
THE UNIVERSITY OF CALGARY 

Computer Vision for Line Drawings 

by 

Cullen Jennings 

A THESIS 

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE 

DEGREE OF MASTER OF SCIENCE 

DEPARTMENT OF COMPUTER SCIENCE 

CALGARY, ALBERTA 

MAY, 1993 

© Cullen Jennings 1993 



1*1 National Library 
of Canada 

Bibliotheque nationale 
du Canada 

Acquisitions and 
Bibliographic Services Branch 

395 Wellington Street 
Ottawa, Ontario 
K1AON4 

Direction des acquisitions et 
des services bibliographiques 

395, rue Wellington 
Ottawa (Ontario) 
K1AON4 

The author has granted an 
irrevocable non-exclusive licence 
allowing the National Library of 
Canada to reproduce, loan, 
distribute or sell copies of 
his/her thesis by any means and 
in any form or format, making 
this thesis available to interested 
persons. 

The author retains ownership of 
the copyright in his/her thesis. 
Neither the thesis nor substantial 
extracts from it may be printed or 
otherwise reproduced without 
his/her permission. 

Your tile Votre rilfilrence 

Our tile Notre réfOrence 

L'auteur a accordé une licence 
irrevocable et non exclusive 
permettant a la Bibliothèque 
nationale du Canada de 
reproduire, prêter, distribuer ou 
vendre des copies de sa these 
de quelque manière et sous 
quelque forme que ce soit pour 
mettre des exemplaires de cette 
these a la disposition des 
personnes intéressées. 

L'auteur conserve la propriété du 
droit d'auteur qui protege sa 
these. Ni la these ni des extraits 
substantiels de celle-ci ne 
doivent être imprimés ou 
autrement reproduits sans son 
autorisation. 

ISBN 0-315-88544-0 

& Cana 



Name  
Dissertation Abstracts International is atfartge(  by broad, general subject categories. Please select the one subject which most 
nearly describes the content of your dissertation. Enter the corresponding Four-digit code in the spaces provided. 

5  
SUBJECT TERM 

Subject Categories 

THE HUMANITIES AND SOCIAL SCIENCES 
COMMUNICATIONS AND THE ARTS 
Architecture  
An History  
anema  
Dance  
Fine Ms  
Information Science  
Journalism  
Library Science  
Mass Communications  
Music  
Speech Communication  

eater  

EDUCATION 
General   

PsychoIy' 0525 
0729 Reading 0535 
0377 Religious 0527 
0900 Sciences 0714 
0378 Secondary 0533 
0357 Scciai Sciences 0534 
0723 Social .  of 0340 
0391 Special 0529 
0399 Teacher Training 0530 
0708 Technology 0710 
0413 Tests ond74easurements 0288 
0459 Vocational 0747 
0465 

0515 
Administration 0514 
Adult and Continuing 0516 
Agricultural  0517 
Art 0273 
Bilingual and Multicultural  0282 
Business  0688 
Community College 0275 
Curriculum and Instruction 0727 
Early Childhood 0518 
Elementary 0524 
Finance 0277 
Guidance and Counseling 0519 
Health 0680 
Higher 0745 
History of 0520 
Home Economics 0278 
Industrial  0521 
Language and Literature 0279 
Mathematics 0280 
Music 0522 
Philosophy of 0998 
Physical 0523 

THE SCIENCES AND 
BIOLOGICAL SCIENCES 
Agriculture 

General 0473 
Agronomy 0285 
Animal Culture and 

Nutrition 0475 
Animal Pathology 0476 
Food Science and 
lechnaloay 0359 

Forestry aria Wildlife 0478 
Plant Culture 0479 
Plant Pathology 0480 
Plant Physiology 0817 
Range Manooement 0777 
Wood Technlogy 0746 

Buolocw 
(neral 0306 
Anatomy 0287 
Brostatistics  0308 
Botany 0309 
Cell 0379 
Ecology 0329 
Entomology  0353 
Genetics  0369 
Limnology 0793 
Microbiology  0410 
Molecular 0307 
Neuroscience 0317 
Oceanography 0416 
Physiology 0433 
Radiation 0821 
Veterinary Science 0778 
Zoology 0472 

Biophysics 
General 0786 
Medical 0760 

EARTH SCIENCES 
Biogeochemistry 0425 
3eochemistry 0996 

LANGUAGE, LITERATURE AND 
LINGUISTICS 
Lon quoge 

ei.erul 0679 
Ancient 0289 
Linguistics 0290 
Modem 0291 

Literature. 
General 0401 
Classical 0294 
Comparative 0295 
Medieval  0297 
Modem 0298 
African 0316 
American 0591 
Asian 0305 
Canadian English) 0352 
Canadian French)  0355 
English  0593 
Germanic  0311 
Latin American 0312 
Middle Eastern 0315 
Romance 0313 
Slavic and East European 0314 

ENGINEERING 
Geadesy 0370 
Geology 0372 
Geophysics 0373 
Hydrology 0388 
MineralOgy 0411 
Paleobotany 0345 
Paleoecology 0426 
Paleontology 0418 
Paleozoology 0985 
Polynal '  0427 
Physicaography 0368 
Physical Oceanography  0415 

HEALTH AND ENVIRONMENTAL 
SCIENCES 
Environmental Sciences  0768 
Health Sciences 

General 0566 

py  0992 
Che Audiologymothera  0300 

Dentistry 0567 
Education  0350 
Hospital Management 0769 
Human Development 0758 
Immunology 0982 
Medicine and Surgery 0564 
Mental Health  0347 
Nursing 0569 
Nutrition 0570 
Obstetrics and Gynecology  0380 
Occupational Health and 
Therapy 0354 

Ophthalmology 0381 
Pathology 0571 
Pharmacology 0419 
Phormoc  0572 
Physical Therapy  0382 
Public Health 0573 
Radiology 0574 
Recreation   0575 

PHILOSOPHY, RELIGION AND 
THEOLOGY 
Philosophy  
Rdigion - 

(jenmul 0318 
Biblical Studies 0321 

0319 
0320 

Philosophy of 0322 
Theology 0469 

SOCIAL SCIENCES 
American Studies 0323 
Anthropology 

Archaeology 0324 
Cultural  0326 
Physical 0327 

Business Administration 
General 0310 
Accounting  0272 
Banking 0770 
Management 0454 
Marketing 0338 

Canadian Studies  0385 
Economics 

General 0501 
Agricultural 0503 
Commerce-Business 0505 
Finance  0508 
History 0509 
Labor 0510 
Theory 0511 

Folklore 0358 
Geography 0366 
Gerontology 0351 
Histiy 

General 0578 

Clergy 
History of  -  

Speech Pathology  
Toxicology  

Home Economics   

PHYSICAL SCIENCES 
Pure Sciences 
Chemistry 

General 0485 
Agricultural 0749 
Analytical  0486 
Biochemistry  0487 
Inorganic 0488 
Nuclear 0738 
Organic 0490 
Pharmaceutical 0491 
Physical 0494 
Polymer 0495 
Radiation 0754 

Mathematics 0405 
Physics 

General 0605 
Acoustics  0986 
Astronomy and 

Astrophysics 0606 
Atmospheric Science 0608 
Atomic  0748 
Electronics and Electricity  0607 
Elementary Particles and 
High Energy 0798 

Fluid and Plasma 0759 
Molecular 0609 
Nuclear 0610 
Optics  0752 
Radiation 0756 
Solid State  0611 

Statistics  0463 
Applied Sciences 
Applied Mechanics   0346 
Computer Science  0984 

0422 

0 91 iL 

SULIECT CODE 
UM1 

Ancient 0579 
Medieval  0581 
Modern 0582 
Black  0328 
African 0331 
Asia, Australia and Oceania 0332 
Canadian 0334 
European 0335 
Latin American 0336 
Middle Eastern 0333 
United States 0337 

History of Science 0585 
Law 0398 
Political Science 

General 0615 
International Law and 

Relations 0616 
Public Administration 0617 

Recreation 0814 
Social Work 0452 
Sociology 

General 0626 
Criminoloqy and Penology  0627 
Demography 0938 
Ethnic and ociaI Studies 0631 
Individual and Family 
Studies  0628 

Industrial and Labor 
Relations 0629 

Publit and Social Welfare  0630 
Social Structure and 
Development 0700 

Theory and Methods 0344 
Transportation 0709 
Urban and Regional Planning  0999 
Women's Studies 0453 

0460 Engineering 
0383 General 0537 
0386 Aerospace 0538 

Agricultural 0539 
Automotive 0540 
Biomedical 0541 
Chemical 0542 
Civil  0543 
Electronics and Electrical 0544 
Heat and Thermodynamics  0348 
Hydraulic 0545 
Industrial  0546 
Marine 0547 
Materials Science 0794 
Mechanical 0548 
Metallurgy  0743 
Mining  0551 
Nuclear 0552 
Packaging  0549 
Petroleum  0765 
Sanitary and Municipal  0554 
System Science 0790 

Geotechnalogy 0428 
Operations Research 0796 
Plastics Technology  0795 
Textile Technology 0994 

PSYCHOLOGY 
General  0621 
Behavioral 0384 
Clinical  0622 
Developmental 0620 
Experimental  0623 
Industrial  0624 
Personality 0625 
Physiolo9rcal   0989 
Psychobiology  0349 
Psychometrics   0632 
Social  0451 



THE UNIVERSITY OF CALGARY 

FACULTY OF GRADUATE STUDIES 

The undersigned certify that they have read, and recommend to the 

Faculty of Graduate Studies for acceptance, a thesis entitled, "Computer Vision 

for Line Drawings" submitted by Cullen Jennings in partial fulfillment of the 

requirements for the degree of Master of Science. 

Supervisor, J.R. Parker, 

Department of Computer Science 

Date 

Dr. J.AT1. BIs, 

Dr. A. Colij 

Department of Computer Science 

Deptajjent of Geomatics Eni"neering 

Dr. P. Prusinkiewicz, 

Department of Computer Science 

11 



111 

Abstract 

Modern maps and engineering diagrams are usually constructed and stored 

using GIS or CAD systems. A large number of drawings, however, exists only 

in a paper form. This thesis examines the problem of automatically converting 

such drawings and maps from raster image to high quality vector GIS or CAD 

forms. 

This thesis begins with a review of previous work in the area and then 

proposes a new method based on findings about how human vision works and 

domain specific knowledge. Another system based on the classical work in 

this area is presented, to which the new system is compared. This comparison 

shows that the method proposed here obtains substantially better results than 

classical methods. The time a human operator could expect to spend correcting 

the errors created by this system would be less than one tenth of the time 

required to correct the errors created by a classical vectorization system. 
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CHAPTER 1 

Introduction 

Most new engineering drawings and maps are produced with CAD or geographic 

information systems (GIS). These electronic formats provide substantially more 

flexibility than paper does: updates to a document can easily be reproduced at 

all the sites that use it; documents éan be combined or have additional infor-

mation incorporated into them; and documents can by analyzed by computer. 

For example, from a GIS system with maps a user might identify the location 

of the house nearest to a river where chemicals had been spilled. From CAD 

electrical diagrams, a computer simulation of a circuit might be created. In 

addition, ease of archiving and updating make attributed electronic forms for 

document information very valuable. 

Although new documents are often drafted in electronic form, many older 

documents exist only on paper. Concerted efforts are being made worldwide 

to get this information into electronic databases. Maps are being transformed 

from paper form into GIS so that, correlated with satellite images, they can 

aid in the evaluation and optimization of crop growth. Well logs - graphs of 

data from instruments that have been lowered down oil and gas wells - are 

being digitized so that computer simulations can be used to predict the size 

of the reserves in the reservoir. Telephone companies are transforming wiring 
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diagrams of connections into GIS, so that when wiring changes are made in one 

location, all the other locations can be informed of the change. 

When a drawing is scanned into a computer, it is represented by a raster, 

a two dimensional array of black or white picture elements. The computer can 

do almost nothing with a raster except display it. To make the information 

usable by CAD or GIS, it must be converted to a vector format, a format in 

which each line in the drawing is represented in the computer by a record that 

describes the characteristics of that line. The characteristics include things 

like start point, end point, and width. 

This thesis concentrates on the problems of automatic computer conver-

sion from raster to vector representations of drawings. Perfect raster to vector 

conversion is impossible because different vector drawings can result in identi-

cal raster images. If two straight lines have one end point in common and the 

lines are collinear, they are indistinguishable from one straight line. 

During the early 1980s commercial enterprises began to seek ways to 

scan these documents and automatically translate them into vector formats. 

One of the first systems was Laser Scan's FASTRACK system in 1978 [35]. 

Some of the more important programs have been Audre's system, AutoDesk's 

CAD/Camera, DataSpan's RVCS [22], GTX's GTX.Raster CAD [69] [7], Hitachi's 

CADCore [36] [1031, Intergraph's JI\TEC [44] and JJGEOVEC [45], Scorpion Tech-

nologies' SRV [1051, QC Data's MEWS [96], Universal Systems' SAMI [1211, and 

Winchester Data Products' VECTRESS [1261. Many of these systems claimed 

to be considerably faster than manual conversion. Audre claimed their system 

was seven times faster and cost one tenth as much [12]. A 1986 Anderson 

Report suggested that the available automatic conversion systems ran three to 



3 

four times faster than most manual systems and cost about half as much [1181. 

Lately many companies, sometimes receiving public funding, have been 

working on this problem, but they have not been trumpeting their success. QC 

Data's MEWS project, the result of a $700,000 joint venture between the Alberta 

Research Council and QC Data's Research and Development Department [961, 

is no longer in use - manual redrafting with digitizing boards has proven faster. 

DataSpan, another company that has produced such a product, is no longer in 

business. Intergraph, which has done a great deal of research in this area, 

suggests that manual conversion be used for most projects. Companies that 

claim to have created systems faster than manual redrafting include Winch-

ester Data Products, GTX (a leader in the area [691), and Hitachi. Currently 

the most popular low—end system is Adobe's Streamline [941. All of these sys-

tems generally fail to provide a definitive solution to the conversion problem, 

and some are even slower than redrafting a document on a digitizing board. 

Despite the considerable amounts of time and money spent, much of the con-

version done today still involves the use of a manual digitizing board to redraft 

the document into a CAD or a GIS. 

Much academic effort has also been devoted to conversion. Two of the first 

systems were described by Ramachandran [971 and Clement [17]. Amore recent 

system that incorporates much previous research is described by Jennings and 

Flanagan [49] • The bibliography for this thesis identifies a couple of hundred 

researchers in the field. 

One of the important types of line drawings requiring conversion from 

raster to vector formats is engineering diagrams. The many problems these 

pose for conversion systems are characteristic of the problems that arise in 
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converting most types of line drawings. Engineering diagrams consist mainly 

of lines, arcs, and symbols, including text. One of the more complex problems 

in converting these diagrams to digital form is that the lines and arcs are 

often dashed. A recognition system must take all the segments of a dashed 

line and represent them as one line with a particular dash pattern, not as a 

bunch of short, solid lines. Complicating matters further is the fact that lines 

often intersect at exact angles like 300; having them converted to 30.10 is often 

unacceptable. As well, lines running through symbols make them harder to 

detect. Typical commercial problems involve converting tens of thousands of 

large engineering diagrams into digital form [801. For example, the Saint John 

Shipbuilding project is converting 22,000 drawings in the first phase [106]. 

This thesis examines the use of computer vision systems in recognizing 

two dimensional line drawings, such as engineering diagrams, and proposes a 

new conversion method. Much research has been done on this problem, but 

automatic conversion that takes an order of magnitude less human operator 

time than manual redrafting is currently impossible for most drawings. It 

seems unlikely that any automatic system will ever perform 100% correctly on 

complex documents, but even a system that was 90% correct and helped the user 

fix the remaining 10% would considerably reduce conversion time. Compared 

to three dimensional vision in an real world environment, conversion is likely 

a simple vision problem, but it is still far from solved. 

The next section of this thesis describes previous work in the area. Then 

comes a discussion of the scanners and preprocessing methods available, fol-

lowed by an examination of state of the art conversion techniques. The conver-

sion technique proposed in this thesis is described next. Finally it is compared 
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to the state of the art techniques. 
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CHAPTER 2 

Previous Work 

A thorough review of the literature reveals pertinent information about most 

of the relevant aspects of the vectorization process. This chapter describes 

and briefly evaluates the significant contributions to the field of conversion, 

suggesting how the many techniques have been combined in the past. 

2.1. Classical Conversion 

The steps taken in the classical method for converting images used by 

Musavi et al [771 are: 

(1) Scanning 

Scan the paper image to produce a grayscale raster image; 

(2) Thresholding 

Form a binary image from the grayscale image; 

(3) Salt and Pepper Filtering 

Remove the isolated black and white pixels that are noise; 

(4) Thinning 

Thin the lines on the image to one pixel wide; 

(5) Chain Coding 

Follow the thinned lines and produce chain codes representing them; 
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(6) Vector Reduction 

Reduce straight segments of the chain code into long lines that represent 

the chain codes. 

Most commercial and research systems use schemes much like Musavi's. 

Such systems are described by Suzuki and Yamada [116], Kikkawa et al [57], 

Johnson and Bird [52], Hoshino et al [42], Bixier and Sanford [8], and Suetens 

et al [115]. Kasturi et algive an example of a similar complete system [561. One 

of the earliest noncommercial systems of this type is described by Clement [17]. 

Nagasamy and Langrana present a similar system that does vector reduction 

to conic sections [81]. The rest of this chapter describes in detail the steps used 

in these methods. 

2.2. Scanning 

Almost all current scanners are based on CCD camera technology and 

produce 8—bit grayscale images. A resolution of 300 dpi is standard for the low 

end scanners, while 800 dpi is common in commercial-grade scanners. A more 

detailed discussion of scanners and the problems encountered in scanning is 

given in chapter 3. Vectorization with colour scanners has been studied by 

Kakumoto et al [55] but did not result in appreciably better results. 

2.3. Thresholding 

The problem of thresholding and segmenting document images has been 

carefully studied [117]. Since scanners now produce high quality results with 

little noise, thresholding is usually easy. Often using a fixed threshold for 

the whole image works fine. Complex thresholding is required only when the 
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original paper quality is poor or when the document being scanned has faint 

lines produced by a photocopier low on toner or by spilled water or coffee. Dirty 

images are thresholded well by Parker's algorithm [87]. Good surveys that 

provide an overview of the method used in this thesis are given by Fu and Mui 

[34] and Sahoo et al [102]. 

2.4. Salt and Pepper Filter 

CCD cameras produce an effect called blooming, in which pixels become 

over or under exposed so that the scan looks as if it has been lightly sprinkled 

with salt and pepper. The thresholding scheme can correct for this effect, 

however, if a salt and pepper filter is incorporated into the thresholding. Such 

a filter simply finds each pixel whose colour is the opposite of all the pixels 

around it and changes its pixel value so that it matches its surroundings. This 

scheme is demonstrated well by Bury [15]. 

2.5. Thinning 

Thinning is the process of taking an image with thick lines and producing 

an image that is basically the same but contains only thin lines. Diagrams in 

chapter 5.1 show the effect of thinning. 

Most thinning algorithms approximate, or compute exactly, the Me-

dial Axis Transform (MAT), which was originally defined by Montanan [74]. 

The most commonly used algorithm of this type is presented by Zhang and 

Suen [129], but others have been given by Arcelli and Baja [31, Deutsch [24], 

Kwok [591, Naccache and Shinghal [78], O'Gorman [85], Pavlidis [92], and 

many others. The first algorithm of this type was likely Hilditch's [41]. All 
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MAT techniques result in artifacts highly undesirable for the vectorization of 

engineering diagrams. One such artifact is erosion hairs, tiny lines extending 

laterally from the skeleton of the image (see figure 5.22). Vectorizers interpret 

these erosion hairs as significant, making the final product a fuzzy rendition of 

the original. 

Several thinning methods that do not generate MAT type images have 

been developed, one of which is described by Baruch [5]. These techniques 

often produce other artifacts just as undesirable as those produced through 

MAT techniques. One method that tries to eliminate some of the artifacts that 

happen at intersections is described by Govindan and Shivaprasad [39]. This 

method fails to prevent artifacts in some other cases, however. Li and Suen 

describe another method for thinning [64] which uses knowledge about where 

traditional thinning fails but which still fails in many cases. A final method 

works directly from the grayscale image and produces a binary skeleton [128]. 

It does an excellent job, but it works only on lines running at angles that 

are multiples of 45°. Partial thinning methods for vectorization are used by 

Espelid and Eileng [29]. Paler and Kittler do thinning on grayscale images [86]. 

An interesting thinning technique based on examining the edges is given by 

Sinha [1111. It does not rely on the medial axis transform but still gets poor 

results. 

A substantial body of literature about thinning exists. Pavlidis presents 

one good survey of the topic [91], as do Kwok [59], Naccache and Shinghal [78], 

and Smith [113]. An excellent overall survey is by Lam et al [60]. 

A study of metrics for measuring how "good" a skeleton is, a defini-

tion of thinning, and another thinning algorithm are presented by Parker and 
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Jennings [88]. This paper shows that there is currently no widely accepted def-

inition of thinning and that it is therefore not surprising that there should be 

no exceptionally good thinning algorithms. This paper presents sample draw-

ings so diabolical that it is not even intuitively clear to a human user what the 

correct skeleton should be. For an simple example, what should be the skeleton 

of a solid disk? If the answer is a single point in the middle, then should a solid 

ellipse have the same skeleton? What about a solid ellipse elongated to the 

point that it is almost a line segment? The metrics described in this paper can 

be used in a quantitative comparison of various thinning methods. 

2.6. Chain Coding 

Chain coding is the process of tracing the lines made by the pixels on 

the thinned image. Freeman originally proposed it [31] and later presented 

algorithms for manipulating these chain codes [32] [33], collaborating with 

Davis on the last paper. All the chain codes used here will conform to Freeman's 

conventions, and many of the algorithms used to manipulate chain codes come 

from one of these papers. A detailed discussion of chain coding is given in 

chapter 5. 

A dedicated hardware system that would chain code an image in about 

the same amount of time it took to scan the image was developed by Shimotsuji 

et alat Toshiba [110]. This hardware clearly showed that high speed chain 

coding was possible. 
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2.7. Vector Reduction 

Vector reduction is the process of reducing the chain code to meaningful 

geometric figures, such as lines and circles. Several systems are described by 

Bixier et al [91 and Jam [46]. 

An excellent, simple algorithm is described by Jam: 

Algorithm. Approximate the curve by the line segment joining 

its end points (A,B). If the distance from the farthest curve point 

(C) to the segment is greater than a predetermined quantity, join 

AC and BC. Repeat the procedure for new segments AC and BC, 

and continue until the desired accuracy is reached [46, p. 3641. 

This quick algorithm guarantees that the lines approximate the chain code 

within a specifiable error. It seems to produce very close to the minimum 

possible number of line segments needed to approximate the chain code. It is 

much like the one Lowe uses [67]. 

One of the first vector reduction methods is described by Ramer [981. 

Other vectorization methods have been developed, but none produces results 

any better than Jam's. Leu and Chen describe a method that approximates 

lines to chain codes with a maximum error criterion [631. Rosin and West make 

useful suggestions about reduction to lines [101]. Linear programming was 

used to solve this problem in an "optimal" way by Montanan [751. A method 

based on the "optimal" definition is given by Sklansky and Gonzalez [1121, but 

it does not work as well as Jam's. 

Work has been done on reducing the chain codes to geometric objects 

rather than lines. Pavlidis [91, p. 230-288] describes methods that reduce the 



12 

chain code to lines, arcs, or splines, rather than polygons. Reduction to conic 

segments is addressed by Albano [2]. Reduction to digital circles is described by 

Nakamura and Aizawa [821. Landau gives some methods for approximating an 

arc from a set of points [611, and Thomas and Chan give a faster method [1191. 

Finally, Jam [461 and Bixier et al [9] provide methods for reducing the chain 

code to splines. 

A final stage, closing gaps introduced by noise in the image and error 

in the previous stages, has been developed by Scher et al [104] and Princen 

et al [95]. Higher level processing using syntactic methods is the subject of 

research by Joseph and Pridmore [541. 

2.8. Other Vectorization Work 

Most àf the problems with these system can be blamed on artifacts cre-

ated in the thinning process. Several researchers have developed methods 

for solving this problem, with mixed success. A very useful survey paper for 

vectorization is by Nadler [791. 

One often proposed vectorization method that needs to be eliminated 

from consideration right away is to move a large square across the black section 

of the image and to follow the centre of the square. Wakayama [123] and Shih 

and Kasturi [109] show clearly that this technique does not work. 

The artifacts caused by most current thinning algorithms have motivated 

a search for techniques that can recognize lines without thinning. Chen and 

Hsu [16] associate a direction with every pixel by finding the direction of the 

shape that the pixel is part of and then segmenting the image into regions 

containing smoothly changing directions. This paper gives the definition of an 
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orientation map, it and shows how they are used. The technique Chen and Hsu 

propose does an excellent job of separating two intersecting lines into separate 

ones. 

Methods for following the centre of lines without thinning them are 

presented by Black et al [10]. 

2.8.L Outline Collapsing. Instead of starting by thinning the image, Inter-

graph's JJVEC finds its outline and then uses chain coding and vector reduction 

steps like Musavi's to get the vectors that represent this outline of the im-

age [44] [45]. At the end of this procedure, the algorithm isolates single lines. It 

finds long, parallel lines that constitute the edges of individual lines and then 

isolates a single line that runs between them. This should be the centre of the 

original line. A similar system is described by Boatto et al [11]. 

2.8.2. Grayscale Work. Watson et al [125], Arvind [4], and Stevens [114] 

take yet another approach to the thinning problem. They devise systems based 

on using a grayscale scan and blurring the image with a Gaussian. The darkest 

region of the blurred line is the centre of the line. Other grayscale methods 

have been examined by Joseph [53] and Nishimura and Fujimoto [84]. 

2.8.3. Related Work. Methods based on laying a grid over an image and 

recording where lines cross from one grid section to another are used by Ejiri 

et al [281 and Vaxiviere and Tombre [122]. Hitachi has built a scanner specifi-

cally for this purpose. This method is based on the graph—based vectorization 

method proposed by Pavlidis [93]. Methods employing hexagonal grids have 

been used by Gibson and Lucas [371 with notable success. Although this method 

looks promising, there has not yet been much research into it. 
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The idea of taking a sketch of an engineering diagram and converting it 

to the engineering diagram it is meant to represent is being explored by Yoshino 

et al [127], Jansen and Krause [48], and Donnelly and Martin [25]. Finding the 

dimension in engineering drawings has been pursued by Don [261 [271. 
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CHAPTER 3 

Scanning 

The first stage in the conversion of a document is to obtain a cleanly scanned 

binary image that accurately represents it. In this chapter several aspects 

of scanners are considered: the transport mechanism, light sources, camera 

alignment, linearity, focus, pixel resolution, point spread function and speed. 

A wide variety of scanning devices is available, and their various noise 

characteristics affect the quality of any image that is eventually vectorized. The 

majority of scanners today are based on CCD camera technology that scans one 

line at a time. A discussion of the different problems that arise in the scanning 

process is followed by a comparison of several scanners and their effects on 

vectorization. This discussion concentrates completely on gray scale scanners 

and ignores colour scanners because most engineering drawings have only one 

colour. 

Currently most scanners for paper documents have either a flatbed or 

a roller design. With a flatbed scanner, the document sits on a large piece of 

glass above the lens of the camera. The paper remains stationary while the 

lens moves under the glass to scan the document. The lens moves only in the 

Y direction, and the CCD camera captures a complete scan line of information 

in the X direction for each Y position. The light source usually moves with 
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the camera, resulting in fairly even lighting conditions; however, vibrations 

generated as the camera moves may create problems. A variation of this scan-

ning setup is to have a moving mirror that reflects the light into a camera that 

remains in a fixed spot. Flatbed scanners are therefore much like common 

photocopiers in their construction. One problem with such scanners is that a 

scanner that can deal with E—size (26x48 inch) drawings is very large and hard 

to transport. 

The other common scanner design, the roller scanner, features a camera 

mounted in a fixed position and a pinch roller that moves the paper across one 

or more lenses. Fax machines are set up in much the same way. One problem 

with this design is that occasionally the paper in the roller slips and causes 

severe distortions in the scan. Distortions can also occur as the paper slowly 

skews as it feeds through the scanner: a straight line on the paper gets scanned 

as a curve. Often several cameras are used in a wide roller scanner - the ANA 

Tech Eagle 4080ET scanner has seven [43]. In most scanners there is one light 

source for each camera. 

Two other configurations for scanners are drum scanners and vacuum 

scanners. In a drum scanner, the document is attached to a drum that is rotated 

past a single point optical sensor in a way analogous to how a lathe would turn 

a drum. Because drum scanners contain single point optic detectors, they are 

very slow and are no longer in common use. 

A type of scanner whose popularity is increasing is the vacuum scan-

ner. It is much like the roller scanner, except that instead of pinching the 

document between rollers, its vacuum mechanism sucks the document down 

against moving belts. Because of the large area of contact between the the belt 
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and the document, a document in a vacuum scanner can be moved much faster 

without slipping than can one in a roller scanner. Speeds in the range of 18 

inches per second are possible. 

To get consistent scans, a stable, even, bright light source is required. 

Alternating current (AC) fluorescent and direct current (DC) halogen lights 

are most commonly used. The spectra of both of these kinds of lights have 

narrow peaks that cause strange effects when coloured documents are scanned. 

AC lights also flicker slightly at the AC frequency of 60 Hz. If a document is 

scanned quickly, the value calculated by the CCD sensor does not have a chance 

to become integrated over several cycles, and 60 Hz aliasing noise can appear 

on the image. Some scanners give excellent results using fluorescent AC light 

sources with a high frequency AC source, so that the CCD can integrate the 

results of the scans over several cycles for each pixel. 

The alternative to AC fluorescent is DC halogen lights, used in many 

high end scanners. They tend to be point light sources that illuminate the 

document unevenly. Often, to remedy this problem, calibration documents are 

scanned and corrective tables implemented in software. The ANA Tech Eagle 

4080ET and the Mekel scanners use this technique [43], [72]. Another problem 

that arises with DC halogen lights is that they get very hot and can cause a 

document to stretch as it is scanned. Many high quality maps are produced on 

mylar film that is not as prone to stretching when heated. 

Dirty light sources, whether AC or DC, are almost as much of a problem 

as dirty lenses. A dirty light source must be carefully cleaned and the whole 

system recalibrated. 

Wide, high resolution roller scanners like the ANA Tech Eagle 4080ET 
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have several cameras. This feature makes possible the scanning of wide docu-

ments without the problems introduced by moving cameras, but it complicates 

the translation of the camera images into one large raster image. The assem-

bly of images is made easier by arranging the cameras so that their fields of 

view overlap slightly and configuring the scanner such that its software selects 

which camera each pixel in the scan comes from. 

A square that is scanned on one part of the scanner and then scanned 

again elsewhere may not come out the same size twice - it may even be contorted 

into a rectangle, trapezoid, or worse. As well, slight stretching of the image is 

not uncommon. This usually happens because either the optics are poor and 

distort the image or the actual CCD array is not mounted squarely in relation 

to the image. If the CCD array is twisted relative to the image, the scanned 

image becomes skewed. 

Current CCD technology projects as much as eight inches of paper onto 

strips less than 1/8 of an inch wide that contain 3000 to 5000 CCD elements. 

The high level of magnification and short focal length implied, in this setup 

result in a very small depth of field. On the ANA Tech Eagle 4080ET scanner, 

a change in focal length of 2/1000 of an inch can blur the image noticeably. The 

focus is markedly affected if a transparent piece of mylar film with data drawn 

on one side of it is scanned upside down instead of right side up. Because of the 

sensitivity of such scanners, the focus must always be sharp and refocusing is 

difficult. 
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3. 1. Information Per Pixel 

Most grayscale scanners provide eight bits of data per pixel but fail to 

provide eight bits of information. The number of bits of information being 

taken from a paper scan can be calculated by scanning a page that is half white 

and half black. Vb and V1, will represent the average values of black and white 

pixels, respectively. The maximum deviation of a black pixel value from this 

average will be called N&, and the corresponding value for a white pixel will be 

N. Assuming that the amount of noise is linear in gray level, the noise at the 

gray pixel x becomes 

x — Vb  
rt(x)=Nb-I- v— vb 

Since the number of possible distinct gray level values in a range [x 

size of the range divided by the amount of noise in the range, the 

different gray values that could possibly come off a scanner is 

(1) 

o , x1] is the 

number of 

(2) 

Every possible gray value is assumed to be equally likely to appear, so the 

number of bits of information provided by the scanner about a pixel is 

V. 

1 = 1092 (3) 
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which can be written as 

/ 

1= 

in 

/ (1n(Vb—V)-1n(NW Vb—NW VW))(Vb—Vw)Vb 
Nb — N. 

\ 
(In(Nb Vb—Nb VW) —ln(Vb—Vw))(Vb—Vw)Vb  

Nb—Nw / 

In(2) 

(4) 

I 

The equation provides a simple method for approximating how many bits 

of useful information each pixel contains by estimating the amount of noise in 

each pixel. 

3.2. Point Spread Evaluation 

The point spread function (PSF) provides a good quantitative way to 

describe how blurry a given scanner is. It also provides a way to correct the 

blurring as shown in Jam [461 and many other image processing texts. 

Mathematically modelling the process of scanning requires first that the 

optical density of a point on the paper being scanned be represented by the 

function f(x, y). The scanning process distorts this function f and provides a 

raster scan represented by the function g(x, y). Added to the image are the 

distortion caused by the imaging system, designated by the function H, and 

some noise, 17(x, y). This set of equations is represented by the block diagram 

in figure 3.1. 

This is a common image degradation model (Gonzalez and Wintz describe 
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noise 

FIGURE 3.1. Scanning distortion model 

it well [381) that is described mathematically as 

g(x,y)Hf(x,y)+q(x,y) (5) 

where H is an undetermined function operator that represents distortions 

caused by the imaging system. So H operates on a function that describes 

one image and returns a different function that describes the distorted image. 

Given that the image is captured using a CCD camera in controlled 

lighting conditions, it can be assumed that 

(6) 

and that the distortion is linear, so that for any functions fi and f2 it holds that 

H[kifi(x,y) + k2f2(x,y)] = kiHfi(x,y) + k2Hf2(x,y). (7) 

Assuming as well that the distortion is the same in all areas of the image, H is 

shift invariant. This means that given 

g(x,y) = Hf(x,y) (8) 
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then 

Hf(x—o,y—B)=g(x—a,y—/3). (9) 

That this distortion is the same in all areas of the image may not always be a 

fair assumption, but it is generally reasonably accurate. 

From the equations and assumptions described above, a method like 

Gonzalez and Wintz's [38, P. 207] for approximating H for a given scanner can 

be derived. Express f(x, y) in the form 

0000 

f(x,y) =Jf f(a,13)8(x - o,y - 13)do.df3 (10) 
-00-00 

where S(x, y) is the two dimensional Dirac delta function. Therefore 

0000 

g(x,y) = HJJ f(a,/3)5(x - a,y - f3)dcid/3. (11) 
-00-00 

Assuming that the additive property is valid for this integral (the proof that 

this is the case is given by Niemann [83, p. 53]), we find that 

0000 

g(x,y) =ff Hf(a,f3)8(x - a,y - /9)dad13, (12) 
-00-00 

but with the linearity property of H and the fact that f(a, ) is shift invariant, 

it follows that 

0000 

g(x,y) =JJ f(a,/3)HS(x - a,y - )dad. (13) 
00-00 

Now define h(x, y) to be the impulse response of H, so that 

h(x,y) = HS(x,y). (14) 
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But since H is shift invariant, meaning that 

h(x—a,y—/3)=H6(x—a,y—/3), (15) 

and 

0000 

g(x,y) =ff f(a,13)h(x - a,y —/3)dad/3, (16) 
00-00 

g is the convolution of f and h. Here h is the point spread function (PSF). It 

determines how much the original f is smeared when the image g is produced: 

the larger the PSF, the greater the smearing. 

Given the above definition of the PSF, an approximate measure of the 

PSF for a given scanner can be made from a suitable test image. A few assump-

tions about the PSF are made: 

• The PSF is symmetrical 

This assumption only means that the distortion would remain unchanged 

if the image being scanned were mirrored right to left. This assumption 

is reasonable because the construction of scanners is symmetrical; there 

is no reason for a right to left scan to differ from a left to right one. 

• The volume of the PSF is 1, so that 

0000 

J f h(x)dxdy = 1. (17) 

This assumption ensures that the grayscale value of a constant image 

is not changed by the distortion except near the edges. It really just 

amounts to having a gray scaling factor. 

The following work derives a method for approximating the PSF from the 

values of scanning a particular test image. First it is derived for a continuous 
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space. Then an analogous derivation is done for a discrete space. 

Consider a test image whose left half is completely black and whose 

right half is completely white, and consider also that where the regions meet 

there is a sharp transition from black to white. The gray values of the scanned 

test image are scaled so that black is —1, white is 1, and the line occurs at 

x = 0. Because the image is vertically uniform, the convolution in the vertical 

direction is irrelevant. The problem is reduced to a one dimensional one. 

The image distortion model is 

00 

g(x) =J f(a)h(a - x)da, (18) 
-00 

where g(x) is the values scanned from the test image. From the construction of 

the test image, 

f(){ 1 ; x>0 
—1 ; 

Now g(x) can be rewritten as 

0 00 

(19) 

g(x) = f f(a)h(a - x)da + J f(a)h(a - x)da. (20) 
-00 0 

By the definition of f(x) it becomes 

0 00 

g()=— J h(a— x)da +Jf(a)h(a — x)da. (21) 
-00 0 

Using a change of variable to shift by x we get 

g() = _fh(a)da+Jf(a)h(a)da. (22) 
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Since h is symmetrical (i.e. since h(x) = 

00 

g(x) = -f h(c)da +f f(a)h(a)da. 
This can be rewritten as 

and, as h is symmetrical, 

(23) 

g(x) =f h(a)da, (24) 

g(x) = 2fh(a)da. 

So, by the fundamental theorem of calculus 

d 
(x) dxg(x) 2 

(25) 

(26) 

This last equation provides a method for approximating the PSF from 

the scan of the test document. 

An analogous argument can be made for discrete spaces, in which g, f, 

and h are raster images instead of continuous functions. The distortion model 

becomes 

00 

g(x) = E  h(i - x)f(i). (27) 

These lines are rewritten using the definition of f, yielding 

0 00 

g(x)=— E h(i —x)+>  h(i — x). (28) 

This is shifting to get that 

i=0 

—x co 

g(x) = - h(i) + E h(i). (29) 
2-00 i—X 
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Since h is symmetrical it holds that 

thus 

Since h is symmetrical, 

g(x) 00 
- = h(i) + 

g(x) = E h(i). 
i=-x 

g(x) = 2>h(i). 

The difference between two consecutive points can be written as 

g(x + 1) - g(x) = 2(E h(i) - h(i)). 
i=O i=O 

Combining the ranges of the summations gives 

which simplifies to 

This is rewritten as 

which simplifies to 

g(x+1)—g(x)=2( 
i=x+1 

(30) 

(31) 

(32) 

(33) 

(34) 

g(x + 1) - g(x) = 2h(x + 1). (35) 

g(x+ l)—g(x) = h(+ 1), 
2 

h(x)g(x)g(xl)  
2 

This final equation provides a way to approximate h from the scan data g. 

(36) 

(37) 
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3.2.1. Measurements. To estimate the PSF of a scanner, first a large black 

and white image was photographed onto high contrast 35mm film to make 

the test image. The edge of this film was examined under a microscope at a 

magnification of 30X and found to be very sharp. Because of the film's high 

contrast, the black and white regions had uniform consistencies. 

This test image was scanned on two scanners, and the pixel values near 

the edge were recorded. The image was then rotated 90° and the scanning 

performed again to get an approximation for h in the other axis. 

3.2.2. Results. Table 3.1 describes the pixel values near the edge of the scan 

on one scanner. From these values, the values of the PSF function for positive 

x were calculated and recorded in table 3.2. 

Scanner Pixel Values 

Microtek 300zs 4 5 5 15 42 53 59 60 61 61 62 

TABLE 3.1. Edge values from scanner 

Using the scan data as g(x) and equation 37 values for h(x) are computed 

and shown in table 3.2. 

Scanner PSF Function Values 

Microtek 300zs 27 11 6 1 1 0 0 

TABLE 3.2. Point spread function 

The plot of the point spread function data in table 3.2 is shown in fig-
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ure 3.2. The standard deviation of this PSF is 1.37 pixels or 5/1000 of an inch. 

2000 

1000 

0 .00 

-6.00 
o••l 

-2.00 6(X) -4.00 0.00 2.00 4.00 

FIGURE 3.2. Point spread function 

FIGURE 3.3. Gaussian approximation of PSF 

The Gaussian that approximates this curve (same mean and standard 

deviation) is shown in figure 3.3. From this graph it becomes apparent that 

the PSF for this scanner is not terribly close to a Gaussian but has a shape 

reminiscent of one. Gaussians are often used to approximate the PSF function 

of a scanner, but a Moffet function may be a better model for the PSF. The 

Moffet function is 

1(x) = io ( 2\ 
pu) 

(38) 

The parameters 1, p and /3 give more degrees of freedom than a Gaussian so 

that the model can more accurately describe the measured PSF data. 
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If the PSF is narrow (has a small standard deviation), an image will not 

be blurred as much by the scanner. 

3.3. Speed 

A scanner's speed in scanning a file and saving it to disk is most often 

lost at a bottleneck either as the data is transferred from the scanner to the 

workstation controlling it or as the workstation transfers the data to disk. A 

useful measure of speed is the bits of useful information acquired per second. 

This measurement is defined as the area scanned (in square inches), divided 

by the variance of the point spread function (also in square inches), multiplied 

by the number of useful bits of information obtained per pixel per unit of time. 

This measurement of speed makes it easier to compare scanners that produce 

data of different qualities. 

3.4. Comparison of Scanners 

The information in table 3.3 provides a way to evaluate the probable ef-

fectiveness of these scanners for different purposes. The scanners are described 

in terms of PSF, pixel resolution, speed, maximum document size, transport 

type, light source type, and price. A scanner for engineering diagrams must be 

able to handle E size drawings and have a PSF of less than 10/1000 of an inch, 

so that lines close together can be easily distinguished. Such a scanner must 

also have information per pixel greater than four bits for a very clean document 

and greater than six bits for blueprints or dirty paper. 

In table 3.3, Size is the largest size of document that can be scanned, in 

inches. The ANA Tech scanner has an 81 inch length limit, even though it is 
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a roller scanner, because it has a 65534 scan line limit. The units for PSF are 

1/1000 of an inch. Pixel resolution is given in bits. Speed is in kbps (kilobits 

per second) of information. The speed given for the ANA Tech scanner was 

not measured but was taken from the manufacturer's specifications. Prices are 

constantly dropping. The prices quoted are the approximate list price in the 

summer of 1992; actual prices are likely lower. 

Scanner Microtek Ana Tech 

300ZS 4080 

PSF 

Pixel Res 

Speed 

Size 

Transport 

Light 

Price 

5.00 1.26 

6.13 6.43 

160 2750 

8.5x14 40x81 

Flatbed Roller 

Neon Halogen 

$1900 $45,100 

TABLE 3.3. Comparison of two scanners 
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CHAPTER 4 

Preprocessing 

Preprocessing describes steps that can be taken to clean up the scan after it 

comes off the scanner but before it is passed to the vectorization software. 

4.L Thresholding 

The thresholding step converts the grayscale image into a black and 

white one. The simplest thresholding method simply picks a gray level and 

calls every pixel darker than this level black and every lighter pixel white. This 

procedure works well for many drawings, and most scanners can do it through 

their hardware. Another thresholding technique, in which the image is dithered 

to yield a grayscale—like appearance, are unsuitable when vectorization is the 

goal. This is because gray lines get turned into black and white dots, which 

defeats the whole purpose of thresholding as far as vectorization is concerned: 

thresholding must clean up the image and get rid of as many unaccountable 

dots as possible. 

Excellent coverage of techniques for thresholding line drawing type doc-

uments such as engineering diagrams are provided by Taxt et al, Sahoo et al, 

and Fu and Miii. Taxt et aldescribe several algorithms that produce excel-

lent results but require interactive input [117]. Fu and Miii [341 take a very 
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theoretical statistical approach to the problem, while Sahoo et al [102] take a 

statistical approach to derive very practical algorithms. 

4.1.t Histogram Evaluation. One of the simplest methods for thresholding 

an image interactively is to have the user look at the histogram of its pixel 

values to pick a fixed thresholding level for the whole image. Histograms are 

traditionally displayed on linear graphs, but histograms of line drawings are 

better displayed on log—linear graphs. The reason is that line drawings are 

usually predominantly white with a small percentage of black pixels that form 

the lines. Their histograms are bimodal and skewed so heavily that they can 

barely be seen on linear—linear graphs. 

The histogram for a typical engineering diagram is shown in figure 4.1. 

A good thresholding value for the scan of this diagram would be the value 

FIGURE 4.1. Histogram of engineering diagram 

at the bottom of the valley between the two peaks - about 75 for this image. 

The histogram evaluation method is an interactive but simple way to select 

thresholds for an image. It works well for scans with sharp lines taken off 
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clean paper. 

The major problem with the histogram evaluation thresholding method 

is that it thresholds the whole image with the same value, which is fine as 

long as the contrast, the cleanness of the background, and so on are uniform 

throughout the image. If, however, the image has a region in which the lines are 

very faint as well as a large coffee stain that darkens the background in a certain 

area, histogram evaluation thresholding becomes inadequate. If the lines in 

the faint section are not as dark as the background in the stained section, it 

will be impossible to find a single value that will result in a good thresholding. 

The stainea section requires a thresholding value different from the one used 

in the light section. Using different thresholding values for different parts of 

the image is called adaptive thresholding. 

4.L2. Adaptive Thresholding. Adaptive methods generally build a local 

histogram based on nearby pixels for each individual pixel and then threshold 

the pixel. Such adaptive methods can be flexible and sophisticated enough to 

incorporate other information known about the diagram into their calculation 

of the thresholding level. For example, the fact that engineering drawings 

are mostly white with a few black lines but no large black areas can easily be 

incorporated into these adaptive schemes and used as a posteriori probabili-

ties for constructing Bayesian classifiers to separate black from white. Taxt 

et alpresent some of these adaptive thresholding methods [1171. They pro-

vide an excellent way to use knowledge about classes of images to assist in 

thresholding. 

A method based on edge detection and modelling the illumination in the 
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image is presented by Parker, Jennings, and Salkauskas [89]. First, a Shen— 

Castan edge detector [108] is run over the image to find edge pixels. These 

edge pixels represent a desired threshold for the part of the image near each 

edge pixel. All the edge pixels are used as data points to fit a surface across 

the image that represents the thresholding value at each location. The surface 

is fit using a moving least squares method. The surface ends up modelling 

the lighting gradient across the image, and the image is finally thresholded by 

looking to see if the value of any given pixel is above or below the illumination 

surface at that location. Although good results can often be obtained from 

poor quality input, computation times are very long. Parker's algorithm [87] 

describes a method that computes faster and provides thresholding that is not 

quite as good. 

4.2. Noise Removal 

Images scanned by CCD scanners are often noisy, having little black and 

white speckles that make an image look as if salt and pepper had been sprinkled 

on it. This sort of noise is often seen on photocopies made by older copiers. 

the cause of this phenomenon, called blooming, has yet to be convincingly 

set forth. The possibility that blooming noise is thresholded Poisson noise 

from the CCD does not quite fit the data. One quantum related theory has it 

that blooming occurs because although the CCD sensors are usually accurate 

they are occasionally way off, causing the occasional pixel value in a scan to 

differ significantly from the pixel values around it. The other theory is that 

when monochromatic light is scattered from a surface whose roughness is of 

the order of the wavelength of the light, interference among the light waves 
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produces nodal patterns that leave bright and dark spots here and there. Jam 

presents this explanation [46, p. 313]. 

Some of the most sophisticated algorithms for speckle removal have been 

developed for Synthetic Aperture Radar (SAR). Complex methods for speckle 

removal are presented by Jain and Christensen [47], Niemann [83], and Lim 

and Nawab [65]. A simple method for speckle removal that I developed involves 

a modification of a common flood fill algorithm [100, p. 88], [30, p. 450]. It may 

be summarized as follows: 

(1) Start with any white pixel; 

(2) Set this pixel to black; 

(3) Recursively set all this pixel's white neighbouring pixels to black. 

The algorithm proceeds until it either runs out of white neighbours, in which 

case it proceeds to the next white speckle to be removed, or until the region 

exceeds the user-specified maximum area for speckles - i.e., until the region 

is determined to be too big to be noise. When this happens, the algorithm 

backtracks, converting the pixels back to white. This algorithm removes small 

white specks (salt noise) but an inverse algorithm that removes black specks 

(pepper noise) can be made by swapping white and black in the algorithm. 

Speckle removal methods that use up less stack space exist, but since these 

areas are small, the amount of stack space used is not usually of consequence. 

The image in figure 4.2 is the thresholded image. It contains small black 

areas. In figure 4.3 these small black areas have been removed by the speckle 

filter. 
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FIGURE 4.2. Image with speckle noise 

FIGURE 4.3. Image after speckle noise removed 



37 

CHAPTER 5 

Erosion Vectorization 

Many current vectorization systems utilize erosion methods (such systems 

are described by Bixier and Sanford [8], Bhaskaran and Flandrena [7], Jen-

nings and Flanagan [491, Johnson and Bird [52], Hoshino et al [42], Kikkawa 

et al [57], Lee et al [62], Musavi et al [771, and Suzuki and Yamada [116]). 

These systems work by thinning the image until all the lines are one pixel wide 

and then chain coding the thinned image, taking the chain codes to represent 

the centres of the lines. The chain codes are then reduced to straight line seg-

ments. This chapter describes the implementation of this type of vectorization 

method. 

5.1. Thinning 

Many different thinning algorithms exist. Thinning takes a raster scan 

with lines several pixels wide and produces a skeleton in which the same 

lines are only one pixel wide. Some of the more innovative or unusual thin-

ning methods are described by Arcelli and Baja [3]; Baruch [5]; Govindan 

and Shivaprasad [391; Hilditch [41]; Jiminez and Navalon [51]; Kwok [59]; Li 

and Suen [64]; Montanan [741; Naccache and Shinghal [78]; O'Gorman [851; 

Pavel [901; Pavlidis [91], [92]; Sinha [111]; Udupa and Murthy [1201; Waka-
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yama [123]; Yu and Tsai [128]; and Mang and Suen [129]. Kwok [59] and 

Smith [113] present surveys of thinning methods. Parker and Jennings give 

a quantitative method for evaluating thinning algorithms and a definition of 

skeleton [88]. A thinning method by Jennings et alprovides a skeleton with 

subpixel level accuracy. The vectors produced by this method have greater pre-

cision than vectors produced from a skeleton thinned to the width of one pixel 

and the skeletons are less affected by noise [50]. 

The thinned products of the various methods differ considerably, and 

each method has a significant impact on the quality of the final vectorization. 

This section describes one of the most commonly used thinning techniques and 

some of the problems that arise with them. 

5.L1. Implementation. Mang and Suen's [1291 thinning method is used 

here, because it is more commonly used than any other method in raster—to— 

vector conversion systems and because its strengths and weaknesses tend to 

characterize most thinning algorithms. Gonzalez and Wintz provide an excel-

lent overview of this thinning technique - generally referred to as an erosion 

algorithm - and supply helpful details about implementation [38,. pp. 398-404]. 

P9 P2 P3 

P8 P1 P4 

P7 P6 P5 

FIGURE 5.1. Labelling of neighbours 
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This erosion algorithm for thinning requires the definition of some ter-

minology at the outset. The pixels that are neighbours of a particular pixel, 

p1, are labelled p2, p3, ...p9, as shown in figure 5.1. Each pixel is either black or 

white. Black pixels have a pixel value of 1; white pixels have a pixel value of 0. 

The goal at this stage is to erode the black regions so that all that remains is a 

black skeleton. Two functions of a pixel are defined: N(pi) = P2 +P3 + +P8 +9 

and S(p1) = Number of 0 to 1 transitions in the sequence P2, P3,. . . ,p9, P2. From 

these two functions, two conditions are defined for a given pixel. Condition one 

of a pixel C1 (p') is true only if all of the following are true: 

and 

2 < N(pi) ≤ 6, (39) 

S(pi) = 1, (40) 

P2P4P6 = 0, (41) 

P4P6P8 = 0. (42) 

Condition two of a pixel C2 (P1) is true only if all of the following are true: 

2 ≤ N(pi) ≤ 6, (43) 

S(pi) = 1, (44) 

P2P4P8 = 0, (45) 
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and 

P2P6P8 = 0- 46) 

The algorithm now has two steps. Step one involves checking all the pixels in 

the image and marking each pixel for which C1 is true. At the end of step one 

all the marked pixels are deleted by having their pixel values set to 0. Step two 

is the same as step one, except that C2 is checked instead of C1. Steps one and 

two are repeated in order until there is an iteration in either step one or two in 

which no pixels are marked. 

When the algorithm terminates, a thinned skeleton is all that remains 

of the image. The image of the letter H in figure 5.2 has been thinned using 

this algorithm, and the result is shown in figure 5.3. 

H 
FIGURE 5.2. Image of an H 

A small problem with this thinning algorithm, like many others, is that 

it does not always give unitary skeletons. The number of 8—connected black 

neighbours a pixel has determines what kind of a pixel it is. On a unitary 

skeleton, one black neighbour means the pixel is an end point, .two makes it 

part of a line, and more than two makes it an intersection. A nonunitary 

skeleton is one in which some points that are not intersections have N(p1) = 3 
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FIGURE 5.3. Image of a thinned H 

(see figure 5.7). This confuses the part of the chain coding that determines when 

a pixel is part of a line, when it is an end point, and when it is an intersection. 

Abdulla et alpropose an algorithm to make the image unitary [1]. It is run 

as the final stage of thinning, after the Mang and Suen algorithm. Pavlidis 

supplies a similar algorithm to solve this problem [91, p. 210-212] that does 

not work quite as well but does not require an extra stage of processing. 

An image more complex than the letter H appears in figure 5.4. The 

thinned version of it is shown in figure 5.5. To make a comparison of the 

images easier, they are overlaid in figure 5.6. 

A small section along one of the thinned lines is magnified in figure 5.7 to 

show that several of the pixels along the centre line are not unitary. Although 

they are connected to three other pixels they are not intersection points. 
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FIGURE 5.4. Image to be thinned 

FIGURE 5.5. Thinned image 



Original with thinned image overlaid 
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5.2. Chain Coding 

Once a line has been thinned to a width of one pixel it can be chain coded. 

The next step in vectorization, chain coding is the process of tracing a line one 

pixel wide by starting at an end pixel, finding the next pixel from directional 

information, and continuing in this way until the last pixel in the line is found. 

Representing a line by chain coding was first described by Freeman [31] [32] and 

later by Freeman and Davis [331. Others, including Gonzalez and Wintz [38, 

pp. 392-398], have since expanded upon this idea. 

As mentioned in section 5.1.1, a black pixel has a pixel value of 1, while 

a white pixel has a value of 0 and the N(pi) is defined as 

N(pi) = P2 +P3 +•• +P8 +P9 (47) 

where pi, P2, and so on are either 1 or 0. A pixel in a line has N(p1) = 2 (i.e., 

it has two neighbours). Pixels that represent end or intersection points have 

N(pi) 54 2. If N(pi) < 2 the pixel is an intersection point, and if N(pi) = lit is 

an end point. If N(pi) = 0, it is an isolated bit of noise that should be deleted. 

Chain coding first finds an end point (where N(pi) = 1) and then finds the 

black pixel next to the end. The algorithm uses a single number to describe the 

direction in which it moved. The eight possible directions are specified using , 

the numbers shown in figure 5.8. The string of these numbers that describes 

the line is called the chain code. 

When the algorithm finds an end point or an intersection for this line, 

the chain code for the line is output and all the pixels that are part of it are 

deleted. The chain coding process is repeated until all the black pixels on the 

image are deleted. A problem with this system is that it never chain codes 
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2 

4 

6 

FIGURE 5.8. Chain code directions 

figures, like the letter 0, that have been thinned down to one contour and have 

neither a starting point where the chain coding can begin nor an intersection 

or an end point where the system can stop. A solution to this problem lies in 

first chain coding the whole image in the steps described above and then doing 

an extra pass over the whole image and finding any black pixels that have not 

yet been deleted, which are assumed to be part of closed loops. Chain coding 

can begin anywhere on the loop. 

FIGURE 5.9. Simple image 

An image that has been eroded and then chain coded is shown in figure 
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5.9. The chain codes for this image are: 
2 2 000000011111 

2 9 000000000000 

14 11 555544444444 

5.3. Chain Reduction 

This stage seeks to identify vectors in the chain codes. It is the final 

step in the erosion vectorization method of raster—to—vector conversion. In it, 

the chain codes are examined and long vectors that closely represent the chain 

codes are formed. Rosin and West describe this part of the erosion vectorization 

technique [1011. Algorithms almost identical to the one described here are used 

by Lowe [67] and Jam [46]. 

The algorithm presented here (Jam's) allows the user to specify the max-

imum permissible deviation of the vectors from the chain codes they represent. 

It provides results that use of close to the minimum possible number of vectors. 

This algorithm first takes a chain code and approximates it as a single line 

FIGURE 5.10. Vector approximation 

running between the two end points. This line is designated AB in figure 5.10. 
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The point on the chain code farthest from line AB is found and labelled C. If 

the distance from line AB to point C is less than the maximum deviation the 

user has specified, the vector is a valid approximation of the chain code. If the 

distance is greater than the maximum allowable deviation, the algorithm tries 

to approximate the chain codes from A to C with the line AC and the chain 

codes from C to B with the line CB. This approximation continues recursively, 

comparing the the maximum allowable deviation with the distance between 

each point and line until the distances between these points and lines are less 

than the largest deviation allowed. All distance measurements in this algo-

rithm use Euclidean distances. The second approximation is shown in figure 

5.11. 

FIGuRE 5.11. Second vector approximation 

If the user had specified a maximum deviation of 2 pixels, the line CB 

would be close enough but AC would need to be further subdivided into the the 

configuration shown in figure 5.12. At this point all the vectors lie within the 

specified deviation, so the algorithm terminates, having identified three vectors 

to represent the chain code. This method was compared to the classic split and 
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FIGURE 5.12. Third vector approximation 

merge algorithm, which does something similar in the split step but then tries 

to merge adjacent segments into one segment [40, p. 1051. The split and merge 

produced minutely different, very marginally better results, but it took longer 

to run. 

5.3.1. Distance Point to Line Segment. Since this algorithm spends most 

of its time computing the distance from a point to a line, it is worthwhile to 

optimize the speed of this calculation. One method is given by Morrison [76]. 

A reasonably efficient algorithm is given by Bowyer and Woodwark [13, p. 471, 

but it requires that floating point numbers be used, which slows it down con-

siderably. In this section a slightly faster integer algorithm I developed is 

described. 

This algorithm finds the distance squared, d3, from a point P to a line 

segment defined by the end points A and B (see figure 5.13). 

V=A —P (48) 

V1=B—A (49) 



49 

(50) 

t= —V.Vj (51.) 

td = min(max(t, 0), 1) (52) 

F = V + (tdV)() (53) 

d3 =F.F 

FIGURE 5.13. Distance from point to line 

(54) 

It is acceptable that this algorithm return the square of the distance 

(thus allowing the avoidance of the square root function), because the reason 

for obtaining this distance is to compare it to an error distance. An effective 

comparison can be made between the square of the error distance and the 

square of the distance between the point and the line segment. If the magnitude 

of V2, and V in the algorithm can be represented in b bits, the algorithm needs 
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vector elements to be represented in 3b+ 1 bits. An implication of this statement 

is that if the points A, B and P are within about 1000 units of one another, 

the algorithiii can run using 32 bit integers, which, on current workstations, 

provides a dramatic speed gain over using floating point numbers. If V > 1000 

or V, > 1000 the algorithm must switch to floats. 

FIGURE 5.14. Digital ellipse 

5.3.2. Analysis. Chain reduction does introduce some error. In figure 5.14 

an ellipse is turned into a digital ellipse. The gray square represents the pixels 

in the digital ellipse. The original ellipse is black. The digital ellipse is chain 

coded as shown in figure 5.15. In figure 5.16 the chain codes are represented by 

eight vectors. In figure 5.17 the original ellipse and the vectors that represent 

it are drawn together. The vectors do not coincide exactly with the ellipse. 

The fewer the vectors used to represent the ellipse, the greater the deviation 

distance. 

This algorithm for reducing chain codes into vector lists is not optimal, 

in that it fails to reduce the chain code to the minimum number of vectors 

required to represent the chain code within the user determined error limit. In 

the optimal algorithm, most of the lines would be near their maximum error 
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FIGURE 5.15. Chain coded 

Chain 

Reduced 
Chain 

FIGURE 5.16. Vectors and chain code 

FIGURE 5.17. Vectors and original 

level, and the minimum number of lines would be supplied. Such a system 

is presented by Wall and Danielsson [124], Sklansky and Gonzalez [1121, and 
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Montanan [75]. The optimal algorithm tends to make the vectors bend a short 

distance from the actual corners. The chain reduction algorithm presented 

here, although not optimal, tends to bend the vectors at the corners, producing 

nicer results. The vectors bend at corners because corners are usually the 

points farthest from other corners. 

The majority of the computation time in a system such as this goes into 

the thinning stage. In the few test cases tried, this stage often took over 95 

percent of the run time. Many thinning algorithms, such as Kwok's [59], were 

developed to produce results similar to Zhang and Suen's but to run much 

faster. A different approach was taken by Molaro, Jennings, and Parker in 

their distributed thinning algorithm [73]. It runs on several networked UNIX 

workstations at once, to achieve better performance. 

5.4. Results 

A section of an image was taken through all the steps described in this 

chapter (first thinned, then chain coded, then vectorized) to produce a vectorized 

image. The original image appears in figure 5.18. Vectorization and reduction 

were done with error values of both 3 and 10 for the sake of comparison. The 

results are shown in figures 5.19 and 5.20. 

The reduction error of 10 is too large and misrepresents the image. Much 

better vectorization occurs when the reduction error is 3 pixels. The long curves 

of the outside circle come out well. Most of the long, isolated lines emerge 

properly, but the lines near intersections are often messed up. The circle inside 

the hexagon is almost completely destroyed. 
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FIGURE 5.18. Binary image 

FIGURE 5.19. Reduction with error = 10 
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FIGURE 5.20. Reduction with error = 3 

FIGURE 5.21. Reduction with error = 3 overlaid on original 
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5.5. Problems 

This sort of system makes several types of errors. 

5.5.1. Line Fuzz. Rough edged lines on scans cause serious problems. The 

thinning algorithm takes the points on the rough edge to be different lines, and 

the result is small lines running from the centre of the true line out to where 

the peaks on the rough edge were. The final vectorization shows lots of short 

lines that look like fuzz, as shown in figure 5.22. 

FIGURE 5.22. Fuzz on line 

5.5.2. End Point Artifacts. The thinning process often introduces a great 

deal of noise around the ends of lines, as shown in figure 5.23, which then 

affects the vectorization of the line. In figure 5.23, the right end of the line 

has been bent upward, while the left end has been split, one line veering up 

and the other down. This type of distortion is a particular problem because 

higher level processes often depend on the directions of the ends of lines. For 
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FIGURE 5.23. Line end noise 

example, a system that found dashed lines would identify very short lines all 

pointing in the same direction as a single dashed line; the end point directional 

information would be crucial. Split ends and end deviations mess up directional 

information just where it is needed most. 

5.5.3. Intersection Artifacts. Just about all thinning processes distort the 

image near intersections. There are two major types of intersection distortion, 

FIGURE 5.24. Intersection T displacement 

T displacement and X destruction. T displacement distortion appears in fig-

ure 5.24. The horizontal line is drawn toward the line that intersects with it: 

T starts to look like Y The second major type of distortion is X destruction, 

shown in figure 5.25. Two lines that intersect at a small angle are incorrectly 

vectorized as two lines merging into one and then splitting into two again. This 

type of distortion is often called "necking." 
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FIGURE 5.25. Intersection X destruction 

5.5.4. Problems of Scale. The scale problem is of fundamental importance 

in vectorization. Consider a line with a bump in it, as in figure 5.26. Basically, 

a very small bump should be ignored and the image should be vectorizbd as 

a single line. A large bump should be vectorized as another line touching the 

first. It is unclear what should be done with a medium sized bump. A line with 

a bump might be the silhouette of a submarine, or it might be an ordinary line. 

A human would use knowledge about the rest of the image to determine how 

to interpret such a bump. 

5.5.5. Inside Bias. One of the major problems with the chain reduction al-

gorithm is that it has an inside bias, meaning that the vectors approximating 

the curve tend to lie along the inside of the curve. In figure 5.27, the dotted 

line approximates a solid curve. Because of the way the algorithm bends the 

vectors, the vector approximations to the curves always lie on the inside of the 

curves in question. The inside biasing error appears in figure 5.21 with the 

vectors representing the outside circle. 
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FIGURE 5.26. Problems of scale 
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FIGURE 5.27. Inside bias 
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CHAPTER 6 

Vision, Knowledge, and Vectorization 

The vectorization of maps and engineering diagrams is a difficult problem. This 

chapter examines whether or not the vectorization of diagrams is theoretically 

possible and what knowledge and techniques might prove useful. This chapter 

also glances at how knowledge of the human vision system might help solve 

the problem. It ends with a basis upon which a machine vision system may be 

implemented. 

The first step is to define the problem precisely. Since there are theoret-

ically a nearly infinite number of features that could appear on a drawing, this 

thesis restricts the domain to engineering drawings containing only circles and 

lines. Although being able to vectorize circles and lines will not solve larger 

vectorization problems like those posed by optical character recognition, it will 

suffice for engineering diagrams. 

6.L Inverse Function Theory 

The first question to consider is whether or not vectorization is theoret-

ically possible. Consider that graphics is the process of turning a model into 

an image: vectorization is "antigraphics," the inversion of the rendering equa-

tions. Vectorization takes an image that might have been produced by some 
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rendering and finds a model that could be rendered to get that same image. 

This conception of vectorization can be formalized. The method involves 

considering as a model (M) the CAD file that generates a drawing. The plotting 

of this file can be considered a function F that generates a raster image I such 

that 

I = F(M). (55) 

The problem of vectorization thus becomes one of finding an inverse to the 

function F and computing 

M = F-1 (1). (56) 

F is not isomorphic, because whether the model contains one long line or two 

collinear shorter lines, the image I will be the same. F in general is therefore 

not properly invertible, but an approximation, 

F;' F' (57) 

does exist for a given I such that 

(58) 

As well, let 

then 

Ma = F'(I) 

F(Ma) = I. 

•(59) 

(60) 
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The approximation, Al, to the model, Al, is therefore the best vectorization 

possible given the information in I. 

Domain of F 

Models that 
generate the 
image I 

All possible models 

Range of F 

All possible images 

Images possible from 
some model 

FIGURE 6.1. Relation of model and image spaces 

This set of relationships is shown in figure 6. 1, which shows that while 

finding the exact model that produced the image may be impossible, recovering 

a model that would produce the same image is a distinct possibility. 

6.LL Size of Search Space. Since finding a good model is possible, the 

next question is whether or not it is practical. The function F(A10) = I could 

be inverted through an exhaustive search of the model space. To calculate 

an approximate size of this space, we first assume that the diagram is an E 

size (36x48-inch) engineering drawing scanned at 400 dpi that has fewer than 

10,000 drawing elements on it and has no lines wider than 1/8 of an inch. 
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The model space is for a two dimensional model of a drawing, and it does not 

matter that the drawing may represent a three dimensional model. We can also 

assume that ihe image is wider than it is high without loss of generality. Now 

we define h to be the height of the image in inches, w to the width in inches, 

d to be the dpi, and n to be the number of elements. The thickest line on the 

image will have a thickness of t in inches. For two lines at different angles to be 

rendered differently, they must have slopes that make the end points differ by 

at least half a pixel. Since the maximum line length is dw pixels, the minimum 

angle change must cause an end point change of at least half a pixel. To make 

the calculation of these values possible, the direction of a line must be stored 

to an accuracy of 

1/2 

dw 

radians. This level of accuracy means that there are 

27r 
4irdw 

dw 

(61) 

(62) 

possible different directions for each line. The largest circle on the drawing 

can have a maximum radius of w/2 inches and must be stored to an accuracy 

of half a pixel, together with its positive/negative curvature indication. There 

are, accordingly, 2dw different radii. The length of a shape needs to be stored 

to an accuracy of one pixel. If it is an are, the longest length of the arc will be 

irw inches, so that there are wdii- different lengths for shapes. As there are n 

shapes, the total size of the search space is about 

wdhd dt 4irdw 2dw wclir n (63) 
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which reduces to 

87r2w4hd6tn (64) 

or, for this example, about 1029 models. For each model we would want to 

render and then compare the images that have wldd pixels, which amounts 

to about 1037 comparisons. Making so many comparisons is clearly impossible 

using current computer technology and will probably remain impossible for the 

foreseeable future. 

Another way to invert the rendering equations is to use simulated an-

nealing. The problem is posed as "minimize the value of 

F(M) - II (65) 

by varying the vector Mr," where the vector describes a model that can represent 

every possible drawing. M is a particular model in the space of all possible 

models. This function theoretically finds the model that is a good fit the image. 

This function cannot be used as a technique, however, because M has too many 

dimensions [191. Simulated annealing can only solve thousands of variables 

when the the objective function is locally very smooth and can be evaluated 

very rapidly. 

Yet another way to consider inverting the rendering equations is to em-

ploy the genetic algorithm metaphor [231, which attempts to make this inver-

sion using a rough interpretation of the theory of evolution. The metaphor 

posits that creatures are trying to survive and reproduce and thus to evolve. 

There are major stages of evolution which differ in the level of sophistication 

attained. These stages - which are interpreted, for the purposes of engineering 
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diagrams as points, lines, and so on - correspond to species. In each species 

there are those that are weak - small areas - and those that are strong - 

large areas. Lines or regions (creatures) that are too small starve and disap-

pear. Large entities reproduce and form similar creatures that attempt to grow 

larger. 

The DNA passed from one generation to the next is the vector 

(x, y, curve, width, direction, length) (66) 

This vector describes any arc or line segment. The coordinates x, y represent the 

location of the centre of the segment. The direction of the creature is direction, 

and width and length are self explanatory . The element curve is 1/radius of 

the curve. It is positive if the curve bends right, negative if the curve bends 

left, and zero for a straight line. Any creature can therefore be represented 

conveniently by a seven dimensional vector. This method has the same sort of 

problems as simulated annealing in that it is not computationally feasible with 

this many degrees of freedom. 

6.2. Vision 

In Theory of Edge Detection , Marr comments that "vision is the process 

of discovering from images what is present in the world and where it is" [70]. 

Finding out what is on a diagram by brute search techniques is prohibitive, 

as observed above. Various animals' vision systems, however, provide helpful 

hints about improving machine vision. The study of human vision has already 

contributed much to this area of knowledge [70], [6]. Figure 6.2 is a greatly sim-

plified sketch of the retina. This chapter examines how images travel through 
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the optical systems of humans and certain animals and how information is 

obtained at different stages before the image gets to the brain. At each stage, 

information that seems to yield a hint for machine vision is examined. 

6.2.1. Retina. In human vision, light enters the eye and is focused by the 

optics onto the retina. In the back of the retina the photoreceptors in the rods 

and the cones turn the light energy into neural signals. These signals are 

fed into the bipolar, amacrine and horizontal cells that feed into the retinal 

ganglion cells (see figure 6.2). 

Optic Nerve 

Ganglion Cells 

Bipolar Cells 

Rods & Cones 

Pigments 
OóO8 O 
U!JIJUDD 

Light 

FIGURE 6.2. Sketch of retinal cells 

One clue to improving conversion systems appears when the retina in 

examined. The human vision system arranges the sensors in the retina in a 

roughly hexagonal pattern with smaller hexagons towards the centre of the 

retina [20]. This is probably better than the rectangular arrays used in most 

image processing. Hexagonal arrays are the densest way to pack circles on a 

plane [14]. Deutsch has found that thinning problems seem easier to solve on 

hexagonal arrays than on rectangular ones [24]. 



66 

6.2.2. Ganglion Cells. The ganglion cells are the cells in the retina that are 

triggered by light and start the signal that is transmitted to the brain. Each 

ganglion has around it a more or less circular area called a receptive field. When 

light falls in the receptive field, the ganglion is affected. The receptive field for 

retinal ganglia for warm blooded vertebrates has at least one characteristic 

that is thought—provoking for these purposes. Kuffier's research indicates that 

light stimulation in the centre of the receptive field for a cell tends to affect 

the cell in a way exactly opposite to the way stimulation near the edge of the 

receptive field does. If light in the centre of the field causes the neuron to fire 

and be active, then light near the edge will suppress the tendency to fire [58]. 

FIGURE 6.3. DOG function 

More recent work has shown that the response of some retinal neurons 

is directly related to the summation over the receptive field of the stimulation 

scaled by a factor that is dependent on the distance of the stimulation from the 

centre of the receptive field. The scale factor versus the distance is a transfer 

function that closely approximates the difference of two Gaussian functions 

shown in figure 6.3. A model for the response of the neuron based on these 
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observations was proposed by Rodieck [99] and is often called the Difference Of 

Gaussians (DOG) model. This DOG model accounts for the visual phenomena 

of Mach bands and the Hermann grid, described below (how the DOG function 

accounts for both of these phenomena is described in detail by Sekuler and 

Blake [107, pp. 71-75]). 

FIGURE 6.4. Hermann grid phenomenon 

The Hermann grid (see figure 6.4) was described in the nineteenth cen-

tury by Ludimar Hermann. The noteworthy feature of the Hermann grid is 

that a person who stares at it sees grey circles at the corners of the black boxes. 

This effect can be explained by the DOG model of the frequency response curve 

of the human visual system. Consider the receptive field of a single ganglion. 

The centre is activated by light reflected off the bright white lines, while the 

edges of the receptive field are activated by dark areas. When the receptive field 

is centered on a grid line away from an intersection, not only does the white 
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grid line stimulate the cell but the black borders on the edge of the receptive 

field also stimulate the field and appear very white. When a receptive field 

centres on a grid intersection, the larger amount of white than black immedi-

ately surrounding the intersection falls on the outer part of the receptive field 

and inhibits the cell slightly, making the viewer see the white intersections as 

darker than the grid lines. Ultimately the grid intersections fool the perceptual 

system into seeing them as gray, particularly if they do not fall on the centre of 

the visual field where the receptive areas are smaller. 

The DOG function is one explanation for why ganglion cells respond more 

to edges and bars than to uniformly lit surfaces. Changes in light intensity, 

such as those that occur at edges, may be more important for vision than the 

actual intensity values. Conversion systems can likely learn almost all of what 

they need to know by looking only at edges. 

6.2.3. Lateral Geniculate Nucleus. The retinal ganglion cells are connec-

ted by the optic nerve to the lateral geniculate nucleus (LGN) and superior 

colliculus in the optic lobe in the brain. The LGN senses variations in colour 

and illumination level [107, p. 1071. It responds little to the total amount of 

light falling on the retina. This response characteristic implies that the LGN 

deals mostly with edges. 

6.2.4. Visual Cortex. Experiments by Campbell and Robson were important 

in introducing frequency domain processing into studies of human vision [71, 

p. 187]. One of their important contributions was their multichannel hypoth-

esis, which states that the human vision system contains different kinds of 

neurons, each highly attuned to perceiving bars of a particular width and on-
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entation, and that these neurons provide input information for neurons per-

forming higher level vision functions. These supporting neurons are especially 

sensitive to lines at orientations near the horizontal or vertical [107, P. 1191. 

Usually a particular cell has a sensitivity range somewhat narrower than 15°. 

This orientation response of cells is done in the visual cortex. This fact implies 

that computer vision could be done by having a system recognize rectangles 

at various orientations. Rectangles can likely be recognized using lower level 

information about where the edges of the image are. This is a useful idea that 

is used in the model proposed in this thesis. 

In the visual cortex there is a large "3D array" of cells. Two dimensions 

of this array correspond to what part of the eye is being activated, but each cell 

in the third dimension is activated only when the orientation of the stimulus 

lies within a range appropriate for that cell. Hubel and Wiesel, who discovered 

this and got a Nobel prize for their work in vision in 1981, showed that the 

cells in the cortex are arranged into hypercolumns of cells spcific to different 

orientations. 

The mere fact that so much of the brain is dedicated to determining the 

orientation of visual stimuli lends credence to the idea that the direction of each 

individual "pixel" is very important in vision. The human visual cortex has a 

representation for the image in which one cell activates for each (x—position, y— 

position, direction) triplet. For machine vision, knowing the natural direction 

of a pixel is probably important. 

6.2.5. Gestalt Perception Ideas. The full operation of the visual cortex and 

how the brain makes sense of what is viewed cannot currently be explained 
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from this neural biology point of view, but traditional psychology offers some 

insights'. The basic model of vision employed by Gestalt psychologists has pro-

vided much of the basis for contemporary work and has generated several fun-

damental principles of human perception [107]. These principles are described 

by Lowe [661 as: 

• Proximity 

Objects near one another are grouped together as one perceptual unit. 

• Similarity 

Objects similar in colour, size or orientation are often grouped together. 

• Continuation 

Objects that lie along a smooth path or line are grouped together. 

• Closure 

Curves are completed so that they form a closed region. 

• Symmetry 

Objects that are bilaterally symmetrical in their relative positions are 

grouped together. 

• Familiarity 

Objects that humans are used to seeing together are grouped together. 

All of these principles can be used in implementing a computer vision 

system that links lower level information together to form higher level infor-

mation. Some of these ideas are used by Bergevin and Levine [6] and Connelly 

and Rosenfeld [18]. 

6.2.6. Relation to Machine Vision. Current neural psychology suggests 

that human vision relies on low level recognition in the retina and higher level 
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recognition as the signal travels along the optic nerve and into the visual cortex. 

In a computer vision system designed with this model of vision in mind, first 

the system should find low level information, which it should then use to build 

up more complex high level information about the image. This brief analysis of 

natural vision has raised several other ideas, as well, that could be useful for 

machine vision: 

• A hexagonal image array may be better than a rectangular array for 

image representation. 

• Changes in image intensity (edges) are important. 

• The direction of individual "pixels" is important. 

• Sensors for particular directions should have a resolution better than 

15°. 

• Lower level information can be used to find an intermediate level of 

information that represents the image in terms of bars at various ori-

entations and widths. This information can be used to find higher level 

information. 

• Objects that are close or collinear can be grouped together. 

• Small gaps should be closed. 

These ideas from human vision can simplified and modelled to some 

extent in a computer vision system. They are used in the VKV vectorization 

system proposed later in this thesis. 

6.3. Domain Knowledge 

This section looks at what is known about the domain of line drawings 

and how this knowledge can be used. Mackworth has shown that vision only 



72 

becomes possible through the use of domain knowledge [68]. The feat that the 

human brain performs when, given an image and all the hundreds of models 

that could have possibly computed that image, it picks out one model it thinks 

is correct only becomes explicable through the realization that humans use 

sophisticated "a priori" knowledge about what is possible in the model. 

Cugini et alapproach the problem of the a priori knowledge required in 

mechanically vectorizing engineering drawings through an exploration of the 

technical but not formal language of engineers and people who draft engineer-

ing drawings. They find that "[the] language used for this communication has 

well defined syntactical and orthographic rules. From the orthographic point 

of view, the basic elements are [line] segments, arcs and other well defined 

curves." [21, p. 838] Engineers can look at engineering diagrams and under-

stand what they mean because engineers have a well defined syntactical and 

orthographic system, and they expect the marks on the page to fit into this 

system. Another way to conceptualize what engineers do when they look at 

an engineering drawing - and what, by extension, computers must do as well 

in machine vision - is through the analogy of the AMES room. The size and 

shape of the AMES room is distorted, but when viewed from the right spot it 

looks like a normal room containing objects of unusual sizes. Like an engineer 

reading an engineering diagram, a human finds the right place to look at the 

AMES room by relying on a priori knowledge about what the room ought to 

look like. 

The need for a priori or domain knowledge, becomes apparent when the 

scale problem discussed in section 5.5.4 is considered. In this problem, which 

is of fundamental importance in vectorization, there is a line with a bump in it, 
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one line 
or three??? 

FIGURE 6.5. Scale problem 

as in figure 6.5. A small enough bump is just a bump in the line and should be 

ignored; a large enough bump is a separate intersecting line. A human would 

use knowledge about the rest of the image to determine how to interpret each 

bump. 

Because knowledge about the domain is so important in interpreting 

images, it is useful to list some facts about line drawings: 

• Once pepper noise is removed, every black pixel is part of an object. 

• The nearby edges often make it possible to figure out the direction of the 

object of which a given pixel is an element. 

• A line consists of at least one point. 

• A line is a good approximation of a very thin rectangle. 

• A thick rectangle contains a thin rectangle. 

• The direction of a point on a circle is the same as the tangent line to the 

circle. 

• The engineering diagrams that this system will vectorize will be able to 

contain, only lines and circles. 

These facts can be used various ways to help understand the image. 
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6.4. Proposed Model 

This section proposes a model for a machine vision system based on 

some hints from natural vision and domain knowledge of line drawings. In this 

system the recognition works up in layers. Each layer detects a higher level 

object and feeds information to the next layer above it to detect even higher 

level information. The layer order is: 

• Pixels 

These correspond to individual sensors in the retina (rods and cones ). 

Two kinds of pixels are considered important: black pixels that must 

belong to some object and edge pixels that determine the boundary of the 

object. 

• Edges 

The edges define the object completely. They correspond closely to the 

information available after the processing by the retinal ganglion cells. 

• Direction 

The directions of the pixels are determined to get an initial estimate of 

the direction of the object. Directions are determined using the longest 

line of sight that lies entirely on black pixels. This stage aims to get the 

direction accurate to within 15° and corresponds to a little bit of what 

happens in the visual cortex. 

• Thin Lines 

The directional information is used to find thin lines that approximate 

the image. These lines are used as the first approximation of the thicker 

lines that form the Blocks stage. 
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• Blocks 

Rectangular blocks that have position, orientation, and width are found. 

• Curves 

The blocks are used to find lines and curves in the image. 

• Intersections and Gaps 

Collinear lines and curves are connected to form complex objects. Small 

gaps are closed, and objects that should be connected are. 

• Objects 

The objects that finally emerge provide a machine interpretation of the 

image that is used to form the model that produced it. This model is the 

vectorized image. 

The VKV system described in the next section is based on this model. 
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CHAPTER 7 

Implementation 

This chapter uses the ideas about vision and knowledge to implement a vector-

ization system called VKV. This system consists of over 5000 lines of C++ code 

that do the vectorization and another 10000 lines of C++ and Xli that view and 

manipulate input images and results. 

7.1. Finding Shapes 

The complete search space - all the possible symbols that could be in 

a diagram - is clearly too large for an exhaustive search, but there are many 

heuristics that can be applied to reduce the search space. These heuristics can 

be designed from domain knowledge about engineering diagrams. 

One of the simplest of these heuristics is a structured search based on 

the fact that a line must contain a point. The idea is to find a simple shape like 

a point quickly and then use it to find a more complex shape that contains it, 

such as a line. Because every black pixel belongs to some shape, any black pixel 

can be used to find a line. Since the pixel in question must, by definition, be on 

the line, the search space for the line is reduced significantly. This structured 

search principle - in which simple objects like points are used to reduce the 

search space for more complex objects like lines - is a basic organizing principle 
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of this vectorization system. The procedure used here is: 

• Find a point 

• Find edges 

• Find a line 

• Find a rectangle 

• Find an arc 

• Find an arctangle (an arctangle is an arc with width) 

• Repeat these steps for another line or arc on the diagram 

At each one of these levels, other knowledge is used to reduce the search space. 

7.U. Data Representation. The representation of these shape objects in 

memory is: 

• POINT 

Each point is represented by two real numbers, its x and y coordinates. 

• LINE SEGMENT 

A line segment is described by POINT, which is the centre of the line, 

and two real numbers that represent the direction and length of the line. 

Directions are always normalized to lie in the first two quadrants of a 

circle, and they are stored in radians. 

• RECTANGLE 

A rectangle is specified by a LINE SEGMENT that represents the centre of 

the rectangle and a real number that specifies the width. 

• ARC 

ARC is similar to LINE SEGMENT, in that it has a centre point, length, 

and direction. Its length, though, is the length along the arc, and its 
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direction is the direction of the tangent to the arc at the centre point. 

The radius of the arc is represented by a value called "curvature", which 

is the inverse of the radius. The curvature is positive if the arc bends 

right from the tangent and negative if it bends left. 

Curvature is a useful value which simplifies many of the formulas that 

involve computing with arcs. Figure 7.1 shows an arc that bends to the 

right. If this arc has a radius of 10, its curvature would be +0.1. The 

curvature of straight lines is zero. 

• AROTANGLE 

ARCTANGLE is specified by an ARC that represents the centre of the arct-

angle and a real number that specifies the width. 

• SHAPE 

SHAPE unites all the previous types. It includes five real numbers: x— 

coordinate, y—coordinate, direction, length, width, and curvature. 

7.1.2. Finding Points. This procedure for identifying shapes starts at a black 

point not part of any shape already found. Such a point is chosen at random 

from the image. Since most black pixels are not edge pixels, a point that is 

inside an object is more likely to be picked than a point the edge of the object 

would be. 

The direction of the line on which this point falls is computed next. This 

direction is called the line of sight direction and is presented by Chen and 

Hsu [16]. The line of sight direction is taken from the longest straight line 

that intersects the point and crosses only black pixels. A flaw in this technique 

arises, however, because each point lies in a rectangular black area. This 
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Directn Tangent 

FIGURE 7.1. Arc curvature 

technique identifies the direction of the rectangle's diagonal but fails to find 

the direction of the actual rectangle ( see figure 7.5). In many circumstances, 

though (as long as the rectangle is fairly narrow), this technique does provide 

a simple way to find a good approximation of the direction. 

This "line of sight" direction gives an initial approximation of the direc-

tion of the shape. To normalize the shape, the point now considered its origin 

is the centre of this line. This new point is stored in the SHAPE data structure 

and used for further processing. The initial point is discarded. 

An example of a line of sight is shown in figure 7.2. The raster image is 

black on a speckled white background. A point and line of sight are displayed 

as a white line on the left side of the raster circle. 
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FIGURE 7.2. Line of sight 

FIGURE 7.3. Edge cache 

7.1.3. Finding Edges. The vectorization system next finds the edges of the 

shape. Since the system operates on black and white images, finding edges is 

trivial. Any black pixel with an eight connected white neighbour is considered 

an edge pixel. The edge pixels of the current object are cached for use in later 

processing. (If this work were extended to process grayscale input images, an 

edge detection system like the one proposed by Shen and Castan [108] could be 

used to find the edges.) An example of the edge cache appears in figure 7.3. 

7.1.4. Finding Lines. Once the direction of the initial point has been calcu-

lated and the edges of the shape have been found, the vectorization system next 
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identifies the line upon which the point lies. The position and direction of the 

current point are randomly perturbated many times, and the longest entirely 

black line going through this point is found and kept. The length of the line is 

found by intersecting the line with the cached edge information. This stage of 

the vectorization process tends to move the centre point of the line near to the 

centre of the real shape. 

FIGURE 7.4. Moved line 

Statistically, the distribution used for the perturbations approximates a 

normal curve. Small perturbations are therefore more often used than large 

ones. In empirical tests that compared how long the system took to find the 

longest line with various distributions, this distribution converged and pro-

duced this line much faster than when all possible amounts of perturbation 

were equally likely. 

The lIne found using the perturbations is shown in figure 7.4. This figure 

is almost identical to figure 7.2. In a more complex shape, the centre of the line 

would need to be moved before it could achieve its maximum length. 



FIGURE 7.5. Shape directions 
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7.1.5. Finding Rectangles. In this stage the centre of the shape is identified 

precisely, and the accuracy of the direction of the line is updated. The line found 

in the last stage is slowly widened into a rectangle. As the rectangle widens, 

the centre line of the rectangle must remain on a black area of the image, but its 

edges only have to be mainly on black. As the width grows, the direction and 

Line of Sight Direction 

New Direction 

Image 

position of the rectangle are perturbated according to the same distribution 

used when finding lines. The rectangle with the largest area is saved and 

passed to the next stage of processing. The direction saved at this stage is the 

direction of the line through the centre of the rectangular region rather than 

the direction of the diagonal. Figure 7.5 shows the distinction between these 

two directions. At the end of this stage, accurate directional information about 

the shape has been found, even if the shape is curved, as is shown in figure 7.6. 

7.1.6. Finding Arcs. Arcs are found from the direction and position of lines. 

A wide range of possible curvatures for an arc are tried, and the longest are 
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FIGURE 7.6. Rectangle 

FIGURE 7.7. Arc 

found is passed to the next stage of processing. Usually the complete arc is 

found, but its position within the shape tends not to be very well identified. 

This problem is apparent in figure 7.7: the are hugs the outside edge of the 

circle because arc length is being maximized. Note that if the are extent angle 

is too small, the shape is assumed to be a straight line and the rectangle found 

in the previous stage of processing is used as the final result. Otherwise the 

algorithm proceeds to the next stage of the search, finding arctangles. 

7.L7. Finding Arctangles. The procedure for finding what are here called 

"arctangles" - arcs with width, like pieces of a washer - is much like that for 
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FIGURE 7.8. Arctangle 

upgrading lines to rectangles. The arc is slowly grown wider into an arctangle. 

The arctangle with the maximum area is kept. The position, width, and curva-

ture of the are shape are perturbated as the arc is grown, but the direction is 

untouched because it was found accurately in the stage that finds rectangles. 

An arctangle has been found in figure 7.8. 

7.L8. Finding More Shapes. One shape in the drawing has now been found. 

It is marked as found, and the vectorization process reiterates to find another 

shape. A shape, once identified, may be considered one "stroke" in the image 

if it meets the qualifications imposed by domain specific knowledge, described 

below. 

7.L9. Domain Knowledge Used. This system relies on the user's input of 

a large amount of critical domain knowledge. The size of the perturbations ap-

plied at each stage and the decision whether or not a shape that has been found 

qualifies as a stroke are controlled by domain knowledge about the drawing. 

The specific items used are: 

• Maximum Line Width 

The maximum allowable width of a line; 
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• Minimum Radius 

The minimum radius of any curve on the drawings. This should be more 

than half the maximum line width or else it will be possible to get circles 

that lie completely insid one line. 

• Maximum Radius 

Any curve whose radius is greater than this will be considered a straight 

line. 

• Minimum Line Length 

Any line shorter than this is a misinterpretation of the drawing. This 

should be larger than the maximum line width. 

• Maximum Overlap 

The maximum length of an area where two lines overlap. 

• Minimum Shape Area 

The minimum area of any stroke in the drawing. 

• Maximum Shape Area 

The maximum area of any stroke in the drawing. This is useful in 

filtering out large solid regions that should not be vectorized. 

• Maximum Percent Overlapped 

The maximum percentage of one stroke that can be covered by another 

stroke. 

These parameters can all be set in a file that describes a class of docu-

ments. They reduce the search space enormously and considerably improve the 

interpretation of the image. Experimentation was done with these parameters 

and others, but only these had a significant impact on the final results. All vari-

ables are floating point, so that results can have a subpixel level of accuracy. 
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FIGURE 7.9. Two shapes 

The sample image, having undergone all the steps in processing described so 

far, appears in figure 7.9. 

7.2. Finding Intersections 

Once all the strokes - rectangles and arctangles - have been found, the 

connections between them need to be identified exactly. The method used to 

connect the strokes reflects the Gestaltist principles of line continuation and 

termination. 

The aim of this stage is to connect the ends of strokes that are close but 

not quite touching, to try to make end points meet or to make the end point 

of one stroke lie on another stroke. First, all the strokes on the image are 

examined to see if the end of one stroke lies within half a line width of another 

stroke. If so, the strokes are lengthened or shortened so that they intersect 

with others. All the strokes are then reexamined, and the process is repeated 

until no strokes are changing. It is important to note that the basic shape and 

direction of a stroke never change when the stroke is lengthened or shortened 

to meet another. Only its length changes. With arcs and arctangles, it is the 

arc length that is adjusted. The algorithm is easiest to show with pseudo code. 
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set somethingChanged to true 

while somethingChanged 

set somethingChanged to false 

for each shape in the drawing 

set slip to this shape 

for each end point of this shape 

set p to be this end point 

set s to shape closest to p 

if p is near s 

change the length of shp to make p 

as close as possible to s 

if the length of shp changed 

set somethingChanged to true 

end if 

end if 

end for 

end for 

end while 

To help illustrate the algorithm, figure 7.10 walks through all the stages 

of an intersection adjustment. The process of intersection adjustment appears 

in figures 7.11-7.13. The adjusted strokes are saved in a file, and the conversion 

is complete. 
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Stage One 

Stage Two 

Stage Three 

The original line before adjustment 

Line B is lengthened so that it stops near A 

Line A is shortened so that it stops near B 

FIGURE 7.10. Intersection adjustment 

Initial 
Intersection 

Corrected 
Intersection 

FIGURE 7.11. Corner adjustment 
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Initial Corrected 
Intersection Intersection 

FIGURE 7.12. Tee adjustment 

Initial 
Intersection 

Corrected 
Intersection 

FIGURE 7.13. Complex adjustment 
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CHAPTER 8 

Analysis 

This chapter describes a comparison of the vectorization method proposed in 

this thesis—VKV—and classical vectorization methods. 

8.L Experiment 

So that the "correct" results may be known, a drawing that had been 

electronically drafted was plotted. The plotted version was blueprinted (this 

technique is actually called the diazo process, and the product is not technically 

a blueprint) and then scanned. Blueprinting injects realistic noise into the pro-

cess. The blueprint was scanned, and the scan was processed under both VKV 

and the classical system described in chapter 5. The results were compared to 

the electronic drafted version to determine the errors made by each. 

  Errors 

VKV Conversion 

Electronic -- Plot —>-Blueprint  Scan 
Drafting 

Classical Conversion 

 Errors' 

FIGURE 8.1. Data flow in experiment 

Comparison 
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The drawing (figure 8.2) contains lines, curves and intersections like 

those that occur on engineering diagrams. Unlike many engineering diagrams, 

it contains no text, but converting text is beyond the scope of this system. The 

drawing chosen has curves, lines, lines that join curves, lines that cross curves, 

lines at various angles, and intersections of thick and thin lines. It has a great 

2 0 2 

 r 
FIGURE 8.2. Original CAD drawing 

variety of potential problems. The drawing was plotted, and a blueprint was 

created. It was scanned with a Microtek 300zs scanner to get the input image. 

The scan was automatically converted to get the results shown in fig-

ures 8.3 and 8.4. Just to point out what happens with some commercial prod-

ucts, Adobe's Streamline 2.0 was also used to vectorize the image. It produced 

the results shown in 8.5. 

8.2. Analysis 

The results of both VKV and the classical vectorization methods are 

basically correct, but another relevant criterion for comparing the effectiveness 

of the two systems is how easily the resulting data may be manipulated. Where 
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4$• 

FIGURE 8.3. Classical vectorization 

the original had one straight line, the vectorized version should have a one line 

primitive as well. If there are two primitives instead, editing will have to be 

done on two lines instead of one. 

(S OIL 0 6- 6 

FIGURE 8.4. VKV vectorization 

In the analysis of the results, errors will be classified into several types, 

and then an approximate time for correcting each type will serve as a weight. 

The final comparison will turn on how long it would take a human operator to 

fix all the errors in the vectorized drawing using a current industry standard 
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FIGURE 8.5. Streamline vectorization 

tool, such as AutoCAD running a heads up digitization tool like CadOverlay on 

an Intel 486 with hardware graphics acceleration for the CadOverlay system. 

8.2.1. Lines Missed. This evaluation criterion is simply a count of the straight 

lines that the vectorization completely missed. To add these lines, the operator 

just has to enter the end points of the line manually, which takes approximately 

10 seconds per line. 

8.2.2. Circle Missed. This error is similar to missing lines, but to fix it the 

operator must enter three points on the arc, which takes slightly longer (30 

seconds). Usually several incorrect line primitives need to be deleted before the 

circle can be added. 

8.2.3. Tolerance Errors. These errors occur when the vectorized line is in 

the wrong place and must be moved slightly. It is time-consuming to figure out 

exactly what point on the primitive needs to be adjusted, so fixing this error 

takes about 35 seconds. 
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8.2.4. Intersection Errors. Intersection errors occur where two lines that 

should intersect fail to touch properly and one end point needs to be moved 

slightly. Intersection errors are faster to fix than tolerance errors because what 

needs to be adjusted is obvious. They take 25 seconds. 

8.2.5. Crossing Errors. This type of error occurs where two lines that should 

cross precisely have acquired X—destroying intersection distortion (see the 

chapter 5 for a description of this distortion). This error takes a long time 

to fix (50 seconds). The segments of the two lines have to be joined and the 

intersection point deleted. 

8.2.6. Fuzz Errors. This is one of the most frustrating errors to fix. Little 

lines like hairs come off the main line, making it look fuzzy. At each intersection 

point the intersection must be broken, the two segments of the main lines 

reconnected, and the fuzz deleted. Although fixing one hair only takes about 

30 seconds, operators soon become frustrated. It takes about 45 seconds on 

average to fix this kind of error. 

8.2.7. Comparison. The raw data from the comparison is shown in table 8.1. 

The VKV image had an estimated correction time of 50 seconds, while the 

classical method had a time of 700 seconds. The drawing could be redrafted by 

someone using AutoCAD with CadOverlay in approximately 300 seconds. The 

accuracy of these times would obviously vary widely depending on the AutoCAD 

operator, but the relative times would likely stay consistent among users. 
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Category Classical VKV Time to Fix 

Lines Missed 

Circles Missed 

Tolerance Errors 

Intersection Errors 

Crossing Errors 

Fuzz Errors 

o 0 10 

11 0 30 

0 0 35 

3 2 25 

5 0 50 

1 0 45 

TABLE 8.1. Vectorization errors 

8.3. Critique of System 

The VKV system is suitable only for line drawings formed from a small 

set of primitives, but fortunately engineering drawings fall mainly into this 

category. VKV will not work with documents composed of figures other than 

lines and circles. In OCR, for example, it would be possible to vectorize a font 

like Helvetica, but a font like Times with lots of points and curves would not 

work. VKV could be extended to vectorize more complex shapes like ellipses and 

perhaps splines, but it would never be able to vectorize all shapes, particularly 

complex shapes like fractal curves. 

An interactive conversion system that allowed the user to correct mis-

takes and which made future choices based on the corrections would be an 

improvement over VKV Often a mistake on one vector causes several other 

vectors to be distorted as well. An interactive system would help solve this 

problem. Another drawback of VKV is that it is computationally intensive 

compared to many existing systems. 
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8.4. Future Work 

The work described in this thesis suggests several avenues for future 

research. One possibility would be a more interactive system that allowed 

the user to help the vectorizer and provided extra context knowledge where 

required. Methods like this can be very successful, as Jansen and Krause have 

shown [48]. One reason is that when the system proposed in this thesis makes 

a mistake, it usually causes several other mistakes in the same area. If a user 

could interactively correct the first mistake, the system could be prevented from 

making several subsequent mistakes. 

Another possible area for future work would be to expand the types of 

shapes that the system recognizes from lines, circles, rectangles, and arctangles 

to ellipses and other primitive shape types. Such work could be combined with 

a system for OCR to produce useful results. 

:. Neighbors 

Pixel 

FIGURE 8.6. Hexagonal rasters 

Currently almost all image processing is done on a raster image con-

structed from a square grid. Human eyes, however, seem to use an hexagonal 

grid - likely because hexagons provide the best packing of circles in an infinite 

plane. Vectorization on hexagonal grids has been pursued by Gibson and Lucas, 

among others [37]. The fundamental problem of the connectivity of neighbour-
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ing pixels is much simpler on hexagonal grids, because all a pixel's neighbours 

are an equal distance away from it, as shown in figure 8.6. The symmetry of 

the whole situation is much better. As well, a thinning algorithm proposed by 

Deutsch [241 was easily implemented on hexagonal grids. If the vectorization 

method described in this thesis were extended to hexagonal rasters, the results 

would likely be noticeably better. 

The human visual system also makes heavy use of domain knowledge, 

which this system does not. In particular, a human would use knowledge about 

the probable angles of lines in an engineering drawing, and this system would 

not. 

A good conversion system should be able to find and reuse similar objects 

in the drawing as well. For example, if there is a valve in one place on the 

diagram and a very similar valve somewhere else, the system should recognize 

that they were probably meant to be drafted exactly the same way. A good 

system should find all the valve objects, make an optimal valve object and 

indicate that there are valves at all the right locations in the drawing, instead 

of merely describing the lines and shapes that make up each valve. This, of 

course, is a hard machine learning problem. 

In summary, there is a tremendous number of problems that will have to 

be solved before a computer will be able to convert a raster image into the same 

sort of CAD vector file that a human CAD operator would produce. Although 

two dimensional CAD line drawings are surely one of the very simplest vision 

problems, they still present many unsolved problems. 
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CHAPTER 9 

Conclusion 

In a manual vectorization system, a user indicates a long straight line by 

pushing two keys on a digitizing tablet's cursor. An automatic system fails to 

improve on a manual system if a user has to correct one end point, delete some 

fuzz on the line, or move the line. Systems for automatically digitizing line 

drawings must therefore have extremely low error rates if they are to require 

less human operator time than manual digitization. 

Currently available digitization systems have not solved the automatic 

digitization problem. One significant problem is that thinning algorithms in-

troduce undesirable artifacts. 

In designing a new vectorization system, the work described in this the-

sis began with the idea that the successful recognition of a drawing requires 

knowledge about the domain in which the drawing was produced. Engineering 

diagrams are of a certain size and have certain features, including circles, rect-

angles, lines, arcs, and text. They can also be understood as having potentially 

been produced by being plotted from a CAD system; this fact limits the number 

of possibilities for what a given diagram might contain. As well as domain 

knowledge about engineering diagrams, another useful kind of knowledge to 

bring to bear on this problem is the understanding of the visual systems of 
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animals, particularly the parts of the'vision system that deal with the entrance 

of light into the eye and the progress of the signal through the various retinal 

cells and into the brain. 

Using knowledge about vision and domain knowledge about engineering 

drawings, a vectorization system called VKV was designed and implemented. 

The main advantages of system like VKV are: 

• Because theIe is no thinning stage, there are no thinning artifacts; 

• Vectorization occurs to a subpixel level of accuracy; 

• Crossing and intersecting lines do not result in intersection artifacts; 

• The system is easy to implement in a distributed environment; and 

• The vectors it has produced have had fewer errors than other state of the 

art systems. 

One of the key features of the VKV system is that it obtains results that 

have an accuracy well beyond the size of a pixel. This is very important for 

maps and engineering diagrams, since the initial input can be scanned at a 

much lower resolution and still achieve the same final accuracy. The scanned 

image that must be saved and manipulated also requires less time and space. 

To provide something to compare with VKV, another system was im-

plemented that combines the best features of classical vectorization methods. 

The two systems were compared using engineering type documents. The VKV 

system performed considerably better than the classical system. 

This thesis has: 

• shown that knowledge of animal vision is very helpful in designing a 

machine vision system; 
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• shown that line drawings cannot be interpreted completely correctly 

without knowledge about the domain of the drawings. Even then, al-

though perfect interpretation is impossible in some cases, good interpre-

tation is usually possible; 

• developed a method, VXV for solving the complex problem of document 

conversion. VKV works better than other current solutions on a wide 

class of drawings; 

• provided a comprehensive survey of research pertaining to document 

conversion; and 

• provided a model and evaluation methods for scanning and vectorization 

technology. 

Many claims have been made that systems already developed have solved 

the automatic digitization problem, and many systems in the future will con-

tinue to make such claims. Hopefully this thesis has brought us closer to an 

automatic, intelligent understanding of line drawings. 
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