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Abstract 

For immersive computing environments, multiple interaction modes (e.g. voice, gestures, 

handheld controller) have been proposed. In this thesis, I present the results of an elicitation 

study examining user preferences and measuring interaction agreements, based on two task types 

from an existing task taxonomy, in the context of data interaction in augmented reality (AR). The 

results indicate a non-statistically-significant association between a user’s input mode preference 

and the type of the performed task in most cases. However, agreements on interactions were 

found to be higher in one type of task. I reflect on the resulting implications and offer one 

practical guideline for UX designers creating AR-based analytics applications. This thesis also 

details an alternative way of quantifying user agreements in an elicitation study on interactions.  

Keywords: speech input; gesture input; elicitation; immersive analytics; augmented 

reality; Microsoft HoloLens.  
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Chapter 1 Introduction 

 Immersive computing, a catch-all phrase for virtual reality (VR) and augmented reality 

(AR), has been in commercial space since 1985, when a company named VPL Research 

developed a full-body suit integrated with dozens of sensors as well as a head mounted display 

[21]. However, it was not until almost 30 years later that the technology fully caught on with the 

public, when a virtual reality device named Oculus Rift [29] and an augmented reality based 

game Pokemon Go were introduced by Facebook and Nintendo, respectively. Ever since then, 

we have witnessed an enormous advancement in the VR/AR hardware technology, from low 

resolution display to high resolution, from limited angle tracking to full 360-degree tracking. But 

those incremental improvements were mostly made in the output/display technology. On the 

input side, there are far less clear signals on where things will go. Until recently, the standard 

input equipment for Oculus Rift was still a game console controller. LeapMotion [28], a 

company known for its free-hand gesture recognition technology, is currently pushing for the 

embedment of its technology into various VR devices. Microsoft goes to the other end of the 

spectrum by allowing its mixed reality device HoloLens [30] to accept voice input in addition to 

some limited gestural input. So, unlike the mouse and keyboard combination we take for granted 

for desktop computing, the world has yet to see a ubiquitous input mode established for 

immersive computing. This brings up a series of questions: what are users’ preferences, then? Do 

they always prefer one over another, or is there virtually no difference? 

 My thesis tries to answer those questions. Before that, thought, this very first chapter will 

introduce a key concept that will thread throughout my entire inquiry: the type of a task. The 
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chapter then goes on to list the goals, the questions and the methodology of the research and ends 

with a preview of all the other chapters.  

 

1.1 Three Distinct Input Modes 

 Of all the widely available commercial VR/AR products, the input technologies all seem 

to be different but not distinctly different. A closer examination reveals all those technologies are 

just different combinations of the following three distinct input modes: voice, gesture and 

controller (Figure 1). For example, the Oculus Touch is a combination of the gesture input and 

the controller input [29]. Microsoft HoloLens takes advantage of the hybrid use of voice and 

gesture [30]. Leap Motion’s hardware is a pure gesture input device [28]. 

 In the research community, studies have also been done to examine those three distinct 

modes of input. Many implementation studies have compared user experiences between any two 

of the three input modes but there is not a clear-cut answer to the question of which input mode 

is a user’s first choice. Either ambiguity exists in a single study [2,6] or there are contradictory 

claims among different ones [1,10].  

  

Figure 1 - Three distinct input modes: voice (left), gesture (middle), controller (right). 

Images from (left to right): https://www.voicebot.ai, http://www.gestigon.com, 

https://www.engadget.com 

It is no coincidence that the absence of consensus on immersive computing input mode in the 

research community mirrors the lack of a ubiquitous input mode adopted by industry players in 

https://www.voicebot.ai/
http://www.gestigon.com/
https://www.engadget.com/


3 

 

the commercial world. It seems to suggest there is no “one size fits all” input mode in an 

immersive computing environment. 

 

1.2 Specification and Manipulation Tasks 

If there is no universally preferable input mode for immersive computing, one must ask: 

what makes a user pick one mode of input over another mode at this moment while she makes a 

difference choice at the next moment? 

In searching for an answer to that, I stumbled upon a research conducted by Morris from 

Microsoft Research [14] where the investigator was interested in discovering common gestures 

and speeches adopted by users when they used a web browser in front of a TV. Morris made an 

interesting observation in her paper:  

“…some referents may be best mapped to certain modalities.”1 

What is the “some”? Morris did not give an answer. But at least she suggested some type of tasks 

would be better executed with a specific input mode. A natural follow-up question is: what are 

the types of tasks, then? 

To sort out the types of all tasks, however, would be a seemingly intractable task by 

itself. If I narrow the task domain only to that of visual analytics, though, I can rely on the task 

taxonomy introduced by Heer et al. [8], in which there are three broad types of tasks: 

• Data & View Specification 

• View Manipulation 

• Process & Provenance 

                                                 

1 “referents” refer to tasks and “modalities” are input modes. 
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A detailed explanation on them will be spelled out in Chapter 2. For now, briefly speaking, Data 

& View Specification (referred to as “specification” hereafter for brevity) tasks are mostly about 

exploring large data sets. View Manipulation (referred to as “manipulation” hereafter for brevity) 

tasks are largely about drilling down for more details.  

 With those two types of tasks in place, this thesis is now ready to tackle the question of 

“why no one-size-fits-all input mode in immersive computing” from a fresh perspective: 

specification tasks vs. manipulation tasks. 

 Readers may wonder why I did not include Process & Provenance type of tasks. The 

reason is that they are not specific to the visual analytics domain. A photo or text editing 

program may also provide this type of tasks. In addition, Process & Provenance tasks are not 

essential to conduct visual analytics [8]. Because the premise of this thesis is strictly in the 

domain of visual analytics, Process & Provenance tasks will not be considered in this study. 

 

1.3 Research Goals  

The primary goal of the research is to inform the designers and the developers of an 

AR/VR project about what input mode they should choose and optimize for users. The secondary 

goal of the research is to conduct the study in such a way that the results will more reflect users’ 

thoughts rather than server as a proxy indicator on the quality of a technology implementation. 

This is attempted through the employment of a methodology called elicitation study, which will 

be explained later. The tertiary goal is to bring readers up to date on the latest development in 

immersive computing interactions within the research community. An extensive literature review 

will be conducted to achieve that goal. 
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1.4 Research Questions 

 Given that we have a way to break down analytics tasks by two types, an immediate 

question is: will one type of tasks associate more to a specific input mode? In other words,  

RQ1: Is there an association between a user’s preferred input mode and the type of the 

task she performs?  

Depending on the answer, it could serve as a general guidance for immersive analytics 

application designers when they need to decide which input mode to use.  

Another area this study is interested in is interaction agreement rates2. Previous studies 

[4,12,13,15,17,18,19,20] have shed some light on this but none of them looked at the issue from 

the specification versus manipulation task types perspective. Thus, the following is posted as the 

second research question:  

RQ2: Are interaction agreement rates for one type of task higher than those of the other 

type? 

Answering these two questions will serve the purpose of achieving the primary goal of 

this research: providing design guidelines for AR/VR developers.  

 

1.5 Research Methodology 

 Because one of the research goals is to make the results reflect users’ ideas, it was 

decided that the study should not rely on a particular implementation of input technologies. This 

makes sure that, during the data gathering stage, a study participant’s perceived “good” or “bad” 

of an input mode will not be tainted by the user experience based on a specific implementation of 

                                                 

2 Throughout this thesis, whenever we discuss agreement rates, interaction refers to a series of human actions in a specific input 

mode to complete a task. 
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an approach nor on its current practical limitations. For example, current voice recognition 

systems often struggle with non-native accents. Negative interaction experiences resulting from 

such limits could bias a user’s preference. Instead, I opt for the elicitation methodology, which 

lets a user freely propose whatever interactions she wants, without any consideration on current 

technology limitations, as long as those interactions make sense to her. There have has been a 

few other studies conducted in such a form to understand users’ preferences and interaction 

agreements in gestural interactions [4, 12, 13, 17, 18, 19 ,20, 25, 26]. Detailed setup and 

procedures of the study will be presented in Chapter 3. 

 

1.6 Contributions 

The main contributions of this thesis consist of the following: 

1. Discovery of a non-statistically-significant association between a user’s preferred input 

mode and the type of a performed task in most cases. 

2. Reveal of significant difference on input agreement rates between two task types. 

3. Proposal of an alternative way of quantifying interactions agreements in user elicitation 

studies. 

The first two have more practical implications and are of general interest to someone 

implementing an input technology. The last one is more foundational and hopefully will generate 

further discussions on the same topic within the research community.    
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1.7 Thesis Structure 

The current chapter, Chapter One: Introduction, has introduced readers to both the 

central topic of the thesis - input modes in immersive computing - and a key concept threading 

throughout the entire thesis – the type of a task.  

Chapter Two: Background and Related Work – gives a brief overview of the immersive 

computing technology and surveys the related prior research on input preferences as well as 

agreement rates in the immersive computing environment.  

Chapter Three: Elicitation Study Methodology – details the design and the 

hardware/software setup for my elicitation study. It also lists the exact steps needed to carry out 

the experiment and provides an aggerated view of all the participants in the study. 

Chapter Four: Elicitation Results – dives deep on how the raw data gathered from the 

study participants is converted into insights (aggregated data) that are then used to answer my 

two research questions. It is also in this chapter where an alternative quantitative method on 

characterizing user interaction agreements is introduced.    

Chapter Five: Discussion on Results – interprets the insights derived in Chapter Four and 

draws conclusions on my two research questions. It provides possible explanations for the 

observed data in agreements, offers a design guideline for AR interaction designers and reflects 

on the roles of task types in understanding user inputs for immersive computing. In addition, it 

explores the practical implication of the alternative formula to calculate interaction agreements.  

Chapter Six: Limitation, Future Work and Conclusion – starts with an acknowledgment 

of serval limitations in the study, suggests future work meant to tackle some of the open 

questions and ends with a summary of the entire thesis.   
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Chapter 2 Background and Related Work 

 This chapter starts with a brief overview of the technologies that enable immersive 

computing, with a focus on the input technology. The purpose of it is to provide readers with the 

context under which the impact of the thesis work could be readily appreciated, and the 

possibility of application of the study findings could be assessed, given the relatively abstract 

nature of this study. The chapter then goes in detail over several prior works from the research 

community that correspond closely to the two core topics from my two research questions: input 

preferences and interaction agreements. Because task type is the central theme of my thesis, the 

last section will be devoted to two literatures that provided a great of inspirations for my study.  

 

2.1 Brief Overview of Input Technologies for Immersive Computing 

 In late 1980s, VPL Research developed a full body suit equipped with sensors as well as 

a head mounted display as a pioneering VR product (Figure 2, left). Aside from the huge display, 

the other impressive components were the gloves used to recognize user’s manipulation intents 

(Figure 2, right). 
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Figure 2 - left: an outfit with body sensors, data gloves and a head mount display; right: a 

data glove. Images from (left to right): http://theconversation.com, 

https://www.timetoast.com 

The data gloves offered users 5 degrees of freedom (with ultrasonics) or 6 degrees of freedom 

(with magnetic flux sensors) and could recognize simple hand gestures [21]. The list of 

capabilities included finger bending detection, hand tracking and tactile feedback, allowing a 

glove wearer to manipulate virtual objects rendered in the head mounted display. 

 In early 1990s, a cubic immersive computing environment, CAVE (Figure 3, left), was 

created by a group of researchers from the University of Illinois [22]. Users put on custom-made 

stereoscopic glasses to experience the illusion of being in a lifelike environment. This immersive 

computing environment did not come with a standard input device. As a result, a game console 

controller, an air mouse and a 6 degree of freedom wand (Figure 3, right) had all been utilized as 

an input device for the CAVE [23].  

http://theconversation.com/
https://www.timetoast.com/
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Figure 3 - left: a user interacting with CAVE; right: a wireless wand used as the input 

device for CAVE. Images from (left to right): https://www.lifehack.org, 

https://cosmosmagazine.com 

The main difference between the game controller and the wand was that the latter was also able 

to track a user’s hand position with its infrared sensors.  

The United States military pushed the envelope on the VR technology as well. The 

government institution made highly customized, single-purpose input devices for the VR 

computers used in its training programs. Those VR devices were basically models of the real 

weaponry (Figure 4). 

https://www.lifehack.org/
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Figure 4 - left: a military parachuter in VR training environment, using parachute straps 

as the input device; right: a user in shooting training session with a model gun. Images 

from (left to right): http://www.vrs.org.uk, https://en.wikipedia.org  

Fast forward to 2010, Oculus Rift was released to the mass market, at first using Xbox 

game console controller as its input device and then, 7 years later, the newly designed Oculus 

Touch controllers were introduced as its default input device (Figure 5).  

  

Figure 5 - Oculus Rift Touch controllers. Images from (left to right): 

https://www.oculus.com/ 

The Touch controllers not only sport conventional buttons, they are also capable of detecting 

hand rotation and recognizing finger gestures.  

 In the meantime, Leap Motion offers a free-hand tracking solution for immersive 

computing. Its USB-connected device can be mounted on a VR device to enable hand gesture 

recognition in a small area as well as be used in a desktop environment (Figure 6).  

http://www.vrs.org.uk/
https://en.wikipedia.org/
https://www.oculus.com/
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Figure 6 - the Leap Motion USB-like device. Left: mounted on a VR device; Right: used in 

a desktop environment. Images from (left to right): https://en.wikipedia.org, 

http://smartgimmick.com 

The device constantly records pictures of users’ hands and sends the data back to the host 

computer to process various kinds of hand gestures with a proprietary algorithm.  

 Recently Microsoft has also joined the immersive computing scene by introducing an 

advanced untethered AR device named Microsoft HoloLens (Figure 7).  

  

Figure 7 - Microsoft HoloLens, with voice and gesture recognition built in. Right: a 

HoloLens-wearing user issuing gesture commands in front of mid-air hologram charts. 

Images from (left to right): https://www.microsoft.com/en-ca/hololens, 

https://sg.news.yahoo.com/ 

It is a full-fledged computer able to provide users with a hologram view, where everything you 

would normally see on a desktop display is layered over the surrounding physical space. The 

device can take both voice and gestures as its input, harnessing the same technology Microsoft 

https://en.wikipedia.org/
http://smartgimmick.com/
https://www.microsoft.com/en-ca/hololens
https://sg.news.yahoo.com/
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has developed in the past with its deprecated Kinect. My study used a Microsoft HoloLens to 

provide users with an immersive computing environment, too. 

 

2.2 Input Mode Preference 

 In the research community, study on immersive computing has been going on for quite a 

while.  

Cabral et al. built a gesture recognition system to study the usability of gesture interface 

[2]. Two computing environments were used in the study: one was the immersive environment 

CAVE; the other was simply a projector screen on the wall (Figure 8).  

  

Figure 8 – Cabral et al.’s Gesture Usability Study. On the left: gesturing in CAVE; On the 

right: gesturing in front of a projector screen. Images from: [2] 

The first experiment in the study asked the participants to point and click targets appearing in 

random order, with two different input modes: gesture and mouse. The results showed a 

significant advantage with the usage of mouse: with it, people were able to complete the random 

pointing task almost 4 times as fast as they were with gestures. The authors of the study 

attributed this partly to the lack of gesture experience on their participants’ part, but they 

suggested the range of motions might also be at play here: to reach across a screen, a participant 
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may only need to move the mouse 1 or 2 centimeters on a hard surface while she may have to 

move one of her arms dozens of centimeters in the air. In the end, though, the study did not 

arrive at a conclusive result: while gestures did have advantages such as being natural and 

intuitive, they slowed down the task completion time and induced fatigue.   

 Mota et al. elicited user feedback on gestures and controllers after letting users explore 

3D volume data in a VR setting [6]. The authors developed an oil well exploration application 

for an immersive computing environment with an Oculus Rift. On the input side, two devices 

were employed: one was a gamepad with infrared tracking; the other was LeapMotion gesture 

sensor (Figure 9).  

 

Figure 9 – Mota et al.'s study comparing gamepad and gesture inputs. One the left: user 

with a gamepad; On the right: user interacts with an Oculus Rift where a LeapMotion 

sensor was attached. Images from: [6] 

The study reported that, overall, the study participants preferred gestures over gamepads because 

gestures felt more natural and intuitive. However, one participant also complained that she must 

hold her hand above a fixed position in order to have her gestures recognized by the LeapMotion 

sensor. Another participant in the study pointed out moving across a large region in an oil well 

with hand gesturing could easily cause fatigues and suggested a remedy of putting one’s arm on 
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the armrest of a chair. Note that this fatigue problem corroborates with the findings from Cabral 

et al.’s paper mentioned earlier [2]. 

 Pick et al. conducted a comparison study between speech input and menu-based point-

and-click input in a CAVE-like VR setting [3]. The task was layout planning of a factory floor. 

The menu-based input was done specifically through a hierarchical pie menu system, which the 

authors developed and then integrated with a layout planning application. To recognize speech, 

they used a wireless microphone, which sent the captured voice signals to the Microsoft Speech 

API for further processing. Its speech input mode was not a pure one, though, because it also 

allowed a pointing device to be used at the same time when a participant uttered voice 

commands (Figure 10). 

 

Figure 10 – Pick et al.'s study where a participant was planning the layout of a factory floor 

in the CAVE immersive environment. Images from: [3] 

In addition to that, the study only allowed for a very specific voice command structure: Verb, 

Object[, Adverbs]. To evaluate the effectiveness of point-and-click input and the speech input, 
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the study authors deliberately asked their participants to go to the deep end of a 4-level 

hierarchical menu system. The results revealed that using speech, people were able to complete 

tasks faster, but more errors could pop up because of either humans’ mistakes or flaws in the 

machines, as compared to the point-and-click input mode. In terms of user experience, the study 

found neither mode was advantageous.  

 

2.3 Elicitation Studies 

All the studies cited earlier had one thing in common: the use of an implemented input 

system. Therefore, the preference data collected in those studies had a dependency on the 

performance of the implantations as a user is unlikely to give a high rating to a bug-ridden input 

system. 

If the goal is to simply ask a user, “what input mode do you prefer to do this task?”, 

instead of “what input mode do you prefer to do this task, when you use our system?”, then a 

study without the use of any implemented input system would seem more appropriate, and that 

would be an elicitation study.    

Elicitation studies arise from the need to maximize the guessability of an input system – 

the chance of a spontaneous user input being recognized by the system. According to Good et 

al., there are two different philosophical approaches to HCI design [24]:  

1. Adapt the user to the system; 

2. Adapt the system to the user. 

The first is designer-driven, with a hidden assumption that users are always “problematic” and 

thus need to be “trained”. Because taking the designer-driven approach is basically a form of 

only improving the usability of a system, Good et al., in their quest to build an email system 
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interface with a high guessability in the early 1980s, took the more user-centric second approach 

which assumes novice-behavior is inherently sensible. In their study, any spontaneous but 

unrecognised user input (typed commands) would be intercepted by a human operator, who was 

unknown to the user but would interpret the command as much as she could to allow a 

corresponding change to take effect. In the end, all those commands would be incorporated into a 

new version of the email interface system. After 30 such iterations, the success rate of the system 

executing spontaneous user commands jumped from a mere 7 percent to an astounding 76 

percent [24], dramatically improving the guessability of the email user interface. 

 Many more recent studies have followed in similar fashion to assess the agreement rate of 

user inputs. The agreement rate is closely related to guessability [15] and is also one of the 

central questions of my thesis. The following section will look at some of the other elicitation 

studies examining agreement rates. First, though, we need to see how the agreement rate was 

defined by some prior research.  

 

2.4 Input Agreement 

2.4.1 Quantification methods. 

Typically, in a user elicitation study on input interactions, researchers ask participants to 

come up with (i.e., propose) several different interactions to complete a task. Later, researchers 

try to identify the same interactions, by first encoding all the interactions with concise and 

descriptive texts and then comparing those texts. There is some flexibility in the encoding step, 

meaning that two visually or verbally different interactions could have the same encoding, as 

demonstrated in other studies [4,12,18,19,20]. Two interactions are considered the same if they 

share the same encoding.  
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 Wobbrock et al. introduced a formula quantifying user interaction agreement [15] which 

has been used by several elicitation studies [4,12,18,19,20] (Equation 1).  

𝐴(𝑟) = ∑ (
|𝑃𝑖|

|𝑃|
)

2

𝑃𝑖⊆𝑃

 

Equation 1 – Wobbrock et al.’s formula [15] for input agreement on a particular referent 

(task), where P is the set of proposed interactions for the referent, and Pi is a subset of 

identical interactions from P. 

According to the formula, if there are a total of 5 proposed input interactions to complete a task 

and among them, 2 are considered the same and the other 3 are also considered the same, then 

we have |𝑃1| =  2 , |𝑃2| =  3 and |𝑃| =  5. Thus, the agreement rate for that task 𝐴(𝑟) =

 (
|𝑃1|

|𝑃|
)

2

+ (
|𝑃2|

|𝑃|
)

2

= (
2

5
)

2

+ (
3

5
)

2

= 0.52. However, this formula does not account for the case 

where none of the proposed input interactions is the same as another. In that case, the agreement 

rate should intuitively be 0 but according to Wobbrock et al.’s formula, we would have |𝑃1| =  1 

, |𝑃2| =  1, …, |𝑃𝑛| =  1, thus 𝐴(𝑟) =
1

𝑛
≠ 0. In other words, if we have a case where two 

proposals are completely different, we would still end up with a reality-distorting agreement rate 

of 50%. The error stems from a misperception and an imprecise definition on the concept of 

agreement, which I will dive into later in Chapter 4.  

 Taking inspiration from Findlater et al.’s alternative agreement measure [27], Vatavu et 

al. fixed the “never 0” problem in Wobbrock et al.’s formula by proposing the following 

equation (Equation 2) [16]:  

 

Equation 2 – Vatavu et al.’s formula [27], an improved version of Wobbrock et al.’s 

formula [15] 
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Equation 2 has an inclusive range [0..1] for its values, fitting well with one’s intuition about 

agreement. Vatavu et al. stated their formula did not immediately invalidate the results of all the 

previous studies which had relied upon Wobbrock et al.’s formula, because the relative orders of 

agreement rates derived from the two were still preserved (i.e., if A(r1) < A(r2), then AR(r1) < 

AR(r2), and vice versa). This formula is inapplicable, however, when the number of proposed 

interactions from a participant is more than 1. It assumes there is a 1-1 mapping between a 

participant and the proposals (i.e., interactions) she makes. Here is a sentence from the paper 

making the assumption explicit [16]: 

 “(two correcting factors in the formula) depend on the number of participants or, 

equivalently, the number of elicited proposals”  

 To solve this problem, Morris came up with a metric called “max consensus” [17], 

defined as: 

“the percent of participants suggesting the most popular proposed interaction for a given 

referent” 

 

The metric does account for the situation where a participant proposed multiple interactions to 

carry out a task, but the very fact that it utilizes the percent of “participants” rather than that of 

“agreements” means this metric suffers from the same “never 0” problem as mentioned earlier. 

Later in Chapter 4, an effort will be made to combine the “max consensus” concept with an idea 

similar to Findlater et al.’s alternative agreement measure [27], to obtain a formula that will 

provide us with a better understanding on the input agreement among participants who propose 

multiple interactions for a task.  
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2.4.2 Empirical studies. 

 There are studies where agreements were measured based on the formulas mentioned 

above.  

Vatavu et al. did some interesting work comparing agreements between handheld 

gestures and freehand ones [20]. The study asked users to perform typical home entertainment 

(TV) tasks, including “play”, “mute” and “resize”. Those tasks were further put into three 

categories: screen-related, function-related and generic. The main devices used in the study were 

a Wii controller, to allow for handheld gestures, and a Kinect to respond to freehand gestures 

(Figure 11). 

 

Figure 11 – Vatavu et al.’s freehand vs. handheld gestures study. Left: an illustration 

demonstrating how the gestures were acquired. Right: Wii Remote, the handheld device 

used in the study. Users were allowed to combine both the button-pressings and the motion 

gestures together. Images from: [20] 

Because it was an elicitation study, no gestures were actually recognized by any computing 

device. Instead, the study participants were shown animations depicting the effect of a task, and 

then asked to do a gesture, all the while imagining the gesture would be recognized to complete 

the task. The analysis on gesture agreement from the study was based on Wobbrock et al.’s 

formula (Equation 1). It showed there was no statistically significant difference between 
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agreements of handheld gestures and freehand gestures, but the study stopped short of comparing 

agreements among the three task categories it introduced. 

 Piumsomboon et al. simulated an AR environment for an elicitation study where the 

participants were asked to come up with gestures for a broad range of common but rudimentary 

tasks [12], of which most would be considered as specification tasks by this thesis, such as 

“copy”, “accept” and “stop”. The combined use of a head mounted display (HMD) and a camera 

allowed the study participants to have a simulated AR experience (Figure 12).  

 

Figure 12 – Piumsomboon et al.'s gesture study with an AR simulation. Left: a participant 

in the study; Right: the simulated AR experience from a participant’s view, with the car 

visual provided by the HMD and the table view provided by the camera attached to the 

HMD. Images from: [12] 

Like most other gesture elicitation studies, the participants first saw an animation to understand 

the task she was asked to do and then came up with a 1-hand or 2-hand gesture to carry it out. No 

gestures recognition software was used, and the participants were told to put behind them the 

worries about technology limitations. As it turned out, in this 20-person study, three tasks in the 

study, “previous”, “next” and “select from a vertical menu”, achieved a perfect agreement rate of 

1. Note that “previous” and “next” would be classified as manipulation tasks according the 

specification/manipulation taxonomy introduced earlier in Chapter 1. 
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Morris, employing the “Wizard of Oz” methodology [5], elicited gestures and voice 

commands for using a web browser on a TV [17]. The basic setup was a wall-mounted 63-inch 

TV with a Kinect placed on top of it. In this case, the Kinect functioned purely as a distraction so 

that the authors could act as a hidden “wizard” behind the scenes (Figure 13).  

 

Figure 13 - The living room used in Morris’ Web on the Wall study. Note there is a decoy 

Kinect placed on the TV. Images from: [17] 

Unlike the previously mentioned elicitations studies where there was only one participant in a 

single round of elicitation, there were two or three participants jointly present in a round. The 

participants were asked to carry out a serial of predetermined tasks, with gestures and/or voices, 

to plan a weekend activity together using a web browser. The tasks included “open browser”, 

“enter URL” and “reload page”. The participants were made to believe that the Kinect they saw 

on top of the TV was functioning and able to recognize reasonable gestures and voice 

commands. In reality, though, the authors went behind the scenes to remote control the browser 

so that they could react properly to the gestures and the voices made by the participants. The 

participants were also allowed to come up with multiple interactions for a single task, which led 

the authors to introduce the concept of “max-consensus” to calculate the gestures/ voices 



23 

 

agreement rates with Webbrock et al.’s formula. After comparing agreements rates between 

gestures and voice commands, the study found gestures, on average, had a higher agreement than 

voice commands but the difference was not statistically significant. Further analysis on a per-task 

basis, however, revealed significant agreement differences between the two input modes in some 

tasks. As a result, the study suggested some tasks were better suited to a specific input mode. But 

the study did not go further to exam the characteristics of those tasks. 

Kühnel et al. did a gesture elicitation study in the field of smart home control [4]. What is 

notable about the study, particularly through the lens of my own study, is that it measured 

gesture agreements by gesture types. In Kühnel et al.’s study, there were four types of gestures: 

physical, metaphorical, abstract and symbolic, which seemed more fine-grained than the binary 

classification provided by Quek et al. [9]. What the study participants were asked to do was to 

perform gestures with an iPhone to control home devices such as a TV, lamps and a blind 

(Figure 14).  

 

Figure 14 – Kühnel et al.’s smart home study. Left: the lab setup. Right: different gestures 

proposed by a participant in the study. Images from: [4] 
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The tasks included “roll up blind”, “dim the lamp” and “switch to next channel”. Like the 

elicitation studies cited earlier, no attempt was made to recognize gestures at all. The authors 

instead used a laptop to control the smart home devices, showing the “effects” to a study 

participant. The participant was then asked to come up with whatever gestures she deemed 

appropriate to achieve that same effect. At the end of each task, the participant would provide a 

subject rating on how suitable and easy it was to perform her proposed gesture. My study follows 

a similar procedure. After an extensive analysis, Kühnel et al. found out that the type of gesture 

with the highest number of agreements was “physical” while the one with the lowest agreements 

was “abstract”. Unfortunately, neither type was given a precise definition, so it is hard to relate 

Heer et al.’s “specification” task type with theirs. In addition, it seems there were some 

similarities between “physical” and “metaphorical” types, and some similarities between 

“abstract” and “symbolic” types. Again, without precise definitions, it is hard to make a 

conclusion. Having said that, the study also took an interesting perspective by looking at gesture 

agreements through the lens of task complexity. The complexity of a task was perceived by the 

authors to be the difficulty of performing the task. The conclusion they drew was that the more 

complex a task was, the lower the gesture agreement for it was. Once again, the authors did not 

spell out exactly what constituted as “difficult”. Otherwise it would be interesting to see how the 

idea of manipulation/specification tasks introduced by Heer et al. could relate to their concept of 

task complexity.  

 

2.5 Task Taxonomies 

 In the visual analytics domain, there are some studies on the classification of analytics 

tasks. Two of them were particularly relevant to this study. 
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 The first one [7], by Amar et al., articulated that many of the existing task taxonomy 

provided by the information visualization research community were too system-oriented. They 

were all based on the specific functionalities offered by visualization software. Amar et al. 

wanted to flip this process by asking users to come up with a set of data analysis questions and 

then extracting the “core desire” from those questions to form a list of tasks, upon which a new 

set of classifications would be generated. Note this approach also fits in with the previously 

mentioned “adapt the system to the user” design philosophy, a more user-centric methodology 

that often manifests itself in the form of user elicitations. Amar et al. asked their students to 

generate a series of analytical questions with regard to some data sets. They then grouped those 

questions by similarity as well as the so-called “core knowledge goal” of the questions. In the 

end, they produced an analytic task taxonomy consisting of ten types of tasks:  

• Retrieve Value  

• Filter  

• Compute Derived Value  

• Find Extremum  

• Sort  

• Determine Range 

• Characterize Distribution 

• Find Anomalies  

• Cluster  

• Correlate 

Amar et al. considered those tasks as “primitives” and thought it would allow for an easy 

reasoning about compound tasks. They did acknowledge that during the taxonomy producing 
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stage, some questions were omitted, either because the questions were too mathematically 

primitive or because the questions were subjective in the sense that they involved unspecified 

value judgements.  

 The other literature [8], in the form of a journal article written by Heer et al., which was 

already mentioned in the previous chapter, proposed a visual analytics task taxonomy that was 

largely based on prevalent functions provided by visualization software. The taxonomy was 

made up by 12 types of task grouped into three broad categories, shown as follows: 

1. Data and View Specification 

• Visualize 

• Filter 

• Sort 

• Derive 

2. View Manipulation 

• Select 

• Navigate 

• Coordinate 

• Organize 

3. Process and Provenance 

• Record 

• Annotate 

• Share 

• Guide 
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 According to Heer et al., Data and View Specification tasks allows users to explore large 

sets of data by visualizing, filtering and sorting existing data as well as deriving new data from 

existing one. Examples of deriving include normalizing values, running statistics and 

aggregating data.  

 View Manipulation tasks, on the other hand, allows users to highlight patterns and drill 

down for more fine-grained details by selecting items or data regions, navigating views (scroll, 

pan, zoom etc.), coordinating as well as organizing among multiple views. One example of 

coordinating, according to Heer et al., is “selecting items in one display to highlight (or hide) the 

corresponding data in the other views”. Organizing refers to do the proper layout of multiple 

views. While users can manually arrange multiple views to arrive at a suitable layout, Heer et al. 

suggested those tasks ought to be automated intelligently by software. 

 The last category of tasks, Process and Provenance, enables users to do iterative data 

exploration and interpretation through recording, annotating, sharing and guiding. Recording, 

according to Heer et al, allows for undo and redo. Annotating, in the form of freeform graphical 

markings on a view, is used to communicate insights about data. An example of sharing is 

turning visualization dashboards into interactive web pages. Guiding is for the visualization 

software to provide hints, explanations, or even tutorials along a user’s data exploration process.  

Those two taxonomies, especially the first two task categories from Heer et al.’s 

classification, proved to be very useful in the set-up of my elicitation study, which will be 

explained in detail in the next chapter.  
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2.6 Where My Study Differs 

 Compared to all the studies on preferences and agreements cited in this chapter, my study 

differs mainly in the following two ways: 

• First, unlike those previous work that studied and compared between only two input 

modes, this study exams preferences and interaction agreements across three distinct 

input modes: gesture, voice and handheld controllers. 

• Second, those studies did not investigate the input mode preferences or the interaction 

agreements by the types of the underlying performed tasks. This study employs a fresh 

perspective of specification tasks vs. manipulation tasks.  
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Chapter 3 Elicitation Study Methodology 

            To yield answers to my two research questions, an empirical study was conducted. As 

one of my goals was to determine user preferences, I followed the protocols from other similar 

studies to use an elicitation approach to gather all the data needed for my investigation. On the 

highest level, my study involved asking participants to do tasks through hand gestures, voice 

commands and handheld controllers without being constrained by respective technology 

capabilities. Two types of data were collected: 

1. Participants’ explicitly stated preferences for an input mode; 

2. Recordings of participants’ interactions. 

As mentioned before, this study intentionally does not use an implemented recognition 

system for either gestures, voices or controllers. On one hand, this deliberate non-use of an 

implemented system makes the study a bit abstract, but on the other hand, the completely user-

centric approach ensures the conclusions drawn are much more generalizable as they are 

independent of any limitations innate in specific implementations.   

 

3.1 Terminology: Referent vs. Task 

 Some elicitation studies [4, 13, 17, 18, 20] have used the term “referent” to refer to the 

actions they asked users to perform, which could be instances of term misuse. They all cited 

Wobbrock et al.’s surface computing gestures study [19] when the term first appeared in each of 

their own studies. In Wobbrock et al.’s study, “referent” was defined as “effects of an action” 

(but not the action itself).  
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 Those later studies, however, continued to use the term “referent” to refer to actions such 

as “record movie” [4], “find” [13], “click link” [17], “send” [18] and “pause” [20] without 

elaboration.  

 Therefore, this thesis is going to follow Piumsomboon et al.’s example [12] by adopting a 

more plain-sounding but also more accurate term “task” to refer to the actions that the study 

participants were asked to do.  

 

3.2 Task Selection 

This study consulted the previously mentioned analytic task taxonomies developed by Amar et 

al. and Heer et al. [7, 8] and used them as a foundation to build up a list of specification and 

manipulation tasks, as seen in Table 1 and Table 2. Note the actual tasks performed by 

participants are listed in the “Example Used in Elicitation” column. The “Before Execution” and 

“After Execution” columns serve as visual descriptions for what each task is. The former shows 

what the visual state is before a task is performed while the latter shows what the state should be 

after the task is performed.   
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Task Example Used in Elicitation Before Execution After Execution 

compare comparing two curves 

  

sort sorting points by Z-axis values 

  

disaggregate breaking a median bar to individual points 

  

aggregate summing Z-axis, group the sum by X-axis 

  

filter filter by even X-axis values 

  

Table 1 - Specification tasks used in the elicitation 
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Task Example Used in Elicitation Before Execution After Execution 

zoom in zoom in 

  

zoom out zoom out 

  

single-select selecting one point on the curve 

  

multi-select selecting multiple points 

  

rotate rotating horizontal bars 

  

highlight highlighting a group of points 

  

left pan moving all points to left 

  

right pan moving all points to right 

  

Table 2 - Manipulation tasks used in the elicitation 
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 As for why those specific tasks were used, it was because “Sort” and “Filter” were 

explicitly listed in both taxonomies. “Compare” was inspired by “Correlate” in Amar et al.’s 

taxonomy. “Aggregate” was mentioned in Amar et al.’s article. The reverse - “disaggregate” – 

was suggested by an expert in the visual analytics. All of them were emblematic of specification 

tasks. In terms of manipulation tasks, they were largely based on Heer et al.’s visualization task 

taxonomy. “highlight”, “single-select” and “multi-select” were variations of Heer et al.’s 

“Select”. “zoom in/out”, “left/right pan” and “rotate” were concrete examples of “Navigate”.  

For each elicitation participant, however, not all tasks were performed. To avoid a 

noticeable amount of physical strains caused by the weight of the HoloLens on a participant’s 

head, she would be asked to perform only six tasks out of a total of 13. At first, half of the six 

tasks were randomly chosen from the specification type and the other half randomly from the 

manipulation type. But it was later found out after 16 participants had gone through the 

elicitations that this seemingly even-handed approach had led to an oversampling of specification 

tasks, because there were more manipulation tasks than specification ones to choose from (8 

vs.5). Oversampling of specification tasks could compound any special effect of them on the 

measured variables (i.e., preference and agreement). To mitigate this issue, it was decided to 

bring more participants to do manipulation tasks, so that the ratio of performed specification 

tasks to performed manipulation tasks would closely match the 5:8 ratio. Therefore, after running 

16 participants on the 3-specification-3-manipulation format, another 5 were added, each of 

whom did 6 manipulation tasks.  

    



34 

 

3.3 Apparatus 

The main device used in the elicitation study was a Microsoft HoloLens. As mentioned in 

Chapter 2, HoloLens, unlike virtual reality devices such as Oculus Rift, makes a user see virtual 

objects as holograms floating in mid-air, thus allowing her to view the physical space around her 

as well. 

For the study, what a participant would see after putting on the HoloLens are exactly 

those 3D perspective images listed in Table 1 and Table 2, except for the background which was 

changed to be transparent in order to maximize one’s immersive feeling. Figure 15, for example, 

shows what a participant would see if she was doing the “zoom in” task.  

 

Figure 15 - Screenshot of what a participant would see in HoloLens.  

All those “before” and “after” images were generated with custom MATLAB code.  

 The other device used by participants was a generic game console controller resembling 

an Xbox controller. The reason for not using an AR/VR controller like the ones paired with 
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Oculus Rift (i.e., Oculus Touch) is that their usage involves a mixture of gestures and button 

pressing. That kind of bimodal device would have blurred the results I was seeking from the 

three distinct modes of input: voice, gestures and controllers, each of which is clearly unimodal. 

Figure 16 shows an Xbox controller. The generic controller used in the elicitation shares the 

same layout. 

 

Figure 16 - Button layout of an Xbox controller. Image from: 

https://commons.wikimedia.org  

Aside from those essential equipment, a chair was also in place to be sit on by a participant. A 

camera was situated approximately 5 meters in front the chair to record the participant’s 

interactions. 

 

3.4 Procedure 

 First, the purpose of the study as well as what the elicitation would entail was described 

to a participant. After consenting to be video recorded for the elicitation, she was asked a series 

of questions about her level of experience with gesture interactions, voice commands and game 

controllers. The participant's age was noted, too.  

 Next, to make sure the participant fully understood all the tasks she would be asked to do, 

I would explain to her the desired effect of each task by showing on a laptop both the “before” 

and the “after” images of the task. Because the participant was supposed to come up with her 

https://commons.wikimedia.org/
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own voice commands, I was careful enough in my verbal explanation to avoid the use of 

imperative statements so as not to predispose her toward a particular voice command.  

 Finally, the participant would go to a chair and put on the HoloLens and be told there was 

no recognition system in place and, for gestures and voice commands, she should come up with 

whatever made sense to her as long as she felt it could express her intent well. For the controller, 

all she needed to do was to move its sticks and/or press its buttons and, if necessary, imagine 

some UI elements in a displayed image to suit the point-and-click interaction paradigm of the 

controller.  

 For each task, the participant would be shown its “before” image in the Windows Photos 

app that came with the HoloLens. She would then do a gesture, a voice command or controller 

movements (Figure 17). 

 

Figure 17 – A study participant doing gesture for the task “single-select”. 
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To simulate the effect of the participant’s action, I would, as soon as she finished it, switch the 

displayed image to the corresponding “after” image with the click of a mouse. The mouse was 

connected to the HoloLens through blue-tooth while on my Windows laptop, an app called 

Microsoft HoloLens provided me with a view mirroring what the participant saw in the 

HoloLens. 

The participant would be asked to come up with as many as three different gestures to 

complete a task while sitting or standing. The sitting/standing position would alternate between 

each task. A participant with an even-numbered participant ID would start with the standing 

position whereas one with an odd id would begin with the sitting position first. The purpose of 

such an arrangement was to obtain participants’ preferences on sitting vs. standing. After 

gesturing, the participant would issue up to three different voice commands to complete the same 

task. The last input mode to be evaluated was the controller input, where the participant was 

required to demonstrate just 1 set of controller movements.  

At the end of each task, I would ask the participant to name her preferred input mode for 

it and the reason for her choice. She would also be asked at the end of the entire elicitation about 

her preference for sitting vs. standing while doing gestures. 

Some readers by this point may wonder why I asked for 3 gestures and 3 voice 

commands but only for 1 set of controller movements. The reasons for three gestures and voice 

commands were simply: 

1. to reduce legacy bias (from the use of mouse and keyboard) as suggested by Morris et 

al. [14]; 

2. to maximize the chance of finding similar interactions. 
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As for controllers, because they are designed for the prevalent “point-and-click” interaction 

paradigm, there is no “legacy bias” that can be avoided. In addition, unlike gestures or voice 

commands which allow for unrestricted forms of expression, controllers do have a fixed number 

of buttons one can choose from, therefore reducing the number of various interactions a 

participant can come up. Based on those two observations, I concluded the benefit of asking 

participants to come up with more than 1 set of controller movements was neglectable and thus 

decided against it. 

 

 

3.5 Participants 

In total, 21 participants joined the elicitation. Eleven were females and ten were males. 

The youngest participant was 18 while the oldest was 65 (mean age was about 27, median age 

was 24, with SD about 10). Eight of them categorized their experience with game controllers as 

“a lot” and another 3 said they had “a lot” of experiences with voice commands. 4 participants 

indicated “a lot” of experiences with gestures.  

In the next chapter, I will go over the data I gathered from all of them. 
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Chapter 4 Elicitation Results 

            This chapter shows an aggregation of the raw data collected from the elicitations (the raw 

data itself can be found in Appendix A and B). I will first present the aggregated data on 

preferences, followed by quotes from some participants on whey they made a particular choice. 

The chapter will then go on to show the aggregated data on agreements. However, because of the 

limitations in the existing agreement formulas described earlier, I will take a detour to introduce 

an alternative one, before revealing the agreement results calculated with my formula.   

 

4.1 Data Size 

 In total, there were 126 instances of task execution from twenty-one participants, with 

each of them doing six. Manipulation tasks were executed 78 times while specification tasks 

were performed 48 times. As mentioned in the previous chapter, this imbalance was intended so 

that on average, a single manipulation task and a single specification task had about the same 

times of being executed (for a total of 8 manipulation tasks, it is 
78

8
 ≈ 10 times; for the 5 

specification tasks, it is 
48

5
 ≈ 10 times). Because not all participant could come up with three 

gestures and three voice commands (e.g., two of the participants could not come up with a voice 

command for the “single-select” task; one participant could not come up with a gesture for the 

“sort” task, etc.), the elicitation data actually consists of 269 gestures, 271 voice commands and 

125 sets of controller movements.   

 

4.2 Input Mode Preference 

 The preference data collected in the elicitations looks like the following (Figure 18): 
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Figure 18 – A snippet of preference data collected in the elicitations. 

The value “best” in the “voice”, “controller” and “gesture” columns indicates a participant’s 

preference with a corresponding input mode.  

If we do not discriminate the results by task types, then it shows the participants preferred 

“gestures” 56 times, “voice” 37 times and “controller” 33 times overall. In relative terms, it is 

44% of overall counts for gesture, 29% of counts for voice and 26% of counts for controller.   

If we are to break down the results further by task types, we cannot simply limit 

ourselves to one type of tasks and then calculate a preference rate, because not all tasks have the 

same number of occurrences due to the random sampling. One way to handle this kind of 

situation is to simply list preference count for each task. Here is the result: 

task type preference count 

voice gesture controller 

aggregate specification 7 0 3 

compare specification 5 1 2 

disaggregate specification 3 4 4 

filter  specification 9 1 0 

sort specification 7 0 2 

highlight manipulation 1 8 1 

right pan manipulation 0 6 1 

multi-select manipulation 2 4 2 

left pan manipulation 0 12 2 

rotate manipulation 0 6 3 

single-select manipulation 0 3 7 

zoom in manipulation 0 7 2 

zoom out manipulation 3 4 4 

Table 3 - Preference count for each input mode in all the 13 tasks 
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4.2.1 Statistical significance. 

 To examine the statistical significance of the preference difference among the three input 

modes for each task, calculations of p-values were needed. In this study, the threshold was set at 

0.05. My general strategy was to first examine the difference significance across all the three 

input modes. If the resulting p-value was smaller than the threshold, then a post hoc analysis 

involving three additional pairwise comparisons between every input mode would be performed, 

so that I could find out which difference was significant. If the p-value from across the three 

input modes no smaller than the threshold, then no post hoc analysis would be conducted.  

 Since the preference data (preferred vs. non-preferred) was binomial, Cochran's Q test 

was used to derive the p-value indicating the significance of the preference difference across all 

the three input modes. Then, if a post hoc analysis was warranted, McNemar's test would be used 

to calculate a p-value concerning any pair of input modes. Because post hoc analyses would 

introduce the multi-testing problem, Bonferroni correction was also used to compensate for that 

by inflating all the p-values resulting from McNemar’s test. The following table lists the 

calculated p-values.   
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task type p-value from 
Cochran's Q 
test across 
3-input pref. 

p-value from McNemar's test with Bonferroni 
correction 

between voice-
gesture pref. 

between voice-
controller pref. 

between 
controller-gesture 
pref. 

aggregate specification 0.02 0.06 1 0.75 

compare specification 0.2 n/a n/a n/a 

disaggregate specification 0.91 n/a n/a n/a 

filter  specification <0.01 0.09 0.02 1 

sort specification 0.01 0.06 0.54 1 

highlight manipulation <0.01 0.15 1 0.15 

right pan manipulation 0.01 0.12 1 0.39 

multi-select manipulation 0.6 n/a n/a n/a 

left pan manipulation <0.01 <0.01 1 0.06 

rotate manipulation 0.05 n/a n/a n/a 

single-select manipulation 0.02 0.75 0.06 1 

zoom in manipulation 0.01 0.06 1 0.54 

zoom out manipulation 0.91 n/a n/a n/a 

Table 4 - p-value concerning the difference of preference counts for all tasks 

 

4.2.2 An aggregated view of reasons. 

Aside from asking the participants what input mode they preferred, I also asked why they 

preferred it. To list every response would make the thesis too verbose. Instead, I chose to 

aggregate the response data by extracting three most common keywords from the responses (a 

keyword would count only once for a single response even if the word appeared multiple times 

in the response). Among the preferences for gesture, the most common keywords are “precise” 

(16, 28% of all responses favoring gesture), “easy” (15, 27%) and “intuitive” (8, 15%). For 

responses favoring voice, the most common keywords are “easy” (19, 51% of all such 

responses), “quick” (6, 16%) and “convenient” (2, 5%). In the group where controller was 

preferred, the top three keywords are “easy” (8, 23%), “precise” (7, 22%) and “familiar” (6, 

20%). 
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4.2.3 A sample view of individual reasons. 

 Even though not every response is going to be enumerated, there are a few of them that 

are either thoughtful or interesting and thus deserve a spot here. For instance, when asked about 

the input mode preference for the task “zoom in”, one participant said this: 

 “My most favorite mode is gesture for sure…just because it feels natural and 

intuitive…with voice…I have to say something like ‘hey, try this!’ and then wait for the visual 

feedback whereas with gesture, I’m manipulating and seeing the results as I move my 

hands…controller is my least favorite because I have to pick it up and cannot do other things 

with my hands…also I have to carry it around…even though one benefit with the controller is its 

tangible feedback…”  

Another participant, after finishing the task “single-select”, explained why he favored 

“controller” over the other two input modes: 

 “Because I have accurate control…my least favorite is definitely the voice, because I 

have to very clearly specify which one (point) I want to select, and I cannot do that without a 

cursor…, (with regard to) gesture, your finger is only so accurate unless you are up close to it 

(the image)…even if I can bring the image close to me, there may be cases where I do not want 

to do that. For example, if I’m doing a presentation and we are all seeing the same shared 

image. I do not want to bring it closer (to select a point) and then put it back to show 

everyone…every time. Gosh!” 

The last quote to be included comes from a participant whose favorite input mode was 

“voice” when it came to the “aggregate” task: 

 “Voice…it’s a much saner way to describe a complex idea and you can simply say (it) 

and mean what you want whereas (with) gesture, you will have to… [the participant tried to 
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move his hand and then stopped, seemingly searching for words] … you know, it’s a more 

abstract version (of doing the task) … (and) it’s the worst (input mode)” 

 

4.3 Sitting vs. Standing While Gesturing 

Asked whether it is better to sit or stand while gesturing, 52% of the participants 

answered “sitting”, 29% indicated no preference and the rest 19% chose “standing”. Almost all 

who preferred sitting cited “comfort” as the primary reason behind the choice. The other reasons 

are “Device (HoloLens) too heavy” and “Tasks are stationary. No need to stand”. The ones who 

liked standing thought that the position afforded them more space to move their arms and hands. 

 

4.4 Input Agreement Rates 

 Finding agreements, by definition, involves comparison. The raw data collected on 

participants’ gesture, voice and controller interactions was in the form of video recordings. To 

make the comparison process faster as well as less error-prone, I was advised to encode the video 

and audio content into texts.  

Therefore, for gesture videos, I paid attention to the following details from each 

participant’s gesture: number of hands used, movements of the hand(s), static hand poses, the 

actions of active finger(s) and number of repeated movements. With them, I was able to come up 

with descriptions such as the one below for a gesture performing the “aggregate” task: 

(one hand, fingers bunching, moving up and down) x5, palm facing camera and turning 

clockwise 

The “x5” in the encoding indicates the gesture in the brackets was repeated five times.  
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 For the controller input encoding, it was much easier. I only took note of the buttons 

pressed, clockwise/counter-clockwise moves of the two sticks, which direction button was 

pressed on the directional pad (D-pad) and the number of repetitions. Here is a controller 

encoding for the “aggregate” task:  

 left stick counter-clockwise, right stick counter-clockwise, (yellow button) x2, d-pad up 

 Voice encoding was even more straightforward as it is simply a transcription of what a 

participant had said. Here is a voice command issued by a participant to perform the same 

“aggregate” task: 

 “add all the values across y-axis together, make a pie chart, distribute it by x” 

 

4.4.1 Definition of same inputs. 

 The encodings resulting from the above procedure had to go through a consolidation in 

order to reflect the true intent behind each input. The encodings were admittedly approximations 

of reality and a rigid comparison of those first phase approximations would only yield a result 

unable to reveal the real signal. My real goal was to find out how many participants shared the 

same mental model, or thought alike, when they performed a task. Some gestural studies [12, 13] 

also loosened their definitions for the “same” in order to capture participants’ real thinking 

behind their proposed gestures. 

  In this case, I borrowed the definition for “same gestures” directly from Piumsomboon et 

al.’s study: “gestures that were identical or having consistent directionality although the gesture 

had been performed with different static hand pose” [12]. For example, these two gestures - “one 

hand, closed fist, moving back” and “one hand, three-finger grasp, moving back” - would be 

considered to be the same because they have consistent directionality even though the static hand 
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poses - “closed fist” and “three-finger grasp” – are different. In practice, this means I would 

consolidate the two encodings by replacing one with the other.  

 As for voice, it would be quite a distortion to regard utterances such as “take out Y, sort 

by values” and “take out Y, sort based on values” as completely different. Instead, I defined 

“same voice” as “utterances that starts with as synonymous verb or verb phrase, optionally 

followed by synonymous nouns or attributes, optionally followed by synonymous adverbs”. This 

means that I had to, by taking out non-essential words like “a” and “the”, trim down each 

transcript to its bare minimum structure resembling “verb | verb phrase [, noun | attributes], 

[adverbs]” (“|” denotes “or”, “[…]” denotes optional content), and then consolidate the 

synonyms by using one consistent word or phrase. 

 Last, the definition for “same controller inputs” initially was “the exact same sequence of 

actions (button pressing/D-pad/stick moves)” but I soon found it too limiting. Even though the 

participants pressed different buttons, most of them were just meant to confirm an action 

(according to the participants’ own comments). In addition, most of the directional moves 

employing either the two sticks or the D-pad were arbitrary because the intend was to move the 

cursor between imaginary UI elements (again, according to the participants’ own comments). 

Those few non-arbitrary moves, which were related to positional placement of objects on the 

screen, were still arbitrary from my point of view because I never set an initial position of the 

cursor for the participant. Given those two observations, I loosened the definition for “same 

controller inputs”. It regarded all four face buttons (the colored ones as shown in Figure 16, 

Chapter 3) as the same (unless a participant used multiple face buttons and explicitly named each 

by color), and all directional moves employing the two sticks or the D-pad as the same. So, an 
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encoding like “left stick counter-clockwise, right stick counter-clockwise, (yellow button) x2, d-

pad up” would be reduced to “stick turn, button x2, d-pad”.  

 The complete encodings for all the three input modes can be found in Appendix B of the 

thesis.  

 

4.4.2 Clustering of same inputs. 

 After consolidating encodings for each of the three input modes, it is a straightforward 

process to cluster the encodings for a single task simply by checking whether those encodings 

were the same. Here is an example of such clustering: 

• Before clustering: "task 2": [ 

"id 1": ["gesture B", "gesture A"], 

"id 8": "gesture A", 

"id 2": "gesture C", 

"id 3": "gesture A" 

          ] 

 

• After clustering: "task 2": [ 

"gesture C": "id 2", 

"gesture A": ["id 1", "id 3", "id 8"], 

"gesture B": "id 1" 

          ] 

 

The “id #” represents a participant ID. Now the question is: how much agreement is there among 

the four participants when it comes to gesturing for “task 2”?    

 

4.4.3 An alternative formula for agreement rates. 

 I could have followed the footsteps of many other studies [4, 12, 13, 15, 18, 19, 20, 25, 

26] to use Wobbrock et al.’s formula (Equation 1, Chapter 2) to calculate agreement rates. 
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However, as it has been pointed out, Wobbrock et al.’s formula distorts reality by never equating 

to 0.  

Vatavu et al.’s formula [16] fixed the problem but was inappropriate for my study where 

multiple input proposals were sought from a participant for each task. To see why, consider a 

hypothetical situation where one participant proposed one gesture ("id 1": "gesture A") and 

another participant proposed an infinite amount of gestures, one of which was the same as the 

one proposed by the first participant ("id 2": ["gesture A", "gesture B", “gesture C”, …, “gesture 

N”]). Using Vatavu et al.’s formula,  

 

the agreement rate between the two participants would be 0. But this has more to do with the 

second participant (“id 2”) disagreeing with herself endlessly rather than a true reflection of the 

difference between the two people. After all, the first participant (“id 1”) only has one idea and 

the second participant agrees with her totally on that. I call this “agreement paradox”. Morris 

made a similar but more practical example to illustrate the same point [17].  

 To provide a more fitting solution to the problem, Morris introduced the concept of 

“max-consensus”. The only drawback with that approach is the retainment of the “never 0” 

problem. To illustrate, let us for a second time imagine there are 2 people each giving a different 

proposal. Then each of them can say her own proposal is the most popular one. Therefore, the 

“max-consensus”, defined as “the percent of participants suggesting the most popular proposed 

interaction” [17], is 
1

2
= 50%, a number defying our intuition again.   
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 The following table summarizes the characteristics of the three agreement rate metrics 

discussed so far: 

                           min value 

applicable study 

Never 0  0 

Single-proposal Wobbrock et al.’s formula Vatavu et al.’s formula 

Multi-proposal Morris’ max-consensus ? 

Table 5 - Characteristics of the three agreement rate metrics used in prior research 

 From the table it is clear to see this study needed a metric (marked as “?”) which not only 

minimizes to zero but also can aggregate the multi-proposal-per-participant data.  

 To this end, I propose the following formula to calculate agreement rates where a 

participant makes multiple input proposals to perform a task: 

𝐴𝑅 =  
max
𝑃𝑖⊆𝑃

|𝑃𝑖| − 1

|𝑃| − 1
 

where |𝑃|is the number of participants, 𝑃𝑖 is a set of participants who made proposal 𝑖, so  

max
𝑃𝑖⊆𝑃

|𝑃𝑖| is the number of participants who made the most popular proposal.  

This formula can be viewed as a modification on Morris’ “max-consensus” as her idea 

can be simply written as 
max
𝑃𝑖⊆𝑃

|𝑃𝑖|

|𝑃|
. The subtraction of one from both the numerator and the 

denominator in the formula, in my opinion, gives a more intuitive portrait of “agreement rate”.  

To explain it, let us examine the following visualization for two people who agree with 

each other: 

⚫-----⚫ 
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If we chose to describe the magnitude of the agreement between the two simply by counting the 

number of dots in the picture, then it would be obviously wrong to say 2 was the magnitude of 

the agreement between the following two people who disagree with each other: 

⚫ ⚫ 

There has be to an agreement and that agreement can be represented by a link. Therefore, it is 

much more accurate to equate the magnitude of agreement to the number of links in the picture. 

Note that if there are N people, then it will only require N – 1 links to connect them all. Hence 

the reason for the two “ -1” in my formula, which shifted the focus of Morris’ “max-consensus” 

from “percent of participants” to “percent of agreements”.  

 To make sure the formula indeed fills the hole left in Table 5, let us revisit a pervious 

situation where we had the following elicitation data: 

"id 1": "gesture A", 

"id 2": ["gesture B", "gesture A"] 

According to my formula, 𝑃 = {"id 1", "𝑖𝑑 2"}, therefore |𝑃| = 2; 𝑃𝑔𝑒𝑠𝑡𝑢𝑟𝑒 𝐴 = {"id 1", "𝑖𝑑 2"}, 

𝑃𝑔𝑒𝑠𝑡𝑢𝑟𝑒 𝐵 = {"𝑖𝑑 2"}, thus max
𝑃𝑖⊆𝑃

|𝑃𝑖| = 2. This results in an agreement rate of 1 which is justified 

given that “id 2” does not discriminate between her two proposals. Another example is the “total 

disagreement” situation: 

"id 1": "gesture A", 

"id 2": "gesture B" 

Clearly in this case, |𝑃| = 2, max
𝑃𝑖⊆𝑃

|𝑃𝑖| = 1. The resulting 𝐴𝑅 =  
1−1

2−1
= 0, thus removing the 

weakness in Morris’ “max-consensus”. 
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4.4.4 Result. 

 The alternative agreement formula was used in all the agreement rate calculations on 

gesture, voice and controller inputs. Of all the tasks performed in the experiment, the mean 

agreement rate for gestures was 0.6, the one for voice commands was 0.56 and the one for 

controller was 0.46. Table 6 and the radar chart in Figure 19 give a full picture on the agreement 

rates with details for each task.  

task type voice gesture controller 

aggregate specification 0.22 0.22 0 

compare specification 0.29 0.29 0.14 

disaggregate specification 0.3 0.5 0.5 

filter  specification 0.44 0.22 0.22 

sort specification 0.5 0.38 0.13 

highlight manipulation 0.78 0.67 0.44 

right pan manipulation 0.89 1 0.56 

multi-select manipulation 0.43 0.43 0.43 

left pan manipulation 0.7 1 0.6 

rotate manipulation 0.38 0.88 0.88 

single-select manipulation 0.67 0.8 0.78 

zoom in manipulation 0.75 0.88 0.75 

zoom out manipulation 0.9 0.5 0.5 

Table 6 - Input agreement rates for each input mode in all the 13 tasks 
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Figure 19 - Another representation of the agreement data from Table 6. The specification 

tasks were explicitly indicated in brackets. Note the asymmetric nature of this graph due to 

the large amount of empty space left by those specification tasks, which visually 

summarizes their overall low agreement rates. 

To help answer the second research question of this study, I broke down the result by task 

type. The resulting mean agreement rate for specification tasks was 0.29 and the one for 

manipulation tasks was 0.7. To calculate the p-value between them, I used the Mann-Whitney 

test because 1.) the agreement rate of a specification task has no bearing on that of a 

manipulation task, they are independent of each other, and 2.) a normal distribution is not 

assumed for agreement rates. The resulting p-value was 5.952 × 10−6. Table 7 shows a further 

breakdown by input modes. 
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        input 
mode  
task type 

Voice  Gesture Controller All 

Specification 0.35 0.32 0.2 0.29 

Manipulation 0.69 0.77 0.62 0.7 

Table 7 - Breakdown of voice, gesture and controller agreement rates by task types 

The final table in this chapter shows the most common input (whose count equals to 

max
𝑃𝑖⊆𝑃

|𝑃𝑖|) for each input mode of every task. Note that in some cases there are multiple most 

common inputs and those are separated by “|”.   

task type voice gesture controller 

aggregat
e 

specificat
ion 

sum z, group by x Index finger clicks thumb, hands 
together 

 

compare specificat
ion 

compare graph A with 
graph B 

Fist, pan, release the fist both stick turn | (stick 
turn, button x1)x2 

disaggre
gate 

specificat
ion 

scatter | disaggregate Hands apart stick turn, button x1 

filter specificat
ion 

keep even x values | 
remove odd x values 

(Index finger to screen)x[n] | 
(Fingers together to pick)x[n] 

(stick turn, button 
x1)x[n] 

sort specificat
ion 

sort all points by z values Hands folded stick turn, button x1 

highlight manipula
tion 

X` Outline (stick turn, button 
x1)x[n] 

right pan manipula
tion 

pan right Index finger traversing stick turn 

multi-
select 

manipula
tion 

select between 
[coordinates] 

Outline | Hand brush stick turn 

left pan manipula
tion 

pan left Index finger traversing stick turn 

rotate manipula
tion 

rotate right [x] degrees Fingers squeeze, rotate stick turn 

single-
select 

manipula
tion 

select point with 
[coordinates] 

Index finger click stick turn, button x1 

zoom in manipula
tion 

zoom in hands apart stick turn 

zoom out manipula
tion 

zoom out Fingers gripping and back stick turn 

Table 8 - Most common inputs for each input mode in every task 
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Chapter 5 Discussion on Results 

            Now that we have the results, it is time to revisit the two research questions laid out 

earlier in Chapter 1 and see what the answers to those are. I will also attempt to explain why the 

answers are such. Implications of those answer will be explored as well. In addition to that, an 

effort will be made to highlight the significance of the task types.  

 

5.1 Answers to the Research Questions 

5.1.1 Preference question. 

 My first research question asks, 

RQ1: Is there an association between a user’s preferred input mode and the type of the 

task she performs?    

My approach to answering this question was to first pick out the most preferred input 

mode (defined as the one with the largest preference count as seen in Table 3) for each task. 

Then I focused on p-values from McNemar's test (as shown in Table 4) which relate only to the 

most preferred input mode of each task. That would give us the following two tables for each 

type of tasks: 
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task type most preferred 
input mode 

p-value from McNemar's test with Bonferroni 
correction 

between voice-
gesture pref. 

between voice-
controller pref. 

between 
controller-gesture 
pref. 

aggregate specification voice 0.06 1 - 

compare specification voice n/a n/a - 

disaggregate specification controller/gesture n/a n/a n/a 

filter  specification voice 0.09 0.02 - 

sort specification voice 0.06 0.54 - 

Table 9 - p-values from McNemar's test relating only to the preferred input mode for each 

specification task3 

task type most preferred 
input mode 

p-value from McNemar's test with Bonferroni 
correction 

between voice-
gesture pref. 

between voice-
controller pref. 

between 
controller-gesture 
pref. 

highlight manipulation gesture 0.15 - 0.15 

right pan manipulation gesture 0.12 - 0.39 

multi-select manipulation gesture n/a - n/a 

left pan manipulation gesture <0.01 - 0.06 

rotate manipulation gesture n/a - n/a 

single-select manipulation controller - 0.06 1 

zoom in manipulation gesture 0.06 - 0.54 

zoom out manipulation gesture/controller n/a n/a n/a 

Table 10 - p-values from McNemar's test relating only to the preferred input mode for each 

manipulation task 

From the two tables, we can see that “voice” was favored for most specification tasks (4 

out of 5 in Table 9) whereas “gesture” was the top choice for most manipulation tasks (6 out of 8 

in Table 10). However, the apparent associations between “voice” and specification tasks as well 

as the association between “gesture” and manipulation tasks are not statistically significant. Most 

p-values from McNemar’s test in those two tables go above the 0.05 significance threshold. 

So the answer to my first research question is, “in most cases, yes, but the association is 

not statistically significant”. In addition, some outliers such as the specification task 

                                                 

3 “n/a” in both Table 9 and 10 indicates the p-value was not calculated because of a large p-value (> 0.05) resulting 

from Cochran's Q test.     
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“disaggregate” (not favoring voice), the manipulation task “single-select” (not favoring gesture) 

or even “zoom-out” (tied between gesture and controller) may warrant further investigations in 

the future. 

 

5.1.2 Agreement question. 

The answer to my second research question, 

RQ2: Are interaction agreement rates for one type of tasks higher than those of the other 

type? 

is a clear “yes”. Table 7 from Chapter 4 shows the participants exhibited a lot more similar 

interaction behavior when performing manipulation tasks than performing specification ones. 

The small p-value (< 0.01) between the two mean values of agreement rates (0.70 vs. 0.29) 

further suggests the validity of the answer.  

 If we categorize agreement rates into three classes – low, medium and high – and define 

an agreement rate as “high” if its value is above 0.66 (and “low” if the value is below 0.33), then 

all the high agreement rates would come from the manipulation tasks and the input encodings 

associated with them are as follows: 

• Gesture 

o Highlight: Outline 

o Right pan: Index finger traversing 

o Left pan: Index finger traversing 

o Rotate: Fingers squeeze, rotate 

o Single-select: Index finger click 

o Zoom in: hands apart 
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• Voice 

o Highlight: highlight area from [coordinates] 

o Right pan: pan right 

o Left pan: pan left 

o Single-select: select point with [coordinates] 

o Zoom in: zoom in 

o Zoom out: zoom out 

• Controller 

o Rotate: stick turn 

o Single-select: stick turn, button x1 

o Zoom in: stick turn 

The gestures with high agreement rates share one common trait: they can also be used as 

body languages to supplement a social conversation between two people. In contrast, low 

agreement rate gestures, those with an agreement rate below 0.33, such as “(Fingers 

together to pick)x[n]” for the “sort” task, are not generally employed in a social 

conversation and may not even be frequently used in a conversation requiring specialized 

knowledge.  

Voice commands with high agreement rates tend to be terse but clear, as shown in the 

above list. They almost mirrored the task names I gave. This, again, stands in contrast to those 

with low agreement rates which are either more complex in language structure (e.g., sum z, 

group by x for the “aggregate” task) or more ambiguous (e.g., scatter for the 

“disaggregate” task).  
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The controller inputs with high agreement rates are short and simple, as well. They all 

involve the turning of a single stick and at most one press on a button. Those with low agreement 

rates, similar to the low agreement rate voice commands, are more complex and involve many 

more movements such as (stick turn, button x1)x[n] for the “filter” task.  

One more thing to note is that none of the manipulation tasks has a low agreement rate (< 

0.33) and none of the specification task has a high agreement rate (> 0.66).  

  

5.2 Possible Explanation on Difference in Agreements 

 In hindsight, it is not too hard to see why inputs for manipulation tasks had a much higher 

agreement rate than those for specification tasks. In the elicitations, most interaction behaviors 

for manipulation tasks, whether talking, gesturing or pressing buttons, were mimics of what they 

would be in an everyday physical environment, which, in the broadest sense, is shared by all 

people and thus tends to converge behavior. For specification tasks, however, most participants 

seemed to mimic what they would do in their own minds, which obviously were not physically 

shared and thus had a much higher chance of producing diverging behavior.  

  

5.3 Implications from Differences in Agreements 

 The agreement rate data could also serve as a practical, useful guideline to the same UX 

designer in the field of immersive computing (more applicable if the domain is immersive 

analytics). Specifically, if the task to design for is manipulation, it might be worth the effort to 

solicit gestures or voice commands from a small group of potential users, since tasks of that type 

seem to have higher agreement rates which should make the designer feel more confident 
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applying the elicited interactions to a broader audience. A similar idea was expressed by Morris 

as well:  

 “if the goal is to design a system with a single, highly guessable command… then (a high) 

max-consensus may be more important” [17] 

On the other hand, if the type of a task is specification which suggests a lower agreement rate 

among users, the designer might skip an elicitation and simply roll out an implementation based 

on her own idea, which should be further refined based on later feedback. 

 

5.4 Significance of Task Types 

 This study found a non-statistically significant association between a user’s preferred 

input mode and the type of task she performed in most cases. In terms of determining the 

preference for an input mode, the type of a task, at least in the realm of specification and 

manipulations tasks used in this study, seems to be a factor but may not be a significant one. 

 A different observation, however, can be made in the agreement rate data. If we lump all 

the data together, we see agreement level among the three input modes were not that different 

(0.6, 0.56 and 0.46). This corroborates with aforementioned Morris study in which no 

statistically significant differences in agreement rates were found between voice and gesture 

[17]. But Morris did discover that, on a per-task basis, there were some big differences. They 

went on to suggest that some tasks were thus better handled in a particular input mode. My work 

could be seen as an attempt to make clear what those “some” tasks are. Indeed, after I broke 

down the agreement rates by manipulation/specification task types, statistically significant 

differences were revealed. 
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 There may be other ways to differentiate tasks and by no means do I claim the Heer et 

al.’s task taxonomy is the only one, or even a correct one in all cases. However, to further our 

understanding on all aspects of input modes in immersive computing, I think the characteristics 

of an underlying task may still offer important clues. 

 

5.5 Comparing Agreement Rates Calculated with My Formula, Max-consensus and Vatavu 

et al.’s Formula 

 In Chapter 4 I introduced an alternative formula to calculate agreement rates and 

provided some theoretical arguments for its advantages both to Morris’ max-consensus metric as 

well as Vatayu et al.’s formula. In practice, though, how did it really stack up against those two?   

 For that, I calculated the following agreement rates with both formulas: 

 
task type voice gesture controller 

aggregate specification 0.3 0.3 0.1 

compare specification 0.38 0.38 0.25 

disaggregate specification 0.36 0.55 0.55 

filter  specification 0.5 0.3 0.3 

sort specification 0.56 0.44 0.22 

highlight manipulation 0.8 0.7 0.5 

right pan manipulation 0.9 1 0.6 

multi-select manipulation 0.5 0.5 0.5 

left pan manipulation 0.72 1 0.63 

rotate manipulation 0.44 0.89 0.89 

single-select manipulation 0.7 0.9 0.8 

zoom in manipulation 0.78 0.89 0.77 

zoom out manipulation 0.91 0.55 0.55 

Table 11 – Agreement rates according to Morris’ max-consensus 
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task type voice gesture controller 

aggregate specification 0.02 0 0 

compare specification 0.06 0.03 0.06 

disaggregate specification 0.13 0.13 0.33 

filter  specification 0.11 0.13 0.07 

sort specification 0.31 0.11 0.03 

highlight manipulation 0.62 0.49 0.22 

right pan manipulation 0.51 0.82 0.38 

multi-select manipulation 0.08 0.17 0.19 

left pan manipulation 0.62 0.62 0.36 

rotate manipulation 0.17 0.78 0.78 

single-select manipulation 0.33 0.29 0.64 

zoom in manipulation 0.61 0.25 0.58 

zoom out manipulation 0.82 0.22 0.33 

Table 12 - Agreement rates according to Vatavu et al.’s formula4 

 First of all, none of the agreement rates resulting from “max-consensus" is 0, even though 

both my formula and Vatavu et al.’s formula indicate, at least, the controller input agreement rate 

for “aggregate” task ought to be 0. This further validates the claim that “max-consensus” does 

not result in 0.  

 Second of all, all the agreement rates calculated with Morris’ “max-consensus” are 

slightly inflated compared to the numbers resulting from my formula. This is no surprise given 

that 
𝑎

𝑏
 (max-consensus) is always larger than 

𝑎−1

𝑏−1
 (my formula). However, the agreement rates 

from both calculations share the same ranking order.  

 The third interesting point is that the numbers from Vatavu et al.’s formula is always 

lower than those from mine, and in some cases, significantly lower. I think there are two reasons 

for this: one is that in the cases of voice and gesture, my formula simply had more data to work 

with by having access to at most 3 gestures and voices from each participant, whereas Vatavu et 

                                                 

4 In order to apply this formula, each participant is supposed to register only one interaction for each input mode. To meet this 

criteria with the data from my study, only the first gesture/voice from each participant was taken into account.   
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al.’s formula was restricted to pull data only from the first gesture and voice of each participant. 

The other reason, in case of controller input mode where both formulas had access to the same 

amount of data (only 1 controller interaction from each participant), has more to do with the 

inherent mathematical properties of Vatavu et al.’s formula. The formula is much more 

conservative by squaring a proper fraction, whose value represents the percentage of an 

interaction among all interactions. Even though Vatavu et al.’s formula is more about summing 

up multiple such squared fractions, there may just not be enough second or third popular 

interactions in my study to make up for that kind of “loss”.  

 Overall, according to the above analysis based on empirical data, my alternative formula 

stands on a middle ground in this study: it is a little more conservative than Morris’ max-

consensus but much more optimistic than Vatavu et al.’s formula. 
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Chapter 6 Limitations, Future Work and Conclusion  

            This concluding chapter acknowledges current limitations in the study as well as offers 

suggestions to improve them. It then looks ahead to some possible future work. As the last 

chapter, it ends fittingly with a summary of the work done throughout the entire thesis. 

 

6.1 Limitations 

 The first limitation of the study is that 5 of the 21 participants only executed 

manipulation tasks. Even though the participants were not aware of the type of tasks they 

performed, given the observation that “voice” was never preferred by those 5 participants, some 

of them, by the time the 5th or the 6th task was about to be performed, might have felt that “There 

seems to be only two valid input modes in this study so I am going to stick to one of those two 

because I do not want to appear as wrong even though for this task I am more inclined toward 

the 3rd choice.”. This predisposed way of thinking cannot be ruled out. A better way would be 

simply letting all participants perform a subset of tasks of which the specification vs. 

manipulation task ratio matches that of the task pool.   

 The second limitation is the relatively short interaction time the participants had with 

controllers. The original intentions may still hold (see the “Procedure” section in Chapter 3) but 

from a study design point of view as well as for the sake of robust statistical results, having a 

participant use the controller only once per task does leave such a question unanswered: what if 

the limited exposure to the controller made participants prefer it less? Again, a better way to deal 

with this would just be to lengthen the elicitation a little to allow for an equal amount of 

exposure to the controller. 
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 The third limitation is the monologue voice input. Most verbal requests from one person 

to another result in a dialog between the two because the requestor can rarely express her 

intentions succinctly in a single utterance, especially for a request with an abstract nature. Yet in 

my elicitations, I expected the participants to do so to a computer. A better approach could 

mimic a conversational chat-bot such as the Amazon Alexa to provide a more realistic setting for 

participants. For example, instead of expecting a participant to say, “sorting by z-axis values”, 

the researcher should be prepared to follow up her single-word utterance “sort” with the question 

“by what?” and then expect her to reply with some sorting criteria. 

The fourth limitation is the separate use of voice commands and gestures. A more 

realistic setting is to allow the interwoven usage of voices and gestures (i.e., multi-modal 

interactions), to issue a request. This way of interaction is a standard feature in human face-to-

face communications and it would be ideal not to restrict it in human-to-computer interactions. 

Another limitation is the lack of participants with diverse backgrounds and relatively low 

number of participants. Sixteen of the 21 participants in our study came with a computer science 

background. While it is certainly creditable to have a computer science professional or student 

perform visual analytics tasks, it would be more ideal to have participants coming from a wider 

variety of backgrounds as visual analytics is widely used in other fields as well 

(natural science and social science). The limited number of participants in our study also means I 

had to adopt a more cautious tone in narrating my findings.  

The last notable limitation of this study is the specific domain of tasks used in the 

experiment. It confines all the findings in this study within the field of visual analytics. While it 

is possible to use a list of primitive and domain-agnostic tasks from other studies [12,13] to 

conduct a similar experiment, those low-level tasks are predominantly manipulation and thus 
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could lead to a specific result. As pointed out by Nielsen et al., developing a generic, cross-

domain approach remains an unsolved problem [11]. 

 

6.2 Future work 

 One obvious follow-up work is to implement a voice and gesture recognition system 

based on the elicited data and follow the design guideline proposed in Chapter 5. Then a 

usability study could be conducted to validate the findings in this thesis. With today’s fast pace 

of advancement in machine learning, it is possible to assemble a good recognition system with 

ready-made components such as Google Cloud Speech and Vision APIs.   

 Another possible work is more theoretical. My alternative agreement rate formula, based 

on Morris’ “max-consensus” [17], inevitably discards information because it only “sees” the 

most popular input, as indicated by the term max
𝑃𝑖⊆𝑃

|𝑃𝑖|. If, for example, the count of the most 

popular input is 10, then consider the following two cases: in one case, the second most popular 

input has a count of 9; in the other case, the 2nd most popular input has a count of 0. According to 

my formula, both cases have the same agreement rate. But the question is: should it be? If not, 

what can we do next? If there is nothing we could do, does that mean no more elicitation studies 

where multiple interactions could be proposed? More studies are needed to address those open 

questions.  

 

6.3 Conclusion 

 I realized that we could distinguish two types of interaction tasks according to Heer et 

al.’s task taxonomy: specification and manipulation. To find out whether those two types had 
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anything to do with users’ preferred input mode in immersive computing (specifically AR) and 

whether they had any impact on interaction agreement rates, I elicited gesture, voice and 

controller interactions from 21 participants wearing a Microsoft HoloLens. After analyzing the 

video and audio data collected from the elicitation, during which I also developed a formula for 

calculating agreement rates, I found a non-statistically-significant association between a 

participant’s preferred input mode and the type of tasks she performed in most cases. However, 

participants did share a lot more similar interaction behavior to execute manipulation tasks than 

they did to execute specification tasks. An attempt was made to explain why we observed such 

agreement data and what its implication could be. One AR interaction design guidelines was 

offered in the process, too. In addition, I believe more understandings on the characteristics of a 

performed task may lead to further insights on input modes for immersive computing. Finally, 

with a note on study limitations upon which future work could be based, the thesis concludes.  
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Appendix A: User Input Preferences  

subject 
id 

standing/sitting 
pref. when 
gesturing 

task type voice controller gesture 

1 sitting filter specification best   

  sort specification best   

  aggregate specification best   

  zoom out manipulation best   

  zoom in manipulation   best 

  left pan manipulation   best 

       

2 standing compare specification best   

  sort specification  best  

  aggregate specification  best  

  highlight manipulation   best 

  left pan manipulation   best 

  zoom in manipulation   best 

       

3 no pref. compare specification best   

  disaggregate specification best   

  aggregate specification best   

  multi-select manipulation best   

  rotate manipulation  best  

  left pan manipulation   best 

       

4 sitting sort specification best   

  disaggregate specification   best 

  compare specification   best 

  zoom out manipulation best   

  highlight manipulation   best 

  multi-select manipulation   best 

       

5 sitting filter specification best   

  sort specification best   

  disaggregate specification  best  

  single-select manipulation  best  

  highlight manipulation   best 

  zoom in manipulation   best 
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subject 
id 

standing/sitting 
pref. when 
gesturing 

task type voice controller gesture 

6 sitting compare specification best   

  filter specification best   

  sort specification best   

  highlight manipulation best   

  left pan manipulation  best  

  zoom in manipulation  best  

       

7 no pref. aggregate specification best   

  disaggregate specification best   

  filter specification best   

  multi-select manipulation  best  

  single-select manipulation  best  

  left pan manipulation   best 

       

8 sitting aggregate specification best   

  sort specification best   

  filter specification   best 

  left pan manipulation   best 

  rotate manipulation   best 

  zoom out manipulation   best 

       

9 standing filter specification best   

  aggregate specification  best  

  disaggregate specification   best 

  multi-select manipulation best   

  left pan manipulation  best  

  single-select manipulation  best  

       

10 no pref. compare specification best   

  disaggregate specification best   

  filter specification best   

  zoom out manipulation best   

  single-select manipulation   best 

  right pan manipulation   best 

       

11 no pref. aggregate specification best   

  filter specification best   

  sort specification best   

  zoom out manipulation  best  

  single-select manipulation  best  

  highlight manipulation   best 
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subject 
id 

standing/sitting 
pref. when 
gesturing 

task type voice controller gesture 

12 sitting aggregate specification best   

  compare specification  best  

  disaggregate specification  best  

  left pan manipulation   best 

  right pan manipulation   best 

  rotate manipulation   best 

       

13 sitting filter specification best   

  sort specification best   

  disaggregate specification   best 

  multi-select manipulation  best  

  zoom out manipulation  best  

  zoom in manipulation   best 

       

14 standing aggregate specification  best  

  compare specification  best  

  disaggregate specification  best  

  highlight manipulation  best  

  rotate manipulation   best 

  single-select manipulation   best 

       

15 standing filter specification best   

  disaggregate specification  best  

  sort specification  best  

  left pan manipulation   best 

  right pan manipulation   best 

  zoom out manipulation   best 

       

16 sitting compare specification best   

  aggregate specification best   

  disaggregate specification   best 

  highlight manipulation   best 

  multi-select manipulation   best 

  zoom in manipulation   best 

       

17 sitting rotate manipulation  best  

  zoom out manipulation  best  

  highlight manipulation   best 

  left pan manipulation   best 

  right pan manipulation   best 

  single-select manipulation   best 
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subject 
id 

standing/sitting 
pref. when 
gesturing 

task type voice controller gesture 

18 sitting right pan manipulation  best  

  single-select manipulation  best  

  highlight manipulation   best 

  left pan manipulation   best 

  rotate manipulation   best 

  zoom in manipulation   best 

       

19 sitting rotate manipulation  best  

  single-select manipulation  best  

  zoom in manipulation  best  

  left pan manipulation   best 

  right pan manipulation   best 

  zoom out manipulation  best  

       

20 no pref. highlight manipulation   best 

  multi-select manipulation   best 

  rotate manipulation   best 

  zoom out manipulation   best 

  left pan manipulation   best 

  right pan manipulation   best 

       

21 no pref. single-select manipulation  best  

  left pan manipulation   best 

  multi-select manipulation   best 

  rotate manipulation   best 

  zoom in manipulation   best 

  zoom out manipulation   best 
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Appendix B: User Input Encodings  

Voice Encodings  

task subject voice1 voice2 voice3 

aggregate 1 sum z, group by x   

 2 add all values across y-axis together, 
make pie chart, distribute it by x 

make empty pie 
chart based on x, 
add all values of 
bar, group by x 

add all values 
of same colors, 
show them in 
pie chart 

 3 sum z, group by x   

 7 get total of each color z values, 
present them into pie pattern 

  

 8 sum each x value base them into pie 
chart 

sum by color base 
them into pie chart 

group by sum 
of x values 

 9 for all different colors i see on screen, 
iterate each color, calculate sum for 
each color. create pie chart for 
aggregated sums for each color 

create pie chart by 
aggregating all 
colors 
independently 

 

 11 group by x pie chart sum each, add up  

 12 sum z values aggregate by x sum z, group by x  

 14 aggregate into pie chart sum z values into 
pie chart group by 
x 

create pie 
chart using z x 
values 

 16 aggregate into pie chart based on x aggregate sums aggregate 

     

compare 2 select A B, compare select blue red, 
compare 

select 
everything in 
this graph, 
compare 

 3 compare with curve B bring in curve B load curve B 

 4 throw my curve above red curve drag red curve 
from right to left 

 

 6 compare graph A with graph B   

 10 take curve B, compare with curve A place curve A 
show it with curve 
A 

compare graph 
A with graph B 

 12 compare curve A with curve B view curve A curve 
B 

 

 14 compare curve A with curve B view difference 
between curve A 
curve B 

compare blue 
curve with 
other curve 

 16 select A B, compare compare graph A 
with graph B 
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task subject voice1 voice2 voice3 

disaggregate           3 disaggregate reset scatter 

 4 scatter ungroup points distribute 
points 

 5 disaggregate scatter  

 7 break down values   

 9 show me individual points break this part into 
individual points 

 

 10 show original data points show data of 
values 

show original 
data points on 
graph 

 12 disaggregate   

 13 disperse separate  

 14 break apart scatter  

 15 disaggregate show me individual 
points 

 

 16 disperse break apart  

     

filter           1 filter by even X values remove odd x 
values 

keep even x 
values 

 5 filter by even X values remove odd x 
values 

keep even x 
values 

 6 filter by even X values filter by odd x 
values 

(filter out 
color)x3 

 7 keep even x values remove odd x 
values 

(filter out 
color)x3 

 8 remove odd x values keep even x values  

 9 for each odd x bars, make it 
disappear 

starting from 1 bar, 
alternatively 
remove each bar 

(filter out 
color)x3 

 10 filter out X1, X3, X5 filter out X1, X3, 
X5 

(filter out 
color)x3 

 11 filter out X1, X3, X5   

 13 filter by odd x values keep even x values remove odd x 
values 

 15 filter by odd x values   

     

highlight           2 highlight area from [coordinates] draw rectangle 
select everything 
inside it, 
[coordinates] 

 

 4 highlight area from [coordinates]   

 5 highlight area from [coordinates]   

 6 highlight area from [coordinates]   

 11 show rectangle less or more by [x] 
amount  

multi-select less or 
more by [x] amount  
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task subject voice1 voice2 voice3 

highlight 14 highlight area from [coordinates] select all points 
between 
[coordinates] 

get all points 
between 
[coordinates] 

 16 highlight area from [coordinates]   

 17 highlight area from [coordinates]   

 18 highlight area from [coordinates]   

 20 highlight leftmost [x] percent of points, 
except 1st point 

  

     

left pan           6 pan left scroll left move left 

 7 move purple section to left change position of 
purple blue 

put purple 
section in 
middle 

 8 pan left rotate left show y-axis 

 9 move data points toward center so 
that left point align with points 
[coordinates] 

move data points 
to left until i say 
stop 

 

 12 pan left move left shift left 

 15 pan left move left  

 17 pan left move left  

 18 pan left move to right see more on 
right 

 19 pan left move left  

 20 pan left move image to 
right 

slide to right 

 21 move it bit along axis to left   

     

multi-select           3 select between [coordinates] select everything 
below 
[coordinates] 

 

 4 select between [coordinates] select base  

 7 select points on ground select points with 0 
z value 

 

 9 select points with [coordinates] move height of 
4000 select all 
points underneath 
that  

  

 13 select between [coordinates] group x plain select points 
with 0 z value 

 16 select everything below [coordinates] select between 
[coordinates] 

 

 20 select bottom [x] percent of points   

 21 select all points under [coordinates]   

     

right pan           1 pan right move blue points 
to left side, move 
yellow points to left 
side 

 

 2 move all points toward value axis  move whole graph 
towards left  

move whole 
graph to center  



79 

 

task subject voice1 voice2 voice3 

right pan 3 pan right over left  move left  

 10 pan right rotate   view left 

 12 pan right move right shift right 

 15 pan right move right  

 17 pan right move right  
 

 18 move to left pan right view more on 
left 

 19 pan right move right  

 20 pan right move to left slide left 

     

rotate           3 rotate  over  

 8 rotate right [x] degrees   

 12 rotate then stop rotate graph frontview 

 14 rotate right [x] degrees spin left  

 17 rotate [x] degree counter-clockwise rotate graph to left 
little bit 

 

 18 rotate right [x] degrees (turn right)xN  

 19 rotate [x] percent to left rotate chart to look 
at me 

 

 20 rotate right rotate counter 
clockwise 

 

 21 rotate right [x] degrees rotate right rotate so that Y 
axis is more 
visible 

     

single-select 5 select point with [coordinates]   

 7 select point with relative select point with 
[coordinates] 

 

           9 select point with [coordinates] At [x] percent left 
to (0,0) point, 
select point 

descend at [x] 
percentage 
stop 

 10 select point with [coordinates]   

 11 select point with [coordinates] select middle, then 
select left or right 
to point 

 

 14 select point with [coordinates]   

 17 select point with [coordinates]   

 18    

 19 select [x]-th point to left pick [x]-th point to 
left 

 

 21    

     

sort 1 sort all points by z values   

 2 sort all points by z values convert to 2d 
without y, sort by 
value in asc order 

take out y, sort 
by/based on 
values 
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task subject voice1 voice2 voice3 

sort           4 sort all points in vertical line,starting 
from 0 

sort all points, pick 
line, starting from 0 

arrange all 
points, pick 
line, starting 
from 0 

 5 sort according z values, in asc order arrange all points, 
from small to large, 
wrt z values 

order z values 
from small to 
large 

 6 sort all points by z values sort points, 
arrange by z 
values 

 
 
 

 8 sort all points by z values plot on xy graph, 
by z values 

 

 11 sort z   

 13 sort z group  

 15 sort all points by z values   

     

zoom in 1 zoom in specify coordinate, 
zoom in 

 

 2 zoom in [x] percent make graph twice 
its original size 

expand 

           5 zoom in expand detail 

 6 zoom in expand  

 13 zoom in move closer enlarge 

 16 zoom in inspect move closer 

 18 zoom in go in  

 19 zoom in enlarge around this 
area 

take me closer 

 21 zoom in [x] percent make it [x] inch by 
[x] inch 

 

     

zoom out 1 zoom out go back to original 
state 

 

 4 zoom out go far  

           8 zoom out pan out  

 10 zoom out enlarge make bigger 

 11 zoom out expand unfocus 

 13 zoom out smaller  

 15 zoom out   

 17 zoom out make it small  

 19 zoom out take me further 
away 

 

 20 zoom out pan out move back 

 21 make it little bit smaller   

[coordinates] = arbitrary x, y and z values; [x] = arbitrary numeric values 
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Gesture Encodings  

task subject Gesture1 gesture2 gesture3 

aggregate 1 Fingers close 
together, picking 
x[n], fingers loose, 
hands spin 

(fingers together to move)x[n], 
both hands draw half circle 

 

 2 The index finger 
clicks, the index 
finger draws a 
circle, and the palm 
of the hand touches 
the screen. 

Fingers close together, move 
straight up, index finger click, 
index finger circle, slap palm 

Slap to screen, 
straight forward, 
index finger click, 
index finger circle, 
palm to screen 

 3 Index finger clicks 
thumb, fists 

(press down, hand shift)x[n] Index finger clicks 
thumb, hands 
together 

 7 (Forefinger clicks 
on thumb)x[n], 
hands at the same 
time draw half park 

Fingers are knife-shaped, 
various movements, both 
hands simultaneously draw half 
garden 

 

 8 (Forefinger clicks 
on the thumb)x[n], 
fingers together, 
picking x[n] 

  

 9 ((index finger 
click)x[m], index 
finger tabs 
thumb)x[n] 

  

 11 One-hand fist, one-
handed circle 

  

 12 Fist close Hands folded up and down, 
pinch rotating 

Hands folded 
horizontally and 
pinched 

 14 Index finger clicks 
thumb, hands 
together 

Index finger clicks thumb, fists  

 16 One fist, hands 
folded 

One-handed circle, hands 
folded 

Index finger clicks 
thumb, hands 
together 

     

compare 2 index finger double 
click, palms up and 
alternately move up 
and down 

The thumb of the index finger 
opens, moves along the curve, 
and the palms of the hands 
move upwards and alternately 
move up and down 

index finger 
double click, 
hands together 

 3 Fist, pan, release 
the fist 

  

 6 Fingers together to 
pick and move 

  

 4 Forefinger thumb 
open, move along 
the curve 

Fingers together to pick and 
move 
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task subject Gesture1 gesture2 gesture3 

compare 10 Fist, pan, release 
the fist 

  

 12 Hands close 
together 

  

 14 One-handed index 
finger clicks thumb, 
another hand flips 

Index finger double click, 
hands together 

 

 16 One hand fist Index finger double click Fist, pan, release 
the fist 

     

disaggregate 3 Hands apart High-five Close up 

 7 boxing Boxing down Left and right 
uppercuts 

 10 Fight back Hands apart  

 4 Index finger click Hands are parallel to each 
other, with both hands index 
finger at the same time, with 
both hands simultaneously 
index finger click 

High-five 

 5 High-five Index finger click Forefinger thumb 
is horizontally 
separated 

 9 High-five   

 15 Five fingers apart Hands apart  

 16 Hand waving back 
and forth 

Five fingers apart Hands apart 

 12 Hands apart   

 13 Hands apart Five fingers apart Waving once 

 14 Hands apart Hands off  

     

filter 1 (Index finger to 
screen)x[n] 

  

 5 (Index finger to 
screen)x[n] 

  

 6 Vertical separation 
of hands 

  

 7 (Fingers together to 
pick)x[n] 

  

 8 (Fingers together to 
pick)x[n] 

  

 9 (Index finger clicks 
x[m], fists)x[n] 

  

 10 (Fingers together to 
pick)x[n] 

((Index finger clicks)x[m], 
fists)x[n] 

 

 11 One hand on hold, 
the other hand 
((index finger 
click)x[m], fist)x[n] 

  



83 

 

task subject Gesture1 gesture2 gesture3 

filter 13 One hand down   

 15 (Index finger to 
screen)x[n] 

  

     

highlight 2 Outline Smear rectangle Hands with your 
index finger thumb 
squeezed and 
dragged down 

 4 Outline Hands cut together and fingers 
grip back 

 

 5 Outline Diagonal  

 6 Hands apart Forefinger thumb separated  

 11 Diagonal Forefinger thumb separate and 
diagonal 

Hands apart 

 16 Diagonal Select one corner with one 
finger and choose one corner 
with the other 

Click on 4 corners 

 14 Outline Diagonal Z word 

 18 Outline Forefinger thumb separated Smear rectangle 

 20 Outline Smear rectangle Click on 4 corners 

 17 Outline Hands forefinger into a square  

     

right pan 7 Index finger 
traversing 

both hands traverse  

 9 Index finger 
traversing 

  

 8 Index finger 
traversing 

  

 6 Index finger 
traversing 

  

 12 Index finger 
traversing 

  

 15 Index finger 
traversing 

  

 19 both hands traverse Index finger traversing Waving to the 
palm of other hand 

 20 Index finger 
traversing 

Index finger double-click the 
other side 

 

 18 Index finger 
traversing 

both hands traverse  

 17 Index finger 
traversing 

  

 21 Index finger 
traversing 

  

     

multi-select 3 Fingers close 
together 

Forefinger thumb tight, hands 
separated 

Hands are knife-
shaped while 
separating 

 4 Outline (Index finger click)x[n] Outline x2 
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task subject Gesture1 gesture2 gesture3 

multi-select 7 Outline Hand brush Hands down, 
hands separated 

 9 (Index finger 
clickf)x[n] 

Two index fingers  

 13 Outline Palm lift Hand brush 

 16 Diagonal stroke Hand brush Forefinger thumb 
tight, hands 
separated 

 20 Outline Forefinger thumb separation, 
translation 

 

 21 Hand brush Two-handed fists, translation, 
rings 

 

     

left pan 1 Index finger 
traversing 

Fingers squeeze, rotate  

 2 Index finger 
traversing 

  

 3 Index finger 
traversing 

  

 10 Fingers squeeze, 
rotate 

Index finger traversing  

 12 Index finger 
traversing 

  

 15 Index finger 
traversing 

  

 17 Index finger 
traversing 

Hands traverse  

 18 Index finger 
traversing 

  

 19 Hands traverse Index finger traversing Waving to the 
palm of your hand 

 20 Index finger 
traversing 

Index finger double-click the 
other side 

 

     

rotate 3 Fingers squeeze, 
rotate 

Forefinger thumb squeeze, pan Hands moving 
horizontally at the 
same time 

 8 Fingers squeeze, 
rotate 

  

 12 Fingers squeeze, 
rotate 

  

 14 Fingers squeeze, 
rotate 

  

 17 Fingers squeeze, 
rotate 

Palm horizontal move  

 20 Fingers squeeze, 
rotate 

Palm horizontal move  

 21 Fingers squeeze, 
rotate 

  

 18 Fingers squeeze, 
rotate 
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task subject Gesture1 gesture2 gesture3 

rotate 19 Two-handed fists, 
rotating 

Two-handed rotation  

     

single-select 5 Index finger click   

 7 Index finger click   

 9 Index finger click Forefinger thumb tight  

 10 Hands open, index 
finger click 

Forefinger thumb tight  

 11 One hand stopped 
in the air, the other 
hand moved 

Index finger click Forefinger thumb 
tight 

 14 Index finger click Forefinger thumb tight  

 18 Forefinger thumb 
tight 

Index finger click  

 19 Forefinger thumb 
tight 

Index finger click  

 21 Forefinger thumb 
tight 

Index finger click  

 17 Index finger click Forefinger thumb tight  

     

sort 1 Hands folded Hands with index finger thumb 
squeezed 

 

 2 Fingers click, hand 
wave to one side, 
another hand 

Fingers click, palm forward, 
another hand 

Fingers click, hand 
wave to one side, 
knife up another 
hand 

 4 Hands folded Hands with index finger thumb 
squeezed 

 

 5 One hand life up   

 6 One hand diagonal 
up 

Hands folded  

 8    

 13 Hands folded One hand pressure Hands down 

 11 One hand diagonal 
up 

Hands tamper  

 15 moves Each point  Finger stroke Z  

     

zoom in 1 Forefinger thumb 
open 

hands apart  

 2 Forefinger thumb 
open 

hands apart Palm open 

 5 Palm open Index finger double click Forefinger thumb 
open 

 6 hands apart Hands up and down  

 13 hands apart Hands and fingers separated at 
the same time 

 

 16 hands apart Palm open Fingers squeezed 
with your index 
finger, hands lifted 

 19 hands apart Palm open Hand parabolic 
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task subject Gesture1 gesture2 gesture3 

zoom in 21 Fingers squeezed 
with your index 
finger, hands lifted 

Forefinger thumb open hands apart 

 18 Forefinger thumb 
open 

Index finger double click hands apart 

     

zoom out 1 Forefinger thumb 
tight 

Compression with both hands  

 4 Compression with 
both hands 

Fingers gripping and back Forefinger thumb 
tight 

 10 Hands separate at 
the same time 

Fingers gripping and back  

 8 Forefinger thumb 
tight 

  

 11 Forefinger thumb 
tight 

Hands separate at the same 
time 

Fingers gripping 
and back 

 15 Compression with 
both hands 

Double click  

 13 Hands separate at 
the same time 

Fingers open Fingers gripping 
and back 

 17 Compression with 
both hands 

Compression with both hands  

 19 Compression with 
both hands 

Fingers gripping and back  

 20 Fingers open Hands separate at the same 
time 

Fingers gripping 
and back 

 21 Hands separate at 
the same time 

Fingers open  

x[n], x[m] = repeating the preceding action arbitrary number of times 

 

Controller Encodings  

task subject movement 

aggregate 1 button x1, stick turn x[n], button x1 

 2 button x1, stick turn, button x1 

 3 button x4 

 7 stick turn, button x2, d pad, stick turn 

 8 button x1, button x[n], stick turn 

 9 (d pad, stick click x1, stick turn, stick click x1)x[n], sbutton x1, stick turn, 
stick click x1 

 11 d pan, stick turn, button x1, stick turn, button x1, 

 12 menu button, button x1, d pad, button x1, menu button, d pad, button x1 

 14 stick turn, x button x1, y button x1 

 16 menu button, stick turn, button x1, menu button, stick turn, button x1 
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task subject movement 

compare 2 stick turn, button x1, 

 3 sbutton x1 

 4 (stick turn, button x1)x2 

 6 both stick turn  

 10 both stick turn  

 12 button x1, d pad, button x1 

 14 (hold stick, sbutton x1)x2 

 16 (stick turn, button x1)x2 

   

disaggregate 3 button x1 

 4 stick turn, button x1 

 5 stick turn, button x1 

 7 stick turn, button x1 

 9 stick turn, button x1 

 10 stick turn, button x1 

 12 stick turn, button x1, stick turn, button x1 

 13 button x1 

 14 sbuttonx2 

 15 button x1 

 16 stick turn, button x1 

   

filter 1 stick turn, button x1 

 5 (stick turn, button x1)x[n] 

 6 sbutton 

 7 (stick turn, button x1)x[n] 

 8 (stick turn, button x1)x[n] 

 9 (d pad, sbutton, stick turn, stick click)x[n]  

 10 (d pad, stick turn)x[n] 

 11 d pad, (stick turn, button x1)x[n] 

 13 button x1, (d pad, button x1)x[n] 

 15 button x1, stick turn 

   

highlight 2 d pad, stick turn 

 4 stick turn, button x1 

 5 (stick turn, button x1)x[n] 

 6 (stick turn, button x1)x[n] 

 11 hold sbutton, stick turn, release sbutton 

 14 (stick turn, button x1)x[n] 

 16 (stick turn, button x1)x[n] 

 17 d pad x4, button x1 
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task subject movement 

highlight 18 stick turn, sbutton x1 

 20 (stick turn, button x1)x[n] 

   

left pan 6 stick turn 

 7 stick turn 

 8 stick turn 

 9 stick turn 

 12 stick turn 

 15 stick turn 

 17 d pad x[n] 

 18 sbutton x[n] 

 19 sbutton 

 20 button x1, stick turn 

 21 stick turn 

   

multi-select 3 button x1, d pad 

 4 stick turn 

 7 stick turn 

 9 stick turn 

 13 stick turn 

 16 (stick turn, button x1)x[n] 

 20 button x1, stick turn 

 21 (stick turn, button x1)x[n] 

   

right pan 1 stick turn 

 2 stick turn 

 3 stick turn 

 10 stick turn 

 12 stick turn 

 15 stick turn 

 17 d pad x[n] 

 18 d pad x[n] 

 19 sbutton 

 20 button x1, stick turn 

   

rotate 3 stick turn 

 8 stick turn 

 12 stick turn 

 14 stick turn 

 17 stick turn 

 18 stick turn 

 19 sbutton 

 20 stick turn 

 21 stick turn 
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task subject movement 

single-select 5 stick turn, button x1 

 7 stick turn, button x1 

 9 stick turn, button x1 

 10 stick turn, button x1 

 11 stick turn, button x1 

 14 stick turn, button x1 

 17 d pad, button x1 

 18 d pad, button x1 

 19 stick turn, button x1 

 21 stick turn, button x1 

   

sort 1 stick turn, button x1 

 2 stick turn, button x1, button x1, stick turn, button x1 

 4 (stick turn, button x1)x[n] 

 5 stick turn, stick turn, button x1 

 6 move both stick 

 8 stick turn, button x1 

 11 d pad, button x1 

 13 button x2 

 15 button x1, d pad, button x1 

   

zoom in 1 stick turn 

 2 hold button, stick turn 

 5 stick turn 

 6 sbutton 

 13 stick turn 

 16 stick turn 

 18 stick turn 

 19 stick turn 

 21 stick turn 

   

zoom out 1 stick turn 

 4 stick turn 

 8  

 10 stick turn 

 11 sbutton 

 13 stick turn 

 15 sbutton 

 17 d pad 

 19 stick turn 

 20 stick turn 

 21 sbutton 

x[n] = repeating the preceding action arbitrary number of times; sbutton = shoulder button 

 


