
THE UNIVERSITY OF CALGARY

Computer Vision for Line Drawings

by

Cullen Jennings

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

CALGARY, ALBERTA

MAY, 1993

© Cullen Jennings 1993

1*1 National Library
of Canada

Bibliotheque nationale
du Canada

Acquisitions and
Bibliographic Services Branch

395 Wellington Street
Ottawa, Ontario
K1AON4

Direction des acquisitions et
des services bibliographiques

395, rue Wellington
Ottawa (Ontario)
K1AON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

Your tile Votre rilfilrence

Our tile Notre réfOrence

L'auteur a accordé une licence
irrevocable et non exclusive
permettant a la Bibliothèque
nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de sa these
de quelque manière et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
these a la disposition des
personnes intéressées.

L'auteur conserve la propriété du
droit d'auteur qui protege sa
these. Ni la these ni des extraits
substantiels de celle-ci ne
doivent être imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-315-88544-0

& Cana

Name
Dissertation Abstracts International is atfartge(by broad, general subject categories. Please select the one subject which most
nearly describes the content of your dissertation. Enter the corresponding Four-digit code in the spaces provided.

5
SUBJECT TERM

Subject Categories

THE HUMANITIES AND SOCIAL SCIENCES
COMMUNICATIONS AND THE ARTS
Architecture
An History
anema
Dance
Fine Ms
Information Science
Journalism
Library Science
Mass Communications
Music
Speech Communication

eater

EDUCATION
General

PsychoIy' 0525
0729 Reading 0535
0377 Religious 0527
0900 Sciences 0714
0378 Secondary 0533
0357 Scciai Sciences 0534
0723 Social . of 0340
0391 Special 0529
0399 Teacher Training 0530
0708 Technology 0710
0413 Tests ond74easurements 0288
0459 Vocational 0747
0465

0515
Administration 0514
Adult and Continuing 0516
Agricultural 0517
Art 0273
Bilingual and Multicultural 0282
Business 0688
Community College 0275
Curriculum and Instruction 0727
Early Childhood 0518
Elementary 0524
Finance 0277
Guidance and Counseling 0519
Health 0680
Higher 0745
History of 0520
Home Economics 0278
Industrial 0521
Language and Literature 0279
Mathematics 0280
Music 0522
Philosophy of 0998
Physical 0523

THE SCIENCES AND
BIOLOGICAL SCIENCES
Agriculture

General 0473
Agronomy 0285
Animal Culture and

Nutrition 0475
Animal Pathology 0476
Food Science and
lechnaloay 0359

Forestry aria Wildlife 0478
Plant Culture 0479
Plant Pathology 0480
Plant Physiology 0817
Range Manooement 0777
Wood Technlogy 0746

Buolocw
(neral 0306
Anatomy 0287
Brostatistics 0308
Botany 0309
Cell 0379
Ecology 0329
Entomology 0353
Genetics 0369
Limnology 0793
Microbiology 0410
Molecular 0307
Neuroscience 0317
Oceanography 0416
Physiology 0433
Radiation 0821
Veterinary Science 0778
Zoology 0472

Biophysics
General 0786
Medical 0760

EARTH SCIENCES
Biogeochemistry 0425
3eochemistry 0996

LANGUAGE, LITERATURE AND
LINGUISTICS
Lon quoge

ei.erul 0679
Ancient 0289
Linguistics 0290
Modem 0291

Literature.
General 0401
Classical 0294
Comparative 0295
Medieval 0297
Modem 0298
African 0316
American 0591
Asian 0305
Canadian English) 0352
Canadian French) 0355
English 0593
Germanic 0311
Latin American 0312
Middle Eastern 0315
Romance 0313
Slavic and East European 0314

ENGINEERING
Geadesy 0370
Geology 0372
Geophysics 0373
Hydrology 0388
MineralOgy 0411
Paleobotany 0345
Paleoecology 0426
Paleontology 0418
Paleozoology 0985
Polynal ' 0427
Physicaography 0368
Physical Oceanography 0415

HEALTH AND ENVIRONMENTAL
SCIENCES
Environmental Sciences 0768
Health Sciences

General 0566

py 0992
Che Audiologymothera 0300

Dentistry 0567
Education 0350
Hospital Management 0769
Human Development 0758
Immunology 0982
Medicine and Surgery 0564
Mental Health 0347
Nursing 0569
Nutrition 0570
Obstetrics and Gynecology 0380
Occupational Health and
Therapy 0354

Ophthalmology 0381
Pathology 0571
Pharmacology 0419
Phormoc 0572
Physical Therapy 0382
Public Health 0573
Radiology 0574
Recreation 0575

PHILOSOPHY, RELIGION AND
THEOLOGY
Philosophy
Rdigion -

(jenmul 0318
Biblical Studies 0321

0319
0320

Philosophy of 0322
Theology 0469

SOCIAL SCIENCES
American Studies 0323
Anthropology

Archaeology 0324
Cultural 0326
Physical 0327

Business Administration
General 0310
Accounting 0272
Banking 0770
Management 0454
Marketing 0338

Canadian Studies 0385
Economics

General 0501
Agricultural 0503
Commerce-Business 0505
Finance 0508
History 0509
Labor 0510
Theory 0511

Folklore 0358
Geography 0366
Gerontology 0351
Histiy

General 0578

Clergy
History of -

Speech Pathology
Toxicology

Home Economics

PHYSICAL SCIENCES
Pure Sciences
Chemistry

General 0485
Agricultural 0749
Analytical 0486
Biochemistry 0487
Inorganic 0488
Nuclear 0738
Organic 0490
Pharmaceutical 0491
Physical 0494
Polymer 0495
Radiation 0754

Mathematics 0405
Physics

General 0605
Acoustics 0986
Astronomy and

Astrophysics 0606
Atmospheric Science 0608
Atomic 0748
Electronics and Electricity 0607
Elementary Particles and
High Energy 0798

Fluid and Plasma 0759
Molecular 0609
Nuclear 0610
Optics 0752
Radiation 0756
Solid State 0611

Statistics 0463
Applied Sciences
Applied Mechanics 0346
Computer Science 0984

0422

0 91 iL

SULIECT CODE
UM1

Ancient 0579
Medieval 0581
Modern 0582
Black 0328
African 0331
Asia, Australia and Oceania 0332
Canadian 0334
European 0335
Latin American 0336
Middle Eastern 0333
United States 0337

History of Science 0585
Law 0398
Political Science

General 0615
International Law and

Relations 0616
Public Administration 0617

Recreation 0814
Social Work 0452
Sociology

General 0626
Criminoloqy and Penology 0627
Demography 0938
Ethnic and ociaI Studies 0631
Individual and Family
Studies 0628

Industrial and Labor
Relations 0629

Publit and Social Welfare 0630
Social Structure and
Development 0700

Theory and Methods 0344
Transportation 0709
Urban and Regional Planning 0999
Women's Studies 0453

0460 Engineering
0383 General 0537
0386 Aerospace 0538

Agricultural 0539
Automotive 0540
Biomedical 0541
Chemical 0542
Civil 0543
Electronics and Electrical 0544
Heat and Thermodynamics 0348
Hydraulic 0545
Industrial 0546
Marine 0547
Materials Science 0794
Mechanical 0548
Metallurgy 0743
Mining 0551
Nuclear 0552
Packaging 0549
Petroleum 0765
Sanitary and Municipal 0554
System Science 0790

Geotechnalogy 0428
Operations Research 0796
Plastics Technology 0795
Textile Technology 0994

PSYCHOLOGY
General 0621
Behavioral 0384
Clinical 0622
Developmental 0620
Experimental 0623
Industrial 0624
Personality 0625
Physiolo9rcal 0989
Psychobiology 0349
Psychometrics 0632
Social 0451

THE UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the

Faculty of Graduate Studies for acceptance, a thesis entitled, "Computer Vision

for Line Drawings" submitted by Cullen Jennings in partial fulfillment of the

requirements for the degree of Master of Science.

Supervisor, J.R. Parker,

Department of Computer Science

Date

Dr. J.AT1. BIs,

Dr. A. Colij

Department of Computer Science

Deptajjent of Geomatics Eni"neering

Dr. P. Prusinkiewicz,

Department of Computer Science

11

111

Abstract

Modern maps and engineering diagrams are usually constructed and stored

using GIS or CAD systems. A large number of drawings, however, exists only

in a paper form. This thesis examines the problem of automatically converting

such drawings and maps from raster image to high quality vector GIS or CAD

forms.

This thesis begins with a review of previous work in the area and then

proposes a new method based on findings about how human vision works and

domain specific knowledge. Another system based on the classical work in

this area is presented, to which the new system is compared. This comparison

shows that the method proposed here obtains substantially better results than

classical methods. The time a human operator could expect to spend correcting

the errors created by this system would be less than one tenth of the time

required to correct the errors created by a classical vectorization system.

iv

Acknowledgements

I would like to thank Neil Flanagan, Jason Fischl, Ger Hartnett, and Don

Molaro for their helpful comments and the many ideas they inspired, and Jim

and Lyndsay for actually making it happen. I would also like to thank my mom

for looking impressed.

Contents

Approval Sheet ii

Abstract iii

Acknowledgements iv

Contents

List of Tables viii

List of Figures ix

Chapter 1. Introduction 1

Chapter 2. Previous Work 6
2.1. Classical Conversion 6
2.2. Scanning 7
2.3. Thresholding 7
2.4. Salt and Pepper Filter 8
2.5. Thinning 8
2.6. Chain Coding 10
2.7. Vector Reduction 11
2.8. Other Vectorization Work 12

2.8.1. Outline Collapsing 13
2.8.2. Grayscale Work 13
2.8.3. Related Work 13

Chapter 3. Scanning 15
3.1. Information Per Pixel 19
3.2. Point Spread Evaluation 20

3.2.1. Measurements 27
3.2.2. Results 27

3.3. Speed 29
3.4. Comparison of Scanners 29

vi

Chapter 4. Preprocessing 31
4.1. Thresholding 31

4.1.1. Histogram Evaluation 32
4.1.2. Adaptive Thresholding 33

4.2. Noise Removal 34

Chapter 5. Erosion Vectorization 37
5.1. Thinning 37

5.1.1. Implementation 38
5.2. Chain Coding 44
5.3. Chain Reduction 46

5.3.1. Distance Point to Line Segment 48
5.3.2. Analysis 50

5.4. Results 52
5.5. Problems 55

5.5.1. Line Fuzz 55
5.5.2. End Point Artifacts 55
5.5.3. Intersection Artifacts 56
5.5.4. Problems of Scale 57
5.5.5. Inside Bias 57

Chapter 6. Vision, Knowledge, and Vectorization 59
6.1. Inverse Function Theory 59

6.1.1. Size of Search Space 61
6.2. Vision 64

6.2.1. Retina 65
6.2.2. Ganglion Cells 66
6.2.3. Lateral Geniculate Nucleus 68
6.2.4. Visual Cortex 68
6.2.5. Gestalt Perception Ideas 69
6.2.6. Relation to Machine Vision 70

6.3. Domain Knowledge 71
6.4. Proposed Model 74

Chapter 7. Implementation 76
7.1. Finding Shapes 76

7.1.1. Data Representation 77
7.1.2. Finding Points 78
7.1.3. Finding Edges 80
7.1.4. Finding Lines 80
7.1.5. Finding Rectangles 82
7.1.6. Finding Arcs 82
7.1.7. Finding Arctangles 83
7.1.8. Finding More Shapes 84

vii

7.1.9. Domain Knowledge Used 84
7.2. Finding Intersections 86

Chapter 8. Analysis 90
8.1. Experiment 90
8.2. Analysis 91

8.2.1. Lines Missed 93
8.2.2. Circle Missed 93
8.2.3. Tolerance Errors 93
8.2.4. Intersection Errors 94
8.2.5. Crossing Errors 94
8.2.6. Fuzz Errors 94
8.2.7. Comparison 94

8.3. Critique of System 95
8.4. Future Work 96

Chapter 9. Conclusion 98

References 101

List of Tables

3.1 Edge values from scanner 27
3.2 Point spread function 27
3.3 Comparison of two scanners 30

8.1 Vectorization errors 95

ix

List of Figures

3.1 Scanning distortion model 21
3.2 Point spread function 28
3.3 Gaussian approximation of PSF 28

4.1 Histogram of engineering diagram 32
4.2 Image with speckle noise 36
4.3 Image after speckle noise removed 36

5.1 Labelling of neighbours 38
5.2 Image of an H 40
5.3 Image of a thinned H 41
5.4 Image to be thinned 42
5.5 Thinned image 42
5.6 Original with thinned image overlaid 43
5.7 Some nonunitary pixels 43
5.8 Chain code directions 45
5.9 Simple image 45
5.10 Vector approximation 46
5.11 Second vector approximation 47
5.12 Third vector approximation 48
5.13 Distance from point to line 49
5.14 Digital ellipse 50
5.15 Chain coded 51
5.16 Vectors and chain code 51
5.17 Vectors and original 51
5.18 Binary image 53
5.19 Reduction with error = 10 53
5.20 Reduction with error = 3 54
5.21 Reduction with error = 3 overlaid on original 54
5.22 Fuzz online 55
5.23 Line end noise 56

x

5.24 Intersection T displacement 56
5.25 Intersection X destruction 57
5.26 Problems of scale 58
5.27 Inside bias 58

6.1 Relation of model and image spaces 61
6.2 Sketch of retinal cells 65
6.3 DOG function 66
6.4 Hermann grid phenomenon 67
6.5 Scale problem 73

7.1 Arc curvature 79
7.2 Line of sight 80
7.3 Edge cache 80
7.4 Moved line 81
7.5 Shape directions 82
7.6 Rectangle 83
7.7 Arc 83
7.8 Arctangle 84
7.9. Two shapes 86
7.10 Intersection adjustment 88
7.11 Corner adjustment 88
7.12 Tee adjustment 89
7.13 Complex adjustment 89

8.1 Data flow in experiment 90
8.2 Original CAD drawing 91
8.3 Classical vectorization 92
8.4 VKV vectorization 92
8.5 Streamline vectorization 93
8.6 Hexagonal rasters 96

1

CHAPTER 1

Introduction

Most new engineering drawings and maps are produced with CAD or geographic

information systems (GIS). These electronic formats provide substantially more

flexibility than paper does: updates to a document can easily be reproduced at

all the sites that use it; documents éan be combined or have additional infor-

mation incorporated into them; and documents can by analyzed by computer.

For example, from a GIS system with maps a user might identify the location

of the house nearest to a river where chemicals had been spilled. From CAD

electrical diagrams, a computer simulation of a circuit might be created. In

addition, ease of archiving and updating make attributed electronic forms for

document information very valuable.

Although new documents are often drafted in electronic form, many older

documents exist only on paper. Concerted efforts are being made worldwide

to get this information into electronic databases. Maps are being transformed

from paper form into GIS so that, correlated with satellite images, they can

aid in the evaluation and optimization of crop growth. Well logs - graphs of

data from instruments that have been lowered down oil and gas wells - are

being digitized so that computer simulations can be used to predict the size

of the reserves in the reservoir. Telephone companies are transforming wiring

2

diagrams of connections into GIS, so that when wiring changes are made in one

location, all the other locations can be informed of the change.

When a drawing is scanned into a computer, it is represented by a raster,

a two dimensional array of black or white picture elements. The computer can

do almost nothing with a raster except display it. To make the information

usable by CAD or GIS, it must be converted to a vector format, a format in

which each line in the drawing is represented in the computer by a record that

describes the characteristics of that line. The characteristics include things

like start point, end point, and width.

This thesis concentrates on the problems of automatic computer conver-

sion from raster to vector representations of drawings. Perfect raster to vector

conversion is impossible because different vector drawings can result in identi-

cal raster images. If two straight lines have one end point in common and the

lines are collinear, they are indistinguishable from one straight line.

During the early 1980s commercial enterprises began to seek ways to

scan these documents and automatically translate them into vector formats.

One of the first systems was Laser Scan's FASTRACK system in 1978 [35].

Some of the more important programs have been Audre's system, AutoDesk's

CAD/Camera, DataSpan's RVCS [22], GTX's GTX.Raster CAD [69] [7], Hitachi's

CADCore [36] [1031, Intergraph's JI\TEC [44] and JJGEOVEC [45], Scorpion Tech-

nologies' SRV [1051, QC Data's MEWS [96], Universal Systems' SAMI [1211, and

Winchester Data Products' VECTRESS [1261. Many of these systems claimed

to be considerably faster than manual conversion. Audre claimed their system

was seven times faster and cost one tenth as much [12]. A 1986 Anderson

Report suggested that the available automatic conversion systems ran three to

3

four times faster than most manual systems and cost about half as much [1181.

Lately many companies, sometimes receiving public funding, have been

working on this problem, but they have not been trumpeting their success. QC

Data's MEWS project, the result of a $700,000 joint venture between the Alberta

Research Council and QC Data's Research and Development Department [961,

is no longer in use - manual redrafting with digitizing boards has proven faster.

DataSpan, another company that has produced such a product, is no longer in

business. Intergraph, which has done a great deal of research in this area,

suggests that manual conversion be used for most projects. Companies that

claim to have created systems faster than manual redrafting include Winch-

ester Data Products, GTX (a leader in the area [691), and Hitachi. Currently

the most popular low—end system is Adobe's Streamline [941. All of these sys-

tems generally fail to provide a definitive solution to the conversion problem,

and some are even slower than redrafting a document on a digitizing board.

Despite the considerable amounts of time and money spent, much of the con-

version done today still involves the use of a manual digitizing board to redraft

the document into a CAD or a GIS.

Much academic effort has also been devoted to conversion. Two of the first

systems were described by Ramachandran [971 and Clement [17]. Amore recent

system that incorporates much previous research is described by Jennings and

Flanagan [49] • The bibliography for this thesis identifies a couple of hundred

researchers in the field.

One of the important types of line drawings requiring conversion from

raster to vector formats is engineering diagrams. The many problems these

pose for conversion systems are characteristic of the problems that arise in

4

converting most types of line drawings. Engineering diagrams consist mainly

of lines, arcs, and symbols, including text. One of the more complex problems

in converting these diagrams to digital form is that the lines and arcs are

often dashed. A recognition system must take all the segments of a dashed

line and represent them as one line with a particular dash pattern, not as a

bunch of short, solid lines. Complicating matters further is the fact that lines

often intersect at exact angles like 300; having them converted to 30.10 is often

unacceptable. As well, lines running through symbols make them harder to

detect. Typical commercial problems involve converting tens of thousands of

large engineering diagrams into digital form [801. For example, the Saint John

Shipbuilding project is converting 22,000 drawings in the first phase [106].

This thesis examines the use of computer vision systems in recognizing

two dimensional line drawings, such as engineering diagrams, and proposes a

new conversion method. Much research has been done on this problem, but

automatic conversion that takes an order of magnitude less human operator

time than manual redrafting is currently impossible for most drawings. It

seems unlikely that any automatic system will ever perform 100% correctly on

complex documents, but even a system that was 90% correct and helped the user

fix the remaining 10% would considerably reduce conversion time. Compared

to three dimensional vision in an real world environment, conversion is likely

a simple vision problem, but it is still far from solved.

The next section of this thesis describes previous work in the area. Then

comes a discussion of the scanners and preprocessing methods available, fol-

lowed by an examination of state of the art conversion techniques. The conver-

sion technique proposed in this thesis is described next. Finally it is compared

5

to the state of the art techniques.

6

CHAPTER 2

Previous Work

A thorough review of the literature reveals pertinent information about most

of the relevant aspects of the vectorization process. This chapter describes

and briefly evaluates the significant contributions to the field of conversion,

suggesting how the many techniques have been combined in the past.

2.1. Classical Conversion

The steps taken in the classical method for converting images used by

Musavi et al [771 are:

(1) Scanning

Scan the paper image to produce a grayscale raster image;

(2) Thresholding

Form a binary image from the grayscale image;

(3) Salt and Pepper Filtering

Remove the isolated black and white pixels that are noise;

(4) Thinning

Thin the lines on the image to one pixel wide;

(5) Chain Coding

Follow the thinned lines and produce chain codes representing them;

7

(6) Vector Reduction

Reduce straight segments of the chain code into long lines that represent

the chain codes.

Most commercial and research systems use schemes much like Musavi's.

Such systems are described by Suzuki and Yamada [116], Kikkawa et al [57],

Johnson and Bird [52], Hoshino et al [42], Bixier and Sanford [8], and Suetens

et al [115]. Kasturi et algive an example of a similar complete system [561. One

of the earliest noncommercial systems of this type is described by Clement [17].

Nagasamy and Langrana present a similar system that does vector reduction

to conic sections [81]. The rest of this chapter describes in detail the steps used

in these methods.

2.2. Scanning

Almost all current scanners are based on CCD camera technology and

produce 8—bit grayscale images. A resolution of 300 dpi is standard for the low

end scanners, while 800 dpi is common in commercial-grade scanners. A more

detailed discussion of scanners and the problems encountered in scanning is

given in chapter 3. Vectorization with colour scanners has been studied by

Kakumoto et al [55] but did not result in appreciably better results.

2.3. Thresholding

The problem of thresholding and segmenting document images has been

carefully studied [117]. Since scanners now produce high quality results with

little noise, thresholding is usually easy. Often using a fixed threshold for

the whole image works fine. Complex thresholding is required only when the

8

original paper quality is poor or when the document being scanned has faint

lines produced by a photocopier low on toner or by spilled water or coffee. Dirty

images are thresholded well by Parker's algorithm [87]. Good surveys that

provide an overview of the method used in this thesis are given by Fu and Mui

[34] and Sahoo et al [102].

2.4. Salt and Pepper Filter

CCD cameras produce an effect called blooming, in which pixels become

over or under exposed so that the scan looks as if it has been lightly sprinkled

with salt and pepper. The thresholding scheme can correct for this effect,

however, if a salt and pepper filter is incorporated into the thresholding. Such

a filter simply finds each pixel whose colour is the opposite of all the pixels

around it and changes its pixel value so that it matches its surroundings. This

scheme is demonstrated well by Bury [15].

2.5. Thinning

Thinning is the process of taking an image with thick lines and producing

an image that is basically the same but contains only thin lines. Diagrams in

chapter 5.1 show the effect of thinning.

Most thinning algorithms approximate, or compute exactly, the Me-

dial Axis Transform (MAT), which was originally defined by Montanan [74].

The most commonly used algorithm of this type is presented by Zhang and

Suen [129], but others have been given by Arcelli and Baja [31, Deutsch [24],

Kwok [591, Naccache and Shinghal [78], O'Gorman [85], Pavlidis [92], and

many others. The first algorithm of this type was likely Hilditch's [41]. All

9

MAT techniques result in artifacts highly undesirable for the vectorization of

engineering diagrams. One such artifact is erosion hairs, tiny lines extending

laterally from the skeleton of the image (see figure 5.22). Vectorizers interpret

these erosion hairs as significant, making the final product a fuzzy rendition of

the original.

Several thinning methods that do not generate MAT type images have

been developed, one of which is described by Baruch [5]. These techniques

often produce other artifacts just as undesirable as those produced through

MAT techniques. One method that tries to eliminate some of the artifacts that

happen at intersections is described by Govindan and Shivaprasad [39]. This

method fails to prevent artifacts in some other cases, however. Li and Suen

describe another method for thinning [64] which uses knowledge about where

traditional thinning fails but which still fails in many cases. A final method

works directly from the grayscale image and produces a binary skeleton [128].

It does an excellent job, but it works only on lines running at angles that

are multiples of 45°. Partial thinning methods for vectorization are used by

Espelid and Eileng [29]. Paler and Kittler do thinning on grayscale images [86].

An interesting thinning technique based on examining the edges is given by

Sinha [1111. It does not rely on the medial axis transform but still gets poor

results.

A substantial body of literature about thinning exists. Pavlidis presents

one good survey of the topic [91], as do Kwok [59], Naccache and Shinghal [78],

and Smith [113]. An excellent overall survey is by Lam et al [60].

A study of metrics for measuring how "good" a skeleton is, a defini-

tion of thinning, and another thinning algorithm are presented by Parker and

10

Jennings [88]. This paper shows that there is currently no widely accepted def-

inition of thinning and that it is therefore not surprising that there should be

no exceptionally good thinning algorithms. This paper presents sample draw-

ings so diabolical that it is not even intuitively clear to a human user what the

correct skeleton should be. For an simple example, what should be the skeleton

of a solid disk? If the answer is a single point in the middle, then should a solid

ellipse have the same skeleton? What about a solid ellipse elongated to the

point that it is almost a line segment? The metrics described in this paper can

be used in a quantitative comparison of various thinning methods.

2.6. Chain Coding

Chain coding is the process of tracing the lines made by the pixels on

the thinned image. Freeman originally proposed it [31] and later presented

algorithms for manipulating these chain codes [32] [33], collaborating with

Davis on the last paper. All the chain codes used here will conform to Freeman's

conventions, and many of the algorithms used to manipulate chain codes come

from one of these papers. A detailed discussion of chain coding is given in

chapter 5.

A dedicated hardware system that would chain code an image in about

the same amount of time it took to scan the image was developed by Shimotsuji

et alat Toshiba [110]. This hardware clearly showed that high speed chain

coding was possible.

11

2.7. Vector Reduction

Vector reduction is the process of reducing the chain code to meaningful

geometric figures, such as lines and circles. Several systems are described by

Bixier et al [91 and Jam [46].

An excellent, simple algorithm is described by Jam:

Algorithm. Approximate the curve by the line segment joining

its end points (A,B). If the distance from the farthest curve point

(C) to the segment is greater than a predetermined quantity, join

AC and BC. Repeat the procedure for new segments AC and BC,

and continue until the desired accuracy is reached [46, p. 3641.

This quick algorithm guarantees that the lines approximate the chain code

within a specifiable error. It seems to produce very close to the minimum

possible number of line segments needed to approximate the chain code. It is

much like the one Lowe uses [67].

One of the first vector reduction methods is described by Ramer [981.

Other vectorization methods have been developed, but none produces results

any better than Jam's. Leu and Chen describe a method that approximates

lines to chain codes with a maximum error criterion [631. Rosin and West make

useful suggestions about reduction to lines [101]. Linear programming was

used to solve this problem in an "optimal" way by Montanan [751. A method

based on the "optimal" definition is given by Sklansky and Gonzalez [1121, but

it does not work as well as Jam's.

Work has been done on reducing the chain codes to geometric objects

rather than lines. Pavlidis [91, p. 230-288] describes methods that reduce the

12

chain code to lines, arcs, or splines, rather than polygons. Reduction to conic

segments is addressed by Albano [2]. Reduction to digital circles is described by

Nakamura and Aizawa [821. Landau gives some methods for approximating an

arc from a set of points [611, and Thomas and Chan give a faster method [1191.

Finally, Jam [461 and Bixier et al [9] provide methods for reducing the chain

code to splines.

A final stage, closing gaps introduced by noise in the image and error

in the previous stages, has been developed by Scher et al [104] and Princen

et al [95]. Higher level processing using syntactic methods is the subject of

research by Joseph and Pridmore [541.

2.8. Other Vectorization Work

Most àf the problems with these system can be blamed on artifacts cre-

ated in the thinning process. Several researchers have developed methods

for solving this problem, with mixed success. A very useful survey paper for

vectorization is by Nadler [791.

One often proposed vectorization method that needs to be eliminated

from consideration right away is to move a large square across the black section

of the image and to follow the centre of the square. Wakayama [123] and Shih

and Kasturi [109] show clearly that this technique does not work.

The artifacts caused by most current thinning algorithms have motivated

a search for techniques that can recognize lines without thinning. Chen and

Hsu [16] associate a direction with every pixel by finding the direction of the

shape that the pixel is part of and then segmenting the image into regions

containing smoothly changing directions. This paper gives the definition of an

13

orientation map, it and shows how they are used. The technique Chen and Hsu

propose does an excellent job of separating two intersecting lines into separate

ones.

Methods for following the centre of lines without thinning them are

presented by Black et al [10].

2.8.L Outline Collapsing. Instead of starting by thinning the image, Inter-

graph's JJVEC finds its outline and then uses chain coding and vector reduction

steps like Musavi's to get the vectors that represent this outline of the im-

age [44] [45]. At the end of this procedure, the algorithm isolates single lines. It

finds long, parallel lines that constitute the edges of individual lines and then

isolates a single line that runs between them. This should be the centre of the

original line. A similar system is described by Boatto et al [11].

2.8.2. Grayscale Work. Watson et al [125], Arvind [4], and Stevens [114]

take yet another approach to the thinning problem. They devise systems based

on using a grayscale scan and blurring the image with a Gaussian. The darkest

region of the blurred line is the centre of the line. Other grayscale methods

have been examined by Joseph [53] and Nishimura and Fujimoto [84].

2.8.3. Related Work. Methods based on laying a grid over an image and

recording where lines cross from one grid section to another are used by Ejiri

et al [281 and Vaxiviere and Tombre [122]. Hitachi has built a scanner specifi-

cally for this purpose. This method is based on the graph—based vectorization

method proposed by Pavlidis [93]. Methods employing hexagonal grids have

been used by Gibson and Lucas [371 with notable success. Although this method

looks promising, there has not yet been much research into it.

14

The idea of taking a sketch of an engineering diagram and converting it

to the engineering diagram it is meant to represent is being explored by Yoshino

et al [127], Jansen and Krause [48], and Donnelly and Martin [25]. Finding the

dimension in engineering drawings has been pursued by Don [261 [271.

15

CHAPTER 3

Scanning

The first stage in the conversion of a document is to obtain a cleanly scanned

binary image that accurately represents it. In this chapter several aspects

of scanners are considered: the transport mechanism, light sources, camera

alignment, linearity, focus, pixel resolution, point spread function and speed.

A wide variety of scanning devices is available, and their various noise

characteristics affect the quality of any image that is eventually vectorized. The

majority of scanners today are based on CCD camera technology that scans one

line at a time. A discussion of the different problems that arise in the scanning

process is followed by a comparison of several scanners and their effects on

vectorization. This discussion concentrates completely on gray scale scanners

and ignores colour scanners because most engineering drawings have only one

colour.

Currently most scanners for paper documents have either a flatbed or

a roller design. With a flatbed scanner, the document sits on a large piece of

glass above the lens of the camera. The paper remains stationary while the

lens moves under the glass to scan the document. The lens moves only in the

Y direction, and the CCD camera captures a complete scan line of information

in the X direction for each Y position. The light source usually moves with

16

the camera, resulting in fairly even lighting conditions; however, vibrations

generated as the camera moves may create problems. A variation of this scan-

ning setup is to have a moving mirror that reflects the light into a camera that

remains in a fixed spot. Flatbed scanners are therefore much like common

photocopiers in their construction. One problem with such scanners is that a

scanner that can deal with E—size (26x48 inch) drawings is very large and hard

to transport.

The other common scanner design, the roller scanner, features a camera

mounted in a fixed position and a pinch roller that moves the paper across one

or more lenses. Fax machines are set up in much the same way. One problem

with this design is that occasionally the paper in the roller slips and causes

severe distortions in the scan. Distortions can also occur as the paper slowly

skews as it feeds through the scanner: a straight line on the paper gets scanned

as a curve. Often several cameras are used in a wide roller scanner - the ANA

Tech Eagle 4080ET scanner has seven [43]. In most scanners there is one light

source for each camera.

Two other configurations for scanners are drum scanners and vacuum

scanners. In a drum scanner, the document is attached to a drum that is rotated

past a single point optical sensor in a way analogous to how a lathe would turn

a drum. Because drum scanners contain single point optic detectors, they are

very slow and are no longer in common use.

A type of scanner whose popularity is increasing is the vacuum scan-

ner. It is much like the roller scanner, except that instead of pinching the

document between rollers, its vacuum mechanism sucks the document down

against moving belts. Because of the large area of contact between the the belt

17

and the document, a document in a vacuum scanner can be moved much faster

without slipping than can one in a roller scanner. Speeds in the range of 18

inches per second are possible.

To get consistent scans, a stable, even, bright light source is required.

Alternating current (AC) fluorescent and direct current (DC) halogen lights

are most commonly used. The spectra of both of these kinds of lights have

narrow peaks that cause strange effects when coloured documents are scanned.

AC lights also flicker slightly at the AC frequency of 60 Hz. If a document is

scanned quickly, the value calculated by the CCD sensor does not have a chance

to become integrated over several cycles, and 60 Hz aliasing noise can appear

on the image. Some scanners give excellent results using fluorescent AC light

sources with a high frequency AC source, so that the CCD can integrate the

results of the scans over several cycles for each pixel.

The alternative to AC fluorescent is DC halogen lights, used in many

high end scanners. They tend to be point light sources that illuminate the

document unevenly. Often, to remedy this problem, calibration documents are

scanned and corrective tables implemented in software. The ANA Tech Eagle

4080ET and the Mekel scanners use this technique [43], [72]. Another problem

that arises with DC halogen lights is that they get very hot and can cause a

document to stretch as it is scanned. Many high quality maps are produced on

mylar film that is not as prone to stretching when heated.

Dirty light sources, whether AC or DC, are almost as much of a problem

as dirty lenses. A dirty light source must be carefully cleaned and the whole

system recalibrated.

Wide, high resolution roller scanners like the ANA Tech Eagle 4080ET

18

have several cameras. This feature makes possible the scanning of wide docu-

ments without the problems introduced by moving cameras, but it complicates

the translation of the camera images into one large raster image. The assem-

bly of images is made easier by arranging the cameras so that their fields of

view overlap slightly and configuring the scanner such that its software selects

which camera each pixel in the scan comes from.

A square that is scanned on one part of the scanner and then scanned

again elsewhere may not come out the same size twice - it may even be contorted

into a rectangle, trapezoid, or worse. As well, slight stretching of the image is

not uncommon. This usually happens because either the optics are poor and

distort the image or the actual CCD array is not mounted squarely in relation

to the image. If the CCD array is twisted relative to the image, the scanned

image becomes skewed.

Current CCD technology projects as much as eight inches of paper onto

strips less than 1/8 of an inch wide that contain 3000 to 5000 CCD elements.

The high level of magnification and short focal length implied, in this setup

result in a very small depth of field. On the ANA Tech Eagle 4080ET scanner,

a change in focal length of 2/1000 of an inch can blur the image noticeably. The

focus is markedly affected if a transparent piece of mylar film with data drawn

on one side of it is scanned upside down instead of right side up. Because of the

sensitivity of such scanners, the focus must always be sharp and refocusing is

difficult.

19

3. 1. Information Per Pixel

Most grayscale scanners provide eight bits of data per pixel but fail to

provide eight bits of information. The number of bits of information being

taken from a paper scan can be calculated by scanning a page that is half white

and half black. Vb and V1, will represent the average values of black and white

pixels, respectively. The maximum deviation of a black pixel value from this

average will be called N&, and the corresponding value for a white pixel will be

N. Assuming that the amount of noise is linear in gray level, the noise at the

gray pixel x becomes

x — Vb
rt(x)=Nb-I- v— vb

Since the number of possible distinct gray level values in a range [x

size of the range divided by the amount of noise in the range, the

different gray values that could possibly come off a scanner is

(1)

o , x1] is the

number of

(2)

Every possible gray value is assumed to be equally likely to appear, so the

number of bits of information provided by the scanner about a pixel is

V.

1 = 1092 (3)

20

which can be written as

/

1=

in

/ (1n(Vb—V)-1n(NW Vb—NW VW))(Vb—Vw)Vb
Nb — N.

\
(In(Nb Vb—Nb VW) —ln(Vb—Vw))(Vb—Vw)Vb

Nb—Nw /

In(2)

(4)

I

The equation provides a simple method for approximating how many bits

of useful information each pixel contains by estimating the amount of noise in

each pixel.

3.2. Point Spread Evaluation

The point spread function (PSF) provides a good quantitative way to

describe how blurry a given scanner is. It also provides a way to correct the

blurring as shown in Jam [461 and many other image processing texts.

Mathematically modelling the process of scanning requires first that the

optical density of a point on the paper being scanned be represented by the

function f(x, y). The scanning process distorts this function f and provides a

raster scan represented by the function g(x, y). Added to the image are the

distortion caused by the imaging system, designated by the function H, and

some noise, 17(x, y). This set of equations is represented by the block diagram

in figure 3.1.

This is a common image degradation model (Gonzalez and Wintz describe

21

noise

FIGURE 3.1. Scanning distortion model

it well [381) that is described mathematically as

g(x,y)Hf(x,y)+q(x,y) (5)

where H is an undetermined function operator that represents distortions

caused by the imaging system. So H operates on a function that describes

one image and returns a different function that describes the distorted image.

Given that the image is captured using a CCD camera in controlled

lighting conditions, it can be assumed that

(6)

and that the distortion is linear, so that for any functions fi and f2 it holds that

H[kifi(x,y) + k2f2(x,y)] = kiHfi(x,y) + k2Hf2(x,y). (7)

Assuming as well that the distortion is the same in all areas of the image, H is

shift invariant. This means that given

g(x,y) = Hf(x,y) (8)

22

then

Hf(x—o,y—B)=g(x—a,y—/3). (9)

That this distortion is the same in all areas of the image may not always be a

fair assumption, but it is generally reasonably accurate.

From the equations and assumptions described above, a method like

Gonzalez and Wintz's [38, P. 207] for approximating H for a given scanner can

be derived. Express f(x, y) in the form

0000

f(x,y) =Jf f(a,13)8(x - o,y - 13)do.df3 (10)
-00-00

where S(x, y) is the two dimensional Dirac delta function. Therefore

0000

g(x,y) = HJJ f(a,/3)5(x - a,y - f3)dcid/3. (11)
-00-00

Assuming that the additive property is valid for this integral (the proof that

this is the case is given by Niemann [83, p. 53]), we find that

0000

g(x,y) =ff Hf(a,f3)8(x - a,y - /9)dad13, (12)
-00-00

but with the linearity property of H and the fact that f(a,) is shift invariant,

it follows that

0000

g(x,y) =JJ f(a,/3)HS(x - a,y -)dad. (13)
00-00

Now define h(x, y) to be the impulse response of H, so that

h(x,y) = HS(x,y). (14)

23

But since H is shift invariant, meaning that

h(x—a,y—/3)=H6(x—a,y—/3), (15)

and

0000

g(x,y) =ff f(a,13)h(x - a,y —/3)dad/3, (16)
00-00

g is the convolution of f and h. Here h is the point spread function (PSF). It

determines how much the original f is smeared when the image g is produced:

the larger the PSF, the greater the smearing.

Given the above definition of the PSF, an approximate measure of the

PSF for a given scanner can be made from a suitable test image. A few assump-

tions about the PSF are made:

• The PSF is symmetrical

This assumption only means that the distortion would remain unchanged

if the image being scanned were mirrored right to left. This assumption

is reasonable because the construction of scanners is symmetrical; there

is no reason for a right to left scan to differ from a left to right one.

• The volume of the PSF is 1, so that

0000

J f h(x)dxdy = 1. (17)

This assumption ensures that the grayscale value of a constant image

is not changed by the distortion except near the edges. It really just

amounts to having a gray scaling factor.

The following work derives a method for approximating the PSF from the

values of scanning a particular test image. First it is derived for a continuous

24

space. Then an analogous derivation is done for a discrete space.

Consider a test image whose left half is completely black and whose

right half is completely white, and consider also that where the regions meet

there is a sharp transition from black to white. The gray values of the scanned

test image are scaled so that black is —1, white is 1, and the line occurs at

x = 0. Because the image is vertically uniform, the convolution in the vertical

direction is irrelevant. The problem is reduced to a one dimensional one.

The image distortion model is

00

g(x) =J f(a)h(a - x)da, (18)
-00

where g(x) is the values scanned from the test image. From the construction of

the test image,

f(){ 1 ; x>0
—1 ;

Now g(x) can be rewritten as

0 00

(19)

g(x) = f f(a)h(a - x)da + J f(a)h(a - x)da. (20)
-00 0

By the definition of f(x) it becomes

0 00

g()=— J h(a— x)da +Jf(a)h(a — x)da. (21)
-00 0

Using a change of variable to shift by x we get

g() = _fh(a)da+Jf(a)h(a)da. (22)

25

Since h is symmetrical (i.e. since h(x) =

00

g(x) = -f h(c)da +f f(a)h(a)da.
This can be rewritten as

and, as h is symmetrical,

(23)

g(x) =f h(a)da, (24)

g(x) = 2fh(a)da.

So, by the fundamental theorem of calculus

d
(x) dxg(x) 2

(25)

(26)

This last equation provides a method for approximating the PSF from

the scan of the test document.

An analogous argument can be made for discrete spaces, in which g, f,

and h are raster images instead of continuous functions. The distortion model

becomes

00

g(x) = E h(i - x)f(i). (27)

These lines are rewritten using the definition of f, yielding

0 00

g(x)=— E h(i —x)+> h(i — x). (28)

This is shifting to get that

i=0

—x co

g(x) = - h(i) + E h(i). (29)
2-00 i—X

26

Since h is symmetrical it holds that

thus

Since h is symmetrical,

g(x) 00
- = h(i) +

g(x) = E h(i).
i=-x

g(x) = 2>h(i).

The difference between two consecutive points can be written as

g(x + 1) - g(x) = 2(E h(i) - h(i)).
i=O i=O

Combining the ranges of the summations gives

which simplifies to

This is rewritten as

which simplifies to

g(x+1)—g(x)=2(
i=x+1

(30)

(31)

(32)

(33)

(34)

g(x + 1) - g(x) = 2h(x + 1). (35)

g(x+ l)—g(x) = h(+ 1),
2

h(x)g(x)g(xl)
2

This final equation provides a way to approximate h from the scan data g.

(36)

(37)

27

3.2.1. Measurements. To estimate the PSF of a scanner, first a large black

and white image was photographed onto high contrast 35mm film to make

the test image. The edge of this film was examined under a microscope at a

magnification of 30X and found to be very sharp. Because of the film's high

contrast, the black and white regions had uniform consistencies.

This test image was scanned on two scanners, and the pixel values near

the edge were recorded. The image was then rotated 90° and the scanning

performed again to get an approximation for h in the other axis.

3.2.2. Results. Table 3.1 describes the pixel values near the edge of the scan

on one scanner. From these values, the values of the PSF function for positive

x were calculated and recorded in table 3.2.

Scanner Pixel Values

Microtek 300zs 4 5 5 15 42 53 59 60 61 61 62

TABLE 3.1. Edge values from scanner

Using the scan data as g(x) and equation 37 values for h(x) are computed

and shown in table 3.2.

Scanner PSF Function Values

Microtek 300zs 27 11 6 1 1 0 0

TABLE 3.2. Point spread function

The plot of the point spread function data in table 3.2 is shown in fig-

28

ure 3.2. The standard deviation of this PSF is 1.37 pixels or 5/1000 of an inch.

2000

1000

0 .00

-6.00
o••l

-2.00 6(X) -4.00 0.00 2.00 4.00

FIGURE 3.2. Point spread function

FIGURE 3.3. Gaussian approximation of PSF

The Gaussian that approximates this curve (same mean and standard

deviation) is shown in figure 3.3. From this graph it becomes apparent that

the PSF for this scanner is not terribly close to a Gaussian but has a shape

reminiscent of one. Gaussians are often used to approximate the PSF function

of a scanner, but a Moffet function may be a better model for the PSF. The

Moffet function is

1(x) = io (2\
pu)

(38)

The parameters 1, p and /3 give more degrees of freedom than a Gaussian so

that the model can more accurately describe the measured PSF data.

29

If the PSF is narrow (has a small standard deviation), an image will not

be blurred as much by the scanner.

3.3. Speed

A scanner's speed in scanning a file and saving it to disk is most often

lost at a bottleneck either as the data is transferred from the scanner to the

workstation controlling it or as the workstation transfers the data to disk. A

useful measure of speed is the bits of useful information acquired per second.

This measurement is defined as the area scanned (in square inches), divided

by the variance of the point spread function (also in square inches), multiplied

by the number of useful bits of information obtained per pixel per unit of time.

This measurement of speed makes it easier to compare scanners that produce

data of different qualities.

3.4. Comparison of Scanners

The information in table 3.3 provides a way to evaluate the probable ef-

fectiveness of these scanners for different purposes. The scanners are described

in terms of PSF, pixel resolution, speed, maximum document size, transport

type, light source type, and price. A scanner for engineering diagrams must be

able to handle E size drawings and have a PSF of less than 10/1000 of an inch,

so that lines close together can be easily distinguished. Such a scanner must

also have information per pixel greater than four bits for a very clean document

and greater than six bits for blueprints or dirty paper.

In table 3.3, Size is the largest size of document that can be scanned, in

inches. The ANA Tech scanner has an 81 inch length limit, even though it is

30

a roller scanner, because it has a 65534 scan line limit. The units for PSF are

1/1000 of an inch. Pixel resolution is given in bits. Speed is in kbps (kilobits

per second) of information. The speed given for the ANA Tech scanner was

not measured but was taken from the manufacturer's specifications. Prices are

constantly dropping. The prices quoted are the approximate list price in the

summer of 1992; actual prices are likely lower.

Scanner Microtek Ana Tech

300ZS 4080

PSF

Pixel Res

Speed

Size

Transport

Light

Price

5.00 1.26

6.13 6.43

160 2750

8.5x14 40x81

Flatbed Roller

Neon Halogen

$1900 $45,100

TABLE 3.3. Comparison of two scanners

31

CHAPTER 4

Preprocessing

Preprocessing describes steps that can be taken to clean up the scan after it

comes off the scanner but before it is passed to the vectorization software.

4.L Thresholding

The thresholding step converts the grayscale image into a black and

white one. The simplest thresholding method simply picks a gray level and

calls every pixel darker than this level black and every lighter pixel white. This

procedure works well for many drawings, and most scanners can do it through

their hardware. Another thresholding technique, in which the image is dithered

to yield a grayscale—like appearance, are unsuitable when vectorization is the

goal. This is because gray lines get turned into black and white dots, which

defeats the whole purpose of thresholding as far as vectorization is concerned:

thresholding must clean up the image and get rid of as many unaccountable

dots as possible.

Excellent coverage of techniques for thresholding line drawing type doc-

uments such as engineering diagrams are provided by Taxt et al, Sahoo et al,

and Fu and Miii. Taxt et aldescribe several algorithms that produce excel-

lent results but require interactive input [117]. Fu and Miii [341 take a very

32

theoretical statistical approach to the problem, while Sahoo et al [102] take a

statistical approach to derive very practical algorithms.

4.1.t Histogram Evaluation. One of the simplest methods for thresholding

an image interactively is to have the user look at the histogram of its pixel

values to pick a fixed thresholding level for the whole image. Histograms are

traditionally displayed on linear graphs, but histograms of line drawings are

better displayed on log—linear graphs. The reason is that line drawings are

usually predominantly white with a small percentage of black pixels that form

the lines. Their histograms are bimodal and skewed so heavily that they can

barely be seen on linear—linear graphs.

The histogram for a typical engineering diagram is shown in figure 4.1.

A good thresholding value for the scan of this diagram would be the value

FIGURE 4.1. Histogram of engineering diagram

at the bottom of the valley between the two peaks - about 75 for this image.

The histogram evaluation method is an interactive but simple way to select

thresholds for an image. It works well for scans with sharp lines taken off

33

clean paper.

The major problem with the histogram evaluation thresholding method

is that it thresholds the whole image with the same value, which is fine as

long as the contrast, the cleanness of the background, and so on are uniform

throughout the image. If, however, the image has a region in which the lines are

very faint as well as a large coffee stain that darkens the background in a certain

area, histogram evaluation thresholding becomes inadequate. If the lines in

the faint section are not as dark as the background in the stained section, it

will be impossible to find a single value that will result in a good thresholding.

The stainea section requires a thresholding value different from the one used

in the light section. Using different thresholding values for different parts of

the image is called adaptive thresholding.

4.L2. Adaptive Thresholding. Adaptive methods generally build a local

histogram based on nearby pixels for each individual pixel and then threshold

the pixel. Such adaptive methods can be flexible and sophisticated enough to

incorporate other information known about the diagram into their calculation

of the thresholding level. For example, the fact that engineering drawings

are mostly white with a few black lines but no large black areas can easily be

incorporated into these adaptive schemes and used as a posteriori probabili-

ties for constructing Bayesian classifiers to separate black from white. Taxt

et alpresent some of these adaptive thresholding methods [1171. They pro-

vide an excellent way to use knowledge about classes of images to assist in

thresholding.

A method based on edge detection and modelling the illumination in the

34

image is presented by Parker, Jennings, and Salkauskas [89]. First, a Shen—

Castan edge detector [108] is run over the image to find edge pixels. These

edge pixels represent a desired threshold for the part of the image near each

edge pixel. All the edge pixels are used as data points to fit a surface across

the image that represents the thresholding value at each location. The surface

is fit using a moving least squares method. The surface ends up modelling

the lighting gradient across the image, and the image is finally thresholded by

looking to see if the value of any given pixel is above or below the illumination

surface at that location. Although good results can often be obtained from

poor quality input, computation times are very long. Parker's algorithm [87]

describes a method that computes faster and provides thresholding that is not

quite as good.

4.2. Noise Removal

Images scanned by CCD scanners are often noisy, having little black and

white speckles that make an image look as if salt and pepper had been sprinkled

on it. This sort of noise is often seen on photocopies made by older copiers.

the cause of this phenomenon, called blooming, has yet to be convincingly

set forth. The possibility that blooming noise is thresholded Poisson noise

from the CCD does not quite fit the data. One quantum related theory has it

that blooming occurs because although the CCD sensors are usually accurate

they are occasionally way off, causing the occasional pixel value in a scan to

differ significantly from the pixel values around it. The other theory is that

when monochromatic light is scattered from a surface whose roughness is of

the order of the wavelength of the light, interference among the light waves

35

produces nodal patterns that leave bright and dark spots here and there. Jam

presents this explanation [46, p. 313].

Some of the most sophisticated algorithms for speckle removal have been

developed for Synthetic Aperture Radar (SAR). Complex methods for speckle

removal are presented by Jain and Christensen [47], Niemann [83], and Lim

and Nawab [65]. A simple method for speckle removal that I developed involves

a modification of a common flood fill algorithm [100, p. 88], [30, p. 450]. It may

be summarized as follows:

(1) Start with any white pixel;

(2) Set this pixel to black;

(3) Recursively set all this pixel's white neighbouring pixels to black.

The algorithm proceeds until it either runs out of white neighbours, in which

case it proceeds to the next white speckle to be removed, or until the region

exceeds the user-specified maximum area for speckles - i.e., until the region

is determined to be too big to be noise. When this happens, the algorithm

backtracks, converting the pixels back to white. This algorithm removes small

white specks (salt noise) but an inverse algorithm that removes black specks

(pepper noise) can be made by swapping white and black in the algorithm.

Speckle removal methods that use up less stack space exist, but since these

areas are small, the amount of stack space used is not usually of consequence.

The image in figure 4.2 is the thresholded image. It contains small black

areas. In figure 4.3 these small black areas have been removed by the speckle

filter.

36

FIGURE 4.2. Image with speckle noise

FIGURE 4.3. Image after speckle noise removed

37

CHAPTER 5

Erosion Vectorization

Many current vectorization systems utilize erosion methods (such systems

are described by Bixier and Sanford [8], Bhaskaran and Flandrena [7], Jen-

nings and Flanagan [491, Johnson and Bird [52], Hoshino et al [42], Kikkawa

et al [57], Lee et al [62], Musavi et al [771, and Suzuki and Yamada [116]).

These systems work by thinning the image until all the lines are one pixel wide

and then chain coding the thinned image, taking the chain codes to represent

the centres of the lines. The chain codes are then reduced to straight line seg-

ments. This chapter describes the implementation of this type of vectorization

method.

5.1. Thinning

Many different thinning algorithms exist. Thinning takes a raster scan

with lines several pixels wide and produces a skeleton in which the same

lines are only one pixel wide. Some of the more innovative or unusual thin-

ning methods are described by Arcelli and Baja [3]; Baruch [5]; Govindan

and Shivaprasad [391; Hilditch [41]; Jiminez and Navalon [51]; Kwok [59]; Li

and Suen [64]; Montanan [741; Naccache and Shinghal [78]; O'Gorman [851;

Pavel [901; Pavlidis [91], [92]; Sinha [111]; Udupa and Murthy [1201; Waka-

38

yama [123]; Yu and Tsai [128]; and Mang and Suen [129]. Kwok [59] and

Smith [113] present surveys of thinning methods. Parker and Jennings give

a quantitative method for evaluating thinning algorithms and a definition of

skeleton [88]. A thinning method by Jennings et alprovides a skeleton with

subpixel level accuracy. The vectors produced by this method have greater pre-

cision than vectors produced from a skeleton thinned to the width of one pixel

and the skeletons are less affected by noise [50].

The thinned products of the various methods differ considerably, and

each method has a significant impact on the quality of the final vectorization.

This section describes one of the most commonly used thinning techniques and

some of the problems that arise with them.

5.L1. Implementation. Mang and Suen's [1291 thinning method is used

here, because it is more commonly used than any other method in raster—to—

vector conversion systems and because its strengths and weaknesses tend to

characterize most thinning algorithms. Gonzalez and Wintz provide an excel-

lent overview of this thinning technique - generally referred to as an erosion

algorithm - and supply helpful details about implementation [38,. pp. 398-404].

P9 P2 P3

P8 P1 P4

P7 P6 P5

FIGURE 5.1. Labelling of neighbours

39

This erosion algorithm for thinning requires the definition of some ter-

minology at the outset. The pixels that are neighbours of a particular pixel,

p1, are labelled p2, p3, ...p9, as shown in figure 5.1. Each pixel is either black or

white. Black pixels have a pixel value of 1; white pixels have a pixel value of 0.

The goal at this stage is to erode the black regions so that all that remains is a

black skeleton. Two functions of a pixel are defined: N(pi) = P2 +P3 + +P8 +9

and S(p1) = Number of 0 to 1 transitions in the sequence P2, P3,. . . ,p9, P2. From

these two functions, two conditions are defined for a given pixel. Condition one

of a pixel C1 (p') is true only if all of the following are true:

and

2 < N(pi) ≤ 6, (39)

S(pi) = 1, (40)

P2P4P6 = 0, (41)

P4P6P8 = 0. (42)

Condition two of a pixel C2 (P1) is true only if all of the following are true:

2 ≤ N(pi) ≤ 6, (43)

S(pi) = 1, (44)

P2P4P8 = 0, (45)

40

and

P2P6P8 = 0- 46)

The algorithm now has two steps. Step one involves checking all the pixels in

the image and marking each pixel for which C1 is true. At the end of step one

all the marked pixels are deleted by having their pixel values set to 0. Step two

is the same as step one, except that C2 is checked instead of C1. Steps one and

two are repeated in order until there is an iteration in either step one or two in

which no pixels are marked.

When the algorithm terminates, a thinned skeleton is all that remains

of the image. The image of the letter H in figure 5.2 has been thinned using

this algorithm, and the result is shown in figure 5.3.

H
FIGURE 5.2. Image of an H

A small problem with this thinning algorithm, like many others, is that

it does not always give unitary skeletons. The number of 8—connected black

neighbours a pixel has determines what kind of a pixel it is. On a unitary

skeleton, one black neighbour means the pixel is an end point, .two makes it

part of a line, and more than two makes it an intersection. A nonunitary

skeleton is one in which some points that are not intersections have N(p1) = 3

41

FIGURE 5.3. Image of a thinned H

(see figure 5.7). This confuses the part of the chain coding that determines when

a pixel is part of a line, when it is an end point, and when it is an intersection.

Abdulla et alpropose an algorithm to make the image unitary [1]. It is run

as the final stage of thinning, after the Mang and Suen algorithm. Pavlidis

supplies a similar algorithm to solve this problem [91, p. 210-212] that does

not work quite as well but does not require an extra stage of processing.

An image more complex than the letter H appears in figure 5.4. The

thinned version of it is shown in figure 5.5. To make a comparison of the

images easier, they are overlaid in figure 5.6.

A small section along one of the thinned lines is magnified in figure 5.7 to

show that several of the pixels along the centre line are not unitary. Although

they are connected to three other pixels they are not intersection points.

42

FIGURE 5.4. Image to be thinned

FIGURE 5.5. Thinned image

Original with thinned image overlaid

44

5.2. Chain Coding

Once a line has been thinned to a width of one pixel it can be chain coded.

The next step in vectorization, chain coding is the process of tracing a line one

pixel wide by starting at an end pixel, finding the next pixel from directional

information, and continuing in this way until the last pixel in the line is found.

Representing a line by chain coding was first described by Freeman [31] [32] and

later by Freeman and Davis [331. Others, including Gonzalez and Wintz [38,

pp. 392-398], have since expanded upon this idea.

As mentioned in section 5.1.1, a black pixel has a pixel value of 1, while

a white pixel has a value of 0 and the N(pi) is defined as

N(pi) = P2 +P3 +•• +P8 +P9 (47)

where pi, P2, and so on are either 1 or 0. A pixel in a line has N(p1) = 2 (i.e.,

it has two neighbours). Pixels that represent end or intersection points have

N(pi) 54 2. If N(pi) < 2 the pixel is an intersection point, and if N(pi) = lit is

an end point. If N(pi) = 0, it is an isolated bit of noise that should be deleted.

Chain coding first finds an end point (where N(pi) = 1) and then finds the

black pixel next to the end. The algorithm uses a single number to describe the

direction in which it moved. The eight possible directions are specified using ,

the numbers shown in figure 5.8. The string of these numbers that describes

the line is called the chain code.

When the algorithm finds an end point or an intersection for this line,

the chain code for the line is output and all the pixels that are part of it are

deleted. The chain coding process is repeated until all the black pixels on the

image are deleted. A problem with this system is that it never chain codes

45

2

4

6

FIGURE 5.8. Chain code directions

figures, like the letter 0, that have been thinned down to one contour and have

neither a starting point where the chain coding can begin nor an intersection

or an end point where the system can stop. A solution to this problem lies in

first chain coding the whole image in the steps described above and then doing

an extra pass over the whole image and finding any black pixels that have not

yet been deleted, which are assumed to be part of closed loops. Chain coding

can begin anywhere on the loop.

FIGURE 5.9. Simple image

An image that has been eroded and then chain coded is shown in figure

46

5.9. The chain codes for this image are:
2 2 000000011111

2 9 000000000000

14 11 555544444444

5.3. Chain Reduction

This stage seeks to identify vectors in the chain codes. It is the final

step in the erosion vectorization method of raster—to—vector conversion. In it,

the chain codes are examined and long vectors that closely represent the chain

codes are formed. Rosin and West describe this part of the erosion vectorization

technique [1011. Algorithms almost identical to the one described here are used

by Lowe [67] and Jam [46].

The algorithm presented here (Jam's) allows the user to specify the max-

imum permissible deviation of the vectors from the chain codes they represent.

It provides results that use of close to the minimum possible number of vectors.

This algorithm first takes a chain code and approximates it as a single line

FIGURE 5.10. Vector approximation

running between the two end points. This line is designated AB in figure 5.10.

47

The point on the chain code farthest from line AB is found and labelled C. If

the distance from line AB to point C is less than the maximum deviation the

user has specified, the vector is a valid approximation of the chain code. If the

distance is greater than the maximum allowable deviation, the algorithm tries

to approximate the chain codes from A to C with the line AC and the chain

codes from C to B with the line CB. This approximation continues recursively,

comparing the the maximum allowable deviation with the distance between

each point and line until the distances between these points and lines are less

than the largest deviation allowed. All distance measurements in this algo-

rithm use Euclidean distances. The second approximation is shown in figure

5.11.

FIGuRE 5.11. Second vector approximation

If the user had specified a maximum deviation of 2 pixels, the line CB

would be close enough but AC would need to be further subdivided into the the

configuration shown in figure 5.12. At this point all the vectors lie within the

specified deviation, so the algorithm terminates, having identified three vectors

to represent the chain code. This method was compared to the classic split and

48

FIGURE 5.12. Third vector approximation

merge algorithm, which does something similar in the split step but then tries

to merge adjacent segments into one segment [40, p. 1051. The split and merge

produced minutely different, very marginally better results, but it took longer

to run.

5.3.1. Distance Point to Line Segment. Since this algorithm spends most

of its time computing the distance from a point to a line, it is worthwhile to

optimize the speed of this calculation. One method is given by Morrison [76].

A reasonably efficient algorithm is given by Bowyer and Woodwark [13, p. 471,

but it requires that floating point numbers be used, which slows it down con-

siderably. In this section a slightly faster integer algorithm I developed is

described.

This algorithm finds the distance squared, d3, from a point P to a line

segment defined by the end points A and B (see figure 5.13).

V=A —P (48)

V1=B—A (49)

49

(50)

t= —V.Vj (51.)

td = min(max(t, 0), 1) (52)

F = V + (tdV)() (53)

d3 =F.F

FIGURE 5.13. Distance from point to line

(54)

It is acceptable that this algorithm return the square of the distance

(thus allowing the avoidance of the square root function), because the reason

for obtaining this distance is to compare it to an error distance. An effective

comparison can be made between the square of the error distance and the

square of the distance between the point and the line segment. If the magnitude

of V2, and V in the algorithm can be represented in b bits, the algorithm needs

50

vector elements to be represented in 3b+ 1 bits. An implication of this statement

is that if the points A, B and P are within about 1000 units of one another,

the algorithiii can run using 32 bit integers, which, on current workstations,

provides a dramatic speed gain over using floating point numbers. If V > 1000

or V, > 1000 the algorithm must switch to floats.

FIGURE 5.14. Digital ellipse

5.3.2. Analysis. Chain reduction does introduce some error. In figure 5.14

an ellipse is turned into a digital ellipse. The gray square represents the pixels

in the digital ellipse. The original ellipse is black. The digital ellipse is chain

coded as shown in figure 5.15. In figure 5.16 the chain codes are represented by

eight vectors. In figure 5.17 the original ellipse and the vectors that represent

it are drawn together. The vectors do not coincide exactly with the ellipse.

The fewer the vectors used to represent the ellipse, the greater the deviation

distance.

This algorithm for reducing chain codes into vector lists is not optimal,

in that it fails to reduce the chain code to the minimum number of vectors

required to represent the chain code within the user determined error limit. In

the optimal algorithm, most of the lines would be near their maximum error

51

FIGURE 5.15. Chain coded

Chain

Reduced
Chain

FIGURE 5.16. Vectors and chain code

FIGURE 5.17. Vectors and original

level, and the minimum number of lines would be supplied. Such a system

is presented by Wall and Danielsson [124], Sklansky and Gonzalez [1121, and

52

Montanan [75]. The optimal algorithm tends to make the vectors bend a short

distance from the actual corners. The chain reduction algorithm presented

here, although not optimal, tends to bend the vectors at the corners, producing

nicer results. The vectors bend at corners because corners are usually the

points farthest from other corners.

The majority of the computation time in a system such as this goes into

the thinning stage. In the few test cases tried, this stage often took over 95

percent of the run time. Many thinning algorithms, such as Kwok's [59], were

developed to produce results similar to Zhang and Suen's but to run much

faster. A different approach was taken by Molaro, Jennings, and Parker in

their distributed thinning algorithm [73]. It runs on several networked UNIX

workstations at once, to achieve better performance.

5.4. Results

A section of an image was taken through all the steps described in this

chapter (first thinned, then chain coded, then vectorized) to produce a vectorized

image. The original image appears in figure 5.18. Vectorization and reduction

were done with error values of both 3 and 10 for the sake of comparison. The

results are shown in figures 5.19 and 5.20.

The reduction error of 10 is too large and misrepresents the image. Much

better vectorization occurs when the reduction error is 3 pixels. The long curves

of the outside circle come out well. Most of the long, isolated lines emerge

properly, but the lines near intersections are often messed up. The circle inside

the hexagon is almost completely destroyed.

53

FIGURE 5.18. Binary image

FIGURE 5.19. Reduction with error = 10

54

FIGURE 5.20. Reduction with error = 3

FIGURE 5.21. Reduction with error = 3 overlaid on original

55

5.5. Problems

This sort of system makes several types of errors.

5.5.1. Line Fuzz. Rough edged lines on scans cause serious problems. The

thinning algorithm takes the points on the rough edge to be different lines, and

the result is small lines running from the centre of the true line out to where

the peaks on the rough edge were. The final vectorization shows lots of short

lines that look like fuzz, as shown in figure 5.22.

FIGURE 5.22. Fuzz on line

5.5.2. End Point Artifacts. The thinning process often introduces a great

deal of noise around the ends of lines, as shown in figure 5.23, which then

affects the vectorization of the line. In figure 5.23, the right end of the line

has been bent upward, while the left end has been split, one line veering up

and the other down. This type of distortion is a particular problem because

higher level processes often depend on the directions of the ends of lines. For

56

FIGURE 5.23. Line end noise

example, a system that found dashed lines would identify very short lines all

pointing in the same direction as a single dashed line; the end point directional

information would be crucial. Split ends and end deviations mess up directional

information just where it is needed most.

5.5.3. Intersection Artifacts. Just about all thinning processes distort the

image near intersections. There are two major types of intersection distortion,

FIGURE 5.24. Intersection T displacement

T displacement and X destruction. T displacement distortion appears in fig-

ure 5.24. The horizontal line is drawn toward the line that intersects with it:

T starts to look like Y The second major type of distortion is X destruction,

shown in figure 5.25. Two lines that intersect at a small angle are incorrectly

vectorized as two lines merging into one and then splitting into two again. This

type of distortion is often called "necking."

57

FIGURE 5.25. Intersection X destruction

5.5.4. Problems of Scale. The scale problem is of fundamental importance

in vectorization. Consider a line with a bump in it, as in figure 5.26. Basically,

a very small bump should be ignored and the image should be vectorizbd as

a single line. A large bump should be vectorized as another line touching the

first. It is unclear what should be done with a medium sized bump. A line with

a bump might be the silhouette of a submarine, or it might be an ordinary line.

A human would use knowledge about the rest of the image to determine how

to interpret such a bump.

5.5.5. Inside Bias. One of the major problems with the chain reduction al-

gorithm is that it has an inside bias, meaning that the vectors approximating

the curve tend to lie along the inside of the curve. In figure 5.27, the dotted

line approximates a solid curve. Because of the way the algorithm bends the

vectors, the vector approximations to the curves always lie on the inside of the

curves in question. The inside biasing error appears in figure 5.21 with the

vectors representing the outside circle.

58

Line
with
bump

One line
or three?

Three lines
in
configuration

FIGURE 5.26. Problems of scale

,
,
,
,
,
,
,

FIGURE 5.27. Inside bias

59

CHAPTER 6

Vision, Knowledge, and Vectorization

The vectorization of maps and engineering diagrams is a difficult problem. This

chapter examines whether or not the vectorization of diagrams is theoretically

possible and what knowledge and techniques might prove useful. This chapter

also glances at how knowledge of the human vision system might help solve

the problem. It ends with a basis upon which a machine vision system may be

implemented.

The first step is to define the problem precisely. Since there are theoret-

ically a nearly infinite number of features that could appear on a drawing, this

thesis restricts the domain to engineering drawings containing only circles and

lines. Although being able to vectorize circles and lines will not solve larger

vectorization problems like those posed by optical character recognition, it will

suffice for engineering diagrams.

6.L Inverse Function Theory

The first question to consider is whether or not vectorization is theoret-

ically possible. Consider that graphics is the process of turning a model into

an image: vectorization is "antigraphics," the inversion of the rendering equa-

tions. Vectorization takes an image that might have been produced by some

60

rendering and finds a model that could be rendered to get that same image.

This conception of vectorization can be formalized. The method involves

considering as a model (M) the CAD file that generates a drawing. The plotting

of this file can be considered a function F that generates a raster image I such

that

I = F(M). (55)

The problem of vectorization thus becomes one of finding an inverse to the

function F and computing

M = F-1 (1). (56)

F is not isomorphic, because whether the model contains one long line or two

collinear shorter lines, the image I will be the same. F in general is therefore

not properly invertible, but an approximation,

F;' F' (57)

does exist for a given I such that

(58)

As well, let

then

Ma = F'(I)

F(Ma) = I.

•(59)

(60)

61

The approximation, Al, to the model, Al, is therefore the best vectorization

possible given the information in I.

Domain of F

Models that
generate the
image I

All possible models

Range of F

All possible images

Images possible from
some model

FIGURE 6.1. Relation of model and image spaces

This set of relationships is shown in figure 6. 1, which shows that while

finding the exact model that produced the image may be impossible, recovering

a model that would produce the same image is a distinct possibility.

6.LL Size of Search Space. Since finding a good model is possible, the

next question is whether or not it is practical. The function F(A10) = I could

be inverted through an exhaustive search of the model space. To calculate

an approximate size of this space, we first assume that the diagram is an E

size (36x48-inch) engineering drawing scanned at 400 dpi that has fewer than

10,000 drawing elements on it and has no lines wider than 1/8 of an inch.

62

The model space is for a two dimensional model of a drawing, and it does not

matter that the drawing may represent a three dimensional model. We can also

assume that ihe image is wider than it is high without loss of generality. Now

we define h to be the height of the image in inches, w to the width in inches,

d to be the dpi, and n to be the number of elements. The thickest line on the

image will have a thickness of t in inches. For two lines at different angles to be

rendered differently, they must have slopes that make the end points differ by

at least half a pixel. Since the maximum line length is dw pixels, the minimum

angle change must cause an end point change of at least half a pixel. To make

the calculation of these values possible, the direction of a line must be stored

to an accuracy of

1/2

dw

radians. This level of accuracy means that there are

27r
4irdw

dw

(61)

(62)

possible different directions for each line. The largest circle on the drawing

can have a maximum radius of w/2 inches and must be stored to an accuracy

of half a pixel, together with its positive/negative curvature indication. There

are, accordingly, 2dw different radii. The length of a shape needs to be stored

to an accuracy of one pixel. If it is an are, the longest length of the arc will be

irw inches, so that there are wdii- different lengths for shapes. As there are n

shapes, the total size of the search space is about

wdhd dt 4irdw 2dw wclir n (63)

63

which reduces to

87r2w4hd6tn (64)

or, for this example, about 1029 models. For each model we would want to

render and then compare the images that have wldd pixels, which amounts

to about 1037 comparisons. Making so many comparisons is clearly impossible

using current computer technology and will probably remain impossible for the

foreseeable future.

Another way to invert the rendering equations is to use simulated an-

nealing. The problem is posed as "minimize the value of

F(M) - II (65)

by varying the vector Mr," where the vector describes a model that can represent

every possible drawing. M is a particular model in the space of all possible

models. This function theoretically finds the model that is a good fit the image.

This function cannot be used as a technique, however, because M has too many

dimensions [191. Simulated annealing can only solve thousands of variables

when the the objective function is locally very smooth and can be evaluated

very rapidly.

Yet another way to consider inverting the rendering equations is to em-

ploy the genetic algorithm metaphor [231, which attempts to make this inver-

sion using a rough interpretation of the theory of evolution. The metaphor

posits that creatures are trying to survive and reproduce and thus to evolve.

There are major stages of evolution which differ in the level of sophistication

attained. These stages - which are interpreted, for the purposes of engineering

64

diagrams as points, lines, and so on - correspond to species. In each species

there are those that are weak - small areas - and those that are strong -

large areas. Lines or regions (creatures) that are too small starve and disap-

pear. Large entities reproduce and form similar creatures that attempt to grow

larger.

The DNA passed from one generation to the next is the vector

(x, y, curve, width, direction, length) (66)

This vector describes any arc or line segment. The coordinates x, y represent the

location of the centre of the segment. The direction of the creature is direction,

and width and length are self explanatory . The element curve is 1/radius of

the curve. It is positive if the curve bends right, negative if the curve bends

left, and zero for a straight line. Any creature can therefore be represented

conveniently by a seven dimensional vector. This method has the same sort of

problems as simulated annealing in that it is not computationally feasible with

this many degrees of freedom.

6.2. Vision

In Theory of Edge Detection , Marr comments that "vision is the process

of discovering from images what is present in the world and where it is" [70].

Finding out what is on a diagram by brute search techniques is prohibitive,

as observed above. Various animals' vision systems, however, provide helpful

hints about improving machine vision. The study of human vision has already

contributed much to this area of knowledge [70], [6]. Figure 6.2 is a greatly sim-

plified sketch of the retina. This chapter examines how images travel through

65

the optical systems of humans and certain animals and how information is

obtained at different stages before the image gets to the brain. At each stage,

information that seems to yield a hint for machine vision is examined.

6.2.1. Retina. In human vision, light enters the eye and is focused by the

optics onto the retina. In the back of the retina the photoreceptors in the rods

and the cones turn the light energy into neural signals. These signals are

fed into the bipolar, amacrine and horizontal cells that feed into the retinal

ganglion cells (see figure 6.2).

Optic Nerve

Ganglion Cells

Bipolar Cells

Rods & Cones

Pigments
OóO8 O
U!JIJUDD

Light

FIGURE 6.2. Sketch of retinal cells

One clue to improving conversion systems appears when the retina in

examined. The human vision system arranges the sensors in the retina in a

roughly hexagonal pattern with smaller hexagons towards the centre of the

retina [20]. This is probably better than the rectangular arrays used in most

image processing. Hexagonal arrays are the densest way to pack circles on a

plane [14]. Deutsch has found that thinning problems seem easier to solve on

hexagonal arrays than on rectangular ones [24].

66

6.2.2. Ganglion Cells. The ganglion cells are the cells in the retina that are

triggered by light and start the signal that is transmitted to the brain. Each

ganglion has around it a more or less circular area called a receptive field. When

light falls in the receptive field, the ganglion is affected. The receptive field for

retinal ganglia for warm blooded vertebrates has at least one characteristic

that is thought—provoking for these purposes. Kuffier's research indicates that

light stimulation in the centre of the receptive field for a cell tends to affect

the cell in a way exactly opposite to the way stimulation near the edge of the

receptive field does. If light in the centre of the field causes the neuron to fire

and be active, then light near the edge will suppress the tendency to fire [58].

FIGURE 6.3. DOG function

More recent work has shown that the response of some retinal neurons

is directly related to the summation over the receptive field of the stimulation

scaled by a factor that is dependent on the distance of the stimulation from the

centre of the receptive field. The scale factor versus the distance is a transfer

function that closely approximates the difference of two Gaussian functions

shown in figure 6.3. A model for the response of the neuron based on these

67

observations was proposed by Rodieck [99] and is often called the Difference Of

Gaussians (DOG) model. This DOG model accounts for the visual phenomena

of Mach bands and the Hermann grid, described below (how the DOG function

accounts for both of these phenomena is described in detail by Sekuler and

Blake [107, pp. 71-75]).

FIGURE 6.4. Hermann grid phenomenon

The Hermann grid (see figure 6.4) was described in the nineteenth cen-

tury by Ludimar Hermann. The noteworthy feature of the Hermann grid is

that a person who stares at it sees grey circles at the corners of the black boxes.

This effect can be explained by the DOG model of the frequency response curve

of the human visual system. Consider the receptive field of a single ganglion.

The centre is activated by light reflected off the bright white lines, while the

edges of the receptive field are activated by dark areas. When the receptive field

is centered on a grid line away from an intersection, not only does the white

68

grid line stimulate the cell but the black borders on the edge of the receptive

field also stimulate the field and appear very white. When a receptive field

centres on a grid intersection, the larger amount of white than black immedi-

ately surrounding the intersection falls on the outer part of the receptive field

and inhibits the cell slightly, making the viewer see the white intersections as

darker than the grid lines. Ultimately the grid intersections fool the perceptual

system into seeing them as gray, particularly if they do not fall on the centre of

the visual field where the receptive areas are smaller.

The DOG function is one explanation for why ganglion cells respond more

to edges and bars than to uniformly lit surfaces. Changes in light intensity,

such as those that occur at edges, may be more important for vision than the

actual intensity values. Conversion systems can likely learn almost all of what

they need to know by looking only at edges.

6.2.3. Lateral Geniculate Nucleus. The retinal ganglion cells are connec-

ted by the optic nerve to the lateral geniculate nucleus (LGN) and superior

colliculus in the optic lobe in the brain. The LGN senses variations in colour

and illumination level [107, p. 1071. It responds little to the total amount of

light falling on the retina. This response characteristic implies that the LGN

deals mostly with edges.

6.2.4. Visual Cortex. Experiments by Campbell and Robson were important

in introducing frequency domain processing into studies of human vision [71,

p. 187]. One of their important contributions was their multichannel hypoth-

esis, which states that the human vision system contains different kinds of

neurons, each highly attuned to perceiving bars of a particular width and on-

69

entation, and that these neurons provide input information for neurons per-

forming higher level vision functions. These supporting neurons are especially

sensitive to lines at orientations near the horizontal or vertical [107, P. 1191.

Usually a particular cell has a sensitivity range somewhat narrower than 15°.

This orientation response of cells is done in the visual cortex. This fact implies

that computer vision could be done by having a system recognize rectangles

at various orientations. Rectangles can likely be recognized using lower level

information about where the edges of the image are. This is a useful idea that

is used in the model proposed in this thesis.

In the visual cortex there is a large "3D array" of cells. Two dimensions

of this array correspond to what part of the eye is being activated, but each cell

in the third dimension is activated only when the orientation of the stimulus

lies within a range appropriate for that cell. Hubel and Wiesel, who discovered

this and got a Nobel prize for their work in vision in 1981, showed that the

cells in the cortex are arranged into hypercolumns of cells spcific to different

orientations.

The mere fact that so much of the brain is dedicated to determining the

orientation of visual stimuli lends credence to the idea that the direction of each

individual "pixel" is very important in vision. The human visual cortex has a

representation for the image in which one cell activates for each (x—position, y—

position, direction) triplet. For machine vision, knowing the natural direction

of a pixel is probably important.

6.2.5. Gestalt Perception Ideas. The full operation of the visual cortex and

how the brain makes sense of what is viewed cannot currently be explained

70

from this neural biology point of view, but traditional psychology offers some

insights'. The basic model of vision employed by Gestalt psychologists has pro-

vided much of the basis for contemporary work and has generated several fun-

damental principles of human perception [107]. These principles are described

by Lowe [661 as:

• Proximity

Objects near one another are grouped together as one perceptual unit.

• Similarity

Objects similar in colour, size or orientation are often grouped together.

• Continuation

Objects that lie along a smooth path or line are grouped together.

• Closure

Curves are completed so that they form a closed region.

• Symmetry

Objects that are bilaterally symmetrical in their relative positions are

grouped together.

• Familiarity

Objects that humans are used to seeing together are grouped together.

All of these principles can be used in implementing a computer vision

system that links lower level information together to form higher level infor-

mation. Some of these ideas are used by Bergevin and Levine [6] and Connelly

and Rosenfeld [18].

6.2.6. Relation to Machine Vision. Current neural psychology suggests

that human vision relies on low level recognition in the retina and higher level

71

recognition as the signal travels along the optic nerve and into the visual cortex.

In a computer vision system designed with this model of vision in mind, first

the system should find low level information, which it should then use to build

up more complex high level information about the image. This brief analysis of

natural vision has raised several other ideas, as well, that could be useful for

machine vision:

• A hexagonal image array may be better than a rectangular array for

image representation.

• Changes in image intensity (edges) are important.

• The direction of individual "pixels" is important.

• Sensors for particular directions should have a resolution better than

15°.

• Lower level information can be used to find an intermediate level of

information that represents the image in terms of bars at various ori-

entations and widths. This information can be used to find higher level

information.

• Objects that are close or collinear can be grouped together.

• Small gaps should be closed.

These ideas from human vision can simplified and modelled to some

extent in a computer vision system. They are used in the VKV vectorization

system proposed later in this thesis.

6.3. Domain Knowledge

This section looks at what is known about the domain of line drawings

and how this knowledge can be used. Mackworth has shown that vision only

72

becomes possible through the use of domain knowledge [68]. The feat that the

human brain performs when, given an image and all the hundreds of models

that could have possibly computed that image, it picks out one model it thinks

is correct only becomes explicable through the realization that humans use

sophisticated "a priori" knowledge about what is possible in the model.

Cugini et alapproach the problem of the a priori knowledge required in

mechanically vectorizing engineering drawings through an exploration of the

technical but not formal language of engineers and people who draft engineer-

ing drawings. They find that "[the] language used for this communication has

well defined syntactical and orthographic rules. From the orthographic point

of view, the basic elements are [line] segments, arcs and other well defined

curves." [21, p. 838] Engineers can look at engineering diagrams and under-

stand what they mean because engineers have a well defined syntactical and

orthographic system, and they expect the marks on the page to fit into this

system. Another way to conceptualize what engineers do when they look at

an engineering drawing - and what, by extension, computers must do as well

in machine vision - is through the analogy of the AMES room. The size and

shape of the AMES room is distorted, but when viewed from the right spot it

looks like a normal room containing objects of unusual sizes. Like an engineer

reading an engineering diagram, a human finds the right place to look at the

AMES room by relying on a priori knowledge about what the room ought to

look like.

The need for a priori or domain knowledge, becomes apparent when the

scale problem discussed in section 5.5.4 is considered. In this problem, which

is of fundamental importance in vectorization, there is a line with a bump in it,

73

one line
or three???

FIGURE 6.5. Scale problem

as in figure 6.5. A small enough bump is just a bump in the line and should be

ignored; a large enough bump is a separate intersecting line. A human would

use knowledge about the rest of the image to determine how to interpret each

bump.

Because knowledge about the domain is so important in interpreting

images, it is useful to list some facts about line drawings:

• Once pepper noise is removed, every black pixel is part of an object.

• The nearby edges often make it possible to figure out the direction of the

object of which a given pixel is an element.

• A line consists of at least one point.

• A line is a good approximation of a very thin rectangle.

• A thick rectangle contains a thin rectangle.

• The direction of a point on a circle is the same as the tangent line to the

circle.

• The engineering diagrams that this system will vectorize will be able to

contain, only lines and circles.

These facts can be used various ways to help understand the image.

74

6.4. Proposed Model

This section proposes a model for a machine vision system based on

some hints from natural vision and domain knowledge of line drawings. In this

system the recognition works up in layers. Each layer detects a higher level

object and feeds information to the next layer above it to detect even higher

level information. The layer order is:

• Pixels

These correspond to individual sensors in the retina (rods and cones).

Two kinds of pixels are considered important: black pixels that must

belong to some object and edge pixels that determine the boundary of the

object.

• Edges

The edges define the object completely. They correspond closely to the

information available after the processing by the retinal ganglion cells.

• Direction

The directions of the pixels are determined to get an initial estimate of

the direction of the object. Directions are determined using the longest

line of sight that lies entirely on black pixels. This stage aims to get the

direction accurate to within 15° and corresponds to a little bit of what

happens in the visual cortex.

• Thin Lines

The directional information is used to find thin lines that approximate

the image. These lines are used as the first approximation of the thicker

lines that form the Blocks stage.

75

• Blocks

Rectangular blocks that have position, orientation, and width are found.

• Curves

The blocks are used to find lines and curves in the image.

• Intersections and Gaps

Collinear lines and curves are connected to form complex objects. Small

gaps are closed, and objects that should be connected are.

• Objects

The objects that finally emerge provide a machine interpretation of the

image that is used to form the model that produced it. This model is the

vectorized image.

The VKV system described in the next section is based on this model.

76

CHAPTER 7

Implementation

This chapter uses the ideas about vision and knowledge to implement a vector-

ization system called VKV. This system consists of over 5000 lines of C++ code

that do the vectorization and another 10000 lines of C++ and Xli that view and

manipulate input images and results.

7.1. Finding Shapes

The complete search space - all the possible symbols that could be in

a diagram - is clearly too large for an exhaustive search, but there are many

heuristics that can be applied to reduce the search space. These heuristics can

be designed from domain knowledge about engineering diagrams.

One of the simplest of these heuristics is a structured search based on

the fact that a line must contain a point. The idea is to find a simple shape like

a point quickly and then use it to find a more complex shape that contains it,

such as a line. Because every black pixel belongs to some shape, any black pixel

can be used to find a line. Since the pixel in question must, by definition, be on

the line, the search space for the line is reduced significantly. This structured

search principle - in which simple objects like points are used to reduce the

search space for more complex objects like lines - is a basic organizing principle

77

of this vectorization system. The procedure used here is:

• Find a point

• Find edges

• Find a line

• Find a rectangle

• Find an arc

• Find an arctangle (an arctangle is an arc with width)

• Repeat these steps for another line or arc on the diagram

At each one of these levels, other knowledge is used to reduce the search space.

7.U. Data Representation. The representation of these shape objects in

memory is:

• POINT

Each point is represented by two real numbers, its x and y coordinates.

• LINE SEGMENT

A line segment is described by POINT, which is the centre of the line,

and two real numbers that represent the direction and length of the line.

Directions are always normalized to lie in the first two quadrants of a

circle, and they are stored in radians.

• RECTANGLE

A rectangle is specified by a LINE SEGMENT that represents the centre of

the rectangle and a real number that specifies the width.

• ARC

ARC is similar to LINE SEGMENT, in that it has a centre point, length,

and direction. Its length, though, is the length along the arc, and its

78

direction is the direction of the tangent to the arc at the centre point.

The radius of the arc is represented by a value called "curvature", which

is the inverse of the radius. The curvature is positive if the arc bends

right from the tangent and negative if it bends left.

Curvature is a useful value which simplifies many of the formulas that

involve computing with arcs. Figure 7.1 shows an arc that bends to the

right. If this arc has a radius of 10, its curvature would be +0.1. The

curvature of straight lines is zero.

• AROTANGLE

ARCTANGLE is specified by an ARC that represents the centre of the arct-

angle and a real number that specifies the width.

• SHAPE

SHAPE unites all the previous types. It includes five real numbers: x—

coordinate, y—coordinate, direction, length, width, and curvature.

7.1.2. Finding Points. This procedure for identifying shapes starts at a black

point not part of any shape already found. Such a point is chosen at random

from the image. Since most black pixels are not edge pixels, a point that is

inside an object is more likely to be picked than a point the edge of the object

would be.

The direction of the line on which this point falls is computed next. This

direction is called the line of sight direction and is presented by Chen and

Hsu [16]. The line of sight direction is taken from the longest straight line

that intersects the point and crosses only black pixels. A flaw in this technique

arises, however, because each point lies in a rectangular black area. This

79

Directn Tangent

FIGURE 7.1. Arc curvature

technique identifies the direction of the rectangle's diagonal but fails to find

the direction of the actual rectangle (see figure 7.5). In many circumstances,

though (as long as the rectangle is fairly narrow), this technique does provide

a simple way to find a good approximation of the direction.

This "line of sight" direction gives an initial approximation of the direc-

tion of the shape. To normalize the shape, the point now considered its origin

is the centre of this line. This new point is stored in the SHAPE data structure

and used for further processing. The initial point is discarded.

An example of a line of sight is shown in figure 7.2. The raster image is

black on a speckled white background. A point and line of sight are displayed

as a white line on the left side of the raster circle.

80

FIGURE 7.2. Line of sight

FIGURE 7.3. Edge cache

7.1.3. Finding Edges. The vectorization system next finds the edges of the

shape. Since the system operates on black and white images, finding edges is

trivial. Any black pixel with an eight connected white neighbour is considered

an edge pixel. The edge pixels of the current object are cached for use in later

processing. (If this work were extended to process grayscale input images, an

edge detection system like the one proposed by Shen and Castan [108] could be

used to find the edges.) An example of the edge cache appears in figure 7.3.

7.1.4. Finding Lines. Once the direction of the initial point has been calcu-

lated and the edges of the shape have been found, the vectorization system next

81

identifies the line upon which the point lies. The position and direction of the

current point are randomly perturbated many times, and the longest entirely

black line going through this point is found and kept. The length of the line is

found by intersecting the line with the cached edge information. This stage of

the vectorization process tends to move the centre point of the line near to the

centre of the real shape.

FIGURE 7.4. Moved line

Statistically, the distribution used for the perturbations approximates a

normal curve. Small perturbations are therefore more often used than large

ones. In empirical tests that compared how long the system took to find the

longest line with various distributions, this distribution converged and pro-

duced this line much faster than when all possible amounts of perturbation

were equally likely.

The lIne found using the perturbations is shown in figure 7.4. This figure

is almost identical to figure 7.2. In a more complex shape, the centre of the line

would need to be moved before it could achieve its maximum length.

FIGURE 7.5. Shape directions

82

7.1.5. Finding Rectangles. In this stage the centre of the shape is identified

precisely, and the accuracy of the direction of the line is updated. The line found

in the last stage is slowly widened into a rectangle. As the rectangle widens,

the centre line of the rectangle must remain on a black area of the image, but its

edges only have to be mainly on black. As the width grows, the direction and

Line of Sight Direction

New Direction

Image

position of the rectangle are perturbated according to the same distribution

used when finding lines. The rectangle with the largest area is saved and

passed to the next stage of processing. The direction saved at this stage is the

direction of the line through the centre of the rectangular region rather than

the direction of the diagonal. Figure 7.5 shows the distinction between these

two directions. At the end of this stage, accurate directional information about

the shape has been found, even if the shape is curved, as is shown in figure 7.6.

7.1.6. Finding Arcs. Arcs are found from the direction and position of lines.

A wide range of possible curvatures for an arc are tried, and the longest are

83

FIGURE 7.6. Rectangle

FIGURE 7.7. Arc

found is passed to the next stage of processing. Usually the complete arc is

found, but its position within the shape tends not to be very well identified.

This problem is apparent in figure 7.7: the are hugs the outside edge of the

circle because arc length is being maximized. Note that if the are extent angle

is too small, the shape is assumed to be a straight line and the rectangle found

in the previous stage of processing is used as the final result. Otherwise the

algorithm proceeds to the next stage of the search, finding arctangles.

7.L7. Finding Arctangles. The procedure for finding what are here called

"arctangles" - arcs with width, like pieces of a washer - is much like that for

84

FIGURE 7.8. Arctangle

upgrading lines to rectangles. The arc is slowly grown wider into an arctangle.

The arctangle with the maximum area is kept. The position, width, and curva-

ture of the are shape are perturbated as the arc is grown, but the direction is

untouched because it was found accurately in the stage that finds rectangles.

An arctangle has been found in figure 7.8.

7.L8. Finding More Shapes. One shape in the drawing has now been found.

It is marked as found, and the vectorization process reiterates to find another

shape. A shape, once identified, may be considered one "stroke" in the image

if it meets the qualifications imposed by domain specific knowledge, described

below.

7.L9. Domain Knowledge Used. This system relies on the user's input of

a large amount of critical domain knowledge. The size of the perturbations ap-

plied at each stage and the decision whether or not a shape that has been found

qualifies as a stroke are controlled by domain knowledge about the drawing.

The specific items used are:

• Maximum Line Width

The maximum allowable width of a line;

85

• Minimum Radius

The minimum radius of any curve on the drawings. This should be more

than half the maximum line width or else it will be possible to get circles

that lie completely insid one line.

• Maximum Radius

Any curve whose radius is greater than this will be considered a straight

line.

• Minimum Line Length

Any line shorter than this is a misinterpretation of the drawing. This

should be larger than the maximum line width.

• Maximum Overlap

The maximum length of an area where two lines overlap.

• Minimum Shape Area

The minimum area of any stroke in the drawing.

• Maximum Shape Area

The maximum area of any stroke in the drawing. This is useful in

filtering out large solid regions that should not be vectorized.

• Maximum Percent Overlapped

The maximum percentage of one stroke that can be covered by another

stroke.

These parameters can all be set in a file that describes a class of docu-

ments. They reduce the search space enormously and considerably improve the

interpretation of the image. Experimentation was done with these parameters

and others, but only these had a significant impact on the final results. All vari-

ables are floating point, so that results can have a subpixel level of accuracy.

86

FIGURE 7.9. Two shapes

The sample image, having undergone all the steps in processing described so

far, appears in figure 7.9.

7.2. Finding Intersections

Once all the strokes - rectangles and arctangles - have been found, the

connections between them need to be identified exactly. The method used to

connect the strokes reflects the Gestaltist principles of line continuation and

termination.

The aim of this stage is to connect the ends of strokes that are close but

not quite touching, to try to make end points meet or to make the end point

of one stroke lie on another stroke. First, all the strokes on the image are

examined to see if the end of one stroke lies within half a line width of another

stroke. If so, the strokes are lengthened or shortened so that they intersect

with others. All the strokes are then reexamined, and the process is repeated

until no strokes are changing. It is important to note that the basic shape and

direction of a stroke never change when the stroke is lengthened or shortened

to meet another. Only its length changes. With arcs and arctangles, it is the

arc length that is adjusted. The algorithm is easiest to show with pseudo code.

87

set somethingChanged to true

while somethingChanged

set somethingChanged to false

for each shape in the drawing

set slip to this shape

for each end point of this shape

set p to be this end point

set s to shape closest to p

if p is near s

change the length of shp to make p

as close as possible to s

if the length of shp changed

set somethingChanged to true

end if

end if

end for

end for

end while

To help illustrate the algorithm, figure 7.10 walks through all the stages

of an intersection adjustment. The process of intersection adjustment appears

in figures 7.11-7.13. The adjusted strokes are saved in a file, and the conversion

is complete.

88

Stage One

Stage Two

Stage Three

The original line before adjustment

Line B is lengthened so that it stops near A

Line A is shortened so that it stops near B

FIGURE 7.10. Intersection adjustment

Initial
Intersection

Corrected
Intersection

FIGURE 7.11. Corner adjustment

89

Initial Corrected
Intersection Intersection

FIGURE 7.12. Tee adjustment

Initial
Intersection

Corrected
Intersection

FIGURE 7.13. Complex adjustment

90

CHAPTER 8

Analysis

This chapter describes a comparison of the vectorization method proposed in

this thesis—VKV—and classical vectorization methods.

8.L Experiment

So that the "correct" results may be known, a drawing that had been

electronically drafted was plotted. The plotted version was blueprinted (this

technique is actually called the diazo process, and the product is not technically

a blueprint) and then scanned. Blueprinting injects realistic noise into the pro-

cess. The blueprint was scanned, and the scan was processed under both VKV

and the classical system described in chapter 5. The results were compared to

the electronic drafted version to determine the errors made by each.

 Errors

VKV Conversion

Electronic -- Plot —>-Blueprint Scan
Drafting

Classical Conversion

 Errors'

FIGURE 8.1. Data flow in experiment

Comparison

91

The drawing (figure 8.2) contains lines, curves and intersections like

those that occur on engineering diagrams. Unlike many engineering diagrams,

it contains no text, but converting text is beyond the scope of this system. The

drawing chosen has curves, lines, lines that join curves, lines that cross curves,

lines at various angles, and intersections of thick and thin lines. It has a great

2 0 2

 r
FIGURE 8.2. Original CAD drawing

variety of potential problems. The drawing was plotted, and a blueprint was

created. It was scanned with a Microtek 300zs scanner to get the input image.

The scan was automatically converted to get the results shown in fig-

ures 8.3 and 8.4. Just to point out what happens with some commercial prod-

ucts, Adobe's Streamline 2.0 was also used to vectorize the image. It produced

the results shown in 8.5.

8.2. Analysis

The results of both VKV and the classical vectorization methods are

basically correct, but another relevant criterion for comparing the effectiveness

of the two systems is how easily the resulting data may be manipulated. Where

92

4$•

FIGURE 8.3. Classical vectorization

the original had one straight line, the vectorized version should have a one line

primitive as well. If there are two primitives instead, editing will have to be

done on two lines instead of one.

(S OIL 0 6- 6

FIGURE 8.4. VKV vectorization

In the analysis of the results, errors will be classified into several types,

and then an approximate time for correcting each type will serve as a weight.

The final comparison will turn on how long it would take a human operator to

fix all the errors in the vectorized drawing using a current industry standard

93

&0&

ii
'*N

FIGURE 8.5. Streamline vectorization

tool, such as AutoCAD running a heads up digitization tool like CadOverlay on

an Intel 486 with hardware graphics acceleration for the CadOverlay system.

8.2.1. Lines Missed. This evaluation criterion is simply a count of the straight

lines that the vectorization completely missed. To add these lines, the operator

just has to enter the end points of the line manually, which takes approximately

10 seconds per line.

8.2.2. Circle Missed. This error is similar to missing lines, but to fix it the

operator must enter three points on the arc, which takes slightly longer (30

seconds). Usually several incorrect line primitives need to be deleted before the

circle can be added.

8.2.3. Tolerance Errors. These errors occur when the vectorized line is in

the wrong place and must be moved slightly. It is time-consuming to figure out

exactly what point on the primitive needs to be adjusted, so fixing this error

takes about 35 seconds.

94

8.2.4. Intersection Errors. Intersection errors occur where two lines that

should intersect fail to touch properly and one end point needs to be moved

slightly. Intersection errors are faster to fix than tolerance errors because what

needs to be adjusted is obvious. They take 25 seconds.

8.2.5. Crossing Errors. This type of error occurs where two lines that should

cross precisely have acquired X—destroying intersection distortion (see the

chapter 5 for a description of this distortion). This error takes a long time

to fix (50 seconds). The segments of the two lines have to be joined and the

intersection point deleted.

8.2.6. Fuzz Errors. This is one of the most frustrating errors to fix. Little

lines like hairs come off the main line, making it look fuzzy. At each intersection

point the intersection must be broken, the two segments of the main lines

reconnected, and the fuzz deleted. Although fixing one hair only takes about

30 seconds, operators soon become frustrated. It takes about 45 seconds on

average to fix this kind of error.

8.2.7. Comparison. The raw data from the comparison is shown in table 8.1.

The VKV image had an estimated correction time of 50 seconds, while the

classical method had a time of 700 seconds. The drawing could be redrafted by

someone using AutoCAD with CadOverlay in approximately 300 seconds. The

accuracy of these times would obviously vary widely depending on the AutoCAD

operator, but the relative times would likely stay consistent among users.

95

Category Classical VKV Time to Fix

Lines Missed

Circles Missed

Tolerance Errors

Intersection Errors

Crossing Errors

Fuzz Errors

o 0 10

11 0 30

0 0 35

3 2 25

5 0 50

1 0 45

TABLE 8.1. Vectorization errors

8.3. Critique of System

The VKV system is suitable only for line drawings formed from a small

set of primitives, but fortunately engineering drawings fall mainly into this

category. VKV will not work with documents composed of figures other than

lines and circles. In OCR, for example, it would be possible to vectorize a font

like Helvetica, but a font like Times with lots of points and curves would not

work. VKV could be extended to vectorize more complex shapes like ellipses and

perhaps splines, but it would never be able to vectorize all shapes, particularly

complex shapes like fractal curves.

An interactive conversion system that allowed the user to correct mis-

takes and which made future choices based on the corrections would be an

improvement over VKV Often a mistake on one vector causes several other

vectors to be distorted as well. An interactive system would help solve this

problem. Another drawback of VKV is that it is computationally intensive

compared to many existing systems.

96

8.4. Future Work

The work described in this thesis suggests several avenues for future

research. One possibility would be a more interactive system that allowed

the user to help the vectorizer and provided extra context knowledge where

required. Methods like this can be very successful, as Jansen and Krause have

shown [48]. One reason is that when the system proposed in this thesis makes

a mistake, it usually causes several other mistakes in the same area. If a user

could interactively correct the first mistake, the system could be prevented from

making several subsequent mistakes.

Another possible area for future work would be to expand the types of

shapes that the system recognizes from lines, circles, rectangles, and arctangles

to ellipses and other primitive shape types. Such work could be combined with

a system for OCR to produce useful results.

:. Neighbors

Pixel

FIGURE 8.6. Hexagonal rasters

Currently almost all image processing is done on a raster image con-

structed from a square grid. Human eyes, however, seem to use an hexagonal

grid - likely because hexagons provide the best packing of circles in an infinite

plane. Vectorization on hexagonal grids has been pursued by Gibson and Lucas,

among others [37]. The fundamental problem of the connectivity of neighbour-

97

ing pixels is much simpler on hexagonal grids, because all a pixel's neighbours

are an equal distance away from it, as shown in figure 8.6. The symmetry of

the whole situation is much better. As well, a thinning algorithm proposed by

Deutsch [241 was easily implemented on hexagonal grids. If the vectorization

method described in this thesis were extended to hexagonal rasters, the results

would likely be noticeably better.

The human visual system also makes heavy use of domain knowledge,

which this system does not. In particular, a human would use knowledge about

the probable angles of lines in an engineering drawing, and this system would

not.

A good conversion system should be able to find and reuse similar objects

in the drawing as well. For example, if there is a valve in one place on the

diagram and a very similar valve somewhere else, the system should recognize

that they were probably meant to be drafted exactly the same way. A good

system should find all the valve objects, make an optimal valve object and

indicate that there are valves at all the right locations in the drawing, instead

of merely describing the lines and shapes that make up each valve. This, of

course, is a hard machine learning problem.

In summary, there is a tremendous number of problems that will have to

be solved before a computer will be able to convert a raster image into the same

sort of CAD vector file that a human CAD operator would produce. Although

two dimensional CAD line drawings are surely one of the very simplest vision

problems, they still present many unsolved problems.

98

CHAPTER 9

Conclusion

In a manual vectorization system, a user indicates a long straight line by

pushing two keys on a digitizing tablet's cursor. An automatic system fails to

improve on a manual system if a user has to correct one end point, delete some

fuzz on the line, or move the line. Systems for automatically digitizing line

drawings must therefore have extremely low error rates if they are to require

less human operator time than manual digitization.

Currently available digitization systems have not solved the automatic

digitization problem. One significant problem is that thinning algorithms in-

troduce undesirable artifacts.

In designing a new vectorization system, the work described in this the-

sis began with the idea that the successful recognition of a drawing requires

knowledge about the domain in which the drawing was produced. Engineering

diagrams are of a certain size and have certain features, including circles, rect-

angles, lines, arcs, and text. They can also be understood as having potentially

been produced by being plotted from a CAD system; this fact limits the number

of possibilities for what a given diagram might contain. As well as domain

knowledge about engineering diagrams, another useful kind of knowledge to

bring to bear on this problem is the understanding of the visual systems of

99

animals, particularly the parts of the'vision system that deal with the entrance

of light into the eye and the progress of the signal through the various retinal

cells and into the brain.

Using knowledge about vision and domain knowledge about engineering

drawings, a vectorization system called VKV was designed and implemented.

The main advantages of system like VKV are:

• Because theIe is no thinning stage, there are no thinning artifacts;

• Vectorization occurs to a subpixel level of accuracy;

• Crossing and intersecting lines do not result in intersection artifacts;

• The system is easy to implement in a distributed environment; and

• The vectors it has produced have had fewer errors than other state of the

art systems.

One of the key features of the VKV system is that it obtains results that

have an accuracy well beyond the size of a pixel. This is very important for

maps and engineering diagrams, since the initial input can be scanned at a

much lower resolution and still achieve the same final accuracy. The scanned

image that must be saved and manipulated also requires less time and space.

To provide something to compare with VKV, another system was im-

plemented that combines the best features of classical vectorization methods.

The two systems were compared using engineering type documents. The VKV

system performed considerably better than the classical system.

This thesis has:

• shown that knowledge of animal vision is very helpful in designing a

machine vision system;

100

• shown that line drawings cannot be interpreted completely correctly

without knowledge about the domain of the drawings. Even then, al-

though perfect interpretation is impossible in some cases, good interpre-

tation is usually possible;

• developed a method, VXV for solving the complex problem of document

conversion. VKV works better than other current solutions on a wide

class of drawings;

• provided a comprehensive survey of research pertaining to document

conversion; and

• provided a model and evaluation methods for scanning and vectorization

technology.

Many claims have been made that systems already developed have solved

the automatic digitization problem, and many systems in the future will con-

tinue to make such claims. Hopefully this thesis has brought us closer to an

automatic, intelligent understanding of line drawings.

101

References

[1] ABDTJLLA, W., SALEH, A., AND M0RAD, A. A preprocessing algorithm for

hand—written character recognition. Pattern Recognition Letters 7(1988),

13-18.

[2] ALBANO, A. Representation of digitized contours in terms of conic arcs

and straight—line segments. Computer Graphics and Image Processing 3

(1974), 23-33.

[3] ARCELLI, C., AND BAJA, G. D. A width—independent fast thinning algo-

rithm. IEEE Trans. Pattern Analysis and Machine Intelligence 7,4 (July

1985), 463-474.

[4] ARviND, K. Extraction of lines and regions from grey tone line drawing

images. Master's thesis, Computer Science Dept., Virginia Polytechnic

Institute and State University, Blacksburg, VA., Feb. 1984.

[51 BARUCH, 0. Line thinning by line following. Pattern Recognition Letters

8 (1988),271-276.

[6] BERGEVIN, R., AND LEVINE, M. Extraction of line drawing features for

object recognition. In Proceedings of the Tenth International Conference

on Pattern Recognition (Atlantic City, NJ, 16-21 June, 1990), vol. 1 of 2,

IEEE Comput. Soc., pp. 496-501.

102

[71 BHAsKARAN, P., AND FLANDRENA, R. Artificial intelligence technologies

in a drawing management system. In NCGA '89 Conference Proceedings.

10th Annual Conference and Exposition Dedicated to Computer Graphics

(Philadelphia, PA, 17-20 Apr. 1989), vol. 1 of 3, Nat. Computer Graphics

Assoc., pp. 65-70.

[8] B]XLER, J., AND SANFORD, J. A technique for encoding lines and regions

in engineering drawings. Pattern Recognition 18, 5 (1985), 367-377.

[9] BIxLER, J., WATSON, L., AND SANFORD, J. Spline—based recognition of

straight lines and curves in engineering line drawings. Image and Vision

Comput. 6, 4 (November 1988), 262-269.

[10] BLACK, W., CLEMENT, T., HARRIS, J., LEWELLYN, B., AND PRESTON, G.

A general purpose follower for line—structured data. Pattern Recognition

14,1-6 (1981),33-42.

[11] BOATTO, L., CoNsoRTI, V., BuoNo, M. D., ZENZO, S. D., ERAMO, V., ESPOS-

ITO, A., MELCARNE, F., MEuccI, M., MORELLI, A., MOscIATTI, M., ScARcI,

S., AND Tucci, M. An interpretation system for land register maps. Com-

puter 25, 7 (July 1992), 25-33.

[12] BONO, P. Uses for CGM in raster—to—vector conversion. In CGM in the

Real World, A. Mumford and M. Skall, Eds. Springer, Berlin, 1988,

pp. 113-143.

[13] BOWYER, A., AND WOODWARK, J. A Programmer's Geometry. Butter-

worths, London, 1983.

[14] BUCKMINSTER—FULLER, R. Synergetics. Macmillan Publishing Company,

New York, 1975.

103

[15] BURY, A. Raster to vector conversion: A methodology. In GIS/LIS '89

Proceedings ((Orlando, FL, 26-30 Nov., 1989)), vol. 1, Amer. Soc. Pho-

togrammetry and Remote Sensing, pp. 9-11.

[16] CIIEN, Y.-S., AND Hsu, W.-H. An interpretive model of line continuation

in human visual perception. Pattern Recognition 22, 5 (1989), 619-639.

[17] CLEMENT, T. The extraction of line—structured data from engineering

drawings. Pattern Recognition 14, 1-6 (1981), 43-52.

[18] CONNELLY, S., AND ROSENFELD, A. A pyramid algorithm for fast curve

extraction. Computer Vision, Graphics, and Image Processing 49 (1990),

332-345.

[19] CORANA, A., MARCHESI, M., MARTIN, C., AND RIDELLA, S. Minimizing

multimodal functions of continuous variables with the "Simulated An-

nealing" algorithm. ACM Trans. on Mathematical Software 13, 3 (Sept.

1987), 262-280.

[201 C0REN, S., AND WARD, L. Sensation and Perception, 3rd ed. Academic

Press, New York, 1979.

[211 CUGINI, U., FERRI, G., MuSSIO, P., AND PROTTI, M. Pattern—directed

restoration and vectorization of digitized engineering drawings. Com-

puters & Graphics 8, 4 (1984), 337-350.

[22] DATASPAN TECHNOLOGY INC. RVCS Users Manual. Calgary, Alberta,

1990.

[231 DAVIS, L. Handbook of Genetic Algorithms. Van Nostrand Reinhold, New

York, 1991.

[24] DEUTSCH, E. Thinning algorithms on rectangular, hexagonal, and trian-

gular arrays. Commun. ACM 15, 9 (Sept. 1972), 827-837.

104

[25] DONNELLY, T., AND MARTIN, W. DRACAP: Drawing capture for electronic

schematics. In Proc. IEEE Computer Society Workshop on Computer Vi-

sion (1987), IEEE, New York, pp. 274-276.

[26] DORI, D. A syntactic/geometric approach to recognition of dimensions in

engineering machine drawings. Computer Vision, Graphics, and Image

Processing 47(1989), 271.-291.

[27] DORI, D. Dimensioning analysis: Toward automatic understanding of

engineering drawing. Commun. ACM 35, 10 (Oct. 1992), 92-103.

[281 EJIRI, M., KAKIJMOTO, S., MIYATAXE, T., SHIMADA, S., AND MATSUSHIMA,

H. Automatic recognition of design drawings and maps. In Proc. Seventh

International Conference on Pattern Recognition (Montreal, PQ, 30 July -

1 Aug., 1984), vol.2 of 2, IEEE Comput. Soc., Silver Spring, MD, pp. 1296-

1305.

[29] ESPELID, R., AND EILENG, J. A. A raster—to—vector conversion system

producing high quality geometric entities. In Proc. 6th Scandinavian

Conference on Image Analysis (Oulu, Finland, 19-22 June, 1989), vol. 2

of 2, Pattern Recognition Soc. Finland, pp. 1247-1253.

[301 FOLEY, J., AND DAM, A. V. Fundamentals of Interactive Computer Graph-

ics. The System Programming Series. Addison-Wesley Publishing Com-

pany, Reading, Massachusetts, 1882.

[31] FREEMAN, H. On the encoding of arbitrary geometric configurations.

IEEE Trans. Elec. Computers. 10(1961), 260-268.

[32] FREEMAN, H. Computer processing of line—drawing images. Computing

Surveys 6, 1 (March 1974),57-97.

105

[33] FREEMAN, H., AND DAVIS, L. A corner—finding algorithm for chain—coded

curves. IEEE Trans. Computers 26, 1 (January 1977), 297-303.

[34] Fu, K., AND Mul, J. A survey on image segmentation. Pattern Recognition

13 (1981), 3-16.

[351 FULFORD, M. The FASTRACK automatic digitizing system. Pattern

Recognition 14, 1 (1981), 65-74.

[36] GEORGE, R. Tracing a solution. Cadence (November 1990), 117-119.

[37] GiBSON, L., AND LUCAS, D. Vectorization of raster images using hierarchi-

cal methods. Computer Vision, Graphics, and Image Processing 20(1982),

82-89.

[38] GONZALEZ, R., AND WINTZ, P. Digital Image Processing, 2 ed. Addison—

Wesley, Reading, Mass., 1987.

[39] GOV=AN, V., AND SHIVAPRASAD, A. A pattern adaptive thinning algo-

rithm. Pattern Recognition 20, 6 (1987), 623-637.

[401 GRIMSON, W. E. L. Object Recognition by Computer: The Role of Geometric

Constraints. MIT Press, Cambridge, Massachusetts, 1990.

[411 HILDITCH, C. Linear skeletons from square cupboards. In Machine Intel-

ligence lIT. American Elsevier, 1969, pp. 403-420.

[421 HOSHINO, T., SuzUKI, S., AND KOSUGI, M. Automatic input method for

large—scale maps. In Proc. Eighth International Conference on Pattern

Recognition (Paris, France, 27-31 Oct., 1986), IEEE Comput. Soc. Press,

Washington, DC, pp. 449-453.

[43] INTERGRAPH CORPORATION. ANA Tech Eagle 4080ET Scanner. Huntsville,

AL. 35894-4201, 1992.

106

[44] INTERGRAPH CORPORATION. Intergraph Vectorization Software (II VEC).

Huntsville, AL. 35894-4201,1992. DTPO25 BO 12/88.

[451 INTERGRAPH CORPORATION. Mapping Sciences Applications (Ii GEOVEC).

Huntsville, AL. 35894-4201,1992. DDGC186AO 6/91.

[46] JAIN, A. Fundamentals of Digital Image Processing. Prentice Hall, En-

glewood Cliffs, NJ, 1989.

[47] JAIN, A., AND ChRISTENSEN, C. Digital processing of images in speckle

noise. Proc. SPIE 234 (July 1980), 46-50.

[48] JANSEN, H., AND KRAUSE, F.-L. Interpretation of freehand drawings for

mechanical design processes. Computers & Graphics 8,4 (1984), 351-369.

[491 JENNINGS, C., AND FLANAGAN, N. Automatic GIS data capture and con-

version. In Proceedings of GIS Research - UK 1993 (Keele, England, 18-20

March, 1993).

[501 JENNINGS, C., PARKER, J., AND MoLARo, D. A force—based thinning strat-

egy with sub—pixel precision. Tech. Rep. 93/504/09, University of Calgary;

Department of Computer Science, 2500 University Drive N.W., Calgary;

Alberta, Canada T2N 1N4, Feb. 1993.

[511 JIMINEZ, J., AND NAvALoN, J. Some experiments in image vectorization.

IBM J. Res. Develop. 26, 6 (November 1982), 724-734.

[52] JOHNSON, R., AND BIRD, B. Schematic diagrams conversion to CAD files.

In Image Processing 90 - the Key Issues Conf. Proc. (London, UK, 9-11

Oct., 1990), Blenheim Online, pp. 1-10.

[53] JOSEPH, S. Processing of engineering line drawings for automatic input

to CAD. Pattern Recognition 22, 1 (1989), 1-11.

107

[541 JOSEPH, S., AND PRIDMORE, T. Knowledge—directed interpretation of me-

chanical engineering drawings. IEEE Trans. Pattern Analysis and Ma-

chine Intelligence 14, 9 (Sept. 1992), 928-940.

[55] KAKUMOTO, S., MIYATAXE, T., SHIMADA, S., AND EJIRI, M. Development of

auto—digitizer using multi—color drawings recognition method. In Proc.

IEEE Computer Vision and Pattern Recognition Conference 1983 (1983),

IEEE Computer Soc. Press, pp. 508-509.

[56] KASTURI, R., Bow, S., EL-MAsRI, W., SHAH, J., GATTIKER, J., AND MOKATE,

U. A system for interpretation of line drawings. IEEE Trans. Pattern

Analysis and Machine Intelligence 12, 10 (1990), 978-992.

[57] KIKKAWA, W., KITAYAMA, M., MIYAZAKI, K., AnAl, H., AND ARATO, S. Auto-

matic digitizing system for PWB drawings. In Proc. Seventh International

Conference on Pattern Recognition (Montreal, PQ, 30 July - 1 Aug., 1984),

vol. 2 of 2, IEEE Comput. Soc., Silver Spring, MD, pp. 1306-1309.

[58] KUFFLER, S. Discharge patterns and functional organization of mam-

malian retina. Journal of Neurophysiology 16 (1953), 37-68.

[59] KwoK, P. A thinning algorithm by contour generation. Commun. ACM

31, 11 (November 1988), 1314-1324.

[60] LAM, L., LEE, S., AND STJEN, C. Thinning methodologies - A comprehen-

sive survey. IEEE Trans. Pattern Analysis and Machine Intelligence 14,

9 (Sept. 1992).

[611 LANDAU, U. Estimation of a circular are center and its radius. Computer

Vision, Graphics, and Image Processing 38 (1987), 317-326.

[62] LEE, K.-J., SHIRAI, Y., AND KTJNII, T. Attribute—grammar based approach

to vector extraction from a raster image. In CG International '90: Com-

108

puter Graphics Around the World (1990), T. Chua and T. Kunii, Eds.,

Springer—Verlag, Tokyo, pp. 225-239.

[63] LEU, J.-G., AND CIIEN, L. Polygonal approximation of 2—D shapes through

boundary merging. Pattern Recognition Letters 7 (1988), 231-238.

[64] Li, B., AND SIJEN, C. A knowledge—based thinning algorithm. Pattern

Recognition 24, 12 (1991), 1211-1221.

[65] Lim, J., AND NAWAB, H. Techniques for speckle noise removal. Proc. SPIE

234 (July 1980), 35-44.

[66] LowE, D. Perceptual Organization and Visual Recognition. Kluwer Aca-

demic Publishers, Boston, 1985.

[67] LoWE, D. Three—dimensional object recognition from single two—dimen-

sional images. Artificial Intelligence 31 (1987), 355-395.

[68] MACKWORTH, A. Constraints, descriptions and domain mappings in

computational vision. In Physical and Biological Processing of Images,

0. Braddick and A. Sleigh, Eds. Springer-Verlag, Berlin, 1983, pp. 33-40.

[69] MACLEAN, S. Raster editor merges manual drawings and CAD: Taming

the two headed AEC monster with technology. CAD Systems (November

1991), 10.

[70] MARR, D. Vision: A Computational Investigation into the Human Rep-

resentation and Processing of Visual Information. WH. Freeman, New

York, 1982.

[71] MARR, D., AND HILDRETH, E. Theory of edge detection. Proc. R. Soc. Lond.

207(1980), 187-217.

[72] MEKEL ENGINEERING INC. Operating Instructions and Maintenance Man-

ual for the Mekel M460 Microfiche Digitizer, Jan. 1992.

109

[731 MOLARo, D., JENNINGS, C., AND PARKER, J. Distributed force—based thin-

ning and a general distribution method. Tech. Rep. 93/505/10, University

of Calgary, Department of Computer Science, 2500 University Drive N.W.,

Calgary Alberta, Canada T2N 1N4, Feb. 1993.

[74] MONTANARI, U. Continuous skeletons from digitized images. Journal of

the ACM 16, 4 (October 1969), 534-549.

[75] MONTANARI, U. A note on minimal length polygonal approximation to a

digitized contour. Commun. ACM 13, 1 (January 1970), 41-47.

[76] MoRRISON, J. Distance from a point to a line. In Graphics GEMS II,

J. Arvo, Ed. Academic Press, Inc., 1250 Sixth Ave., San Diego, CA 92101,

1991, ch. 1, pp. 10-13.

[77] MusAVI, M., SHIRVAIKAR, M., RAMANATHAN, E., AND NEKOVEI, A. Avision

based method to automate map processing. Pattern Recognition 21, 4

(1988),319-326.

[78] NACCACHE, N., AND SHINGHAL, R. SPTA: A proposed algorithm for thin-

ning binary patterns. IEEE Trans. Systems, Man, and Cybernetics 14, 3

(May/June 1984),409-418.

[79] NADLER, M. Document segmentation and coding techniques. Computer

Vision, Graphics, and Image Processing 28 (1984), 240-262.

[80] NAGASAMY, V., AND LANGRANA, N. Automated restoration of engineering

drawings into a CAD data base. Engineering with Computers 4 (1988),

165-171.

[811 NAGASAMY, V., AND LANGRANA, N. Engineering drawing processing and

vectorization system. Computer Vision, Graphics, and Image Processing

49, 3 (March 1990), 379-397.

110

[821 NAKAMURA, A., AND AIZAWA, K. Digital circles. Computer Vision, Graph-

ics, and Image Processing 26 (1984), 242-255.

[83] NIEMANN, H. Pattern Analysis and Understanding, 2 ed., vol. 4 of

Springer Series in Information Sciences. Springer—Verlag, Berlin, 1990.

[84] NISHIMURA, T., AND FUJIMOTO, T. Fast contour line extraction algorithm

observing line continuation. SPIE Visual Communications and Image

Processing IV 1199 (1989), 704-711.

[85] O'GORMAN, L. K x K thinning. Computer Vision, Graphics, and Image

Processing 51 (1990), 195-215.

[86] PALER, K., AND KITTLER, J. Graylevel edge thinning: A new method.

Pattern Recognition Letters 1 (1983), 409-416.

[87] PARKER, J. Gray level thresholding in badly illuminated images. IEEE

Trans. Pattern Analysis and Machine Intelligence 13, 8 (August 1991),

813-819.

[88] PARKER, J., AND JENNINGS, C. Defining the digital skeleton. In Proc.

SPIE Vision Geometry (Boston, Massachusetts, 15-16 November, 1992),

vol. 1832, pp. 224-234.

[89] PARKER, J., JENNINGS, C., AND SALKAUSKAS, A. Thresholding using an

illumination model. In Proceedings of Second International Conference

on Document Analysis and Recognition (Japan, Oct 20-22, 1993).

[90] PAVEL, M. Skeletal categories. Pattern Recognition 11 (1979), 325-327.

[91] PAVLIDIS, T. Algorithms for Graphics and Image Processing. Computer

Science Press, Rockville, MD, 1982.

[92] PAvLiDIs, T. An asynchronous thinning algorithm. Computer Vision,

Graphics, and Image Processing 20 (1982), 133-157.

111

[931 PAVLIDIS, T. A vectorizer and feature extractor for document recognition.

Computer Vision, Graphics, and Image Processing 35 (1986), 111-127.

[94] POWLESLAND, J. Autotracing with Adobe Streamline 2.0. The Micro Byte

5, 2 (May 1992).

[95] PRINCEN, J., ILLINGWORTH, J., AND KITTLER, J. A hierarchical approach to

line extraction based on the Hough transform. Computer Vision, Graph-

ics, and Image Processing 52 (1990), 57-77.

[96] QC DATA. Mews map editing work station. QC Data News 1, 1 (1987).

This is a company internal publication used largely for marking by QC—

Data. It was obtained from: QC Data, 3838 N. Belt East, Houston, TX

77032.

[97] RAMACHANDRAN, K. Coding method for vector representation of engineer-

ing drawings. Proc. IEEE 68, 7 (July 1980), 813-817.

[98] RAMER, U. An iterative procedure for the polygonal approximation of

plane curves. Computer Graphics and Image Processing 1 (1972), 244-

256.

[99] RODIECK, R. Quantitative analysis of cat retinal ganglion cell response to

visual stimuli. Vision Research 5 (1965), 583-601.

[100] ROGERS, D. Procedural Elements for Computer Graphics. McGraw—Hill

Book Company, New York, 1985.

[1011 ROSIN, P., AND WEST, G. Segmentation of edges into lines and arcs. Image

and Vision Comput. 7, 2 (May 1989), 109-114.

[102] SAIIOO, P., SOLTANI, S., AND WONG, A. A survey of thresholding tech-

niques. Computer Vision, Graphics, and Image Processing 41 (1988),233-

260.

112

[103] SAKASHITA, S., AND TANAKA, Y. Computer—aided drawing conversion (an

interactive approach to digitize maps). In GIS/LIS '89 Proceedings (Or-

lando, FL, 26-30 Nov., 1989), vol. 2, Amer. Soc. Photogrammetry and

Remote Sensing, pp. 578-590.

[104] SCHER, A., SHNEIER, M., AND ROSENPIELD, A. Clustering of collinear line

segments. Pattern Recognition 15, 2 (1982), 85-9 1.

[105] SCORPION TECHNOLOGIES. SRV Training Outline.

[106] SEAPORTS, AND THE SHIPPING WORLD. New document management sys-

tem to help maintain 22,000 canadian navy frigate engineering drawing

sheets installed at Saint John Shipbuilding. Seaports and the Shipping

World (December 1990), 45.

[107] SEKULER, R., AND BLAKE, R. Perception. Knopf, New York, N.Y., 1985.

[108] SHEN, J., AND CASTAN, S. An optimal linear operator for step edge de-

tection. CVGIP: Graphical Models and Image Processing 54, 2 (1992),

112-133.

[109] SHIH, C., AND KASTURI, R. Extraction of graphic primitives from images of

paper based line drawings. Machine Vision and Applications 2, 2 (1989),

103-113.

[110] SHIMOTSUJI, S., OKAZAKI, A., HORI, 0., AND TSuNEKAWA, S. A high—speed

raster—to--vector conversion using special hardware for contour tracking.

In Proc. of IAPR Workshop on Computer Vision: Special Hardware and

Industrial Applications (1988), Univ. Tokyo, pp. 18-23.

[111] SINHA, R. A width—independent algorithm for character skeleton esti-

mation. Computer Vision, Graphics, and Image Processing 40 (1987),

388-397.

113

[112] SKLANsKY, J., AND GONZALEZ, V. Fast polygonal approximation of digi-

tized curves. Pattern Recognition 12 (August 1980), 327-331.'

[113] SMITH, R. Computer processing of line images: A survey. Pattern Recog-

nition 20, 1 (1987), 7-15.

[114] STEVENS, D. Line detection in blueprint analysis. Master's thesis, Dept.

of Electrical Engineering, U of Virginia, Blacksburg, VA., 1987.

[1151 SUETENS, P., DIERCH, P., PIESSENS, R., AND OSTERLINCK, A. A semiauto-

matic digitization method and the use of spline functions in processing

line drawings. Computer Graphics and Image Processing 15 (1981), 390-

400.

[116] STJzUKI, S., AND YAMADA, T. MARIS: Map recognition input system. Pat-

tern Recognition 23, 8 (1990), 919-933.

[117] TAxT, T., FLYNN, P., AND JAIN, A. Segmentation of document images. IEEE

Trans. Pattern Analysis and Machine Intelligence 11, 12 (December 1989),

1322-1329.

[118] THE ANDERSON REPORT. Automatic Digitizers - A Special Report, Oct.

1986.

[119] THOMAS, S., AND CHAN, Y. A simple approach for the estimation of cir-

cular are center and its radius. Computer Vision, Graphics, and Image

Processing 45 (1989), 362-370.

[1201 UDUPA, K., AND MURTHY, I. Some new concepts for encoding line patterns.

Pattern Recognition 7 (1975), 225-233.

[121] UNIVERSAL SYSTEMS LTD. SAMI Product Information. Fredericton, New

Brunswick, Canada, 1992.

114

[122] VAXIVIERE, P., AND TOMBRE, K. Celesstin: CAD conversion of mechanical

drawings. Computer 25, 7 (July 1992), 46-54.

[123] WAKAYAMA, T. A core—line tracing algorithm based on maximal square

moving. IEEE Trans. Pattern Analysis and Machine Intelligence 4, 1 (Jan-

uary 1982), 68-74.

[124] WALL, K., AND DANIELSSON, P.-E. A fast sequential method for polynomial

approximation of digitized curves. Computer Vision, Graphics, and Image

Processing 28 (1984), 220-227.

[125] WATSON, L., ARVIND, K., EnRICH, R., AND HARALICK, R. Extraction of lines

and regions from grey tone line drawing images. Pattern Recognition 17,

5 (1984),493-507.

[1261 WINCHESTER DATA PRODUCTS INC. VECTRESS - Give Your CAD System

Vision. Raleigh, NC 27609, 1992.

[127] YOSHINO, Y., MORI, K., OKAZAKI, A., AND TSUNEKAwA, S. Flexible drawing.

reader with high—speed hierarchical processors. In Proc. IEEE Computer

Vision and Pattern Recognition Conference 1983 (1983), IEEE Computer

Soc. Press, pp. 510-514.

[128] Yu, S.-S., AND TSAI, W.-H. A new thinning algorithm for gray—scale im-

ages by the relaxation technique. Pattern Recognition 23, 10(1990), 1067-

1076.

[129] ZHANG, T., AND SUEN, C. A fast parallel algorithm for thinning digital

patterns. Commun. ACM 27, 3 (March 1984), 236-239.

