are thus a
number of non-CDMA references with ideas similar to those being currently studied
for CDMA. We should differentiate between canceling noise or single-tone jammer,
which have no useful purpose, from canceling interference which is due to other
signals that are themselves to be detected. The CDMA case considered in this
dissertation is of the second type, where the signals being canceled are of interest
also. It should be mentioned, however, that the first type of cancelation is also of
importance in CDMA systems, e.g., in suppressing narrowband interference (this
is not discussed in this dissertation). Both types of interference cancelation have
in common the goal of removing a noise-like interference from a desired signal. In
the second type, however, the fact that the signals being removed are themselves
information carrying, leads to a new viewpoint that of simultaneously detecting all

the information carrying signals.



2.1 Previous Work

This chapter has the following outline. In Section 2.1 previous work in the area
is summarized and in Section 2.2 the contributions of this chapter are put into per-
spective. In Section 2.3 the system model is presented. In Sections 2.4 we describe
the idea behind multiuser detection. Section 2.5 clarifies the measures of the com-
parison that we have chosen as criteria to compare various multiuser detectors. The
computer simulation model that we have used throughout this chapter is explained
in Section 2.6. Sections 2.8, 2.9, 2.10, 2.11, 2.12 and 2.13 investigate six multiuser
detection schemes: The conventional, the optimum, the decorrelating, the decision-
feedback, the improved decision-feedback and the multistage detectors, respectively.

Finally in Section 2.14 the results are discussed and summarized.

2.1 Previous Work

The first CDMA interference cancellation references we are aware of are {32, 33]
and [34-36]. These papers describe a number of ideas that are present in much
of the ongoing research. Estimates based on mean square error and maximum
likelihood are discussed in [32]. Later on the detection scheme proposed in that
paper was known as the decorrelating detector. In [32], however, it was erroneously
shown that this detector is optimum in terms of bit-error-rate. Reference [36] shows
how cancellation is implemented by solving simultaneous equations, in essence, by
inverting a key matrix. There were subsequently a number of papers with variants
of the ideas of [32] and [34]. Significant theoretical steps forward were taken in [15,
16,37,38] by Verdd, in analyzing the structure and complexity of optimal receivers.
This work initiated a new research effort on suboptimal algorithms. The strong
connection between multiple access interference (MAI) and intersymbol interference

(ISI) was also made in [15].
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The work of Verdd has shown that optimum near-far resistance and a signif-
icant performance improvement over the conventional single-user detector can be
achieved by an optimum maximum likelihood multiuser detector. The substan-
tial improvements, however, are obtained at the expense of a dramatic increase in
computational complexity. Several low complexity multiuser detectors have been
proposed. Lupas and Verdi considered a linear multiuser detector in [17,18,39]. The
linear multiuser detector achieves optimum near-far resistance but cannot provide
close to optimum performance. A multistage technique was proposed by Varanasi
and Aazhang in [19,20], and the decision-feedback detector was suggested by Duel-
Hallen in [21,22]|. Due to error propagation, the multistage detector can achieve
near-optimum performance only when the interfering users are significantly stronger
than the user under consideration. The decision-feedback detector employs forward
decorrelating and feedback filters to cancel MAI. This cancels MAI completely, pro-
vided that the feedback data are decoded correctly.

Tree-type maximum likelihood sequence detectors have also been studied for
multiuser systems. Both sequential detection [23,40] and breadth-first algorithms
[41] have been considered. The breadth-first algorithms are especially promising [42-
44]. The improved decision-feedback detector in [25] is essentially the M-algorithm
applied over all users in a given time slot [45]. Xie et al. also use the M-algorithm

tree-search scheme in [41].

2.2 Contributions

This part of the dissertation is a precursor for a new suboptimum multiuser detec-
tion algorithm that we propose in [26]. In this chapter the most celebrated multiuser

detection algorithms are compared in terms of both the bit-error-rate and the com-
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putational complexity. Six different multiuser schemes are deployed as detectors
for a 16-user DS-CDMA system which uses Gold sequences of length 31 as the
spreading codes in an AWGN channel. Computer simulations are used to obtain

the bit-error-rate of the detectors.

2.3 Multiuser System Description

A CDMA system with K users is shown in Figure 2.1. All users share the same
bandwidth. The signaling interval of each user is T seconds, and the input alphabet
is antipodal binary: {+1,—1}. During the i-th signaling interval, the input vector
is b(3) = [b1(3), b2(3), . . - ,bx(i)]F, where b (2) is the input symbol of the k-th user.
User k is assigned a unit energy spreading code (or signature waveform, or spreading
sequence) sg(t) which is zero outside [0,7] and fOT |s(t)|2dt = 1. Pulse amplitude

modulation is employed at the transmitter. The baseband signal of the k-th user is

uk(t) = Y be(i)se(t — iT — 7) (2.1)

=0

where 7 is the transmission delay. For synchronous CDMA the delay 7. = 0 for all
users while for asynchronous CDMA the delays can be different. Each transmitted
signal goes through a channel and is attenuated. The channel attenuation is a

complex number which can be different for different users and is denoted by

o (1) = Vwi (3)e?%® (2.2)

where wi(¢) and (%) are the received power and phase of the k-th user, respectively.

At the receiver side the received baseband signal is the noisy sum of all users’ signals.
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Therefore the baseband received signal can be modeled as:
oo K
r() =) a(@)be()sk(t —iT — i) +n(2) (2.3)

=0 k=1

where n(t) is the complex additive white Gaussian noise (AWGN). According to
(2.3), each user’s signal travels along a single path, so this model does not illustrate

multipath propagation. The effect of multipath is discussed in Chapter 5. For the
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Figure 2.1: CDMA channel model.

rest of this section, we will consider a very simplified DS-CDMA system. A number
of simplifications will be exposed in the rest of the dissertation. In fact, each
relaxation of simplification will represent another factor to consider for multiuser

detection system. The simplifying assumptions are as follows:

e We consider a channel with real attenuation. The real model is convenient

for analyzing coherent methods, and can be easily generalized to the complex
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case. In Chapter 5, we extend our treatment to multiuser detectors for fading

channels, where complex attenuation need to be considered.

e Multiuser detectors derivation is presented for synchronous CDMA systems.
The synchronous assumption considerably simplifies exposition and analysis
and often permits the derivation of closed-form expressions for the desired
performance measures. These are useful since similar trends are found in the
analysis of the more complex asynchronous case. Furthermore, every asyn-
chronous system can be viewed as an equivalent synchronous system with
larger effective user population [18], which is often explored in burst CDMA
communication. Moreover, synchronous systems are becoming more of practi-
cal interest since quasi-synchronous approaches have been proposed for satel-
lite [46] and microcell applications [47]. It should be recognized, however, that
the transition from synchronous to asynchronous can considerably increase the
complexity of multiuser detection. Throughout the dissertation, we consider

only synchronous transmissions.

e Certain parameters are assumed to be known perfectly. The multiuser de-
tectors presented in this chapter and Chapters 3 and 5 take advantage of
completely known channel parameters so that amplitudes , phases and delays
do not appear in treatment at all. Chapters 6 and 7 propose some methods

to estimate unknown channel parameters.

2.4 Multiuser Detection Concepts

The first step in the multiuser detection process is to pass the received signal r(t)

through a bank of matched filters (or correlators). The bank of matched filters
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consists of K filters matched to individual spreading codes of the system followed
by samplers at instances T + 7, (k = 1,...,K), (¢ = 1,2,...) (Figure 2.2).
Recall that for a synchronous system 7 = 0. Van Etten [48] and Schneider [32]
showed that the outputs of the matched filters form a set of sufficient statistics for

demodulating the input sequence b(7) from the given received signal r(t).

b y
| 1
Code 1 Matched Filter 1 —j\—

b 3%
2 Code 2 Matched Filter 2 " >
by |\
Code X Matched Filter K- —

Matched Filter Bank

Figure 2.2: CDMA multiuser detection concept.

For synchronous CDMA, the received signal r(¢) for iT < t < (2 + 1)T does
not depend on the inputs of the users sent during past or future time intervals.
Consequently, assuming that all possible information sequences are equally likely,
it is sufficient to consider a one-shot system with input vector b = [by, b, - - - , bx]7,
real positive channel attenuation o; = /wy,---,ax = \/wx and additive white

Gaussian noise n(t) with power spectral density %‘1 The output of the k-th matched
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filter (which is matched to the spreading code of user k) at the sampling time is

T
yk=/0 r(t)sk(t)dt

T K
= se(t a;b;s:(t) +n(t) | dt
K T
= o + Z aib,-Rk,,- -+ / sk(t)n(t)dt
=t ’
where:
T
Rk,i = / Sk(t)si(t)dt, k,i = 1, ey, K (25)
0

is the cross-correlation between the spreading codes assigned to user k£ and user i.
Note that y, consists of three terms. The first is the desired information which gives
the sign of the information bit b (which is exactly what is sought). The second term
is the result of the multiple access interference (MAI), and the last is due to noise.
The second term typically dominates the noise so that one would like to remove it.
Its influence is felt through the cross-correlation between the chip sequences and the
powers of users. If one knew the cross-correlation and the powers, then one could
attempt to cancel the effects of one user upon another. This is, in fact, the intuitive

motivation behind any interference cancellation scheme.

2.5 Measures of Comparison

The probability of error or bit-error-rate (BER), as a function of the Signal-to-Noise-
Ratio (SNR), is a common and essential figure of merit for a communication system,

indicating the feasibility of reliable data transfer across the channel. The BER can
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be used as a metric to compare different communication systems. Throughout
this dissertation we utilize the BER as a measure of performance for the multiuser
detection schemes which we study.

As we investigate various multiuser detectors in the following sections, we notice
that for most of them finding a closed-form expression for the probability of error is
either impossible or very complicated. This problem is more evident especially when
the number of users is large. In such a case computer simulations are most commonly
used in determining the BER. In the following sections whenever it is easy to obtain
a closed-form formula for the probability of error, we will do so. However, for the
sake of consistency where we want to compare the studied detectors in terms of
their respective probability of error, we use the results of the computer simulations.
In the next section we review the model of the computer simulations used in the
present and next chapters.

Another criterion that we use to compare multiuser detection schemes is the
computational load. The computational load for the various multiuser algorithms
to be studied in this chapter are different. One way to quantify the computational
load is with the notation of a flop. A flop is a floating point operation. Throughout
this dissertation, operations such as multiply, add and compare are considered as
one flop!. The computational load is primarily a function of the number of users,
K. We use two measures for computational load denoted by O(K) and O;(K). The
former denotes total required flops to detect transmitted bits from all users, whereas
the latter denotes required flops to detect transmitted bits from user 7. In a point
to multipoint communication link, that uses purely CDMA, receiver : is interested

only in detecting b;. Therefore O;(K) is a correct measure of the computational

'Tn a conventional all-purpose DSP chip a multiply operation takes the same number of cycles
as an add operation.
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load for this type of structure. The reason that we have also considered O(K), is
that the multiuser detection idea can be applied to a point to point communication
makeup too. In such a case a receiver detects (by, bs, - - - ,bg). Thus O(K) will be a
correct measure of the computational load. In the computational load calculations
we will count only the computational load involved in the multiuser algorithm and

ignore the matched filters.

2.6 Computer Simulation Model

The simulation model used throughout this chapter and Chapter 3 is shown in Fig-
ure 2.3. Binary data are first modulated by BPSK signalling. Then each modulated
symbol is spread by spreading a sequence assigned to its respective user. The scal-
ing factor \/wg, (k= 1,---, K) represents the energy for each user. We assume all
users have the same power. In other words, in the simulations we are not studying
the effects of near-far problem on the detectors. The chip rate is set at 8 Mcps, and
a bandwidth of 8 MHz is assumed for the system. The receiver observes the sum of
the transmitted signals from all users that is embedded in noise. SNR is defined as

follow (see Figure 2.3)

P, (S(b,t))

Pou(=(®)) (26)

SNR-dB == 10 ].Oglo

where P, (-) represents the average power of a signal, and z(t) is the additive white
Gaussian noise, which is filtered by an ideal low-pass filter with (two-sided low-pass)

bandwidth equal to 8 MHz.
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Number of Users

In the literature mainly small CDMA systems with 2, 4 or at most 6 users have
been considered. The reason is that such systems are easy to analyze or simulate.
In this dissertation, however, we have selected a relatively large CDMA system with
16 users in order to be able to realistically investigate the feasibility of multiuser

detection for CDMA systems.

Spreading Codes

Throughout this dissertation we have chosen a set of 16 Gold sequences each of
length 31 chips as the spreading codes assigned to the 16 users. Appendix A shows
the Gold codes as well as their auto-correlation and cross-correlation properties. As
shown in the Appendix, the length, n, of a Gold sequence is equal to 2™ — 1, where
m is an integer. The total number of Gold sequences with length n is always n + 2.

We choose the length of the spreading codes to be 31 in order to accommodate
16 users. Other choices are 15, 63, or higher. The choice of 63 and higher is not
bandwidth efficient. The choice of length 15, although adequate for 16 users, does

not offer good periodic cross-correlations.

2.7 Multiuser Detection Algorithms

In the following sections we briefly discuss several previously proposed multiuser
detectors of interest. Each detector is first introduced, then its probability of error
is derived and finally its computational load is analyzed. We begin our discussion

with the simplest detector, namely, the conventional detector.
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2.8 Conventional Detector

The conventional detector, which is sometimes referred to as the single-user detector,
uses the same approach as the optimal receiver for the single user system. It detects
the bit from user & by correlating the received signal with the spreading sequence
corresponding to user k. Thus, the conventional detector makes a decision at the

output of the matched filter bank (Figure 2.4):

Y1 b
Matched Filter 1| H—" —

A
Yy B,
Matched Filter 2 H—" ¥ — 2

r(t)

Cc
y by
Matched Filter K—""_X _J'_

Matched Filter Bank

Figure 2.4: Conventional (Single-user) detector.

b = sgn(yk) (2.7)

This method ignores MATI and treats it as noise. When MAI terms are significant,
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as shown in (2.4), the bit-error-rate for this detector is high. Note that MAI depends

both on the cross-correlation and the power of each user.

2.8.1 Probability of Error for Conventional Detector

[t is quite straightforward to find the k-th user probability of error, Pg, for the
conventional detector. Assuming that the k-th user transmits information symbol
’-1’, one should calculate the probability that y, is positive. If this is the case, the

receiver fails to detect the transmitted information correctly.
P¢=Plye >0 | be = —1] (2.8)
Using the theorem of total probability [49];

PE= Y Ply>0]|bPb]|b=-1] (2.9)

be{—1,1}¥
bp=—1

Since n(t) is Gaussian, from (2.4), y; is also a Gaussian random variable with a

conditional mean (,, and a variance o2, as follow:

K
Uy, = —Q¢ + Z a,-b,—Rk,i (2.10)

=

N
o2 = —29 (2.11)
Therefore
oy — Zz[:.—é.}: a;bi Ry ;

Plyr >0|b,bp = —1] = u 2.12
[uk | b, b ] Q( N2 ) (2.12)
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where the Q-function is defined as

Q(:L‘) = -\/—;:ﬂ_ /°° e—V2/2dV

On the other hand, since the input alphabet is antipodal binary, i.e. b €
{—1,1}%, the second conditional probability in (2.9) is obtained as

1
Plb| b =—1] = SR-T’ (2.13)
assuming that b € {—1,1}¥ with equal probability. Finally, by combining the
results in (2.9), (2.12) and (2.13), we obtain the k-th user probability of error for

the conventional detector as

K
o — D i=1 bRy ;.
i#£k

PP=== > Q
26 beb{—l,l}K ( vV No/2
e=—1

(2.14)

In Figure 2.5 we have plotted the simulation results for the average BER ver-
sus SNR for the conventional detector for the DS-CDMA system described in Sec-
tion 2.6. It is worthwhile to mention that although we have plotted only the average
BER for all 16 users, the BER for each individual user is almost the same. This
is because the energies, a;, as,--- ,ag, of all users have been assumed to be equal
with equal cross-correlations between sequences (See Appendix A). We cbserve that
a BER of around 107° is achievable even with a conventional detector .

When MALI terms in (2.4) are significant, the bit-error-rate for this detector can
be high. This is due to the fact that MAI depends both on the cross-correlations
between sequences and the energies , a;, s, -+ ,ax. Suppose there are only two

users in the system, i.e. K = 2. Let r be the cross-correlation between the spreading
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Figure 2.5: Average BER of the conventional detector vs. SNR in an AWGN
channel.

codes of the two users
T
= / 51(£) 2 () dt (2.15)
0
In this case, the outputs of the matched filters are

Y1 = aiby +roanby + 1 (2.16)

Y2 = Olzbz “+ ra1b1 + 19 (2.17)
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The MALI terms for users 1 and 2 are rasb, and ra;b;, respectively. Without

loss of generality, we consider the probability of error for user 1 . Using (2.14)

pr=1(o(2 520 + o2 22r)) 219

Equation (2.18) implies that if the cross-correlation between the spreading codes,

T, Is zero, i.e. the spreading codes are orthogonal, then the probability of error is

ag

r=0 Q(\/m)

[t can be shown that (2.19) is the minimum of (2.18) in terms of r [50]. Moreover

[

(2.19)

(2.19) is exactly the same as the probability of error for the optimal detector for a
single user system. Indeed the probability of error of the optimal detector for the
single user system serves as a lower bound on the performance of any other detector.

Now suppose r is nonzero and user 1 is much stronger than user 2 (i.e. a; > ay,
which is referred to as the near-far problem), the MAI term ra;b;, present in the
signal of the second user, is very large, and can significantly degrade the performance
of the conventional detector for that user as shown in (2.18). A multiuser detector
called a successive interference canceller (decision directed) can remedy this problem
as follows. First, a decision b, is made for the stronger user 1 using the conventional
detector. Since user 2 is much weaker than user 1, this decision is reliable from the
point of view of user 2. So, this decision can be used to subtract the estimate of

MALI from the signal of the weaker user. The decision for user 2 is given by

by = sgn(ya — royh;) (2.20)

= sgn(anbs + ray (b — 131) + 713) (2.21)
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Provided the decision of the first user is correct, all MAI can be subtracted from
the signal of user 2. If we fix the energy of the second user, and let the energy
of the first user grow, the error rate of the successive interference canceller for the
second user will approach the single-user bound. Thus, this detector is successful in
combating the near-far problem. This simple example motivates the use of multiuser

detectors for CDMA channels.

2.8.2 Computational Load of Conventional Detector

According to the definition given for O(K) and O;(K) in Section 2.5, it is easy to
find the computational load for the conventional detector. By investigating the
conventional detector in Figure 2.4, we find out easily that the detection of b;
involves 1 flop (1 compare), whereas the detection of all b;s involves K flops. In
other words

O(K) =
H)y=X (2.22)

OiK) =1

2.9 Optimum Detector

The optimum multiuser detector, which is proposed by Verdd in [37], is defined
as a detector that selects the set of symbols corresponding to that signal among
the possible ones which resembles most closely, in the mean-square sense, the re-
ceived signal. If the noise is Gaussian and white, then this rule is optimum in the
maximum-likelihood sense. Furthermore, if all vectors b are a priori equiprobable,

then the minimum distance rule gives the maximum-a-posteriori (MAP) decision.
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The optimum multiuser detector, thus can be expressed mathematically as

K
b’ = ar mm r(t) — a;b;si(t 2.23
B o0, (0 = 2 b (B (223)

As it was mentioned earlier we are considering a one-shot system, hence (2.23) may
be rewritten as

b’ =arg min [r(t Z a;b; s,(t)]

_ K
be{—-1,+1} P

=8 My [ / (r®) a2 Z ab; / r(t)s:()dt  (2.24)
+ Z Z a;b;a;b; / s,(t)sj(t)dt]

=1 j=1

or equivalently in matrix notation as

b =arg max (267Wy —bT WRWD) (2.25)
be{-1,+1}¥K

where W is a diagonal matrix whose diagonal entries are the energies of the users,

(i 0 -~ 0\ (var o - 0 )
: .0 0

\0 - 0 ax/) \o - 0 vug

and y is the vector output of the matched filters, ¥ = [y1,¥2, -+ , Yk~
Equation (2.25) dictates an exhaustive search over the 2% possible combinations
of the components of the bit vector b. Verdi showed that the above problem is

NP-hard [51,52], i.e. there is no algorithm to solve (2.24) in polynomial time in the
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Figure 2.6: Optimum multiuser detector.

number of users K. Indeed the computational complexity of the optimum multiuser
detector grows exponentially in the number of users. Since a CDMA system could
potentially have a large number of users, this solution may prove, in a number of
situations, to be impractical and too expensive to implement. Furthermore, most
CDMA systems with a current need for only a small number of users may require

an expansion capability without a steep increase in computational requirements.

2.9.1 Probability of Error for Optimum Detector

The derivation of a closed-form formula for the optimum detector is not quite as

straightforward and easy as what it was for the conventional detector. An ap-
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proach that yields the probability of error of the optimum detector can be found in
Appendix B.
In this section we present the computer simulation results. Figure 2.7 shows

the average BER of the optimum detector versus SNR. We observe that by using
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Figure 2.7: Comparison of the average bit-error-rates of the optimum and conven-
tional detectors in an AWGN channel; (a) optimum, (b) conventional.

the optimum detector the BER becomes steeper and improves by almost 2 dB at
high SNRs. However, as we will see in the next section, the optimum detector has
a prohibitive computational complexity. In order to show that the other subop-

timum detectors are near-optimum, we have simulated the optimum detector and
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calculated its performance. Indeed, the optimum BER is used as a benchmark to
compare suboptimum detectors. Any claim to near-optimality of a suboptimal de-
tector will have to be based on how closely the BERs of the suboptimum schemes

track optimum performance.

2.9.2 Computational Load of Optimum Detector

The optimum detector finds vector b that maximizes (2.25). This problem is known
to be NP-hard. The straight forward method to solve this problem is an exhaustive
search over 2% possible candidates for b. In this case, it is easy to show that the
computation of the maximizing expression in (2.25) requires 2K?2 + 3K flops. We
also notice that the optimum detection scheme finds b at once, therefore O;(K)

and O(K) are the same for this detector. Hence,

O(K) = 0;(K) = (2K? + 3K) - 2K (2.27)

From the above one can see that the computational load of the optimum multiuser
detector grows exponentially with respect to K. In fact this huge computational
load made researchers suggest other multiuser detectors which are categorized as
suboptimum detectors. These detectors have good performances fairly close to that
of the optimum detector while their computational complexity are reasonably low
such that it makes them feasible. In the rest of this chapter we investigate some of

the most celebrated suboptimal multiuser detectors.
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2.10 Decorrelating Detector

As a step towards the most general formulation, consider the matrix version of the

equivalent discrete time model (2.4). The output vector y can be expressed as
y=RWb+n (2.28)

where R and W are K x K matrices as defined in (2.5) and (2.26), respectively,

and n is a colored Gaussian noise vector with the i:-th element n; obtained as

T
ni=/ si(t)n(t)dt (2.29)

Inspection of (2.28) suggests a method to solve for b, whose components b;
contain the bit information sought. If n was identically zero, we would have a
linear system of equations, y = RWWb, the solution of which can be obtained by
inverting R (it is invertible in most cases of interest [17,53]). With a non-zero noise
vector n, inverting R is still an effective procedure and actually optimal in certain

circumstances, to be discussed later. This results in
J=R'y=Wb+n (2.30)

where the information vector b is recovered but contaminated by a new noise term.

From (2.30), the signal of the i-th user is

Yi = oyb; +1- (2.31)
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The decision is

b = sgn(d:)- (2.32)
A
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Figure 2.8: Decorrelating multiuser detector.

Note that the decorrelating detector completely eliminates MAIL. However, the
power of the noise 7; is %Q'(R—l)i,i, which is greater than the noise power %Q at the
output of the matched filter (2.28). For example, for the two-user system with the
cross-correlation r (2.15), the noise power at the output of the decorrelating filter is

No/2(1 —r?). As it is proved in the next section, the error rate of the decorrelator



2.10 Decorrelating Detector

is given by

¢ = Q(\/(R—I)ZZNO/Q)

The performance of the decorrelating detector degrades as the cross-correlations
between users increase.

The decorrelating detector has several desirable features. It does not require
the knowledge of the users’ energies, and thus its performance is independent of the
energies of the interfering users. This can be seen from (2.31). The only requirement
is the knowledge of timing which is anyway necessary for the code despreading
at the centralized receiver. Observe that neither signal nor noise terms depend
on the energies of interferers. In addition, when users’ energies are not known,
and the objective is to optimize performance for the worst case MAI scenario, the
decorrelator is the optimal approach [17,38]. Moreover, the noncoherent version of
the decorrelator has been developed [54]. These properties of the decorrelator make
it very well suited for the near-far environment.

Multiuser detection is closely related to equalization for intersymbol interference
(ISI) channels [55]. For example, the decorrelating detector is analogous to the
zero-forcing equalizer. Similarly, the minimum mean-square-error linear multiuser
detector [24] (also given by a matrix inverse) is the multidimensional version of the
MMSE linear equalizer for the single-user ISI channel. The linear structure of these
detectors often limits their performance. In the following sections, we will describe
several non-linear approaches to multiuser detection. But first let us derive the

probability of error and the computational load of the decorrelating detector.
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2.10.1 Probability of Error for Decorrelating Detector

In this section we consider the bit error probability of the decorrelating detector.
Assume that the k-th user transmits information symbol ’-1’. We should calculate
the probability that 7 is greater than zero, i.e. the case when the receiver fails to

correctly detect the transmitted information,

P¢ = Plge >0 | be = —1] (2.33)

From (2.31) we note that provided that by = —1, §; is a Gaussian random variable

with conditional mean pj, and variance o, as follow;

By = —o = Vwk (2.34)
75, = (R kxNo/2 (2.35)
and hence
W
7=/ mremrs) (2.36)

Although (2.36) gives a closed-form equation for the probability of error of the
decorrelating detector, in order to be consistent with other detectors we use sim-
ulation results to portray the decorrelating detector BER. Figure 2.9 shows the
decorrelating detector average BER as well as those of the conventional detector
and the optimum detector. As expected, the performance of the decorrelating de-
tector lies between the optimum detector and the conventional one. We observe
indeed that using a decorrelating detector yields a satisfactory performance that

is close to the optimum to a considerable extent. Of course this is achieved at
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Figure 2.9: Comparison of bit-error-rates in an AWGN channel; (a) optimum, (b)
decorrelating, (c) conventional.

the expense of a little increase in complexity. The computational complexity of
the decorrelating detector is studied and compared with those of the optimum and

conventional detectors in the next section.

2.10.2 Computational Load of Decorrelating Detector

From (2.30) and (2.32) it is seen that the decorrelating detector requires a matrix-
vector multiplication followed by threshold devices, which are implemented using

compare modules. [t is easy to show that the total calculations involve 2K? flops,
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1.e.

O(K) = 2K (2.37)

Computing O;(K), on the other hand, involves a vector-vector multiplication and

a compare that yields,

0:(K) = 2K (2.38)

Figure 2.10 compares O(K) and O;(K) of the decorrelating detector with those
of the conventional detector and the optimum detector. The huge gap between the
computational load of the decorrelating detector and that of the optimum detector

is evident.

2.11 Decision-Feedback Detector

The decision-feedback detector, which was proposed in [21, 22, 56], is indeed mul-
tiuser decision-feedback equalization, characterized by two matrix transformations:
a forward filter and a feedback filter. This detector is analogous to the decision-
feedback equalizers employed in single user ISI channels [55]. However, in addition
to equalization, the decision-feedback multiuser detector employs successive can-
cellation. In each time frame, decisions are made in the order of decreasing user’s
strength, i.e., the stronger user make decisions first, allowing the weaker users to
utilize these decisions. The sorting is performed by any multiuser detector with
successive MAI cancellation. We will explain the rationale for using this particular

order later.
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Figure 2.10: Computational loads of multiuser detectors; (a) O(K) of conven-
tional, (b) O;(K) of decorrelating, (¢) O(K) of decorrelating, (d) O;(K) and O(K)
of optimum.

In synchronous CDMA, a white noise model can be obtained by factorizing the
positive definite cross-correlation matrix as R = FTF, where F is a lower triangular
matrix (see Cholesky decomposition algorithm [57,58]). If the filter with response
(FT)~!is applied to the sampled output of the matched filters in (2.28), the resulting

output vector is

FWb+4 (2.39)

']
I
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where 7} is a white Gaussian noise vector with the autocorrelation matrix R(7) =
20Tk (Zk is the K x K identity matrix.). The discrete-time models (2.39) and
(2.28) correspond to the outputs of the standard and whitened matched filters,
respectively, in single user channels with IST [55].

Since the components of the noise vector 7} in (2.39) are uncorrelated, the op-
timum (maximum likelihood) detector for synchronous CDMA has the Euclidean
metric ||§ — #[|2 = S5, (9 — £)2, where £ is the signal associated with an input b,
ie., £ = FWb, [20]. Both the metric and the expression for the probability of error
of the optimal detector have a simpler derivation when the model (2.39) is used
instead of (2.28).

The model (2.39) also gives rise to the decorrelating decision-feedback detector

(DF). The k-th component of ¢ is given by

k-1
Yk = Flep/webe + z Freiv/wib; + 7k (2.40)

=1

Since this expression does not contain a multiuser interference term for the strongest
user (k = 1), a decision for this user is made first: b, = sgn(%;). Multiuser interfer-
ence for the second user is F;,/w1b;- Since a decision for the first user is available,
we can use it in a feedback loop to estimate the second user. Thus, the second de-
cision is go — Fy 1 \/17151. Similarly, for the k-th user, multiuser interference depends
on the stronger users (i = 1,--- ,k —1). Decisions for these users have already been

made, and they can be used to form a feedback term (Figure 2.11), i.e.,

k-1
b =sen(x — D Frar/wib? )
=1 (2-41)

k-1
= sgn (Fi kv/Webk + ZFk,i\/’E’(bi —b7) +7ik)

i=1
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To summarize, the decision-feedback detector is characterized by a feedback filter
B = (F — F*)W, where F¢ is a diagonal matrix obtained from F by setting all off-
diagonal elements to zero. The filter is fed by the vector of decisions b. The vector
input to the set of decision devices is §—Bb = F4Wb+(F — F4)W (b—bgs)+1. Since
B is lower triangular with zeros along the diagonal, only previously made decisions
(ie., b¥ ,6F ,,--- ,b%) are required for forming the input to the k-th quantizer.
The decision-feedback detector corresponds to the zero-forcing decision-feedback
equalizer for ISI channels [55], since it attempts to cancel all multiuser interference.
The strictly lower triangular B corresponds to the purely causal feedback filter used
in single-user systems.

An important measure of performance for a decision-feedback detector is the
signal-to-noise ratio at the input to the decision device under the assumption of
correct previous decisions. From (2.41), the signal-to-noise ratio for the decision-
feedback is

2
Fk,k w,c

SNRi = No/2

(2.42)

The performance of the decision-feedback detector is similar to that of the decor-
relating detector for the strongest user, and gradually approaches the single user
bound as the user’s power decreases relative to the powers of the interferers. Thus,
for the decision-feedback detector, performance advantages with respect to the con-

ventional or the decorrelating detectors are greater for relatively weaker users.
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2.11.1 Probability of Error for Decision-Feedback Detector

First, assume that the energies of the users are estimated correctly. The signal-
to-noise ratio (2.42) gives rise to the probability of error of the decision-feedback

detector for the k-th user under the assumption of correct previous decisions

BY = Q(%)- (2.43)
It is easy to show that FZ, > 1/(R™!)xs. Note that for the strongest user (k = 1),
FZ, = 1/(R™')1,1 and the estimate (2.43) gives the probability of error since the
receiver for this user does not utilize feedback. Therefore, the error rates for the
decision-feedback detector (2.43) and the decorrelating detector (2.36) are the same
for the strongest user. For k > 2, the inequality F?, > 1/(R™ ')k is tight provided
that multiuser interference affects the k-th user. Thus, an improvement over the
performance of the decorrelator is suggested by comparison of (2.43) and (2.36). (It
is noteworthy to mention that when the decision-feedback method is compared to
the decorrelating detector, the decorrelating detector has the following advantage: it
does not require the knowledge of energies.) Finally, for the weakest user, F,2{ k=1,
and the ideal performance of the decision-feedback detector (2.43) agrees with the

error probability of the single-user system given by

P = 9 \/N’”_ﬁ) (2.44)

The above discussion is valid if we assume that the previous decisions are correct.

To find the exact error rate of the decision-feedback detector for the k-th user, one

has to average the conditional error probability given a particular error pattern for
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the users 1,--- ,k — 1 over all such error patterns:
d 1 Fk,k\/wk —+ Zf:l Fk,i\ /w; Ab;
Py = 3 Enby 26, QA \/Nol/_2 ) (2.45)

where the error patten for the i-th user is Ab; = (b; — b¥). For a large number
of users, exact computation of error probability becomes complex. The problem
is similar to computing the exact probability of a decision-feedback equalizer for a
single-user system. Although this probability can be bounded analytically, as the
author of this detector suggests [21], computer simulations are most commonly used
in determining the error rate and the effects of error propagation [55]. In Figure 2.12
we have plotted the average BER of the decision-feedback detector versus SNR.. One
can see that the performance of the decision-feedback detector is slightly closer to
optimum than the decorrelating detector (compare Figure 2.12 with Figure 2.9).
This improvement, however, is not exactly as expected from the discussion on page
40. The reason is that in the above qualitative discussion we ignored the error
propagation effects on the decision-feedback performance, which is an important

degrader factor which is associated to any decision-feedback scheme.

2.11.2 Computational Load of Decision-Feedback Detector

As seen in (2.39) the decision-feedback detector primarily applies the whitening filter
(FT)~! to the outputs of the matched filters. Since (FT)~! is an upper triangular
matrix, the total computations for applying the whitening filter involves K (K +1)/2
multiplications and K(K — 1)/2 adds, which are equivalent to K2 flops. Also it
can be shown that the needed computational load to calculate (2.41) for all bits

involves K? flops. Therefore the total computational load required to detect Bff
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Figure 2.12: Comparison of bit-error-rates in an AWGN channel; (a) optimum,
(b) decision-feedback, (c) conventional.

O(K) =2K? (2.46)

From (2.41)it is apparent that in order to calculate I;?f one has to already cal-
culate the previous bits, 5‘1” , ng yeee ,5?’: ;- This indicates that the required compu-
tational load varies for different users. In other words O;(K) depends on i as well

as K. One can show that the required computational load to calculate E?f , without
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counting for previous bits, is 2K. Hence, for user ¢, the computational load is 7

times as many, i.e.
Oi(K) =2iK (2.47)

Comparing (2.46) with (2.37) we find out that the computational load, O(K), for the
decision-feedback detector is the same as that for the decorrelating detector. How-
ever it should be mentioned that when calculating O(K) for the decision-feedback
detector, we assume that the energies of users are known. While in practice the
receiver has to estimate the energies, and this requires some computational load as
well.

Figure 2.13 depicts O(K) and O;(K) (z = 1, K) of the decision-feedback de-
tector versus K. As the reference curves, O(K) and O;(K) of the optimum and

conventional detectors are plotted too.

2.12 Improved Decision-Feedback Detector

As shown in the previous section, if the whitening filter with response (F7T)™! is
applied to the sampled output of the matched filters in (2.28), the resulting output

vector is

FWb+4

¢
i
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Figure 2.13: Computational loads of multiuser detectors; (a) O(K) of conven-
tional, (b) O1(K) of decision-feedback, (c) O(K) and Og(K) of decision-feedback,
(d) O;(K) and O(K) of optimum.

The decision rule of the optimum detector is to select from a total of 2% possible

vectors the symbol vector b which minimizes the Euclidean metric
K k
g — FWbll =D [k — Y Fioj/ib;]%. (2.48)
Jj=1

k=1

On the other hand, the idea behind the decision-feedback detector is that user
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k is demodulated by selecting b; to minimize

E—1
My = [k — Fie/Wkbx — Z Fi j/w;b;])? (2.49)
j=1
where {51, [32, .- ,Bk_l} are the decoded symbols of the previous & — 1 users. Com-

pared to the optimum detector, there are two differences: a) the decision-feedback
detector feeds one vector of decoded symbols to user k, while the optimum detector
feeds 25~! vectors and their metrics to user &, and b) the decision-feedback detec-
tor makes a decision for user £ based only on current and previous users, while
the decision of the optimum detector is based on all users. These two differences
cause the disadvantages for the decision-feedback detector, which, however, can be
easily overcome if we modify the feedback strategy. This leads to the improved
decision-feedback detector [25,45].

The idea of the improved decision-feedback detector is to feed back N, (k) partial
symbol vectors b’ = [131,132, .- ,Bk—I] and their metrics at stage k& where Np,(k) =
min{2¥, Ny} and Ny is a maximum fixed value which is usually much less than 2.

For example assuming Ny = 3, the following steps are performed:

e Step 1: Find Np,(1) = 2 values of b; and their corresponding metrics m].

e Step 2: Feed both these values (b = +1, or — 1) with their metrics to stage
2 and find the N,(2) = Ny = 3 vectors [31, 52] with the smallest metric sums

my + mg for all four possible vectors. Now let k& = 2.

e Step 3: Feed the previous Ny partial symbol vectors [51, bo, -, Ek] and their
metrics to the next stage and find the Ny = 3 vectors with the smallest
metric sums, m; + m; + my,,, from the 2 x Ny possible partial candidates

[511 527 e 1515) bk+1]-
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o Step 4: Repeat Step 3 for k =3,4,---,K — 1.

e Step 5: Select the symbol vector [51,52, .. ,ISK] with smallest total metric

sum, mj + ms + - - - + m’ as the decoded vector.

When N; = 2%-!  the improved decision-feedback detector is the optimum
detector, and when Ny = 1, then it is reduced to the decision-feedback detector.
The complexity of the improved decision-feedback detector is 2 x Z,il N (k) metric
computations. For small Ny this is about 2 x Ny x K which is linear in the number

of users.

2.12.1 Probability of Error for Improved Decision-Feedback
Detector

The probability of error analysis for the improved decision-feedback detector is so
complicated that even the author of this detector did not offer any solution for it [25].
So we are contented by computer simulation results. Figure 2.14 shows the BER of
the improved decision-feedback detector, where we have chosen Ny = 3. We observe
the performance of this detector is so close to that of the optimum detector that
they are not distinguishable from each other. Of course this excellent suboptimum
performance is achieved at the expense of a considerable increased computational
complexity compared to the other suboptimum detectors. Next section will discuss

this matter more.
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Figure 2.14: Comparison of bit-error-rates in an AWGN channel; (a) optimum,
(b) improved decision-feedback, (c) conventional.

2.12.2 Computational Load of Improved Decision-Feedback

Detector

As we mentioned when N; is chosen to be 2X-1, the improved decision-feedback
detector is the same as the optimum detector. Also, when N ¢ is chosen to be 1, it
is reduced to the decision-feedback detector. The computational load of improved
decision-feedback detector depends on Ny as well as K. Throughout this dissertation

we have assumed Ny = 3 in all simulations . Here for the computational load
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calculations, we again assume Ny = 3. It can be seen that the computational load of
the improved decision-feedback detector is 2 x Zle Np (k) metric calculations [25].
For Ny = 3 we have E,le Nm(k) = 3K. The metric computation in (2.49) requires
K? flops. Counting the necessary computational load to apply the whitening filter

to matched filters outputs, we will have

O(K)=6K3+ K*? (2.50)
and equivalently

O;(K)=6K*+ K (2.51)

In Figure 2.15 we have plotted O(K) and O;(K) as functions of K.

2.13 Multistage Detector

A multistage detector (Figure 2.16), proposed in [19, 20], uses (2.52) instead of
(2.25):

b7 (m + 1) = arg TR0 (26" Wy — bTW RWb) (2.52)
by=b;(m),l#k

for m > 1. It is easily shown that

b (m + 1) = sgalz¢(m)] (2.53)
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Figure 2.15: Computational loads of multiuser detectors; (a) O(K) of conven-
tional, (b) O;(K) of improved decision-feedback, (¢) O(K) of improved decision-
feedback, (d) O;(K) and O(K) of optimum.

where z¢(m) is the m-th stage statistic for the k-th user given as

K
ze(m) =ye — »_ b7 (m)\/W;R; - (2.54)
j=1
J#k

In demodulating the information bits of all the users, the maximization of (2.53)
is performed for each £k = 1,2,---,K. The (m + 1)-th stage estimate of b can

be written as the sign of the m-th stage vector of decision statistics z(m) =
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[21(m), za(m), - - - , zx(m)]T so that
6™ (m +1) = sgnz(m)] = sguly — (R~ Zx)Wb"" (m)] (255)
From Equation (2.28), it is easily shown that
Yy=RWb+n=Wb+ M;(b)+n (2.56)

where M;(b) = (R — Ix)Wb represents the multiple-access interference vector.
Substituting (2.56) in (2.55), the expression for the (m + 1)-th stage estimate of b
is given as

5" (m + 1) = sgn[z(m)] .57

= sgn[Wb + M(b) — M (b" (m)) + ).

The result in (2.57) has a simple interpretation. The (m + 1)-th stage estimate
of b is obtained as the sign of the m-th stage statistics which in turn is obtained
by subtracting from the sufficient statistic y, the estimate of the multiple-access
interference based on the m-th stage estimate of b.

It is noteworthy to mention that Equation (2.52) performs the maximization
over one bit at a time, instead of over K bits, as in (2.25). Due to delay constraints,

it is desirable to limit the number of stages to two, hence a two-stage detector [20].

2.13.1 First Stage For Multistage Detector

The development of the multistage solution described in the last section does not
specify the first stage which delivers the initial estimate of the bits Bmu(l). The

choice of the first stage will prove to be important not only in the performance
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and the computational load of the multistage detector, but also in simplifying the
error probability analysis [20]. For example, consider a two-stage detector with
the conventional first stage for the synchronous two-user system with the cross-
correlation r (2.15). The decisions produced by the first stage (conventional) de-
tector are b;(1) and (1) computed as in (2.7). The decisions of the second stage
are b;(2) = sgn(y, — ranbs(1)) and b5(2) = sgn(ys — rayby(1)). The performance of
this two-stage detector depends on the relative energies of the users. Clearly, if the
first user is stronger than the second, the decisions of the second stage for user 2
agree with those of the decision-directed successive interference canceller, described
in the last paragraph of Section 2.8.1. Thus, for the weaker user, the second stage
produces more reliable decisions than the first stage. However, for the stronger user,
feedback might not be beneficial since the decision produced by the conventional
detector for the weaker user is poor. A more reliable two-stage detector results if the

conventional detector in the first stage is replaced by the decorrelating detector [20].

2.13.2 Probability of Error for Multistage Detector

As mentioned in the previous section, the choice of the first stage for the multi-
stage detector has a twofold effect on the bit-error-rate as well as the computational
complexity of this detector. The analysis of the probability of error of the mul-
tistage detector is not easy. In Appendix C we have presented the derivation of
the error probability of the two-stage detector which employs a decorrelating-type
linear detector as the first stage. The conventional detector and the decorrelating
detector can be seen as special cases of the decorrelating-type linear detector. As
shown in Appendix C, the calculation of error probability requires the evaluation

of a (K — 1)-dimension Gaussian distribution function. The average BER of the
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two-stage detector is plotted in Figure 2.17 using a conventional detector as well

as a decorrelating detector as the first stage. Both detectors yield BERs very close

10! T ; E ! ;
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Average BER
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Figure 2.17: Comparison of bit-error-rates in an AWGN channel; (a) optimum,
(b) two-stage (conventional 1st stage), (c) two-stage (decorrelating 1st stage) (d)
conventional.

to optimum, so that the BER curves overlap. But as discussed before, we would
expect the decorrelating first stage to outperform the conventional first stage. The
fact that the conventional first stage is performing as well as the decorrelating first
stage can be explained as follows. The good cross-correlation properties of the

spreading codes cause the conventional detector to give acceptable estimates of the
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transmitted bits. Therefore the M AI cancellation in the second stage performs well
enough to improve the BER near the optimum BER. which is the lower bound for all
detectors. Thus the difference between the two first stage schemes, i.e. the conven-
tional and the decorrelating, is not remarkable. In Chapter 5, where we study the
performance of these two detectors in multipath channels, we find the decorrelating

detector as the first stage to be more reliable than the conventional detector.

2.13.3 Computational Load of Multistage Detector

The computational load of the multistage detector depends on the choice of the first
stage and the number of stages as well as the number of users K. Here we consider
two different detectors, the conventional detector and the decorrelating detector,
as the first stage. Also we assume a multistage detector with two stages. These
assumptions are the same as the ones made for simulations purposes.

For a two-stage detector with a conventional detector as stage one, we can show

that the detection of all bits involves 2K? flops, i.e.

O(K) = 2K?2 (2.58)

Hence,

Oi(K) = 2K (2.59)

Similarly for a two-stage detector with a decorrelating detector as the first stage it
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is easy to verify that

O(K)=4K? — K
(2.60)

O:(K) =2K? +2K — 1

Figure 2.18 depicts the computational load of the two-stage detector.

1000

800

600

400

Computational Load (flops)

200

Figure 2.18: Computational loads of multiuser detectors; (a) O(K) of conven-
tional, (b) O;(K) of two-stage (conventional 1st stage), (c) O(K) of two-stage (con-
ventional 1st stage), (d) O:(K) of two-stage (decorrelating 1st stage), (e) O(K) of
two-stage (decorrelating 1st stage), (f) O;(K) and O(K) of optimum.
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2.14 Discussion

In this chapter we studied the idea behind multiuser detection. Then six detection
schemes were discussed and investigated with respect to both their bit-error-rate
and computational complexity. In order to compare comprehensively the BER of

all multiuser detectors presented in this chapter, we have plotted Figure 2.19. Also

107! ;
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Average BER
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Figure 2.19: Average BERs of all multiuser detectors in AWGN channel; (a)
conventional, (b) decorrelating, (c) decision-feedback, improved decision-feedback,
multistage and optimum overlap.

in Table 2.1, we have sorted, in an ascending manner, the multiuser detectors in

terms of the two presented definitions for the computational complexity, i.e. O(K)
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and O;(K).

In Figure 2.19, we observe that except for the conventional detector, which in-
deed is not a multiuser detection scheme, the rest of the suboptimum detectors
perform reasonably well compared to the optimum detector. Amongst them the
decorrelating detector does not yield such a near-optimum BER. On the other hand
we notice that amongst all suboptimum multiuser detectors the decorrelating detec-
tor is the only one that does not require the knowledge of energies of the users. As
mentioned before, in the computer simulations we have assumed that the receivers
have perfect knowledge of the energies. In practice, however, this is not the case and
the receivers have to estimate the received signal energies or apply other techniques
such as power control. This, of course, causes some degradation in BER. due to
imperfection in such estimates. Therefore if one wants to have a completely fair
comparison between suboptimum detectors, one should take into account this fact
(the study of methods of estimates of energies is out of the scope of this disserta-
tion). The satisfactory performance of the decorrelating detector, as well as its low
computational complexity besides its independence from the knowledge of energies,

makes it a good candidate for multiuser detection in AWGN channels.

Computational Load Detector

lower Conventional

Decorrelating, Decision-Feedback,
Two-Stage (Conventional 1st Stage)
Two-Stage (Decorrelating 1st Stage)

Improved Decision-Feedback
higher Optimum

Table 2.1: Computational loads in an ascending order.



Chapter 3

Two-Level Threshold Detection

Scheme

From the discussion in the previous chapter, it is clear that DS-CDMA with the
conventional detector suffers from the near-far problem, i.e. the bit-error-rate of
the weak users are degraded substantially, if the received powers of the users are
dissimilar. In the previous chapter, however, we assumed that the received powers
from all users are identical, which requires perfect power control and is very difficult
to realize in practice. When the power control is not perfect, the performance of the
weakest user will be much worse than the results shown in the previous chapter for
the conventional detector. The drawbacks of the conventional detector initiated re-
cent efforts to develop more sophisticated receivers in which MAT is treated as a part
of information rather than noise. The study of the optimum detector showed that
while superior performance over the conventional detector is possible, it can be ob-
tained only at a marked increase in computational complexity. Several suboptimum
multiuser detectors were discussed in the previous chapter. The decorrelating de-

tector while simple cannot provide close to optimum performance. A near-optimum
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performance is achievable by a two-stage detector at the expense of a considerable
increased computational complexity. In this chapter we introduce a new subopti-
mum multiuser detector. The new detector yields a near-optimum bit-error-rate,
while its computational load is slightly more than that of the decorrelating detector.

The rest of this chapter is organized as follows. In Section 3.1 previous work
in the area is summarized and in Section 3.2 the contributions of this chapter
is reviewed. Section 3.3 thoroughly discusses the idea behind the proposed new
detector. The probability of error for the new detector is derived and analyzed in
Section 3.4. In Section 3.5 the computational load of this detector is obtained and
then it is compared with the other suboptimum detectors. Section 3.6 points out
some comments about the proposed new detector. Finally Section 3.7 presents a

discussion and summarizes the results.

3.1 Previous Work

This chapter may be regarded as the continuation of the previous chapter. The
background history mentioned in the previous chapter can be considered as the
background history for this chapter too. However, the idea of the two-level threshold
detector is mostly indebted to two suboptimum detectors. The first one is the
decorrelating detector suggested in [32] and analyzed in [17]. The second detector
is the two-stage detector in [19,20] which utilizes a decorrelating detector as its first

stage.
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3.2 Contribution

Based on the work discussed in this chapter we propose a new suboptimum multiuser
detection algorithm [26], whose complexity is linear in the number of users. This
new detector, namely the two-level threshold detector, has a performance close
to that of the optimum detector whose complexity grows exponentially with the
number of users. Simulation results have shown that in a DS-CDMA system using
Gold sequences of length 31 with 16 users, the two-level threshold detector with
a complexity slightly more than the decorrelating detector, can achieve a near-
optimum performance.

In [26] we applied a simple inspection and modification method to the outputs
of the decorrelating filter. This causes some augmentation in the computational
complexity compared to the decorrelating detector. The computational complexity,
however, depends on SNR. (It also depends on other factors which will be discussed
in Section 3.5). For the SNR of interest, the augmented computational complexity
is ignorable. This leads to a new detector with a reasonable computational load,

which has an excellent near-optimum performance in terms of bit-error-rate.

3.3 Two-Level Threshold Detector

In this section, we propose a new suboptimum multiuser detection algorithm based
on a novel approach to the maximization problem in (2.25). The proposed algorithm
exploits both the simplicity of a decorrelating detector and the novel approach of
the multistage detector in maximizing (2.25).

As we saw in Chapter 2, the decorrelating filter, R~!, removes MAI completely.

Therefore each output of this filter consists of the desired signal and noise and does
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not include the interference component. The decorrelating detector uses this fact
and applies a simple threshold device to the outputs of R~!. However, a more

reliable decision criteria can be achieved as it is explained in the next Section.

3.3.1 Idea Behind Two-Level Threshold Detector

Figure 2.8 shows a decorrelating detector. The output of the decorrelating filter
R™! can be written as:

7=Wb+ R 'n
(3.1)

=Wb+n,

where 1) is a zero-mean Gaussian noise vector with covariance matrix equal to

% R~ From (3.1) we may write

Ur = VWebg + 7k, k=12,---,K (3.2)
where,
K
= (R Nem, k=12---,K (3.3)

=1

Note that the decorrelating detector completely removes multiple access interfer-
ence. 7 is a Gaussian zero-mean noise component with a variance of £{n?} =
(R™")kNo/2, which is denoted as o2. In practice, a signal set with good character-
istics, in terms of orthogonality, is chosen as the spreading codes. If that is the case,
since the off-diagonal entries of R are the cross-correlations between the spreading
code of the system, they are much smaller than 1 (In the ideal case, where codes

are orthogonal, R is the identity matrix). Consequently, R~! is very close to the
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identity matrix. This implies that o2 can be approximated by Ny/2.!

3.3.2 Decision Criteria

For the sake of simplicity we consider a binary modulation scheme. In this case i
takes one of two choices. We refer to them as hypotheses and label them H_; and
H; in the two-choice case. We consider BPSK signalling, wherein the transmitter
transmits information by sending 1’s and -1’s. When ’1’ is sent, we call it H;, and

when -1’ is sent, we call it H_,. Under the two hypotheses, we have:

H, : g = Jwg + ¢ : 1 is sent
(3.4)
H_;: = ~—J/wg + : -1 is sent

The probability densities of §; on the two hypotheses are shown in Figure 3.1. As
it has been assumed throughout this dissertation, transmitter & sends information
bi. equiprobably. Now we consider a neighborhood around zero with radius €. Cor-
respondingly, we investigate four different regions. We determine in each region
what decision rule gives us a more reliable answer. What we will do is restating the

likelihood ratio test explained in detection theory (see for instance [50]) in simple

words.
e Region 1 : g < —e. If g, lies in this region, the probability that H_; is
true, i.e. bx = —1, can be evaluated as follows. Since H_; and H; are mutually

'However as it was mentioned in the previous chapter £{n?} > Ny /2, which holds with equality
if the spreading codes are orthogonal or in other words R = R™! = T.
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()

Figure 3.1: Error probabilities: (a) P4 and Pg; (b) Pg and Pp
exclusive hypotheses, using the Bayes’ theorem [49] we may write:

Plog=—1|9c < —¢) =

P(ﬂks—elbk=—1)'P(bk=—l)
P(:l:}ks—6lbk=—1)'P(bk=—l)+P('gk$—Glbk=1)P(bk"—'l)

(3.5)
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We have assumed that P{by = —1) = P(br = 1) = . Therefore (3.5) can be

simplified as

P(gr < —€| b = -1)
Pgr < —€lbpe=—-1)+P(ir < —€| b =1)

Py =—1|gk < —€) = (3.6)
P(jr < —e | by = —1) is equivalent to the area under pg, ig_,(Jx | H-1) from —oco
to —e, which is simply the integral of pg,(a_, (Jx | H-1) to the left of the point —e
(Figure 3.1), where we denote it as P4. Similarly P(gx < —e | by = 1) is equivalent
to the area under py,m, (Jx | H1) from —oco to —¢, and can be calculated as the
integral of py, |z, (Jx | H1) to the left of the point —e. Notation Pg is used for this
value. Hence, the probability that the hypothesis H; is true, under the condition

U < —¢, might be expressed as

Py

= — 3.7
P4+ Pp ( )

Por = -1 | gk < —¢)
Similarly in the same manner we may find the probability that the hypothesis H;
is true provided that g < —e.

Pp

== 3.8
Py + Py ( )

P(by =1 gk < —¢)

Generally, by inspection of Figure 3.1, we may notice that P4 > Pp depending on

the value of . Consequently P(by = —1 | §x < —€) isclose to 1 and P(by =1 | g <

—e) is small and close to zero. Let us try to show this fact in a more legitimate
manner.

As we mentioned earlier py,15_, (9% | H-1) and pg, 1z, (§x | H1) are normal curves

with means —,/wy and ./wg, respectively, and both have the same variance £{n2}.
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Figure 3.2: P4 versus SNR; (a) e = 0.1,/wg, (b) € = 0.2/, (c) € = 0.3\/wg, (d)
€ = 0.4\ /wg

Therefore, the values P4 and Pg depend on /w; and E{n?} and of course e. Since
Pyl (G | H-1) and py,a, (Jx | H1) are normal curves, it is not possible to find
a closed-form formula for P4 or Pg. However, the area under a normal curve is
tabulated in many references (for instance in [59]). In Figure 3.2 we have plotted

P, versus SNR in decibel. Here SNR is defined as below:
W
SNRgg = 10 log;q =——~ 3.9
B g10 8 {77,;_:} ( )

We have chosen four various values as for ¢; 0.1,/wg, 0.2,/wg, 0.3\/w and 0.4,/wg.
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We also consider positive SNRs which are of interest. We notice that P, is greater
than 0.7 and it increases as SNR increases. Figure 3.3, on the other hand, depicts

Pg versus SNR for the same values of € as in Figure 3.2. Here we observe that Pg

0.14
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12 16

SNR (dB)

Figure 3.3: Pg versus SNR; (a) € = 0.1, /wg, (b) € = 0.2\/wg, (c) € = 0.3,/wg, (d)
e =0.4/w;

is very small and less than 0.14 for the experimented SNRs. In Figures 3.4 and

3.5 we have plotted PA?PB and PAI:‘_?PB which are likeliness of H_; and H,; being

true, respectively. By inspection of Figures 3.4 and 3.5 we find that the difference
between P(yx = —1| gx < —¢) and P(yx = 1| §x < —¢) is so obvious that choosing

H_,; as the dominant hypothesis seems quite reasonable. Therefore, the decision is
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Figure 3.4: —PTPfg versus SNR; (a) € = 0.1,/w, (b) € = 0.2/wg, (c) € = 0.3 /wg,

(d) e =0.4\/w

in favor of H_; being true, i.e. ‘-1’ is sent. A simple threshold device as the decision
algorithm would fulfill the requirements of the likelihood ratio test.
Thus we notice that if §x < —e¢, a decorrelating filter followed by a threshold

device will yield a satisfactory detection performance.

e Region 2: —e < . < 0. If §i lies in this region, again since H; and H_,
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Figure 3.5: —BP— versus SNR; (a) € = 0.1,/wg, (b) € = 0.2\ /wg, (c) € = 0.3,/wg,
(d) e=0.4/w

are mutually exclusive hypotheses, we may write:

Plr=-1| —e<fr<0)=
P-e<gx <0| b =—1)

3.10
Pl—e< e <0jbe=-1)+P(—e< g <0 | b =1) (3.10)
Or in a simpler notation,
. Pc
Plbi=—1] —e< g <0)= (3.11)

Pc+ Pp
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Figure 3.6: Pc versus SNR; (a) € = 0.1,/wg, (b) € = 0.2,/w, (c) € = 0.3\/wg, (d)
€ =04/ /w

where Pc is the area under py, | g_,(Jx | H-1) from —e to 0, and Pp is the area
under pg, | g1(Jx | H1) also from —e to O (see Figure 3.1). In the same fashion we

can express the probability of H; being true provided that —e < 7 < 0,

Pp

P(bk=1| "6<@k$0)=m

(3.12)

Figure 3.6 shows Pc versus SNR as it is defined in (3.9). We see that P is less
than 0.12 for the examined es. In Figure 3.7, we have plotted Pp. We observe

that Pp is also small and less than 0.08 for the examined values of €. Figures 3.8
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Figure 3.7: Pp versus SNR; (a) e = 0.1,/wg, (b) € = 0.2\/w, (c) € = 0.3\/wx, (d)
e =04,/wg

and 52—, which are the likeliness of H_; and H, being true,

Pc
and 3.9 show 5 Potbp’

c+Pp
respectively. In this case, unlike the previous case, choosing one of the hypotheses
as the most likely one is not very much straightforward ?. This fact is more evident
especially for low SNRs, where Fc% and %fﬁ are both close to 0.5. Indeed what
this fact implies is that the probability of H_; being true is almost the same as the
probability of H; being true. In such a case if the decision algorithm is chosen to be

just a simple threshold device we are very susceptible to making the wrong decision.

2However, the likelihood ratio test is still in favor of H_;.
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Figure 3.8: 52— versus SNR; (a) € = 0.1/wx, (b) € = 0.2/, (c) € = 0.3/,
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(d) € = 0.4,/wx,

Thus a more sophisticated decision algorithm is needed. To achieve a higher level of
accuracy we could use the idea of the local maximization of (2.25). In other words

instead of simply using a threshold device, we find b so that
26" Wy — b WRWb (3.13)

is maximized. As discussed in Section 2.13, local maximization of (3.13) is in fact

the main idea of the multistage detector too. Since it plays an important role in
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Figure 3.9: +p versus SNR; (a) € = 0.1,/wg, (b) € = 0.2\/wg, (c) € = 0.3,/wg,
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the suggested detector, we try to elaborate on that a little bit more. Qur target is

to find b, that maximizes (3.13).

T T
b —a.rgbke?lal.xﬂ}@b Wy — b WRWb) (3.14)

We start by expanding (3.13) (remember that b = [bg, by, - - - , bk]T, ¥ = [Y0, Y1, - > Ux]T,
W is a diagonal K x K matrix, {W},; = /w;,i=1,2,--- ,Kand Risa K x K
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matrix whose entries are denoted by {R};; = R; ;),

26T Wy — BT WRWbH

K K

K
=2 wivwibi— > bi/wiRij\/5b;
i=1 1

=1 i=

K
= 2/ Wbk — 2 _ biv/WiRi/ Wbk — Riswi (3.15)
Zk
K K K
+ 23w /b~ D3 bi/wiRis/3h;
2k ZtiE

The above equation is organized in such a way that the first two terms depend on
br while the remaining terms do not. Since we are searching for Ek that maximizes
the above expression, hereafter we consider only those terms which depend on b
and denote them by I'(bz). We also ignore the multiplier factor 2,/wy, since it does

not affect the calculations.

K
[(be) = vxbe — Z R; p/wibibg (3.16)
=T
We notice that b is chosen from the binary set {—1,+1}. Thus the problem of
maximization of ['(b¢) in terms of b; will be simple. By factoring out b in (3.16),

we have

K
T(bs) = (v — 3 _ Rupv/ibs) by (3.17)

#k

Therefore, by inspection Equation (3.17), we simply find out that if we choose by

and yx — Ef::é}c R; \/w;b; in such a way that they have the same sign, indeed we
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have maximized I'(b¢). From the above we can complete Equation (3.14)

by =arg max (26" Wy — b WRWDb)

be{-1,+1}
K (3.18)
= sgn(yr — Z R; k/wib;)
i=1
ik

As we can see Equation (3.18) is very similar to (2.53) and (2.54), i.e. the detection
scheme of the multistage detector.

There is still one question remaining to be answered. We know y; as well as
VUi. Rig, (1 = 1,2,---,K) are also assumed to be constant and known. What
about b;, (1 = 1,2,--- ,K,7 # k)? We will return to answer this question in the

next section where we summarize the two-level threshold algorithm.

® Region & : 0 < g < €. This case is similar to the above case, i.e.
—€ < yr < 0, except the two hypotheses H_; and H; are swapped. In other words
H, is little bit more likely than H_,. However, the difference between them is not
significant so that we could not simply select H; as the dominant one. The same

discussion stands for this case as in the previous case, so we do not repeat it.

o Region 4 : §r > e. This case is similar to the case where i < —e, with
H_, and H; being swapped. H; is much more likely than H_; and the difference
between them is observable. The decision goes for H;.

From the above discussion we may deduce the following facts: (i) when g is
in the neighborhood of zero, i.e. —e < §r < €, where € is a small positive value,
the decorrelating detector is likely to fail; (ii) when § is not in the neighborhood

of zero, the decorrelating detector gives a reasonable estimate of the transmitted
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bit by. This leads us to develop a new detection algorithm, namely the two-level

threshold algorithm.

3.3.3 Two-Level Threshold Algorithm

The two-level threshold algorithm consists of two steps as follows (Figure 3.10.

Step 1 Use the decorrelating filter, R~!, and threshold devices to find ¢ and i)d,

respectively.

yd - (3.19)
b =sgn(y)

Step 2 Cycling through the outputs of the decorrelating filter, if § is in the neigh-

borhood of zero, i.e. —e < §; < ¢, then

b =arg max (2bTWy — bT"WRWD), (3.20)
bre{—1,+1}
by=b§,l<k
by=bg, 1>k

and if g is not in the neighborhood of zero, then simply
b = b = sgn(ik)- (3.21)

As it was already shown, (3.20) reduces to:

52 = sgn(qx)

k—1 K
G =Ye— D Rip/wi b5 — > Rip/u; b

i=1 i=k+1

(3.22)
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Now the answer to the question on page 74 is clear. To calculate 52 in (3.20), 55,

it IREN 1 e
1 1
Matched Filter 1 7\' L
y 3 be
. A
Matched Filter 2 H—" 2 2| if-e<y,<e 2
A
nt) -1 bi = sgn(qy)
. X R
else
. " )
- b, = sgn(yy)
» b
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Matched Filter K H—" 2K K K
\_ o J
Matched Filter Bank

Figure 3.10: Two-level threshold detector

(i=1,---,k—1)and 8, (i=k+1,---, K) are used.

In Step 2, we have proposed an inspection strategy which, in comparison with
the two-stage detector, results in a lower computational complexity by decreasing
the number of elements in b that must be modified. We will discuss this in detail
later. It is worthwhile to mention that the outputs of the decorrelating filter are
compared with two levels, i.e. —¢ and €, whereas in the decorrelating detector they

are compared with one level, i.e. 0. Hence the name two-level threshold.

3.4 Probability of Error

In this section we try to derive the probability of error for the two-level threshold

detector. Since this detector employs the latest estimates of the bits to estimate the
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interfering signal, the probability of error is not necessarily the same for different
users. First we consider user 1. Since b; takes only two equiprobable values —1 and

+1, the probability of error for user 1 can be written as

1 s 1
Pt = §p[b§ =1[b=-1]+ EP[bi =—1]b =1j (3.23)

Now we evaluate the first probability in (3.23). The new algorithm suggests the
estimated bit b; = 1 provided that; i) §; > e or ii) —e < §; < € and ¢ > O.
Therefore, the first probability in (3.23) can be written as

PbS=1|b =—1]=P[jy > €| b =—1] +
(3.24)

P[—e<§1<e,q1>0|61=—1]

The first term in (3.24) can be easily calculated. As we saw in Section 2.10 i
is a Gaussian random variable with conditional mean and variance as —,/w; and

(R71)1,1No/2, respectively. Consequently we can write

VW + € )
V(R™Y)11No/2
0+
= 9 SR LN

P[g1>elb1=—1]=Q(
(3.25)

)

A -
where we have defined 8+ = ,/w; + € for convenience.

Now we calculate the second probability in (3.24). First we expand g, as follows.



3.4 Probability of Error

78

From (3.22)

K
Q1 =Y — Z Rl,j\/wjb?
j=2

l
M=

K
Rij(/W3b; +m;) — D Ru /bt (3.26)
=2

K

= Ry, (VWb +m) + >_[Ruy/w5(b; — b%) + 1]

=2

=1

LY
i

As we saw in the previous section, to estimate the multiuser interference component
we use the latest updates of Ej- For user 1, however, Bj, j=2,---, K, are all obtained
from the output of the decorrelating filter. In other words, to evaluate ¢; in (3.26),

we use 5? which is calculated as

b = sgn ()

(3.27)
= sgn(y/w;b; + 1)
From (3.26) and (3.27), q; can be rewritten as
K
@1 = Ri1(vwiby +m) + Z[Ru\/wj(bj — sgn(y/w;b; — n5)) + 04 (3.28)
i=2

The second term in (3.28) obviously depends only on B3; = [bg,--- ,bg]T and ; £
[m2, - - - ,nk]T. We denote it as k(8,,n,) to explicitly show its dependence on both
B, and n,. Using this notation and (3.28), we express the second probability in
(3.24) as

Pl-e<fi<&q >0|b=~1] = &, (&0, (¥a(Br,m)}}  (3.29)
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where

1/1—1(,31:"71) = P[e— < m < 9+7 T > \/'w—l_ %L:l_l) I .317 nl] (3'30)

and 0~ is defined as §~ £ ,/w; — e. Eg, denotes expectation over the ensemble of
identical uniformly distributed 3, € {—1,+1}*~1. &, denotes the expectation over
statistically correlated Gaussian random variables n;, (¢ = 2,--- , K). To evaluate
this expectation, of course, the calculation of a joint (K — 1)-dimensional Gaussian
distribution function, f(n.,--- ,nk), is required. On page 61 we showed that the
covariance matrix of vector n is Cov(n) = Z2R~!. From this we may notice that
the covariance matrix of the random variables n;, (i = 2,---,K) can be easily
determined, Cov(n;) = Z2(R™'),,, where (R™!);; is a K — 1 x K — 1 matrix
obtained by removing row 1 and column 1 of matrix R~!. We know that once
the covariance matrix of some statistically dependent Gaussian random variables is
known their joint pdf is determined [49].

Now let us return to Equation (3.30). This equation suggests that to calculate
the probability of error we need to know the conditional probability density function
(pdf) of m, denoted as f,|3,,n,- Since the vector of transmitted information bits
B, is independent of the noise vector 7;, henceforth the conditional pdf of n; is
denoted as fy,n,- The conditional pdf fy ;, may be expressed as the ratio between

two joint probability distribution functions

fnsme, - mx) _ f(m)
f(1721"'777K) f("'h)

Jonpm, (m | 1) = (3.31)

We already mentioned that f(77,) is easy to compute. On the other hand, as we

know the covariance matrix of vector 7 is %QR'l, hence f(n) is easy to calculate
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r

8+ K 2 —
o- Soum, (M | 111)dm P UL — _(%11_.?1_) <0,

= 0+ - K ¥
Uor(Bum) =4 [T i g (e L) 67 < /i — =Bum) < g,
L1

. K ) )
0 10+ < g — =B,
(3.32)
To simplify (3.32), a limiter function ¢(-) is defined,
¢
0~ ;x <O~
(z) = { ¢ - <z<@t (3-33)
gt ;0 <z
Using (3.33), (3.32) can be rewritten as
g+
vaBum)= [ el | )dn (3.34)
S(vBr— =5 )

Similarly it can be proved that the second probability in (3.23) is obtained as

9+

P = —1b, =1] = O TE s

) +gﬁl{5m {¥1(B1.m)}} (3.35)

where

—~¢(v@r+ el

¥(Bromy) = / Fontns (1 | 11) (3.36)

—o+

Finally from Equations (3.24), (3.25), (3.29) and (3.35) we can write an expression
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for the probability of error of the new algorithm for user 1.

9+
V(R71)1,1No/2

Pr =9 )+ ‘;’gﬂl{gfil{lﬁq(ﬂn ) + U8B, m)}} (3.37)

where ¥_;(8,,m,) and ¥:(8,,n,) are defined as (3.34) and (3.36), respectively.
Using Equations (3.31), (3.34), (3.36) and (3.37) we may notice that the compu-
tation of &, {®_1(B1, m) +¥1(B, M)} requires two K-fold integration of the joint
pdf f(n). Since f(7n) is the pdf of statistically dependent Gaussian random vari-
ables, we have to use numerical methods to find the integrals. On the other hand,
to take the expectation over B, we need to calculate those integrals 251 times.
The probability of error for other users, for instance user &, requires more cau-
tion. Basically the approach will be the same, except that the definition of funec-
tion x(-) (which in this case is a function of By £ [by, -+ , b1, brs1,- - - , bx]T and
Me = [M,-- 2 Me—1, Mes1, - - - > Nk]T) will be different. Since this leads to a much
more complicated calculations compared to calculations for user 1, we ignore it.
The large amount of numerical computations for the probability of error, espe-
cially when the number of users is large, is even more than the required calculations
for computer simulations. Consequently, once again as we did in Chapter 2, we
use computer simulations to obtain the bit-error-rate of the two-level threshold de-
tector. Figure 3.11 shows the simulation results for a 16-user DS-CDMA system
which we characterized in Section 2.6. For the two-level threshold detector, we have
chosen € = 0.1,/wg. Of course this value affects the BER. In Chapter 5, where
we deploy this detector in multipath fading channels, we investigate how the BER
varies with e. In Figure 3.11 we have plotted the average BER of the two-level
threshold detector as well as those of the decorrelating detector and the two-stage

detector which utilizes a decorrelating detector as the first stage. The average BER
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Figure 3.11: Comparison of bit-error-rates in an AWGN channel; (a) decorrelating,
(b) optimum, two-level threshold, two-stage (decorrelating 1st stage)

of the optimum detector is plotted as a benchmark too.

3.5 Computational Load

In this section we find the computational complexity of the two-level threshold de-
tector and compare it with the computational complexity of the two other detectors,

the decorrelating detector and the two-stage detector which uses a decorrelating de-

tector as its first stage.
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As we saw the new detector consists of two steps. The first step is a decorrelat-
ing filter, and the second step is examining the outputs of the decorrelating filter
so that if they are in a neighborhood of zero we use (3.22), otherwise we simply
use a threshold device. In Chapter 2, Section 2.10, we derived the computational
complexity of a decorrelating filter, i.e. Step 1 of the new detector. Here we derive
the computational load of the Step 2. Notation (2 is used for this purpose.

First let us consider user 1. We calculate the computational load required to
detect b, and denote it as ©2. Let us also review the function of the new detector.
If the output of the decorrelating filter, ¥, is less than —e or greater than €, then
the only required computation is a compare. Otherwise, if §; is between —e and
€ then b, is computed using (3.22), which obviously requires more than just one
compare. We notice that the computational load depends on the magnitude of 7.
Since ¢, is a random variable, the computational load is a random variable too. In
order to have a measure of computational load so that we compare this detector
with other detectors in this respect, we find the average of the computational load.
To accomplish this, first we calculate the probability of 7x being between —e and €
and denote it as pg. We recall that g is a Gaussian random variable with a mean
of \/wr or —/wg and with variance o2. Due to the symmetrical property of the
Gaussian distribution, regardless of whether the mean of J is \/wx or —\/Wk, Pk

can be expressed by the Q-function as,

P = Q) _ otV (339

Now, the average computational load involving the detection of b;, i.e. O%, can
be calculated as follow. There is a compare needed to check whether 7, is between

—e and € or not. If §; is not in this region there is another compare needed. This
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event happens with a probability of 1 — p;. Otherwise, §; lies between —e and e.
Then according to Equation (3.22), K —1 more compares are needed to calculate b;,
1=2,---,K,and 2K — 1 multiplies and adds are needed to calculate (3.22) as well
as a compare to find b,. This happens, of course, with probability p;. Therefore,
the average computational load required to calculate b;, denoted by @2(K), can be

written as,

O}K)=1+(1—p) x1+p(3K —2) (3.39)

Similarly O%(K), k = 2,--- , K can be calculated. However, we notice here that if
—e < Y < €, there is no more a need to a compare to determine the sign of g,
since it has already been determined during the calculation of &;. Also there is no
need to calculate 5,-, t=1,---,K, 1 # k, since they have been already calculated
in the prior calculations. Thus the average computation load required to evaluate
Equation (3.22) for users 2 and higher, assuming that 5,-, i=1,---,k—1 are already

calculated, is
or(K) =1+p:(2K — 1) (3.40)

The above equation, however, does not include the total calculations required to
detect Ek, since it does not count the computational load to calculate 5,», i =
1,---,k — 1 (We notice that to calculate by, according to (3.22), we need to know

Ei, t=1,--- .k —1). Therefore the total computational load in Step 2 required to
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detect by is,

=2 . (3.41)
=1+ (1—p) +p(B3K —2) + Y _[1+p(2K —1)]

=2

Finally we add the computational load required to perform the decorrelating
filter to (3.39) and (3.41). The general expression for the computational load of the

new detector is

k
Ow(K)=2K>—K+1+(1—p)+p(3K —2) + Z[l +p;(2K —1)] (3.42)

=2
A particular case of interest is when p; = ps = --- = pg = p. If this is the case,
then,
Ow(K) =2K? — K +k+ (1 —p) +p[(2k+ 1)K — (k +1)] (3.43)

3.5.1 Comparison of Computational Loads

In this section we compare the computational load of the new detector with that
of the decorrelating detector and the two-stage detector which uses a decorrelating
detector as the first stage. Equation (3.41) shows the computational load required
to calculate I;k. We notice that detection of bx involves detection of all other bits 5,-,
t=1,---, K—1. Therefore ifin (3.41) we set k = K, it will yield the computational

load required to detect all transmitted b;, (¢ = 1,---,K). By setting k = K in
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(3.41), we have

Ox(K) = O(K) =2K?+ (1 —p) +p[2K* — 1] (3.44)

We compare (3.42) with (2.37) and (2.60), i.e. the total computational load of the
decorrelating detector and the two-stage detector while detecting all transmitted
bits. Of course, (3.44) depends on p, and the latter , itself, depends on € and SNR

as it was defined in (3.9).
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Figure 3.12: Comparison of computational loads at SNR. = 0 dB; (a) decorrelating,
(b) two-level threshold € = 0.1,/wy, (c) two-level threshold € = 0.2,/wg, (d) two-
level threshold € = 0.3\/wk, (e) two-level threshold € = 0.4,/w, (f) two-stage
(decorrelating 1st stage)
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First, we consider three different values for SNR; 0 dB, 5 dB and 10 dB. In
Figures 3.12, 3.13 and 3.14, we have plotted the computational load of the two-level
threshold detector, corresponding to four values for € 0.1\/wg, 0.2\/w, 0.3\ /wk

and 0.4,/wg. The plots are versus K, the number of users. As it is clear from all
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Figure 3.13: Comparison of computational loads at SNR = 5 dB; (a) decorrelating,
(b) two-level threshold € = 0.1,/wg, (c) two-level threshold € = 0.2\/wg, (d) two-
level threshold € = 0.3,/wg, (e) two-level threshold ¢ = 0.4,/w, (f) two-stage
(decorrelating 1st stage)

figures, the computational load of the two-level threshold detector, for all examined
SNRs and e is a little bit more and very close to that of the decorrelating detector.

The huge gap between the computational load of the two-stage detector on one side
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Figure 3.14: Comparison of computational loads at SNR = 10 dB; (a) decorrelat-
ing, two-level threshold (e = 0.1,/wWk, € = 0.2,/wg, € = 0.3\/wk, € = 0.4,/wg), (b)
two-stage (decorrelating lst stage)

and the computational load of the new detector and the decorrelating detector on
the other side is clear. This fact is more evident for higher SNRs, for instance 10
dB.

To show how the computational load of the new detector varies with respect to
SNR, we have plotted O;5(16) versus SNR in Figure 3.15. From Figure 3.15 one can
see that as the SNR increases, the computational load the new detector decreases.
Indeed for SNRs higher than 10 dB the computational load of the new detector is not

differentiable from that of the decorrelating detector. It is worthwhile to mention
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Figure 3.15: Comparison of computational loads where K = 16; (a) decorrelating,
(b) two-level threshold e = 0.1,/wg, (c) two-level threshold ¢ = 0.2,/wg, (d) two-
level threshold € = 0.3,/wg, (e) two-level threshold ¢ = 0.4\/wg, (f) two-stage
(decorrelating 1st stage)
that as expected the computational load for both the decorrelating detector and the
two-stage detector does not vary with SNR.

The above investigation suggests that generally the computational load of the
two-level threshold detector is slightly more than that of the decorrelating detector,

such that in most cases the difference is not considerable, whereas, the computa-

tional load of the two-stage detector is much more than both.
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3.6 Some Comments

In this Chapter we have proposed a new algorithm for multiuser detection. Also,
the probability of error and the computational load of the proposed detector are
analyzed. The function of this detector can be described briefly as follows. If the
magnitude of the output of the decorrelating filter is large enough, this detector
performs exactly like a decorrelating detector. Otherwise, if the magnitude of the
output of the decorrelating filter is small and in the vicinity of zero, it uses (3.22)
to find bg. (3.22), however, follows almost the same approach that a multistage
detector utilizes to maximize (3.13). Therefore, the position of the new detector
amongst other multiuser detection schemes is somewhere between the decorrelating
detector and the two-stage detector with a decorrelating detector as the first stage.
The radius of the vicinity of zero, €, acts as a criterion to determine whether the
outputs of the decorrelating filter are reliable or not. It also specifies whether the
new detector performs similar to the decorrelating detector or to the two-stage
detector. The smaller the ¢, the more the new detector acts like the decorrelating
detector. On the other hand, the larger the ¢, the more the new detector acts like
the two-stage detector.

There is still one fact remaining that is worthwhile to mention. Comparing
Equation (3.22) with (2.54), one may notice that there is a slight difference between
the maximization approach of the two-stage detector and that of the new detector.
Let us consider the detection of b;. We assume Uk is in the neighborhood of zero,
i.e. Jr € [—¢,€|. Based on (2.54), to compute b, the two-stage detector takes val-
ues for 5j, Jj=1---,k—=1,k+1,--- , K, from the first stage, that is the outputs
of the decorrelating detector. Whereas, according to (3.22), to compute b, the

two-level threshold detector takes values for l;]-, j=1,---,k—1, from the previous
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detected bits, and for b;, j = k + 1,--- , K, from the outputs of a decorrelating
detector. This way we have tried to deploy the most recent information in hand
to decrease the probability of error. This difference between the new detector and
the two-stage detector is similar to the difference between the Jacobi method [60]
and Seidel method [61] in solving the linear system Az = b iteratively. The former
uses an iteration method by simultaneous displacement (same idea as the multi-

stage detector), while the latter uses successive displacement (same idea as the new

detector).

3.7 Discussion

In this chapter a suboptimum multiuser detection was introduced, whose complexity
is linear in the number of users. The two-level threshold detector performs closely
to the optimum detector, while its complexity is slightly more than that of the
decorrelating detector.

The decorrelating filter removes completely the MAI, hence the outputs of the
decorrelating filter contain only the desired signal embedded in noise. The likelihood
ratio test in such a case suggests a simple threshold device with one level of threshold
(assuming binary signaling). However, as shown the decision of the likelihood ratio
test is not reliable when the outputs of the decorrelating filter are in the vicinity of
zero. In such a case, we propose to use the multiuser maximum likelihood detector
(optimum detector). However, to decrease the computational load we choose to
maximize locally the likelihood expression.

The radius of the neighborhood of zero, i.e. €, plays an important role in the
performance as well as in the computational complexity of the new detector. When

€ = 00, the two-level threshold detector becomes the two-stage detector which uses
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a decorrelating detector as the first stage. When € = 0, the two-level threshold
detector is reduced to the standard decorrelating detector. Intuitively it seems that
€ = 00 is an optimum value which yields the best bit-error-rate. In Chapter 5 we
will see whether this is true or not.

Simulation results show that the two-level threshold detector can achieve a near-
optimum BER. The increased computational load compared to the decorrelating
detector is not that much and could be ignored at high SNRs. In Chapter 5, this
detector is compared with the other multiuser detectors in a multipath channel.
But before doing this, let us quickly characterize the multipath channel considered

in this dissertation.



Chapter 4

Radio Propagation Channels

Thus far in this dissertation the multiuser detection for DS-CDMA systems over the
AWGN channel has been considered. Given the fact that CDMA transmissions are
frequently made over channels that exhibit fading and/or dispersion, it would seem
appropriate to design receivers for such channels. Henceforth we consider multiuser
detection in multipath channels. The mobile radio channel places important re-
strictions on the performance of wireless communication systems. The transmission
path between the transmitter and the receiver may change from simple line-of-sight
(LOS) to one that is obstructed by terrain, mountains or buildings. Unlike wired
channels that are stationary and predictable, radio channels are random and are not
easy to be analyzed. Modeling the radio channel has been one of the most compli-
cated steps of mobile radio system design, and is usually done in statistical method,
based on empirical measurements made particularly for a specific communication
system or spectrum allocation.

This chapter has the following outline. Section 4.1 gives an introduction to
radio wave propagation. Section 4.2 reviews the impulse response model of the

multipath channels. In Section 4.3 we explain how one could obtain a discrete-time
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impulse response model for a communication channel from its continuous impulse
response. Section 4.4 introduces some useful parameters of multipath channels.
Section 4.5 describes briefly different types of multipath fading. In Section 4.6 the
two-ray fading model of the channel is explained, and finally in Section 4.7 a brief

discussion is given.

4.1 Radio Wave Propagation

There are different mechanisms behind electromagnetic wave propagation, but gen-
erally they can be attributed to three phenomena, namely: reflection, diffraction,
and scattering. Because of multiple reflections from various objects and obsta-
cles, the electromagnetic waves travel along different paths with different lengths

(Figure 4.1). The interaction between these waves causes multipath fading at a

Direction

to Transmitter \

Building \V%

Receiver
Antenna

O T o O

Figure 4.1: Illustration the mechanism of the multipath radio propagation.

specific location, and the strengths of the waves decreases as the distance between

the transmitter and receiver increases. Propagation models have been considering
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mobile channels from two standpoints:

e Predicting the average received power at a given distance from the transmitter;

and

o Considering the variability of the signal power in close spatial proximity to

the particular location.

Propagation models that predict the mean signal power for an arbitrary transmitter-
receiver separation distance are useful in estimating the radio coverage area of a
transmitter and are called large-scale propagation models. On the other hand, prop-
agation models that characterize the rapid changes of the received signal strength
over very short travel distances (a few wavelengths) or short time durations (on the

order of seconds) are called small-scale or fading models (Figure 4.2).
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Figure 4.2: Experimental record of received signal envelope in an urban area
which shows the small-scale (solid curve) and the large-scale (dashed curve) fading.
(from [2])

Throughout this dissertation we have assumed that the average signal power is

known, thus we can neglect the large-scale effects. In the following sections we will
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concentrate on the small-scale or fading model of the channel.

4.1.1 Small-Scale Multipath Propagation

Small-scale fading explains the fast variation of the amplitude of a radio signal
over a short period of time or travel distance. Fading is caused by interference
between two or more versions of the transmitted signal which arrive at the receiver
at slightly different times. These waves, called multipath waves, combine at the
receiver antenna and result in a signal which may vary widely in amplitude and
phase, depending on the distribution of the intensity and relative propagation time
of the waves and the bandwidth of the transmitted signal.

In urban areas, fading occurs because the height of the mobile antennas are
below the height of surrounding buildings, so there is no LOS path to the base
station. Even when the LOS path exists, multipath still occurs due to reflections
from the ground and other objects. The incoming radio waves arrive from different
directions with different propagation delays. These multipath components, combine
constructively or destructively at the receiver antenna, and cause the signal to
distort or fade. Note that even when a mobile receiver is stationary, the received
signal may fade because of movement of other objects in the radio channel. As a
result of the relative motion between the mobile and the base station, each multipath
wave experiences a shift in frequency. The shift in the received signal frequency due

to motion is called a Doppler shift.
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4.2 Impulse Response Model of a multipath Chan-

nel

The small-scale variations of a mobile radio signal can be directly related to the
impulse response of the mobile radio channel. The impulse response contains all
information necessary to simulate the channel. Indeed a mobile radio channel may
be modeled as a linear filter with an impulse response that changes with respect
to time [62]. The impulse response is a useful characterization of the channel,
since it may be used to predict and compare the performance of many different
mobile communication systems and transmission bandwidths for a particular mobile
channel.

In many studies, where the multipath channel is researched (see e.g. [63]), it has
been shown that due to the motion of a mobile receiver, or because of the motion of
objects surrounding a stationary receiver, the received signal r(¢) can be expressed
as a convolution of the transmitted signal s(¢) with a time-varying channel impulse

response h(t, T):

r(t) = /oo s(T)h(t, T)dr (4.1)

—00

The variable ¢ in (4.1) represents the time variations due to motion, whereas 7
represents the channel multipath delay for a fixed value of . If the multipath
channel is assumed to be a bandlimited bandpass channel, then A(t,7) may be
equivalently described by a complex baseband impulse response c(¢,7) with the

input and output being the complex envelope representations of the transmitted
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and received signals, respectively [55,64]. That is,

v(t) = /00 u(T)c(t, T)dT (4.2)

—0oa

where u(t) and v(t) are lowpass equivalents of s(¢) and r(t), respectively, where

s(t) = R{u(t)e? -t} (4.3)

r(t) = R{v(t)e> =} (4.4)

fc is the carrier frequency and R{-} denotes a real part.

4.3 Discrete-Time Channel Impulse Response

It is useful to discretize the multipath delay axis 7 of the channel impulse response
into equal time delay segments called excess delay bins. In this case, each bin has a
width equal to 7;4; —7; = A7. Let us set ; = 1A, for i =0 to L —1, where L repre-
sents the total number of possible equally-spaced multipath components, including
the first arriving component. Any number of multipath signals received within the
1th bin are represented by a single resolvable multipath component having a delay
7;. Note that 79 = 0 is the excess time delay of the first arriving multipath com-
ponent, and the propagation delay between the transmitter and receiver is ignored.
The maximum excess delay of the channel is given by LAT.

Since the received signal in a multipath channel consists of a series of attenuated,

time-delayed, phase shifted replicas of the transmitted signal, the baseband impulse
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response of a multipath channel can be expressed as

L-1

c(t, ) = Z o (t, 7) exply2m feri(t) + ¢:(¢, T)] 6 (T — 7:(2)), (4.5)

=0

where o;(t,7) and 7;(¢) are the real amplitudes and excess delays, respectively,
corresponding to the ¢th multipath component at time ¢. The phase term 27 f.7;(¢) +
#i(t, T) in (4.5) represents the phase shift due to free space propagation of the ith
multipath component. In general, the phase term is simply represented by a single
variable 6;(t, 7). Note that some excess delay bins may have no multipath at some
time £ and delay 7, since ;(¢,7) may be zero. In other words there are no arrivals
within some excess delay bins. In equation (4.5), N is the total possible number
of multipath components (bins), and §(-) is the unit impulse function. Figure 4.3
illustrates an example of different snapshots of c(¢, 7).

If the channel impulse response is assumed to be time invariant, then the channel

impulse response may be simplified as
L-1

o(r) =) e %S(r —7) (4.6)
=0

For small-scale channel modeling, the power delay profile of the channel, P(t; 7), is
defined as

P(t;r) £ le(t; 7)[? (4.7)
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, ¢(tT)

Figure 4.3: An example of a time varying discrete-time impulse response model
for a multipath radio channel.

4.4 Some Parameters of Multipath Channels

Different multipath channel parameters are derived from the power delay profile,
P(1). Power delay profiles are found by averaging instantaneous power delay profile
measurements over a local area in order to determine an average small-scale power
delay profile. Figure 4.4 shows a typical power delay profile plot for an indoor

channel, determined from a large number of sampled profiles.
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Figure 4.4: Measured power delay profile within a large six-story building [2].

4.4.1 Time Dispersion Parameters

To compare different multipath channels some parameters which quantify the mul-
tipath channel are used. The mean excess delay and rms delay spread are multipath
channel parameters that can be determined from a power delay profile. The time
dispersive properties of wideband multipath channels are most commonly quantified
by their rms delay spread (7;ms) and mean excess delay (7). The rms delay spread
is the square root of the second central moment of the power delay spread and is

defined by [65]

e — 7)2 a2\ 2
S (Zk(ikaﬁ) k) (4.8)
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. Frequency| rms Delay
Environment (MEHz) Spread (Toms) Notes Reference
1300 ns avg.
Urban 910 600 ns st. dev. New York City (66]
3500 ns max.

Urban 892 10-25 us San Francisco [67]
Suburban 910 200-310 ns Averaged typical case | [68]
Suburban 910 1960-2110 ns | ‘rveraged extreme | o)

case

Indoor 1500 10-20 ns Office building [69]

Indoor 850 270 ns max. Office building [70]

70-94 ns avg. Three San Francisco
Indoor 1900 1 1470 ns max. buildings [71]

Table 4.1: Typical measured values of rms delay spread. (from [1, page 162])

Where 7 is the mean excess delay defined as:

Dok ai"'k _ >k P(1e)me
>k O B >k P(7e) (49

T =

The above expression shows that 7 is the first moment of the power delay profile.
These delays are measured relative to the first detectable signal arriving at the
receiver at 79 = 0. Equations (4.8) and (4.9) do not rely on the absolute power
level of P(7), but only the relative amplitudes of the multipath components within
P(t). Typical values of rms delay spread are on the order of microseconds in
outdoor mobile radio channels and on the order of nanoseconds in indoor radio
channels. Table 4.1 shows the typical values of rms delay spread based on the
empirical measurements.

It should be noted that the power delay profile and the magnitude frequency
response of a mobile radio channel are related through the Fourier transform. There-

fore, it is possible to obtain an equivalent description of the channel in the frequency
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domain using its frequency response characteristics. Analogous to the delay spread
parameters in the time domain, coherence bandwidth is used to characterize the
channel in the frequency domain. The rms delay spread and coherence bandwidth
are inversely proportional to one another, although their exact relationship is a

function of the exact multipath structure.

4.4.2 Coherence Bandwidth

Coherence bandwidth, B, is a statistical measure of the range of frequencies over
which the channel can be considered flat. In other words, coherence bandwidth is the
range of frequencies over which two frequency components have a strong potential
for amplitude correlation. Two sinusoids with frequency separation greater than B,
are affected quite differently by the channel. The coherence bandwidth is usually

defined as the reciprocal of the rms delay spread [72], that is,

1

Trms

B, ~ (4.10)

It is worthwhile to note that an exact relationship between coherence bandwidth
and rms delay spread does not exist, and Equation (4.10) is a rough estimate.
Generally, spectral analysis techniques and simulation are required to determine
the exact impact that time varying multipath has on a particular transmitted signal
[73,74]. For this reason, accurate multipath channel models must be used in the

design of specific modems for wireless applications [75, 76].
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4.5 Various Small-Scale Fadings

Depending on various signal parameters (such as bandwidth, symbol period, etc.)
and various channel parameters (such as rms delay spread and Doppler spread), dif-
ferent transmitted signals will undergo different types of fading. The time dispersion
and frequency dispersion mechanisms in a mobile radio channel cause four possible
effects. While multipath delay spread leads to time dispersion and frequency selec-
tive fading, Doppler spread leads to frequency dispersion and time selective fading.

The two propagation mechanisms are independent of one another.

4.5.1 Time Delay Spread Fading Effects

Time dispersion due to multipath causes the transmitted signal to undergo either

flat or frequency selective fading.

Flat Fading

If the mobile radio channel has a constant gain and a linear phase response over
a bandwidth which is greater than the bandwidth of the transmitted signal, then
the received signal will undergo flat fading. In flat fading, the multipath structure
of the channel is such that the spectral characteristics of the transmitted signal
are preserved at the receiver. However, the strength of the received signal changes
with time, due to variations in the gain of the channel. The distribution of the
instantaneous gain of flat fading channels is important in designing radio links, and
the most common amplitude distribution is the Rayleigh distribution. The Rayleigh

flat fading channel model assumes an amplitude which varies in time according to
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the Rayleigh distribution. To summarize, a signal undergoes flat fading if

B; < B, and Ts L Trms (4.11)

where Tj is the reciprocal bandwidth (e.g. symbol period) and B; is the bandwidth

of the transmitted modulation.

Frequency Selective Fading

If the channel has a constant-gain and a linear phase response over a bandwidth
that is smaller than the bandwidth of the transmitted signal, then the channel is
referred to as frequency selective fading. Under such conditions the channel impulse
response has a multipath delay spread which is greater than the reciprocal band-
width of the transmitted message waveform. When this occurs, the received signal
includes multiple versions of the transmitted waveform which are faded and delayed
in time. Frequency selective fading is due to time dispersion of the transmitted
symbols within the channel. Thus the channel induces ISI. When analyzing mobile
communication systems, statistical impulse response models or computer generated
or measured impulse responses are generally used for analyzing frequency selective
small-scale fading. An example of a statistical model is the two-ray Rayleigh fading
model, which considers the impulse response to be made up of two delta functions.
The delta functions independently fade and have sufficient time delay between them
to induce frequency selective fading upon the applied signal.

To summarize, a signal undergoes frequency selective fading if

B, > B, and Ts < Trms (4.12)
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A common rule of thumb is that a channel is frequency selective if 7, > 0.17%,

although this is dependent on the specific type of modulation used.

4.5.2 Doppler Spread Fading Effects

Depending on how rapidly the transmitted baseband signal changes as compared to
the rate of change of the channel, a channel may be classified either as fast fading

or slow fading.

Fast Fading

In a fast fading channel, the channel impulse response changes rapidly within one
symbol duration. That is, the coherence time of the channel is smaller than the
symbol period of the transmitted signal. Therefore, a signal undergoes fast fading
if

T, > T, and B; < By (4.13)

where T, is the coherence time usually defined as

T.~ — (4.14)

Slow Fading

In a slow fading channel, the channel impulse response changes at a rate much
slower than the transmitted baseband signal u(t). In this case, the channel may be

assumed to be static over one or several reciprocal bandwidth intervals. Thus, a



4.6 Two-ray Rayleigh Fading Model

107

signal undergoes slow fading if
T, K< T; and Bs; > By (4.15)

It should be clear that the velocity of the mobile (or velocity of objects in the
channel) and the baseband signaling determines whether a signal undergoes fast

fading or slow fading.

4.6 Two-ray Rayleigh Fading Model

In modern mobile communication systems with high data rates, it has become
necessary to model the effects of multipath delay spread as well as fading. A com-
monly used multipath model is an independent Rayleigh fading two-ray model. The
two-ray model is often used in the theory of mobile communications, since it can
represent most important properties of a channel while still being simple enough
to allow analytic computations as well as simulations (see e.g. [77-81]). Despite
these advantages, we have to keep in mind that the two-ray model is only a first
order approximation and usually does not provide an exact physical description of
an arbitrary mobile radio channel. Figures 4.5 and 4.6 show the impulse response
and a block diagram of the two-ray independent Rayleigh fading channel model,

respectively. The impulse response of the model is represented as
c(t) = 01 €7®16(t) + ae?®25(t — 1) (4.16)

where a1, and oy, are independent and Rayleigh distributed, ¢; and ¢, are inde-

pendent and uniformly distributed over [0, 27],and 7 is the time delay between the
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A 0(1

Figure 4.5: Impulse response of the two-ray Rayleigh fading model of channel

two rays. By setting as equal to zero, the special case of a flat Rayleigh fading

channel can obtained as

c(t) = a1 e7®16(t) (4.17)

By varying 7y as well as a; and a; in (4.16), it is possible to create a wide range

input . /X\ /-_I-\ output

N

., exp(j 9,)

Figure 4.6: Two-ray Rayleigh fading model
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of frequency selective fading effects. Figure 4.7 shows the instantaneous frequency

response of the two-ray fading model. From (4.8) we see that the rms delay spread

"

20 log(ax + o)

Magnitude (dB)

20 log( lal~ azl ) I N .
Vis

A
Y.

Frequency

Figure 4.7: Frequency response of the two-ray fading model of channel

is proportional to 7, i.e. the larger 7, the larger 7.ms. On the other hand, in Fig-
ure 4.7, we observe that the larger 7y, the smaller inter-fade bandwidth. Therefore,
by increasing 79, we can create a severe frequency selective channel. «; and o, may
also be used to change the rms delay spread, i.e. the amount of frequency selec-
tivity. But as we observe in Figure 4.7, these values have a more direct impact on
the depth of the fades than on the frequency selectivity. Of course, this model has
some drawbacks. The major drawback is that it cannot create fades with different

depths. Also the fades are equally spaced in frequency during one snapshot of the

frequency response.
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Nonetheless, the simplicity of the two-ray fading model, in terms of analytic
computations and computer simulations, motivates us to use it in our channel sim-
ulations. It is important to recall that our intention in this dissertation is to compare
the performance of various multiuser detectors. Therefore, a very precise model of

the channel does not seem necessarily crucial.

4.7 Discussion

In this chapter we reviewed quickly the radio propagation channels. The discrete-
time impulse response seems an appropriate way to model a multipath fading chan-
nel, especially when the analyses and/or the simulations are performed in time
domain. Despite its drawbacks, a two-ray Rayleigh model can achieve a large va-
riety of multipath fading channels from flat fading to frequency selective fading.
Since in this dissertation, wherever we deal with a multipath channel, our goal is
to compare different multiuser detectors is such a environment, a two-ray fading

model appears to be suitable for modeling multipath channels.



Chapter 5

Multiuser Detection in Multipath

Environment

In Chapter 2 various types of suboptimum multiuser detection schemes as well as the
optimum and the conventional detectors are studied. In Chapter 3 we introduced
a new suboptimum multiuser detector, namely the two-level threshold detector, as
well. We studied these detectors in the AWGN channel. Simulation results show
that the BER performance of the detectors are close provided that the spreading
sequences have good cross-correlation properties.

In the present chapter the multiuser detection in multipath channels is investi-
gated. We concentrate on frequency selective channels and use a two-ray model for
such channels as it was described in the previous chapter. The channel parameters
are assumed to be known perfectly. A general strategy, namely channel-matched
approach, is used to modify the multiuser detection schemes and then deploy them
in multipath environment. In this strategy the bank of matched filters at the front-
end of the multiuser detectors are matched to the channel. Correspondingly, the

relevant parameters of the detectors are changed compared to the detectors for the
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AWGN channel.

The rest of this chapter is organized as follows. In Section 5.2 previous work
in this area is summarized. Section 5.3 describes the contributions of the chapter.
In Section 5.3 the system model is presented. Section 5.4 provides us with two
different general approaches to design multiuser detections for multipath channels.
In Section 5.5 we compare these two approaches and choose the one with a better
BER performance. Section 5.6 explains the model for the multipath channel that
we have used for simulations. In Section 5.7 the simulation platform is reviewed.
In Section 5.8 all multiuser detectors are deployed in a multipath channel and their
performances are compared. Section 5.9 explains how we should choose the optimum
radius of the neighborhood of zero for the two-level threshold detector to obtain a
low BER while maintaining a low computational load. Section 5.10 presents a

discussion and summarizes the results

5.1 Previous Work

In the past six years multiuser detection theory has been extended to handle multi-
path fading channels. Zvonar and Brady [82] have developed detectors for a slowly
Rayleigh fading channel. They used a single-path fading model for the channel.
Later on they proposed the optimum multiuser detection and a linear suboptimum
multiuser detection scheme for frequency-selective Rayleigh fading channels [83-86].
Vesudevan and Varanasi [87-89] have developed detectors for a Rician fading chan-
nel. Fawer and Aazhang [90,91] generalized the idea of the multistage detector to
multipath channels. Zvonar used the suboptimal detector in [84] and proposed a
combined multiuser detection and diversity reception scheme for frequency-selective

channels [92,93].
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5.2 Contribution

This part of the dissertation provides a thorough study of different multiuser de-
tectors in multipath fading channels. The channel-matched approach is applied to
the previously proposed multiuser detectors besides the two-level threshold detector
proposed in this dissertation. Simulation results are used to compare the perfor-
mances of the multiuser detectors for a 16-user DS-CDMA system, which employs

Gold sequences of length 31 as the spreading sequences.

5.3 System Model

As we saw in the previous chapter, in mobile communication environments, since
there are many propagation paths with different delays between the transmitter and
the receiver, the transmitted signal components corresponding to these multipath
propagation paths arrive at different times.

We assume a multiuser system in a multipath environment. The impulse re-
sponse of the channel for the kth user, as we saw in Chapter 4, Section 4.3, can be

represented by a tapped delay line given by

L
Ck(t) = Z Ck,[(s(t - Tk,[) (5.1)
=1

Where L is the number of the propagation paths and ¢k, is the normalized fading
complex envelope of the kth user encountered with path [. There are K simultane-
ous users in the system being considered. Each of the simultaneous users transmits

its information symbol using the DS-CDMA signalling scheme. Therefore, the base-
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band received signal can be expressed as

K

5] L
r@) = Y 3 ) be(i)ce (@) Vwr(@)se(t —iT — 1s) +n(t)  (5.2)

i=—00 k=1 (=1

where n(t) is a zero-mean additive white Gaussian noise with power spectral density
o2. si(t) is the normalized spreading sequence and is zero outside the interval [0, 77,
with T being the information duration. bt (%) is the information symbol transmitted
by user k within epoch %, and i € {—oc0, 00} is the time interval index. i is the
kth user’s phase and wy (i) is the kth user’s received energy. wg(z), indeed, reflects

the normalization on ¢ (7)’s, so that
L
chyl(i)c,f,,,(z') =1, for 1<k<K (5.3)
=1

where * denotes the complex conjugate. In Equation (5.2) 7, is the delay on cg (7).
Without loss of generality we assume that 73; = 0 and other 7 ;’s lie within the

range of [0, T.

5.4 Approaches towards the detection

There are various methods considering the multiuser detection in multipath fading
environment. Generally, these methods follow two different approaches: i) Path-
by-path approach, or ii) Channel-matched approach. In this section we explain
these two approaches. In order to do so, we choose one of the multiuser detection
schemes described in Chapter 2, e.g. the decorrelating detector. In the primary
paper [94] that explicitly compared these two approaches, the decorrelating detector

was investigated, and that is the reason why we are using this detector as an example



5.4 Approaches towards the detection 115

now.

5.4.1 Path-by-path

The path-by-path approach assumes that each of the received signal corresponding
to the propagation paths is an independent interference, [84,95,96]. We consider the
system model in (5.2), and assume a slowly fading channel, which implies that c ;(3)
does not change during a symbol transmission time. Also, we assume T > Trns, i.€.
any intersymbol interference (ISI) due to the channel dispersion may be neglected
[65]. Having these assumptions we consider the received signal r(t) over only one

symbol duration, e.g. ¢ = 0. The noiseless signal from kth user is given by

L
ge(t) = cie™* J/wgs(t — Tit) = g () Wi liek (5.4)

=1

Using matrix notation, the single-user channel vector, ¢, is defined as
¢k = [ck1,Ch2,0 s Ck,L]T (5.5)
the single-user normalized spreading sequence vector , sk(t), is defined as
Sk(t) = [sk(t), se(t — Tk 2), -~ -, Skt — Tk,[,)]T (5.6)

Wi = JweZr, and ¥y = eI} (T, being the L x L identity matrix). Now we can

simplify the received signal as

K
r()) =) buge(t) +n(t) =g"()b+n(t), 0<t<T (5.7)
k=1
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where b = [by,b2,--- ,bk]T is a vector of data symbols from K users, and g(t) =
[91(8), 92(2), - - - . gx(t)]T- The equivalent spreading waveform vector can be ex-
pressed as g7 (t) = s7(t)W,¥,C, with the normalized spreading waveform vector,

s(t), defined as
S(t) = [3{(1‘,‘), Sg(t), T sll'('(t)]T’ (5'8)
The composite matrices, W, and ¥,, defined as

Wp = diag(W,, Wy, - -- ,Wk), (5.9)

\IIP = diag(\IIh \Il2s STy \DK)7 (510)

and the KL x K multi-channel matrix, Cp,, defined as
(Cl 0 --- 0 \

C, = il (5.11)

The path-by-path decorrelating detector passes the received signal r(¢) through
a bank of KL filters matched to the delayed, normalized spreading sequences of the
users. The outputs are sampled at the symbol interval T (Figure 5.1). It can be

shown that the resulting K'L vector may be expressed as

Y, = RyW,¥,Cob + m, (5.12)

where the KL x KL cross-correlation matrix of normalized spreading sequences,
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R,, is defined as

R, = /0 Ts(t)sT(t)dt. (5.13)

Let z, = \Ilf Ry 'y, be the outputs of the multipath signal decorrelator (Fig-
ure 5.1), where the matrix superscript H denotes conjugate transpose. For co-
herent BPSK signaling, we face the single-user problem of optimally combining
independently fading signals in correlated noise. Path-by-path detector combines
the different fading paths prior to decision making. To do this, we whiten the noise
with the filter (7}7)~!. This filter is obtained through the Cholesky decomposition

of the L x L matrix Rp[k,k] = TkH T, where Rp[k,k] is a partition of R, partitioned as

follow
/E)[m] Ropy - Ry, )
R, = Rpj21]  Bp2) (5.14)
: ‘RP[K_vi]
\Boixcs  + Raxxon  Borer

Following the whitening filter, maximal-ratio combining is performed for each user
by weighting signals proportionally to their strength and coherently combining them
prior to threshold detection. A comprehensive study of the path-by-path approach
is out of the scope of this dissertation. In [84,97] one can find detailed discussions

regarding a path-by-path decorrelating detector.
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5.4.2 Channel-matched

The other type of decorrelator combines all the received signal components trans-
mitted from the identical users prior to decorrelation. Let us define the distorted

spreading sequences, hi(t) (K =1,--- ,K), as

L
he(t) = Z Crask(t — Tit) = i (E)Ck (5.15)

If we follow the general arguments given in Section 2.10 for a BPSK linear multiuser
detector but use hi(t) as the kth user’s spreading sequence, we can derive the
channel-matched decorrelating detector which uses a bank of K matched filters. See

Figure 5.2 for a block diagram of this receiver. Note that h(t) are not necessarily

Ye - 2 g
1
RAT - 1) % -+
A
N Tl M.
hy(T - 1) .
r(t) -1
. X ‘PfRC -
. . R
/N =] %
h/(T - 1) .
. J

Bank of K Matched Filters

Figure 5.2: Channel-matched decorrelating detector structure.

normalized. The output of this bank is sampled every T seconds which yields a K
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vector y, whose k-th element, y.x, is defined as
T
Yok = / () hi(t)dt, k=1, K (5.16)
0
We can alternatively write
Y. = RIW.b+n, (5.17)

where R, is the cross-correlation matrix of the distorted spreading sequences A (%),

k=1,---,K, defined as

T
(Rl = [ B@hOd  65=1 K 5.18)
0

Wc = dzag(v Wy, VW, -, VwK))

U, = diag(e ¥, e77¥2, ...  e7I¥K),

(5.19)

and mn. is a zero-mean complex Gaussian vector.

The phase matrix ¥, represents the effects of the carrier phase. In Chapter 2 we
had assumed that the carrier phases are known perfectly, thus we did not take them
into consideration. In the present chapter we assume that . is known perfectly
too. However, the reason that we consider it here is that in the next two chapters
we study channel estimation and demonstrate that the carrier phase matrix, ¥,
can be considered as part of the channel. In other words, it can be estimated jointly
along with the other channel parameters.

Having the above fact in mind, we may notice that the similarity between (5.17)
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and (2.28) is evident. The channel-matched decorrelating detector in fact follows
the same technique that was discussed in Chapter 2 for the decorrelating detector.
It applies the decorrelating filter Y2 R_! to the outputs of the bank of matched

filters and then takes the signum of the decorrelating filter outputs.

5.5 Comparison of two approaches

In [94] one can find an analytic comparison between the path-by-path approach
and the channel-matched approach. However, [94] applies these two approaches to
a decorrelating detector (as we did in the previous section) and compares them in
terms of performance, i.e. probability of error. Here we briefly compare these two
methods in term of both complexity and performance. Since R, is a K x K matrix
the channel-matched approach requires the inversion of a K x K matrix which
depends on the channel coefficients. Hence a matrix inversion will most likely be
required within the coherence time of the channel, i.e. the time interval that the
channel can be assumed to be stationary. We will discuss this problem in Chapter 6.
On the other hand, the KL x KL matrix inversion for the path-by-path approach
(note that R, is a KL x KL matrix) is not dependent on the channel coefficients
and only need to be determined once the set of active spreading sequences changes.
However, the maximal ratio combiners at the output of the whitening filters depend
on the channel coefficients and needs to be updated within the coherence time of
the channel. A comprehensive comparison in terms of complexity is out of the scope
of this dissertation.

With respect to the performance, it can be shown that for a given channel re-
alization the probability of error of the channel-matched decorrelating detector is

smaller than that of the path-by-path one. While a mathematical proof can be
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found in [94], we should be able to accept it with only the following reasoning: first,
realize that the decorrelating detector discussed in Chapter 2 for single path sig-
nals provides optimum (in the maximum likelihood sense) linear multiuser detector
performance when users’ energies are unknown. Now, since both the path-by-path
and channel-matched methods are linear detectors which do not require knowledge
of the users’ energies and since the channel-matched detector can be thought of as
the multipath signal analog of the decorrelating detector (if we consider h (%) to be
the kth user’s spreading sequence), the channel-matched approach should therefore
provide the optimum performance over all linear multiuser detectors for multipath
signals of unknown energy. Hence our claim immediately follows. Due to this fact
we henceforth concentrate on the channel-matched approach. In the following sec-
tions, we apply the channel-matched method to the detectors which we investigated
before in Chapter 2 for AWGN channels. For all such detectors we assume h(t) as
the kth user’s spreading code and follow the same concept as in Chapter 2. Before
presenting the simulation results, let us explain the channel model that we have

considered throughout the simulations.

5.6 Multipath Channel Model

The multipath channel model, which we use in the following simulations, is the
two-ray model described in Section 4.6. The impulse response of the two-ray model
is shown in Figure 5.3.

Since the objective of the investigations and simulations in the current chapter
is to study the detectors’ performances and not their sensitivity to the channel
variations with time, we consider channel rays of fixed amplitudes. This way indeed

we have assumed that the receiver estimates the channel parameters perfectly and
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Figure 5.3: Impulse response of the 2-ray model of the channel (7,5 = 62nSec).

also that the channel parameters do not change at all within two consecutive channel
estimations ( We will discuss the channel estimation further in the Chapters 6 and
7).

The corresponding channel frequency response is shown in Figure 5.4 for a 16
MHz frequency band centered at 950 MHz. The center frequency, f. = 950MHz, is
arbitrary and does not affect the results of the simulations, since in fact the simula-
tions are performed in baseband equivalent of the system. The 16MHz bandwidth

is twice as much as the passband bandwidth of the system being considered.

5.7 Simulation Model

Figure 5.5 depicts the simulation model used in this Chapter. Binary data are
modulated using BPSK signaling. Then the modulated symbols are spread by
spreading codes assigned to each user. The scaling factor \/wg, k = 1,---, K,
merely reflects the energy of user k. The spread signal is passed through a multipath

channel. As we discussed in Section 5.6, a two-ray model is used to model the
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Figure 5.4: Passband frequency response of the channel (7yms = 62nSec).

multipath channel. The receiver observes the sum of the distorted signals which is

embedded in noise. Throughout the simulation we have used the following definition

for Signal-to-Noise-Ratio, SNR (See Figure 5.5).

where P,,(-) denotes the average power of a signal, and z(¢) is the additive white

Gaussian noise, which is filtered by an ideal low-pass filter with (two-sided low-pass)

SNR4g = 10log

bandwidth equal to 8 MHz.

Py (S(b, 1))
10 Foy(2(2))

(5.20)
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5.8 Multiuser Detectors in Multipath Channels

We generalize the idea behind the channel-matched decorrelating detector and apply
it to all multiuser detectors that we have studied so far. Let us compare the discrete
system model for AWGN channels in (2.28) with its counterpart system model for
multipath channels in (5.17). We observe that (5.17) can be obtained by replacing
R in (2.28) by R.¥.. Consequently, if we substitute R by R.VU. in the multiuser
detector algorithms, we will be able to devise new detectors that take into account
multipath channels. In this section we consider the performance of the multiuser
detectors which we studied in Chapter 2 and Chapter 3. For each case first we briefly
study the detector in the multipath channel and then we present the simulation

results.

5.8.1 Channel-Matched Conventional Detector

The conventional detector makes its decision at the output of the matched filter

bank,

b = sgn(ye,), (5.21)

This method simply ignores MAI and treats it as noise. As we may notice the
only difference between this detector and its counterpart in Chapter 2, i.e. the con-
ventional detector designed for the AWGN channel, is that the matched filters are
matched to the distorted spreading codes (ht(t)) that have gone through the mul-
tipath channel, rather than the original spreading codes of the system. Figure 5.6
shows the simulations results, wherein the BER has been plotted versus SNR. The

average BER is observed to be well above 1072. There are two important issues
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Figure 5.6: Average BER of the channel-matched conventional detector vs. SNR
in a multipath channel.

that should be pointed out here.

First, a_lthough the matched filters are matched to the distorted spreading se-
quences, tine BER is much worse than the BER of the conventional detector for
the AWGN channel (compare Figure 5.6 and Figure 2.5). This can be explained
as follows. Due to the random behavior of the multipath channel, the distorted
spreading sequences are not guaranteed to have good cross-correlation properties
anymore. Hence MAI components at the outputs of the matched filters are con-

siderable compared to the desired signals. This leads to a very high BER for the
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channel-matched conventional detector.

The second issue is the shape of the BER curve in Figure 5.6. In Chapter 2,
we mentioned that the most important drawback of the conventional detector is
the near-far problem. One consequence of the near-far problem is that the BER
of the detector does not go to zero, even if the background noise goes to zerol.
However, we were not able to show this fact explicitly in Figure 2.5, since the
spreading sequences had very low cross-correlations and also we did not examine
high SNR regions. Here, however, in Figure 5.6 we can see that the BER curve is
asymptotically nonzero. In other words, the BER curve exhibits an error floor, i.e.
the error performance is poor at medium to high SNR. Another factor that causes
the error floor in BER is the presence of ISI. As it was mentioned in Section 5.3,
we ignore the ISI and based on this assumption we design the multiuser detectors
in this chapter. However, the multipath channel model in the computer simulation
introduces some ISI. The impact of the presence of ISI, even though small, while

the detector ignores it, appears as an error floor in the BER curve.

5.8.2 Channel-Matched Optimum Detector

The optimum multiuser detector in a multipath environment using channel-matched
approach performs a maximum-likelihood sequence estimation (MLSE) scheme.
The objective of MLSE is to find the input sequence which maximizes the con-
ditional probability or likelihood of the given output sequence. The maximum-

likelihood decision for vector b in Equation (5.17) is given by

b’ = arg befrﬁ?l:}x@bT\I!chyc — bT¥ W_R WU, b) (5.22)

L For the detailed analytic study on this fact one could refer to [39]
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The proof is similar to the discussion in Chapter 2.
Equation (5.22) requires an exhaustive search over all 2X possible combina-
tions of the entries of the bit vector b. Figure 5.7 shows the average BER of

the channel-matched optimum detector versus SNR. The huge difference between
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Figure 5.7: Average BER of the channel-matched optimum detector vs. SNR in
a multipath channel.

the average BER for the channel-matched optimum detector and the average BER
for the channel-matched conventional detector is evident (compare Figure 5.7 with
Figure 5.6). The BER curve in Figure 5.7 starts exhibiting an error floor at SNR.

higher than 15 dB. As we explained in Chapter 2, the optimum multiuser detector
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is near-far resistant and in the low background noise zone, it yields an error-free
performance. The error floor in Figure 5.7 is due to ISI only. This fact is true for

all other suboptimum detectors.

5.8.3 Channel-Matched Decorrelating Detector

In Section 5.4.2, when explaining the channel-matched approach, as an example we
considered the channel-matched decorrelating detector. Having the same idea as
the decorrelating detector described in Section 2.10, if we ignore the noise in (5.17),

the transmitted information vector b may be obtained as
~d _
b =sgn(YER'y.) (5.23)

Since W, is a diagonal matrix with positive real diagonal components, we have
ignored it in (5.23).

The average BER curve of the channel-matched decorrelating detector versus
SNR is depicted in Figure 5.8. In order to compare the performance of this detector
with those of the conventional and optimum detectors, we have plotted the BERs
of these two detectors too. We observe that the BER performance of the channel-
matched decorrelating detector follows almost the same trend as that of the channel-

matched optimum detector, with a couple of decibels degradation.

5.8.4 Channel-Matched Decision Feedback Detector

A white noise model can be obtained by factorizing matrix R, using Cholesky
decomposition as R, = FI F,. Where F, is a lower triangular matrix. If the filter

with response UZ(FT)~1 is applied to the sampled outputs of the matched filters,
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Figure 5.8: Comparison of bit-error-rates in a multipath channel; (a) conventional,
(b) decorrelating, (c) optimum.

the resulting output vector is

Y= FW:b + . (524)

where 7, is a white Gaussian noise vector with the autocorrelation matrix NpZ. In

the same fashion as in decision-feedback detector for AWGN channels in Section 2.11
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decisions can be made using

~ k_l ~

by = sgn(Jex — Y _ [Felks Vi bi) (5.25)

=1

We notice that for the kth user, multiuser interference (the second term inside the
signum function) depends on users 1 to k¥ — 1. Decisions for these users have already
been made and they are used to form a feedback term, hence the name decision-
feedback. In Figure 5.9 we have plotted the average BER of the channel-matched

decision-feedback detector as well as the conventional and the optimum detectors.

5.8.5 Channel-Matched Improved Decision-Feedback Detec-
tor

As in Section 2.12 where we reviewed the improved decision-feedback detector,
the idea behind this detector is to find the symbol vector [131, b, - -- ,13;(] with the

smallest total metric sum, m} + mj + - - - + m, where mj, is the metric of user &

defined as
k—1 .9
m;: = (gc,k - [Fc]k,lc v Wk bk - Z[Fc]k,j VW5 b]) (5.26)
j=1

with ¢, and F; as defined in the previous section. The channel-matched improved
decision-feedback detector follows the same algorithm explained on page 45. The
only difference is that it uses metrics as defined in (5.26).

Figure 5.10 depicts the average BER of the channel-matched improved decision-
feedback detector versus SNR. The performance of the conventional and optimum
detectors are plotted as well. Here we have chosen Ny = 3 as we did in the AWGN

channel. We notice from Figure 5.10 that the channel-matched improved decision-
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Figure 5.9: Comparison of bit-error-rates in a multipath channel; (a) conventional,
(b) decision-feedback, (c) optimum.

feedback detector yields a BER performance very close to the optimum.

5.8.6 Channel-Matched Multistage Detector

A channel-matched multistage detector tries to remove the MAI in a stage-by-stage

fashion using an iterative method. The estimated bit of the k-th user at stage m+1
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Figure 5.10: Comparison of bit-error-rates in a multipath channel; (a) conven-
tional, (b) improved decision-feedback, (c) optimum.

is obtained by

K

bpt(m + 1) = sgn(yek — Y _ 0™ (m)e™ ¥ /w7 [Rljx),  m >1 (5.27)
=1
j#k

Due to delay limitations it is desirable to restrict the number of stages to two. We
can use arbitrary values as the initial values for 5,-(1)’5- However, it is recommended
to use a simple and effective multiuser detection scheme such that the iterative

method in (5.27) yields an accurate detected information vector b as fast as possible.
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As in Section 2.13, we use either a channel-matched conventional detector or a
channel-matched decorrelating detector as the first stage.

Figure 5.11 shows the simulation results, wherein the average BER of two
channel-matched 2-stage detectors are plotted. One detector uses a conventional
detector as the first stage, while the other uses a decorrelating detector as the first
stage. The BERs for the optimum and the conventional detectors are also plotted

for the sake of comparison. We observe that when a decorrelating detector is used
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Figure 5.11: Comparison of bit-error-rates in a multipath channel; (a) conven-

tional, (b) two-stage (conventional 1st stage), (c) two-stage (decorrelating 1st stage),
(d) optimum.

as the first stage, the BER performance is much better than when a conventional
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detector is used as the first stage. Indeed these results imply that the choice of the
conventional detector as the first stage for a channel-matched two-stage detector is

questionable.

5.8.7 Channel-Matched Two-Level Threshold Detector

The idea behind the channel-matched approach can be applied to the two-level
threshold detector as well. This results in a multiuser detector for the multipath
environment which works like its counterpart in Chapter 3. The outputs of the
matched filters, i.e. the components of y,, are filtered using the channel-matched
decorrelating filter. An algorithm that cycles through the outputs of the decorre-
lating filter determines whether it is necessary to remove the MAI from its outputs

or not. The algorithm consists of two steps as follows:

Step 1 Use the channel-matched decorrelating filter to find .,

g.=VIR 1y, (5.28)

Step 2 Cycle through the outputs of the channel-matched decorrelating filter, 7,

components, if —e < ., < €, where ¢ is a small number, then

k—1
be = sgn(yer — ) _ bie™ ¥ \/w; [Relix) — Z bie™7%/wi [Relix)  (5.29)
i=1 i=K+1

otherwise

be = sgn(Jex)- (5.30)
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For a detailed description one is referred to Chapter 3, where a counterpart of this
detector is studied for an AWGN channel.
Figure 5.12 shows the simulation results. The average BER of the channel-

matched new detector is plotted versus SNR. We have chosen two values for e,

1o° ,
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Figure 5.12: Comparison of bit-error-rates in a multipath channel; (a) conven-

tional, (b) two-level threshold (e = 0.1,/wg), (c) two-level threshold (e = 0.25,/wy),
(d) optimum.

0.1,/wi and 0.25,/wg. We may notice that by choosing an appropriate value for
€, the channel-matched two-level threshold detector may achieve the near-optimum

BER performance. For instance in Figure 5.12, choosing € = 0.25,/w; instead of



5.9 Optimum ¢ 138

e = 0.1,/w improves the BER. In the next section we study the effects of € on the

BER performance.

5.9 Optimum ¢

In Section 3.7 and in the previous section as well we pointed out that the radius
of the neighborhood of zero, €, has a direct effect on the BER performance of the
two-level threshold detector. By increasing ¢, the outputs of the decorrelating filter
are more likely to be checked in Step 2 of the two-level threshold algorithm. Hence,
the larger € is, the more Equation (5.29) is used to detect the transmitted bit.
If ¢ — o0, Equation (5.29) is always used and the two-level threshold detector
becomes a counterpart of the two-stage detector. Therefore, intuitively it appears
that the BER for the two-level threshold detector is a monotonic decreasing function
with respect to €. In this section we try to find out how the BER. performance
depends on €.

In Chapter 3 we presented an approach to finding the probability of error for the
two-level threshold detector. If we had a simple closed-form formula for the proba-
bility of error in terins of €, then finding a formula that determines the variations of
the BER with € would be convenient. However, as shown in Chapter 3 we failed to
find such a closed-form formula. Consequently we choose to use simulation results
once again. In Figures 5.13 and 5.14, we have plotted the average BER as a function
of ¢, for two different values of SNR, 9 dB and 15 dB, which yield BER of about 1073
and 1073, respectively. The computational load of the two-level threshold detector
is plotted as well. As we observe, unlike what we intuitively assumed, the BER
is not a monotonic curve in terms of €. Increasing € to some point improves the

BER performance, but afterwards not only does it not help to enhance the BER
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performance but also it can cause an adverse effect.

The existence of an optimum e with respect to BER is evident in both curves.
Fortunately, in both cases the optimum ¢ happens where the computational load
is still small and slightly more than the computational load of the decorrelating
detector 2.

The results plotted in Figures 5.13 and 5.14 show that the optimum value for €

2We recall that the computational load of the (channel-matched) two-level threshold detector
varies between the computational load of the (channel-matched) decorrelating detector and that
of the (channel-matched) two-stage detector with a decorrelating detector as the first stage.
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Figure 5.13: Finding the optimum ¢ for the two-level threshold detector at SNR
= 9 dB; (a) average BER, (b) computational load.
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Figure 5.14: Finding the optimum € for the two-level threshold detector at SNR
= 15 dB; (a) average BER, (b) computational load.
depends on SNR, i.e. there is no unique optimum €. In practice, once the BER is

determined, the operating SNR and hence the optimum value for € is specified.

5.10 Discussion

In this chapter we studied the multiuser detectors presented in Chapters 2 and 3
in a multipath fading frequency-selective channel. There are two general strategy
towards the design of multiuser detectors for multipath channels; i) path-by-path

and ii) channel-matched. We chose the channel-matched approach, since it offers a
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better BER performance. This fact is true at least for the decorrelating detector.
That is, the channel-matched decorrelating detector outperforms the path-by-path
decorrelating detector. A thorough study to find out whether this fact is true for
other multiuser detectors or not, is out of the scope of this dissertation.

In order to compare the BER. performance for all multiuser detectors presented in

this chapter, we have plotted Figure 5.15. We observe that the conventional detector
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Figure 5.15: Comparison of bit-error-rates in a multipath channel; (a) con-
ventional, (b) two-stage (conventional 1st stage), (c) decorrelating, (d) decision-
feedback, (e) two-stage (decorrelating lst stage), (f) improved decision-feedback,
(g) two-level threshold (e = 0.25,/wg), (h) optimum.

performs poorly. Also the two-stage detector that uses the conventional detector
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as the first stage does not offer a satisfactory BER performance either. This is
obviously due to the poor performance of the conventional detector. The rest of the
detectors perform well enough compared to the optimum detector. Amongst them,
the two-level threshold detector, proposed in this dissertation, offers a near-optimum
performance, provided that the value of € is chosen optimally. Fortunately the
optimum value of € occurs where the computational load of the two-level threshold

is slightly more than that of the decorrelating detector, i.e. 2K2.



Chapter 6

Symbol-Aided Channel Estimation
and Multiuser Detection Using a

Decorrelating-Type Detector

Thus far in this dissertation various multiuser detectors in both AWGN and fading
channels have been considered. Almost all of the discussions and analyses have been
based on a number of idealizations. For instance, the system and channel parameters
are assumed to be perfectly known. While multiuser detection has been analyzed
thoroughly for both AWGN and fading channels, less work has been reported on
the underlying parameter estimation issues in CDMA channels [54]. This chapter is
devoted to prospect this issue. A decorrelating-type filter detector is considered for
multiuser detection. This filter operates on the outputs of filters that are matched
to the original code waveforms of the system. A maximum likelihood estimation for
the parameters of the decorrelating filter is proposed and derived.

This chapter has the following outline. Section 6.1 summarizes the previous

work. In Section 6.2 the contributions of this chapter are reviewed. In Section 6.3
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we briefly describe the system and the channel model that we consider in the present
chapter. Section 6.4 describes the detection scheme which we choose for multiuser
detection. In Section 6.5 we derive a maximum likelihood estimation technique for
the channel and for the receiver decorrelating-type filter. Section 6.6 proposes a
method to select training sequences to approach the minimum mean-square-error
(MMSE) criterion. In Section 6.7 we introduce an iterative method for matrix in-
version based on orthogonalization. In iteration 7 this method requires only column
¢t of the matrix. Section 6.8 presents some simulation results for a 16-user CDMA

system. Finally, Section 6.9 concludes this chapter with a summary of results.

6.1 Previous Work

Multiuser detection techniques have been considered to increase channel capac-
ity and alleviate the near-far problem in CDMA systems. Various methods have
been proposed for multiuser detection. Primary studies on multiuser detectors con-
cerned proposing some systems and analyzing them for additive white Gaussian
noise CDMA channels [17,19-21]. However, most of the multiple-access channels of
interest, e.g. the indoor wireless channel and the mobile radio channel, exhibit multi-
path fading. Consequently a large amount of research has been focusing on propos-
ing multiuser detectors to take into account multipath fading [82-84, 87, 88, 92].
Recently, more realistic multiuser detectors have been studied in which both detec-
tion and channel estimation are considered. Some attention has been concentrated
on adaptive multiuser detection (see e.g. [98-112]) and blind adaptive multiuser
detection (see e.g. [113-119]). There are also some methods wherein the channel
parameters are estimated explicitly [41,120]. Work reported in [121] models the

frequency nonselective fading channel as a second order Auto-Regressive (AR) pro-
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cess, and uses a decision-directed Kalman filter to estimate the channel coefficients.
In [97] a joint multiuser detection and channel estimation scheme is suggested which
uses a path-by-path decorrelator to estimate the channel parameters and hence the
coefficients of a channel-matched decorrelator. Decisions are then made on the

output of the channel-matched decorrelator.

6.2 Contribution

Based on the work of this chapter Hosseinian et al. [27] have proposed a joint mul-
tiuser detection and channel estimation scheme. A decorrelating-type filter whose
coefficients are estimated using the maximum likelihood estimation method is pro-
posed and derived. The estimation method is based on inserting known training
sequences into the information data by all users simultaneously. To achieve MMSE
in estimation, a criterion for selecting the training sequences is suggested. Orthogo-
nal training sequences will be good candidates to approach MMSE. The estimation
method requires a matrix inversion at the end of each training period. An itera-
tive matrix inversion method is introduced to distribute the computational load of
the matrix inversion over the training period. The simulation results show some
degradations in BER performance compared to the case where perfect knowledge
of the channel is assumed. This degradation is clearly due to errors in the channel

estimation.

6.3 System and Channel Model

We consider a synchronous CDMA system with K users in the multipath channel.

The k-th user is assigned a normalized spreading waveform {st(t), t € [0,T]}-
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As it was shown in the previous section, at the receiver, the received signal can be

written as:
r(t) = S(t, b) + n(t) (6.1)

where n(t) is a zero-mean complex additive white Gaussian noise whose real and

imaginary parts are independent and each have power spectral density Ny/2 and:

(o] K L
S(t,b) = .Z Zz be (1) ek (2)eT* \/we (i) se(t — iT — 7y) (6.2)

where 7 is the time interval index, bi(%) is the information transmitted by user &
in the epoch 7, L is the number of propagation paths, cg; is the fading complex
envelope of the kth user corresponding to path [, and 7%, is the delay of path [ of
user k. We assume that the symbol duration T is much longer than the multipath
delay spread, i.e. T > Tp,s. If this is the case, then the intersymbol interference
(ISI) due to channel dispersion can be ignored [55]. We consider slowly fading
channels, which implies that cg () does not change during a symbol transmission
time. Under these assumptions, we consider the received signal r(¢) over only one
symbol interval, e.g. © = 0. Consequently, we may consider a one shot system as

follows

K

L
r(t) = Z Z brcr €’ Jwise(t — Tiy) + n(E) (6.3)

k=1 (=1
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6.4 Detection scheme

In Section 5.8.3 we considered the channel-matched decorrelating detection scheme.
Therein we assumed the bank of matched filters at the front-end of the receiver are

matched to the distorted spreading codes, i.e. hi(t) where

L
hk(t) = Z ck,,ej"”‘\/wksk(t - Tk,[). (6.4)
=1

In this chapter we assume that the matched filters are matched to the spreading
codes, i.e. to si(t). We choose this approach for two reasons. Firstly, the structure
of the matched filters are much simpler. The system that we are considering is a DS-
CDMA with BPSK modulation scheme. The spreading codes for such a system are
sequences of ‘-1’ and ‘+1’. Implementation of digital matched filters (correlators)
matched to the sequences of ‘-1’ and ‘+1’ is easy and does not require multipliers.
While the implementation of digital matched filters which are matched to h(t)
requires complex multipliers. It is worthwhile to mention that, in fact, a filter with
the response hr (T —t) functions like the RAKE receiver for the single user systems.
Whereas a filter with response si(T — t) performs as a single branch of the RAKE
receiver with a unity tap weight. Therefore, using matched filters that are matched
to sk(t) does not yield optimum BER performance.

Secondly, in this chapter we do not assume that the channel parameters are
known. In the next section we investigate a scheme to estimate the channel param-
eters. By using matched filters that are matched to s(t), as opposed to hi(t), we
will not have to estimate the coefficients of the matched filters and the estimation
algorithm will be much simpler.

Now, suppose r(t) is applied to a bank of matched filters which are matched
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to the set of spreading sequences and followed by samplers at time T, then the

following discrete-time model results:

where b = (by,b2, ... ,bk)T, ¥ = (y1,¥2,--- ,yx)T are the outputs of the samplers,

X is a K x K matrix whose entries are defined as:

T L
X = / si(t) Y cjue™i \fw5s5(t — T3)dt, (6-6)
0 =1

and n is a zero-mean Gaussian K-vector with covariance matrix equal to NyR,
where R is a nonnegative definite matrix of cross-correlation between the spreading
sequences as defined in Equation (2.5). We use a decorrelating-type scheme to
detect the transmitted information b. This method, while very simple, exhibits a
reasonable performance in terms of both bit-error-rate and near-far resistance [17].

Our decorrelating-type detector makes decisions as:

b= sgn(X'y) (6.7)

6.5 Estimation Scheme

A symbol-aided scheme is used to estimate X~ in (6.7). A reference training
sequence with length K is inserted into the sequence of information data symbols by
each transmitter. The training sequences are sent simultaneously by transmitters
(Figure 6.1). We assume that the channel parameters do not change during the

training period, i.e. A does not vary. Consequently after the training period,
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Figure 6.1: Synchronous transmission of training sequences.

considering Equation (6.7), we will have K systems of equations:

y(d) = Xb(i) +n(), i=1,--- K (6.8)

Merging these equations into one equation, we can form a matrix equation as:

Y=XB+N (6.9)

where B is a K x K matrix whose column 7 corresponds to the ith symbols of the
training sequences, ) is a K x K matrix whose column ¢ is the outputs of the
matched filters corresponding to the transmission of column 7 of B, and N is a
K x K zero-mean Gaussian matrix. We notice that the correlation between each

two entries of N can be expressed as follows:

0, KX
ENE N} = 7 (6.10)

R;xNo/2, =1
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where £{-} denotes expectation. The maximum likelihood estimation (MLE) of
matrix X! can easily be determined as follows. Rewriting (6.9) in terms of matrix

transpositions, we have:
VT =BTxT + NT (6.11)
Or equivalently:
D7) =BTXT; + WT),  i=1,--- K (6.12)

where [-]; denotes column ¢ of a matrix. Now, we may notice that the elements of
[NT]; are the output noise components of matched filter 7 and therefore they are
independent Gaussian random variables. Hence the maximum likelihood estimator

of [XT]; is [122]:
[‘;QTL: = (BT)-I[yT]i7 7: = 17 Tty K (6.13)
with the covariance matrix of [X7];:

N -1
Crerm, = 7"(35”) (6.14)

Here we have assumed that the training sequences are chosen so that B is invertible.

Merging the above K equations into one matrix equation, we have:

XT = (BT)'YT (6.15)
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and hence the maximum likelihood estimator of X! is:

X t=pBy! (6.16)

Equation (6.16) suggests that the outputs of the matched filters be stored column-
wise as a matrix, JV, during the training period. At the end of the training period,
the inverse matrix Y~! is calculated and premultiplied by matrix B to yield an MLE

of the inverse filter X! (Figure 6.2). From the computational complexity point of
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Figure 6.2: Decorrelating-type detector and estimator

view, this method is not homogeneous. In other words the computational load is
not distributed fairly. In Section 6.7 we suggest a method for matrix inversion,

which is based on matrix orthogonalization, to distribute the computational load of
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matrix inversion over the training period.

6.6 Training Sequences

The MLE analysis in the previous section assumes that matrix B is known. This
matrix, however, is one of the system attributes and must be chosen appropriately
at the system design step. In this section we consider an approach to identify the
training sequences which yield the MMSE criterion for the estimation of X! or X.
Define error matrix E as the difference between the estimated matrix X and X.

From (6.9) and (6.16) we may write:
E=X-X=NB"! (6.17)
The mean-square-error, MSE, is defined as

K K
MSE =£{> Y |E:;*}, (6.18)

i=1 j=1

The MMSE sequences are obtained by minimizing (6.18) with respect to B. Using
equations (6.17) and (6.10) we can expand equation (6.18) and then simplify it as

follows:

(NN 10,570

K
> €

reehet (6.19)
Risd >

where bl-‘j1 = {B~'},;. Finally, one can note that the first summation in (6.19) is the

trace of R and the second double summation is in fact the square of the Frobenius
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norm of B~!. Therefore MSE may be expressed as:
\Y
MSE = ’—22 tr(R) (|1B-Y|2 (6.20)

where tr(R) denotes the trace of R.

Note that since tr(R) depends on the assigned waveforms characteristics, it can
be regarded as a constant. Hence the problem of minimization of the MSE reduces
to the choice of B so that the Frobenius norm of its inverse is minimum. Considering
the fact that the elements of the training sequences matrix B are selected from a
finite set (signal constellation points), we are presented with a discrete optimization
problem. A general approach for solving this problem is the exhaustive search
method. When K, i.e. the dimension of B, is small (e.g. less than 8) the search
method is practical, but for larger values of K the tedious job of numerous large
matrix inversions appears to be impractical. In the rest of this section we attempt
to find a lower bound for the Frobenius norm of B! and then we try to find those
matrices for which the Frobenius norms of their inverses are close to this lower
bound.

From linear algebra we know that !
l4-Bllr < [|Allr- [IBllr (6.21)
where A is an arbitrary matrix. If we choose A = B~! we will have,

IZllr < 1B IFIIBlF (6.22)

!For some interesting matrix norm properties the reader is referred to [57].
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where Z denotes the identity matrix. As it was mentioned earlier, we consider
a BPSK constellation in which the elements of B are chosen from the finite set
{1, —1}. Hence ||B||r = ||BT||r = K. (For other constellations, || B||r can easily be
determined as well.) On the other hand ||Z||r = VK. Substituting these two in

(6.22), we obtain a lower bound for ||[B~!||r as

1
B s> — 6.23
157le > (6.:23)
Now we notice that if B is chosen so that
Bt=Lpgr (6.24)
K
then
B—l 2 1 BT 2
1B~ |7 ﬁ“ i3
= 1 (6.25)

Equation (6.25) suggests that if we choose the training sequences to satisfy (6.24),
then the MSE approaches its lower bound. For the case of K being a power of 2, B

can be a Hadamard matrix2.

6.7 Distributed Matrix Inversion

As we saw in Equation (6.16), in order to estimate X! we need to calculate the
inverse of ) after each training period. The scenario for the receiver to obtain MLE

of the X~ is as follows. During the training period, the receiver collects the columns

2To find out how to generate a Hadamard matrix one could refer to [55]-
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of Y one by one. Once matrix ) is formed , i.e. at the end of the training period,
the receiver starts carrying out the calculations to invert . We notice that this
way the computational load is not distributed evenly. During receiving the training
sequences, the receiver merely collects the received data, whereas afterwards at one
point the tedious calculations of the matrix inversion have to be performed. In this
section we introduce an iterative method for matrix inversion, with K iterations,
so that in iteration ¢ it only requires column 7 of the inverting matrix. Using this
method, the receiver is able to start the computation of the inversion of matrix YV as

soon as it receives the first column of this matrix (see Figure 6.3). This algorithm is

| training:sequences ] ¢

)

start inverting Y

(@

N\

trainingisequence |

\ )

start inverting Y Ylis already computed

(®)

Figure 6.3: Comparison of matrix inversion methods; (a) conventional method,
(b) proposed method.

based on the fact that the rows of ! are orthonormal to the columns of Y. Thus
successive matrices Y~1(0), Y~1(1), ---, Y"}(K) are computed, beginning with an

arbitrary matrix Y~!(0), so that the rows of Y~1() are orthonormal to the first 7
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columns of ). Define scalars ay; for k& # 1;

__ (row k of Y~'(i — 1)) - (column ¢ of Y)

Qi = (row % of Y~1(i — 1)) - (column ¢ of V) (6.26
S Vel -1 Vs 29
S V-1 Vi
Then the matrices Y~!(z) are defined recursively for =1,---, K:
row 7 of Y7I(3) = row ¢ of Y~ 1(z — 1),
row k of Y7}(i) = row k of Y7!(i — 1) - oys- (row 7 of Y~ 1(i — 1)) for k # 1.
In terms of individual matrix elements, the equivalent definition is
Yii(0) =YV -1
7 7 (6.27)

V@) =Yiji—1) —awi- Vij (i — 1) for k #41,

where : = 1,--- | K; 7 =1,---,K; k=1,--- ,K and k # i. Then it may be
shown that Y~1(K)-)Y =Z. The idea of this algorithm is obtained from a method
for matrix orthogonalization introduced in [123, page 25]. Figure 6.4 presents a

pseudo-code for the algorithm, where we have used a stylized version of the Matlab

language to express the algorithm.

The computational complexity of this algorithm has the same order as other

regular matrix inversion methods, i.e. O(K3).

6.8 Simulation Results

This section presents some simulation results. We consider a 16-user DS-CDMA
system using BPSK modulation scheme and Gold codes as the spreading codes.

The simulation platform is the same as what we explained in Section 5.7. A two-
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Y~! = identity matrix
fori=1:K
n=Y1:) * V(1)
ifn==0
Y is singular
end
y=JY(,i)/n
forj=1: K
if (7 # 1)
84 =y-1(j1 :) Yy
V76,0 =70 ) —axY7I(E:)
end
end
Ve =Y 0)/n

end

Figure 6.4: Algorithm of distributed matrix inversion.

ray model for the channel is assumed as it was discussed in Section 5.6. A 16 x 16
Hadamard matrix is selected as B, i.e. the training sequences matrix. We consider
three different rms delay spreads: 62 nSec, 125 nSec and 500 nSec, corresponding
to the second ray delays, 1, 2 and 8 chips, respectively. Figures 6.5 and 6.6 show
the magnitude frequency response of the channel for 7,,s = 125 nSec and Trpms =
500 nSec. The frequency response for T,;,; = 62 nSec was shown in the previous
chapter in Figure 5.4 on page 124 .

Figure 6.7 depicts the simulation results in which the average BER for the three
different rms delay spreads are plotted versus SNR. In Figure 6.7 we have plotted two
curves for each rms delay spread. In one we assume that we have perfect knowledge
of the channel, and in the other we use the aforementioned MLE method to estimate
the channel parameters. For T.n,s = 62 nSec, which is a good approximation for
indoor channels, the BER curves, have a linear shape. The almost 3 dB difference

between the two curves is due to error in channel estimation, i.e. estimation matrix
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Figure 6.5: Frequency response of the two-ray model channel 7., = 125 nSec.

X 1. We expect, for higher SNR, the two curves to come closer to each other, since
in that case there is no error in estimating X~!. Of course the linear shapes of
the curves will not be extended to higher SNR, because ISI has been ignored in
the detection scheme. This is much clearer for rms delay spreads 125 nSec and 500

nSec. In these cases 7,5 is comparable to the symbol duration T = 3.9 uSec.

6.9 Discussion

In this chapter, we have considered a decorrelating-type filter detector for multiuser

detection in a multipath fading propagation environment. The decorrelating-type
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Figure 6.6: Frequency response of the two-ray model channel 7ns = 500 nSec.

filter processes the outputs of a bank of matched filters which are simply matched to
the original spreading code of the system. We proposed a MLE scheme to estimate
the parameters of the decorrelating filter. The estimation method inserts known
training sequences into the information data by all users simultaneously. It was
shown that the MLE of the decorrelating filter consists of multiplying the matrix of
the training sequences by the inverse matrix of the outputs of matched filters. To
achieve MMSE in estimation, we showed that the training sequences matrix must
be chosen in a manner that the Frobenius norm of its inverse is minimized. We also

showed that if we choose the matrix of the training sequences to be orthogonal, the
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Figure 6.7: Average BER versus SNR

minimization of MSE is satisfied with a good approximation. When the number of
users is a power of 2, a Hadamard matrix can be used for the training sequences
matrix. We considered that the estimation method requires a matrix inversion at the
end of each training period. An iterative matrix inversion method was introduced to
distribute the computational load of the matrix inversion over the training period.
This method is based on matrix orthogonalization, and in each iteration it uses only

the corresponding column of the matrix.



Chapter 7

Symbol-Aided Channel Estimation
and Multiuser Detection Using a
Decorrelating-Type

Decision-Feedback Detector

From the discussion in the previous chapter, it is clear that the existing error floor
in the BER performance of the decorrelating-type detector is due to ISI. As it was
mentioned there, the decorrelating-type detector does not attempt to combat [SI
and simply ignores it. In this chapter we propose a multiuser detector that uses
a feedback filter to cancel ISI. We consider a decorrelating-type decision-feedback
detector for multiuser detection for frequency-selective synchronous CDMA chan-
nels. This detector operates on the outputs of matched filters which are matched to
the original spreading codes of the system. We also propose and derive a maximum
likelihood estimation to estimate the parameters of the forward and feedback filters.

The rest of this chapter is organized as follows. In Section 7.1 the contributions
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of this chapter are put into perspective. In Section 7.2 we briefly describe the system
that we consider in this chapter. Section 7.3 describes the detection scheme which
we choose for multiuser detection. In Section 7.4 we derive a maximum likelihood
estimation technique for the channel and for the receiver filters. Section 7.5 proposes
a method to select the training sequences to approach the MMSE criterion. In
Section 7.6 we present some simulation results for a 16-user CDMA system. Finally,

Section 7.7 concludes the chapter with a summary of results.

7.1 Contribution

This chapter is a continuation of the previous chapter. The background history
that we mentioned in the previous chapter may be considered as the background
history for the current chapter too. On the basis of this chapter we have proposed
a joint multiuser detection and channel estimation scheme [28,29]. A decorrelating-
type decision-feedback detector for multiuser detection for frequency-selective syn-

ronous CDMA channels is proposed and derived. The front-end matched filters
of this detector are matched to the original spreading codes of the system, so that
there is no need to estimate the matched filters impulse responses. A maximum like-
lihood estimation to estimate the parameters of the forward and feedback filters is
derived. The estimation method is based on inserting known training sequences into
the information data by all users simultaneously. To achieve MMSE in estimation,

a criterion for how to select the training sequences is suggested.
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7.2 System and Channel Model

The system model that we study in this chapter is the same as what we studied in
Chapter 6. However, here we make different assumptions, which lead to a different
analysis for the system. We consider a synchronous CDMA system with K users.
The kth user is assigned a finite energy code waveform {st(¢),¢ € [0,T]} and it
transmits information by modulating that waveform antipodally over one symbol

interval T'. At the receiver, the received signal can be written as:
r(t) = S(¢, b) + n(t) (7.1)

where n(t) is a zero-mean complex additive white Gaussian noise whose real and

imaginary parts are independent and each have power spectral density Ny/2 and:

[e ]

K
Stb) = > 3 > b(i)era (i)™ Vw (@) se(t — iT — 71 (7.2)

t=—00 k=1 [=1

where ¢ is the time interval index, b is the information transmitted by user k&, L
is the number of the propagation paths, ¢, is the fading complex envelope of the
kth user corresponding to path [, and 7; is the delay of path ! of user k. We
consider slowly fading channels, which implies that ¢ (¢) does not change during a
symbol transmission time. We assume that (7j;)mez < T, which suggests that the
rms delay spread of the channel is comparable to the symbol duration T. In the
previous section we assumed that the channel rms delay spread is small and can be
ignored compared to T. Indeed we ignored ISI. That assumption lead to an error
floor in the BER curves of the decorrelating-type detector. In this chapter, however,
we take into account the ISI and design a detector that attempts to remove ISI as

well as MAI
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7.3 Detection Scheme

Under the assumptions made in the previous section, we consider the received signal
r(t) over an arbitrary symbol interval, e.g. i = m. Now, suppose r(t) is applied to a
bank of matched filters which are matched to the set of code waveforms {si(¢), k =
1,--- .K}, and followed by samplers at time T, then the following discrete-time

model results:
y(m) =Ub(m) + Vb(m — 1) + n(m) (7.3)

where b("') = [bl(z)v bg(l). .- 1bK(i)]T1 (Z =m, m_l)1 y(m) = [yl(m)v y2(m)a .. 7yK(m)]T
are the outputs of the samplers, &/ and V are K x K matrices whose entries are

defined as:

T L
L{iJ = / Si(t) Z Cj,[Sj(t - lel)dt,
0 =1
T L
Vi‘j = / Si(t) Z Cj,ISj(t +T — Tj’[)dt, (7.4)
0 =1

and n(m) is a zero-mean Gaussian K-vector with covariance matrix equal to Ny R,
where R is a nonnegative definite matrix of crosscorrelation between the assigned
spreading codes as defined in Equation (2.5).

We suggest a decorrelating-type decision-feedback scheme to detect the trans-
mitted information b(m). In (7.3) if we temporarily ignore the noise vector n{m),
then, assuming that the information symbols are chosen from the finite set {—1,1},

we have,

b(m) = sgn(U(y(m) — Vb(m — 1))) (7.5)
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Figure 7.1 depicts the suggested detector. The forward filter Z{~! is used to remove

MALI, whereas the feedback filter V is used to remove ISI.

7.4 Estimation Scheme

A symbol-aided scheme is used to estimate &/~! and V in (7.5). A reference training
sequence with length 2K + 1 is inserted into the sequence of information data
symbol by each transmitter. The training sequences are sent simultaneously by
transmitters (Figure 7.2). We assume that the channel parameters do not change
during two consecutive training sequences. This implies that the coherence time
of the channel is larger than the time space between two consecutive trainings.

Considering Equation (7.3), we have 2K systems of equations:

y(i) =Ub() + Vb(i — 1) +n(), i=1,2,---,2K (7.6)

s{T-9 —/-@ I
o HT-0 @ U-1 I
sl -0 = @ Iy

Figure 7.1: Decorrelating-type decision-feedback detector.
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We will prove that the maximum likelihood estimations (MLE) of the two matrices

U~ and V can be obtained as,

U™ = (Bay — BuB Baa) (Vo — V1B Baz) ™

~

= (Vo — M1B'B21) (Baz — B1aBy Bar) ™! (7.7)

where )V, and }» are K x K matrices whose columns are made up of the vectors

y(1),y(2),---y(2K) as follows,

Vi =[y(1),y(2),--- ,y(K)]

<«— 2K+I1 symbols —»

P Y i A T+ T T I TR 0 b ki H M
user #1 | -iralmingsequence: information data |
user #2 L" information data 1
“v*z‘,t—‘:'-'(..r&r-‘:%1;45&»«:?..’1&:,-—&4-; ‘\P;A - .
user #K ijmg;sgguggg&mﬂ information data

Figure 7.2: Synchronous transmission of training sequences
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and also By, Bi2, B2, and By are K x K matrices which are defined as,

Bi, = [b(1),b(2),-- -, b(K)],
312 = [b(0)7 b(1)7 Tt T b(K - l)]7
321 = [b(K+ 1), b(K+ 2)1 ot 7b(2K)]:

By = [b(K),b(K +1),--- ,b(2K —1)] (7.9)

Notice that (7.6) consists of 2K system equations. We combine the first K system
equations (¢ = 1,---,K) to form one matrix equation. Similarly the second K
system equations (i = K +1,---,2K) can be merged into another matrix equation.

This results in the following equations:

V1 =UBy + VBya + N,

Yo =UBs; + VB, +./\[2 (7.10)

where

-Afl = [n(1)7n(2)1 ToT ,n(K)],

N =[n(K +1),n(K +2),---,n(2K)] (7.11)

The two equations in (7.10) can be rearranged as follows;

YEN_| B B | UM (7.12)

Z hoBL | LV NF
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Or equivalently:

yT BT BT Uur NT
1 — 11 12 1 i , (7.13)
A B}, B vr ) NF
1=1,2,--- K

where (-); is used to denote column ¢ of a matrix. The elements of the noise vector

NT

in equation (7.13) are the noise components of the output of the matched

NT
filter ; at different sampling times, hence they are independent Gaussian random
) Uur
variables. Consequently, the maximum likelihood estimation of the vector
VT
is [122]: '
-1
ur BT, BT yr
= """ Y1, i=1,---,K (7.14)
vr ) | BL B 0

z 1

After combining the above K system equations and getting transposition we may

write

- By, By
[u v]=[y1 yz] (7.15)
B2 B

Finally, using the inversion rules for a partitioned matrix [58], we obtain (7.7). Note
that the matrices By, B2 and (Bay — BioBj; By ) are assumed to be invertible.

Equation (7.7) suggests that the outputs of the matched filters be stored column-



7.4 Estimation Scheme 169

wise as two matrices, ), and ), during the first half training period and the second
half training period, respectively. After the first half training period, Y By Bas and
V1Bii'Bs; can be evaluated. Finally, at the end of the training, /! and V are

calculated (Figure 7.3). Evaluation of U{~! requires matrix inversion at the end of

U'=P (X,- Y, Bl; Bzz)-[

loyejnuinaae

V=(Y,-Y, B{xl B,) Q'

-1
P=le 'Bu BIZBZZ

-1
Q=Bzz'BlzBu le

()

¢-1)s
S19)]1] paydjew Jo yueq
SA0IAGP Pjoysaly)

Figure 7.3: Decorrelating-type decision-feedback detector and estimator.

each training period. In terms of the computational complexity, this method is

not homogeneous. In Section 6.7 we introduced an algorithm for matrix inversion,
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which is based on matrix orthogonalization, to distribute the computational load of
the matrix inversion calculations. Using this algorithm, the receiver is able to start
the calculations to invert ), — 3’131'21322 once lel—lezg is formed, that is in the

middle of the training period (see Figure 7.4).

2K+1
|- Ztrainingisequence U <
start inverting U
(a)
i tainingsequence T s | <

L
start inverting U U ™" is already computed

(®)

Figure 7.4: Comparison of matrix inversion methods; (a) conventional method,
(b) proposed method.

7.5 Training Sequences

The MLE analysis in the previous section assumes that matrices By, B2, Bs; and
Bj; are known. These matrices, however, are determined by training sequences. In
this section we will try to identify the training sequences which yield MMSE for

estimation of both Z/~! and V. To simplify notation let us introduce the following
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definitions:

weluv]o v lnon]

Né[N N]andzsé Bu Ba
1 2
Bi» Bx

Also let us define the error matrix E as the difference between the estimated matrix

W and W. From (7.12) and (7.15) we may write
E=W-W=NB"! (7.16)

We define mean-square-error as

K 2K

MSE = {3 > |}, (7.17)

i=1 j=1

where £{-} denotes expectation. By minimizing (7.17) with respect to B the MMSE

sequences can be identified. We can expand equation (7.17) as follows:

K 2K 2K 2K

MSE =333 S £, Nigd b1 b (719

=1 j=1 p=1 ¢=1

where b} = {B~'};;. On the other hand, we notice that the correlation between

each two entries of N can be expressed as
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0, J#!
E{nijnu} = (7.19)
%ﬂ-&,lm j =1
Therefore, (7.18) can be simplified as
N K 2K 2K
_ 0 —-112
wse = 233 S e
=1 j=1 p=1
N _
= — u(R)[IB7% (7.20)
where tr(R) is the trace of R and || - | denotes the Frobenius norm. We notice that

tr(R) depends on the assigned waveforms characteristics and it can be regarded as
a constant. Hence, Equation (7.20) suggests that MMSE sequences are those which
minimize the Frobenius norm of B~!. Considering the fact that the elements of the
training sequences are chosen from a finite set, i.e. signal constellation points, we
are presented with a discrete optimization problem. Moreover, matrix B consists
of four matrices By, Bis, Bo; and By which have some similar columns. This fact

imposes a constraint on choosing B. Indeed if we define a K x 2K — 1 matrix F as

F =[b(1),b(2),--- ,b(2K — 1)]

then matrix B can be repartitioned as

F  b(2K)

b(0) F
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which shows the upper part of B and the lower part of B having (2K — 1) similar
columns.

A general approach for finding matrix B with the above constraint so that the
Frobenius norm of its inverse is minimized is the search method. When K is small
(e.g. less than 8) the search method is practical, but for larger values of K the
tedious job of numerous large matrix inversions appears to be impractical. In this
chapter, however, we use a random search method, in which we randomly generate
a number of matrices as candidates for the matrix B, and then we choose the one

whose Frobenius norm of its inverse is minimum.

7.6 Simulation Results

In this section we present some simulation results. We consider a 16-user DS-
CDMA system using BPSK modulation scheme and Gold codes with length 31 as
the spreading waveforms. The simulation model is the same as what he had in
Section 5.7. A two-ray model for the channel is assumed as it was explained in
Section 5.6. We consider three different rms delay spreads: 62 nSec, 125 nSec and
500 nSec, corresponding to the second ray delays, 1, 2 and 8 chips, respectively. The
magnitude frequency responses for these channels are shown in Figures 5.4, 6.5, and
6.6. One million 32 x 32 matrices are generated randomly as matrix B, and the one
whose Frobenius norm is the smallest is chosen as the training sequences matrix.
Figures 7.5, 7.6 and 7.7 depict the simulation results in which the average BER
for the three different rms delay spreads are plotted versus SNR. Each Figure shows
four curves. In one we assume that we have a perfect knowledge of the channel. This
curve is in fact a lower bound for the performance of the estimation technique that

we are using. To improve the performance of the estimates we can use the concepts
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Figure 7.5: Average BER versus SNR for i = 62 nSec; (a) 1 training sequence,
(b) 2 training sequences, (c) 4 training sequences, (d) known channel.

of averaging, in which instead of sending only one training sequence during the
training period, several training sequences are sent. Upon arrival of each training
sequence, the coefficients of the filters /! and V are estimated and ultimately, after
receiving all training sequences, an average of the estimates is computed and used
as the filter coefficients. Figures 7.5, 7.6 and 7.7 show doubling the number of the
training sequences corresponds to about 2 dB improvement in SNR. The accuracy
of a decision-feedback scheme is very sensitive to the function of the feedback filter.

In fact if the output of the feedback filter is not a good approximation of the
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Figure 7.6: Average BER versus SNR for 7;p,s = 125 nSec; (a) 1 training sequence,
(b) 2 training sequences, (c) 4 training sequences, (d) known channel.

interfering component from the previous symbols, then the feedback filter, not only
does it not help the process of detection, but also causes some degradations in
the forward filter performance. In the presented decision-feedback detector, due to
errors in the estimation of the feedback filter coefficients, especially for low SNR,
the average BER is higher compared to the case that only the forward filter is
used (see Figure 6.7). However, the feedback filter V removes ISI and the BER
curves, therefore, do not have error floors. Comparing Figure 7.5, 7.6 and 7.7,

we find out that the BER performance of the decorrelating-type decision-feedback
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Figure 7.7: Average BER versus SNR for 7ims = 500 nSec; (a) 1 training sequence,
(b) 2 training sequences, (c) 4 training sequences, (d) known channel.

detector does not depend very much on the channel rms delay spread. This is in
contrast with the BER performance of the decorrelating-type detector, which was
studied in the previous chapter, and which degrades dramatically with an increase
in the channel rms delay spread. The reason is that the decorrelating-type decision-
feedback detector, due to the ISI canceling property of the feedback filter, is not

sensitive to the channel rms delay spread.
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7.7 Discussion

In this chapter, a decorrelating-type decision-feedback detector for multiuser de-
tection in the frequency-selective multipath propagation environment is considered.
The decorrelating-type decision-feedback filter processes the outputs of a bank of
matched filters which are simply matched to the original spreading codes of the
system. The forward filter removes MAI, whereas the feedback filter removes ISI.
We propose an MLE scheme to estimate the coefficients of both the feedback and
forward filters. The estimation method inserts known training sequences into the
information data by all users simultaneously. To achieve MMSE in the estimation,
we showed that the training sequences matrix B must be chosen in a manner that
the Frobenius norm of its inverse is minimized. The estimation method requires a
matrix inversion at the end of each training period. Due to errors in estimation the
coefficients of the feedback filter there is a degradation for low SNR in BER com-
pared to the case when this filter is not used. However, when using this filter the
BER curves have a linear shape, which is an indication of decreasing BER at high
SNR. The other advantage in using the feedback filter is that the BER performance

does not depend on the channel rms delay spread.



Chapter 8

Conclusions and Future Work

8.1 Conclusions

A brief summary of the accomplished work is presented in this chapter, with an
emphasis on the contributions to the area of multiuser detection and channel esti-
mation methods for wireless communications.

We studied the idea behind multiuser detection. Four suboptimum multiuser
detectors as well as the conventional detector and the optimum detector were dis-
cussed and investigated with respect to both their bit-error-rate and computational
complexity. The simulation results showed that in AWGN channels, these four sub-
optimum detectors perform fairly well compared to the optimum detector. Among
them the decorrelating detector does not yield such a near-optimum bit-error-rate.
The decorrelating detector, however, is the only suboptimum detector that does
not require the knowledge of energies of the users. The computational load of this
detector is reasonably low making it a good candidate for multiuser detection in
AWGN channels.

In Chapter 3 a new suboptimum multiuser detector, namely the two-level thresh-
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old detector, was introduced. The computational complexity of this detector is lin-
ear in the number of users. The performance of the two-level threshold detector is
close to the optimum detector, while its computational complexity, for SNR values
of interest, is a little bit more than that of the decorrelating detector. The two-
level threshold detector consists of a decorrelating filter. This filter removes the
MAI completely. Therefore, the outputs of the decorrelating filter contain only the
desired signal embedded in noise. Assuming BPSK signaling, the likelihood ratio
test in such a case suggests a simple threshold device with one level of threshold.
However, the decision of the likelihood ratio test is not dependable, when the out-
puts of the decorrelating filter are in the neighborhood of zero. In such a case, we
suggested to use the multiuser maximum likelihood detector. To avoid the high
computational complexity of the multiuser maximum likelihood detector we chose
local maximization of the likelihood expression.

The radius of the vicinity of zero, i.e. ¢, had a significant impact on both the bit-
error-rate performance and the computational complexity of the two-level threshold
detector. When € = 0, the two-level threshold detector becomes the decorrelating
detector, and when € = oo, this detector functions, although not exactly, very
similar to the two-stage detector with a decorrelating detector as the first stage.
The larger ¢, the higher computational complexity.

In Chapter 4 it is shown that the discrete-time channel impulse response is an
appropriate way to model the multipath fading channel, since the simulations are
performed in the time domain. A two-ray Rayleigh model, while simple, could
achieve a large variety of multipath fading channels from flat fading to frequency-
selective fading. Despite these advantages, the two-ray fading model is only a

first-order approximation and does not yield a precise physical description of any
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arbitrary radio channel. However, since our aim was to compare multiuser detectors,
this model provided satisfactory results.

In Chapter 5 the multiuser detectors in a multipath fading frequency-selective
channel were studied. There are two different approaches to design multiuser de-
tectors for multipath channels, channel-matched and path-by-path. We chose the
channel-matched approach, since it yields a better bit-error-rate performance. We
observed that the conventional detector performs poorly. The two-stage detector
with a conventional detector as the first stage did not offer a good performance
either. The remaining detectors performed near-optimal. Amongst them, the two-
level threshold detector offered the second best performance next to the optimum
detector. The satisfactory performance of the two-level threshold detector was ob-
tained by choosing the optimal value for e. Fortunately, for the SNRs of interest
the optimal € happened where the computational complexity was still low and close
to that of the decorrelating detector.

In Chapters 6 and 7 we considered various issues in channel estimation for
two multiuser detectors. In Chapter 6 we proposed a decorrelating-type detection
scheme equipped with a symbol-aided channel estimation method. The detection
scheme is similar to the channel-matched decorrelating detector except that the
bank of matched filters at the front-end of the receiver are matched to the origi-
nal spreading codes of the system. An MLE scheme was proposed to estimate the
coefficients of the decorrelating-type filter. The estimation method inserts known
training sequences in the information data sequences. It was shown that the MLE
of the decorrelating-type filter is obtained by multiplying the matrix of the train-
ing sequences by the inverse matrix of the outputs of matched filters. We showed

that in order to obtain MMSE in estimation, the training sequences matrix must
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be chosen in such a way that the Frobenius norm of its inverse is minimized. We
also showed that should we choose the training sequences matrix to be orthogonal,
the MMSE would be satisfied with a good approximation. When the number of
users is a power of 2, a Hadamard matrix could be used as the training sequences
matrix. We noticed that the estimation method required a matrix inversion at the
end of each training period. An iterative matrix inversion algorithm was introduced
to distribute the computational load of the matrix inversion. The detection scheme
had some drawbacks. The BER curves exhibited an error floor. This was due to
the fact that while designing the decorrelating-type detector, we ignored the ISI
imposed by the multipath channel. However, the existing ISI, even though small,

could degrade the performance of the detection.

In Chapter 7 we proposed a decorrelating-type decision feedback detection scheme.

This detector consists of two filters, forward filter and feedback filter. The forward
filter is intended to remove the MAI, while the feedback filter is used to remove
ISI. A symbol-aided estimation scheme based on inserting known sequences into
the information data sequences was proposed. We investigated an MLE method to
estimate the coefficients of both forward and feedback filters. To achieve MMSE in
estimation, a criterion was derived. However, due to some constraints, the MMSE
sequences had to be found using an exhaustive search method. The introduced al-
gorithm for matrix inversion in Chapter 6 was applied to the estimation scheme to
apportion the computational load. By using the feedback filter, BER curves became
linear shape. Another advantage of the feedback filter was that the BER curves did
not depend on the channel rms delay spread, as opposed to the decorrelating-type

detector.
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8.2 Future Work

Some topics for future study are now addressed. For numerical and simulation re-
sults presented in this dissertation, especially for the proposed two-level threshold
detector, we had an optimistic condition; equal received energies are assumed (per-
fect power control). How the two-level threshold detector is affected by imperfect
power control would be a good topic to investigate. Also a symbol-aided channel
estimation is proposed and applied to two different multiuser detectors. The es-
timation method might be applied to other multiuser detectors presented in this
dissertation too. The comparison of the estimates in terms of the bit-error-rate
performance and the complexity would be another useful topic.

Most of the research conducted in the area of multiuser detection has so far
focused on uncoded systems, and less work has been reported on the question of
coding for multiuser systems [124]. One of the issues in this area is the design
of both optimum and low complexity detectors/decoders when all users are using
known error control codes [125-129]. Another issue is the design of new codes such
that they match the characteristics of multipath channels and account for the MAI

As we mentioned in Chapter 6, less work has been conducted in the parameter
estimation issues in multiuser detection, and consequently, on the impact of imper-
fect parameter estimates on the performance of the multiuser receivers [130-132].
The problems of acquisition, timing synchronization, tracking and carrier offset

sensitivity all need more attention [133-135].



Appendix A

Gold Sequences

Gold sequences are useful due to the large number of codes that they supply. They
can be chosen so that over a set of codes available from a given genarator, the cross-
correlation between the codes is uniform and bounded [136,137]. In this appendix
we describe how we generate a set of Gold sequences and then we present the Gold
codes set that we have used in computer simulations as the users’ spreading codes.

Let u and v represent a preferred [136] pair of m-sequences having period N =
2" — 1. The family of codes defined by {u,v, u+v,u+Dv,u+D%,--- ,u+ DV},
where D is the delay element, is called the set of Gold codes for this preferred pair
of m-sequences. It can be proved that the N + 1 elements of a Gold codes set
have the property that the cross-correlation between any pair of codes in the set is

three-valued {138], where those three values are —~t(n), —1, and #(n) — 2, where

1+2% forn odd,
t(n) = (A1)

1+ 2% for n even

A set of 33 Gold codes with length 31 is generated by two preferred m-sequences
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with generator polynomials (11101 1)and (10010 1). We choose 16 codes
from the set of 33 codes so that the cross-correlation between each pair is -1. The
autocorrelation of each code is obviously 31, i.e equal to the length of the code. The

assigend codes are shown in Figure A.1.



Gold Sequences 185

- Lo} —t — —t Lann] r—t — i Lo | 4 — T — i i
] t 1 ] t 1 ] T
i —4 - i Ea] — L] — — i —i i —4 — i —
I ] I I t t !
— i — — Lo — — -4 — i b Tt i i —t
1 H I ] [} 1 ]
i — i - i — — it i —t i i — i i i
] t 1 i t ' ' [} I 1
4 — —t i i — i — —i i i i L] i —t -
t [} t 1 1 1 [} 1 1
L | —t [aa] —f i ™t i i 4 — i Lo} i i lam} —
] I t t ] ]
i L Lol i i — i —t i |—l( — =i i Lo | i i
t 4 t 1 1
i — — i — L] - i — —i i Lage - —t —i i
] ] t 3
t ' i ' ' 1 1 ' 1 1 —
2]
—i i — —t — — — —i i - - Lo} i —i — i cg
3 t 1 t ] t
Ll — —t — — — —t 4 i —t — — — i — — E
1] t ' I ] ] 1 1 1 I [«b}
-~
— r—i i — - — 4 — i — — Lan ! —i —t i —i &
' 1 1 ' ' i g:
i — i — L] — —t —i — i i Lo | — — Laml i 5}
4 [ I t t t t -
~—
—f i —i i L] — i i i - i i i L - —t o
1 ! [ 1 1 1 Pt
—t i — i i —t i — —t —t - 4 i r—t —t i '8
1t t I ' L} ] I
=
i r—i i i i —t i —t i L] —t 4 i —t i —t oo
' i 1 i ' t t 1 1 t ';;‘:
' t ] t [} t
3
— i — i i —t —t i —t i Lan) —t i —t L} — -~
1 t ] 4 s 1 3 o
i —i i - — — Lo i —i i — — — i i ©
' ' [ i 1 ! ' -~
Ap—
— i i i i Lo i i i Lol Ll i — — L] —i o
t ' ' ' ' ¢ ' ' t ' (@)
- — i i i i i i i i i Lan —t i i b
' 3 ' ' ' i ' ' ' L
.
1 t ' i ] ] ] 1 1
QL
i —t i i - L} —i Lan! — — i i i L | —i i ‘5
I t ' ! I t ] ]
an
i i —t it Lo i L] i i ~i i i i — —i — ]
1 [} 1 t i ! I 1 &‘
— — Lan ! i - L] —t — — — i i —t - i —i
] ' 1 t [} [ 1 1
—t Lo — i i 1 L | i i 4 i Lo ! —t i i —i
] t t ] ] ] i
i i - i i L] i —i i i i —{ Lo | — i vt
1 1 ] 1 4 1 1
— !—l‘ —t i L) ™ —t i — — i i — —t — i
1 1 ] ] 1 t ! ]
— i i r—I( i = i i —t L] — i Lo - L] -
[} ' 4 [} t [}
i — Lame) Lan ] i r— i i i —t i !-TI i - =i i
l [} 1 ] ] ] t [}
i ] I ] [}
~ O N T D O > 0 O e e o~ e e e
et St et St =~ St =t et o -t 5t = St =t bt =
[+5] Q <53 [<b] [+3)] [+5} [+5] 48] Q [+5] [+ [+ (18] Q 3] D
72} 2] [22] 2] (72} 721 w0 2] w 2] (72} w [ 721 72} 0
= - 2 =2 3 = =B 3 = =2 =2 323 S5 3 = =



Appendix B

The Probabilty of Error Analysis

for the Optimum Detector

In this appendix, the bit-error probabilty of the optimum detector given by Equation
(2.25) is derived. This derivation is adopted from [20]. Without loss of generality,
consider the error probability of the first user. Denote the transmitted vector of bits
as b® = [b§,--- ,b%]T and y, the vector of sufficient statistics as y(b°) to express its
dependence on b°. Let the set of all decisions which are erroneous in the bit of the
first user be denoted as S(b°). Conditioned on b, the error probability of the first

user, denoted as Py, is
P = £ {P[b° € S(b")]} (B.1)

where b° is the solution of Equation (2.25) and &+ denotes the expectation over
the ensemble of identical, uniformly distributed b° € {—1, +1}X. Since each b’ that
belongs to S(b°) represents a disjoint region in y(b*)-space, the probability that b°

is a member of S(b°) is equal to the sum of the 25— probabilities that each member
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of S(b°) is equal to the optimum decision. Therefore,

PP =Ep{ ) Plb°=arg max (26" Wy(b*) — " WRWb)]}

b es(s*) be{-1.+1}¥
=& { Y. PlTWy(b*) — b°TWRWD°) (B.2)
b°eS(b*)

> (26T Wy(b°) — BT WRWb, Vb # b°]}

Noting from (2.28) that y(b°) = RWb° + n, we have

PP =&p{ Y  P[(b° —b)TWn
beEeS(b?) (B.3)

> %(b"TWRWb" ~ bTWRWb) — (B° — b)TWRWb*, Vb # b°|}

Let A denote a 2 — 1 x K matrix whose elements are either 0 or 1 so that the
elements of the :th row represent a binary number, the decimal equivalent of which
is 7. Let B represent a diagonal matrix with <th diagonal element 4?. Define
v £ B°Wn which is therefore a zero-mean Gaussian random vector with covariance
matrix Ny B°W RW B°. Writing the 2% —1 inequalities in the probability expression

in (B.3) in vector notation, we have

PP =&s{ ) PlAv > c(d")]} (B-4)
b°eS(b*)

where we adopt the convention that the symbol > between vectors denotes ” greater
than or equal to” component-wise. It can be verified that the ith element of the

2K — 1 column vector ¢(b°) is written as

ci(b°) = C(b°, D®b°) (B.5)
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where the K x K diagonal matrices D® for i = 1,2,...,2K — 1 are defined such
that the j-th diagonal element of D@ is given as (—1)4:/, A;; being the (3, 7)th
element of the matrix A. Further, the scalar C(b°, z) for € {—1,+1}¥ is defined

as
C(t, ) = —}I(b"TWRWb" — TWRWz) — %(b" _2)TWRWbH.  (B.6)

Now, note that for given b° and b°, the probability P[Av > ¢(-)] is equivalent to
the computation of the integral of the multivariate normal density function of v
over the polytope Av > ¢(-). It is not difficult to show that this probability can
be expressed in terms of sums and differences of multivariate normal distribution
functions of dimension less than or equal to K. This fact is illustrated by an example
when K = 2. In this case, the matrix A will be (({] é) and the probability in the

curly bracket in (B.4) can be written as

PlAv > c()] =

r

Pluy > ca, 2 2 15 if ¢ +c >0y,

4 Pl 2 o, v1 + 12 > c3]+ (B.7)

Plvs > ci,vn +v2 >3]~ Pluy+1ve 2 c3); if ¢ +6 <ecs.

\

Clearly, each probability term in the above equation can be written as a bivariate

or a univariate normal distribution function.



Appendix C

The Probabilty of Error Analysis

for the Multistage Detector

This appendix consists of the derivation of the error probabilty of the two-stage
detector in AWGN channels, which employs a decorrelator-type linear detector V,
as the first stage. The derivation is adopted from [20]. Without loss of generality
consider again the demodulation of b,. The two-stage detector decision from (2.57)

can be written as
b1(2) = sgnfz1(1)]

where the decision statistic 21(1) is also obtained from (2.57) as
K -
Z]_(].) = \/wlbl + Z \/kal,k[bk - bk(l)] -+ 1. (Cl)
k=2

The first, second, and the third terms will be referred to as the desired compo-

nent, residual interference and additive noise, respectively. Note that the residual
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interference depends on 8 = B8 — B(1), where 8 £ [by, b3, - - - , bx]T is the (K — 1)-
dimensional column vector that represents the bits that interfere with b, and B(1)
denotes the first stage estimate of 3 obtained by the linear detector V. Therefore,
we denote the residual interference as M;(3,4d) to explicitly show its dependence

on d and hence on 8. The decision statistic can be written as

21(1) = \/17161 +n; + A/[[(ﬂ, 5) (02)

The general strategy will now be outlined. The error probability is expressed
as the expectation of the conditional error probability, conditioned on the bits b =

[61, B7]T and on the error vector &, to obtain
P(error) = &, g{Es{P(error | by,,90)}}. (C.3)

Next, using (C.2) in the probability expression on the righthand side of (C.3), we

have

P — Mi(B,8) | b, B,8] if b =~1
Plerror | by, 8, 5) = [n1 > wir — M((B,8) | b1, 8,8] 1 (€4

Pln, < —J/w1 — Mi(8,6) | b, 8,8] if b =1

The rest of the derivation deals first with the evaluation of the probabilities in (C.4).
Then the expectation over § in (C.3) is evaluated by specifying the probability
density function of the error vector 4. Finally, removing the conditioning on the
bits is simply a matter of averaging simple random variables.

In order to compute the probability in (C.4), we require the probability density
function of n; conditioned on 8. Since § = 8 — B(1) and B(1) = [b2(1), - ,bx(1)]
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with each first stage estimate given by the linear detector V', we have from Equation

(2.56),
be(1) = sgnlvk - y] = sgn(f - b + ] (C.5)

Therefore, given b, the error vector § is entirely determined by & £ [v2,--- ,A/K]T.
Therefore, we need to determine the density function of n; conditioned on £. Con-
sider the K-dimensional zero-mean Gaussian random vector [£¢7n;]T which has a

covariance matrix given as

G f.
el (eT n) =M| de (C6)

n cl H1,1

where each of the blocks is derived from the decomposition of F' and G given by

r G b
F=VR= , and G=VRVT = (C.7)
fcl F gcl G

where f,, and g,, are (K —1) x 1 column vectors and f,, and §,, are 1 x (K —1)
row vectors and F and G are (K —1) x (K — 1) matrices. In particular, the cross-
correlation between £ and n, is given as £[¢n,] = f_. However, it can be shown
that, € is independent of n; (see [20] for details). Therefore, for a given b, since § is a
function of £ only, the additive noise n; is independent of § and hence of the residual
interference. As a result, the probability density function of n; conditioned on § is

the same as its marginal zero-mean normal density with variance R;; Np/2 = Ny/2.



The Probabilty of Error Analysis for the Multistage Detector 192
Therefore,
wy, — M (8,6
Pln, > VT — Mi(8,8) | by = —1,8,8] = (L2 — 2B 0)y g
Ny /2
and
Vwi + Mi(B,é
P[Tl1 < —\/wi; — 1‘/1[(,3, 6) | b]_ = +1,ﬁ, 6] = Q( b [(B )) (C.g)

V/No/2

We now have to evaluate the expectation over 4, in (C.3). Note that & takes
on 2%-! possible values corresponding to §; € {2(3;,0} depending on whether ,Bj(l)
is an error or not. Denote the set of all possible values of § as S(B) to show
its dependence on B. For a given b, each realization of § € S(83) corresponds to
B1(1) being equal to B — 8. Therefore, the probability of such an event is equal
to the joint density function of the first stage decisions B(1) evaluated at 8 — 6.
From (C.5), it is easily seen that this joint density is equivalent to the probability
that [vy -y,--- , vk - y] belongs to a certain hyperquadrant which depends on the
specific value of B — 8. It is clear from (C.5) that this probability can be expressed
equivalently as the (K — 1)-dimensional normal distribution function of €. Let us

denote it as
Py, (B8.8) £ P[B(1) =B — 6| b,4]. (C-10)

Finally, we substitute (C.8) and (C.9) in (C.3), and write the expectation over

d explicitly using (C.10). Denoting the error probability as P(V), we have from
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(C.3),

2fel 2 BB =m0 +

se5(8)
\/UTI - A/Il(ﬁv 6)

§es(8)

pP(V)

(C.11)

Clearly, the evaluation of this expression in (C.11) does not involve any numeri-

cal integrations. The evaluation of a (K — 1)-dimensional Gaussian distribution

function is, however, still required. For details on the efficient computation of the

multivariate normal distribution function see [139].
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