
University of Calgary

PRISM Repository https://prism.ucalgary.ca

The Vault Open Theses and Dissertations

2018-04-20

Efficient Algorithms for Dynamic Cloud

Resource Provisioning

Zhou, Ruiting

Zhou, R. (2018). Efficient Algorithms for Dynamic Cloud Resource Provisioning (Doctoral thesis,

University of Calgary, Calgary, Canada). Retrieved from https://prism.ucalgary.ca. doi:10.11575/PRISM/31816

http://hdl.handle.net/1880/106530

Downloaded from PRISM Repository, University of Calgary

UNIVERSITY OF CALGARY

Efficient Algorithms for Dynamic Cloud Resource Provisioning

by

Ruiting Zhou

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF DOCTOR OF PHILOSOPHY

GRADUATE PROGRAM IN COMPUTER SCIENCE

CALGARY, ALBERTA

April, 2018

© Ruiting Zhou 2018

Abstract

Cloud computing has emerged as a new computing paradigm, with data centers proliferating in

today’s Internet. Cloud service providers often adopt static resource provisioning to pack cloud

resources to fixed types of virtual machines (VM), failing to address user demands efficiently and

precisely. In this thesis, we focus on dynamic cloud resource provisioning, which provides real-

time, on-demand access to cloud resources. We propose efficient algorithms to guide resource

allocation and workload dispatching in cloud systems.

We first study dynamic VM provisioning via an online auction algorithm. We generalize the

existing literature by introducing computing jobs with completion deadlines. A cloud user bids for

future cloud resources to execute its job. Each bid specifies (a) a resource profile of tailor-made

VMs, (b) a utility, reflecting the amount that the user is willing to pay for executing its job, and

(c) a soft deadline, specifying the preferred finish time of the job, as well as a penalty function

that characterizes the cost of violating the deadline. We propose efficient cloud job auctions that

execute in an online fashion, provide truthfulness guarantee, and achieve a good competitive ratio.

We then discuss cloud container services, a more recent form of cloud resource provisioning.

Compared to traditional VMs, cloud containers are more flexible and lightweight. We exploit this

new algorithm design space, and study dynamic cloud container provisioning. We design efficient

scheduling algorithms for complex computing jobs that are running on cloud containers. Our of-

fline and online schedulers permit partial execution, allow a job to specify its job deadline, desired

cloud containers, and inter-container dependence relations, and achieve near-optimal expected ob-

jective values.

We further extend our study to cloud container clusters. Enterprise users often create clusters of

inter-connected containers to provision complex services. Compared to traditional cloud services,

key challenges in container cluster (CC) provisioning lie in the optimal placement of containers

while considering inter-container traffic in a CC. The challenge further escalates when CCs are

ii

provisioned in an online fashion upon CC request arrivals. We investigate dynamic cloud CC pro-

visioning, and propose an online algorithm to address the above challenges. Our online algorithm

achieves computational and economical efficiencies.

Acknowledgments

First and foremost, I would like to sincerely thank my supervisor, Dr. Zongpeng Li. I cannot

express my appreciation and thanks enough, for his invaluable guidance, advice and support during

my PhD study at the University of Calgary. Zongpeng sparked my interest in the area of computer

networks and helped me become a mature researcher. I was so grateful for his innovative ideas and

consistent feedback throughout my PhD study. Moreover, Zongpeng has been not only my teacher,

but also my mentor and advisor in every aspects of my life. Working together with Zongpeng has

been the best experience that I will cherish for ever.

I would also like to thank Dr. Chuan Wu for her continual support and guidance. She took

part in all my projectors and always gave me insightful comments. I am truly fortunate to have

the opportunity to work with her. I would like to thank my PhD supervisory committee members,

Carey Williamson, Philipp Woelfel, Diwakar Krishnamurthy, and Kui Wu for their time and help-

ful comments. I am also grateful for my friends and colleagues in the Department of Computer

Science. They gave me a good time in Calgary. Last but not the least, I would like to express my

heartfelt thanks to my family for their endless love and unconditional support.

iv

Table of Contents

Abstract . ii
Acknowledgments . iv
Table of Contents . v
List of Tables . vii
List of Figures . viii
List of Symbols . ix
1 Overview . 1
1.1 Online Auction for Cloud Computing Jobs with Deadlines 3
1.2 Scheduling Frameworks for Cloud Container Services 5
1.3 Online Placement Scheme for Cloud Container Clusters 7
1.4 Thesis Organization . 8
2 Preliminaries . 10
2.1 Preliminaries in Auction Design . 10
2.2 Other Definitions in Algorithm Design . 12
3 An Efficient Cloud Market Mechanism for Computing Jobs with Soft Deadlines . . 14
3.1 Introduction . 14
3.2 Related Work . 16
3.3 System Model . 18

3.3.1 Jobs with Alternative Deadlines . 18
3.3.2 Jobs with Penalty Function and Operation Cost 19

3.4 Online Auction Mechanism for Jobs with Alternative Deadlines 21
3.4.1 Social Welfare Maximization Problem . 21
3.4.2 Online Auction Design . 23
3.4.3 Theoretical Analysis . 26

3.5 Online Auction Design for the General Model with Penalty Function and Opera-
tion Cost . 31
3.5.1 Social Welfare Maximization Problem . 32
3.5.2 Online Auction Design . 34
3.5.3 Theoretical Analysis . 35

3.6 Performance Evaluation . 42
3.6.1 Performance of Aonline1. 42
3.6.2 Performance of Aonline2. 45

3.7 Summary . 46
4 Scheduling Frameworks for Cloud Container Services 47
4.1 Introduction . 47
4.2 Related Work . 49
4.3 System Model . 50
4.4 Offline Scheduling Framework . 55

4.4.1 Solving the Compact-Exponential ILP . 55
4.4.2 A Randomized Offline Scheduling Algorithm 59

4.5 Online Scheduling Framework . 62
4.5.1 Primal and Dual Framework . 62

v

4.5.2 An Online Algorithm with Stochastic Input 63
4.5.3 Theoretical Analysis . 69
4.5.4 Discussion . 80

4.6 Performance Evaluation . 80
4.6.1 Performance of Ao f f line . 81
4.6.2 Performance of Aonline . 82

4.7 Summary . 85
5 An Efficient Online Placement Scheme for Cloud Container Clusters 86
5.1 Introduction . 86
5.2 Related Work . 88
5.3 System Model . 89
5.4 Approximation Algorithm Design for Container Cluster Placement 94

5.4.1 Cost Minimization Problem . 94
5.4.2 A Rounding Algorithm with Performance Guarantee 95
5.4.3 A Heuristic Algorithm . 101

5.5 Online Algorithm Design . 102
5.5.1 Online Algorithm Framework . 102
5.5.2 Theoretical Analysis . 104

5.6 Performance Evaluation . 108
5.6.1 Performance of Asub1 and Asub2 . 109
5.6.2 Performance of Aonline⇤ . 110

5.7 Summary . 113
6 Conclusion and Future Work . 114
6.1 Conclusion . 114
6.2 Future work . 115
Bibliography . 119

vi

List of Tables

1.1 Amazon EC2 virtual machines instance types . 2

3.1 Summary of Notation in Chapter 3 . 20

4.1 Summary of Notation in Chapter 4 . 54

5.1 Summary of Notation in Chapter 5 . 94

vii

List of Figures and Illustrations

3.1 An Example of the process in Aonline1. 25
3.2 An illustration of the competitive ratio of Aonline2 (a2) under different settings. . . . 42
3.3 Competitive ratio of Aonline1 with different number of users and J. 43
3.4 Competitive ratio of Aonline1 with different Uk/Lk. 43
3.5 Social welfare of Aonline1 with different number of users and J. 44
3.6 Social welfare of Aonline1 with different T and Uk/Lk 44
3.7 Percentage of winners in Aonline1 with different I and Uk/Lk 44
3.8 Competitive ratio of Aonline2 with different I and U 0

k 44
3.9 Social welfare and cloud provider’s revenue in Aonline2 with I and U 0

k. 45
3.10 Percentage of winners in Aonline2 . 45

4.1 Dependence graphs for cloud computing jobs. 51
4.2 Performance ratio of Ao f f line, and Jain et al.’s algorithm [44]. 81
4.3 Performance ratio of Ao f f line with different T and Lmax. 81
4.4 Ao f f line: objective value and percentage of winners. 82
4.5 Running time of Ao f f line under different I and T 82
4.6 Performance ratio of Aonline under different l and e2. 83
4.7 Performance ratio of Aonline with different estimations of l under different T 83
4.8 Comparison between Aonline and Zhou et al.’s online algorithm [84] under different

Uk/Lk. 84
4.9 Comparison between Aonline and Zhou under different T 84
4.10 Objective value achieved by Aonline. 84
4.11 Percentage of winners in Aonline. 84
4.12 Running time of Aonline under different I, T , and e2. 85
4.13 Feasibility test for Ao f f line and Aonline when T = 500. 85

5.1 Container cluster placement: an example. 92
5.2 Cost of Asub1 and Asub2 under different values of Vi. 109
5.3 Performance ratio of Asub1 and Asub2 under different values of S. 109
5.4 Performance ratio of Asub1 and Asub2 under different values of Vi and K. 110
5.5 The average running time of Asub1 and Asub2 with different Vi. 110
5.6 Performance ratio of Aonline⇤ and SWMOA in [61] under different S and V 110
5.7 Performance ratio of Aonline⇤ and SWMOA in [61] with different U 110
5.8 Performance ratio of Aonline⇤ and SWMOA in [61] with different I. 111
5.9 Objective Value achieved by Aonline⇤ . 111
5.10 Percentage of winners under different I. 112
5.11 The average running time of Aonline⇤ . 112

viii

List of Symbols, Abbreviations and Nomenclature

Symbol Definition

VM Virtual Machine

CC Container Cluster

NFV Network Function Virtualization

LP Linear Program

ILP Integer Linear Program

IP Integer Program

IQP Integer Quadratic Program

VC Virtual Cluster

IDS Intrusion Detection System

ix

Chapter 1

Overview

Resource allocation problems in cloud computing systems have attracted substantial attention in

the recent literature. This thesis focuses on the design of efficient algorithms to dynamically allo-

cate cloud resources. In this chapter, we introduce the background of cloud computing, describe

the problem of dynamic cloud resource provisioning, and overview the structure of this thesis.

Cloud computing has emerged as a new computing paradigm that offers users rapid on-demand

access to shared pools of configurable resources such as CPU, RAM and disk storage, with mini-

mal management effort. According to a recent report, global cloud service providers account for

approximately $260 billion of revenue, from cloud computing services by the end of 2017, up

from $219.6 billion in 2016, and will reach $411 billion by 2020 [34]. Meanwhile, the energy con-

sumption of data centers rises rapidly. Data centers consumed 1.5% of all electricity worldwide in

2011, and the ratio is predicted to increase to 8% by 2020 [50]. A small fraction of improvement

in system efficiency would lead to considerable revenue improvement and energy saving.

In the past decade, two types of cloud platforms blossomed on the Internet, including (i) large-

scale Internet data centers, exemplified by Amazon EC2 [1], Microsoft Azure and Linode [5, 6],

which organize a shared resource pool for serving their users; and (ii) co-location data centers,

often found in metropolitan areas, where smaller clouds from different users are physically co-

located, jointly managed and serviced by the co-location [79]. Our proposed algorithms can be

applied to both platforms.

Cloud service providers often pack their computing resources into different types of virtual

machine (VM), to serve different cloud jobs. For example, Amazon EC2 [1] offers 18 VM instance

types in 5 categories. Table 1.1 illustrates selected VM types available at Amazon EC2. Each type

of VM has its focus and forte, and a large computing job often requires cooperation among multiple

1

VM instances. For example, social games [60] and enterprise applications [41] are often composed

of a front-end web server tier, a load balancing tier and a back-end data storage tier, each suited for

execution on a VM that is abundant in a particular type of resource: bandwidth, CPU, and storage,

respectively.

Table 1.1: Amazon EC2 virtual machines instance types

VM type vCPU Memory(GiB) Storage (GB) Networking Performance
m3.medium 1 3.75 1⇥4 SSD Moderate
m3.2xlarge 8 30 2⇥80 SSD High
c3.large 2 3.75 2⇥6 SSD Moderate
c3.4xlarge 16 30 2⇥160 SSD High
r3.4xlarge 16 122 1⇥320 SSD High
d2.2xlarge 8 61 6⇥2000 HDD High

Currently, cloud service providers often adopt static resource provisioning, where VM in-

stances are provisioned in advance with a fixed number of VMs for each type. Although cloud

service providers have been expanding the variety of VM instances, sometimes they still fail to

meet the exact needs, leading to a waste of resources and an unbalanced matching between user

demands and available resources. For example, assume a user needs to deploy a MapReduce ser-

vice in Amazon’s data centers. Its job requires 8 vCPU and 16 GB memory to process 80 GB usage

data [14]. Among all VM instance types Amazon EC2 can provide, m3.2xlarge is the best match.

However, it is still far away from a perfect match and roughly half of the allocated memory and

SSD storage are wasted. Recently, some cloud platforms start to offer customized VMs that pack

various resources at user-specified amounts [2] [7]. Under dynamic provisioning, cloud service

providers assemble customized VMs in an online fashion upon requests, capturing the dynamic

fluctuation of user demands.

In this thesis, we focus on the efficient algorithm design for dynamic cloud resource provi-

sioning. We aim to design general and expressive algorithms that can help cloud service providers

more efficiently allocate their resources, to improve system stability and achieve maximum possi-

2

ble social welfare. We not only study the dynamic provisioning of VMs, but also pay attention to

the newly emerged cloud container services. Compared to VMs, cloud containers do not require a

full, dedicated operating system to be installed within them, and can launch in microseconds [76].

Cloud containers are more flexible and lightweight, offering an effective alternative for cloud re-

source provisioning. The following three problems are investigated in this thesis: i) Online auction

algorithm design for cloud computing jobs with deadlines; ii) Scheduling framework design for

cloud container services; iii) Online placement scheme design for cloud container clusters.

In what follows, we provide a brief introduction to each of the problems described, and list our

contributions.

1.1 Online Auction for Cloud Computing Jobs with Deadlines

Cloud computing jobs can be categorized into two types, depending on whether their computing

need is elastic or not. Cloud jobs such as large scale web servers utilize cloud service as a utility,

and require the rented VMs to be always active, with possible dynamic size scaling. These jobs are

similar to the power users in a power grid, who demand always-on power supply. Other jobs such

as big data analytics and Google crawling data processing often have a batch processing nature.

They require a certain computing job to be completed without demanding always-on VM service,

and may tolerate a certain level of delay in job completion. These users are similar to the energy

users in a power grid who need to draw a fixed quantity of energy for powering a given job, but in

a flexible time window.

Today’s cloud providers often adopt a fixed price policy and charge users a fixed amount per-

VM usage. Despite their apparent simplicity, fixed-price policies inherently lack market agility

and efficiency, failing to rapidly adapt to real-time demand-supply fluctuations. Consequently,

overpricing and underpricing routinely occur, which either dispel or undercharge the users, jeopar-

dizing overall system social welfare as well as the providers’ revenue. In contrast, a well designed

auction mechanism can automatically discover the right market price and dynamically allocate

3

resources according to user demands.

Existing market mechanisms for cloud computing, particularly the auction type mechanisms,

have been implicitly targeting the case of non-elastic cloud jobs. In such one-round [78] and online

[62] cloud resource auctions, once a bid is accepted, the service time window of the corresponding

VMs is fixed, i.e. either in the current round [62] or between the start and finish times prescribed

in the bid [80]. Such auction algorithms do not need to consider the scheduling of accepted jobs.

In contrast, a well designed market mechanism for elastic jobs must pay close attention to not only

whether to accept a bid, but when to schedule its execution based on its deadline information. For

example, consider a cloud user who bids for a VM bundle tailored for human genome analysis.

Its job can be processed within 3 hours if the specified VM bundle is provisioned; however, as

long as the computing result is available within the next 24 hours, the user is happy. This leaves

ample space for job scheduling in the temporal domain, which a well-designed auction algorithm

should judiciously exploit to maximize resource utilization and social efficiency — for example,

scheduling a job within its tolerance window to time slots with relatively low demand. In Chapter

3 of the thesis, we focus on elastic computing jobs that have completion deadlines, and propose an

online auction to address the dynamic provisioning of VMs. More specifically, our contribution

can be stated as follows:

• We propose a new framework, compact-exponential linear programs (LPs), which

works in concert with a dual oracle to handle non-conventional deadline constraints.

• We first consider a basic setting, where each job has several alternative hard dead-

lines. By combining the compact-exponential technique with the classic primal-

dual method, we are able to adapt the recent posted-pricing auction framework

to design an efficient online cloud auction that guarantees truthful bidding, and

achieves near-optimal social welfare.

• We further generalize our cloud auction design by considering server cost and the

general form of a soft deadline. We propose a truthful online auction that achieves

4

computational efficiency and a good competitive ratio.

• We conduct simulation studies based on real world trace data. We show that our

online auctions perform better than the theoretical bound, and can produce between

25%�80% of the optimal social welfare.

1.2 Scheduling Frameworks for Cloud Container Services

Cloud resources, including CPU, RAM, disk storage and bandwidth, used to be packed into differ-

ent types of VMs to serve different computing jobs. Launching a VM instance requires running a

full, dedicated operating system, which often consumes extra resources and takes minutes or even

longer [73]. More recently, cloud containers offer an alternative to VMs, providing a streamlined,

easy-to-deploy method of resource management. Relying on encapsulated applications, container

service requires no dedicated operating system. A cloud container is flexible, operates with the

minimum amount of resources and starts in microseconds [76]. Container services available on

the cloud market today include Google Container Engine [36], Amazon EC2 Container service

(ECS) [11], Aliyun Container Service [10], and Azure Container Service [54].

A complex computing job consists of multiple subtasks, each requiring a different configuration

of cloud resources. A customized cloud container can be created accordingly to serve each subtask

based on a user-defined resource profile. A subtask may depend on another, and can start execution

only after the latter is completed. Such dependencies can be captured by a dependence graph. For

example, a service chain in Network Function Virtualization (NFV) is composed of a sequential

chain of virtualized network functions (VNFs) [39]. An image rendering job creates a 2D raster

representation of a 3D model. It is composed of four subtasks to be executed sequentially: vertex

processing, clipping and primitively assembling, rasterizing and fragment processing [70]. Tailor-

made cloud services are available to such jobs. For instance, Azure Batch [56] is a service from

Microsoft Azure, for batch processing in the cloud. A user first creates a batch job in its account

and then initializes the job, including creating subtasks, configuring the container for each subtask,

5

defining schedules and dependencies of subtasks.

While some computing jobs are time-sensitive, requiring full execution before the deadline,

other jobs are elastic, and can be partially executed to obtain partial values. For example, a partially

completed web searching job may return the top search results in a short time period, which is often

good enough for the users [81]. After finishing the first subtask in an image rendering job, the shape

of the 3D model has been outlined by vertices [70], which already provides useful information to

the user. The new model of partial value for partial execution is first described as a Quality-of-

Service (QoS) problem concerning the visualization of large images across a network [25]. It

has applications in numerical computation, heuristic search, and database query processing [26].

Scheduling of computing jobs with partial values in the cloud has attracted recent attention from

the literature [18, 53, 81, 82].

In Chapter 4 of the thesis, we study cloud container services, and propose scheduling algo-

rithms that allow partial execution, and process complex computing jobs. Our contribution can be

summarized as follows:

• We extend the existing literature on dynamic cloud resource provisioning, and

present the first study that investigates the scheduling design for cloud container

services.

• Our schedulers are expressive enough such that they permit partial execution and

can handle general type of jobs, i.e., jobs with interrelated subtasks.

• We exploit the compact-exponential technique, and combine it with randomized

rounding and online learning techniques, to design scheduling algorithms. We

prove that both the offline and the online scheduling frameworks guarantee com-

putational efficiency, and produce near-optimal expected objective values.

• Trace-driven simulation studies verify that our scheduling algorithms can achieve

close-to-optimal objective value in short computation time.

6

1.3 Online Placement Scheme for Cloud Container Clusters

Besides purchasing individual containers, cloud users often require a collection of containers and

the network in between, to create a container cluster (CC) for their jobs or services. Typical ex-

amples include MapReduce programs that process big data with distributed algorithms running on

containers in a CC, and service chains in a Network Function Virtualization (NFV) environment.

A service chain refers to the structure of a network service where a sequence of virtual network

functions are linked [39]. For example, an enterprise may request a CC to deploy an access ser-

vice chain “Firewall!IDS!Proxy”, where instances of firewall, intrusion detection system (IDS)

and proxy are encapsulated into containers. Container clusters are emerging as the new form of

virtual clusters. Compared to traditional virtual clusters, container clusters, e.g., Google Container

Cluster [35], Amazon ECS Cluster [12] and Azure Container Service Cluster [55], provide bet-

ter performance for applications and enhance the elasticity by fast deployment of additional work

nodes.

In Chapter 5 of this thesis, we target a more realistic and general setup in the deployment of

CCs. We investigate the online CC placement problem that dynamically assembles CC as per

user request. We take the perspective of a cloud service provider, who hosts cloud computing re-

sources in multiple zones, where a zone may correspond to one or multiple servers, or a data center.

The computing resources in a region owned by Amazon, for instance, are divided to Availability

Zones [13]. The cloud service provider deploys containers and assembles CC upon requests on

the fly. The deployment of a CC involves not only the placement of containers, i.e., assigning

each container to a zone with free capacity, but also routing inter-container traffic, i.e., identifying

zones with available bandwidth in between to send traffic between neighbor containers. Even in

the offline setting with full information, such a deployment problem translates into an NP-hard

combinational optimization problem. The challenge further escalates when we target a practical

online placement scheme that makes on-spot decisions upon the arrival of each CC request. We

propose an efficient online placement scheme to address the above challenges. In particular, our

7

contributions are listed as follows:

• We jointly optimize the placement of containers and the routing of inter-container

traffic while placing CCs.

• A one-shot CC placement problem that determines a given CC’s placement scheme

is studied. We propose an efficient approximation algorithm to solve this problem,

with the goal of cost minimization.

• We then apply compact-exponential and primal-dual techniques to design an online

placement scheme that employs the one-shot algorithm as a building block to make

decisions upon the arrival of each CC request.

• Through both theoretical analysis and trace-driven simulations, we verify that our

online placement algorithm is computationally efficient and achieves a good com-

petitive ratio.

1.4 Thesis Organization

The rest of the thesis is organized as follows.

Chapter 2 introduces preliminaries in auction design and algorithm design. Before we present

a cloud auction in Chapter 3, we first provide an introduction to some of the fundamental concepts

in auction theory. We then introduce some useful definitions in optimization algorithm design.

Chapters 3-5 present our main technical results, corresponding to each of the problems de-

scribed in Ch. 1.1-Ch. 1.3. In Chapter 3, we study the cloud market for computing jobs with

completion deadlines, and design efficient online auctions for VM provisioning. This is joint work

with Zongpeng Li, Chuan Wu and Zhiyi Huang, and is published in IEEE/ACM Transactions on

Networking (ToN) [84]. Chapter 4 proposes both offline and online scheduling frameworks for

cloud container provisioning. The work presented in Chapter 4 is completed in collaboration with

Zongpeng Li and Chuan Wu, and appears in IEEE/ACM ToN [83]. Chapter 5 studies the online

8

algorithm design for placements of cloud container clusters. The results are done in collabora-

tion with Zongpeng Li and Chuan Wu, and were submitted to IEEE Journal on Selected Areas in

Communications (JSAC) in April 2018.

Chapter 6 concludes this thesis by summarizing the results and discussing directions for further

research.

9

Chapter 2

Preliminaries

We first introduce some fundamental concepts in auction theory in Ch. 2.1, and then describe some

useful definitions related to algorithm design in Ch. 2.2.

2.1 Preliminaries in Auction Design

We begin with a general auction. An auction is a process where the bidders (buyers) buy goods or

resources from an auctioneer (seller) by offering prices. The auctioneer then makes two decisions

- which bidders win, and how much they pay for the goods or resources. Next, we will introduce

some concepts in the auction theory. Every bidder has a valuation for the goods or resources

being auctioned, in other words, the maximum amount they are willing to pay to get them. A

bidder’s utility equals its valuation minus its payment (how much it is charged) if it wins, and zero

otherwise. Every bidder aims to maximize its own utility. In summary, we have the following

terms:

• n: the number of bidders.

• bi: the bidding price of the i-th player.

• vi: the valuation of the i-th player.

• pi: the price that the i-th player is charged.

• xi: the outcome of the auction; xi = 1 if the i-th player wins and xi = 0 otherwise.

• ui: the utility of the i-th player; ui = (vi � pi)xi.

The mechanism of an auction consists of the following elements:

10

• The bidding procedure.

• A, the allocation function, which determines who receives the goods or resources,

i.e., the value of xi.

• P, the price function, which determines the payment, i.e., value of pi.

In terms of strategic behaviour, bidders are assumed to be rational but selfish, with a natural

goal of maximizing their respective utilities. They may choose to submit a falsified bid bi 6= vi, if

doing so may lead to a higher utility. We instead value the “happiness” of the entire ecosystem, and

pursue highest social welfare possible, for which it is important to elicit truthful bids from users.

Definition 1. (Dominant Strategy [37]): A strategy is dominant if the strategy earns a user a larger

utility than any other strategies, regardless of what any other users do.

Definition 2. (Truthful Auction [37]): An auction is truthful if for any bidder i, bidding its true

valuation vi forms its dominant strategy, i.e., for all bi 6= vi, ui(vi)� ui(bi).

A social welfare maximization mechanism aims to maximize the total utility of all bidders, as

well as the utility of the auctioneer. The auctioneer’s utility is the sum of the payments received,

i.e., Ân
i=1 pi. The social welfare is defined as follows:

Definition 3. (Social Welfare [37]): The social welfare is the aggregate utility of the auctioneer

(Ân
i=1 pi) and bidders (Ân

i=1(vixi � pi)). With payments cancel themselves, the social welfare is

simply Ân
i=1 vi.

In the next chapter, we design a cloud auction that aims to maximize the social welfare and

guarantee truthful bidding. We will specify the detailed definitions of truthfulness and social wel-

fare in a cloud auction in Ch. 3.3. Note that maximizing social welfare and maximizing seller profit

are both natural, conceivable and interesting research problems in essentially all real world auction

design. When social welfare is maximized, the overall eco-system is most efficient and there is a

higher probability for everyone to be happy in the long run. In a cloud system, with the presence

11

of multiple cloud service providers, if a particular cloud provider wishes to keep its cloud users, it

may want to pay attention to its users’ happiness besides caring about its immediate profit.

2.2 Other Definitions in Algorithm Design

In this thesis, we formulate problems to integer linear programs, including in particular 0-1 integer

linear programs of the packing type. The formal definition is [72]:

Definition 4. A linear program is a packing 0-1 integer linear program if it has the following

form: Maximize bT x, subject to: Ax  c and x 2 {0,1}, where x is the vector of variables, b and

c are vectors of non-negative coefficients, A is a matrix of non-negative coefficients, and (·)T is

the matrix transpose. The expression to be maximized, bT x, is called the objective function, and

inequalities Ax  c and x 2 {0,1} are constraints that specify a convex polytope over which the

objective function is to be optimized.

In computer science, approximation algorithms are efficient algorithms that generate approxi-

mate solutions to NP-hard optimization problems. When we analyze the performance of an approx-

imation algorithm, the approximation ratio is used to measure the distance of the returned solution

from the optimal one. Next, we introduce the following definitions for maximization problems and

minimization problems, respectively [72].

Definition 5. An algorithm A for a maximization problem is called an a-approximation algorithm,

if aA(I)�OPT (I),8I, where a � 1, A(I) is the objective value returned by A to the problem under

consideration for input I and OPT (I) is the objective value of an optimal solution under input I.

Definition 6. An algorithm A for a minimization problem is called an a-approximation algorithm,

if A(I)aOPT (I),8I, where a � 1, A(I) is the objective value returned by A to the problem under

consideration for input I and OPT (I) is the objective value of an optimal solution under input I.

Here, a is the approximation ratio. For a maximization problem, a is the upper bound ratio

of the optimal objective value to the objective value achieved by algorithm A. For a minimization

12

problem, a is the upper bound ratio of the objective value achieved by algorithm A to the optimal

objective value. In the design of approximation algorithms, we want to keep a as small as possible.

An online algorithm is an algorithm that can process a sequence of inputs or data arriving

over time, and it needs to make decisions on the fly immediately without being able to see the

future. In contrast, an offline algorithm can access the whole problem data from the beginning and

is required to solve the problem at hand. Competitive analysis is a method for analyzing online

algorithms, and the competitive ratio of an online algorithm is the ratio between its performance

and the optimal offline algorithm’s performance. Next, we define the concept of “competitiveness”

for maximization problems as follows:

Definition 7. An online algorithm B for a maximization problem is b -competitive if bB(I) �

OPTo f f line(I), where b � 1, I is a sequence of input, B(I) is the objective value of the solution

found by B and OPTo f f line(I) is the objective value returned by an optimal offline algorithm.

Here, b is the competitive ratio. For an online maximization problem, b is the upper bound

ratio of the optimal objective value to the objective value returned by algorithm B, and a smaller b

indicates better performance guarantee of the online algorithm.

13

Chapter 3

An Efficient Cloud Market Mechanism for Computing Jobs

with Soft Deadlines

3.1 Introduction

In this chapter, we generalize existing auction design for dynamic cloud resource provisioning by

proposing online auctions that explicitly handle jobs with prescribed deadlines. We further allow

a cloud user to express soft deadlines, described by a preferred job completion time, coupled with

a penalty function that encodes how much penalty is associated with different degrees of deadline

violation. Compared with simple market mechanisms such as fixed pricing, a well-designed auc-

tion provides automatic price discovery, promptly adapts prices with the fluctuation of supply and

demand, and allocates cloud resources to jobs who value them the most, maximizing the overall

“happiness” of everyone in the cloud ecosystem.

We simultaneously target the following goals in our cloud auction design. First, we require

the cloud auction to be computationally efficient and execute in polynomial time. Second, the

auction should be truthful, so that bidding true job valuation is the dominant strategy for a cloud

user. Third, the auction should maximize the social welfare of everyone in the system, including

both the cloud provider and the cloud users. Such cloud auction design is faced with a number of

challenges. First, truthfulness is a rather strong property that comes only with a pair of carefully

prepared VM allocation and payment algorithms that work in concert with each other. Further-

more, even if the cloud users can be assumed to be altruistic and truthful bids are given for free,

the winner determination problem for social welfare maximization is an integer linear program

(ILP) that is NP-hard to solve. A new challenge unique to our problem here is the non-traditional

type of soft deadline constraints, which is hard to model and handle with traditional LP formu-

14

lation and algorithm design. Last but not least, we require the auction to be online, immediately

making a decision upon the arrival of each bid, without knowing future bids in the market, yet still

guaranteeing near-optimal decision making as compared to an omniscient offline optimum.

We first consider a basic setting where resources in the cloud are free up to a known capacity

limit, and that the soft deadline can be expressed by enumerating a few hard deadline options

and their corresponding bidding prices. We first present a natural ILP formulation of the social

welfare maximization problem. While polynomial in size, this ILP involves both conventional

constraints (capacity limits and XOR bidding) and unconventional constraints (job deadlines). The

latter further lead to unconventional dual variables that are hard to interpret and update in a primal-

dual algorithm framework we will leverage. We convert the natural ILP into a compact-exponential

ILP that has a compact formulation of conventional constraints only, at the price of involving an

exponential number of variables.

We apply the posted pricing primal-dual framework to the compact-exponential ILP for online

social welfare maximization. Although the dual has an exponential number of constraints, we

show fast dual oracles that can quickly update the dual variables, which are interpreted as unit cost

of cloud resources in different time slots. We maintain carefully estimated resource costs based on

recently designed exponential cost functions [23]. Upon receiving a bid, we compare the bidding

price with the estimated cost of the bid. If the bidding price is higher, the bid is accepted and

dual variables are updated; otherwise the bid is rejected. The posted pricing framework charges

winning jobs an estimated cost that is independent from the bidding price, and is truthful [42]. We

conduct theoretical analysis on the competitive ratio and prove its upper-bound.

We proceed to generalize our cloud auction design by addressing two practical concerns. First,

we model the cost of resource provisioning in data centers, using a convex cost function that

characterizes server cost with Dynamic Voltage Frequency Scaling [66]. Second, we consider

the general form of a soft deadline, specified by (i) a preferred deadline and (ii) a non-decreasing

penalty function for deadline violation. The new social welfare maximization problem is an integer

15

convex program. We resort to a new primal-dual solution framework for well-structured convex

programs based on Fenchel dual [31], and adapt our posted pricing auction framework from the

previous scenario to this general setting.

In the rest of this chapter, we discuss related work in Ch. 3.2, and introduce the system model

in Ch. 3.3. Design and analysis of the online cloud auctions are presented in Ch. 3.4 and Ch. 3.5.

Ch. 3.6 presents simulation studies, and Ch. 3.7 concludes the chapter.

3.2 Related Work

Market mechanism design for cloud computing, particularly auction mechanisms for cloud re-

source trading, has attracted substantial interest from the research community, with a large number

of VM auctions spawned in the past few years [62, 64, 75, 77, 78, 80].

The earliest VM auctions are simple in that they are one-round auctions, and assume that

the cloud provisions a single type of VM, or that VM configurations are equivalent up to linear

scaling [64]. They also assume the scenario of static VM provisioning, where the number and type

of VMs to be sold are predetermined prior to the auction start [75].

Dynamic VM provisioning, in which the cloud provider makes decisions on which VMs to

assemble and how many based on demand learned from user bids during the auction, has been

studied in the past two years [62, 78, 80]. Zhang et al. design a randomized auction for dynamic

resource provisioning in cloud computing based on a convex decomposition technique, which is

truthful and guarantees a small approximation ratio in social welfare [78]. Shi et al. further study

dynamic resource provisioning where cloud users are subject to budget constraints, and design

online auctions where decision making is coupled in the time domain due to fixed user budgets [62].

Online cloud auctions appear later than their one-round counterparts. Zhang et al. is among

the first to study online cloud auction design, but they assume all VMs are of a uniform type [77].

The work of Shi et al. [62] designs online auctions, but does not consider the temporal correlation

in decision making due to jobs spanning multiple time slots. A recent work of Zhang et al. [80]

16

studies online cloud auctions where a user bids into a fixed time window for job execution; hence

the scheduling dimension is non-present in their solution space.

There have been recent studies on mechanism deign for batch jobs with deadlines. Lucier

et al. study two scheduling algorithms for jobs with deadlines in cloud computing clusters [53].

They analyze the competitive ratio for non-committed scheduling, which does not require to finish

executing a job that has started execution. They do not provide any performance guarantee on the

competitive ratio for committed scheduling. Navendu et al. design a truthful allocation and pricing

mechanism for computing jobs with deadlines, but restrict attention to the offline setting [44].

Azar et al. construct an online mechanism for preemptive scheduling with deadlines [18]. Their

mechanism is truthful and achieves a constant competitive ratio. All of those works consider only

one fixed deadline for each job, and fail to model the server’s operation cost.

Compared with existing literature on cloud auctions, our work is the first to design cloud auc-

tions that explicitly consider job elasticity and job execution deadlines, which are important for

practical applications to batch processing jobs. Accordingly, we propose the compact-exponential

optimization technique that can effectively handle the new job deadline constraints in social wel-

fare maximization for the cloud.

The online primal dual method (see [24] for a detailed survey) is a powerful algorithmic tech-

nique that has witnessed broad applications, such as solving the ski rental problem, maximizing

revenue in ad-auctions, and solving the general packing problem. The original primal dual frame-

work works on linear programs, and is not used to solve problems modelled by convex programs

in our work. Rather recently, new techniques were introduced to help apply the primal dual frame-

work to algorithm design for convex programs. Blum et al. study online combinatorial auctions

with production costs using the online primal dual framework [20]. They present algorithms for

various cost functions. Huang et al. further investigate the same problem and propose mechanisms

with improved competitive ratio [42]. These studies do not consider the scheduling of jobs, and

they cannot handle VM departures and resource recycling.

17

3.3 System Model

We consider a cloud data center hosting a pool of K types of resources, including CPU, RAM and

disk storage that can be dynamically assembled into different types of VMs. Let [X] denote the

integer set {1,2, . . . ,X}. There are a total ck unit of type-k resource in this cloud. The cloud service

provider acts as the auctioneer to lease VMs to cloud users through an auction. User bids arrive

sequentially across a large time span 1,2, . . . ,T . Note that multiple bids can arrive simultaneously,

and would be ordered randomly. There are I users participating in the auction, and each user

requests customized VMs, and specifies in its bid: (i) rk
i , the total amount of type-k resource, and

(ii) wi, the number of slots required to finish the job by the designated VMs. Job execution doesn’t

need to be continuous. A user i’s job can be executed at any time slot as long as the total execution

time meets wi before the deadline. We consider two soft deadline models in this work: a basic

model with alternative deadlines and a general model with penalty function and server operation

cost.

3.3.1 Jobs with Alternative Deadlines

We first consider a basic scenario where each user submits J optional bids to express disjunctive

deadline options. A bid from user i consists of a list of desired types of resource rk
i , 8k; the number

of requested slots wi, and deadlines for job completion di j, 8 j, each with a corresponding bidding

price bi j. We use Bi to denote the bidding language of user i’s bids submitted at time ti:

Bi = {ti,{rk
i }k2[K],wi,{di j,bi j} j2[J]}.

We adopt the XOR bidding rule that assumes a user can win at most one bid among its J

optional bids [78]. Upon the arrival of each bid, the cloud provider decides immediately whether

to accept it, and if so, which deadline to choose and how to schedule the job. A binary xi j equals

1 if user i’s jth bid wins, and 0 otherwise. Let another binary variable yi(t) encode the scheduling

of user i’s job: yi(t) = 1 if user i’s job is scheduled to run at time t, and 0 otherwise. The cloud

provider also calculates the payment pi for each winner i.

18

Let vi j be the true valuation of user i’s jth bid, then the utility of that bid is ui j(bi j) = vi j � pi

if xi j = 1, and is 0 if xi j = 0. In practice, users are assumed to be selfish with a natural goal to

maximize their own utilities; they may lie about their true valuations in the hope of a higher utility.

The cloud provider instead pursues highest social welfare possible to make everyone in the cloud

system “happy”. For that goal, it is important for the cloud provider to elicit truthful bids.

Definition 8. (Truthful Auction): A cloud auction is truthful if the dominant strategy for each user

is to report its true valuation, which always maximizes its utility: for all bi j 6= vi j, ui j(vi j)� ui j(bi j).

Definition 9. (Social Welfare): The social welfare in the cloud market with alternative deadlines

is the aggregate user utility Âi2[I]Â j2[J] vi jxi j �Âi2[I] pi plus the cloud provider’s utility Âi2[I] pi.

Payments cancel themselves, and the social welfare becomes Âi2[I]Â j2[J] vi jxi j.

3.3.2 Jobs with Penalty Function and Operation Cost

We further consider a more general model where each user submits a single preferred deadline di,

with a penalty function gi(ti) defined over deadline violation ti:

gi(ti) =

8

>

<

>

:

gci(ti), if t 2 [0,T �di]

+•, otherwise
(3.1)

where di + ti is the job completion time; bi � gi(ti) is the bidding price, decreasing with job

completion time; gci(·) is a non-decreasing function and gci(0) = 0. User i’s bid with this model

is: Bi = {ti,{rk
i }k2[K],wi,di,bi,gi(ti)}.

Existing studies on cloud auction design often ignore the server operation cost of the cloud

provider. It is natural to include server cost in the computation of social welfare, albeit the fact

that it makes social welfare optimization substantially more challenging (from linear to non-linear

integer programming). The operation cost in the cloud comprises mainly of power consumption for

provisioning the virtual machines, increasing as the amount of resources used grows. Let zk(t) be

the amount of type-k resource used at time t in the cloud, then the cost function of type-k resource

19

is defined as:

fk(zk(t)) =

8

>

<

>

:

bkzk(t)1+gk , if zk(t) 2 [0,ck]

+•, otherwise
(3.2)

Parameter bk is the coefficient determined by the power consumption of each type of resource.

Recent measurement studies suggest that the power consumption of memory, and disk are signif-

icantly lower than that of CPU [45]. gk � 0 modulates the shape of the cost function, following

the operational model of physical servers in the cloud. For example, Dynamic Voltage Frequency

Scaling (DVFS) is a technique widely adopted in virtualization platforms, adjusting the frequency

or voltage of CPUs to save power consumption [66]. gk is roughly 2 if the voltage is proportional

to the usage of CPU when DVFS is enabled, and equals 0 when DVFS is disabled [47]. The shape

of RAM and disk cost function is different from that of CPU, with gk 2 [0.5,1] [45].

Similar to the notations in Ch. 3.3.1, let a binary xi be an auction decision and pi be the payment.

vi � gi
0(ti) is the true valuation of user i’s bid. The cloud provider’s utility equals the aggregate

user payment minus the operation cost, i.e., Âi2[I] pi �Âk2[K]Ât2[T] fk(zk(t)). The definitions of

user i’s utility, truthful auction and social welfare are omitted here as similar ones can be found in

Ch. 3.3.1. Table 3.1 summarizes notation for ease of reference.

Table 3.1: Summary of Notation in Chapter 3

I # of users [X] integer set {1, . . . ,X} T # of time slots J # of bids per user
f cost function f ⇤ convex conjugate of f g penalty function ti user i’s arrival time
di j(di) deadline of user i’s jth (user i’s) bid rk

i demand of type-k resource by user i
bi j(bi) bidding price of user i’s jth (user i’s) bid wi # of slots requested by user i
vi j(vi) true valuation of user i’s jth (user i’s) bid ti # of slots that passes the deadline for i
xi j(xi) user i’s jth (user i’s) bid wins (1) or not (0) ck capacity of type-k resource
yi(t) whether or not to allocate user i’s job in t ui user i’s utility
zk(t) amount of allocated type-k resource at t pi user i’s payment

pk(t) marginal price of type-k resource at t qk max{2,(1+ gk)
1
gk }

a1(a2) competitive ratio of Aonline1 (Aonline2) rk max{qk
ck

gk,
qk

ck(qk�1) ln(U 0
k

bk(1+gk)c
gk
k
)}

Uk(Lk) maximum (minimum) value per unit of type-k resource per unit of time

20

3.4 Online Auction Mechanism for Jobs with Alternative Deadlines

In this section, we focus on the scenario where each user’s job has J alternative deadlines. Ch. 3.4.1

presents the social welfare maximization problem and the framework to handle such deadline prob-

lems. We design an online auction in Ch. 3.4.2 and conduct theoretical analysis in Ch. 3.4.3.

3.4.1 Social Welfare Maximization Problem

Under the assumption of truthful bidding (bi j = vi j), the social welfare maximization problem with

alternative deadlines can be formulated into the following ILP:

maximize Â
i2[I]

Â
j2[J]

bi jxi j (3.3)

subject to: yi(t)t  Â
j2[J]

di jxi j,8t 2 [T],8i 2 [I] : ti  t, (3.3a)

Â
j2[J]

wixi j  Â
t2[T]:tit

yi(t), 8i 2 [I], (3.3b)

Â
i2[I]:tit

rk
i yi(t) ck, 8k 2 [K[,8t 2 [T], (3.3c)

Â
j2[J]

xi j  1, 8i 2 [I], (3.3d)

xi j,yi(t) 2 {0,1},8i 2 [I], 8t 2 [T],8 j 2 [J]. (3.3e)

Note that the following constraint is redundant, and is not explicitly included in the ILP above:

yi(t) Â j2[J] xi j,8i 2 [I],8t 2 [T]. Constraint (3.3a) ensures that a job is scheduled to run between

its arrival time and deadline. Constraint (3.3b) guarantees that the number of allocated slots is

sufficient for serving a successful bid. The capacity limit of each type of resource is expressed in

constraint (3.3c), and the alternative deadlines are modelled with the XOR bidding rule by (3.3d).

Even in the offline setting, ILP (3.3) is still an NP-hard combinatorial optimization problem. To

verify, consider a special case of ILP (3.3) by setting T = 1 and K = 1. Then the classic knapsack

problem, which is known to be NP-hard, can be reduced to the special case of ILP (3.3) in polyno-

mial time. The challenge further escalates when we involve the jobs’ deadlines and pursue online

21

decision making. To address these challenges, we resort to the primal-dual algorithm design tech-

nique. In preparation, we first design a new framework to handle the unconventional constraints

for deadline modelling. More specifically, we reformulate the original ILP (3.3) into a simplified

compact-exponential ILP with a packing structure, at the price of involving an exponential number

of variables:

maximize Â
i2[I]

Â
l2zi

bilxil (3.4)

subject to:

Â
i2[I]

Â
l:t2T (l)

rk
i xil  ck, 8k 2 [K],8t 2 [T], (3.4a)

Â
l2zi

xil  1, 8i 2 [I], (3.4b)

xil 2 {0,1},8i 2 [I], 8l 2 zi. (3.4c)

Constraints (3.4a) and (3.4b) are equivalent to (3.3c) and (3.3d). zi is the set of feasible schedules

for user i. A feasible time schedule is a vector l = {yi(t)} that satisfies constraints (3.3a) and (3.3b).

Variable xil 2 {0,1} indicates whether user i’s schedule l is accepted (1) or not (0). T (l) records

the set of time slots in l. The value of bil is based on schedule l, and equals the corresponding bi j.

We relax the integrality constraints of xil to xil � 0 and formulate the dual problem. By introducing

dual variables pk(t) and ui to constraints (3.4a) and (3.4b) respectively, the dual LP of the relaxed

(3.4) is:

minimize Â
i2[i]

ui + Â
t2[T]

Â
k2[K]

ck pk(t) (3.5)

subject to: ui � bil � Â
k2[K]

Â
t2T (l)

rk
i pk(t), 8i 2 [I],8l 2 zi, (3.5a)

pk(t),ui � 0,8i 2 [I], 8k 2 [K],8t 2 [T]. (3.5b)

As we can observe, a feasible solution to ILP (3.4) has a corresponding feasible solution in ILP

(3.3), and the optimal objective value of (3.4) is equal to that of (3.3). The number of variables

in ILP (3.4) is exponential since the number of possible time schedules for user i is exponential

22

in size. We next design an efficient primal-dual allocation scheme that only updates a polynomial

number of variables, and can simultaneously solve optimization problems (3.3), (3.4) and (3.5).

3.4.2 Online Auction Design

In the auction algorithm, the cloud provider needs to deicide whether to accept a user i’s job and

if so, how to schedule its job to meet its deadline. If user i’s jth bid with schedule l is accepted,

then let xi j = 1, and update the variable yi(t) according to schedule l. To solve ILP (3.3), we adopt

the primal-dual technique to the compact-exponential ILP (3.4) and its dual (3.5). For each primal

variable xil in (3.4), there is a dual constraint associated with it. Complementary slackness indicates

the update of the primal variable is based on its dual constraint. xil is zero unless its associated

dual constraint (3.5a) is tight. Because the dual variable ui � 0, we let ui be the maximum of 0 and

the right hand side (RHS) of (3.5a),

ui = max{0,max
l2zi

{bil � Â
t2T (l)

Â
k2[K]

rk
i pk(t)}}. (3.6)

Accordingly, the cloud provider accepts user i if ui > 0, and serves user i’s job according to the

schedule that maximizes the RHS of constraint (3.5a); if ui  0, the bid is rejected.

Algorithm 1 A Primal-dual Online Auction Aonline1
Input: bidding language {Bi},{ck},{Uk},{Lk},s

1: Define function pk(zk(t)) according to (3.7);
2: Initialize xi j = 0,yi(t) = 0,zk(t) = 0,ui = 0, pk(t) =

Lk
es ,8i 2 [I],8 j 2 [J],8k 2 [K],8t 2 [T];

Let xil = 0,8i 2 [I],8l 2 zi, by default;
3: Upon the arrival of the ith user
4:
�

xi j,{yi(t)}, pi,{pk(t)},{zk(t)}
�

= Acore1
�

Bi,{ck}, {pk(t)},{zk(t)}
�

;
5: if 9 j 2 [J],xi j = 1 then
6: Accept user i’s jth bid and allocated resources according to yi(t); Charge pi for user i;
7: else
8: Reject user i.
9: end if

If we interpret dual variable pk(t) as the marginal price per unit of type-k resource at time

t, then Ât2T (l)Âk2[K] rk
i pk(t) is the total charge that user i should pay when its job is assigned

according to schedule l. The RHS of (3.5a) becomes the utility of bid i with schedule l. Thus, the

23

Algorithm 2 A Scheduling Algorithm Acore1
Input: bidding language {Bi},{ck},{pk(t)},{zk(t)}
Output: xil, pi,{pk(t)},{zk(t)}

1: c(t) = Âk2[K] rk
i pk(t),8t 2 [T]; // price per slot

2: for all j 2 [J] do
3: Select wi slots with minimum (c(t)) and zk(t)+ rk

i  ck,8k 2 [K] within [ti,di j], save the
schedule in l j;

4: pi j = Ât2T (l) j c(t);ui j = bi j � pi j;
5: end for
6: j⇤ = argmax j2[J]{ui j};
7: if ui j⇤ > 0 then
8: xi j⇤ = 1;yi(t) = 1,8t 2 T (l j⇤), pi = pi j⇤;
9: xil j⇤ = 1;

10: ui = ui j⇤;zk(t) = zk(t)+ rk
i ,8k 2 [K], t 2 T (l j⇤);

11: pk(t) = pk(zk(t)),8k 2 [K], t 2 T (l j⇤);
12: end if
13: Return xi j⇤ ,{yi(t)}, pi,{pk(t)},{zk(t)}

assignment of ui in (3.6) effectively maximizes user i’s utility. This is a key step towards achieving

social welfare maximization and truthfulness.

Note that although the calculation of ui seems to take exponential time, since the size of dual

constraint (3.5a) is exponential, we design a dual oracle that selects only a polynomial number of

dual constraints. We fix a set of schedules Li with polynomial size through the dual oracle, and set

ui = max{0,maxl2Li{bil �Ât2T (l)Âk2[K] rk
i pk(t)}}. Then xil is updated to 1 when ui > 0. The dual

oracle works as follows. For each deadline di j of user i’s job, we select wi slots with the minimum

price for t 2 [ti,di j], and let l j be the corresponding schedule, and add l j to set Li. The schedule

that maximizes user i’s utility is the one with the minimum price in set Li.

We next discuss the update of the dual variable pk(t). Recall that pk(t) represents the marginal

price per unit of type-k resource at time t. We define a new variable zk(t) as the amount of allocated

type-k resource at time t, and let the marginal price be a function of zk(t). pk(t) is increasing with

the growth of zk. Let Uk and Lk be the maximum and minimum values per unit of type-k resource

per unit of time, respectively. The initial price of each type-k resource should be low enough such

that any user’s bid can be accepted. Thus, we set the starting price to Lk
es where s > 0 is a parameter

24

such that T
s = mini2[I]{wi}. pk(t) exponentially increases when zk(t) is close to the capacity ck. It

reaches Uk when zk(t) = ck because in this case, the cloud provider will never allocate any type-k

resource to any user. In summary, pk(t) is defined as a function on zk(t) as follows:

pk(zk(t)) =
Lk

es

✓

esUk

Lk

◆

zk(t)
ck

(3.7)

Where Uk = maxi2[I], j2[J]:rk
i >0{

bi j
rk
i
} and Lk = mini2[I], j2[J]:rk

i >0{
bi j

wi Âk2[K] rk
i
}.

Aonline1 in Alg. 1 with the scheduling algorithm Acore1 in Alg. 2 running for each user is the

online auction. Aonline1 first defines the price function and initializes the primal and dual variables

in lines 1-2. Upon the arrival of each user i, we select the bid j⇤ with schedule l j⇤ that maximizes

user i’s utility through the dual oracle (lines 2-5). If user i obtains positive utility, primal variables

xi j⇤ and yi(t) are updated according to schedule j⇤ (line 8). We then increase the usage for different

resources (zk(t)) and update the price (pk(t)) for t 2 T (l) j⇤ (lines 10-11).

Z1(1)=2
p1(1)=0.14

C1=10

Slot 1

Z1(2)=2
p1(2)=0.14

Slot 2

Z1(3)=2
p1(3)=0.14

Slot 3

Z1(4)=0
p1(4)=0.07

Slot 4

Z1(5)=0
p1(5)=0.07

Slot 5

User i arrives at time 2

2 units bid 1: deadline 3, $3
1 slot bid 2: deadline 4, $2{

Z1(1)=2
p1(1)=0.14

Slot 1

Z1(2)=4
p1(2)=0.28

Slot 2

Z1(3)=2
p1(3)=0.14

Slot 3

Z1(4)=2
p1(4)=0.07

Slot 4

Z1(5)=0
p1(5)=0.07

Slot 5

Accept bid 1. User i’s job
is processed at time slot 2

Figure 3.1: An Example of the process in Aonline1.

We next use an example to illustrate the winner determination process in Aonline1, as shown

in Fig. 3.1. Suppose the online system spans 5 time slots. A cloud data center hosts only one

type of resource and the capacity is 10, i.e., c1 = 10. Assume s = 5, L1 = 1 and U1 = 2. Before

the arrival of user i, assume the marginal price per unit of resource at time t is p1(1) = p1(2) =

p1(3)⇡ 0.14; p1(4) = p1(5)⇡ 0.07. The amount of allocated resource at time t is z1(1) = z1(2) =

z1(3) = 2;z1(4) = z1(5) = 0. User i arrives at time 2, requiring 2 units of resource and 1 time slot

25

to execute its job. It submits two optional bids: it is willing to pay $3 if its job is completed before

time 3 or $2 if its job is finished before time 4. The bidding price of the user i can be expressed as

Bi = {2,2,1,{3,$3},{4,$2}}. Upon the arrival of the user i, Acore1 is executed to decide whether

to accept it and if so, how to schedule the job. The price per slot is calculated at line 1 in Acore1

and c(1) = c(2) = c(3) = 0.28;c(4) = c(5) = 0.14. For the first bid of user i, lines 3-4 in Acore1

compute the schedule, payment and utility of it: l1 = [2], p11 = 0.28 and u11 = 2.72. For the second

bid of user 1, l2 = [4], p12 = 0.14 and u12 = 1.86. Now user i’s maximum utility is larger than 0,

i.e., u11 > 0, primal and dual variables are updated accordingly at lines 8-11 in Acore1. Here z1(t)

and p1(t) at slot 2 are updated, i.e., z1(2) = 4 and p1(2) = 1
5e · (10e)

4
10 ⇡ 0.28. User i’s first bid is

accepted and its job is processed at time slot 2. The cloud provider charges $0.28 for user i. This

process is repeated until the last user’s job is handled.

3.4.3 Theoretical Analysis

i) Correctness, Running Time, and Truthfulness.

Theorem 1. Aonline1 computes a feasible solution to ILP (3.3), ILP (3.4) and LP (3.5) in O(IJKT)

time.

Proof: (Correctness): Note that there always exist feasible solutions to ILP (3.3) ILP (3.4) and LP

(3.5). Consider variables with initial values (defined in line 2 in Aonline1), they satisfy all constraints

and are feasible. Aonline1 outputs a feasible solution for ILP (3.3) because line 3 in Acore1 guaran-

tees that the schedule l j for user i’s jth bid satisfies constraints (3.3a), (3.3b) and (3.3c). Constraint

(3.3d) holds as only one bid per user can be accepted by Acore1 in line 6. Furthermore, the corre-

sponding relation between xi j and xil implies xil is a feasible solution for ILP (3.4). For the dual

problem (3.5), Acore1 assigns 0 to ui if bil  Âk2[K]Ât2T (l) rk
i pk(t), and bil �Âk2[K]Ât2T (l) rk

i pk(t)

to ui otherwise, ensuring the feasibility of Aonline1.

(Running time): Lines 1-2 can be executed in linear time for the initialization of the cost

function, primal and dual variables. Upon the arrival of user i, Algorithm Acore1 first takes T

26

steps to calculate the price of each slot. The for loop iterates J times to select the best slots for

each bid. Line 3 in Alg. 2 takes O(T K) time to schedule the job and check the capacity limit. Line

4 can be done in O(1) steps. Thus, the running time of the for loop in Alg. 2 is O(JKT). Then

line 6 records the bid with the maximum utility in J steps. The body of the if statement (line

8-11) takes O(KT) time to update the primal and dual variables and compute the payment. To sum

up, the running time of Acore1 is O(JKT). The last step of Aonline1 (lines 5-9) is to announce the

auction decision, which can be done in constant time. In conclusion, Aonline1 runs in (O(IJKT))

time.

Theorem 2. The online auction Aonline1 is truthful.

Proof: Our auction Aonline1 belongs to the family of posted pricing mechanisms [42]. Upon the

arrival of user i, the payment that user i needs to pay to the cloud provider, if it wins, depends only

on the amount of resource that has been sold, and user i’s demand. It is independent of user i’s

bidding price. Consequently, user i cannot improve its utility by lying about its bidding price since

its utility equals its valuation minus the payment, i.e., ui j = vi j � pi. Furthermore, Aonline1 always

selects the schedule with the maximum utility among all possible schedules for user i. Hence,

truthful bidding guarantees that each user obtains its maximum utility in Aonline1.

ii) Competitive Ratio.

We next examine the competitive ratio of our online auction. The competitive ratio is the upper-

bound ratio of the social welfare achieved by the optimal solution of ILP (3.3) to the social welfare

achieved by our online auction Aonline1. We first introduce a primal-dual analysis framework in

Lemma 1, which states that if there exists a bound between the increase of the primal objective

value and the increase of the dual objective value, and the initial dual value is bounded, then the

competitive ratio is also bounded. The initial dual value is explained in Lemma 2. We next define

the Allocation-Price Relationship for Aonline1 in Definition 10 and the differential version of it in

Definition 11 respectively. We prove that if the Allocation-Price Relationship holds for a given a1,

Aonline1 satisfies the inequality in Lemma 1. We then present the value of a1 in Lemma 4 and prove

27

that Aonline1 is e
e�1a1-competitive in Theorem 3.

Let OPT1 and OPT2 denote the optimal objective values of ILP (3.3) and (3.4), respectively.

We know that OPT1 = OPT2. Let Pi and Di be the objective value of the primal problem (3.4) and

that of the dual problem (3.5) returned by an algorithm after processing user i’s bids. Let P0 and

D0 be the initial values. Then PI and DI are the final primal and dual objective values achieved by

the algorithm.

Lemma 1. If there exists a constant a1 � 1 such that i)

Pi �Pi�1 �
1

a1
(Di �Di�1),8i,

ii) P0 = 0 and D0  OPT2
e , then the algorithm is e

e�1a1-competitive in social welfare.

Proof: When we sum up the inequalities for each i, we have

PI = Â
i
(Pi �Pi�1)�

1
a1

Â
i
(Di �Di�1) =

1
a1

(DI �D0).

According to weak duality [21], DI � OPT2. Further by our assumption that D0  OPT2
e . Therefore

PI � (1� 1
e
)

1
a1

OPT2 = (1� 1
e
)

1
a1

OPT1.

So we can conclude that the algorithm is e
e�1a1-competitive.

Lemma 2. Under the assumption that the offline optimal social welfare is at least Âk2[K]
T
s Lkck,

i.e., OPT2 � Âk2[K]
T
s Lkck, D0 computed by Aonline1 is at most OPT2

e .

Proof: We first explain the assumption of the lower bound on the offline optimal social welfare. Re-

call that Lk is the minimum value per unit of type-k resource per unit of time and T
s = mini2[I]{wi}.

Âk2[K]
T
s Lkck is the minimal social welfare generated by bids if the entire capacity of type-k re-

source is occupied in T
s slots. So the assumption in the above lemma is essentially saying that in

the offline solution, there are enough workloads to occupy all types of resources in T
s slots, which

is easily satisfied in real-world cloud systems.

28

The initial objective value of the dual problem (3.5) computed by Aonline1 is:

D0 = Â
t2[T]

Â
k2[K]

ck pk(t) = Â
t2[T]

Â
k2[K]

ck
Lk

es

=
1
e Â

k2[K]

T
s

ckLk 
1
e

OPT2.

Aonline1 guarantees P0 = 0. We next define an Allocation-Price Relationship and show that if

it holds for a given a1, then the primal and dual objective values achieved by Aonline1 satisfy the

inequality in Lemma 1. pi
k(t) denotes the price of type-k resource after handling user i. zi

k(t) is the

amount of allocated type-k resource after processing i’s job.

Definition 10. The Allocation-Price Relationship for Aonline1 with a1 � 1 is:

pi�1
k (t)(zi

k(t)� zi�1
k (t))� 1

a1
ck(pi

k(t)� pi�1
k (t)),8i 2 [I],8k 2 [K],8t 2 T (l).

Lemma 3. If the Allocation-Price Relationship holds for a given a1 � 1, then Aonline1 guarantees

Pi �Pi�1 � 1
a1
(Di �Di�1) for all i 2 [I].

Proof: If user i is rejected, then Pi �Pi�1 = Di �Di�1 = 0. In the following analysis, we assume

that user i’s jth bid is accepted, and let l be the schedule of user i’s job. The increment of the

primal objective value is: Pi �Pi�1 = bil. Note that Aonline1 makes the constraint (3.5a) tight when

bid bi j with schedule l is accepted. Thus,

bil = ui + Â
k2[K]

Â
t2T (l)

pi�1
k (t)(zi

k(t)� zi�1
k (t)).

The increase of the dual objective value is:

Di �Di�1 = ui + Â
k2[K]

Â
t2T (l)

ck(pi
k(t)� pi�1

k (t)).

By summing up the Allocation-Price Relationship over all k 2 [K] and t 2 T (l), we can obtain:

Pi �Pi�1 � ui +
1

a1
(Di �Di�1 �ui).

29

Since ui � 0 and a1 � 1, it is obvious that

Pi �Pi�1 �
1

a1
(Di �Di�1).

We observe that each inequality in the Allocation-Price Relationship involves variables only

for type-k resource. Next, we are trying to identify the corresponding a1,k for each pair of k that

satisfies the Allocation-Price Relationship. Then a1 is just the maximum value among all a1,k.

In order to compute the value of a1,k, we make the following mild assumption and define the

differential version of the Allocation-Price Relationship based on it.

Assumption 1. The job demand is much smaller than the resource’s capacity, i.e., rk
i ⌧ ck.

In the real world, a job’s demand is usually smaller than a type of resource’s capacity in a

large data center. We make this assumption mainly to facilitate our theoretical analysis, such that

techniques from calculus (differentiation) can be used. We don’t consider extreme cases which are

rare in practice. For example, if a high-valued bid demanding almost all the resource is rejected,

because a small fraction of the resource is used by other users, then the worst-case competitive

ratio can be infinitely large. It is also worth noting that, similar assumptions are made in rele-

vant literature of online resource allocation [80] [9] [43]. In addition, we can relax Assumption

1 and assume an upper bound on rk
i

ck
. Instead of differential equation and integration, we can use

difference equation and summation to derive similar results. We also relax this assumption com-

pletely in our simulation studies. Under Assumption 1, zi
k(t)� zi�1

k (t) = dzk(t). The Differential

Allocation-Price Relationship is:

Definition 11. The Differential Allocation-Price Relationship for Aonline1 with a1,k � 1 is

pk(t)dzk(t)�
ck

a1,k
d pk(t),8i 2 [I],8k 2 [K],8t 2 T (l).

Lemma 4. a1,k = ln
⇣

s Uk
Lk

⌘

+ 1 and the marginal price defined in (3.7) satisfies the Differential

Allocation-Price Relationship.

30

Proof: The derivative of the marginal price function is:

d pk(t) = p0k(zk(t))dzk(t) =
Lk

es

✓

esUk

Lk

◆

zk(t)
ck

ln
✓

esUk

Lk

◆

1
ck

dzk(t).

The Differential Allocation-Price Relationship is:

Lk

es

✓

esUk

Lk

◆

zk(t)
ck

dzk(t)�
ck

a1,k
· Lk

es

✓

esUk

Lk

◆

zk(t)
ck

ln
✓

esUk

Lk

◆

1
ck

dzk(t)

) a1,k � ln
✓

s Uk

Lk

◆

+1.

Therefore this lemma holds for a1,k = ln
⇣

s Uk
Lk

⌘

+1.

Theorem 3. The online auction Aonline1 in Alg. 1 is e
e�1a1-competitive in social welfare with

a1 = maxk2[K]

n

ln
⇣

s Uk
Lk

⌘o

+1.

Proof: According to the proof in Lemma 4, a1 satisfies the Differential Allocation-Price Relation-

ship. Under Assumption 1, we have zi
k(t)� zi�1

k (t) = dzk(t), and

d pk(t) = p0k(zk(t))dzk(t) = pi
k(t)� pi�1

k (t).

As a result, we can show that the Allocation-Price Relationship holds for a1. Then, combining

Lemma 1, Lemma 2 and Lemma 3 we finish the proof.

3.5 Online Auction Design for the General Model with Penalty Function and

Operation Cost

In this section, we present the online auction design for the general model that includes a penalty

function and operation cost. We focus on the more challenging case of superlinear cost function

with gk > 0. The auction design for linear cost with gk = 0 is similar and is omitted here.

31

3.5.1 Social Welfare Maximization Problem

Under the assumption of truthful bidding, the social welfare maximization problem in the general

model is:

maximize Â
i2[I]

(bixi �gi(ti))� Â
t2[T]

Â
k2[K]

fk(zk(t)) (3.8)

subject to:

yi(t)t  di + ti, 8t 2 [T],8i 2 [I] : ti  t, (3.8a)

wixi  Â
t2[T]:tit

yi(t), 8i 2 [I], (3.8b)

Â
i2[I]:tit

yi(t)rk
i  zk(t), 8k 2 [K],8t 2 [T], (3.8c)

ti,zk(t)� 0,xi, yi(t) 2 {0,1},

8i 2 [I],8t 2 [T],8k 2 [K]. (3.8d)

Again, constraint yi(t)  xi,8i, t is redundant and is implied by the other constraints. Recall the

definition of the cost function in (3.2) (fk(zk(t)) = +• if zk(t) > ck), constraint (3.8c) guarantees

that the amount of allocated resource never exceeds its capacity.

Let zi be the set of time schedules that satisfy constraints (3.8a) and (3.8b) for user i. We

adopt the same framework to reformulate the above convex optimization to the following compact-

exponential convex problem:

maximize Â
i2[I]

Â
l2zi

bilxil � Â
t2[T]

Â
k2[K]

fk(zk(t)) (3.9)

subject to: Â
i2[I]

Â
l:t2T (l)

rk
i xil  zk(t), 8k 2 [K],8t 2 [T], (3.9a)

Â
l2zi

xil  1, 8i 2 [I], (3.9b)

xil 2 {0,1},zk(t)� 0,8i 2 [I], 8l 2 zi,8k 2 [K],8t 2 [T]. (3.9c)

32

We introduce dual variables pk(t) and ui to (3.9a) and (3.9b). The Fenchel dual [31] of the

relaxed convex problem (3.9) is:

minimize Â
i2[i]

ui + Â
t2[T]

Â
k2[K]

f ⇤k (pk(t)) (3.10)

subject to: ui � bil � Â
k2[K]

Â
t2T (l)

rk
i pk(t), 8i 2 [I],8l 2 zi, (3.10a)

pk(t),ui � 0,8i 2 [I], 8k 2 [K],8t 2 [T]. (3.10b)

Here f ⇤k (pk(t)) is the convex conjugate [65] of the cost function fk(·), defined as: f ⇤k (pk(t)) =

supzk(t)�0{pk(t)zk(t)� fk(zk(t))}.

Lemma 5. The explicit expression of the conjugate is as follows:

f ⇤k (pk(t)) =

8

>

>

>

<

>

>

>

:

⇣ pk(t)
1+ gk

⌘

1+gk
gk · gk

b
1
gk

k

, z0
k(t) ck

ck pk(t)�bkc1+gk
k , z0

k(t) > ck

(3.11)

where z0
k(t) = (pk(t)

bk(1+gk)
)

1
gk .

Proof:

f ⇤k (pk(t)) = sup
zk(t)�0

8

>

<

>

:

pk(t)zk(t)�bkzk(t)1+gk , zk(t) 2 [0,ck]

pk(t)zk(t)�•, zk(t) > ck

We observe that pk(t)zk(t)�• = �• when zk(t) > ck, thus we only need to obtain the conjugate

of f when zk(t) 2 [0,ck],

Let yk(zk(t)) = pk(t)zk(t)�bkzk(t)1+gk . The derivative of yk(zk(t)) with respect to zk(t) is :

yk(zk(t))0 = pk(t)�bk(1+ gk)zk(t)gk .

When we let yk(z0
k(t))

0 = 0, the local maximum happens at the point z0
k(t) and z0

k(t) = (pk(t)
bk(1+gk)

)
1
gk .

Note that the domain of zk(t) is within the range [0,ck], therefore the supremum of yk(zk(t)) is

z0
k(t) only if z0

k(t) 2 [0,ck]. Otherwise, when z0
k(t) > ck, we can obtain that yk(zk(t))0 > 0, which

means yk(zk(t)) monotonically increases with zk(t) and the supremum happens at zk(t) = ck.

To sum up, we derive the conjugate of the cost function as shown in (3.11).

33

3.5.2 Online Auction Design

We adopt the same posted pricing primal-dual framework from Ch. 3.4 to solve the convex problem

(3.8). Similarly, the primal-dual technique is applied to its compact-exponential problem (3.9) and

its dual (3.10): the primal variable xil remains zero unless its dual constraint (3.10a) becomes tight.

The assignment of ui is the same as that in (3.6).

Although there are an exponential number of dual constraints in the computation of ui, we

design a dual oracle based on dynamic programming to output a polynomial number of schedules,

then only dual constraints associated to this set of schedules need to be considered.

The basic idea of the dual oracle is as follows. We fix the completion time of user i’s job to be tc

(tc 2 [ti+wi�1,T]), and construct the best schedule l j with the minimum price in this case. The set

that includes all such l j has polynomial size, and is the output of the dual oracle. The construction

of l j is based on the dynamic programming method. The base case is the schedule l0 with t 2

[ti, ti+wi�1]. We move the completion time one slot forward each time. Let c(t) = Âk2[K] rk
i pk(t)

be the price of user i’s job running at time t. If the completion time tc passes the deadline di,

the corresponding penalty is added to the price, i.e., c(t) = Âk2[K] rk
i pk(t)+ g(tc � di). When the

old completion time is replaced with the new one, we only need to compare the price of the old

completion time and wi �1 slots before the old completion time. For example, if user i arrives at

time 1 with wi = 4, then the basic case is l0 = {1,2,3,4}. Assume that argmaxt2{1,2,3} c(t) = 2. We

next fix the completion time to 5, the best schedule is then {1,4,3,5} if c(4)< c(2) and {1,2,3,5}

otherwise. The process is repeated until the completion time reaches T .

The marginal price pk(t) per unit of type-k resource at time t can be defined as the derivative

of the cost function, i.e., fk
0(ẑk(t)) if the overall demand of resource k at t (ẑk(t)) is known. But

in the online setting, it is impossible for the cloud provider to acquire the complete knowledge

of the system. The cloud provider predicts the final demand at future slots as qk(qk > 1) times

the current demand at those slots if the predicted final demand is below the capacity, and set the

marginal price to fk
0(qkzk(t)) where zk(t) is the amount of current allocated resource k at t. Let

34

U 0
k be the maximum value per unit of type-k resource per unit of time. The marginal price grows

exponentially when the predicted demand is larger than the capacity, and reaches U 0
k if zk(t) = ck.

More specifically, the marginal price function is defined as:

pk(zk(t)) =

8

>

>

<

>

>

:

f 0k(qkzk(t)), zk(t)
ck

qk

f 0k(ck)e
rk(zk(t)�

ck
qk
)
, zk(t) >

ck

qk

(3.12)

with parameters qk = max{2,(1+ gk)
1
gk },

rk = max{qk

ck
gk,

qk

ck(qk �1)
ln(

U 0
k

bk(1+ gk)c
gk
k
)},

where U 0
k = maxi2[I]:rk

i >0{
bi
rk

i
}.

Algorithm 3 A Primal-dual Online Auction Aonline2
Input: bidding language {Bi},{ck},{bk,gk}

1: Define cost function fk(zk(t)) according to (3.2);
2: Define function pk(zk(t)) according to (3.12);
3: Initialize xi = 0,yi(t) = 0,zk(t) = 0,ti = 0,ui = 0, pk(t) = 0,8i 2 [I],8k 2 [K],8t 2 [T]; Let

xil = 0,8i 2 [I],8l 2 zi, by default;
4: Upon the arrival of the ith user
5:
�

xi,{yi(t)}, pi,{pk(t)},{zk(t)}
�

= Acore2
�

Bi,{ck}, {pk(t)},{zk(t)}
�

;
6: if xi = 1 then
7: Accept user i’s bid and allocated resources according to yi(t); Charge pi for user i;
8: else
9: Reject user i.

10: end if

The online auction Aonline2 for the general model is presented in Alg. 3. Upon the arrival of

the ith user, Aonline2 calls Acore2 in Alg. 4 to make decisions. Acore2 computes the best schedule for

user i through the dual oracle (lines 1-10) to maximize its utility ui. If ui > 0, the corresponding

primal and dual variables are updated in lines 14-17.

3.5.3 Theoretical Analysis

i) Correctness, Running Time, and Truthfulness.

Lemma 6. The running time of Acore2 is O(KT +T 2).

35

Proof: Line 1 initializes a feasible slot set T in O(KT) steps. Line 2 takes wi steps to define a

schedule lo The while loop (lines 3-11) is to compute the best schedule l j if the completion time

is fixed, will iterate at most T �wi times. Within the while loop body, lines 4-7 takes O(wi + 1)

steps to update c(t). The running time of finding the maximum price in line 8 is linear to wi. Lines

9-10 takes constant time for the comparison and addition. Thus, the while loop can be executed

in O((T �wi)wi) steps. Line 12 can be done in O(T �wi) steps to find the schedule with the

minimum price. The running time to execute the if body is O(KT). In summary, the running time

of Acore2 is O(KT +T 2).

Algorithm 4 A Scheduling Algorithm Acore2.
Input: Bi,{ck}, {pk(t)},{zk(t)}
Output: xi,{yi(t)}, pi,{pk(t)},{zk(t)}

1: Add slot t 2 [ti,T] to set T if zk(t)+ rk
i  ck,8k 2 [K];

2: Let schedule l0 include the first wi slots (t1, t2, . . . , twi) in T ; Define j = 1;
3: while wi + j  |T | do
4: l j = l j�1;
5: Let tc is the (wi + j)th slot in T ;
6: c(t) = Âk2[K] rk

i pk(t),8t 2 {t1, t2, . . . , twi , tc};
7: If tc > di, c(tc) = c(tc)+g(tc �di);
8: tm = argmaxt2{t1,...,twi�1} c(t);
9: If c(twi) < c(tm), for schedule l j, replace the slot tm with twi and save tc into twi;

10: P j = Ât2T (l) j c(t); j = j+1;
11: end while
12: j⇤ = argmin j{P j};
13: if bi �P j⇤ > 0 then
14: xi = 1;yi(t) = 1,8t 2 T (l) j⇤ ; xil j⇤ = 1;
15: ui = bi �P j⇤; pi = Âk2[K]Ât2T (l) j⇤ rk

i pk(t);
16: zk(t) = zk(t)+ rk

i ,8k 2 [K], t 2 T (l) j⇤;
17: pk(t) = pk(zk(t)),8k 2 [K], t 2 T (l) j⇤;
18: end if
19: Return xi,{yi(t)}, pi,{pk(t)},{zk(t)}

Theorem 4. Aonline2 in Alg. 3 is a truthful auction that returns feasible solutions for convex prob-

lems (3.8), (3.9) and (3.10) in O(I(KT +T 2)) time.

Proof: (Running time:) The running time of the initialization process in lines 1-3 is linear. By

Lemma 6, Acore2 in line 5 processes each user in O(KT +T 2) time. The If statement in lines 6-10

36

can be done within constant time. Therefore, after handling the last user, the overall running time

of Aonline2 is O(I(KT +T 2)).

(Correctness and Truthfulness:) We omit the proof here since similar proofs can be found in

Theorem 1 and Theorem 2.

ii) Competitive Ratio.

The proof follows the same structure as that in Ch. 3.4.3. Let OPT1⇤ and OPT2⇤ denote the

optimal objective values of ILP (3.8) and (3.9), respectively. We know that OPT1⇤ = OPT2⇤ . Let

Pi and Di be the primal (3.9) and dual (3.10) objective values achieved by Aonline2 after handling

user i’s request. By Aonline2, initial values equal zero, i.e., P0 = D0 = 0. PI and DI are the final

primal and dual objective values at the end of T . We first prove that Aonline2 is a2-competitive in

social welfare if there is a constant a2 � 1 such that Pi�Pi�1 � 1
a2
(Di�Di�1) for all i in Lemma 7.

We next define the Allocation-Price Relationship for Aonline2, and show that if the Allocation-Price

Relationship holds for a given a2, then Pi�Pi�1 � 1
a2
(Di�Di�1) also holds in Lemma 8. The last

step is to define the differential version of the Allocation-Price Relationship and prove in Lemma

9 that there exists a a2,k that satisfies this relationship . By setting a2 = maxk2[K]{a2,k}, we can

obtain the competitive ratio of Aonline2 in Theorem 5.

Lemma 7. If there exists a constant a2 � 1 such that

Pi �Pi�1 �
1

a2
(Di �Di�1)

for every i, then Aonline2 is a2-competitive in social welfare.

Proof: If we sum up the inequality for each i, we can obtain,

PI = Â
i
(Pi �Pi�1)�

1
a2

Â
i
(Di �Di�1) =

1
a2

DI.

The above inequality holds because P0 = D0 = 0. By weak duality [21], DI � OPT2⇤ , therefore

PI �
1

a2
OPT2⇤ =

1
a2

OPT1⇤ .

So we can conclude that Aonline2 is a2-competitive in social welfare.

37

Definition 12. The Allocation-Price Relationship for Aonline2 with a2�1 is:

pi�1
k (t)

�

zi
k(t)�zi�1

k (t)
�

�
�

fk(zi
k(t))� fk(zi�1

k (t))
�

� 1
a2

�

f ⇤k (pi
k(t))� f ⇤k (pi�1

k (t))
�

,8i,8k,8t 2T (l).

Lemma 8. If the Allocation-Price Relationship for Aonline2 holds with a given a2 � 1, then Aonline2

guarantees Pi �Pi�1 � 1
a2
(Di �Di�1) for all i 2 [I].

Proof: If user i is rejected, then Pi �Pi�1 = Di �Di�1 = 0. In the next analysis, we assume that

user i is accepted, and let l be the schedule of user i’s job. The increment of the primal objective

value is:

Pi �Pi�1 = bil � Â
t2T (l)

Â
k2[K]

�

fk(zi
k(t))� fk(zi�1

k (t))
�

= ui + Â
k2[K]

Â
t2T (l)

pi�1
k (t)

�

zi
k(t)� zi�1

k (t)
�

� Â
t2T (l)

Â
k2[K]

�

fk(zi
k(t))� fk(zi�1

k (t))
�

.

The second equality holds because Aonline2 updates the value of dual variables such that the dual

constraint becomes tight and rk
i = zi

k(t)� zi�1
k (t). Then the increase of the dual objective value is:

Di �Di�1 = ui + Â
t2T (l)

Â
k2[K]

�

f ⇤k (pi
k(t))� f ⇤k (pi�1

k (t))
�

By summing up the Allocation-Price Relationship for Aonline2 over all k 2 [K] and t 2 T (l), we can

obtain:

Pi �Pi�1 � ui +
1

a2
(Di �Di�1 �ui).

Since ui � 0 and a1 � 0, it is obvious that Pi �Pi�1 � 1
a2
(Di �Di�1).

Definition 13. The Differential Allocation-Price Relationship for Aonline2 with a2,k � 1 is:

pk(t)dzk(t)� f 0k(zk(t))dzk(t)�
1

a2,k
f ⇤k

0(pk(t))d pk(t),8i,8k,8t 2 T (l).

Lemma 9. a2,k = max{4(1+ gk),
2(1+gk)

gk
ln(U 0

k
bk(1+gk)c

gk
k
)} and the marginal price function defined

in (3.12) satisfy the Differential Allocation-Price Relationship.

38

Proof: We first write down the explicit expressions for the derivatives of the cost function (3.2) and

its convex conjugate (3.11):

f 0k(zk(t)) =

8

>

<

>

:

bk(1+ gk)zk(t)gk , if zk(t) 2 [0,ck]

+•, otherwise

f ⇤k
0(zk(t)) =

8

>

>

<

>

>

:

⇣ pk(t)
bk(1+ gk)

⌘

1
gk , pk(t) bk(1+ gk)c

gk
k

ck, pk(t) > bk(1+ gk)c
gk
k

When the amount of allocated type-k resource reaches the capacity, i.e., zk(t) = ck, according to

the definition of marginal price in (3.12),

pk(t) = bk(1+ gk)c
gk
k erk(ck�

ck
qk
) �U 0

k.

Recall that U 0
k is the maximum value per unit of resource k per unit of time. It is clear when

the marginal price is larger than U 0
k, no bids can win. Thus, we may assume zk(t)  ck in the rest

of the proof, and f 0k(zk(t)) = bk(1+ gk)zk(t)gk . Next, we divide our proof into two cases:

Case 1: zk(t) ck
qk

: Because

pk(t) = f 0(qkzk(t)) = bk(1+ gk)(qkzk(t))gk  bk(1+ gk)c
gk
k ,

the Differential Allocation-Price Relationship can be rewritten as:

(bk(1+ gk)(qkzk(t))gk �bk(1+ gk)zk(t)gk)dzk(t)

� 1
a2,k

⇣ pk(t)
bk(1+ gk)

⌘

1
gk bk(1+ gk)q

gk
k gkzk(t)gk�1dzk(t). (3.13)

Canceling the common term on both sides, (3.13) becomes (q gk
k �1)� 1

a2,k
gkq gk+1.

i) If gk � 1, qk = max{2,(1+ gk)
1
gk }= 2, we can obtain

gkq gk+1
k

q g
k �1

=
gk2 ·2gk

2g �1
=

gk(4 ·2gk �2 ·2gk)

2gk �1
 4gk(2gk �1)

2gk �1
 4gk < a2,k

39

ii) If gk < 1, then qk = (1+ gk)
1
gk < e, and

gkq gk+1
k

q g
k �1

= qk(1+ gk) < e(1+ gk) < a2,k.

Case 2: zk(t) > ck
qk

: In this case, the marginal price zk(t) is:

pk(t) = bk(1+ gk)c
gk
k erk(zk(t)�

ck
qk
)
.

Note that d pk(t) = rk pk(t)dzk(t), then the Differential Allocation-Price Relationship is:

(pk(t)� f 0k(zk(t)))dzk(t)�
1

a2,k
ckrk pk(t)dzk(t). (3.14)

By Lemma 10, we can obtain

pk(t)� f 0k(zk(t))� pk(t)�
1

1+ gk
pk(t)�

gk

1+ gk
pk(t),

thus to prove (3.14), it is sufficient to prove:

gk

1+ gk
pk(t)dzk(t)�

1
a2,k

ckrk pk(t)dzk(t)) rk 
gk

ck(1+ gk)
a2,k.

By the value of rk, either i)

rk =
qk

ck
gk 

e
ck

gk =
gk

ck(1+ gk)
e(1+ gk)

gk

ck(1+ gk)
a2,k.

Or ii) rk =
qk

ck(qk �1)
ln(

U 0
k

bk(1+ gk)c
gk
k
) 2

ck
ln(

U 0
k

bk(1+ gk)c
gk
k
)

=
gk

ck(1+ gk)

2(1+ gk)

gk
ln(

U 0
k

bk(1+ gk)c
gk
k
) gk

ck(1+ gk)
a2,k.

In conclusion, we have finished the proof for both cases.

Lemma 10. When zk(t) > ck
qk

, the marginal price pk(t) is larger than the marginal cost by a factor

of at least 1+ gk:

pk(t)� (1+ gk) f 0k(zk(t)).

40

Proof: When zk(t) > ck
qk

, pk(t) = bk(1+ gk)c
gk
k erk(zk(t)�

ck
qk
). So Lemma 10 is equivalent to verify

erkzk(t)

zk(t)gk
� (1+ gk)e

rkck
qk

cgk
k

(3.15)

We first show that the inequality (3.15) holds when zk(t) =
ck
qk

. If zk(t) takes the value of ck
qk

, (3.15)

becomes q gk
k � 1+ gk which is obviously true.

Next, it suffices to show the left side of (3.15) is non-decreasing as zk(t) increases. Let L(zk(t))

denote the left hand of (3.15). The derivative of L(zk(t)) is

L0(zk(t)) =
erkzk(t)(rkzk(t)� gk)

zk(t)1+gk
.

Because rk � qk
ck

gk and zk(t)> ck
qk

, then rkzk(t)�gk � 0 and the derivative L0(zk(t)) is non-negative.

Consequently, the lemma follows.

Theorem 5. The online auction Aonline2 in Alg. 3 is a2-competitive in social welfare with a2 =

maxk2[K]a2,k.

Proof: Because a2 is the maximum number among all a2,k, then Differential Allocation-Price

Relationship also holds with a2. Under Assumption 1, we have dzk(t) = zi
k(t)� zi�1

k (t), then

fk(zi
k(t))� fk(zi�1

k (t)) = f 0k(z
i�1
k (t))(zi

k(t)� zi�1
k (t)),

f ⇤k (pi
k(t))� f ⇤k (pi�1

k (t)) = f ⇤k
0(pi�1

k (t))(pi
k(t)� pi�1

k (t)).

Therefore, the Allocation-Price Relationship holds with a2. Combining Lemma 7 and Lemma 8,

we finish the proof.

We plot the value of a2 in Fig. 3.2 when we vary the value of gk, bk, ck and U 0
k [45,47]. We can

observe that if we normalize ck to 1, the competitive ratio of Aonline2 is close to 6 with a small U 0
k

and gk, as demonstrated in the left figure. The right figure shows that if ck is a large number, the

competitive ratio is determined by gk and increases with the increment of gk.

41

0.5
1

1.5
2

2.5

0
0.2

0.4
0.6

5

10

15

20

25

30

35

γkβk

Co
mp

eti
tiv

e R
ati

o

0.5
1

1.5
2

2.5

0

0.2

0.4

0.6
6

8

10

12

14

γk
βk

Co
mp

eti
tiv

e R
ati

o U ’=50, c =1000k k

U ’=3, c =1k k

Figure 3.2: An illustration of the competitive ratio of Aonline2 (a2) under different settings.

3.6 Performance Evaluation

We evaluate our online auctions Aonline1 and Aonline2 through trace-driven simulation studies. We

exploit the trace version 1 in Google Cluster Data [3], which contains the information for each job

including the start time, execution duration, and resource demands (CPU and RAM). We translate

each job into a bid, arriving sequentially in 18 hours. We assume that each user’s job consumes

[1,12] slots and each time slot is 5 minutes [36]. User’s job deadline is generated uniformly at

random between its arrival time and the system end time. The bidding price of each job equals

its overall resource demand times unit prices randomly picked in the range [Lk,Uk]. By default,

Lk = 1 and U 0
k =Uk = 50. The demand for CPU and RAM units is normalized so that the maximum

capacity is 1. For the cost function, bk is set within [0.4,0.6] for CPU and within [0.005,0.02] for

RAM [45]. gk is set within [1.7,2.2] for CPU and within [0.5,1] for RAM [47].

3.6.1 Performance of Aonline1.

We examine the performance of Aonline1 in terms of the competitive ratio, social welfare and user

satisfaction.

Fig. 3.3 shows the competitive ratio of Aonline1 with different numbers of users (I) and bids per

42

Number of Users
40 50 60 70 80 90 100

C
o
m

p
e
tit

iv
e
 R

a
tio

0.5

1

1.5

2

J=2
J=4
J=6

Fig. 1: Competitive ratio of Aonline1

with different number of users and J .

U
k
/L

k

10 20 30 40 50 60

C
o

m
p

e
tit

iv
e

 R
a

tio

1

1.2

1.4

1.6

1.8

2

50%
100%
150%

Fig. 2: Competitive ratio of Aonline1

with different Uk/Lk.

10
8

6

J
4

2
00Number of Users

40

80

0

2000

8000

4000

6000

120

S
o
c
ia

l
W

e
lf
a
re

Fig. 3: Social welfare of Aonline1 with
different number of users and J .

Number of Slots

120 140 160 180 200

S
o

c
ia

l
W

e
lf
a

re

0

1000

2000

3000

4000

5000

6000

7000

U
k
/L

k
=10

U
k
/L

k
=20

U
k
/L

k
=30

U
k
/L

k
=40

U
k
/L

k
=50

Fig. 4: Social welfare of Aonline1 with
different T and Uk/Lk

Number of Users
40 50 60 70 80 90 100

P
e

rc
e

n
ta

g
e

 o
f

W
in

n
e

rs

50

60

70

80

90

100

110

U
k
/L

k
=10

U
k
/L

k
=30

U
k
/L

k
=50

Fig. 5: Percentage of winners in Aonline1

with different I and Uk/Lk

Number of Users

50 70 90 110

S
o
c
ia

l
W

e
lf
a
re

0

2000

4000

6000

U
k
/L

k
=10

U
k
/L

k
=30

U
k
/L

k
=50

Number of Users

50 70 90 110

P
ro

v
id

e
r

R
e
v
e
n
u
e

0

50

100

150

U
k
/L

k
=10

U
k
/L

k
=30

U
k
/L

k
=50

Fig. 6: Social welfare and cloud provider’s
revenue in Aonline2 with I and Uk/Lk

Number of Slots
120 130 140 150 160 170 180

P
e

rc
e

n
ta

g
e

 o
f

W
in

n
e

rs

0

20

40

60

80

100

I=80
I=90
I=100

Fig. 7: Percentage of winners in Aonline2

used in the auction design include the posted pricing frame-
work for truthful online auctions, a new LP formulation and
solution method for handling soft deadline constraints, as well
as approximation algorithms based on LP dual and Fenchel
dual. Our method for handling soft deadline constraints may
be applicable to other auction design problems where deadline
is involved, for example, in demand response auctions in a
smart grid.

REFERENCES

[1] Amazon EC2 instance type, http://aws.amazon.com/ec2/instance-types/.
[2] Microsoft Azure, http://azure.microsoft.com/en-us/?rnd=1.
[3] Linode, https://www.linode.com/.
[4] L. Zhang, S. Ren, C. Wu, and Z. Li, “A truthful incentive mechanism

for emergency demand response in colocation data centers,” Tech. Rep.,
2015.

[5] RightScale, Social Gaming in the Cloud: A Technical White Paper, 2013.
[6] M. Hajjat, X. Sun, Y. Sung, D. Maltz, S. Rao, K. Sripanidkulchai, and

M. Tawarmalani, “Cloudward bound: planning for beneficial migration
of enterprise applications to the cloud,” Proc. of ACM SIGCOMM, 2011.

[7] L. Zhang, Z. Li, and C. Wu, “Dynamic resource provisioning in
cloud computing: A randomized auction approach,” in Proc. of IEEE
INFOCOM, 2014.

[8] W. Shi, L. Zhang, C. Wu, Z. Li, and F. Lau, “An online auction
framework for dynamic resource provisioning in cloud computing,” in
Proc. of ACM SIGMETRICS, 2014.

[9] X. Zhang, Z. Huang, C. Wu, Z. Li, and F. Lau, “Online auctions in IaaS
clouds: welfare and profit maximization with server costs,” in Proc. of
ACM SIGMETRICS, 2015.

[10] N. Buchbinder and J. Naor, “Online primal-dual algorithms for covering
and packing problems,” in ESA. Springer, 2005, pp. 689–701.

[11] Z. Huang and A. Kim, “Welfare maximization with production costs: a
primal dual approach,” in Proc. of ACM-SIAM SODA, 2015.

[12] Wikipedia, Dynamic frequency scaling, http://en.wikipedia.org/wiki/
Dynamic frequency scaling.

[13] N. R. Devanur, “Fisher markets and convex programs,” JACM, 2010.
[14] Q. Wang, K. Ren, and X. Meng, “When cloud meets ebay: Towards

effective pricing for cloud computing,” in Proc. of IEEE INFOCOM,
2012.

[15] S. Zaman and D. Grosu, “Combinatorial auction-based dynamic vm pro-
visioning and allocation in clouds,” in Proc. of IEEE Cloud CloudCom,
2011.

[16] H. Zhang, B. Li, H. Jiang, F. Liu, A. Vasilakos, and J. Liu, “A framework
for truthful online auctions in cloud computing with heterogeneous user
demands,” in Proc. of IEEE INFOCOM, 2013.

[17] A. Kansal, F. Zhao, J. Liu, N. Kothari, and A. A. Bhattacharya, “Virtual
machine power metering and provisioning,” in Proc. of ACM SoCC,
2010.

[18] K. H. Kim, A. Beloglazov, and R. Buyya, “Power-aware provisioning
of virtual machines for real-time cloud services,” Concurrency and
Computation: Practice and Experience, vol. 23, no. 13, pp. 1491–1505,
2011.

[19] Technical Report, An Efficient Cloud Market Mechanism for Computing
Jobs with Soft Deadlines, https://www.dropbox.com/s/hsit71icuen6o9j/
main.pdf?dl=0.

[20] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge
university press, 2004.

[21] Wikipedia, Convex conjugate, http://en.wikipedia.org/wiki/Convex
conjugate.

[22] Google Cluster Data, TraceVersion1, https://code.google.com/p/
googleclusterdata/wiki/TraceVersion1.

Figure 3.3: Competitive ratio of Aonline1 with dif-
ferent number of users and J.

Number of Users
40 50 60 70 80 90 100

C
o
m

p
e
tit

iv
e
 R

a
tio

0.5

1

1.5

2

J=2
J=4
J=6

Fig. 1: Competitive ratio of Aonline1

with different number of users and J .

U
k
/L

k

10 20 30 40 50 60

C
o
m

p
e
tit

iv
e
 R

a
tio

1

1.2

1.4

1.6

1.8

2

50%
100%
150%

Fig. 2: Competitive ratio of Aonline1

with different Uk/Lk.

10
8

6

J
4

2
00Number of Users

40

80

0

2000

8000

4000

6000

120

S
o

c
ia

l
W

e
lf
a

re

Fig. 3: Social welfare of Aonline1 with
different number of users and J .

Number of Slots

120 140 160 180 200

S
o
c
ia

l
W

e
lf
a
re

0

1000

2000

3000

4000

5000

6000

7000

U
k
/L

k
=10

U
k
/L

k
=20

U
k
/L

k
=30

U
k
/L

k
=40

U
k
/L

k
=50

Fig. 4: Social welfare of Aonline1 with
different T and Uk/Lk

Number of Users
40 50 60 70 80 90 100

P
e
rc

e
n
ta

g
e
 o

f
W

in
n
e
rs

50

60

70

80

90

100

110

U
k
/L

k
=10

U
k
/L

k
=30

U
k
/L

k
=50

Fig. 5: Percentage of winners in Aonline1

with different I and Uk/Lk

Number of Users

50 70 90 110

S
o
c
ia

l
W

e
lf
a
re

0

2000

4000

6000

U
k
/L

k
=10

U
k
/L

k
=30

U
k
/L

k
=50

Number of Users

50 70 90 110

P
ro

v
id

e
r

R
e
v
e
n
u
e

0

50

100

150

U
k
/L

k
=10

U
k
/L

k
=30

U
k
/L

k
=50

Fig. 6: Social welfare and cloud provider’s
revenue in Aonline2 with I and Uk/Lk

Number of Slots
120 130 140 150 160 170 180

P
e

rc
e

n
ta

g
e

 o
f

W
in

n
e

rs

0

20

40

60

80

100

I=80
I=90
I=100

Fig. 7: Percentage of winners in Aonline2

used in the auction design include the posted pricing frame-
work for truthful online auctions, a new LP formulation and
solution method for handling soft deadline constraints, as well
as approximation algorithms based on LP dual and Fenchel
dual. Our method for handling soft deadline constraints may
be applicable to other auction design problems where deadline
is involved, for example, in demand response auctions in a
smart grid.

REFERENCES

[1] Amazon EC2 instance type, http://aws.amazon.com/ec2/instance-types/.
[2] Microsoft Azure, http://azure.microsoft.com/en-us/?rnd=1.
[3] Linode, https://www.linode.com/.
[4] L. Zhang, S. Ren, C. Wu, and Z. Li, “A truthful incentive mechanism

for emergency demand response in colocation data centers,” Tech. Rep.,
2015.

[5] RightScale, Social Gaming in the Cloud: A Technical White Paper, 2013.
[6] M. Hajjat, X. Sun, Y. Sung, D. Maltz, S. Rao, K. Sripanidkulchai, and

M. Tawarmalani, “Cloudward bound: planning for beneficial migration
of enterprise applications to the cloud,” Proc. of ACM SIGCOMM, 2011.

[7] L. Zhang, Z. Li, and C. Wu, “Dynamic resource provisioning in
cloud computing: A randomized auction approach,” in Proc. of IEEE
INFOCOM, 2014.

[8] W. Shi, L. Zhang, C. Wu, Z. Li, and F. Lau, “An online auction
framework for dynamic resource provisioning in cloud computing,” in
Proc. of ACM SIGMETRICS, 2014.

[9] X. Zhang, Z. Huang, C. Wu, Z. Li, and F. Lau, “Online auctions in IaaS
clouds: welfare and profit maximization with server costs,” in Proc. of
ACM SIGMETRICS, 2015.

[10] N. Buchbinder and J. Naor, “Online primal-dual algorithms for covering
and packing problems,” in ESA. Springer, 2005, pp. 689–701.

[11] Z. Huang and A. Kim, “Welfare maximization with production costs: a
primal dual approach,” in Proc. of ACM-SIAM SODA, 2015.

[12] Wikipedia, Dynamic frequency scaling, http://en.wikipedia.org/wiki/
Dynamic frequency scaling.

[13] N. R. Devanur, “Fisher markets and convex programs,” JACM, 2010.
[14] Q. Wang, K. Ren, and X. Meng, “When cloud meets ebay: Towards

effective pricing for cloud computing,” in Proc. of IEEE INFOCOM,
2012.

[15] S. Zaman and D. Grosu, “Combinatorial auction-based dynamic vm pro-
visioning and allocation in clouds,” in Proc. of IEEE Cloud CloudCom,
2011.

[16] H. Zhang, B. Li, H. Jiang, F. Liu, A. Vasilakos, and J. Liu, “A framework
for truthful online auctions in cloud computing with heterogeneous user
demands,” in Proc. of IEEE INFOCOM, 2013.

[17] A. Kansal, F. Zhao, J. Liu, N. Kothari, and A. A. Bhattacharya, “Virtual
machine power metering and provisioning,” in Proc. of ACM SoCC,
2010.

[18] K. H. Kim, A. Beloglazov, and R. Buyya, “Power-aware provisioning
of virtual machines for real-time cloud services,” Concurrency and
Computation: Practice and Experience, vol. 23, no. 13, pp. 1491–1505,
2011.

[19] Technical Report, An Efficient Cloud Market Mechanism for Computing
Jobs with Soft Deadlines, https://www.dropbox.com/s/hsit71icuen6o9j/
main.pdf?dl=0.

[20] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge
university press, 2004.

[21] Wikipedia, Convex conjugate, http://en.wikipedia.org/wiki/Convex
conjugate.

[22] Google Cluster Data, TraceVersion1, https://code.google.com/p/
googleclusterdata/wiki/TraceVersion1.

Figure 3.4: Competitive ratio of Aonline1 with dif-
ferent Uk/Lk.

user (J). The observed competitive ratio is much better than the theoretical bound and remains

at a low level (< 2). It fluctuates with the increase of the number of users and sightly decreases

when the number of bids per user grows. This is because when each user provides a larger number

of optional bids, Aonline1 is more likely to optimize the schedule of its job, leading to a better

performance. In Aonline1, the marginal price function is defined based on the real value of Uk and

Lk. We vary the value of Uk/Lk, and use the estimated values of Uk as the input of Aonline1, to

examine the performance. As shown in Fig. 3.4, there is a downward trend as the value of Uk/Lk

decreases, while there is no large difference with either underestimation and overestimation. The

observation confirms the analysis in Theorem 3 that the value of Uk/Lk determines the competitive

ratio. Underestimation is more desirable than the overestimation, as compared to that achieved

by the real Uk (labelled by 100%). Overestimation makes the price rise more rapidly, filtering out

users that are supposed to be accepted.

We next study the social welfare achieved by Aonline1 in Fig. 3.5 and Fig. 3.6. The 3d figure

in Fig. 3.5 plots the social welfare under different number of users and bids per user. Our online

auction Aonline1 achieves a higher social welfare when there is larger number of users participating

in the auction. The change of bids per user doesn’t have major influence on the social welfare.

When the number of users grows, the number of bids with larger bidding price also increases. As

a result, Aonline returns a larger social welfare. The social welfare under different number of slots

and Uk/Lk is illustrated in Fig. 3.6. Both the number of slots and the value of Uk/Lk influence

43

Number of Users
40 50 60 70 80 90 100

C
o

m
p

e
tit

iv
e

 R
a

tio

0.5

1

1.5

2

J=2
J=4
J=6

Fig. 1: Competitive ratio of Aonline1

with different number of users and J .

U
k
/L

k

10 20 30 40 50 60

C
o
m

p
e
tit

iv
e
 R

a
tio

1

1.2

1.4

1.6

1.8

2

50%
100%
150%

Fig. 2: Competitive ratio of Aonline1

with different Uk/Lk.

10
8

6

J
4

2
00Number of Users

40

80

0

2000

8000

4000

6000

120

S
o
c
ia

l
W

e
lf
a
re

Fig. 3: Social welfare of Aonline1 with
different number of users and J .

Number of Slots

120 140 160 180 200

S
o
c
ia

l
W

e
lf
a
re

0

1000

2000

3000

4000

5000

6000

7000

U
k
/L

k
=10

U
k
/L

k
=20

U
k
/L

k
=30

U
k
/L

k
=40

U
k
/L

k
=50

Fig. 4: Social welfare of Aonline1 with
different T and Uk/Lk

Number of Users
40 50 60 70 80 90 100

P
e
rc

e
n
ta

g
e
 o

f
W

in
n
e
rs

50

60

70

80

90

100

110

U
k
/L

k
=10

U
k
/L

k
=30

U
k
/L

k
=50

Fig. 5: Percentage of winners in Aonline1

with different I and Uk/Lk

Number of Users

50 70 90 110

S
o

c
ia

l
W

e
lf
a

re

0

2000

4000

6000

U
k
/L

k
=10

U
k
/L

k
=30

U
k
/L

k
=50

Number of Users

50 70 90 110

P
ro

v
id

e
r

R
e

v
e

n
u

e

0

50

100

150

U
k
/L

k
=10

U
k
/L

k
=30

U
k
/L

k
=50

Fig. 6: Social welfare and cloud provider’s
revenue in Aonline2 with I and Uk/Lk

Number of Slots
120 130 140 150 160 170 180

P
e
rc

e
n
ta

g
e
 o

f
W

in
n
e
rs

0

20

40

60

80

100

I=80
I=90
I=100

Fig. 7: Percentage of winners in Aonline2

used in the auction design include the posted pricing frame-
work for truthful online auctions, a new LP formulation and
solution method for handling soft deadline constraints, as well
as approximation algorithms based on LP dual and Fenchel
dual. Our method for handling soft deadline constraints may
be applicable to other auction design problems where deadline
is involved, for example, in demand response auctions in a
smart grid.

REFERENCES

[1] Amazon EC2 instance type, http://aws.amazon.com/ec2/instance-types/.
[2] Microsoft Azure, http://azure.microsoft.com/en-us/?rnd=1.
[3] Linode, https://www.linode.com/.
[4] L. Zhang, S. Ren, C. Wu, and Z. Li, “A truthful incentive mechanism

for emergency demand response in colocation data centers,” Tech. Rep.,
2015.

[5] RightScale, Social Gaming in the Cloud: A Technical White Paper, 2013.
[6] M. Hajjat, X. Sun, Y. Sung, D. Maltz, S. Rao, K. Sripanidkulchai, and

M. Tawarmalani, “Cloudward bound: planning for beneficial migration
of enterprise applications to the cloud,” Proc. of ACM SIGCOMM, 2011.

[7] L. Zhang, Z. Li, and C. Wu, “Dynamic resource provisioning in
cloud computing: A randomized auction approach,” in Proc. of IEEE
INFOCOM, 2014.

[8] W. Shi, L. Zhang, C. Wu, Z. Li, and F. Lau, “An online auction
framework for dynamic resource provisioning in cloud computing,” in
Proc. of ACM SIGMETRICS, 2014.

[9] X. Zhang, Z. Huang, C. Wu, Z. Li, and F. Lau, “Online auctions in IaaS
clouds: welfare and profit maximization with server costs,” in Proc. of
ACM SIGMETRICS, 2015.

[10] N. Buchbinder and J. Naor, “Online primal-dual algorithms for covering
and packing problems,” in ESA. Springer, 2005, pp. 689–701.

[11] Z. Huang and A. Kim, “Welfare maximization with production costs: a
primal dual approach,” in Proc. of ACM-SIAM SODA, 2015.

[12] Wikipedia, Dynamic frequency scaling, http://en.wikipedia.org/wiki/
Dynamic frequency scaling.

[13] N. R. Devanur, “Fisher markets and convex programs,” JACM, 2010.
[14] Q. Wang, K. Ren, and X. Meng, “When cloud meets ebay: Towards

effective pricing for cloud computing,” in Proc. of IEEE INFOCOM,
2012.

[15] S. Zaman and D. Grosu, “Combinatorial auction-based dynamic vm pro-
visioning and allocation in clouds,” in Proc. of IEEE Cloud CloudCom,
2011.

[16] H. Zhang, B. Li, H. Jiang, F. Liu, A. Vasilakos, and J. Liu, “A framework
for truthful online auctions in cloud computing with heterogeneous user
demands,” in Proc. of IEEE INFOCOM, 2013.

[17] A. Kansal, F. Zhao, J. Liu, N. Kothari, and A. A. Bhattacharya, “Virtual
machine power metering and provisioning,” in Proc. of ACM SoCC,
2010.

[18] K. H. Kim, A. Beloglazov, and R. Buyya, “Power-aware provisioning
of virtual machines for real-time cloud services,” Concurrency and
Computation: Practice and Experience, vol. 23, no. 13, pp. 1491–1505,
2011.

[19] Technical Report, An Efficient Cloud Market Mechanism for Computing
Jobs with Soft Deadlines, https://www.dropbox.com/s/hsit71icuen6o9j/
main.pdf?dl=0.

[20] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge
university press, 2004.

[21] Wikipedia, Convex conjugate, http://en.wikipedia.org/wiki/Convex
conjugate.

[22] Google Cluster Data, TraceVersion1, https://code.google.com/p/
googleclusterdata/wiki/TraceVersion1.

Figure 3.5: Social welfare of Aonline1 with differ-
ent number of users and J.

Number of Users
40 50 60 70 80 90 100

C
o
m

p
e
tit

iv
e
 R

a
tio

0.5

1

1.5

2

J=2
J=4
J=6

Fig. 1: Competitive ratio of Aonline1

with different number of users and J .

U
k
/L

k

10 20 30 40 50 60

C
o
m

p
e
tit

iv
e
 R

a
tio

1

1.2

1.4

1.6

1.8

2

50%
100%
150%

Fig. 2: Competitive ratio of Aonline1

with different Uk/Lk.

10
8

6

J
4

2
00Number of Users

40

80

0

2000

8000

4000

6000

120

S
o
c
ia

l
W

e
lf
a
re

Fig. 3: Social welfare of Aonline1 with
different number of users and J .

Number of Slots

120 140 160 180 200

S
o
c
ia

l
W

e
lf
a
re

0

1000

2000

3000

4000

5000

6000

7000

U
k
/L

k
=10

U
k
/L

k
=20

U
k
/L

k
=30

U
k
/L

k
=40

U
k
/L

k
=50

Fig. 4: Social welfare of Aonline1 with
different T and Uk/Lk

Number of Users
40 50 60 70 80 90 100

P
e
rc

e
n
ta

g
e
 o

f
W

in
n
e
rs

50

60

70

80

90

100

110

U
k
/L

k
=10

U
k
/L

k
=30

U
k
/L

k
=50

Fig. 5: Percentage of winners in Aonline1

with different I and Uk/Lk

Number of Users

50 70 90 110

S
o

c
ia

l
W

e
lf
a

re

0

2000

4000

6000

U
k
/L

k
=10

U
k
/L

k
=30

U
k
/L

k
=50

Number of Users

50 70 90 110

P
ro

v
id

e
r

R
e

v
e

n
u

e

0

50

100

150

U
k
/L

k
=10

U
k
/L

k
=30

U
k
/L

k
=50

Fig. 6: Social welfare and cloud provider’s
revenue in Aonline2 with I and Uk/Lk

Number of Slots
120 130 140 150 160 170 180

P
e
rc

e
n
ta

g
e
 o

f
W

in
n
e
rs

0

20

40

60

80

100

I=80
I=90
I=100

Fig. 7: Percentage of winners in Aonline2

used in the auction design include the posted pricing frame-
work for truthful online auctions, a new LP formulation and
solution method for handling soft deadline constraints, as well
as approximation algorithms based on LP dual and Fenchel
dual. Our method for handling soft deadline constraints may
be applicable to other auction design problems where deadline
is involved, for example, in demand response auctions in a
smart grid.

REFERENCES

[1] Amazon EC2 instance type, http://aws.amazon.com/ec2/instance-types/.
[2] Microsoft Azure, http://azure.microsoft.com/en-us/?rnd=1.
[3] Linode, https://www.linode.com/.
[4] L. Zhang, S. Ren, C. Wu, and Z. Li, “A truthful incentive mechanism

for emergency demand response in colocation data centers,” Tech. Rep.,
2015.

[5] RightScale, Social Gaming in the Cloud: A Technical White Paper, 2013.
[6] M. Hajjat, X. Sun, Y. Sung, D. Maltz, S. Rao, K. Sripanidkulchai, and

M. Tawarmalani, “Cloudward bound: planning for beneficial migration
of enterprise applications to the cloud,” Proc. of ACM SIGCOMM, 2011.

[7] L. Zhang, Z. Li, and C. Wu, “Dynamic resource provisioning in
cloud computing: A randomized auction approach,” in Proc. of IEEE
INFOCOM, 2014.

[8] W. Shi, L. Zhang, C. Wu, Z. Li, and F. Lau, “An online auction
framework for dynamic resource provisioning in cloud computing,” in
Proc. of ACM SIGMETRICS, 2014.

[9] X. Zhang, Z. Huang, C. Wu, Z. Li, and F. Lau, “Online auctions in IaaS
clouds: welfare and profit maximization with server costs,” in Proc. of
ACM SIGMETRICS, 2015.

[10] N. Buchbinder and J. Naor, “Online primal-dual algorithms for covering
and packing problems,” in ESA. Springer, 2005, pp. 689–701.

[11] Z. Huang and A. Kim, “Welfare maximization with production costs: a
primal dual approach,” in Proc. of ACM-SIAM SODA, 2015.

[12] Wikipedia, Dynamic frequency scaling, http://en.wikipedia.org/wiki/
Dynamic frequency scaling.

[13] N. R. Devanur, “Fisher markets and convex programs,” JACM, 2010.
[14] Q. Wang, K. Ren, and X. Meng, “When cloud meets ebay: Towards

effective pricing for cloud computing,” in Proc. of IEEE INFOCOM,
2012.

[15] S. Zaman and D. Grosu, “Combinatorial auction-based dynamic vm pro-
visioning and allocation in clouds,” in Proc. of IEEE Cloud CloudCom,
2011.

[16] H. Zhang, B. Li, H. Jiang, F. Liu, A. Vasilakos, and J. Liu, “A framework
for truthful online auctions in cloud computing with heterogeneous user
demands,” in Proc. of IEEE INFOCOM, 2013.

[17] A. Kansal, F. Zhao, J. Liu, N. Kothari, and A. A. Bhattacharya, “Virtual
machine power metering and provisioning,” in Proc. of ACM SoCC,
2010.

[18] K. H. Kim, A. Beloglazov, and R. Buyya, “Power-aware provisioning
of virtual machines for real-time cloud services,” Concurrency and
Computation: Practice and Experience, vol. 23, no. 13, pp. 1491–1505,
2011.

[19] Technical Report, An Efficient Cloud Market Mechanism for Computing
Jobs with Soft Deadlines, https://www.dropbox.com/s/hsit71icuen6o9j/
main.pdf?dl=0.

[20] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge
university press, 2004.

[21] Wikipedia, Convex conjugate, http://en.wikipedia.org/wiki/Convex
conjugate.

[22] Google Cluster Data, TraceVersion1, https://code.google.com/p/
googleclusterdata/wiki/TraceVersion1.

Figure 3.6: Social welfare of Aonline1 with differ-
ent T and Uk/Lk

the social welfare. Aonline1 is able to allocate more jobs when the length of the system increases.

Furthermore, the bidding price rises with the increase of Uk/Lk, thus high value bids lead to a

higher social welfare.

Number of Users
40 50 60 70 80 90 100

C
o

m
p

e
tit

iv
e

 R
a

tio

0.5

1

1.5

2

J=2
J=4
J=6

Fig. 1: Competitive ratio of Aonline1

with different number of users and J .

U
k
/L

k

10 20 30 40 50 60

C
o
m

p
e
tit

iv
e
 R

a
tio

1

1.2

1.4

1.6

1.8

2

50%
100%
150%

Fig. 2: Competitive ratio of Aonline1

with different Uk/Lk.

10
8

6

J
4

2
00Number of Users

40

80

0

2000

8000

4000

6000

120

S
o

c
ia

l
W

e
lf
a

re
Fig. 3: Social welfare of Aonline1 with
different number of users and J .

Number of Slots

120 140 160 180 200

S
o
c
ia

l
W

e
lf
a
re

0

1000

2000

3000

4000

5000

6000

7000

U
k
/L

k
=10

U
k
/L

k
=20

U
k
/L

k
=30

U
k
/L

k
=40

U
k
/L

k
=50

Fig. 4: Social welfare of Aonline1 with
different T and Uk/Lk

Number of Users
40 50 60 70 80 90 100

P
e
rc

e
n
ta

g
e
 o

f
W

in
n
e
rs

50

60

70

80

90

100

110

U
k
/L

k
=10

U
k
/L

k
=30

U
k
/L

k
=50

Fig. 5: Percentage of winners in Aonline1

with different I and Uk/Lk

Number of Users

50 70 90 110

S
o
c
ia

l
W

e
lf
a
re

0

2000

4000

6000

U
k
/L

k
=10

U
k
/L

k
=30

U
k
/L

k
=50

Number of Users

50 70 90 110

P
ro

v
id

e
r

R
e
v
e
n
u
e

0

50

100

150

U
k
/L

k
=10

U
k
/L

k
=30

U
k
/L

k
=50

Fig. 6: Social welfare and cloud provider’s
revenue in Aonline2 with I and Uk/Lk

Number of Slots
120 130 140 150 160 170 180

P
e
rc

e
n
ta

g
e
 o

f
W

in
n
e
rs

0

20

40

60

80

100

I=80
I=90
I=100

Fig. 7: Percentage of winners in Aonline2

used in the auction design include the posted pricing frame-
work for truthful online auctions, a new LP formulation and
solution method for handling soft deadline constraints, as well
as approximation algorithms based on LP dual and Fenchel
dual. Our method for handling soft deadline constraints may
be applicable to other auction design problems where deadline
is involved, for example, in demand response auctions in a
smart grid.

REFERENCES

[1] Amazon EC2 instance type, http://aws.amazon.com/ec2/instance-types/.
[2] Microsoft Azure, http://azure.microsoft.com/en-us/?rnd=1.
[3] Linode, https://www.linode.com/.
[4] L. Zhang, S. Ren, C. Wu, and Z. Li, “A truthful incentive mechanism

for emergency demand response in colocation data centers,” Tech. Rep.,
2015.

[5] RightScale, Social Gaming in the Cloud: A Technical White Paper, 2013.
[6] M. Hajjat, X. Sun, Y. Sung, D. Maltz, S. Rao, K. Sripanidkulchai, and

M. Tawarmalani, “Cloudward bound: planning for beneficial migration
of enterprise applications to the cloud,” Proc. of ACM SIGCOMM, 2011.

[7] L. Zhang, Z. Li, and C. Wu, “Dynamic resource provisioning in
cloud computing: A randomized auction approach,” in Proc. of IEEE
INFOCOM, 2014.

[8] W. Shi, L. Zhang, C. Wu, Z. Li, and F. Lau, “An online auction
framework for dynamic resource provisioning in cloud computing,” in
Proc. of ACM SIGMETRICS, 2014.

[9] X. Zhang, Z. Huang, C. Wu, Z. Li, and F. Lau, “Online auctions in IaaS
clouds: welfare and profit maximization with server costs,” in Proc. of
ACM SIGMETRICS, 2015.

[10] N. Buchbinder and J. Naor, “Online primal-dual algorithms for covering
and packing problems,” in ESA. Springer, 2005, pp. 689–701.

[11] Z. Huang and A. Kim, “Welfare maximization with production costs: a
primal dual approach,” in Proc. of ACM-SIAM SODA, 2015.

[12] Wikipedia, Dynamic frequency scaling, http://en.wikipedia.org/wiki/
Dynamic frequency scaling.

[13] N. R. Devanur, “Fisher markets and convex programs,” JACM, 2010.
[14] Q. Wang, K. Ren, and X. Meng, “When cloud meets ebay: Towards

effective pricing for cloud computing,” in Proc. of IEEE INFOCOM,
2012.

[15] S. Zaman and D. Grosu, “Combinatorial auction-based dynamic vm pro-
visioning and allocation in clouds,” in Proc. of IEEE Cloud CloudCom,
2011.

[16] H. Zhang, B. Li, H. Jiang, F. Liu, A. Vasilakos, and J. Liu, “A framework
for truthful online auctions in cloud computing with heterogeneous user
demands,” in Proc. of IEEE INFOCOM, 2013.

[17] A. Kansal, F. Zhao, J. Liu, N. Kothari, and A. A. Bhattacharya, “Virtual
machine power metering and provisioning,” in Proc. of ACM SoCC,
2010.

[18] K. H. Kim, A. Beloglazov, and R. Buyya, “Power-aware provisioning
of virtual machines for real-time cloud services,” Concurrency and
Computation: Practice and Experience, vol. 23, no. 13, pp. 1491–1505,
2011.

[19] Technical Report, An Efficient Cloud Market Mechanism for Computing
Jobs with Soft Deadlines, https://www.dropbox.com/s/hsit71icuen6o9j/
main.pdf?dl=0.

[20] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge
university press, 2004.

[21] Wikipedia, Convex conjugate, http://en.wikipedia.org/wiki/Convex
conjugate.

[22] Google Cluster Data, TraceVersion1, https://code.google.com/p/
googleclusterdata/wiki/TraceVersion1.

Figure 3.7: Percentage of winners in Aonline1 with
different I and Uk/Lk

10 12 14 16 18 20
0

1

2

3

4

5

Number of Users

C
o

m
p

e
tit

iv
e

 R
a

tio

U
k
’=3 U

k
’=50 U

k
’=100

Figure 3.8: Competitive ratio of Aonline2 with dif-
ferent I and U 0

k

User satisfaction, which is measured by the percentage of winners, is demonstrated in Fig. 3.7.

A higher fraction of users are accepted with a small number of users. This is because the number of

winners is almost fixed due to the capacity limit. We also obverse that the value of Uk/Lk doesn’t

influence the percentage since the winner determination process is not affected by the change of

Uk/Lk.

44

3.6.2 Performance of Aonline2.

We first examine the competitive ratio of Aonline2. We use CVX with the Gurobi Optimizer to solve

the convex problem (3.8) exactly, and compute the competitive ratio by dividing the optimal social

welfare by the social welfare returned by Aonline2. However, CVX fails to solve in 24 hours even

with a medium-size input. Thus, we reduce the input size and only consider 10-20 users. Fig. 3.8

shows the competitive ratio of Aonline2 under different number of users and U 0
k. It becomes larger

with the increase of U 0
k. The change of the number of users doesn’t have much impact on the

competitive ratio. As indicated in Theorem 5, a larger U 0
k negatively influences the competitive

ratio when we set ck to 1. We can also observe that the competitive ratio is still less than 5 with a

large U 0
k, which is much better than the theoretical bound.

60 80 100
0

2000

4000

6000

Number of Users

S
o
c
ia

l
W

e
lf
a
re

U
k
’=10

U
k
.=30

U
k
’=50

60 80 100
0

50

100

150

Number of Users

P
ro

v
id

e
r

R
e
v
e
n
u
e

U
k
’=10

U
k
’=30

U
k
’=50

Figure 3.9: Social welfare and cloud provider’s
revenue in Aonline2 with I and U 0

k.

Number of Users
40 50 60 70 80 90 100

C
o
m

p
e

tit
iv

e
 R

a
tio

0.5

1

1.5

2

J=2
J=4
J=6

Fig. 1: Competitive ratio of Aonline1

with different number of users and J .

U
k
/L

k

10 20 30 40 50 60

C
o

m
p

e
tit

iv
e

 R
a

tio

1

1.2

1.4

1.6

1.8

2

50%
100%
150%

Fig. 2: Competitive ratio of Aonline1

with different Uk/Lk.

10
8

6

J
4

2
00Number of Users

40

80

0

2000

8000

4000

6000

120

S
o

c
ia

l
W

e
lf
a

re

Fig. 3: Social welfare of Aonline1 with
different number of users and J .

Number of Slots

120 140 160 180 200

S
o

c
ia

l
W

e
lf
a

re

0

1000

2000

3000

4000

5000

6000

7000

U
k
/L

k
=10

U
k
/L

k
=20

U
k
/L

k
=30

U
k
/L

k
=40

U
k
/L

k
=50

Fig. 4: Social welfare of Aonline1 with
different T and Uk/Lk

Number of Users
40 50 60 70 80 90 100

P
e

rc
e

n
ta

g
e

 o
f

W
in

n
e

rs

50

60

70

80

90

100

110

U
k
/L

k
=10

U
k
/L

k
=30

U
k
/L

k
=50

Fig. 5: Percentage of winners in Aonline1

with different I and Uk/Lk

Number of Users

50 70 90 110

S
o
c
ia

l
W

e
lf
a
re

0

2000

4000

6000

U
k
/L

k
=10

U
k
/L

k
=30

U
k
/L

k
=50

Number of Users

50 70 90 110

P
ro

v
id

e
r

R
e
v
e
n
u
e

0

50

100

150

U
k
/L

k
=10

U
k
/L

k
=30

U
k
/L

k
=50

Fig. 6: Social welfare and cloud provider’s
revenue in Aonline2 with I and Uk/Lk

Number of Slots
120 130 140 150 160 170 180

P
e

rc
e

n
ta

g
e

 o
f

W
in

n
e

rs

0

20

40

60

80

100

I=80
I=90
I=100

Fig. 7: Percentage of winners in Aonline2

used in the auction design include the posted pricing frame-
work for truthful online auctions, a new LP formulation and
solution method for handling soft deadline constraints, as well
as approximation algorithms based on LP dual and Fenchel
dual. Our method for handling soft deadline constraints may
be applicable to other auction design problems where deadline
is involved, for example, in demand response auctions in a
smart grid.

REFERENCES

[1] Amazon EC2 instance type, http://aws.amazon.com/ec2/instance-types/.
[2] Microsoft Azure, http://azure.microsoft.com/en-us/?rnd=1.
[3] Linode, https://www.linode.com/.
[4] L. Zhang, S. Ren, C. Wu, and Z. Li, “A truthful incentive mechanism

for emergency demand response in colocation data centers,” Tech. Rep.,
2015.

[5] RightScale, Social Gaming in the Cloud: A Technical White Paper, 2013.
[6] M. Hajjat, X. Sun, Y. Sung, D. Maltz, S. Rao, K. Sripanidkulchai, and

M. Tawarmalani, “Cloudward bound: planning for beneficial migration
of enterprise applications to the cloud,” Proc. of ACM SIGCOMM, 2011.

[7] L. Zhang, Z. Li, and C. Wu, “Dynamic resource provisioning in
cloud computing: A randomized auction approach,” in Proc. of IEEE
INFOCOM, 2014.

[8] W. Shi, L. Zhang, C. Wu, Z. Li, and F. Lau, “An online auction
framework for dynamic resource provisioning in cloud computing,” in
Proc. of ACM SIGMETRICS, 2014.

[9] X. Zhang, Z. Huang, C. Wu, Z. Li, and F. Lau, “Online auctions in IaaS
clouds: welfare and profit maximization with server costs,” in Proc. of
ACM SIGMETRICS, 2015.

[10] N. Buchbinder and J. Naor, “Online primal-dual algorithms for covering
and packing problems,” in ESA. Springer, 2005, pp. 689–701.

[11] Z. Huang and A. Kim, “Welfare maximization with production costs: a
primal dual approach,” in Proc. of ACM-SIAM SODA, 2015.

[12] Wikipedia, Dynamic frequency scaling, http://en.wikipedia.org/wiki/
Dynamic frequency scaling.

[13] N. R. Devanur, “Fisher markets and convex programs,” JACM, 2010.
[14] Q. Wang, K. Ren, and X. Meng, “When cloud meets ebay: Towards

effective pricing for cloud computing,” in Proc. of IEEE INFOCOM,
2012.

[15] S. Zaman and D. Grosu, “Combinatorial auction-based dynamic vm pro-
visioning and allocation in clouds,” in Proc. of IEEE Cloud CloudCom,
2011.

[16] H. Zhang, B. Li, H. Jiang, F. Liu, A. Vasilakos, and J. Liu, “A framework
for truthful online auctions in cloud computing with heterogeneous user
demands,” in Proc. of IEEE INFOCOM, 2013.

[17] A. Kansal, F. Zhao, J. Liu, N. Kothari, and A. A. Bhattacharya, “Virtual
machine power metering and provisioning,” in Proc. of ACM SoCC,
2010.

[18] K. H. Kim, A. Beloglazov, and R. Buyya, “Power-aware provisioning
of virtual machines for real-time cloud services,” Concurrency and
Computation: Practice and Experience, vol. 23, no. 13, pp. 1491–1505,
2011.

[19] Technical Report, An Efficient Cloud Market Mechanism for Computing
Jobs with Soft Deadlines, https://www.dropbox.com/s/hsit71icuen6o9j/
main.pdf?dl=0.

[20] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge
university press, 2004.

[21] Wikipedia, Convex conjugate, http://en.wikipedia.org/wiki/Convex
conjugate.

[22] Google Cluster Data, TraceVersion1, https://code.google.com/p/
googleclusterdata/wiki/TraceVersion1.

Figure 3.10: Percentage of winners in Aonline2

We next study the performance of Aonline2 in the aspects of social welfare and user satisfaction.

Fig. 3.9 shows the social welfare and cloud provider’s revenue with different number of users when

we vary the value of U 0
k. We can observe that both the social welfare and revenue increase with

the number of users and U 0
k. The reason has been explained when we evaluated the performance

of Aonline1 and is omitted here, as the design of Aonline2 follows the same primal-dual technique.

Fig. 3.10 shows that the percentage of winners gradually rises when the number of slots increases.

The possibility of winning becomes higher when the system spans a long period since there are

more slots available for scheduling. In addition, a small number of users leads to higher user

satisfaction.

45

3.7 Summary

In this chapter, we studied the auction design for cloud computing jobs that have soft completion

deadlines. Our main contribution is an online cloud job auction that is truthful and computationally

efficient, and achieves a good competitive ratio in social welfare. Techniques used in the auction

design include the posted pricing framework for truthful online auctions, a new LP formulation

and solution method for handling soft deadline constraints, as well as approximation algorithms

based on LP dual and Fenchel dual. Our method for handling soft deadline constraints may be

applicable to other auction design problems where deadlines are involved, for example, in demand

response auctions in a smart grid.

46

Chapter 4

Scheduling Frameworks for Cloud Container Services

4.1 Introduction

In this chapter, we extend the existing literature in cloud resource provisioning, and propose the

first offline and online scheduling frameworks for cloud container provisioning. We simultane-

ously target the following goals. First, we require the schedulers to be time efficient, running in

polynomial time. Second, the aggregate value of jobs that are completed before their deadlines

should be maximized. Third, the schedulers permit partial execution and can handle general type

of jobs, i.e., jobs with multiple subtasks, defined by i) the dependence graph that captures the de-

pendence among subtasks; ii) the resource profile of each container, which is dedicated to each

subtask; iii) the deadline for job completion; iv) the value of each subtask.

We formulate the offline optimization problem into a natural Integer Linear Program (ILP).

While polynomial in size, this ILP involves non-conventional scheduling constraints that are hard

to handle by the classic primal-dual framework. We apply the compact-exponential technique [84]

to reformulate the problem into a compact-exponential ILP, which is a conventional packing-type

ILP with an exponential number of variables corresponding to valid schedules. This compact-

exponential ILP and its dual form the foundation of our offline and online scheduling algorithm

design. We will show that the substantially amplified ILP size can be managed through the primal-

dual technique, for computing a close-to-optimal aggregate job valuation in polynomial time.

We first assume that job information is known in advance, and focus on offline scheduling algo-

rithm design under resource capacity and job scheduling constraints. Besides serving as a bench-

mark for our online algorithm, the offline algorithm is also applicable to a limited near-future time

window for which job information can be predicted. We leverage the classic randomized round-

ing technique [59]. Given a fractional solution to the LP relaxation of the compact-exponential

47

ILP, we round the fractional solution to an integer solution by interpreting the fractional values as

probabilities of schedules. The obstacle is that the compact-exponential LP relaxation is exponen-

tial in size. We resort to its dual that has a polynomial number of variables and an exponential

number of constraints. We then employ the ellipsoid algorithm [22] and design a new separation

oracle to separate violated constraints. The primal variables corresponding to the violated dual

constraints can be selected. Consequently, we derive a new polynomial-sized LP from the original

compact-exponential LP, which can be solved in polynomial time. We show that the obtained in-

teger solution guarantees an expected (1� e1)-optimal objective value, where e1 can be arbitrarily

close to 0.

We proceed to consider the practical online scheduling version of the problem with stochastic

input, and determine the schedule upon the arrival of each job without future information. We

apply the primal-dual framework of algorithm design for such online decision making, with dual

variables indicating resource prices. To address the exponential size of the compact-exponential

LP, we first convert the optimization problem in the online stochastic model into a deterministic

fractional program, exploiting the job arrival process. This new program removes the time domain

and has a polynomial number of variables. It serves as an upper-bound of the optimal objective

value in expectation, and its dual variables act as a threshold for job admission. To approximately

obtain a dual solution close to the offline dual optimum, we gradually learn it based on past jobs,

and refine it as more jobs arrive. Our online scheduling framework guarantees computational

efficiency, and produces a (1�O(e2))-optimal objective value in expectation, where e2 can be

arbitrarily close to 0.

In the rest of the chapter, we discuss related work in Ch. 4.2. We introduce the system model

and formulate the optimization problem in Ch. 4.3. Ch. 4.4 and Ch. 4.5 present the offline and

online scheduling frameworks, respectively, which are evaluated in Ch. 4.6. Ch. 4.7 concludes the

chapter.

48

4.2 Related Work

Recent literature on cloud computing witnessed a plethora of studies on dynamic VM provisioning,

in both offline and online settings [78] [62] [80]. Zhang et al. [78] apply a convex decomposition

technique to design a randomized algorithm for dynamic cloud resource provisioning, achieving

a small approximation ratio. Shi et al. [62] further extend the study to an online scenario, where

each cloud user is subject to its budget constraint. Zhang et al. [62] propose an online algorithm

for the stochastic job arrival model. They aim to optimize the packing of VMs to satisfy each job’s

demand in a fixed time window. The above studies do not consider the scheduling dimension in

their solution space. Furthermore, they focus on the allocation of VMs, while we describe a richer

model where each job runs over containers characterized by a dependence graph.

Towards job scheduling under the full execution mode, Baruah et al. [19] study the traditional

all-or-no-value model, and prove a tight bound on the competitive ratio for the online scheduling

problem. Koren et al. [48] propose D-over, an algorithm that achieves the same competitive ra-

tio. The above literature considers only one type of resource. In Chapter 3 we presented online

scheduling algorithms for cloud computing jobs with soft deadlines. The solution there relies on

information about the minimum and the maximum unit values of resources, which are sometimes

hard to obtain in the online setting.

Earlier studies on partial job execution often assume no resource sharing and focus on pre-

emptive scheduling [29] [27]. Recent studies investigate cloud jobs with partial values. Navendu

et al. [44] design two scheduling mechanisms for computing jobs with deadlines in the offline

scenario. They consider only one type of resource, and guarantee an approximation ratio that is

relatively loose. Lucier et al. [53] propose online scheduling algorithms for deadline-sensitive jobs

in a simple model, where each job contains a single subtask. Azar et al. [18] further improve the

algorithm and analyze its competitive ratio. Both studies assume that a server can only execute

one job at each time slot. Zheng et al. [82] design online multi-resource allocation algorithms that

allow partial execution of jobs, achieving small competitive ratios. Their model assumes that all

49

subtasks of a job are identical and have no inter-dependence. We aim to design general scheduling

frameworks for cloud container services, targeting small approximation ratio and competitive ratio

in the offline and online settings, respectively.

Our offline algorithm combines the ellipsoid algorithm [22] with the randomized rounding

technique [59], which is partially inspired by Fleischer et al. [33]. However, they focus on rather

different problems – maximum general assignment problems. For theoretical research on online

stochastic algorithm design, Agrawal et al. [8] study a general online packing problem, and propose

a simpler and fast primal-dual algorithm for it. They rely on a one-time learning process while our

work performs a dynamic learning process. Kesselheim et al. [46] study online packing LPs in

the random order model. They solve an LP in every step, and round the fractional solution to an

integer solution. Gupta et al. [40] consider the problem of solving packing/covering LPs online,

and construct primal solutions based on dual solutions through a regret-minimizing online learning

algorithm. Jaillet et al. [43] study the online dynamic resource allocation problem, and propose a

learning-based algorithm. Agrawal et al. [9] apply a similar idea to the general online optimization

problem. Different from the above literature [8] [46] [40] [43] [9], we do not require the number

of inputs to be known in advance. Furthermore, prior work considers a more general form of the

problem but limits the number of schedules for each job to a small number. Such techniques can

suffer from exponential blowup in problem size when considering jobs with subtasks, since each

job has an exponential number of possible schedules. In this chapter, we focus on a particular form

of packing problem that formulates the scheduling problem for cloud container services, develop

methods that are more computationally tractable and better tailored to those settings, and then

evaluate those methods empirically.

4.3 System Model

We consider a cloud service provider, which hosts a pool of K types of resources, as exemplified by

CPU, RAM and disk storage. Cloud resources can be dynamically packed into different containers

50

on demand. Let [X] denote the integer set {1,2, . . . ,X}. For each type-k (k 2 [K]) resource, there

is a total of ck units in the cloud.

Sequence
detection

Data cleaning
and analysis

Gene
interaction
anaylsis

 Vertex
processing

DNA Sequence Analysis

Image Rendering

Software Testing

Test planning Test design Test execution
 Test
analysis

Test results
 reporting

 Clipping and
primitively assembling

 Rasterizing
Fragment
processing

SNP hit-list
indentification

 InDel
indentification

Figure 4.1: Dependence graphs for cloud computing jobs.

Assume the job arrival process during a large time span [T] = 1,2, . . . ,T is a Poisson process

with rate l . Recall that a Poisson process has the following properties [69]: i) the total number

of job arrivals in T time slots, I, is a random variable following the Poisson distribution with an

expected value of lT ; ii) the arrival time of each job can be uniformly and independently mapped

to a slot in [T]. Our online algorithm design and analysis are based on this assumption. However,

we do not require that the job arrival process must follow a Poisson process. Our online algorithm

can work on more general arrival processes, as long as the expectation of I can be estimated and

property ii) holds. Based on ii), we assume that the arrival time of each job is uniformly and

independently drawn from [T], and index jobs according to their order of arrival in any fixed

realization of the arrival process. Let [I] = {1,2, . . . , I} be the set of jobs. Each job i consists of

multiple subtasks, and is expressed by a tuple

Gi = {ai,di,Ni,Gi,{Lin}n2[Ni],{Rin}n2[Ni],{bin}n2[Ni]},

where ai and di are the arrival time and the deadline of job i. Ni is the number of subtasks in job

i. Gi is the dependence graph that captures the dependencies among subtasks in job i. Example

dependence graphs are illustrated in Fig 4.1. The execution of job i’s nth subtask doesn’t need to

be continuous; we only require that the total execution time accumulates to Lin. Rin = {rk
in}k2[K]

51

is the resource profile of the container that serves job i’s nth subtask, where rk
in is the amount of

type-k resource required. If job i’s nth subtask is completed by di, a partial value bin is obtained.

Let rk
max = maxi2[I],n2[Ni]{rk

in} denote the maximum type-k resource demand. We refer to C =

mink2[K]{ ck
rk

max
} as the capacity ratio. Let N = maxi2[I]{Ni}, D = maxi2[I]{di � ai} and Lmax =

maxi2[I],n2[Ni]{Lin}. Table 4.1 summarizes notation for easy reference. Each job i 2 [I] is drawn

independently from a set of job types, D , following an unknown distribution, i.e., job types are

i.i.d. A job type defines the configuration of a job, including the profiles of its subtasks, i.e.,

{Ni,Gi,{Lin}n2[Ni],{Rin}n2[Ni],{bin}n2[Ni]}, and the duration of the job, i.e,. di � ai. Note that a

job’s arrival time ai and deadline di are not part of the job type. For example, an access service

chain job is configured by “Firewall!IDS!Proxy” with di�ai = 20, where instances of firewall,

IDS and proxy are encapsulated into containers with predefined resource demands, and it must be

deployed within 20 time slots following its arrival.

In practice, there are jobs that render an atomic value Bi only upon completion of all its subtasks

before the deadline. This type of job can be viewed as a special case of our model, by setting

bi1 = bi2 = · · ·= biNi�1 = 0 and biNi = Bi.

Our objective is to maximize the total valuation obtained from all jobs, subject to resource

capacity and job scheduling constraints. A binary number xin 2 {0,1} indicates whether job i’s

nth subtask is completed (1) or not (0). Let another binary number yin(t) encode the scheduling

of job i’s nth subtask, where yin(t) = 1 if job i’s nth subtask is executed at time slot t, and 0

otherwise. Under a fixed realization of the job arrival process, the offline optimization problem

can be formulated into the following integer linear program (ILP):

maximize Â
i2[I]

Â
n2[Ni]

binxin (4.1)

subject to:

di

Â
t=ai

yin(t)� Linxin,8i 2 [I],8n 2 [Ni], (4.1a)

tyin(t) < t 0yin0(t 0),8t : yin(t) = 1,8t 0 : yin0(t 0) = 1,

52

8i : n is n0’s ancestor, (4.1b)

Â
i2[I]

Â
n2[Ni]

rk
inyin(t) ck,8k 2 [K],8t 2 [T], (4.1c)

xin,yin(t) 2 {0,1},8i 2 [I],8n 2 [Ni],8t 2 [ai,di]. (4.1d)

Constraint (4.1a) guarantees that the number of allocated time slots between job i’s arrival time and

deadline is sufficient to serve its nth subtask. Constraint (4.1b) enforces the execution sequence of

job i’s subtasks based on its dependence graph. The capacity of type-k resource is formulated in

constraint (4.1c).

Even in the offline setting, with complete knowledge of the system given, the polynomial-

sized ILP (4.1) is still NP-hard to solve. The classic multidimensional knapsack problem, which is

known to be NP-hard, can be reduced to a special case of ILP (4.1) by setting T = 1 = Ni = Lin =

1. The challenge further escalates when we involve unconventional job scheduling constraints

(constraints (4.1a) and (4.1b)). To address these challenges, we first apply the compact-exponential

technique [84] to reformulate ILP (2) into an equivalent conventional ILP with packing structure,

at the cost of introducing an exponential number of variables:

P : maximize Â
i2[I]

Â
l2zi

bilxil (4.2)

subject to:

Â
i2[I]

Â
l:t2T (l)

f k
il(t)xil  ck, 8k 2 [K],8t 2 [T], (4.2a)

Â
l2zi

xil  1, 8i 2 [I], (4.2b)

xil 2 {0,1}, 8i 2 [I],8l 2 zi. (4.2c)

In the above compact-exponential ILP, zi is the set of feasible time schedules for job i. A feasible

time schedule is a vector l = {yin(t)} that satisfies constraints (4.1a) and (4.1b). Variable xil 2

{0,1} indicates whether job i’s schedule l is accepted (1) or not (0). bil is the value based on

53

the number of completed subtasks. T (l) records the set of time slots in l. f k
il(t) denotes the total

type-k resource occupation of job i’s schedule l in t. Constraints (4.2a) are equivalent to (4.1c).

Constraints (4.2b) ensure that each job is executed according to at most one schedule.

We relax xil 2 {0,1} to xil � 0, and introduce dual variables pk(t) and ui for constraints (4.2a)

and (4.2b). The dual of the relaxed problem (4.2) is:

D : minimize Â
t2[T]

Â
k2[K]

ck pk(t)+ Â
i2[I]

ui (4.3)

subject to:

ui � bil � Â
k2[K]

Â
t2T (l)

f k
il(t)pk(t), 8i 2 [I],8l 2 zi, (4.3a)

pk(t),ui � 0,8i 2 [I], 8k 2 [K],8t 2 [T]. (4.3b)

It is clear that a feasible solution to ILP (4.2) has a corresponding feasible solution in ILP (4.1),

and the two ILPs have the same optimal objective value. Our offline algorithm design doesn’t rely

on any assumption about the job arrival process and job types, while our online algorithm design

resorts to the help of them and considers the expected version of the original problem. We first

focus on the offline scenario where all jobs are known in advance.

Table 4.1: Summary of Notation in Chapter 4

I # of jobs S log2(
1
e2
)�1 T # of time slots rk

max maxi2[I],n2[Ni]{rk
in}

l job arrival rate ai job i’s arrival time D job types set di job i’s deadline
C mink2[K]{ ck

rk
max

} Lmax maxi2[I],n2[Ni]{Lin} N maxi2[I]{Ni} D maxi2[I]{di �ai}
[X] integer set {1, . . . ,X} Ni # number of subtasks/containers of job i
K # of types of resources Lin # of time slots requested by job i’s nth subtask
ck capacity of type-k resource rk

in demand of type-k resource by job i’s nth subtask
Gi job i’s dependence graph xin job i’s nth subtask is completed (1) or not (0)
bin value of job i’s nth subtask yin(t) whether or not to allocate job i’s nth subtask in t
f k
il(t) type-k resource occupation of job i’s schedule l in t

54

4.4 Offline Scheduling Framework

In this section, we design a randomized scheduling algorithm for the offline setting, when future

job information is available or can be predicted. We first solve the LP relaxation of compact-

exponential ILP (4.2) approximately in Ch. 4.4.1, and then round the fractional solution to a feasi-

ble integer solution of ILP (4.1) in Ch. 4.4.2.

4.4.1 Solving the Compact-Exponential ILP

ILP (4.2) has an exponential number of variables, each corresponding to a possible schedule for

job i. To solve ILP (4.2), we first solve its dual problem (4.3), which has a polynomial number of

variables but an exponential number of constraints. We rewrite LP (4.3) to the following covering

problem:

minimize Â
t2[T]

Â
k2[K]

ck pk(t)+ Â
i2[I]

ui (4.4)

subject to:

(ui,{pk(t)}k2[K],t2[T]) 2 Pi, 8i 2 [I], (4.4a)

pk(t),ui � 0,8i 2 [I],8k 2 [K], 8t 2 [T]. (4.4b)

Here Pi is the polytope for job i defined by constraints of the form ui � bil�Âk2[K]Ât2T (l) f k
il(t)pk(t),

8l 2 zi. We resort to a separation oracle for Pi, i.e., an algorithm that, given an input of dual vari-

ables (ui,{pk(t)}k2[K],t2[T]), returns either a violated constraint, or guarantees that (ui, {pk(t)}k2[K],t2[T])

is feasible for Pi.

If we interpret pk(t) as the marginal price of type-k resource at time t, then bil �Âk2[K]Ât2T (l)

f k
il(t)pk(t) is the utility of job i executed by schedule l. We can use a scheduling algorithm for

the utility maximization problem for job i to design a separation oracle for Pi, as follows. Given

the marginal price {pk(t)}k2[K],t2[T], utility maximization for job i requires finding a schedule

l⇤ with value u⇤i such that for any schedule l 2 zi, u⇤i = bil⇤ �Âk2[K]Ât2T (l⇤) f k
il⇤(t)pk(t) � bil �

Âk2[K]Ât2T (l) f k
il(t)pk(t). Then either ui < u⇤i or ui � u⇤i . If ui < u⇤i , then a violated constraint

55

with schedule l⇤ is found. Otherwise, ui � u⇤i � bil �Âk2[K]Ât2T (l) f k
il(t)pk(t) for any l 2 zi and

(ui,{pk(t)}k2[K],t2[T]) is feasible for Pi.

Algorithm 5 A Separation Oracle for Polytope Pi - Chain Structure
Input: (ui,{pk(t)}k2[K],t2[T]),Gi

1: Calculate cn(t) = Âk2[K] rk
in pk(t),8n 2 [Ni], t 2 [ai,di];

2: for h = 1, . . . ,Ni do
3: for n 2 [h] do
4: for ts 2 [ai +Ân�1

1 Lin,di �Âh
n Lin +1] do

5: for te 2 [ts +Lin �1,di �Âh
n+1 Lin] do

6: Select Lin slots between ts and te with minimum cn(t), and save them to
tn(ts, te);

7: Pn(ts, te) = Ât2tn(ts,te) cn(t);
8: end for
9: end for

10: if n > 1 then
11: for ts 2 [ai +Ân�1

1 Lin,di �Âh
n Lin +1] do

12: t⇤s , t⇤e = argmint 0e<ts{Pn�1(:, t 0e)};
13: Pn(ts, te) = Pn(ts, te)+Pn�1(t⇤s , t⇤e),8te;
14: tn(ts, te) = tn�1(t⇤s , t⇤e)[tn(ts, te),8te;
15: end for
16: end if
17: end for
18: th

s , th
e = argmints,te{Ph(ts, te)};

19: lh = th(t
h
s , th

e); Uh = Âh
n=1 bin �Ph(t

h
s , th

e);
20: end for
21: h⇤ = argmaxh{Uh}, l⇤ = lh⇤ ;
22: if Uh⇤ � 0 then
23: Output: (ui,{pk(t)}k2[K],t2[T]) 2 Pi;
24: else Output: A violated constraint with l⇤.
25: end if

We focus on a special type of job with a sequential chain structure, which are often adopted by

service chains in the recent paradigm of NFV [39]. Generalization to jobs with general directed

acyclic graphs is left as future work. Algorithm 5 is a separation oracle for Pi, which exactly solves

the utility maximization problem for job i. The construction of the best schedule that maximizes

job i’s utility is based on a dynamic programming approach. We first calculate the price of container

n running at time t in line 1. Because job i consists of Ni subtasks each with a partial value bin,

we use a for loop (lines 2-20) to compute the best schedule lh if h subtasks are completed before

56

the deadline. For the nth subtask, we calculate the cheapest schedule tn(ts, te) to finish it within

a given time period [ts, te] and its corresponding price in lines 4-9. Because the (n� 1)th subtask

must be completed before nth subtask (n > 1), we also fix the schedule of the (n� 1)th subtask

when considering nth subtask’s schedule, by choosing the cheapest schedule that completes the

(n�1)th subtask before ts in lines 10-16. Lines 18-19 compute the best schedule and job i’s utility

if h subtasks are completed. Lines 21-25 figure out job i’s final utility and output the result.

Lemma 11. The time complexity of the separation oracle in Algorithm 5 is polynomial.

Proof: Line 1 takes O(KNi(di � ai)) steps to calculate the price in each time slot. The first for

loop iterates Ni times and the second for loop iterates at most Ni times. Within the second for

loop, lines 4-9 include two for loops to select the best schedule within a given time period and

compute its price, which can be done in O((di � ai)3Lin) steps, since the execution time in line

6 is O((di � ai)Lin). Lines 10-16 update the schedule and its price, taking O((di � ai)3) steps.

Therefore, the execution time for the second for loop (lines 3-17) is O(Ni(di � ai)3Lmax) with

Lmax = maxi2[I],n2[Ni]{Lin}. Lines 18-19 take O((di � ai)2) steps to compute the best schedule.

Hence, the running time from line 2 to 20 is O(N2
i (di�ai)3Lmax). The if statement in lines 21-25

returns the final output within O(Ni) steps. In summary, the overall running time of Algorithm 5 is

O(KN2
i (di �ai)3Lmax).

Lemma 12. For any 0 < a < 1, given a polynomial-time separation oracle for Pi, we can design

a 1
1�a -approximation algorithm to solve the LP (4.3) and hence the LP relaxation of ILP (4.2) in

polynomial time.

Proof: We run the ellipsoid method on LP (4.3), using Algorithm 5 as a separation oracle. More

precisely, we start with an estimate of the maximum objective value of LP (4.3), v0 (e.g., v0 =

Âi2[I]Ân2[Ni] bin), and use the ellipsoid algorithm to check the feasibility of the following linear

57

constraints:

Â
t2[T]

Â
k2[K]

ck pk(t)+ Â
i2[I]

ui  v0,

ui � bil � Â
k2[K]

Â
t2T (l)

f k
il(t)pk(t), 8i 2 [I],8l 2 zi,

pk(t),ui � 0,8i 2 [I], 8k 2 [K],8t 2 [T].

If this LP is feasible, we know that the optimal objective value of LP (4.3) is at most v0. We now

decrease v0 to v0/2, and check the feasibility again. If this is true, we know the optimum lies in

(0,v0/2]. This is essentially a binary search to find the smallest feasible objective value. Let D⇤

denote the optimal objective value of LP (4.3). Suppose v0  h ·D⇤, then after blog2 hc+ dlog2
1
a e

steps, we terminate at an interval (v⇤ �av⇤,v⇤], with a solution ({ui},{pk(t)}) such that v⇤ =

Ât2[T]Âk2[K] ck pk(t)+Âi2[I] ui. Let D be the current dual objective value and D = v⇤. Furthermore,

we have v⇤ �av⇤  D⇤  v⇤. To check the feasibility of one point, the ellipsoid method calls the

separation oracle O(I3L) times where each job is encoded in L bits [22]. Thus, we obtain a

solution to LP (4.3) after O(I3(logh+ log 1
a)) iterations of the separation oracle. Because the

running time of the separation oracle in Algorithm 5 is polynomial, the overall running time to

solve LP (4.3) is also polynomial.

In the execution of the ellipsoid algorithm to check the feasibility of v⇤ �av⇤, only a polyno-

mial number of dual constraints (4.3a) are involved. This set of constraints is sufficient to show

the objective value of LP (4.3) is greater than v⇤ �av⇤. To solve the LP relaxation of ILP (4.2),

we only need to consider a polynomial number of variables corresponding to this set of dual con-

straints (by setting all other variables to zero). Thus, this polynomial-sized LP can be solved in

polynomial time (e.g., using Karmarkar’s algorithm [68], its running time is O(I3.5)L). Let P be

the objective value, with P > v⇤ �av⇤ by LP duality. Let P⇤ be the optimal objective value of the

relaxed LP (4.2). By LP duality,

P
P⇤ � P

D
>

v⇤ �av⇤

v⇤
= (1�a),

58

we obtain a 1
1�a -approximation algorithm. The running time of this algorithm is polynomial,

which is O(I3.5(logh+ log 1
a)KN2D3LmaxL) with N = maxi2[I]{Ni} and D = maxi2[I]{di � ai}.

4.4.2 A Randomized Offline Scheduling Algorithm

Given a fractional solution to ILP (4.2), we continue to design a near-optimal offline algorithm

to schedule jobs based on the randomized rounding technique [59]. Ao f f line in Algorithm 6 is

our offline scheduling algorithm. We first solve the LP relaxation of ILP (4.2) in line 1 using the

ellipsoid method introduced in the previous subsection. Then we round the fractional solution x f
il

to an integer solution in lines 2-5. In order to increase the feasibility of the integer solution, we

generate a solution according to a scaled probability, i.e., we select each schedule l with probability

(1� e 0
2)x

f
il for job i, where 0 < e 0 < 1, and reject job i with probability 1�Âl2zi(1�

e 0
2)x

f
il . We

will show that with high probability (see Theorem 7), our integer solution is feasible. We first

bound the probability that one of constraints (4.2a) is violated during the rounding of the fractional

solution.

Theorem 6. Chernoff Bound [15] [59]. Let X1, . . . ,XN be independent Poisson trials such that,

for 1  n  N, Pr[Xn = 1] = pn, where 0  pn  1. Then for X = ÂN
n=1 Xn,µ � E[X] = ÂN

n=1 pn

and 0 < d < 2e�1, we have

Pr[X > (1+d)µ] < e�µd 2/4.

Lemma 13. In our cloud system, assume the capacity ratio C � 16(c+1)
e 02 ln(KT) with c > 0. Let

F denote the event that the amount of allocated type-k resource at time t exceeds ck, then the

probability that event F happens is at most 1
(KT)c+1 .

Proof: Recall that C is defined as mink2[K]{ ck
rk
max

} and F is the event that constraint (4.2a) is violated.

59

Algorithm 6 A Randomized offline Algorithm Ao f f line

Input: {Gi}i2[I],{ck}k2[K], 0 < e 0 < 1
1: Solve the LP relaxation of ILP (4.2) using the ellipsoid method. Let the solution be

{x f
il}i2[I],l2zi;

2: for each job i do
3: Choose each schedule l with probability (1� e 0

2)x
f
il , and reject job i with probability 1�

Âl2zi(1�
e 0
2)x

f
il;

4: If schedule l⇤ is selected, set xil⇤ = 1; Update the corresponding {xin}n2[Ni] and
{yin(t)}n2[Ni],t2[T] according to schedule l⇤;

5: Schedule job i accord to yin(t);
6: end for

For given k and t, we have

Pr[F] = Pr[Â
i2[I]

Â
l:t2T (l)

f k
il(t)xil > ck] Pr[Â

i2[I]
Â

l:t2T (l)
rk

maxxil > ck]

= Pr[Â
i2[I]

Â
l:t2T (l)

xil >
ck

rk
max

] Pr[X > C],

where X = Âi2[I]Âl:t2T (l) xil. Instead of constraints (4.2a), we consider the following LP with new

constraints Âi2[I]Âl2zi xil C:

maximize Â
i2[I]

Â
l2zi

bilxil (4.5)

subject to:

Â
i2[I]

Â
l2zi

xil C, 8k 2 [K],8t 2 [T], (4.5a)

Â
l2zi

xil  1, 8i 2 [I], (4.5b)

xil � 0, 8i 2 [I],8l 2 zi. (4.5c)

Let x̂ f be the solution to LP (4.5) obtained by the ellipsoid method, and x0 be an integer solution to

LP (4.5) computed by the same method in lines 3-4 in Algorithm 6. Then Pr[x0il = 1] = (1� e 0
2)x̂

f
il .

Let X 0
i = Âl2zi x0il and X 0 = Âi2[I]X 0

i . By the union bound,

Pr[X 0
i = 1] Â

l2zi

Pr[x0il = 1] = (1� e 0

2
) Â

l2zi

x̂ f
il.

60

Hence,

E[X 0] = Â
i2[I]

Pr[X 0
i = 1] (1� e 0

2
)C.

Let µ = (1� e 0
2)C and d =

e 0
2

1� e 0
2

. Because C � 16(c+1)
e 02 ln(KT), µ � E[X 0] and 0 < d < 2e�1, the

following inequality holds by applying the Chernoff bound in Theorem 6:

Pr[X 0 > C] < exp

�(1� e 0

2
)C(

e 0
2

1� e 0
2
)2/4

!

 exp

� c+1
1� e 0

2
ln(KT)

!

= (KT)
� c+1

1� e 0
2  1

(KT)c+1 .

Therefore, we obtain

Pr[F] Pr[X > C] Pr[X 0 > C] 1
(KT)c+1 .

Theorem 7. If C � 16(c+1)
e 02 ln(KT), with probability at least 1� 1

(KT)c , Ao f f line in Algorithm 6 can

output a feasible solution to ILP (4.1) and ILP (4.2) in polynomial running time. The expected

value returned by it is at least (1 � e1)-optimal, where e1 = a + e 0
2 � ae 0

2 + 1
(KT)c � (a + e 0

2 �
ae 0

2) 1
(KT)c .

Proof: We first examine the feasibility and the running time. Taking a union bound on K types of

resources and T time slots, the probability that the integer solution generated at line 4 in Algorithm

6 is feasible is at least 1�KT 1
(KT)c+1 = 1� 1

(KT)c by Lemma 13. By Lemma 12, line 1 in Algorithm

6 takes polynomial time to compute a fractional solution. The running time of the for loop in lines

2-5 is linear. Thus, the running time of Algorithm 6 is polynomial.

Let AS denote the event that Ao f f line outputs a feasible solution. Let OPT f be the optimal

objective value of the relaxed problem of (4.2), the expected objective value returned by Algorithm

61

6 is:

E[Â
i2[I]

Â
l2zi

bilxil]� E[Â
i2[I]

Â
l2zi

bilxil|AS]

� Â
i2[I]

Â
l2zi

bilE[xil]Pr[AS]� Â
i2[I]

Â
l2zi

bil(1�
e 0

2
)x f

il · (1�
1

(KT)c)

� (1� e 0

2
)(1�a)(1� 1

(KT)c)OPT f = (1� e1)OPT f .

Because the optimal objective value of ILP (4.2) is at most OPT f , we can conclude that Algorithm

6 returns a (1� e1)-optimal solution in expectation with e1 = a + e 0
2 � ae 0

2 + 1
(KT)c � (a + e 0

2 �
ae 0

2) 1
(KT)c .

4.5 Online Scheduling Framework

A practical scheduling algorithm needs to work in the online fashion, without relying on knowledge

of future job arrivals. In this section, we design an online algorithm that runs as jobs arrive to the

system, and processes each job immediately upon its arrival. We next introduce the primal-dual

framework that guides our online algorithm design in Ch. 4.5.1. We propose an online algorithm

for jobs with chain structure in Ch. 4.5.2 and analyze its performance in Ch. 4.5.3. Ch. 4.5.4 shows

that the algorithm proposed in Ch. 4.5.2 can also handle general jobs with directed acyclic graph

structures.

4.5.1 Primal and Dual Framework

Upon each job arrival, the cloud service provider needs to determine whether to serve this job, and

if so, how to schedule it. This process is equivalent to choosing a feasible solution to ILP (4.1).

To solve ILP (4.1), we resort to the classic primal-dual framework, and apply it to the compact-

exponential ILP (4.2) and its dual (4.3). We observe that for each primal variable xil , there is a dual

constraint associated with it. Complementary slackness indicates the update of the primal variable

is based on its dual constraint. xil remains zero unless its associated dual constraint (4.2a) is tight.

62

Let p⇤ denote the optimal solution of dual variables {pk(t)⇤}8k2[K],t2[T] for LP (4.3). Upon the

arrival of the ith job, we assign dual variable ui to the maximum of 0 and the right hand side (RHS)

of (4.2a),

ui = max{0,max
l2zi

{bil � Â
k2[K]

Â
t2T (l)

f k
il(t)pk(t)⇤}}. (4.6)

If ui > 0, the cloud service provider serves job i according to the schedule that maximizes the

RHS of constraint (4.2a); If ui  0, the cloud service provider rejects it. The rationale is as follows:

The dual variable pk(t)⇤ can be interpreted as the marginal price per unit of type-k resource at time

t, then Âk2[K]Ât2T (l) f k
il(t)pk(t)⇤ is the price to execute job i according to schedule l. The RHS of

(4.2a) can be viewed as job i’s utility with schedule l. The assignment of ui in (4.6) effectively

maximizes job i’s utility, towards achieving the maximum value obtained from all jobs.

However, the problem is that we cannot obtain the optimal dual solution p⇤ in the online setting.

We have information on past jobs only. Thus, we consider the first e2 2 (0,1) fraction of jobs

and hope to obtain an approximate dual solution in expectation, and progressively refine our dual

solution as more jobs arrive. By adopting this idea, we next design an online algorithm, and show

that it has good performance in both theoretical analysis and simulation studies.

4.5.2 An Online Algorithm with Stochastic Input

We first focus on service chain type of jobs where the dependence graph is of a sequential chain

structure.

Expected offline optimization problem. The offline problem in (4.2) is defined under a fixed and

stochastic realization of the job arrival process. Next, we consider all possible realizations of the

job arrival process in expectation, and define the expected offline problem in LP (4.7). We refer to

it as the expected offline program. It guides our online algorithm design and the optimal objective

value of it serves as an upper bound of the expected optimal objective value of the offline problem

in (4.2) in the competitive ratio analysis.

We use j to denote a job of type- j instead of job j in LPs (4.7), (4.8) and (4.9). Let r j be

63

the probability that a type- j job is drawn from the job types set D . Since the expected number of

jobs is lT , the expected number of type- j jobs appearing in the realized jobs is lT r j. Let x jl be

the probability of a type- j job served according to schedule l, over a random realization of jobs.

Then lT r j Âl2z j b jlx jl is the contribution of type- j jobs to the expected overall obtained value.

Summing over all job types, the objective function of (4.7) represents the expected value obtained

from all jobs. Note that we assume the same type of jobs has the same value of di �ai regardless

of job arrival time, under the assumption that T is much larger than the value of di � ai. Because

the probability of di > T is very small and the overall obtained value in expectation barely changes

without considering these extreme jobs.

maximize Â
j2D

lT r j Â
l2z j

b jlx jl (4.7)

subject to:

Â
j2D

Â
l2z j

lT r j
Ât2T (l) f k

il(t)
T

x jl  ck, 8k 2 [K], (4.7a)

Â
l2z j

x jl  1, 8 j 2 D , (4.7b)

x jl � 0,8 j 2 D , 8l 2 z j. (4.7c)

Next, we examine the constraints in LP (4.7). Constraint (4.7a) is the expected capacity constraint,

which guarantees the average consumption of one type of resource at each slot is below its capacity.

The rationale is as follows: If a type- j job is scheduled according to l, then it consumes a total

of Ât2T (l) f k
il(t) units of type-k resources over the entire system time (T slots). Recall that the

arrival time of a job is uniformly distributed within [T], then the slot t 2 T (l) is also uniformly

distributed within [T]. On average over time, a type- j job served with schedule l consumes at most
Ât2T (l) f k

il(t)
T units of type-k resource at each time slot, since the probability of this job occupying

any slot is 1/T . Â j2D Âl2z j lT r j
Ât2T (l) f k

il(t)
T x jl is the average consumption of type-k resource at

each slot contributed by all types of jobs. Note that it is a non-trivial transformation of the capacity

constraints (4.2a) as we remove the time dimension here. Constraint (4.7b) ensures that one job of

64

a specific type can only be served according to at most one schedule. Based on the above expected

offline program, we are able to design an online algorithm that obtains 1�O(e2) fraction of the

expected optimal value obtained from all jobs, under the assumption that each job only consumes

a small fraction of the capacity of any resource.

While it appears that the number of variables in LP (4.7) is still exponential, we observe that

there are only Nj possible values of b jl and Ât2T (l) f k
il(t) for each j. This is because a type- j job

contains Nj subtasks that need to be executed sequentially, and each of the subtasks has its own

value and resource demand. Let h 2 [Nj] denote the h th execution option for a type- j job, and

b jh = Ân2[h] b jn and wk
jh = Ân2[h] rk

inLin represent the value and the resource consumption for this

option. We can rewrite LP (4.7) to the following LP:

PS : maximize Â
j2D

lT r j Â
h2[Nj]

b jhx jh (4.8)

subject to:

Â
j2D

Â
h2[Nj]

lT r j
wk

jh
T

x jh  ck, 8k 2 [K], (4.8a)

Â
h2[Nj]

x jh  1, 8 j 2 D , (4.8b)

x jh � 0,8 j 2 D , 8h 2 [Nj]. (4.8c)

By introducing dual variables pk and u j into constraints (4.8a) and (4.8b), respectively, the dual

problem of (4.8) is:

DS : minimize Â
k2[K]

ck pk + Â
j2D

lT r ju j (4.9)

subject to:

u j � b jh � Â
k2[K]

wk
jh

T
pk, 8 j 2 D ,8h 2 [Nj], (4.9a)

pk,u j � 0, 8k 2 [K],8 j 2 D . (4.9b)

If we can solve the dual problem in (4.9) exactly to obtain the optimal dual solution pS, we can

apply the primal-dual technique discussed in Ch. 4.5.1 to derive the primal solution for the expected

65

offline program (4.8), achieving a close-to-optimal objective value. The barrier is still that we do

not have complete knowledge of all job types in the online setting. Our main idea is to produce

an approximate dual solution based on past jobs, and gradually refine this dual solution with the

accumulation of past jobs. The intuition is that because the types of jobs are i.i.d., the average

resource consumption of the past jobs can approximately reflect the average resource consumption

of all jobs in expectation, especially when more and more jobs are processed. More specifically,

we divide the job arrival process into log2(
1
e2
) stages, and index each stage with an integer s. Let

S = log2(
1
e2
)�1 and then s 2 [0,1, . . . ,S]. For each stage, we consider the first 2sbe2lTc jobs in set

Is = [1, . . . ,2sbe2lTc], and formulate an empirical version of (4.8) in Ps in (4.10) for these sample

jobs. We replace the expectations over all jobs in the objective function and constraint (4.8a) with

the sum over these jobs, and shrink the capacity limits accordingly by a factor of (1�Fs)2se2.

Let Is = |Is| = 2sbe2lTc and Fs = e2

q

lT
2se2lT =

q

e2
2s . Then 2se2 ⇡ Is

lT is the proportion of the

first 2sbe2lTc jobs to all jobs, and (1�Fs) handles the sampling error to make sure the overall

resource consumption does not exceed the capacity. Note that e2  Fs 
pe2, and we convert

each job type j back to job i. The dual of the relaxed (4.10) is formulated in (4.11).

Ps : maximize Â
i2Is

Â
h2[Ni]

bihxih (4.10)

subject to:

Â
i2Is

Â
h2[Ni]

wk
ih

T
xih  (1�Fs)2se2ck, 8k 2 [K], (4.10a)

Â
h2[Ni]

xih  1, 8i 2 Is, (4.10b)

xih 2 {0,1},8i 2 Is, 8h 2 [Ni]. (4.10c)

Ds : minimize Â
k2[K]

(1�Fs)2se2ck pk + Â
i2Is

ui (4.11)

subject to:

66

ui � bih � Â
k2[K]

wk
ih

T
pk, 8i 2 Is,8h 2 [Ni], (4.11a)

pk,ui � 0, 8k 2 [K],8i 2 Is. (4.11b)

Upon the arrival of the 2sbe2lTcth job, we exactly solve the dual problem in (4.11) to obtain the

optimal dual solution ps. The size of the dual problem (4.11) is polynomial, and hence it can be

solved efficiently by Karmarkar’s algorithm [68]. By involving more and more jobs in solving

(4.11), we progressively learn a dual solution that is close to the optimal dual solution pS of the

offline dual problem in (4.9).

We next discuss the decision making and the scheduling process, based on the learned dual

solution ps. Upon the arrival of each job, we let ui be the maximum of 0 and the RHS of constraints

(4.11a), i.e.,

ui = max{0, max
h2[Ni]

{bih � Â
k2[K]

wk
ih

T
pk,s}}.

If ui  0, then the cloud service provider rejects this job; If ui > 0, the cloud service provider

accepts this job, and serves it according to the following schedule: Let hi = argmaxh2[Ni] {bih �

Âk2[K]
wk

ih
T pk,s}, subtasks 1, . . . ,hi in job i will be allocated sequentially to slots from ai to ai +

Ân2[hi]Lin � 1. Although we didn’t check the resource capacity constraints (4.2a) here, we show

that with high probability (see Lemma 17), our algorithm satisfies the capacity limit in expectation

for any type of resource at any time.

Aonline in Algorithm 7 is our online algorithm, with the scheduling algorithm Acore in Algo-

rithm 8 running for each job. Lines 1-2 in Aonline define variable Is and initialize primal and dual

variables. Lines 4-5 reject the first be2lTc jobs as price p0 is not ready yet. Upon the arrival

of the ith job (i � be2lTc+ 1), lines 6-13 determine whether to serve this job, and if so how to

schedule it. More specifically, Acore in line 7 is run for job i 2 [2s�1be2lTc+ 1,2sbe2lTc] with

the input ps�1. In Acore, lines 1-4 determine the utility variable ui. If ui > 0, we accept job i,

compute its schedule l in line 7 and update all primal variables in lines 6-14. On the arrival of

67

Algorithm 7 An Online Algorithm Aonline
Input: {Gi},{ck},e2,l ,T

1: Define Is = 2sbe2lTc;
2: Initialize s = 0; Let xin = 0,yin(t) = 0,xil = 0,ui = 0, pk = 0,8i 2 [I],8n 2 [Ni],8t 2 [T],8l 2

zi,8k 2 [K] by default;
3: while the arrival of the ith job do
4: if i  be2lTc then
5: Reject job i;
6: else
7:

�

{xin},{yin(t)}}
�

= Acore
�

Gi,{ck}, {pk}}
�

;
8: if 9n 2 [Ni],xin = 1 then
9: Schedule job i according to yin(t);

10: else
11: Reject job i.
12: end if
13: end if
14: if i = Is and s  log2(

1
e2
)�1 then

15: Solve the dual LP (4.11) exactly to obtain ps;
16: Let {pk}= ps; s = s+1;
17: end if
18: end while

Algorithm 8 A Scheduling Algorithm Acore
Input: Gi,{ck},{pk}
Output: {xin},{yin(t)}

1: for h = 1,2, . . . ,Ni do
2: uih = Ân2[h] bin �Âk2[K]

Ân2[h] rk
inLin

T pk;
3: end for
4: ui = max{0,maxh2[Ni]{uih}};
5: if ui > 0 then
6: hi = argmaxh2[Ni]{uih};
7: li = {ai, . . . ,ai +Ân2[hi]Lin �1};xili = 1;
8: xin = 1,8n 2 [hi]; t = ti;
9: for n = 1, . . . ,hi do

10: index = 1;
11: while index  Lin do
12: yin(t) = 1; t = t +1; index = index+1;
13: end while
14: end for
15: end if
16: Return {xin},{yin(t)}

68

2sbe2lTcth job, line 15 in Aonline solves the dual LP (4.11) exactly using all jobs from job 1 to

job 2sbe2lTc. Line 16 updates pk and s. Note that the last time we update price ps is the arrival

time of job 2log2(
1

e2
)�1be2lTc. This process is repeated until the last job arrives. Note that our

algorithm doesn’t require any information about the job type distribution. Furthermore, we can

use an estimated value of l instead of the accurate one. We will show that inaccurate estimation

has rather mild impact on the performance in the simulations. We next use a simple example to

illustrate the process of Aonline. Suppose the online system spans 32 time slots. Let l = 0.5 and

e2 =
1
4 . We reject the first 4 jobs, and solve (4.11) with the input of the first 4 jobs to obtain p0.

From job 4 to job 8, we use p0 as the price to make a decision and solve (4.11) again with the input

of the first 8 jobs to obtain p1. From job 8 to the last job, p1 serves as the threshold to determine

the winner.

4.5.3 Theoretical Analysis

i) Polynomial running time.

Theorem 8. The time complexity of Aonline in Algorithm 7 is polynomial.

Proof: We first examine the running time of Acore. Lines 1-4 take O(NiK) steps to compute ui.

The running time of the if statement in lines 5-15 is O(Ân2[hi]Lin). In summary, the running time

of Acore is O(NiK +Ân2[hi]Lin).

We next analyze the running time of Aonline. Lines 1-2 define and initialize variables in

O(1) steps. There are I jobs, and the running time to handle each job (lines 4-13) is domi-

nated by the running time of Acore. The body of the if statement in lines 15-16 is executed

blog2(
1
e2
)c times, each iteration solves the dual problem in (4.11) in O(I3.5)L steps using Kar-

markar’s algorithm [68], where each job is encoded in L bits. Recall that N = maxi2[I]{Ni} and

Lmax = maxi2[I],n2[Ni]Lin. Given the above, the time complexity of our online algorithm Aonline is

O(blog2(
1
e2
)cI3.5L + IN(K +L)).

ii) Feasibility of the original problem.

69

We next show that with high probability, our online algorithm Aonline can compute a feasible

solution to the original problem (4.2). Constraints (4.2b) and (4.2c) are satisfied trivially. When

summing over all s 2 [0, . . . ,S], Lemma 17 shows that with probability at least 1� 2e2, accepted

jobs consume at most the maximum capacity in expectation for any type of resource at any time

(i.e., Constraint (4.2a) is satisfied).

Let xih(ps) be the primal solution output by Aonline, which is a function of ps. We have

xih(ps) =

8

>

>

>

<

>

>

>

:

1, if h = arg max
h 02[Ni]

{bih 0 � Â
k2[K]

wk
ih 0

T
pk,s} and bih > Â

k2[K]

wk
ih

T
pk,s,

0, otherwise.

(4.12)

We next define two random variables Xk
i and Yk

i (t), which will be used in the following analysis.

Xk
i = Â

h2[Ni]

wk
ih

T
xih(ps). (4.13)

Yk
i (t) =

8

>

>

<

>

>

:

Â
l2zi

fil(t)xil, if t 2 T (l),

0, otherwise.

(4.14)

Note that the value of xil in Yk
i (t) is output by Aonline and computed according to the value of

xih(ps).

Lemma 14. The expectation of Yk
i (t) on t is upper bounded by Xk

i when job i’s arrival time ti is

uniformly disturbed in [T].

Proof: If job i is rejected by the cloud provider, i.e., xih(ps) = 0,8h 2 [Ni], then Yk
i (t) = Xk

i

and the lemma follows. Otherwise, let hi = argmaxh2[Ni] xih(ps). According to Aonline, job i is

scheduled within [ai,ai +Âhi
n=1 Lin), and let li be the corresponding schedule. For a fixed t 2 [T],

we have

E(Yk
i (t)) = Pr[ai  t < ai +

hi

Â
n=1

Lin)] f k
ili(t) = Pr[t �

hi

Â
n=1

Lin < ai  t] f k
ili(t).

70

Because ai is uniformly disturbed in [T], Pr[ai = t] = 1
T . Moreover, since 1  t  T , Pr[t �

Âhi
n=1 Lin < ai  t] has two different values when 1  t < Âhi

n=1 Lin and Âhi
n=1 Lin  t  T . For both

cases, we have

E(Yk
i (t))

1
T

hi

Â
n=1

rk
inLin =

wk
ihi

T
= Xk

i .

Lemma 15. Let E1 denote the event that the total number of jobs that arrived in [T], I, is within

the range of [(1� Fs
2)lT,(1+ Fs

2)lT], 8Fs. The probability that E1 happens is at least 1� e2,

given lT � 4
(e2)3 .

Proof:

Pr[E1]� 1�Pr[|I �lT |� Fs

2
lT]� 1�Pr[|I �lT |� e2

2
lT].

The last inequality holds because Fs � e2. According to Chebyshev’s inequality [59], we can

obtain

Pr[|I �lT |� e2

2
lT] = Pr[|I �E[I]|� e2

2
lT] Var[I]

(e2
2 lT)2 =

4lT
e2

2 l 2T 2 =
4

e2
2 lT

.

Given lT � 4
(e2)3 , we have 4

e2
2 lT  e2 and therefore Pr[E1]� 1� e2.

We define a new variable B, and let

B = max

8

<

:

12ln
⇣

2(IN)KKT log2(
1
e2
)/e2

⌘

e2
2

,
4lT
e2

2

9

=

;

.

Lemma 16. Let E2 denote the event that

Â
i2Is+1\Is

Xk
i � 2se2ck,8k 2 [K],s 2 [0,1, . . . ,S].

On the condition of E1, i.e., (1 � Fs
2)lT  I  (1 + Fs

2)lT , the probability that E2 happens,

Pr[E2|E1], is at most e2
T , given ck

rk
max

� B.

Proof: Consider a fixed price p. We say a random sample Is+1\Is is bad for this p if p = ps

but Âi2Is+1\Is Âh2[Ni]
wk

ih
T xih(p) � 2se2ck, for some k and s. We first show that the probability of

71

bad samples is small for every fixed p, s and k. Then we take union bound over all “distinct” prices,

all s, and all k to prove with small probability, Âi2Is+1\Is Âh2[Ni]
wk

ih
T xih(ps) � 2se2ck,8k,8s with

price ps.

We first fix p, s and k. Recall the definition of Xk
i in (4.12). Since ps is the optimal solution

for LP (4.11), then by complementary conditions, we have Âi2Is Xk
i  (1�Fs)2se2ck. We define

events

A = { Â
i2Is

Xk
i  (1�Fs)2se2ck},B = { Â

i2Is+1\Is

Xk
i � 2se2ck}.

Therefore, the probability of bad samples is bounded by:

Pr[B] = Pr[Â
i2Is+1

Xk
i � Â

i2Is

Xk
i � 2se2ck] = Pr[Â

i2Is+1

Xk
i � (2�Fs)2se2ck|A]

 Pr[| Â
i2Is

Xk
i �

Is

Is+1
Â

i2Is+1

Xk
i |� b] (4.15)

Because Is
Is+1

= 1
2 � 1

2(1+Fs/2) or Is
Is+1

= lT/2
I � 1

2(1+Fs/2) as I  (1+ Fs
2)lT , thus,

| Â
i2Is

Xk
i �

Is

Is+1
Â

i2Is+1

Xk
i |� (

1
1+Fs/2

(1�Fs/2)� (1�Fs))2se2ck

=
F 2

s
2

1+Fs/2
2se2ck �

F 2
s

4
2se2ck.

Then b = F 2
s

4 2se2ck.

We normalize rk
max such that Xk

i 2 [0,1], and replace ck with ck
rk

max
. We define random variables:

s2(X) =
1

Is+1
Â

i2Is+1

(Xk
i �

1
Is+1

Â
i2Is+1

Xk
i)

2  1.

D(X) = max
i2Is+1

Xk
i � min

i2Is+1
Xk

i  1.

According to Hoeffding-Berstein Inequality (Appendix A.1 in [9]), we have

(4.15) 2exp
✓

� b 2

2Iss2(X)+bD(X)

◆

 2exp

�
F 4

s
16 22se2

2 c2
k

2Is +
F 2

s
4 2se2ck

!

. (4.16)

Is  2se2lT  lT . Because ck/rk
max = ck � 4lT/e2

2 , we have Is  lT  e2
2 ck/4 = F 2

s
4 2se2ck.

Thus,

(4.16) 2exp

�
F 2

s
4 2se2ck

2+1

!

 2exp
✓

�
e2

2 ck

12

◆

 e2

K(IN)KT log2(
1
e2
)
.

72

The last inequality holds because ck/rk
max = ck �B. Next, we take a union bound over all “distinct”

p. Two price vectors p1 and p2 are distinct if and only if they result in distinct solution, i.e.,

xih(p1) 6= xih(p2). By results from computational geometry [58], the total number of such distinct

prices is at most (IN)K . Taking the union bound over all distinct prices, K types of resources and

log2(
1
e2
) stages, we get the desired result.

Lemma 17. With probability at least 1�2e2, we have

Â
i2Is+1\Is

E[Yk
i (t)] 2se2ck,8k 2 [K], t 2 [T],s 2 [0,1, . . . ,S],

given lT � 4
(e2)3 and ck

rk
max

� B.

Proof: We first prove that, for a fixed t, on the condition of E1, the probability of Âi2Is+1\Is E[Yk
i (t)]�

2se2ck,8k,8s is small.

According to Lemma 14, the expectation of Yk
i (t) on t is upper bounded by Xk

i . Therefore,

Pr[Â
i2Is+1\Is

E[Yk
i (t)]� 2se2ck,8k,8s|E1] Pr[Â

i2Is+1\Is

Xk
i � 2se2ck8k,8s|E1]

= Pr[E2|E1]
e2

T
. (Lemma 16)

We take the union bound over T slots and have

P[Â
i2Is+1\Is

E[Yk
i (t)] 2se2ck,8k,8s,8t]� P[Â

i2Is+1\Is

E[Yk
i (t)] 2se2ck,8k,8s,8t|E1]Pr[E1]

� (1�T ·Pr[Â
i2Is+1\Is

E[Yk
i (t)]� 2se2ck,8k,8s|E1])Pr[E1]

� (1� e2)
2 � 1�2e2. (Lemma 15)

iii) Competitive Ratio.

Finally, we show that our algorithm Aonline is 1
1�O(e2)

-competitive in expectation in Theorem 9.

Lemma 18. Let OPT denote the optimal objective value of the offline problem in (4.2). E[OPT]

is the expectation of OPT over all possible realizations of the job arrival process. The optimal

objective value of LP (4.8) is at least E[OPT].

73

Proof: We observe that the average of the optimal solutions of the offline problem in (4.2),

computed over all possible realizations of the job arrival process, achieves the expected offline

social welfare E[OPT]. Furthermore, it also provides a feasible solution to the expected offline

problem in (4.8). Therefore, the optimal objective value of LP (4.8) must be at least E[OPT].

As |Is| 2Sbe2lTc  lT
2 < lT , we have the following observation.

Observation 1. The inputs of the problem in (4.10) have the following property: for the optimal

dual solution ps derived by solving the dual problem (4.11), there can be at most lT equations

such that bihi = Âk2[K]
wihi

k pk,s,8i 2 Is, where hi denotes the best option for job i.

Lemma 19. Let {xih ,s}i2[I],h2[Ni] be the optimal solution of (4.10), and xs be the solution vector.

Â
i2Is

Â
h2[Ni]

xih ,s �lT  Â
i2Is

Â
h2[Ni]

xih(ps) Â
i2Is

Â
h2[Ni]

xih ,s,8s 2 [0,1, . . . ,S].

Proof: Let hi denote the best option for job i, i.e., hi = argmaxh 02[Ni]{bih 0 �Âk2[K]
wk

ih 0
T pk,s}. By

complementary slackness, the optimal solution of (4.10) satisfies xihi,s = 0 if bihi < Âk2[K]
wk

ihi
T pk,s,

and xihi,s > 0 if bihi = Âk2[K]
wk

ihi
T pk,s. Compared with (4.12), the only difference is xihi(ps) = 0

when bihi = Âk2[K]
wk

ihi
T pk,s. These imply that jobs accepted by Aonline are also accepted by the

optimal solution, while some jobs rejected by Aonline are accepted by the optimal solution. Since

Observation 1 indicates that there are at most lT equations that satisfy bihi = Âk2[K]
wihi

k pk,s,8i 2

Is, there are at most lT jobs that are rejected by Aonline but accepted by the optimal solution.

Lemma 20. On the condition of (1� Fs
2)lT  I  (1+ Fs

2)lT , with probability at least 1� e2,

8s 2 [0, . . . ,S],

Â
i2Is+1

Â
h2[Ni]

bihxih(ps)� (1�3Fs)P⇤
s+1(xs+1),

where Âi2Is+1 Âh2[Ni] bihxih(ps) is the objective value of Ps+1 in (4.10) achieved by our solution

xih(ps), and P⇤
s+1(xs+1) is the optimal objective value of Ps+1 in (4.10) under optimal solution xs+1,

given ck
rk

max
� B.

74

Proof: We first define an auxiliary primal problem as follows:

PA : maximize Â
i2Is+1

Â
h2[Ni]

bihxih (4.17)

subject to:

Â
i2Is+1

Â
h2[Ni]

wk
ih

T
xih  Ak, 8k 2 [K], (4.17a)

Â
h2[Ni]

xih  1, 8i 2 Is+1, (4.17b)

xih � 0,8i 2 Is+1, 8h 2 [Ni]. (4.17c)

where Ak =Âi2Is+1 Âh2[Ni]
wk

ih
T xih(ps) if pk,s > 0 and Ak =max{Âi2Is+1 Âh2[Ni]

wk
ih

T xih(ps),2s+1e2ck}

if pk,s = 0. Its dual problem is:

DA : minimize Â
k2[K]

Akck pk + Â
i2Is+1

ui (4.18)

subject to:

ui � bih � Â
k2[K]

wk
ih

T
pk, 8i 2 Is+1,8h 2 [Ni], (4.18a)

pk,ui � 0, 8k 2 [K],8i 2 Is+1. (4.18b)

Note that {xih(ps)}i2[i],h2[Ni] and ps satisfy all complementarity conditions, and therefore they are

the optimal primal and dual solutions to LP (4.17) and LP (4.18). The optimal objective value

of (4.17) is Âi2Is+1 Âh2[Ni] bihxih(ps). In order to prove the lemma, we need to show that with

probability at least 1� e2, (1�3Fs)xs+1 is a feasible solution to auxiliary program (4.17).

First, we show that with probability at least 1� e2,

Ak � (1�3Fs)2s+1e2ck,8k 2 [K],s 2 [0, . . . ,S]. (4.19)

If pk,s = 0, then by definition we have Ak � 2s+1e2ck. It remains to prove the case where pk,s >

0 that, with probability at least 1 � e2, Ak � (1 � 3Fs)2s+1e2ck,8k 2 [K],s 2 [0, . . . ,S]. This

75

is proven by showing that with probability at most e2, Ak = Âi2Is+1 Âh2[Ni]
wk

ih
T xih(ps)  (1 �

3Fs)2s+1e2ck,8k 2 [K],s 2 [0, . . . ,S]. The detailed proof is as follows: Recall that {xih ,s}i2[I],h2[Ni]

and {pk,s}k2[K] are the optimal solutions to programs (4.10) and (4.11). Then, by complementary

slackness, if pk,s > 0, we have Âi2Is+1 Âh2[Ni]
wk

ih ,s
T xih ,s = (1�Fs)2se2ck. We normalize rk

max such

that rk
max = 1. Given ck/rk

max � 4lT
e2

2
� lT

2se2
2
, and the observation in Lemma 19, we have for any k

and s,

Â
i2Is

Â
h2[Ni]

wk
ih

T
xih(ps)� Â

i2Is

Â
h2[Ni]

wk
ih

T
xih ,s �lT

� (1�Fs � e2)2se2ck � (1�2Fs)2se2ck.

For a fixed k, s and a distinct price vector p, when p = ps, we define events G1 = {Âi2Is+1 Xk
i 

(1�3Fs)2s+1e2ck} and G2 = {Âi2Is Xk
i � (1�2Fs)2se2ck}.

Pr[G1] = Pr[G1|G2] Pr[| Â
i2Is

Xk
i �

Is

Is+1
Â

i2Is+1

Xk
i |� b 0]. (4.20)

Because Is
Is+1

= 1
2  1

2(1�Fs/2) or Is
Is+1

= lT/2
I  1

2(1�Fs/2) as I � (1� Fs
2)lT , thus,

Â
i2Is

Xk
i �

Is

Is+1
Â

i2Is+1

Xk
i � (1�2Fs �

1
1�Fs/2

(1�3Fs))2se2ck

=
Fs +2F 2

s
2�Fs

2se2ck �
Fs

2
2se2ck.

Then b 0 = Fs
2 2se2ck. Note that Xk

i 2 [0,1] as rk
max = 1. Next, similar to the proof of Lemma 16, we

define two random variables:

s2(X) =
1

Is+1
Â

i2Is+1

(Xk
i �

1
Is+1

Â
i2Is+1

Xk
i)

2  1.

D(X) = max
i2Is+1

Xk
i � min

i2Is+1
Xk

i  1.

According to Hoeffding-Berstein Inequality [9], we have

(4.20) 2exp
✓

� b 02

2Iss2(X)+bD(X)

◆

 2exp

�
F 2

s
4 22se2

2 c2
k

2Is +
Fs
2 2se2ck

!

. (4.21)

76

Because ck/rk
max = ck � lT , we have 2Is  2 ·2se2lT  2 ·2se2ck. Hence,

(4.21) 2exp

�
F 2

s
4 2se2ck

2+ Fs
2

!

 2exp
✓

�
e2

2 ck

12

◆

 e2

K(IN)K log2(
1
e2
)
.

The last inequality holds because ck/rk
max = ck � B. Taking the union bound over (IN)K distinct

prices, K types of resources and log2(
1
e2
) stages, we prove that with probability at least 1� e2,

Ak � (1�3Fs)2s+1e2ck,8k 2 [K],s 2 [0, . . . ,S].

We observe that i) constraints (4.10b) and (4.10c) are the same as (4.17b) and (4.17c); ii)

constraints (4.10a) and (4.17a) only differ in the RHS. Following the result of (4.19), we have

with probability at least 1� e2, (1�3Fs)xs+1 is a feasible solution to LP (4.17). Therefore, with

probability at least 1�e2, the optimal objective value of (4.17), i.e., Âi2Is+1 Âh2[Ni] bihxih(ps), is at

least the objective value of (4.17) under the solution (1�3Fs)xs+1, i.e., (1�3Fs)P⇤
s+1(xs+1).

Lemma 21.

E[P⇤
s (xs)] 2se2P⇤

S ,8s 2 [0, . . . ,S],

where E(P⇤
s (xs)) is the expectation of the optimal objective value of Ps in (4.10) achieved by the

optimal solution xs over all possible realizations of the job arrival process, and P⇤
S is the optimal

objective value of (4.8).

Proof: Let (xs,ps,us) denote the optimal primal-dual solution to (4.10) and (4.11), and (xS,pS,uS)

denote the optimal primal-dual solution to (4.8) and (4.9). Comparing the two dual programs (4.9)

and (4.11), we can observe that (pS,uS) is a feasible solution to program Ds in (4.11) since any

realization of job i 2 Is can be found in the distribution D . Then the objective value of (4.11)

with solution (pS,uS), Ds(pS,uS), is at least the optimal objective value D⇤
s (ps,us). Furthermore,

according to weak duality, P⇤
s (xs) D⇤

s (ps,us) Ds(pS,uS). Then we have

E[P⇤
s (xs)] E[D⇤

s (ps,us)] E[Ds(pS,uS)] = E[Â
k2[K]

(1�Fs)2se2ck pk,S + Â
i2Is

ui,S]

 E[2se2 Â
k2[K]

ck pk,S + Â
i2Is

ui,S] 2se2 Â
k2[K]

ck pk,S + Â
j2D

Isr ju j,S

77

 2se2(Â
k2[K]

ck pk,S + Â
j2D

lT r ju j,S) = 2se2D⇤
S(pS,uS) = 2se2P⇤

S .

Lemma 22. On the condition of (1� Fs
2)lT  I  (1+ Fs

2)lT ,

(1� e2)P⇤
S  E[P⇤

S+1(xS+1)] (1+Fs/2)P⇤
S ,

where S+ 1 = log2(
1
e2
), E(P⇤

S+1(xS+1)) is the expectation of the optimal objective value of PS+1

and P⇤
S is the optimal objective value of (4.8).

Proof: We first prove that E[P⇤
S+1(xS+1)]  (1+Fs/2)P⇤

S . Similar to the proof in Lemma 21,

we have

E[P⇤
S+1(xS+1)] E[D⇤

S+1(pS+1,uS+1)] E[DS+1(pS,uS)]

 E[Â
k2[K]

ck pk,S + Â
i2[I]

ui,S] Â
k2[K]

ck pk,S + Â
j2D

(1+
Fs

2
)lT r ju j,S

 (1+
Fs

2
)(Â

k2[K]

ck pk,S + Â
j2D

lT r ju j,S) = (1+
Fs

2
)D⇤

S(pS,uS) = (1+
Fs

2
)P⇤

S .

Next, we show (1� e2)P⇤
S  E[P⇤

S+1(xS+1)]. When S+ 1 = log2(
1
e2
), constraints (4.10a) in

program PS+1 becomes Âi2Is Âh2[Ni]
wk

ih
T xih  (1 � e2)ck. Consider a new version of LP (4.8)

by replacing constraints (4.8a) with Â j2D Âh2[Nj] lT r j
wk

jh
T x jh  (1� e2)ck, and denote this new

program by PS0 . Let P⇤
S0 be the optimal objective value of PS0 , and xS be the optimal solution of

(4.8). Then (1�e2)xS must be a feasible solution to PS0 , and the objective value under this solution

is at most P⇤
S0 , i.e., PS0(xS) = (1� e2)P⇤

S  P⇤
S0 . In addition, comparing PS+1 and PS0 , we found the

expectation of optimal objective value of PS+1 is equal to P⇤
S0 . Therefore, E[P⇤

S+1(xS+1)] = P⇤
S0 �

(1� e2)P⇤
S .

Theorem 9. For any 0 < e2 < 1
23 , our online scheduling algorithm Aonline is 1

(1�23e2)
-competitive

in expectation with i.i.d. job types and uniform job arrival time distribution, as compared to the

expected optimal objective value of offline problem in (4.2), given lT � 4
(e2)3 and ck

rk
max

� B.

78

Proof: Combining Lemma 15, Lemma 17, and Lemma 20, we have with probability at least

(1� e2)⇥ (1� e2)⇥ (1�2e2)� 1�4e2, events

(1� Fs

2
)lT  I  (1+

Fs

2
)lT,

Â
i2Is+1\Is

E[Yk
i (t)] 2se2ck,

Â
i2Is+1

Â
h2[Ni]

bihxih(ps)� (1�3Fs)P⇤
s+1(xs+1),

happen simultaneously for all k 2 [K], t 2 [T] and s 2 [0, . . . ,S]. Let Y denote the event that three

events happen simultaneously. Then we can have:

E[
S

Â
s=0

Â
i2Is+1\Is

Â
h2[Ni]

bihxih(ps)|Y]

� E[Â
s

Â
i2Is+1

Â
h2[Ni]

bihxih(ps)|Y]�E[Â
s

Â
i2Is

Â
h2[Ni]

bihxih(ps)|Y]

� Â
s
(1�3Fs)E[P⇤

s+1(xs+1)|Y]�Â
s

E[P⇤
s (xs)|Y] (4.22)

Combining Lemma 21 and Lemma 22, we have

(4.22)� (1� e2)P⇤
S � 1

Pr[Y]

✓

E[P⇤
0 (x0)]+Â

s
3FsE[P⇤

s+1(xs+1)]

◆

� (1� e2)P⇤
S � 1

1�4e2

e2 +
S�1

Â
s=0

3eFs2s+1
2 +3FS(1+

Fs

2
)

!

P⇤
S

� (1� e2)P⇤
S � 1

1�4e2
(1+6⇥1.8+3⇥

p
2⇥ (1+

p
0.5
2

)e2P⇤
S

� (1� e2)P⇤
S � 1

1�4e2
18e2P⇤

S .

The last two inequalities hold because ÂS�1
s=0 Fs2se2  1.8e2,Fs 

pe2 
p

0.5.

E[
S

Â
s=0

Â
i2Is+1\Is

Â
h2[Ni]

bihxih(ps)|Y]� Pr[Y]⇥E[
S

Â
s=0

Â
i2Is+1\Is

Â
h2[Ni]

bihxih(ps)]

� (1�4e2)

✓

(1� e2)P⇤
S � 1

1�4e2
18e2P⇤

S

◆

� (1�23e2)P⇤
S � (1�23e2)E[OPT].

79

4.5.4 Discussion

Aonline can be generalized to handle general jobs with arbitrary dependence graph topology. Upon

the arrival of the ith job, we first compute a topological ordering of its dependence graph. Such

ordering ensures that if job i’s subtask j must be executed before subtask k, j precedes k in the

ordering. It can be accomplished in linear time, e.g., by Kahn’s algorithm or depth-first search [71].

We then re-index its subtasks according to the output ordering. The rest of the algorithm design

is the same as the counterpart in Ch. 4.5.2, and we omit the details. Because the expected offline

optimization problem for general jobs can also be formulated to LP (4.8) and our online algorithm

design is based on this LP, the online algorithm for general jobs can achieve the same performance

as Aonline does, with regard to optimality and feasibility. The theoretical analysis is similar to the

counterpart in Ch. 4.5.3, and is omitted here.

4.6 Performance Evaluation

In this section, we evaluate our offline and online scheduling algorithms through trace-driven sim-

ulation studies. We further compare our scheduling algorithms with two related algorithms from

the recent literature [44] [84]. They study the similar cloud scheduling problem under simplified

offline and online scenarios by assuming that each job contains only one subtask. We first intro-

duce the simulation setup. We configure each job according to Google Cluster Data (version 1 [3])

which contains each job’s information including number of subtasks, execution duration, and re-

source demands (CPU and RAM). We assume each subtask occupies [1,12] slots, and each slot

is 5 minutes. By default, the maximum number of subtasks (N) is 5, l = 0.5 and T = 500. The

total number of jobs I is decided according to a Poisson distribution with expectation of lT . The

arrival time of each job is independently and uniformly chosen within [1,T] to simulate a Poisson

process. Each job’s deadline is also generated uniformly at random between its arrival time and

T . The value of each subtask (bin) is computed as its overall resource demand times unit prices

randomly picked in the range [1,50]. The capacity of each type of resource is normalized to 1.

80

The default value of C = mink2[K]{ ck
rk

max
} in our experiments is 1, which is much smaller than the

value in our assumption. Although a lower bound of C is required for our theoretical analysis, it

can be observed that even when the assumption is violated, our offline and online algorithms can

still achieve a close-to-optimal performance in practice.

4.6.1 Performance of Ao f f line

100 200 300 400 500 600
0.5

0.6

0.7

0.8

0.9

1

1.1

Number of Jobs

R
a

ti
o

 ε‘=0.02 ε‘=0.2 ε‘=0.5 Jain

Figure 4.2: Performance ratio of Ao f f line, and
Jain et al.’s algorithm [44].

300 350 400 450 500 550
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of Slots (T)

R
a

tio

L
max

=5

L
max

=12

L
max

=24

Figure 4.3: Performance ratio of Ao f f line with
different T and Lmax.

Performance Ratio. We first examine the performance of our offline algorithm. The performance

ratio is the ratio of the average objective value of ILP (4.1) generated by Ao f f line to the optimal

objective value of ILP (4.1). The average objective value is obtained by running lines 2-6 in

Algorithm 6 20 times. We also implement Jain et al.’s offline algorithm [44], which proposes a

greedy strategy to select winners, for comparison with Ao f f line. Fig. 4.2 shows that the performance

ratio of Ao f f line decreases slightly when we increase the total number of jobs. In addition, the

ratio is inversely related to the input parameter e 0 to Algorithm 6, as confirmed by the analysis

in Theorem 7. Ao f f line achieves a close-to-optimal performance with a small e 0 (0.02) and has a

better performance than Jain et al.’s algorithm even when e 0 is relatively large (0.2). We next fix

e 0 to 0.2 and the number of jobs to 300, and vary the number of slots and the maximum length of

subtasks. Fig. 4.3 illustrates that both T and Lmax have relatively small impact on the performance

of Ao f f line. This is because our offline solution is derived from the fractional solution rather than

the input to the problem.

81

100 150 200 250 300 350 400 450 500
0

1

2

3

4
x 10

4

O
b

je
ct

iv
e

 V
a

lu
e

100 150 200 250 300 350 400 450 500
0

50

100

Number of Jobs

P
e

rc
e

n
ta

g
e

 o
f

w
in

n
e

rs

A
offline

 value

optimal value

percetage of winners

Figure 4.4: Ao f f line: objective value and percent-
age of winners.

100 200 300 400 500
Number of Jobs

0

5

10

15

20

R
un

ni
ng

 ti
m

e
(S

ec
on

ds
) T=200

T=300
T=400
T=500

Figure 4.5: Running time of Ao f f line under differ-
ent I and T .

Objective Value, Winner Satisfaction. and Time Complexity. Fig. 4.4 compares the objective

value produced by Ao f f line to the optimal value. Again, there is just a small gap between these two

values. The objective value grows with an increasing number of jobs because Ao f f line can select

more high-value jobs from a large set of jobs. The performance of Ao f f line in terms of winner

satisfaction, as measured by the percentage of winning jobs, is also demonstrated in Fig. 4.4. The

percentage of winners drops when there is a large number of jobs. This is because the number

of winners is relatively fixed and is limited by the resource capacity. Therefore, only a small

percentage of jobs can be served from a large set of jobs. Next, we apply the tic and toc functions

in MATLAB to measure the execution time of the main program without counting the initialization

stage. We run 20 tests on a laptop computer (Intel Core i7-6700HQ/16GB RAM) and present the

average result in Fig. 4.5. We can observe that the running time of Ao f f line remains at a low level

(< 20 seconds) even when we input a large number of jobs and a long time span. It increases

linearly with jobs and slots, and runs faster than the theoretical result indicated in Lemma 2.

4.6.2 Performance of Aonline

Performance Ratio. The expected offline objective value is estimated by exactly solving ILP (4.1)

20 times under different realization of the bid arrival process. The performance ratio of Aonline is

the ratio of the average objective value produced by Aonline (over different realizations of the bid

82

0.5

0.3

0.1

0.06

0.02
0.01

1

0.8

0.6

0.4

0.2

0.4

0.6

0.8

1

ελ

R
a
ti
o

2

Figure 4.6: Performance ratio of Aonline under
different l and e2.

200 300 400 500 600 700
0.5

0.6

0.7

0.8

0.9

1

1.1

T

 R
a

ti
o

50% 100% 150% 200%

Figure 4.7: Performance ratio of Aonline with dif-
ferent estimations of l under different T .

arrival process) to the expected offline objective value. Fig. 4.6 shows that a better performance

ratio comes with a smaller e2, while the arrival rate l doesn’t affect the ratio much. Comparing to

the performance ratio of Ao f f line in Fig. 4.2, we observe that both Aonline and Ao f f line can achieve

a close-to-optimal performance and our online algorithm performs slightly worse than our offline

algorithm since it doesn’t have access to future job information. In the following figures, we fix

the value of e2 to 0.02 and examine the impact of other parameters. We vary the total number

of slots, use the estimated l as input to Aonline and plot the performance ratio in Fig. 4.7. We

observe that the ratio remains relatively steady with the growth of T . Over-estimation causes a

worse performance than under-estimation, as compared to the real l (labelled by 100%). This is

because Aonline rejects more jobs with an over-estimated l . The good news is that the ratio is still

close to 0.9 even when we input an inaccurate l .

We further compare our online algorithm with Zhou et al.’s online algorithm [84], which also

conducts job admission based on the current resource prices. Their price is a function of Uk/Lk,

where Uk (Lk) is the maximum (minimum) value per unit of type-k resource per unit of time.

Fig. 4.8 and Fig. 4.9 show that Aonline consistently outperforms Zhou et al.’s online algorithm over

a wide range of Uk/Lk and number of slots (T). In Fig. 4.9, we set e2 to 0.2 and still observe the

superiority of our online algorithm.

Objective Value and Winner Satisfaction. Next, we investigate the performance of Aonline, in the

83

10 20 30 40 50 60 70 80
0.5

0.6

0.7

0.8

0.9

1

1.1

U
k
/L

k

 R
a
ti
o

Zhou Aonline

Figure 4.8: Comparison between Aonline and
Zhou et al.’s online algorithm [84] under differ-
ent Uk/Lk.

200 300 400 500 600 700
0.5

0.6

0.7

0.8

0.9

1

1.1

T

 R
a
ti
o

Zhou

A
online

, ε 2=0.2

A
online

, ε2=0.02

Figure 4.9: Comparison between Aonline and
Zhou under different T .

aspects of achieved objective value and winner satisfaction. In Fig. 5.9, there is an upward trend in

the objective value with an increasing number of jobs. When e2 decreases, the solution output by

Aonline is closer to optimum, leading to a higher overall obtained value. Fig. 5.10 reflects that the

percentage of winners also goes down with the increase of the number of jobs, similar to that of

Ao f f line. Moreover, more jobs can be served when the number of subtasks in each job rises since

there is larger selection space for each job’s execution.

50 100 150 200 250 300 350 400 450 500
0

1

2

3

4

5

6

7

8
x 10

4

Number of Jobs (λ T)

O
b

je
ct

iv
e

 V
a

lu
e

ε2=0.5

ε2=0.2

ε =0.022

Figure 4.10: Objective value achieved by Aonline.

100 200 300 400 500 600
30

40

50

60

70

80

90

100

Number of Jobs (λ T)

 P
e

rc
e

n
ta

g
e

 o
f

W
in

n
e

rs

N=1

N=5

N=10

Figure 4.11: Percentage of winners in Aonline.

Time Complexity and Feasibility. We test the running time of Aonline under different input scales,

and plot the result in Fig. 4.12. We can see that the worst case running time of Aonline is shorter than

0.12 seconds, which is much smaller than that of Ao f f line. Moreover, its runtime slightly increases

with the number of jobs and the number of time slots. The value of e2 determines its runtime.

84

100 200 300 400 500
Number of Jobs

0.04

0.06

0.08

0.1

0.12
R

un
ni

ng
 ti

m
e

(S
ec

on
ds

)

T=300, 2=0.2

T=500, 2=0.2
T=300, 2=0.02

T=500, 2=0.02

Figure 4.12: Running time of Aonline under dif-
ferent I, T , and e2.

1 3 5 7 9 11 13
0

20

40

60

80

100

C

P
e

rc
e

n
ta

g
e

 o
f

S
u

cc
e

ss

A
offline

,λ=0.1

A
offline

,λ=0.8

A
online

,λ=0.1

A
online

,λ=0.8

Figure 4.13: Feasibility test for Ao f f line and
Aonline when T = 500.

This is because e2 is used to compute the number of times to solve dual LP (11). Finally, we run

a feasibility test for Ao f f line and Aonline. In Theorem 7 and Lemma 17, we proved that with high

probability, both Ao f f line and Aonline can produce feasible solutions. Therefore, we vary the value

of C and the number of jobs (determined by lT). We run each algorithm 100 times, and count

the number of successes, i.e., the number of feasible solutions returned. As shown in Fig. 4.13,

although we require C to be a large number in the theoretical proof, our simulation results show

that both algorithms work well when C > 10. In addition, a larger number of jobs results in a lower

success rate.

4.7 Summary

We presented both offline and online scheduling frameworks for cloud container services. We first

apply a new LP formulation technique to handle scheduling constraints. In the offline algorithm

design, we approximately compute the fractional solution by a separation oracle and round it to a

feasible solution. In the online algorithm design, we apply the online learning technique to obtain

the dual solution progressively. The dual solution acts as the resource price to facilitate the deci-

sion making. Our offline and online algorithms are expressive, computationally and economically

efficient.

85

Chapter 5

An Efficient Online Placement Scheme for Cloud Container

Clusters

5.1 Introduction

In this chapter, we extend the existing literature on virtual cluster provisioning, and propose an

efficient online placement scheme such that: i) Container clusters (CCs) with different values arrive

stochastically; each CC specifies its required containers and the traffic demand between neighbor

containers; ii) the algorithm is computationally efficient and executes in polynomial time; iii) the

aggregate value of deployed CCs is approximately maximized. Our detailed contributions are

summarized below.

First, we formulate the offline optimization problem as an integer program (IP) with quadratic

constraints that capture inter-container traffic flow. While polynomial in size, the quadratic IP is

non-linear and admits no direct application of the classic primal-dual schema for algorithm de-

sign. We leverage the recent compact-exponential optimization framework [84] to encode each

valid placement scheme in a variable, and reformulate the original IP into a compact-exponential

Integer Linear Program (ILP), which contains only conventional packing-type constraints, but at

the cost of involving an exponential number of variables. Solving the compact exponential ILP

directly is still infeasible in practice, when complete knowledge over the entire system lifespan is

not available. We instead first relax the resource capacity constraints that impose inter-CC cou-

pling, and focus on a one-shot problem to determine the optimal placement of the current CC. We

then design an online algorithm framework that simultaneously works on the compact-exponential

ILP and its dual LP, invoking the one-shot algorithm as a subroutine, towards computing efficient

placement based on values of dual variables.

86

Second, we reformulate the one-shot CC placement problem into an integer quadratic program

(IQP), to minimize the placement cost of a given CC. We first consider a simplified scenario of

a single type of computational resource. The IQP has an objective function of degree 2, and is

proven NP-hard to solve. We apply an exhaustive sampling technique [17] based on a random-

sampling process to reduce its degree from 2 to 1, at the cost of losing some accuracy. The degree-

reduced problem becomes a general assignment problem with extra constraints. We solve this

problem to optimum, and apply the ST rounding technique [63] to round the fractional solution

to an integral solution. More specifically, we construct a bipartite graph based on the fractional

solution, and output the minimum-cost integer matching in this graph. Theoretical analysis shows

that our algorithm achieves a small approximation ratio. We then further consider the general

scenario, and propose a heuristic algorithm to provide good solutions with low computational

complexity.

Third, we proceed to consider resource capacity constraints, and design an online algorithm

framework that utilizes the one-shot algorithm to determine each CC’s placement upon its ar-

rival, without relying on future information. We apply the primal-dual technique to the compact-

exponential ILP and its dual LP, and interpret dual variables as unit resource prices at different

times. Upon receiving a CC request, given current resource prices, the one-shot algorithm com-

putes an a-approximate placement scheme with an estimated cost. We divide the estimated cost

by a to obtain a lower bound of the optimal cost, and compare the CC’s value with it. If the value

is higher, the CC is deployed and dual variables are updated; otherwise the CC request is dis-

carded. We conduct theoretical analysis on the competitive ratio and prove its upper bound. The

effectiveness of our one-shot and online algorithms are evaluated through trace-driven simulation

studies.

In the rest of this Chapter, we review related work in Ch. 5.2 and describe the system model in

Ch. 5.3. We study the one-shot CC placement problem in Ch. 5.4 and propose an online placement

algorithm on Ch. 5.5. Simulation studies are presented in Ch. 5.6. Ch. 5.7 concludes the chapter.

87

5.2 Related Work

Early studies on cloud resource management have focused on VM provisioning, in both offline

and online settings. Zhang et al. [78] propose a randomized algorithm based on a decomposition

technique for dynamic cloud resource provisioning, achieving a small approximation ratio. Shi et

al. [62] present the first online combinatorial auction in the cloud computing paradigm. Zhang et

al. [82] design online multi-resource allocation algorithms to schedule cloud jobs with deadlines.

The above literature focuses on the deployment of separate VMs, without considering inter-VM

traffic in a virtual cluster.

Cloud container cluster provisioning belongs to the category of virtual cluster (VC) provision-

ing (a.k.a. virtual network embedding/mapping). Along this direction, Chowdhury et al. [28]

propose virtual network embedding algorithms that efficiently map virtual nodes and virtual links

onto substrate network resources. Li et al. [49] address the VM placement problem, by considering

both the traffic cost and the physical machine utilization cost. Yu et al. [74] study the survivable

VC embedding problem, which jointly optimizes primary and backup embeddings of VCs, with the

goal of minimizing VM consumption. Dai et al. [30] design algorithms for the minimum energy

virtual cluster embedding problem. They provide no proven guarantee on the approximation ratio.

Different from the above literature, our one-shot CC placement problem has a different optimiza-

tion objective. We target total cost minimization with a natural IQP formulation, requiring different

solution techniques. We rigorously prove that our proposed algorithm can achieve a small approx-

imation ratio. In addition, the above literature considers only one-time/offline scenario, while we

further propose an efficient online CC placement scheme to handle dynamically arriving requests

for CCs.

Towards online VC deployment, Evan et al. [32] study the online multi-commodity flow rout-

ing problem. They focus on link capacity constraints but ignore node capacity constraints. Grandl

et al. [38] propose a multi-resource cluster scheduler that assigns tasks to machines. The commu-

nication demand between different tasks is not modelled by them. Shi et al. [61] investigate online

88

mechanism design to place inter-connected VMs in a geo-distributed IaaS cloud, taking both com-

putational resources and communication resources into consideration. Their subproblem for each

job’s placement is trivial, since they specify several VM placement schemes for each job, while

our subproblem is an NP-hard problem that computes the best placement for each CC. Our work is

also the first to design an online primal-dual algorithm for CC placement, with proven performance

guarantee.

The compact-exponential optimization framework was first applied by Zhou et al. [84]. They

consider the scheduling of computing jobs that require separate VMs, while this chapter focuses

on the placement of correlated containers in the form of container clusters. This chapter further

advances the compact-exponential framework to handle nonlinear constraints and NP-hard sub-

problems. Our subproblem, namely the one-shot CC placement problem, is a special case of the

quadratic assignment problem (see [51] for a detailed survey). We design a rounding algorithm that

combines exhaustive sampling [17] and ST rounding [63] techniques for effective solutions. The

online primal-dual method is a known powerful algorithmic technique for many NP-hard prob-

lems, such as the knapsack problem and the general packing problem [24]. However, our online

optimization problem does not fall into such known categories. We propose a primal-dual online

framework to solve our problem, and provide a new price function to update dual variables, which

is the key towards achieving a good competitive ratio.

5.3 System Model

We consider a cloud service provider who owns a pool of resources residing in S zones, where

a zone may correspond to one server or a cluster of servers, or a data center. Let [X] denote the

integer set {1,2, . . . ,X}. There are K types of computation resources, as exemplified by CPU,

RAM and disk. Each zone s 2 [S] has Cks units of type-k resource. Zones are interconnected by

broadband links. Active optical cables (AOC) and unshielded twisted pair (UTP) cables are often

used for short links that connect zones in the same data center, while multi-mode or single-mode

89

fibers are used to connect zones which correspond to different data centers [4]. Let E be the set of

links, and let Ds1,s2 denote the bandwidth capacity of link (s1,s2) 2 E that connects zones s1 and

s2.

Over a large time span 1,2, . . . ,T , I CC requests arrive stochastically to the system. Multiple

requests can arrive simultaneously, and would be ordered randomly. Request i arrives at time

ti, requiring a CC from t�i to t+i . Each CC consists of a set of tailor-made containers. Let Vi

and Vi denote the set of containers and the number of containers in request i’s CC, respectively. A

container v2Vi consumes ai
vk amount of type-k resource, 8k 2 [K]. Let Di

v1,v2
denote the bandwidth

consumption for flow transfer from v1 to v2 in request i’s CC, when v1 and v2 reside distinct zones.

A value bi is obtained if request i’s CC is deployed. In summary, request i can be expressed as:

Fi = {bi,Vi,Vi,{ai
vk}v2Vi,k2[K],{Di

v1,v2
}v1,v22Vi}.

Upon each request’s arrival, the service provider immediately determines whether to serve it,

and if so, how to place its CC. Decision variables for request i include: i) xi 2 {0,1}, indicating

whether request i is accepted (1) or not (0). ii) yi
vs,8v 2 Vi,8s 2 [S], encoding the placement

scheme of request i’s CC, where yi
vs = 1 if zone s is selected to host container v and 0 otherwise.

The service provider in practice wishes to reserve resources for different CC requests, and limits

a single CC to occupy at most Bks units of type-k resource in zone s. Such resource consumption

bound is also customary in the cloud resource allocation literature [53] [82]. Fig. 5.1 shows a

placement scheme for request 1. Our objective is to maximize the total valuation obtained from all

CCs, subject to resource capacity constraints. The optimization problem can be formulated into

the following integer program (IP):

maximize Â
i2[I]

bixi (5.1)

subject to:

90

xi � Â
s2[S]

yi
vs,8i 2 [I],8v 2 Vi, (5.1a)

Â
i2[I]:

t�i tt+i

Â
v2Vi

ai
vkyi

vs Cks,8k 2 [K],8s 2 [S],8t 2 [T], (5.1b)

Â
s2[S]

yi
vs  1,8i 2 [I],8v 2 Vi, (5.1c)

Â
v2Vi

ai
vkyi

vs  Bks,8i 2 [I],8k 2 [K],8s 2 [S],8t 2 [t�i , t+i] (5.1d)

Â
i2[I]:

t�i tt+i

Â
v1,v22Vi

Di
v1,v2

yi
v1,s1

yi
v2,s2

 Ds1,s2 ,

8(s1,s2) 2 E,8t 2 [T], (5.1e)

xi,yi
vs 2 {0,1},8i 2 [I],8v 2 Vi,8s 2 [S]. (5.1f)

Constraints (5.1a) ensures that request i’s CC is deployed only when it is accepted, since request

i’s container v is placed to a zone s only when xi = 1. Constraint (5.1b) guarantees that at any time,

allocated resources at a zone do not exceed its capacity. Constraint (5.1c) indicates that a container

in a CC request resides in at most one zone. Constraint (5.1d) enforces the upper-bound of each

CC’s resource occupation at a zone s. Link capacity constraints are modelled by (5.1e).

Even in the offline setting, with complete knowledge given, the polynomial-sized IP (5.1) is

NP-hard to solve. To verify, consider a special case of IP (5.1) where each CC consists of one

container, T = 1 and Bks = Ds1,s2 = +•. Then the classic multidimensional knapsack problem,

which is known to be NP-hard, is equivalent to the special case of IP (5.1). The challenge further

escalates when we consider quadratic constraints (5.1e). To address these challenges, we resort

to the compact-exponential technique [84], which can reformulate IP (5.1) into an equivalent ILP

with packing structure, at the price of involving an exponential number of variables:

maximize Â
i2[I]

Â
l2zi

bilxil (5.2)

91

Request 1:

Container 1

Container 2

Zone 1 Zone 2

Zone 3 Zone 4

Container 4
Container 1

Container 2

Container 4

Container 3

Container 3

Figure 5.1: Container cluster placement: an example.

subject to:

Â
i2[I]:

t�i tt+i

Â
l2zi

f il
m,txil Cm, 8m 2 M ,8t 2 [T], (5.2a)

Â
l2zi

xil  1, 8i 2 [I], (5.2b)

xil 2 {0,1}, 8i 2 [I],8l 2 zi. (5.2c)

In the above compact-exponential ILP, zi is the set of feasible placement schemes for request i.

A feasible scheme is a vector l = {yi
vs} that satisfies (5.1c) and (5.1d). Variable xil 2 {0,1} indicates

whether request i’s scheme l is accepted (1) or not (0). We regard each computation resource at

each zone and the bandwidth at each link as different resources. Consequently, the total number of

resource types is KS+ |E|. Let M be the set of resource types and Cm be the capacity of type-m

resource, 8m 2 M . f il
m,t denotes the total type-m resource consumption of request i’s scheme l at

time t. For example, if m corresponds to type-k resource at zone s, f il
m,t = Âv2Vi ai

vkyi
vs,8t 2 [t�i , t+i].

Constraint (5.2a) is equivalent to (5.1b) and (5.1e). Constraint (5.2b) ensures that each CC is placed

according to at most one scheme.

We relax xil 2 {0,1} to xil � 0, and introduce dual variables pm,t and ui to constraints (5.2a)

92

and (5.2b). The dual of the relaxation of program (5.2) is:

minimize Â
t2[T]

Â
m2M

Cm pm,t + Â
i2[I]

ui (5.3)

subject to:

ui � bil � Â
m2M

Â
t2[t�i ,t+i]

f il
m,t pm,t , 8i 2 [I],8l 2 zi, (5.3a)

pm,t ,ui � 0,8i 2 [I], 8m 2 M ,8t 2 [T]. (5.3b)

IP (5.1) and ILP (5.2) have the same optimal objective value. To solve ILP (5.2), complete

knowledge over the entire system lifespan is required. However, our algorithm needs to work in an

online fashion, making on-spot decisions without relying on knowledge of future request arrivals.

To this end, we leverage the primal-dual technique that determines the primal solution based on

dual variables. We interpret dual variable pm,t as the unit price of type-m resource at time t. Upon

the arrival of a request, we compute its CC’s placement scheme based on current resource prices.

We first focus on a one-shot CC placement problem, which relaxes resource capacity constraints

(5.2a) that impose temporal correlation in online decision making; we design an efficient algorithm

to determine a CC’s placement scheme with the goal of cost minimization. We then propose an

online algorithm framework that employs the one-shot optimization as a building block to make

on-spot decisions upon CC request arrivals.

We make two assumptions in this Chapter. First, we assume that a CC’s valuation is propor-

tional to its resource consumption in each time slot f il
m,t (where f il

m,t > 0): 1  bi
f il
m,t

 U,8i, l,m, t,

where U is a constant. Second, we assume that the ratio between a scheme’s resource consumption

at each time slot and the resource capacity is bounded: f il
m,t

Cm
 1

logl ,8i, l,m, t, where l = 2(aU +1)

and a represents the approximation ratio of the one-shot CC placement algorithm. This assump-

tion implies that the resource demand of each container is small compared to the capacity of each

zone. Here l (related to U) is an important parameter and will be used in our online algorithm

design. Notations are summarized in Table 5.1 for ease of reference.

93

Table 5.1: Summary of Notation in Chapter 5

I # of CC requests [X] integer set {1, . . . ,X} S # of zones E set of links
bi the value of request i’ CC K # of types of computational resource
T # of time slots Cks capacity of type-k resource at zone s
t�i (t+i) start (end) time of request i Ds1,s2 bandwidth capacity of link (s1,s2)
Vi(Vi) set(number) of containers in request i’s CC
ai

vk amount of type-k resource consumed by v 2 Vi
Di

v1,v2
traffic from v1 to v2 in request i’s CC

Bks upper bound of type-k resource consumption
xi request i is accepted (1) or not (0)
yi

vs container v is assigned to zone s or not in i’s CC
xil request i’s scheme l is accepted (1) or not (0)
f il
m,t demand of type-m resource at t by i’s scheme l

pm,t cost of unit type-m resource at t
l 2(aU +1), where 1  bi

f il
m,t

U,8i, l,m, t

5.4 Approximation Algorithm Design for Container Cluster Placement

In this section, we first formulate the one-shot CC placement problem in Ch. 5.4.1. A rounding

algorithm and a heuristic algorithm are then designed and analyzed in Ch. 5.4.2 and Ch. 5.4.3,

respectively.

5.4.1 Cost Minimization Problem

We include the same constraints (5.1c) and (5.1d) related to the current CC request i from IP (5.1),

and exclude resource capacity constraints (5.1b) and (5.1e). Given current resource prices (to be

decided in Ch. 5.5), we compute the computation cost Pi
vs, i.e., the cost of placing container v in

zone s, and the communication cost Pi
v1,v2,s1,s2

, i.e., the cost of sending traffic from v1 to v2 through

link (s1,s2). The cost minimization problem has the following natural IQP formulation:

minimize Â
v2Vi

Â
s2[S]

Pi
vsy

i
vs + Â

v1,v22Vi,
(s1,s2)2E

Pi
v1,v2,s1,s2

yi
v1,s1

yi
v2,s2

(5.4)

subject to:

94

Â
v2Vi

ai
vkyi

vs  Bks,8k 2 [K],8s 2 [S], (5.4a)

Â
s2[S]

yi
vs = 1,8v 2 Vi, (5.4b)

yi
vs 2 {0,1},8v 2 Vi,8s 2 [S]. (5.4c)

If we set ai
vk = Bks = 1,8v,k,s, IQP (5.4) degrades to the minimum quadratic assignment prob-

lem [51], which has been proven NP-hard, and does not have any known constant-factor approx-

imation algorithm in polynomial time (assuming P 6= NP). When the number of zones is small

(S < 5), we can compute the optimal solution by enumerating all options. However, S can be a

large number in practice. For example, the Amazon cloud infrastructure is currently comprised of

42 availability zones [13]. It is essential to compute a good solution efficiently, in a short time. To

solve the IQP, we first simplify the model by considering a single type of computation resource,

and present a rounding algorithm that approximately solves the problem with worst-case perfor-

mance guarantee. We later propose a heuristic algorithm that can solve the general version, without

theoretical performance guarantee.

5.4.2 A Rounding Algorithm with Performance Guarantee

Given a sole type of computation resource, let ai
v and Bs represent ai

vk and Bks, respectively. The

degree of an integer program is d if its objective function is a degree-d polynomial function. IQP

(5.4) is a degree-2 integer program. We first apply exhaustive sampling [17] to reduce its degree

from 2 to 1. We convert IQP (5.4) to an ILP, with some loss of accuracy. The ILP is a generalized

assignment problem with side constraints. We solve its LP relaxation exactly, and then round the

fractional solution to an approximate integral solution through another technique of ST rounding

[63].

More specifically, let yi
vs
⇤ be the optimal solution to IQP (5.4), and let

Fi
v1,s1

⇤
= Â

v22Vi

Â
s22[S]

Pi
v1,v2,s1,s2

yi
v2,s2

⇤
,

95

we can reformulate IQP (5.4) to the following ILP:

minimize Â
v2Vi

Â
s2[S]

(Pi
vs +Fi

vs
⇤
)yi

vs (5.5)

subject to:

Constraints (5.4a�5.4c)

Â
v22Vi

Â
s22[S]

Pi
v1,v2,s1,s2

yi
v2,s2

= Fi
v1,s1

⇤
,8v1 2 Vi,8s1 2 [S]. (5.5d)

However, it is difficult to obtain the exact value of Fi
v1,s1

⇤. We strive to compute reasonable

guesses by exhaustively listing all placement schemes of a random sample. For ease of presen-

tation, we normalize Pi
v1,v2,s1,s2

and Pi
vs, so that max

�

maxv1,v2,s1,s2{Pi
v1,v2,s1,s2

},maxv,s{Pi
vs}

= 1.

The sampling procedure is as follows:

i) We first pick a random sample W of n = O(logVi/e2) containers from Vi. Let W =

{v j1 , . . . ,v jn}. Exhaustively go through each of the Sn ways of placing containers in W . For

each placement that satisfies constraints (5.4a) and (5.4b), we compute an estimate Fi
v1,s1

of Fi
v1,s1

⇤

by setting

Fi
v1,s1

=
Vi

n Â
v22W

Â
s22[S]

Pi
v1,v2,s1,s2

yi
v2,s2

,

where yi
v2,s2

= 1 if container v2 is allocated to zone s2. Note that we try all possible placements

of containers in W . Therefore, the “correct” placement in which yi
v2,s2

= yi
v2,s2

⇤
,8v2 2 W ,s2 2 [S]

is ensured to be tried. We call the estimate corresponding to this assignment the special estimate,

denoted as Fi
v1,s1

s. We will show that Fi
v1,s1

s satisfies |Fi
v1,s1

⇤ �Fi
v1,s1

s| eVi in Lemma 24.

ii) Next, for each estimate Fi
v1,s1

of Fi
v1,s1

⇤, we consider the following LP:

minimize Â
v2Vi

Â
s2[S]

(Pi
vs +Fi

vs)y
i
vs (5.6)

subject to:

96

Constraints (5.4a�5.4b)

Â
v22Vi

Â
s22[S]

Pi
v1,v2,s1,s2

yi
v2,s2

 Fi
v1,s1

+ eVi,8v1 2 Vi,8s1 2 [S], (5.6c)

Â
v22Vi

Â
s22[S]

Pi
v1,v2,s1,s2

yi
v2,s2

� Fi
v1,s1

� eVi,8v1 2 Vi,8s1 2 [S], (5.6d)

yi
vs � 0,8v 2 Vi,8s 2 [S]. (5.6e)

Let yi
vs and h be the optimal solution and the optimal objective value of LP (5.6), respectively.

We round the fractional solution yi
vs to an approximate integral solution yi

vs
0 using an algorithm

Around . The approximate integral solution satisfies constraint (5.4b) and slightly violates (5.4a) by

allowing each CC to occupy at most twice its resource usage bound at each zone.

iii) Because there are at most Sn estimates, we solve LP (5.6) as above for each Fi
v1,s1

. Among

the solutions, we output the one whose corresponding placement minimizes the objective of IQP

(5.4). We summarize our algorithm in Asub1.

We next describe the details of Around , which applies ST rounding [63] to round the fractional

solution to an integral solution. In preparation, we first construct a weighted bipartite graph B =

(V 0,S0,E 0) based on yi
vs, as follows:

i) One side of the bipartite graph consists of container nodes: V 0 = {vv : v = 1, . . . ,Vi}, and the

other side includes zone nodes: S0 = {ssq : s = 1, . . . ,S,q = 1, . . . ,Qs}, where Qs = dÂv2Vi yi
vse.

We assign Qs nodes for zone s.

ii) For zone s, sort the containers placed to it by non-increasing resource demand ai
v. For

notation simplicity, we assume that ai
1 � ai

2 . . . ,� ai
Vi

.

iii) For zone s, consider nodes ssq ,q = 1, . . . ,Qs as bins of capacity 1, and consider yi
vs,v 2 Vi

as pieces of containers placed into these bins. With respect to the non-increasing order of ai
v, we

pack pieces into node ss1 one by one, until placing piece v results in bin overflow (exceeding 1).

We then place a fraction of v to saturate the capacity of node ss1, and place the remaining fraction

of v to node ss2. We carry on this process until all pieces are placed into bins.

97

iv) If there is a positive fraction of container v packed into node ssq , edge (vv,ssq) is added to

E 0. We define a vector y0(vv,ssq) on edge (vv,ssq), which equals the fraction of v packed into ssq .

The cost of this edge, w(vv,ssq), is set to Pi
vs +Fi

vs.

Vector y0 is a fractional matching in bipartite graph B that exactly matches all container nodes.

The cost of the fractional matching is h . By matching theory [52], there exists an integral matching

with cost at most h that exactly matches all container nodes. We continue to compute such an

integral matching.

Algorithm 9 An Approximation Algorithm Asub1.
Input: Fi,{Pi

vs},{Pi
v1,v2,s1,s2

},{ai
v},e

1: Define n = O(logVi/e2);
2: Pick a random subset W of n containers from Vi; Let W = {v j1 , . . . ,v jn};
3: for each placement of containers in W do
4: Update the corresponding yi

vs;
5: Define Fi

v1,s1
= Vi

n Âv22W Âs22[S]P
i
v1,v2,s1,s2

yi
v2,s2

, 8v1 2 Vi,s1 2 [S];
6: Solve LP (5.6) exactly. Let yi

vs be the optimal solution;
7: {yi

vs
0}= Around({yi

vs},{Pi
vs +Fi

vs});
8: L j = Âv2Vi Âs2[S]Pi

vsyi
vs
0
+Âv1,v22Vi Â(s1,s2)2E Pi

v1,v2,s1,s2
yi

v1,s1

0yi
v2,s2

0;
9: end for

10: costi = min j L j; Save the placement {yi
vs} which leads to the minimum L j to l⇤;

11: Return costi, l⇤.

Algorithm 10 A Rounding Algorithm Around

Input: {yi
vs},{Pi

vs +Fi
vs};

1: Build a bipartite graph B = (V 0,S0,E 0) based on yi
vs;

2: Find the minimum-cost integer matching that exactly matches all container nodes in B;
3: Update yi

vs
0
= 1 if node v is mapped to node s;

4: Return {yi
vs
0}.

Theoretical Analysis

i) Feasibility and Running Time.

Theorem 10. The integral solution yi
vs returned by Asub1 satisfies constraint (5.4b) and slightly

violates constraint (5.4a) by allowing Âv2Vi ai
vyi

vs  2Bs,8s 2 [S].

98

Proof: Around generates an integral matching that exactly matches all container nodes. As

a result, constraint (5.4b) is satisfied. We next examine constraint (5.4a). For each zone node

ssq , let amax
sq denote the maximum of ai

v corresponding to edges (vv,ssq),8vv, and let amin
sq denote

the corresponding minimum. We have amin
sq � amax

s,q+1,q = 1, . . . ,Qs � 1. Then the total resource

consumption of containers assigned to zone s by any integral matching in B is at most ÂQs
q=1 amax

sq .

Clearly, amax
s1  Bs.

Qs

Â
q=2

amax
sq 

Qs�1

Â
q=1

amin
sq 

Qs�1

Â
q=1

Â
v:(vv,ssq)2E 0

ai
vy0(vv,ssq)


Qs

Â
q=1

Â
v:(vv,ssq)2E 0

ai
vy0(vv,ssq) = Â

v2Vi

ai
vyi

vs  Bs,

which proves the theorem.

Theorem 11. Asub1 is a polynomial time algorithm, with time complexity O(Sn+1V 2
i logVi).

Proof: Lines 1-2 take O(n) steps to initialize set W . The for loop in lines 3-9 iterates at most

Sn times. In each iteration, lines 4-5 can be accomplished in O(SVi) steps. The complexity of

the ST rounding algorithm in lines 6-7 is O(SV 2
i logVi) [63]. Line 8 computes the objective value

in O(SVi) steps. Thus, the complexity of the for loop is O(Sn+1V 2
i logVi). Lines 10-11 return

the output in O(Sn) time. In summary, the time complexity of Asub2 is O(Sn+1V 2
i logVi), which is

polynomial to the input size.

ii) Approximation Ratio.

The approximation ratio is the upper-bound ratio of the objective value achieved by Asub1 to

the optimal objective value of IQP (5.4).

Lemma 23. (Chernoff bound, Lemma 24 in [16]) Let X1, . . . ,Xk be independent random variables

such that 0  Xi  1. Let X = Âk
i=1 Xi and µ = E(X),

Pr[|X �µ|]� s] 2e�2s2/k.

Lemma 24. Assume n = q logVi/e2, the special estimate Fi
v1,s1

s, with probability at least 1� 2
V 2q

i
,

is in the range of [Fi
v1,s1

⇤ � eVi,Fi
v1,s1

⇤
+ eVi].

99

Proof: We define n random variables Y1, . . . ,Yn and let Yj = Âs22[S]Pv1,v2,s1,s2yi
v j,s2

⇤
,8v j 2 W .

Note that 0 Yj  1, j = 1, . . . ,n. Then Y = Ân
j=1Yj =

Fi
v1,s1

sn
Vi

and E[Y] = n
Vi

Fi
v1,s1

⇤. By Lemma 23,

we have

Pr[|Fi
v1,s1

s �Fi
v1,s1

⇤|� eVi] = Pr[
n
Vi
|Fi

v1,s1

s �Fi
v1,s1

⇤|� en]

= Pr[|Y �E[Y]|� en] 2e�2e2n = 2e�2e2q logVi/e2
=

2
V 2q

i

.

Thus, Pr[|Fi
v1,s1

s �Fi
v1,s1

⇤| eVi]� 1� 2
V 2q

i
.

Lemma 25. Upon termination, Asub1 outputs an integral solution yi
vs that satisfies

L(yi
vs) L⇤+(1+ e)V 2

i ,

where 0  e  1, L(yi
vs) is the objective value of IQP (5.4) produced by yi

is and L⇤ is the optimal

objective value of IQP (5.4).

Proof: Recall that yi
vs
⇤ is the optimal solution to IQP (5.4). Lemma 24 implies that with high

probability, yi
vs
⇤ is a feasible solution to LP (5.6) when we input the special estimate Fi

v1,s1

s. Be-

cause yi
vs is the optimal solution to LP (5.6), the integral solution yi

vs
0, which is rounded from yi

vs,

satisfies:

Â
v2Vi

Â
s2[S]

(Pi
vs +Fi

vs
s
)yi

vs
0
= Â

v2Vi

Â
s2[S]

(Pi
vs +Fi

vs
s
)yi

vs  Â
v2Vi

Â
s2[S]

(Pi
vs +Fi

vs
s
)yi

vs
⇤

 Â
v2Vi

Â
s2[S]

Pi
vsy

i
vs
⇤
+ Â

v12Vi

Â
s12[S]

(Fi
v1,s1

⇤
+ eVi)yi

v1,s1

⇤
= L⇤+ eVi(Â

v2Vi

Â
s2[S]

yi
vs
⇤
) = L⇤+ eV 2

i .

Because 0  Pi
v1,v2,s1,s2

 1, we can obtain Âv22Vi Âs22[S]P
i
v1,v2,s1,s2

yi
v2,s2

0  Fi
vs

s
+Vi. As a result,

L(yi
vs
0
), the objective value of IQP (5.4) achieved by yi

vs
0, is at most Âv2Vi Âs2[S](Pi

vs+Fi
vs

s
)yi

vs
0
+V 2

i .

Among different rounded integral solutions, the output yi
is minimizes the objective value of IQP

(5.4), thus,

L(yi
vs) L(yi

vs
0
) Â

v2Vi

Â
s2[S]

(Pi
vs +Fi

vs
s
)yi

vs
0
+V 2

i

 L⇤+ eV 2
i +V 2

i = L⇤+(1+ e)V 2
i .

100

Theorem 12. Asub1 is an a-approximation algorithm where a = 1+(1+e)cVi and c=maxv1,v2,s1,s2

�

Pi
v1,s1

/Pi
v2,s2

.

Proof: The optimal objective value of IQP (5.4) is L⇤ � Âv2Vi Âs2[S]Pi
vsyi

vs
⇤ � Vi

c since Pi
vs �

1
c ,8v,s. According to Lemma 25, we have

L(yi
vs)

L⇤  1+
(1+ e)V 2

i
L⇤  1+(1+ e)cVi.

5.4.3 A Heuristic Algorithm

Algorithm 11 A Greedy Algorithm Asub2

Input: Input: Fi,{Pi
vs},{Pi

v1,v2,s1,s2
},{ai

vk}
1: for all v 2 Vi do
2: S= [S];
3: for all s 2 [S] do
4: if zi

ks +ai
vk > Bks,8k 2 [K] then

5: S= S\s;
6: end if
7: end for
8: for all s 2 S do
9: Compute the increase D(yi

vs) of the objective function value of IQP (5.4) due the the
assignment of yi

vs = 1;
10: end for
11: s⇤ = argmins2S{D(yi

vs)};
12: yi

vs⇤ = 1;zks⇤ = zi
ks⇤ +ai

vk,8k 2 [K];
13: end for
14: costi = Âv2Vi Âs2[S]Pi

vsyi
vs +Âv1,v22Vi Â(s1,s2)2EPi

v1,v2,s1,s2
yi

v1,s1
yi

v2,s2
; Save {yi

vs} to l⇤;
15: Return costi, l⇤.

We next introduce a heuristic algorithm that starts with an empty solution, and iteratively selects

a container for greedy assignment to an available zone. At the v-th iteration, we simply choose the

v-th container from set Vi. Let D(yi
vs) denote the increment of the objective value of IQP (5.4) due

to the assignment of yi
vs = 1. To select a zone for container v, we first compute a candidate set S that

includes all available zones. If the amount of allocated type-k resource in zone s has exceeded the

bound Bks, s is removed from S. We continue to compute the value of D(yi
vs), for s 2 S, and choose

s⇤ so that D(yi
vs⇤) = mins2Set D(yi

vs). We assign container v to zone s⇤. The time complexity of this

101

algorithm is O(V S) since we execute Vi iterations and evaluate S zones during each iteration. We

summarize this algorithm in Asub2. While we do not prove a performance guarantee, trace-driven

simulations in Ch. 5.6 show that Asub2 can produce a 2-approximate solution in all cases tested.

5.5 Online Algorithm Design

Leveraging the cost minimization algorithms from Ch. 5.4 as a building block, we next present

our online algorithm in Ch. 5.5.1. Upon the arrival of each request, the algorithm determines

immediately whether to accept it, and if so, how to place its CC. Theoretical analysis is conducted

in Ch. 5.5.2.

5.5.1 Online Algorithm Framework

Our main idea for the online algorithm design is as follows. We resort to the help of the classic

primal-dual technique, and apply it to the compact-exponential ILP (5.2) and its dual (5.3). If

request i’s placement scheme l is accepted, then let xil = 1, and update the corresponding variables

xi and yi
vs in IP (5.1) according to l. Upon arrival of a request i, a set of primal variables xil,8l 2 zi

and the associated dual constraints (bil �Âm2M Ât2[t�i ,t+i] f il
m,t pm,t ,8l 2 zi) appear. Complementary

slackness requires that xil remains zero unless constraint (5.3a) is tight for scheme l. Next, let’s

examine the right hand side (RHS) of constraint (5.3a). If we interpret dual variable pm,t as the

price per unit of type-m resource at time t, then Âm2M Ât2[t�i ,t+i] f il
m,t pm,t is the placement cost of

request i’s CC according to scheme l. The RHS of (5.3a) can be viewed as request i’s utility with

scheme l. If we interpret dual variable ui as request i’s utility, ui can be assigned to the maximum

of 0 and the RHS of (5.3a), i.e.,

ui = max
�

0,max
l2zi

{bil � Â
m2M

Â
t2[t�i ,t+i]

f il
m,t pm,t}

. (5.7)

Accordingly, if ui > 0, we accept request i; otherwise, we reject request i. The challenge lies in

finding scheme l that maximizes the RHS of (5.3a), which is equivalent to finding the scheme that

102

minimizes the placement cost of request i’s CC. Given pm,t , it is easy to compute the computation

cost Pi
vs and communication cost Pi

v1,v2,s1,s2
. Then the problem becomes the one-shot CC placement

problem we studied in Ch. 5.4, and can be formulated into an IQP (5.4). Assume that Asub is an

a-approximation algorithm for IQP (5.4). It returns a scheme l⇤ with cost costi. Then, we have

costi
a  Âm2M Ât2[t�i ,t+i] f il

m,t pm,t ,8l 2 zi. Let ui = max
�

0,bi � costi
a

, satisfying constraints (5.3a)

for any l 2 zi. If ui > 0, request i is accepted and its CC is placed according to scheme l⇤; if ui  0,

request i is rejected.

We next discuss the update of dual variable pm,t . Recall that pm,t represents the unit price of

type-m resource at t. We define a new variable zm,t as the amount of type-m resource consumed at

t, and let pm,t be a function of zm,t , as follows:

pm,t(zm,t) = l
zm,t
Cm �1,8m 2 M ,8t 2 [T], (5.8)

where l = 2(aU + 1). pm,t starts at zero and increases exponentially with the increase of re-

source consumption. pm,t is close to zero when resources are abundant, allowing CCs to consume

resources freely. It grows quickly to a carefully designed large value l when zm,t is close to the

capacity Cm, so that the service provider will barely allocate any type-m resource to a CC, unless

its valuation is sufficiently high.

Aonline⇤ in Algorithm 12 is our online algorithm, which calls Asub for each CC request to de-

termine its placement scheme. Note that Aonline⇤ can call either of the algorithms designed in the

previous section (Asub1 and Asub2), or any alternative that solves IQP (5.4), as its sub-routine. By

default, all variables are set to zero. Line 1 initializes the value of l , to prepare for the update

of the dual variable pm,t . Upon the arrival of a request i, we first compute the computation and

communication costs when assigning containers to different zones in line 3. Asub is executed for

each request to compute a placement scheme l⇤ and the corresponding cost costi. If request i can

obtain a positive utility in some scheme, it is accepted, and the corresponding primal and dual

variables are updated (lines 6-8). We then increase the usage of resources and raise resource prices

accordingly (lines 9-12).

103

Algorithm 12 A Primal-dual Online Framework Aonline⇤

Input: {Fi},{Cm},{ai
vk},U,a

1: Initialize l = 2(aU +1);
2: Upon the arrival of the ith CC request
3: Compute {Pi

vs} and {Pi
v1,v2,s1,s2

} based on {pm,t};
4:
�

costi, l⇤
�

= Asub
�

Fi,{Pi
vs},{Pi

v1,v2,s1,s2
},{ai

vk}
�

;
5: if bi � costi

a > 0 then
6: ui = bi � costi

a ;xi = 1;xil⇤ = 1;
7: Update yi

vs and f il⇤
m,t according to option l⇤.

8: Accept request i and allocate its CC according to yi
vs;

9: for t 2 [t�i , t+i] do
10: zm,t = zm,t + f il⇤

m,t ,8m 2 M ;

11: pm,t = l
zm,t
Cm �1,8m 2 M ;

12: end for
13: else
14: Reject request i.
15: end if

5.5.2 Theoretical Analysis

Next we analyze properties of Aonline⇤ , based on the assumption that Asub can compute an a-

approximate solution to IQP (5.4) in polynomial time.

i) Feasibility and Running time.

Lemma 26. Aonline⇤ computes a feasible solution to IP (5.1) and one for ILP (5.2), respectively.

Proof: We first examine ILP (5.2). Constraint (5.2b) is satisfied because line 6 in Aonline⇤

guarantees that only one option can be accepted. Next, we prove that the capacity constraint (5.2a)

is never violated. Otherwise, let request i be the first accepted request that violates the capacity

constraint of type-m resource at time t with option l⇤. The amount of allocated type-m resource

before request i arrives is: zm,t > Cm � f il⇤
m,t . Under the assumption that f il⇤

m,t
Cm

 1
logl , the price of

type-m resource at t for request i is:

pm,t � l 1�
f il⇤
m,t

Cm �1 � l 1� 1
logl �1 � l

2
�1 = aU.

Thus, by U � bi
f il⇤
m (t) , we can obtain

costi � pm,t f il⇤
m,t � aU f il⇤

m � abi.

104

We further have bi � costi
a  0, which contradicts the assumption that request i is accepted with

bi � costi
a > 0. Thus, constraint (5.2a) holds.

We next investigate IP (5.1). Constraints (5.1c), (5.1d) and (5.1f) are satisfied by algorithm

Asub. In addition, the correspondence relation between IP (5.1) and ILP (5.2) guarantees constraints

(5.1a), (5.1b), and (5.1e) hold.

Lemma 27. Aonline⇤ outputs a feasible solution to LP (5.3).

Proof: Let OPTi be the optimal objective value of the subproblem in (5.4) for request i. OPTi

equals minl2zi{Âm2M Ât2[t�i ,t+i] f il
m,t pm,t}. Because Asub is an a-approximation algorithm that gen-

erates an objective value costi, we have costi
a  OPTi. If bi� costi

a > 0, Aonline⇤ updates dual variable

ui in line 6, we obtain

ui = bi �
costi

a
� bi �OPTi � bi � Â

m2M
Â

t2[t�i ,t+i]

f il
m,t pm,t ,8l 2 zi.

Otherwise, ui = 0 � bi�OPTi. Therefore, constraint (5.3a) holds for each request i and the lemma

follows.

Theorem 13. Aonline⇤ generates feasible solutions for IP (5.1), ILP (5.2) and LP (5.3) in polynomial

time.

Proof: Line 1 takes one step to compute the value of l . Upon the arrival of request i, line 3

takes O((SVi)2) steps to initialize the cost vector. Asub in line 4 runs in polynomial time to compute

placement cost. Within the body of the if statement, lines 6-8 update primal variables in O(ViS+

(t+i � t�i + 1)|M |) steps. The complexity of the for loop in lines 9-12 is O((t+i � t�i + 1)|M |).

Therefore, the running time of Aonline⇤ is polynomial. Combining Lemma 26 and Lemma 27, we

finish the proof.

ii) Competitive Ratio.

We next analyze the competitive ratio of Aonline⇤ . The competitive ratio is the upper-bound

ratio of optimal objective of IP (5.1) to the objective value achieved by Aonline⇤ . We first introduce

105

a primal-dual analysis framework in Lemma 28, which guides the proof of the competitive ratio.

We next define a Resource-Price Relationship for Aonline⇤ in Definition 14 and the differential

version of it in Definition 15, respectively. We prove that if the Resource-Price Relationship holds

for a given b , Aonline⇤ satisfies the inequality in Lemma 28. We then present the value of b in

Lemma 30 and prove that Aonline⇤ is ab -competitive in Theorem 14.

Let OPT1 and OPT2 be the optimal objective values of IP (5.1) and ILP (5.2), respectively. We

have OPT1 = OPT2. Let Pi and Di denote the objective value of primal ILP (5.2) and that of dual

LP (5.3) returned by Aonline⇤ after processing request i. Let P0 and D0 be the initial values. Aonline⇤

guarantees P0 = D0 = 0. Let PI and DI be the final primal and dual objective values achieved by

Aonline⇤ .

Lemma 28. If there exist two constants a � 1 and b � 1 such that Pi�Pi�1 � 1
ab (Di�Di�1),8i 2

[I], then the competitive ratio of Aonline⇤ is ab .

Proof: Summing up the inequalities for each request i, we have

PI = Â
i
(Pi �Pi�1)�

1
ab Â

i
(Di �Di�1) =

1
ab

DI.

According to weak duality [24], DI � OPT2, hence, PI � 1
ab OPT2 = 1

ab OPT1. The competitive

ratio of Aonline⇤ is ab .

We next define a Resource-Price Relationship and prove that if it holds for a given b , then the

primal and dual objective values achieved by Aonline⇤ satisfy the inequality in Lemma 28. Let pi
m,t

denote the price of type-m resource at time t after handling request i. zi
m,t represents the amount of

consumed type-m resource at time t after processing request i.

Definition 14. The Resource-Price Relationship for Aonline⇤ with b � 1 is:

pi�1
m,t (z

i
m,t � zi�1

m,t)�
1
b

Cm(pi
m,t � pi�1

m,t),8i 2 [I],8m 2 M ,8t 2 [t�i , t+i].

Lemma 29. If the Resource-Price Relationship holds for a given b � 1, then Aonline⇤ guarantees

that Pi �Pi�1 � 1
ab (Di �Di�1),8i 2 [I].

106

Proof: If request i is rejected, then Pi �Pi�1 = Di �Di�1 = 0. Otherwise, we assume that

request i is accepted and placed according to option l. The increment of the primal objective value

is: Pi �Pi�1 = bi. Note that Aonline⇤ assigns ui to bi � 1
a Âm2M Ât2[t�i ,t+i] f il

m,t pm,t when request i

with option l is accepted. Therefore,

bi = ui +
1
a Â

m2M
Â

t2[t�i ,t+i]

pi�1
m,t (z

i
m,t � zi�1

m,t).

The increase of the dual objective value is:

Di �Di�1 = ui + Â
m2M

Â
t2[t�i ,t+i]

Cm(pi
m,t � pi�1

m,t).

By summing up the Resource-Price Relationship over all m 2 M and t 2 [t�i , t+i], we can obtain:

Pi �Pi�1 � ui +
1

ab
(Di �Di�1 �ui).

Since ui � 0 and ab � 1, we have Pi �Pi�1 � 1
ab (Di �Di�1).

In order to compute the value of b , we make the following mild assumption and define the

differential version of the Resource-Price Relationship based on it.

Assumption 1. The job demand is much smaller than the resource’s capacity, i.e., f il
m,t ⌧Cm.

Under Assumption 1, zi
m,t �zi�1

m,t can be expressed as dzm,t . The derivative of the Resource-Price

Relationship under the above assumption is:

Definition 15. The Differential Resource-Price Relationship for Aonline⇤ with b � 1 is:

pm,tdzm,t �
Cm

b
d pm,t ,8m 2 M ,8t 2 [t�i , t+i].

Lemma 30. b = lnl and the price function defined in (5.8) satisfy the Differential Resource-Price

Relationship.

Proof: The derivative of the price function is: d pm,t = l
zm,t
Cm lnl

Cm
dzm,t . The Differential Resource-

Price Relationship is:

(l
zm,t
Cm �1)dzm,t �

Cm

b
l

zm,t
Cm

1
Cm

lnldzm,t

) b � lnl l
zm,t
Cm

l
zm,t
Cm �1

� lnl .

107

Therefore this lemma holds for b = lnl .

Theorem 14. The online auction Aonline⇤ in Alg. 12 is ab -competitive, where b = lnl and a is

the approximate ratio of Asub.

Proof: Under Assumption 1, dzm,t = zi
m,t � zi�1

m,t is much smaller than the capacity of type-m

resource (Cm), we have d pm,t = p0mdzm,t = pi
m,t � pi�1

m,t . As a result, we can conclude that the

Resource-Price Relationship holds for b = lnl . Then, combining Lemma 28 and Lemma 29, we

finish the proof.

5.6 Performance Evaluation

We evaluate the performance of our one-shot algorithms Asub1, Asub2 and online algorithm Aonline⇤

through trace-driven simulation studies. We first introduce the simulation setup for evaluation of

the two one-shot algorithms. The default number of zones is set to 9 according to the number

of Google data centers in the United States [67]. We exploit Google Cluster Data version 1 [3],

and configure each CC according to each job’s information in the trace. We assume that each

CC contains 2-8 containers and consumes two types of computational resource, since the trace

data only includes resource demands for CPU and RAM. The resource consumption ai
vk is set

according to the resource demand of each subtask in the trace [3]. The traffic volume between

containers Di
v1,v2

is randomly generated within a range of [0,10]. The cost Pi
vs and Pi

v1,v2,s1,s2
are

randomly drawn from [0,1]. The default value of Bks is 10. For the online setup, we assume each

time slot is 5 minutes and the system spans 100 slots by default. Each request’s start and end

times are set based on each job’s timestamp in the trace. The resource capacities, Cks and Ds1,s2

are randomly generated within [50,100]. The request value bi is randomly chosen from an interval

determined by U , whose default value is 50. We repeat each set of simulations 20 times, and use

the average result to plot the corresponding figure.

108

3 4 5 6 7

Number of Containers (Vi)

0

0.5

1

1.5

2

2.5

3

 C
o

st
optimal

A
sub1

, =0.7

A
sub1

, =0.9

A
sub2

Figure 5.2: Cost of Asub1 and Asub2 under differ-
ent values of Vi.

3 5 7 9 11 13

Number of Zones (S)

0

0.5

1

1.5

2

P
e

rf
o

rm
a

n
ce

 R
a

tio

A
sub1

, =0.6

A
sub1

, =0.9

A
sub2

Figure 5.3: Performance ratio of Asub1 and Asub2
under different values of S.

5.6.1 Performance of Asub1 and Asub2

Cost and Performance Ratio. Fig. 5.2 compares the total cost produced by Asub1 and Asub2 with

the optimal cost under different numbers of containers. We can observe that the gap between the

cost of Asub1 and the optimal cost becomes larger when the number of containers increases, and

gets smaller when the value of e decreases, which is in line with the analysis in Lemma 25. In

addition, Asub1 achieves a lower cost than Asub2 when we input a smaller e .

We next examine the performance ratio, measured by the ratio of the objective value of IQP

(5.4) generated by our algorithms to the optimal objective value of IQP (5.4). We fix the number

of containers to 5, and plot the performance ratios of Asub1 and Asub2 in Fig. 5.3. It can be observed

that both Asub1 and Asub2 perform well with a low performance ratio (< 2). The value of S has little

impact on the performance of Asub1 while the value of e is related to the ratio, echoing Theorem

12. Asub1 outperforms Asub2 when e is relatively small (0.6). We further modify the number of

containers and plot the ratios in Fig. 5.4. The ratio increases with the growth of the number of

containers, validating the analysis in Theorem 12 that the value of Vi determines the approximate

ratio. Moreover, when there is more than one type of computational resource, Asub2 also works

well and the ratio is smaller than 2.

Time Complexity. We apply the tic and toc functions in MATLAB to measure the execution time

of the main program of Asub1 and Asub2 without counting the initialization stage. We run 20 tests

109

3 4 5 6 7 8

Number of Containers (Vi)

0

0.5

1

1.5

2

P
e

rf
o

rm
a

n
ce

 R
a

tio

A
sub1

, =0.6

A
sub2

,k=1

A
sub2

, k=2

Figure 5.4: Performance ratio of Asub1 and Asub2
under different values of Vi and K.

2 4 6 8 10
Number of Containers (Vi)

0

0.5

1

1.5

2

R
un

ni
ng

 ti
m

e
(S

ec
on

ds
)

Asub2
Asub1, =0.9
Optimal

Figure 5.5: The average running time of Asub1
and Asub2 with different Vi.

on a laptop computer (Intel Core i7- 6700HQ/16GB RAM) and present the average result in Fig.

5.5. We implement the optimal one-shot algorithm by listing all possible placement schemes. We

can observe that both Asub1 and Asub2 run much faster than the optimal algorithm. The running

time grows with an increasing Vi, and the observed values are below 0.5 seconds.

5.6.2 Performance of Aonline⇤

3 4 5 6
1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Number of Zones (S)

P
e
rf

o
rm

a
n
c
e
 R

a
ti
o

SWMOA

A
online*

 +A
 sub2

A
online*

 +A
 sub1

A
online*

2 3 4 5
1

1.5

2

2.5

Number of Containers (Vi)

P
e
rf

o
rm

a
n
c
e
 R

a
ti
o

SWMOA

A
online*

 +A
 sub2

A
online*

 +A
 sub1

A
online*

Figure 5.6: Performance ratio of Aonline⇤ and
SWMOA in [61] under different S and V .

10 20 30 40
0

0.5

1

1.5

2

2.5

3

3.5

U

P
e

rf
o

rm
a

n
c
e

 R
a

ti
o

SWMOA

A
online*

 +A
 sub2

A
online*

 +A
 sub1

A
online*

Figure 5.7: Performance ratio of Aonline⇤ and
SWMOA in [61] with different U .

Performance Ratio and Objective Value. We first examine the performance ratio of Aonline⇤ ,

when we plug in the sub-algorithm that exactly solves IQP (5.4) (labeled by Aonline⇤), Asub1 (labeled

by Aonline⇤ +Asub1) and Asub2 (labeled by Aonline⇤ +Asub2). The performance ratio of Aonline is the

ratio of the optimal objective value of IP (5.1) to the objective value of IP (5.1) generated by

Aonline⇤ . Based on the observation from the above subsection, we set a = 2 for both Asub1 and

110

Asub2. We fix the number of containers in each CC to 3 and the number of CC requests to 100,

but vary the number of zones. The results are plotted in the left of Fig. 5.6. We observe that

the ratio drops sharply with the increase of S, but remains steady when S � 5. This is because

more zones bring more placement options. As a result, each CC request has a high probability of

being accepted by Aonline⇤ , leading to a better performance. When S is large enough, the ratio is

dominated by other parameters, e.g., Vi and U . The right of Fig. 5.6 illustrates that a lower ratio

comes with a smaller number of CCs. Comparing Fig. 5.3 and Fig. 5.4 with Fig. 5.6, we can

conclude that our online algorithm framework incurs only a small loss in performance ratio. In

Fig. 5.7, we examine the impact of two parameters: U and I. Again, Aonline⇤ with the optimal sub-

algorithm has the best performance. The observed ratios are better than the theoretical worst-case

bound and remain at a low level. The left figure shows that the performance ratio is larger for a

larger value of U . The theoretical competitive ratio proven in Theorem 14 implies this result. The

ratio fluctuates with the number of requests in the right figure, which indicates that the value of I

does not have a major influence on the ratio.

50 100 150 200
0

0.5

1

1.5

2

2.5

3

Number of Requests (I)

P
e

rf
o

rm
a

n
c
e

 R
a

ti
o

SWMOA

A
online*

 +A
 sub2

A
online*

 +A
 sub1

,,ε=0.9

A
online*

 +A
 sub1

, ε =0.6

Figure 5.8: Performance ratio of Aonline⇤ and
SWMOA in [61] with different I.

200 240 280 320 360 400
0

2000

4000

6000

8000

10000

12000

14000

Number of Requests (I)

O
b
je

c
ti
v
e
 V

a
l u

e

A
online*

 +A
 sub2

A
online*

 +A
 sub1

 , ε = 0.9

A
online*

 +A
 sub1

 , ε = 0.6

A
online*

Figure 5.9: Objective Value achieved by Aonline⇤ .

We further compare our online algorithm with Shi et al.’s online algorithm [61], SWMOA,

which also makes decisions based on the current resource prices. Their price function depends

on the number of resources and the number of time slots. We have implemented their algorithm

and evaluated it using the same trace data. In Fig. 5.6, we can observe that our online algorithm

can achieve a much lower performance ratio than SWMO, under different values of S and Vi. In

111

Fig. 5.7 and Fig. 5.8, we vary the value of another two parameters, U and I, and still obtain the

same observation that our online algorithm always outperforms SWMOA.

We next investigate the objective value of ILP (5.2) achieved by Aonline⇤ . Fig. 5.9 reflects that

there is an upward trend with a larger number of requests. The underlying reason is that Aonline⇤

can select more high-value requests from a large set of participants. Similar to the observation

in Fig. 5.7, the objective value achieved by Aonline⇤ +Asub1 with a small e is higher than that of

Aonline⇤ +Asub2.

200 250 300 350 400
40

50

60

70

80

90

Number of Requests (I)

Pe
rc

en
ta

ge
 o

f W
in

ne
rs

Aonline* +A sub1

Aonline* +A sub1

Aonline* +A sub2

Aonline* +A sub2

Aonline*

A
online*

Figure 5.10: Percentage of winners under differ-
ent I.

200 300 400 500
Number of Requests (I)

0

10

20

30

R
un

ni
ng

 ti
m

e
(S

ec
on

ds
) Aonline*+Asub1, =0.9

Aonline*

200 300 400 500
Number of Requests (I)

0

0.05

0.1

0.15

R
un

ni
ng

 ti
m

e
(S

ec
on

ds
)

Aonline*+Asub2

Figure 5.11: The average running time of Aonline⇤ .

Winner Satisfaction and Time Complexity. User satisfaction, which is measured by the percent-

age of winners, is shown in Fig. 5.10. The three solid lines represent the percentages of winners

when Cks = 100, and the three dot lines are for the case of Cks = 50. We can see that the percentage

of winners drops when a high number of CCs wait for deployment. The reason can be explained

as follows: The number of winners remains relatively steady when the resource capacity is fixed.

Therefore, only a small percentage of CC requests can be selected from a large set. The resource

capacity influences the number of winners. Thus, a higher percentage of winners comes with a

large capacity. We next fix the number of containers in each CC to 5. Fig. 5.11 shows the average

running time of our online algorithms with varying number of requests. Again, the shortest run-

ning time is observed when we call Asub2 in our online algorithm. Aonline⇤ with Asub1 has a slightly

longer running time, followed by Aonline⇤ with the optimal one-shot algorithm.

112

5.7 Summary

In this Chapter, we proposed an efficient online algorithm for placing container clusters in cloud

zones, considering both container deployment and the demand of inter-container traffic. We first

leverage exhaustive sampling and ST rounding techniques to design a one-shot algorithm that

determines the placement scheme for the current CC. Then we apply compact-exponential and

the online primal-dual techniques to design an online algorithm framework that uses the one-shot

algorithm to make on-spot decisions based on resource prices. Our online algorithm achieves

computational and economical efficiencies.

113

Chapter 6

Conclusion and Future Work

6.1 Conclusion

Cloud computing has attracted more and more attention in the community of computer science and

information technology, for delivering on-demand computing resources over the Internet. Recent

cloud platforms allow users to request tailor-made VMs or containers that bundle various resources

at user-specified amounts [7] [2]. How to dynamically allocate cloud resources becomes a funda-

mental and important problem. Successes in designing dynamic resource provisioning in clouds

will help current cloud service providers to utilize their computing, storage and communication

resources more efficiently, to improve system reliability, and to obtain a higher social welfare. In

this thesis, we propose efficient algorithms for cloud resource allocation and workload dispatching,

contributing towards the efficient and robust operation of cloud systems.

• In Chapter 3, we study the auction design for dynamic VM provisioning. We focus

on cloud jobs with soft deadlines that arrive in an online fashion. We adapt the

classic primal-dual framework for efficient approximation algorithm design, and

employ a posted-pricing framework for truthful online mechanism design, to derive

truthful online auctions that run efficiently and approach optimal social welfare.

However, it turns out that the above techniques alone are not sufficient. A salient

feature of Chapter 3 is the new compact-exponential optimization technique we in-

troduce, which works in concert with a dual oracle to handle job completion time

constraints imposed by hard and soft deadlines. Our compact-exponential method

may further shed light on other algorithm and mechanism design scenarios where

the optimization problem contains both conventional and non-conventional con-

114

straints, such as delay-constrained optimization in cyber physical systems.

• In Chapter 4, we present scheduling frameworks for cloud container provisioning

under both offline and online settings. Our problem model is expressive enough to

accommodate complex cloud computing jobs. We first apply the compact-exponential

technique to reformulate the problem. Our offline algorithm solves the compact-

exponential ILP fractionally, and adopt randomized rounding to obtain an integer

solution. Our online algorithm implements the online learning technique to gradu-

ally solve the expected version of the compact-exponential ILP and its dual. Our of-

fline and online algorithms achieve computational and economical efficiencies. The

compact-exponential technique enjoyed another application in this chapter, suggest-

ing its potential in a range of optimization problems.

• In Chapter 5, we investigate the online placement algorithm design for cloud con-

tainer cluster provisioning. We take both the deployment of containers and the

demand of inter-container traffic into consideration. Our online placement scheme

consists of a one-shot algorithm that determines the placement scheme for the cur-

rent CC and an online algorithm framework that decomposes the online decision

making into on-spot decisions based on resource prices. We leverage exhaustive

sampling and ST rounding techniques to compute quality solutions to the one-shot

problem, and further exploit compact-exponential to handle placement constraints

and the online primal-dual techniques for guaranteeing a good competitive ratio.

Our online algorithm achieves computational and economical efficiencies.

6.2 Future work

Through the studies of this thesis, we also identify some interesting problems and new directions

for future study. We next detail them as follows:

115

• An Online Placement Framework for Service Chains in Geo-Distributed Clouds.

In this thesis, we focus on the efficient algorithm design for dynamic cloud re-

source provisioning. An interesting direction would be to extend our investigation

to a new version of the cloud system – the Network Function Virtualization (NFV)

system. NFV is emerging as a new paradigm for providing virtualized network

services through service chains of virtual network functions (VNFs) [39]. VNFs

typically execute on virtual machines in a cloud infrastructure, which consists of

geo-distributed cloud data centers. Compared to traditional cloud services, key

challenges in virtual network service provisioning lie in the optimal placement of

VNF instances while considering inter-VNF traffic in a service chain. Furthermore,

the end-to-end delay of each flow to pass through a service chain should be mini-

mized when a service chain is processed upon its arrival. It is natural to target an

online placement framework to address the above challenges, with a goal of mini-

mizing the deployment cost. The combination of the compact-exponential method

and classic primal-dual techniques may prove effective again here.

• An Offline Scheduling Algorithm for General Computing Jobs. In Chapter 4, we

proposed an offline scheduling algorithm for jobs with chain structures, and left

jobs with general directed acyclic dependence graphs for future work. A natural

direction for future research is to study the offline scheduling algorithm design for

this type of jobs. The challenge lies in the design of a separation oracle for polytope

Pi. A polynomial-time separation oracle to solve the utility maximization problem

for general jobs with arbitrary dependence graph topology is required if we adopt

the same offline technique. Since the computational complexity of the current of-

fline algorithm is high, another direction is to design a new offline algorithm with a

fast running time.

116

• Auction Mechanisms for Cloud Container and Container Cluster Services. In Chap-

ters 4 and 5, we focused on the algorithm design for cloud container and container

cluster provisioning. A pricing mechanism to charge the usage is missing. An

auction-based mechanism enables agility and efficiency in the cloud market by

transferring the pricing functionality to the invisible hand of the market, having

resources sold to users who value them the most. For example, spot instance pric-

ing in Amazon EC2 is among the first real-world implementations of auctions in

cloud computing, which, however, doesn’t guarantee truthful bidding. As future

work, we aim to design cloud container auctions that elicit truthful bids, execute in

very short time, and approach a close-to-optimal social welfare or provider’s profit.

• An Online Auction for C-RAN Resource Provisioning with Operation Cost. During

my PhD study, I also paid attention to 5G networks. Two infrastructure revolutions

are being implemented in 5G. The first is virtualization based, centralized cloud

processing. Base-band signals are sampled and transmitted through front-haul links

to a mobile cloud, for processing by mobile base station instances deployed in an

on-demand fashion. User and channel information are aggregated to the cloud, fa-

cilitating optimized decision making. The second is the separation of infrastructure

ownership from service provisioning in cellular networks. The “Tower” company

now specializes in deployment and maintenance of the cloud radio access network

(C-RAN) infrastructure [57]. Mobile operators focus instead on their sole business

of wireless service provisioning. Mobile operators lease C-RAN resources that in-

clude spectrum resources at remote radio heads, front-haul bandwidth and mobile

base station instances. Without considering the operation cost of the tower com-

pany, we have proposed a truthful auction to solve the one-round C-RAN resource

allocation problem [85]. One possible direction of my future work is to investigate

online C-RAN auction design with the consideration of the operation cost. It is in-

117

teresting to generalize the compact-exponential technique and learning theories to

solve online problems in mobile networks.

118

Bibliography

[1] Amazon EC2 instance type. http://aws.amazon.com/ec2/instance-types/.

[2] CloudSigma. https://www.cloudsigma.com/.

[3] Google Cluster Data, TraceVersion1. https://code.google.com/p/

googleclusterdata/wiki/TraceVersion1.

[4] Guide to Fiber Optics & Premise Cabling. https://goo.gl/Yd8UsW.

[5] Linode. https://www.linode.com/.

[6] Microsoft Azure. http://azure.microsoft.com/en-us/?rnd=1.

[7] ProfitBricks. https://www.profitbricks.com/.

[8] S. Agrawal and N. R. Devanur. Fast algorithms for online stochastic convex programming.

In Proc. of ACM-SIAM SODA, 2015.

[9] S. Agrawal, Z. Wang, and Y. Ye. A dynamic near-optimal algorithm for online linear pro-

gramming. Operations Research, 62(4):876–890, 2014.

[10] Aliyun. Container Service. https://goo.gl/CnLfBQ.

[11] Amazon. Amazon EC2 Container Service. https://aws.amazon.com/ecs/.

[12] Amazon. Amazon ECS Clusters. https://goo.gl/3pbXwB.

[13] Amazon. Regions and Availability Zones. https://goo.gl/oVQknf.

[14] A. Ambari. Recommended memory configurations for the mapreduce service.

https://ambari.apache.org/1.2.1/installing-hadoop-using-ambari/content/

ambari-chap3-7-9a.html.

119

[15] A. Archer, C. Papadimitriou, K. Talwar, and É. Tardos. An approximate truthful mechanism

for combinatorial auctions with single parameter agents. Internet Mathematics, 1(2):129–

150, 2004.

[16] S. Arora, A. Frieze, and H. Kaplan. A new rounding procedure for the assignment problem

with applications to dense graph arrangement problems. In Proc. of IEEE FOCS, 1996.

[17] S. Arora, D. Karger, and M. Karpinski. Polynomial time approximation schemes for dense

instances of NP-hard problems. In Proc. of ACM STOC, 1995.

[18] Y. Azar, I. Kalp-Shaltiel, B. Lucier, I. Menache, J. S. Naor, and J. Yaniv. Truthful online

scheduling with commitments. In Proc. of ACM EC, 2015.

[19] S. Baruah, G. Koren, D. Mao, B. Mishra, A. Raghunathan, L. Rosier, D. Shasha, and F. Wang.

On the competitiveness of on-line real-time task scheduling. In Proc. of IEEE RTSS, 1991.

[20] A. Blum, A. Gupta, Y. Mansour, and A. Sharma. Welfare and profit maximization with

production costs. In Proc. of IEEE FOCS, 2011.

[21] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge university press, 2004.

[22] S. Brahma. The ellipsoid algorithm for linear programming. https://goo.gl/ge0p6u.

[23] N. Buchbinder and J. Naor. Online primal-dual algorithms for covering and packing prob-

lems. In Proc. of ESA, 2005.

[24] N. Buchbinder and J. Naor. The design of competitive online algorithms via a primal: dual

approach. Foundations and Trends® in Theoretical Computer Science, 3(2-3):93–263, 2009.

[25] E. Chang and C. Yap. Competitive online scheduling with level of service. In Proc. of

International Computing and Combinatorics Conference, 2001.

[26] F. YL Chin and S. PY Fung. Improved competitive algorithms for online scheduling with

partial job values. In Proc. of International Computing and Combinatorics Conference, 2003.

120

[27] F. YL Chin and S. PY Fung. Online scheduling with partial job values: Does timesharing or

randomization help? Algorithmica, 37(3):149–164, 2003.

[28] NM M. Kabir. Chowdhury, M. R. Rahman, and R. Boutaba. Virtual network embedding with

coordinated node and link mapping. In Proc. of IEEE INFOCOM, 2009.

[29] M. Chrobak, L. Epstein, J. Noga, J. Sgall, R. van Stee, T. Tichỳ, and N. Vakhania. Preemp-

tive scheduling in overloaded systems. In Proc. of International Colloquium on Automata,

Languages, and Programming, 2002.

[30] X. Dai, Y. Wang, J. M. Wang, and B. Bensaou. Energy efficient virtual cluster embedding in

public data centers. In Proc. of IEEE GLOBECOM, 2015.

[31] N. R. Devanur. Fisher markets and convex programs. JACM, 2010.

[32] G. Even and M. Medina. Online multi-commodity flow with high demands. In Proc. of

International Workshop on Approximation and Online Algorithms, 2012.

[33] L. Fleischer, M. X. Goemans, V. S. Mirrokni, and M. Sviridenko. Tight approximation algo-

rithms for maximum general assignment problems. In Proc. of ACM-SIAM SODA, 2006.

[34] Forbes. Cloud computing market projected to reach $411B by

2020. https://www.forbes.com/sites/louiscolumbus/2017/10/18/

cloud-computing-market-projected-to-reach-411b-by-2020/#1b93927b78f2.

[35] Google. Container Clusters. https://goo.gl/7Jt8tC.

[36] Google. Container Engine. https://cloud.google.com/container-engine/.

[37] A. Gopinathan. Strategyproof auction design for network resource allocation. PhD thesis,

University of Calgary, 2011.

[38] R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and A. Akella. Multi-resource packing

for cluster schedulers. In Proc. of ACM SIGCOMM, 2014.

121

[39] S. Gu, Z. Li, C. Wu, and C. Huang. An efficient auction mechanism for service chains in the

nfv market. In Proc. of IEEE INFOCOM, 2016.

[40] A. Gupta and M. Molinaro. How the experts algorithm can help solve LPs online. Mathe-

matics of Operations Research, 41(4):1404–1431, 2016.

[41] M. Hajjat, X. Sun, Y. Sung, D. Maltz, S. Rao, K. Sripanidkulchai, and M. Tawarmalani.

Cloudward bound: planning for beneficial migration of enterprise applications to the cloud.

Proc. of ACM SIGCOMM, 2011.

[42] Z. Huang and A. Kim. Welfare maximization with production costs: a primal dual approach.

In Proc. of the ACM-SIAM SODA, 2015.

[43] P. Jaillet and X. Lu. Near-optimal online algorithms for dynamic resource allocation prob-

lems. arXiv:1208.2596, 2012.

[44] N. Jain, I. Menache, J. S. Naor, and J. Yaniv. Near-optimal scheduling mechanisms for

deadline-sensitive jobs in large computing clusters. ACM Transactions on Parallel Comput-

ing, 2(1):3, 2015.

[45] A. Kansal, F. Zhao, J. Liu, N. Kothari, and A. A. Bhattacharya. Virtual machine power

metering and provisioning. In Proc. of ACM SoCC, 2010.

[46] T. Kesselheim, A. Tönnis, K. Radke, and B. Vöcking. Primal beats dual on online packing

LPs in the random-order model. In Proc. of ACM STOC, 2014.

[47] K. H. Kim, A. Beloglazov, and R. Buyya. Power-aware provisioning of virtual machines

for real-time cloud services. Concurrency and Computation: Practice and Experience,

23(13):1491–1505, 2011.

[48] G. Koren and D. Shasha. Dˆover: An optimal on-line scheduling algorithm for overloaded

uniprocessor real-time systems. SIAM Journal on Computing, 24(2):318–339, 1995.

122

[49] X. Li, J. Wu, S. Tang, and S. Lu. Let’s stay together: Towards traffic aware virtual machine

placement in data centers. In Proc. of IEEE INFOCOM, 2014.

[50] Z. Liu, I. Liu, S. Low, and A. Wierman. Pricing data center demand response. In Proc.of

ACM SIGMETRICS, 2014.

[51] E. M. Loiola, N. M. M. de Abreu, P. O. Boaventura-Netto, P. Hahn, and T. Querido. A

survey for the quadratic assignment problem. European journal of operational research,

176(2):657–690, 2007.

[52] L. Lovász and M. D. Plummer. Matching theory, volume 367. American Mathematical Soc.,

2009.

[53] B. Lucier, I. Menache, J. S. Naor, and J. Yaniv. Efficient online scheduling for deadline-

sensitive jobs. In Proc. of ACM SPAA, 2013.

[54] Microsoft. Azure Container Service. https://azure.microsoft.com/en-us/

services/container-service/.

[55] Microsoft. Azure Container Service Cluster. https://goo.gl/URvRNg.

[56] Microsoft. Batch feature overview for developers. https://goo.gl/bQql24.

[57] China Mobile. C-RAN: the road towards green RAN. White Paper, version 3.0, 2013.

[58] P. Orlik and H. Terao. Arrangements of hyperplanes, volume 300. Springer Science &

Business Media, 2013.

[59] P. Raghavan and R. Motwani. Randomized algorithms. Cambridge Univ. Press, 1995.

[60] RightScale. Social gaming in the cloud: a technical white paper, 2013.

[61] W. Shi, C. Wu, and Z. Li. An online mechanism for dynamic virtual cluster provisioning in

geo-distributed clouds. In Proc. of IEEE INFOCOM, 2016.

123

[62] W. Shi, L. Zhang, C. Wu, Z. Li, and F. Lau. An online auction framework for dynamic

resource provisioning in cloud computing. In Proc. of ACM SIGMETRICS, 2014.

[63] D. B. Shmoys and É. Tardos. An approximation algorithm for the generalized assignment

problem. Mathematical Programming, 62(1):461–474, 1993.

[64] Q. Wang, K. Ren, and X. Meng. When cloud meets ebay: towards effective pricing for cloud

computing. In Proc. of IEEE INFOCOM, 2012.

[65] Wikipedia. Convex conjugate. http://en.wikipedia.org/wiki/Convex_conjugate.

[66] Wikipedia. Dynamic frequency scaling. http://en.wikipedia.org/wiki/Dynamic_

frequency_scaling.

[67] Wikipedia. Google data centers. https://goo.gl/oKYNri.

[68] Wikipedia. Karmarkar’s algorithm. https://en.wikipedia.org/wiki/Karmarkar’s_

algorithm.

[69] Wikipedia. Poisson point process. https://en.wikipedia.org/wiki/Poisson_point_

process.

[70] Wikipedia. Rendering pipeline overview. https://www.opengl.org/wiki/Rendering_

Pipeline_Overview.

[71] Wikipedia. Topological sorting. https://en.wikipedia.org/wiki/Topological_

sorting.

[72] D. P. Williamson and D. B. Shmoys. The design of approximation algorithms. Cambridge

university press, 2011.

[73] X. Xu, H. Yu, and X. Pei. A novel resource scheduling approach in container based clouds.

In Proc. of IEEE CSE, 2014.

124

[74] R. Yu, G. Xue, X. Zhang, and D. Li. Survivable and bandwidth-guaranteed embedding of

virtual clusters in cloud data centers. In Proc. of IEEE INFOCOM, 2017.

[75] S. Zaman and D. Grosu. Combinatorial auction-based dynamic VM provisioning and alloca-

tion in clouds. In Proc. of IEEE Cloud CloudCom, 2011.

[76] ZDNet. Containers: fundamental to the cloud’s evolution. https://goo.gl/PPWmxe.

[77] H. Zhang, B. Li, H. Jiang, F. Liu, A.V. Vasilakos, and J. Liu. A framework for truthful online

auctions in cloud computing with heterogeneous user demands. In Proc. of IEEE INFOCOM,

2013.

[78] L. Zhang, Z. Li, and C. Wu. Dynamic resource provisioning in cloud computing: a random-

ized auction approach. In Proc. of IEEE INFOCOM, 2014.

[79] L. Zhang, S. Ren, C. Wu, and Z. Li. A truthful incentive mechanism for emergency demand

response in colocation data centers. In Proc. of IEEE INFOCOM, 2015.

[80] X. Zhang, Z. Huang, C. Wu, Z. Li, and F Lau. Online auctions in IaaS clouds: welfare and

profit maximization with server costs. In Proc. of ACM SIGMETRICS, 2015.

[81] Y. Zheng, B. Ji, N. Shroff, and P. Sinha. Forget the deadline: scheduling interactive applica-

tions in data centers. In Proc. of IEEE Cloud, 2015.

[82] Z. Zheng and N. B. Shroff. Online multi-resource allocation for deadline sensitive jobs with

partial values in the cloud. In Proc. of IEEE INFOCOM, 2016.

[83] R. Zhou, Z. Li, and C. Wu. Scheduling frameworks for cloud container services. IEEE/ACM

Transactions on Networking, 26(1):436–450, 2018.

[84] R. Zhou, Z. Li, C. Wu, and Z. Huang. An efficient cloud market mechanism for computing

jobs with soft deadlines. IEEE/ACM Transactions on Networking, 25(2):793–805, 2017.

125

[85] R. Zhou, X. Yin, Z. Li, and C. Wu. Virtualized resource sharing in cloud radio access net-

works: An auction approach. Computer Communications, 114:22–35, 2017.

126

