Colliding Pucks Solved Using a Temporal Logic
' John G. Cleary
Jade Simulations International Corporation and
The University of Calgary

Abstract

A Hom Clause logic programming language, called Starlog, which allows
execution of programs involving time is described. A sound and complete bottom up
execution procedure for the language is described. An extended example of Programming
in Starlog is given in the form of a solution to the colliding pucks problem. A discussion
of the features necessary for a distributed implementation of Starlog are given.

Introduction

There have been a number of attempts to use Logic Programming for simulation
and in particular to express simulation in a way that could be effectively parallelised. A
good survey of recent work on Temporal Logic is given in [Galton.1987]. These logics
are based around the idea of new modal logical operators such as next, and until.
Unfortunately they seem to be very difficult to use in a simulation context. Also many of
them consider time to be a series of discrete instants rather than as a real number.

Logic programming has been an area of particular interest in the attempt to devise
effective distributed computing schemes. The primary reason for this has been that the
order of execution of parts of a Prolog program do not affect the correctness of the answers
to the program. It seems then that this should allow the parts of the program to be executed
independently of each other on different processors. Unfortunately this goal has been more
elusive than at first anticipated. The committed-choice languages (CP, Parlog etc.) exploit
the AND-parallelism of programs. That is the fact that individual clauses within a Prolog
goal can be executed in parallel. The main difficulty here is managing the binding of
variables which are shared between the different parts of the system as well as the problems
of correct semantics mentioned above. Other attempts at exploiting and-parallelism rely on
a static analysis of a program to work out what parallelism is available. The main problem
here is the difficulty of the analysis and the fact that much potential parallelism can be
missed. Or-parallel schemes exploit the fact that different clauses within a program can be
executed in any order. The main difficulty with these systems is the difficulty of
maintaining many different binding environments in parallel and of managing the space

required by the alternatives. A number of attempts have been made to exploit both AND
and OR parallelism simultaneously.

Starlog is closely related to the Logic Data Language (LDL) which has been
developed as a way of exploiting AND and OR parallelism in data-base applications. LDL
uses a forward deduction technique where deduction proceeds from the facts in the data-
base toward the final conclusions sought in the query to the data-base. The computation
technique used is similar in its details to the relational algebra, with analogs of join, project
and other operators. Iterative fixed point computations are used to deal with recursive
rules.

This paper introduces another attempt at including simulation within the realms of
Logic Programming. The major advantage of this approach is that it has a precise and
simple minimal model semantics. The language, called Starlog, retains the standard Horn-
clause form of pure Prolog although the resultant programs are interpreted and executed
somewhat differently. It is not possible as in standard Prolog to use don't-know non-
determinism to search for answers. While don't-know non-determinism is a powerful
programming tool it introduces the problem that non-terminating programs (or at least very
long running ones) cannot be used because the stack size grows linearly with the execution
time. Committed choice Prologs avoid this at the same cost as Starlog of not being able to
search for solutions and as well lose a simple semantics.

This paper first introduces the general constructs of Starlog and then uses an
extended example of a simulation problem to show the power and expressiveness of the
language and to explain its execution mechanism. No attempt is made in this paper to give
a formal rendition of its semantics or of an execution mechanism. After this the execution
mechanism is explained in more detail and techniques for running it on a multi-computer
are described.

Starlog is applicable to a number of domains besides simulation. For example, it
includes relational temporal databases as a subset of the language in the same way that
relational databases are a subset of pure Prolog. It is also suitable for general purpose
programming and systems programming. This paper does not explore these possibilities.

Cleary -2-

Starlog

Tuples

The fundamental data object in Starlog is a tuple (this term is used in analogy with
tuples in relational databases and in the same sense that it has been used in Linda [Carriero
and Gelernter,1989]). A tuple is a literal (see [Lloyd, 1987] for the logic programming
terminology used here) which is true over some period of time. The first argument position
in each tuple is reserved for a time parameter. For example,

p(l[2,3),f(g(a)),b)
says that p (T, £ (g(a)),b) istrue forall valuesof T, 2 £ T < 3. A tuple can be true
over an interval of time or at a single instant as in:

p([5.5,5.5],a,a)
which says that p(T,a,a) is true at T = 5.5. Intervals do not appear explicitly anywhere in
Starlog, only assertions and results concerning instants of time. For example the tuple

above could be generated by the following clause:
p(T,f(g(a)),b) « 2<T, T<3.

Thus the interval [2,3) above can be taken as shorthand for an infinite number of time
instants. To distinguish the standard mathematical usage of brackets for representing open
and closed intervals from the standard logic programming usage of brackets for delimiting
lists and parameters I have put the mathematical brackets in bold face.

The result of a Starlog program is a (possibly infinite) set of tuples. The set of
tuples is all possible answers generated by the clauses in the program, so no query need be
supplied. This is similar to the database interpretation of pure Prolog where the result of a
query is the whole set of resulting tuples. It is different from the standard Prolog approach
where each answer is a separate binding of variables in a query and each of these answers
is seen as being an alternative answer to the original query rather than part of one overall
answer. It is this change of viewpoint which results in the inability of Starlog to search for
alternative answers as it would have to produce entire sets of alternative tuples. Starlog
programs compute using forward deduction. The execution is forward in two senses; it
proceeds forward from tuples which are known to be true to derive more true tuples and it
advances forward thru time in the same way as standard event list driven simulators.

Cleary -3-

Programs

The simplest form of Starlog program is a unit clause which states that a particular

tuple is true. For example
p(l.5,a,b) «

says that p (T, a, b) is true at the instant T=1. 5. Every program must contain one or more
such unit clauses to start the forward reasoning process. To assert that a tuple is true over

an interval of time constraints need to be placed on the time parameter. So
p(T,c,d) « T>1.5, T<2.3.

unconditionally generates the tuple p ((1.5,2.3],¢c,d).

To create more interesting programs it is necessary to allow more general conditions
in the body of a clause. For example to say that a tuple p will be true 1. 5 time units after a

tuple q, the following clause can be used:
p(TO0) & q(Tl), TO == T1 + 1.5.

== is used here to represent arithmetic equality). Execution of such programs starts by
generating all tuples from unit clauses and placing them in a “tuple pool”. As each tuple is
placed in the pool all clauses which have a matching predicate in their body fire and
generate a new tuple. For example if the tuple g (2) were to appear in the pool then the rule
above would fire and generate the tuple p (3. 5).

The following is a very simple Starlog program using these principles. It generates

a sequence of tuples integer (T) true for =0, T=1,:
integer (0) «
integer (T0) « integer(Tl), TO == T1+l.

To be more precise the body of a Starlog clause can contain zero or more literals
which potentially match tuples as well as built in calls such as <, <, and ==. To be
effectively computable the clauses must obey two restrictions:

+ the first parameter of each tuple must be a time value. That is, it must be a real
number 2 0.

+ the time in the head of the clause must be greater than or equal to the times of all
tuples in the body. This is a causality principle, which says that the consequences
of any tuple must lie in its future.

I will place these conditions explicitly in clauses in the following examples whenever it is
necessary (in a practical programming system they would be added automatically).

Cleary -4-

Using just what we have seen of the language it is possible to write some simple
programs. One typical example is the following which generates a continuous stream of
customers (this might be part of a larger queueing simulation). Each customer is generated
by a single tuple, customer (T, Id, R) where T is the time of the customers arrival, Id is a
unique integer identifier allocated to the customer and R is a random number seed used to
generate the next customer. The following program consists of two clauses. The first unit
clause specifies the first customer who starts the entire process. The second clause
generates a new customer a suitable time after the generation of the preceding one.

customer (0,1,123456789) « %First customer at time 0
%Generate new customer appropriate time after the last one
customer (TO, N, NewSeed) « %Create the new customer
tuple

customer (T1,q(Id,M), Seed), %$Previous customer arrived

N = M+l, %¥Increment Id number

TO == T1 + poisson(Seed,NewSeed).%Delay for next customer

Arithmetic

The form of the arithmetic necessary for Starlog is worth a closer examination
because time is a real number upon which arithmetic can be done. The difficulty here is
that times are represented internally within a Starlog computation not just as single real
numbers but also as intervals. The author in [Cleary, 1986] has examined the problem of
correctly doing arithmetic in Prolog. The solution given there also used an underlying
representation of real numbers as intervals. The resulting system had some interesting
properties the most important for the current paper being that the resultant arithmetic
behaved as a constraint solving system. For example an equation such as x*x == Y would
remain dormant until one of X or Y was given a concrete value whereupon the value of the
other would be computed. For example if later X = 2 then Y = 4 would be immediately
computed. Or if it was known that X was in the interval [2,3] then Y would be computed
to be in the interval [4,9]. Similarly if Y = 16 then then two solutions X = 4 and X = -4
will be computed. If Y = 2 then two small intervals X = (1.414,1.415) and X = (-1.415,-
1.414) will be given as the solutions. These are the smallest intervals which surround the
true solution of +v2.

Cleary -5-

The effectiveness of this can be seen in the following simple example:
P(T,X) « q(T0), X = T**2, T < 100.
r(20,X) « p(20,X%).

If g(10) is placed into the pool then this rule is fired and the tuple p ([10,100),X) is
generated together with the attached constraint that X == T**2, No attempt is made to
compute the (infinite) number of values of x in the interval, rather the system is lazy and
waits until it needs to compute an actual value. For example, when p is matched with the
body of the rule for r, T = 20, and at that point X is computed to be 400, so that,
r (20, 400) is placed into the pool.

This type of constrained arithmetic is particularly effective for combined
continuous/discrete simulation problems. As an example we will consider the problem of a
bouncing ball (for a different attempt at a solution to this problem see [Hale,1987]). In
this problem a ball bounces from a floor, on each bounce losing some velocity. The
trajectory of the ball is a continuous parabola between bounces but requires a single discrete
event at each bounce. This process will be modeled by two tuples, bounce and
trajectory. bounce (T, V) will occur at a single instant T and after the bounce the ball
will have a vertical velocity V. trajectory (T, Y, V) specifies the vertical height ¥ and the
vertical velocity v of the ball at time T.

1. bounce (0,1) « %The starting bounce
2. bounce (T,V) «

trajectory(T,0,W), $The next bounce starts when the

height is
%back to 0

wW<o, %and the velocity is downward

V=-W* (0.5. $Compute the new velocity
3. trajectory(T1,Y,V) «

bounce (T0,V0), T == T1-TO,
= V0 - g*T, Y == VO*T - (g/2)*T**2, %assume g = 1
Y 2 0.

The table below shows the execution of this program through its first three bounces.

Cleary -6-

Tuple Pool (in time order) {constraints} Number of rule used
to generate tuple

bounce (0,1) 1.

trajectory (T,X,Y) {0ST<2, V==1-T, Y=T-(1/2)*T**2} 3

bounce (2,0.5) 2
trajectory (T,X,Y) {2<T<3, V==2.5-T, Y=(T-2)-(1/2)*(T-|3.

2) **2}

bounce (3,0.25) 2

The only use that is made of the trajectory tuples above is to compute the next bounce.
However, a typical task for this sort of problem would be to graph the resulting arcs. The
following program sketches how this could be done. It assumes that the Starlog system
has a graphical display and will blacken a pixel with integer co-ordinates I, J at the times
when the tuple pixel (T, I, J) is true.
pixel (4,I,J) «

trajectory(T,Y,),

I+l <€ T*100, I 2 T*100, is_integer(I,0,400),

J+1 < Y*100, J 2 Y*100, is_integer(J,0,100).
The time the pixels are set is 4 which is the limit of the times when the bounces occur, this
ensures that the clause is causal and the pixels are not set until after all the trajectory
information is available. The co-ordinates are scaled by 100 and is_integer (A, B,C) is
an arithmetic constraint that forces its argument A to be an integer between B and C
(B<A<C). The effect of all this is to find a solution for the trajectory () equations over
the succession of time intervals [0,0.01], [0.01,0.02], ... [3.99,4.00] as generated by
successive values for I. For example of I is constrained to be 0, then T will be constrained
to the interval [0,0.01] and because of the equation from the first bounce,y=T-
(1/2)*T**2, Y is constrained to be [0,0.99995] and J to be 0. Thus the tuple
pixel (4,0, 0) will be generated blackening one dot on the screen.

This example shows how easy it is to print, or in this case graph, the answers
generated by the system. This depends critically on two properties of Starlog: the ability to
attach constraints to tuples; and the fact that all tuples in the system are public and
accessible at all times.

Cleary -7-

mpl i ialized Cl

One situation we have not considered is how to deal with the execution of complex
clauses where more than one tuple occurs in the body of the clause. Consider for example
the following clause:

P(T) « q(T), r(T)

This says that the tuple p (T) will be generated whenever q(T) and r (T) occur at the same
time. Imagine that the tuple q(7) is generated. Then one way to deal with this is to
immediately generate two new specialized clauses. One has the reference to q(T) removed

by bottom up resolution to form the new specialized clause:
p(7) « x(7)

This will only fire if the specific tuple r (7) is generated. To make this approach effective it
is necessary to prevent the tuple r (7) also firing the original rule and thus leading to the
new specialized rule p (7) « gq(7) and resultant duplicate computation The way to do
this is to rely on the system generating new tuples in strict time order. Soif q(7) has been
generated then it is known that no other q(T) tuples will be generated at time 7 or earlier.

Thus the original clause can be specialized to
pP(T) « q(T), T>7, r(T).

So when r (7) does arrive it can fire only one of the two new rules. Thus the basic Starlog
execution algorithm proceeds by continually specializing the set of existing clauses as new
tuples tuples are generated. When finally a clause has been specialized so far that it has no
body its head can be placed in the tuple pool as a newly generated tuple.

None of the examples so far have needed to consider this more complex form of
execution because they have all contained only a single tuple call in their bodies. However,
it will be important in understanding the colliding pucks example below.

A more complex example of the above process occurs when a tuple such as
q([8,9]) is generated. Then the two new specialized clauses which replace the original

one are:
p(T) « r(T), T28, T<9.
p(T) « g(T), T>8, r(T).
Now if r (8) is generated the resulting clauses are:
p(8) «
p(T) « r(T), T>8, T<9. %Note change of condition to T>8 from T28
p(T) « g(T), T>8, r(T).

So a new tuple r (8) is generated and two clauses remain waiting to be fired.

Cleary -8-

Negation

The simple form of the language described above lacks a critical dimension of
expressive power as it is unable to say that a tuple will be true for a period until some event
occurs. This is critical for programs where it is necessary to change the state of a system
on the occurrence of a particular event. In Starlog terms what is required is the ability to
say that a condition is true so long as a particular tuple has not been placed in the tuple
pool. A logical way to do this is to include negation in the set of allowable constructs in the
body of a clause.

A simple example of the use of negation is the following program which mimics the
effect of assignment of a state to an object. The state of the object at time T is represented
by the tuple state (T, V) and the new state , to which the objects value is to be set at time
TO, is given by the tuple new (T, w). Thus if the tuples new (1, a), new (3,b) and
new (9, c) occur then the tuples state ((1,3),a), state((3,9],b) and
state ((9,°01,c) should also be generated. They say that the state of the object from
time 1 to 3 had the value a, from time 3 to 9 the value b, and thereafter the value c. The

following single clause program accomplishes this:

la state(T,V) «

1b new(T0,Vv), T 2 TO,

1c not (exists T1,W new(Tl,W), T1>T0, T>T1l).

Line 1b of this clause says that state (T, V) will be true at time T if new (T0, V) has
occurred at some earlier time TO. If this were all that was in the clause then the object
would have multiple possible values. For example at time 4 it would have both the values
a and b and at time 10 the three values a, b and c. Line 1c prevents this by saying that a
state tuple is true only until another new () tuple appears. To paraphrase the negation it
says that state (T, V) will be false if there exists some tuple new (T1, W) whose time is
after TO and before T. So after the tuple new (1,a) appears it will match the clause and

generate a specialized instance:

la state(T,a) «

1b T2>1,

1c not (exists T1,W new(T1l,W), T1>1, T>T1).

That is the tuple state (T, a) will be generated with the constraint that T21 and with the
additional constraint implied by the negation. The tuple new (1, a) does not match
new (T1,W) in the negation because of the constraint that T1>1. However, when the tuple
new (3,b) appears it does match and reduces the clause to:

Cleary -9.

la state(T,a) «

1b T=21,

lc not (3=%, T>3).

(3>% has been struck through because it is trivially true). Reduced to interval notation this

gives the tuple state ((1, 3], a).
Semantics

Starlog without negation has a very simple least fixed point semantics essentially
identical to pure Prolog (the only differences is the introduction of real numbers).
However, the introduction of negation makes the semantics much more problematic. In
pure Prolog negation can be dealt with in stratified programs. These are ones where it is
possible to layer or stratify the program in such a way that predicate at a particular layer
depends only on predicates at the same or lower layers and if negation is used that the
dependency be to predicates strictly lower in the stratification.

A similar stratification is used in Starlog except that now the stratification is in time.
The basic idea is that the tuple that depends on a negation can only refer back to tuples that
occurred strictly in the past. In fact the precise condition is that there cannot be a zero delay
loop around a cycle of calls if they involve negation. The upshot of this is that any program
that is temporally stratified in this way has a well defined and unique minimal model.

Escape to Prolog

It is convenient to be able to write routines such as is_integer () directly. Itis
difficult to do this in Starlog itself. However, standard Prolog is well suited to the task.
Accordingly Starlog includes an escape mechanism to Prolog. For example,

is_integer () could be written in Prolog as follows:
is integer(8,B,C):- B<C..
is_integer(a,B,C):- An == A+l, An<C, is_integer(An,B,C).

Given values for B and C it will successively generate each integer value from B to C.
Some control is needed over when this will be invoked from the Starlog level, for example,
it will generate an infinite number of not very useful solutions if the values of B and C are
uninstantiated. Borrowing from NU-Prolog [Thom and Zoebel,1988] the following
notation specifies that is_integer (A, B, C) should only be called when all of A, B and C

have values:

Cleary -10-

is_integer(a,B,C) when A and B and C.

Multiple Heads

One additional construct is very helpful when writing programs such as the
colliding pucks example below. This allows a clause to have more than one head. For

example:
p(T),q(T) &« r(T)

says that when the rule is fired by the arrival of the tuple r (T) then both of p (T) and q(T)
are generated as new tuples. For example when r (42) occurs p (42) and gq(42) are both
generated. This extension is not a fundamental one as the single clause above can be

treated as an abbreviation for the two clauses:
P(T) « x(T)
q(T) « r(T)

In standard Prolog such an abbreviation is not useful but the rather different coding style of
Starlog makes it very helpful.

Colliding Pucks

As an illustration of how Starlog can be used for a non-trivial distributed program I
will now develop an example program to solve the colliding pucks problem. This problem
has been used in a number of benchmark studies of distributed simulations. In its simplest
form it involves a frictionless billiard table on which are placed a number of pucks. These
pucks are all moving and bounce off one another and off the four walls of the billiard table.
The first example below gives a simple sequential solution to this problem and uses
negation as a critical part of its coding.

Each puck is modeled by two classes of tuples. The tuple collide (T,N,P,V) says
that at time T a puck N collided (either with a wall or another puck) and started on a new
trajectory. P gives the (vector) position of the center of the puck at the start of the
trajectory, and v the vector velocity of the puck at the start of the trajectory. The tuple
trajectory (T,N,V,X) says that at time T the puck N will be at vector position X as a result
of the initial velocity at the beginning of the trajectory v. N is an integer uniquely
identifying the puck. (It will be assumed that all pucks have the same unit radius and
mass).

trajectory is defined by saying that it is the sequence of positions of the center of
the puck until the next collision occurs. These are specified by using a constraining

Cleary -11-

equation as in the bouncing ball example. The condition that the trajectory ends at the next

collision is applied by using negation. The clause specifying trajectory is:
trajectory (T,N,V,X) «
collide(TO,N,P,V), T2TO,
X == P + (T-T0)*V, % assume vector arithmetic is provided
not (exists T1,P’,V’ collide(T1,N,P’,V’), T1>TO, T>T1).

This is almost identical to the clause for state () given in the example above. There is one
key difference however, the identifier N which occurs in collide (TO, N, P, V) is used
inside the negation to select just the collisions which involve that puck. Otherwise, the
tuple would only be true until the next collision of any puck, not just the one currently
under consideration.

When solving this problem in more conventional languages the usual technique is to
compare all pairs of pucks and their trajectories. It is also necessary to keep a record for
each puck of the next collision it will undergo. It is possible that as the comparison
proceeds that a new collision will be found that is earlier in time. The result is that the
previous putative collision must be removed and the other puck that was to participate in the
collision must be reconsidered for alternative future collisions. This algorithm is
surprisingly complex for such a simple problem. This difficulty is automatically dealt with,
however, in the Starlog program above which does not have to explicitly keep track of
future collisions for each puck. Rather it is taken care of by the negation call which limits a
trajectory to the time up to the next collision.

The collide tuple is generated when two pucks on a trajectory touch (their centers
are separated by their radii). Each such collision involves two pucks coming into the
collision and the same two outgoing. The clause below thus uses the multiple head
abbreviation to generate two outgoing collide () tuples:

collide (T,N1,X1,Vinew),
collide(T,N2,X2,V2new) «
trajectory(T,N1,V1,X1),
trajectory(T,N2,V2,X2),
Nl < N2, %break the symmetry of the situation and prevent a
%collision from occurring twice
physics (V1,X1,V2,X2,V1lnew,V2new) .

The clause says there will be a collision at time T if the instances of the trajectories at time T
satisfy the conditions given by the Prolog routine physics (). Note that the positions for
the collisions are given by the positions of the pucks trajectories at time T. New velocities

Cleary -12-

are generated as a result of the collision. To prevent the same collision from being
computed twice with the trajectory () tuples in the opposite order the arbitrary constraint
that N1<N2 is imposed.

The only reason to code physics () asa separate routine is to isolate the physical
aspects of the problem It is given a null when statement so that it will be expanded in-line.
That is, when the Starlog system first starts, it will generate a single more complex clause
by eliminating the call to physics ().

physics () is an interesting routine which shows the power of the constraint based
arithmetic used here. The code assumes that vector arithmetic is provided by the system,

and that the dot product of two vectors is given by the operator «.
physics(Vl,Xl,VZ,x2,Vlnew,V2new) when ever,
physics(Vl,x1,V2,X2,V1new,V2new):—

1 D == X1-X2, DeD = 1, %the centers are one radius apart

2 Vlnew+V2new == V1+V2, %Conservation of momentum

3 R == D*[[0,-1],(1,0]], %Rotate D by 90 degrees

4 VlineweR == V1¢R, %Velocities perpendicular to the
centers

5 VZ2new*R == V1R, %are unchanged

Line 1 computes the vector b which lies between the centers of the pucks. The square of its
length is specified to be 1 which corresponds to the two pucks having their edges touching,
Line 2 specifies that the momentum of the outgoing pucks is equal to that of the incoming
ones. Line 3 computes R to be D rotated by 90 degrees (using a matrix multiplication). R is
then used in lines 4 and 5 to specify the constraint that the velocities perpendicular to the
centers remain unchanged before and after the collision. Because the arithmetic is
constraint based it is not necessary to rearrange it to explicitly compute the values of the
outgoing parameters. The system is smart enough to propagate the constraints and solve
for these values.

To initialize the problem with some pucks a number of collide () tuples should be
specified at time O with the initial velocities and positions of the pucks. An example might
be:

collide(0,2,([1,1],[0.5,0.4]) «

Care is needed that all the initial tuples are specified at time 0 and that all the puck identifiers
are different integers.

To complete the problem it is necessary to include collisions with the walls. This
can be done by adding a single clause which generates collide () tuples.

Cleary -13-

collide(T,N,X,Vnew) «
trajectory(T,N,V,X),
wall (X,M),
Vnew == V*M,
The Prolog routine wall () is given below. It specifies the four walls of the billiard table.
The first parameter is a constrained equation specifying the location of the center of a puck
when it is just touching a wall. ~ The second parameter is a matrix which says how the

velocity is transformed when the collision occurs.
wall (X) when ever.

wall ([X,Y],[[1,0],[0,-11]):- X=0.5.
wall((X,Y),[[1,0],[0,-1]]):- X=S-0.5, size(S).
wall ([X,Y},[(-1,01,(0,1]11):- ¥=0.5.

)

wall ([X,Y],([-1,0],([0,11] ¥=5-0.5, size(S).

%The size of billiard table (assumed to be square).
size(10).

wall () is specified to be expanded immediately by its when specification, in the same way
as the routine physics (). The result is that four new clauses are generated at the start of
execution, one for each clause of wall. Each of these has its own constraining equations
on the positions and velocities.

This program is clearly O(n2) in n the number of pucks. As each trajectory must be
compared against every other trajectory in existence at the same time. The n? computation
occurs in the first clause for collide (). The two occurrences of trajectory in that clause
mean that as a tuple is generated it will be matched against each of the trajectory calls giving
two new specialized clauses, one with the first call eliminated and the other with the second
call eliminated (see previous section for a more detailed description of this process). Each
of these O(n) new clauses will be available to receive a tuple in the remaining call. Each
will be restricted to the time range of the appropriate tuple so the ignominy is avoided of
having to compare against all tuples over all time making an O(n2t2) computation (where t
is length of time of the simulation). An O(n2) computation is to be expected for any similar
algorithm and is not a function of the language that we have used. Any improvement in
this computation time must come from an improvement in the algorithm. Incidentally, this
algorithm could possibly be speeded up by using a multicomputer. However, it is much
more fruitful to consider the more efficient algorithm of the next section and its very
efficient distributed implementation.

Cleary -14 -

Sectorized Colliding Pucks
Basic Algori

One way to improve the algorithm above is to divide the billiard table into small
square sectors. Then when checking a puck for collisions only those pucks lying in the
same sector or in immediately neighboring sectors need be checked for potential collisions.
(This makes an assumption that the sectors are all larger than the radius of the largest
puck). To do this we will break up each trajectory into a series of segments, each segment
corresponding to the portion of a trajectory within one sector. To do that all that we need
do is introduce a dummy collide event at each sector boundary. This is accomplished

with a single new clause added to our previous program:
collide(T,N,X,V) ¢
trajectory(T,N,V,X),
boundary (X) .

The Prolog routine boundary () specifies the set of lines along the boundaries of all the
sectors.

boundary (X) when ever.

boundary (X) :-
size(N), %Sectors are 1x1 squares
is_integer(I,0,N), %Generate I =0, 1, 2, ... N
s(I,X). %Set equations for each boundary

s(I,[X,Y]):- X=I. %The horizontal boundaries

s(I,[X,Y]):- Y=I. %The vertical boundaries

Because the boundary () call is expanded immediately this leads to a number of new
clauses, one for each boundary line on the table.

Sector Indexing

Unfortunately while this gives us the correct logic for the new algorithm it does not
help speed the computation. The problem is that while we have carefully subdivided the
trajectories each clause still accepts all the trajectory tuples for comparison. Thus there is
nothing in the clauses to prevent pairing trajectories from distant parts of the table. In fact
all that has been done is to increase the number of trajectory tuples and the total amount of
computation. What is needed is some way to specialize the clauses in such a way that a
given specialized clause will only accept tuples generated by a small number of other

Cleary -15-

specialized clauses. To see a simple example of this consider the following example

progmm:

1 p(T)e q(T,1)
2 pP(T)e q(T,2)
3 qQ(T, 1) e ...
4 qQ(T,2)e ...

The two clauses for p will by default try and compare all incoming ¢ () tuples. However,
clause 1 will only ever match against tuples generated by clause 3 and similarly for clauses
2 and 4. This is an example of the indexing problem which is well known in standard
Prolog implementations. The solution which is straightforward to implement in Starlog is
to restrict the comparison of incoming tuples in clauses 1 and 2 just to the appropriate
tuples generated by clauses 3 and 4.. This will halve the amount of work being done to fire
the clauses.

This can be carried over to the colliding pucks problem by using the names for the
different sectors on the table to force indexing of the clauses. The idea is to use Prolog
clauses to generate a large number of alternative specialized clauses at the beginning of the
computation. Each of these clauses would deal with collisions and trajectories in just one
sector and by the use of indexing would receive input only from the appropriate specialized
clauses in neighboring sectors.

To do this each of the collide () and trajectory () tuples will be given an extra
final parameter corresponding to the name of the sector in which they occur. The sectors
will be named by the (integer) co-ordinates of their top right hand corners. The first step in
the new version of the program is to define a Prolog routine sector (S, X) which specifies

the set of points in each sector:
sector(S,X) when ever.
sector([I,J],[X,Y]):- range(X,I), range(Y,J).

range (V,K) : - size(N), is integer(X,1,N), V<K, V2K-1.
The first parameter, S, is the name of the sector and the second parameter, X, is a vector
which will be constrained to be in the sector. The routine range (V, K) generates K as all
possible integers from 1 to N (the number of sectors on the table - for simplicity it has been
assumed that the table is NxN).

I will now revisit each of the trajectory and collide tuples and compute the
sector they should lie in.

Cleary - 16 -

collide(T,N,X,V,S1l) «
trajectory(T,N,V,X,S), sector(S,X), sector(X,Sl), S#S1,
boundary (X) .

This clause is the one to compute when a boundary pseudo-collision occurs. The outgoing
tuple is assigned to the sector over the boundary from the sector which originated the
trajectory. This is done by noting that every boundary point belongs to two sectors. When
boundary and sector are both expanded during initial computation their constraints on X will
interact so that each sector will get 4 specialized clauses generated, one for each boundary
of the sector. After specialization and indexing the clauses will receive only trajectory ()
tuples from within their own sectors.

collide(T,N,X,Vnew,S) «
trajectory(T,N,V,X,S), sector(s,X),
wall (X,M),
Vnew == V*M,

This clause computes the collisions against the walls. The collision occurs in the same
sector as the trajectory. In this case there will be one specialized clause generated for each
sector which shares an edge with a wall. After specialization and indexing these clauses
will receive trajectory () tuples only from their own sectors.

collide(T,N1,X1,Vlnew,S1),
collide(T,N2,X2,V2new,S2) «
trajectory(T,N1,V1,X1,S1), sector(Sl, X1),
trajectory (T,N2,V2,X2,82), sector(S2,X2),
N1 < N2, $break the symmetry of the situation and prevent a
%$collision from occurring twice
physics(V1,X1,V2,X2,V1inew,V2new) .

This clause is the one that computes the collisions between pucks. The modifications to the
first two calls in the body ensure that the sector of a collision is the same as that of the
appropriate incoming trajectory. Naively, this should generate N2 specialized clauses one
for each possible pair of sectors. However, the selection of a sector S1 or S2 constrains
the values of X1 and X2. But X1 and X2 are also constrained by the equations of
physics () to be within a distance 1 of one another. It turns out that there is just enough
information for the system to deduce that there is no possible solution for sectors which are
not neighbors. So most of the N2 specialized clauses will fail leaving 9N specialized
clauses. After indexing each of these specialized clauses will receive tuples from just two

Cleary -17-

sectors (one for each of the two trajectory () calls). This is what was sought and
reduces the computation in the algorithm substantially.

trajectory(T,N,V,X,S)
collide(TO,N,P,V,S), T2TO,
X =P + (T-T0)*V, % assume vector arithmetic is provided
not (exists T1,P’,V’,S’
collide(T1,N,P’,V’,S’),
neighbor (S,S’),
T1>TO0, T>T1).

This clause is the one that defines trajectories from a particular collision. Clearly the
trajectory () lies in the same sector as the initiating collide () tuple. After
specialization and indexing there will be one specialized clause for each sector and it will
receive collide () tuples only from the collide () clauses specialized to the same sector.
However, the negation also receives collide () tuples and without further care they will
be accepted from all the specialized c!auses in the system. It can be seen that the next
collide () tuple in the negation must be generated in either the same or a neighboring
sector. This condition is added by the Prolog routine neighbor () which specifies that two

sectors are neighbors if they have at least one point in common.

neighbor (S1,S82) :- exists X (sector(Sl1l,X), sector(S2, X).
After specialization and indexing this will lead to a slightly more complex form for the
negation which will receive collide () tuples only from neighbors.

Distributing Computations
Mappin,

The previous section has specified a relatively efficient algorithm for simulating
colliding pucks. However, the algorithm is still a sequential one for no mechanism has
been given for distributing it over a multicomputer system. One way to do this is to
position the clauses in the system so that one or more clauses are run on each processor.
This makes most sense when the units being positioned are specialized clauses. The
greater number and restricted connectivity of such clauses makes them ideal candidates for
positioning and for optimizing the communication streams between processors. For
example, in the colliding pucks example above if all the clauses associated with a sector are
placed on one processor then newly generated tuples need be sent only to those processors
which are dealing with neighboring sectors and not broadcast to all processors.

Cleary -18-

To do this Starlog allows mapping declarations to be added to programs. These
have the following form:

map <tuple> to <processor> where <condition>.
For example,

map collide(T,N,V,X,S) to Proc where mapper (S,Proc).
<tuple> refers to the tuple which occurs in the head of a clause which is to be mapped.
Proc refers to some processor name which has external significance outside the program
and which specifies a unique processor. <condition> is a Prolog routine which can be
used to associate the <processor> with particular parameters in the tuple. For example, if
the sectors above are to be mapped to 1 of Np processors named O thru Np-1 then the

following code might be used for the mapping:
mapper ([I,J],Proc) -
number procs(Np), size(N),
Proc == ((I-1) + (J-1)*N) mod Np.

In some cases it will be ambiguous where a clause should be positioned. Either
because the clause is insufficiently specialized to provide a unique processor number, for
example, if the sector was uninstantiated then the clause could potentially be mapped
anywhere on the system. Another possible reason is multiple heads in a clause, as for
example in the clause which computes the collisions between pucks. The easiest way to
resolve this is to allow the system to make a free choice when there is more than one
possible mapping.

timistic Computation

Once the individual clauses have been placed on processors it is still necessary to
specify a synchronizing mechanism between the different processors. In Starlog programs
which do not contain negations this is very simple. Such programs are monotonic, that is
the generation of a tuple can only cause new tuples to be generated, but can never cause
them to be withdrawn. Because of this each processor can compute freely accepting
incoming tuples from other processors as they come and firing rules which match them.

However, when negations are present in a clause it is necessary to know that a tuple
cannot arrive before generating the outgoing tuple in the head. In a non-distributed
implementation it is possible to examine all possible tuples which could match the negation
and find the earliest possible time at which the negation could occur. If this is after the
current time then the tuple can safely be generated in the knowledge that the negation can

Cleary -19-

never be fulfilled. In a distributed system it may be that a tuple is generated on a remote
machine which fulfills the negation but which arrives late. One way to deal with this is to
compute optimistically by assuming that unless evidence to the contrary is received no
tuples negating a clause will be received. The tuples generated as a consequence (and their
descendants) may have to be removed later when a negating tuple arrives. One simple
mechanism for administering this is to is to attach the negation to a tuple as a form of
constraint. If later a negating tuple arrives all those tuples which have inherited the
constraint will immediately fail. The constraints can be eventually garbage collected as
Global Virtual Time advances and it is known that no possible negating tuples could arrive.

Acknowledgements

This work was partially funded by the Natural Sciences and Engineering Research
Council of Canada.
References

Carriero, N.; and D. Gelernter 1989. “LINDA in Context.” Comm. A.C.M. 32, no. 4
(April): 444-458.

Cleary, J.G. 1987. “Logical Arithmetic.” Future Computing Systems 2, no. 2: 125-149.
Galton, A. Ed. 1987. Temporal Logics and their Applications. Academic Press, London.

Hale, R. 1987. “Temporal Logic Programming.” in Temporal Logics and their
Applications (A. Galton, ed.). Academic Press, London, 91-119.

Jefferson, D. 1985. “Virtual Time.” Trans. Programming Languages and Systems 7, no.
3 (July): 404-425.

Lloyd, J.W. 1987. Foundations of Logic Programming. Springer-Verlag.

Thom, J.A. and J. Zobel 1988. “NU-Prolog Reference Manual- Version 1.3.” Technical
Report 86/10. Department of Computer Science, University of Melbourne..

Cleary -20-

