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Abstract

A multiterminal secret key agreement (SKA) protocol is used to establish a shared se-

cret key among a group of terminals. We study SKA protocols with information-theoretic

security. In the source model of SKA, each terminal can sample from a correlated random

variable. In the channel model of SKA, terminals instead are connected through an un-

derlying noisy channel that is used for distributing the correlated variables. The terminals

arrive at a shared secret key by establishing correlation (as per the presumed source/channel

model) and communicating over a noiseless authenticated public channel. In the general

models of SKA, it is assumed that terminals’ variables are partially leaked to the adversary,

Eve, in the form of a random variable which we call Eve’s wiretap side information. Eve

has unlimited computational power and has read access to all public communication mes-

sages. The key rate of an SKA protocol is given by the key length divided by the terminals’

variables length, and the maximum possible key rate calculated for an SKA model is called

the wiretap secret key (WSK) capacity of that model. Finding a general expression for

the WSK capacity continues to be one of the hardest open problems within the context of

information-theoretic key agreement.

Our contributions include proving the WSK capacity and proposing capacity achieving

SKA protocols for the wiretapped PIN, Tree-PIN, and Polytree-PIN models, that are special

multiterminal SKA models of interest in practice. Also, we introduce a new channel model of

SKA that we call the transceiver model for which we prove multiple upper and lower bounds

on key capacity under various assumptions. Furthermore, we note that traditionally the key

capacity was studied and calculated for SKA models, while in the actual implementation

of SKA protocols, the achievable key length as a function of terminals’ variables length is

needed. Compared to calculating WSK capacity, finding the key length requires different

information-theoretic techniques for evaluating the protocols. We prove finite-length upper

and lower bounds on the maximum achievable key length for some of the models that we

have considered. In the concluding sections, we outline directions for future research.

ii



Acknowledgements

The studies and research results presented in this thesis were performed under the supervision

of Dr. Rei Safavi-Naini. I cannot thank her enough for her support and guidance. Her

expertise and wisdom helped me through my Ph.D. journey and I am genuinely grateful for

having her as my supervisor. I also thank my supervisory committee members Dr. Majid

Ghaderi and Dr. Gilad Gour; and the examiners Dr. Abraham Fapojuwo and Dr. Alex

Sprintson. I owe a special thanks to my friend and coauthor Dr. Setareh Sharifian for her

collaboration, encouragements and advice.

Above all else, I am indebted to my wife, my parents, my sister, and my friends for their

love and support.

iii



Nietzsche said,“He whose life has a why can bear almost any how.”

For me, Parisa is the why.

To Parisa

iv



Table of Contents

Abstract ii

Acknowledgements iii

Dedication iv

Table of Contents v

List of Figures and Illustrations viii

List of Tables x

List of Symbols, Notations, and Abbreviations xi

Epigraph xiii

1 Introduction 1
1.1 Why Information-theoretic Security? . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Information-theoretic Secret Key Agreement . . . . . . . . . . . . . . . . . . 3
1.3 Thesis Scope and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 12
2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Information Theoretic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 Source Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.2 Stochastic Processes and General Sources . . . . . . . . . . . . . . . . 26
2.2.3 Channel Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2.4 Finite-length Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3 Two-party Secret Key Agreement in Source Model . . . . . . . . . . . . . . . 33
2.3.1 Privacy Amplification . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.3.2 Information Reconciliation . . . . . . . . . . . . . . . . . . . . . . . . 38
2.3.3 How to Achieve the Key Capacity (When Z is Known) . . . . . . . . 40

2.4 Multiterminal SKA in Source Model . . . . . . . . . . . . . . . . . . . . . . 43
2.5 Secret Key Agreement in Channel Model . . . . . . . . . . . . . . . . . . . . 48
2.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

v



3 Finite-length Bounds for One-way Secret Key Agreement 54
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.1.1 Our Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.1.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.2 Two-party Secret Key Agreement . . . . . . . . . . . . . . . . . . . . . . . . 60
3.2.1 One-way Secret Key Agreement . . . . . . . . . . . . . . . . . . . . . 64
3.2.2 Finite-length Performance . . . . . . . . . . . . . . . . . . . . . . . . 65

3.3 Upper Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.4 Lower Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.4.1 A OW-SKA Protocol With Highest Finite key length . . . . . . . . . 72
3.4.2 A Practically Efficient One-way SKA Protocol . . . . . . . . . . . . . 83
3.4.3 Comparing ΠHH and ΠPH with other related protocols . . . . . . . . 87

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.6.1 Proof of Smooth LHL . . . . . . . . . . . . . . . . . . . . . . . . . . 96
3.6.2 A Fano-like inequality for sup-spectral entropy . . . . . . . . . . . . . 98
3.6.3 Proof of Spectral LHL . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4 Secret Key Agreement in Wiretapped Tree-PIN 101
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.1.1 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.1.2 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.2 Multiterminal Source Model for SKA . . . . . . . . . . . . . . . . . . . . . . 109
4.3 WSK Capacity of Tree-PIN . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.3.1 Proof Sketch of the Converse and Achievability . . . . . . . . . . . . 116
4.3.2 Public Communication Cost of Protocol 6 . . . . . . . . . . . . . . . 120

4.4 Finite-length Bounds for Wiretapped Tree-PIN . . . . . . . . . . . . . . . . 122
4.4.1 The Finite-length Upper Bound . . . . . . . . . . . . . . . . . . . . . 122
4.4.2 Finite-length Lower Bounds . . . . . . . . . . . . . . . . . . . . . . . 126
4.4.3 A Lower Bound for a Special Case . . . . . . . . . . . . . . . . . . . 130

4.5 Extended Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
4.5.1 WSK Capacity of Wiretapped PIN . . . . . . . . . . . . . . . . . . . 131
4.5.2 A Generalization of Wiretapped Tree-PIN . . . . . . . . . . . . . . . 136
4.5.3 The Case of a Non-cooperative Compromised Terminal . . . . . . . . 140

4.6 Need for Interaction in Source Model SKA . . . . . . . . . . . . . . . . . . . 141
4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
4.8 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

4.8.1 Proof of Upper Bound Lemma 4.4 . . . . . . . . . . . . . . . . . . . . 149
4.8.2 Proof of Lower Bound Lemma 4.5 . . . . . . . . . . . . . . . . . . . . 155
4.8.3 Proof of Theorem 4.9 and Proposition 4.10 . . . . . . . . . . . . . . . 160

vi



5 A Channel Model of Transceivers for Multiterminal Secret Key Agreement162
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

5.1.1 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
5.1.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
5.1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

5.2 A General Channel Model of Transceivers . . . . . . . . . . . . . . . . . . . 167
5.2.1 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
5.2.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
5.2.3 The Relation with Multiaccess Channel Model . . . . . . . . . . . . . 173

5.3 General Lower and Upper Bounds . . . . . . . . . . . . . . . . . . . . . . . . 175
5.3.1 The Multiterminal Source Model . . . . . . . . . . . . . . . . . . . . 175
5.3.2 The Source Emulation Lower Bound . . . . . . . . . . . . . . . . . . 177
5.3.3 Upper Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

5.4 The Non-adaptive SK Capacity . . . . . . . . . . . . . . . . . . . . . . . . . 186
5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
5.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

6 Secret Key Capacity of Wiretapped Polytree-PIN 192
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

6.1.1 Our Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
6.1.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
6.1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

6.2 Problem Formulation and Main Result . . . . . . . . . . . . . . . . . . . . . 196
6.2.1 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
6.2.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
6.2.3 WSK Capacity of Polytree-PIN . . . . . . . . . . . . . . . . . . . . . 200

6.3 Proof of Theorem 6.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
6.3.1 Converse Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
6.3.2 Source Emulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
6.3.3 The Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
6.5 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

7 Conclusion and Future Work 210

Bibliography 214

A Copyright Permissions 233

vii



List of Figures and Illustrations

1.1 A simple wiretapped Tree-PIN. . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 The transceiver channel model. . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 A simple wiretapped Polytree-PIN. . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 The source coding problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2 The source coding problem with side information at the decoder. . . . . . . . 26
2.3 Two-party SKA in source model. . . . . . . . . . . . . . . . . . . . . . . . . 33
2.4 The modified privacy amplification problem. . . . . . . . . . . . . . . . . . . 38
2.5 Two-party communication for omniscience. . . . . . . . . . . . . . . . . . . . 39
2.6 Multiterminal SKA in source model. . . . . . . . . . . . . . . . . . . . . . . 45
2.7 A simple multiterminal source model. . . . . . . . . . . . . . . . . . . . . . . 46
2.8 General structure of an SKA protocol in channel model. . . . . . . . . . . . 49
2.9 The single-input multi-output, and the multiaccess channel models. . . . . . 51

3.1 Finite-length comparison of interactive and one-way SKA. . . . . . . . . . . 91
3.2 Finite-length performance of ΠHH for an INID source. . . . . . . . . . . . . 92
3.3 Finite-length performance of SKA Protocol 5. . . . . . . . . . . . . . . . . . 93

4.1 An example of wiretapped Tree-PIN with independent leakages. . . . . . . . 108
4.2 The LP problem of finding RCOpXM|Zq. . . . . . . . . . . . . . . . . . . . . 117
4.3 Comparing the proven finite-length bounds for the Tree-PIN source model. . 129
4.4 The wiretapped PIN of Example 4.3. . . . . . . . . . . . . . . . . . . . . . . 135
4.5 Steiner packing of G3 into 4 edge-disjoint trees. . . . . . . . . . . . . . . . . 136
4.6 A simple wiretapped Markov Chain on a Tree with three terminals. . . . . . 137
4.7 A simple wiretapped Markov Chain on a Tree with two terminals. . . . . . . 138
4.8 A general wiretapped Tree-PIN with two terminals. . . . . . . . . . . . . . . 139
4.9 Modes of interaction for two-party SKA . . . . . . . . . . . . . . . . . . . . 143
4.10 The Tree-PIN model of Example 4.5. . . . . . . . . . . . . . . . . . . . . . . 144
4.11 The LP problem of finding RCOpXA|Zq. . . . . . . . . . . . . . . . . . . . . 149
4.12 The rate assignment that achieves RCOpXA|Zq. . . . . . . . . . . . . . . . . 152

5.1 Scheme of a general SKA protocol in channel model. . . . . . . . . . . . . . 169
5.2 Comparison of the multiaccess and transceiver models. . . . . . . . . . . . . 172
5.3 Three examples of the transceiver model. . . . . . . . . . . . . . . . . . . . . 174
5.4 The source emulation approach for SKA. . . . . . . . . . . . . . . . . . . . . 179
5.5 The associated multiaccess channel model with auxiliary input terminals. . . 182

viii



6.1 An example wiretapped Polytree-PIN. . . . . . . . . . . . . . . . . . . . . . 197
6.2 An example of a Polytree-PIN and its associated multiaccess channel model. 203

ix



List of Tables

3.1 The comparison of Protocols 4 and 5 (ΠHH and ΠPH) with other protocols. 90

4.1 Different Types of Key Capacities Based on Different Adversarial Assumptions.103

x



List of Symbols, Notations, and
Abbreviations

Abbreviation Meaning

RV Random Variable
Enc Encoder
Dec Decoder

DMS Discrete Memoryless Source Model
DMC Discrete Memoryless Channel Model
BSC Binary Symmetric Channel
BEC Binary Erasure Channel
BMS Binary-input Memoryless Symmetric Channel
IID Independent and Identically Distributed

INID Independent but Not Identically Distributed
SK Secret Key

SKA Secret Key Agreement
WSK Wiretapped Secret Key
PK Private Key
IR Information Reconciliation
PA Privacy Amplification
CR Common Randomness
CO Communication for Omniscience
LP Linear Programming
PIN Pairwise Independent Network
LLN Law of Large numbers
LHL Leftover Hash Lemma
UHF Universal Hash Function

Symbol/Notation Meaning

R The set of all real numbers.
N The set of all natural numbers.
A A set A.

AY B The union of sets A and B.
AX B The intersection of sets A and B.
H Empty set.

xi



|A| Cardinality of set A.
rms The set of natural numbers from 1 to m, t1, . . . ,mu.
AzB The set of all elements in set A that are not in set B.
Bc The compliment of set B, i.e., AzB if A is the universal set.

Pr t¨u Probability function.
X Random variable X.
X The alphabet of the random variable X.

supppXq The support of the random variable X.
PX The probability distribution of X.
x A sample from the random variable X.

PXpxq The probability of realization x, i.e., Pr tX “ xu.
X „ PX Random variable X has distribution PX .
Bernpqq Bernoulli distribution with success probability q.
E tXu The expectation value of X.
EPX tXu The expectation value of X.
Var tXu The variance of X.
VarPX tXu The variance of X.

PXY The joint distribution of X and Y .
PX|Y The conditional distribution of X given Y .
V A random vector V.
X n The n-th Cartesian product of alphabets X ˆ X ˆ ¨ ¨ ¨ ˆ X .

Xn “ pX1, . . . , Xnq A sequence of random variables Xj for j P rns.
xn “ px1, . . . , xnq A realization of random vector Xn.

PXn The joint probability distribution of Xn

Vrms A vector Vrms “ pV1, . . . , Vmq.
VA A vector VA “ pVj| @j P Aq.

sumpRq The sum of all elements of a real vector R.
X ´ Y ´ Z A Markov chain relation.
HpXq The Shannon entropy of X.
HminpXq The min-entropy of X.
HpX|Y q The conditional entropy of X given Y .
IpX;Y q The mutual information between X and Y .
IpX;Y |Zq The conditional mutual information between X and Y given Z.
SDpX, Y q The statistical distance between X and Y .
G “ pM, Eq A graph with set of vertexes M and set of edges E .

GA “ pMA, EAq The subgraph of a given G “ pM, Eq with the smallest number
of edges that spans all vertexes of A ĎM.

Γpjq The set of all vertexes connected to the vertex j.
A‘B The bitwise XOR of binary strings (vectors) A and B.

lengthpAq The length of a binary string (vector) A.

xii



Epigraph

We may have knowledge of the past but

cannot control it; we may control the

future but have no knowledge of it.

- Claude Shannon,

“Coding Theorems for a Discrete Source With a Fidelity Criterion,”

IRE International Convention Records, volume 7, pp. 142–163, 1959.

xiii



Chapter 1

Introduction

1.1 Why Information-theoretic Security?

How can two distant parties establish a secure communication link? Suppose Alice wants to

send a sensitive message to Bob over an insecure communication channel. Alice transforms

the message into a ciphertext, using a designed code called encryption code, sends the cipher-

text over the insecure channel to Bob, and then Bob recovers the original message from the

ciphertext using a code called decryption code. A passive adversary, Eve, whose objective is

to learn Alice’s message, can observe the ciphertext as well. The encryption and decryption

codes are information-theoretically secure if it is proved theoretically that Eve cannot break

the cipher, even by using unlimited computational power.

The idea of information-theoretic security (and theory of cryptography as well) originates

from the seminal work of Shannon, where he proved that a secure communication link can

be established between Alice and Bob if they share a secret key which is perfectly concealed

from Eve [1]. The encryption and decryption codes that require the same shared secret key

are referred to as symmetric-key cryptosystems. Shannon’s result reduces the problem of

secure communication to a problem of secret key agreement (SKA), as the security of any

symmetric-key cryptosystem relies on the secrecy of the key which is shared in advance.

1



Diffie and Hellman proposed a practical solution to the key agreement problem, by intro-

ducing their pioneering secret key agreement protocol [2], and essentially starting the revo-

lution of modern (asymmetric-key) cryptography. In their work and other works within the

setting of asymmetric-key cryptography, the security definition is relaxed from information-

theoretic security to computational security. That is, instead of proving the theoretical

impossibility of breaking the cryptographic protocol, it is proved that breaking the protocol

is computationally infeasible. However, such proofs rely on “an unproven computational

difficulty of solving a certain mathematical problem.” Currently, the entire cryptographic

infrastructure of the Internet is based on primitives that are only computationally secure.

Unfortunately, quantum computers have the potential to break many of the ubiquitous

cryptographic algorithms [3], including the Diffie-Hellman SKA [2], its multiterminal vari-

ants [4], and the RSA asymmetric-key cryptosystem [5]. Therefore, adversaries who are

currently recording any information that is encrypted by today’s cryptography standards

can decrypt the information, when they have access to a working quantum computer. This

is called the “store now, decrypt later” attack. Following recent rapid advancements in quan-

tum technologies [6–9], standardization efforts [10, 11] and research on novel approaches to

quantum-resistant cryptography have been escalated – see e.g., [12–15]. One approach,

referred to as post-quantum cryptography, is to replace current standard cryptographic algo-

rithms with new ones that are proven to be computationally secure. These new algorithms

are designed based on mathematical problems that are believed to be computationally hard

even for a quantum computer. This direction, however, still suffers from the same peril of

not providing an information-theoretical security guarantee.

Alternatively, it is possible to prove information-theoretical security of primitives that

utilize private random observations performed by legitimate parties. One limitation of such

models is the assumption that random observations are only partially leaked to the adversary.

This approach is especially most suitable for wireless network environments [16–18]. We focus

on this latter approach.

2



1.2 Information-theoretic Secret Key Agreement

This thesis is concerned with the information-theoretic treatment of multiterminal secret

key agreement by public discussion [19–23]. Suppose there are m terminals denoted by

M “ t1, 2, , . . . ,mu, where a subset A Ď M of terminals want to agree on a shared secret

key. Terminals have unlimited access to a free, authenticated, noiseless public communi-

cation channel, where each message that is sent to the public channel can be observed by

all terminals and the adversary, Eve. Terminals also establish statistical correlation. We

consider two general categories of SKA models:

(i) Source Model. Each terminal has access to a different discrete random variable (RV).

These variables are correlated and are partially wiretapped by Eve. The wiretap side

information of Eve is modeled by a random variable Z, that is correlated with terminals’

variables. Terminals and Eve, sample from their RV’s for n times, and then terminals

engage in a possibly interactive public discussion. The joint probability distribution of

Eve’s side information and terminals’ variables is known publicly.

(ii) Channel Model. Terminals are connected to each other through a noisy multi-input

multi-output channel. Some/all terminals can send input symbols and some/all termi-

nals will observe the noisy channel outputs. Terminals use the public communication

channel, before, in between, and after each symbol transmission over the noisy chan-

nel. Terminals use the noisy channel for n times. Eve’s wiretap side information is

modeled by an output RV of the noisy channel which we denote by Z. The conditional

probability distribution of the underlying noisy channel is known publicly.

At the end of the SKA protocol, terminals of A compute their estimation of the final

key. The key should be the same for all terminals in A, and Eve should obtain (almost) no

information about the key. The key may or may not be concealed from the helper terminals

that are not in subset A. The key rate is the key length divided by n, and the key capacity

of any model is defined as the largest asymptotic (nÑ 8) achievable key rate.

3



By imposing specific assumptions on a model, special-case key capacities can be defined.

For example, with regard to Eve’s side information, three notions of key capacity are defined

[21]. If Eve is not wiretapping and has no side information (Z “ constant,) then the key

capacity is called secret key (SK) capacity. For this case, the model is called non-

wiretapped. If a group of helper terminals are compromised (wiretapped by Eve) then, Z

is equal to the collection of all observations made by the compromised terminals; and we

assume that (i) the group is known, and (ii) Z (the observations of compromised terminals)

is known by all other terminals. For this case, the key capacity is called private key (PK)

capacity. In the most general sense, if Eve has access to some wiretap side information

(Z ‰ constant) which is not known by the terminals, then the key capacity is called the

wiretap secret key (WSK) capacity. For this case, the model is called wiretapped.

Finding a general expression for the WSK capacity, even for the case of two-party SKA

(m “ 2,) continues to be an important open problem.

See Chapter 2 which gives a more comprehensive review of multiterminal information-

theoretic SKA. Next section provides an outline for each subsequent chapter of this thesis.

1.3 Thesis Scope and Contributions

Chapters 3 to 6, each study a specific problem within the context of information-theoretic

SKA:

• Chapter 3 considers the problem of key agreement in the two-party wiretapped source

model when public communication is one-way (from terminal 1 to terminal 2.)

• Chapter 4 studies the problem of finding the WSK capacity of a special class of mul-

titerminal wiretapped source models.

• Chapter 5 introduces and analyses a new channel model for secret key agreement.
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• Chapter 6 investigates whether a certain SKA approach is WSK capacity achieving for

a special class of multiterminal wiretapped channel models.

These main technical chapters (summarized below) are closely related to each other, but

for better readability, they are written in a way to be mostly self-contained. That is, each

chapter starts with a detailed literature review of works related to the particular problem the

chapter addresses; and in each chapter, we give a thorough explanation of the definitions,

particular new notions and notations, specific SKA model, assumptions, and limitations.

Chapter 3

Consider the two-party source model of SKA. Alice (terminal 1,) Bob (terminal 2,) and Eve

have access to n independent and identically distributed (IID) correlated random variables

pXn, Y n, Znq; respectively. Alice is allowed to send Bob only a single public message F “

F pXnq that is computed based on her initial random variable. This model is called the “two-

party model of one-way secret key agreement (OW-SKA)”. The key capacity of OW-SKA

model (denoted by CÑWSK) is known [20]; however, for implementing OW-SKA protocols in

practice we need to find the largest achievable key length as a function of n, which here we

denote by SÑ. Let opgpnqq “ tfpnq| limnÑ8
fpnq{gpnq “ 0u. Previous capacity results imply

that

SÑ “ nCÑWSK ´ opnq.

Our objective in Chapter 3 is to find more accurate finite-length approximations of SÑ. To

this end, we prove a new finite-length upper bound, and multiple finite-length lower bounds

on SÑ. For proving the finite-length upper bound we use the information spectrum methods

of [24, 25] and introduce a new entropy called the sup-spectral entropy. Then, we utilize the

new spectral entropy and the converse techniques of [26] to prove a general upper bound on

SÑ for the case when pXn, Y n, Znq are not necessarily IID. Our new lower bounds are all in
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the form of

SÑ ě nCÑWSK ´
?
nG´ op

?
nq,

where G (which is different in each lower bound) is a function of the joint probability dis-

tribution of the model PXY Z . The lower bounds are proved by analyzing two new OW-SKA

protocols we propose: ΠHH and ΠPH. Both of these protocols follow the same approach of

performing SKA through ‘information reconciliation followed by privacy amplification’ [27].

In ΠHH, reconciliation is implemented by Universal Hashing [28] whereas in ΠPH, recon-

ciliation is implemented by Polar Coding [29]. Privacy amplification in both protocols is

designed based on universal hashing. To prove the achievable finite key length of these SKA

protocols, we prove generalized variants of the Leftover Hash Lemma [30]. A by-product of

our analysis is that we show ΠHH achieves the WSK capacity of the general source model

[31] when pXn, Y n, Znq are independent (over n) but not necessarily IID, and satisfy Markov

relation Xn ´ Y n ´ Zn (see Definition 2.6.) We finish the chapter by comparing our pro-

posed OW-SKA protocols and previous protocols with respect to their finite key rate, public

communication costs, and computational complexity.

The contributions of Chapter 3 are also presented in the following papers:

• S. Sharifian, A. Poostindouz, and R. Safavi-Naini, “A capacity-achieving one-way key

agreement with improved finite blocklength analysis,” in 2020 International Symposium

on Information Theory and Its Applications (ISITA). IEEE, Oct. 2020, pp. 407–

411, Copyright© 2020 IEICE. [Online]. Available: https://ieeexplore.ieee.org/

document/9366148

• A. Poostindouz and R. Safavi-Naini, “Second-order asymptotics for one-way secret key

agreement,” in 2021 IEEE International Symposium on Information Theory (ISIT).

IEEE, Jul. 2021, pp. 1254–1259. [Online]. Available: https://ieeexplore.ieee.org/

document/9518202/
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Figure 1.1: A simple wiretapped Tree-PIN. Here M “ t1, 2, 3u, E “ te12, e23u, X1 “ V12,
X2 “ pV21, V23q, X3 “ V32, and Eve’s side information is Z “ pZ12, Z23q. Both Markov
relations V12 ´ V21 ´ Z12 and V23 ´ V32 ´ Z23 hold, that is, the source model distribution is
PXMZ “ PV12PV21|V12PZ12|V21PV23PV32|V23PZ23|V32 .

Chapter 4

In Chapter 4, we introduce the “wiretapped Pairwise Independent Network (PIN)” model

with independent leakage. Let M denote the terminal set and A denote the subset of

terminals that seek to agree on the final secret key. Suppose an undirected graph G “ pM, Eq

is given. The RV of terminal j P M is of the form Xj “ pVji| eji P Eq and with respect to

each eij “ eji P E , the Markov relation Vij ´ Vji ´ Zij holds. Eve’s side information is the

collection of all wiretapped components Zij, that is Z “ pZij| eij P Eq. All triplets of RV’s

pVij, Vji, Zijq are mutually independent. If the graph G is a tree then the model is called

wiretapped “Tree-PIN.” Figure 1.1 depicts a simple wiretapped Tree-PIN.

We prove the WSK capacity of wiretapped Tree-PIN for any arbitrary A ĎM, and show

that it is equal to the key capacity of the case when Eve’s side information Zn is known.

Let IpV1;V2|V3q denote the conditional mutual information between V1 and V2 given V3 – see

Definition 2.13. For the special case when A “M, the capacity is

CWSK “ min
i,j

IpVij;Vji|Zijq.

We propose an SKA protocol that achieves this WSK capacity and show that it uses less

public communication bits per sample than the SKA protocol of [21].
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We then prove a finite-length upper bound and multiple finite-length lower bounds for

the largest achievable key length that can be generated for wiretapped Tree-PIN. Moreover,

we extend our Tree-PIN model to three more general scenarios and prove the corresponding

WSK capacity of those extended models.

The contributions of Chapter 4 appear also in the following papers:

• A. Poostindouz and R. Safavi-Naini, “Wiretap secret key capacity of Tree-PIN,” in 2019

IEEE International Symposium on Information Theory (ISIT). IEEE, Jul. 2019, pp.

315–319. [Online]. Available: https://ieeexplore.ieee.org/document/8849553/

• A. Poostindouz and R. Safavi-Naini, “Secret key agreement in wiretapped Tree-PIN,”

To be submitted to IEEE Transactions on Information Theory, 2022. [Online]. Avail-

able: http://arxiv.org/abs/1903.06134

Chapter 5

Previous multiterminal channel models, including the single-input multi-output channel

model of [22] and the multiaccess channel model of [23], assume that each terminal ei-

ther controls one input to the channel, or receives one output variable of the channel. In

Chapter 5, we propose a new multiterminal channel model for information-theoretic secret

key agreement (SKA) that realistically models wireless communication settings and has the

channel models of [22] and [23] as special cases. In our channel model, which we call the

transceiver model, each terminal (transceiver) j PM controls an input variable Xj and ob-

serves an output variable Yj of the underlying noisy channel. Let Vj “ pXj, Yjq denote the

collection of (input and output) variables of terminal j. The channel may be wiretapped

which is modeled by providing an output variable Z to Eve. See Figure 1.2. Let M be the

terminal set, then the channel model is denoted by W “ pXM, PZYM|XM ,YM ˆ Zq, where

PZYM|XM : X1 ˆ ¨ ¨ ¨ ˆ Xm Ñ Y1 ˆ ¨ ¨ ¨ ˆ Ym ˆ Z.

8

https://ieeexplore.ieee.org/document/8849553/
http://arxiv.org/abs/1903.06134


W

X1

X2

Xm

Y1

Y2

Ym

Z

V1 “ pX1, Y1q

V2 “ pX2, Y2q

Vm “ pXm, Ymq

... ...

Figure 1.2: The transceiver channel model.

For the transceiver model, we give upper and lower bounds for the SK, PK, and WSK

capacities. Our lower bounds are based on the general source emulation approach of [23]. For

the proof of our upper bounds, we use a new method that associates any transceiver model

with a multiaccess model [23] that has additional “dummy input terminals.” We prove that

the key capacity of the associated multiaccess model is an upper bound to the key capacity

of the original transceiver model, which enables us to employ the converse techniques of [23]

to prove our upper bounds for the transceiver model. We then prove the non-adaptive SK

capacity of non-wiretapped transceiver model under the assumptions that (i) public com-

munication is invoked after all n symbol transmissions over the noisy channel and (ii) input

variables of the noisy channel are IID and are generated independently.

The contributions of Chapter 5 appear also in the following papers:

• A. Poostindouz and R. Safavi-Naini, “A channel model of transceivers for multiterminal

secret key agreement,” in 2020 International Symposium on Information Theory and

Its Applications (ISITA). IEEE, Oct. 2020, pp. 412–416, Copyright© 2020 IEICE.

[Online]. Available: https://ieeexplore.ieee.org/document/9366098
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• A. Poostindouz and R. Safavi-Naini, “Secret key agreement in multiterminal channel

model of transceivers,” To be submitted to Entropy, 2022. [Online]. Available: https:

//arxiv.org/abs/2008.02977

Chapter 6

In Chapter 6, we turn our attention to a special class of multiterminal transceiver channel

models, called wiretapped Polytree-PIN, in which the underlying noisy channel is given by

a collection of independent point-to-point channels such that they define a polytree if we

represent each point-to-point channel by a direct edge. A polytree is a directed graph whose

undirected version is a tree. We consider wiretapped Polytree-PIN with independent leak-

age, where the output of each point-to-point channel is partially leaked to Eve through a

secondary independent noisy channel. Let M be the terminal set and let G “ pM, Eq be

a polytree. Each directed edge eij P E represents a point-to-point channel from terminal

i to terminal j. The input RV of each terminal j is of the form Xj “ pXji| eji P Eq and

its output RV is of the form Yj “ pYji| eij P Eq. A noisy (wiretapped) version of each Yji,

which we denote by Zij, is available to the adversary and the collection of all wiretapped

components is denoted by Z “ pZij| eij P Eq. Therefore, in a wiretapped Polytree-PIN

with independent leakage, with respect to each eij P E the channel model PZYM|XM satisfies

the Markov relation Xij ´ Yji ´ Zij. Polytree-PIN is the channel model counterpart of the

Tree-PIN source model. See Figure 1.3.

The main contribution of Chapter 6 is the derivation of WSK capacity for wiretapped

Polytree-PIN with independent leakage for any arbitrary A ĎM. When A “M the WSK

capacity is given by

CWSK “ max
PXM

min
i,jPM

IpXij;Yji|Zijq.

To prove this above result, we first take advantage of the Markov relations that are

present in the model, and without assuming non-adaptive input generation, we prove an
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Figure 1.3: A simple wiretapped Polytree-PIN. Here M “ t1, 2, 3u, E “ te12, e23u, V1 “ X12,
V2 “ pX23, Y21q, V3 “ Y32, and Eve’s side information is Z “ pZ12, Z23q. Both Markov
relations X12 ´ Y21 ´ Z12 and X23 ´ Y32 ´ Z23 hold, that is the channel model conditional
distribution is PZYM|XM “ PY21|X12PZ12|Y21PY32|X23PZ23|Y32 .

upper bound on the WSK capacity. Then, we show that the proven upper bound is tight by

proposing a WSK capacity achieving channel model SKA protocol. The protocol uses the

simple source emulation approach which starts by sending independent IID input symbols

through the point-to-point channels, which leads to the realization of a wiretapped Tree-PIN

source model. Subsequently, by the application of the key capacity achieving source model

protocol of Chapter 4, one can achieve key rates that are arbitrarily close to the key capacity.

Our result also implies the SK capacity of the non-wiretapped Polytree-PIN model, that is

the case when there is no leakage from point-to-point channels to Eve.

The contributions of Chapter 6 appear also in the following paper:

• A. Poostindouz and R. Safavi-Naini, “Secret key capacity of wiretapped Polytree-PIN,”

in The 2021 IEEE Information Theory Workshop (ITW2021). IEEE, Oct. 2021. [On-

line]. Available: https://ieeexplore.ieee.org/document/9611419

Chapter 2 that follows, provides the sufficient background and intuition on the questions,

models, and methods that we explore in this thesis. The final Chapter 7 concludes the thesis

by providing suggestions for future research directions.
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Chapter 2

Background

Information-theoretic models of key agreement fall under two general categories: the source

model and the channel model. In source model, terminals are given prior access to correlated

information sources and are allowed to perform key agreement by public discussion. In

channel model, terminals are connected by a noisy information channel, and they can use

public discussion while using the noisy channel. In this chapter, we review both of these

models in the two-party and multiterminal settings. However, we first review the essential

notions, definitions, and theorems; and then recall some important information-theoretic

tasks, including “source coding,” “information reconciliation,” and “privacy amplification.”

2.1 Preliminaries

Notations

Sets and Vectors. We use upper-case calligraphic letters (e.g., M, A, etc.) to denote sets,

and for any natural number m we define rms :“ t1, 2, . . . ,mu. The notation |M| is used for

denoting the cardinality of a set M. Let M “ rms, then XM “ Xrms :“ pX1, X2, . . . , Xmq

and XA “ pXj| @j P Aq for any A Ď M. A set of a finite number of disjoint sets P “

tP1,P2, . . . ,P|P|u is a partition of a set M if Pj XPk “ H for any two parts Pj and Pk in P
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and
Ť|P|
j“1 Pj “M. We show the set of all nontrivial partitions of M by PpMq. By An we

denote the n-th Cartesian product of A – i.e., An “ A ˆ ¨ ¨ ¨A for n times. Let M “ rms,

then for an arbitrary real vector RM “ pR1, . . . , Rmq P R
m and for any A Ď M we define

RA “ pRj| @j P Aq and sumpRAq :“
ř

jPARj.

Discrete Random Variables. In this study, random variables are discrete variables un-

less otherwise mentioned. We reserve upper-case letters to denote random variables (RVs)

and lower-case letters to denote their realizations. We use calligraphic upper-case letters to

show the alphabets of random variables. The probability mass function (PMF) of a discrete

random variable X is denoted by PXpxq “ Pr tX “ xu, and the probability distribution (or

probability vector) of X is abbreviated by PX “ pPXpxq| x P X q. The notation X „ PX

means that RV X has distribution PX . For example, X „ Bernpqq indicates that X is a

binary random variable with Bernoulli distribution of success probability q; i.e.,

X “

$

’

&

’

%

1 with probability q,

0 with probability 1´ q.

The notations EPX tXu (or E tXu) and VarPX tXu (or Var tXu), are used for expected value

and variance of X „ PX , respectively. The support of a random variable X is denoted by

supppXq “ tx P X |PXpxq ą 0u.

For two random variables X and Y , we use PXY to show their joint probability distribu-

tion and PX|Y to represent the conditional probability distribution of X given Y . That is

for any x P X and any y P Y we have PXY px, yq “ Pr tX “ x, Y “ yu , and

PX|Y px|yq “ Pr tX “ x|Y “ yu :“
Pr tX “ x, Y “ yu

Pr tY “ yu
“
PXY px, yq

PY pyq
.

For a specified dimension n we use Xn “ pX1, . . . , Xnq to denote a random vector defined

over the joint alphabet X n “ X1ˆX2ˆ¨ ¨ ¨ˆXn with joint probability distribution PXn , and
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xn “ px1, . . . , xnq denotes the corresponding n-fold realization.

Common Functions. All logarithms in this work are in base 2, log x “ log2 x, unless

otherwise mentioned. Also, log log x “ logplogpxqq and ln x “ loge x denotes the natural

logarithm where constant e is the Euler’s number defined as e :“ limτÑ0
τ
?

1` τ . Let h2paq :“

´a log a ´ p1 ´ aq logp1 ´ aq be the binary entropy function. Denoted by Qp¨q is the tail

probability of the standard Gaussian distribution,

Qpαq “
1
?

2π

ż 8

α

exp
`

´
t2

2

˘

dt.

Big-O notations. We use the following notations to describe asymptotic behavior of real

valued functions.

opgpnqq “ tf : R` Ñ R`|@c2 ą 0 Dn0 ą 0 : 0 ď fpnq ď c2gpgq @n ě n0u,

Opgpnqq “ tf : R` Ñ R`|Dc2 ą 0 Dn0 ą 0 : 0 ď fpnq ď c2gpgq @n ě n0u,

Θpgpnqq “ tf : R` Ñ R`|Dc1, c2 ą 0 Dn0 ą 0 : 0 ď c1gpnq ď fpnq ď c2gpgq @n ě n0u.

Note that, fpnq P opgpnqq is equivalent with

lim
nÑ8

fpnq

gpnq
“ 0,

thus, fpnq P opnq means limnÑ8
1{nfpnq “ 0, and, fpnq P op1q means limnÑ8 fpnq “ 0. Also,

whenever we write

fpnq “ hpnq ˘Opgpnqq,

that means, for some gl, gu P Opgpnqq, we have

hpnq ´ glpnq ď fpnq ď hpnq ` gupnq.
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Random Variables, Independence and Markov Chains

In this section, we briefly review some basic notions of probability theory.

Definition 2.1 (Discrete Probability Space – Chapter 2 of [39]). A Discrete Proba-

bility Space is defined by a finite discrete set Ω called the sample space, which is the set of

all possible outcomes ω P Ω, and a probability function Pr t¨u, where the following holds:

0 ď Pr tωu ď 1 @ω P Ω,

ÿ

ωPΩ

Pr tωu “ 1.

Subsets of Ω are called events and for any E Ď Ω, Pr tEu “
ř

ωPE Pr tωu .

Definition 2.2 (Discrete Random Variable – Chapter 4 of [39]). A Discrete Random

Variable (RV) is essentially a function X from the sample space Ω of a probability space to

a subset of the set of real numbers R, where the following properties hold:

• X may be undefined or infinite for an event that has zero probability.

• For every x P R then tω P Ω| Xpωq ď xu is an event.

The probability mass function (PMF) of a discrete random variable X is given by PXpxq “

Pr tX “ xu, and the probability distribution of X is denoted by PX “ pPXpxq| x P X q. The

range of RV X is called its alphabet and is denoted by X .

Definition 2.3 (Independence – Definition 2.1 of [40]). Two random variables X and

Y are independent if and only if

PXY px, yq “ PXpxqPY pyq, @px, yq P X ˆ Y .

If two variables X and Y are not independent, they are called correlated.
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Definition 2.4 (Conditional Independence – Definition 2.4 of [40]). Two random

variables X and Z are independent conditioned on Y if and only if

PXY Zpx, y, zqPY pyq “ PXY px, yqPY Zpy, zq @px, y, zq P X ˆ Y ˆ Z,

or equivalently

PXZ|Y px, z|yq “ PX|Y px|yqPZ|Y pz|yq if PY pyq ą 0,

otherwise PXY Zpx, y, zq “ 0.

Definition 2.5 (Mutual Independence – Definition 2.2 of [40]). For n ą 2, the

sequence of RVs Xn “ pX1, . . . , Xnq are mutually independent if and only if

PXnpxnq “ PX1px1qPX2px2q ¨ ¨ ¨PXnpxnq @xn P X n.

Definition 2.6 (Markov Chain – Definition 2.6 of [40]). For n ą 2, the sequence of

RVs Xn “ pX1, . . . , Xnq form a Markov chain, denoted by X1´X2´ ¨ ¨ ¨ ´Xn, if and only if

PXnpxnqPX2px2qPX3px3q ¨ ¨ ¨PXn´1pxn´1q “ PX1X2px1, x2qPX2X3px2, x3q ¨ ¨ ¨PXn´1Xnpxn´1, xnq,

for all xn P X n. Or equivalently

PXnpxnq “ PX1X2px1, x2qPX3|X2px3|x2q ¨ ¨ ¨PXn|Xn´1pxn|xn´1q,

if PXjpxjq ą 0 @j P p2, 3, . . . , n´ 1q, otherwise PXnpxnq “ 0.

Remark 2.1. Independence of X and Z conditioned on Y is equivalent to the Markov chain

relation of X´Y ´Z; since PXY Zpx, y, zqPY pyq “ PXY px, yqPY Zpy, zq implies both relations.

16



Statistical Distance

One of the most practical and relevant distance measures in information theoretic security

is the Statistical Distance.

Definition 2.7 (Statistical Distance – Definition 11.1 and Lemma 11.1 of [41]).

For two random variables X „ PX and Y „ PY defined over the same alphabet W , the the

statistical distance between X and Y , denoted by SDpX, Y q, is defined as

SDpX, Y q “
1

2

ÿ

wPW
|PXpwq ´ PY pwq|

“ max
T ĎW

ÿ

wPT
PXpwq ´ PY pwq

“
ÿ

wPT ˚
PXpwq ´ PY pwq,

where T ˚ “ tw PW | PXpwq ě PY pwqu.

Lemmas 2.1, and 2.2 that follow next are direct consequences of Definition 2.7 (Definition

11.1 and Lemma 11.1 of [41].) We present their proofs here for completeness.

Lemma 2.1. For two random variables X and X 1 over the same alphabet X and two random

variables Y and Y 1 over the same alphabet Y we have SDpX,X 1q ď SDpXY,X 1Y 1q.

Proof: Let pX, Y q „ PXY and pX 1, Y 1q „ QX 1Y 1 . Then

SDpXY,X 1Y 1q “ max
T ĎXˆY

ÿ

px,yqPT

PXY px, yq ´QX 1Y 1px, yq

ě
ÿ

px,yqPV

PXY px, yq ´QX 1Y 1px, yq

“
ÿ

xPX

ÿ

yPY
PXY px, yq ´

ÿ

yPY
QX 1Y 1px, yq

“
ÿ

xPX

PXpxq ´QX 1pxq “ SDpX,X 1
q,

where V “ X ˆ Y , with X “ tx P X | PXpxq ě QX 1pxqu.
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Corollary 2.1.1. If SDpXY,X 1Y 1q ď ε then SDpX,X 1q ď ε and SDpY, Y 1q ď ε .

Corollary 2.1.2. (i) For any three RVs X, X 1, and Y we have SDpX,X 1q ď SDpXY,X 1Y q.

(ii) If Y is independent from X and X 1, then SDpX,X 1q “ SDpXY,X 1Y q.

Corollary 2.1.3. Suppose X and X 1 are correlated RVs independent from correlated RVs

Y and Y 1. Then, SDpXY,X 1Y 1q ď SDpX,X 1q ` SDpY, Y 1q.

Proof: Using the triangle inequality we have

SDpXY,X 1Y 1q ď SDpXY,X 1Y q ` SDpX 1Y,X 1Y 1q

“ SDpX,X 1
q ` SDpY, Y 1q,

where the equality is due to preposition (ii) of Corollary 2.1.2.

Lemma 2.2. Let RV’s X „ PX and X 1 „ PX 1 be defined over the same alphabet X and let

W be an arbitrary random function characterized by the conditional probability distribution

QY |X , where Y denotes the output of W which takes values over Y. Define Y „ PY and

Y 1 „ PY 1 be the output RV’s of W when input RV’s are X „ PX and X 1 „ PX 1, respectively.

Then we have SDpY, Y 1q ď SDpX,X 1q.

Proof: Let pX, Y q „ PXY “ PXQY |X and pX 1, Y 1q „ PX 1Y 1 “ PX 1QY |X . Then

SDpXY,X 1Y 1q “
1

2

ÿ

x,y

|PXY px, yq ´ PX 1Y 1px, yq|

“
1

2

ÿ

x,y

QY |Xpy|xq |PXpxq ´ PX 1pxq|

“
1

2

ÿ

x

|PXpxq ´ PX 1pxq|
ÿ

y

QY |Xpy|xq

“
1

2

ÿ

x

|PXpxq ´ PX 1pxq|

“ SDpX,X 1
q.

Thus, by Lemma 2.1 the proof is complete.
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Asymptotic Convergence

Consider a sequence of real-valued variables tXju
8
j“1 that are mutually independent and

are drawn from the same identical distribution (IID). We are interested to know about the

distribution of the variable Xsum
n “ 1{n

řn
j“1Xj. First, we define the following convergence

notions.

Convergence in Distribution. A sequence of real-valued RV’s tXju
8
j“1 (not necessarily

IID) converges in distribution to RV X if limnÑ8 Pr tXn ď au “ Pr tX ď au @a P R.

Convergence in Probability. A sequence of real-valued RV’s tXju
8
j“1 (not necessarily

IID) converges in probability to RV X if limnÑ8 Pr t|Xn ´X| ą εu “ 0, @ε ą 0.

Convergence in probability implies convergence in distribution [42, Chapter 1, Section

1.7.5].

Almost Sure Convergence. A sequence of real-valued RV’s tXju
8
j“1 (not necessarily IID)

almost surely converges to RV X if Pr tlimnÑ8Xn “ Xu “ 1.

Almost sure convergence implies convergence in probability [42, Chapter 1, Section 1.7.5].

The following theorem (LLN) shows that Xsum
n converges to µ “ E tX1u as nÑ 8.

Theorem 2.3 (The Law of Large Numbers (LLN) – Theorem 1.3.2 of [24]). Let

tXju
8
j“1 be a sequence of IID real-valued random variables. If µ “ E tX1u ă `8, then

Xsum
n “ 1{n

řn
j“1Xj almost surely converges to µ as nÑ 8.

Note that the above statement which is called the strong LLN also implies that Xsum
n

converges to µ as nÑ 8 in probability. The latter statement is called the weak LLN.

The prominent central limit theorem states that as nÑ 8 not only Xsum
n converges to µ

but also the distribution of variable Yn “
?
npXsum

n ´µq converges to a normal distribution –

see Chapter 7, page 283 of [39]. The Berry-Esseen theorem stated below is a non-asymptotic
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inequality that explains this phenomenon more qualitatively by even giving the speed of such

convergence.

Theorem 2.4 (Berry-Esseen, see [43] Theorem 1, Chapter XVI, Section 5). Let

Xn be an n´IID real-valued variable, and ´8 ă α ă 8, then

ˇ

ˇ

ˇ

ˇ

ˇ

Pr

#

n
ÿ

j“1

Xj ě nµ` α
?

∆n

+

´Qpαq

ˇ

ˇ

ˇ

ˇ

ˇ

ď
3ρ

∆3{2
?
n
,

where Qp¨q is the tail probability of the standard Gaussian distribution, i.e.,

Qpαq “
1
?

2π

ż 8

α

exp
`

´
t2

2

˘

dt,

µ “ E tX1u ,∆ “ Var tX1u , and ρ “ E t|X1 ´ µ|
3u.

2.2 Information Theoretic Concepts

Information Theory, originated from the seminal work of Shannon [44], studies the fun-

damental problems of transmitting and processing information under various settings and

conditions. What follows next is a brief overview of some of the basic information-theoretic

concepts. We begin by introducing simple mathematical models of information sources and

channels.

Definition 2.8 (Discrete Memoryless Source Model). A Discrete Memoryless Source

(DMS) Model is defined by a finite alphabet X and a discrete probability distribution PXpxq,

and informally is denoted by X or PX . A DMS generates a sequence of independent and

identically distributed (IID) random values X1, X2, . . .. We denote n consecutive runs of a

DMS by Xn “ pX1, . . . , Xnq.

In this work, all sources are discrete memoryless, unless otherwise specified. A d´DMS

or a Discrete Multiple Memoryless Source (DMMS) Model with d components, is simply a
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collection of d correlated DMS’s. A DMMS is defined by a finite alphabet X1ˆ ¨ ¨ ¨ ˆXd and

a joint probability distribution PX1¨¨¨Xd “ PXrds , and is denoted by Xrds “ pX1, . . . , Xdq. The

output of Xrds at time t is denoted by pX1,t, . . . , Xd,tq.

A simple mathematical model of communication channels is the following.

Definition 2.9 (Discrete Memoryless Channel Model). A discrete communication

channel model is a random system that given input value x outputs a random value y. Let

Xt (and Yt ) denote the input (and random output) variable of the channel at time t. A

discrete channel is said to be memoryless (DMC) and time invariant if at any time t

Pr
 

Yt “ y|Xpt´1q, Y pt´1q, Xt “ x
(

“ PY |Xpy|xq @px, yq P X ˆ Y .

We denote a DMC by its input and output alphabets and its characterizing conditional

probability distribution (transition matrix.) For example a DMC W with input alphabet X

and output alphabet Y and conditional distribution PY |X is denoted by W “ pX , PY |X ,Yq,

and sometimes informally by W “ PY |X .

In this work, all communication channels are assumed to be discrete, memoryless, and

time invariant; unless otherwise we explicitly mention the type of the channels.

Remark 2.2. Assume that for any 1 ď j ă n the RV Xj is correlated with the RV Xj`1

through a [discrete, memoryless, and time invariant] information channel, then the sequence

of RVs X1, . . . , Xn form a Markov chain X1 ´X2 ´ ¨ ¨ ¨ ´Xn.

Measures of Information

Here, we present a brief overview on the measures of information. These measures and their

interrelations are the essential mathematical toolbox that is needed to prove information

theoretical secrecy results. We begin by defining the Shannon Entropy.

The Shannon entropy, is a mathematical function for measuring the amount of uncer-

tainty there is about the outcome of a random process. Equivalently, the Shannon entropy of
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a random variable is the average amount of information one receives by observing the random

outcome, which is equal to the reduction of uncertainty one had before the observation.

Definition 2.10 (Shannon Entropy). The Shannon entropy of a random variable X „ PX

over alphabet X is given by

HpXq “ EPX

"

log
1

PXpXq

*

“ ´
ÿ

xPX
PXpxq logPXpxq,

where the logarithm is in base 2.

The unit of entropy is bit(s). For example, for a fair coin toss, we can represent the

random outcome with a uniform binary distribution X „ Bernp1{2q. The entropy of X is

HpXq “ 1, that means we get “one bit of information” by observing the outcome of a fair

coin toss, or that the amount of uncertainty about the outcome of a fair coin toss is one bit.

The Shannon entropy; however, is not always the best choice for measuring uncertainty.

Especially, in most security scenarios, a better measure of uncertainty is the min-entropy.

Definition 2.11 (Min-entropy). The Min-Entropy of a random variable X „ PX over

alphabet X is defined by

HminpXq “ min
xPX

"

log
1

PXpxq

*

“ ´ logpmax
xPX

tPXpxquq.

For two random variables X and Y with joint and conditional distributions PXY px, yq

and PX|Y px|yq, respectively, the joint entropy HpX, Y q is given by

HpX, Y q “ EPXY

"

log
1

PXY pX, Y q

*

,

“ ´
ÿ

xPX

ÿ

yPY
PXY px, yq logPXY px, yq,
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and the conditional entropy HpX|Y q is defined as

HpX|Y q “ EPXY

"

log
1

PX|Y pX|Y q

*

,

“ ´
ÿ

xPX

ÿ

yPY
PXY px, yq logPX|Y pX|Y q.

The following relations hold for joint entropy and conditional entropy. For any given RVs

X, Y , and Z we have

HpX, Y q “ HpXq `HpY |Xq “ HpY q `HpX|Y q,

and

HpX, Y |Zq “ HpX|Zq `HpY |X,Zq “ HpY |Zq `HpX|Y, Zq.

For two independent random variables X and Y we have HpX, Y q “ HpXq`HpY q, and

HpX|Y, Zq “ HpX|Zq.

To measure the amount of information one random variable has about another random

variable, we use the mutual information function.

Definition 2.12 (Mutual Information). The mutual information between two random

variables X and Y is

IpX;Y q “ EPXY tipX, Y qu

“
ÿ

xPX

ÿ

yPY
PXY px, yq log

PXY px, yq

PXpxqPY pyq

“ HpXq ´HpX|Y q “ HpY q ´HpY |Xq,

where

ipx, yq “ log
PXY px, yq

PXpxqPY pyq
,

is called the information density [24].
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Noiseless Channel

Figure 2.1: The source coding problem.

Definition 2.13 (Conditional Mutual Information). For three random variables X, Y ,

and Z, the conditional mutual information of X and Y given Z is

IpX;Y |Zq “ EPXY Z ipX, Y |Zq

“ HpX|Zq ´HpX|Y, Zq

“ HpY |Zq ´HpY |X,Zq,

where

ipx, y|zq “ log
PXY |Zpx, y|zq

PX|Zpx|zqPY |Zpy|zq
,

is the conditional information density.

Remark 2.3. When the Markov relation X´Y ´Z holds, we have IpX;Y |Zq “ HpX|Zq´

HpX|Y q, and IpX;Z|Y q “ 0.

2.2.1 Source Coding

In the source coding (or data compression) problem, Alice (terminal 1), who has a random

sequence Xn
1 encodes (compresses) her sequence into a message F “ EncpXn

1 q and sends this

message F to Bob (terminal 1) using a noiseless communication channel. Bob, then decodes
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(decompresses) the message F into an estimate (reconstruction) X̂n
1 “ DecpF q of Alice’s

sequence. See Figure 2.1. The main objective is to find a pair of algorithms pEnc,Decq

such that for every n P N they enable reliable (correct) reconstruction by the shortest

message length possible. To be more precise, consider the following source model. A discrete

memoryless source (DMS) represented by the random variable X1, defined over the alphabet

X1 and described by the probability distribution PX1 , is accessible to Alice. Alice samples

from X1 for n times, and observes the independent and identically distributed (IID) sequence

Xn
1 . Consider a compression code family pEnc,Decq. The asymptotic compression rate of

the code is defined as lim supnÑ8 1{n log |F | and the compression code is called εn´correct

if Pr
!

Xn
1 “ X̂n

1

)

ě 1 ´ εn. The parameter εn is called the reliability parameter. Note that

here the message length is measured by log |F |.

The source coding theorem (due to Shannon [44]) gives the minimum asymptotic com-

pression rate of all compression (source) codes with asymptotic perfect reliability.

Theorem 2.5 (Source Coding – see Theorem 3.4 of [45]). Suppose the probability

distribution PX1 of a DMS X1 is known. Then, the minimum achievable (asymptotic zero

error) compression rate is R˚ “ HpX1q. That is for every R P R satisfying,

R ě HpX1q,

there exists an εn´correct compression code family pEnc,Decq with asymptotic compression

rate R and limnÑ8 εn “ 0; and every εn´correct compression code family pEnc,Decq with

limnÑ8 εn “ 0 has asymptotic compression rate higher than HpX1q.

A modified version of the source coding problem is for the 2-DMS model in which we

assume Bob (terminal 2) has access to a variable X2 that is correlated with Alice’s variable

X1. See Figure 2.2. Next theorem (due to Slepian and Wolf) proves that existence of side

information X2 at the decoder (Bob) allows for lower compression rates.

25



1
Alice

Xn
1

Dec

F “ EncpXn
1 q

V̂ n
1

Bob

F

2

Xn
2

Noiseless Channel

Figure 2.2: The source coding problem with side information at the decoder.

Theorem 2.6 (Source Coding with Side Information at the Decoder – see Section

10.4 of [45]). Suppose the joint probability distribution PX1X2 of a 2-DMS pX1, X2q is known.

Then, the minimum achievable (asymptotic zero error) compression rate is R˚ “ HpX1|X2q.

That is for every R P R satisfying,

R ě HpX1|X2q,

there exists an εn´correct compression code family pEnc,Decq with asymptotic compression

rate R and limnÑ8 εn “ 0; and every εn´correct compression code family pEnc,Decq with

limnÑ8 εn “ 0 has asymptotic compression rate higher than HpX1|X2q.

2.2.2 Stochastic Processes and General Sources

We defined the Discrete Memoryless Source (DMS) model that outputs IID sequences of

random variables X1, X2, . . .. See Definition 2.8. This notion of information source can be

generalized by the concept of stochastic process that is defined as an arbitrary sequence of

random variables that are defined over the same alphabet according to the same probability

space (see Definition 2.1), where the sequence of RV’s need not to be IID. A stochastic
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process X is denoted by the sequence of RV’s tXiu
8
i“1 and by Xn “ pX1, X2, . . . , Xnq we

denote the n consecutive runs of the stochastic process X.

A stochastic process tXiu
8
i“1 is called stationary if for all n P N and for every xn “

px1, . . . , xnq P X n and every integer τ we have

PX1X2¨¨¨Xnpx
n
q “ PX1`τX2`τ ¨¨¨Xn`τ px

n
q.

See Chapter 9, page 387 of [39]. An IID process is an stationary process.

A stochastic process tXiu
8
i“1 is called ergodic (or mean-ergodic) if for every n-fold realiza-

tion xn “ px1, . . . , xnq P X n the time average avgpxnq “ 1
n

řn
j“1 xj approaches the ensemble

average defined by µpnq “ E tXnu as n Ñ 8 with probability close to 1. See Chapter 12,

page 523 of [39]. An IID process is an stationary ergodic process.

Definition 2.14 (Entropy Rate - Chapter 4 of [47]). The entropy rate of a stochastic

process tXiu
8
i“1 is

HrpXq “ lim
nÑ8

1

n
HpXn

q

“ lim
nÑ8

1

n
EPXn t´ logPXnpXn

qu .

The source coding theorem 2.5 of IID source model can be generalized to the case of

stationary ergodic processes.

Theorem 2.7 (Source Coding for Stationary Ergodic Processes – Theorem 2 of

[24]). The minimum achievable (asymptotic zero error) compression rate for a stationary

ergodic process X with a finite source alphabet X is R˚ “ HrpXq.

Information Spectrum Methods

Han and Verdu [24, 48] introduced the notion of general sources and channels that are “arbi-

trarily nonstationary and/or arbitrarily nonergodic with arbitrarily given abstract source/channel
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alphabets.” The goal of this generalization is to obtain results similar to the known ones for

these general cases and provide a “unified general treatment of a collection of mostly known

results in the literature.” The main technical approach is information-spectrum method and

introducing two probabilistic limit operations for a sequence pJ1, J2, J3, . . .q of real-valued

random variables, called the limit superior in probability given by

p- lim sup
nÑ8

Jn “ inftα| lim
nÑ8

Pr tJn ą αu “ 0u,

and the limit inferior in probability given by

p- lim inf
nÑ8

Jn “ suptβ| lim
nÑ8

Pr tJn ă βu “ 0u.

Note that Jn converges to a constant c in probability if and only if p- lim supnÑ8 Jn “

p- lim infnÑ8 Jn “ c.

Information-spectrum methods refers to mathematical tools and approaches that are

used for analyzing information-theoretic tasks with regard to general sources and channels.

These methods most often employ information measures (such as the spectral sup-entropy

rate which we define below) that are not in terms of the expectation operation. (Whereas

for example the Shannon entropy (Definition 2.10) and the entropy rate (Definition 2.14)

are defined using the expectation operation.)

The concept of “general sources” generalizes the notion of stochastic processes.

Definition 2.15 (General Source – Chapter 1 of [24]). A general source X given by

tXn
“ pX

pnq
1 , . . . , Xpnq

n qu
8
n“1,

outputs Xn for every n P N that is the n-fold random output of the source defined over the

set X n subject to the joint distribution PXn – see [24, Chapter 1].

Note that random behavior of the jth component X
pnq
j may depend on n. General

28



source model has stochastic processes as a special case by imposing the following consistency

condition

X
pmq
j “ X

pnq
j @j ď m, @m ă n.

In this case, the n-fold output of the general source X is denoted by Xn “ pX1, . . . , Xnq.

An example of a general source is an information source (stochastic process) where output

symbols are independent but not identically distributed (INID).

An important quantity that is defined with respect to any general source X is the spectral

sup-entropy rate of X, which is given by

HpXq “ p- lim sup
nÑ8

´
1

n
logPXnpXn

q

“ inf

"

α| lim
nÑ8

Pr

"

´
1

n
logPXnpXn

q ą α

*

“ 0

*

,

where the distribution of the real-valued variable

´
1

n
logPXnpXn

q

is called the information spectrum of X.

The source coding theorems of 2.5 and 2.7 are generalized for the case of general sources

by the following theorem which proves that for general sources the optimum compression

rate is characterized by the spectral sup-entropy rate.

Theorem 2.8 (General Source Coding – see Theorem 1.3.1 of [24]). The minimum

achievable (asymptotic zero error) compression rate for a general source X is R˚ “ HpXq.

Remark 2.4. The above result implies Theorem 2.5 and Theorem 2.7 as special cases. When

X is a DMS and Xn is IID then by the LLN Theorem 2.3 we know that ´ 1
n

logPXnpXnq “

1
n

řn
j“1´ logPXjpXjq, converges almost surely and in probability to E t´ logPX1pX1qu and

thus R˚ “ HpXq “ HpXq. When X is a stationary ergodic process then by the gen-

eral AEP Theorem 16.8.1 of [47] (due to Shannon, McMillan, and Breiman) we know that
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´ 1
n

logPXnpXnq converges almost surely (and in probability) to entropy rate, limnÑ8
1
n
HpXnq,

and thus R˚ “ HpXq “ HrpXq.

In Chapter 3, we introduce a new spectral entropy (which we call sup-spectral entropy)

and use it to prove an upper bound for the maximum key length of one-way secret key

agreement.

2.2.3 Channel Coding

In many information-theoretic scenarios (e.g., problems we studied earlier) it is assumed that

a noiseless channel is available to the terminals; however, this is not a valid assumption in

real-life as almost all mediums for communication are noisy. Channel coding is the process of

realizing an almost noiseless channel from a noisy channel by incorporating coding techniques.

A simple model of a noisy channel is the discrete memoryless channel (DMC) model – see

Definition 2.9.

Suppose Alice and Bob are connected through a DMC W “ PY |X . Alice wants to send

a message M to Bob using W . To make the message transfer reliable Alice uses a function

(algorithm) called channel encoder denoted by Enc that maps M into a codeword Xn, and

sends this codeword to Bob by using the channel W for n times. Upon receiving the whole

output variable Y n, Bob uses another function (algorithm) called channel decoder denoted

by Dec that maps the variable Y n to an estimate of the message M̂ . The objective is to

have negligible errors Pr
!

M ‰ M̂
)

« 0, and be able to send messages at the largest rate

possible.

A channel code for a DMC W “ pX , PY |X ,Yq is given by three components:

• Message set Mpnq “ t1, 2, . . . , |Mpnq|u

• Encoding function Enc : Mpnq Ñ X n

• Decoding function Dec : Yn ÑMpnq Y t5u

30



where the special character 5 denotes decoding error. The set C “ tEncpjqu|M
pnq|

j“1 is called

the codebook, where cj “ Encpjq is the codeword corresponding to message j P Mpnq,

and |Mpnq| is referred to as the code size. The message estimate of Bob is denoted by

M̂ “ DecpEncpMqq. It is assumed that messages are uniformly distributed over Mpnq.

Let Ψ be a family of channel codes (indexed by n) as defined above. Then, for every n

the average error probability of Ψ is given by εn “ Pr
!

M ‰ M̂
)

. The asymptotic channel

coding rate of Ψ defined by rMpΨq “ lim infnÑ8 1{n log |Mpnq| is called achievable if Ψ has

average error probability εn such that limnÑ8 εn “ 0.

Definition 2.16 (Channel Capacity). The channel capacity of a DMC is the largest

achievable channel coding rate.

We denote the channel capacity of DMC W “ PY |X by CMpPY |Xq. A channel code family

Ψ is an p|Mpnq|, εnq´code if it has error probability εn and code size |Mpnq|. Note that both

of these parameters are functions of n and a “good” code has large code size and negligible

error. To be precise, an p|Mpnq|, εnq´code family Ψ is capacity achieving for channel W if

and only if lim infnÑ8 1{n log |Mpnq| “ CMpW q, and limnÑ8 εn “ 0.

Next theorem was proved by Shannon [44] and gives a single-letter expression for calcu-

lating the channel capacity – see also Chapter 3, Section 1 of [45].

Theorem 2.9 (Channel Coding – see Theorem 3.1 of [45]). The channel capacity of

a DMC W “ PY |X is

CMpPY |Xq “ max
PX

IpX;Y q.

2.2.4 Finite-length Analysis

The channel coding theorem 2.9 characterizes the asymptotic limit of communication rate for

a given DMC; however, in practice the channel codes are designed at fixed finite blocklengths.

Therefore, the problem of finite-length analysis of channels and channel codes is of practical

relevance and specifically has recently received a lot of attention – see e.g., [49–51].
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Consider that a DMC W “ PY |X is given. Recall that a channel code family Ψ (indexed

by n) is called an p|Mpnq|, εnq´code if it has error probability εn and code size M . For a

finite n P N and a fixed ε P p0, 1q define [50]

MεpX
n;Y n

q “ maxtlogp|Mpnq
|q | D an p|Mpnq

|, εnq´code Ψ with εn ď εu.

Note thatMεpX
n;Y nq as a function of n describes the maximum possible code size of all codes

with error probability less than or equal ε. It is desired to find expressions for calculating

MεpX
n;Y nq. The first theorem about MεpX

n;Y nq is due to Shannon where he proved that

[44, Theorem 12] for every ε P p0, 1q

MεpX
n;Y n

q “ nCM ´ opnq,

which means that channel capacity can be achieved asymptotically even when error proba-

bility does not approach to zero at large n’s.

The objective of finite-length analysis for channel coding is to find more accurate approx-

imations of MεpX
n;Y nq. The following is due to Strassen – see also [50] Equation (275).

Theorem 2.10 (Second-order Approximation for Channel Coding [52]). For a given

DMC W “ PY |X and ε P p0, 1{2q we have

MεpX
n;Y n

q “ nCM ´
a

n∆minQ
´1
pεq ˘Oplog nq,

with ∆min :“ minPXP rP Var tipX, Y qu where rP :“ tPX | IpX;Y q “ CMpPY |Xqu.

The above finite-length result was extended and improved for more general settings by

Polyanskiy et al. and Hayashi. For the same practical reasons finite-length analysis of other

information-theoretic tasks have recently gained lots of attention [51, 53].
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Figure 2.3: Two-party SKA in source model.

2.3 Two-party Secret Key Agreement in Source Model

Information-theoretic secret key agreement was first studied in the two-party scenario by

Maurer [19] and independently by Ahlswede and Csiszár [20]. In this section, we review

two-party SKA in the source model.

Suppose a 3-DMS1 pV1, V2, Zq with a known probability distribution PV1V2Z is given. In

the two-party source model of SKA, terminal 1 (Alice), terminal 2 (Bob), and the wiretap-

ping adversary Eve, have access to V1, V2, and Z, respectively. Variable Z is referred to

as the (wiretap) side information of Eve. For the case of two-party SKA, let us use the

conventional notations, where V1 “ X1 “ X and V2 “ Y2 “ Y denote the variables of Alice

and Bob respectively – i.e., PV1V2Z “ PXY Z .

About the Notation of Terminals’ Variables

In this thesis we use Vj when referring to a generic random variable associated with

a terminal labeled as j. Sometimes, we change this notation to Vj “ Xj or Vj “ Yj

or Vj “ pXj, Yjq depending on the probabilistic model of SKA that we study.

1A discrete memoryless source with three components.
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Some examples of how such correlated variables can be realized in practice are the fol-

lowing.

• Mutual Channel Estimation. Alice and Bob have wireless devices that commu-

nicate over the same frequency, and they have a “means of estimating their mutual

channel.” Then the resulting estimations are highly correlated. Also, observations by

other wireless devices are essentially uncorrelated if they are at least half a wavelength

away from Alice and Bob. See [54, 55].

• The Satellite Setting. Consider a radio source that is broadcasting a string of

random bits which is received by Alice, Bob, and Eve through independent noisy

channels with different error probability. Hence, random samples of Alice, Bob, and

Eve are correlated. For example, one can consider that the independent channels from

the satellite to Alice, Bob, and Eve to be binary symmetric channels with different bit

flip probabilities. See [19, 56].

• The Wiretap Channel. In this setting, Alice is broadcasting a sequence of binary

values, and Bob and Eve observe noisy versions of Alice’s random sequence. The

correlation between Alice, Bob, and Eve is then can be modelled by a single-input

multiple-out put channel where Alice provides the input symbols, and Bob and Eve

observe output variables. See [20, 57].

The goal of Alice and Bob in an SKA protocol is to use correlated variables X and Y ,

and a noiseless public communication channel, to agree on the largest possible shared secret

key. The SKA protocol is desired to be (i) reliable, in the sense that the keys obtained by

Alice and Bob should be the same; and (ii) secure, in the sense that Eve should not learn

more than a negligible amount of information about the shared secret key. More thoroughly,

a general two-party SKA protocol Π in source model, works as follows. Parties sample

from their variables for n times and observe the IID sequences pXn, Y n, Znq. Alice and Bob

engage in a (possibly interactive) public discussion F where Eve observes all of the public
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messages. After public discussion, Alice and Bob both compute their estimates of the final

key, respectively denoted by K1 and K2. See Figure 2.3.

A key generated by an SKA protocol family Π is called an pεn, σnq´secret key (or

pεn, σnq´SK for short) if Pr tK1 “ K2 “ Ku ě 1 ´ εn and SDpKFZn, UFZnq ď σn, where

F denotes the whole transcript of the public messages transfered between Alice and Bob, U

is the uniform distribution over alphabet K, and SDp¨, ¨q is statistical distance2.

The key rate of an SKA protocol family Π that for every n P N generates an pεn, σnq´SK

K is given by rKpΠq “ lim infnÑ8 1{n log |K|. The key rate rKpΠq of the SKA protocol family

Π is called “achievable” if limnÑ8 εn “ limnÑ8 σn “ 0.

Definition 2.17. The key capacity of a model is the largest achievable key rate.

In a two-party source model PXY Z , if the adversary is wiretapping (observes the side

information Z), the key capacity is called the “wiretap secret key” (WSK) capacity, denoted

by CWSKpPXY Zq. If Eve is not wiretapping (Z “ constant), then the key capacity is called

the “secret key” (SK) capacity, denoted by CSKpPXY q. It is proved that the two-party SK

capacity is given by CSKpPXY q “ IpX;Y q [20, Proposition 1]. However, the problem of

finding an expression for WSK capacity remains open. Next theorem, gives an important

upper bound on WSK capacity and proves its tightness under two certain assumptions.

Theorem 2.11 ([20, Theorems 1 and 3]). Consider a two-party source model PXY Z.

Then,

a) CWSKpPXY Zq ď IpX;Y |Zq,

b) Bound in a is tight if X ´ Y ´ Z holds,

c) Bound in a is tight if Z is known by the terminals.

2In this thesis we use statistical distance to measure secrecy. This is an standard approach in the context
of information-theoretic security, see for example [25, 31, 58, 59]. Other definitions that are widely used in
the literature are the notions of weak and strong secrecy that employ mutual information between the key
and Eve’s knowledge (see [19–23, 60]). All of these secrecy definitions are closely related. For a better
understanding of the relation between these definitions of secrecy we refer the reader to [21, Lemma 1 and
Appendix B], and [61, Section 2.4].
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The problem of secret key agreement is tightly related to two other information-theoretic

tasks, namely the “privacy amplification” and the “information reconciliation.” Before

demonstrating that how a shared secret key can be generated between two distant parties,

we review these notions in the following subsections.

2.3.1 Privacy Amplification

The Privacy Amplification (or Key Extraction) is the task of extracting a secret key from a

variable that is partially leaked to the adversary [62]. Here, we assume that Alice (terminal

1) and Bob (terminal 2) have access to a common randomness V n. There is a wiretapping

adversary Eve who has access to wiretap side information Zn which is correlated with le-

gitimate parties’ common randomness V n. The goal of a privacy amplification code is to

extract the largest possible key K “ fPApV
nq from V n such that its distribution is close to

uniform and it’s almost independent from Eve’s knowledge (Eve has negligible information

about it.)

Next we define universal hash functions, and briefly explain why they are useful in the

context of privacy amplification (key extraction) [27].

Definition 2.18 (Universal Hash – [28]). A family of functions ths : X Ñ KusPS is a

2-Universal Hash Family if for any x ‰ x
1

, PrthSpxq “ hSpx
1

qu ď 1
|K| , where the probability

is on the uniform choice of S.

Universal hash functions have a lot of applications in cryptography [58, 63, 64], and are

well studied [65, 66]. One of their important properties (proved by the following lemma) is

that they can be used as randomness extractors [30]. For a survey on the study and detailed

analysis of different implementations of universal hash functions and various applications of

randomness extractors we refer the reader to [65–67].

Consider the problem of key extraction under the assumption that Eve has no wiretap

side information, i.e., Z “ constant. Let S be a random value, that Alice and Bob agree on
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publicly. Then a function K “ fPApV, Sq is considered σ´secure if SDpKS,USq ď σ where

U is the uniform distribution over K.

The Leftover Hash Lemma (LHL) stated below (Lemma 2.12) proves that a 2-Universal

Hash Function (2-UHF) is σ´secure as long as its output key length satisfies

log |K| ď HminpV q ` log 4σ2,

where HminpV q “ ´ logpmax
v
PV pvqq is the min-entropy of V .

Lemma 2.12 (Leftover Hash Lemma (LHL) – [30]). Assume a family of functions

ths : V Ñ KusPS is 2-UHF. Then, for any random variable V and uniformly random S

SD
´

phSpV q, Sq, pU, Sq
¯

ď
1

2

b

|K|2´HminpV q,

where U is the uniform distribution over K.

In many practical scenarios, though, the common randomness of Alice and Bob is partially

leaked to the adversary in the form of a side information Z and a perhaps a public variable

F . Therefore, we consider a slightly modified variant of the above privacy amplification

problem – see also Lemma 8 of [31]. Suppose the joint probability distribution of a 2-DMS

source pV, Zq is known. The variable V (called the common randomness) is accessible to

both Alice and Bob, and the variable Z (called the adversary’s wiretap side information)

is accessible to Eve. Alice, Bob, and Eve, sample from the 2-DMS source for n times and

observe IID sequences V n and Zn. Moreover, assume that there exists a publicly available

variable F , that is correlated with V n. We call F the public side information. See Figure

2.4.

A privacy amplification function fPA : Vn Ñ K with asymptotic key rate define by

lim infnÑ8 1{n log |K| is called σn´secure if SDpKFZn, UFZnq ď σn, where U is the uniform

distribution over alphabet K. The parameter σn is called the secrecy parameter. Note that
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Figure 2.4: The privacy amplification problem with public and wiretap side information
available to Eve.

here the key length is measured by log |K|. Next lemma gives a lower bound on the maximum

key rate of all privacy amplification codes with asymptotic perfect secrecy (σn Ñ 0).

Lemma 2.13 (Privacy Amplification with Public and Wiretap Side information

Available to Eve). Consider the modified privacy amplification problem as stated above.

Then, for every R P R satisfying

R ď HpV |Zq ´ lim
nÑ8

1

n
log |F |,

there always exists a σn´secure privacy amplification function fPA : Vn Ñ K, with asymp-

totic key rate R and limnÑ8 σn “ 0.

Proof sketch: Follows immediately from Lemma 3.14 and Lemma 3.2, by using

Universal Hash functions (defined in Definition 2.18) to extract a σn´secure key. Full proof

is given in the Appendix 2.6 for completeness.

2.3.2 Information Reconciliation

The problem of Information Reconciliation (IR) for the two-party source model is as follows.

Suppose a 2-DMS pV1, V2q is given. Alice (terminal 1) has access to V1 and Bob (terminal 2)
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Figure 2.5: Two-party communication for omniscience.

has access to V2. Alice and Bob sample from their source components for n times and observe

the n´IID variables pV n
1 , V

n
2 q [68, 69]. Through the exchange of a series of (interactive)

messages over a noiseless communication channel, Alice and Bob want to arrive at a common

randomness CR that is a function of pV n
1 , V

n
2 q, i.e., CR “ CRpV n

1 , V
n

2 q [68, 69].

This problem is closely related to both the source coding and the channel coding problems

and is of particular importance in the context of key agreement [26, 70].

Two notable and well-studied special cases of the IR problem are the following:

• Communication for Error Correction3: Here, the objective common randomness

function is Alice’s observation CR “ V n
1 . This is exactly the same problem as the

source coding problem with side information at the decoder. In fact the source coding

Theorem 2.6 implies that this task can be done by one-way communication. Let

F1 denote the one-way message of Alice to Bob, which has asymptotic rate R1 “

lim supnÑ8 1{n log |F1|. Then by Theorem 2.6

R1 ě HpV1|V2q.

3Some works, e.g., [26], define the task of “information reconciliation” as we define this special case when
parties want to reconcile on either one’s observations.
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• Communication for Omniscience (CO): The problem of Communication for Om-

niscience was first introduced in [21]. In this case, terminals send messages to each

other (Alice sends F1 to Bob and Bob sends F2 to Alice,) to learn each others’ ob-

servations – i.e., the objective common randomness is CR “ pV n
1 , V

n
2 q. The state

of terminals when they learn each other’s observation is called “omniscience.” It

was shown in [21] that omniscience can be achieved noninteractively, i.e., by Alice

and Bob each sending each other single independent messages. See Figure 2.5. Let

Rj “ lim supnÑ8 1{n log |Fj| j “ 1, 2. Then, by Theorem 2.6

R1 ě HpV1|V2q,

R2 ě HpV2|V1q.

The problem of Communication for Omniscience can be generalized to case of an m-

DMS (multiterminal) source model [21] which we review in Section 2.4.

Both one-way and CO approaches to IR have been well studied and they have direct

applications for secret key agreement. In the following section we discuss how these different

reconciliation protocols are used for key agreement.

2.3.3 How to Achieve the Key Capacity (When Z is Known)

Consider the two-party SKA model when Z is known to the legitimate terminals. Here

we demonstrate how two well known SKA approaches can be proved to be key capacity

achieving. We review and compare these important SKA approaches and illustrate how the

source coding theorem 2.6 and the privacy amplification lemma 2.13 are used in this context.

Now, let us give the first achievability proof for statement c of Theorem 2.11. Consider

the SKA Protocol 1. We show that the asymptotic key rate of Protocol 1 can be as large as

IpX;Y |Zq, which implies that CWSKpPXY Zq ě IpX;Y |Zq when Z is known.
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Protocol 1: A two-party SKA protocol by omniscience for when Z is known (ΠCO)

Public Information: PXY Z
Input: n´IID copies of X, Y , and Z.
Output: Key estimates K1 and K2.

1 Alice sends a public message F1 “ F1pX
nq such that Bob can reliably reconstruct

Xn using the knowledge of Y n and Zn.
2 Bob sends a public message F2 “ F2pY

nq such that Alice can reliably reconstruct Y n

using the knowledge of Xn and Zn.
3 Alice and Bob extract their respective keys K1 and K2 using the common

randomness pXn, Y nq.

SKA by Omniscience. In Protocol 1 terminals first learn each other’s initial observa-

tions – every legitimate terminal learns all copies of pX, Y q. This state of the terminals is

called “omniscience” and any public discussion protocol that enables omniscience is called

a communication for omniscience (CO) protocol.

Alternative Achievability Proof for Theorem 2.11-c: By the privacy amplification

Lemma 2.13, as the common randomness is pXn, Y nq and the publicly known variables are

F1 and F2, we get the following lower bound on CWSKpPXY Zq

CWSKpPXY Zq ě HpX, Y |Zq ´ lim
nÑ8

1

n
plog |F1| ` log |F2|q.

The above bound holds for any CO protocol that enables omniscience, thus,

CWSKpPXY Zq ě HpX, Y |Zq ´min

"

lim
nÑ8

1

n
plog |F1| ` log |F2|q

*

“ HpX, Y |Zq ´RCOpX, Y |Zq,

where the minimum on the first line is on all public communication protocols pF1, F2q that

enable omniscience, and RCOpX, Y |Zq denotes the minimum asymptotic public communi-

cation sum rate that is required to achieve omniscience. Theorem 2.6 implies the following
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characterization of RCOpX, Y |Zq

RCOpX, Y |Zq “ min

$

’

&

’

%

R1 `R2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

R1 ě HpX|Y Zq,

R2 ě HpY |XZq.

,

/

.

/

-

,

which, for this case of two-party source model, can be solved as

RCOpX, Y |Zq “ HpX|Y Zq `HpY |XZq.

Therefore, the following lower bound holds on the WSK capacity

CWSKpPXY Zq ě HpX, Y |Zq ´HpX|Y Zq ´HpY |XZq “ IpX;Y |Zq.

We note that the original proof given in [20] is based on a different SKA protocol and

uses different methods other than Lemma 2.13.

We consider SKA models in which public communication is assumed free; however, it is

always desirable to find SKA protocols that use less public communication bits to achieve

the key capacity. Let FpΠq denote the public discussion of an SKA protocol Π. Then the

asymptotic public communication rate of Π given by limnÑ8
1{n log |FpΠq| is used to quantify

the efficiency of SKA protocol Π with respect to its public communication costs.

In the following discussion we show an alternative approach to achieve the WSK capacity,

which asymptotically uses less public communication bits than the SKA by omniscience

approach discussed above.

Remark 2.5 (SKA by One-way Public Communication). Protocol 1 (ΠCO) uses

two public messages and (for the two-party model when Z is known) it is not the best

SKA approach for achieving the key capacity. A better approach would be to perform key

agreement by “one-way” public communication. Consider the one-way SKA Protocol 2

(ΠOW) where only Alice sends a public message F1 such that Bob can reliably reconstruct
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Protocol 2: A two-party one-way SKA protocol for when Z is known (ΠOW)

Public Information: PXY Z
Input: n´IID copies of X, Y , and Z.
Output: Key estimates K1 and K2.

1 Alice sends a public message F1 “ F1pX
nq such that Bob can reliably reconstruct

Xn using the knowledge of Y n and Zn.
2 Alice and Bob extract their keys K1 and K2 using the common variable Xn.

Xn using the knowledge of Y n and Zn. Bob is silent – does not send public messages. Then,

parties use their common randomness Xn for key extraction. Similar to the analysis we did

before, one can easily observe that by Theorem 2.6 and Lemma 2.13, the asymptotic key rate

of the one-way SKA protocol is, for this model, given by HpX|Zq´HpX|Y Zq “ IpX;Y |Zq;

meaning that the one-way SKA also achieves the WSK capacity when Z is known. The

one-way SKA protocol is not only capacity achieving (in this case) but also more efficient

in terms of public communication cost than the SKA Protocol 1, that uses the omniscience

approach. The asymptotic public communication rate of Protocol 1 is given by RCO “

HpX|Y Zq ` HpY |XZq while asymptotic public communication rate of the one-way SKA

Protocol 2 is equal to HpX|Y Zq ď RCO.

Moreover, for the case of Theorem 2.11-b where X ´ Y ´ Z holds and Z is not know by

the legitimate terminals, it is easy to observe that one-way SKA approach achieves the WSK

capacity IpX;Y |Zq; though, SKA by omniscience is not WSK capacity achieving. In [20],

one-way SKA is used to prove Theorem 2.11-b and c. In Chapter 3, we focus our study on

two-party one-way secret key agreement protocols for the general case when Z is not known.

2.4 Multiterminal SKA in Source Model

In a series of seminal papers, Csiszár and Narayan generalized previous results of Maurer

and Ahlswede and Csiszár on two-party SKA to the case of multiterminal SKA [21–23].

Suppose we have a set of m terminals denoted by M “ t1, 2, . . . ,mu. Consider a discrete
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memoryless multiple source (DMMS) denoted by pV1, V2, . . . , Vm, Zq where each component

variable Vj PM is observed by a different terminal j PM, and side information Z is observed

by Eve. Let us use the conventional notation of Vj “ Xj for the case of multiterminal source

model. The probability distribution of the DMMS is known and is denoted by PXMZ , where

XM denotes the set of all legitimate terminals’ variables. Terminals use a noiseless public

communication channel and n IID copies of their variables to establish a shared secret key

among terminals of a subset A ĎM . Terminals that are not in A are called helper terminals.

See Figure 2.6.

Similar to the case of two-party setting, the key capacity of a multiterminal source model

is defined as the largest acheiavle key rate. See Definition 2.17.

The general multiterminal source model was introduced in [21] and three types of key

capacities were considered based on the assumptions regarding Eve’s side information:

• Secret Key (SK) capacity: Eve has no side information, i.e., Z “ constant. In this

case, the model is called non-wiretapped.

• Private Key (PK) capacity: Eve has compromised a subset of helper terminals

D Ď Ac and sees their observations. In this case, the model is called compromised. It

is assumed that compromised terminals publicly reveal Z “ XD.

• Wiretap Secret Key (WSK) capacity: Eve has access to a side information Z. In

this case, the model is called wiretapped.

The WSK capacity is the most general key capacity notion and analysis of PK capacity

is useful for modeling the special case of WSK capacity when Z is assumed to be known.

For example, the two-party scenario when Z is known (statement c of Theorem 2.11) is

equivalent with a three-terminals scenario where terminals’ variables are V1 “ X, V2 “ Y

and V3 “ Z, A “ t1, 2u, and terminal 3 is assumed compromised.

Single-letter expressions for the SK and PK capacities of the general multiterminal source

model were given in [21], and it was proved that these capacities can be achieved using the
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Figure 2.6: Multiterminal SKA in source model.

SKA by omniscience method.

Theorem 2.14 (Multiterminal Source Model SK Capacity – [21, Theorem 1]).

Consider a multiterminal source model PXM. Then, for any A ĎM

CA
SKpPXMq “ HpXMq ´R

A
COpXMq,

where RA
COpXMq “ mint

řm
j“1Rj|

ř

iPB Ri ě HpXB|XBcq, @B ĂM,A Ę Bu is the minimum

asymptotic public communication sum rate that is required for terminals in subset A to

achieve omniscience (learn XM).

The SKA protocol that achieves the SK capacity above, has the following main two steps:

1- Terminals use public discussion so terminals of A achieve omniscience (learn Xn
M).

2- Terminals in A use their common randomness Xn
M to extract their keys.

Note that Lemma 2.13 immediately implies that CA
SKpPXMq ě HpXMq ´R

A
COpXMq.

Remark 2.6 (When SKA by omniscience is not efficient). While a lot of proposed

SK and PK capacity achieving protocols are base on the communication for omniscience
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3V1 “ X1 “ pV12, V13q

V2 “ X2 “ pV12, V23q

V3 “ X3 “ pV23, V13q

V12 V23

V13

Figure 2.7: A simple multiterminal source model.

approach [21, 71, 72], they are not always efficient in terms of public communication. Con-

sider the following example. There are three terminals M “ t1, 2, 3u, and we want to do

key agreement for all (A “ M). The RV’s of these terminals have the following specific

structure: X1 “ pV12, V13q, X2 “ pV12, V23q, X3 “ pV23, V13q, where each Vij is an independent

binary uniform random variable. See Figure 2.7.

Suppose terminals want to achieve omniscience (everyone learns XM “ pV12, V23, V13q).

Then, for example, they can execute these steps:

1- Terminal 2 sends public message F2 “ V12 ‘ V23,

2- Terminal 3 sends public message F3 “ V23 ‘ V13.

Here, ‘ denotes the binary XOR operation. Thus, using only 2 bits of communication, ter-

minals could attain omniscience. In fact, the minimum communication rate for omniscience,

in this example, is 2 bits. Therefor, for key agreement, terminals can follow the steps above

and then agree on K “ V12. By Theorem 2.14 we can calculate the SK capacity as

CSK “ HpX1X2X3q ´RCO

“ HpV12q `HpV23q `HpV13q ´RCO

“ 3´ 2 “ 1.

However, note that to agree on 1 bit of key per sample, terminals do not need to achieve
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Protocol 3: A three-party SKA protocol for source model of Figure 2.7 (ΠXOR)

Public Information: PX1X2X3

Input: A single copy of X1 “ pV12, V13q, X2 “ pV12, V23q, and X3 “ pV23, V13q.
Output: Key estimates K1, K2 and K3.

1 Terminal 2 sends a public message F2 “ V12 ‘ V23.
2 Terminals 1 and 2 set their final key to Kj “ V12@j “ t1, 2u and Terminal 3

calculates the final key by K3 “ V23 ‘ F2.

omniscience. For instance, if only Terminal 2 sends F2 “ V12 ‘ V23, (and other terminals

remain silent,) all terminals still can agree on K “ V12. Terminals 1 and 2 have prior

knowledge of K “ V12 and terminal 3 computes the key by K “ V23 ‘ F2. See Protocol 3

(ΠXOR.)

Hence, similar to the case of two-party SKA (see Remark 2.5), we can conclude that the

approach of SKA by omniscience is not always optimal from the view point of using public

communication. On the other hand; however, we note that SKA by omniscience is the only

known approach that achieves the SK and PK capacities of any arbitrary source model.

The multiterminal source model WSK capacity is known when Eve’s side information is

revealed publicly to all terminals. Next theorem is a generalization of Theorem 2.11-c.

Theorem 2.15 ([21, Theorem 4]). Consider a multiterminal source model PZXM. Then,

for any A ĎM, if Z is known by the terminals

CA
WSKpPXMZq “ HpXM|Zq ´R

A
COpXM|Zq,

where RA
COpXM|Zq “ mint

řm
j“1Rj|

ř

iPB Ri ě HpXB|XBcZq, @B Ă M,A Ę Bu is the

minimum asymptotic public communication sum rate that is required for terminals in subset

A to achieve omniscience (learn XM in addition to the common variable Z). Moreover, the

above expression is an upper bound to WSK capacity when Z is not known by the terminals.

47



The problem of finding an expression for the general WSK capacity of multiterminal

source model is unsolved.

In Chapter 4, we introduce a large subclass of multiterminal source models, called “wire-

tapped Tree-PIN,” and prove its WSK capacity. This is one of the first WSK capacity results

for a large subclass of multiterminal source models. In the special case when Z is known,

our proposed capacity achieving SKA protocol is provably more efficient than SKA protocol

of [21] that uses the CO approach.

2.5 Secret Key Agreement in Channel Model

In a multiterminal channel model for SKA, terminals are connected by a noisy discrete

memoryless channel (DMC) that is used for generating correlation. Terminals also have

unlimited access to a noiseless public channel that can be used before, during, and after

symbol transmissions over the DMC. The underlying DMC might be wiretapped, which is

modeled by providing an output variable Z to the adversary, Eve. Let M “ t1, . . . ,mu

denote the set of terminals and let A ĎM be the subset of terminals that want to agree on

a shared secret key. Terminals use the DMC for n times and at the end of SKA protocol,

each terminal j in A, computes their estimate Kj of the final key.

A key generated by a channel model SKA protocol Π is called an pεn, σnq´secret key (or

pεn, σnq´SK for short) if Pr tKj “ Ku ě 1´εn @j P A, and SDpKFZn, UFZnq ď σn, where

F denotes the whole transcript of the public messages exchanged between the terminals, and

U is the uniform distribution over alphabet K.

The key rate of an SKA protocol Π that for every n P N generates an pεn, σnq´SK K is

given by rKpΠq “ lim infnÑ8 1{n log |K|. The key rate rKpΠq of the SKA protocol Π is called

achievable if limnÑ8 εn “ limnÑ8 σn “ 0. The key capacity of a channel model is defined as

the largest achievable key rate. Same as Definition 2.17.
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Figure 2.8: General structure of an SKA protocol in channel model.

Similar to the case of multiterminal source model, we define three types of key capacities:

SK, PK, and WSK. The main difference between channel model and source model is that in

channel model (some) terminals have the privilege to govern the input symbols of the DMC,

possibly adaptively based on observing the public feedback messages that other terminals

send in between each symbol transmission; whereas in source model, terminals do not have

control over the established correlated n´fold variables. See Figure 2.8.

The two-party channel model when there is no wiretapping adversary is described by

the DMC with conditional probability distribution W “ PY |X , where V1 “ X and V2 “ Y

denote the input variable of terminal 1 and output variable of terminal 2; respectively.
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It is well known that [20, Proposition 1],

CSKpPY |Xq “ max
PX

IpX;Y q,

which can be achieved without sending any public messages.

The two-party model with a wiretapper is given by W “ PY Z|X , where Z is Eve’s side

information. The two-party WSK capacity is not known; however, similar to Theorem 2.11,

an important upper bound and two special case results were given in [20].

Theorem 2.16 ([20, Theorems 2 and 3]). For any two-party channel model PY Z|X ,

a) CWSKpPY Z|Xq ď maxPX IpX;Y |Zq,

b) Bound in a is tight if X ´ Y ´ Z holds,

c) Bound in a is tight if Z is known by the terminals.

In [22], the above results were extended to a specific multiterminal channel, where the

underlying DMC is assumed to be single-input multi-output, where terminal 1 governs the in-

put symbol V1 “ X1 of the DMC, and terminals in t2, 3, . . . ,mu observe the output variables

V2 “ Y2, V3 “ Y3, . . . , Vm “ Ym. See Figure 2.9-(a).

Theorem 2.17 ([22, Theorem 4.1]). Consider a single-input multi-output channel model

PY2Y3...Ym|X1. Then, for any A ĎM

CA
SKpPY2Y3...Ym|X1q “ max

PX1

tHpVMq ´R
A
COpVMqu,

where RA
COpVMq “ mint

řm
j“1Rj|

ř

iPB Ri ě HpVB|VBcq, @B Ă M,A Ę Bu is the minimum

asymptotic public communication sum rate that is required for terminals in subset A to

achieve omniscience (learn VM).

For the SK capacity above, the proposed capacity achieving SKA protocol is based on

the “source emulation” approach, that starts by (i) sending IID symbols Xn
1 through the
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Figure 2.9: (a) The single-input multi-output channel model of [22] and (b) The multiaccess
channel model of [23] – here, I “ t1, 2, 3u.

noisy DMC, which emulates (realizes) a multiterminal source model with joint distribution

PVM “ PX1PY2Y3...Ym|X1 , and then (ii) employing the source model SKA of [21] (see passage

following Theorem 2.14).

The case of secret key agreement in a particular model of multi-input multi-output chan-

nels, where a subset I Ĺ M of terminals are input terminals, and the rest of terminals (in

MzI) are output terminals, was considered in [23]. See Figure 2.9-(b). This channel model

was called the “multiaccess” model, and general upper and lower bounds were proved for

the SK and PK capacities. The source emulation approach is proved to be, in general, not

capacity achieving for the case of multiaccess model [73].

Finding expressions for the SK, PK, and WSK capacities of the multiaccess channel

model remain as open questions.

The multiaccess channel model fails to account for the real-life scenarios where individual
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terminals can send inputs to and receive outputs from the underlying noisy channel. In

Chapter 5, we propose a new general channel model that allows the presence of “transceiver”

terminals that can both send to and receive from the DMC. In Chapter 6, we prove the SK,

and WSK capacities of a special class of such transceiver models, called “Polytree-PIN.”
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2.6 Appendix

Lemma 2.13 follows directly from Lemmas 3.14 and 3.2, that we will prove in Chapter 3. A

proof is given below for completeness.

Proof of Lemma 2.13: A family of functions ths : V Ñ KusPS is a 2-Universal Hash

Family if for any v ‰ v
1

, PrthSpvq “ hSpv
1

qu ď 1
|K| , where the probability is on the uniform

choice of S (see Definition 2.18). To extract the key from common randomness V n, Alice

and Bob first agree on a random seed s P S. Then they use the hash function hspV
nq witch

results in a key that has length log |K|. From Lemma 3.14 and Lemma 3.2, we can conclude

that by using K “ hspV
nq a σn´secure key K can be achieved as long as

1

n
log |K| ď HpV |Zq ´

1

n
log |F | ´ c1

?
n
Q´1

pσn ´ µnq `
1

n
log 4µ2

n ˘
c2

n

where Qp¨q is the tail probability of the standard Gaussian distribution, 0 ă µn ď σn, and

c1 and c2 are constants that do not depend on n. Let σn “ 1{n and µn “ 1{2n, and note

that Q´1pxq “
?

2erfc´1
p2xq @ x P p0, 1q. Here, ‘erfc’ is the complementary error function,

defined as erfcpaq “ 1´ 2?
π

şa

0
e´t

2
dt. Then, we have

1

n
log |K| ď HpV |Zq ´

1

n
log |F | ´

?
2c1
?
n

erfc´1
p
1

n
q ´

1

n
4 log n˘

c2

n
.

By noting4 that as n Ñ 8 we have erfc´1
p 1
n
q «

b

logn
log e

´Oplog log nq ` Opn´2q, we have

proved that p1{nq´secure keys with rates as large as

R ď HpV |Zq ´ lim
nÑ8

1

n
log |F |

can be achieved.

4See Wolfram Research’s documentation on erfc´1
p¨q function at https://functions.wolfram.com/

PDF/InverseErfc.pdf.
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Chapter 3

Finite-length Lower and Upper

Bounds for Two-party One-way

Secret Key Agreement

Abstract. Two-party secret key agreement is a fundamental problem in
cryptography: Alice wants to share a secret random string called the key
with Bob, such that a third party, Eve, has negligible information about
it. In this chapter, we consider an important information-theoretic model of
two-party secret key agreement, in which Alice, Bob, and Eve have access to
correlated random variables. In order to make local key generation (at Alice’s
and Bob’s sites) possible, Alice is allowed to send Bob only a single public
message that is computed based on her initial random variable. This model
is called the “two-party model of one-way secret key agreement (OW-SKA)”.
In practice, parties sample from their random variables up to a finite number
of times, therefore, we aim to give more accurate finite-length expressions
for the maximum key length that can be generated. To this end, we prove
a new finite-length upper bound, and propose two OW-SKA protocols that
imply multiple finite-length lower bounds for the maximum achievable key
length. We also compare our OW-SKA protocols with related past results
and discuss remaining open research questions.

Part of contributions presented in this chapter have been presented and published in the proceedings
of ISITA 2020 [32] and ISIT 2021 [33]. Content are reused under the permission of the IEICE and IEEE.
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3.1 Introduction

Information-theoretic secret key agreement (SKA) was first introduced and studied in [19],

and independently in [20] and since then has been studied extensively in different models (see

[74] and references therein). An important model of SKA that was originally studied in [20]

and [19], is the two-party source model with wiretapper in which there are two legitimate

parties, Alice (Terminal 1) and Bob (Terminal 2), that want to establish a shared key in the

presence of an eavesdropping adversary Eve. Alice, Bob, and Eve have access to variables

V1 “ X, V2 “ Y, and Z respectively, and the joint public probability distribution PXY Z .

The legitimate parties use a reliable public communication channel to arrive at a shared key.

This public communication can be interactive and have multiple rounds. The final common

secret key of Alice and Bob must be computed in such a way that Eve, who has access to

all public communication and the side information Z, learns no information about it.

The primary performance metric for SKA protocols is the achievable length of secret key.

Hence, we are interested in finding SpX;Y |Zq, the maximum length of secret keys that can

be achieved by legitimate parties, given a source model distribution PXY Z . Allowing parties

to have access to n independent and identically distributed (IID) repetitions of their respec-

tive variables, we can define the wiretap secret key (WSK) capacity, that is the maximum

achievable key rate (that is key length divided by n).

A single-letter characterization of the general WSK capacity remains unresolved. How-

ever, the key capacity is known under additional assumptions. If we restrict Alice and Bob

to only use a single public message (with a finite but unlimited length), from Alice to Bob,

the key capacity is known (Theorem 1 of [20]) and is called the one-way wiretap secret key

(OW-WSK) capacity, which we denote by CÑWSKpPXY Zq. When Markov Relation X´Y ´Z

holds, the SK capacity can be achieved noninteractively (i.e., by one-way public communica-

tion) and it is proved that CWSKpPXY Zq “ CÑWSKpPXY Zq “ IpX;Y |Zq (Theorem 2 of [20]).

The best known upper and lower bounds on the general WSK capacity are due to [75].

In this chapter, we focus on the “one-way secret key agreement” (OW-SKA) source model
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in which Alice sends a single message over the public channel to Bob, so they can arrive at a

shared key. The OW-SKA problem is important in practice because it avoids the interaction

between Alice and Bob that in addition to longer time and more complexity to arrive at

an established key, would require stateful protocols which would introduce vulnerabilities in

implementation. As noted in [76], the problem is also theoretically interesting because of

its relation to circuit polarization and immunization of public-key encryption in complex-

ity theory and cryptography, and its application to oblivious transfer [77], an important

cryptographic primitive.

Previous key capacity results prove that SpXn;Y n|Znq “ nCWSKpPXY Zq ` opnq [19,

20]. In practice however, n is finite and a more accurate finite-length approximation of

SpXn;Y n|Znq is needed. For the special case when X ´ Y ´ Z holds, Hayashi, Tyagi, and

Watanabe [31] proved the second-order asymptotic expansion of SpXn;Y n|Znq as

SpXn;Y n
|Zn
q “ nCWSKpPXY Zq ´

?
nG˘Oplog nq,

where G is a function of probability distribution PXY Z and does not depend on n. They also

gave a capacity achieving interactive protocol that asymptotically attains the above second-

order key length approximation. The protocol, however, requires Opnq rounds of interactive

public communication, and is not computationally efficient [31].

The finite-length bounds for OW-SKA, however, are less understood. For a finite n for

a OW-SKA model with a given source model distribution PXY Z , let SÑpXn;Y n|Znq denote

the maximum length of secret key that can be achieved via one-way public communication.

Finding accurate finite-length approximations of SÑpXn;Y n|Znq is also an important prob-

lem from the practical point of view. The construction and the bounds in [31] are derived

for the general case where the interaction over the public channel is allowed, and is critically

used by the optimal protocol. It is not known how tight their upper bound is if communi-

cation is restricted to one-way. Known OW-SKA constructions have used random binning
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[20], random linear codes and Reed-Solomon codes [76, 78], polar codes [79, 80], and hash

functions [26, 81]. The explicit constructions in [26, 78–81] are all capacity achieving one-

way constructions, and their finite-length analysis can give a lower bound on achievable SK

length, although these bounds have not been explicitly derived, and in some cases deriving

the finite-length bound (e.g. in [79, 80]) is not well studied. See Section 3.4.3 for more details

and comparison of the achievable key length of these protocols.

In our recent works [32, 33], we have proved new finite-length upper and lower bounds on

SÑpXn;Y n|Znq. However, a tight second-order approximation of SÑpXn;Y n|Znq remains

unknown. This chapter covers these findings in detail. In the following, we give a brief

overview of the claimed results.

3.1.1 Our Work

The contributions of this chapter falls under two parts: (a) Upper Bound, (b) Lower Bounds.

In the first part (Section 3.3), we use smooth Rényi entropy that was introduced in [26],

and the information spectrum approach of [24, 25], and define new entropies (Definition 3.4)

that allow us to derive a multi-letter upper bound on SÑpXn;Y n|Znq (Corollary 3.4.1).

In the second part (Section 3.4), we derive three single-letter finite-length lower bounds

on SÑpXn;Y n|Znq (Theorems 3.8, 3.9, 3.13). These lower bounds are proved by introducing

and analyzing two OW-SKA protocols. Our proposed OW-SKA, both have two main steps:

information reconciliation (IR) for arriving at a common string, and privacy amplification

(PA) where the goal is to extract a secret key from the shared string. An initiation phase is

included in the protocol during which protocol parameters and public values are determined.

The first protocol (ΠHH), leads to a finite-length lower bound on the key length, that

is tighter than the achievable key length of all the previously known OW-SKA protocols

(Theorem 3.9). This OW-SKA protocol uses universal hashing [28, 30] for both of the steps

of information reconciliation and privacy amplification. Using universal hash functions for

reconciliation has been proposed before in [26, 27, 58, 82]. The novelty of our work is in
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using the information spectrum technique of [24] to allow Bob to recover the Alice’s vari-

able with high probability. Using the information spectrum approach for reconciliation also

decreases the complexity of the proposed protocol in comparison to the similar information

reconciliation algorithms of [26, 58, 82] by decreasing the number of hash calculations. An

important property of our approach is that it allows us to use the general AEP (Asymptotic

Equipartition Property) of [83] that is used for independent experiments (independent but

not identically distributed samples), and the Berry–Esseen theorem [84] (first used for chan-

nel coding in [50]) for IID (independent and identically distributed) distributions, to obtain

two finite-length lower bounds for secret key length, one for independent experiments and

one for IID distributions that define the source distribution for our SKA protocol. Both of

these lower bounds have the form of SÑ ě nCÑWSK ´Op
?
nq. Thus, our protocol can also be

used for the more general case of independent experiments. In fact, we prove that ΠHH not

only achieves the OW-WSK capacity when parties observations are IID, but also achieves

the WSK capacity when parties observations are drawn independently and not necessarily

from the same distribution under the assumption that Markov relation Xn´Y n´Zn holds.

While the OW-SKA protocol ΠHH is very efficient in terms of public communication cost,

its computational complexity for Alice and Bob are in Opn log nq and Op2nq, respectively.

This makes ΠHH not computationally efficient. Note that in the context of SKA we call an

SKA protocol efficient if it has polynomial computational complexity (Opndq), and we call

an SKA protocol practically efficient if it has linear or quasi-linear computational complexity

(Opnq or Opn log nq) [79].

Observing the computational inefficiency of ΠHH, we propose an alternative protocol

(ΠPH) that has computational complexity of Opn log nq for both Alice and Bob. This proto-

col uses Polar Coding [29] in the information reconciliation step, and for privacy amplification

it employs universal hashing. Polar Coding was previously used for OW-SKA in [79, 80];

however, these results did not give finite-length analysis of their proposed schemes. The nov-

elty of our analysis is in using information spectrum methods to prove a generalized version
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of the Leftover Hash Lemma (Spectral LHL 3.14). In Theorem 3.13, we use the Spectral

LHL to derive the achievable finite key length of our proposed protocol ΠPH , which is near-

optimum as its second-order term is in Op τ
?
nτ´1q, where τ ą 2. Note that in the best known

lower bound the second-order term is in Op
?
nq; i.e., τ “ 2. The OW-SKA protocol ΠPH

is very efficient in terms of public communication cost and computational complexity. In

Section 3.4.3, we show that our proposed OW-SKA protocols gives way better finite-length

performance than the protocols of [76, 78].

3.1.2 Related Works

The analysis of an SKA protocol is in general reduced to two separate phases namely, infor-

mation reconciliation and privacy amplification. A lower bound on the key length of SKA

protocols can be derived by using an upper bound on the amount of leaked information in

the information reconciliation phase, and a matching lower bound on the maximum amount

of extractable random bits in the privacy amplification phase. Non-constructive (closely

matching) upper and lower bounds for information reconciliation are given in [26]. These

bounds are in terms of smooth max entropy that is approximated using Theorem 1 of [83]

for finite-length regime. This approximation has been made more precise in [82]. The upper

bound on the amount of leaked information during information reconciliation in [26] can be

achieved by a protocol that uses universal hashing (see [58, Lemma 6.3.4]). The application

of universal hashing for privacy amplification results in an immediate lower bound on the

length of the extractable key by using Leftover Hash Lemma (LHL) [30] (and its variations

– see the bounds given in [25, 26, 65, 85]). The lower bound in [65] is shown to be strictly

smaller than the lower bound of [26]. However, the bound of [65] is in terms of entropy

quantities for which there is no known finite-length approximation.

The problems of information reconciliation [82] and privacy amplification [27, 62, 65, 85]

are of independent interest due to their applications to other information-theoretic tasks

such as secure random number generation [86], QKD (quantum key distribution) [26], and
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wiretap coding [87, 88]. These areas are out of the scope of this work. Secret key agreement

is closely related to the wiretap channel coding [57]. Many works also study the relation of

SKA and wiretap codes (e.g., [19, 20, 79, 81]). This relation also has inspired another SKA

model called the channel model introduced in [20]. Finite-length analysis of wiretap channel

coding is given in [88].

SKA problem has also been studied for the case that PXY Z is one of a set of known

distributions (so-called compound sources) [89], or is assumed to have a given property e.g.,

the entropy satisfies a lower bound (see [26, Theorem 5] and [81, Section V.B]). In the latter

case, the construction is called universal. These protocols are capacity achieving but do not

have finite-length analysis.

3.1.3 Organization

In Section 3.3, we prove a finite-length upper bound on SÑpXn;Y n|Znq. In Section 3.4,

we propose two new OW-SKA protocols that lead to three finite-length lower bounds for

SÑpXn;Y n|Znq, and compare our proposed protocols with other related SKA protocols

in Section 3.4.3. We conclude the chapter in Section 3.5 and discuss interesting future

directions. The proof of some of the Lemmas are given in the Appendix 3.6.

3.2 Two-party Secret Key Agreement

A two-party source model with wiretapper is defined as follows. Suppose Alice (Terminal

1), Bob (Terminal 2), and Eve (the adversary), have access to random variables (RV’s)

V1 “ X, V2 “ Y, and Z, respectively. These RV’s are correlated and the goal of Alice and

Bob by running an SKA protocol is to share a secret key K, utilizing their RV’s and a

reliable (noiseless), authenticated, and public channel. The public communication may be

interactive in general or we might restrict Alice and Bob to only use a single one-way message

(say from Alice to Bob). Let F denote the public communication of SKA protocol. Having
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access to Z and F , Eve must not be able to learn any information about the secret key K.

Next definition shows how one can information-theoretically measure the quality of a

secret key. This definition of information-theoretic SKA is from [76], and is also used in [59]

and [31].

Definition 3.1. Consider a source model PXY Z , where Z is Eve’s side information about

pX, Y q. A key K with alphabet K is an pε, σq-Secret Key (in short pε, σq-SK) if there exists

an SKA protocol with public communication F and output key estimates pK1, K2q P K2,

such that

(reliability) Pr tK1 “ K2 “ Ku ě 1´ ε, (3.1)

(secrecy) SD pKFZ,UFZq ď σ, (3.2)

where U is the uniform distribution over K.

To increase the length of generated key, parties can sample from their variables for

multiple times and observe n independent and identically distributed copies of their RV.

Let n be a finite positive integer. Suppose SKA protocol Π establishes an pεn, σnq´SK

Kpnq and let `Πpnq “ log |Kpnq| denote the length of Kpnq. The key rate of Π for n´IID

observations is given by 1{n`Πpnq, and rKpΠq “ lim infnÑ8 1{n`Πpnq (if exists) is called the

asymptotic key rate of Π. The asymptotic key rate of Π, i.e., rKpΠq, is called achievable if

limnÑ8 εn “ limnÑ8 σn “ 0. The key capacity of a source model is defined as the maximum of

all achievable asymptotic key rates of SKA protocols for the model. See Definition 3.2. Also,

for any integer n P N, and any given ε, σ P r0, 1q, define Sε,σpX
n;Y n|Znq to be the maximum

length of all pε, σq-SK’s that can be established for the two-party SKA model given by the

probability distribution PXY Z . The public channel is assumed to be available to all parties

and is considered “free,” that is the cost of establishing it is not considered. In practice,

however, communicating over this channel incurs and SKA protocols that use less public

communication bits per observed sample are more desirable. Thus, we also evaluate SKA
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protocols in terms of their public communication cost. The asymptotic public communication

rate of Π is defined by rPCpΠq “ lim supnÑ8 1{n logpsupppF pΠqqq, where F pΠq is the public

communication of Π.

Definition 3.2 (Key Capacity – Definition 17.16 of [90]). Consider an IID PXnY nZn ,

where Zn is Eve’s side information about pXn, Y nq. A real number R ě 0 is an achievable

SK rate if there exists an SKA protocol that for every n establishes an pεn, σnq´SK K with

alphabet K where limnÑ8 εn “ limnÑ8 σn “ 0, and limnÑ8
1{n log |K| “ R. The maximum

of all achievable SK rates is called the key capacity of PXY Z .

When Z “ constant the key capacity is called the secret key (SK) capacity, and is denoted

by CSKpPXY q. It was proved that [20, Proposition 1]

CSKpPXY q “ IpX;Y q. (3.3)

When Z is known by the legitimate parties (Alice and Bob), we call the key capacity

private key (PK) capacity, and it was proved [20, Theorem 3] that the two-party PK capacity

is given by

CPKpPXY Zq “ IpX;Y |Zq. (3.4)

When Z ‰ constant the key capacity is called the wiretap secret key (WSK) capacity,

and is denoted by CWSKpPXY Zq. Equivalently the WSK capacity can be defined by [31,

Defenition 12]

CWSKpPXY Zq “ sup
εn,σn

lim inf
nÑ8

1

n
SÑεn,σnpX

n;Y n
|Zn
q, (3.5)

where the sup is over all pεn, σnq’s with limnÑ8 εn “ limnÑ8 σn “ 0.

WSK capacity upper bounds. Maurer proved [19] the following upper bound,

CWSKpPXY Zq ď mintIpX;Y q, IpX;Y |Zqu. (3.6)
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This bound was later improved in [91] to

CWSKpPXY Zq ď IpX;Y Ó Zq :“ inf
XY´Z´J

IpX;Y |Jq, (3.7)

where IpX;Y Ó Zq is called the intrinsic mutual information [91]. Renner and Wolf further

improved the above bound by introducing the double intrinsic mutual information upper

bound [92], that is

CWSKpPXY Zq ď IpX;Y ÓÓ Zq :“ inf
PJ|XY Z

HpJq ` IpX;Y Ó ZJq. (3.8)

The best known upper bound on the WSK capacity is due to [93], which is

CWSKpPXY Zq ď inf
PJ|XY Z

max
V´U´XY´ZJ

IpX;Y |Jq ` IpU ; J |V q ´ IpU ;Z|V q. (3.9)

WSK capacity lower bounds. Maurer proved [19] that

CWSKpPXY Zq ě maxtIpX;Y q ´ IpX;Zq, IpX;Y q ´ IpY ;Zqu, (3.10)

while Ahlswede and Csiszár proved a tighter lower bound [20], which is

CWSKpPXY Zq ě max
V´U´X´Y Z

IpU ;Y |V q ´ IpU ;Z|V q. (3.11)

Both lower bounds (3.10) and (3.11) are achievable with noninteractive communication.

These lower bounds were improved in [93] by utilizing interactive communication. For any

given integer θ, let RVs T1, T2, . . . , Tθ satisfy the following conditions,

Tj ´XTrj´1s ´ Y Z for odd j (3.12)

Tj ´ Y Trj´1s ´XZ for even j (3.13)

and
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|Tj| ď |X |
j´1
ź

i“1

|Ti| for odd j (3.14)

|Tj| ď |Y |
j´1
ź

i“1

|Ti| for even j (3.15)

where Trj´1s “ pT1, T2, . . . , Tj´1q. For any given integer θ, and RVs T1, T2, . . . , Tθ satisfying

conditions (3.12)-(3.15), and for any given integer ζ such that 1 ď ζ ď θ, let

Lζ,θpTrθsq “
ÿ

jěζ
odd j

IpTj;Y |Trj´1sq ´ IpTj;Z|Trj´1sq `
ÿ

jěζ
even j

IpTj;X|Trj´1sq ´ IpTj;Z|Trj´1sq.

Then it is proved [93] that

CWSKpPXY Zq ě max
θ,PTrθs ,ζ

Lζ,θpTrθsq. (3.16)

The above bound is the best known lower bound for WSK capacity [94]; however, it is hard

to evaluate an equivalent single-letter expression for this bound since the maximization is

over any arbitrary θ and ζ and cardinality of Tj alphabets grow exponentially by θ.

3.2.1 One-way Secret Key Agreement

For SKA protocols that are limited to one-way public communication, let CÑWSKpPXY Zq

denote the one-way wiretap secret key (OW-WSK) capacity. Throughout, any quantity

with arrow as superscript corresponds to its OW-SKA counterpart. Ahlswede and Csiszár

[20] derived the “forward key capacity” (or what we call one-way secret key capacity) of the

source model.

Theorem 3.1 (Theorem 1 of [20]). For any IID PXnY nZn, the OW-WSK capacity is given

by

CÑWSKpPXY Zq “ max
PV U

HpU |ZV q ´HpU |Y V q, (3.17)

where the maximization is over RV’s pV, Uq that satisfy V ´ U ´X ´ pY, Zq.
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Remark 3.1. For some source models, the optimizing PUV can be analytically calculated

[76, 78], and be used to construct OW-SKA that achieves the OW-WSK capacity [76].

A special case is when the Markov chain X ´ Y ´ Z holds. For this case, U “ X and

V “ constant are the maximizing RV’s, and the OW-WSK and the WSK capacity are equal,

that is

CWSK “ CÑWSK “ HpX|Zq ´HpX|Y q “ IpX;Y |Zq. (3.18)

In general, however, finding the optimizing RV’s pV, Uq might be difficult [78, 79].

3.2.2 Finite-length Performance

In real-life implementations, bounds on the achievable key length for finite number (n) of

samples of the source variables is required. The finite-length performance of an SKA protocol

is given by finite-length approximations of its corresponding highest achievable key length.

For source models, finite-length upper and lower bounds on highest achievable key length

determine finite-length limits associated with the model.

Remark 3.2. When interactive public communication is allowed between Alice and Bob,

and if X´Y ´Z holds, CWSK “ IpX, Y |Zq “ HpX|Zq´HpX|Y q “ CÑWSK , and it is proved

that [31, Theorem 15],

Sε,σpX
n;Y n

|Zn
q “ nCWSK ´

?
nGε,σ ˘Oplog nq, (3.19)

with Gε,σ “
a

∆XY |ZQ
´1
pε` σq, where

∆XY |Z “ Var
 

logPXY |ZpXY |Zq ´ logPX|Y pX|Y qPX|ZpX|Zq
(

, (3.20)

and Qp¨q is the tail probability of the standard Gaussian distribution, i.e.,

Qpαq “
1
?

2π

ż 8

α

exp
`

´
t2

2

˘

dt.
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It was conjectured in [31] that interaction is necessary to attain the second-order bound of

(3.19) (see Remark 16 and Section VII of [31]); this conjecture remains unproved.

Our Objective. Let SÑε,σpX
n;Y n|Znq be the maximum key length of all pε, σq´SK’s ob-

tained by one-way public communication. Theorem 3.1 implies that for all εn, σn Ñ 0, we

have

sup
εn,σn

SÑεn,σnpX
n;Y n

|Zn
q “ nCÑWSKpPXY Zq ` opnq.

However, we are interested in deriving a more refined asymptotic expansion of SÑε,σpX
n;Y n|Znq.

In the following sections, for fixed reliability and secrecy parameters ε, σ, we prove a

multi-letter upper bound on SÑε,σpX
n;Y n|Znq, and propose two OW-SKA protocols based on

which we prove multiple finite-length lower bounds.

3.3 Upper Bound

In this section, we prove our upper bound on SÑε,σpX
n;Y n|Znq. The proof is based on com-

bining the smooth Rényi entropy framework of [26] and the information spectrum methods

of [24, 25].

First, we review the smooth min/max entropies [26], introduce the inf/sup-spectral en-

tropies, and prove their important properties.

Definition 3.3 ([25, 26]). For any joint probability distribution PXY P PpX ˆ Yq, with

marginals PX and PY , let

Hε
minpX|Y q “ max

QX1Y 1PBεpPXY q
min

yPsupppPY q
xPX

´ log
QX 1Y 1px, yq

PY pyq
,

and

Hε
maxpX|Y q “ min

QX1Y 1PBεpPXY q
max
yPY

log |tx : QX 1Y 1px, yq ą 0u|,
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where BεpPXY q “ tQX 1Y 1 P PpX ˆ Yq : SDpX 1Y 1, XY q ď εu. Also define,

Ĥε
minpX|Y q “ max

QX1Y 1PB̂εpPXY q
min

yPsupppPY q
xPX

´ log
QX 1Y 1px, yq

PY pyq
,

and

Ĥε
maxpX|Y q “ min

QX1Y 1PB̂εpPXY q
max
yPY

log |tx : QX 1Y 1px, yq ą 0u|,

where PpX q denotes the set of all sub-normalized positive distributions on X and B̂εpPXY q “

tQX 1Y 1 P PpX ˆ Yq : SDpX 1Y 1, XY q ď εu.

Watanabe and Hayashi introduced the inf-spectral entropy in [25]. Similarly, we introduce

the sup-spectral entropy, and define these entropies below.

Definition 3.4. For PXY P PpX ˆ Yq, and 0 ď ε ď 1, let

H̄ε
spX|Y q “ inftr : PXY t´ logPX|Y px|yq ě ru ď εu,

be the sup-spectral entropy, and

¯
Hε
spX|Y q “ suptr : PXY t´ logPX|Y px|yq ď ru ď εu,

is the inf-spectral entropy [25].

Remark 3.3. Note that sup-spectral entropy intuitively captures the reliability (IR) aspect

of SKA. In [25], inf-spectral entropy is used to bound the output key length of PA (which

corresponds to the secrecy aspect of SKA). See also Section 3.6.2 of Appendix.

In the n-IID setting, the following lemma gives the Gaussian approximation of the spectral

entropies.

Lemma 3.2. For IID PXnY n, and 0 ď ε ď 1, we have

H̄ε
spX

n
|Y n

q “ nHpX|Y q `
a

n∆X|YQ
´1
pεq ˘Op1q,

and
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¯
Hε
spX

n
|Y n

q “ nHpX|Y q ´
a

n∆X|YQ
´1
pεq ˘Op1q.

Lemma 3.2 follows from Definition 3.4 and the Berry-Esseen Theorem [84]. First recall

the Berry-Esseen Theorem.

Theorem (Berry-Esseen, see Theorem 2.4). Let W n be an n´IID real-valued variable,

and ´8 ă α ă 8, then

ˇ

ˇ

ˇ

ˇ

ˇ

Pr

#

n
ÿ

j“1

Wj ď nµW ´ α
a

∆Wn

+

´Qpαq

ˇ

ˇ

ˇ

ˇ

ˇ

ď
3ρW

∆
3{2
W

?
n
,

where Qp¨q is the tail probability of the standard Gaussian distribution, i.e.,

Qpαq “
1
?

2π

ż 8

α

exp
`

´
t2

2

˘

dt,

µW “ E tW u ,∆W “ Var tW u , and ρW “ E t|W ´ µ|3u.

Proof of Lemma 3.2: We prove

H̄ε
spX

n
|Y n

q “ nHpX|Y q `
a

n∆X|YQ
´1
pεq ˘Op1q.

For all j define Wj “ ´ logPX|Y pX|Y q, µW “ E tW1u “ HpX|Y q, ∆W “ Var tW1u, and

ρW “ E t|W1 ´ µW |
3u. Let r “ nµW `Q´1pε` θnq

?
n∆W with θn “ ´3ρW{∆3{2

W

?
n. Then, by

Berry-Esseen Theorem we get

ˇ

ˇ

ˇ

ˇ

ˇ

Pr

#

n
ÿ

j“1

Wj ě r

+

´ pε` θnq

ˇ

ˇ

ˇ

ˇ

ˇ

ď
3ρW

∆
3{2
W

?
n
,

which implies

Pr

#

n
ÿ

j“1

Wj ě r

+

ď ε.
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Let N be such that for all n ě N we have ε` θn ą 0. Thus, for all n ě N we have

H̄ε
spX

n
|Y n

q “ nHpX|Y q `Q´1
pε` θnq

a

n∆W ,

where by using Taylor expansions we get

H̄ε
spX

n
|Y n

q “ nHpX|Y q `Q´1
pεq

a

n∆X|Y ˘Op1q.

Similarly we can show that

¯
Hε
spX

n
|Y n

q “ nHpX|Y q ´Q´1
pεq

a

n∆X|Y ˘Op1q.

Lemma 3.3 gives the relation between sup/inf-spectral entropies and smooth min/max

entropies.

Lemma 3.3. For any PXY , 0 ď ε ď 1, and every 0 ă ξ ď 1´ ε

Hε
minpX|Y q ď ¯

Hε`ξ
s pX|Y q ´ log ξ,

and

Hε
maxpX|Y q ě H̄ε`ξ

s pX|Y q ` log ξ.

Proof: The first inequality is due to Lemma 4 of [25], and the proof the second

inequality is as follows.

Define real number r and Q1
X̄Ȳ

by r “ Hε
maxpX|Y q “ maxyPY log |tx : Q1

X̄Ȳ
px, yq ą 0u|,

where SDpX̄Ȳ ,XY q ď ε holds. Also, for an arbitrary δ ą 0 define the following sets

T “ tpx, yq : PXY px, yq ď 2´r´δPY pyqu,

T 1 “ tpx, yq : Q1X̄Ȳ px, yq ď 2´r´δPY pyqu,

T 1y “ tx : px, yq P T 1u.

There always exists a distribution Q1
X̄Ȳ

defined as above such that, PXY tT 1u ě PXY tT u.
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Considering such Q1
X̄Ȳ

, we have

ε
(a)

ě SDpX̄Ȳ ,XY q

(b)

ě PXY tT 1u ´Q1X̄Ȳ tT
1
u

(c)

ě PXY tT u ´
ÿ

yPY
PY pyq

ÿ

xPT 1y

2´r´δ

(d)

ě PXY tT u ´ 2´δ,

where (a) is due to Definition 3.3, (b) is due to definition of SDp¨, ¨q, (c) is due to definition

of T 1, and (d) is due to definition of r. Thus,

r ` δ ě inftr1 : PXY t´ logPX|Y px|yq ě r1u ď ε` 2´δu

“ H̄ε`2´δ

s pX|Y q,

and by choosing δ “ ´ log ξ, the proof is complete.

For the single-shot (n “ 1) setting, we give the following upper bound on SÑε,σpX;Y |Zq.

Theorem 3.4 (Single-shot (n “ 1) upper bound). For any PXY Z,

SÑε,σpX;Y |Zq ď max
PV U ¯

Hσ1

s pU |ZV q ´ H̄
ε1

s pU |Y V q ´ log µν,

where pV, Uq satisfy V ´ U ´ X ´ pY, Zq, 0 ď ε ď 1, 0 ď σ ď 1, 0 ă σ1 “ σ ` µ ď 1, and

0 ă ε1 “ ε` ν ď 1.

Proof: From Theorem 3 of [26] we know that, For any PXY Z , we have1

SÑε,σpX;Y |Zq ď max
PV U

Hσ
minpU |ZV q ´H

ε
maxpU |Y V q,

where pV, Uq are satisfying V ´ U ´X ´ pY, Zq. Applying Lemma 3.3 completes the proof.

1The expression of the upper bound here is slightly different that the one given in Theorem 3 of [26];
however, the line of argument used in the proof still applies and the modified upper bound stated here holds.
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The next finite-length upper bound on SÑε,σpX
n;Y n|Znq follows from Theorem 3.4 for the

case of n´IID random variables pXn, Y n, Znq.

Corollary 3.4.1 (Finite-length upper bound). For any IID PXnY nZn,

SÑε,σpX
n;Y n

|Zn
q ď max

PV nUn ¯
Hσ1

s pU
n
|ZnV n

q ´ H̄ε1

s pU
n
|Y nV n

q ´ log µν,

where pV n, Unq satisfy V n´Un´Xn´ pY n, Znq, 0 ď ε ď 1, 0 ď σ ď 1, 0 ă σ1 “ σ`µ ď 1,

and 0 ă ε1 “ ε` ν ď 1.

The tightness of this bound remains an open question. (We note that an error in the

proof of this theorem in [33] had lead to the incorrect claim of the tightness of a second-order

finite-length upper bound2.)

3.4 Lower Bounds

In this section, we propose two one-way secret key agreement (OW-SKA) protocols, analyses

of which lead to multiple finite-length lower bounds for OW-SKA. Both of these protocols are

composed based on the common standard structure of having the two steps (sub-protocols):

• The information reconciliation (IR), starts with Alice sending Bob a public

message F that is a function of her observation X; i.e., F “ fIRpXq. Bob, then, uses

this public message and his own observation Y , to recover an estimation X̂ of Alice’s

RV X; i.e., X̂ “ f´1
IR pF, Y q. The RV X is referred to as the common randomness. An

IR protocol pfIR, f
´1
IR q is called ε´correct if Pr

 

f´1
IR pfIRpXq, Y q ‰ X

(

ď ε.

• The privacy amplification (PA), consists of Alice and Bob extracting their respec-

tive secret keys out of their common randomness X; i.e., K “ fPApX,F q. A function

fPA is called σ´secure if SD pKFZ,UFZq ď σ where U is uniform over K.

2The proof implicitly assumed that RV’s pV n, Unq are IID.
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When an SKA protocol comprises an ε´correct IR and a σ´secure PA, the final generated

shared key is pε, σq´SK.

For the privacy amplification step (in both of our proposed OW-SKA protocols) we use

universal hashing [28]. In the following, we prove modified versions of the Leftover Hash

Lemma (LHL) (Lemmas 3.7 and 3.14) that will be used for the purpose of analyzing our

proposed OW-SKA protocols. See Section 2.3.1 for a review on privacy amplification and

LHL.

3.4.1 A OW-SKA Protocol With Highest Finite key length

In the source model setting, suppose Alice, Bob and Eve have their corresponding n com-

ponents of the source pXn, Y n, Znq. Let the required secrecy and reliability parameters of

the key be σ and ε, respectively. Alice and Bob use our proposed protocol ΠHH for SKA:

They choose two 2-UHFs hs : X n Ñ t0, 1ut and ĥs1 : X n Ñ t0, 1u`, and share (over public

channel) two uniformly random seeds s P S and s1 P S 1 for the two families. The values of t

(length of the public message, i.e., the output length of the 2-UHF hs) and ` (the length of

the final key, i.e., the output length of the 2-UHF ĥs1) are determined according to σ and ε

and the given source model distribution PXnY nZn . Alice uses hsp¨q to compute the hash value

of her sample vector xn, and sends it to Bob; Bob uses the received hash value, his sample

vector yn, and the known probability distribution of the source, to recover Alice’s sample

vector (information reconciliation). The main idea behind the reconciliation technique of

Protocol 4, used by Bob, is to divide the range of the spectrum of PXn|yn into two parts,

and search in only the main part to find Alice’s vector. This reduces the search complexity

of the protocol compared to the similar information reconciliation algorithm of [58] that

searches through all xns with Pr txn|ynu ą 0. By choosing an appropriate value for t, Bob

can bound the reconciliation error to ε. The transmitted hash value will leak information

about the key, and so longer public messages will result in shorter keys while reducing error

probability. Alice and Bob will estimate the total leaked information about their common
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Protocol 4: OW-SKA with universal hashing IR and universal hashing PA (ΠHH)

Public Information: PXY Z
Input: n´fold samples xn P X n and yn P Yn, ε, σ.
Output: Key estimates kA and kB.

// Initialization

1 Alice and Bob, (i) find and share λ, and ` and t for the hash functions

hs : X n Ñ t0, 1ut and ĥs1 : X n Ñ t0, 1u`, (ii) generate and share the seeds s P S and
s1 P S 1 for the hash function.

// Information Reconciliation

33 Alice sends the hash value F “ hspx
nq to Bob.

55 Bob forms a list of guesses for xn,

T pXn
|ynq “ tx̂n : ´ logPXn|ynpx̂

n
|ynq ď λu. (3.21)

77 Bob finds x̂n P T pXn|ynq such that hspx̂
nq “ F .

99 if no x̂n was found or x̂n was not unique then
10 Abort the protocol.

// Privacy Amplification

1212 Alice and Bob find kA “ ĥs1px
nq and kB “ ĥs1px̂

nq.

strings, and remove it during the key extraction phase (privacy amplification) by using the

second 2-UHF ĥs1 .

Theorem 3.8 proves a finite-length approximation of the maximum achievable key length

of Protocol 4 assuming that the source samples are drawn through independent random

experiments. However, to prove Theorem 3.8 we first need the following Lemmas.

Lemma 3.5 (Theorem 1 of of [83]). Let pXn, Y nq be an n-independent repetition of

pX, Y q with the joint distribution PXY “ PX1Y1 ˆ . . .ˆ PXnYn. Then for any δ ě 0

Ĥε
minpX

n
|Y n

q ě HpXn
|Y n

q ´ nδ,

and

Ĥε
maxpX

n
|Y n

q ď HpXn
|Y n

q ` nδ,
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where Ĥ
ε

minpX|Y q and Ĥ
ε

maxpX|Y q are defined in Definition 3.3, and 2ε “ 2
´nδ2

2 log2p|X |`3q .

Lemma 3.6 (Theorem 2 of [83]). Let pXn, Y nq be an n-independent repetition of pX, Y q

with the joint distribution PXY “ PX1Y1 ˆ . . . ˆ PXnYn. Then for any δ P r0, logp|X |qs and

px, yq representing a random realization according to PXY , we have

Pr
 

´ logPX|Y px|yq ě HpXn
|Y n

q ` nδ
(

ď ε,

and

Pr
 

´ logPX|Y px|yq ď HpXn
|Y n

q ´ nδ
(

ď ε,

where ε “ 2
´nδ2

2 log2p|X |`3q .

Lemma 3.7 (Smooth LHL). For any PXZF P PpX ˆZ ˆFq, let fPA “ hs : X Ñ K be a

2-universal hash function with seed s drawn uniformly at random from S. Then

SDpKZFS,UZFSq ď 2ε`
1

2

b

|K||F |2´Ĥ
ε
minpX|Zq,

where Ĥ
ε

minpX|Zq is defined in Definition 3.3, K “ hSpXq and U is uniform over K. This

implies that if

log |K| ď Ĥ
σ´η
2

min pX|Zq ´ log |F | ` log 4η2,

then, function fPA “ hs is σ´secure for any 0 ă µ ď σ.

Proof of Lemma 3.7 is given is the Appendix, Section 3.6.1.

Theorem 3.8 is given for the case that the source distribution PXnY nZn “ ΠjPXjYjZj is

due to independent experiments which are not necessarily identical.

Theorem 3.8. Let the source model pXn, Y n, Znq be described by a joint distribution PXnY nZn “

ΠjPXjYjZj due to independent experiments (not necessarily identical). For any 2´n{2 ă ε ă 1

74



and any 2´n{4 ă σ ă 1, Protocol 4 (ΠHH) generates an pε, σq-SK with maximum key length

`ΠHH
pnq “ Rn ´

?
nfε,σp|X |q ´ log n`Op1q, (3.22)

where fε,σp|X |q “
?

2 logp|X | ` 3q
´

a

log 1{ε`
a

log 1{σ
¯

, and Rn “ HpXn|Znq´HpXn|Y nq.

Proof of Theorem 3.8: We want to find a maximum final key length (value of `) such

that under appropriate choice of t (length of public message) and λ (Bob’s search parameter)

the final established shared key of ΠHH is pε, σq´SK. We first determine expressions for the

values of t and λ that guarantee the ε´correctness of the IR step.

In ΠHH, Alice sends Bob a hash value of length t and then Bob chooses a positive λ to

define the set

T pXn
|ynq “ tx̂n : ´ logPXn|ynpx̂

n
|ynq ď λu,

and searches in the set T pXn|ynq for vector(s) whose hash value is equal to the received hash

value, and declares success if a unique vector with the required property is found. Bob’s

search fails in two cases: (i) x is not in the set, and (ii) there are more than one vector

in the set whose hash value matches the received hash value v. Bob’s failure probability

Pe “ Pr tKA ‰ KBu is upper bounded by bounding the probabilities of the above two cases.

These probabilities are:

Pr tξ1u “ Pr txn R T pXn
|ynqu ,

Pr tξ2u “ Pr
!

D x̂n P T pXn
|ynq s.t. hSpx̂

n
q “ hSpx

n
q

)

.

For any ε1, ε2 such that ε1 ` ε2 ď ε, let ε1 determine δ1 as ε1 “ 2
´npδ1q

2

2 log2p|X |`3qq , and let

λ “ HpXn
|Y n

q ` nδ1.

We have Pr tξ1u “ Pr
 

´ logPXn|Y npx
n|ynq ą HpXn|Y nq ` nδ1

(

, which by Lemma 3.6 is
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bounded as Pr tξ1u ď ε1. For Pr tξ2u, note that the sum of probability of vectors in T pXn|ynq

is less than 1, and using (3.21), we have |T pXn|ynq| ď 2λ. Using union bound Pr tξ2u ď

|T pXn|ynq| ¨ 2´t “ 2λ´t, where 2´t is the collision probability of hSp¨q and upper bounds the

probability of two xns in T pXn|ynq having the same hash value. By letting

t “ λ´ log ε2

“ HpXn
|Y n

q ` nδ1 ´ log ε2,

we will have Pr tξ2u ď ε2. Thus, for t “ HpXn|Y nq ` nδ1 ´ log ε2, we have Pe ď Pr tξ1u `

Pr tξ2u ď ε1 ` ε2 ď ε, and the reliability condition is satisfied. That is the IR function

fIR “ hS is ε´correct.

By Smooth LHL 3.7 we know that fPA “ ĥS1 is σ´secure if

` ď Ĥ
ε1

2
minpX

n
|Zn
q ´ t` log 4pσ ´ ε1q2

ď HpXn
|Zn
q ´ nδ1 ´ t` 2` 2 logpσ ´ ε1q

“
`

HpXn
|Zn
q ´HpXn

|Y n
q
˘

´ nδ1 ´ nδ1 ` 2` 2 logpσ ´ ε1q ` log ε2,

where the second inequality is due to Lemma 3.5 with 0 ă δ1 and ε1 satisfying ε1 “ 2
´nδ12

2 log2p|X |`3q .

If ` satisfies the above bound and t is chosen as determined above, then IR protocol is

ε´correct and the PA is σ´secure. This guarantees that the final key is an pε, σq´SK.

Finally, the key length approximation of (3.22) is obtained by by choosing ε1 “ p
?
n´ 1qε{

?
n

and ε2 “ ε´ ε1 “ ε{
?
n, and ε1 “ p 4

?
n´ 1qσ{ 4

?
n, and by noting that as nÑ 8

plog
a
?
n

p
?
n´ 1qb

q
1{2
“ plog

a

b
q
1{2
`

1

2 ln 2
a

n log a
b

`Op 1
n
q.

Theorem 3.8 gives the maximum achievable key length `ΠHH
pnq of the protocol and
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provides a lower bound on the maximum key length of OW-SKA protocols. That is,

SÑε,σpX
n, Y n

|Zn
q ě pHpXn

|Zn
q ´HpXn

|Y n
qq

´
?

2n logp|X | ` 3q

˜

c

log
1

ε
`

c

log
1

σ

¸

´ log n`Op1q (3.23)

Next corollary tightens this lower bound for IID sources, using Berry-Essen inequality [84].

Theorem 3.9. For any source model described by IID distribution PXY Z we have

SÑε,σpX
n, Y n

|Zn
q ě Rn ´

?
ngε,σ ´ log n`Op1q, (3.24)

where Rn “ npHpX|Zq ´ HpX|Y qq, gε,σ “ Q´1pεq
a

∆X|Y ` Q´1pσq
a

∆X|Z , and ∆U |V “

Var
 

´ logPU |V
(

.

Proof of Theorem 3.9: The proof is along the same lines as for the proof of Theo-

rem 3.8. For reliability we bound the probability of these two events:

ξ1 “ tx
n : ´ logPXn|Y npx

n
|ynq ą λu

ξ2 “ tx
n
P T pXn

|ynq : D x̂n P T pXn
|ynq s.t. hSpx̂

n
q “ hSpx

n
qu.

Let Wi “ ´ logPXi|Yi and let

λ “ nHpX|Y q `
a

n∆X|YQ
´1
pε´ θnq,

where ∆X|Y “ Var
 

´ logPX|Y
(

, and θn “
1?
n
`

3ρ

V
3{2
X|Y

?
n
. Then by the Berry-Esseen Theo-

rem 2.4, Pr tξ1u ď ε´ 1?
n
. By choosing

t “ λ´ log
1
?
n
,

we get Pr tKA ‰ KBu ď Pr tξ1u ` Pr tξ2u ď ε.
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For the secrecy constraint, we use smooth LHL 3.7. For ηn “
1

2 4
?
n

we get

` ď Ĥ
σ´ηn

2
min pXn

|Zn
q ´ t` log 4η2

n.

From [25, Lemma 3] we know that for any IID distribution PXnZn , Ĥ
ε{2
minpX

n|Znq ě
¯
Hε
spX

n|Znq,

and thus, by Lemma 3.2 we have

Ĥδ
minpX

n
|Zn
q ě nHpX|Zq ´Q´1

p2δq
a

n∆X|Z `Op1q,

where ∆X|Z “ Var
 

´ logPX|Z
(

. Thus,

SÑε,σpX
n, Y n

|Zn
q ě npHpX|Zq ´HpX|Y qq

´
?
n
`

Q´1
pε´ θnq

a

∆X|Y `Q
´1
pσ ´ ηnq

a

∆X|Z

˘

´ log n`Op1q.

And ultimately the proof is complete by using Taylor expansions to remove θn and ηn.

Remark 3.4 (Public communication cost of ΠHH). For the source model described by

distribution PXnY nZn “ ΠjPXjYjZj , let logpsupppF pΠHHqqq denote the public communication

cost (in bits) that is used by the OW-SKA Protocol 4 (ΠHH) to achieve SÑε,σpX
n, Y n|Znq.

Then, our results show that

logpsupppF pΠHHqqq “ HpXn
|Y n

q `
?
nBε

1 `
1

2
log n`Op1q, (3.25)

where Bε
1 “

?
2 logp|X | ` 3q

b

log 1
ε
. Moreover, for the case when source distribution is

n´IID, a tighter approximation of logpsupppF pΠHHqqq is given by

logpsupppF pΠHHqqq “ nHpX|Y q `
?
nBε

2 `
1

2
log n`Op1q, (3.26)

where Bε
2 “ Q´1pεq

a

∆X|Y .
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Note that Theorem 3.8 and Theorem 3.9 both prove that the proposed OW-SKA Protocol

4 (ΠHH) is capacity achieving when parties’ observations are n´IID and if the Markov

relation X ´ Y ´ Z holds In this case CWSK “ IpX;Y |Zq “ HpX|Zq ´ HpX|Y q, and due

to both Theorems 3.8 and 3.9 we have

rKpΠHHq “ lim inf
nÑ8

1

n
`ΠHH

pnq “ HpX|Zq ´HpX|Y q “ CWSK .

In the following, we prove a lower bound for the general case (when Markov relation X´Y ´Z

does not necessarily hold) and show that Protocol 4 can also be used for the general case

for achieving the OW-WSK capacity. This next finite-length lower bound is the best known

(tightest) lower bound known for OW-SKA 3.

Proposition 3.10. For an IID PXnY nZn, let pV, Uq be the maximizing RV’s of Theorem 3.1,

and assume they can be calculated, then,

SÑε,σpX
n;Y n

|Zn
q ě nCÑWSK ´

?
nGÑε,σ ´Oplog nq, (3.27)

where GÑε,σ “
a

∆U |Y VQ
´1
pεq `

a

∆U |ZVQ
´1
pσq ‰ 0. The above lower bound holds for any

pair of maximizing RV’s pV, Uq as per Theorem 3.1 (they may not be unique).

Proof of Proposition 3.10: We show how Alice and Bob can agree on an pε, σq´SK

K P K with length ` “ log |K| that is equal to the RHS of (3.27). Alice who has access to

X, first computes pV, Uq as per Theorem 3.1 (assuming they can be calculated), then, makes

V public. Let X̃ “ U , Ỹ “ pY, V q, and Z̃ “ pZ, V q. Now, Alice, Bob, and Eve have access

to X̃, Ỹ, and Z̃, respectively. By Theorem 3.9 we know that for any source model PX̃Ỹ Z̃ ,

using OW-SKA Protocol 4 Alice (with input X̃) and Bob (with input Ỹ ) can agree on an

3The second-order approximation of the bound given in Equation (3.27) is also mentioned in [31] and
can be derived indirectly by the results in [25, 82, 85] .
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pε, σq´SK of length

` “ npHpX̃|Z̃q ´HpX̃|Ỹ qq

´
?
np
b

∆X̃|ỸQ
´1
pεq `

b

∆X̃|Z̃Q
´1
pσqq ´ log n´ oplog nq, (3.28)

hence, completing the proof.

Note that the above lower bound shows that Protocol 4 achieves the OW-WSK capacity

when source samples are n´IID. In the remainder of this section we prove that Protocol 4

also achieves the WSK capacity when source samples are independent but not necessarily

n´IID.

Extension to General n-fold Sources. Hayashi et al., [31], considered the setting of a

“general source”, a generalized stochastic process (see Section 2.2.2 of Chapter 2, [31] and

[24]), and assumed an n-fold pXn, Y n, Znq source model that satisfies the Markov constraint,

Xn´Y n´Zn. They proved [31, Theorem 14] the wiretap secret key capacity of this general

source model is given by

CWSKpPXY Zq “ IpX;Y |Zq, (3.29)

where IpX;Y |Zq is the inf-conditional information rate [24] of X and Y given Z, defined as

IpX;Y |Zq “ sup

"

α| lim
nÑ8

Pr tipXn, Y n
|Zn
q ă nαu “ 0

*

,

with ipXn, Y n | Znq “ log
PXnY n|Zn pX

n,Y n|Znq

PXn|Zn pXn|ZnqPY n|Zn pY n|Znq
.

Now, consider a source model with n-independent but not necessarily identically dis-

tributed (n´INID) observations pXn, Y n, Znq, and with the associated joint probability dis-

tribution PXY Z “
ś

j PXjYjZj . Further assume that the Markov relation Xj ´ Yj ´ Zj holds

for all j ď n. This particular source model is obviously an special case of the general source

model of [31], and its capacity is given by Equation (3.29) and is not captured by the OW-

WSK capacity result of [20] (see Equations (3.17), and (3.18)). One realization of such a
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source model is the wireless network scenario in which there are two independent binary

discrete memoryless channels: one from Y to X, and one form Y to Z, without requiring

the channels to stay the same over independent transmissions. In practice, wireless channels

are time-varying due to multiple signal paths, user mobility, shadowing effects, etc [45]. One

example of a more realistic channel model realization of such n´INID source models is the

fading binary symmetric channels (F-BSC). In this case, if we assume that the broadcast

channel Y ÞÑ pX,Zq is composed of two independent F-BSCs, then the resulting source

distribution is n´INID.

We show in the following that our proposed OW-SKA Protocol 4 also achieves the wiretap

secret key capacity of such a general source when the Markov relation Xn ´ Y n ´ Zn holds

and the probability distribution of PXnY nZn is n´INID.

Theorem 3.11. For a given general source model with n-independent observations pXn, Y n, Znq

with the Markov relation Xn ´ Y n ´ Zn, we have

CWSKpPXY Zq “ CÑWSKpPXY Zq “ lim inf
nÑ8

1

n
IpXn;Y n

|Zn
q,

which is achievable by the OW-SKA Protocol 4.

Proof of Theorem 3.11: The proof has two parts: the direct part (achievability) and

the converse (upper bound).

The proof of achievability directly follows from Theorem 3.8. Recall that the maximum

asymptotic SK length achievable by Protocol 4 is given by S “ HpXn|Znq´HpXn|Y nq`opnq.

When the Markov relation Xn ´ Y n ´ Zn holds, the maximum achievable asymptotic SK

rate is

rKpΠHHq “ lim inf
nÑ8

1

n
IpXn;Y n

|Zn
q,

which completes the proof of achievability.
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For the proof of converse we first need the following Lemma.

Lemma 3.12 (Adapted from Lemma 3.2.4 of [24], page 185 – also see [95]). For

any given arbitrary sequence of random variables pXn, Y n, Znq and for all n we have

EPXY Z tipX
n, Y n

|Zn
q1 ripXn, Y n

|Zn
q ď 0su ě

1

e
log

1

e
,

where 1r¨s denotes the indicator function defined by

1rstatements “

$

’

&

’

%

1 if statement is True,

0 otherwise.

Proof of Lemma 3.12: Recall that

ipXn, Y n
| Zn

q “ log
PXnY nZnpX

n, Y n, Znq

PZnpZnqPXn|ZnpXn | ZnqPY n|ZnpY n | Znq

and let

ρpxn, yn, znq “
PXnY nZnpx

n, yn, znq

PZnpznqPXn|Znpxn | znqPY n|Znpyn | znq
.

Then we have

EPXY Z tipX
n, Y n

|Zn
q1 ripXn, Y n

|Zn
q ď 0su

“
ÿ

xn,yn,zn

s.t. ρpxn,yn,znqď1

PXnY nZnpx
n, yn, znq log ρpxn, yn, znq

“
ÿ

xn,yn,zn

s.t. ρpxn,yn,znqď1

PZnpz
n
qPXn|Znpx

n
| znqPY n|Znpy

n
| znqρpxn, yn, znq log ρpxn, yn, znq

ě
ÿ

xn,yn,zn

s.t. ρpxn,yn,znqď1

PZnpz
n
qPXn|Znpx

n
| znqPY n|Znpy

n
| znq

1

e
log

1

e

ě
1

e
log

1

e
,

where the last two inequalities hold since ρ log ρ ě 1
e

log 1
e

for any 0 ď ρ ď 1.
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Now, for the converse we prove the following upper bound

CWSKpPXY Zq “ IpX;Y |Zq ď lim inf
nÑ8

1

n
IpXn;Y n

|Zn
q.

For any arbitrary δ ą 0 we have

1

n
IpXn;Y n

|Zn
q “

1

n
EPXnY nZn tipX

n, Y n
|Zn
qu

“
1

n

ÿ

ipxn,yn|znqď0

PXnY n|Znpx
n, yn|znqipxn, yn|znq

`
1

n

ÿ

0ăipxn,yn|znqďnIpX;Y |Zq´nδ

PXnY n|Znpx
n, yn|znqipxn, yn|znq

`
1

n

ÿ

ipxn,yn|znqąnIpX;Y |Zq´nδ

PXnY n|Znpx
n, yn|znqipxn, yn|znq

ě
1

n

ÿ

ipxn,yn|znqď0

PXnY nZnpx
n, yn, znqipxn, yn|znq

`
1

n

ÿ

ipxn,yn|znqąnIpX;Y |Zq´nδ

PXnY nZnpx
n, yn, znqipxn, yn|znq

ě
1

n

ˆ

1

e
log

1

e

˙

` pIpX;Y |Zq ´ δqPr tEnu ,

where En “ tpxn, yn, znq|ipxn, yn|znq ą nIpX;Y |Zq ´ nδu and the second inequality is due

to Lemma 3.12. According to the definition of IpX;Y |Zq we know that limnÑ8 Pr tEnu “ 1.

Thus, by taking the limit we get

IpX;Y |Zq ď lim inf
nÑ8

1

n
IpXn;Y n

|Zn
q ` δ,

which holds for any arbitrary δ. Then by δ Ñ 0 the proof is complete.

3.4.2 A Practically Efficient One-way SKA Protocol

The OW-SKA Protocol 4 (ΠHH) that achieves the best known finite-length lower bound

given in Proposition 3.10, is not computationally efficient – it has computational complexity

83



Protocol 5: OW-SKA with polar coding IR and universal hashing PA (ΠPH)

Public Information: PXY Z
Input: n´fold samples xn P X n and yn P Yn, ε, σ
Output: Key estimates kA and kB

// Initialization

1 Alice and Bob use one-way public communication to agree on (i) a polar coding
scheme (with parity check matrix H and syndrome decoding protocol f´1

IR p¨, ¨q),
and (ii) a random seed s P S, and 2-UHF fPA “ hs : X n Ñ t0, 1u`.

// Information Reconciliation

2 Alice sends Bob F “ fIRpx
nq “ H ¨ pxnq

ᵀ
.

3 Bob recovers xn by x̂n “ f´1
IR pF, y

nq.

// Privacy Amplification

4 Alice and Bob find kA “ fPApx
nq “ hspx

nq, and kB “ fPApx̂
nq “ hspx̂

nq.

of Opn log nq for Alice, and computational complexity of Op2nHpX|Y qq for Bob (see Sec-

tion 3.4.3). This lower bound can also be indirectly attained using the results of [25, 82, 85];

and, non of the above approaches are computationally efficient. Therefore, to design an

efficient OW-SKA protocol, we consider a protocol that runs a practical (computationally

efficient) IR protocol that is based on Polar Codes [29] [96–98], followed by PA via universal

hashing [30]. Recall that a family H of functions hs : X Ñ K, with s P S, is called 2-universal

if, for all x ‰ x1 P X , we have Pr thspxq “ hspx
1qu ď 1{|K|.

We consider IID sources in which X ´ Y ´ Z holds, PX is binary uniform, and the

relation between X and Y is given by Y “ W pXq, where W is a binary-input memoryless

symmetric (BMS) channel with transition probability matrix PY |X . For this case, there is

no need to find RV’s pV, Uq (see Remark 3.1). Let H be the parity check matrix of a polar

code designed for W . Define fIRpX
nq “ H ¨ pXnq

ᵀ
, and let f´1

IR be a corresponding efficient

syndrome decoding [99–102] for fIR. Also, let fPA “ hs be a 2-universal hash function with

seed s drawn uniformly at random from S. Before, starting the IR and PA phases, parties

agree on fIR, f´1
IR , and fPA “ hs. The construction of the OW-SKA protocol is given in

Protocol 5.
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Designing one-way IR protocols based on channel coding schemes is in fact a common

approach [76, 78–80, 82, 103]. The length of the public message generated by such IR pro-

tocols can be calculated from the channel coding rate. The optimum finite-length behavior

of channel coding rate is due to [50], however, the corresponding coding scheme is not com-

putationally efficient. Polar codes [29], on the other hand, are gaining a lot of attention

in many real-life applications as they have efficient computational complexity of Opn log nq,

and they can achieve the capacity of any BMS. The finite-length behavior of polar codes

has been studied extensively over the past years [96–98]. It is known that (for a fixed er-

ror bound of ε) the polar coding rate is given by r “ CpW q ´ τ
a

λpεq{n ˘ op
a

1{nq, where

CpW q “ IpX;Y q is channel capacity of W , and λpεq is a positive number that is a function

of ε [96–98]. Therefore, we can prove the following.

Theorem 3.13. In the n´IID regime, the one-way SKA Protocol 5 achieves an pε, σq´SK

of length

`ΠPH
pnq “ nCÑWSK ´

τ
?
nτ´1GIRpεq ´

?
nGPApσq ˘ op

?
nq, (3.30)

where, GPApσq “
a

∆X|ZQ
´1pσq, GIRpεq “

τ
a

λpεq, CÑWSK “ CWSK “ HpX|Zq ´HpX|Y q,

and λpεq is a positive number which is a function of ε.

To prove Theorem 3.13 we need the following Lemma.

Lemma 3.14 (Spectral LHL). For any PXZF P PpX ˆZ ˆFq, let fPA “ hs : X Ñ K be

a 2-universal hash function with seed s drawn uniformly at random from S. Then

SDpKZFS,UZFSq ď ε`
1

2

b

|K||F |2´¯
Hε
spX|Zq,

where
¯
Hε
spX|Zq is the inf-spectral entropy of X given Z (Definition 3.4), K “ hSpXq and U

is uniform over K. This implies that if

log |K| ď
¯
Hσ´µ
s pX|Zq ´ log |F | ` log 4µ2,
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then, function fPA “ hs is σ´secure for any 0 ă µ ď σ.

The proof is in the Appendix (see Section 3.6.3).

Proof of Theorem 3.13: If the IR protocol is ε´correct and the PA protocol is

σ´secure, then the generated key is an pε, σq´SK K P K. For observation length n, we

design a polar code so that the error probability is bounded by ε [96–98]. Let t “ log |F |

be the length of the public message F generated by the IR protocol. Then, t “ log |F | is

equal to the length of syndrome vector which is given by t “ n´ nr “ npHpXq ´ CpW qq `

n τ
a

λpεq{n˘ op
?
nq. Note that HpXq ´ CpW q “ HpX|Y q.

By Lemma 3.14

` “
¯
Hσ´µ
s pXn

|Zn
q ´ t` log 4µ2, (3.31)

is an achievable key length, where 0 ă µ ď σ. Applying Lemma 3.2, with µ “ 1{
?
n and

noting that Q´1pσ ´ 1{
?
nq “ Q´1pσq `Op1{?nq, completes the proof.

For conventional Polar Codes (that use the original 2 ˆ 2 polarization kernel of Arikan

[29]), it is known that τ (the scaling factor) is around 4, and more precisely 3.579 ď τ ď

4.714 [96, 97], where the exact value of τ depends on the underlying channel W . The

function λpεq is not know in general, and finding a universal expression for λpεq requires

furtherer research [97]. Recently, by using large polarization kernels, the scaling factor of

Polar Codes, for Binary Erasure Channel (BEC) was improved to τ “ 2` δ where δ P p0, 1s

is an arbitrary parameter [98]. For this specific coding scheme λpεq “ lpδqp1 ` 2{εq3 where,

lpδq P Opexppδ´1.01qq is the kernel size. Computational complexity is Opn log nq, as long δ

and the kernel size l are fixed (do not depend on n).

Remark 3.5 (Public communication cost of ΠPH). For the source model described by

n´IID distribution PXY Z , let logpsupppF pΠPHqqq denote the public communication cost (in

bits) that is used by the OW-SKA Protocol 5 (ΠPH) to achieve SÑε,σpX
n, Y n|Znq. Then, our
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results show that

logpsupppF pΠPHqqq “ nHpX|Y q `
τ
?
nτ´1GIRpεq ` op

?
nq, (3.32)

where GIRpεq “
τ
a

λpεq.

3.4.3 Comparing ΠHH and ΠPH with other related protocols

We compare our proposed OW-SKA protocols, ΠHH and ΠPH, with other known capacity

achieving OW-SKA protocols and the interactive protocol of [31]. The comparison is based

on the type of information reconciliation step, SK length, public communication cost, and

computation complexity of Alice and Bob. The comparison is summarized in Table 3.1.

Specifically, at the end, through two numerical examples, we compare the finite key perfor-

mance of ΠHH and ΠPH against the protocols of [31, 76, 78].

HR05. Holenstein and Renner proposed a protocol in [76] that achieves the OW-WSK

capacity of a general distribution. The reconciliation message uses linear codes. We derive

two finite-length lower bounds for the two variations of their SKA [78] (one uses a random

linear code, and the second one uses the concatenation of a linear code with a Reed-Solomon

code). The bounds given in Theorem 3.13, and Theorem 3.15 of [78], are expressed in the

form of npCÑWSK ´ δpκ1, κ2qq, where nκ1 “ logp1{εq and nκ2 “ logp1{σq. We re-derived these

bounds as functions of ε and σ in the following proposition.

Proposition 3.15. For any source model with IID distribution PXY Z, let Rn “ HpXn|Znq´

HpXn|Y nq. Then for large enough n and any ε, σ ă 1{4, we have

SÑε,σpX
n, Y n

|Zn
q ě rRn ´

?
nf 1ε,σs

`, (3.33)

SÑε,σpX
n, Y n

|Zn
q ě rRn ´

4
?
n3g2ε,σ ´

?
nf2ε,σs

`, (3.34)
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where ras` “ maxt0, au, and

f 1ε,σ “ 90 logp|X ||Y |qp
a

log 1{ε`
a

log 1{σq,

g2ε,σ “
4

b

222 logp1{εq log2
p|X |q log2

p|X ||Y |q,

f2ε,σ “ 8 logp|X |q
a

logp1{σq.

Bound (3.33) corresponds to random linear codes and bound (3.34) is due to concatenated

codes. For both lower bounds the SKA protocol uses Opn2q bits of communication. The

computation complexity of Alice corresponding to both bounds is in Opn2q. The computation

complexity of Bob is in Opn2q|X |n and Opn2q, respectively. As it is mentioned in [78] and

[79], the computation complexity of (3.34) for Alice and Bob is efficient (i.e., in Opndq) but

it is not practically efficient (i.e., it is not in Opnq or Opn log nq).

RRS13. Renes et. al proposed an SKA protocol that uses polar codes for both reconcili-

ation and privacy amplification [79]. The implementation cost of the protocol is Opn log nq

for both Alice and Bob, but the code construction for any given distribution might not

be straightforward [79, Section III.C]. The protocol uses a message of length Opnq. Their

analysis of the protocol does not provide finite-length approximation of the key length.

CBA15. In [80], authors proposed an SKA protocol using polar codes. The reconciliation

and privacy amplification are combined in a single step polar coding. The protocol requires

a small pre-shared secret seed of length Op2´a.nq. It uses Opnq bits of public communication

and its analysis does not give any finite-length approximations for the key length.

HTW16. The interactive protocol of [31] gives the tightest known bounds for two-party

SKA; however, their protocol is interactive with Opnq rounds of public communication and

its IR step is based on random binning and spectrum slicing4 that implies exponential com-

4Spectrum slicing is a well-established spectrum technique for information theoretic tasks [24]
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putation complexity (Op2nq) for Alice and Bob. The public communication cost of this SKA

protocol is in OpnHpX|Y q ` nq.

ΠHH (Protocol 4). This protocol is very efficient in terms of public communication, as

it uses a single message of length OpnHpX|Y qq (See Remark 3.4). This protocol gives

achievability finite-length bounds as given in (3.22) and (3.24) (that are far closer to the

capacity upper bound than the finite-length bounds of HR05 and ΠPH). The computation

cost of Alice is practically efficient; i.e., Opn log nq (computing a single hash value [66]). But,

unfortunately for Bob, the computation cost is in Op2n.HpX|Y qq; i.e., the implementation is

not efficient.

ΠPH (Protocol 5). This OW-SKA protocol is efficient in terms of computation complexity

and public communication. It’s computation complexity for Alice and Bob is in Op2ln log nq

and its public communication cost is OpnHpX|Y qq (See Remark 3.5). We gave finite-length

analysis of ΠPH and our following numerical example shows that ΠPH has far better finite

key performance that the OW-SKA of HR05 [76].

Numerical Examples

Here, we give numerical examples to compare our proposed OW-SKA protocols 4 and 5 (ΠHH

and ΠPH) with previous results of [31, 76, 78]. The OW-SKA Protocol 4 (ΠHH) exhibits

the best known finite-length performance among all OW-SKAs. The downfall of Protocol

4 (ΠHH) however, is its high computation complexity for Bob. The OW-SKA Protocol 5

(ΠPH), has lower computational complexity; but in comparison to ΠHH it requires more

samples to generate the key. In Example 3.3 we observe that, in a source model with WSK

capacity of 0.5 bits per sample, the OW-SKA Protocol 4 (ΠHH) requires n “ 590 source

samples (one bit each) to generate a key of length ` “ 256 bits, and hence the key rate is

`{n « 0.43. However, we show that for the same source model, the OW-SKA Protocol 5
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Table 3.1: The comparison of Protocols 4 and 5 (ΠHH and ΠPH) with other protocols.

Protocol HR05
RRS13

&
CBA15

HTW16 ΠHH ΠPH

One-way or
Interactive

One-way One-way
Interactive
with Opnq

rounds
One-way One-way

IR Approach
linear
codes

polar
codes

random
binning

universal
hashing

polar codes

PA Approach
universal
hashing

polar
codes

universal
hashing

universal
hashing

universal
hashing

Communication
Cost

Opn2q Opnq Opnq Opnq Opnq

Computation
Cost Alice

Opn2q Opn log nq Op2nq Opn log nq Opn log nq

Computation
Cost Bob

Opn2q (a) Opn log nq Op2nq Op2nq Opn log nq

Finite-length
Analysis

(Prp. 3.15) N/A (Rem. 3.2) (Thm. 3.8 & 3.9) (Thm. 3.13)

(a) For the lower bound given in (3.33) the computation complexity is in Op2nq.

(ΠPH) needs n “ 2477 ˆ 103 source samples to generate a key of the same length (` “ 256

bits,) and thus the key rate is `{n « 10´4.

Example 3.1. Here, we compare finite-length behavior of OW-SKA Protocol 4 (ΠHH) and

interactive SKA of [31]. Consider an IID source model PXY Z , where X ´ Y ´ Z holds. PX

is uniform, Y “ BSCapXq, and Z “ BSCbpY q. Here, BSCa denotes a Binary Symmetric

Channel with bit flip probability a. For this case the WSK (and OW-WSK) capacity is

given by CWSK “ CÑWSK “ h2pa ˚ bq ´ h2paq, where a ˚ b “ ap1 ´ bq ` bp1 ´ aq, and h2 is

the binary entropy. Let, a “ 0.02, and b “ 0.15, then CÑWSK “ 0.502. Set ε “ σ “ 0.05,

and let observation length n P r2000, 50000s. Figure 3.1 shows the increase in the key rate

(`{n) when the observation length grows. The depicted one-way lower bounds are from

Proposition 3.10 (with U “ X and V “ constant) and Theorem 3.8; and the interactive

90



Figure 3.1: Optimum finite-length bounds of interactive SKA (Theorem 15 of [31]), and
the finite-length lower bounds of one-way SKA (Proposition 3.10 and Theorem 3.8). Here
ε “ σ “ 0.05, PX is uniform, Y “ BSCapXq, and Z “ BSCbpY q, where a “ 0.02, and
b “ 0.15. Note that in this example, as X ´ Y ´ Z holds, both interactive and one-way
bounds achieve the WSK capacity.

upper and lower bounds are from Theorem 15 of [31].

The one-way bounds we derived are useful in the sense that for ΠHH, they give the

finite-length gap to capacity (i.e., the difference between one-way lower bound and capacity)

and the finite-length gap for not using interaction (i.e., the difference between the one-way

and interactive lower bounds).

Note that the one-way lower bound of Proposition 3.10 that was derived for IID sources

gives a tighter (and more appropriate) approximation of the key rate, whereas for this IID

example source the lower bound of Theorem 3.8 that holds for INID (and IID) sources is

less tight. Also we observe that in the observation length domain of this figure, the lower

bounds of protocols of [76, 78] are 0 (the bounds are given Preposition 3.15).

Example 3.2. Let us now observe the finite-length behavior of ΠHH when parties observa-

tions are from variables that are independent but not identically distributed (INID). Note
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Figure 3.2: Finite-length performance of ΠHH for an INID source. The one-way lower
bound is given in Theorem 3.8. Here ε “ σ “ 0.05, PX is uniform IID, Yn “ BSCanpXnq,
and Zn “ BSCbnpYnq, where an “ 0.02 ` 500

n
sin

`

n
500

˘

, and bn “ 0.15. Here Xn ´ Yn ´ Zn
holds for all n, and both interactive and one-way SKA approaches achieve the WSK capacity.

that in this case the only SKA protocol with finite-length analysis is ΠHH and only the

one-way ΠHH and interactive SKA protocol of [31] can achieve the WSK capacity of such

INID sources. (The analysis of [31] does not give finite key length.)

Consider an INID source model PXnY nZn “
śn

j“1 PXjYjZj , where Xn ´ Yn ´ Zn holds

for all n. PXn “ PX is IID uniform, Yn “ BSCanpXnq, and Zn “ BSCbnpYnq, where

an “ 0.02 ` 500
n

sin
`

n
500

˘

for all n ě 1, and bn “ b “ 0.15. Here, BSCa denotes a Binary

Symmetric Channel with bit flip probability a. In this INID source model, the BSC channel

from Alice to Bob varies over time. For this case the WSK (and OW-WSK) capacity is given
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Figure 3.3: The finite-length lower bounds given in Theorem 3.13 for different δ’s in,
p0.3, 0.4, 0.5, 0.6q. These values correspond to polarization kernel sizes of p30, 13, 8, 6q (in
the same order). Here ε “ σ “ 0.05, PX is uniform, Y “ BECapXq, and Z “ BECbpY q,
where a “ 0.1, and b “ 0.67.

by Theorem 3.11, then

CWSK “ lim inf
nÑ8

1

n
IpXn;Y n

|Zn
q

“ lim
nÑ8

1

n

n
ÿ

j“1

IpXj;Yj|Zjq

“ lim
nÑ8

IpXn;Yn|Znq

“ h2pā ˚ b̄q ´ h2pāq

“ 0.502

where ā “ limnÑ8 an “ 0.02 and b̄ “ limnÑ8 bn “ 0.15.

Set ε “ σ “ 0.05, and let observation length n P r2000, 50000s. In Figure 3.2, that shows

the increase in the key rate (`{n) when n grows, we depict the finite-length performance of

the capacity achieving OW-SKA protocol 4 (ΠHH).
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Example 3.3. Now we compare the finite-length behavior of one-way SKA Protocol 5 ΠPH

with the one-way SKA protocols of [76, 78]. Remember that ΠPH can be used when source

model is IID and PX is uniform.

Consider an IID source model PXY Z , where X ´ Y ´ Z holds. PX is uniform, Y “

BECapXq, and Z “ BECbpY q. Here, BECa denotes a Binary Erasure Channel with erasure

probability a. For this case the OW-WSK capacity is given by CÑWSK “ bp1 ´ aq ´ a. Let,

a “ 0.1, and b “ 0.67, then CÑWSK “ 0.503. Set ε “ σ “ 0.05, and let observation length

n P r10 ˆ 106, 50 ˆ 106s. We compare our finite-length approximations of achievable key

rates that use Polar Coding scheme of [98] for their IR protocol, and use 2-universal hashing

for PA. For this case, the SK length is given by ` in Equation (3.30). The scaling factor of

polarization is τ ` δ, and we set constant λpεq “ exppδ´1.01qp1` 2{εq3. In Figure 3.3, we plot

`{n for different values of δ. Note that we fix the kernel size of IR coding to l “ rexppδ´1.01qs,

and this SKA protocol has computation complexity of Opn log nq. It is interesting to note

that due to the dependence of λpεq on δ, we observe better finite-length performance, for

larger values of δ (smaller sizes of kernel) in this finite-length domain. This pattern does

not continue for larger values of n. In the observation length domain of this figure, the

interactive and one-way second-order bounds are indistinguishable from the Capacity and

the lower bounds of protocols in [76, 78] (that have complexity Opn2q) are 0.

3.5 Conclusion

We studied OW-SKA protocols in source model. These protocols are important for practical

reasons as they do not require any interaction. They are also important from the theoreti-

cal viewpoint as they can achieve the OW-WSK capacity, and also are related to problems

in computational cryptography. Inspired by the inf-spectral entropy of [25], we introduced

the sup-spectral entropy, and utilized these two spectral entropies to prove a new multi-

letter finite-length upper bound on the key length. We then proposed two new OW-SKA
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constructions that are capacity achieving. Our first construction (Protocol 4) uses a recon-

ciliation method that is inspired by information spectrum analysis of [31]. Our analysis of

this protocol led to two finite-length lower bounds for the maximum achievable key length of

OW-SKA. This protocol can also be used in the more general case when parties’ observations

are drawn from independent experiments. The second proposed construction (Protocol 5)

employs Polar coding for reconciliation and thus is computationally efficient. We derived

the maximum achievable key length of this OW-SKA which constitutes a lower bound on

SÑε,σpX
n, Y n|Znq. Both of our protocols are very efficient in terms of public communication

cost. A detailed comparison of these proposed OW-SKA protocols with other related pro-

tocols, including numerical examples, were given at the end. An interesting future work is

to find a tight second-order finite-length converse (upper bound) for OW-SKA. It is also of

practical importance to find efficient OW-SKA protocols that have better finite-length per-

formance than our proposed Protocol 5. Another intriguing research avenue is to investigate

the application of spectrum techniques in the multiterminal model of SKA [21].
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3.6 Appendix

3.6.1 Proof of Smooth LHL

In order to prove Lemma 3.7 we use the framework of average min-entropy [64] and its

relationship with smooth min-entropy.

Definition 3.5 (Average min-entropies [64]). For any joint probability distribution

PXY P PpX ˆ Yq the average conditional min-entropy of X given Y is defined by

H̃minpX|Y q “ ´ logEPY max
xPX

PX|Y px|yq,

and the smoothed average conditional min-entropy of X given Y is defined by

H̃ε
minpX|Y q “ max

QX̂Ŷ PB̂εpPXY q
H̃minpX̂|Ŷ q,

where B̂εpPXY q “ tQX̂Ŷ P PpX ˆYq : SDpX̂Ŷ,XY q ď εu, with PpX q denoting the set of all

sub-normalized positive distributions on X .

Lemma 3.16. For any ε ą 0 and RVs X and Y , we have H̃ε
minpX|Y q ě Ĥ

ε

minpX|Y q.

Proof of Lemma 3.16: We start with the left hand side of the above relation:

H̃ε
8pX|Y q “ max

QX1Y 1PB̂εpPXY q
´ logEPY 1 max

x
QX 1|Y 1px|yq

ě max
QX1Y 1PB̂εpPXY q

´ log max
y

max
x

QX 1|Y 1px|yq

“ max
QX1Y 1PB̂εpPXY q

min
x,y

log
QY 1pyq

QX 1Y 1px, yq

“ max
QX1Y 1PB̂εpPXY q

min
x,y

ˆ

log
PY pyq

QX 1Y 1px, yq
` log

QY 1pyq

PY pyq

˙

ě Ĥε
minpX|Y q `max

QY 1
min
y

log
QY 1pyq

PY pyq

ě Ĥε
minpX|Y q,

96



where the last inequality is due to the choice of QY 1pyq “ PY pyq.

Proof of Lemma 3.7: The privacy amplification (key extraction) function fPA “ hS

is σ´secure if

SDpKZFS,UZFSq ď σ,

where K “ hSpXq. The generalized Leftover Hash Lemma of [64, Lemma 2.4] states that

for any probability distribution PX̄Z̄F if we let S be the uniform seed of a 2-universal hash

function hS, and define K̄ “ hSpX̄q, then

SDpK̄SZ̄F, USZ̄F q ď
1

2

b

|K|2´H̃minpX̄|Z̄F q.

By Lemma 2.2 of [64] we know that

H̃minpX̄|Z̄F q ě H̃minpX̄|Z̄q ´ t

where t “ log |F |. Then we get

SDppK̄SZ̄F q, pUSZ̄F qq ď
1

2

b

|K||F |2´H̃minpX̄|Z̄q.

Now, let X̄ and Z̄ be such that for the given X and Z we have

H̃ε
minpX|Zq “ H̃minpX̄|Z̄q.

Since SDpXZ, X̄Z̄q ď ε, we have SDpKZ, K̄Z̄q ď ε and SDpZ, Z̄q ď ε (See Corollary 2.1.1,

and Lemma 2.2). By triangle inequality we have

SDpKZFS,UZFSq ď SDpKZFS, K̄Z̄FSq ` SDpK̄SZ̄F, USZ̄F q ` SDpUZ̄FS, UZFSq

“ SDpKZ, K̄Z̄q ` SDpK̄SZ̄F, USZ̄F q ` SDpZ̄, Zq
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Therefore,

SDpKZFS,UZFSq ď 2ε`
1

2

b

|K||F |2´H̃ε
minpX|Zq.

As from Lemma 3.16 (see also [64, Appendix B]) we know that H̃ε
minpX|Zq ě Hε

minpX|Zq,

and hence we get

SDpKZFS,UZFSq ď 2ε`
1

2

b

|K||F |2´Ĥ
ε
minpX|Zq,

which implies that the 2-universal hash function is σ-secure as long as its output key length

satisfies

log |K| ď Ĥ
σ´η
2

min pX|Zq ´ log |F | ` log 4η2,

for any 0 ă η ď σ.

3.6.2 A Fano-like inequality for sup-spectral entropy

Intuitively speaking, sup-spectral entropy captures the reliability (IR) aspect of SKA. Thus,

we believe, this new spectral entropy is of independent interest for future work in the con-

text of lossy single-shot Slepian-Wolf source coding. In the following we prove a Fano-like

inequality for sup-spectral entropy.

Proposition 3.17. Suppose RV’s X and Y are such that Pr tX ‰ Y u ď ε. Then for any

ν P p0, 1´ εq we have H̄ε`ν
s pX|Y q ď ´ log ν.

Proof: Let r “ ´ log ν and define Ty “ tx| PX|Y px|yq ď νu. Then

PXY t´ logPX|Y px|yq ě ru “ PXY tPX|Y px|yq ď νu

“
ÿ

yPY
PY pyq

ÿ

xPTy

PX|Y px|yq

“
ÿ

yPY
PY pyq

´

PX|Y px|yq
ˇ

ˇ

ˇ

xPTy
x“y

`
ÿ

xPTy
x‰y

PX|Y px|yq
¯

ď ν ` Pr tX ‰ Y u ď ν ` ε.
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3.6.3 Proof of Spectral LHL

For a set X , let PpX q be the set of all probability distributions on X , and let PpX q be the

set of all sub-normalized positive distributions on X . We can define the statistical distance

and conditional Rényi Entropies for sub-normalized functions. For P X̄Z̄ P PpX ˆ Zq and

any PZ P PpZq, and by denoting pX̄, Z̄q „ P X̄Z̄ , and Z „ PZ , we define

H2pX̄|Zq “ ´ log
ÿ

x,z

pP X̄Z̄px, zqq
2

PZpzq
,

and

HminpX̄|Zq “ min
x,z
´ log

P X̄Z̄px, zq

PZpzq
.

Even though such definitions do not have information theoretic operational meanings, they

are useful tools for deriving bounds and/or characterizing meaningful information theoretic

tasks that are defined over probability functions.

Proof of Lemma 3.14: The privacy amplification (key extraction) function fPA “ hs

is σ´secure if

SDpKZFS,UZFSq ď σ.

The generalized Leftover Hash Lemma of [31, Lemma 8] states that, for any P X̄Z̄F P PpX ˆ

ZˆFq, let P Z̄ be the marginal of P X̄Z̄F for Z̄, and let S be the uniform seed of a 2-universal

hash function hS. Then, for K̄ “ hSpX̄q and any PZ P PpZq, where supppP Z̄q Ă supppPZq

holds, we have

SDpK̄Z̄FS, UZ̄FSq ď
1

2

b

|K||F |2´H2pX̄|Zq,

where U is the uniform distribution over K.

Now consider PXZF P PpX ˆ Z ˆ Fq and its marginals, PXZ , PX , and PZ . For X „ PX

let K “ hSpXq, where hS is a 2-universal hash function. Let r “
¯
Hε
spX|Zq and defined the
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following sub-normalized function

P X̄Z̄px, zq “ PXZpx, zq1t´ logPX|Zpx|zq ą ru,

which implies

SDpXZ, X̄Z̄q ď
ε

2
.

Also, we have

H2pX̄|Zq ě HminpX̄|Zq

ě r “
¯
Hε
spX|Zq,

that proves

SDpK̄Z̄FS, UZ̄FSq ď
1

2

b

|K||F |2´¯
Hε
spX|Zq,

where K̄ “ hSpX̄q. Since SDpXZ, X̄Z̄q ď ε{2, then SDpKZ, K̄Z̄q ď ε{2 and SDpZ, Z̄q ď ε{2

(See Corollary 2.1.1, and Lemma 2.2). By triangle inequality we have

SDpKZFS,UZFSq ď SDpKZFS, K̄Z̄FSq ` SDpK̄SZ̄F, USZ̄F q ` SDpUZ̄FS, UZFSq

“ SDpKZ, K̄Z̄q ` SDpK̄SZ̄F, USZ̄F q ` SDpZ̄, Zq

Therefore,

SDpKZFS,UZFSq ď ε`
1

2

b

|K||F |2´¯
Hε
spX|Zq.

Equivalently, the Leftover Hash Lemma, as stated above, implies that hS is σ´secure for

PXZF , if for an arbitrary 0 ă µ ď σ,

log |K| ď
¯
Hσ´µ
s pX|Zq ´ log |F | ` log 4µ2.
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Chapter 4

Secret Key Agreement in

Wiretapped Tree-PIN

Abstract. This chapter considers the problem of multiterminal secret key
agreement (SKA) in wiretapped source model where terminals have access
to samples of correlated random variables from a publicly known joint prob-
ability distribution. The adversary has access to a side information variable,
that is correlated with terminals’ variables. We focus on a special type of
terminal variables in this model, known as Tree-PIN, where the relation be-
tween variables of the terminals can be represented by a tree. The study
of Tree-PIN source model is of practical importance as it can be realized in
wireless network environments. We derive the wiretap secret key capacity
of Tree-PIN, and give lower and upper bounds on the maximum achievable
secret key length in finite-length regime. We then prove an upper bound
and a lower bound for the wiretap secret key capacity of a wiretapped PIN
and give two conditions for which these bounds are tight. We also extend our
main result to two other related models and prove their corresponding capac-
ities. At the end we argue how our analysis suggests that public interaction
is required for achieving the multiterminal WSK capacity.

Part of contributions presented in this chapter have been presented and published in the proceedings
of ISIT 2019 [34]. Content are reused under the permission of the IEEE.
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4.1 Introduction

In a multiterminal secret key agreement (SKA) problem, a designated group of users (ter-

minals) collaborate to obtain a shared secret key (SK) such that users outside the group do

not have any information about the key. We study the problem of SKA in source model

[21], where there is a set of m terminals M “ t1, . . . ,mu and the goal is to establish a

shared secret key among a subset A ĎM of terminals. Terminals have access to samples

of correlated random variables where random variable Xj is observed by the jth terminal,

and XM “ pX1, . . . , Xmq denotes the set variables of all terminals. To obtain a shared key,

terminals use a public channel to exchange messages that are visible by the eavesdropper,

Eve. All terminals, including the helper terminals in Ac “MzA, cooperate to establish a

shared secret key. Eve, will see and record public messages, denoted by F, and has access to

the side information Z that is correlated with XM.

For a key agreement protocol that establishes a key of length `, the key rate is defined

for the case that the terminals’ random variables consist of a vector of n independent and

identically distributed (IID) samples of the source distribution PZXM , and is given by `{n.

The key capacity of a protocol for a given source distribution is the highest achievable key

rate associated with that distribution, and for this general case of variable Z, is referred to

as wiretap secret key (WSK) capacity. For the special case where Z “ constant and there is

no wiretapper, the model is called non-wiretapped and the key capacity is called secret key

(SK) capacity. An important special case is when the adversary “wiretaps” and their side

information is obtained from a set D Ď Ac of compromised helper terminals. It is assumed

that the compromised terminals of D make their RV’s public, XD “ pXj| j P Dq “ Z,

and remain cooperative throughout the SKA protocol. The key capacity of such a source

model is called private key (PK) capacity. A summary of these adversarial models and their

corresponding key capacities are given in Table 4.1. Single-letter expressions for SK and PK

capacities of multiterminal source model are known [21]. Single-letter characterization of

WSK capacity however, remains an open question in general, even for the case of two-party
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Table 4.1: Different Types of Key Capacities Based on The Assumption About The Adver-
sary.

Source Model Eve’s Side Information Key Capacity

Wiretapped Z not known publicly WSK
Compromised Z “ XD, and known publicly PK

Non-wiretapped Z “ constant SK

SKA (that is when |A| “ |M| “ 2) [45, 74, 90]. WSK capacity of a few special cases are

known [22, 34, 104]. In this work, we prove the WSK capacity of another special subclass

of multiterminal model, referred to as the wiretapped Tree-PIN model with independent

leakage. In the following, we first give a brief overview of relevant related works, and then

outline our contributions.

4.1.1 Related Works

Capacity results. The SKA problem for two terminals was first considered, indepen-

dently, in [20] and [19]. The SK capacity was proved to be IpX1;X2q [19, 20]. It was also

proved that IpX1;X2|Zq is an achievable key rate if the terminals know Eve’s side informa-

tion Z. Therefore the conditional mutual information IpX1;X2|Zq is an upper bound for the

WSK capacity, and it was shown [20] that it is tight if the Markov Relation X1´X2´Z (or

X2 ´X1 ´ Z) holds. Csiszár and Narayan extended the two-party source model of [19, 20]

to the multiterminal model and proved single-letter expressions for SK and PK capacities

of multiterminal source models [21]. Similar to the two-party scenario, it was showed that

multiterminal PK capacity provides an upper bound on the WSK capacity. The PK (and

SK) capacity achieving protocol of [21] has two steps: in the first step, terminals communi-

cate over the public channel to obtain omniscience, that is terminals in Dc learn XM, and

in the second step, terminals in A extract their copy of the key from the common shared

randomness Xn
M. While WSK capacity remains unknown in general, the characterization of

WSK and also alternative formulations of SK and PK capacities for special cases of multi-
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terminal models have been studied, extending the general results of [21]. We briefly review

two of these special case models that are related to our work.

The Markov Tree model is a special case of the general multiterminal source model that

was introduced and studied in [21, 22]. In a non-wiretapped Markov Tree, the correlation

between source variables is given by an undirected tree G “ pM, Eq in which each terminal

is represented by a node in G, and for any path from terminal i1 to if , denoted by Pathpi1 Ñ

if q “ pei1i2 , ei2i3 , ¨ ¨ ¨ , eif´1if q, the Markov chain Xi1 ´ Xi2 ´ Xi3 ´ ¨ ¨ ¨ ´ Xif´1
´ Xif holds.

The source model is called wiretapped Markov Tree, if the source variables form a Markov

Tree, and the variable associated with each terminal is independently and partially leaked to

Eve – i.e., with respect to each Xj there exists a Zj component available to Eve, where Zj is

a noisy version of Xj. In a wiretapped Markov Tree, corresponding to a path from terminal

i1 to if as above, the Markov chain Zi1´Xi1´Xi2´Xi3´¨ ¨ ¨´Xif´1
´Xif ´Zif holds. The

SK and PK capacities of the Markov Tree source model where derived in [21, Example 7].

The WSK capacity of wiretapped Markov Tree however remains an open problem even for

the case of two-party SKA (i.e., when m “ 2 and Z1´X1´X2´Z2). For the case that the

variable associated with only one of the leaf terminals is leaked (i.e., Zi “ constant, @i ‰ j

where j P M is a leaf node of G), the WSK capacity of the wiretapped Markov Tree is

proved in [22, Theorem 5.1].

A second special case of the multiterminal model is the Pairwise Independent Network

(PIN) model [55], inspired by a wireless setting where each pair of terminals can obtain

correlated variables from the channel connecting the two. Source variables in PIN are defined

by an undirected graph G “ pM, Eq with node (vertex) set M and edge set E , where for

an edge eij “ eji P E between i and j (i ‰ j P M), there exists a variable Vij accessible to

terminal i, and a second variable Vji (correlated with Vij) accessible to terminal j. The set of

all “reciprocal correlated pairs” of variables (i.e., tpVij, Vjiq| eij P Eu) are assumed mutually

independent1. An upper bound on the SK capacity of PIN is given in [55], and a capacity

1This means that PXM “
ś

eij
PVijVji

.
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achieving SKA protocol when A “ M, or when |A| “ 2, was proposed in [60]. The PIN

model has been well studied [105–108], and has inspired other multiterminal models [71, 72,

109, 110]. An important subclass of the PIN model is defined when the defining graph G is

an undirected tree. This model is called Tree-PIN [34]. In this work, we focus on wiretapped

Tree-PIN model. We observe that a non-wiretapped Tree-PIN is a non-wiretapped Markov

Tree, but the converse is not true. Similarly, we will show that, every wiretapped Tree-PIN

with independent leakage is a wiretapped Markov Tree, but the converse does not necessarily

hold.

Finite-length performance. The finite-length analysis of coding schemes has found much

attention in recent years [31, 49, 50, 53, 59, 65, 86, 111]. Such analysis is important theoret-

ically, and also in practice. While SKA key capacities capture the best asymptotic efficiency

of a source model, in practice one needs to obtain bounds on the achievable key length when

a finite number (n) of source samples is available. For wiretapped multiterminal source

model, a single-shot (n “ 1) upper bound on the key length is given in [59]. Finite-length

upper and lower bounds for two-party SKA, when X1 ´X2 ´ Z holds, have been obtained

in [31]. For multiterminal key agreement when Eve has no side information, a finite-length

lower bound (of the form nCSK ´Op
?
n log nq) is given in [111].

Communication and computation costs. The key rate measures efficiency of SKA

protocol in using the initial correlated randomness, it is also important in practice to measure

communication and computation costs.

The computational efficiency of an SKA protocol is in terms of the computational com-

plexity of terminals’ operations. An SKA protocol is considered computationally efficient if

its computational complexity is quasi-linear in n, and is of the form Opn log nq. The known

computationally efficient capacity achieving SKA protocols are given in [33, 76, 78–80]. In

most cases the protocols have not been analysed for finite-length performance.

Communication efficiency of an SKA protocol is measured using (i) the public commu-
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nication, that for asymptotic case can be measured in terms of asymptotic rate rPC , and

for finite-length case, in terms of the total number of bits, of the public communication,

and (ii) the total number of rounds NPC of public discussion. We define these measures in

Section 4.2. Informally, the asymptotic rate of public communication measures the number

of bits of public communication that is used per each observation bit. In a round of public

discussion the messages of the terminals only depend on the private samples of the corre-

sponding terminals, and the public messages of the previous rounds. The SKA protocols

in [20, 21, 34] are noninteractive: they have one round of public communication, NPC “ 1.

Interactive SKA’s have two or more rounds of public communication; e.g., the SKA protocol

of [106] has NPC “ 2 and the two-party SKA protocol of [31] has NPC P Opnq. For source

models, the minimum asymptotic rate of public communication, and the minimum number

of public discussion rounds that are required for achieving the key capacity, are important

parameters of the system. For SK and PK capacity, the result of [21] implies that the min-

imum asymptotic rate of public communication for omniscience, is an upper bound for the

minimum asymptotic rate of public communication that is required for achieving the cor-

responding capacity. The minimum asymptotic rate of public communication for SKA for

various source models were studied in [112–115].

4.1.2 Our Contributions

In this work, we introduce and study wiretapped PIN model and wiretapped Tree-PIN model.

The wiretapped PIN model with independent leakage is defined as a PIN with an underlying

undirected graph G “ pM, Eq where legitimate terminals are represented by vertices (nodes)

of the graph. An undirected edge between the nodes i and j is represented by eij P E .

Corresponding to each edge eij P E , there exists a variable Vij accessible to terminal i, and a

second variable Vji accessible to terminal j. Also, with respect to each edge eij P E Eve has

access to a component variable Zij, and the set of all triplets of variables tpVij, Vji, Zijq| eij P

Eu are assumed mutually independent, and for each eij P E either Vij´Vji´Zij or Vji´Vij´Zij
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hold2. Since G is undirected, we have Zij “ Zji, and denote the adversary’s side information

by Z “ pZij|i ă jq. A wiretapped Tree-PIN is a special case of wiretapped PIN for which the

corresponding undirected graph G is a tree. A simple example of such wiretapped Tree-PIN

is depicted in Figure 4.1.

Main results. We derive the WSK capacity of wiretapped Tree-PIN with independent

leakage as described above, and present an SKA protocol that achieves this capacity. Our

SKA protocol has two rounds of public communication (NPC “ 2) and as shown in Re-

mark 4.3, has a lower asymptotic public communication rate than other SKA protocols

(including the protocol in [21]) that have the two steps of achieving omniscience followed

by privacy amplification. We note that the adversary in our model is more powerful than

the adversary in the wiretapped Markov Tree model of [22, Theorem 5.1], as in the capacity

result of [22, Theorem 5.1] Eve only wiretaps one terminal’s variable, while in our model of

wiretapped Tree-PIN Eve wiretaps all terminals’ variables by wiretapping all pairs of cor-

related variables pVij, Vjiq. For the case of two-party SKA, our capacity result also reduces

to the result in [20] when X1 ´X2 ´ Z (or when Z ´X1 ´X2) holds. A simplified version

of the wiretapped Tree-PIN model where it is assumed that Vij “ Vji, was studied and its

capacity was derived in our previous work presented in [34].

In Section 4.4, we give a finite-length upper bound and three finite-length lower bounds

for the maximum achievable secret key length of a wiretapped Tree-PIN, where each lower

bound is due to a different concrete construction of our SKA protocol. We will discuss and

compare the three construction approaches in terms of their corresponding lower bounds,

their computational complexity, and their communication costs. Our SKA protocol is capac-

ity achieving; however, its achieved key length for n source samples (finite-length analysis)

does not match the finite-length upper bound, and the construction of a capacity achieving

protocol that achieves the finite-length upper bound of wiretapped Tree-PIN remains open.

2Only one wiretapped component Zij is accessible to Eve for each connection eij P E– e.g., Zij ´ Vij ´
Vji ´ Zji is not allowed.
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1 2 3 4

Eve

X1 “ pV12q

X2 “ pV21, V23q

X3 “ pV32, V34q

X4 “ pV43q

Z “ pZ12, Z23, Z34q

V12 V21

Z12

V32V23

Z23

V34 V43

Z34

Figure 4.1: An example of wiretapped Tree-PIN with independent leakages defined over
M “ t1, 2, 3, 4u and E “ te12, e23, e34u. The solid lines (edges) show the independent con-
nections between terminals, and the curly lines (with the same color) show the corresponding
independent wiretapping RV’s of Eve. The RV associated with each terminal i PM is of the
form Xi “ pVij| eij P Eq. In this example, the following Markov relations hold V12´V21´Z12,
V32 ´ V23 ´Z23, V34 ´ V43 ´Z34. Eve’s RV is a collection of independent wiretapped compo-
nents, i.e., Z “ pZ12, Z23, Z34q

Related models. Tree-PIN model has attracted attention over the past years as it can

be extended and used to study a number of other related practically important models. In

Section 4.5, we extend our main capacity result for wiretapped Tree-PIN to the following

more general scenarios. For wiretapped PIN models where G can have loops, we show that, a

SKA protocol based on Steiner Tree Packing can achieve the WSK capacity when A “M or

|A| “ 2. This is similar to the results obtained in [34, 60], for SKA in non-wiretapped PIN.

Next, we note that an important open problem in SKA is finding the WSK capacity of the

two-party model when Markov Relation Z1´X1´X2´Z2 holds, where Z “ pZ1, Z2q is Eve’s

wiretapped side information [22]. We extend our Tree-PIN to the case where corresponding

to each eij P E , we have V a
ij ´V

a
ji ´Z

a
ij and Zb

ij ´V
b
ij ´V

b
ji, which implies Zb

ij ´Xi´Xj ´Z
a
ij.

For |M| “ 2, this extended model is an special case of the open problem where Markov

relation Z1´X1´X2´Z2 holds. We prove the WSK capacity of this extended model which

is (naturally) higher than the WSK capacity of a simple Tree-PIN – as terminals have access

to more correlated sources. Lastly, we also prove the key capacity of a PIN model in which

not only source variables are wiretapped but also one of the terminals is compromised and is

not cooperating. In this case we show that the WSK capacity reduces to the WSK capacity
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of the associated model where the compromised terminal and terminals’ variables associated

with the the compromised terminal are removed (ignored.)

Need for interaction. Csiszár and Narayan proved that SK and PK capacities can be

achieved noninteractively [21]. For some special cases also WSK capacity can be achieved

noninteractively [20, 34]. Our proposed capacity achieving SKA protocol for wiretapped

Tree-PIN is interactive. In Section 4.6, we discuss the number of public communication

rounds that is required for achieving the WSK capacity. We analyze known models and

constructions [20, 31, 93] and study a number of examples that suggest that in general

achieving the WSK capacity requires interaction. Proving this result however remains an

interesting open question for future research.

4.1.3 Organization

The rest of this chapter is organized as follows. We review security basic notions and defini-

tions in Section 4.2, and present our main result in Section 4.3. Section 4.4 gives finite-length

analysis of wiretapped Tree-PIN, and Section 4.5 is on extensions of our main result includ-

ing for the wiretap secret key capacity of PIN. Section 4.6 discusses the problem of whether

interaction is necessary to attain the WSK capacity, and Section 4.7 concludes the chapter.

4.2 Multiterminal Source Model for SKA

In the general multiterminal source model [21], we have a set of m terminals denoted by

M “ rms “ t1, . . . ,mu, and each terminal j P rms has access to a random variable Xj. We

denote the collection of m correlated random variables X1, . . . , Xm by XM “ pX1, . . . , Xmq.

Terminals collaborate by public discussion over a public channel that is reliable and authen-

ticated. A message that is sent by a terminal j is a function of the terminal’s observations

of Xj, and the previous public messages. Public discussion happens over a finite number
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of rounds, denoted by, NPC . We denote by F the set of all messages sent over the public

channel.

Eve has access to the side information Z which is correlated with XM, and has full

read access to public messages F. Eve is a passive adversary, which means they will not

change, or block public messages communicated messages. The joint distribution PXMZ is

publicly known. We denote the multiterminal source model by PXMZ or the discrete multiple

memoryless source (DMMS) notation pXM, Zq.

Let A ĎM be the set of terminals who want to establish a shared secret key K. The key

need not be concealed from the helper terminals in Ac. The secret key K is secure against

Eve if it satisfies the reliability and secrecy conditions.

Definition 4.1. Consider a source model pXM, Zq with adversary’s side information, Z, and

A ĎM denoting the set of terminals that will share a key K P K. The key is an pε, σq-Secret

Key (in short pε, σq-SK) for A, if there exists a protocol with public communication F, and

output RVs tKjujPA such that

(reliability) Pr tKj “ Ku ě 1´ ε, @j P A, (4.1)

(secrecy) SD ppK,F, Zq, pU,F, Zqq ď σ, (4.2)

where SD denotes the statistical distance and U is the uniform probability distribution over

alphabet K. The length of a key K is given by log |K|.

Definition 4.2. For a source model pXM, Zq with adversary’s side information, Z, and

A ĎM denoting the set of terminals that want to share a secret key, let Sε,σpXA|Zq denote

the maximum length log |K| of all the pε, σq-SKs that can be established for A ĎM.

SKA for IID variables. Consider a source model pXM, Zq described by PXMZ , where all

terminals cooperate for to establish a shared secret key for terminals in A. To increase the

key length, terminal j P M use a vector, Xn
j , of n independent and identically distributed
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(n´IID) samples of Xj. Let Π be an SKA protocol family that, for any n, establishes a

secret key Kpnq for A ĎM. The public communication of Π, denoted by F “ FpΠq, can be

interactive and be comprised of NPCpΠq ě 1 rounds where in each round t P rNPCpΠqs each

terminal j sends up to one public message Ftj. A message is a function of Xn
j and all public

messages of the previous rounds that is denoted by F t´1, and so Ftj “ FtjpX
n
j , F

t´1q. We

denote all messages of round t by Ft “ pFt1, . . . , Ftmq. The public messages of terminals in

each round do not depend on other messages of that round, and can be sent in any order.

The maximum number of the rounds of public communication, NPCpΠq, may in general be a

function of n. The SKA protocol Π with public communication F is called noninteractive if

NPCpΠq “ 1, meaning that in one round each terminal sends up to a single public message,

and F “ pF1, . . . , Fmq, where Fj “ FjpX
n
j q.

The asymptotic public communication rate of Π is defined by

rPCpΠq “ lim sup
nÑ8

1

n
logpsupppFpΠqqq,

where FpΠq is the public communication of Π. Public communication cost of Π can be

quantified by rPCpΠq and NPCpΠq.

Suppose SKA protocol Π establishes an pεn, σnq´SK Kpnq for a subset A ĎM, and let

`Πpnq “ log |Kpnq| denote the length of Kpnq. The key rate of Π for n´IID observations is

given by 1{n`Πpnq, and rKpΠq “ lim infnÑ8 1{n`Πpnq is called the asymptotic key rate of Π.

The asymptotic key rate rKpΠq is achievable if limnÑ8 εn “ limnÑ8 σn “ 0. The key capacity

of a source model is the maximum of all achievable asymptotic key rates of SKA protocols

for the model. See Definition 4.3. For an integer n P N, and ε, σ P r0, 1q, define Sε,σpX
n
A|Z

nq

to be the maximum length of all pε, σq-SK protocols for establishing a secret key for A ĎM.

Definition 4.3 (Key Capacity – Definition 17.16 of [90]). Consider multiterminal

SKA for a subset A Ď M in a the source model pXM, Zq for the joint distribution PXMZ ,

where Z denotes Eve’s side information about XM. A real number R ě 0 is an achievable
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SK rate if there exists an SKA protocol that for a given n establishes an pεn, σnq´SK K P K

where limnÑ8 εn “ 0, limnÑ8 σn “ 0, and lim infnÑ8
1
n

log |K| “ R. The maximum of all

achievable SK rates is called the key capacity of the model.

SK, PK, and WSK Capacities. When Z “ constant (i.e., independent of XM), the

capacity is called SK capacity and is denoted by CA
SKpPXMq. When Z “ XD “ pXj | j P Dq

with D being the set of (known) compromised terminals, the capacity is called PK capacity

and is denoted by C
A|D
PK pPXMq. In this case it is assumed that Z is known publicly. In the

general case when the side information Z is correlated with XM and is not known by the

terminals, the key capacity is called WSK capacity and is denoted by CA
WSKpPXMZq. An

SKA protocol Π is capacity achieving for a source model if rKpΠq is equal to the key capacity

of the source.

For a source model pXM, Zq with the joint probability distribution PXMZ , let RSKpXMq,

RPKpXM|XDq, andRWSKpXM|Zq denote the minimum public communication rate to achieve

the SK, PK, and WSK capacities, respectively. These quantities give the minimum public

communication cost of the SKA, and are often referred to as communication complexity of

pXM, Zq [113–115]. Characterizations of RSKpXMq for two-party SKA, and for a special case

of PIN models, are given in [112] and [115], receptively. An SKA protocol Π that achieves

the WSK capacity of a source model pXM, Zq implies RWSKpXM|Zq ď rPCpΠq. A similar

statement holds for the case of SK and PK.

The single-letter characterization of SK and PK capacities of the general multiterminal

source model was derived in [21]. Next Theorem states this result.

Theorem 4.1 (PK Capacity [21]). In a given source model XM for sharing a secret key

among terminals in A ĹM, with compromised terminals D Ď Ac, the PK capacity is

C
A|D
PK pPXMq “ HpXM|XDq ´RCOpXA|XDq, (4.3)
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where RCOpXA|XDq “ min
RDcPRCO

sumpRDcq and

RCO “ tRDc |sumpRBq ě HpXB|XBcq, @B Ă Dc,A Ę Bu .

Remark 4.1. Equation (4.3) also leads to the SK capacity when D “ H. The achievability

result is based on a protocol in which first, the compromised terminals (that are cooperative)

publicly reveal their observed random variables (as it is the assumption for the PK capacity,)

and then the rest of the terminals in Dc communicate over the public channel to obtain om-

niscience (i.e., the state that terminals in Dc learn each other’s initial observations). Finally,

terminals in A extract the key from the common shared randomness Xn
M. It was noted that

this SKA protocol is noninteractive; meaning that, NPC “ 1, and F “ pF1, . . . , Fmq, where

Fj “ Xn
j for all j P D and Fj “ FjpX

n
j q for all j P Dc. See the achievablity part of the proof

of Theorem 2, in Section IV of [21]. The asymptotic public communication rate of this SKA

protocol is given by rPC “ RCOpXA|XDq, which implies that RPKpXM|XDq ď RCOpXM|XDq

(and RSKpXMq ď RCOpXMq).

Remark 4.2. We note that SK or PK capacity of multiterminal models depend on the

correlation among the variables and in some cases may be zero, in which case it is impossible

to establish a group key with information-theoretic security. See Theorem 5 of [21].

Unfortunately, the WSK capacity of the general source model as defined previously,

remains an open problem even for the special case of two terminals (|M| “ 2) [45]. For the

case of two-party SKA, the source model WSK capacity is upper bounded by IpX1;X2|Zq,

which is proved to be a tight bound under the additional assumption that the Markov Chain

X1 ´ X2 ´ Z holds [19, 20]. As was mentioned before, the multiterminal WSK capacity is

only known for a few limited special cases [22, 34]. However, PK capacity (see Theorem 4.1)

gives a general upper bound to the WSK capacity. We show in the next section that this

upper bound is tight for the case wiretapped Tree-PIN.
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Lemma 4.2 (Lemma 5.1 of [22]). For a given wiretapped source model pXM, Zq, let

CA
WSKpPXMZq denote the WSK capacity of the wiretapped model. Let C

A|tm`1u
PK pPXMZq be the

PK capacity of an auxiliary model with m ` 1 terminals such that Xj “ Xj for all j ď m,

and Xm`1 “ Z, where terminal m ` 1 is compromised (i.e., D “ tm ` 1u). For any given

wiretapped model such auxiliary model can be defined. By definition of the PK capacity we

have CA
WSKpPXMZq ď C

A|tm`1u
PK pPXMZq.

4.3 WSK Capacity of Tree-PIN

Here, we first define the wiretapped PIN (Pairwise Independent Network) and wiretapped

Tree-PIN models. The non-wiretapped PIN model was first defined in [55] and its SK

capacity was later studied in [60]. Let G “ pM, Eq be an undirected graph. We denote the

edge that connects the nodes i and j by eij, and assume eij “ eji. In a graph G “ pM, Eq,

we denote the neighbours of a node j PM by Γpjq “ ti | i PM, eij P Eu.

Definition 4.4 (Wiretapped PIN & Wiretapped Tree-PIN). A set of m terminals

form a PIN if there exists a tree G “ pM, Eq with M “ rms such that the RV of any

terminal j P M can be represented by Xj “ pVji| i P Γpjqq, where all pairs of RVs in

tpVij, Vjiq| i ă j and eij P Eu are mutually independent. Note that Vij ‰ Vji. A PIN model

is called wiretapped if Eve has access to side information Z which is correlated with all

terminals’ variables. That is, the correlation between Z and all Vij variables can be in any

general form. A wiretapped PIN is called with independent leakage if Eve’s variable is of the

form Z “ pZij| i ă jq, such that the set of all triplets of variables tpVij, Vji, Zijq| eij P Eu are

mutually independent and for each eij P E either Vij ´ Vji ´ Zij or Vji ´ Vij ´ Zij hold. A

Tree-PIN is a PIN model for which G is an undirected tree. A (Tree-)PIN model is called

non-wiretapped if Z “ constant.

In our model of wiretapped (Tree-)PIN with independent leakage, Eve has wiretapped

side information correlated with every component variable of every terminal, and thus our
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wiretap model not only strongly resembles the case of general wiretapped PIN model it

is also a special case of the wiretapped Markov Tree model for which the WSK capacity

is still unknown [22]. The main results of this chapter are giving the WSK capacity of

wiretapped Tree-PIN with independent leakage for any A (Theorem 4.3), and wiretapped

PIN with independent leakage for A “ M or |A| “ 2 (Corollary 4.12.1). These results are

more general than previous results on wiretapped multiterminal models. We will compare

our results with the aforementioned past results in Section 4.5. In this section, we focus on

wiretapped Tree-PIN. The WSK capacity of wiretapped Tree-PIN is given by the following

theorem3.

Theorem 4.3. WSK capacity of a given wiretapped Tree-PIN pXM, Zq with independent

leakage, defined as in Definition 4.4, for any subset A ĎM is given by

CA
WSKpPXMZq “ min

i,jPM
s.t. eijPEA

IpVij;Vji|Zijq, (4.4)

where GA “ pMA, EAq is the subgraph of G with the smallest number of edges connecting all

nodes of A.

We emphasis that the WSK capacity of a more general wiretapped PIN model in which

Z “ pZij| i ă jq and for any i and j the Markov relation Vij ´ Vji ´Zij does not necessarily

hold remains an open problem, even for the case of two-party SKA, m “ 2.

Proof of Theorem 4.3: The proof is in two parts: (i) the converse, and (ii) the

achievability. In the converse part of the proof we prove an upper bound on WSK capacity,

that is given by Lemma 4.4.

Lemma 4.4 (The converse). For a Tree-PIN pXM, Zq defined as in Definition 4.4, we

3The proof for a special case of Theorem 4.3 when Vij “ Vji was presented in ISIT 2019 [34]. An
extension of this special model to the case of finite linear sources [105] with a linear wiretapper was studied
in [104].
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have

CA
WSKpPXMZq ď C

A|tm`1u
PK pPXMZq “ min

i,jPM
s.t. eijPEA

IpVij;Vji|Zijq,

where GA “ pMA, EAq is the subtree of G with the least number of edges that connects all

nodes of A and dummy terminal m` 1 represents the adversary.

In the achievability (direct) part we prove that the above upper bound is indeed achiev-

able. That is given by Lemma 4.5.

Lemma 4.5 (The achievability). For a wiretapped Tree-PIN pXM, Zq defined by G “

pM, Eq, and PZXM, and for any subset A Ď M, the largest asymptotically achievable key

rate of SKA protocol 6 is given by

rKpΠTPq “ min
i,jPM

s.t. eijPEA

IpVij;Vji|Zijq.

The proof of Theorem 4.3 is immediately complete by Lemmas 4.4 and 4.5.

4.3.1 Proof Sketch of the Converse and Achievability

In the following, we give an outline of the proof of the converse, and explain how protocol 6

of Lemma 4.5 achieves the key capacity. The full proofs of Lemmas 4.4 and 4.5 are given in

Appendix 4.8.1 and Appendix 4.8.2, respectively.

The Converse. For simplicity, assume A “M. Also, recall that by Lemma 4.2, we have

CM
WSKpPXMZq ď C

M|tm`1u
PK pPXMZq, and due to Theorem 4.1 we know that C

A|tm`1u
PK pPXMZq “

HpXM|Zq ´RCOpXM|Zq. Here, RCOpXM|Zq denotes the solution to the real-valued Linear

Programming (LP) problem represented in Figure 4.2.

We prove that

RCOpXM|Zq “ HpXM|Zq ´min
i,j

IpVij;Vji|Zijq. (4.5)

116



Minimize:
ř

jPM
Rj

Subject to:
ř

jPB
Rj ě HpXB|XBc , Zq, @B ĹM,

Rj P R
`, @j PM.

Figure 4.2: The LP problem of finding RCOpXM|Zq.

First, consider an arbitrary edge ei1j1 P E . By cutting this edge, the set of terminals will

be partitioned into two parts B and Bc (B X Bc “ H and B Y Bc “ M). Let Rj be the

rate of public communication of terminal j. Rewriting the inequalities of LP of Figure 4.2

for these two sets of terminals, and considering the facts that tpVij, Vji, Zijqu’s are mutually

independent, we get HpXM|Zq “
ř

i,j HpVij, Vji|Zijq and thus, for any ei1j1 P E we have

ÿ

jPB
Rj ě

ÿ

iPB
jPB

HpVij, Vji|Zi1j1q `HpVi1j1 |Vj1i1 , Zi1j1q,

ÿ

jPBc
Rj ě

ÿ

iPBc
jPBc

HpVij, Vji|Zjiq `HpVj1i1 |Vi1j1 , Zi1j1q.

By adding these two inequalities, we arrive at

ÿ

jPM
Rj ě HpXM|Zq ´

`

HpVi1j1 , Vj1i1 |Zi1j1q ´HpVi1j1 |Vj1i1 , Zi1j1q ´HpVj1i1 |Vi1j1 , Zjiq
˘

,

“ HpXM|Zq ´ IpVi1j1 ;Vj1i1 |Zi1j1q.

This holds for any arbitrary ei1j1 P E , and thus, we have proved that RCOpXM|Zq ě

HpXM|Zq ´mini,j IpVij;Vji|Zijq. See Appendix 4.8.1 for the full proof when A ‰M. This

lower bound on RCO implies that C
A|tm`1u
PK pPXMZq ď mini,j IpVij;Vji|Zijq, which is essentially

sufficient to prove the converse. However, we further prove that this bound is tight and the

equality in (4.5) holds. To do so, we show that there exist a heuristic rate assignment for

R1 to Rm such that
ř

jPMRj is always equal to the right hand side of (4.5). The proof is in
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Protocol 6: SKA for Tree-PIN (ΠTP)

Known: Undirected tree G “ pM, Eq with M “ rms, and joint distribution PZXM

Assumption: Node 2 is the only neighbor of node 1, i.e., Γp1q “ t2u
Input: Descriptions of m´ 1 two-party SKA protocols tπij| i ă j and eij P Eu
Input: n´IID samples pXn

1 , X
n
2 , . . . , X

n
mq

Final Key Length: `
Output: Terminals’ copies of the final key pK1, . . . , Kmq, each with length `

// Establishing Pairwise Secret Keys

1 for i PM
2 for j ą i
3 if j P Γpiq then // Nodes (terminals) i and j are adjacent

4 Terminals i and j do reconcile on V n
ij using public communication Qij

5 Terminals i and j do extract pairwise keys Sij “ Sji “ πijpV
n
ij , V

n
ji q

6 Terminals i and j do save the first ` bits of Sij in S 1ij Ð Sij|`

// XOR Key Distribution

7 for j ě 2
8 if |Γpjq| ą 1 then // Node (terminal) j has more than one neighbor

9 Terminal j do find node j˚ P Γpjq s.t. dp1, j˚q ă dp1, iq @i P Γpjqztj˚u, and
10 foreach i P Γpjqztj˚u, terminal j do broadcasts Fji “ S 1jj˚ ‘ S

1
ji

// Local Final Key Calculation

11 Terminals 1 and 2 set their keys to K1 “ K2 “ S 112.
12 for j ě 3
13 Terminal j do find node j˚ P Γpjq s.t. dp2, j˚q ă dp2, iq @i P Γpjqztj˚u, then
14 do find Pathpj Ñ 2q, the path from node j to node 2, then
15 do compute Kj “ S 1jj˚

À

ia,ib PM
s.t. eiaibPPathpjÑ2q

Fiaib

Appendix 4.8.1. This exact formulation of RCOpXM|Zq will be used later in Remark 4.3 for

arguing the public communication efficiency of SKA protocol 6.

The achievability. We show that the upper bound given in Lemma 4.4 is achievable.

More precisely, we prove that for every n, Protocol 6 generates an pεn, σnq´SK K with
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length `, such that limnÑ8 εn “ limnÑ8 σn “ 0, and

rKpΠTPq “ lim
nÑ8

`

n
“ min

i,jPM
s.t. eijPEA

IpVij;Vji|Zijq.

The protocol works by using the public communication channel in two rounds. First,

each pair of connected terminals i and j execute two-party SKA protocols πij (in parallel)

to establish pairwise keys S 1ij of length `, where for each eij the pairwise key length ` «

nIpVij, Vji|Zijq ´ opnq is achievable due to [20, Theorem 1] – see also Theorem 2.11-b. In

the second round, terminals use the public channel to reconcile on one of the pairwise keys,

namely S 112. In this step, non-leaf nodes (terminals) send enough messages that enables

all terminals to calculated K “ S 112 while keeping the leakage of information to Eve to a

minimum amount.

A complete description of this SKA protocol is given in Protocol 6. In Protocol 6, without

loss of generality, we assume that terminal 2 is the only terminal connected to terminal 1;

i.e., Γp1q “ t2u. In line 15 of Protocol 6 Pathpi1 Ñ if q “ pei1i2 , ei2i3 , ¨ ¨ ¨ , eif´1if q denotes the

path from terminal i1 to if . Since G is an undirected tree, between each terminal i PM and

j P M there is always a unique path. We show in the proof of Lemma 4.5 that if pairwise

keys are pε, σq´SKs established by executing two-party SKA protocols πij, then the final key

of Protocol 6 is an p|E |ε, 2|E |σq´SK. The full proof of achievability is in Appendix 4.8.2.

Example 4.1. In the following, we revisit the example of Figure 4.1, and illustrate how

protocol 6 works. This wiretapped Tree-PIN with M “ t1, 2, 3, 4u is a simple path from

terminal 1 to terminal 4.

Protocol 6 works as follows. First, each pair of connected terminals establish pairwise

secret keys Sij by employing two-party SKA protocols πij. Then, let ` be the length of the

smallest pairwise key. All parties then keep only the first ` bits of their pairwise keys. Let

S 1ij denote the first ` bits of Sij. Note that in this example terminal 2 has two pairwise keys

tS 112, S
1
23u and terminal 3 also has two pairwise keys tS 123, S

1
34u. In the next phase of the

119



protocol, terminal 2 broadcasts F23 “ S 112 ‘ S 123 and terminal 3 broadcasts F34 “ S 123 ‘ S 134.

In the last phase, each terminal j computes the key Kj according to the following

K1 “ S 112,

K2 “ S 112,

K3 “ S 123 ‘ F23,

K4 “ S 134 ‘ F34 ‘ F23.

One can easily see that above equations imply that we have K1 “ K2 “ K3 “ K4 “ S 112.

4.3.2 Public Communication Cost of Protocol 6

The Protocol 6 is the only known protocol that achieves the WSK capacity of Tree-PIN;

however, when Z is known, it can be compared with other protocols that achieve the PK

capacity. This protocol is interactive with two rounds of public communication but does not

require omniscience. We show that the public communicate cost of Protocol 6, that is the

asymptotic rate of its public communication, is no larger than other protocols that require

omniscience for achieving the PK capacity.

Remark 4.3. Let RSKpXMq denote the minimum public communication rate required for

achieving CM
SKpPXMq. That is RSKpXMq “ mintrPCpΠq| Π achieves CM

SKpPXMqu. It was

proved in [115] that for PIN model with Vij “ Vji, we have RSKpXMq “ pm´ 2qCM
SKpPXMq.

Similarly, define RWSKpXM|Zq “ mintrPCpΠq| Π achieves CM
WSKpPXMZqu. We show that

for any wiretapped Tree-PIN, when Vij ‰ Vji, we have

RWSKpXM|Zq ď
`

ÿ

i,j

HpVij|Vjiq
˘

` pm´ 2qCM
WSKpPXMZq ď RCOpXM|Zq,

where RCOpXM|Zq is defined in Theorem 4.1. It is not known whether the left bound is

tight. When Z is known, both Protocol 6 and protocol of [21] achieve the PK capacity of
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Tree-PIN. Protocol 6 does not require achieving omniscience while protocol of [21] does. The

above inequality shows that Protocol 6 uses less public communication than the protocol of

[21] (Also see [21, Example 7]).

Proof of Remark 4.3: First we prove the first bound by noting the fact that

RWSKpXM|Zq ď rPCpΠTPq as Protocol 6 (ΠTP) achieves the WSK capacity. We now

calculate rPCpΠTPq. Protocol 6 has two rounds of public communication. In the first round

terminals agree on their pairwise keys. For each eij either Vij ´ Vji ´ Zij or Vji ´ Vij ´ Zij

holds. With an abuse of notation, assume that Vij ´ Vji ´ Zij for all eij. Then public

communication rate of the first round for each eij is given by HpVij|Vjiq [20]. Since in the

first round, pairwise keys are generated in parallel and independently, the total amount of

public communication rate of this round is given by
ř

i,j HpVij|Vjiq. In the second round, any

terminal j PM finds its unique4 neighbour j˚ that is closest to the node 1 and broadcasts

|Γpjq| ´ 1 encoded messages tFji| @i P Γpjqztj˚uu, where each message has the same length

` as the final key K. Thus, the public communication rate of the protocol 6 is

rPCpΠTPq“
ÿ

i,j

HpVij|Vjiq ` lim
nÑ8

1

n

m
ÿ

j“1

`ˆ p|Γpjq| ´ 1q

“
ÿ

i,j

HpVij|Vjiq ` lim
nÑ8

p`{nq ˆ

˜

m
ÿ

j“1

|Γpjq| ´m

¸

“
ÿ

i,j

HpVij|Vjiq ` lim
nÑ8

p`{nq p2|E | ´mq

“
ÿ

i,j

HpVij|Vjiq ` lim
nÑ8

pm´ 2q`{n,

where we used the facts that for a graph G “ pM, Eq, we have
ř

jPM |Γpjq| “ 2|E |, and for

an undirected tree with m vertexes we have |E | “ m´ 1. By ` « nmini,j IpVij;Vji|Zijq ´

opnq, and the fact that Protocol 6 achieves the WSK capacity of a Tree-PIN, namely

mini,j IpVij;Vji|Zijq, proves the first (left) inequality for any given Tree-PIN G “ pM, Eq.

4Exists because of tree structure of the variables.
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Next, we prove the second (right) inequality by showing that rPCpΠTPq ď RCOpXM|Zq.

rPCpΠTPq“
ÿ

i,j

HpVij|Vjiq ` pm´ 2qCM
WSKpPXMZq

ď
ÿ

i,j

HpVij|Vjiq ` pm´ 1qCM
WSKpPXMZq ´ C

M
WSKpPXMZq

ď
ÿ

i,j

HpVij|Vjiq `
ÿ

i,j

HpVij|Zijq ´HpVij|Vjiq ´ C
M
WSKpPXMZq

“
ÿ

i,j

HpVij|Zijq ´ C
M
WSKpPXMZq

ď HpXM|Zq ´ C
M
WSKpPXMZq

“ RCOpXM|Zq

where the last equality is due to (4.22).

4.4 Finite-length Bounds for Wiretapped Tree-PIN

Finite-length analysis of information theoretic tasks such as SKA is important in practice,

as in real-life deployment of SKA protocols the number of samples, n, accessible to each

terminal is finite. In this case, better estimations and bounds on the maximum achievable

key length (i.e., Sε,σpX
n
A|Z

nq) are desired (see Definition 4.2). In this section, we give a

finite-length upper bound, and three finite-length lower bounds for the maximum achievable

key length in a wiretapped Tree-PIN.

4.4.1 The Finite-length Upper Bound

Theorem 4.6. For any given wiretapped Tree-PIN pXM, Zq, described by PZXM, and for

every n P N, every ε, σ ą 0, with ε`σ ă 1, and any subset A ĎM, we have that Sε,σpX
n
A|Z

nq

is upper bounded by

min
i,jPM

s.t. eijPEA

!

nRij ´
a

n∆ijQ
´1
pε` σq

)

`
3

2
log n`Op1q, (4.6)
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where Rij “ IpVij;Vji|Zijq.

For the proof of Theorem 4.6 we use the Hypothesis testing upper bound of Tyagi and

Watanabe [116] which is a general single-shot bound for any wiretapped multiterminal source

model. Hayashi et al. used the upper bound of [116] to prove a finite-length upper bound

for the case of two-party SKA. To our knowledge, Theorem 4.6 is the first multiterminal

finite-length upper bound based on the Hypothesis testing upper bound.

To prove Theorem 4.6, we first recall the notion hypothesis testing and a couple of

lemmas.

The binary hypothesis testing problem is defined as follows. For a random variable X,

there are two possible distributions PX and QX . Using a test algorithm T we shall decide

between PX or QX . Let the null hypothesis be H0 “ PX . If we reject the null hypothesis PX

when the actual distribution is PX then type I error is occurred, and if we accept the null

hypothesis when the actual distribution is QX then type II error is occurred. Let βηpPX , QXq

denote the infimum of type II error probability given that type I error probability is less than

η. That is,

βηpPX , QXq “ inf
T:E1pTqďη

E2pTq,

where E1pTq “
ř

xPX PXpxqPr tRej H0|xu , and E2pTq “
ř

xPX QXpxqPr tAcc H0|xu , are

respectively the type I and type II errors of a given hypothesis testing algorithm T.

Lemma 4.7 (Hypothesis testing upper bound [116]). Given an arbitrary multiterminal

source model pXM, Zq, and any given partition P “ tP1, . . . ,Plu of M, for every ε, σ ą 0,

with ε` σ ă 1, and every 0 ă η ă 1´ ε´ σ, we have

Sε,σpXM|Zq ď
1

|P | ´ 1

„

´ log βε`σ`η
`

PXMZ , Q
P
XMZ

˘

` |P | log
1

η



,

where QP
XMZ is any probability distribution for which QP

XM|Z “ Πl
j“1QXPj |Z

holds.

Lemma 4.8 (Also see Lemma 4.1.2 of [24]). Consider a hypothesis testing problem

where PX and QX are respectively the null and alternative hypotheses. For any λ ą 0, we
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have

´ log βεpPX , QXq ď λ´ log

ˆ

PX

ˆ"

x : log
PXpxq

QXpxq
ď λ

*˙

´ ε

˙

.

Proof: Let

C “
"

x : log
PXpxq

QXpxq
ě λ

*

.

Suppose that the hypothesis testing algorithm T is such that accepts the null hypothesis PX

if the observed value x belongs to C. Also, let ε denote the type I error of test T. That is,

ε “ E1pTq “ PX

ˆ"

x : log
PXpxq

QXpxq
ă λ

*˙

“
ÿ

xPX
PXpxq1 px R Cq .

Due to the Neyman-Pearson lemma, T gives the least type II error of all tests with type I

error of at most ε. To simplify the proof, let

S “
"

x : log
PXpxq

QXpxq
ď λ

*

.

Using the Neyman-Pearson lemma we have,

PX

ˆ"

x : log
PXpxq

QXpxq
ď λ

*˙

“
ÿ

xPX
PXpxq1 px P S X Ccq `

ÿ

xPX
PXpxq1 px P S X Cq

paq

ď
ÿ

xPX
PXpxq1 px R Cq `

ÿ

xPX
2λQXpxq1 px P S X Cq

ď
ÿ

xPX
PXpxq1 px R Cq `

ÿ

xPX
2λQXpxq1 px P Cq

pbq
“ ε` 2λβεpPX , QXq,

where in (a) we use that PXpxq ď 2λQXpxq @x P S, and in (b) we use Neyman-Pearson

lemma. The proof is complete by taking logarithm from both sides of the inequality.

Theorem (Berry-Esseen, see Theorem 2.4). Let W n be an n´IID variable, and ´8 ă
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α ă 8, then
ˇ

ˇ

ˇ

ˇ

ˇ

Pr

#

n
ÿ

j“1

Wj ď nµ´ α
?

∆n

+

´Qpαq

ˇ

ˇ

ˇ

ˇ

ˇ

ď
3ρ

∆3{2
?
n
,

where µ “ E tW u ,∆ “ Var tW u , ρ “ E t|W ´ µ|3u, and Qp¨q is the tail probability of the

standard Gaussian distribution.

We now prove the upper bound of Theorem 4.6.

Proof: Denote the set of all terminals in GA by B “ MA Ď M. For SKA in the

Tree-PIN GA, lemma 4.7 implies that for an arbitrary partition P of B, we have

Sε,σpX
n
A|Zq “ Sε,σpX

n
B |Zq ď

1

|P | ´ 1

„

´ log βε`σ`η

´

PXn
BZ

n , QP
Xn

BZ
n

¯

` |P | log
1

η



. (4.7)

Fix an edge ei1j1 P EA of GA that connects nodes (terminals) i1 and j1. Cutting this edge in-

duces a partition Pi1j1 “ tP1,P2u, such that i1 P P1 and j1 P P2. By applying (4.7) and lemma

4.8, with P “ Pi1j1 , PXn
BZ

n “
ś

eij
PV nijV njiZnij , Q

P
Xn

BZ
n “ PV n

i1j1
|Zn
i1j1
PV n

j1i1
Zn
i1j1

ś

eij‰ei1j1
PV nijV njiZnij ,

and η “ 1?
n
, we get

Sε,σpX
n
A|Zq ď λ´ log

¨

˝Pr

$

&

%

log
PXn

BZ
n

Q
Pi1j1
Xn

BZ
n

ď λ

,

.

-

´ ε´ σ ´
1
?
n

˛

‚` log n. (4.8)

Let

θn “
2
?
n
`

3ρi1j1

∆
3{2
i1j1
?
n
,

where

∆ij “ Var

"

log
PVijVji|ZpVij, Vji|Zq

PVij |ZpVij|ZqPVji|ZpVji|Zq

*

,

and

ρij “ E

#

ˇ

ˇ

ˇ

ˇ

log
PVijVji|ZpVij, Vji|Zq

PVij |ZpVij|ZqPVji|ZpVji|Zq
´ IpVi1j1 ;Vj1i1 |Zq

ˇ

ˇ

ˇ

ˇ

3
+

.

By choosing

λ “ nIpVi1j1 ;Vj1i1 |Zq ´
a

n∆i1j1Q
´1
pε` σ ` θnq,
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and by the Berry-Esseen theorem we get

Pr

$

&

%

log
PXn

BZ
n

Q
Pi1j1
Xn

BZ
n

ď λ

,

.

-

“ Pr

#

log
PV n

i1j1
V n
j1i1

Zn
i1j1

PV n
i1j1
|Zn
i1j1
PV n

j1i1
Zn
i1j1

ď λ

+

“ Pr

#

log
PV n

i1j1
V n
j1i1
|Zn

PV n
i1j1
|ZnPV n

j1i1
|Zn

ď λ

+

ě ε` σ `
2
?
n
.

Note that E
!

log
PVijVji|ZpVij ,Vji|Zq

PVij |ZpVij |ZqPVji|ZpVji|Zq

)

“ IpVij;Vji|Zq. Applying the above inequality in

(4.8) gives

Sε,σpX
n
A|Zq ď nIpVi1j1 ;Vj1i1 |Zq ´

a

n∆i1j1Q
´1
pε` σ ` θnq ´ log

ˆ

1
?
n

˙

` log n.

By using Taylor approximation of Qp¨q to remove θn we get

Sε,σpX
n
A|Zq ď nIpVi1j1 ;Vj1i1 |Zq ´

a

n∆i1j1Q
´1
pε` σq `

3

2
log n`Op1q,

that holds for any edge ei1j1 of GA. The proof is complete by minimizing over all ei1j1 ’s.

4.4.2 Finite-length Lower Bounds

The achievability (lower) bounds are based on variations of the SKA protocol that achieves

the WSK capacity of wiretapped Tree-PIN given in Theorem 4.3. This protocol has two

main steps. In the first step, each pair of connected terminals i and j (i.e., eij P E) preform

a two-party SKA protocol to obtain a pairwise secret key. For this task, terminals can use,

for example, the two-party SKA protocols 4 or 5 – see also [19, 20, 31–33]. In the second

step, terminals use their pairwise keys and public communication to agree on the final shared

secret key. See the details of this SKA protocol in Appendix 4.8.2.

For the case of two-party SKA, Hayashi et al. [31] proved that for a given source model
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pVij, Vji, Zijq, if Vij ´ Vji ´ Zij, and for every n P N and ε, σ ą 0, with ε` σ ă 1, we have

Sε,σpV
n
ij , V

n
ji |Z

n
ijq “ nRij ´

a

n∆ijQ
´1
pε` σq ˘Oplog nq,

where Sε,σp¨q denotes the maximum achievable key length,

∆ij “ Var

"

log
PVijVji|ZijpVij, Vji|Zijq

PVij |ZijpVij|ZijqPVji|ZijpVji|Zijq

*

,

Rij “ IpVij;Vji|Zijq is the two-party WSK capacity of pVij, Vji, Zijq, and Qp¨q is the tail

probability of the standard Gaussian distribution. This second-order approximation of the

key length is achievable by the interactive protocol of [31]. Sharifian et al. [32] gave also

two finite-length approximations corresponding to a one-way two-party SKA protocol. See

Chapter 3, Section 3.4, Protocol 4. One-way SKA protocols are more efficient in terms of the

public communication than the interactive construction of [31], while in finite-length regime,

the SKA protocol of [31] is closer to the two-party capacity (Rij) than the SKA protocol

of [32]. However, by a numerical example in Section 4.2 we illustrate that the lower bound

that is based on [32] can be very close to the lower bound which is based on [31].

By using the SKA protocols of [31] and [32] in the first step of our SKA protocol for

obtaining pairwise keys, we prove the following lower bounds for wiretapped Tree-PIN.

Proposition 4.9 (Lower bounds). For any given wiretapped Tree-PIN, described by PZXM,

and for every n P N, every ε, σ ą 0, with ε` σ ă 1, and any subset A ĎM, we have

Sε,σpX
n
A|Z

n
q ě F1pX

n
A|Z

n
q ´

11

2
log n`Op1q (4.9)

Sε,σpX
n
A|Z

n
q ě F2pX

n
A|Z

n
q ´ log n`Op1q (4.10)

Sε,σpX
n
A|Z

n
q ě F3pX

n
A|Z

n
q ´ log n`Op1q (4.11)
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where

F1pX
n
A|Z

n
q “ min

i,jPM
s.t. eijPEA

"

nRij ´
a

n∆ijQ
´1
p
2ε` σ

2|EA|
q

*

,

F2pX
n
A|Z

n
q “ min

i,jPM
s.t. eijPEA

"

nRij ´Q
´1
p
ε

|EA|
q

b

n∆1
ij ´Q

´1
p
σ

2|EA|
q

b

n∆2
ij

*

,

F3pX
n
A|Z

n
q “ min

i,jPM
s.t. eijPEA

tnRiju ´
?

2n logp|X | ` 3qp

c

log
|EA|
ε
`

c

log
2|EA|
σ
q,

with Rij “ IpVij;Vji|Zijq, ∆1
ij “ Var

 

´ logPVij |Vji
(

, ∆2
ij “ Var

 

´ logPVij |Zji
(

, and |EA| is

the number of edges in the sub-tree GA.

For Theorem 4.9 we note that according to the proof of Theorem 4.3, obtaining pairwise

pε, σq´SKs leads to a finial p|EA|ε, 2|EA|σq´SK. Thus, for all of the above achievability (lower)

bounds, parties first establish pairwise p ε
|EA|

, σ
2|EA|

q secret keys, and then use Protocol 6 to

agree on the final key. None of the bounds require omniscience. Lower bound of (4.9) is

based on Protocol 6 which uses the two-party protocol of [31] for generating pairwise keys,

and lower bounds in (4.10) and (4.11) are based on Protocol 6 when the one-way two-party

protocol of [32] (Protocol 4) is used for pairwise key generation. Lower bounds in (4.9) and

(4.10) assume that samples are IID and lower bound of (4.11) only assumes that samples are

independent (and not necessarily IID.) The full proof of Theorem 4.9 is given in Appendix

4.8.3.

Note that the second-order terms (in Op
?
nq) of the upper and lower bounds do not

match. Finding tighter bounds with matching second-order terms is an interesting open

problem.

Example 4.2. The following numerical example compares the finite-length bounds given in

(4.6) and (4.9)-(4.11). Consider a source model with m “ 3 terminals, M “ t1, 2, 3u, and

A “M. LetX1 “ pV12, V13q such that V1j’s are binary uniform variables. Also for p, q P p0, 1q

and for j P t2, 3u, let Xj “ Vj1 “ BSCppV1jq and Z1j “ BSCqpVj1q. Here, BSCpp¨q denotes
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Figure 4.3: Comparing finite-length bounds of the example in Section 4.2. Here, m “ 3,
ε “ σ “ 0.05, and the WSK capacity is 0.502. Lower bound of (4.9) is the tightest lower
bound and is by Protocol 6 if the two-party interactive SKA of [31] is used for pairwise
key generation. Lower bounds in (4.10) and (4.11) are based on Protocol 6 if the two-party
one-way SKA protocol of [32] (Protocol 4) is used for pairwise key generation.

a binary symmetric channel with crossover probability of p. For this example, the WSK

capacity is CWSK “ h2pp ˚ qq ´ h2ppq, where p ˚ q “ pp1´ qq ` p1´ pqq, and h2 is the binary

entropy given by h2ppq “ ´p log p ´ p1 ´ pq logp1 ´ pq. Consider, p “ 0.0093, q “ 0.13,

and ε “ σ “ 0.05. Then, CWSK “ 0.502, and the finite-length approximations of (4.6) and

(4.9)-(4.11) calculated for this example are depicted in Figure 4.3 for n P r2000, 20000s. The

bounds are converted to rate (both sides are divided by n) to show the gap to the WSK

capacity. Note that (4.9) is the tightest lower bound. Though, we also observe that (4.10)

is very close to (4.9).
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4.4.3 A Lower Bound for a Special Case

In this section, we consider the wiretapped Tree-PIN with Vij “ Vji that is studied in [34]. For

this case, it was proved that the WSK capacity is CA
WSKpPXMZq “ min i,jPM

s.t. eijPEA
HpVij|Zijq

[34]. We use the lower bound in [86, Theorem 1], and give the following finite-length lower

bound for Sε,σpX
n
A|Z

nq.

Proposition 4.10. For wiretapped Tree-PIN pXM, Zq described by PZXM, with Vij “ Vji

and for every n P N, every ε, σ ą 0, with ε` σ ă 1, and any subset A ĎM, we have

Sε,σpX
n
A|Z

n
q ě F4pX

n
A|Z

n
q ´

1

2
log n`Op1q, (4.12)

where

F4pX
n
A|Z

n
q “ min

i,jPM
s.t. eijPEA

"

nRij ´

b

n∆2
ijQ

´1
p
σ

2|EA|
q

*

,

Rij “ HpVij|Zijq, ∆2
ij “ Var

 

´ logPVij |Zji
(

, and |EA| is the number of edges of GA.

Note that (4.12) does not depend on ε as the reconciliation phase is not required for

obtaining pairwise keys, and for ε “ 0, the lower bounds in (4.9) and (4.12) are equal up to

their second-order term. The proof is in Appendix 4.8.3.

4.5 Extended Models

In this section, we extend our capacity result of wiretapped Tree-PIN. While doing so, we

compare our results with some important related previous works. We give an upper and a

lower bound for the WSK capacity of wiretapped PIN, which is a generalization of the bounds

given in [60] for (non-wiretapped) PIN. More importantly, these bounds lead to capacity

results for the case wiretapped PIN when A “ M or |A| “ 2. We then, review the notion

of wiretapped Markov Trees which was introduced in [21]. The WSK capacity of wiretapped

Markov Trees is an open problem. We show that a wiretapped PIN is a wiretapped Markov
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Tree but the converse is not true. Thus, Theorem 4.3 resolves the capacity problem for

a large class of wiretapped Markov Trees – i.e., wiretapped PIN. Moreover, we show that

Theorem 4.3 can be extended furthermore and gives WSK capacity for an even larger class

of wiretapped Markov Trees. Finally, we consider the case when in a wiretapped PIN there

is a non-cooperative compromised terminal. For this case we show that WSK capacity is

equal to the PK capacity of the same wiretapped PIN in which the compromised terminal

is cooperative. In fact, this result generalizes Proposition 4.1 of [60].

4.5.1 WSK Capacity of Wiretapped PIN

For the case of wiretapped PIN (as defined in 4.4), we give a lower bound and an upper on

the WSK capacity. These bounds are tight for the special cases of A “ M and |A| “ 2.

Finding the WSK capacity of a wiretapped PIN as defined in Definition 4.4 for any given A

remains an open problem.

Proposition 4.11. For any given wiretapped PIN pXM, Zq, described by G “ pM, Eq and

PZXM, and for any A ĎM, let Rij “ IpVij;Vji|Zijq, then we have

CA
WSKpPXMZq ď min

P

ˆ

1

|P | ´ 1

˙

»

—

—

–

ÿ

iăj s.t.
pi,jq crosses P

Rij

fi

ffi

ffi

fl

,

where the minimization is over all partitions of M such that for every part of the partition

there exists a node in that part that is also in A. In a partition P a pair of nodes pi, jq

crosses P, if i and j are in different parts of P.

Proof: The proof goes along the same lines as the proof in [21, Example 4]. According

to Lemma 4.2 we know CA
WSKpPXMZq ď C

A|tm`1u
PK pPXMZq, and for any B ĂM we have

ÿ

jPB
Rj ě

ÿ

iăj
s.t. eijPEB

HpVij, Vji|Zijq `
ÿ

iăj
s.t. iPB,jRB

HpVij|Vji, Zijq. (4.13)
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Consider a partition P “ tB1, . . . , B|P|u of M. Then, corresponding to each part of P we

have

ÿ

jPBck

Rj ě HpXM|Zq ´
ÿ

iăj
s.t. eijREBk

HpVij, Vji|Zijq `
ÿ

iăj
s.t. pi,jq crosses tBk,Bcku

HpVij|Vji, Zijq.

By adding all |P | inequalities, and remembering the fact thatHpVij, Vji|Zijq “ HpVij|Vji, Zijq`

HpVji|Vij, Zijq ` IpVij;Vji|Zijq, we get

p|P | ´ 1q
ÿ

jPM
Rj ě |P |HpXM|Zq ´

|P|
ÿ

k“1

ÿ

iăj
s.t. eijREBk

HpVij, Vji|Zijq `
ÿ

i,j
s.t. pi,jq crosses P

HpVij|Vji, Zijq.

“ p|P | ´ 1qHpXM|Zq ´
ÿ

iăj s.t.
pi,jq crosses P

IpVij;Vji|Zijq,

which implies,

RCOpXA|Zq ě HpXM|Zq ´
1

|P | ´ 1

ÿ

iăj s.t.
pi,jq crosses P

IpVij;Vji|Zijq,

and thus due to Theorem 4.1

C
A|tm`1u
PK pPXMZq ď

1

|P | ´ 1

ÿ

iăj s.t.
pi,jq crosses P

IpVij;Vji|Zijq.

Which is also an upper on the WSK capacity CA
WSKpPXMZq.

We show that the Steiner tree packing methods of [60] for key agreement, leads to the

following lower bound on the WSK capacity of PIN. A Steiner tree of G for terminals of A

is a subtree of G that spans (connects) all terminals in A. A family of edge-disjoint Steiner

trees is called a Steiner tree packing [117]. We show that for each family with ` Steiner trees,

a secret key of length ` can be generated. Let µpG,Aq denote the maximum cardinality of

such family. Therefore, for a general wiretapped PIN we have the following.
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Proposition 4.12. The WSK capacity of a wiretapped PIN pXM, Zq defined by G “ pM, Eq

and PZXM for any A ĎM is lower-bounded by

CA
WSKpPXMZq ě sup

nPN

1

n
µpGn,Aq,

where N is the set of n’s such that nIpVij;Vji|Zijq for any pi, jq is integer-valued and for

each n, we define a multigraph Gn “ pM, Enq such that for any eij P E of G there exists

nIpVij;Vji|Zijq edges between nodes i and j in En.

Proof: For a given n P N , each pair of connected nodes pi, jq establish a pairwise key

Sij of length approximately equal to nIpVij;Vji|Zijq. There exists a Steiner tree packing with

cardinality µpGn,Aq; thus, for any Steiner tree of this Steiner packing, the terminals in A

can establish one bit of shared secret key due to Theorem 4.3. Thus, the asymptotic SK rate

is supnPN
1
n
µpGn,Aq. Let pairwise keys Sij be all pεn, σnq-SK’s such that εn, σn P Op2´nq.

We prove that the final key K is an ε1n, σ
1
n-SK such that limnÑ8 ε

1
n “ limnÑ8 σ

1
n “ 0. The

reliability of the final key follows similar to the proof of Theorem 4.3, and ε1n “ |E |εn. The

security of the final key is as follows. By Corollary 2.1.1 each bit of pairwise keys is also σn

secure. By Lemma 4.5 each bit of the final key is 2pm´ 1qσn secure, and by Corollary 2.1.3

the final key is σ1n “ 2pm ´ 1qplog |K|qσn secure5. Since we chose εn, σn P Op2´nq, we have

limnÑ8 ε
1
n “ limnÑ8 σ

1
n “ 0.

Corollary 4.12.1. For the special case of A “ M or |A| “ 2, the problem of calculating

µpGn,Aq is efficiently solvable [117]; rendering the above lower bound of Preposition 4.12

achieving the upper bound of Preposition 4.11 if A “M or |A| “ 2.

Proof: It has been proven [117, See Menger’s theorem in Section 3.3] that When

|A| “ 2 then the problem of maximal Steiner Tree Packing in multigraph Gn “ pM, Enq

will reduce to the problem of finding maximum number of edge-disjoint paths connecting

5We note that one can use our techniques presented in the security part of the proof of Lemma 4.5 to show
a tighter secrecy bound, that is σ1n “ 3|E |σn, without requiring σn to decay exponentially in n. However,
the presented proof here is more straightforward and suffices for the capacity results in Corollary 4.12.1.
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the two terminals in A. Thus, for any multigraph Gn “ pM, Enq and any arbitrary subset

A ĎM with |A| “ 2 we have

µpGn,Aq “ min
BĹM

s.t. AĘB

|teij P En|pi, jq crosses P “ tB,Bcuu| .

Therefore, we will have the following lower bound.

CA
WSKpPXMZq

paq

ě sup
nPN

1

n
µpGn,Aq

pbq
“ min

BĹM
s.t. AĘB

»

—

—

–

ÿ

iăj s.t.
pi,jq crosses P“tB,Bcu

IpVij;Vji|Zijq

fi

ffi

ffi

fl

pcq
“ C

A|tm`1u
PK pPXMZq,

where (a) is due to Corollary 4.12, (b) is due to Menger’s Theorem, and (c) is due to

Lemma 4.11. This proves the tightness of the bound in Corollary 4.12 for |A| “ 2.

For the special case of A “ M, in the problem of maximal Steiner Tree Packing in

multigraph Gn “ pM, Enq the exact value of µpGn,Mq is known due to the Tutte/Nash-

Williams Theorem [117, Section 3.5], which is

µpGn,Mq “ min
P

t
|teij P En|pi, jq crosses Pu|

|P | ´ 1
u.

Therefore, we have

CM
WSKpPXMZq

paq

ě sup
nPN

1

n
µpGn,Mq

pbq
“ min

P

ˆ

1

|P | ´ 1

˙

»

—

—

–

ÿ

iăj s.t.
pi,jq crosses P

IpVij;Vji|Zijq

fi

ffi

ffi

fl

,

pcq
“ C

M|tm`1u
PK pPXMZq,
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3 4

Eve

V12V21

Z12

V23

V32

Z23

V43V34

Z34

V41

V14

Z14

Figure 4.4: The wiretapped PIN of Example 4.3. Here we have 4 terminals, M “ A “

t1, 2, 3, 4u and the connectivity graph is given by G “ pM, Eq, where E “ te12, e23, e34, e41u.
Terminals variables are X1 “ pV12, V14q, X2 “ pV21, V23q, X3 “ pV32, V34q, and X4 “ pV41, V43q.
Eve’s side information is Z “ pZ12, Z23, Z34, Z41q, where the following Markov relations hold:
V12 ´ V21 ´ Z12, V32 ´ V23 ´ Z23, V34 ´ V43 ´ Z34, and V41 ´ V14 ´ Z14.

where (a) is due to Corollary 4.12, (b) is due to Tutte/Nash-Williams Theorem, and (c) is

due to Lemma 4.11. This proves the tightness of the bound in Corollary 4.12 for A “ M.

Example 4.3. To illustrate the result of Corollary 4.12.1, we give the following simple

example. Let m “ 4, and A “ M “ t1, 2, 3, 4u and assume that G “ pM, Eq is a square

as depicted in Figure 4.4. We also assume that for any eij P E , Vij ´ Vji ´ Zij, such that

Rij “ IpVij;Vji|Zijq “ 1{2. According to Corollary 4.12.1 and Preposition 4.11, for this

example we have

CM
WSKpPXMZq “

1

3

ÿ

pi,jq crosses P

Rij “
2

3
,

where the minimizing partition is P “ tt1u, t2u, t3u, t4uu. To see how the Steiner tree

packing method attains this WSK capacity, we first note that if according to each edge

eij P E , terminals have obtained pairwise SKs of length 3 bits, then a group secret key of

length 4 bits can be generated. The reason is that, G3 “ pM, E3q of the square can be
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decomposed by 4 edge-disjoint trees, and corresponding to each tree one bit of group SK can

be generated. This Steiner tree packing is demonstrated in Figure 4.5.

Recall that for any large enough n, each pair of connected terminals can obtain pairwise

keys of length `ijpnq « n ˆ Rij “ n{2 for all eij P E . Thus, for any n we find a and b such

that `ijpnq “ 3ˆ b` a, and thus the final group key will have length of `pnq “ 4ˆ b` a. As

nÑ 8, we will have `pnq{nÑ 2{3, that is the WSK capacity given by Preposition 4.11.

4.5.2 Comparison with Wiretapped Markov Trees and Generaliz-

ing Wiretapped Tree-PIN

As examples of the general source model, Csiszár and Narayan introduced the notion of

Markov chain on a tree and its wiretapped analogue. We first define the notion of Markov

chain on a tree (or Markov Tree in short) as defined in [21].

Definition 4.5 (Markov Tree). Let M “ rms be a set of m terminals, and let G “ pM, Eq

be an undirected tree. Note that for any eij P E we can partition M into two sets Bi and Bj

such that M “ BiYBj, i P Bi, and j P Bj. A source model PXM forms a Markov chain on G

if for any eij P E we have Pr
 

Xi|XBj
(

“ Pr tXi|Xju . A special case of such source models

is the case when we have X1 ´X2 ´X3 ´ ¨ ¨ ¨ ´Xm.

For any Markov Tree described by PXM , it is proved that

CA
SKpPXMq “ min

i,jPM
s.t. eijPEA

IpXi;Xjq, (4.14)

= + + +

Figure 4.5: Steiner packing of G3 into 4 edge-disjoint trees.
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where GA “ pMA, EAq is the smallest subtree connecting all nodes of A. See Example 7,

Equation (36) of [21]. The same equation also holds for any given non-wiretapped Tree-PIN

– that is implied by Theorem 4.3 when Z “ constant. In fact we observe that any Tree-PIN

is also a Markov Tree but the converse is not true.

Next, we define the notion of wiretapped Markov chain on a Tree (or wiretapped Markov

Tree for short), which was defined first in [21].

Definition 4.6 (Wiretapped Markov Tree). Consider a model PZXM where M “ rms

is the set of m terminals and Z is Eve’s side information. If Z is of the form Z “

tZ1, Z2, . . . , Zmu then we can define an auxiliary model as follows. Let M1 “ tm`1, . . . , 2mu

be the set of m dummy terminals. Let terminals in M have access to RVs Xj for all j PM,

and let dummy terminals in M1 have access to RVs Zj´m for all j P M1. Thus the prob-

ability distribution of the auxiliary model defined over M “ M YM1 “ t1, 2, . . . , 2mu, is

PXMZM “ PXMZ . Any wiretapped SKA model with distribution PXMZ is called a wiretapped

Markov chain on a Tree if, Eve’s side information Z is of the form Z “ tZ1, Z2, . . . , Zmu

such that Pr tZM|XMu “ ΠjPMPr tZj|Xju, and if its corresponding auxiliary model defined

over M “ t1, 2, . . . , 2mu forms a Markov chain on a tree (according to definition 4.5). See

an example of such model in the figure 4.6 below.

1 2

3

4 5

6

X1 X2

X3

Z1 Z2

Z3

Figure 4.6: A simple wiretapped Markov Chain on a Tree with three terminals. Here,
the terminals variables X1, X2, X3 and Eve’s side information components Z1, Z2, Z3 form a
Markov Tree. The WSK capacity of this model is still unknown.

Unfortunately, for the wiretapped Markov Tree model defined in definition 4.6, where

137



all terminals are wiretapped, the WSK capacity is not known6, even for the special case

when m “ 2 (see Figure 4.7 below). The WSK capacity is proved [22] for wiretapped

Markov Trees where only one terminal (say terminal 1) is wiretapped, that is Z “ Z1 and

Zj “ constant @j ‰ 1.

1 23 4

X1 X2Z1 Z2

Figure 4.7: A simple wiretapped Markov Chain on a Tree with two terminals. Here, the
terminals variables and Eve’s side information satisfy the Markov relation of Z1´X1´X2´Z2.
The WSK capacity of this model is still unknown.

We observe that every wiretapped Tree-PIN is a wiretapped Markov Tree but the converse

is not true. Even though the WSK capacity is not known for all wiretapped Markov Trees,

Theorem 4.3, proves the WSK capacity for a large subset of wiretapped Markov Trees. For

the special case of m “ 2 our wiretapped Tree-PIN model and our main result reduces to

the well-known case of X1 ´X2 ´ Z [19, 20], where X1 “ V12, X2 “ V21, and Z “ Z12.

We can extend our model of wiretapped Tree-PIN and obtain a generalized version of

Theorem 4.3. In this case for each pair of connected terminals i and j we assume two sets

of correlated variables pV a
ij , V

a
ji, Z

a
ijq and pV b

ij, V
b
ji, Z

b
jiq.

Definition 4.7 (General Wiretapped Tree-PIN). A set of m terminals form a “General

Wiretapped Tree-PIN” if there exists a tree G “ pM, Eq with M “ rms such that the RV

of any terminal j P M can be represented by Xj “ pV
θ
ji| i P Γpjq, θ P ta, buq, where Eve’s

side information is of the form Z “ pZθ
ij, i P M, j P M, θ P ta, buq and all pairs of RVs in

tpV θ
ij , V

θ
ji, Z

θ
ijq| θ P ta, bu, i ă j and eij P Eu are mutually independent, such that V θ

ij´V
θ
ji´Z

θ
ij

for all i, j PM and any θ P ta, bu.

Note that any general wiretapped Tree-PIN is a wiretapped Markov Tree, but the converse

is not true.

6In [21] the authors mistakenly claim to prove the WSK capacity of all wiretapped Markov Trees. See
the remark after Theorem 5.1 in [22].
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1 2E E

V a12 V a21 Za12

V b12 V b21Zb12

Figure 4.8: A general wiretapped Tree-PIN with two terminals. Here both terminals labeled
“E” represent the adversary Eve. Since the Markov relations V a

12´V
a

21´Z
a
12 and V b

21´V
b

12´Z
b
12

hold, we have Za
12 ´ V1 ´ V2 ´ Z

b
12 which resembles the Markov relation in the Markov Tree

example of Figure 4.7.

Example 4.4. For the two-party SKA, the general wiretapped Tree-PIN model of definition

4.7 reduces to a case where both terminals are wiretapped. See figure below.

For this case we prove that

CWSKpPX1,X2,Zq “ IpV a
12;V a

21|Z
a
12q ` IpV

b
12;V b

21|Z
b
12q. (4.15)

Proof of Equation 4.15: The achievablity follows directly from Lemma 4.5 applied

two times, once for θ “ a and once for θ “ b. The converse follows from lemma 4.2 and

Theorem 4.1. That is

CWSKpPX1,X2,Zq ď CPKpPX1,X2,Zq

“ HpV a
12, V

a
21|Z

a
12q `HpV

b
12, V

b
21|Z

b
12q ´RCOpX1, X2|Zq

“ HpV a
12, V

a
21|Z

a
12q ´HpV

a
12|V

a
21, Z

a
12q ´HpV

a
21|V

a
12, Z

a
12q

`HpV b
12, V

b
21|Z

b
12q ´HpV

b
12|V

b
21, Z

b
12q ´HpV

b
21|V

b
12, Z

b
12q

“ IpV a
12;V a

21|Z
a
12q ` IpV

b
12;V b

21|Z
b
12q.

Note that the two-party SKA model of Figure 4.7 is more general than the model in

Figure 4.8. The WSK capacity of the model of Figure 4.7 is still unresolved, while for the

case of general wiretapped Tree-PIN models, including the model of Figure 4.7 can be proved.

Moreover, it is easy to see that the following holds – the proof follows the same argument of
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the proof of Theorem 4.3 with considering the independence of (a) and (b) variables.

Proposition 4.13 (WSK capacity of general wiretapped Tree-PIN). The WSK ca-

pacity of a given general wiretapped Tree-PIN pXM, Zq, defined as in Definition 4.7, for any

subset A ĎM is

CA
WSKpPXMZq “ min

i,jPM
s.t. eijPEA

IpV a
ij ;V

a
ji|Z

a
ijq ` IpV

b
ij;V

b
ji|Z

b
ijq, (4.16)

where GA “ pMA, EAq is the smallest subtree connecting all nodes of A.

Note that Preposition 4.13 generalizes Theorem 4.3 as it implies the case of Theorem 4.3

when θ P tau.

4.5.3 The Case of a Non-cooperative Compromised Terminal

Consider a wiretapped PIN defined by G “ pM, Eq. Recall that terminals RVs are defined

by Xj “ pVji| i P Γpjqq. Furtherer assume that one terminal (denoted by D “ tdu) is

compromised and is not cooperating with the SKA. Thus, Eve’s side information is given by

Z “ pZjk| ejk P Eq and XD. The following theorem gives the secrecy capacity of this model,

which we denote by CW pGq for simplicity.

Proposition 4.14. For a given wiretapped PIN defined by G “ pM, Eq with a non-cooperative

compromised terminal denoted by D “ tdu, define the following associated model. Let

G̃ “ pM̃, Ẽq, where M̃ “ MzD and Ẽ “ Eztedj| j P Γpdqu. Eve’s side information of

the associated model is also defined by Z̃ “ pZjk| ejk P Ẽq. Then CW pGq “ CW pG̃q where

CW pG̃q is the WSK capacity of the associated wiretapped PIN model.

Proof: The proof follows along the same line as for the proof of Proposition 4.1 of

[60]. We show that

CW pG̃q
(a)

ď CW pGq
(b)

ď CP pGq
(c)

ď CW pG̃q,
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where CP pGq denoted the secrecy capacity of model G when compromised terminal is coop-

erative. To prove (a) we argue that a secrete key for model G̃ also constitutes a valid secret

key for model G. Let Z “ pZ̃, Zd, Xdq where Zd “ pZdj| j P Γpdqq. Let K be secrete key

established for model G̃ by public communication F By the independence of pZd, Xdq from

pK,F, Z̃q and due to corollary 2.1.2, we have

SDppK,F, Zq, pU,F, Zqq “ SDppK,F, Z̃q, pU,F, Z̃qq,

which completes the proof of (a). Relation (b) is due to Lemma 4.2 and to prove (c) we

show that a secret key based on the protocol that achieves CP pGq can be used to generate

key for model G̃. In model G̃ one terminal, e.g., terminal 1, can use local randomization and

simulate Xn
d (since the source distribution is assumed to be known) and reveal it via public

communication. Then all terminals can independently simulate their correlated RVs with

respect to the compromised terminal d. Therefore, a model is simulated (or emulated) by

terminals such that terminal d is compromised and its RV is revealed. Thus, the protocol

that achieves CP pGq can be executed for SKA. Hence, CP pGq constitutes a lower bound for

CW pG̃q.

The above results can be regarded as a generalization for Proposition 4.1 of [60] in which

pZjk| ejk P Eq “ constant.

4.6 Need for Interaction in Source Model SKA

Let NPC denote the number of public communication rounds of an SKA protocol. For

noninteractive SKA protocols we have NPC “ 1, and for interactive ones NPC ą 1. For two-

party SKA in source model, considering the key capacity achieving protocols that use at least

use one public message, the following three types of interactions have been studied [20, 31, 93].

(We note that, as shown in [118, 119], for two-party non-wiretapped source model, achieving

the maximum rate of common randomness extraction requires public communication, and
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two-party SK capacity CSK “ IpX1;X2q in general is not achievable without using at least

a single public message.)

First, is “one-way” in which only one party (terminal 1, or Alice) sends a public message

to the other party (terminal 2, or Bob). Second, is when each party sends a single public

message that is independent of other parties’ message. Both these are noninteractive. The

third type is “interactive” SKA where NPC ą 1 and in each round, each terminal (party)

sends a single message that is a function of the terminal’s private samples and previous pub-

lic messages, and is independent of the other message in the same round. The next round

begins when all sent public messages are received by all terminals. See Figure 4.9. The

general key capacity of an adversarial model SK, PK, or WSK upper bounds the noninter-

active key capacity of the model, and in general we have CÑXK ď CNI
XK ď CXK , where CÑXK

denotes the one-way key capacity, CNI
XK denotes noninteractive key capacity, CXK denotes

the key capacity when interaction is allowed, and XK P tSK,PK,WSKu. In the following,

we review previous results obtained regarding the required interaction to achieve the key

capacity.

Two-party SKA. Ahlswede and Csiszár showed that both two-party SK and PK capaci-

ties can be achieved with one-way SKA [20, Preposition 1 and Theorem 3]. That is,

pwhen m “ 2q
CÑSK “ CNI

SK “ CSK

CÑPK “ CNI
PK “ CPK

. (4.17)

A single-letter characterization of two-party one-way WSK capacity was derived in [20],

where the corresponding one-way capacity achieving SKA protocol is showed to also achieve

the general WSK capacity if the Markov condition X1 ´X2 ´ Z holds [20, Theorem 1 and

its Corollary]. That is,

pwhen m “ 2 and X1 ´X2 ´ Zq CÑWSK “ CNI
WSK “ CWSK . (4.18)
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1 2

Alice Bob

One-way SKA

t “ 1

End of Public Communication

NPC “ 1

F “ F1

1 2

Alice Bob

Noninteractive SKA

t “ 1

End of Public Communication

NPC “ 1

F “ pF11, F12q

1 2

Alice Bob

Interactive SKA

t “ 1

t “ 2

t “ 3

...

t “ NPC

End of Public Communication

NPC ą 1

F “ pF1, F2, . . . , FNPCq

Figure 4.9: Three levels (modes) of interaction for two-party SKA. Note that one-way SKA
is an special case of the general noninteractive SKA.

An example is given in [93, Section V, Proof of Theorem 7] for which the one-way WSK

capacity is strictly less than the WSK capacity which can be achieved by a noninteractive

SKA where both Alice and Bob each send one public message to each other. See also

Example 4.4 which is similar to the example given in [93]. This result, proves that in general

there is a non-zero gap between the one-way and general WSK capacities, i.e.,

pwhen m “ 2q CWSK ´ C
Ñ
WSK ą 0. (4.19)

See the source model of Fig.1 and the last part of the proof for Theorem 7 in [93] for the

proof. In other words, one-way SKA is not sufficient to achieve the two-party WSK capacity.

Multiterminal SKA. Extending the statements of (4.17), Csiszár and Narayan showed

that for multiterminal SKA, the SK and PK capacities can be achieved noninteractively [21,

Theorems 1 and 2]. The best known general lower bound for multiterminal WSK capacity is
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1 2 3

E

V12 V21 V32V23

Z12 Z23

Figure 4.10: The Tree-PIN model of Example 4.5. Here X1 “ V12, X2 “ pV21, V23q, X3 “ V32,
and Eve’s wiretapped side information is Z “ pZ12, Z23q.

the interactive lower bound of [93]. For special cases of Tree-PIN model, WSK capacity can

be achieved noninteractively [34, 104]. In this chapter, we gave an interactive SKA protocol

(with NPC “ 2) that achieves the WSK capacity of Tree-PIN sources with independent

leakages. However, it remains unknown if interaction is required for achieving the WSK

capacity in general.

To investigate if there is a non-zero gap between the general multiterminal WSK capacity

and the noninteractive WSK capacity, it is sufficient to know expressions for both capacities

at least for a special class of multiterminal source models. For Tree-PIN, we proved an

expression for WSK capacity, but the noninteractive WSK capacity of Tree-PIN is not known.

In the following, we use a specific example of a Tree-PIN source model (see Figure 4.10) to

show that there is a non-zero gap between the WSK capacity and the highest key rate of

known noninteractive SKA methods. We prove a lower bound on the noninteractive WSK

capacity of this example source model which is strictly less than the WSK capacity. However,

we leave the problem of tightening (or closing) this gap for future work.

Example 4.5. Consider the wiretapped Tree-PIN source model of Figure 4.10. In this

setting, M “ t1, 2, 3u, X1 “ V12, X2 “ pV21, V23q, X3 “ V32, and Eve’s wiretapped side

information is Z “ pZ12, Z23q, and the Markov relations V12 ´ V21 ´ Z12 and V32 ´ V23 ´ Z23

hold. Further, assume IpV21;Z12q, IpV23;Z23q ą 0. When A “M, the WSK capacity of this

144



model is given by Theorem 4.3 as

CWSK “ mintIpV12;V21|Z12q, IpV23;V32|Z23qu.

We prove the following lower bound on the noninteractive WSK capacity of this model

CNI
WSK ě rNIL :“ HpX2|Zq ´maxtHpX2|X1q, HpX2|X3qu, (4.20)

which is less that the general WSK capacity, i.e.,

CWSK ´ r
NI
L ą 0. (4.21)

Proof of Inequalities (4.20) and (4.21): We first calculate the noninteractive lower

bound rNIL of (4.20), by considering Protocol 7 (Πa
E5). The key rate of this protocol immedi-

ately follows from the source coding Theorem 2.6 and the generalized privacy amplification

Lemma 2.13.

The noninteractive Protocol 7 (Πa
E5), is in the style of one-way SKA and the SKA protocol

of [93] in which some terminals participate in public discussion and some don’t (are silent.)

Protocol 7 works as follows. Terminal 2, sends a public message such that terminal 1 and

terminal 3 can recover Xn
2 . Using the common randomness Xn

2 all terminals extract their

copies of the final key by using universal hashing.

The asymptotic key rate of this protocol can be calculated using Lemma 2.13 as

rKpΠ
a
E5q

(a)
“ HpX2|Zq ´min

F2

lim
nÑ8

1

n
log supppF2q

(b)
“ HpX2|Zq ´maxtHpX2|X1q, HpX2|X3qu,

where (a) follows from the fact that the common randomness which is used for group key

extraction is RV X2 and (b) is due to source coding Theorem 2.6.
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Protocol 7: First Noninteractive SKA for Tree-PIN of Example 5 (Πa
E5)

Public Knowledge: PZXM and a family H of universal hash functions
hs : X n

2 Ñ K where s P S.
Input: Observations (n´IID samples) Xn

1 , X
n
2 , X

n
3

Output: Copies of the final key K1, K2, K3

// Information Reconciliation

1 Terminal 2 sends public message F2

2 All terminals recover Xn
2

// Privacy Amplification

3 All terminals agree on a random seed s P S using the public channel
4 All terminals extract their keys from Xn

2 by Kj “ hspX
n
2 q @j P t1, 2, 3u

Thus, the noninteractive lower bound is then given by

rNIL “ HpX2|Zq ´maxtHpX2|X1q, HpX2|X3qu.

Next, we prove inequality (4.21). Assume that CWSK “ IpV12;V21|Z12q. Then,

rNIL “ HpX2|Zq ´maxtHpX2|X1q, HpX2|X3qu

ď HpX2|Zq ´HpX2|X1q

“ HpV21|Z12q `HpV23|Z23q ´HpV21|V12q ´HpV23q

“ IpV12;V21|Z12q ´ IpV23|Z23q

ă CWSK ,

where the last inequity holds since IpV23;Z23q ą 0. Using the same line of argument we can

show that rNIL ă CWSK if the WSK capacity is CWSK “ IpV23;V32|Z23q.

Remark 4.4. Finally, we point out that, to our knowledge, Protocol 7 (Πa
E5) gives the

highest known noninteractive key rate for this example. In fact in the following, we show

that the alternative noninteractive approach of SKA by omniscience7 also leads to the same

7See also Section 2.3.2.
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Protocol 8: Second Noninteractive SKA for Tree-PIN of Example 5 (Πb
E5)

Public Knowledge: PZXM and a family H of universal hash functions
hs : X n

M Ñ K where s P S.
Input: Observations (n´IID samples) Xn

1 , X
n
2 , X

n
3

Output: Copies of the final key K1, K2, K3

// Information Reconciliation

1 Terminal 1 sends public message F1

2 Terminal 2 sends public message F2

3 Terminal 3 sends public message F3

4 Terminals 1 and 3 recover Xn
2

5 Terminals 1 and 2, use F3 and Xn
2 to recover X3

6 Terminals 3 and 2, use F1 and Xn
2 to recover X1

// Privacy Amplification

7 All terminals agree on a random seed s P S using the public channel
8 All terminals extract their keys from Xn

M by Kj “ hspX
n
Mq @j P t1, 2, 3u

lower bound.

Consider the noninteractive Protocol 8 (Πb
E5), which is in the style of SKA by omni-

science, similar to the SKA protocol of [21]. Protocol 8 works as follows. Terminal 2, sends

a public message such that terminal 1 and terminal 3 can recover Xn
2 . Then, terminal 1

(and 3), send public messages F1 (and F3), such that other terminals can recover Xn
1 (and

Xn
3 ). Using the common randomness Xn

M all terminals extract their copies of the final key

by using universal hashing. Let F “ pF1, F2, F3q denote the overall public communication of

this protocol.

The asymptotic key rate of this protocol also can be calculated using Lemma 2.13 as

rKpΠ
b
E5q

(a)
“ HpXM|Zq ´min

F
lim
nÑ8

1

n
log supppFq

(b)
“ HpXM|Zq ´maxtHpX2|X1q, HpX2|X3qu ´HpX1|X2q ´HpX3|X2q,

where (a) follows from the fact that the common randomness which is used for group key

extraction is RV XM “ pX1, X2, X3q and (b) is due to source coding Theorem 2.6.
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Noting that HpX1|X2Zq “ HpX1|X2q and HpX3|X2X1Zq “ HpX3|X2q, implies that

both SKA protocols have the same asymptotic key rate, rKpΠ
a
E5q “ rKpΠ

b
E5q.

In summary, the above example, suggests that known noninteractive SKA approaches

cannot achieve the general WSK capacity.

4.7 Conclusion

We considered the wiretapped PIN and wiretapped Tree-PIN models. For wiretapped Tree-

PIN we proved the WSK capacity and proposed an efficient capacity achieving SKA protocol.

The protocol has two rounds and uses any capacity achieving two-party SKA as a subroutine

so terminals can obtain pairwise keys. By extending the two-party capacity achieving proto-

cols of [31] and [32] to the case of Tree-PIN, we derived new finite-length lower bounds on the

maximum achievable key length. We also proved a finite-length upper bound for the general

wiretapped Tree-PIN, and another lower bound for the special case of Tree-PIN studied in

[34]. Finally, for wiretapped PIN, we proved a lower and an upper bound for WSK capacity.

The bounds are tight when A “ M or |A| “ 2. We extended the Tree-PIN model to two

other general cases and proved corresponding WSK capacities. Finally, we investigated the

problem of noninteractive key agreement in an example of wiretapped Tree-PIN model, and

our analysis suggests that the noninteractive approach for SKA is not sufficient for achieving

the general WSK capacity.
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4.8 Appendix

4.8.1 Proof of Upper Bound Lemma 4.4

In this section, we prove Lemma 4.4. We prove that for a Tree-PIN specified by the graph

G “ pM, Eq and probability distribution PZXM , we have

CA
WSKpPXMZq ď min

i,jPM
s.t. eijPEA

IpVij;Vji|Zijq,

where GA “ pMA, EAq is the subtree of G with the least number of edges that connects all

nodes of A.

Proof of Lemma 4.4: Recall that (due to Lemma 4.2, see also [21, Theorem 4])

CA
WSKpPXMZq ď C

A|tm`1u
PK pPXMZq,

where CPK denotes the PK capacity of the associated PIN model given by M1 “ rm ` 1s

and G1 “ pM1, E 1q with a dummy node m ` 1 representing the adversary (i.e., Xm`1 “ Z).

From Theorem 4.1 we know

C
A|tm`1u
PK pPXMZq “ HpXM|Zq ´RCOpXA|Zq,

where RCOpXA|Zq denotes the solution to the Linear Programming (LP) problem of Fig-

ure 4.11, defined over real numbers [21].

Minimize:
ř

jPM
Rj

Subject to:
ř

jPB
Rj ě HpXB|XBc , Zq, @B ĹM, A Ę B (a)

Rj P R
`, @j PM. (b)

Figure 4.11: The LP problem of finding RCOpXA|Zq.
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We prove that

RCOpXA|Zq “ HpXM|Zq ´ min
i,jPM

s.t. eijPEA

IpVij;Vji|Zijq. (4.22)

The proof is by first, proving the following lower bound (4.23) and then presenting a rate

assignment that achieves the equality, hence proving Equation (4.22).

RCOpXA|Zq ě HpXM|Zq ´ min
i,jPM

s.t. eijPEA

IpVij;Vji|Zijq. (4.23)

Proof of Inequality (4.23): The terminals in M form a Tree-PIN G “ pM, Eq. By

cutting (removing) an arbitrary edge ei1j1 P E that connects nodes i1 and j1, we will have two

trees GxBy “ pB, EBq and GxBcy “ pBc, EBcq, such that P “ tB,Bcu is a partition of M, and

nodes i1 and j1 each belong to one part of the partition – and EBc Y EB “ Eztei1j1u.

Consider the constraints of the LP problem in Figure 4.11 written two times for subsets

B and Bc individually, and note that A Ę B and A Ę Bc. We will have,

ÿ

jPB
Rj ě HpXB|XBc , Zq, (4.24)

ÿ

jPBc
Rj ě HpXBc |XB, Zq. (4.25)

From Slepian-Wolf source coding theorem we know that inequality (4.24), implies that if a de-

coder has access to side information XBc and Z, then by receiving the public messages broad-

casted by terminals in B, the decoder can reliably recover XB. Also, recall that XB “
Ť

iPB Vij.

Due to the mutual independence of tpVij, Vji, Zijqu’s, we get HpXM|Zq “
ř

i,j HpVij, Vji|Zijq,
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and thus we can translate inequalities (4.24) and (4.25) to

ÿ

jPB
Rj ě

ÿ

iăj
s.t. eijPEB

HpVij, Vji|Zijq `HpVi1j1 |Vj1i1 , Zijq,

ÿ

jPBc
Rj ě

ÿ

iăj
s.t. eijPEBc

HpVij, Vji|Zijq `HpVj1i1 |Vi1j1 , Zijq.

By adding these two inequalities, we arrive at

ÿ

jPM
Rj ě

ÿ

iăj
s.t. eijPEB

HpVij, Vji|Zijq `
ÿ

iăj
s.t. eijPEBc

HpVij, Vji|Zijq

`HpVi1j1 |Vj1i1 , Zijq `HpVj1i1 |Vi1j1 , Zijq

“
ÿ

iăj
s.t. eijPE

HpVij, Vji|Zijq ´ IpVi1j1 ;Vj1i1 |Zijq

“ HpXM|Zq ´ IpVi1j1 ;Vj1i1 |Zijq,

where ei1j1 denotes the edge that connects the two trees GxBy and GxBcy. We also used the

facts that EBc Y EB “ Eztei1j1u and that the sets tXj| @j P Mu and tVjk| j ă k, ejk P Eu

are indeed equivalent. The above inequality holds for any pair i1 and j1 of terminals with

ei1j1 P E and their induced partition tB,Bcu, where A Ę B and A Ę Bc. Thus,

RCOpXA|Zq ě max
i,jPM

s.t. eijPEA

tHpXM|Zq ´ IpVij;Vji|Zijqu,

“ HpXM|Zq ´ min
i,jPM

s.t. eijPEA

IpVij;Vji|Zijq,

which proves the Inequality (4.23).

To complete the proof of Equation (4.22), we prove that there exists a rate assignment

protocol that achieves the bound in (4.23).
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Let pi˚, j˚q s.t. IpVi˚j˚ ;Vj˚i˚ |Zi˚j˚q

“ min
i,jPM

s.t. eijPEA

IpVij;Vji|Zijq, and

for any j PM let Rj “
ř

iPΓpjq

rR
pjq
i .

To minimize
ř

jPM
Rj

assign rR
pj˚q
i˚ “ HpVj˚i˚ |Vj˚i˚ , Zi˚j˚q,

rR
pi˚q
j˚ “ HpVi˚j˚ |Vi˚j˚ , Zi˚j˚q, and

@ eij ‰ ei˚j˚ , with dpi, i˚q ă dpj, i˚q,

assign rR
pjq
i “ HpVji|Vij, Zijq, and

rR
piq
j “ HpVij|Zijq.

Figure 4.12: The rate assignment that achieves RCOpXA|Zq.

Proof of Equation (4.22): First, let pi˚, j˚q be defined as follows,

IpVi˚j˚ ;Vj˚i˚ |Zi˚j˚q “ min
i,jPM

s.t. eijPEA

IpVij;Vji|Zijq.

Then for each terminal j PM we let the communication rate Rj be chosen according to the

rate assignment in Figure 4.12, where Rj “
ř

iPΓpjq
rR
pjq
i and the rate assignment protocol

assigns values to all rR
pjq
i components.

This rate assignment satisfies the following equations,

rR
piq
j `

rR
pjq
i “ HpVij, Vji|Zijq, @i, j PM s.t. eij P Eztei˚j˚u, (4.26)

rR
pi˚q
j˚ “ HpVi˚j˚ |Vj˚i˚ , Zi˚j˚q, (4.27)

rR
pj˚q
i˚ “ HpVj˚i˚ |Vi˚j˚ , Zi˚j˚q, (4.28)
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which leads to the following sum rate:

ÿ

jPM
Rj “

ÿ

jPM

ÿ

iPΓpjq

rR
pjq
i “

ÿ

iăj
s.t. eijPE

rR
pjq
i ` rR

piq
j

“
ÿ

iăj

HpVij, Vji|Zijq ´ IpVi˚j˚ ;Vj˚i˚ |Zi˚j˚q

“ HpXM|Zq ´ IpVi˚j˚ ;Vj˚i˚ |Zi˚j˚q

“ HpXM|Zq ´ min
i,jPM

s.t. eijPEA

IpVij;Vji|Zijq. (4.29)

Thus, the rate assignment indeed achieves the lower-bound of Inequality (4.23). We,

however, need to show that this rate assignment satisfies the constraints of the LP problem

described in Figure 4.11.

First, note that condition (b) in the LP in Figure 4.11 is satisfied as all assigned rates

are non-negative. The constraints (a) in the LP can be rewritten for an arbitrary subset of

terminals (nodes) B ĹM,A Ę B as

ÿ

jPB
Rj ě

ÿ

iPB,jPB
HpVij, Vji|Zijq `

ÿ

iPB,jRB
HpVij|Vji, Zijq. (4.30)

We show in the following that the rate assignment of Figure 4.12, satisfies the inequal-

ity (4.30) for any arbitrary subset B ĹM,A Ę B. For a given subset B let EB be the set of

all edges contained in B (i.e., EB “ teij| eij P E , and i P B, and j P Bu). Then, depending

on a given subset B there are two different cases: Iq ei˚j˚ R EB, and IIq ei˚j˚ P EB. The

proof is given for all the cases.
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Case I) ei˚j˚ R EB – The left hand side of the inequality (4.30), can be written as,

ÿ

jPB
Rj “

ÿ

jPB

ÿ

iPΓpjq

rR
pjq
i

“
ÿ

jPB

¨

˚

˚

˝

ÿ

iPΓpjq
iPB

rR
pjq
i `

ÿ

iPΓpjq
iRB

rR
pjq
i

˛

‹

‹

‚

paq

ě
ÿ

iăj
s.t. eijPEB

rR
pjq
i ` rR

piq
j `

ÿ

iăj
s.t. iPB,jRB

HpVij|Vji, Zijq

pbq
“

ÿ

iăj
s.t. eijPEB

HpVij, Vji|Zijq `
ÿ

iăj
s.t. iPB,jRB

HpVij|Vji, Zijq,

where, in the (a) we used the fact that HpVij|Zijq ě HpVij|Vji, Zijq, and in (b) we used

Equation (4.26).

Case II) ei˚j˚ P EB – The left hand side of the inequality (4.30), can be written as,

ÿ

jPB
Rj “

ÿ

jPB

ÿ

iPΓpjq

rR
pjq
i

“
ÿ

jPB

¨

˚

˚

˝

ÿ

iPΓpjq
iPB

rR
pjq
i `

ÿ

iPΓpjq
iRB

rR
pjq
i

˛

‹

‹

‚

“ rR
pj˚q
i˚ ` rR

pi˚q
j˚ `

ÿ

iăj
s.t. eijPEBztei˚j˚u

rR
pjq
i ` rR

piq
j `

ÿ

jPB

ÿ

iPΓpjq
iRB

rR
pjq
i

paq
“ rR

pj˚q
i˚ ` rR

pi˚q
j˚ `

ÿ

iăj
s.t. eijPEBztei˚j˚u

HpVij, Vji|Zijq `
ÿ

jPB

ÿ

iPΓpjq
iRB

HpVji|Zijq

pbq
“ rR

pj˚q
i˚ ` rR

pi˚q
j˚ `

ÿ

iăj
s.t. eijPEBztei˚j˚u

HpVij, Vji|Zijq `
ÿ

iăj
jPB,iRB

HpVji|Vij, Zijq ` IpVij;Vji|Zijq

pcq

ě
ÿ

iăj
s.t. eijPEB

HpVij, Vji|Zijq `
ÿ

iăj
jPB,iRB

HpVji|Vij, Zijq.
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In (a), we used Equation (4.26), and the rules of the rate assignment protocol, and in

(b) we used HpVji|Zijq “ HpVji|Vij, Zijq` IpVij;Vji|Zijq, and in (c) we observe that B ĹM,

which means there always exists at least one node i R B in GA such that i P Γpjq for some

node j P B. Thus, on the right-hand-side of (c) there is always a IpVij;Vji|Zijq and by

definition IpVij;Vji|Zijq ě IpVi˚j˚ ;Vj˚i˚ |Zi˚j˚q. Also, note that due to (4.27) and (4.28) we

have IpVi˚j˚ ;Vj˚i˚ |Zi˚j˚q ` rR
pj˚q
i˚ ` rR

pi˚q
j˚ “ HpVi˚j˚ , Vj˚i˚ |Zi˚j˚q.

With the proof of Case I and Case II, the proof of Equation (4.22) is complete.

Equation (4.22) immediately implies that

CA
WSKpPXMZq ď min

i,jPM
s.t. eijPEA

IpVij;Vji|Zijq.

4.8.2 Proof of Lower Bound Lemma 4.5

We prove that SKA protocol 6 achieves the key capacity of any wiretapped Tree-PIN. The

proof has three parts: (i) proof of key rate, (ii) proof of reliability, and (iii) proof of secrecy.

Proof of Lemma 4.5: We prove that for any given Tree-PIN with terminals M “ rms

and graph G “ pM, Eq and distribution PZXM , there exists an SKA protocol that achieves

the upper-bound of Lemma 4.4 on the wiretap secret key capacity of key agreement for

A “M. We assume that each terminal j PM can execute |Γpjq| two-party (pairwise) SKA

protocols tπij| i P Γpjqu, for extracting pairwise secure keys between terminal (node) j and

its neighbors.

Without loss of generality, we assume that the Tree-PIN, is labeled such that node 1 is ad-

jacent to node 2 and |Γp1q| “ 1. Thus, the edge e12 will be included in all paths from node 1 to

other nodes in the tree. If the path from i1 to node if , goes through the nodes i2, i3, . . . , if´1,

then we denote the path from i1 to if by Pathpi1 Ñ if q “ pei1i2 , ei2i3 , ¨ ¨ ¨ , eif´1if q.

All terminals in M will participate in an SKA protocol, described in the pseudo-code 6.

In the first phase of the protocol, each terminal j obtains a shared secret key with each

member of Γpjq. Let Sij “ πijpV
n
ij , V

n
ji q denote the pairwise shared key for any adjacent

155



nodes i and j. Then, all terminals cut the first ` bits of their obtained keys, so that all

pairwise keys have the same length. The shortened pairwise keys are S 1ij “ Sij|`. The

parameter ` is a protocol parameter that has to be calculated before running the protocol,

according to the known joint distribution PZXM .

During the public communication phase of protocol 6, each node j finds the unique node

j˚ P Γpjq that is closest to node 2. For any other node k P Γpjqztj˚u, node j broadcasts

Fjk “ S 1jj˚ ‘ S 1jk. Thus, the total number of broadcasts by node j is |Γpjq| ´ 1. Note that

each broadcast only uses local variables of node j.

In the last phase of the protocol, terminals 1 and 2 set their final shared keys to be

K1 “ K2 “ S 112, and the rest of the terminals calculate their obtained keys Kj using the

public broadcasted messages (see Protocol 6, line 15).

Proof of Key Rate: It is known that [19, 20] the two-party WSK capacity of

a pair of terminals i and j with access to n´IID copies of random variables Vij and Vji

is IpVij;Vji|Zijq when Vij ´ Vji ´ Zij holds – see Theorem 2.11-b. That is, there exists a

family of pεn, σnq SKA protocols with limnÑ8pεnq “ limnÑ8pσnq “ 0, where lengthpSijq “

tn pIpVij;Vji|Zijq ´∆nqu for some ∆npεn`σnq such that limnÑ8 ∆n “ 0. To start protocol 6,

fix an arbitrary δ ą 0 which is smaller that mini,j IpVij;Vji|Zijq and choose any ` such that

` ď n

ˆ

min
i,j

IpVij;Vji|Zijq ´ δ ´∆n

˙

.

Due to the reliability of the protocol (proved next), every node j P M, can obtain the

same key K “ S 112 with length `. Thus, the SKA protocol 6, can achieve the asymptotic SK

rate of

rKpΠTPq “ lim
nÑ8

1

n
lengthpS 112q “ lim

nÑ8

1

n
`

ď lim
nÑ8

min
i,j

IpVij;Vji|Zijq ´ δ ´∆n

“ min
i,j

IpVij;Vji|Zijq ´ δ.
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Since, δ can take any small value, then as δ Ñ 0, the SK rate of 6 will be arbitrary close to

C “ mini,j IpVij;Vji|Zijq.

Next, we show that the WSK capacity achieving SKA protocol 6 is secure and reliable

for any given Tree-PIN. To prove this claim, we need to show

• Reliability: Showing that Pr tK1 “ K2 “ ¨ ¨ ¨ “ Km “ Ku Ñ 1 as nÑ 8, and

• Secrecy: Showing that SD ppK,F, Zq, pU,F, Zqq Ñ 0 as nÑ 8.

Proof of Reliability: Let Kj denote the final key calculated by terminal j. We

show that K1 “ K2 “ ¨ ¨ ¨ “ Km “ S 112 “ K, if all m ´ 1 pairwise pεn, σnq´SKs Sij are

established. For any node j PMzt1, 2u there is only one path to node 2. This path is of the

form Pathpj Ñ 2q “ pejj˚ , ej˚i1 , ei1i2 , ei2i3 , ¨ ¨ ¨ , eif2q, where node j˚ is the unique neighbor of

j which is closest to node 2 and ik’s (i “ 1 . . . f) are the labels for all the nodes (except for

j, j˚ and 2) that are in the path of j to 2.

In protocol 6, line 10, node k broadcasts Fkj “ S 1i1k ‘ S 1kj. Thus, node j who has access

to the key S 1kj can perfectly recover S 1i1k by computing S 1kj ‘ Fkj. Also, node i1 (which is

connected to i2 and k) has broadcasted Fi1k “ S 1i2i1‘S
1
i1k

. Node j who has now have recovered

S 1i1k, can recover S 1i2i1 as well, by computing S 1i1k ‘ Fi1k. This chain of recovering local keys

will continue until S 112 is recovered by computing Kj “ S 1kj‘Fkj‘Fi1k‘Fi2i1‘Fi3i2‘¨ ¨ ¨‘F2if ,

which proves that Kj “ S 112 for any j PM.

This requires all m´1 pairwise pεn, σnq´SKs Sij to be established. The error probability

of each pairwise key is bounded by εn, thus the error probability of establishing the global

key is pm´1qεn “ |E |εn. Therefore, Pr tK1 “ K2 “ ¨ ¨ ¨ “ Km “ Ku ď 1´ε1n, with ε1n “ |E |εn

where εn such that limnÑ8 εn “ 0.

Proof of Secrecy: We need to prove the secrecy of the global shared key K.

Without loss of generality, assume that all adjacent terminal pairs i and j with eij P E

have established a binary pairwise pεn, σnq´SK Sij with length ` “ tnpC ´ δqu, where C “

mini,j IpVij;Vji|Zijq. Note that for any eij P E we have SDppSij, Qij, Zq, pU,Qij, Zijqq ď σn,
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where U is the uniform distribution over t0, 1u` and Qij denotes the public communication

used to generate Sij. To recall the definition of statistical distance please see Definition 2.7.

Let Q denote the collection of all public communications required to establish all |E | “

m´ 1 pairwise keys Sij, and let F denote the collection of all public communications broad-

casted by all terminals during the SKA protocol 6 and F “ pF,Qq be the overall public

communication. For any given Tree-PIN PZXM with G “ pM, Eq we prove that

SDppK,F, Zq, pU,F, Zqq “ SDppK,F,Q, Zq, pU, F,Q, Zqq

ď SDppK,F,Q, Zq, pU,U |E|´1, Q, Zqq`

SDppU,U |E|´1, Q, Zq, pU, F,Q, Zqq

ď |E |σn ` |E |σn “ 2|E |σn,

where Ud is the uniform distribution over Kd “ t0, 1ud`.

First we show that “the combination pK,F q uniquely gives all pairwise keys tSijuiăj”.

Recall that any pairwise key belongs to the alphabet K “ t0, 1u`. Let s “ tsijuiăj P K|E| be

an instance of all pairwise keys. Note that F “ F pSq is a set of m ´ 2 linear functions of

the random vector S. According to Protocol 6 each terminal j P M broadcasts |Γpjq| ´ 1

messages. Also recall that for any tree |E | “ m´ 1, so, the total number of public messages

is
ř

jPM |Γpjq| ´ 1 “ 2|E | ´m “ m´ 2. Thus, the m´ 2 elements of F are not sufficient for

uniquely finding all m´ 1 pairwise keys in S. However, the combination of F and the final

key K resulted by the SKA protocol 6 is sufficient for unique recalculation of all pairwise

keys. Remember that K “ S12 and with all the public messages of terminal 2 one can recover

all pairwise keys accessible to terminal 2 since they are all of the form F2j “ S12 ‘ S2j for

all j P Γp2qzt1u. Now with access to these pairwise keys one can recover all pairwise keys

accessible to any terminal j P Γp2qzt1u. This chain of calculation will continue until all

pairwise keys are recovered.
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Since pK,F q uniquely gives tSijuiăj, then

SDppK,F,Q, Zq, pU,U |E|´1, Q, Zqq ď SDpptSiju, Q, Zq, pU
|E|, Q, Zqq ď |E |σn.

Also, we have SDppU,U |E|´1, Q, Zq, pU, F,Q, Zqq ď |E |σn, because,

SDppU,U |E|´1, Q, Zq, pU, F,Q, Zqq

“ SDppF,Q, Zq, pU |E|´1, Q, Zqq

(a)
“

ÿ

pf,q,zqPT ˚
PQZpq, zqPF |QZpf |q, zq ´ PQZpq, zqPU |E|´1pfq

“
ÿ

pq,zqPT ˚
PQZpq, zq

ÿ

fPT ˚
PF |QZpf |q, zq ´

1

|K||E|´1

(b)

ď
ÿ

pq,zqPT ˚
PQZpq, zq

ÿ

fPT ˚
PF |QZpf |q, zq ´

1

|K||E|

(c)
“

ÿ

pq,zqPT ˚
PQZpq, zq

ÿ

sPS˚pT ˚q

ź

iăj

PSij |QijZpsij|qij, zq ´
1

|K||E|

(d)

ď max
T ĎQˆZˆK|E|

ÿ

pq,zqPT

PQZpq, zq
ÿ

sPT

ź

iăj

PSij |QijZpsij|qij, zq ´
ź

iăj

PUpsijq

(e)
“ SDpptSiju, Q, Zq, pU

|E|, Q, Zqq

(f)

ď
ÿ

iăj

SDppSij, Qij, Zijq, pU,Qij, Zijqq

ď |E |σn,

where in (a) T ˚ “ tpf, q, zq|PQZpq, zqPF |QZpf |q, zq ě PQZpq, zqPU |E|´1pfqu which is due to

definition statistical distance (see Definition 2.7,) and in equality (c) S˚pT ˚q is defined as

S˚pT ˚q “ ts | s P K|E| and F psq “ f, @f P T ˚u. Inequality (b) is due to the fact that for

any pf, q, zq P T ˚ we have PF |QZpf |q, zq ě PU |E|´1pfq. Relations (d) and (e) are due to the

definition of the statistical distance. Inequality (f) follows from Corollary 2.1.3.

Hence, the final key K obtained from the SKA protocol 6 is an p|E |εn, 2|E |σnq´SK where

limnÑ8pεnq “ limnÑ8pσnq “ 0 and the security proof is complete.
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With the reliability, security, and key rate proofs, the proof of Lemma 4.5 is complete.

4.8.3 Proof of Theorem 4.9 and Proposition 4.10

Proof: We first recall the SKA protocol that attains the WSK capacity of Tree-PIN.

Terminals in GA –the smallest sub-tree that connects terminals in A – will generate pairwise

keys. Note that in this step, terminals will generate pairwise pε1, σ1q´SKs, where ε1 “ ε
|EA|

and σ1 “ σ
2|EA|

. Next, all terminals will announce the length of their pairwise keys, and

then all pairwise keys will be cut to the minimum length so every pairwise key has the same

length. After this, middle nodes (terminals) will broadcast appropriate XOR public messages

according to the SKA protocol described earlier. According to the proof of Lemma 4.5, the

final extracted key is an pε, σq´SK.

If the pairwise keys are generated by the interactive protocol of Hayashi et. al [31],

Theorem 15, terminals i and j can obtain a pairwise key of length

`ij “ nIpVij;Vji|Zijq ´
a

n∆ijQ
´1
pε1 ` σ1q ´

11

2
log n`Op1q.

If the pairwise keys are generated by the OW-SKA Protocol 4, then terminals i and j

can obtain a pairwise key of length

`ij “ nIpVij;Vji|Zijq ´Q
´1
pε1q

b

n∆1
ij ´Q

´1
pσ1q

b

n∆2
ij ´ log n`Op1q,

or

`ij “ nIpVij;Vji|Zijq ´
?

2n logp|X | ` 3qp

c

log
1

ε1
`

c

log
1

σ1
q ´ log n`Op1q.

To understand the difference between these two achievability approximations and their ap-

plications, see Chapter 3.

For the special case when Vij “ Vji, there is no need for information reconciliation, and

thus we can use the key extraction bound of [86]. Thus, for this case, terminals i and j can
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obtain a pairwise key of length

`ij “ nHpVij|Zijq ´
b

n∆2
ijQ

´1
pσ1q ´

1

2
log n`Op1q.

By utilizing either SKA approaches, the length of the final key agreed by all terminals

in GA is

` “ min
i,jPM

s.t. eijPEA

`ij,

and hence the proof is complete. It’s easy to see that with either of these approaches, the

SKA protocol 6 attains the capacity of Theorem 4.3.
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Chapter 5

A Channel Model of Transceivers for

Multiterminal Secret Key Agreement

Abstract. In this chapter, we propose a new multiterminal channel model for
information-theoretic secret key agreement (SKA) that realistically models
wireless communication settings and generalizes previous models. Multiter-
minal channel models for SKA are defined by an underlying noisy discrete
memoryless channel (DMC) that connects a set of terminals. Terminals use
the noisy DMC and communication over a reliable public channel to agree
on a shared secret key. Previous channel models assume that each termi-
nal either controls one input to the channel, or receives one output variable
of the channel. In our channel model, which we call the transceiver model,
the underlying channel may be wiretapped and each terminal controls an
input variable and observes an output variable of the noisy DMC. First, we
give upper and lower bounds for the highest achievable key rate, known as
key capacity. We then prove the non-adaptive key capacity of general non-
wiretapped transceiver model for the case that the input variables of the noisy
channel are, IID, and generated independently and non-adaptively without
using the public communication as a feedback link. We compare our results
with existing literature, and discuss directions for future work.

Part of contributions presented in this chapter have been presented and published in the proceedings
of ISITA 2020 [36]. Content are reused under the permission of the IEICE.
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5.1 Introduction

Multiterminal secret key agreement (SKA) is an important primitive in multi-user security

systems. In a multiterminal SKA protocol, a set of terminals cooperate to establish a shared

secret key among a target subset of terminals. The obtained secret key can be used for

secure message transmission, or other cryptographic protocols. Secret key agreement was

first considered in a two-party setting [19], and independently in [20]. The results were later

extended to multiterminal scenarios [21–23], which has been extensively studied thereafter

(see e.g., [74, 75, 93, 120–122]).

The SKA problem has been studied in the source model and the channel model. In

multiterminal source model of SKA, terminals have access to many IID (independent and

identically distributed) samples of correlated random variables (RVs) [21, 93]. In multitermi-

nal channel model of SKA, terminals are connected by a noisy discrete memoryless channel

(DMC), which is used to generate correlation among the terminals [22, 23, 75, 120]. In this

chapter, we introduce a new multiterminal channel model for SKA that captures real-life

wireless settings, and generalizes existing channel models.

In a multiterminal channel model, there are m terminals, denoted by M “ t1, . . . ,mu,

and the goal of the SKA protocol is to establish a shared secret key among a designated subset

A ĎM of terminals. Terminals not in the target subset A are called helper terminals; i.e.,

terminals in Ac “MzA. There exists an underlying noisy DMC connecting the terminals.

This DMC might be wiretapped in general; that is it might leak some side information

about the transmitted symbols to a passive wiretapping adversary, Eve. Terminals can also

(interactively) send messages over a reliable (noiseless), authenticated (known sender), and

public channel that is assumed free. Messages that are sent over this channel are accessible

to all terminals and Eve. An SKA protocol has a finite number of rounds. Each round

starts with symbol transmission over the noisy DMC, followed by a public discussion among

terminals over the public channel. At the end of the protocol, terminals in A compute their

copy of the secret key. They key may or may not be learned by the helper terminals. An
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SKA protocol is called reliable if the same key is obtained by all terminals, and secure, if

Eve has no information about the shared key. The secret key rate of an SKA protocol is

the ratio of the key length to the number of times that the noisy DMC was used. The key

capacity of a model is the highest achievable secret key rate [21, 23].

Eve’s information can include leaked side information during symbol transmissions over

the DMC, leaked information from compromised terminals, and the public messages that

are sent by terminals over the public channel. The following types of secret key capacity are

defined with respect to Eve’s information [21, 23].

• Secret Key (SK) capacity: Eve has no side information about the symbol trans-

missions over the DMC.

• Private Key (PK) capacity: Eve has compromised a subset of helper terminals

D Ď Ac and has access to all the symbols transmitted or received by the compro-

mised terminals. All helper terminals, including compromised terminals, cooperate in

the SKA protocol. It is assumed that the compromised terminals of D make their

observations and variables public.

• Wiretap Secret Key (WSK) capacity: The adversary has access to side informa-

tion about the symbol transmissions over the DMC. Eve’s side information is modeled

as an output variable of the DMC.

The problems of finding these capacities are unresolved for many general channel models,

and are only known for some special cases. WSK capacity is the most general notion of key

capacity, which remains an open problem even for the case of two-party SKA (i.e., m “ 2).

5.1.1 Our Contributions

Existing channel models assume that a terminal either controls an input or has access to an

output symbol of the underlying DMC. In this chapter, we consider scenarios where terminals
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can send to, and receive from, the underlying channel. Such terminals model transceiver

wireless devices [123, Chapter 14]. Here, we introduce a new channel model that we call the

“channel model of transceivers” (or the “transceiver model” for short), in which each terminal

provides input to, and receives output from, the channel. A similar multiterminal model of

transceivers has been considered and studied for multi-user communications in [124]. The

variable associated with a terminal j PM, is of the form Vj “ pXj, Yjq, where Xj’s are input

variables and Yj’s are output variables of the DMC. This model has the channel model of

[22] and the multiaccess model of [23] as special cases.

We prove general lower bounds on the SK, PK, and WSK capacities of our proposed

model using the proof ideas from [22, 23]. We also prove general upper bounds on the SK,

PK, and WSK capacities of transceiver model, by relating any upper bound on the SK and

PK capacities of the multiaccess model as a corresponding upper in our proposed model.

The bounds, however, are not tight in general. We also use our methods to prove the SK

capacity for a special cases of transceiver model, where we assume that input symbols are

IID and chosen independently (public channel is not used in between the uses of the DMC.)

Our work raises many interesting questions for future work, including finding tighter

bounds for the SK and PK capacities, and investigation of interactive protocols for achieving

the key capacity of transceiver models.

5.1.2 Related Works

Existing channel models in literature differ in the way terminals control input or access the

output of the noisy DMC, the type of side information that is available to Eve, and the way

terminals use the public channel. Single-input multi-output multiterminal DMC was first

considered in the channel model of [22] where A ĎM, and all terminals are allowed to send

public messages. In the single-input multi-output channel model of [75] however, A “ M,

and a subset of terminals U ĎM participate in public communication while the remaining

terminals are silent (i.e., not sending public messages). An important generalization of the
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model in [22] is the multiaccess channel model of [23], in which A ĎM, a subset of terminals

provide input to the DMC and the remaining terminals (which is a disjoint subset from the

first subset) are receiving channel outputs. All terminals can send public messages.

For two-party SKA in channel model it is known that [20, Proposition 1]

CSK “ max
PX

IpX;Y q,

where X denotes the input variable of terminal 1 to the DMC, and Y denotes the output

variable that terminal 2 observes. The known results on the SK and PK capacities of single-

input multi-output models are, the SK and PK capacities in [22], and upper and lower

bounds of [75]. For the multiaccess channel model, the SK and PK capacities are not known

in general. Upper bounds and lower bounds on the SK and PK capacities of the multiaccess

model were given in [23], where the lower bounds are based on source emulation approach.

We use this approach to derive a lower bound for our proposed model (see Section 5.3.2).

The SK capacity is proved for the symmetric multiaccess channel1 with single output under

the constraint that input terminals are silent [120]. It was showed that this SK capacity is

achievable by an interactive SKA protocol.

Single-letter characterization of WSK capacity for any given channel model remains an

open problem, even for the case of m “ 2, and it is known only for few special cases [45, 74].

It is proved [20, Theorem 2] that WSK capacity of the two-party channel model is upper

bounded by

CWSK ď max
PX

IpX;Y |Zq,

where X denotes the input variable of terminal 1, and Y and Z denote the output variables

observed by terminal 2 and adversary, respectively. The above bound is tight if (i) the

Markov relation X´Y ´Z holds or if (ii) the adversary’s variable Z is revealed to terminals

1 and 2 [20]. The two-party WSK capacity is also known [20, Theorem 2] to be equal to the

1A two-input single-output channel is called symmetric if the conditional probability distribution of the
channel satisfies PV3|V1V2

“ PV3|V2V1
. For the general definition see Section VII of [120].
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wiretap secrecy capacity [57] of the underlying DMC when we restrict public communication

to noninteractive one-way messages from one terminal to another. That is

CÑWSK “ max
PX1X

tIpX 1;Y q ´ IpX 1;Zqu,

where the maximum is over all distributions PX 1X such that X 1 ´ X ´ pY, Zq holds. The

WSK capacity of a special class of multiterminal models (called Markov Tree) was derived

in [22, Theorem 5.1]. In this model Eve’s side information is about the variable of a single

terminal. Authors of [125], generalized our transceiver model [36] by allowing rate limited

private communication, and proved a general upper bound that implies the general upper

bound for transceiver model (Theorem 3 of [36]), and the upper bound given in [23] for the

multiaccess model.

5.1.3 Organization

We introduce our transceiver model in Section 5.2, and prove general upper and lower bounds

on SK and PK capacities in Section 5.3. In Section 5.4, we derive the non-adaptive SK

capacity of the transceiver model, and we conclude the chapter in Section 5.5.

5.2 A General Channel Model of Transceivers

5.2.1 The Model

Consider a set of m terminals denoted by M “ rms :“ t1, . . . ,mu. The goal of an SKA pro-

tocol is for terminals in M to cooperate (using the public communication) so that terminals

in a subset A ĎM can establish a shared secret key K. Terminals in Ac “MzA are called

helper terminals. The key K is not required to be concealed from the helper terminals. All

terminals have access to a public, reliable, and authenticated channel. A public message

sent by a terminal j will be received by all terminals and everyone else, including the passive

167



adversary Eve, who will not interfere with the public communication.

There exists an underlying DMC (discrete memoryless channel) which will be used for

generating the correlation among terminals. For each transmission over the channel, all

terminals provide input to the noisy channel and receive output from it; i.e., we assume a

set of “transceivers.” Each terminal j has two RVs, Xj which is an input variable to the

DMC, and Yj which is an output variable of the DMC, and so the RV associated with each

terminal j is given by Vj “ pXj, Yjq, where Vj “ Xj ˆYj. Let VM “ pV1, . . . , Vmq denote the

set of all RV’s accessible to all terminals. Eve may also have access to side information Z

which is an output RV of the DMC and is correlated with VM. The underlying multi-input

multi-output DMC is denoted by W “ pXM, PZYM|XM ,YM ˆ Zq, where

PZYM|XM : X1 ˆ ¨ ¨ ¨ ˆ Xm Ñ Y1 ˆ ¨ ¨ ¨ ˆ Ym ˆ Z (5.1)

is the transition matrix (conditional probability distribution) defined over the finite input

alphabet X1 ˆ ¨ ¨ ¨ ˆ Xm and finite output alphabet Y1 ˆ ¨ ¨ ¨ ˆ Ym ˆ Z.

Before starting any SKA protocol, terminals are allowed to use the public channel for

initialization (e.g., agreeing on public parameters or variables). An SKA protocol consists

of n rounds, where each round consists of one invocation of the noisy channel, followed by

public communication by terminals in M over the public channel. Let Ft denote the random

variable representing all public messages of the m terminals in round 1 ď t ď n, and let F “

pF1, . . . ,Fn
q denote the entire public communication during the SKA protocol. Each public

message of terminal j in round 1 ď t ď n is a function of all previous samples Vj1, Vj2, . . . , Vjt,

its local randomness, public messages of the previous rounds F1,F2, . . . ,Ft´1, and previous

public message sent in round t. Each input symbol Xjt of round t ě 2 may depend on

previous public discussions F1,F2, . . . ,Ft´1, and previous samples Vj1, Vj2, . . . , Vjpt´1q. After

the n rounds of the SKA protocol, the RV associated to each terminal j is given by V n
j “

pXn
j , Y

n
j q. Also, let V n

M denote the collection of all RVs accessible to all terminals after round
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Figure 5.1: An SKA protocol runs over multiple rounds. Each round starts with one invoca-
tion of the noisy DMC, followed by a public discussion over the public channel. Eve received
all public messages, F, and side information Zn “ pZ1, Z2, . . . , Znq.

n. The protocol ends when each terminal j computes their version of the key KjpV
n
j ,Fq that

is a function of all the symbols they send to, or receive from, the noisy DMC (V n
j ), and all

of the exchanged public messages (F). Eve has access to all public messages, F, and the side

information Zn, which is correlated with V n
M.

Throughout this work, when adversary Eve, has access to side information Zn we call

the model wiretapped and denote the DMC by W “ PZYM|XM . When there is no side

information accessible to Eve, we call the model non-wiretapped and denote the DMC by

W “ PYM|XM . In a non-wiretapped model, there is no Z variable and thus equivalently we

assume Z “ constant.
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5.2.2 Definitions

Definition 5.1. Consider a set of m terminals M, where A ĎM denotes the set of terminals

that will share a key K with alphabet K. Let Zn denote Eve’s side information about V n
M.

The key K is an pε, σq-Secret Key (in short pε, σq-SK) for A, if there exists an SKA protocol

with public communication F, and output RVs tKjujPA for each terminal, such that

(reliability) Pr tKj “ Ku ě 1´ ε, @j P A, (5.2)

(secrecy) SD ppK,F, Zn
q, pU,F, Zn

qq ď σ, (5.3)

where SD denotes the statistical distance and U is the uniform probability distribution over

alphabet K.

Definition 5.2 (Key Capacity – see Definition 17.16 of [90]). Consider multiterminal

SKA for a subset A ĎM. Let Zn denote Eve’s side information about V n
M. For a given chan-

nel model W , where W is the conditional distribution of the underlying DMC, a real number

R ě 0 is an achievable SK rate if there exists an SKA protocol that for every n establishes

an pεn, σnq´SK K P K where limnÑ8 εn “ limnÑ8 σn “ 0, and lim infnÑ8
1
n

log |K| “ R.

The maximum of all achievable SK rates is called the key capacity of given model W .

SK, PK, and WSK Capacities. In all cases, the adversary (Eve) has access to all public

messages, denoted by F. In addition to F, Eve might have side information about V n
M.

When the adversary has no side information about V n
M, the capacity is called SK capacity,

and denoted by CA
SKpW q. In this case, there is no Zn variable for Eve, and thus equivalently

we let Zn “ constant (i.e., independent of V n
M). The adversary may compromise a subset of

terminals D Ă Ac, in which case Eve’s side information is of the form Zn “ V n
D “ pV

n
j | @j P

Dq. The compromised terminals are cooperative in the SKA protocol (it is assumed they

publicly reveal V n
D to other terminals.) The capacity for this case is called PK capacity and

is denoted by C
A|D
PK pW q. In the most general sense, if Eve has access to side information Zn,
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which is correlated with V n
M, the key capacity is called WSK (wiretap secret key) capacity

and is denoted by CA
WSKpW q.

Fractional Partition. The following definition will be used a lot for the rest of this

chapter.

Definition 5.3 (Fractional Partition, [21, 22]). Consider a finite set M “ rms “

t1, 2, . . . ,mu. For a subset A Ď M, and D Ă Ac, define ΥpA|Dq as the family of all

nonempty sets B Ă Dc such that, A Ę B. A fractional partition of M with respect to A

and D, denoted by λ “ pλB| B P ΥpA|Dqq, is a vector of length |ΥpA|Dq| with components

λB P r0, 1s, such that for each j P Dc

ÿ

BPΥpA|Dq
s.t. jPB

λB “ 1. (5.4)

We denote by ΛpA|Dq the set of all fractional partitions of M with respect to A and D.

Subset D can be empty, in which case we simplify our notation to ΛpAq and ΥpAq.

Remark 5.1. A fractional partition defined by λ P ΛpA|Dq allows a terminal j to “fraction-

ally” belong to multiple subsets of Dc, whereas in a partition P “ tB1,B2, . . . ,Bαu of Dc, a

terminal j belongs only to one of the parts of the partition. For each subset B P ΥpA|Dq,

the component of the λ vector corresponding to B, λB, can be regarded as the “fractional

ownership” of B over the terminals j that are in B. Therefore, for any j P Dc, the sum of

fractions that j belongs to different subsets B that contain j must be one. This is indeed

the defining condition given in Definition 5.3. Hence, it is easy to see that for any given

arbitrary partition P “ tB1,B2, . . . ,Bαu of Dc, the λ vector give by λ “ pλB| B P ΥpA|Dqq

such that

λB “

$

’

&

’

%

1 B “ Bj for some j P t1, . . . , αu

0 otherwise,
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(b)

Figure 5.2: (a) The multiaccess channel model of Ref. [23] where PVMzI |VI is the probability
transition matrix of DMC W . (b) Our proposed general channel model, where PYM|XM

denotes the transition matrix and for each transceiver terminal j, we have Vj “ pXj, Yjq.
Eve’s side information is assumed to be Z “ constant for both examples here.

characterizes the partition P , and λ P ΛpA|Dq.

Another important property of the fractional partition is given in the following.

Proposition 5.1. Consider a finite set M “ rms “ t1, 2, . . . ,mu. Assign to each j P M

a random variable Vj. Assume that all Vj RV’s are mutually independent. Then, for any

B Ď M, HpVBq “
ř

jPBHpVjq. Thus, for any given subsets A Ď M, and D Ă Ac, the

following holds for any fractional partition λ P ΛpA|Dq

ÿ

BPΥpA|Dq

λBHpVBq “
ÿ

BPΥpA|Dq

λB
ÿ

jPB
HpVjq “

ÿ

jPDc

ÿ

BPΥpA|Dq
s.t. jPB

λBHpVjq “
ÿ

jPDc
HpVjq “ HpVDcq.

In the proof above we used the mutual independence of Vj’s and Equation (5.4).
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5.2.3 The Relation with Multiaccess Channel Model

The multiaccess channel model, was introduced in [23]. In the multiaccess model, there is

a set of m terminals denoted by M “ rms “ t1, . . . ,mu. A subset of terminals I ĂM are

called input terminals, the rest of terminals in MzI are called output terminals. There exists

a secure noisy DMC between input terminals and output terminals. Input terminals supply

input symbols Vj j P I to the DMC, and output terminals observe respective output symbols

of the DMC. The underlying noisy DMC is called a multiaccess channel and is denoted by

W “ pVI , PVMzI |VI ,VMzIq, where

PVMzI |VI :
â

jPI
Vj Ñ

â

jPMzI
Vj.

In the multiaccess model of [23], Eve does not have any information about transmission

over the DMC. The SK and PK capacities for multiaccess channel model are defined similarly.

General upper bounds and lower bounds were proved in [23] for the SK and PK capacities

of the multiaccess channel model.

Note that the multiaccess channel model is a special case of the channel model of

transceivers by taking Z “ constant, Vj “ Xj @j P I, and Vj “ Yj @j PMzI. See Figure 5.2

for a pictorial comparison between the channel model of transceivers, and the multiaccess

channel model of [23]. The channel model of [22] is a special case of the multiaccess model

of [23] for |I| “ 1, and so a special case of our proposed model.

Example 5.1. We give three simple non-wiretapped example models, to compare our

transceiver model and the channel models of [22] and [23]. These models are depicted

in Figure 5.3.

The DMC of the model in Figure 5.3.(a) is a combination of two independent channels,

W1 and W2, where W1 is a point-to-point channel from terminal 1 to 2, and W2 is a point-

to-point channel from terminal 1 to 3. Here, terminal 1 is an input terminal and V1 “ X1 “

pX1,2, X1,3q. Terminals 2, and 3 are output terminals with V2 “ Y2, and V3 “ Y3. This
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Figure 5.3: Three examples of the transceiver model. The solid arrows show the point-to-
point channels between terminals. See Example 5.1 for details.

channel model is a simple example of the single-input multi-output DMC of [22]. The SK

and PK capacities of this model can be calculated by [22, Thoerem 4.1].

The DMC of the model in Figure 5.3.(b) is a combination of two independent channels,

W1 and W2, where W1 is a point-to-point channel from terminal 2 to 1, and W2 is a point-

to-point channel from terminal 3 to 1. Here, terminal 1 is an output terminal and V1 “ Y1 “

pY1,2, Y1,3q. Terminals 2, and 3 are input terminals with V2 “ X2, and V3 “ X3. This channel

model is a simple example of the multiaccess DMC of [23]. Upper and lower bounds on SK

and PK capacities of this model were given in [22, Thoerem 4 and Theorem 6].

The DMC of the model in Figure 5.3.(c) is a combination of two independent channels,

W1 and W2, where W1 is a point-to-point channel from terminal 2 to 1, and W2 is a point-

to-point channel from terminal 1 to 3. Here, terminal 1 is a “transceiver” terminal and
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V1 “ pX1, Y1q. Terminal 2, is an input terminal with V2 “ X2, and Terminal 3, is an output

terminal withV3 “ Y3. This channel model and also the two previous models are simple

examples of our transceiver model.

More precisely, all of these channel models, are examples of a special class of transceiver

model we call the Polytree-PIN model (see Chapter 6). In this chapter, we give upper and

lower bounds on the SK, PK, and WSK capacities of such models, and show that these

bounds can be tight under certain conditions.

5.3 General Lower and Upper Bounds

In this section, we give general lower and upper bounds for the SK, PK and WSK capacities

of the general channel model of transceivers. Later, in Sections 5.4 and then in Chapter 6,

we give capacity results for specific channel models by using these lower and upper bounds.

The proof of our lower bound relies on the application of a specific approach to SKA

protocols, namely the source model SKA. Source model SKA protocols where introduced

to achieve the capacity of source models [21], but they also can be used in channel models.

Such protocols are important and they have a lot of applications in practice (see [116, 126]

and references therein). Therefore, before stating our lower bound result we first recall the

general source model of SKA, and the single-letter characterization of its PK capacity as

given in [21].

5.3.1 The Multiterminal Source Model

The general multiterminal source model, was introduced in [21]. In this model, there is a

set of m terminals denoted by M “ rms “ t1, . . . ,mu. Each terminal j P rms has access to

a random variable Vj. Let VM “ pV1, . . . , Vmq denote the set of all variables accessible to all

terminals. After n IID sampling from VM, terminals use a public channel, that is reliable

and authenticated, for a finite number of rounds. A message that is sent by terminal j is
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a function of the terminal’s IID samples (observations) V n
j , local randomness, and previous

public messages. We denote by F the set of all messages sent over the public channel. A

source model is characterized by its associated public joint probability distribution PVM .

The channel models of SKA [22, 23] where in fact introduced as generalizations of the source

model.

The SK, PK, and WSK capacities for source model are defined similarly as were de-

fined for the channel models given in Definition 5.2. Note that the key capacity notations,

CA
SKpW q, C

A|P
PK pW q, and CA

WSKpW q, refer to a source model capacity if W is a joint distri-

bution, and to a channel model capacity, if W is a conditional distribution.

The following theorem gives an alternative formulation of the PK capacity than the

expression presented in Theorem 4.1.

Theorem 5.2 (Source model PK Capacity, see Theorem 3.1 of [22]). In a given

source model VM described by PVM, for sharing a secret key among terminals in A Ď M,

with compromised terminals D Ď Ac, the PK capacity is

C
A|D
PK pPVMq “ min

λPΛpA|Dq
tHpVM|VDq ´

ÿ

BPΥpA|Dq

λBHpVB|VBcqu. (5.5)

One obvious situation in a source model for which key agreement is impossible is when the

RV’s accessible to each terminal j P M are mutually independent – i.e., PVM “
ś

jPM PVj .

In such cases, all terminals are statistically uncorrelated. Note that the PK capacity of such

source models as given by Theorem 5.2 is

C
A|D
PK pPVMq “ min

λPΛpA|Dq
tHpVDcq ´

ÿ

BPΥpA|Dq

λBHpVBqu “ min
λPΛpA|Dq

tHpVDcq ´HpVDcqu “ 0,

where in the second equality we used Proposition 5.1.

Equation (5.5) implies the SK capacity when D “ H. The achievability result is based on

a source model SKA protocol in which first, the compromised terminals (that are assumed to
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be cooperative) reveal their observed random variables, and then the rest of the terminals in

Dc communicate over the public channel to attain omniscience (i.e., the state that terminals

in Dc learn each other’s initial observations). Finally, terminals in A extract the key from the

common shared randomness V n
M. It was also showed that the public communication required

to obtain this PK capacity can be noninteractive, meaning that F “ Fn
“ pF1, . . . , Fmq,

where Fj “ V n
j for all j P D and Fj “ fpV n

D , V
n
j q for all j P Dc. See the achievablity part of

the proof of Theorem 2, in Section IV of [21].

We prove our channel model lower bound based on the source emulation approach of

[22, 23], that utilizes the source model SKA protocol explained above.

5.3.2 The Source Emulation Lower Bound

Consider the multiaccess channel model (see Section 5.2.3). The simple source emulation,

introduced in [22], works as follows. For a known IID input distribution PVI , each input ter-

minal j P I samples IID symbols V n
j and transmits their symbols through the DMC. During

these n symbol transmissions, terminals do not engage in public discussion. After the symbol

transmissions, all terminals have n IID samples according to the IID distribution given by

PVM “ PVIPVMzI |VI . This way, in effect, a source model with a known IID distribution is

realized (or emulated) among terminals of M. Thus, after the symbol transmission steps,

any suitable source model SKA protocol can be utilized for key generation.

The source emulation technique is proved to be capacity achieving for single-input multi-

output channels [22]– i.e., when k “ 1 and I “ t1u. However, in general, using public

discussion during symbol transmission can potentially result in more powerful and tighter

lower bounds for the multiaccess channel model. This was proved in affirmative for some

special multiaccess channels in [120, Theorem 4]. The general source emulation is similar to

the simple source emulation, and was introduced in [23]. We use the general source emulation

approach and prove the following theorem.

Theorem 5.3 (General Source Emulation Lower Bounds). For a non-wiretapped
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channel model of m transceivers W “ PYM|XM, and for any publicly known random variable

X 1 satisfying PX 1XM “ PX 1
ś

jPM PXj |X 1, we have

CA
SKpPYM|XMq ě C

A|t0u
PK pPX 1XMPYM|XMq,

“ min
λPΛpA|t0uq

tHpVM|X
1
q ´

ÿ

BPΥpA|t0uq

λBHpVB|VBcqu (5.6)

and

C
A|D
PK pPYM|XMq ě C

A|D1
PK pPX 1XMPYM|XMq,

“ min
λPΛpA|D1q

tHpVM|VD1q ´
ÿ

BPΥpA|D1q

λBHpVB|VBcqu (5.7)

where C
A|D1
PK pPX 1XMPYM|XMq denotes the emulated source model PK capacity of an associated

model with m`1 terminals, M1 “ t0, 1, . . . ,mu, where D1 “ DYt0u, V0 “ X 1, Vj “ Vj @j ą

0, and an underlying source distribution PVM1 “ PX 1p
ś

jPM PXj |X 1qPYM|XM. The single letter

expressions given in Equation (5.6) and (5.7) for the source model PK capacity are due to

[21] – see Theorem 5.2.

Furthermore, for a wiretapped channel model of m transceivers W “ PZYM|XM, and for

any publicly known random variable X 1 satisfying PX 1XM “ PX 1
ś

jPM PXj |X 1, we have

CA
WSKpPYM|XMq ě CA

WSKpPX 1XMPZYM|XMq, (5.8)

where CA
WSKpPX 1XMPZYM|XMq denotes the emulated source model WSK capacity of an as-

sociated model in which Eve’s variable is of the form pZ,X 1q. A single-letter expression for

the source model WSK capacity is not known.

We refer to all of the above lower bounds as to general source emulation lower bounds,

and we refer to them as to simple source emulation lower bounds when we set X 1 “ constant.

Proof of Theorem 5.3: We show that for a transceiver channel model for terminal
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Figure 5.4: (a) The associated source model PVM1 used in the lower bound of Theorem 5.3.
(b) The steps of the source emulation SKA protocol that achieves the lower bound of The-
orem 5.3.

set M, one can construct a source model for terminal set M1 “ t0u YM, and use capacity

achieving source model protocols (e.g., protocol of [21]) in the latter model to obtain a

channel model SKA protocol in the transceiver model. This leads to a lower bound on the

key capacity of the transceiver model. The case of SK capacity is implied from the argument

with D “ H and Z “ constant. The case of PK capacity is implied from the argument with

Z “ constant; and the WSK capacity is implied from the argument with D “ H.

For a given transceiver channel model PYM|XM for terminal set M define an associ-

ated source model PVM1 defined over M1 “ t0u YM, where t0u is a new terminal added

to the terminal set. Let X 1 denote the random variable of terminal 0. The distribution

of this source model is given by PVM1 “ PX 1PVM “ PX 1p
ś

jPM PXj |X 1qPYM|XM , where PX 1
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and PXj |X 1 ’s are arbitrary distributions that together generate a distribution on the in-

put symbols of the transceiver channel, which is conditionally independent given X 1 – i.e.,

PXM|X 1 “
ś

jPM PXj |X 1 . Thus the distribution of PVM can be viewed as obtained from sym-

bol transmission over a single-input multi-output channel PXM|X 1 ¨W , where X 1 is the input

symbol, and VM “ pXM, YMq denotes output symbols. See Figure 5.4 (a). Terminal 0 is

assumed compromised, i.e., D1 “ t0u YD.

First, we emulate (realize) the source model PVM1 . Let K be a secret key generated for

terminals in A by the protocol Π that achieves the source model key capacity. In Π, the

public message of terminal j is a function of Xn
j and Y n

j . The key K is a function of V n
M1

and F. The protocol Π defines a protocol Π1 for the transceiver model, using the following

steps. Note that PX 1XM “ PX 1p
ś

jPM PXj |X 1q is known. One of the terminals, Terminal 1

for example, generates x1n “ px11, . . . , x
1
nq that is a realization of X 1n, and reveals it to all

terminals over the public channel. Each input symbol Xn
j is generated independently (given

x1n) according to PpXjqt “ PXj |X 1“x1t for all t P rns. In n consecutive rounds, terminals use the

DMC W “ PYM|XM , without using the public communication channel. Thus, after symbol

transmission, source model PV nM1
is emulated for terminals in M. That is each terminal j has

access to IID random variables Xn
j and Y n

j distributed according to the source distribution

PV nM1
. Now, terminals in M can run the source model SKA Π. Compromised terminals send

their samples V n
D over the public channel. The samples of terminal 0 is also accessible to the

rest of the terminals. Messages of terminals in MzD1 are generated according to Π. Then,

all terminals in A can agree on the common randomness VM1 , and extract their secret key.

See Figure 5.4 (b). Thus, at the end of Π1 the same key K of Π will be established for A,

and Π1 provides a lower bound on the key capacity of the transceiver channel model. The

key rate of Π1 is the same as the key rate of Π which can be as large as the emulated source

model key capacity.

Corollary 5.3.1. For a wiretapped channel model of m transceivers W “ PZYM|XM, and for
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any publicly known random variable X 1 satisfying PX 1XM “ PX 1
ś

jPM PXj |X 1, we have

CA
WSKpPYM|XMq ě

θ
ÿ

i“1

min
jPM

IpṼi;Vj|Ṽri´1sq ´ IpṼi; pZ,X
1
q|Ṽri´1sq (5.9)

where the lower bound is due to the general source emulation lower bound of (5.8) and the

interactive source model SKA protocol of [93, Theorem 7], which holds for any arbitrary

integer θ and RV’s Ṽ1, Ṽ2, . . . , Ṽθ satisfying

Pr
!

Ṽrθs|VMZ
)

“

θ
ź

i“1

Pr
!

Ṽi|Ṽri´1sVi mod m

)

.

Adaptive input symbols VS. The source emulation approach. We emphasis again

that the source emulation approach is not always the best approach for SKA, and it is

not capacity achieving in general, as such protocols do not employ the possibility of sending

adaptive input symbols based on public feedback (which is a function of the received symbols

YM) in between each use of the underlying DMC. In some scenarios, using adaptive input

symbols (and public feedback in between each use of the DMC) is strictly required for higher

SK rates. An example of such scenario is given in [120, Theorem 4], where the SKA with

adaptive inputs outperforms the source emulation technique and achieves higher key rates.

However, in some special cases the source emulation approach is capacity achieving, see e.g.,

Theorem 5.5, Theorem 6.1, and [120, Theorem 5].

5.3.3 Upper Bound

In this section, we prove a general upper bound on the SK and PK capacities of the

transceiver model. This is by associating a multiaccess channel model [23] to a transceiver

model as described below. Given a transceiver channel model W “ PYM|XM over terminal

set M “ rms, we define an associated (related) multiaccess channel model W over 2m ter-

minals denoted by M. Consider the original terminal set of W to be the output terminal
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Figure 5.5: The associated multiaccess channel model W used in the proof of the upper
bound in Theorem 5.4. The set of output terminals is M “ rms “ t1, . . . ,mu and the set of
input terminals is given by M1 “ tm` 1, . . . , 2mu. The conditional probability distribution
of W “ PVM|VM1 is given by W “ PXM|XM1 ¨W “

`
ś

iPM 1pXi “ Xi`mq
˘

¨W .

set of W and let M1 “ tm ` 1, . . . , 2mu be the set of new input terminals introduced for

W . Thus, M “ t1, . . . ,m,m ` 1, . . . 2mu “ M1 YM. Input terminals of W have RVs

that are of the form Vj “ Xj @j P M1 “ tm ` 1, . . . , 2mu, and output terminals of W

are defined as per the given transceiver model, i.e., their RVs have two components given

by Vj “ pXj, Yjq @j P M “ t1, . . . ,mu. The conditional probability distribution of the

multiaccess channel W is given by,

W “ PVM|VM1 “ PYMXM|XM1 “ PXM|XM1PYM|XM “ PXM|XM1W,

where PXM|XM1 is a collection of noiseless DMC’s, given by

PXM|XM1 “
ź

iPM
PXi|Xi`m “

ź

iPM
1pXi “ Xi`mq.
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Note that the RVs of the input terminals in W have the special property that Vj “ Xj´m

for all j PM1. See Figure 5.5.

Theorem 5.4 (General Upper Bounds). The channel model SK capacity and the channel

model PK capacity of any given non-wiretapped transceiver model W “ PYM|XM for any

D ĂM “ rms, and any A Ď Dc are upper bounded by

CA
SKpPYM|XMq ď CA

SKpPVM|VM1 q, (5.10)

and

C
A|D
PK pPYM|XMq ď C

A|D
PK pPVM|VM1 q, (5.11)

where the right hand side of the above inequalities are the SK and PK capacities of the

associated model W .

Proof of Theorem 5.4: We show that the PK capacity of W gives an achievable

lower bound for W . Let K P K be a private key established for W by SKA protocol Π

such that log |K| ď nC
A|D
PK pPYM|XMq. We use Π to generate a key K 1 P K in W . First

note that in the associated multiaccess channel model of W , after each symbol transmission

each terminal j P M has access to the same variable(s) of the input terminal j `m P M1.

Therefore, terminals of M1 can always remain silent (not sending public messages), and all

public messages can be generated by terminals in M, the output terminals of W . Thus,

helper terminals of M1 are dummy terminals, and their presence can only help with the

key generation. Let Π be such that in each round t ď n, terminals generate and send

input symbols Xjt “ X̃jt’s to W and receive corresponding output symbols Yjt “ Ỹjt. Then

terminals engage in a public discussion F̃t. Let Π1 be the protocol for SKA in W which works

as follows. In each round t, input terminals j `m P M1 generate and send input symbols

Vpj`mqt “ X̃jt’s to W . Note that every terminal j P M, receives (as output symbols of W )

the RVs Xjt “ X̃jt and Yjt “ Ỹjt. Then, input terminals in M1 remain silent and output

terminals of multiaccess channel W in M invoke public discussion Ft
“ F̃t. Following the
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same instructions of Π, at the end of round n, terminals in M can agree on a secret key

K 1 P K. As, in effect, Π and Π1 are identical protocols from the view point of M, K 1 is

equal to K. Therefore, p1{nq log |K| is also an achievable key rate for the multiaccess model

of W . The maximum rate of such key is given by the PK capacity of W . The argument for

SK capacity is the same with D “ H.

Remark 5.2. We note that using a similar argument, one can prove Theorem 5.4 in the

reverse direction – implying (5.10) and (5.11) to be equalities. That is any SKA protocol

that achieves the capacity of any given multiaccess model, can be used for establishing a

key in any transceiver model. Therefore, one can for example, indirectly prove lower bounds

on transceiver model via general lower bounds given for any multiaccess model. To our

knowledge the only general lower bound known for multiaccess model is the source emulation

lower bound [23, 74], which would imply the same lower bound as in Theorem 5.3 which

we easily directly proved in the previous subsection. However, we note that the associated

multiaccess model used in Theorem 5.4 has more utility for proving technical upper bounds.

This is what we will do in the next two sections. Please note that, Theorem 5.4 in reverse

direction does not give lower bounds for transceiver model via special case lower bounds (e.g.,

the interactive achievability lower bound of [120]) that are proved only for special cases of

multiaccess models.

Corollary 5.4.1. The channel model WSK capacity of any given wiretapped transceiver

model W “ PZYM|XM for any A ĎM is upper bounded by

CA
WSKpPZYM|XMq ď C

A|tm`1u
PK pPYm`1YM|XMq ď C

A|tm`1u
PK pPVM|VM1 q, (5.12)

where C
A|tm`1u
PK pPYm`1YM|XMq denotes the key capacity of a with m`1 terminals where termi-

nal m`1 is assumed compromised and models the adversary by Ym`1 “ Z, i.e., Z is assumed

to be known. Also C
A|tm`1u
PK pPVM|VM1 q denotes the PK capacity of the multiaccess model W

(as per Theorem 5.4,) associated with the aforementioned model where Z is assumed to be
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publicly known.

Proof of Corollary 5.4.1: Proof follows directly by the upper bound of (5.11) and

Lemma 5.1 of [22] which states that by knowing the adversary’s variable Z, the largest

achievable SK rate can only increase.

We later use Corollary 5.4.1 in Chapter 6 to prove the WSK capacity of a special subclass

of transceiver models, namely the wiretapped Polytree-PIN – see Theorem 6.1.

Theorem 5.4 also implies that an upper bound for the SK (or PK) capacity of W , in-

cluding the upper bounds of [23, Theorem 6], is an upper bound for CA
SKpPYM|XMq (or

C
A|D
PK pPYM|XMq). See Corollary below – which immediately follows from Theorem 5.4 and

[23, Theorem 6].

Corollary 5.4.2. Consider a non-wiretapped transceiver model W “ PYM|XM with D ĂM,

and A Ď Dc. Then, for an arbitrary RV X2, and any λ P ΛpA|Dq define

gλpVM|VDX
2
q :“ HpVM|VDX

2
q ´

ÿ

BPΥpA|Dq

λBHpVB|VBcX
2
q,

and

gλpXM|VDX
2
q :“ HpXM|VDX

2
q ´

ÿ

BPΥpA|Dq

λBHpXMXB|XMXBcVDX
2
q.

Recall that VD “ constant when D “ H. Then

CA
SKpPYM|XMq ď sup

PX2XM

inf
λPΛpAq

 

gλpVM|X
2
q ´ gλpXM|X

2
q
(

, (5.13)

and for any i P Dc

C
A|D
PK pPYM|XMq ď sup

PX2XM

inf
λPΛpA|Dq

 

gλpVM|VDX
2
q ´ gλpXM|VDX

2
q

`
ÿ

BPΥpA|Dq
s.t. iRB

λBIpVD;XMXB|XMXBcX
2
q
(

, (5.14)

where the variable X2 can be arbitrarily correlated with input RV’s XM without any condition.
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5.4 The Non-adaptive SK Capacity

For two-party SKA, the noninteractive one-way SK capacity has been extensively studied

in the past; see Chapter 3. Noninteractive SKA protocols are preferred in practice as they

are more efficient in terms of public communication cost, and implementation complexity.

In this section, we define the non-adaptive SK capacity for the multiterminal channel model

of transceivers, and show that the source emulation lower bound of Section 5.3.2 with the

noninteractive public communication protocol of [21] achieves this capacity.

Definition 5.4 (Non-adaptive SKA). Consider the following limitations imposed on an

SKA channel model:

(a) No Feedback: The protocol starts with symbol transmission over DMC, and after its

completion, terminals engage in a (possibly interactive) public discussion phase.

(b) Independent IID Inputs: Terminals are locally controlling their input variables, and

the input variables are independent and IID, i.e., PXM “
ś

jPM PXj .

SKA protocols satisfying (a) and (b) are called non-adaptive. The non-adaptive secret key

capacity, is defined as the largest achievable key rate of all non-adaptive SKAs, and is denoted

by CA
NA´SKpPYM|XMq.

These are commonly used assumptions that hold in many real-life settings. Next theorem

proves that if using public communication in between noisy channel uses is not allowed, the

source emulation technique is the optimum SKA approach, as it achieves the non-adaptive

secret key capacity.

Theorem 5.5 (Non-adaptive SK Capacity). For a transceiver model, and a subset

A ĎM, the non-adaptive SK capacity is given by

CA
NA´SKpPYM|XMq “ max

PXM

CA
SKpPXMPYM|XMq. (5.15)

Proof of Theorem 5.5: First, we prove that the right hand side of the above equation
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is an upper bound on the non-adaptive capacity (i.e., the converse). Consider an associated

multiaccess channel W with 2m terminals denoted by M “ t1, . . . ,m,m` 1, . . . 2mu, where

Vj “ pXj, Yjq @j PM “ t1, . . . ,mu, are output variables of the multiaccess DMC and Vj @j P

M1 “ tm ` 1, . . . , 2mu are input variables of DMC, satisfying PXM|VM1 “
ś

jPrms PXj |Vj`m

and PXj |Vj`m “ 1pXj “ Vj`mq. By Theorem 5.4, we have

CA
NA´SKpPYM|XMq ď CA

NA´SKpPXM|VM1PYM|XMq,

and thus any upper bound on the non-adaptive SK capacity of multiaccess model W is also

an upper bound on the non-adaptive SK capacity of the transceiver model W . An upper

bound is given for the SK capacity of any multiaccess channel model in [23].

Lemma 5.6 ([23]). Let W be a multiaccess channel, for which M1 is the set of input

terminals (transmitters), M is the set of output terminals (receivers), and D “ H. For any

A ĎM and any λ P ΛpAq (as defined in Definition 5.3), any achievable secret key K with

alphabet K satisfies

1

n
log |K| ď αn

n
En ` βn, (5.16)

where αn Ñ 1 and βn Ñ 0, as nÑ 8; and

En “
n
ÿ

t“1

“`

HpVMtq ´
ÿ

BPΥpAq

λBHpVBt|VBctq
˘

´
`

HpVM1tq ´
ÿ

BPΥpAq

λBHpVpBXM1qt|VpBcXM1qtq
˘‰

.

The proof of this Lemma is given in [23, Appendix A] (See Equation (A8)). Note that

under nÑ 8 the right hand side of (5.16) gives an upper bound on the SK capacity of the

multiaccess model W which, because of Theorem 5.4, implies an upper bound on the SK

capacity of W . The general upper bound in (5.16) holds even if assumptions (a) and (b) are

not satisfied. However, considering assumptions (a) and (b) we can simplify the expression
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of En in (5.16). Due to no feedback assumption (a), we have

En “
`

HpV n
Mq ´

ÿ

BPΥpAq

λBHpV
n
B |V

n
Bcq

˘

´
`

HpV n
M1q ´

ÿ

BPΥpAq

λBHpV
n
BXM1 |V n

BcXM1q
˘

.

By the independence of the inputs assumption (b), for any B Ď M1 we have HpVBq “
ř

jPBHpVjq, and by properties of λ vectors (see Definition 5.3 and Proposition 5.1) we get

ÿ

BPΥpAq

λBHpVBXM1 |VBcXM1q “
ÿ

BPΥpAq

λB
ÿ

jPBXM1

HpVjq “
ÿ

jPM1

ÿ

BPΥpAq
s.t. jPB

λBHpVjq “ HpVM1q,

and since V n
j ’s are IID due to assumptions (a) and (b), we have

En “ n
`

HpVMq ´
ÿ

BPΥpAq

λBHpVB|VBcq
˘

.

Lemma 5.6 holds for any λ and any distribution PVM (that is a function of PXM as

PVM “ PXMPYM|XM). Therefore, for every λ P ΛpAq the largest upper bound on the non-

adaptive SK capacity is given by

CA
NA´SKpPYM|XMq ď max

PXM

lim sup
nÑ8

´αn
n
En ` βn

¯

“ max
PXM

gλpVMq,

where we define gλpVMq “ HpVMq´
ř

BPΥpAq λBHpVB|VBcq. As the above inequality holds for

every λ P ΛpAq, the non-adaptive SK capacity is upper bounded by the smallest upper bound

as a function of λ (that is a variable independent of how any SKA protocol is executed).

Hence,

CA
NA´SKpPYM|XMq ď min

λPΛpAq
max
PXM

gλpVMq.

Function gλpVMq is a concave function of PXM “
ś

jPM PXj and affine as a function of λ
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(see Appendix – Section 5.6.) So the minimax theorem [127, Section 5.5] implies that

CA
NA´SKpPYM|XMq ď max

PXM

min
λPΛpAq

gλpVMq.

This completes the proof of the converse. The achievability proof is simple. By Theorem 5.2

we know that for the source model Q “ PXMPYM|XM and for D “ H we have

CA
SKpQq “ min

λPΛpAq

!

HpVMq ´
ÿ

BPΥpAq

λBHpVB|VBcq
)

“ min
λPΛpAq

gλpVMq.

Thus, for any PXM the source emulation SKA protocol of Theorem 5.3 with X 1 “ constant

achieves a key rate lower bounded by

1

n
log |K| ě min

λPΛpAq
gλpVMq ´ ξ,

for any arbitrary ξ ą 0. By maximizing PXM and since ξ can be arbitrarily small the upper

bound proved in the converse can be asymptotically achieved.

5.5 Conclusion

We introduced a new general channel model of transceivers for multiterminal secret key

agreement and showed that the models in [22] and [23] are special cases of the new model. We

gave lower bounds and upper bounds for the SK, PK and WSK capacities of the transceiver

model. Then, we studied the problem of non-adaptive secret key agreement and gave the

non-adaptive SK capacity of the transceiver model. This result is important because of

the ease of implementation of non-adaptive (and noninteractive) protocols. Future research

directions include finding tighter bounds for the key capacities of the general transceiver

model, and construction of a capacity achieving SKA protocol for wiretapped and non-

wiretapped transceiver models.
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5.6 Appendix

Lemma 5.7. Consider M “ rms and a multi-input multi-output DMC W “ PYM|XM, where

XM “ pXj| j P Mq, YM “ pYj| j P Mq, and define VM “ ppXj, Yjq| j P Mq. Let D “ H.

For any A ĎM, every fractional partition λ P ΛpAq, and any given distribution PXM define

gλpVMq “ HpVMq ´
ř

BPΥpAq λBHpVB|VBcq. If the probability distribution of XM satisfies

PXM “
ś

jPM PXj , then gλpVMq is a concave function of PXM.

Proof of Lemma 5.7: Given that PXM “
ś

jPM PXj , for any B Ď M we have

HpXMq “ HpXBq ` HpXBcq, and HpXBq “
ř

jPBHpXjq. By simple manipulation of the

entropic quantities, we can rewrite gλpVMq as

gλpVMq “ HpVMq ´
ÿ

BPΥpAq

λBHpVB|VBcq

“ HpVMq ´
ÿ

BPΥpAq

λB
“

HpVB, VBcq ´HpVBcq
‰

“ HpVMq ´
ÿ

BPΥpAq

λB
“

HpXMq `HpYM|XMq ´HpXBcq ´HpYBc |XBcq
‰

“ HpVMq ´
ÿ

BPΥpAq

λB
“

HpXBq `HpYM|XMq ´HpYBc |XBcq
‰

“

´

HpXMq ´
ÿ

BPΥpAq

λBHpXBq
¯

`HpYM|XMq ´
ÿ

BPΥpAq

λB
“

HpYM|XMq ´HpYBc |XBcq
‰

“ HpYM|XMq ´
ÿ

BPΥpAq

λB
“

HpYM|XMq ´HpYBc |XBcq
‰

.

The conditional entropy HpYM|XMq is an affine function of PXM , and HpYBc |XBcq is an

affine function of PXBc and a concave function of PXB . Thus gλpVMq is a concave function
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of PXM . Note that in the second last equality we used the fact that

ÿ

BPΥpAq

λBHpXBq “
ÿ

BPΥpAq

λB
ÿ

jPB
HpXjq “

ÿ

jPM

ÿ

BPΥpAq
s.t. jPB

λBHpXjq “
ÿ

jPM
HpXjq “ HpXMq,

which is due to the independence property that PXM “
ś

jPM PXj . See Proposition 5.1.

The above lemma can be regarded as a generalization of Lemma A.1 in [22].
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Chapter 6

Secret Key Capacity of

Wiretapped Polytree-PIN

Abstract. In secret key agreement (SKA) in multiterminal channel model,
terminals are connected by a noisy discrete memoryless channel (DMC) with
multiple input and multiple outputs. Terminals can use the DMC to ob-
tain correlated randomness, and communicate over a noiseless public channel
to establish a shared secret key among a designated subset of terminals.
We focus on a special class of multiterminal channel models, called wire-
tapped Polytree-PIN, in which the noisy channel consists of a set of inde-
pendent point-to-point channels whose underlying undirected connectivity
graph forms a tree. We consider a wiretap setting, where the output of each
point-to-point channel is partially leaked to a passive wiretapper adversary,
Eve, through a second independent noisy channel. A secure SKA protocol
generates a group secret key such that Eve has no information about it. In
this chapter, we derive the wiretap secret key capacity, which is the largest
achievable secret key rate, of the wiretapped Polytree-PIN model. Our result
also implies the key capacity of the non-wiretapped Polytree-PIN model, that
is the case when there is no leakage from point-to-point channels to Eve.

Contributions presented in this chapter have been presented and accepted for publication in the pro-
ceedings of ITW 2021 [38].
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6.1 Introduction

Two-party secret key agreement (SKA) with information-theoretic security was first intro-

duced and studied in [19], and [20]. The SKA problem was generalized to the case of multiple

terminals in [21, 22] and has been well studied ever since [74]. In the multiterminal channel

models studied in [22, 23, 75, 120] it was assumed that the set of terminals is partitioned

into two disjoint subsets: a subset of terminals that supply input symbols to the underly-

ing discrete memoryless channel (DMC) and a (non-overlapping) subset of terminals that

observe individual outputs of the DMC. The transceivers channel model introduced in [36]

(see Chapter 5) generalized previous models to the case of multiple transceivers; where each

terminal is capable of simultaneously sending to, and receiving from, the noisy DMC.

The multiterminal transceivers channel model is defined by an underlying multi-input

multi-output noisy discrete memoryless channel (DMC). There are m terminals denoted by

M “ t1, . . . ,mu, and a subset of terminals have control over the input variables of the noisy

DMC, and another (possibly overlapping) subset of terminals observe the corresponding

output variables of the DMC. The goal of an SKA protocol is to establish a shared secret

key among a subset of terminals A Ď M. Terminals are allowed to send symbols over the

noisy DMC to generate correlation. This DMC, however, is wiretapped and the transmitted

symbols partially leak to a passive wiretapper adversary, Eve. Terminals have access to a

noiseless authenticated public channel which they can use to send public messages (interac-

tively) before, in between, and after symbol transmissions over the noisy DMC. In addition

to the leaked information from the noisy DMC, Eve observes all public messages sent by ter-

minals over the public channel. Utilizing the noisy DMC and the noiseless public channel,

at the end of the SKA protocol, terminals in A agree on a secret key (SK), such that Eve

has no information about it. The key may or may not be known to the helper terminals, i.e.,

terminals in Ac “MzA.

The “key capacity” of a model is the highest achievable secret key rate of the model

where the rate is defined as the number of key bits that can be established for each symbol
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that is transmitted over the DMC. Depending on the Eve’s side information, three notions

of key capacity have been defined [21, 22]. If Eve has no side information, the capacity is

called, the secret key (SK) capacity. If a subset of helper terminals D Ď Ac are compromised

by Eve, the key capacity is called the private key (PK) capacity. In the most general sense,

if Eve has some side information represented by a variable Z, about other terminals’ private

variables, key capacity is called the wiretap secret key (WSK) capacity. In this chapter, we

focus on the latter notion of key capacity.

The WSK capacity is known only for few special cases [45, 74], and for the general case,

even for two-party SKA (m “ 2), remains an open problem. The two-party WSK capacity

when public communication is one-way (noninteractive messages from input terminal to the

output terminal) is shown [20, Theorem 2] to be equal to Wyner’s wiretap secrecy capacity

[57] of the underlying DMC. This is also called the forward WSK capacity. However, when

interaction is allowed, it is proved [20, Theorem 2] that

CWSK ď max
PX

IpX;Y |Zq,

where, X, Y, and Z are, the input variable of terminal 1, output variable of terminal 2,

and output variable (side information) of Eve, respectively. When a Markov relation holds

between pX, Y, Zq in any order, this bound is tight (gives WSK capacity) and can be achieved

with a one-way two-party SKA protocol. The best known upper and lower bounds on

multiterminal WSK capacity are due to [75].

6.1.1 Our Work

We study the wiretapped Polytree-PIN model with independent leakage, a special class

of transceivers channel model [36], in which terminals are connected by a set of mutually

independent point-to-point (directed) channels, and Eve has access to a noisy version of each

output variable of each channel. See Figure 6.1 and the description in Section 6.2. For the
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case of m “ 2, the wiretapped Polytree- PIN model is the same as the two-party model of

[20, Theorem 2] when the Markov relation X ´ Y ´ Z holds. We focus on this special type

of wiretap model, which does not fit into other multiterminal channel models [22, 23, 75]

and so its key capacity cannot be directly using previously known results in [23, 75, 120].

This special case can however be seen as an instance of the transceivers model [36]. The

Polytree-PIN model can also be viewed as the channel model counterpart of the Tree-PIN

model of [34], which is a special class of pairwise independent network (PIN) source models

[55, 60].

The SK capacity of non-wiretapped Polytree-PIN was derived under the constraints that

the input variables are independently generated, and the public communication is nonin-

teractive [36]. In this work, we consider no restriction on the terminals use of the public

channel, and prove the WSK capacity of wiretapped Polytree-PIN.

6.1.2 Related Works

Multiterminal SKA problem in channel model has been studied extensively; e.g., see [22,

23, 36, 75, 120]. Single-input multi-output DMC’s where studied in [22, 75]. The SK and

PK capacities are derived in [22] for the case when terminals are allowed to send public

messages without any specific restriction. These capacities are shown to be achievable by an

SKA approach called source emulation. We also employ this approach and show that source

emulation is capacity achieving for the case of wiretapped Polytree-PIN. The WSK capacity

of a special class of models (called Markov Tree) was derived in [22, Theorem 5.1] in which

Eve gets side information only about the variable associated with one of the terminals1.

The case of multi-input multi-output (the multiaccess) channel was studied in [23, 120].

The SK and PK capacities of the multiaccess model are not know, but general upper and

1We emphasize that while our model of wiretapped Polytree-PIN resembles the wiretapped Markov Tree
of [22], they are different in some aspects. Eve in our model is more powerful in the sense that it observes
side information about all variables of terminals, but our model is more restrictive as it has the structure of
pairwise independent channels.
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lower bounds were proved in [23]. The SK capacity is proved for the symmetric2 multiaccess

channel with a single output terminal under the constraint that only the output terminal

sends public messages [120].

In all these SKA channel models, it was assumed that a terminal is either providing

an input to the DMC, or is receiving an output from the DMC. The transceivers model,

introduced in Chapter 5 (see also[36]), generalizes the multiaccess model of [23] by allowing

terminals to send to, and receive from the DMC. For this model of transceivers, general

upper and lower bounds were proved for the SK, PK, and WSK capacities, and the SK

capacity was derived when the DMC’s input variables are IID and generated independently

and non-adaptively.

To the best of our knowledge, except for the result of [22, Theorem 5.1], our result is the

only other channel model WSK capacity result for a family of multiterminal models.

6.1.3 Organization

We define the wiretapped Polytree-PIN, and state our main result in Section 6.2. We then

prove our result in Section 6.3, and conclude the chapter in Section 6.4.

6.2 Problem Formulation and Main Result

6.2.1 The Model

A Polytree-PIN transceiver model consists of a set ofm terminals denoted by M “ t1, . . . ,mu,

and a noisy DMC which is defined by a polytree G “ pM, Eq, that is a directed acyclic graph

for which the undirected version is a tree. All terminals have access to a noiseless authenti-

cated public channel as well. In G, each directed edge eij P E is unique and can be represented

by an arrow from terminal i to terminal j. When eij P E exists then eji R E , and there are no

2A two input single out put channel is called symmetric if the conditional distribution of the channel
satisfies PV3|V1V2

“ PV3|V2V1
.

196



1

3

2

4

5

6

Eve

X1,3

Y3,1

Z1,3

X3,2

Y2,3

Z3,2

X3,4 Y4,3

Z3,4

X4,5

Y5,4

Z4,5

X6,4

Y4,6

Z4,6

Figure 6.1: An example wiretapped Polytree-PIN. The solid arrows (directed edges) show
the independent point-to-point channels of the model, and the curly arrows (with the same
color) show the corresponding wiretapping RV’s of Eve. With respect to each directed edge
eij P E we have Xij ´ Yji ´ Zij, and Eve’s side information is Z “ pZij| eij P Eq.

self loops, that is eii R E . Each directed edge eij P E of G “ pM, Eq that connects terminal

i to terminal j corresponds to an independent point-to-point channel where Xij and Yji are

respectively its input and output RVs. Thus, the RVs of each terminal i P M are of the

form Vi “ pXi, Yiq, where Xi “ pXij| eij P Eq, Yi “ pYij| eji P Eq. let XM “ pX1, . . . , Xmq,

YM “ pY1, . . . , Ymq, and VM “ pV1, . . . , Vmq be the random vectors representing all input

RV’s, all output RV’s, and all terminals’ RV’s, respectively. The DMC of a wiretapped

polytree-PIN is given by W “ PZYM|XM “ PYM|XMPZ|XMYM , with PYM|XM “
ś

eijPE PYji|Xij

where PYji|Xij corresponds to the point-to-point channel between Xij and Yji.

A polytree-PIN is called with independent leakage if the wiretapper’s RV is of the form

Z “ pZij| eij P Eq3, where the Markov relation Xij ´ Yji ´ Zij holds for all eij P E . For this

case, the DMC is given by

W “ PZYM|XM “
ź

iPM

ź

jPM
s.t. eijPE

PYji|XijPZij |Yji ,

3With respect to some fixed arbitrary order over the edges in E .
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where PZij |Yji represents the point-to-point channel between Yji and Zij (Eve). See Figure 6.1.

When Z “ constant, that is when Eve has no side information, the model is called non-

wiretapped, and is denoted by W “ PYM|XM .

The goal of an SKA protocol is for terminals in A ĎM to share a secret key K by using

cooperation of terminals in M. All terminals have access to a public channel, and public

messages sent by a terminals will be received by all terminals and the passive adversary Eve,

who will not interfere with the public communication. There is no initial correlation between

the terminals. Before starting the SKA protocol, terminals are allowed to use the public

channel for initialization (e.g., agreeing on public parameters). An SKA protocol consists

of n rounds, where each round consists of one invocation of the noisy channel, followed by

public communication by terminals in M over the public channel. Let Ft denote the random

variable representing all public messages of the m terminals in round 1 ď t ď n, and let

F “ pF1, . . . ,Fn
q denote the entire public communication. Each public message of terminal

j in round 1 ď t ď n is a function of all previous samples Vj1, . . . , Vjt, its local randomness,

public messages of the previous rounds F1, . . . ,Ft´1, and previous public message sent in

round t. Each input symbol Xjt of round t ě 2 may depend on previous public discussions

F1, . . . ,Ft´1, and previous samples Vj1, . . . , Vjpt´1q. After the n rounds of the SKA protocol,

the RV associated to each terminal j is given by V n
j “ pXn

j , Y
n
j q. Also, let V n

M denote

the collection of all RVs accessible to all terminals after round n. The protocol ends when

each terminal j computes their version of the key KjpV
n
j ,Fq that is a function of all the

symbols they send to, or receive from, the noisy DMC (V n
j ), and all of the exchanged public

messages (F). Eve has access to all public messages, F, and the side information Zn, which

is correlated with V n
M.

6.2.2 Definitions

Definition 6.1. For a set of terminals M, let A ĎM denote the subset of terminals that

want to obtain a shared key K with alphabet K. Let Zn denote Eve’s side information about
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V n
M. The key K is an pε, σq-Secret Key (in short pε, σq-SK) for A, if there exists an SKA

protocol with public communication F, and output RVs tKjujPA for each terminal, such that

(reliability) Pr tKj “ Ku ě 1´ ε, @j P A, (6.1)

(secrecy) SD ppK,F, Zn
q, pU,F, Zn

qq ď σ, (6.2)

where SD denotes the statistical distance and U is the uniform probability distribution over

alphabet K.

Definition 6.2 (Key Capacity – see Definition 17.16 of [90]). Let Zn denote Eve’s side

information about V n
M. For a given channel modelW , whereW is the conditional distribution

of the underlying DMC, a real number R ě 0 is an achievable SK rate if there exists an

SKA protocol that for every n establishes an pεn, σnq´SK K P K where limnÑ8 εn “ 0,

limnÑ8 σn “ 0, and lim infnÑ8
1
n

log |K| “ R. The maximum of all achievable SK rates is

called the key capacity of the given model W .

SK, PK, and WSK Capacities. Eve has access to all public messages, denoted by F,

and might wiretap some side information about V n
M, denoted by RV Zn. When Eve has no

side information about V n
M, then Zn “ constant (i.e., independent of V n

M), and the capacity is

called SK capacity, denoted by CA
SKpW q. Eve may compromise a subset of terminals D Ă Ac,

in which case Zn “ V n
D “ pV

n
j | @j P Dq. The compromised terminals remain cooperative in

the SKA protocol (it is assumed that they reveal V n
D to other terminals through the public

channel.) The capacity for this case is called PK capacity and is denoted by C
A|D
PK pW q. In

the most general sense, if Eve has access to side information Zn, which is correlated with

V n
M, the model is called “wiretapped”, and the key capacity is called WSK capacity, denoted

by CA
WSKpW q.
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6.2.3 WSK Capacity of Polytree-PIN

The main contribution of this chapter is deriving the WSK capacity of wiretapped Polytree-

PIN with independent leakage. Here, we state the claimed result and give the proof in the

next section.

Theorem 6.1 (WSK capacity of Polytree-PIN). The WSK capacity of a wiretapped

Polytree-PIN with independent leakage defined by G “ pM, Eq is

CA
WSKpPZYM|XMq “ max

PXM

min
i,jPM

s.t. eijPEA

IpXij;Yji|Zijq, (6.3)

where GA “ pMA, EAq is the subgraph of G with the smallest number of edges that spans all

terminals of A. Moreover, this key capacity is achievable by the simple source emulation

approach.

The above theorem also implies the SK capacity of the non-wiretapped Polytree-PIN

model, with the choice of Z “ constant. That is,

CA
SKpPYM|XMq “ max

PXM

min
i,jPM

s.t. eijPEA

IpXij;Yjiq, (6.4)

and that this SK capacity is achievable by the simple source emulation approach.

Note than the implied non-adaptive SK capacity formulation of Theorem 5.5 for the case

of non-wiretapped Polytree-PIN is equal to the right hand side of Equation (6.4); however,

the statement of Equation (6.4) is stronger than the claim of Theorem 5.5. While in Equation

(6.4) the model is not restricted to non-adaptive SKA, we prove that the non-adaptive SKA

approach of source emulation is capacity achieving for the case of wiretapped (and non-

wiretapped) Polytree-PIN.
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6.3 Proof of Theorem 6.1

In this section, we provide the proof for Theorem 6.1. The proof has two parts. In the

direct part, to prove a lower bound on CA
WSKpW q, we use the source emulation approach of

[22] and the source model Tree-PIN SKA protocol of [34]. In the converse part, we prove

an upper bound on CA
WSKpW q using a combination of techniques from [23] and [36]. The

novelty of the upper bound proof lies in exploiting the induced Markov relations among all

variables (within V n
M,F), without imposing additional limitations on the model, to show

that the upper bound is tight in general for Polytree-PIN, and is achievable by the source

emulation lower bound. Theorem 6.1 also implies the SK capacity by letting Z “ constant.

We first review the lemmas that are used in the converse, and then we review the source

emulation technique.

6.3.1 Converse Techniques

The following lemmas will be used for the converse part of our proof.

Lemma 6.2 (Lemma 5.1 of [22]). For a wiretapped channel model W , where Eve’s RV

is not constant, let C
A|t|M|`1u
PK pĂW q be the PK capacity of an associated model ĂW that is

the same as W except that Eve is assumed to be a new compromised terminal – that is

ĂM “MY t|M| ` 1u, and V|M|`1 “ Z. By definition of the PK and WSK capacities we

have, CA
WSKpW q ď C

A|t|M|`1u
PK pĂW q.

The multiaccess model of [23], is a special case of transceivers model, in which a subset

of terminals only have access to the input RVs and the rest of the terminals only have access

to the output RVs of the DMC.

Lemma 6.3 (Theorem 5.4 of Chapter 5, see also Theorem 3 of [36]). Consider

a non-wiretapped transceivers model W “ PYM|XM where M “ t1, . . . ,mu. Define the

associated multiaccess model W over the terminal set M “ M1 YM, where M1 “ tm `

1, . . . , 2mu is a new subset of terminals that only provide input symbols Vi “ X i @i P M1
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to the underlying multiaccess DMC of W . The original terminal set of W (i.e., M) is now

the (nonoverlapping) subset of terminals that observe output RV’s Y j @j PM, composed of

two components Vj “ Y j “ pXj, Yjq. The multiaccess DMC of W “ PVM|VM1 “ PYM|XM1
is

defined based on the DMC of W as

W “ PXM|XM1
PYM|XM “

`

ź

iPM
1pXi “ X i`mq

˘

W,

where, for any i P M, the connection between input symbols X i`m and Xi component of

output RV’s is given by noiseless DMC’s 1pXi “ X i`mq. Then, for any D ĂM and A Ď Dc

we have C
A|D
PK pW q ď C

A|D
PK pW q.

6.3.2 Source Emulation

For the achievability, we use the source emulation approach [22, 23, 75]. In the multiterminal

source model [21], there are m terminals each having access to n IID copies of Vj p@j ď mq

that are used for SKA by using public communication among terminals. The SK, PK, and

WSK capacities have been defined for source model in [21] (similar to Definition 6.2).

A source model SKA protocol, gives a lower (achievability) bound on the channel model,

in the following way. Let terminals of a given channel model W “ PZYM|XM , use the

underlying DMC n times, with IID input symbols, and without using feedback over the

public channel. The variables that will be held by each terminal at the end of this symbol

transmission define a source model that is described by PZVM “ PXMW . This is called

source emulation [22]. A secure source model protocol will give a protocol for the channel

model by first invoking the symbol transmissions that emulate the source, and then directly

using the source model protocol, which immediately implies a channel model lower bound.

Note that source emulation may not achieve the key capacity, since it does not utilize

the available public channel between DMC applications, which can be used for example

to provide feedback and adaptation of the channel input variables. Theorem 4 of [120]
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Figure 6.2: An example of Polytree-PIN transceiver model and its associated multiaccess
channel model as per the proof of Theorem 6.1. The dashed arrows show the noiseless
channels of the multiaccess model, connecting terminals of M1 to the output terminals in
M. There is one noiseless DMC per each input RV of the original Polytree-PIN.

shows that source emulation is not capacity achieving for certain channel models. We show,

however, that though Polytree-PIN model allows adaptive channel inputs, such SKA method

is not necessary for achieving the WSK capacity, and source emulation is sufficient.

6.3.3 The Proof

Proof of Theorem 6.1: For the converse part, we start with Lemma 6.2, and Lemma

6.3. For wiretapped Polytree-PIN W “ PZYM|XM with polytree G “ pM, Eq where M “

t1, . . . ,mu, we prove an upper bound on CA
WSKpW q. Define the associated transceiver model

ĂW by considering Eve as a new compromised terminal labeled as 2m ` 1 added to the

terminal set; that is, D “ t2m ` 1u, ĂM “ M Y D, VD “ YD “ Z “ pZij| eij P Eq, and

ĂW “ PYDYM|XM “ W . By Lemma 6.2, CA
WSKpW q ď C

A|D
PK p

ĂW q. Then, we define a multiaccess

model W by considering the m` 1 terminals of ĂW as its output terminals, and introducing
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m new input terminals denoted by M1 “ tm ` 1, . . . , 2mu – i.e., M “ M1 Y ĂM. The

input terminals’ RVs of W are X i “ pXij| epi´mqj P Eq @i PM1, and the non-compromised

output terminals’ RVs are of the form Y i “ pXi, Yiq @i P M, with Xi “ pXij| eij P Eq,

and Yj “ pYji| eij P Eq. The only compromised terminal 2m ` 1 is an output terminal with

RV Y 2m`1 “ Y D “ Z. The conditional probability distribution of the multiaccess channel

W “ PY
ĂM|XM1

is given by,

PY DYM|XM1
“ PZYMXM|XM1

“ PXM|XM1
PZYM|XM

where PXM|XM1
is a collection of noiseless DMC’s, given by

ź

iPM
PXi|Xi`m

“
ź

iPM

ź

jPM
s.t. eijPE

1pXij “ Xpi`mqjq,

and PZYM|XM “ W . By Lemma 6.2 and Lemma 6.3 we have

CA
WSKpW q ď C

A|D
PK p

ĂW q ď C
A|D
PK pW q.

Next, we prove an upper bound for the PK capacity of W . For any edge eij P EA, define

Pij “ tBij,Bciju to be the bi-partition (the cut) of M that eij P EA crosses (i.e., either i P Bij

and j P Bc
ij, or j P Bij and i P Bc

ij). Also, define Pij “ tBij,Bciju to be the partition of

xM “ M YM1 such that eij crosses Pij, and for every j ď m in one part of Pij, j ` m

belongs to the same part. Note that Bij XM “ Bij and Bcij XM “ Bcij. See the example

partitions in Figure 6.2.

Let K P K be an achievable pε, σq´SK for W , achieved by an SKA protocol Π with public

communication F. We prove that for any achievable pε, σq´SK for W we have

log |K| ď IpV n
Bij ;V

n
Bcij
|ZnFq ` δ, @eij P EA (6.5)
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where δ “ δpε, σq “ σ log |K|
σ
` p|xM| ` 2qpε log |K| ` hpεqq.

Before proving Equation (6.5), we review some notations. For a subset A Ď xM, let ΥpAq

be the family of all nonempty sets B Ă xM such that, B does not contain A (A Ę B), and let

ΛpAq be the set of all |ΥpAq|-dimensional vectors λ “ pλB | B P ΥpAqq such that 0 ď λB ď 1,

and for any terminal j P Dc, all λ P λpAq satisfy
ř

BPΥpAq s.t. jPB λB “ 1. See Definition 5.3.

As K is an pε, σq´SK achieved by F, Equations (6.1) and (6.2) are satisfied. Since W is a

multiaccess model, [22, Lemma A.2] implies that for every λ P ΛpAq we have

HpK|FZn
q ď HpV n

xM|FZ
n
q ´

ÿ

BPΥpAq

λBHpV
n
B |V

n
BcFZ

n
q ` ν,

where ν “ p|xM| ` 2qpε log |K| ` hpεqq. Also, we define s “ spK,F, Znq “ log |K|´HpK|F, Znq.

Then

log |K| ď HpV n
xM|FZ

n
q ´

ÿ

BPΥpAq

λBHpV
n
B |V

n
BcFZ

n
q ` s` ν (a)

ď HpV n
xM|FZ

n
q ´

ÿ

BPΥpAq

λBHpV
n
B |V

n
BcFZ

n
q ` δ (b)

ď IpV n
Bij ;V

n
Bcij
|ZnFq ` δ (c)

where (a) is due to definition of s “ spK,F, Znq, (b) is due to Lemma 1 of [21], i.e.,

spK,F, Znq “ s ď σ log |K|
σ

, (c) is due to choosing λ “ pλG,G P ΥpAqq as

λG “

$

’

&

’

%

1 G “ Bij or G “ Bcij

0 otherwise,

and that we have Xj`m “ Xj @j ď m. This proves Equation (6.5). Next, let Pij “ tBij,Bciju

be the bi-partition of M such that i P Bij and j P Bc
ij, and that the directed edge eij is

from terminal i to j (i.e., Xij ´ Yji ´ Zij). Define B1i “ Bijztiu, B1j “ Bcijztju, and also let

Ṽi “ ppXik|k ‰ jq, Yiq and Ṽj “ pXj, pXjk|k ‰ iqq. Note that neither Bij nor Bc
ij contain A
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as eij P EA. Thus,

log |K| ď IpV n
Bij ;V

n
Bcij
|ZnFq ` δ

“ IpV n
i ;V n

Bcij
|ZnFq `

((((((((((
IpV n

B1i
;V n

Bcij
|ZnFV n

i q ` δ (a)

“ IpV n
i ;Y n

ji |Z
nFq `

((((((((((((
IpV n

i ; Ṽ n
j V

n
B1j
|ZnFY n

ji q ` δ (b)

“ IpV n
i ;Yji,n|Z

nFY n´1
ji q ` IpV n

i ;Y n´1
ji |ZnFq ` δ (c)

ď IpV n
i FpZYjiq

n´1;Yji,n|Zij,nq`

IpV n´1
i ;Y n´1

ji |ZnFq `
((((((((((((
IpVi,n;Y n´1

ji |ZnFV n´1
i q ` δ (d)

ď IpXij,n;Yji,n|Zij,nq ` IpV
n´1
i ;Y n´1

ji |Zn´1Fq`

((((((((((((((((

IpṼ n
i ;Yji,n|Z

nFpViYjiq
n´1Xij,nq ` δ (e)

ď

n
ÿ

t“1

IpXij,t;Yji,t|Zij,tq ` δ

where in (a) the second term cancels to zero as Markov relation V n
B1i
´ ZnFV n

i ´ V
n
Bcij

holds,

(b) is by V n
i ´Z

nFY n
ji´Ṽ

n
j V

n
B1j

, (c) follows from entropy chain rule, (d) holds since conditioning

reduces entropy, and that ZnVi,n´pZViq
n´1F´Y n´1

ji holds, and (e) is due to Ṽ n
i ´FpZViq

n´1´

Xij,n ´ Yji,n. Recall that IpJ1; J3|J2q “ 0 if J1 ´ J2 ´ J3. Also, remember we assume that F

contains Zn when considering the PK capacity. The above inequality holds for any eij P EA,

thus

CA
WSKpW q ď C

A|D
PK pW q ď min

i,jPM
s.t. eijPEA

lim sup
nÑ8

max
PXnM

1

n
log |K|

ď min
i,jPM

s.t. eijPEA

max
PXM

IpXij;Yji|Zijq

“ max
PXM

min
i,jPM

s.t. eijPEA

IpXij;Yji|Zijq, (6.6)

and the last equality is due to minimax inequality [127, Section 5.5] and that there exists

a distribution of the form PXM “
ś

eijPE PXij that maximizes IpXij;Yij|Zijq for all eij. See

Lemma 6.4 of Appendix (Section 6.5). Thus, the maximization can be reduced to maximum
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over independent IID inputs.

To prove achievability, we prove that simple source emulation approach of Equation (5.8)

with X 1 “ constant (see also [22, Section IV] and [23, Section IV]) achieves the upper bound

in (6.6). Each terminal with control over input symbols Xij, independently generates Xn
ij

according to the distribution PXM “
ś

eijPE PXij . Then by sending input symbols through

the DMC, terminals receive the output RVs Y n
M. Thus, n IID copies of a source model

PZVM “ PXMPZYM|XM is generated amongst the terminals. Note that due to properties

of Polytree-PIN transceiver model (i.e., mutually independent point-to-point channels, and

Xij ´ Yji ´ Zij for all eij P E), this source model is a Tree-PIN source model4 and for any

arbitrary ξ ą 0, and any distribution PXM “
ś

eijPE PXij , one can employ the source model

SKA protocol 6 of Chapter 4 (see also [34]) to establish a secret key of rate of

1

n
log |K| ě min

i,jPM
s.t. eijPEA

tIpXij;Yij|Zijqu ´ ξ.

The protocol works as follows. Corresponding to each eij, terminals i and j use their RV’s

Xn
ij and Y n

ji to agree on pairwise secret key Sij (using a two-party SKA, e.g., Protocol 4 or 5–

see also [32, 79]), where lengthpSijq “ nIpXij;Yij|Zijq ´ opnq. Then, terminals run a public

communication protocol that enables all terminals in MA Ď Dc to securely agree on one of

the pairwise keys as their final key, say for example K “ Sij with j PMA and eij P EA. The

proof is in the Appendix of Chapter 4. Since ξ was arbitrary, by maximizing over PXM we

obtain the upper bound of Equation (6.6) and hence the capacity.

6.4 Conclusion

Secret key agreement protocols with security against wiretapping adversaries are important

in practice as they naturally model leakage of communication to eavesdropping adversaries in

4A source model described by PZVM is a wiretapped Tree-PIN if there exists an undirected tree G “

pM, Eq such that tpVij , Vji, ZijqueijPE are mutually independent, and Vij ´ Vji ´ Zij holds for all eij P E ,
where Vj “ pVji| eij P Eq is terminal j’s RV.
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wireless settings. Finding WSK capacity in general is an open problem [45, 74]. We studied

the special case of wiretapped Polytree-PIN with independent leakage, and derived its WSK

capacity. Our results also proved that, for this model, capacity can be achieved by using

the source emulation approach which can be implemented in practice. Finding secret key

capacity of other wiretapped transceiver models is an interesting direction for future work.

One possible generalization of Polytree-PIN transceiver model is the case of independent

point-to-point channels characterized by general directed graphs where the directed graph is

not a polytree (contains loops).
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6.5 Appendix

Lemma 6.4. For any given Polytree-PIN W “ PZYM|XM with independent leakages, define

RijpPXMq “ IpXij;Yji|Zijq. Then, we have

max
PXM

min
i,jPM

s.t. eijPEA

RijpPXMq “ min
i,jPM

s.t. eijPEA

max
PXM

RijpPXMq.

Proof: By minimax inequality [127, Section 5.5] we have

max
PXM

min
i,jPM

s.t. eijPEA

RijpPXMq ď min
i,jPM

s.t. eijPEA

max
PXM

RijpPXMq.

Then we note that, for Polytree-PIN W in which point-to-point channels are independent,

there exists a joint probability distribution of the form P ˚XM
“

ś

eijPE P
˚
Xij

that maximizes

IpXij;Yij|Zijq for all eij. That is for any eij

R˚ij :“ max
PXM

RijpPXMq “ max
PXij

IpXij;Yji|Zijq “ RijpP
˚
XM
q

Therefore, we have

max
PXM

min
i,jPM

s.t. eijPEA

RijpPXMq ě min
i,jPM

s.t. eijPEA

RijpP
˚
XM
q

“ min
i,jPM

s.t. eijPEA

R˚ij

“ min
i,jPM

s.t. eijPEA

max
PXM

RijpPXMq,

which completes the proof.
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Chapter 7

Conclusion and Future Work

In this thesis, we studied the problem of secret key agreement through the lens of information

theory. The key agreement protocols that we considered, guarantee information theoretic

security without making computational assumptions about the adversary. Instead, concep-

tual assumptions are on the amount and structure of the leakage that is available to the

eavesdropping adversary; which in practice translate into physical-layer requirements that

could be realized, for example, in wireless network environments.

The two main categories of information theoretic SKA models are: (i) source model, and

(ii) channel model. Chapters 3 and 4 studied two different topics within the context of source

model, and Chapters 5 and 6 explored SKA in channel model. The contributions of these

chapters include:

• Proving finite-length upper and lower bounds for the maximum achievable key length

of two-party one-way SKA.

• Deriving the WSK capacity of the Tree-PIN source model.

• Introducing the transceiver model and proving upper and lower bounds on its SK, PK,

and WSK capacities.

• Deriving the WSK capacity of the Polytree-PIN channel model.
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In the following, we outline some of the open research questions that arise from our

investigation and will be interesting directions for future research. We list them in order of

appearing in the thesis Chapters.

• In Chapter 3 we gave finite-length upper and lower bounds on SÑ – the maximum

achievable key length. However, these bounds are not tight. One immediate direction

is the quest for a tight pair of finite-length upper and lower bounds that match up to at

least the second order terms. Another related question is to find a tight converse for SÑ

under the assumption that X ´ Y ´ Z holds. Such finite-length upper bound would

then be directly comparable with the second order characterization of (interactive)

S that was proved in [31]. Information spectrum methods and appropriate spectral

entropies can provide powerful tools to tackle these questions.

• In Chapter 3 we proposed a two-party one-way SKA protocol (Protocol 5 ΠPH) that

has computational complexity Opn log nq and we proved its finite-length behavior. It

would certainly be an intriguing research avenue to find more efficient OW-SKA pro-

tocols, that can either perform better than ΠPH with respect to either computational

complexity, and/or finite-key length.

• We utilized the information spectrum methods, in Chapter 3, to prove a “single-copy”

(n “ 1) upper bound on maximum key length of two-party OW-SKA. A similar direc-

tion is to investigate if we can prove single-copy upper bounds on maximum key length

of the general multiterminal source model of [21].

• In Chapter 4 we argued that our proposed SKA protocol to achieve the WSK capacity

of Tree-PIN is more efficient than the PK capacity achieving protocol of [21] from

the perspective of using public communication bits. It remains open whether our

protocol is optimum in that sense. Then, a related question also arises which is to find

the WSK capacity of Tree-PIN under arbitrary upper limits on the asymptotic pubic

communication rate. Recall that we proved WSK of Tree-PIN under the assumption
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that terminals have free and unlimited access to public discussion. See [115], which

studies similar questions for non-wiretapped PIN.

• In Chapter 4 we also discussed about the gap between noninteractive WSK capacity

and the general WSK capacity in multiterminal source models. The gap remains open,

and it would be interesting to see if the gap can be tightened or closed using either

novel converse techniques or new noninteractive SKA protocols. A converse technique

which has been often fruitful is the axiomatic method for proving upper bounds –

see for example [26, 93]. That is a function of the source distribution is proved to

be a legitimate upper bound on key capacity, if it satisfies a set of logical axioms

(conditions). It seems that this method falls short of providing a powerful tool for

proving a noninteractive converse. Maybe this approach could be improved and then

utilized or perhaps new converse methods will be required.

• We studied the transceiver model in Chapter 5 and proved upper and lower bounds for

SK, PK, and WSK capacities. A primary future objective is the pursuit of character-

izing SK capacity for the multiterminal transceiver model. This goal perhaps requires

new converse methods and/or novel SKA constructions. Similarly, finding tighter up-

per and lower bounds on PK, and WSK capacity is an important open question we

leave for future work.

• Our channel model lower bounds in Chapter 5 and 6 are all based on the source

emulation approach. Unlike the case of Polytree-PIN, source emulation is not always

capacity achieving. Finding more efficient interactive and adaptive SKA protocols

is also a valuable research topic. Moreover, an appealing question is to search for

necessary and/or sufficient conditions a channel model has to satisfy under which the

general or simple source emulation approaches are capacity achieving.

• At the end of Chapter 5 we proved the non-adaptive SK capacity using the converse

bound of [23] and simplifying the expression by enforcing the non-adaptive SKA as-
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sumptions. It remains open whether a similar tight converse can be proved for PK

capacity using the same bound in [23]. This leads also to a call for improving the PK

capacity upper bound of [23].

• Similar to the extension of Tree-PIN model that we studied in Chapter 4 Section 4.5.2,

it would be interesting to study SKA in the extended model of Polytree-PIN where

two Markov relations (with opposite directions) hold with respect to each edge eij. For

such case, our converse techniques presented in Chapter 6 might be useful.

• In this thesis, we focused on the source and channel models of [21–23]. However,

modified variants of these models have been studied for key agreement as well. For

example, [128–130] consider the problem of secret key agreement for state-dependent

channel models, and [122] proposes a new two-party model that combines the source

and channel models of SKA. Therefore, extending the transceiver (or Polytree-PIN)

model to the case of state-dependent channels or the case when correlated variables of

a multiterminal source model are also available at the transceiver terminals are among

the exciting problems we leave for future work.

• For both the multiterminal source and channel models, we considered the case where

a single adversary is obtaining side information about the variables of the legitimate

terminals. Studying SKA models with multiple (cooperating and/or non-cooperating)

adversaries with distinct goals, is an interesting future research direction.
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