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Abstract

This is a study of the punching shear strength of interior slab-column connections.
The connections contain tension reinforcement only, no shear reinforcement. The
study is directed toward the effect of vertical holes through the slab clo;e to the
column.

A review of past investigations into slab-column connections reveals that there
are many equations for prediction of punching shear strength. Nearly all of the
equations are based on results from laboratory tests of a s:imply supported speci-
men.

Using finite element analysis the suitability of the laboratory specimen is ex-
amined. The finite element analysis raises some question about shape and support
conditions of the laboratory specimen. However the problems with the finite el-
ement model and the results it gave preclude rejecting the test specimen and its
corresponding data.

One of the papers reviewed describes a logical model for predicting punching
shear strength. This model, proposed by Rankin and Long in 1987 ;24 . is adapted
to handle slabs that include holes. Three methods of reducing the critic‘al section
due to holes are investigated. The results show that the method currently used by
the Canadian Design Code is more conservative than necessary. It is recommended
that the method first proposed by R.E. Loov, called the 90 degree wedge method

be adopted for use.
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Chapter 1

Ultimate Shear Strength and Vertical Holes

1.1 Introduction

In designing a concrete flat slab, the major design consideration is the distribution
of flexural reinforcement. Yet in almost every case, it is the shear forces in the
area of the slab-column connection that are the governing factor. In attempting to

design slabs without the use of drop panels or column capitals this area becomes

increasingly important. The cost of column capitals and drop panels is very high

DROP PANEL COLUMN CAPITAL

Figure 1.1: Drop Panel and Column Capital

and as such, their use should be avoided whenever possible. It is often the case
that vertical holes through the slab, close to the column, are required for electrical

and mechanical utilities.



1.2 Problem

~

The problem can be stated as:

What is the punching shear stength of an interior slab-column connection? And
what is the effect of vertical holes on that strength?

The extent of the effect can be expected to be influenced by the size, shape and
position of the hole.

In order to determine the effect of such holes, testing has been undertaken by
several investigators. Initially‘ the problem is one of size and type of specimens to
be tested. To build a full scale, multipanel specimen would be both cost and space

prohibitive.

1.3 Assumptions Made for a Laboratory Specimen

Consider a typical 300 mm x 300 mm interior column, and a flat plate, 150 mm
thick with a span of 4.50 m o/c in each direction shown in Figure 1.2. The boundary
conditions at the centre lines of the slab are known but not easily duplicated in
a.laboratory. As well, the specimens would still be quite large and expensive.
Because of this nearly all tests to determine the shear strength of slab column
connections have been based on the portion of the slab within the lines of zero
morment.

If a cross section of a typical interior slab is considered the resulting deflected
shape would be as shown in Figure 1.3. Tfhe idea is that the points of contraflexure
form a square around the column and that the moment at these points is zero.

Thus the slab-column connection can be simulated by a slab between L/2.5 dnd



Figure 1.2: Slab-Column System, 4.5 m o/c

L L
kot 193

Figure 1.3: Points of Contraflexure, Deflected Slab



L/2 square. The edges could be simply supported and the load applied to the

column stub as shown in Figure 1.4.

Figure 1.4: Simply Supported Slab

It should be noted that the applied loads acting on this portion of the slab

surface are generally ignored in these tests.

1.4 Chapter Summary

Chapter 2 provides a literature review of two categories of investigation: those
-carried out on slabs with holes and those that deal with solid slabs only.

All of these prior investigations have assumed that the specimen used gives a
realistic indication of what happens to a slab-column connection during loading. In
Chapter 3 a study is presented to determine whether this assumption is indeed true.
A finite element analysis of an L x L slab is described. The boundary conditions
of such an interior panel are known and easily simulated on the computer. The
analysis is nonlinear and examines several areas of interest up to ultimate load.

The modelling was done using an 8 node brick element of the computer program

ANSYS. -



In Chapter 4 a model presented by Rankin and Long {24] is modified for slabs

-with vertical holes. Three methods for reduction of the critical section are com-

pared.

The summary and conclusions are presented in Chapter 5.



Chapter 2

Literature Review

2.1 Introduction

The literature review is split up into two parts. The first deals with investigations
on slab-column connections with holes, the second with investigations without

holes.

2.2 Slab-Column Connections With Vertical Holes

2.2.1 Experiments and Testing Done by Moe

This 1961 paper '2] describes tests performed on a total of 43 specimens. These
specimens were split into 5 different series, each series designed to test the effects
of a different variable or condition. The series H specimens were slabs cast with
holes immediately adjacent or close to the column. Series H consisted of a total
of 15 different slabs, all 1.83 m (6 ft.) square with a thickness of 150 mm (6 in.).
The specimens were centrally loaded through a 254mm (10 in.) square column stub
with the edges of the slab simply supported. Reinforcement for all slabs except H14
consisted of 12, 16 mm (£ inch) bars in both the x and y directions. The average
effective depth of the slab was 114 mm (4.5 in.) and the overall reinforcement
ratio, p, was 1.15%. Slab H14 had 8 bars for a p of 0.77%.

The hole pattern for each of the slabs is shown in Figure 2.1.
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Figure 2.1: Hole Patterns for Moe’s Tests

The following are the rules for the reduction of b, the length of the effective

critical section, as quoted from Moe’s paper:

1. “In cases of square holes adjacent to the column, b was taken as the total

periphery minus the sum of the widths of the holes, measured along the

periphery.

2. In cases with circular holes adjacent to the column, b was for the sake of

simplicity measured along the shortest lines connecting the corners of the

column to the periphery of the holes. It was realized that the holes reduced

the shearing strength of the slabs, and the above-mentioned method of mea-

suring b was believed to express this reduction satisfactorily, although the



failure did not take place along a section of the type in Figure 2.2.

9.

/

9

Figure 2.2: Moe’s Case 2: b = 3¢ + g1+ g

3. In cases in which the holes were placed at some distance from the column, b
was measured along straight lines from the corners of the column stub to the
nearest points on the periphery of the holes, whenever this yielded smaller
values of b than the section along the periphery of the column.” The critical

section for this case is depicted in Figure 2.3.

For his analysis Moe used b measured along the periphery of the column face.

P )
However he also calculated —/% for b measured at d;/2 and d from the column face.
! F1
[
From this he found the variance of the test results was lowest when b was taken at

d/2.
In predicting the punching strength of a specimen Moe used the following for-

mula:



AN

Y

Figure 2.3: Moe’s Case 3: b =4c or 3¢+ g; + g2

156d,/f2(1 - 0.075¢/d)
P, =
1+ 5.25bdy/ !/ Ppies

Where:
P, = The ultimate shearing capacity, lbs.
b = The effective critical perimeter around the loaded area, in.
d = The effective depth of the slab, in.
¢ = The side length of the column, 1n.
fi = The compressive strength of the concrete, pst.

Pf1.. = The shear force at which flexural failure occurs in solid slabs, {bs.

The equation for-Pj,,, is the one developed by Elstner and Hognestad {1! using

yield line theory.
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Pires = 8 M, ~3+2/2) (2.2)

1-c¢/s
Where:

M, = pf,d(1 — 0.59w) = fiwd(1 — 0.5%)

= The ultimate flexural moment per unit width.
p = A,/(sd) = The reinforcement ratio

A, = The area of reinforcement in each direction, in?.

s = The side length of a square slab, in.
fy = The yield strength of reinforcing bar, pst.
w = pf,/f} = The tension reinforcement index.

Moe concludéd that this equation fit his results well. His rules for the reduction
of b (taken at the column periphery) do not allow for any loss of strength for slabs
H12 and H13. Howéver his results showed a significant reduction in the ultimate

strength of these slabs.

2.2.2 Study by ASCE-ACI Committee 426

This study of 1962 [3] used the data from Moe’s tests and attempted to come up
with an alternative method for predicting the effect of holes on the critical section.

A simplified equation for predicting ultimate strength was proposed.

P, = bdy/71(1 + %) (2:3)
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Where b is the critical section measured at the column face. However ACI
Committee 426 noted that the results with the least scatter were obtained when
the critical section is taken at d/2 from the column face. With this in mind they

rearranged the original equation to:

P, = 4b,d\/ 1! ' (2.4)

where b is the length of the “pseudocritical® section measured at d/2 from the
column face.

In addressing the problem of how much to reduce the critical section the com-
mittee proposed the fol]owi'ng guidelines:

The positions and sizes of the holes were broken down into 4 cases.

Case I: Holes closer than d/2 to the column.

Case II: Holes between d/2 and 2d from the column.

Case III; Holes greater than 2d from the column.

Case IV: Holes large enou;gh to be treated as free edges.

For each of the above cases various rules were applied:

Case I: “Radial lines should be drawn from the centroid of the loaded
area to the edges of the opening ...If there are several openings, the
sum of the radial projections shoulld be subtacted from the original
pseudocritical section.” Figure 2.4 shows the critical section.

Case II: “The reduced perimeter should be taken as the smaller of

the two given by the following criteria:



= —-—-—:——-—1‘1

| rA
|

| N

l

| |

| | ¢
|

|

| |

| t

| | \

| |

Lo o _ |

Figure 2.4: Case : b=4(c+d) — ¢

(2) The shortest of all possible sections lying not less than d ‘2 from
the loaded area.

(b) The original pseudocritical section minus the sum of the radial

N . . . N )
projections of the openings as shown in Figure 2.5.

The report also stated that when the opening was close to the corner of the

pseudocritical section, criterion (a) would provide for no reduction while criterion

(b) would call for too much of a reduction.

Case III “Only criterion (a) (of Case II) and the original unreduced

critical section need be investigated.”
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Figure 2.5: Critical Section, Case II (a) and (b)

Case IV: Finally the report states that for holes that are “large compared with
the dimensions of the critical section”, that side of the critical section should be
treated as a free edge. A free edge was to be reduced using criferion (a) of Case

II. This definition is rather vague and is best illustrated by the examples of Figure

2.6.

2.2.3 Experiments Carried Out by Mowrer and Vanderbilt

Mowrer and Vandérbilt [7] tested 2 series of slabs, one ;)f which was designed to
test the effect of holes near the critical shear section. This series consisted of 17
lightweight and 8 normal weight.slabs. The specimens were 914 mm (8 ft.) square
and 76 mm (3 in.) thick. Each was loaded thryough a 150 mm (6 in.) column

stub that was 150 mm high. Reinforcement consisted of varying numbers of % inch
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3003 334

Figure 2.6: ACI Committee 426, Critical Sections, Case IV

(12mm) bars . Other variables included concrete strength and the pattern of the
holes.

Like Moe’s t.ests the slabs were simply supported at the edges and the hole
patterns are as shown in Figure 2.7. The effective depth for all the slabs was 51
mm (2 in.). Once again b, the effective perimeter, was calculated at the periphery
of the column. The rules used for reduction of b were the same as those suggested
by Moe.

On the basis of their results Mowrer and Vanderbilt revised Moe’s equation to:

P, 9.7(1 - d/¢)
bdy /I 1+ 5.25bd\'f!/ Pea

2.2.4 Thesis by Zaidi

A thesis entitled “Shear Resistance of Perforated Reinforced Concrete Slabs” was

written by S.T.H. Zaidi and published in 1968 at the University of Pennsylvainia.{8]
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O] 17 |18 x L

w| | -] o | O

Figure 2.7: Hole Patterns for Mowrer and Vanderbilt’s Tests

The specimens used were of the same nature as the ones tested by Moe, but at a
smaller scale. The A series of specimens were 737 mm (29 in.) square and 61 mm
(2.4 in.) thick. The slabs were centrally loaded through a 102 mm (4 in.) square
column stub that was 152 mm (6 in.) high. ;‘&ll of the edges of the slab were simply
supported.

Reinforcement consisted of # 2, (3 in.), (6 mm) bars and the average percentage
of reinforcement, p, was 1.15. The effective depth of the reinforcement was 46 mm
(1.8 in).

For the B series of slabs the effective depth of the reinforcement was reduced
to 39 mm (1.55 in.) and the reinforcement ratio, p, increased to 1.34%.

A total of 78 slabs were tested in series A and 45 slabs in series B. Holes were
circular, square, rectangu]gr and L shaped. Other variables included the number,
position and size of the holes. The method used to calculate b was similar to, but
not exactly the same as the method proposed by ACI Committee 426. The critical

section was taken at the column face. Figure 2.8 shows the amount subtracted for
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a hole was the length within the lines of the radial projection of the hole.

"

A

/

Figure 2.8: Section used by Zaidi, b = 4¢ — g1 — go

Zaidi believed that the ultimate strength of the specimens was affected by the

fol]owihg parameters:

fl= "l‘he strengtﬁ of the concrete.

b= The‘ length of the critical section.

d = The effective depth of the slab.

¢/d = The ratio of the side Iengt.h of the column to the effective depth.

e/d = The ratio of the eccentricity in the centroid of b (caused by nonsymmetric

hole patterns) to the effective depth.
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Pj.. = The flexural strength of the slab.

An initial statistical analysis led Zaidi to believe the prediction equation had

the following form:
Pu . A(l-!—Bc/d—C’e/d)
bdy/ft 1+ Dbd\/fi/Ppes

A final statistical analysis gave values for the constants and the final prediction

(2.6)

equation was:
P 14(1 + 0.15¢/d — 0.425¢/d)

bd /i 1+ 106d\/fl Ppes

Once again this equation proved to be conservative for slabs with the hole

(2.7)

pattern shown in Figure 2.9.

Figure 2.9: Hole Pattern not Applicable to Zaidi’s Equation

2.2.5 Paper by Roll, Zaidi, Sabinis and Chaung (ACI SP-30)

This 1971 paper i9} is the publication version of 7.aidi’s thesis with a few additions.

Four series of tests are described.
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1. Test series A1 which is the data from series A of Zaidi’s thesis.

2. Test series A2, the data from series B of Zaidi’s thesis.

3. Test series B, 20 new slabs with # 3, (£ inch), (9 mm) bars instead of #

2 bars as used in the previous two series. This increased the reinforcement

ratio p to 2.53%.

4. Series H, a series of 14 tests to determine the effect of 4 corner holes of varying

size. The hole pattern is shown in Figure 2.10.

T S
o F----7
R o b
Iy : i i Lo \
Ll 1 S
rT71T ™ - T
b .

I L~ L |
L] ' 2
| - = 7 — - - P
| DS — { f e e =

Figure 2.10: 4 Corner Holes of Varying Size

All the specimens were of the same type and size as the ones used in Zaidi’s

thesis. The method of reduction of b was the same one used by Zaidi.
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The analysis in this paper resulted in 2 different equations. The first is Equation

. 2.7, the one developed by Zaidi in his thesis.

Pflcz

bd\/}z and as

such “should not be used in the case of 4 large holes adjacent to the column face.”

The second is a design equation developed for small values of

P,
; 2.8
bd\/f—; 1= 5. Zbd\/— I Pﬂez bd\/f! (28)
2.2.6 Paper by Hawkins, Criswell and Roll (ACI SP-42)

This paper {11} is an analysis of previous work. No new specimens were tested. The
section on perforated slabs begins with the presentation of the equation developed
by Zaidi in his thesis.

Roll noted that most of the speci’mens used to derive this equation had a c/‘d
ratio of about 2.2. By looking at cases with varying c'/d values Roll concluded that
the ¢/d term should be flipped and the equation altered to the following form:

_ 14(1-0.75d/c — 0.425¢ 'd)
bdy/fi  1—10bdy J!/ Py

Roll further hypothesized that if a nonsymmetric hole pattern were used the

(2.9)

connection acts as if it were transferring moment. Thus ¢ and not d, should be

linked with e. Finally Roll states that if

“- is set to unity the specimen will
Pj’lez

reach its maximum flexural strength before its shear strength. Thus the prediction

equation is reduced to:

d .
—41-1-208——33) (2.10)

bd\/'
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Or by rounding off to produce a reasonable lower limit.

41 + 29 - 3°) (2.11)

%

But not less than:

4 (Perimeter for shear flow normal tothe column)

b

(2.12)
Where:

d = The effective depth of the slab.

f! = The concrete strength.

¢ = The side length of the loaded area.

b = the length of the critical section measured at the column face minus the radial

projections of the holes, as shown in Figure 2.7.

e = The eccentricity of the centroid of b caused by nonsymmetric hole layouts

defined by Figure 2.11.

(Perimeter for shear flow normal to the column) = Defined by Roll as: “the length
of the column perimeter within lines normal to each column face and tangent

to the holes. For example, for Figure 2.8 a lower limit to P, is 16cd\/f_é. ?

2.2.7 Summary

Each of the previous investigations present data collected on slabs with holes. Each

then performs a statistical analysis on that data to derive a prediction equation
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™~ Centroid

Figure 2.11: Calculation of e: e = €; + e

for the punching shear strength of a laboratory specimen. The equations arenot
given any sort of logical basis.

In the hopes of finding a logical model for punching shear, a second literature
review was done. This time the punching shear strength of slab-column connetions

without holes is investigated.

2.3 Slab-Column Connections Without Vertical Holes

2.3.1 Punching Strength of Reinforced Concrete Slabs

In a paper presented in 1966 Yitzhaki ‘5] states that there are two types of punching
shear faijlure. One in which the flexural reinforcement fully yields, the second where
failure occurs before full yielding of the reinforcement.

For the first type of failure, he introduces the equation:



Py = 8pfyd2(1 - O.Sp%) (2.13)

c

Yitzhaki states that the effect of the concrete strength is represented by the
factor (1 —0.5p2% ).
f:
For an “over-reinforced section” failure occurs when Poun is attained. P pun 1S
affected by the size of the column and is less than P,;. Yitzhaki introduces c_i and
pfy as “linearly independent multipliers” with constants that are “evaluated from

available test data.” Using these the second equation is presented.

Prun = 8(1 — O.5p%)d2(149.3 - 0.160/,)(1 + 0.5 (2.14)

(Note that imperial units are used for this equétion.)

2.3.2 Shear Strength of Continuous Plates

Ina paper presented in 1972 M.D. Vanderbilt 110] draws three conclusions about

the punching strength of slab-column connections.

1. The shear strength is a function of the column shape, as well as size, with
circular columns showing higher strength than square columns of equal pe-
riphery. This difference is attributed to stress concentrations at the corners

of the square columns.
2. Doubling the reinforcement resulted in only a modest, increase in shear strength.

3. None of the available equations or procedures proved t;o be sa.tlsfactory for

predicting punching shear strength.
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2.3.3 Shear Strength of Slabs: Basic Principle and Their Relation to

Current Methods of Analysis

In a paper presented in 1974 by Criswell and Hawkins ‘13! the following conclusions

are drawn;

1.

“Most methods of analysis for ultimate shear strength fall into two broad
groups. For one group, the strength is presumed to be governed primarily
by the concrete strength and for the other by flexural effects. Because of the
strong interaction of the shear and flexura] effects, idealized models ...are

needed to provide methods of analysis that are conceptually realistic.”

The simply supported test specimens fail earlier than expected of a slab. A

ductile failure is difficult to achieve with a test specimen.

. Not enough is known about the mechanisms of punching shear failures. The

failures seem to be punching shear failures or flexural shear failures. “Future
investigations should attempt to identify whether the more likely mechanism
is primarily one of shear or flexure or if a division of failure modes is mean-

ingful.”

2.3.4 The Punching Strength of Slabs, A Flexural Approach Using

Finite Elements

The finite element model developed by Masterson and Long in their paper ‘14 is

used in Long’s subsequent publications. Its relevance is made clear in the review

of those papers.
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2.3.5 A Two Phase Approach to the Prediction of the Punching Strength
of Slabs '

In this paper of 1975 {16] Long uses the idea that there are 2 basic modes of

punching shear failure.

1. The steel yields before the concrete fails. As a consequence the failure can

be considered to be strongly influenced by flexural strength.

2. The concrete fails before the steel yields.

Flexural Punching Strength

The yield line approach was found to be unsatisfactory for the following reasons:

1. From inspection of the tested specimens it was evident that a full yield line

pattern had not developed.

2. Only the tension reinforcement right next to the column vields before punch-
ing. Blakey 6! concluded that punching occurs when a plastic hinge forms

around the column periphery.

3. Dowel forces in the reinforcement contribute 30% to the shear capacity. Thus,
if a slab develops a full yield line pattern the failure load should be in the

order of 1.3Py;,,. This correction overestimates the capacity of the specimen.

The approach for the flexural mode is based on a lower bound elastic theory
which allows for the development of local plasticity around the column periphery.

The flexural punching capacity is predicted using:



P,; = 1.30k,M, ' (2.15)

Where:
1.30 accounts for the dowel action.
ky relates the column load to the internal slab momgnt.
M,, is the ultimate moment of resistance per unit width of the slab.

The constant k; is obtained from finite element work done by Masterson.

1

ky, =
* T 0.255 - 1.17¢/L

(L = 2.5) (2.16)

M, is defined by the 1971 ACI code. The expression for flexural punching

strength is:

_ pfyd*(1 - 0594,/ 1)

Fer (0.2 —0.9¢/L)

(2.17)

Shear Punching Strength

Four assumptions are made about shear punching strength. These assumptions

"are based on design curves provided by Long [16].
1. P,, varies with (100p)%.

2. P,, varies with (f})%4. However for the normal range of design strengths \/}Z

is adequate.

1

3. va varies with (0_7—5-:-—4(:/2)
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4. The critical section is assumed to be at d/2 from the column face.
Based on test data Long states that the final equation for shear punching
strength is:

_ 1.66(c + d)d(100p)%5,/f!

P, = — 2.18
(0.70 -+ 4f) . ( )

In comparing predicted values to test values two areas of concern were noted

by Long.

¢ Correlation was bad for slabs with low values of pf,/f! (less than 0.1). This
was probably due to a much more extensive yield line pattern developing

than is assumed for the lower bound solution of the flexural mode formula.

¢ Correlation was bad for slabs with high values of f!. This is due to the use

of \/f_é instead of (f!)%4.

2.3.6 Predicting the Punching Strength of Conventional Slab-Column

Specimens

This 1987 paper by Rankin and Long ‘24! extends the two phase approach by giving
a more rational approach to the flexural mode of punching failure.

Flexural Puncfling Strength

A flexural punching failure can occur by one of three modes. For a lightly
reinforced section ;a full yield line pattern will develop. For a heavily reinforced
section, failure will occur due to localized compression failure of the concrete around
the column. All other flexural punching failures fall between these extremies as

shown in Figure 2.12.
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Localized Compression Partial Yielding Full Yielding
Figure 2.12: Three Cases for Flexural Punching Failure

Full Yielding

Using the yield line pattern shown in Figure 2.12 the load required is:

Pvf = kyan (219)

Where:

ko = 8( i,c ~0.172) (2.20)

Note that this is the same as the Py, used by Moe, Zaidi, Roll, etc. in their
equations. It applies to simply supported laboratory specimens.

Localized Compression Failure

This type of failure occurs when a plastic hinge develops only at the critical

section. This section is the periphery of the column. The ratio of

b = P load applied to the column
°= M ~ internal moment at critical section

is called the elastic moment factor. Loﬁg and Masterson developed the equation:
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1

ky = ————
0.255 — 1.17¢

(L = 2.5s) (2.21)
This relationship has been improved by Long and Rankin to:

05
ky = >

= 2.22
{ln (2.55/c) 15 (222)

Partial Yielding

The failure load in this case lies somewhere between the load causing localized
compression failure and the load that causes full yielding. Thus a third constant, -

(k¢), is introduced.

P - lCt.Mn (223)

Long states that “k; can be closely approximated by linearly interpolating be-
tween the moment factor for full yielding k,;, and the elastic moment factor ky.”
Figure 2.13 and Equation 2.24 define k;.

r

ky = kb - (]Cyl — kb)— (2.24)

i
r3

Slab Ductility

The value of r,/r, is found from the following:

M,

Ty
= = 1 _
T. (-'\f{bal

Where:
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0 ry _ Radiusof Yield 1
ro  Radiusof Slab

Figure 2.13: Interpola}tion of k;

M, =pf,d*(1 - 0.59%’) (2.26)

and:

My = 0.333f!d* (2.27)

The moment factor for partial yielding is:

M,

ky = kyl - (kyl - kb)( Moar

) (2.28)

Column Shape Factor

This factor is to account for the stress factors found in and around the corners of

a square column. Regan {19} has suggested that circular columns are 15% stronger
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than square columns. Thus r; = 1.0 for circular columns and 1.15 for square

columns. k; is altered one last time.

ky, M,
ki =k, — (kyp — — 2.29
t y1 ( yl Tf)(Mbaz ( )
And the expression for the flexural punching strength is set at:
ks
Puj = ktMn < T_Mbal (230)
" f
Shear Punching Strength
This equation is the one developed by Long in his 1974 {16] paper.
P, = 1.66(c + d)d(100p)°%/ ! , (2.31)

L
Note that the — term has been dropped.
c .

2.4 Discussion

The papers describing investigations of connections with holes seemed to follow
the same format; in each case the authors fit an empirical equation to the test
data. The literature on solid interior slab-column connections showed a general
trend toward a two phase approach to punching shear strength. Two papers, one
by Long, the other by Rankin and Long put forth and developed logical arguments

for the prediction of punching shear strength.



Chapter 3

Suitability of Laboratory Specimen

3.1 Introduction

When examining interior slab-column connections full scale tests of multiple slab-
column systems are not usually done. High cost and shortage of lab space force
one to look for a smaller, more economicai type of test.

Nearly all of the investigations considered in the literature review used the same
type oflaboratory specimen. This specimen, a square slab with simply supported
edges, was presumed to represent the area of a flat plate within the lines of con-
traflexure. In service such a flat plate would be subjected to a uniformly distributed
load and a typical interior slab-column connection would be considered.

Thus the previous experiments have alll been based on the following assump-

tions:
1. The lines of contraflexure form a square about the column.
2. The position of such lines are constant throughout the test.

3. The deflection along such a line is uniform. (Although the corners of the test

specimens were allowed to uplift.)

In order to determine if these are valid assumptions a finite element analysis
was performed under the following conditions. Consider the slab-column system

of Figure 1.2 where the columns are spaced at 4.5 m o/c in both directions.

31
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‘If the load is considered to be uniformly distributed then a typical interior
_ column can be isolated by the centrelines between the columns. Thus a slab 4.5 m
by 4.5 m with a column stub in the centre can be examined. Because of symmetry
only one quarter of the column and slab need be considered. If the column is

assumed rigid then Figure 3.1 shows the boundary conditions that apply.

Y

6>/=0 X

Figure 3.1: Boundary Conditions for Quarter Panel Model

3.2 Choice of Computer Program

Because of its pre and postprocessing capabilities the computer program ANSYS
was chosen for the analysis. Since all of the tests in thelaboratory were carried

up to the failure load of.the specimen it must be concluded that a linear elastic
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analysis would not be satisfactory. The element chosen for the model was STIF65,

an 8 node brick element with a number of nonlinear capabilities.

3.2.1 Element STIF65

This element is called the 3-D Reinforced Concrete Solid and is capable of cracking
in tension, crushing in compression and can model up to 3 separate groups of rein-
forcing steel. The element is defined by 8 nodes, each node having 3 translational
degrees of freedom. The element material is reinforced concrete and the following

linear and nonlinear material data is input:
1. E, the initial tangent modulus was set at 25000 MPa‘
2. f! the specified compressive strength was set at 25 MPa
3. The tensile cracking stress was set at 0.6/ f!, in this case 3.0 MPa

4. The shear transfer coefficient for an open crack was set at 0.25. In other

words 0.25 of the shear would be transferred across a crack.
5. The shear transfer coefficient of a closed crack was set at 0.75.

6. The stress strain curve utilized the multilinear kinematic hardening option.
This allowed for piecewise linear curve to be specified using the data points

shown in Figure 3.2.
7. The uniaxial crushing stress was set at the f! value of 25 MPa

8. The biaxial crushing stress was set to a default value of 1.2f! = 30 M Pa.
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Stress Strain Curve

For Concrate
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Figure 3.2: Stress-Strain Curve for Concrete
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If the element contained reinforcing steel the the following material properties

were utilized:
1. The yield strength was set at 400 MPa.
2. The initial elastic modulus was set at 200 GPa.

3. The classical bilinear kinematic hardening curve was used with a second slope
of 2 GPa as shown in Figure 3.3.

Stress Strain Curve
For Stee!

T T T T T T 1
0 0.002 0.004 0.008& 0.008

Strain
Figure 3.3: Stress-Strain Curve for Steel

0.01
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3.3 Design of Reinforcing Steel

in order to proceed with the modelling the amount and placement of the reinforcing
steel is required. The design was carried out following example 5.3 of the CPCA

Concrete Design Handbook {22]. Details of the design are placed in the appendix.

3.4 Element Layering

The design of the reinforcement called for both the positive and negative steels to
be set 30 mm from the top and bottom surfaces of the 150 mm thick slab. The
area of greatest interest is located next to the column. A couple of points need to

be considered.
1. The reinforcement is smeared throughout an entire element containing steel.

2. The top of the slab is expected to crack extensively, rendering the concrete

somewhat ineffectual.

Consider a cross section of a concrete beam. Before cracking the entire depth
of the section shown in Figure 3.4a is assumed to be acting to resist moment.

However once the section is cracked the concrete in tension is ignored and only
the concrete to a depth of ¢ is assumed effective.

The value of ¢ depends on the material properties and changes as cracking
progresses within the plate. To more accurately model the plate the compression
zone should have more layers of elements than the tension zone. The elements
in the tension zone will simply crack while adjacent to the compressi;)n zone the

elements may or may not crack and if they'do, the cracks may close up again.
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Figure 3.4: Section Before and After Cracking

An element with a closed crack is assumed to have greater shear strength due to
aggregate interlock.

Figure 3.5 starts with the bottom of the slab as z = 0, the first layer, with no
steel, was set at 15 mm thick. The second layer, centred on the positive steel was
30 mm thick. The third layer is set at 45 mm thick and the final layer, centred on
the negative steel was set at 60 mm thick.

It was hoped that by minimizing the number of layers the overall run times

could be reduced.

3.5 Element Layouts

Three separate element layouts, all representing solid slabs were run. The models
were called the third, fourth and fifth models respectively.

The third model is shown in Figure 3.6 and used 680 nodes and 512 elements.
The smallest elements were 150 mm by 150 mm and as such would not allow for
the input of holes next to the column.

However this model could be run fairly quickly and gave some idea of the
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Figure 3.5: Element Layering
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Figure 3.6: Element Layout, Third Model
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expected results.

The fourth model used 830 nodes and 660 elements and is shown in Figure 3.7.
The elements next to the column were 75 mm square and would allow for holes

150 mm square in a pattern shown in Figure 3.8.

v/

Figure 3.7: Element Layout, Fourth Model

The fifth model allowed for the second band of wedge shaped elements to be
moved further out from the column. It was hoped that this would eliminate any
effect these elements might have on the position of the line of contraflexure. This

model contained a total of 975 nodes and 784 elements and is shown in Figure 3.9.
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Figure 3.8: Hole Patterns Investigated
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Figure 3.9: Element Layout, Fifth Model
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3.6 Run Times and Iterations
The following table gives some of the statistics on the analyses run on the various

models.

Model Total Number Total Number Approx. CPU Total CPU

of Load Steps  of Iterations  Time/Iteration Time

(min.) ~ (hrs))

3 32 176 11 32.3

4 44 418 15 104.5
5 30 428 20 142.7 .

3.7 Analysis of Slabs With Holes

The first 3 runs established the procedure and the limits of the finite element
analysis of a solid slab. The next three runs examined the effects of holes next to
the column.

Everythin‘g for these subsequent models remained the same except for the ele-
ment layout. The concrete and steel material properties, the layout of the reinforc-
ing steel and the element layering are all identical to the solid slab. The first hole
pattern used is shown in Figure 3.10. The quarter panel model has the element

layout shown in Figure 3.11.

The nodes along the hole are allowed to move freely subject to the constraints -
of the column and/or symmetry. The holes are introduced by “unselecting” the
appropriate elements. This means that such elements, and the steel they may
contain, are not considered in the model. No steel was added t<:> the surrounding

elements. This makes the model a little weaker than it should be, as normally any
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Figure 3.11: Element Layout, Hole Pattern One
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steel would be shifted over and not eliminated.

3.8 Data Recorded
The following groups of data were recorded:

1. Load Deflection curves

2. Position of the line of zero flexural stress

3. Deflections along the line of zero flexural stress

4. Deflections at various cross sections parallel to the z axis
5. Shear cracking

6. Reactions at the nodes in the slab-column connection

3.9 Failure Criteria for the Model

In an experiment in the laboratory, the failure of the specimen is generally obvious.
The specimen collapses under load, the test is over.
This is not the case for this computer simulation. One is forced to choose a

failure criterion. For this model the failure criterion could be based on the following:

1. Nonconvergence of one or rhore elements within a given number of iterations

in one loadstep.

2. Application of the load as determined by analysis using the design code.



3. Excessive deflections at midspan.

4. Application of the ultimate load using yield line analysis.

The decision as to which criterion to use is not always clear.

Nonconvergence

The ultimate streﬁgth is unknown at the start of the analysis. If the model does
not converge at a very low load then it might be concluded that there is some
problem or wéakness within the model or the program. In this study there were
no convergence problems except perhaps that the 10 loadsteps past 13.1 kPa each
required an average of 25 iterations. Up to that point the average was about 9
iterations per loadstep with a maximum of 17 iterations. Also the position of the
line of zero stress had become rather erratic due to cracking so these results had

become meaningless at a load of 19.1 kPa.

Design Code Standards
Using CAN3-A23.3-M84 as a guide the failure of the slab could be set at the
minimum required load. The loading could also be stopped upon violation of
serviceability requirements.

For the design of the reinforcement within the slab the loads were set at 7.2
kPa unfactored and 9.65 kPa factored.

The code (Table 9-2, Pg. 54) |21 specifies that if immediate deflection due to

a specified live load exceeds L/360 = 4.5/360 = 12.5 mm then the slab has failed

through lack of serviceability.
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Yield Line Analysis
The following describes two methods for determining the flexural failure load using
yield line analysis.

Assume the flexural failure of the slab will be of the form shown in Figure 3.12.

M,
e ===
AN /7
AN
. \\ ; .
Mis N\ / M,
N /
M, X —7—;'*
N M,
N S
Ci—™>|D
Muz
A 4

Figure 3.12: Yield Li'nes

M.; (the ultimate moment of resistance per unit length) is calculated using
the original design of the reinforcement. There are & number 10 bars spread over

2.25 m, thus the area per metre of the positive steel is:

Recall that for a reinforced section:

Mu = ‘.bsAsfy(d - _B_:;_C)

Where:
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¢ = Q’SSAsfy
0.856,/.:b

With the following numbers substituted in:

d=0.120m

b=10m

A, = 355 mmz/m

fy = 400 M Pa
fl=25MPa

Thus:
Mul = 16.6 kN -m

From Figure 3.12 M, is a sagging moment while My, My and M, are

hogging moments. However there is no steel near the top of the slab from 0.25L

to 0.5L. Therefore
Mu =0

And the steel near the top of the slab close to the column is evenly ‘distributed.

Thus:

My = My



In the negative steel region there are 7 number 10 bars in 1.125 m. Thus:

7(100 2
A, = (100) _ 5o mm

And:
My =284kN -m
Assuming the line AB of Figure 4.39 is displaced §:

Energy Dissipated

= M, > (Proj. Length of Yield Line on Azis of Rotation)

x (Rotation of the Segment about that azis)

E—MulL(L_c) - Muz(f)(L—c)
26 4.5 26
= 16.6(4.0)(4_.5'._—03) ' 284(—2—)(?5-——03-)

= 35.66 + 30.46 = 60.06

External Work (uniform load q, see Figure 3.13)

Work Done = W = Y- (Load)(Area of Segment)

x (Displacement of Centroid of Segment)

2 1
= 29A;-6 A, =6
(J13 + g 23

Where:

48
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Figure 3.13: Areas for External Work
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If: L =4.5m and ¢ = 0.3 m then:
A; =2.363m? A; =0.315m’
Thus:
W = 3.25646

Equating: W = E
3.256¢6 = 66.06

‘Therefore according to yield line analysis failure can be expected to take place

at a load of 20.3 kPa.

Choice of Final Analysis Load

The data reco'rded for the line of zero flexural stress was rather erratic at a load
of 19.1 kPa. Yield line analysis gave a maximum load of 20.3 kPa. Serviceability
d(_eﬁections were not exceeded in either case. It was decided that the finite element
analysis should be concentrated on the first 60% of a failure load. This gave a |
maximum load of (0.6)(19.1) ~ 11.9 kPa. No load data was recorded for less than
the ,self weight of the slab (3.5 kPa) although some of the load steps were less than

3.5 kPa to avoid false cracking. The load steps were taken at 0.6 kPa intervals.

3.10 Results

3.10.1 Load Deflection Curves

Readings were taken at the points shown in Figure 3.14. The deflections were

affected by cracking within the slab. A significant amount of cracking between two
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loadsteps produced results with a certain degree of nonlinearity as shown in Figure
3.15. The holes in the slab did not affect the deflection readings.

¢ ¢
A

conar X

Figure 3.14: Points for Deflection Readings

¢

3.10.2 Position of the Line of Zero Flexural Stress

The lines 0, = 0 and o, = 0 formed a rough square around the column about
975 mm from the centre of the column. ’i‘he holes did not significantly affect the
position of these lines.

Figure 3.16 shows the lines of zero flexural stress (o, = 0) for two layers within

the elements in laLyer one of the solid slab. These layers are separated by 15 mm.

Fiéure 3.17 shows the effect of the hole in the three positions. All three patterns

are based on a load of 11.9 kPa.
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Figure 3.15: Deflection vs. Load for Model 5
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Figure 3.17: Lines of Zero Flexural Stress, Three Hole Patterns, 11.9 kPa
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3.10.3 Deflections along Lines of Zero Flexural Stress

These deﬂections,' taken at the top surface of the slab, were virtually identical for

each of the hole patterns. The results from Hole Pattern One are shown in Figure

3.18.

Deflections Along Lines of Zero Stress

Porajlel to Y axis, X = 975 mm

Z (mm)

o T T T 7 T T T T T T T
0 0.4 0.8 1.2 1.6 2 2.4

Y (m)

Figure 3.18: Deflections Along £ = 975 mm, Hole Pattern One



3.10.4 Deflections Along Various cross Sections

These deflections were not affected by the varying hole patterns. The deflections
for Hole Pattern One are shown in Figure 3.19 and 3.20. The disturbing feature of
these figures is that the points of contraflexure are not all 975 mm from the centre
of the column. In Figure 3.19 for y = 0 to 300 mm the point of contraflexure is
at about x = 350 to 400 mm. For the rest of the cross sections the point is less
well defined but appears to be closer to x = 900 to 1000 mm. One would have
expected the point of contraflexure and the point of zero flexural stress, shown in

Figure 3.17, to be in the same place.

3.10.5 Flexural and Shear Cracking

The progression of shear cracking was recorded for each of the sections shown in
Figure 3.21.

Only the sections at y = 16 and 91 mm were recorded for the solid slab. The
shear cracking was affected by the holes, especially in the section at v = 91 mm.
The cracking in this section is shown for the various hole patterns and various loads
in Figures 3.22 to 3.25. The presence of the holes seems to increase the amount of

cracking and alter the position of the cracks so that they are right beside the hole.

A problem with the finite element analysis is evident from these figures. The
horizontal cracks that form in the bottom of the slab should not be there. The
tensile stress in this area should not be enough to produce cracking, yet for some

reason it seems to be artificially high.
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Figure 3.19: Deflections Along Various Sections, 11.9 kPa, Hole Pattern 1
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Figure 3.20: Deflections Along Various Sections, 11.9 kPa, Hole Pattern 1

2.4



16 mm

x = 91 mm

X

| y=08lmm

L__x | -+-4 y=16mm

Figure 3.21: Sections for Flexural and Shear Cracking
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Section at 91 mm
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Figure 3.22: Sequence of Flexure-Shear Cracking, Solid Slab
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y=9l mm
/ | / / /
/ /
I/ / ! i /
/ / /
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6500 Pa 8300 Pa
/ / / /
7/ / i Ity /
/ / 1/
el Pl - — o =

Figure 3.23: Sequence of Flexure-Shear Cracking, Hole Pattern One
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y=91mm
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Figure 3.24: Sequence of Flexure-Shear Cracking, Hole Pattern Two
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y=91mm
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Figure 3.25: Sequence of Flexure-Shear Cracking, Hole Pattern Three



3.10.6 Reactions at the Column

In this model the nodes at the slab-column joint are fixed. That is, no movement
is allowed in any of the z,y or z directions. Consider the slab-column interface

shown in Figure 3.26.

/

T
=
y X

T~
T

i/

A

Figure 3.26: Column-Slab Interface

The connection is made up of a total of 25 nodes in 5 stacks at the coordinates
shown in Table 3.1. The reaction in the z direction for each of the stacks at a load
of 11.9 kPa is shown in Figures 3.27 to 3.30. The bﬁlk of the load is carried at the
corner of the column in each case. A hole close to the face of the column drives

the peak load up slightly.



z Reaction (kN)

a

20
18
16
14
12
10

o N » O @

z (mm) iy (mm) .
0 i 150
75 150
150 150 - !
150 5
150 | 0

Table 3.1: Coordinates for Node Stacks at Column

Reactions at the Column
Sofld Slab, Load = 11.9 kPa

T T T T Y T T T T T T T T
0 20 40 60 80 100 120 140
2 {mm)
x= 150,y = 0 + 150,75 ¢ 150, 150

Figure 3.27: Reactions at the Column, Solid Slab




Reactions at the Column

Hole Pottern 1, Load = 11800 Pa
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Z Reaction

B
-6 | T T T T T T T T —— T 7
0 20 40 860 80 100 120 140
Z (mm)
O X=150,Y = 75 + 0, 150
¢ 75, 150 A 150, 150

Figure 3.28: Reactions at the Column, Hole Pattern One
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Reactions at the Column
Hole Pattern 2, Load = 11900 Pa

Z Reaction (kN)

-4
-6 T T ) T T T 7 T T T T T T T
0 20 40 60 . 80 100 120 140
] Z (mm)
D X =150,Y =75 + 0, 150 & 75, 150
A 150, 150 X 150, O

Figure 3.29: Reactions at the Column, Hole Pattern Two



Z Reaction (kN)

a

Reactions at the Column
Hole Pattermn 3, Load = 11900 Pa

20 40 60 80 100 120 140
Z (mm)
X = 150, Y = 75 + 0,150 & 75, 150
A 150, 150 X 180, O

Figure 3.30: Reactions at the Column, Hole Pattern Three
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3.11 Analysis and Discussion of Finite Element Results

"In order for reality to be correctly represented by a laboratory specimen the fol-

lowing must be true:
1. The lines of zero flexural moment form a square around the column.
2. The position of these lines is constant throughout the test.

3. The deflections along these lines are uniform, or at least match the deflections

of the test.

Assumption 1
The main idea in choosing a simply supported specimen is: the simply supported
edge represents the point where the bending moment in the slab is zero. At this

point one would expect the following:

o The curvature of the slab would be zero, this would be the point of con-

traflexure of the slab.
o The flexural stresses in the slab would be zero.

The results of the finite element analysis have shown that these two points are
not always coincident. Along a section where y = 0 the point of contraflexure is at
about z = 375 mm, while the point of zero flexural stress is at about 975 mm.

The line of zero flexural stress forms a rough square around the column at

0.975
about z = 975 mm or 1 _DL = 0.22L. This is the assumption made for a simply
.0

supported specimen, a square somewhere between 0.2L and 0.25L. But fory =0

this line is not anywhere near the point of contraflexure.
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Restraint Conditions

The boundary conditions for the model are such that the nodes at the column
are allowed zero deflection and at the centreline of the slab the nodes are allowed
zero translation. Consider the profile of the slab between the column and the
centreline. The model restrains the section as shown in Figure 3.31. The tension
force is needed to keeps the ends at a constant horizontal distance from each other.

This tension could affect the position of the line of zero flexural stress.

v

Eas

Figure 3.31: Restrainment of Finite Element Model

Overall Effect

The effect of the tension force could lead one to believe that the point at which
the moment in the slab is zero lies between 375 'aﬁd 975 mm (for y = 0). Recall
however that for y = 600 mm -or greater the position of contraflexure and zero
flexural stress agree at about z = 975 mm. Therefore if the position at y = 0 is
an average value of about 675 mm then one ends up with a test specimen like the
one shown in Figure 3.32.

If only the line of zero flexural stress is considered then test specimens used

thus far are adequate.
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Figure 3.32: Possible Shape of Test Specimen

Assumption 2
The results over several load steps show that the position of the line of zero flexural

stress did not change by more than 5% of the centre to centre span of the slab.

Assumption 3

The deflections along the lines of zero flexural stress were found to be nonuniform.
This would indicate that the distribution of shear stresses along the line is also
nonuniform.

Recall that some of the past investigators, in describing their testing procedures,
have made the following statement: The corners of the specimen were allowed to
uplift. 1

Consider a deflected laboratory specimen. (To match reality the specimen is

shown with the column stub down, see Figure 3.33.)

"Along an edge of the specimen the reaction load must be distributed over the

" length that still touches the support (Figure 3.34).

The shear stress along sections at z = 1.05 m and y = 1.05 m is shown in
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Figure 3.33: Deflected Laboratory Specimen
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Figure 3.34: Edge Reactions of a Specimen
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Figures 3.35 and 3.36. The results are from the finite element analysis of Hole

Pattern three at a load of 11.9 kPa.
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Figure 3.35: Shear Distribution, £ = 1.05 m, Load = 11.9 kPa
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Figure 3.36: Shear Distribution, y = 1.05 m, Load = 11.9 kPa
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The points on the graph do not give a smooth curve when averaged. The line
z=105m is a border between two elements and the shear distribution is plotted
for each of the layers of nodes within the model. The graph shows that the results
for the levels at z = 0,15 and 45 mm are reasonable. For the levels z = 90 and 150
mm the results oscillate too much.

Consider the line at z = 90 mm. The T, are obtained from the integration
points within the adjoining elements. The weighted average of those values gives
the nodal value. Choose first the elements just inside (closer to the column) of the
line z = 1.05 m, z = 90 mm. The elements in question are shown in Fiéqre 3.37.

This figure also shows the integration points to be considered.

Z .

355 399 363

(@4}
-J
[4)]
-~
o
-3

307 311 315

* Figure 3.37: Elements and Integration Points, Inside z = 1.05 m, z = 90 mm.

The T,. values at these integration points are shown in Figure 3.38.
' z I
I

|
‘149 /307 | 268 2 ‘141 288'
| 315 397 i 421 205 | 256 299 l Y
i .

| |

Figure 3.38: T, Values, Inside £ = 1.05 m, z = 90 mm.

Now choose the elements just outside (farther from the column) of the line
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z = 1.05 m, z = 90 mm. Figures 3.39 and 3.40 show the elements and the

corresponding T, values.

Z |

356 360 364
3:1 3
2 42 4.2 4 )/
308 312 ¢ - 316

Figure 3.39: Elements and Integration Points, Outside £ = 1.05 m, z = 90 mm.

Z

I
105 193|157 14|25 235!
199 276i 252 130 1101 298} >/

Figure 3.40: T;, Values, Outside £ = 1.05 m, z = 90 mm.

While these values do not seem to present any obvious pattern they do satisfy
equilibrium. When all the shear stresses along the face z = 1.05 m are added up
they equal the load placed on the area shown in Figure 3.41. |

The cause of the oscillation is not clear. There is some crackjng in the upper
elements, but not along the entire length of the line. The only differences between
the upper and lower layers are their relative thicknesses and the reinforcing steel
in the top layer. Since the average values of the nqdal shear stresses do satisfy
equilibrium one can speculate about the true shape of the average distribution. It
is possible that the.curve is an a.vérage of the oscillating curve. If this is true then

some of the load is being carried all along the face z = 1.05 m.



— Y- 7_.z'§ €

Load q
Faceatz=10m ‘ /

— Y=105

Figure 3.41: Area Considered for Equilibrium Check
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Acceptance or Rejection of Test Specimen

The finite element model has shown that there is some question as to the best
shape for a test specimen. Even if a square specimen is acceptable, the deflection
along the edge of the specimen should not be considered uniform. To obtain test..
conditions which match the conditions in a floor slab, some acceptable kind of
support system needs to be created which gives the required deflections. This
would divert some of the load to the corners of the specimen.

However there were problems with the finite element model itself. The forma-
tion of horizontal cracks near the bottom of the slab, the difference in the positions
of the points of contraflexure and zero flexural stress and the erratic shear distri-
bution all undermine confidence in the model. Because of this the results from
the laboratory tests cannot be rejected solely on the basis of this finite element

analysis.



Chapter 4

Examination of Prediction Equations

4.1 Introduction

The literature review of Chapter 2 revealed that many different prediction equa-
tions have been. developed. Almost all are based on a statistical analysis of-data
gathered from tests on laboratory specimens. The laboratory specimens are all
simply supported sections of slab with square column stubs. The model presented
by Rankin and Long [24] is one of the few papers that gives a logical basis for
prediction of punching shear strength. The aim of this chapter is to adapt this
model to handle slabs with holes and compare the subsequent predictions to test

results. Also three methods for reducing the critical section will be investigated.

4.2 Application of Rankin and Long’s Model to Slabs with
Holes

Any application of Rankin and Long’s model to slabs with holes must be done
for both the equation for flexural punching strength and the equation for shear

punching strength.

80
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4.2.1 Flexural Punching Strength

Consider the three cases for flexural punching shear failure shown in Figure 2.12.
When a full yield line pattern develops the effect of the hole is minimal. This
is because the reinforcement usually is not cut off through the hole, it is simply
shifted c;ver. Thus the resisting moment of the sections close to the hole increases,
making up for any loss of flexural strength due to the hole.

The equation for a localized compression failure is:

B 25
~ [In(2.5s/c)i1

ky
and was developed using finite element analysis [14]. Without doing further finite
element study there is no way of knowing what the effect of holes on such an
equation would be. It has been assumed that this constant is unaffected by the
holes.

For partial yielding the constant k; gives the point between ky; and k; at which

the strength should be taken. This point is determined by the ratio:

M, nominal flezural resistance

= — 4.1
My balanced resisting moment (4.1)

Both of the above values are per unit width. The effect of the holes is to reduce
Mbal-
Long gives M,y as:

M, = 0.333f!d*

And states that it is based on the Whitney stress block. For sections with holes
it is more convenient to use the total moments which are obtained by multiplying

by b = 4c in the case of M, and by ' for M.
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Consider the reinforced concrete section of width ' shown in Figure 4.1.

-
Pic

¥ ,
\ ‘ |

\ > ASFY
—=1

Figure 4.1: Stress and Strain Diagrams

O

Note that for the following three equations “c” is the depth to the rneﬁtral axis.
Assume: €, = 0.002 and e, = —0.003 (compression)

¢  -e  0.003
Therefore: = = = =
erelore 4T “e.¥e, 0.005

C = 0.85'Bycb' = 0.85f5,(0.6d)b

M, is the balanced moment around the column periphery.

My = C(d — %E)

= 0.85f"5,(0.6d)b'd(1 — m—gff)

Substituting:

My = 0.51(1 — 0.33,) 6, f.d*V (4.2)
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.Mbal is proportional to ¥, the critical section at the column periphery, reduced
. by one of the methods introduced in the next‘ section. The reduction of M, tends
to drive k, toward k; (the constant for localized compression failure).

M, is taken as the total nominal resisting moment over the length b = 4e.,

(Note that in this case ¢ is the side length of the column.)

M, = pf,d*(1 - 0.590f,/f)4c

4.2.2 Shear Punching Strength

Recall equation 2.31:
P,y = 1.66\/f1d(c + d)(100p)°%5 -

= 0.415\/1d4(c + d)(100p)*%

The critical section is taken at d/2, thus b, = 4(c + d) and the prediction

equation for shear punching failure takes the form:

P,, = 0.415/f1dby(100p)°% (4.3)

The method to reduce by should be the same type that is used to reduce b'.

Figure 4.2 shows the method to determine Pp using the adapted model.
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Spectmen Data
p ,fy )d 3fé ’s

/ C,b"bOaBl

ky1 = 8(s/(s — ¢) — 0.172)

L

— 25
ky = (In2.5s/¢c)t.5 ~

P,, = 0.415,/f!db,(100p)° %
M, = pf,d*(1 - 0.590f,/f'c)4c

Myar =0.51(1 — 0.384) 8, f1 2V
ke = ky1 — (ky1 — ko /1) (M [Maar) > ky

}

P,y = kM, < kyMyg

\Puf : P,,
-\

Pvf>Pus va>Puf
P,=P, P, \L P,
. (shear mode) (flezural mode)

Note: 2.5s =1L

Figure 4.2: Method for Determining P, Using Adapted Model
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Figure 4.3: Radial Line Method

4.3 Methods for Reduction of b

Whether the critical section is at the column face or at d/2 the method of reduction

of b should be the same. Three methods will be presented here and used for

comparison later. '

Radial Line Method

This is the method currently used by the Canadian design code [21]. Lines are
drawn from the centre of the loaded area (the column) to points where these lines
are tangent to the opening as shown in Figure 4.3.
| Note that with this method, for a hole inside the critical section, the length
that is ignored is wider than the hole itself. It is believed that this is one of the

two basic ﬂawé of this method. The other is that no matter how far the hole is
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from the .column, it is always required to have some effect on the shear strength.
(Clause 11.10.6 of the Canadian design code [21] states that any hole within the
column strip must be considered when calculating the punching shear strength.)
60 Degree Wedge Method
This is a new method, initially suggested by R.E. Loov that calls for two tangent
lines to be drawn around the opening. These lines are subtended by a 60 degree‘
angle as shown in Figure 4.4. As well, the lines stop at the tangent points and

then continue back along the edge of the hole or straight back at 90 degrees to the

column face.

%
!—— /éo
\ 4/‘ J
‘ \V’-/ i 60=4(C+d)—91
| u -
! 92 V=de-g
! |

Figure 4.4: 60 Degree Wedge Method, Hole on Centreline

Normally the centreline of the wedge is drawn at right angles to the column face.
However when a hole approaches the corner of a column the following guidelines
apply.

Consider a corner of a column ABC of angle § with line DE drawn bisecting



the angle shown in Figure 4.5.

= 3
\B/ A7 /o
z -V

Figure 4.5: Arbitrary Column Corner

As the hole approaches the corner from_ the left the wedge is drawn at 90° to
face AB. When the apex of the wedge contacts line DE the wedge is assumed to
progressively swing around until it is 90° to face BC. From there it continues on
at right angles to face BC as shown in Figure 4.6.

90 Degree Wedge Method

This method has the same guidelines as the 60 degree wedge method except

that the angle subtended at the épex of the wedge is 90 degrees.

4.4 - Comparison With Test Results

The comparisons are with test results obtained from Moe, Zaidi and Roll. All three
used only square columns in these particular tests.
The hole patterns tested by Moe are shown in Figure 2.1. Hole layouts used by

Zaidi and Roll can be determined by the labels of the corresponding test specimens.
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D C D C O C

Figure 4.6: Reduction for Holes Near Column Corner

Zaidi and Roll both used the same scheme when labelling their slabs. Each label

is made up as follows:
S—BCD-E-F-G
Where:

= Square, the shape of the hole.

B= Type of hole layout, 1 indicating a hole on the centreline of the column, 2

indicating a hole off the corner of the column.
C= Size of the hole in inches.
D= The number of holes.
E= The type of reinforcement layout as shown in references {8} é.nd/or 9.

F= Distance to the hole from the column in inches.
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P,/ P, Values

Radial Line 60 Wedge 90 Wedge
Hole Pattern | Average | Variance | Average | Variance | Average | Variance
Centreline
Symmetrical 1.48 0.03 1.26 0.03 1.26 0.03
Centreline i
Nonsymmetrical 1.26 0.02 1.21 0.02 1.21 | 0.02
Corner
Symmetrical 2.08 0.39 1.65 0.16 1.20 0.05
Corner
Nonsymmetrical 1.31 0.08 1.22 0.04 1.03 0.01

Table 4.1: Comparison of Various Methods for Hole Reduction, Using Adapted
Prediction Equation

G= Number of the slab tested for each type.

Tables in Appendix B list the input data required for the adapted prediction
equations for each of the categories. The predicted values (P,) are compared to the
test strengths (Py) in each case. Table 4.1 shows the average value and variance

P
of Fu for each of the categories of hole patterns using the adapted prediction
»

equations.

4.4.1 Results Using Adapted Equations

“ P ‘

Long and Rankin {24} achieved an average — value of 1.19 with a variance of
P

0.11 for slabs without holes. Table 4.1 shows that the radial line method is too
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conservative for each category. By comparison the 60 and 90 degree wedge methods
produce good results. Note that for holes on the centreline of the column the 60 and
90 éegree methods are nearly the same. For the particular specimens examined,
inéluding the one shown in Figure 4.7, the angle at the apéx of the wedge rarely
made any difference. The advantage of the 90 degree method is most obvious for
the corner-symmetric hole patterns. While this type of hole pattern is not likely

to occur in practice it does provide some indication of the flaws in the radial line

method.
w
le—>
A —_ ]
60° Wedge
c+d c

90° Wedge

Figure 4.7: Typical Reduction of Centreline-Symmtrical Specimen

Comparisons were also made using the Canadian design code equation. This
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~ P,/P, Values

Radial Line 60 Wedge 90 ‘Wedge
Hole Pattern Average | Variance | Average | Variance | Average ; Variance
Centreline ] |
Symmetrical .1.64 0.12 1.31 0.05 1.31 i 0.05
;
Centreline
Nonsymmetrical | 1.26 0.05 1.16 10.03 116 | 0.03
Corner
Symmetrical 2.37 0.53 1.88 0.23 1.18 | 0.04
i
Corner
Nonsymmetrical 1.50 0.15 1.38 0.09 1.15 : 0.05

Table 4.2: Comparison of Various Methods for Hole Reduction, Using Design Code
Prediction Equation

.equation uses only one b value, namely by which is measured at d/2. Clause 11.10.6

of the code predicts the following capacity for square columns:

P, = 0.4¢.A\/flbod

(4.

4)

In order to make comparisons to test results . is set to 1.0 and A = 1.0 (normal

density concrete). Tables listing the parameters for the equation are included in

the Appendix B. Table 4.2 gives a summary of the averages and variances for each

category.
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4.4.2 Results Using Code Equation

Once again the radial line method proves to be too conservative. If one hopes to
achieve an average % of 1.20 (to match the results obtained for solid slabs) then
the correct method to use is the 90 degree wedge. In each of the categories the
% values for this method are close to 1.20 and the variances are small. Only for
the centreline-symmtrical holes patterns is the average a little high. This category
consisted of 10 specimens and two high results for Roll’s B series {9; pushed the

‘average up. This series had high values of p (2.53%).

Graphical Comparison of Results
Figures 4.9 and 4.10 show P,/ P, values for the adapted equation, using the radial
line and 90 degree wedge methods respectively. The points that are furthest above

P./P, = 1.0 in both cases are slabs with S-244-9-0-2 hole patterns shown in Figure

’4.8 with 4 corner holes.

/////j_—_ Columa

Figure 4.8: Worst Case Hole Pattern
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Corner — Symmetric Holes
Long's Prediction Equation
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0 30 80 90 120 150 180 210 240 270 300
Pp (kN)

Figure 4.9: Corner - Symmetric, Radial Line Method, Using Adapted Equation

The graphs show that the 90 degree wedge method reduces the scatter (;f the
datal significantly.

Compare Figures 4.10 and 4.11."Both figures use the 90 degree wedge method,
one with the adapted equation and the other with the code equation. The pattern of

the data is changed because the code equation does not consider flexural punching

failures.”
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Corner ~ Symmetric Holes
Long's Prediction™ Equation

300 4

2704
240 4
210 -
180 -
1504
1204
90 4
604 - ;,.+
30 4

0 30 60 90 120 150 180 210 240 290 300
Pp (kN)

Figure 4.10: Corner - Symmetric, 90 Degree Wedge Method, Using Adapted Equa-
tion -
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Corner — Symmetric Holes
Canadion Code Equation

+
+
90 Lo
S
60 - gt
~30 4 +
O T 1 i

3 30 &0 S0 120 150 180 210 240 270 300
Pp (kN)

Figure 4.11: Corner - Symmetric, 90 Degree Wedge Method, Using Code Equation
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4.5 Summary

A method was developed for adapting Rankin and Long’s model to incorporate
slabs with holes. The flexural punching strength equation is altered by reducing
M using the critical section b'. This critical sectfon is reduced using one of the
methods desribed in Section 4.3. The shear punching strength equation uses a
critical section at d/2 from the column. This section, b, should be reduced the
same way as b'.

The results ;'aure tabulated so that comparisons can be made. Figures 4.8 to 4.10
compare the radial line method to the 90 degree wedge method and the adapted

equation to the code equation.



Chapter 5

Summary and Conclusions

5.1 Restatement of Problem

Given an interior slab-column connection with a square column and equal spans in

both directions:
1. What is the punching shear strength of the connection?

2. What are the effects of holes through the slab, close to the column, on that

strength?

5.2 Summary

In examining these questions the following steps were taken:

Literature Review This is a review of of research done on slab-column connec-

tions both with and without holes.

Suitability of Laboratory Specimen A typical interior column was isolated at
the centrelines between thé columns. Because of symmetry only one quarter
of the éo]umn and slab were considered. It was hoped that a finite element
analysis would help determine the validity of the simply supported laboratory

specimen.
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Examination of Prediction Equations A model presented by Rankin and Long
[24] is adapted to handle slabs with holes. Three methods of reducing the
critical section are examined. The model is also compared to the equation

currently used in the Canadian design code {21.

5.3 Conclusions

Literature Review

The investigators of slabs with holes have used many methods to reduce the critical

section. None of these equations gives a reliable estimate of the punching strength.
The trend in the studies of slab-column connections with no holes was toward

a two phase approach. Rankin and Long proposed a logical model {24] which they

claim gives better results than other equations for slabs with no holes.

Suitability of Laboratory Specimen

The finite element analysis showed that the laboratory specimen may not be the
correct shape and that there may be some problems with the assumed support con-
ditions; however there were some problems with the finite element model. Because
of this the results were not conclusive enough to reject the data obtained using.the

laboratory specimen.

Examination of Prediction Equations
Of the three methods outlined for reducing b the 90 degree wedge method proved
to be the best. It is recommended that this method replace the radial line method

currently used in the Canadian design code.
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Comparison showed that the prediction equations proposed by Long and Rankin,
adapted for slabs with holes, are better than the equation presently used by the

Canadian design code because they provide a logical basis for punching shear.
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Appendix A
Design of Reinforcing Steel

The design ‘'was carried out following gxample 5.3 of the CPCA Concrete Design

Handbook [22]. References in brackets refer to Design of Concrete Structures for Buildings

(CAN3-A23.3-Ms4).

Problem

Design the slab reinforcement\layout for a typical upper story floor in an office
building.

Loadings

(Based on Table 1.13 of the CPCA handbook.)

Uniformly distributed live load: 2.4 kPa

Additional dead load, assume 1.3 kPa

Dimensions

Given:
e Columns spaced 4.5 m on centre.

0.150 m slab thickness.

0.3 x 0.3 m column dimensions.

o f'=25MPa

.
[ J

f, = 400 M Pa
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Factored Load

Sel fweight : 2400(0.150)(9.81) /1000 = 3.53 x1.25 = 4.42 kPa
Additional dead : 1.3 x1.25= 1.63 kPa

Liveload : 2.4 X1.5= 3.6 kPa

Total unfactored load 7.23 kPa.

Total factored load 9.65 kPa.

Preliminary Shear Capacity

Assume #10 bars to be used. (Although the nominal diameter is 11.3 mm
assume 10 mm for simplcity.)

Therefore: d = h — bar — cover

d =150 - 10 — 20 = 120 mm
¢+ d =300+ 120 = 420 mm

Vi=w;(l* = (c+d)?)

=9.65(4.5% - 0.420%) = 193.7 kN

V. = 0.4¢./f1bsd

= 0.4(0.6)1/25(4)(420)120 = 241 kN

V’—124
v,

Preliminary shear check okay.
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Design Moments

Column strip widths: 2(!,/4) = 2.250 m (13.2.1)
Middle strips: Remainder of strip.

Solution Using the Direct Design Method

Limitations (13.6.1)

All limitations satisfied.

Moments at critical sections: (13.6.2 & 13.6.3)
X 1073)1,/2
M, = (wf 5 Ll N .-mm (13.3)

(9.65 x 107%)4500(4200)?

95.8 x 10° N - mm

I — - T
;f , ns :
Lg = 4500 mm k23
P

Figure A.1: Column and Middle Strips



®

In(c = 300)
M, (Eq.13.3)

% Mpy(13.6.3)
MDcs

65

4200 mm
95.8 x10® N - mm
35 65

62.3 33.5 62.3| x10°N -mm

-62.3

=623

\_/

Figure A.2: Moments at Critical Sections

Ba = ol (un factored)
wy
3.53 + 1.3
- _%__ =2013 > 2.0  (13.6.10)

| 335
i
860 1240
<20 e N
< 4200

No modification for pattern loading.

Column design moments at interior supports.

= 0.07(0.5)(3.6)(4500)(4200)% = 10.0 x 10° N - mm

;Mf - 0.07((wdf + 0.5w1}’)l213 - w:ifllz(l;)z)

(13.6.9, Eq. 13-4)

108
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Choose Reinforcement

Assume #10 bars

d=120mm

% of design moment that goes into column strip:
at interior supports, (13.6.4.1) 75%
at midspan, (13.6.4.4) 60%

At Interior Supports

M; = 62.3(0.75) = 46.7 x 10° N - mm
a
Assume: d — 3= 0.9d = 108 mm

M; 46.7

*~ 4. f,[d—2%)  0.85(400)(108) 1272 mm

A

Try 14 #10 bars, 4, = 1400 mm?

_-' d’sfyAs
6.f11.7b

0.85(400)(1400)
0.6(25)(2250)(L.7)

> 46.7 x 10° N - mm

Mr = ¢sfyAs (d

)

= 0.85(400)(1400)(120 — ) =33.2x 10° N - mm

Use 14 #10 bars.

Interior Supports, Middle Strips
" M; =0.25(62.3) = 15.6 X 10° N - mm

A, =~ 15.6 = 425 mm?
* ™ 0.85(400)(108)
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Try 6 #10 bars, 4, = 600 mm?

0.85(400)(600)

M, = 0.85(400)(600)(120 — 0,6(25)(2250)1.7)

=23.7%x 10° N -mm > 15.6

' 2250
Check Spacing: s = o = 375 mm > 2h = 300 mm, no good.

Need to use at least 8 #10 bars. A, = 800 mm

Positive Moment Reinforcement

Maximum spacing of 300 mm governs for both the column and middle strips.
" Use #10 bars spaced at 300 mm.

Shear Moment Transfer

Because of symmetry the moments are balanced.

M, = M, = M; = 0.07(0.5(3.6)(4800) (4500)*] = 10.0 x 10° N - mm

dy =120 mm
k= boid = 4(300 + izo)(lzo) =4.96 x 107
v =1-— ——-—1——-— =0.4
1+ %,/48

¢ = atd_ é§=210mm

2 2
7= (¢ + d)d® N (c1 +d)%d L (c1 + d)*(c2 + d)d
6 6 2
_ 420(120)® + (420)3(6120) +120(420)%(3) _ £.048 X 10°

_ve  0.4(210)

by = = =13.9x 107°
1= 7T 7 6.048 x 10°
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V; = wy|(Total area) — (area within critical section)]‘
"V, = 9.65[4.5% — (300 + 120)*] = 193700 N
vy = Vik + Mk, = 193700(4.96 x 107°) +10.0 x 10°(13.9 x 107°)
= 1.10 MPa
v, = 0.4¢.\\/f! = 0.4(0.6)v25 = 1.2 MPa > 1.10

Moment Transfered by Flexure (13.3.3)

Y5 = 0.6 (Cl-= Cz)

Moment transfered by flexure = 0.6(10.0) = 6 x 10° N - mm

Effective transfer width = ¢; + 3h = 300 4+ 450 = 750 mm

6 x 10°
A= = 148 mm’
* = 0.85(400)(120) mm

750
2250

(As)prouided (1400) = 466 mm?®

Space bars uniformly in the column strips.

N.B. The computer model assumes perfect bond between the steel and the
concrete. Thus no development length is added in this case, all bars are cut off
at some appropriate place. Because of symmetry, the steel in both the z and
y directions is the same The layout is shown in Figure A.2. The positive steel is
placed between z = 1200 mm and z = 2250 mm. The design called for the positive
steel to begin at about 1050 mm. This error allowed for some flexural crackmg to
occur in the bottom of the slab, but only at the higher load levels. For the range

considered (4.7 kPa to 11.9 kPa) no cracking occured.



112

' Z
Y Steel Centred on:
2150 \y . S
2=120mm | > 2=30mm 150
: SLAB |
o
4-#10 BARS 4110 BARS
Z COORDINATES
COLUMN
J2.00
z=120 mm z =30 mm
7410 BARS 4410 BARS
o [ 1
| X
O /260 2250

Figure A.3: Quarter Panel Reinforcing Steel, z Direction Only
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Tables and Figures for Prediction Equations
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SLAR

" Radial Line

. H3

H&6
$-122-0-0-1
-2
§-124-0-0-1
-2
§-122-0-0-1
§-124~-0-0-1
§-122-0-0~1
S5~124-0-0-1

Hole
Serie

Moe
Mae

A2

40 Degree Cone

H3

Hé6
§-122-0-0~1
-2
$-124-0-0-1
-2
S§-122-0-0-1
§-124~-0~-0-1
§-122-0-0-1
§~124-0-0-1

Moe
Moe
A-1
A~-1
A-1
A-1

90 Degree Cone

Moe
Moe
A-1
A-1
A-1
A-1
R
2]
A-2
A-2

Table B.1: Centreline - Symmetric Holes, Input Data

patterns square -
f'c bo
MPa in mm

Reduction Method

23.7  41.0 1,041
28.4 26.0 660
28.5 16.4  A17
27.0 1&6.4 417
28.0 10.4 264
30.5 10.4 264
29.8 16.4 417
30.2 10.4 264
29.8 16.4 417
29.3 10.4 264

Reduction Method

23.7 46.0 1,168
28.4 36.0 914
28.5 18.4 as67
27.0 18.4 467
28.0 14.4 366
30.5 14.4 366
29.8 18.4 467
30.2 14.4 3466
29.8 18.4 467
29.3 14.4 366

reduction Method

23.7 446.0 1,168
28.4 36.0 914
28.5 18.4 4867

27.0 18.4 467
28.0 14.4 366
30.5 14.4 346
29.8 18.4 467
30.2 14.4 366

. 29.8 18.4 467

29.3 14.4 366

centreline — symmetrical
b’ b d rho
in in mm % ks i
30.0 40.0 114 1.1S5 47.5
20.0 40.0 114 1.1S5 47.5
12.0 16.0 46 1.15 S2.0
12.0 16.0 45 1.15 5S2.0
8.0 16.0 46 1.1%5 52.0
8.0 16.0 46 1.18 52.
12.0 16.0 445 2.53 63.2
8.0 16.0 46 2.53 53.9
12.0 16.0 39 1.34 36.4
8.0 16.0 39 1.34 36.4
0.0 40.0 114 1,15 47.5
20.0 40.0 114 1.1S5 47.5
12.0 16.0 46 1.1S5 52.0
12.0 16.0 46 1.15 S52.0
8.0 16.0 46 1.15 S2.0
8.0 16.0 46 1.15 52.0
12,0 16.0 46 2.53 63.2
8.0 16.0 46 2.953 53.9
12.0 16.0 39 1.34 36.4
8.0 16.0 39 1.34 36.4
0.0 40.0 114 1.15 47.5
20.0 40.0 114 1,15 47.5
12.0 16.0 46 1.15 52.0
12.0 16.0 44 1.15 S2.0
8.0 16.0 46 1.1 S2.0
8.0 16.0 46 1.15 S52.0
12.0 16.0 46 2.53 63.2
8.0 16.0 44 2.53 S3.9
12.0 16.0 39 1.34 36.4
8.0 16.0 39 1.34 36.?

fy

MFa

328
328
359
359
359
399
436
372
251

291

328
328
359
359
359
359
436
372
251

251

32

32

359
359
359
3359
436
372
251
251

mm

1,829
1,829
737
737
757
737
737
737
7327
737

1,829

1,82
737
737
737
737
73
737
737
737

1,829
1,829
737
737
737
737
737
737
737
737

mm

254
254
102
102
102
102
102
102
102
102

254
254
102
102
102
102
102
102
102
102

254
254
102

102
102
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square - centreline -~ symmetrical
SLAB Pvél Pvf2  PvE Pvs Pp Pu  Pu/Pp 116

kN kN kN kN KN kN
" Radial Line

H3 258.77 329.3 258.8 248.1 248.1 3
Hb 237.90 263.7 237.9 172.5 172,85 246. 1.43
§-122-0-0-1 47.88 64.5 47.9 44.0 44.0 59.6 1.36
-2 446.88 b1.1 46.9 42.8 42.8 S3.8 1.26
S$-124-0~0-1 40.44 42.2 40.5) 27.6 .27.6 40.0 1.45
- 41.89 44.0 41.9 28.8 28.8 45.8 1.89
§=-122-0-0-1 92.60 67.4 &7.4 S4.7 4.7 75.3 1.38
S-124-0-0-1 82.47 45.6 45.6 35.0 35.0 &7.4 1.93
S§-122-0-0-1 30.351 48.5 J0.5 37.6 30.5 44.5 1.46
S~-124-0-0-1 26.68 31.8 26.7 24.9 24.9 40.9 1.64

5]

Average 1.48
sStd. Dev. 0.19
Variance 0.03

60 Degree Co
H3 288.77 329.3 258.8B 278.4 258.8 325.0 1.26
Hé& 237.90 263.7 237.9 238.8 237.9 246.0 1.03
S-122-0~-0—-1 47.88 64.5 47.9 49 .3 47.9 59.6 1.24
-2 44.88 b1.1 45.9 48.0 45.9 5%.8 1.15
S=124-0-0-1 40.44 42.2 40.5 38.3 38.3 40.0 1.05
-2 41.89 46.0 41.9 39.9 39.9 45.8 1.15
S§-122-0-0~1 92,460 &7 .4 67.4 &1.4 61.4 75.3 1.23
S-124-0-0-1 B82.47 45.6 45.6 48.4 45.6 &7.4 1.48
S§-122-0~0~-1 30.51 48.S 30.95 44.4 30.5 44.5 1.46
S=-124-0-0-1 26.68 31.8 26.7 34.5 26.7 40.7 1.53
Average 1.26
Std. Dev. 0,17
Variance Q.03

90 Degree Co

H3 258.77 329.3 258.8 278.4 20T8.8 3

H& 237.90 263.7 2W7.9 2I8.8 2I7.9 2
S-122-0-0-1 47.88 64.5 47 .9 49.3 47.9 9.6 1.24
-2 46.88 61.1 45.9 48.0 6.9 53.8 1.15
S-124-0-0-1 40.46 42.2 40.5 38.3 38.3 40.0 1.0S
-2 41.89 4&6.0 41.9 I9.9 9.7 4.8 1.15
S-122~0-0-1 92,60 &67.4 &7.4 61.4 61.4 75.3 1.23
S—-124~-0-0-1 82.47 45.6 45.6 48.4 45.6 &7.4 1.48
§-122-0-0-1 30.31 48.5 30.5 44 .4 | 0.5 44 .5 1.46
S-124-0-0-1 26.48 31.8 26.7 34.5 26.7 40.9 1.53

Average 1.26
Std. Dev. 0.17
Variance 0.03 ‘
AY
\-

Table B.3: Centreline - Symmetric Holes, Predicted Values



Hole patterns square - centreline

SLAB Series f'c f'c bo b’
psi MPa in mm in
"Radial Line Reduction Method
H2 Moe 3620 25.0 48.5 1,232 35.0
H4 Moe 3730 25.7 41,0 1,041 30.0
HS Moe 34620 25.0 33.5 851 25.0
H9 Moe 3490 24.1 S50.7 1,288 36.2
H1O Moe 3620 25.0 S51.9 1,318 37.2
Hit Moe 3780 2.1 52,6 1,336 37.7
H14 Moe 3800 26.2 48.5 1,232 35.0
H1S Moe 3390 23.4 48.%5 :
S-121-0-0~1 A-1 41430 28.5 19.4
-2 A-1 3920 27.0  19.4
S=122-0-0-1a A-1 4070 28.1 16.4
-2a A-1 3770 26.0 16.4
S~123-0-0~1 A—-1 4060 Z28.0 13.4
-2 A~-1 4420 J0.5 13.4
S-121-1-0.9- A-1 4090 28.2 21.2 338 14.4
=2-1.8- A-1 4260 29.4 21.7 31 15.0
=3~2.7- A-1 4910 33.92 21.9 596 15.1
-4-3.46- A-1 4910 33.9 22.2 Sé64 15,3
=-5-4.5- A-1 4S540 31.3 22.3 S66  1S5.4
~6=-5.4- A-1 4220 29.1 22.5 S72 15.5
S-121-0~0-1 B 4550 Z1.4 19.4 49Z 14,0
-2 B 4240 29.2 19.4 493 14,0
S-122-0-0~1a B 4380 30.2 146.4 417 12.0
S-123-0~0~1 B 4240 29.2 13.4 40 10.0
S-121-0-0-1 A=2 4160 28.7 19.4 493 14.0
$=-122-0-0-1a @A-2 3770 26.0 16.4 417 12.0
§~123-0-0~1 A-2 4230 29.3 13.4 J40 0 10,0
S-121-1-0.9- A-2 3740 25.8 21.2 938 14.46
-2-1.8- A-2 3740 25.8 21.7 SS1 15.0
=3-2.7~ A-2 4250 29.7 21.9 556 15,1
=3-2.7- A-2 4310 29.7 21.9 556 15.1
=3-2.7- A-2 3910 27.0 21.9 5356 1S5.1
~4-3.6~ A=2 4250 29.5 22.2 S64 15,3
=5-4.5- A-2 4980 34.3 S66  15.4
=6~5.4- A-2 4980 34.3 S72 15.5

= nonsymmetrical

b d rho
in mm %
40.0 114 1,15
40.0 114 1.15
40.0 114 1.15
40.0 114 1.1%5
40.0 114 1.15
40.0 114 1.15
4Q.0 114 1.15
40.0 114 1.15
16.0 46 1.15
16.0 46 1.15
16.0 46 1,15
16.0 46 1.15
16.0 46 1.15
16.0 44 1.15
16.0 46 1.15
16.0 46 1.15
16.0 46 1.15
156.0 46 1.15
16.0 46 1.15
16.0 46 1.15
16.0 46 2.53
16.0 46 2.53
1656.0 45 2.53
16.0 45 2.53
165.0 39 1.34
16.0 39 1.34
16.0 37 1.34
16.0 3% 1.34
16.0 39 1.34
16.0Q 39 1.34
16.0 39 1.34
16.0 39 1.34
16.0 39 1.34
16.0 39 1.34
16.0 9 1.34

ksi

50.0
S2.0
31.0
S0.0
50.0
S0.0Q
40.0
45.0
S2.0
S2.0
S52.0
S2.0
52.0
S52.0
S2.0
S2.0
52.0
S52.0
S52.0
S2.0

33.3

S4.3
91.9
S4.1
36.4
S52.0
S2.0
S2.0
S2.0
S2.0
S2.0
S2.0
52.0
S2.0
S2.0

fy

MPa

345
359
I52
345
345

.345

276
310
359
359
359
359
359
359
359
359
359
359
359
359
3467
374
358
373
251
359
359
359
359
359
359
339
359

359

359

mm

1,829
1,829
1,829
1,829
1,829
1.829
1,829
1,829
737
737
737
737
37
737
737
737
737
737

737 -

737
737
737
737
73
737
737
737
37
737
37
737
37
737
737
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mm

254
254
254
254
254
254
254
254
102
102
102
102
102
102
102
102
102
102
102
102
102

102
102
102
102
102
102
102
102
102
102

. Table B.4: Centreline - Nonsymmetric Holes, Input Data, Radial Line Method
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Hole patterns square - centreline - nonsymmetrical

SLARBR Series f'c f'c bo b’ b d rho fy s c
psi MPa in mm in in mm % ksi MFa mm mm
60 Degree Cone Reduction Method
H2 Moe 3620 25.0 S51.0 1,295 35.0 40.0 114 1.15 S0.0 345 1,829 254
Ha Moe 3730 25.7 46.0 1,168 30.0 40,0 114 1.1S S2.0 359 1,829 254
HS Moe 3620 25.0 41,0 1,041 25.0 40.0 114 1.15 S1.0 352 1,829 254
H? Moe 3490 24.1 S51.0 1,295 37.2 40.0 114 1.15 S0.0 345 1,829 254
H10 Moe 3620 23.0 52.9 1,344 39.5 40.0 114 1.15 S0.0 345 1,829 254
H11 Moe 3780 26.1 55.2 1,402 40.0 40.0 114 1.15 S0.0 345 1,829 254
H14 Moe 3800 26.2 51.0 1,295 35.0 40.0 114 1.1S5 40.0 276 1,829 254
H1S Moe 3390 23.4 51.0 1,295 35.0 40.0 114 1.1S5 45.0 310 1,829 254
S-121-0-0~1 A—1 4140 28.5 20.4 518 14.0 156.0 46 1.15 52.0 359 737 102
-2 A-1 3920 27.0 20.4 S18  14.0 16,0 44 1.15 S2.¢ 359 737 102
S-122-0-0-1a A-1 4070 28.1 18.4 467 12.0 16.0 46 1.15 52.0 359 737 102
-2a A-1 3770 26.0 18.4 467 12.0 16,0 46 1.1S S2.0 359 737 102
§-123-0-0~1 A-1 40460 28.0 16.4 417 10.0 16.0 46 1.15 52,0 359 73 102
-2 A-1 4420 30.5 16.4 417 10.0 146.0 46 1.15 S2.¢0 359 73 102
S-121-1-0.9- A-1 4090 28.2 21.2 338 15.0 16.0 46 1.15 5S2.0 359 737 102
=2-1.8- A~1 4260 29.4 22,2 S64 16.0 16.0 445 1.15 S52.0 359 73 102
~-3~2.7- A-{ 4910 33.9 23.2 S89 16.0 16.0 46 1.15 S2.0 359 737 102
-4-3.6~ A-1 4910 33.9 23.2 S89 16.0 16,0 46 1.15 S2.0 359 737 102
=-5-4.5- A-1 4530 31.3 23.2 S89 16.0 146.0 46 1.15 52,0 359 737 102
-6-~5.4- A-1 4220 29.1 23.2 389 16.0 16.0 46 1.195 52, 359 737 102
§-121-0-0-1 B 4550 31.4 20.4 218 14.0 16.0 46 2.53 S3.3 3867 737 102
-2 B 4240 29.2 20.4 18 14.0  16.0 46 2.53 54.3 374 73 102
§-122-0-0-1a B 4380 30.2 18B.4 467 12,0 16.0 46 2.53 S1.9 358 737 102
§-123-0-0-1 B 4240 29.2 16.4 417 10.0 16.0 46 2.53 54.1 373 737 102
S-121-0-0-1 A-2 4160 28.7 20.4 S18 14,0 16,0 39 1.34 36.4 251 737 102
S-122-0-0~-1a A-2 3770 26.0 18.4 467 12.0 16.0 392 1.34 52, 359 737 102
§-123-0-0~—1% A-2 4250 29.3 16.4 417 10.0 16,0 37 1.34 S2.0 359 73 102
S-121-1-0.9- A-2 3740 25.8 21.2 238 15.0 16.0 39 1.34 52.0 359 737 102
~-2-1.8- A-2 3740 25.8 22 S64  15.0 16.D0 39 1.34 52,0 359 737 102
=-3-2.7- A~-2 4250 29.3 23.2 S89 16.0  16.0 39 1.34 S52.0 359 737 102
-3-2.7- A-2 4310 29.7 23.2 S89 16.0 16.0 39 1.34 52,0 359 737 102
=3-2.7- A-2 3910 27.0 23.2 S89 16.0 16.0 39 1.34 S52.0 359 737 102
=4~-3.6—- A-2 4250 29.3 23.2 S89 16.0 16.0 39 1.34 52.0 359 737 102
-5-4.5~ A~2 4980 34.3 23.2 989 16.0 16.0 59 1.34 S2. 359 73 102
—-6~-3.4~ A-2 4980 34.3 23.2 38? 16.0 16.0 39 1.24 S2.0 - 359 737 102

Table B.7: Centreline - Nonsymmetric Holes, Input Data, 60 Degree Method
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Table B.10: Centreline - Nons&mmetric Holes, Input Data, 90 Degree Method

123

mm

N

h

[
(Gt
b

254
254
254
254
254
254
102
102
102
102
102
102
102
1o
102
102
102
102
102
102
102
102
102
102
102
102
102
102
102
102
102
102
102



124

ktl Ekt

- nonsymmetrical
m/m

Mbal

Mb
EN m/m kN

centreline

Lb

sauatre
byl

' Degree Co

£

SLAHK

7

Q

FI O Do S 0w G e S0 FY G i
0 e 00 D0 iy 1 i
M T T T r o s .
L 000NN HNE0-0-58-0ENnnEE-o i -0

; Ty 0 ot
et O L0UT I sF ) S D
)

00 S0 -0 3 N U0 -0 A0 N0

8
26
36
42
Sz
. 20
.28

7

7

4

8

o

oy
. 2

4

B W) U3 8 000 Iosk S0
. e s o r v 8 € T 8 x» w s a2 x
— PR IS I ol ol o BT S - o B g RN U
o i wei ek R IR o B o T IEE T R I
NS T S O 0D DD D e D HEHTHEN NN 0n S
s s 2 = x & » x x + ¢ = x = € ¥ ¥ s « s x 3 ¥ 3 = 3 « & a2 a = »
GONSGNHOIMNNRIOLOUEdLILHSTI0LLG200N000
o o S <f SF of BT S e e
I PR G 0 O
) Dr Th T Ch O %o T i L i Cr o i e O3 & s
. s x s a2 =z 3 2 oz » x 3 ¢« 2z = x P
ip} HWNHNNEN NN WL n W

B R e T e T R T B e B B R e R B B e R I B B B
N N e N N N N s N N N N NN E N EN N N -
s ¢ = 2 & s £ 3 x 3 e x & € ®x 3T = 3 £ = =& € 3 * u
E S S N U N VU N NN S S S N S S SN N A U L S S
i
- — 4 -
! P !
b b -
i H !
) o ) o
, i 1 P !
— o : i £ F
% i e e b
e s ) -3 i — —i - 1
Cf <8 B O vA vt v -3 | i i 1 i !
T TXEIXTIT XXM K 1] in 24 ] &

Centreline - Nonsymmetric Holes, Constants, 90 Degree Method

-
.

Table B.11



x"E ~ centreline
Fvfs

=

sgw

nonsymmetrical

125

Fu/Fp

Fu

Fp

Fvt

]
-

Fvfi

SLAR

kN

kN

kN

kN

kN

kN

) Degree Co

S

1.15
1.¢

~
a

25,5

4q

e

.52
47

286

H2

)

289.6

~
L
=
wZ

282.9

282.

H4

k

). F8

C

249,15

YT
254.9

o
d

{

i.04

7

e

.

HZ

- oope .
N N N %
e B o SRS Xy ) {0 1 D0 e b}
LI T .
han o B o B S B0 ¥ RS T [ S i
: N o g s

< LA L e R o4 S RNy B
. s N

»
-
“
-
"
=
"
-
Y

4.7
1

&H.7

<
I B I N N o
< W) <F YD P s [N 4 N TN

]
&!
—
7

-

o

3
[=—
b
=
B,
A
&
=

Pl

4
T332,

FOeOMNme ~ONEMomMm e
ol R I B N BT N I PN A
> PSR - - 3

L
O
(=
wt
e
4
‘il >
it
2
o

O DO = ] D v U 0 S et et et ot O onp
I O e D 0 ) e O SF AF R O [
PO OIS NN DEN DD
R 04
0 ¢ Ym0
040 st g
D O
i

W
o >
r s
Nile]
4 F
i
i
i
o~
i)
i
d i
g £
P ] 5 o~ L] i

T4
15

™
11
Hi4

m
8
3
fed
-
Y —
o]
o)
o~
S~

s

juy
.

&

FAR

-

0w

£ et B R
el o <f

1} - W_

Raa SO O B 2
13 S e O

=E oL
Qi JRRRLN

i
i i e
ol
-
[ el e
T
oo
o0 2T
L L
[
H H
SR I
0f (4 04
-1 i i
"
[
i inin

o

]

5,

s
ot

17 b

~iF

i}
"

G

=i

<

0

i
~{

Ty

-l

s

o

Centreline - Nonsymmetric Holes, Predicted Values, 90 Degree Method

Table B.12



126

Hole Pattern: Square - Corner -~ Symmetrical

SLAB Series f'c bo b’ b d rho fy 5 c

MFa in mm in in mm % ksi MFa mm mm
Radial Line Reduction Method

H12 Moe 27.8 26.0 660 20.0 40.0 114 1.15 47.5 328 1,829 254
H13 Moe 24.6 16.0 406 12.5 40.0 114 1.15 47.5 . 328 1,829 254
S~222~0-0~-1 B 3I0.7 146.4 417 12.0 16.0 46 2.53 b66.3 457 737 102
S§-224-0-0-1 B 33.8 10.4 264 8.0 16.0 46 2.53 65.0 448 737 102
S~242-9=-0—1 B 32.8 14.4 Fbb 10.5 16.0 46 2.53 &7.1 463 73 102
-2 B 29.6 14.4 366 10.5 16.0 46 2.33 67.1 4463 737 102
S-244-9-0~1 R 24.8 6.4 163 S.0 16.0 46 2.53 52.3 361 737 102
-2 K 33.8 b.4 143 3.0 16.0 46 2.53 44.t 442 737 102
A-1 28.3 10.4 264 8.0 16.0 46 1.15 S52.0 359 737 102
A-1 28.1 14.4 366 10.5 16.0 46 1.15 52.0 359 737 102
A-1 29.9 14.4 366 10.5 16,0 446 1.15 52.0 359 737 102
A-1 26.5 14.4 366 10.5 16,0 46 1.15 S52.0 389 73 102
S~244-9-0Q-1 A-1 31.0 6.4 143 5.0 16,0 46 1.15 52,0 3S9 737 102
-11- A-1 28.9, 5.4 163 5.0 146.0 45 1.15 S2.0 359 73 102
-10~ A-1 28.9 &.4 163 5.0 16.0 45 1.15 S2.0 359 737 102
23— A-1 29.9 b.4 163 5.0 16,0 46 1.15 S52.0 359 737 102
-24- A-1 29.3 b.4 163 5.0 16.0 46 1.15 52,0 J&9 737 102
§-224-0-0-1 A-2 28.2 10.4 264 8.0 16.0 39 1.34 S2.0 3359 737 102
§~-242-9~0-1 A-2 28.2 14.4 366 10.5 16.0 39 1.34 S2.0 359 737 102
S-244-9-0-1 A-2 34.8 &.4 163 5.0 16.0 39 1.34 S2.0 35 737 102
-2 A-2 32,2 6.4 163 5.0 16,0 39 1.34 S2.0 359 737 102
-3 A-2 30,1 6.4 143 5.0 146.0 39 1.34 52.0 339 737 102
-4 /-2 29.2 6.4 163 5.0 16.0 39 1.34 S2.0 359 737 102
-10-0-1 A-2 29.2 b.4 163 S.0 146.0 392 1.34 S2.0 359 737 102
-11-0-1 A-2 29.7 6.4 163 5.0 16.0 37 1.34 S52.0 359 737 102

Table B.13: Corner - Symmetric Holes, Input Data, Radial Line Method
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Table B.14: Corner - Symmetric Holes, Constants, Radial Line Method



128

4
1.45
&7

Lo L]

if
X

)
3
1
*

s

e Mt

f

=
A
<

Fu/Fp

)

Fu
kN.
U R

25

-
)

Fp
kN

D4

c

Fvs
kN
.t

g

-
3

symmetrical
Fd

Fvf
EN

-t

H

S ¢

Ll ]
o
4

co
Fvf
kN
142,

258.0

ol

=X

~
2
7

L0

e
Fv £l
kN

<

226.4

e

Ssqu

A

-

-1

e e

L
'

B (e yem

H12

£
b
i
g
<+

o g

<
<3 =

o)
o
e i
.

2

"

L]

<

5-244--

S

o~
-
-

)

[y -
[yt Rt
Lad

o

£oy e
b

Radial Line

>,

i

]

s
Iy
£

Method

ine

Holes, Predicted Values, Radial Li

etric

Corner - Symm

Table B.15



129

Hole Fattern: Square - Corner - Symmetrical

SLAR Series f'c bo b’ b d rho fy s c

MFa in mm n in mm Y ksi MPa mm mm
60 Degree Cone Reduction Method

H12 Moe 27.8 33.3 846 30.0 40.0 114 1.15 47.5 328 1,829 254
H13 Moe 24.6 21.0 £33 17.S 40.0 114 1.15 47.5 328 1,829 254
S-222-0-0-1 H 0.7 17.9 455 14.0 146.0 46 2.93 66.3 457 737 102
S-224-0~-0-1 B 33.8 13.4 340 12.0 16.0 46 2.53 65.0Q 448 737 102
S5-242-9-0-1 E 32.8 15.4 391 11.5 16.0 46 2.53 &7.1 /463 737 102
to=2 B 29.6 13.4 391 11.5 16.0 46 2.53 b67.1 463 737 102
§-244-9-0-1 B 24.8 8.4 213 7.0 16.0 46 2.53 52.3 361 737 102
-2 B 33.8 8.4 213 7.0 146.0 45 2.53 64.1 442 737 102
S~224~-0-0-1 A-1 28.3 13.4 340 12.0 16.0 46'1.15 52.0 359 737 102
S-242~9-0-1 A-1 28.1 15.4 391 11.5 16.0 46 1,15 S2.0 359 737 102
-17~- A-1 29.9 15.4 391 11.5 16.0 45 1,15 S2.0 359 73 102
-18-~ A-1 26.5 15.4 371 11.5  16.0 46 1.15 52,0 359 737 102
§~244-9-0-1 A-1 31.0 8.4 213 7.0 16.0 44 1,15 52,0 359 737 102
~11- A-1 28.9 8.4 213 7.0 16.0 46 1.15 S2.0 359 737 102
-1 0= A-1 28.9 8.4 213 7.0 16.0 446 1.15 SZ2. 359 737 102
-23- A-1 29.9 8.4 213 7.0 16.0 46 1.135 S2.0 359 737 102
-24~ A-1 29.3 8.4 213 7.0 16.0 46 1.15 S2.0 359 737 102
S-224-~-0-0-1 A~-2 28.2 13.4 340 12.0 16.0 39 1.34 S2.0 359 737 102
S§-242-9-0-1 A-2 28.2 15.4 391 11.5 16.0 39 1.34 52.0 59 737 102
S-244~-9-0-1 A-2 34.8 8.4 213 7.0 16.0 39 1.34 52.0 359 737 102
-2 A-2 32.2 9.4 213 7.0 16.0 39 1.334 S2.0 339 737 102
-3 A-2  30.1 8.4 213 7.0 16.0 39 1.34 S2.0 359 73 102
-4 A-2  29.2 8.4 213 7.0 16.0 39 1.34 S2.0 339 737 102
-10~-0-1 A-2 29.2 8.4 213 7.0 16.0 39 1.34 S52.0 359 737 102
~11~-0-1 A-2 29.7 8.4 213 7.0 16.0 39 1.34 S2.0 359 737 102

Tuble B.16: Corner - Symmetric Holes, Input Data, 60 Degree Method
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; sguare — corner - svmmetrical
Fv+l  Pvf2 Fvf Fvs Fp Fu Fu/Fp

)]
i
D

kN kN Lo kN kN kN 131

60 Degree Cone

H12 275, 4¢€ H87.0 0 275.5 218.4  218.4  2469.0 1.23
H1Z 226 .47 192.4 199.4 129.5 129.5  201.0 1.55
S-222~-0=-0-1 5. L4 31.0 81.0 HO L6 &0 L& 8.3 1.22
S-R2R4 00— NI Ta LT Té .5 ) 47 b TOL& .48
B5-242wF 01 T LRE TLL0 71,0 =307 &65.8 1.22
-2 F6.41 64,2 &4.2 1.2 65,5 1.28
S-248 -9 TELTT 22,8 32.8 2506 2S48 & LA 2.
-2 b .59 44 .4 44,5 29.5 29.9 599 .8 2.
K R T O Tt P | 47 .7 4.l 47 .8 25.8 35.8 44 .9 i.
R S I d5H .98 &H0 L% 47 .0 A4 .0 i.
- - ag. il &4 .9 4.1 i.
-5 B 4%5.82 57.5 -3 L.
R T T R S T 30, 80 = .8 ] i.
a0, ; i.
4, .7 2
44, .1 1.
40, a8 bd 5 i,
& L) 37 . I 44,5 1.4
R e e T e T | = 2 & 1.12
He-24 4 7 3 1 :
-2 i = s
- &4 & =
-4 1 I 2
—L - i RASIN | 1
L= o 2 A0 1
Averags L.
b, » 0,40
Variamos LI T N

Table B.18: Corner - Symmetric Holes, Predicted Values, 60 Degree Method



SLAB

F0 Degree Cone

H12

H13
§~222-0-0~1
S-224-0~0-1
5~242-9-0-1

§-244-9-0-1
-2
§-224-0-0-1
§~242-9-0~1
-7~
~-18-
S5-244-9-0~1
-10-
-2
-4
§-224-0-0-1
5-242-9-0-1
S~-244~9-0-1

)

(R

-4
-10-0-1
~-11-0-1

Table B.19: Corner - Symmetric Holes, Input Data, 90 Degree Method

Moe
Moe

! @mmmom

—

L AU
LIRSS IV SRS IR IV S R e e

DPDPDPDDD ? DPDDPY»IPDPDPD

Hole Fattern:
Series

f'c

MPa

27.8
24.6
30.7
33.8
32.8
29.6
24.8

bo

in mm

Reduction Method

40,0 1,016
40.0 1,016
19.6 498
16.0 404
19.6 498
19.6 498
16,0 406
16.0 4046
16.0 4046
19.6 498
19.46 498
19.646 498
16.0 406
16.0 406
16,0 406
16.0 406
16.0 406
16.0 406
19.6 498
16.0 406
16.0 406
16,0 406
16.0 406
16.0 406
16.0 406

Square ~ Corner

b

in

30.0
17.5
14.0
12.0
11.5
11.5
7.0
7.0
12.0
11.5
11.5
11,5
7.0
7.0
7.0
7.0
7.0
12.0
11.5
7.0
7.0
7.0
7.0
7.0
7.0

~ Symmetrical

b

in

40.0
40.0
16.0
16.0
16,0
16.0
16.0
16.0
165.0
16.0
15.0
16.0
16.0
15,0
16.0
16.0
16.0
14.0
16.0
16.0
16.0
165.0
16.0
16.0

T16.0

d

mm

39

rho

%

GGl s rs e s e e e = e (AT LA LN (T~

UG UUARAWHWWWRWWOW

.

.

.

P s ks ke g s b e b b b B R B R) D) 1) ke e

1.34
1.34
1.34
1.34
1.34
1.34

ked

47.5
47.5
&6.3
65.0
67 .1
&7.1
S2.3
64,1
S2.0
2.0
52.0
S2.0
S52.0
52.0
S52.0
52.0
52.0
S2.0
2.0
S52.0
52.0
32.0
S52.0
S2.0

352.0

fy

. MPa

328
32

457
448
4583
463
361
442
359
359
359
359
359
35

359

e
p)

359
359
359
359
359
359
359
359
359

mm

1,829

1,829
737
737
737
737
737
737
737
737
737
737
737
737
737
737
737
737
737
737
73
737
737
737
737

132

mm

254
254
102
102
102
102
102
102
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sQuare — corner - symmetrical
SL.AH ‘ Fvfl Fvf2 Fvf Fvs Fp Fu Fu/Fp

kN kN kN kN kN kN
20 Degree Cone

H12 273.48 EBY.0 0 275,55 262.4 262

H13 226.47 1992.4 199.4 24&5.46 199

R )
)
et
[
ot

S-228-0-0-1 P 6 81.0 §1.0 &&.4 b&. 80.3 21
S-224-0-0-1 ?7.71 76.5 TELT 5965.7 5607 AR i.24
F---1 P25 1.0 Fl.0 &£8.6 &68.46 &5.8 D.9&
-2 Y6.41 &H4.2 ST 65.2 &4.2 65.5 1.02
S-E244-9-0-1 T7&5.77 : a5.7 nZ.a 965 1.72
-2 26.67 35.9 44,46 57.8 1.54
-1 4776 2.7 4207 44 % .05
i 4H.7h 2.2 47 . 43.5 1.03
g.11 5.8 ] .95
45,82 ST =] .09
: G 4407 s 1. 00
45, 4.2 1.
40, 45 % i.
4, 455 1.08
4. 2.5 1,158
1 57 . 37L& 1.1
i " 4510 L.
1 IR 41.7 0.78
-2 .84 L3 1.7&
-5 b1 2B5.8 1.83
-4 -5 = 1.48
=10~ « 3 =T .41
~11i-0-1 &7 A2B8.& 1.42
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Table B.21: Corner - Symmetric Holes, Predicted Values, 90 Degree Method |



SLAB

' Radial Line

S-221-0-0~1
S-241-9-0-1
15~
_16_
§-242-9-0-1a
_19_
~-20-
S-243~9-0-1
—-2)-
_22_
§-221-0-0-1
§-222-0-0-1a
S§-233-0-0-1
§-241-9-0-1
§-242-9~0-1a
§~243-9-0-1
8~221-0-0~1

-2
§-241-9-0-1
§-242-9-0-1a
§-243-9-0-1

Table B.22: Corner - Nonsymmetric Holes, Input Data, Radial Line Method

Hole Fattern: Square -
Series f'c bo
MFa in mm
Reduction Method
A-1 2B.2 19.4 493
A~-1 27.9 18.4 467
A-1 27.9 18.4 467
A-1 27.9 18.4 457
A-1 31.1 14.4 Jbb
A-1 26.5 14.4 366
A-1 28.3 14,4 366
A-1 2B8.3 10.4 264
A-1 27.8 10.4 264
A=-1 27.8 10.4 " 2464
3 34.6 19.4 493
=} 34.6 1&6.4 417
B 30.6 13.4 340
B 29.8 18.4 467
B 32.8 14.4 366
)] 24.8 10.4 264
A-2 31.5 19.4 493
A-2 27.8 19.4 493
A-2 28.2 18.4 467
A-2 27.2 14.4 3&6
A-2 27.2 10.4 264

Corner - Nonsymmaetrical

b*

in

14.0

13.2

13.2
13.2
10.5
10.5
10.5

7.8

7.8

7.8
14.0
12.0
10.0
13.2
10.S

7.8
14.0
14,0
13.2
10.5

7.8

b

in

16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0

mm

rho

Z

1.15
1.15
1.1S
1.15
1.15
1.15
1.1S
1.18
1.15
1.15
2.53
2.53
2,853
2.53

2,53

2.53
1.34
1.34
1.34
1.34
1.34

ksi

52.0
S2.0
52.0
S2.0
S2.0
S2.0
S2.0
52.0
52.0
52.0
6b.4
67.2
&65.8
&7 .1
44.3
&3.2
S2.

S52.0
52.0
52.0
52.0

MPa

359
359
359

359

357

359
359
359
359
359
asg
463
454
463
443
436
359
359
359
359
359

mm

737
737
737
737
737
737
737
737
737
737
737
737
737
737
737
737
737
737
737
737
737

102
102
102
102
102
102
102
102
102
102
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102
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102
102
102
102
102
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sQuare - corner - nonsymmetrical
SLAR Fvfl Pyl Fv+ Fvs Fp Fu Fu/Fp

kN kN 2 b . 3
kN N kN kN 137

Radial Line

S-221-0-0~-1 A9.88  74.5  49.9  S1.7  49.9 1.15
§-241~F=0—1 4g8.90  69.% 48,9 48.8  48.8 0.99
-1 5 48.90  &9.%  48.%  48.8  43.8 0.99

& 48.90  &9.% 48,9  48.8  48.8 0.98
A7.41 61.6  A7.4  ADLE 40.3 1,23

-] A4,21 S2.5 44,2 E7.2 37.% 1.27

Yot 4557 56,0 45,6  IB.S IB.5 1.25

SR T G (2 a0.E0 0 Al.& 4D.S 27.8 27.8 1.65
—31- A, 4T AD.T 40.4  R27.5 27.5 1.7

R 40, AT 4D.Y 40,4 R7.S 0 R7.5 3.87

5 . . opg 51.4 9.4 69.8 69.8 1,78
5- & 10D.78  7B.3 0 78.3 0 59.0 ) 1.44
- 604 ST.T : 1.41
5 96 . A 1,14
5-RAR-G-0-la  96.32 5% .0 : 1.44
5 37. T 31 1.78

5 57 . 8.2 =68 4%.7  0.75

=38 Z9.% 43.%  1.24

eIl S R R eI =50, 5 ot 47.6  1.23
G e e 8.7 5 =8.7 0 L.1é
B R A T i ] 28.8 4 =E.7 0 i.61

o [ 4 T
FAVErageE Load
LI TR o gim e ~ Fg Y]
Variance . iig

Table B.24: Corner - Nonsymmetric Holes, Predicted Values, Radial Line Method



SLAB

60 Degree Cone

§~221-0~-0~1
§-241-9-0-1
-15-
-16—-
S~242-9-0-1a
—19~
~20-
§~243-9-0-1
-1~
-22~
S-221-0-0-1
§-222-0-0-1a
S~233-0-0-1
S$~241-9-0-1
S-242~-9-0-1a
§-243-9-0-1
§-221~-0~0-1
-2
S$-241-9-0-1
S-242-9~0-1a
§-243-9-0~1

Hole Pattern:
Series

DDDD?DDDD
e et e b e e e

D

mMoomomm |

A-2
A-2
A-2
A-2

A-2

f'c

MPa

in

20,2
18.9
18.9
18.9
15.4
15.4
15.4
11.9
11.9
11.9
20,2
17.9
15.6
18.9
15.4
11.9
20.2
20.2
18.9
15.4
11.9

Square -

mm

Reduction Method

S13
480
480
480
391
391
391
302
302
302
S13
455
396
480
391
302
S13
513
480
391
302

Corner - Nansymmetrical

b

in

15.0
13.8
13.8
15.8
11.5
11.5
11.5

?.3

7.3

9.3
15.0
14.0
13.0
13.8
11.5

b d rho fy

in mm 4 ksi = MPa
16.0 46 1.15 52,0 359
16.0 446 1.1S5 S2.0 359
16.0 46 1.15 52,0 359
16.0 46 1,15 S2.0 359

16.0 46 1.15 52.0 359
16.0 46 1.15 52.0 359
16.0 46 1.15 S2.0 359
16.0 46 1.15 52.0 359
16.0 46 1.15 52,0 359
16.0 46 1.15 52,0 359
16.0 44 2.53 bb6.4 458
16.0 46 2.53 67.2 463
16.0 46 2.53 45.8 454
16.0 46 2.53 67.1 463
16.0 46 2.9F 64.3 4473
16.0 46 2.53 &3.2 436
16.0 45 1.3 S2.0 359
16.0 39 1.34 S52.0 359
16.0 39 1.34 SsS2.0 359

16.0 39 1.34 S2.0 359
16.0 39 1.34 sz, 35

nm

737
737
737
737
737
737
737
737
737
737
737
737
737
737
737
737
737
737
737
737
737

138

mm

102
102
102
102
102
102
102
102

102 -

102
102
102
102
102
102
102

Table B.25: Corner - Nonsymmetric Holes, Input Data, 60 Degree Method
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Hole FPattern: Square
SLAR Series f'c bo

MPa in mm

90 Degree Cone Reduction Method

§-221-0-0-1 A~1 28.2 20.6 S23
S§~241-9-0~1 A-1  27.9 20.6 S23
=15~ A~1  27.7 20.6 S23

~16- A-1 27.9 20.6 S23
S-242-9-0-1a A-1  31.1 19.6 498
-19- A-1  26.5 19.6 498

=20~ A~-1 28.3 19.6 498
S~243-9-0-1 A-1 28.3 17.2 437
=21~ A-1 27.8 17.2 437

-22- A-1 27.8 17.2 437
S5-221-0-0-1 B J4.6 20.6 523
2 B 3.6 19.6 498

- S=233-0-0-1 B 30.6 17.2 437
S-241-9-0-1¢ E 27.8 20.46 S23
S-242-9-0-1a B 32, 19.6 498
§-243-9-0-1 B 24.8 17.2 437
S-221-0-0-1 A-2 31.5 20.6 S23
-2 A-2 27.8 20.6 S23
S-241-9-0~-1 A-2 28.2 20.6 523
§-242-9~-0~1a A-2 27.2 19.6 498
S-243-9-0~1 A-2 27.2 17.2 437

Table B.28: Corner - Nonsymmetric Holes, Input Data, 90 Degree Method

— Corner

b

in

16.0
16.0
16.0
16.0
16.0
146.0
'16.0
16,0
165.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16,0
16.0
16.0

16.0 -

16.0

- Nonsymmetrical

b

in

16.0
16.0
16.0
16.0
16.0
16.0
16.0
16,0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0

d

mm

39
39
9

rho

%

1.18

1.15
1.1S
1.15
1.15
1.19
1.15
1,15
1.15
2.53
2.33
2.53

2.33
2,33
2.93
1.34
1.34
1.34
1.34
1.34

ksi

S52.0
S52.0
S2.0
S2.0
S2.0

2.0

S2.0
S52.0
S2.0
2.0
&6.4
&7.2
65.8
&7.1
64.3
63.2
52.0
S2.0
S52.0
52.0
S2.0

fy

MPa

329
3359
359
359
359
359
359

359

359

359
458
453
454
463
443
4386
38

359
359
359

359

mm

737
737
737
737
737
737
737
737
737
737
737
737
737
737
737
737
737
737
737
737
737

mm

102
102
102
102
102
102
102
102
102
102
102
102
102
102
102
102
102

102
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Code Egquation
Hole patterns sguare - centreline - symmetrical
SLAR Serie +f'c bo d Fp Fu Fu/Fp

MFa in mm mm kN kN 144
Radial Line Reductiorn Method

HE Moe 23.7 41.0 1,041 114 230.9 325.0

Hé Moe 28.4 26.0 660 114 160.5 2446.0
5-122-0-0-1 A-1 28.5 16.4 417 44 40.% S59.6
2 A-1 27.0 146.4 417 44 E92.8 53.8
5=124-0-0~1 A-1 28.0 1G.4 264 46 25.7 40,0
2 A-1 Z0.35 10.4 264 44 26.8 43.8

=
[as

.
O3
446
35
56

71

e

L T T R S S SO S Y
.

5122001 B 22.8 16.4 417 46 41.8 7503 .80
81324001 E J0.2 10.4 264 46 2¢.7 &7 .4 O3
S5-122-0-0-1 4-2 29.8 1&.4 417 5 35.5 44,35 25
H=124-0-0-1 a-2 29.3 10.4 264 39 22.3 40 .7 L83
Averags 1.564
Variance DL

&0 Degres LCone - Reduction Method
HE Moe 23.7 46,0 1,16¢ 114 259.1 Iz5.0 1.25
Hé Mos 28.4 0 I6.0 P14 114 Z222.2 . 246.0 1.11
5-122-0-0-1 A-1 2B.% 18.4 467 4é 45.% S7.6 1.30
-2 A-1 27.0 18.4 447 4é 44,7 53.8 1.20
S~124-0-0-1 A-1 2B.0 14.4 S66 44 256 40.0 1.12
-2 A-1 Z0.% 14.4 RIS 44 372 45.8 1.2%
S-122=0=0-1 E 2.8 18.4 467 44 46.7 75,3 1.60
S—-124-0w0=1 j2 0.2 14.4 Fbb 4é 7.0 &7 .4 1.82
S—-122-0-0~-1 4-2 29.8 18.4 467 ae 37.8 44.5 1.12
5-124-0-0~1 A-2 29.7% 14.4 Zeb 37 0.3 a0.9 .32
fAverags 1,31
Variance .05

9% Degree Cone Reduction Method

HE Moe 23, 46.0 1,168 114 287,11 325.0 1.25
Hé& Mos 2B.4 6.0 14 114 222.2 2446.0 1.11
5-122-0-0~-1 A-1 2B.% 18.4 467 446 45,7 =7.6 1.30
-2 A-1 27.0 18.4 467 44 44,7 3=.8 1.20
5-124-0-0—-1 /-1 28.0 14.4 Zé66 44 FS.6 40,0 1,12
-2 A-1  30. 14.4 Zhb6 46 7.2 45.8 205

[Sr
.

- G
S5-122-0-0~1 B 27.8 18.4 467 44 4.9 72.3 &0
5~124-0-0-1 B T.2 0 14.4 Y 4é E7.0 &7 .4 1.8%
S~122-0-0-1 A-Z 9.8 18.4 447 | I9 9.8 44.3 1.12
S-124-0-0-1 A-2 9.3 14.4 Zbb =2 EOLT 40.9 1,32
Average 1,21
Variance 0.0F

Table B.31: Centreline - Symmetric Holes, Input Data



Code Equation
Hole patterns square — centreline — nonsymmetirical
SLAR Series f'cC f'c bo d Fp Fu Fu/Fp
FSI MFa in mm mm kN kN 145

Radial Line Reduction Method

HZ ° Moe J6Z20 25.0 48.5 1,232 114 280.6 3I327.2 1.17
Ha4 Moe 3730 23.7 41.0 1,041 114 240.8 289.6 . 20
HS Moe I620 25.0 3IZ.3 8391 114 193.8 24°2.9 .29
H? “ Moe 3490 24.1 3Z0.7 1,288 114 Z88.1 347, 1.21

1
H10 Moe 3620  25.0 S1.9 1,318 114 3Z00.3 331.4
Hi1 I780 26.1 52.6 1,334 114 I11.G  3356.7
1
1

[ R S =
.
-
5

Moe :
Hi4 Moe J300 26.2 48.ZS 23R 114 287.3 2S2.6 ). 88
H1E Moe ZI3E90 RF.4 48.5 1,232 114 271.6  344.7 1.2
S-121-0=0—1 A1 4140 28.5 19.4 497 46 48.4 &4.5 1.0
- A1 ZRE0 7.0 19.4 493 44 47 .1 Hh.9? 1.
G-l R2R2-0=-0=1la  A-1 4070 28.1 16.4 417 446 4. & 41.4 1.
-2a A-1 3770 26.0 146.4 417 45 9.1 S93.4 1
Sl RE-Q=0—1 a1 4060 28.0 13,4 240 44 CACIN ] 44 .3 1
-3 A-1 44320 SA0.5 0 1304 240 44 4.6 31l.6 1
3121 =1-0.9-~  A-1 4070 28.2 21.2 oA 46 S2.6 61 .4 1
—2=-1.8~ A=l 43260 29.4 21.7 I31 4& S3.0 HO LD 1
~A-R 7~ A1 4910 ZR.? 2107 596 45 39.6 &7.8 1
—4-" b~ H-1 49210 I3.e 0 ORR.2 364 45 &0 .4 7.4 1
54 ,5-  Hf-1 43540 I1.3 223 S&HE 0 46 98.35 &5.7 1
—&=5 . 4—-  A-1 4RF0 29.1 22.5 972 46 56.7 &3.6 1
S—-121-0~0~-1 B 4550 31.4 19.4 49% a4 50.8 71.2 1
-2 B 4240 29.2 12.4 497 44 42.0 78.7 1.461
S=-122-0-0-1a B 1380 I0.2 16.4 417 46 42.1 7 .8 1.75
S-123=0-0-1 B 4240 292.2 13.4 Z40 46 25,9 FE.1 2013
5—-121-0-0~1 A2 4160 28.7 17.4 497 3% 41.2 51,2 1.24
5-122-0-0—-1a A-Z 3770 26.0 16.4 417 9 G § .5 1.EE
S—-123~0~0—1 B2 4250 29.% 13.4 40 A 28.7 4= .6 1.52
S—12l-1-0.9- A[-Z E740 25.8 21.2 S8 - I9 42.7 50.7 1.1%9
- -3 T740 25, 21.7 551 37 Z.7 22.5 1.20
- /-2 4250 29.7 21.7 S5é8 9 47 .0 45.7 0.99
- A=-2 4310 29.7  21.79 S56 32 47 .= o8.7 1.24
- 2. A-2 ZF710 2700 21.9 S96 =25 4501 =005 1.1%2
R i Q-2 4250 29,5 22.2 =564 27 47 .6 53.6 1.17
~ G4 H-  [A-E 4980 4.3 22.3 266 39 21.8 98.3 1.1%
-y A-2 4280 4.3 R22.5 572 35 oE2.2 =2.2 1.13
Average 1.26
Variance 0,05

Table B.32: Centreline - Nonsymmetric Holes, Input Data, Radial Line Method



Code Equation
Hole patterns square - centreline - nonsymmetrical
SLAR Series +f'c f'c bo d Fp Fu Fu/Fp
FSI MFa in mm mm kN kN 146"

60 Degree Cone Reduction Method

o PO ~ Moe 3620 25.0 51.0 1,295 114 295.1 329.2 1.12
H4 Moe 3730 23.7 46.0 1,168 114 270.2 289.4 1,07
HS Moe 3620 BE.0 0 41,0 1,041 114 RIT.E R49.5 1.05
HS ‘ Moe 34920 24.1 51.0 1,295 114 289.8 347.4 1.24
H1iQ © Moe F620 23.0  52.79 1,344 114 3I06.1 351.4 1.15
Hil Moe E780 26.1 355.2 1,402 114 3R6. 236.7 1.0%
Hi4 Moe 3800 26.2 51.0 1,295 114 3I02.4 - 252, Q.84
H1S Mog 33920 23.4 351.0 1,295 114 285.6 344.7 1.21
S—121-0-0-1 A—-1 4140 268.5 Zo.4 5183 46 50.9 &4.5 1.27
-2 A-1 F920 27.0 20.4 o518 44 47.6 56.9 1.15
5-122-0~-0~15 A-1 4070 Z8.1 18.4 467 4& 45.6 41.4 0.71
—Za A-1 3770 2600 18.4 457 44 4%.8 SE.4 .28
S-1253-0-0-1 f=1 4060 28.0 156.4 417 48 40,6 a44.9 1.it
-z A-1 4420 .S 16.4 417 46 42.5 Si.6 1.22
5-121-1~0.%~  &A-1 4090 28.2 21.2 SEE 46 52. b1.4 1.17
~2-1.8~ A-1 42560 29.4 22.% S&4 446 56.2 HO L0 1.07
~-3-2.7- A-1 4710 F3.7 23.2 589 46 .1 69.8 .11
—4-3.6~ £H—-1 4910 RIS 582 44 6.1 69 .4 1.10
-3-4.5- A—-1 4540 31.7 23.% 589 44 0.7 &64.7 1.07
~&-3.4— &1 4220 29.1 2F.2 587 46 58.5 bZ .6 1.0%9
S-121~0~0-1 B 48350 3l.4 20.4 518 46 53.4 71.2 1.33
‘ -2 B 4240 29.2 20.4 518 44 31.5 78.7 TLEE
S-122-0-0~1x B 4580 I0.2 18.4 467 4& 47 .3 7E5.8 1.546
S—-123-0—0~-1 B 4240 29.2  16.4 417 446 41.4 7E.1 "1.74
5-121-0-0-1 &2 4160 28.7 Zon.4 3514 9 R 51.2 1.:8
S—-122-0-0-1a A~2 E770 260 8.4 467 39 37.2 4.6 1.17
S5—12E~0-0—1 A-2 4250 275 16.4 417 e 28.2 Z.b 1.24
5-121-1-0.9- f-2 E740 25.8 Zi1.2 33E R 42.7 S0.7 1.17
~2-1.8~ A/-2 2740 25.8 22.2 S64 29 44,7 2.8 1,18
—I-2.7- AR 4250 29.5% 2E.Z2 587 Z9 49.8 4&6.7 .74
—3-2.7— A-2 4310 29, 23.2 387 7 S50.1 38.7 1,17
=3=-2.7- /-2 F20 27.00 3.2 589 R 47.7 S0LE 1,05
-4-T.6—~ A-2Z 4230 2.3 2E.2 8% 3 47.8 55.&6 1.12
~5-4.3- A-Z 4980 2405 2E02 382 a7 53.7 S38.3 1,08
“&—5.4{ A-d 4980 4.3 23.Z 587 R SI.9 55,2 1,10

Average 1,14
Varianoe 0.3

Table B.33: Centreline - Nonsymmetric Holes, Iﬁput Data, 60 Degree Method



Hole patterns square -

SLLAR Series f'c f'c

"FSI MFa

20 Deqgree Cone Reduction
H2 Mog 3620 23.0
H4 Moe 3730 25.7
HS Moe 3620 25.0
H? Moe T4%0 24,1
H1O ' Moe 3620 25.0
Hil Mog E780 2601
Hig Moe 3800 26.2
H1D Moe 3390 23
S§-121~0—-0~-1 -1 4140 28.3
-3 TR 27 .0
S-122-0-0~1x -1 4070 28.1
—2& -1 A770 26,0
5-1238-0=-0~1 -1 4060 28.

i
PPPPDPLDDLDDD
P e T T N

[ralRsaiiss Ny |

)

-2 -1 44320 0.5
S=-121-1-0.% 4090 28.2
-2-1.8- —1 4260 29.4

—-E— T -1 4710 AR
-4=7.56- -1 4710 3.9
T T -1 43540 R
—— . 4- 42320 29.1
S5—-121-0-0-1 4530 S1.4
-2 4240 29.2
S=-1R22-0-0~1a 4380 3.2
Sl 25-0-0-1 4240 29.2
B-121-0-0-1 A-32 4160 28.7
S 22-0-0—1g (/-2 F770 2H.0
B-1275-0—-0~1 A-2 4250 29 .3
5-121~1-0D.%—- &2 ZEZ740 25.8
-2=-1.8- /-2 FZ740 272.8

—F=R T A2 4250 2.3

—F=F .7~ -2 4710 29.7
~E-2.7- A2 E9140 27 .0

-7 h- =3 4230 29.3

—-5—4 .59~ -2 4930 4.3
—6-5.4~ A2 4280 4.3

bo

in
Method

31.0
446 .0
41.0
51,0
54.9
56,0
31.0
1.0
20.4
0.4
18.4
183.4
1&6.4
16,4

~y -~
21.2
=

A

]
al o
e
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e
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e
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582
589
387
=87
587
18
518
467
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3518,

467
417
338
58
587
587
589
=87
a8?
58%

centreline

d

mm

114
114
114
114
114
114
114
114
46
44
45
46

il
£

446
44
45
45
46

2
(=]

44
46
46
45
4&
a7
A7
9
37
R
9

L L i i
)0 -

a9

&

[
W

- nonsymmetrical .

Fp

kN

293.1
270.2
237.2
289.8
317.7
5101
S02.4
285.6
S50.9
49 .4
4%,
4.
40,
42,

o~ WO GO

52,
58.0
6E.1
&E.L1
HO.LT
98.9
S5.4
51.5
47 .5
41 .4
R
37,2
5.2
az2.7
&.1
42.8
=01
47 .7
49.8
SELY
53,9
vErage
ariance

Fu

kN

7E.
-

S1.
473,
47,
0.
2.
44,
58.
S50,
55.
=58.
57.

Table B.34: Centreline - Nonsymmetric Holes, Input Data, 90 Degree Method
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SLAR

Radial Line
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B4 4P 01
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o
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A

~24-
o= P e R o B T
2R SRR g T )
S-244 50— 1
-

~4
~10=0—-1

=1

Table B.35:

Code Equation
Hole Fattern:

Series +'c
MP§
Reduction
Moe 27.8
Moe 24.56

| mmom oo

I
RN B O B S S S R S e S sl

DIZ'I)IDIIT'I‘JZDI)DD

o
I

28.

E20.7

=TT
5.8
=t e

[ LA

29.6
24.8

srer
[ P

2803
28.1
29.%
26.5
1.

28.

SRt e

2% 05

ey
P e

28.2
28.2

4.8
TROY D
wbal. w ain

20.1

e

ey
T w

29.7

bo

in

Method

26.0
16.0
16.4
10.4
14.4
14.4

&.4

14,4

-
L
=

b
bbb bhbbhhbbpsbhpb

oo 000 O

mm

b6
406
417
264
Sbhb
Z&4
163
14673
284
Shé
Ibé&
Tbb
1463
163
1&3E
163
163
264
b
163
163

653
163
1&6%E

Z

1&%

d

mm

114
114
45
44
446

46
46
446
44
46
44
46

b

46

44
39
'_._'l“\

59

i
=5
me
)
o

T6

il
<
f
=
[([]

p .

1]

Fp

kN

158.
91
47
28
=3

oMK Ooo

14.
17

~es
-

23

i
3}

o0

P I

0

ki
WS
u

D IV O = e

-,

RN BN IR T

iQ

m

a
n
m

Fu

kN

269.0
201.0
80.3
70.6
65.8
63,5
S6.3
9.8
44 .9
48.5
46035
49.8
40,9
42 =
46 .73
42.7
44 .5
44.5
40.5
3R2.9
5%.8

3.6
40 .9
9.1
40, G

Square ~ Corner - Symmetrical

Fu/Fp

1.69
2.19
1.89
2.50
1.71
1.79
3.78
I.44
74

[ o S S
k3 i
o G

RN SR % I )

BY BRI R L L R o R
-

3
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Corner - Symmetric Holes, Input Data, Radial Line Method
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Code equation
. Hole Fattern: Square - Corner - Symmetrical
SLAHR Series +'c bo d Fp Fu Fu/Fp

MFa in mm mm kN kN 149

60 Degree Cone Reduction Method
H12 Moe 27.8 3I3Z.3 846 114 203.3 267.0 1.32
H1= Moe 24.6 21.0 IIT 114 120.5  201.0 1.67
S-222=~0=-0—1 E 30,7 17.% 455 44 45.73 80.% 1.73
S5-224-0-0-1 B I3.8 13.4 240 44 6.4 70.6 1.94
S-242-9-0-1 E T2, 15.4 291 46 41.2 &65.8 1.60
-2 B 29.6 15.4 391 44 J9.1 55.5 1.67
S-244~Q—0—1] E 24.8 8.4 213 46 19.6 S6.3 2.88
-2 3] 2.8 8.4 21 44 22.8 59.8 2.62
SR04~ A-1 2Z2BLE 134 I440) 44 IELE 44 .73 1.35
S-242-P=0—1 A-1 28.1 13.4 91 44 38.2 48.5 1.27
17~ A-1 29.%9 15.4 321 44 I9.4 4& .75 1.18
-18- A1 26.3 15.4 I91 46 F7.1 473 .8 1.34
5244901 A1 F1.0 8.4 2173 48 21.% 45,7 1.87
-11- f-1  Z28.%9 8.4 213 46 21.1 42 .3 2.00
-1 0 A1 2B8.9 8.4 213 44 21,1 45,3 2.19
—RE- A-1 29.9 8.4 213 44 21.3 42.7 1.99
-4 &-1 2973 8.4 213 44 21.3 44 .5 2,09
5=-224~0-0-—1 pA-2 2802 13.4 F40 9 23.2 44 .3 1.28
S-248=F=—1 A-2 28.2 15.4 91 G 3Z.4 40.5 1.25
52440~ 1 A~ F4.8 8.4 213 29 17.4& 32.3 1.66
-2 A-2 32.2 8.4 217% e i8.%2 IR 2.835
-5 /-2 E0L1 8.4 213 a9 18,3 Z.8 2.39
- =2 AR.E 8.4 213 xe 18.0 4.9 2.27
—~ 1001 A2 2902 8.4 21E 39 i8.0 392.1 2.17
-11-0-1 f- 2907 8.4 217F a9 18.1 40,0 2.21
Average 1.38
Variance 0.I2=

Table B.36:  Corner - Symmetric Holes, Input Data, 60 Degree Method



Code Egquation .
Hole Fattern: Square - Corner - Symmetrical
SLAR Series +'c bo d Fp Fu Fu/Fp

MFa in mm mm kiN kN

90 Degree Cone Reduction Method

H1i2 Moe 27.8 40.0 1,016 114 244.2 269.0 1.10
H13 Moe 24.6 40.0 1,016 114 229.6 201.0 0.88

S-222-0-0D=1 R 0.7 17.6 498 46 Sh.7 80.3 1.58
5-284~0-0=-1 B IE5.8 16.0 406 44 43.5 0.6 1.62
S5-242-9-0-1 2] 532.8 19.6 498 44 52.4 &5.8 1.26
: -2 K 29.6 19.6 498 44 42.8 635.5 1.31
5-244-9--0~1 = 24.8 16.0 406 46 37.3 56.%3 0 1.51
) B I5.8  16.0 406 44 43.5 59.8 1.37
S—-224-0-0D~1 &= 28.3  1&.00 406 46 9.8 44 .9 1,173
S-242-F =01 A-1 2801 19.6 493 44 48.46 48.5 1.00
-17- A-1 22.%9 19.6 458 46 50.1 46 .5 D.22
-18- A-1 26.5 19.6 498 44 47 .2 49.8 1.08
S-244~F~-1 AT 1.0 16,00 408 445 41.6 40.9 0.78
—11- A-1  28.9 1&.0 404 44 40.2 42.73 1.05

-1 0= Aty 28.%7 16.0 404 4& 40.2 446 .7 1.18
—25- A=1  27.7 16.0 406 46 40.9 42 .7 1.04

R R A1 2.3 1600 406 44 40.5 44 .5 1.10
S-224-0-0—1 A-32 28.2 16.0 404 a9 ZE.T 44.5 1.32
S5-242-9-0-1 f-2 E8.2 19.6 428 39 41.2 4,5 0.98
5-244-9~0-1 A-2 F4.8 16.0 408 - = 37.4 S32.5 .87
-2 TA-R ERLE 1600 406 9 6.0 SE. 1.50

- A2 B0l 16.0 {40s 29 34.8 43, 1.25

-4 A-E 29.2 18600 406 =9 4.3 40,9 1.1%

e NS ] A-2 29.2 160 40& 9 403 3201 1.14
—11-0-1 A-Z B9.7  16.0 L40& RS 4.6 40,0 1,16
fverags 1.18

Variance 0,04

Table B.37:  Corner - Symmetric Holes, Input Data, 90 Degree Method



SLAR

Radial Line

5~-224-0-0~1
5241 -9-0-1
—-15-
—1 &y
5-242-9-0~1a
—-19—
—20-
5-245-9-0-1
-] -
_22_
B8-221-0-0-1
5-R22-0-0-1a
5-2T5-0-0—1
5-241-9-0-1
S-242-9-0-1a
G-L245-F-0-1
5-Z221-0-0-1

~
-

5-241-9-0-1
S~Z242-2-0~-15

§-243~-9-0—1

Code Eqgquation

Hole Fattern: Square ~ Corner - Nonsymmetrical

Series

Reduction

DDDDI?D?:DD
R A I T s Sy oy

>
o omom

A2
A2
A-T
A2
A2

f'c

MFa

28.2
27.9

27.9

27.%
5 ]
26.9
28.3
28.3
27.8
27.8
4.4
4.6
I IPN
29.8

re

24.89
1.8
27.98
28.2

27.2

R7.%

bo

in

Method

19.4
18.4
18.4
18.4
14.4
14.4
14.4
10,4
10.4
10.4
19.4
1&6.4

.4
18.4
14.4
10.4
19.4
19.4
18.4
14.4
10.4

mm

4973
4467
467
4467
366
266
266
264
264
2

49%
417
A0
467
Zbb
264
497%

i Km i
‘1'"?-...‘!

4467
T6b
264

d

mm

46
46
46
46
46
44
44

445 |

a6
44
44
44
46
a6
46
46
a6
35
39
39
39

Fp

kN

18.1
45.4
45.4
45.4
37.9
34.6
35.8
25.9

L]

Papes o)

~e
Lt e D
=
vt et m ot

45.1
3.6
4.7
8.9
24.2
S50.9
40.5
38.7
29.8

21,5

P S

Average
Variance

Fu

LN

37 .4
43.5
48.5
47 .6
47 .4
47 .1
48.0
45.8
47 .1
1.4
87.4

caem e
Qs w ol

4.1
1.0
LT
36.5
42.7
48.7
47 .6
8.7
8.7

Fu/Fn

1.19
1.07
1.07
1.08
1.32
1.326
1.34
1.77
1.84
201
1.68
1.8%9

1.85

1.81
1.8%

oy e
Al w et

0.84
1.21
L E0

1.80

1.50

0.15

"Table B.35: | Corner - Nonsymmetric Holes, Input Data, Radial Line Method
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SLAR

60 Degree Cone

S§~22 1~0-0~1

§~241~9-0-1
__15_

S~242~F-0-1a

20—

5-24T~F—0~1
_.-’_'.\1._.
-

5-221-0~-0-1
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S5—-2EE—-0—0-1
5-241-9-0-1
S5-242-9-0—-1x
S-24%-9-0-1
§-221~0-0~1

o

5~241 =031
S5-242-9-0~1a
S-2453-59—-0~1

Table B.39:

Code Eqgquation
Hole Fattern:

Series f'c

MPa

-1 28.%2
-1 27.9
-1 27.9

F1.1

I?ZD:I)I)DIFIDI)DZD
[ T e S e T U T Sy

-1 26.5
-1 28.3
-1 28.3
-1 z7.8
-1 27.8
B 34.6
E  34.56
B OZI0.6
B 29.3
B 32.8
B 24.8

B-2  31.5

A-2  T7.8

8- 28.2

a-2  27.2

a-2 27,2

Corner - Nonsymmetric Holes, Input Data, 60 Degree Method

27.9.

in

20.2
18.9
18.9
18.9
15.4
15.4
13.4
11.9
1.9

11.%

mim

Reduction Method

313
480
440
480
91
391

391

302
I02
30z
13
455
96
480
391
02
S1z
S1=
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21

E02

mm
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46
4é

Z.
o
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44
44
44
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44
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-t T
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a9
A
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kN
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46,
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|
1
L e N
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Bl N OO R B ¢ U B I & e & 0

Bl G ol k) s b s (1R R
O M FY S N R BRI R (A O

Averszags
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Fu

kN

Square — Corner - Nonsymmetrical
Fu/Fp

1.14
1.04
1.04
1.02

oy
» L

1.27
1.25
1.55
1.61
1.76
1.61

1.7

1.3%
1.47
1.76
2,04
.81
1.16
1.20
1.22

1.57

1.38
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Code Equation

Hole Fattern: Square ~ Corner — Nonsymmetrical

SLAR Series +'c
MFa

?0 Degree Cone

S-221~0~0-1 - 28.2
85-241-2-0~-1 - 27.9
-15~ - 27.79

-1 H-
5-242-9-0-1&

-]

~ 20—

5-245~9-0~1

27.9
1.1

H DI)D];)DDDD
e T s s S S PAP

- .\ y—
21 - AT 27 .

L fay v

-2 27 .

§~242-9-0~1& B 3E.
5-24F~F-0~1 B 24,
G221 -0-0~1 A2 B,

e A-Z 27
S-241-F~0~1 a-2 23,

S-242-9-0~1a A2 27.
S—R4H~P (1 f-2 27,

isn}
k3
3
B3B3 RIOD LT OD O3 OO O~ O~ O~ €0 0 id

Table B.40: :

in

20.6
20.6
20.6
20.6
19.46
19.6
19.6
17.2
17.2

1'7 "'I

20.6
12.6
17.2
20.6
19.46
i7.2
20.6
0.6
20.6
19.6

e S ]
/o

mm

Reduction Method

=
pus O

=y
by

[t
o

e
o s

4583
4983
453
4357
437
437

=S4
. |
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477

R
od At el

41"\!‘\
437
523

ey
o Y

B e
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4(":/‘!
4E7

mm
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46
46
46
44
44
46
46
44
44
46
46
44
46
44
46
46
59
29
29
2%

Fp

kN

(!
o
SO0 b

-b .
b

{
b

f
1
HE |

%]
]

00 4
4 L D
§ T DD

£
L

fverage
Variance

Fu

kN

42.7

47.6
8.7

-“r -
38.7

Fu/Fp
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1.12
.95
Q.95
0.94
0.7
1.00
Q.99
1.07
.11

T

how ol

1.58
1.59
1.44

1.3ES

1.39
1.41

1.0%
1.15
I

Corner - Nonsymmetric Holes, Input Data, 90 Degree Method
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Figure B.1: Centreline - Symmetric Holes, Radial Line Method, Long’s Eqn.
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Figure B.2: Centreline - Symmetric Holes, 60 Degree Cone Method, Long’s Eqn.
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Figure B.9: Corner - Nonsymmetric Holes, 90 Degree Cone Method, Long’s Eqn.
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Figure B.10: Corner - Nonsymmetric Holes, Radial Line Method, Long’s Eqn.
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Figure B.11: Corner - Nonsymmetric Holes, 60 Degree Cone Method, Long’s Eqn.
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