1 Introduction

In this paper we show that the specification for a lambda calculus to SECD com-
piler originally proposed by Henderson [7] is correct. A hardware implementation of
Henderson’s SECD machine has recently been proven (partially) correct [6] in the
Higher-Order-Logic (HOL) system [5]; ! this paper along with the HOL proof gives
us a good step towards total systems verification.

The SECD machine was designed as an abstract architecture by Landin in the 1960’s
when he was seeking a way to give an operational semantics for ALGOL 60 (see [10,
11, 12, 13]). Many different versions of the machine have been proposed including
both lazy and eager evaluation mechanisms ([1, 4, 7, 8]).

Plotkin ([17]) proved that a “high-level” SECD machine correctly executed the call-
by-name lambda calculus. In this paper we show, using more recent proof techniques,
that Henderson’s SECD machine is also correct. The high-level machine uses pieces
of lambda calculus syntax as instructions, whereas Henderson’s machine has its own
instruction set. In other words, the high-level machine directly interprets lambda
expressions, while the machine we deal with requires a compiler.

Henderson also describes a source language for the SECD machine called LispKit (a
functional subset of LISP) and gives a description of the translation from LispKit to
SECD code. We use a language very similar to LispKit in this paper, called miniSML.
It consists of the untyped lambda calculus with let, letrec and some built-in constants,
and differs from LispKit mainly in syntax (using Standard ML list notation instead
of S-expression notation). There are also several different versions of miniSML we
describe our version in detail. In particular, most versions of miniSML are typed
although the one we use is untyped (as is LispKit).

The translation from miniSML to SECD machine code is correct if the semantics of
LAM programs are preserved by the translation. Morris [15] proposed the following
diagram to convey this correctness property:

miniSML _c, SECD

miniSML Semanticsl J'SECD Semantics

miniSML Semantic Domain T SECD Semantic Domain

The original idea behind this diagram was to make each corner an algebra (of the
same type) and each arrow a homomorphism. The work involved in this approach

!Proven functionally correct (partially) to the register transfer level. There is no assurance that
the fabrication is correct or that the physical hardware corresponds exactly to the specification.
Nevertheless, functional correctness over all inputs provides a high degree of confidence in the
design.

1

is in making the target language into an algebra of the same type as the source
language, i.e., implementing each source language operator in terms of target opera-
tions. When this is done, the correctness of the compiler holds by the uniqueness of
the homomorphisms from the (initial, term) source language algebra.

We use the same diagram to convey correctness, but our approach is somewhat
different. The source and target languages are given by abstract syntaxes and the
semantics are given by inductively defined relations. Given the compiler C and a
representation function U, we check that the diagram commutes.

Several authors have used the latter approach to correctness, including Despeyroux
[2] who gives the correctness of a (slightly different version of) miniSML to CAM
machine code compiler. ? The important difference in our proof is that we do not
give meanings to non-terminating programs, either in the sense of a bottom element
in denotational semantics or the (intuitively similar) approximate normal forms used
by Despeyroux. This means that we can reason separately about programs which
have normal forms and those that do not. It also leads to a considerable reduction in
what must be proved for compiler correctness over terminating programs, and several
lemmas we use may also be used to simplify Despeyroux’s proof. The reason for not
giving meanings to non-terminating programs is our use of operational semantics,
which we believe should be non-terminating for non-terminating programs. This ax-
iom leads to more complexity in the proof of compiler correctness for non-terminating
programs. To arrive at a clean proof under this axiom we merge Plotkin’s approach
to this problem [17] with Despeyroux’s use of natural semantics. This proof has
only been done by hand and should be mechanized (preferably in HOL so that we
can tie it to the machine proof) to ensure that no errors have crept in. The SECD
machine is considerably more complex than the CAM machine which also adds to
the complexity of the proof.

We review the ideas behind natural (operational) semantics. We then proceed by
defining miniSML and SECD and giving them operational semantics. After specify-
ing the compiler and defining a mapping between miniSML “meanings” and SECD
“meanings” we prove our main theorem - that the compiler specification is correct.
Finally, we change miniSML and SECD to evaluate lazily, change the compiler spec-
ification appropriately, and outline the proof of correctness for this lazy version.

2 Natural Deduction and Sequent Calculi

In this section we introduce natural deduction and sequent calculi as they provide
the basis for the style of proof we will use throughout the thesis.

Natural deduction is an approach to proof which is supposed to mirror human pat-

2This is the work which most closely relates to our proof of correctness.

2

terns of reasoning. For each connective in the logic there are introduction rules and
elimination rules. The introduction rules tell us how to combine terms using the
connective and the elimination rules tell us take apart a term which contains the
connective. The syntax of natural deduction rules is of the form %(— which states
that if every sentence z € X is true, then so is t. For instance, if our logic has some
sentences, of which A and B are members, and we wish to have conjunction in the

system, we could add the rules

A B AANB

AANB
, ——
AANB (AET) A

(AT) 5

(AE2)
the first of which introduces conjunction, Ay, (if A is true and B is true then AA B

is true) and the second two eliminate conjunction (if A A B is true then A alone is
true (by Ag1) and B alone is true (by Agz)).

Assumptions may also be kept explicitly with each rule. A sequent I' F A represents
the intuition that each sentence in A is true when all the sentences in I are true. In
natural deduction it is possible to perform operations on both the hypotheses I' and
the conclusions A. We call a natural deduction system a sequent calculus if the only
operations allowed on the hypothesis are to add and discharge new sentences, and if
the conclusion is always a single sentence.

Our conjunction rules from above form the sequent calculus

'kA AFB 'FAAB 'FAAB

(AD) I''AFAAB (AE1) 'FA (AE2) I'-B

where I', A is the union of the two assumption sets. It is not uncommon for there to
be different sets of rules which allow the same proofs. For example, an alternative
to the elimination rules given above is:

THAAB A,A,BFC

(AE) T.AFC

Let us add to our conjunction rules so that we can give a small example of a proof
in natural deduction. For any sentence we have an assumption axiom:

(Assum) AF A

We also add introduction and elimination for implication

T, Ab B TFA=B AFA
=) triss &P T AFB

Intuitively, if B is true when A is on the assumption list, then “if A then B” is true.
On the other hand, if “if A then B” is known and A is true, then B follows.
3

If we assume A A B C then we can derive BA A F C as follows

(=) FAABEC () ALp-PEB

BAAFBAA (=E) TEBFC
)

(AE)

BAAFC

Here we have labelled each step in the proof with the rule justifing it (with the
exception of Assum). In the sequel we will label “important” steps only.

Proofs displayed in the “tree” style can grow quite large, so we introduce some
notation to manage them. If ¢ follows from p; and p; then we may write any of

2! (Pl)
o P2 P2 D2
c c c

the last of which puts brackets around p, when it is a proof of more than one-line.

3 Natural Operational Semantics

In this section we develop an operational semantics which will be used to give mean-
ings to the programming languages and to generate the compiler specification.

An operational semantics is built as a transition system following the work of Plotkin

[16].

Definition 1 A transition system (TS) is a structure < I', —> where T' is a set (of
configurations), and =C I' x I is a binary relation (the transition relation).

A terminal transition system (TTS) is a structure < I', —,T > where the first two
components form a TS and T C T is a set of terminal configurations such that

Vv eT,y €T.(v,7) g—- ¢

In general we will write @ — b for (a,b) €—, a /4 b for (a,b) ¢—, and a /4 for
VbeT,a /b

Here is an example from Plotkin:

Example: A finite automaton M is a quintuple < @, X, §, o, F' > where

e () is a finite set of states.
o X is a finite set, the input alphabet.

o §:Q x X — () is the state transition relation.
4

® go € @ is the initial state.

o F C (is the set of final states.

Set I'=Q x X* and T = {(¢,0)|g € F} and the transition relation is defined by

w#f é(q, hd(w)) = ¢
(¢, w) = (¢, ti(w))

where w is a variable ranging over sequences, hd : £* — X takes the first element of
a sequence of input characters and ¢/ : ¥* — X* returns the input sequence without
the first character. This “rule” looks like a rule from natural deduction, although
the hypotheses are boolean predicates which must be satisfied and the conclusion is
an element of a TS.

It is easy to define the language the automaton accepts. It is just
{wjw € £*,3q € F.(g0,w) —* (¢,0)}

where —* is the transitive closure of —. There is no transition for a configuration
with empty input. ¢

A typical language with variables uses a store (relating variables to their values) in
order to evaluate expressions in the language. We can view our configurations as
pairs (¢, @) where c is a command in the language and « is a state. Then transitions
such as (¢,a) — (¢,a') would indicate that evaluation of the command c in the
state a results in the command ¢’ and the state o’. In this setting, if we have
any commands which halt evaluation, leaving an answer in the state, we could set
T = {a},T ={(c,@)} UT and our relation could take a command and a state and
result in a (final) state: (¢,a) —* o/.

We call a TTS either relational (after [14]) or natural (after [9]) iff Va — b.b € T. For
natural semantics with I' = {< ¢, >} UT and T = {t} we write a I ¢ — ¢ instead
of < ¢,a >— t. This notation is intended to imply the relationship with sequents in
the natural deduction style of doing things. The state « is just the set of hypotheses
(bindings for variables) on which the value of c relies.

Example: Consider the language
<e> u= <n> | <v> | <e>+<e>

where n is a number and v is a variable. Take p to be a predefined function from
variables to numbers (an environment), then define I' = {(e, p)} UT where T' = {n}.
We define — inductively as:

pFn—on

5

pv=n
pFv—on

pFe —n pbe—n’ m=n+n'
pher+e=m

The intuition behind these rules is as follows. The first rule reduces a number to
itself. The second rule states that v evaluates to n just when it has the value n in
the environment. The second rule evaluates each subexpression and then adds their
values. The + sign above the line is addition over numbers, whereas the + below
the line is a part of the syntax of the language. This type of overloading will be used
when no confusion can arise.

We call systems written in the style of the last example natural semantics. Let us
be a little more precise about the elements of a natural semantics, following [9].

Variables: We allow variables to be used whose intuitive meaning is “any element
of the configuration”, although some variables may allow only limited configurations.
For example, if a configuration comprises several components, there may be variables
over entire configurations as well as over a single component. As well, a component
may be something (like an abstract syntax tree) which will allow even more fine-
grained variables. When variables occur in rules they must have well-defined types.
In most cases it is obvious (to us, not necessarily to a machine) what the types of
variables are, and they are not given. In cases where confusion can arise, types are
given explicitly.

Formulae: Elements of a transition relation, possibly containing variables, will be
known as formulae (for example p F e — n). As well, we allow formulae called
conditions which are predicates which take values from some domain such as integer
(for example w # n over variable names). For simple predicates, such as equality
over integers, no reference need be made to the domain. More complicated predicates
must be defined (by a set of rules).

Rules: A rule consists of a set of formulae called the hypotheses and a formula called
the conclusion. Variables are universally quantified over the entire rule, so that like
variables in one or more hypotheses and possibly the conclusion are all instantiated
to the same value. For simplicity, we do not write the universal quantifications,
unless the types of the variables cannot be inferred. The purpose of a rule is to state
an “if-then” relation — namely, if there is a proof of each hypothesis, then there is
a proof of the conclusion. Rules may also be conditional as discussed above.

Axioms are rules with no hypotheses.

Rule Sets: Rules are grouped together to form rule sets. Each rule set defines
one relation. To distinguish different rule sets two notations may be used. First,

6

different symbols for — may be used. These include =, I>,~+ and others. Second,
the name of the rule set may occur over the F symbol. A rule set completely defines
a transition relation. It may be parameterized by other rule sets, i.e., a hypothesis
of a rule may be a formulae from a different rule set.

Each rule set defines a unique relation (possibly non-deterministic as more than one
rule may apply at a given time). New relations may be defined in terms of old
ones simply by referencing the rule set used. We will make extensive use of this
throughout the rest of this paper.

We will make use of both mathematical induction (over the length of proofs) and
rule induction. We assume a familiarity with the first. Rule induction is defined
below.

Definition 2 The principle of Rule Induction: Let A be the least set closed
under a set of rules of the form % Let P be a property over elements of A. If for

all rules £, (Vz € X.P(z)) = P(t), then Va € A.P(a). ¢

The rule sets we use generate the least set closed under the rules. Thus, we simply
need to show that a property holds for the axioms, and then for the other rules,
assume it holds for the hypotheses and then show it it holds for the conclusion.

4 miniSML

We define the abstract syntax of miniSML and then we give it a natural semantics.

4.1 miniSML Source

The abstract syntax of miniSML programs is defined in Figure 1. miniSML is the
untyped lambda calculus with constants and pairing (we consider Lisp-like lists to be
made up of pairs). miniSML uses strict evaluation—arguments are evaluated before
the function call.
As the standard example, the factorial function in miniSML would be written as:
LETREC fac = A n. IF n=0 THEN 1 ELSE n*(fac(n-1)) IN fac
An untyped list is constructed as, for example
CONS 3 (CONS T NIL)
which we write in shorthand as (3,T). As is usual, CAR selects the first element of a
list and CDR returns a list without the first element.

There are many pieces of abstract syntax which are not meaningfull. We assign
meanings to those that are, by using a natural semantics.

7

Const ::= T | F | NIL | string | integer

Var ::= alphabetic alphanumeric*
VarL ;= Var | (Var, VarL)
miniSML ::= Var
Const
Opl miniSML

miniSML Op2 miniSML

IF miniSML THEN miniSML ELSE miniSML
| A VarL. miniSML

| LET VarL = miniSML IN miniSML
LETREC VarL = miniSML IN miniSML
miniSML miniSML

(miniSML, miniSML)

Opl z== ATOM | CAR | CDR

Op2:= +4|-|*x|=]|<=]|CONS

Figure 1: miniSML Abstract Syntax

ConstL ::= Const | (Const, ConstL)
L.WHNF = ConstL | L.Closure
L.Closure ::= A VarL. miniSML x L.Env
L.Env = ()| (Var x LWHNF) x L.Env | L.Env x L.Env

Figure 2: miniSML WHNF‘s and Environments

4.1.1 miniSML Operational Semantics

Our operational semantics will reduce a miniSML program to a miniSML Weak-
Head-Normal-Form (L.WHNF) which is defined in Figure 2. A L.WHNF is either
a constant, a tuple of constants, or a closure. A closure pairs a miniSML program
with an environment.

A L.Env is an environment which gives values variables. All values in the environment
are in L.WHNF as miniSML is strict. The environment is stored as a list of lists to
mimic the SECD machine operation. This does not add much complexity here and
makes the proof easier.

Notation: For structures of the sort X x Y we use the standard functional pro-
gramming syntax z :: y for = of type X and y of type Y. This notation is used
when the intention for the use of the structure is as a list. If all that is intended is a
pair, then (z,y) may be used. We will use (ey, ez, ..., €,) or even (e;...e,) to represent
(e1, (€2, (...es))) where the e; are either miniSML expressions or variables.

8

Updates to a L.Env p are written as ((e1, z1)...(en, Z5)) it p or ple1/x1...€n/ 2] where
the e; are constants or closures and the z; are variable names.

Definition 3 A proper L.Closure is one in which all free variables in the code have a
value in the environment. In our case, we require that the following rule be derivable:

e __’F'V s p _’DefinedBy s S g g
pFe—true

Proper

FV extracts the free variables in a miniSML program.

FVeoonst c¢— @

FVyar a — {a}

FVom oPa =

FVor SBere=ain

FViy T THEN & PLStes =0 nom

body — s
FVass A(ay...ax).body = s/{ay...ax}

FV, €1 —+ 8] .. € — S body — s
let LET ay = ej...ax = ex IN body — (s/{ay...ax})Us; U...Usk
FV, €] —+ 8] .. €p — 3 body — s
ree LETREC a; = e1...a5 = e IN body — (sUs; U...Usg)/{a1...0x}
— s a—s
FVapp a— sUsy

DefinedBy extracts the set of variables defined by a given environment.

DefinedBy(y O)—90

DefinedByist {)L Z’: 8

o I
DefinedByetement ((z‘,z") LL’) L LTi {.’L‘} Us

Unless stated otherwise, we will assume that all closures in an L.Env are proper ones.
This does not imply that all the closures we form in the semantics are proper, just
that when they are used they will be proper. For closures of recursive functions,
the original closure will not contain definitions for the recursive function names.
However, before any of these closures is used the environment portion will be updated
to include those definitions.

Notation: The closure of code e with environment p is written < e, p >.

9

4.2 Semantics of miniSML

Our semantics are given as a reduction of a miniSML program to a L.WHNF. The
reduction is given by a relation, called — which is a subset of the set ((L.Env x
miniSML) x L.WHNF). We give this reduction as a natural deduction in Table 1.
The reduction relation is slightly complicated by the addition of “times”. A time
over — gives a measure of the number of steps it takes to reduce the expression to
L.WHNF. This measure is not simply the number of rules applied in a particular
proof; it is related to execution steps on the SECD machine. For example, note
that the IF statement takes a “time” which is the sum of the “times” for the two
subexpressions (either e; and e; or e; and e3) plus two (as we will see, two SECD
instructions are needed to control the IF statement).

To be technically correct, the “times” must be included in the set we are defining,
making — a subset of ((L.Env x minSML) x (L.WHNF x Integer). Then we would
have to project out the L.WHNF component in order to make comparisons between

L.WHNF, as times should not affect the equality of L. WHNF’s. We will ignore this
(small) technicality.

The rules L; are miniSML Lookup rules (thus the two L’s). They are given with a
subsidiary relation —=C (L-env x Var) x miniSML. The environment is kept as a
list of lists of pairs (variable-name,value). Although only a single list is needed, this
structure does not add any great complexity and makes our proof statement easier.
L1y checks the “newest” pair in the environment, and if this is the variable we are
looking up, returns its value. Ly, and Lp3 step down the environment, ignoring
values which do not match the current variable. Note that there is no case for an
empty environment, which we would expect to be an error. By leaving the case
out, there will be no proof of an expression which has a free variable. Therefore,
expressions with free variables are not given meanings by our semantics. (Note that
this is not a problem with recursive expressions as the environment in the closures
will contain definitions for the recursive functions before the body of the closure is
evaluated).

Leonst simply reduces a constant to its value in one time step. An abstraction,
Laps is mapped to a closure of the abstraction with the current environment. The
hypothesis ensures that we have a proper closure. Ly g makes use of =% to find the
value of a variable in the current environment.

Lop, is the rule for all binary operators. For each OP there is a corresponding op
which performs the operation over the constants, for example addition corresponds
to +. Lcar, Lecpr and Loons work as expected over lists of miniSML elements.
L srom returns true if the argument is a constant and false otherwise. Lir reduces
the first argument to true or false, and then selects a branch.

L 4pp handles application. Since miniSML is strict, all the arguments are evaluated

10

before the application. As well, the function is evaluated to a closure. Then, if we
add the evaluated arguments to the environment from the closure, the closure body
will evaluate to the result of the application. Ly works similarly, except that the
body of the LET already provides the the expected closure body.

L rgc handles recursive function definitions. Each expression in the binding evaluates
to a function closure with the same environment. We evaluate the body of the
LETREC in a circular (graph) environment as shown.

5 SECD

In this section we define the SECD machine’s abstract syntax and natrual semantics.

5.1 Code for Henderson’s SECD machine

The abstract syntax of Henderson’s SECD machine code is given in Figure 3. The
SECD machine executes on four stacks, the Stack, Environment, Code, and Dump.
The Stack contains arguments, the Environment values for “variables”, the Code the
SECD instructions to execute, and the Dump stores the other stacks while functions
or arms of conditionals are being executed. Operators are evaluated postfix and
expect their arguments to be on the Stack.

S.Const ::= integer | string | T | F | NIL
SECD := LD (integer, integer)
| LDC S.Const
| LDF SECD
| SEL (SECD JOIN), (SECD JOIN)
| S.0pl|S.Op2| AP | DUM | RAP | RTN | STOP
S.Opl z== ATOM | CAR | CDR
S.Op2:= CONS|EQ|LEQ|ADD |SUB|MUL | DIV | REM

Figure 3: SECD Abstract Syntax

5.2 SECD Natural Semantics

Our reduction for SECD code will, like miniSML, reduce to SECD WHNF’s. The
abstract syntax for these are given in Figure 4. S.WHNF’s include contants and
closures. S.Env is a list of lists of values indexed by a pair of integers ((0,0) being
the first element in the top list).

11

L1 ((v,") 2 p) ipF o=l
Fy—Llaof ! ipbyoky zFv
L —pbv=2y L £ip
L2 [lzptFv—omd L3 ((z,2") s p) p v =Ll o
LeonsT phecdec c € Const
1
Laps pk (A (z1.2k) B) > € A (z1..2k) bp >
ptv—oly
Lvar 1
pFv=v'
Feda Fep3a
— = .
Lop, pre—a h+‘:z+12 2 For +,—,*,<, a1,0a2 € integer
pker OP e2 " = "aj op a2
ek er(mizy..zn) o e12h(w17p...20)
1 1L2...Tn 1 122.--In
Lcar Lepr T OAR o At n21 til n21
P e — 11 pt CDR e = (z2...7n)
ty t2
Loons pFei—=zy plkea=(z2..24)
pF CONS ¢ e;'l.ﬁ?“(zlm...zn)
Latoum plkey t—l»c c € ConstU Var _m—t-lw_
1
pF ATOM o "3'T pF ATOM &"3'F
ty ty , ty t3 ,
Lire, Lirg pFenST pheysel phe~F phesse
titta12 tittat2
pHIF e ep €3 S o e pHIF e e ea izt A
pl-el-'—'»e’l pl-ek‘—'-'»e;‘
t t!
pF f= K Marzi).Fh0' > pley/z1.ef [zl F f o1
Proper
Lapp ok Mzy..zi).f — true
/4 kt4
pkf (el...ek)‘ﬁ R AN
t; t g ' ' LAY
phei—ser ... pleg—e pley/z1..epfap] b= b
Lipr ty+..Ftp+hktt44
pFLET zy =e)..xx =e€x in b = 4
- et , th ,
pre—=><€el,p» .. pha—=<€e,p>»
¢
Lrgc p'Ebo b where p' =p[€el, 0 > [z1 .. Leh,p > k]

1+t tHA+S
—

pF LETREC z1 =€1..xx =¢€x in b b’

Table 1: Reduction Rules for miniSML

12

S.ConstL ::= S.Const | (S.Const, S.ConstL)
S.Closure ::= SECD x S.Env
S.WHNF == S.ConstL | S.Closure
S.Env = () | S.WHNF x S.Env | S.Env x S.Env
Stack := () | S.WHNF x Stack
Dump = () | SECD x Dump>| Stack x S.Env x SECD x Dump

Figure 4: SECD WHNF’s, Environments, and Dumps

Notation: We use | to indicate list concatenation for SECD expressions. This should
not be confused with | used in the BNF notation. In order to simplify the notation,
we often eliminate brackets (i.e. writing s;|OP instead of s1|(OP)).

Like miniSML, not all closures are useful.

Definition 4 A S.Closure is proper if the following rule is derivable:

Varsin s e _)Couer s sCy¢

el ¢ — true

Cc —

S.Proper

VarsIn extracts all the free variables (pairs of integers) in a Code stream and Cover
extracts all variables (pairs of integers) defined in an S.Env. (In VarsIn we see the
first use of | as Code concatenation as opposed to BNF syntax).

Vursln() 0—0
cC— 8
Varslnyp LD(m,n)c = {(m,n)}Us
’
VarsInoher -~ £ LD(m,7) —

cle’ — s

'

E.,Q) —Cover’ ¢

Cover (B0) e s
-+ 8

Cauer(’) Oym)—0

(E,m+1)— s
((e1,.--en) :: E,m) = {(m,0),...,(m,n)}Us

Cover!,

¢

S.Closures differ from L.Closures in an important respect. An L.Closure contains the
miniSML code for a function (i.e., a A expression) whereas a S.Closure contains only
13

the body of the function; the variable abstraction is assumed. Further, the return
from a L.Closure is implicit whereas an S.Closure must explicitly contain the RTN
instruction.

For the SECD, replcar is the standard name for the function which puts a loop in
the environment for recursive functions. It is defined as:

Definition 5

replear ([e1,p>,...., L er,p >, [[=p) = o'
whererec p” = [€1, p" >, ..., L eg, p" >] 1 p’

%

The reduction for SECD is now given in Table 2. The reduction is given by
=C ((Stack x S-Env x Dump) x SECD) x S-WHNF.

The Sp; rules provide the auxilary relation =*C (S-Env x (Int x Int)) x S-WHNF.
S-Env is a list of lists of S-WHNF’s as described earlier. (0,0) indexes the leftmost
element of the topmost list, and (m,n) can be reduced to (0,0) by stripping off an
appropriate number of lists and elements. Again, there is no rule for expressions
with free variables, and the semantics does not assign them any meaning,.

Sstop is the only axiom in the system. It returns the value on top of the stack.

Stp finds a value in the environment using = and puts this value on top of the
stack. Sppc puts a constant on top of the stack, and Sppr creates a closure from
the associated code and the current environment, and puts this closure on top of the
stack.

Application, S4p, expects a closure (the function) and arguments on top of the stack.
It adds the arguments to the closure environment and then executes the closure code
in this new environment, saving the return pointers on the dump. Sgry expects
these return pointers to be on the dump, and uses them to reset the stacks. Spuam
and Sgap perform application for recursive functions. Spyas puts an nil value on
top of the environment so that variable accesses (except for the recursive bindings)
are at least one level deep in the environment. This allows Sgap to add the recursive
bindings in place of the nil value without affecting other variable accesses. The
replcar command makes sure the addition of the recursive bindings works correctly
by making the environment for the new closures circular.

Sser1 and Ssgre handle the IF construct for the SECD machine. The code for the
“then” and “else” branches are contained in the SEL command and one of them is
evaluated depending on the (truth value) on top of the stack. While the branch is
being evaluated the code continuation is stored on the dump, to be picked up by the
Sjorn rule.

14

S11 ((z:e)ue')F(0,0) Lz
/.. L L
S (¢! :e) - (0,n) ="z et (m,n)=>tz
L2 ((yze)ze)F(On+1)=L 2 Sta (¢'=e)F(m+1,n) =Lz
. 1 s, e, (cd) FcT =tr
Sstop (23 8)e,dF STOP = 2 SsELY (Fag)e.dF SEL(T . cF)lc 5T 7
S (z:s)e,dFctr ekF(mm)alsg S s,e,(cd)FcF=tr z#T
Lb s,e,d - LD(m.n)|c =T r SEL2 (z:: 8),e,d F SEL(cT,cF)|c =T r
S (z::38),e,dFc=tr s s, e,dbctr
Lbc s,e,dF LDC z|c >t r JOIN s,e,(c:d)F JOIN =1y
(€clepus)edbcptir (a::8),e,dbctr
Stor s,e,d - LDF c'lc=1 ¢ Scar ((a::b) 2 s),e,d - CARJc =2 r
S.Proper
et F ¢ = true
s nil, (v e'), ((s,e,¢) nd) ! b r s (b::s)e,dbctr
AP (€ e’ »:vis),e,d AP[c =¥ ¢ CDR ((a ::b) :: s),e,d - CAR|c =T ¢
g s,[]:e,dFc=ptr s (atom(a) :: 5),e,d Fc=>tr
bUM e dFDUMlc=>T1r ATOM TG s),e,dF ATOM|c= 11
z:s,edFc=>tr ((bopa):s)edbcatr
SrTN (z),¢',((s,e,c) :: d) F RTN =+ ¢ Sop (a::b:s),e,dOPlc=>t ¢
s (a::b:s),e,dFcptr
CONsS ({(a::b) :: 3),e,d - CONS|c =+ »
s nil,e”, ((s,e,c) d) k! Dt r e = replcar(v,e)
RAP (€c'e' »uvus)[lie,d- RAP|lc =" ¢
s s,e,dFe1|STOP > e} e us,e,dFe; =i r
CONT s,e,d b eglep 1Tty

Table 2: SECD Reduction Rules

Scar, Scpr, Satom, Scons 3 and Sop operate on the value(s) on top of the stack
and replace these value(s) by the result of the operation.

The final rule, SconT is not a part of the original Henderson specification but is
necessary here as we are working in a logical system with only one axiom. Thus, to
join two proofs, we must allow the axiom to be used in each proof. SgonT says that if
we have two complete SECD programs, we can execute the second as a continuation
of the first by evaluating the first program, leaving its result on top of the stack and
then evaluating the second. A STOP command is added to the first program, since
STOP is the only command which is an axiom in this system (and thus must be the
final command in any well-formed program or there would be no finite proof of it).

3In Henderson’s formulation the arguments to CONS are reversed for reasons of efficiency. We
do not do this here in order to keep the the exposition as simple as possible

15

6 Translation

We wish to translate miniSML programs to SECD programs. We want to handle
two cases: (1) M reduces to a LLWHNF in a finite number of steps, and (2) M never
reduces to a L.WHNF, but there is always a rule which can be applied. These two
cases encompass all well-defined miniSML programs. The translation from miniSML
to SECD is given in Table 3.

The translation environment is kept as a list of lists (as is the SECD environment),
but we need only store variable names in the list. Translating a variable requires
finding a (m, n) pair where m indicates the list the variable is in, and n indicates the
variable’s position in that list. The relation < mimics finding the (m,n) pair.

The first rule under < shows how any LAM constant is translated to a LDC in-
struction.

For variables, Ty 4 uses —Z to find the pair (m, n) and then emits a LD instruction.
Top, and Top, both compile to postfix application. Tyr translates an IF statement so
that the boolean is evaluted first, leaving its result on top of the stack, and then SEL
is used, in conjunction with JOIN, to evalute a given branch. T spppa compiles a
function into a LDF where the body has a RTN appended to it. Function application
T4pp is translated to a sequence which creates a list of the arguments on the stack,
loads the function and then performs the AP. The arguments are in reverse order
because the list is built up from the end. The LET is translated to the equivalent of
a A and an application. Trgc translates recursive functions by using DUM and RAP
instead of the AP which occurs for the LET. Notice that for the body of the LET
and for all components of the REC, the translation environment is updated with the
new variable locations.

We can now define a translation, in terms of — between L.WHNF’s and S.WHNF’s.
The translation is given in table 4. The function b performs the mapping between
WHNPF’s while g maps b throughout an environment.

In order to define this, we must be able to “extract” a translation environment from a
L.Env. This amounts to keeping the variable names, while throwing away the value.
This is given by the bt transitions.

b const indicates that constants are the same in L. WHNF as in S-WHNF.

Mapping closures is more involved. We have broken this down into two cases, one
where the environment is circular, and one where it is not. The non-recursive >, is
quite straightforward. If the L.Env p maps to the S.Env E, and p gives the translation
environment p, and compiling the body of the function in p with the variables from
the LAMBDA gives ¥, then the L.Closure maps to a S-Closure with code (¥'|RTN)
and environment E.

D reccios TEquires a little more work, as we change a circular L.Env to a circular

16

(z:0') o+ z =L (0,0)

duorzal(On) s#y 4 etz ol (min)
(yue')ueFzol(0n+1) L3 ([1:e)Fz—=L (m+1,n)
o ok z =L (m,n) Ty m#0

(v o) Fz—=t (m,n)

TconsT

Tvar

Top2

Topr

Tir

TLamMBDA

Tapp

TLET

TreC

ebne LDC n

ozl (m,n
ok z— LD(m,n
ol e — 3 ol ey — 8o
oF OPX e e «» 31]32|OP°

ey s
Qkigﬁ €1 — 8,|OP

ke —s ey & s F ez — s
ok 573 e1ez€e3 — 81 §E531132|52515)V,133 Joﬁvm

[T1,...,zk] 20 F b s
'] [A(a:;...z'k)b — LDFI(S]RTN)

ehes = s..obeg s ok fes sy
oF f er...ex = (LDC NIL)|s,]CONS].. |31|CONS|sf|AP

olhey—s1..0bep s, [z1,..,7k] 0 b sy
oFLET zy =ej..xpy =€ in b
— (LDC NIL)|3,,|CONS| .|s1]CONS|(LDF(sp|RTN))|AP

[z1, o zi] ot er o a1z, 2k o b ek o sy [xh Tkl ok b s
oF LETREC 1 =e€j..xx = €} in
— DUM|(LDC NIL)|s;|CONS|.. Isl|CONS|(LDF(3¢,|RTN))[RAP

Table 3: miniSML translation schema

17

D econst ¢ b ¢ where ¢ € Const

pbEE
pbre
b ([zy...x]) : @) F b b’
clos < LAMBDA({z;...zx) b,p) > b < (P|RTN),E >

pbEE
pbre
[vi,ys] b b b
o =[(€e, o Pu1) e (€ej o Poyi)lue

b e, > bel..€ej, 0" > De;- where p" =[(0,v1),....,(0,%5)] :: p
recclos b o> b L (b'|RTN),rep1car([ei,...,e;],([] = E)) >
> o Ivel
pbgE
b wy D wl..wn Dwh
n ([w1, ooy wn] i p) B g ([W], .y wp] 2 E)
>ro [1br{]

pbreo
b [@n,20), o @me)] 5 p b7 1y on] 7 2

Table 4: miniSML WHNF’s to SECD WHNF’s

S.Env. Again, p is equivalent to E, and our translation environment is p, and the
body compiles to &'. Further, each (recursive) closure in p must be changed to the
equivalent SECD closure. These closures contain circular environments which we
must eliminate if our mapping is to terminate. Since we only require the positions of
the recursive bindings in order to define this mapping (and the values associated with
these bindings are eliminated by b7 anyway), we can put arbitrary non-recursive
values in for the recursive bindings before we translate them. This is why p” is
defined with the arbitrary value zero in for the recursive bindings.

Before continuing it is worth noting that the translation halts for all well-formed
miniSML expressions. We simply outline this proof as it is quite standard.

Theorem 1 For any miniSML program M such that there ezists a p such that
pFM —=W for some L WHNF W, the translator applied to M in environment
o, where p > g, halts in finitely many steps.

Proof: By rule induction.

Base Cases: Translation of constants obviously halts as there is no recursive call.

Translation of variables halts if <% halts. By the assumption that M has a WHNF

we know that p will be defined over any variable in M, say . The base case for

x, when it is the top element of the environment halts with value (0,0). For each
18

of the other rules, we assume by the inductive hypothesis that < halts for each
premiss, in which case it obviously halts for the conclusions as these only perform
simple additions.

Inductive cases: We assume that «— halts for the premisses. Since each conclusion
simply rearranges results from its premisses, these also halt. O.

7 Proof of the Translation

Several more definitions are needed before we can give a satisfactory proof statement.

Definition 6 A TS < I', —> is deterministic if y — 4’ Ay — " implies 7' = v".
¢

A relation is deterministic if it gives at most one value to every input.

Definition 7 Define =,,, as

pbpE S,E,D+ M|STOP ='z
pFM=

t
run T

¢

Thie relation allows us to run an SECD program and extract the result.

We can now state what we wish to prove, namely that the following diagram com-
mutes (the underscores represent the positions the items at the corners take in each

sequent):
pb_—_

M — M

(Here we use p for the translation environment instead of g where p bt ¢ in order
to simplify the proofs to follow).

If M has a LWHNF (— terminates) then ¢ is a fixed positive integer, and the
diagram will hold with the ¢ on = being the same positive integer. On the other
hand (M has no L.WHNF) ¢ will never become fixed, either on — or =.

19

7.1 Proof Obligations

How do we go about proving that this diagram commutes? Informally we require
that
> 0— = bo—

or in other words, that chasing around the diagram from M to S’ in either direction
gives the same result. We can break this equivalence into implications in which case

we get
pFMStS SpS

!
EIM'p}—M&>M' pbEM =t S (1)
1 |_ (2 t !
gt MM _ pFM5.,5 (2)

pEM—tS SbS

(1) represents completeness and (2) soundness. Taking a closer look at completeness
and remembering that we are trying to show the compiler correct, it is obvious that
some M’ exists such that p - M — M’ and that this M’ must meet the restriction

that p - M’ =7, S'. We can rewrite completeness in a simpler form as

pFM—tS SBS prMe M ‘)
P FM =T 5

TUnN

For some cases soundness is equivalent to completeness ([2])

Theorem 2 If — and = are deterministic and b is one-to-one then soundness is
equivalent to completeness.

Proof: Soundness implies completeness since M’ and S’ are uniquely determined,
and since b is one-to-one, the S in the soundness proof must be the one uniquely
determined by — in the completeness proof. Completeness implies soundness as we
can choose the S uniquely determined by — in the completeness proof as our S for
the soundness proof, and since b> is one-to-one, S > S’ must hold. O.

In our case, and in many others, I> is not one-to-one because of closures. In particu-
lar, since closures contain arbitrary expressions within them, two different L. WHNF’s
may convert to the same S.WHNF (for example, consider a let construct and its
equivalent application representation).

Since each of soundness and completeness require a large proof effort, we should
invest some time to find a way to eliminate one or the other. Here we explore several
ways of eliminating one of the above proofs by proving (simpler) properties of our
functions.

Lemma 1 If—,=>, and b are deterministic, and = is total, then soundness implies
completeness.
20

Proof: Assume we have a proof of soundness. Then S has been shown to exist such
that p- M — S and S b §'. Since — is deterministic, S is unique. Since b is
deterministic, S’ is unique. Since => is total, some S” exists such that p F M’ =,
S", but since = is also deterministic, S’ = S”. O.

Lemma 2 If —»,=, and b are deterministic, and — and b are total, then com-
pleteness implies soundness.

Proof: Assume we have a proof of completeness. Then we know that we have a
unique S, S’ by the determinism and totality of —, b. Since = is also deterministic
we know that it too yields S’ in the soundness proof. O.

Theorem 3 If—,= and b are deterministic and total, then completeness is equiv-
alent to soundness.

Proof: From previous two lemmas O.

At first sight this work does not buy us anything as — and => are obviously not total,
being undefined for nonterminating programs. But, consider splitting the proof into
two cases—one where we only consider programs with L.WHNF’s, and the other
where we only consider those without L.WHNF’s. In the case were a L.WHNF is
assumed, the subset of — which we are using is, by definition, total. It turns out
that b is total (being defined in terms of <), and thus we could use lemma 2 and
only prove completeness when M has a L.WHNF.

In the case where M has no L WHNF we can rewrite completeness and soundness as

pk M At pbM— M
p M At 4)

run

vt.

ptM— M ptM i

vt =Ty

(5)

both of which we must prove.

We first have to show that the preconditions for Lemma 2 hold.
Lemma 3 The — and = relations are deterministic.

Proof: For each relation there is one, and only one, rule for each language construct.
Thus, only one rule can apply to a given piece of syntax. O

Lemma 4 b is deterministic.

21

Proof: b is defined over LLWHNF’s. There is only one case for constants. The
two cases for closures are distinct (depending on whether the environment is recur-
sive of not) and are deterministic, as «— (previous lemma) and g and b7 are
deterministic. O

Lemma 5 — is total over well-formed miniSML expressions.

Proof: < is defined over all possible cases in the abstract syntax for miniSML,
except those with free variables. Well-formed miniSML expressions have no free
variables. O

Lemma 6 b is total (all closures are assumed to be well-formed).

Proof: Since — is total, and g and b are obviously total, it follows that b,
defined over both constants and closures (which completely cover LLWHNF’s) is total.
]

Thus we see that for well-formed miniSML programs, — is deterministic and b is
deterministic and total.

7.2 WHNEF’s

Lemma 7 Completeness for Programs with WHNF’s:

If ¢ has L-WHNF 2’ and 2’ b 2" and = compiles to c, then running ¢ on the SECD
machine gives us z”.

prz=tz ||’ bz || plrze—c

pre=t,, 2"

Proof: By induction on the length of the proofs over the translation rules.
Base Cases:

TqQuoTte: Quotation is the easiest case. Any constant has the same SECD normal
form and miniSML normal form, and runs simply by putting its value on top of the
stack.

o+ QUOTE shs || s bs || oF QUOTE s— LDC s

3.5,E,DF STOP =% s
S,E,D+ LDC s|STOP =1
pFLDC s={,, s

22

Tvar: Variables take considerably more work. We use an application of rule in-
duction over the lookup rules. These rules give cases on how an environment can be
added to, namely, we can add a single new definition to the current “top-level”, or,
we can add a series of (possibly recursive) definitions, as the new top-level.

Base Cases:

Lpy: This case handles new values added to the top of the environment. We prove a
more general form of the rule, namely that we are looking up any one of the values
in the top level of the environment. This allows us to break down the proof into two
cases, depending on where the environment is recursive or not.

Non-recursive binding: Let p' = ple1/z...ex/zk). Look up z; € {z;...z4}.

pbEE
o' hzi -l e e bel o' k=L (0,4
P =T e o bg(ef..e) = E o' Fz—(0,9)

(el.5), (e, --reh) : E),DF STOP 30 el ((ef...et) = E) - (0,i) =L ¢!
S, ((eh...eh) : E), D+ LD(0,i)| STOP =T ¢!
p'F LD(0,i) =, €

Recursive binding: Let p' = p[< e1,p’ > [z1,...,< e1,p' > [z1]. Look up z; €
{a:l...:ck}.

(14 1,0[zo...zn]) F &; < LDF(e{|RTN)
£ ei, p[0/20...0/zn] P Del
Pz »lei o> Leird'> beyoy p ki =L (0,9)
Pz =1 ei > 5[« eq,p’) ...<<en,p’ >»] b (e‘r’ep,...e:‘ep,)::E Pz (0,%)
where e‘upl = (e::|RTN),replcar(((e{)...e:.) = E)»

(€heptS)r ((9eptr -1 €rept) it E), D+ STOP ! ¢f ((0pyrelory) == E) - (0,4) L &b

repl repl epl
S, (T egirep) E), D F LD(0,)ISTOP =1 €l

' F LD(0,9) 7un €}

Inductive Cases for variables: Assume it holds for p.

Ly,, where we add an empty list to the environment ((/) indicates where induction
is used).

23

_E_Fz—al‘ ez
ol

Fx—obe,
p[l-:c—b1 ex

b E

’
ez bez Al bE(l=E

p|_$._,L (a,b)

o[l Fx =L (a+1,b)
plF r— LD(a +1,b)

L -- 0y Eblb=le ()
(¢), (05 B),DF STOP =0 & ppii 2=ty

S,([[:: E),DF LD(a +1,5)|STOP =>1 ¢/

A FLD(a +1,0) 1y o

L3, where the value we are looking for is not the top element, and so we must skip
by it. Let p' = ((y, ey) :: p”) :: p and the inductive hypothesis holds for p” :: p.

z#y

p/I

::pl—x—-»Lez

’

Pz —" e

P —ote,

L

!
ey bey

E " Ell
ez be; p’DDEiey ::Ebli::E

z#y

p" i p bz ek (a,b)

ozl (a,b+1
prFz—= (a,b+1

(¢..8),(E" : E),D + STOP =0 ¢!,

(E"” : E)F (a,b) 2L ¢

()

((ef : E") = E)F (a,b+1) 2L ¢},

S,((ey :: E') :: E),D - LD(a,b+1)|STOP =1 .

o'+ LD(a,b+1) =}, e’

And that ends

Tramepa: Lambda expressions evaluate in one step to closures, and thus form the

final base case.

Tvar-

§ppE
p[z1...xx] F bod — b’

p[z1...zk] F bod — b’

€)\ x1..7% bod,p >
> < (V'|RTN),E »

pHL A ...k bod,p >
— LDF(¥|RTN)

<€ V|RTN,E » .S,E,D + STOP =€ b'|RTN,E >

S,E,D F LDF(V|RTN)[STOP >1< V|RTN,E >

o+ LDF(V'|RTN) =1, < V|RTN,E >

Inductive Cases:

Now we consider the inductive cases. The inductive hypothesis states that the lemma

holds over values e;, €}, e/, ¢; where:

p ke =t e; e: > ez'

plei—c

o ci bun el

24

Topi1: Operators which require just one argument, CAR, CDR, and ATOM, are the
easiest inductive case. The inductive hypothesis is over e;.

p'-el_'te4 eibef pkel —c
pFOP e = F1 op ¢} op e; Dop ey pFOP ¢ — c,|OP

.S,E,DF STOP =3° op ¢!
' t i op € -0, b, 1
S.EDFalSTOP="ef () G5 E D OPISTOP =T op &
S,E,DF ¢;JOP|STOP =**1 op &
pFc1lOP 2135 op ef

Top2: Two argument operators require the use of induction twice, over e; and e,.

ty o ’ "
pl"el—bt e} ellbe}l phel—a
phey —'3 e €, b ey pFea—c

pFe OP eg —t1¥tatl el op e} elope, belopey pFe; OP e3 & c2]c1|OP

(et op €5.S,E,D + STOP =° ¢! op el)
ey.e/.S,E,D+ OP|STOP =1 ey op ef
u.8,E,DF |STOP =t ¢ (I)
ty I €2 D, 1 1
SEDValSTOP=R e (1) s b G [0PISTOP 57 &7 op
S,E,D F c3|c1]OP|STOP =t1ttat! ey op elf
pFcaler[OP =% el op eff

Tir: The IF statement also requires two uses of induction, one over e;, and one over

either e; or e3 depending on the value of ¢;. Below we show the case where the value
of e; is true; the other case is similar.

. pher = a

pf—el——#tll; plFex o

plrex =3 ey e e phez—cy
pHIF ejezes —t1ttat2 el 2772 pFIF ejeze3 — e}

e.S,E,D - STOP =° ¢
(e;'.s, E,(STOP.D)F JOIN =1 e';)
S,E,(STOP.D) F ¢;|STOP '3 ¢/ ~ (I)
S,E,(STOP.D) F (c;]JOIN) =¥ ¢
S,EDFa|STOP=3MT (I) geppp (S(EL(cz JO)IN(, c3||JozN)))|5T0P2=>t=+2 <7
S,E, D\ c1|(SEL(c2|JOIN,c3|JOIN))|STOP =F1¥ta¥Z 7
p F c1|(SEL(c2|JOIN,c3|JOIN)) =iiti2+e elf

Tapp: For application, we need k + 2 uses of induction; k for the arguments, and
one for the reduction of the function in the environment with the reduced arguments.

Structural and rule induction are not strong enough to carry out the proof for ap-
plication. These induction principles would give us the hypothesis

25

s b E plrr.ap] F f e s'f
FEIREN NS XX a}|RTN,E’ >

rhoF f = € Aeyzi . f 0" > ok fer sy

pF sy Sn< s} |RTN,E' >

and the k hypotheses:

prhei—tiel lelbri fl phei—s;

t
plFaiDlun i

But, as we see in the proof of application, we also need a hypothesis for the body of
the abstraction, which is not given by structural of rule induction (since the compiler
does not generate code for the closure produced for the function f), namely

o'ley/zreifm] b £ =t 7 F b || lmo.ak] F 3}

A CYESRCAE N L A S

To simplify the notation in the following proof, we use t, ,, for the sum of the times
t, to tym, that is £, , = 3iv,. ti. We do not rewrite the hypothesis just given above.

i=n
(rS,E,DF STOP = r)
rr1..75.E,(S, E,STOP.D)+ RTN =1 r

nil,ry..rx.E, (S,E,STOP.D) b &}, |STOP 3* r (I)
nil,r1..rx.E, (S, E,STOP.D) - s/ |RTN =1 r
((IRTN,E).r1..rx.5),E, D+ AP|STOP =2 ¢

(r1..7%x.S),E,D ¥ 5¢|STOP =>*s (s’j|RTN, E)y ()
(r1..r5.5),E,D F s;|AP|STOP =143 ¢

(rk).S,E,D F sg_1|...|s1JCONS|(3;)|AP|STOP =pt1.k-1%ts +t4(k=1)43

()-S,E,D + 3 |STOP =41
e (1) 7%.().5,E,D CONS]|...|s1|CONS|(s5)| AP|STOP =>'1,k-1+ts +t+k+3
().S,E,D F sg|...|s1J]CONS|(s;)|AP|STOP =>t1,x¥ts+t+k+3
S,E,D+ LDC NIL|s|...|s;|CONS|(s;)|AP|STOP ='1,kttsti+k+4 .

pt LDC NIL|sg|...|s1[CONS|(sg)|AP =ik T H4544

TrLeET: The LET construct is so similar to the next case that we leave it out (the
only difference being DUM is not executed and AP is used instead of RAP).
26

Trec: Let E' = replcar((r}...r}).E). Here we need k + 1 inductive arguments, k
for the arguments and 1 for the body.

pke _"“< C;,P > ..poke —»'*(e;"p >
P =plK el 0 fz1 > ... L e, 0! [zi D] er bry pley s s1...0F ex — si
[l Asidd : plz1..zk] F b sy

p & letrec (z1...ex) = (e1...€x) in bt rttethds p b letrec (z1..7x) = (e1...€x) in b
DUM|LDC NIL|sg|CONS|...|s1]
CONS|(LDF(s,|RTN))|[RAP

ex brg
¥br

r.S,E,DF STOP =0 r
(r,E7, (S,E,STOP.D) F RTN =7 r)

nil, E',(S,E, STOP.D) & 5,|STOP =' r (I
wil, E',(S,E, STOP.D) I s]JRTN =0¥1 7
((s|RTN,E).r1..75.().5),E,D - RAP|STOP =%12 ¢
(f1-7%0)-5), E, D F LDF(s;|[RTN)|RAP|STOP =53 r

(r%)-().S,E,D F sx_1]...|s1| CONS|(LDF (35| RTN))|RAP|STOP =>t1.k-1%tp+(k=1)43 .

().5,E,D F 5,|STOP =*x

e (I) 7%.0).0).S,E, D F CONS|...|s1JCONS|(LDF(s,|RTN))|RAP|STOP =pt1,%-1+tetk+3 ,

()-().S,E,D V si|...|s1| CONS|(LDF(sp|RTN))|RAP|STOP =p*1,kHto+543
().S,E,D F LDC NIL|s|...|s1JCONS|(LDF(s,)RTN))|RAP|STOP =>t1xttetk+4
S,E,D v DUM|LDC NIL|s|...|s;JCONS|(LDF(s,|RTN))|RAP|STOP =1kt 6o 4545

o DUM|LDC NIL|sg...|s;|CONS|(LDF(s,|RTN))|[RAP =ikt 0545

7.3 Non-terminating Programs

Now we consider the case where M has no WHNF. We have to show both com-
pleteness and soundness in this case, but they are so alike that not all the detail is
given.

Lemma 8 Completeness of Non-terminating Programs:

thl—M%»‘ ptM— M
' pk M At

run

Proof: Assume that M has no L.WHNF at time t. We need to show that the SECD
machine has not stopped at any time < ¢.

By induction over the length of the proofs.

Base cases: M cannot be a variable, a constant or a lambda abstraction as these
reach WHNF at time 1.

Inductive cases: Assume the lemma holds for each rule hypothesis.

For these proofs we leave out the STOP and =, lines as by now these are standard.

TOPI:
27

pte Fep—c
pFOP, e 4 pFOPe —c;JOP

S,E,DF c;|STOP $¢ ()
S,E,DF c,JOP A117

Top,: This is the last case we will go through in detail, as the rest follow the same
idea. There are three cases: (1) e; does not terminate but e, does.

ple A phe e
phey =t Sy ey e c
pFei OP, e; 01 ¥0adT || pF e 35’: e1 = c2[c; [OF

S,E,DF c3|STOP ='3 ¢! I ch:S,E,DF c;|STOP 4 I
2 2
S,E,DF cz|c;|OP phrtiat]

(2) €1 does terminate but ez does, and (3) both e; and e, fail to terminate follow the
pattern of case (1).

All of the remaining proofs have the same form as the one just given. For example,
the IF' command would simply have more cases, depending on how many (1,2, or
3) and which subexpressions are assumed not to terminate. For LET and REC
expressions the same idea applies, as one or more of the arguments or the body are
assumed not to terminate, breaking the proof down into cases like the one given
above. O

Lemma 9 Soundness of Non-terminating Programs:

tpl‘M' tn pFM— M

' pEM#

Proof: Assume M’ has no S.WHNF at time t. We need to show that M has no
L.WHNF at time <.

Base cases: M' cannot be LD, LDC, or LDF as these reach S.WHNF at time 1.

Indictive cases: For example Tpp,:

\Z

S,E, DV ¢;|STOP % pke g
S,E,D}tc,|OP #H'I pt OPe — 1 |OP’

p}'elﬁ‘ !I:
pFOPL ey £

This proof is easily seen to be just a “mirror image” of the previous one, where here

we assume that an SECD (sub-) expression does not terminate, which implies, by

the inductive hypothesis, that a miniSML (sub-) expression did not terminate. O.
28

7.4 Finally, the Theorem

Theorem 4 .
M5 M

pl-_—»'_l lpl‘.:)ﬁu,,-

S — ¢
Proof: By the previous lemmas. O

7.5 Comments on the Proof

Although this proof is quite long, it is straightforward. It is not as long as it would
have been in the style of Despeyroux, where soundness of terminating programs has
to be proved separately. The proof of soundness is (somewhat) the same length as
the proof of completeness (several pages long). In contrast, proving that relations
are deterministic is very easy and the proof for non-terminating programs is also
very straightforward.

8 Adding Lazy Evaluation

Lazy evaluation (call-by-name), although not part of Henderson’s original formula-
tion, is an important evaluation strategy in that it will give a result if one is possible.
Here we change miniSML to evaluate lazily and extend the SECD machine so that
it also can handle this. The hardware which has been proven correct in HOL is for
the strict SECD used above. Nevertheless, changing to lazy evaluation is not overly
complicated and the microcode for the hardware could be reprogrammed to handle
several new operations without invalidating the proof of the existing operations.

To add lazy evaluation to our miniSML language we have to change the values that
can be stored in the environment slightly. As well as WHNF’s the environment will
have to store “suspensions” of arguments with their environments.

To support call-by-name evaluation we have to change the application rule (so that
it does not evaluate the argument eagerly but instead creates a suspension of the
argument) and the variable lookup rule (which may have to evaluate a suspension).

Since LET and LETREC involve applications (in pure lambda) they must be
changed as well. CONS must also be lazy, although the other built-in operators
retain their strict semantics since they definitely use their arguments. This gives us
a call-by-name semantics.

29

Lappr 2HL St Az.f o' > (z.€a,pP)p' Ff1 =t r
Pk (fa)—t+t45 s
Fz—Llga,p 't g —ta
Lvara & 3 :xi‘” a’P
Lygr ALeo> [o1.. K en,p P> [za] P b L b
LET pFLET 71 = €1..Tn = €n in b=t ¥7¥3 p/
L , o' bt b where p' = p[€ e1,0' P [T1... € en, 0’ > [Tn]
REC pF LETREC 1 = €1..n = € in b ¥" 11 0
Lconst CONS e ea = (e1,¢3)

Figure 5: Changes to miniSML semantics for lazy evaluation

8.1 Lazy Instructions for the SECD machine

It is possible to delay evaluation of arguments on the SECD machine without adding
any new instructions. Specifically, each argument to a function can be made into a
nullary function (a becomes A().a) and each reference to a variable in the body of the
function would become an application. This technique does not allow sharing (every
time an argument is used it must be reevaluated) and so is not a likable solution.
Instead, we can add a couple more operations to the machine to directly handle lazy
evaluation. Evaluation with sharing is known as call-by-need.

Henderson has proposed three instructions for the SECD machine to evaluate call-
by-need. LDEF creates a suspension and puts in on the stack, AP0 applies a function
to something which may be a suspension, and UPD updates the environment with
the value of a suspension in order to facilitate sharing. In order to achieve this, we
must have pointers to suspensions. If p is such a pointer, we will write | p for the
value p points to. The transitions for the instructions are:

lp=KceDus,edrc =7
se,dF (LDE o)|d >

zs,e,dbc=>r
lp=zuse,dt APOlc=> r

nile,((prs,e’,) ud)Fec=>r
lp=«Kc,e» .s,e,dF APOjc = r

zufledbd > lpi=zx
zus,e((ps,e,c)ud)FUPD=>r

30

Before we attempt to explain these commands, let us add on to our compiler so that
we can see from whence they came. Assume that all our applications are lazy.

¢k vl (man)
¢+ v LD(m.n)|APO

ek fe f! eFa—a’
oF (fa) = LDC NILILDE(a'JUPD)|CONS|LDF(f|RTN)|AP

As well, obvious changes are made to LET and LETREC.

If we look at LDE as delaying evaluation of an argument by converting a to A().a and
AP0 as applying () to the argument, then it is clear what Henderson’s commands
are doing. Here is an example evaluation of (Az.z + z)(3 + 3).

18,[p],[] F STOP = 18
9:9,[,STOPF ADD|RTN = 18
7+ 9,[p], STOP F APOJADDIRTN = 18
9.1, STOPF LD(0,0)|APO|ADD|RTN = 18 Tp=9
9,¢,((p,[],[p]) : STOP) - UPD => 18
O, (0,17 - (STOP)) F LDC 3|LDC 3 ADDUPD = 18
9], STOP F APO|LD(0,0)|APOJADDIRTN = 18
0.7, STOP F LD(0,0)]APO|LD(0,0)|APO[ADDI|RTN = 18
20,1 F CONSILDF(..)JAP = 18 1 p =< LDC 3|LDC 3|ADD|UPD >
0.0.0F LDE(LDC 3..)]CONS|LDF... = 18
0,0.0F LDC NILILDE(LDC 3|LDC 3]ADD[UPD)[CONS
|LDF(LD(0.0)| APO|LD(0.0)| APO|ADD|RTN)|AP|STOP = 18

Unfortunately, we no longer have only one rule per SECD command (as we must do
pattern matching on what p points to above in the AP0 command). Although there
is no easy way to get back to a single rule per instruction, if we push the pattern
matching into the LD rules we need add only two instructions:

(p:s)edFc =>r p=<€c,ed
Ssusp s,e,dF (SUSP o)|c = r

s (z::s8),e,dFc=>r lpi=2x
UrD (z::8"),€,((p,s,e,c) ::d)F UPD(p) => r

where as well as the previous LD rule we have (when a suspension is looked up):

s el (m.n) 2Llgcey l.es((p,s'se’sc) nd)Fe=pr
1Dz s',e/,dr- LD(m,n)|c' = r

The compilation for these is
31

Taoor ebfe—= f etz = zlobzn— 2y
APP' 0¥ (f £1..¥n) — LDC NIL|SUSP(<,|[UPD)|CONS]...
|SUSP(4|UPD)|CONS|LDF(f'|RTN)|AP

Here is the same example using these commands.

18,1, | - STOP = 18
9::9,p,STOP|— ADD|RTN = 18
9,,STOP| — LD(0.0)|[ADD|RTN = 18
9,0, (.0, 7, LD(0.0)|[ADD|RTN) :: STOP| - UPD = 18 __p=9
0.0, (». 0,7, LD(0.0)|[ADD|RTN) :: STOP| — LDC 3|LDC 3|ADD[UPD = 18
0,5, STOP F LD(0.0)|LD(0.0)|ADD|RTN = 18 1p =< LDC 3|LDC 3|ADD|UPD,[>
0.0,01 = LDCNILISUSP(LDC 3|LDC 3|ADD]JAPD)|CONS|LDF(LD(0.0)|LD{0.0)ADD|RTN)|AP|STOP = 18

Moving the pattern matching in this manner seems to simplify the code considerably,
although more extensive testing would be required to ensure this. Nevertheless, we
use these SUSP and U PD along with T4pp: to define our lazy machine and compiler.

8.2 Compiler correctness for the Lazy SECD

The proof of the lazy compiler follows quite closely the proof of the previous compiler,
differing only for the rules noted above. Since the setup is the same, we simply offer
these portions of the completeness proof.

Tvar2: This shows the case where a variable is used for the first time and the
environment contains a suspension.

L ’
pi‘:cl—» <:1,p > " pkz— LD(m.n)

p'ta—tad '
pkz gl phacca

©_ 8
vv
e

#ﬁ%}.&i
a ’Ey(P:S,E,STOP.D)FUPDz} a (I)
LE,(»,5,E,STOP.D) F cgUPD =t¥1 o
S,E,D F LD(m.n)[STOP 5% op &7
pF LD(m.n) 217 op ef

Tappi: We consider the syntactically easier case of only one argument. Again, our
inductive hypotheses are not available from structural or rule induction. They are:

Plaltf'—~s) o DEE
<z fl, 0 > b K (RTN,E™>

pkf=tAnf 0" > ok fes sy

FYETIE SR s4|RTN,E' >

32

AN VA LT PN WO ¥

€ 0> [alb oy lunr

The second hypothesis is on the body of a lambda expression, not on the argument.
Here is the proof under these assumptions as well as the fact that when pFa — s,
we have:

pt fa— LDC NIL|SUSP(s,[UPD)|CONS|LDF(s;|[RTN)|AP|STOP

((r,S.E,D) STOP =20 r)
(< 3a|JUPD,E »).E,(S,E,STOPD)F RIN =T r

0,(< 2a|UPD, E).E",(S, E,STOP.D) F s/|STOP =»* r (I)
(< salUPD,E »).E',(S, E,STOP.D) - &, |RTN >+,

(€ 33|lUPD,E $).5,E, D v 5;|STOP =t 1
< s IRTN,E'> () < s}|RTN,E' > (< 3a|UPD,E »).5,E,D + AP|STOP »*+? r

(€ 3a[UPD,E $).5,E,DF s;|AP|STOP =t+t'+2 1
& 3a[lUPD,E » .().5,E,D + CONS|s;|AP|STOP =>*+t'+3 1
()-5,E,D ¥ SUSP(saJUPD)|CONS|s;|AP|STOP =+t +4 ¢
S,E,D+ LDC NIL|SUSP(s4|[UPD)|CONS|s;|AP|STOP s,
o+ LDC NIL|SUSP(salUPD)|CONS|s;|AP =tti+°

This is the case for only one argument, but it generalizes easily. LET and REC
follow this pattern as well.

Timing seems a little more difficult in the lazy case as it is dependent on how often
(if at all) each variable is executed. The first use requires time to evaluate the
suspension, but each subsequent use is a constant time of 1. Luckily, both the lazy
miniSML and the LSECD both handle these the same way so that the inductive
hypothesis takes care of timing for us.

9 Conclusion

We have proved the specification of a compiler from miniSML to SECD to be correct.
This proof builds on the natural semantics style used by Despeyroux. Although the
proof is quite long, no given part is very difficult and it follows closely our intuition
on how such a proof should proceed.

Hand proofs are prone to errors. This proof should be mechanically checked using
a theorem prover such as HOL. This would also tie it in with the SECD hardware

proof.
33

We have not said anything about implementing the compiler to meet the specifica-
tion, or better yet, deriving the implementation from the specification. Much work
has been done in this area. Instead we concentrated on simplifying the notation for
specifications and the proof effort needed to show them correct.

Natural semantics rules can be directly implemented, for example by TYPOL [3].
This would allow one to execute the specification directly. This does not preclude
other implementations, as a system such as TYPOL is quite complex and would be
difficult to implement on correct hardware, such as the SECD chip. A better first
step would be to correctly implement the specification in miniSML itself.

10 Acknowledgments

This work has been supported by the Alberta MicroElectronics Center, the Natural
Sciences and Engineering Research Council, the Izaak Walton Killam Memorial Fund,
and the Alberta Heritage Scholarship Fund. Thanks also to Graham Birtwistle, Brian
Graham and Konrad Slind who have worked on the SECD project and read drafts
of this report.

References

[1] W. Burge. Recursive Programming Techniques. Addison-Wesley, New York,
1975.

[2] J. Despeyroux. Proof of Translation in Natural Semantics. In Proceedings of
the 1986 Symposium on Logic in Computer Science, pages 193-205, Cambridge
MA, 1986.

[3] T. Despeyroux. Executable Specification of Static Semantics. In Semantics of
Data Types, LNCS 173, 1984.

[4] A.J. Field and P. G. Harrison. Functional programming. Addison—-Wesley, New
York, 1988.

[5] M. J. C. Gordon. HOL: A Proof Generating System for Higher Oorder Logic. In
G. Birtwistle and P. A. Subrahmanyam, editors, VLSI Specification, Verification
and Synthesis, pages 73-128, Norwell, Massachusetts, 1988. Kluwer.

[6] B. Graham. SECD: The Design and Verification of a Functional Microprocessor.
Research Report 90/395/19, University of Calgary, 1990.

34

[7] P. Henderson. Functional programming; applications and implementation. Pren-
tice Hall, London, 1980.

(8] M. J. Hermann, G. Birtwistle, B. Graham, and T. Simpson. The Architecture
of Henderson’s SECD Machine. Research Report 89/340/02, Computer Science
Department, University of Calgary, 1989.

[9] G. Kahn. Natural semantics. In K. Fuchi and M. Nivat, editors, Programming
of Future Generation Computers, pages 237-258, Amsterdam, 1988. Elsevier
Science Publishers (North Holland).

[10] P. J. Landin. The mechanical evaluation of expressions. Computer Journal,

6(4):308-320, 1964.

(11] P. J. Landin. The correspondence between ALGOL60 and Church’s lambda
calculus, Part 1. Communications of the ACM, 8(2):89-101, 1965.

(12] P. J. Landin. The correspondence between ALGOL60 and Church’s lambda
calculus, Part 2. Communications of the ACM, 8(3):158-165, 1965.

[13] P. J. Landin. An abstract machine for designers of computing languages. In
Proceedings of the IFIP Congress 65, volume 2, pages 438-439, Washington,
1966. Spartan Books.

[14] K. Mitchell. Course notes. Edinburgh, 1988.

[15] F. Morris. Advice on structuring compilers and proving them correct. In Proc.

ACM Symposium on POPL, pages 144-152, 1973.

[16] G.D. Plotkin. Call-by-name, call-by-value, and the lambda calculus. Theoretical
Computer Science, 1(1):125-159, 1975.

[17] G. D. Plotkin. A Structural Approach to Operational Semantics. Daimi, Uni-
versity of Aarhus, Denmark, 1979.

35

