THE UNIVERSITY OF CALGARY

IMPARTIAL AND PARTISAN GAMES

by

Richard Austin
A THESIS
SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE

Abstract

Conway has recently developed a theory particularly well suited to the analysis of two-person games that are completely determined. Using this theory we consolidate some results due to Conway and Guy about the partisan game Col, as well as proving some new results for take and break games. In Chapter 4 , the results obtained by Guy and Smith, and Kenyon for octal games are generalized to arbitrary take and break games. Chapter 5 discusses subtraction games. We show that all subtraction games are periodic, and prove that in certain circumstances it is possible to determine the period length exactly. We also state the rules, due to Conway and Guy respectively, for writing down the period of the games $S(a, b), S(a, b, 2 b-a)$. Using Ferguson's Pairing Property, we give the analysis, again due to Conway and Guy, of $S(a, b, a+b)$. Chapter 6 deals with arithmeticomperiodicity. Conway's proof that no octal game is arithmetico-periodic is given. We prove new arithmetico-periodicity theorems for sedecimal and infinite recurring octal and tetral games. Chapter 7 contains Tables that list the G-sequence of certain types of games. With the exception of Table 7.7 , the basis for these was provided by Guy. Table 7.1 was expanded by the author to include all subtraction games in which the subtrahends do not exceed 8. The games . $055, .165$, - 356

Acknowledgements

I would like to take this opportunity to express my sincere gratitude to my supervisor, Professor Richard K. Guy, for the constant help he has provided. His suggestions enabled me to overcome difficulties too numerous to mention. His interest and enthusiasm brought me through many periods of frustration. As well, his concentrated attention to all aspects of this thesis (not excluding the spelling of the word 'argument') was invaluable.

I am also indebted to Dr. John Conway for his willingness to discuss al1 aspects of this thesis, and the many helpful suggestions that came out of these discussions.

I would also like to thank Karen McDermid for the superb job she did in deciphering and typing this manuscript, as well as for her patience in correcting the copy.

Financial support was provided by the University of Calgary and the Province of Alberta.

TABLE OF CONTENTS

Page
Abstract iii
Acknowledgements iv
Tables vii
Figures viii
Chapter 1. The Classes Ug and No 1
1.1 Introduction 1
1.2 Games 1
Chapter 2. The Game of Col 16
2.1 Introduction 16
2.2 The values of some Col positions 19
2.3 Equivalent positions 38
Chapter 3. The Sprague-Grundy Theory 55
3.1 Introduction 55
3.2 Nim addition 55
3.3 The game of Nim 56
3.4 The Sprague-Grundy Theory 57
3.5 The Sprague-Grundy function 63
Chapter 4. Take and Break Games 66
4.1 Introduction 66
4.2 Take and Break Games 68
4.3 Periodic G-sequences 69
4.4 The Standard form of Take and. Break games 72
4.5 Periodicity of Take and Break games 78
4.6 Relations between the G-sequence and the rules of the game 87

Page

Chapter 5. Subtraction games 92
5.1 Introduction 92
5.2 G-sequences of subtraction games 95
5.3 $S(\dot{u}, b, a+b)$ and the Berlekamp method 99
5.4 Tetral games 111
Chapter 6: Arithmetico-periodicity 113
6.1 Introduction 113
6.2 Finite octals and arithmetico-periodicity 113
6.3 An arithmetico-periodicity theorem for sedecimal games 117
6.4 Infinite recurring games and arithmetico-periodicity. 142
Chapter 7. G-sequences of Take and Break games 151
7.1 Introduction 151
7.2 Subtraction games 151
7.3 Octal games 155
7.4 Infinite recurring octals 168
7.5 Arithmetico-periodic sedecimal games 171
Błtbliography 174

List of Tables

Page
Table 2.3. The values of some Col positions 53
Table 4.3. G-values missing from Figure 4.2. 82
Table 4.7. Excluded values, $G(i) \stackrel{*}{+} G(n-s-1-i)$, for $\cdot 1_{n}^{s} \frac{4}{\sim}$ 90
Table 7.1. G-sequences of subtraction games 152
Table 7.2. G-sequences of octal games 156
Table 7.3. A guide to Table 7.2 166
Table 7.4. G-sequences of infinite recurring octal games 169
Table 7.5. Games of the form $\cdot \mathcal{d}_{1}{\dot{\underset{\sim}{n}}}_{2}, 4 . \dot{d}_{1}$ 170
Table 7.6. Games of the form . $\dot{d}_{1} \dot{d}_{2}$ 170
Table 7.7. G-sequences of sedecimal games 172

List of Figures

Page
Figure 1.1. The trees of some simple gamed 5
Figure 1.2. Games equivalent to 0 7
Figure 1.3. The tree of moves of n 9
Figure 1.4. The tree of numbers 12
Figure 1.5. Equivalent forms of some simple games 14
Figure 2.1. The correspondence between maps and graphs 18
Figure 2.2. A guide to Table 2.3 52
Figure 3.1. The play of $G+* g$ 58
Figure 3.2. $* n+* m, n \leqslant 7, m \leqslant 7$ 59
Figure 4.1. The period of . 356 80
Figure 4.2. The period of $\cdot \frac{165}{}$ 82
Figure 4.4. The period of :055 84
Figure 4.5. Residue classes of $n(\bmod 148)$ 84
Figure 4.6. The period of .644 86
Figure 5.1. Analysis of $S(3,10,13)$ 100
Figure 5.2. Analysis of $S(1,2 k, 2 k+1)$ 102
Figure 5.3. Analysis of $S(1,2 k+1,2 k+2)$. 102
Figure 5.4. Analysis of $S(1,13,14)$ 103
Figure 5.5. Analysis of $S(\alpha, 2 h \alpha-r,(2 h+1) \alpha-r)$ 105
Figure 5.6. Analysis of $S(5,22,27)$ 106
Figure 5.7. Part of analysis of $S(\alpha, 2 h a+p,(2 h+1) a+r)$ 107Figure 5.8. Part of analysis of $S(a, 2 h a+r,(2 h+1) a+r)$ when
$\alpha-(k r)_{\alpha} \geqslant r$ 109Figure 5.9. Part of analysis of $S(a, 2 h a+r,(2 h+1) a+r)$ when$a-(k r)_{a}<r \ldots .$.

List of Figures

Page
Figure 6.1. Case I 125
Figure 6.2. Case II 127
Figure 6.3. Case III 129
Figure 6.4. Case IV 131
Figure 6.5. Case V 133
"There is plenty of time to win this game, and to thrash the Spaniards too."

Sir Francis Drake, 20 July 1588.

Chapter 1

The Classes Ug and NO

1.1. Introduction

Our aim in this chapter is to develop a theory that will enable us to evaluate positions in games, so that we may determine what advantage, if any, a position confers upon a particular player. To achieve this end, we define a class $\underset{\sim}{\mathrm{N}} \mathrm{g}$ of games, as well as addition and a partial order on this class. It turns out that the advantage conferred upon a player by some positions can be thought of as a number of moves advantage to one of the players, Left or Right. As a result, we find that the class Ug strictly contains a real ordered field No as a subclass, which in turn strictly contains the real numbers.

Our discussion is necessarily brief. In most instances we omit proofs so that we may more quickly apply the techniques to the analysis of games. For a more complete treatment, we refer the reader to [5].

1.2. Games

By a gome G we mean a set of positions together with rules which say for any two positions P, Q and either of the two players, Left and Risht, whether it is legal for the p layer to move from P to Q. We require that the state of play be known to both players, and that moves be determined only by the rules, not by any external conditions such as the throwing of dice. The games under discussion bear more similarity to Chess or Checkers than to Bridge or Monopoly.

The initial position of a game G is the position from which play starts. If from the initial position, Left has moves only to positions A_{1}, A_{2}, \ldots and Ríght has moves only to positions B_{1}, B_{2}, \ldots, we write $G=\left\{A_{1}, A_{2}, \ldots \mid B_{1}, B_{2}, \ldots\right\}$ and refer to A_{1}, A_{2}, \ldots as the left options of G, B_{1}, B_{2}, \ldots as the right options of G. The typical left or right option will be denoted by G^{L} or G^{R} respectively, so that $G=\left\{G^{L} \mid G^{R}\right\}$. Note that G^{L}, G^{R} here represent sets, empty, finite, or infinite. For simplicity we have omitted the usual braces; we will also, by a common abuse of notation, often use G^{L} to denote a particular option, rather than the set of all left options.

The game G will end when the player whose turn it is to move cannot do so. For example, if from $G=\left\{A_{1}, A_{2} \mid\right\}$ it is Right to move, then the game G has ended, as the set of options available to Right is empty. In the case of an ended game, the outcome depends upon the convention under which the game is being played. In normat play, a player loses if it is his turn to movie and he is unable to do so, i.e. these games are last player winning. Under misere play, the last player able to make a legal move loses, i.e. these games are last player losing.

A game G is said to be impartial if from each position of G, exactly the same moves are available to each player. A game that is not impartial is said to be partisan. For example, Col (see Chapter 2) is a partisan game. An example of an impartial game is Nim. It is played with a finite number of heaps of tokens, each heap containing a finite number of tokens. The players move alternately, choosing one heap and removing at least one token from that heap.

If in Nim an infinite number of heaps were allowed, the game would not terminate. A game G is said to satisfy the terminating play condition if there is no infinite sequence $P_{0}, P_{1}^{\prime}, P_{2}, \ldots$ of positions for which there exist legal moves from P_{n} to $P_{n+1}, n=0,1,2, \ldots$. Observe that a game in which there is an infinite sequence of moves for just one of the players does not satisfy the terminating play condition. The reason we do not restrict the condition to alternating sequences (Left, Right, Left,...) will become clear when we define addition of games. In the following we restrict ourselves to last player winning games that satisfy the terminating play condition.

A disjunctive compound (sum) of the games $\left\{G_{0}, G_{1}, \ldots, G_{n}\right\}$ is played in the following manner. The player whose turn it is to move selects one of the component games, $G_{0}, G_{1}, \ldots, G_{n}$, and makes a legal move in that component. The disjunctive compoind, denoted by $G_{0}+G_{1}+\ldots+G_{n}$, ends when each of the components had ended. Nim is a disjunctive compound of component games of one-heap Nim. If G, H are games, the positions of $G+H$ are ordered pairs (P, Q) where P is a position of G, Q is a position of H. From (P, Q), Left may move to $\left(P^{L}, Q\right)$ or $\left(P, Q^{L}\right)$, and Right may move to (P^{R}, Q) or $\left(P, Q^{R}\right)$.

For each game G, there is a set of positions G^{L} to which left may move, and a set of positions G^{R} to which Right may move. Each $P \in G^{H} U G^{R}$ is a shortened game, so that G is determined by the games that form its left and right options. This observation provides us with a definition of a game.

DEFINITION 1.1 (Conway [5] $\underset{\sim}{5}$). If G^{L} and G^{R} are two sets of games, then there is a game $\left\{G^{L} \mid G^{R}\right\}$. All games are constructed in this way.

DEFINITION 1.2. (i) If $G=\left\{G^{L} \mid G^{R}\right\}$, then $-G=\left\{-G^{R} \mid-G^{L} \cdot\right\}$.
(ii) If $G=\left\{G^{L} \mid G^{R}\right\}, H=\left\{H^{L} \mid H^{R}\right\}$ then $G+H=\left\{G^{L}+H, G+H^{L} \mid G^{R}+H, G+H^{R}\right\}$.

Note that the game $-G$ is obtained from G by reversing the roles of Left and Right throughout.

Definitions 1.1 and 1.2 are inductive definitions. We show the operation of the induction by consideration of some simple games. The simplest of all games is the Endgame $\{\mid\}$. It is reasonable to denote this by 0 (take $G^{L}=G^{R}=\emptyset$ in Definition 1.2) since $0=0$, and $0+H=\left\{0+H^{L} \mid 0+H^{R}\right\}=\left\{H^{L} \mid H^{R}\right\}=H$. As no player may make a legal move, the one required to move first loses, i.e. this is a second player winning game. Consider $\{0 \mid$ \}. Moving first, Left may make a legal move to 0 , which ends the game, so that Left wins. If Right is required to move first, Left also wins, as the set of right options is empty. Similarly in the game $\{\mid 0\}$, Right wins regardless of which player starts. However $*=\{0 \mid 0\}$ (pronounced star) is a first player winning gome, since the first player moves to 0 , and becomes the second player in the shor ente game.

To illustrate the play of games, we represent the game as a tiee. The positions are represented by nodes, and a legal move from P to Q is represented by a line joining P to Q. We draw the tree so that moves for Left are represented by lines sloping upward to the left, and moves
for Right are represented by lines sloping upward to the right. Figure 1.1 shows the trees of the games discussed above.

Figure 1.1. The trees of some simple games.

Any game G that satisfies the terminating play condition belongs to one of the outcome classes listed above. We define these classes more formally in the following manner.

DEFINITION 1.3. The four outcome classes are:
$G>0$ if Left can win no matter who starts.
$G<0$ if Right can win no matter who starts.
$G \doteq 0$ if the second player can win.
$G \| O$ (G is fuzzy, or G is confused with 0) if the first player can win.

These symbols combine in a natural way.
$G \geqslant 0$ means that if Right starts, Left wins.
$G \leqslant 0$ means that if Left starts, Right wins.
$G \| 0$ means that if Left starts, Left wins.
$G<10$ means that if Right starts, Right wins.

We let $U g$ denote the class of all games. Equality in Ug is defined in terms of equivalence classes. We first introduce the concept of isomorphic games." For $G, H \in \underset{\sim}{U}, G \equiv H(G$ is isomorphic to H) if there is a one to one correspondence between the legal moves of G and $I I$.

LEMMA 1.4. (i) $0+G \equiv G$
(ii) $G+H \equiv H+G$
(iii) $(G+H)+K \equiv G+(H+K)$.

PROOF. We prove (i) to provide an example of the general inductive argument.

$$
\begin{aligned}
0+G & =\left\{0^{L}+G, 0+G^{L} \mid 0^{R}+G, 0+G^{R}\right\} \\
& =\left\{0+G^{L} \mid 0+G^{R}\right\} \\
& \equiv\left\{G^{L} \mid G^{R}\right\} \\
& =G .
\end{aligned}
$$

Suppose we wish to establish a proposition $\Gamma(G)$ for all games G. It suffices to prove that $\Gamma\left(G^{L}\right), \Gamma\left(G^{R}\right)$ imply $\Gamma(G)$. What is perhaps not so clear is that these inductions never require a basis, since statements about the empty set are vacuously true.

LEMMA 1.5. If $H \doteq 0$ then $G+H$ has the same outcome as G.

LEMMA 1.6. (Tweedledum and Tweedledee Principle). $\forall G \in \underset{\sim}{\mathrm{U}}, G+(-G) \doteq 0$. PROOF. The second player mimics his opponent's move in the opposite component of the disjunctive sum.
(Lemma 1.6 explains our formulation of the Terminating Play Condition. If an infinite sequence $P_{0}, P_{1}, P_{2}, \ldots$ of moves for one player was permitted, then the game $G+(-G)$ might never end.)

LEMMA 1.7. If $G+(-H) \doteq 0$ then $G+K$ has the same outcome as $H+K, \forall K \in \underset{\sim}{\mathrm{Ug}}$. PROOF. By Lemma 1.5, $H+K$ has the same outcome as $G+(-H)+H+K$, and $G+(-H)+H+K \equiv G+K+(H+(-H))$. Then by Lemmas 1.5 and $1.6 G+K+(H+(-H))$ has the same outcome as $G+K$.

DEFINITION 1.8. $G=H$ if $G+(-H) \doteq 0$.

The definition of equality is based on the observation (Lemma 1.7). that if $G+(-H) \doteq 0$, it will not affect the outcome of a disjunctive sum that includes G as one of the component games if G is replaced by H. Notice in particular $G \doteq 0$ implies $G=0$. For example, consider the game $G=\{\{\mid 0\} \mid\{0 \mid\}\}$. If Right starts, we go to $\{0 \mid\}$. Left now moves to 0 and wins. Similarly if Left starts, Right wins, so that G is a second player winning game. Hence $\{\{\mid 0\} \mid\{0 \mid\}\}=0$. In future when we speak of a game G, we mean all games H such that $G+(-H)=0$. For example, by 0 we mean not only $\{\mid\}$ but also the games $\{\{\mid 0\} \mid\{0 \mid\}\}$: and $*+*=\{0 \mid 0\}+\{0 \mid 0\}$, illustrated in Figure 1.2, and $G+(-G)$ for any game G.

Figure 1.2. Games equivalent to 0 .

Definition 1.3 enables us to define a partial order on Ug. For two . games, $G ; H, G \geqslant H$ if $G+(-H) \geqslant 0$, \mathfrak{j}.e. the game $G+(-H)$ is Left to win if Right starts. By $G>H$ we mean $G \geqslant H$ and $G \neq H$.

LEMMA 1:9. If $G \geqslant H, H \geqslant K$, then $G \geqslant K$.

Lemma 1.9 assures us that there is no ambiguity in the use of the symbol ' \geqslant '' to denote the partial order.

There is an alternative formulation of the partial order that we will often use. For $G=\left\{G^{L} \mid G^{R}\right\}, H=\left\{H^{I} \mid H^{R}\right\}$, we have $G \geqslant H$ if there is no $H^{E} \geqslant{ }^{L} G$ and therens no G^{R} such that $H \geqslant G^{R}$. This formulation, like the method of construction of games, is inductive. To decide whether $G \geqslant H$ It is first necessary tö determine: the order relations that hold between all the H^{L} and G, and the order relations that hold between H and all the G^{R}. If it is the case that no $H^{L} \geqslant G$ and $H \geqslant$ no G^{R}, then $G \geqslant H$.

By $G \mid D H$ we shal1 mean $G+(-H) \mid D 0$, i.e. the game $G+(-H)$ is Left to win if Left starts. As an immediate consequence of the definition we have LEMMA 1:1N0. For all games $G, G^{R} \mid D G I D G^{L}$.

There are some games that behave like numbers, i.e. they provide a certain number of free moves to one of the players. We can consider n to be the game with n successive moves available to Left, and no moves to Right. Figure 1.3 illustrates the tree of moves of n.

0

Figure 1.3. The tree of moves of n.

In the game n, Left moves to the position $n-1$, which suggests the following inductive definition:

$$
n=\{n-1 \mid\} .
$$

For example, $1=\{0 \mid\}$ so that by Definition $1.2(i),-1=\{\mid 0\}$.
If we play the game $\{0 \mid 1\}+\{0 \mid 1\}+(-1)$ we discover that this is a second player winning game, so that it seems $\{0 \mid 1\}$ provides Left with $1 / 2$ move advantage. For this reason, we call $\{0 \mid 1\}=1 / 2$, so that by Definition 1.2 (i), $-1 / 2=\{-1 \mid 0\}$,

It turns out that we can define a subclass NO of $\underset{\sim}{\text { Ug which is a }}$ real ordered field that strictly contains the real numbers. In [5] Conway details the construction of the class No. We limit ourselves to a discussion of the rôle of numbers within $\underset{\sim}{U g}$ and a statement of several of the results.

DEFINITION 1.11. $x=\left\{x^{L} \mid x^{R}\right\}$ is a number provided it has a form in which
(i) all the x^{L}, x^{R} are numbers
(ii) $x^{L}<x^{R}$ (for each pair x^{L}, x^{R}).

Note that $0=\{\mid\}, n=\{n-1 \mid\}$ are numbers (in each case (ii) is vacuously true) so that there are some numbers. In verifying that a number $x=\left\{x^{L} \mid x^{R}\right\}$ satisfies (ii), we consider x^{L}, x^{R} as games (for numbers are also games) and show that $x^{R}-x^{L}>0$. For example $1 / 2=\{0 \mid 1\}$. Since $1-0=1$ is Left to win, regardless of which player starts, $1-0>0$ and $1 / 2$ is a number. But $*=\{0 \mid 0\}$ is not a number, since $0 \neq 0$.

We have already defined addition, and a partial order on games. These are inherited by the class $N\left(\begin{array}{l}\text { N } \\ \text { Ug. For completeness we re- }\end{array}\right.$ state these in terms of numbers.

DEFINITION 1.12 (Conway [4]). Let x, y be numbers.
(i) $x \geqslant y$ if $\forall x^{R}, y \not x^{R}, \forall y^{L}, y^{L} \not x, y \leqslant x$ if $x \geqslant y$,
(ii) $x=y$ if. $x \geqslant y$ and $y \geqslant x$,
(iii) $x+y=\left\{x^{L}+y, x+y^{L} \mid x^{R}+y, x+y^{R}\right\}$,
(iv) $-x=\left\{-x^{R} \mid-x^{L}\right\}$.

We also have

LEMMA 1.13. No is totally ordered.
LEMMA 1.14. For any number $x, x^{L}<x<x^{R}$.

Consider $x=\left\{0 \left\lvert\, \frac{1}{2}\right.\right\}$. Since this satisfies Definition $1.11 x$ is a number. If we play $\left\{0 \left\lvert\, \frac{1}{2}\right.\right\}+\left\{0 \left\lvert\, \frac{1}{2}\right.\right\}-\frac{1}{2}$, we see that it is second player winning. For this reason we call $\left\{0 \left\lvert\, \frac{1}{2}\right.\right\}=\frac{1}{4}$.

From the examples considered so far, it might be thought that $\left\{\left.-\frac{1}{2} \right\rvert\, 1\right\}$ is also equal to $\frac{1}{4}$. If Left moves first he goes to $-\frac{1}{2}=\{-1 \mid 0\}$. and Right wins, while if Right moves first, he goes to 1 and Left wins. Hence $\left\{\left.-\frac{1}{2} \right\rvert\, 1\right\}$ is a second player win, so that $\left\{\left.-\frac{1}{2} \right\rvert\, 1\right\}=0$.

Therefore we cannot answer the question 'What number is x ?' when x is a number by taking the arithmetic mean of x^{L} and x^{R}. By way of the Creation Story (cf. Knuth [$\underset{\sim}{14}]$) we are able to provide an answer.

We think of games as being created on consecutive days, where each day is numbered with an ordinal α. On day α we create (by Definition 1.1) all games $G=\left\{G^{L} \mid G^{R}\right\}$, for which each member of $G^{L} U G^{R}$ has been previously created. Since No is strictly contained in Ug, we know that every number has associated with it a birthday, the day on which it was created. On day 0 we create the number $0=\{\mid\}$. On day 1 , we use 0 to create $1=\{0 \mid\},-i=\{\mid 0\}(*=\{0 \mid 0\}$ is also created on day 1$)$. On day 2 , the numbers $-2=\{\mid-1\},-\frac{1}{2}=\{-1 \mid 0\}, \frac{1}{2}=\{0 \mid 1\}, 2=\{1 \mid\}$ are created. Figure 1.4 illustrates the tree of numbers.

Figure 1.4. The tree of numbers.

On day n, the largest number created is n, and the least number is $-n$. Every other number created on day n is the arithmetic mean of two numbers adjacent in the chain of all numbers previously created. Hence on day 3 , we create the numbers $3=\{2 \mid\}, 1 \frac{1}{2}=\{1 \mid 2\}, \frac{3}{4}=\left\{\left.\frac{1}{2} \right\rvert\, 1\right\}$, $\frac{1}{4}=\{0 \mid 1\}$, and their negatives.

On day 3 , we also create the number $x=\{0,1,2 \mid\}$. By Lemma 1.14, we have $x>2, x>1, x>0$. However $x>2$ implies $x>1, x>0$, so that 1 and 0 seem redundant in some sense. Lemma 1.15 shows this to be so. LEMMA 1.15. (1) If $G=\left\{G^{L}, H \mid G^{R}\right\}$, and $G^{L} \geqslant H$, then $G=\left\{G^{L} \mid G^{R}\right\}$.
(ii) If $G=\left\{G^{L} \mid G^{R}, H\right\}$, and $H \geqslant G^{R}$, then $G=\left\{G^{L} \mid G^{R}\right\}$.

Such an option H, for either Left or Right, is said to be a dominated option, e.g. $3=\{2 \mid\}=\{1,2 \mid\}=\{0,1,2 \mid\}$.

The Gift Horse Principle enables us to simplify numbers further. We state it in its most general form in terms of games. The Gift Horse Principle asserts that it is always possible to give a player a new move without affecting the value of the game, provided that it does him no good. LEMMA 1.16 (The Gift Horse Principle). Let $G=\left\{G^{L} \mid G^{R}\right\}$.
(i) If $H<\| \mid G$, then $G=\left\{G^{L}, H \mid G^{R}\right\}$.
(ii) If $H \mid D G$, then $G=\left\{G^{L} \mid G^{R}, H\right\}$.

For example, $0 \| *$, so that $0=\{\mid\}=\{* \mid\}=\{* \mid *\}$. Such a ${ }^{\prime}$ Gift Horse' is referred to as an irrelevant option. The Gift Horse Principle is usuàlly applied in reverse to simplify games. Suppose $G=\left\{G^{J}, H \mid G^{R}\right\}$. If for the game $G^{\prime}=\left\{G^{L} \mid G^{R}\right\}, H\left\langle\| G^{\prime}\right.$, then by Lemma 1.16

$$
\begin{aligned}
G^{\prime} & =\left\{G^{L} \mid G^{R}\right\} \\
& =\left\{G^{L} ; H \mid G^{R}\right\} \\
& =G
\end{aligned}
$$

Figure 1.5 illustrates the effect of irrelevant and dominated options by displaying some equivalent forms of some simple games.

Figure 1.5. Equivalent forms of some simple games.

The form of a game may be simplified by eliminating irrelevant and dominated options. It may be the case that after such simplifications have been made, that the game is a number. The Simplicity Theorem enables us to state precisely what number $G=\left\{G^{L} \mid G^{R}\right\}$ is when G is a number. The word simplest is taken as synonymous with earliest created. THEOREM 1.17. (The Simplicity Theorem). Let $G=\left\{G^{L} \mid G^{R}\right\}$. If there is any number x such that $\forall G^{L}, \forall G^{R}, G^{L}\left\langle\|x<\| G^{R}\right.$, then G is the simplest such x, i.e. if there is an integer x, then G is the integer nearest to 0 , and if there is no integer, G is the binary fraction with least denominator.

For example:

$0=\{-47 \mid 12\}$ since 0 is the simplest (earliest created) number such that $-47<0<12$.
$1=\{1+* \mid 1+*\}$ $\frac{1}{2}=\left\{\frac{1}{8} \left\lvert\, \frac{9}{16}\right.\right\}$.

We have already seen one game that is not a number. We list several others.

$$
\begin{aligned}
\uparrow & =\{0 \mid *\} \quad \text { (pronounced "up") } \\
\psi & =\{* \mid 0\} \quad \text { (down) } \\
\pm 1 & =\{+1 \mid-1\} \quad \text { (plus or minus one) } \\
n * & =n+*=\{n \mid n\} \quad \text { (n star) } \\
+_{2} & =\{0 \mid\{0 \mid-2\}\} \quad \text { (tiny two). }
\end{aligned}
$$

Our treatment of the classes $\underset{\sim}{\mathrm{Ug}}$ and NO is by no means complete. However we now have sufficient information to begin our analysis of games.

The Game of Col

2.1. Introduction

Col is a partisan game suggested by Colin Vout. We may imagine the game as being played on a brown paper map. The two players Black (Left) and White (Right) equipped with pots of black and white paint in turn paint countries on the map subject to the restrictions that no country already painted may be repainted, and no two adjacent regions may be painted the same colour.

In passing we mention Snort, a companion game to Col, but that we now require that no two adjacent regions be painted opposite colours. The theory of Snort appears much more difficult than that of col, and no results analogous to those presented here for Col have been discovered. However, the general character of Snort is well understood, namely that most positions are "hot", i.e. the first player often has a considerable advantage.

Col and Snort are typical (if not the actual prototypes) of the two very different classes of partisan games, cool and snorting, i.e. cold and hot. In the first a player usually does himself harm by moving (helps his opponent) ; in the second he gains some advantage by doing so (harms his opponent).

The latter are the "good" (worthwhile) games, like Chess, where the move is all-important. The Zugrwang positions in which it is actually a disadvantage to move seldom occur.

We follow an analysis of Col due to J.H. Conway. First, simple positions were analyzed and used to build a dictionary of values. The table of values suggested certain theorems which once proved were used to condense the table.

In the game of Col, when Black paints a region, in the play that follows he is not permitted to move in any of the contiguous regions. We speak of regions as having a white tint to indicate that they are reserved for White. Similarly if White paints a region, we speak of contiguous countries as having a black tint. The map may be simplified by deleting regions already painted, orrregions that are tinted both colours as neither player is permitted to move in them.

We represent arbitrary maps by graphs in the following manner. To each country of the map not already painted there corresponds a node, and an edge joins two nodes that correspond to adjacent regions. The nodes are labelled to correspond to the states of their respective regions according to the following scheme:

In the actual play of games, we often represent a region in which a player has moved by , since this prohibits either player from moving there in the play that follows, just as the move does.

The graph may be simplified by deleting edges joining oppositely tinted nodes. An edge affects the graph by preventing adjacent nodes from being similarly painted. As the tinting already accomplishes this, the edge is redundant. Such an edge is called explosive.

Figure 2.1 shows a map with one region painted black (represented by ' b ') and one region painted white (represented by 'w') as well as the graph that corresponds to it. We analyze a slightly more general game than the one with which we started. The "brown paper" will only generate planar graphs, while the theory applies to arbitrary graphs, so that one can play on pieces of brown paper of any genus.

Figure 2.1. The correspondence between maps and graphs.

In the analysis presented here we primarily discuss chains, though results will be generalized to arbitrary graphs whenever possible. The following notation facilitates the description of arbitrary graphs, but is particularly appropriate when discussing chains. Let '+' correspond to a black node: t^{n} then represents a chain of n nodes tinted black. Let ' -' correspond to a white node: - ${ }^{n}$ represents a chain of n nodes tinted white. Those nodes about whose tint we are uncertain are represented by 0 . A string of n untinted nodes is represented by ${ }^{\circ}$. For example

$:+0^{3}-0-$
A similar technique is used when referring to a vertex, say α, joined to a set A of nodes. Note that a is not considered part of the set A, i.e. A is interpreted as the subgraph induced by the nodes other than a. Then the node α is described by the symbols outlined above. For example

2.2. The Values of some Col Positions.

The analysis of $C o l$ is simpler than that of Snort as the values that arise are of a very restricted kind. Consider the values of the following simple positions:

$$
\begin{aligned}
& +=\{0 \mid 0\}=* \text { i.e. a single untinted node is a first player win. } \\
& \text { (a) }\{\mid\}=\{0 \mid\}=1 \quad 0 \quad\{\mid\}=-1 \\
& 0-\{0 \mid\}=\{0 \mid\}=1 \quad 0=0 \\
& 0=\{0,(1)\}=\{-1,0 \mid 1\}=\frac{1}{2} \\
& \text {-1 }=\{1,0, \mid=\{*,-1,1 \mid 1\}= \\
& =1+*=1 *
\end{aligned}
$$

In the analysis of more complicated positions, no values but \mathfrak{x} or. $x+*$ where x is a number were observed. Conway and Guy have proved this is always the case. The proof depends upon the following lemnas.

LEMMA 2.1. (Hindering One's Opponent is No Harm). The value of a position is
(i) unaltered or increased by tinting a node black,
(ii) unaltered or decreased by tinting a node white,
(iii) unaltered or increased by deleting a node tinted white,
(iv) unaltered or decreased by deleting a node tinted black.

PROOF. (i), (ii) follow from the observation that tinting a node black decreases the number of right options, while tinting it white decreases the number of left options. To establish (iii) observe that if a node v is already tinted white, we may tint v black by (i) and the value of the
position is unaltered or increased. However the node v then is doubly tinted and may be deleted. A similar argument establishes (iv).

LEMMA 2.2. The value of a graph is
(i) unaltered or increased by deleting any edge one end of which is tinted black,
(ii) unaltered or decreased by deleting any edge one end of which is tinted white.

PROOF. (i) The deletion of an edge, one end of which is tinted black, cannot hinder Black since it may provide Black with an extra move in an adjacent node, while if White plays in the node at the other end of such an edge, the tinted node is unaffected.
(ii) is the same statement with colours reversed.

THEOREM 2.3. The value of any position G in Col is either x or x^{*} $(=x+\%)$ where x is a number.

PROOF. By Lemma 1.9, we know that $G^{L}\left\langle\| \quad G\left\langle\| G^{R}\right.\right.$. It suffices to prove that

$$
G^{L}+* \leqslant G \leqslant G^{R}+*
$$

Suppose White moves by painting y in G, i.e.

Then $G \leq G$ where G_{y} is the position obtained by tinting black those nodes adjacent to y

$=G^{R}+* \quad$ or
or

$$
G^{R}-1
$$

and since $G^{R}-1<G^{R}+*$, we have

$$
G \leqslant G \leqslant G^{R}+*
$$

When evaluating positions it is normal to consider all Left and Right options. However it can be shown that in certain positions this is unnecessary. Some of the moves are dominated, and certain options are equivalent to other positions which are easier to evaluate. In special circumstances we can completely determine the values assumed by classes of positions.

In the case that $n=-1$

are interpreted as \bigcirc, , with values $-1,1,0$.

THEOREM 2.4. (I) If $n \geqslant-1$, then $+0^{n}+=1$;

$$
\text { i.e., }=-1=1=1
$$

(ii) If $n \geqslant-1$, then $\left(+^{n}-\right)=0$;
i.e., $=0=1=0=0$.
(iii) If $n \geqslant 1$, then $\left(+0^{n}\right)=\frac{1}{2}$;

$$
\text { i.e., }=\square=+\quad+=\frac{1}{2} \text {. }
$$

(iv) If $n \geqslant 2$, then $\left(0^{n}\right)=0$;
i.e. $\longmapsto=\longmapsto=\square=\ldots=0$.

PROOF. Straightforward calculation yields

$$
\begin{aligned}
& +0^{-1}+=+0^{0}+=+0+=+0^{2}+=1, \\
& +0^{-1}-=+0^{0}-=+0-=+0^{2}-=0, \\
& +0=+0^{2}=\frac{1}{2}, \\
& 0^{2}=0,
\end{aligned}
$$

so the above statements hold for $n \leqslant 2$. Let $m \geqslant 3$, and assume inductively that the above statements hold for $n<m$. Then

$$
\begin{gathered}
+0^{m}+=\left\{-0^{m-1}+,-0^{m-2}+,\left(+0^{i}-,-o^{j}+\right) \text { where } i \geqslant 0, j \geqslant 0, i+j=m-3\right. \\
\left.\mid\left(+0^{i}+,+0^{j}+\right) \text { where } i \geqslant-1, j \geqslant-1, i+j=m-3\right\} \\
=\{0 \mid 2\}=1 .
\end{gathered}
$$

$$
\begin{aligned}
& { }_{0}^{m}=\left\{-0^{m-2},\left(0^{i}-, 0^{j}\right) \text { where } i \geqslant 0, j \geqslant 0, i+j=m-3 \mid-G^{L}\right\} \\
& =\left\{-\frac{1}{2},-1 \frac{1}{2}(i=0),-1(i>0) \left\lvert\, \frac{1}{2}\right., 1 \frac{1}{2}, 1\right\} \\
& =0 \text {. } \\
& +0^{m}-=\left\{-0^{m-1}-,\left(+0^{i}-,-0^{j}-\right) \text { where } i \geqslant-1, j \geqslant 0, i+j=m-3 \mid-G^{L}\right\} \\
& =\{-1 \mid 1\} \\
& =0 \text {. } \\
& +0^{m}=\left\{-0^{m-1},\left(+0^{i}-,-0^{j}\right) \text { where } i \geqslant-1, j \geqslant 0, i+j=m-3,+o^{m-2}-,\right. \\
& \left.\mid\left(+0^{i}+,+o^{j}\right) \text { where } i \geqslant-1, j \geqslant 1, i+j=m-3,\left(+0^{m-3}+,+\right),\left(+o^{m-2}+\right)\right\} \\
& =\left\{-\frac{1}{2},-1,0 \left\lvert\, 1 \frac{1}{2}\right., 2,1\right\} \\
& =\frac{1}{2} \text {. } \\
& \square
\end{aligned}
$$

In the proof of the above theorem, the list of Left and Right options was extensive. In more complicated positions, the list of options is even longer. Fortunately, it is not always necessary to evaluate every option, as certain among them will always be dominated.

LEMMA 2.5. Let A, B be arbitrary graphs.
(i)

(ii)

(iv)

Black prefers the move c to b.

For both Black and White, the mover d is at least as good as b or c.

For both Black and White, the move e is at least as good as b, c, or d.

For both Black and White the move d is at least as good as c or e.

PROOF. (i) Black may move to

by moving in b

by moving in c.

However by Lemma 2.1. (ii)

(ii) Black may move to

by moving in b

by moving in c

by moving in d.

Now

by Lemma 2.1(ii)

by Lemma 2.1(i)
and

by Lemma 2.1 (iv)

In the same position the white options are

by moving in c
and

by Lemma $2.2(i)$.

Hence for each of the players the move in d is at least as good as the other moves.
(iii) Black may move to

by moving in b

by moving in c

by moving in d

by moving in e.

Now, for the option that results from moving in b

by Lemma 2.1(iv) (this is the result of painting e)
and for the option that results from moving in d

O , \leqslant
 by Lemma 2.2(ii)

Hence the move in e is at least as good for Black as the other moves. To see that this is also true for White, consider his options:

by moving in c

by moving in d

by moving in e.

However

\leqslant

and

(iv) The Lodes c, e are both tinted, similarly or oppositely. If c, e are tinted similarly we may without loss of generality assume both tints are white. Then Black must, by the rules, prefer d to ore. White also does at least as well playing d, since

and this is the result of White's playing in c. Similarly White will not prefer e to d.

If c, e are tinted oppositely, by symmetry we need only consider Black's move in

and his move in d leads to

which is the result of Black's playing at c.

The preceding lemma enables us to prove the Half Measures and Elastic Ends Theorem which may be used to simplify the analysis of Col positions. THEOREM 2.6. If A is any graph and $(A+) 0^{3}=$ then for $n \geqslant 1$:

(i) $(A+) 0^{n+2}=$

$$
\left(\begin{array}{l}
\\
3+\cdots+2 \\
n+2
\end{array}+x,\right.
$$

(ii) $(A+) 0^{n}=$

(iii) $(A+) 0^{n_{+}}=$

PROOF. We first show by induction on the number of nodes in A that

By Theorem 2.4

so that (**) holds when A is empty. If (**) holds for all subgraphs A^{*} of A, then

$$
G^{R_{1}}=\bigcap, G^{R_{3}}=x \text { by Lemma } 2.5 \text { (iv) }
$$

where G^{L}, G^{R} denote the options that result from moves in A and
$H=A, A^{L_{1}}=Q, H^{L}$

$$
\left.H^{R_{1}}=\square \quad, \quad H^{R}\right\}=y
$$

say, where H^{L}, H^{R} denote the options that result from moves in A. By the induction hypothesis, for each H^{L}, H^{R} there exists G^{L}, G^{R} such that $H^{L}=G^{L}+1$, $H^{R}=G^{R}+1$ and vice versa. For those moves in A at a node b by Black, that tint the node a white, we have options
so that $H^{L^{\prime}}=G^{L^{\prime}}+1$. Since $H^{L_{1}}=G^{L_{1}}+1, H^{R_{1}}=G^{R_{1}}+1$, the value of every option of H is 1 greater than a corresponding option in G, so that $y=x+1$. To show that $(A+) \circ^{3}=((A+) \circ-)+\frac{1}{2}$, we use the above result and play the game $\left((A+) \circ^{3}\right)-\frac{1}{2}-((A+) \circ-)$, i.e.

and show that it is a second player winning, game. Moves by either player in A (in either $-G$ or H) are covered by the induction hypothesis and Lemma 1.5, the Tweedledum and Tweedledee principle. By Lemma 2.5(iii), (i) and (ii), aside from moves in A, we need only consider the moves d, e, and f.

If White moves in d, and Black moves in e, leaving

we have that the player who moved first loses because he becomes the first player in a shortened second player winning game:

If white moves in e, and Black moves in d, leaving

we have again that whichever player moved first; loses.

If Black moves in $-G$ at f, he may also move in H at c to leave

which is a second player winning game. Note that the move by Black in $-G$ at f is equivalent to a first move by White in the game $H-\frac{1}{2}-G$. If White moves in $-G$ at f (a first move by Black in $H-\frac{1}{2}-G$), he may also move in H at c to leave

$$
\begin{aligned}
H^{R}-\frac{1}{2}-G^{R} & =(A-O- \\
& =0
\end{aligned}
$$

which is a second player winning game. Hence we have

The three parts of the theorem are now proved simultaneously by induction on n. At each step we ignore moves in A, assuming that they are covered by the induction hypothesis. Note that this is not the same as the induction hypothesis on n. In reality, the proof is a double induction
in which for each n, we induce on the number of nodes in A. Theorem 2.4(i), (ii), (iii) provide the basis for the induction on A at each step. When $n=2$,

$$
=\Omega A+0
$$

$$
\begin{aligned}
& =\left\{\bigcap^{A} 0-0\left\{\begin{array}{l}
A \rightarrow-\mathrm{O}\} \begin{array}{l}
\text { as the other options } \\
\text { are dominated }
\end{array}
\end{array}\right.\right. \\
& =\{00\}
\end{aligned}
$$

$$
\begin{aligned}
& =\{2\} \begin{array}{l}
\text { since the } \\
\text { other options } \\
\text { are dominated }
\end{array} \\
& =\{\text { A }
\end{aligned}
$$

$=\{(A \cdot+0$ $\left\{\begin{array}{l}\text { A-1 }\end{array}\right\} \begin{aligned} & \text { by what has already } \\ & \text { been shown }\end{aligned}$
$=$

This establishes the theorem for $n=2$.
Assume that (i), (ii), (iii) are true for $i<n$. We show the inductive step for (i). The rest follow by an equally straightforward analysis.

$$
\bigcup_{i}+\cdots+O \underset{i}{ } \underset{n-i-3}{O+\cdots+O} \quad(0 \leqslant i \leqslant n-2)
$$

$$
\left\{\bigcap^{A}+\cdots+10+\cdots+0 \quad(-1 \leqslant i \leqslant n-2)\right\}
$$

where $\mathrm{O}+\cdots+\mathrm{O}+\cdots+\mathrm{a}+\mathrm{a}+\cdots+\mathrm{O}$ are interpreted
in the case $i=-1$, as 0 , and , with values $-1,1,0$. Hence

For Black the second option is at least as good as the first by Lemma 2.1(ii). The third option is dominated by the second by Lemma 2.2 (i), and the remaining options are no better than the second by the induction hypothesis. For White, by Lemma 2.1 (ii) the option that results from taking $i=-1$ is at least as good as the others. Hence

\square

2.3. Equivalent Positions

Given a graph G, a node is said to be explosive if the value of the graph is unaltered when we tint the node either black or white. For example,

$$
\begin{aligned}
(0+0): \longmapsto & =\{0,+\quad \mid \\
& =\left\{-2, * \left\lvert\, \frac{1}{2}\right.\right\} \\
& =0,
\end{aligned}
$$

so that

Hence the middle node is explosive:

LIEMMA 2.7. (i) For $n \geqslant 1,0^{n}+o^{n}=0$.
(ii) For $n \geqslant 2$, $\operatorname{oto}^{n}=\frac{1}{4}$.
(iii) For $n \geqslant 3, \circ^{2}+o^{n}=\frac{1}{2}$.
(iv) For $n, m \geqslant 3,0^{n}+o^{m}=0$.

PROOF. It is easy to verify that

$$
\begin{aligned}
o+o & =o^{2}+o^{2}=o^{3}+o^{3}=0, \\
o+o^{2} & =o+o^{3}=\frac{1}{4}, \\
o^{2}+o^{3} & =\frac{1}{2},
\end{aligned}
$$

from which (i), (ii), (iii) and (iv) follow by a straightforward application of Theorem 2.6.

The following lemma enables us to simplify the evaluation of positions.

LEMMA 2.8. For n even, $n \geqslant 2$

PROOF. It is sufficient to prove

as the general case will follow from repeated applications of the above result. However

\geqslant

by Lemma 2.1(ij.)
by Lemma 2.1(ii)
$=1+$

$=$
3

\square

We summarize the results established so far. In a chain of length $n>1$, if there is no tint whatsoever, the chain has value 0 . If there is a tinted node, we may assume by Theorem 2.6 that the tinted node is at most three nodes from the end. If the end node is tinted, and the penultimate node is also tinted, we may use either the remark concerning explosive nodes or the remark concerning explosive edges to simplify the chain. If the nodes are similarly tinted, the penultimate node is explosive. If the
nodes are oppositely tinted, then the edge joining them is explosive and may be deleted.

We prove another equivalence that enables us to simplify positions. However we first establish three lemmas that will be used in the proof.

LEMMA 2.9. If A is any graph, and $n \geqslant 0$

PROOF. This is an immediate consequence of Lemma 2.1(iv).

LEMMA 2.10. If A is any graph, and $n \geqslant 2$

PROOF. This is an immediate consequence of Lemma 2.8, and Theorem 2.6.

LEMMA 2.11. If A is any graph,
(i)

(ii)

PROOF.
(i)

> by Lemma 2.1(ii)

$\leq a$

THEOREM 2.12. For any graphs A, B, and $n \geqslant 1$

provided that if c is untinted then A is empty, and if f is untinted, then B is empty.

PROOF. Let

We show that $H+n-G$ is a second player winning game. For moves at c, d, e, f, we show that if the first player moves in $H(G)$, he may make a move In $G(H)$ so that either $H^{L}+n-G^{L}=0$ or $H^{R}+n-G^{R}=0$. This is established by showing that a move at c in G corresponds to a move at d in H, and a move at d in G corresponds to a move at d in H. The argument concerning moves at e, f will follow by a symmetrical argument. Note that by Lemma 2.5 , it is only necessary to consider a move at c in the case where c is untinted, so that by hypothesis, A is empty!

Consider moves by Black at c in G and at c in H. He leaves options G^{L}, H^{L} such that

so $G^{L}=H^{L}+n$, and $H^{L}+n-G^{L}=0$. If White moves at c then we have

by Lemma 2.10

Moves by Black in H at d and in G at d correspond. He leaves options H^{L}, G^{L} such that

where we indicate that the node c acquires a white tint in addition to whatever tint it already possesses by writing ' $+w^{\prime}$ '. Should White move at the same node we have

so that $G^{R}=H^{R}+n$.
By Lemma 2.5, the legal moves at $b_{1}, b_{n+1}, w_{1}, w_{n}$ are no better than moves at c or d.

We now assume that $n \geqslant 2$ and consider a move by Black in the chain of black nodes of G. This is equivalent to a first move by White in the game $H^{L}+n-G$. It suffices to show that $G^{L}<H+n$.

$<H^{L}+n$.

Similarly we show that if $n>2$ a move in H in the chain of white nodes by White leaves an option $H^{R}+n>G$ so that the game $H^{R}+n-G$ is Black to win.

$>G$

It remains to consider the situation in which Black moves in n. Consider first the situation in which at least one of c, f is not tinted. Suppose c is not tinted, so that A is empty. To a move by Black in n White may respond by moving in c leaving

so that White as the second player can win.
If c, f are tinted, and Black moves in n to $n-1$, White answers by moving in H at d. He leaves
(

The values of some simple positions in Col are displayed in Table 2.3. Figure 2.2 illustrates a typical element of the table. The set of nodes under consideration is described by A. Then the values of $\circ^{i}(A) 0^{j}, 0 \leqslant i \leqslant 3,0 \leqslant j \leqslant 3$ appear in the corresponding position of the array.

Figure 2.2. A guide to Table 2.3.

Table 2.3. The values of some Col positions

Tab1e 2.3 (concluded)

Chapter 3

The Sprague-Grundy Theory

3.1. Introduction

In the remaining chapters we restrict ourselves to the class of impartial games under normal play. We still require that the state of play be known to both players, that the moves not be determined by any external means, and that the games satisfy the terminating play conditions. For reasons which will become clear, these games are known as Nim-like gomes.

The theory of the class of Nim-like games was first developed by Sprague [16] and Grundy [$\underset{\sim}{10} \underset{\sim}{10}$] independently. We develop the theory within the more general context of Chapter 1: To facilitate the ensuing discussion we first introduce Nim-addition.

3.2. Nim-addition

For two non-negative integers α and b, the $n i m-s u m$ of a and b, denoted by $a+b$ (pronounced " a nim b ") is defined as follows: let $a=\sum_{j=0} a_{j} 2^{j}, b=\sum_{j=0} b_{j} 2^{j}, c=\sum_{j=0} c_{j} 2^{j}, a_{j}, b_{j}, c_{j}=0$ or 1 be the binary expansions of a, b, c. Then $c=a+b$ if $c_{j} \equiv a_{j}+b_{j}(\bmod 2)$ for each j. For example consider $12 \stackrel{*}{+} 15$. In binary form $12=1100_{2}, 15=1111_{2}$. Writing this as 1111 and adding the columns mod 2 we obtain $12 \stackrel{*}{+} 15=11_{2}=3$.

LEMMA 3.1. Nim addition is
(i) commutative,
(ii) associative,
(iii) distributive with respect to multiplication
by powers of 2 .

Further

$$
\begin{aligned}
& \text { (iv) } a \stackrel{*}{+b} \equiv a+b \bmod 2, \\
& \text { (v) } a+\frac{*}{+} a=0
\end{aligned}
$$

The proof follows immediately from the definition.
We also observe that $a+b \leqslant a+b$, and if the inequality is strict, then by Lemma 3.1(iv) the two sums differ by at least 2 .

3.3. The game of Nim

Nim (see section 1.2) is an impartial game and will be used as the starting point from which we develop the theory for the class of Nimlike games. The game of Nim is actually a disjunctive compound of component games of Nim, each component consisting of a single heap of tokens.

A position in Nim is a set of positive integers corresponding to the number of tokens in the respective heaps. To analyze this game we let $*_{n}$ (not to be confused with $n^{*}=n+*$) denote the value of a nim heap of n tokens. Since any game is completely determined by its options we have

$$
\begin{aligned}
& * 0=\{\mid\}=0 \\
& * 1=\{0 \mid 0\}=* \\
& * 2=\{0, * \mid 0, *\}
\end{aligned}
$$

so that inductively

$$
*_{n}=\{0, *, * 2, \ldots, *(n-1) \mid 0, *, * 2, \ldots, *(n-1)\} .
$$

This notation is consistent with that of Chapter 1 since a nim heap of size 0 is a second player win, and a nim heap of size 1 is a first player
win. More generally, if $n>0$ then $* n \| 0$ since the first player may remove all the tokens to win.

In the theory of partisan games, it is possible to speak of positions from which Left may always win, regardless of whether he moves first or second. In the game of Nim, it is only possible to speak of positions from which the first player may or may not win. If Left can win from a position G by playing first, so can Right, since the options available to either player are the same. For any impartial game, a P-position is a position from which the previous player (the player who moved to that position) can win, i.e. a P-position is a second player winning position, so that, if G is a P-position $G=0$. For example in Nim, $*_{n}+*_{n}$ is a P-position. The second player mimics the moves of the first. player in the opposite component of the disjunctive sum. An N-position is one from which the next player can win, i.e. it is a first player winning position. For example, in Nim, if $n \neq m$, then $* n+* m$ is an N-position. The next player equalizes the size of the two heaps, and becomes the previous. player at a P-position.

3.4. The Sprague-Grundy Theory

If $\left\{c_{1}, g_{2}, \ldots, g_{n}\right\}$ is any set of non-negative integers: "En (minimal exciluded value) is the least non-negative integer different from all the g_{i}, e.g.

$$
\begin{gathered}
\operatorname{mex}\{0,2,4,1,7\}=3 \\
\operatorname{mex} \emptyset=0 .
\end{gathered}
$$

Using this definition, the theory of the game of Nim generalizes to the class of Nim-like games.

THEOREM 3.2. Let G be an impartial game whose options are all equal in value to some $* g_{i}$, where $g_{i} \geqslant 0$, i.e. $G=\left\{* g_{1}, * g_{2}, \ldots, * g_{m} \mid * g_{1}, * g_{2}, \ldots, * g_{m}\right\}$. Then $G=* g$ where $g=\operatorname{mex}\left\{g_{1}, g_{2}, \ldots, g_{m}\right\}$.

PROOF. Let $g=\operatorname{mex}\left\{g_{1}, g_{2}, \ldots, g_{m}\right\}$. Then from $G+* g$, the only moves are to $G+*_{n}(n<g), *_{n}+* g(n<g), *_{n}+* g(g<n)$, all of which are $N-$ positions (see Figure 3.1). Hence $G+* g \neq 0$, so that

$$
\begin{aligned}
G & =G+(* g+* g) \\
& =(G+* g)+* g \\
& =0+* g \\
& =* g .
\end{aligned}
$$

Figure 3.1. The play of $G+* g$.

As an immediate consequence of Theorem 3.2 twe obtain

COROLLARY 3.3. Every Nim-like game is equal in value to $* g$ for some nonnegative integer g.

In particular Theorem 3.2 and Corollary 3.3 imply that Nim itself: must have a solution. Given two nim heaps of values $*_{n}$, $* m$, their disjunctive sum $*_{n}+*_{m}$ is an impartial game, so that we must have $*_{n}+x_{m}=*_{g}$ for some g, where g is a function of n, m. Further, for two positions $G=* n, H=* m$ in an impartial game, we will have evaluated the disjunctive sum $G+H$ the moment we have determined g. It suffices therefore to evaluate disjunctive compounds of nim heaps.

Recall that for any games G, H,

$$
G+H=\left\{G^{L}+H, G+H^{L} \mid G^{R}+H, G+H^{R}\right\}
$$

This definition, with Corollary 3.3 and Theorem 3.2 can be used to compute $*_{n}+* m$ inductively. Figure 3.2 lists the values of $* g=*_{n}+* m$ for $n \leqslant 7, m \leqslant 7$.

	* 0	$* 1$	*2	*3	* 4	*5	*6	*7
0	$ 0$	* 1	*2	*3	* 4	*5	*6	*7
$\div 1$	*1	*0	*3	*2	*5	* 4	* 7	* 6
*2	*2	$* 3$	*0	* 1	*6	* 7	$* 4$	*5
*3	*3	*2	$* 1$	*0	* 7	*6	$* 5$	$\cdots 4$
$* 4$	* 4	*5	*6	* 7	$* 0$	*1	*2	*3
$* 5$	$* 5$	34	$* 7$	$* 6$	$* 1$	$* 0$	*3	*2
*6	*6	* 7	* 4	*5	$* 2$	*3	*0	$* 1$
* 7	* 7	*6	*5	* 4	* 3	x^{2}	$* 1$	*0

Figure 3.2. $*_{n}+*_{m}, n \leqslant 7, m \leqslant 7$.

Figure 3.2 suggests that given twd nim heaps of values $*_{n}$ and ${ }^{2} m$, $* g=*_{n}+* m$, where $g=n \stackrel{*}{n}+m$. The proof of this fact depends upon the following theorem.

THEOREM 3.4. (i) If $m<2^{z}$, then $* 2^{z}+* m=*\left(2^{\tau}+m\right)$
(ii) If $* g=* m+* n$ where $m, n<2^{z+1}$, then $g<2^{z+1}$.

PROOF. By induction. Figure 3.2 establishes (i), (ii) for $Z=0,1,2$. Assume inductively that (i), (ii) hold for all $2<k$ where $k \geqslant 3$. To establish (i) requires a further induction on m. Note that $* 2^{k}+* \dot{0}=$ $=*\left(2^{k}+0\right)$. Assume therefore that (i) holds for $m^{\prime}<m$ where $Z=k$. If $m_{1}<2^{k}$, and $* g=* m_{1}+* m$, then bv (ii), $g<2^{k}$. Hence, $\forall m_{1}<2^{k}$

$$
\begin{aligned}
\left(*_{m_{1}}+* m\right)+* m & =*_{m_{1}}+\left(*_{m}+*_{m}\right) \\
& =*_{m_{1}}+* 0 \\
& =*_{m_{1}}
\end{aligned}
$$

so that there are moves to $*_{1}$ by moving in $*_{2}{ }^{k}$. Further if we move in. * m to $*^{\prime}$ where $m^{\prime}<m$, then by the induction hypothesis on m, $* 2^{k}+*_{m}^{\prime}=*\left(2^{k}+m^{\prime}\right)$

$$
\begin{aligned}
* 2^{k}+* m & =\operatorname{mex}\left\{\left(* m_{1}+* m\right)+* m, * 2^{k}+m_{m}^{\prime} \mid 0 \leqslant m_{1}<2^{k}, 0 \leqslant m^{\prime}<m\right\} \\
& =\operatorname{mex}\left\{*_{m_{1}} *^{*}\left(2^{k}+m^{\prime}\right) \mid 0 \leqslant m_{1}<2^{k}, 0 \leqslant m^{\prime}<m\right\} \\
& =*\left(2^{k}+m\right) .
\end{aligned}
$$

If $m<2^{k}, n<2^{k}$, then by the induction hypothesis $g<2^{k}$ where $* g=*_{m}+*_{n}$. Let $2^{k} \leqslant m<2^{k+1}, m=2^{k}+m^{\prime}$. If $n<2^{k}$

$$
\begin{aligned}
* g & =* m+* n \\
& =*\left(2^{k}+m^{\prime}\right)+* n \\
& =* 2^{k}+\left(*^{\prime} m^{\prime}+* n\right) \\
& =* 2^{k}+* g^{\prime}=*\left(2^{k}+g^{\prime}\right)
\end{aligned}
$$

By the induction hypothesis $g^{\prime}<2^{k}$ so that $g<2^{k+1}$. If $2^{k} \leqslant n<2^{k+1}$, let $* n=*\left(2^{k}+n^{\prime}\right)$. Then

$$
\begin{aligned}
*_{g} & =*_{m}+*_{n} \\
& =*\left(2^{k}+m^{\prime}\right)+*\left(2^{k}+n^{\prime}\right) \\
& =* 2^{k}+* m^{\prime}+* 2^{k}+* n^{\prime} \\
& =* 2^{k}+* 2^{k}+\left(*_{m}^{\prime}+*_{n}^{\prime}\right) \\
& =* m^{\prime}+* n^{\prime},
\end{aligned}
$$

and $g<2^{k}$ by the induction hypothesis.

We use this result to prove that the value of a disjunctive sum of nim heaps is just the nim sum of the values of the individual heaps.

THEOREM 3.5. The value of the position $\{n, m\}$ in the game of Nim is ${ }^{*} g$, where $g=\stackrel{*}{n}+m$.

PROOF. Let $n=\sum_{j} n_{j} 2^{j}, m=\sum_{j} m_{j} 2^{j}, g=\sum g_{j} 2^{j}$ be the binary expansions of n, m, z^{\prime} where $g=n^{*}+\dot{m}$.

$$
\begin{aligned}
* n+* m & =*\left(\sum_{j} n 2^{j}\right)+*\left(\sum_{j} m_{j} 2^{j}\right) \\
& =\sum_{j}^{*} n_{j} 2^{j}+\sum_{j}^{*} m_{j} 2^{j} \text { by Theorem } 3.4 \\
& =\sum_{j}\left(* n j_{j} 2^{j}+* m_{j} 2^{j}\right) \\
& =\sum_{j}^{*} * g_{j} 2^{j} \\
& =* \sum_{j} g 2^{j} \quad \text { by Theorem } 3.4 \\
& =* g . \quad
\end{aligned}
$$

By repeated applications of Theorem 3.5 arbitrary positions in Nim can be evaluated. More important, Theorem 3.5 allows us to evaluate arbitrary positions in disjunctive sums of Nim-like games. We summarize the results in the following theorem.

THEOREM 3.6. Let G be a Nim-like game. Then all the options " are equal in value to $* g$, for some $g \geqslant 0$.

If $G=\left\{* g_{1}, * g_{2}, \ldots, * g_{j} \mid * g_{1}, * g_{2}, \ldots, * g_{\dot{j}}\right\}$, then $G=* n$ where $n=\operatorname{mex}\left\{g_{1}, g_{2}, \ldots, g_{j}\right\}$. Moreover, if H is another Nim-like game and $H=*_{m}$ then $G+H=* k$, where $k=n \stackrel{*}{n}$.

3.5. The Sprague-Grundy Function

Consider a Nim-1ike game ${ }^{2}$ played with heaps of tokens. By Theorem 3.6 we know that each position of G is equivalent to a nim heap of size g, for some g. To avoid confusing the number of tokens in a heap and the size of the nim heap to which it is equivalent, we introduce the Sprague-Grundy function $G(x)$ of the positions x of \mathbb{T}. It is defined by

$$
G(x)=g \text { if } x \text { is equivalent to a nim heap of size } g .
$$

The following properties are immediate consequences of the definition and Theorem 3.7:
(i) For all positions $x, G(x)=\operatorname{mex}\{G(y) \mid u$ is an option of $x\}$
(ii) For the disjunctive sum of fositions $x_{1}, x_{2}, \ldots, x_{n}$ $G\left(x_{1}+x_{2}+\ldots+x_{n}\right)=G\left(x_{1}\right) \stackrel{*}{+} G\left(x_{2}\right) \stackrel{*}{+} \ldots \stackrel{*}{+} G\left(x_{n}\right)$
(iii) A player wins by consistently moving to a position x for which $G_{1}(x)=0$.

Note that (i) implies $G(x)=0$ for all terminal positions x.
Consider the Nim-like .72 played with heaps of tokens in which a
legal move affects only one heap. A player may, in his turn
(i) remove one token from a heap, provided that the remainir:g tokens in the heap (if any) are left in at most two heats
(ii) remove two tokens from a heap provided that some remain. Suppose we play this game with a heap of eight tokens. Then we have

so that

$$
\begin{aligned}
& G(0)=0 \\
& G(1)=\operatorname{mex}(G(0))=\operatorname{mex}(0)=1 \\
& G(2)=\operatorname{mex}(G(1))=\operatorname{mex}(1)=0 \\
& G(3)=\operatorname{mex}(G(2), G(1,1), G(1))=\operatorname{mex}(0,1+1,1)=2 \\
& G(4)=\operatorname{mex}(G(3), G(1,2), G(2))=\operatorname{mex}(2,1 \stackrel{*}{+}, 0)=3 \\
& G(5)=\operatorname{mex}(G(4), G(1,3), G(2,2), G(3))=\operatorname{mex}(3,1+2,0+0,2)=1 \\
& G(6)=\operatorname{mex}(G(5), G(1,4), G(2,3), G(4))=\operatorname{mex}(1,1+3,0+2,3)=0 \\
& G(7)=\operatorname{mex}(G(6), G(1,5), G(2,4), G(3,3), G(5))=\operatorname{mex}\left(0,1+1,0^{*}+3,2+2,1\right)=2 \\
& G(8)=\operatorname{mex}(G(7), G(1,6), G(2,5), G(3,4), G(6))=\operatorname{mex}(2,1+0,0+\underset{+}{+}, 2+3,0)=3 .
\end{aligned}
$$

Those positions x for which $G(x)=0$ are the P-positions. For example $\{0\},\{2\},\{6\},\{1,5\},\{3,3\},\{1,3,4\}$ are P-positions.

If we allow heaps of tokens of arbitrary size, then this game has G-sequence $0102310231023 \ldots$ where the G-sequence is the sequence of G-values $G(0), G(1), G(2), \ldots$, for those games in which disjunctive compounds of heisp of tokens $\{n\}, n=0,1,2, \ldots$ are possible positions.

Take and Break Games

4.1. Introduction

We now consider an infinite class of Nim-like games with a particularly concise description. The method of description was first suggested by Guy and Smith [1] 1] and later generalized by Guy [v. 13]. These games are played with a finite number of heaps of tokens, each heap containing a finite number of tokens. A legal move affects only one of the heaps, removing some of the tokens and possibly splitting those remaining in the heap into a^{*} number of heaps.

For the class of 'octal games', the legal moves are described by the following octal notation. Consider any infinite sequence of numerals - d $_{1} d_{2} d_{3} \ldots$, where $0 \leqslant{\underset{\sim}{n}}_{\sim}^{d} \leqslant 2$. The u th numeral describes the conditions under which we may remove u tokens from a single heap as follows.

$\underline{\text { Value of }{ }_{\sim}^{\sim}{ }_{\sim}^{u}}$	Conditions for removal of u tokens from a single heap
Q	Not permitted.
$\stackrel{1}{\sim}$	Only if the heap contains exactly u tokens.
2	Only if, after removing, u, the remaining tokens
	in the heap are left as a single non-empty heap.
3	Only if the remaining tokens in the heap are left
	as a single (possibly empty) heap.
$\stackrel{4}{\sim}$	Only if, after removing u, the remaining tokens in.
:	the heap are left as two non-empty heaps.

Value of $\frac{d}{\sim}$
5
$\underset{\sim}{6}$

2

Conditions for removal of u tokens from a single heap
Only if, after removing u, the remaining tokens in the heap (if any) are left as two non-empty heaps. Only if, after removing u, the remaining tokens in the heap are left as one or two non-empty heaps. Only if, after removing u, the remaining tokens in the heap (if any) are left as at most two heaps.

For example, in Nim we remove any number (possibly all) of the tokens from a heap so that Nim is denoted as $\cdot 333 \ldots=\cdot \frac{3}{\sim}$.

KayZes [8] is denoted by .77. It is the game in which we may remove one or two tokens from a heap, leaving the remaining tokens in that heap as at most two heaps.

For conciseness we express the fact that the removal of the entire heap of u is permitted by saying 'remove u tokens to leave 0 heaps'. Then unless stated otherwise, we assume that for $k>0, k$ heaps means k non-empty heaps..$\frac{156}{}$ is the game in which we may remove 1 token to leave 0 heaps, two tokens to leave zero or two heaps, or three tokens to leave one or two heaps.

We allow digits $\underset{\sim}{d} u=\underset{\sim}{4}$ before the point. If $\underset{\sim}{d}=4,(u=0)$ then a heap of n tokens may be replaced by two heaps of i and $n-u-i$, where we maintain the terminating play condition by requiring that both $n-u-i$ and i be less than n, so that $-u<i<n$. For example 44.3 is the game in which we may divide a heap of n tokens into two heaps of i and $n+1-i$ $(1<i<n)$, or divide a heap of n tokens into two heaps of i and $n-i \quad(0<i<n)$ or remove one token from a heap.

4.2. Take and Break Games

Let $c=c_{0} 2^{0}+c_{1} 2^{1}+\ldots+c_{k} 2^{k}$ be the binary expansions of c, $c_{h}=0$ or 1 . We say that c contains $2^{h}\left(\right.$ or c includes 2^{h}) if $c_{h}=1$.
e.g. $\quad \quad \quad 2$ contains $\underset{\sim}{1}$ and $\underset{\sim}{4}$ $\underset{\sim}{6}$ contains $\underset{\sim}{2}$ and $\underset{\sim}{4}$.

The notation for Nim-like games introduced above can be generalized to arbitrary take and break games. Express the code digits $\underset{\sim}{d}(u=1,2, \ldots)$ in binary form as

$$
d_{u}=d_{u, 0} 2^{0}+d_{u, 1} 2^{1}+\ldots+d_{u \cdot k^{2}}
$$

Then in a move a heap of n tokens may be replaced by exactly h heaps of $i_{1}, i_{2}, \ldots, i_{h}\left(i_{1}+i_{2}+\ldots+i_{h}=n-u\right)$ if and only if $d_{u, h}=1$. We write A, B, C, D, 是, F in place of $10,11,12,13,14,15$ respectively.

For example, . FF is the game in which we can remove one or two tokens from a heap, and leave it as zero, one, two, or three heaps. . 63 A is the game in which we can remove one token from a heap and leave the remaining tokens in the heap as one heap or two, remove two tokens from a heap and leave the remaining tokens in the heap; if any, as one heap, or remoire three tokens from a heap and leave the remaining tokens in the heap as three heaps or one.

A digit $\underset{\sim}{d}$ with $\underset{\sim}{u} \leqslant 0$ may be allowed provided that $\underset{\sim}{d} u$ does not contain $\underset{\sim}{2}$ or $\frac{1}{\sim}$, and provided that the terminating play condition is still satisfied. For example if $\underset{\sim}{d}(u \leqslant 0)$ contains ${\underset{\sim}{2}}^{h}(h \geqslant 2)$, a heap of n tokens
may be replaced by h heaps of $i_{1}, i_{2}, \ldots, i_{h}$, where $i_{1}+i_{2}+\ldots i_{h}=n-u$ and for $1 \leqslant j \leqslant h, 1 \leqslant i_{j}<n$.

For example: $8 \underset{\sim}{80} .4$ is the game in which we can remove one token from a heap and split the remainder into two non-zero heaps, or add a token to a heap of n and divide it into three nonzero heaps of i_{1}, i_{2}, i_{3} where $i_{1}+i_{2}+i_{3}=n+1$.
To see that the terminating play condition is still satisfied, consider the (even larger) class of games in which any move replaces a heap of n by at most h heaps with at most $n-1$ tokens in a heap. Let m_{n} be the maximum number of possible moves starting from a heap of n. Then

$$
m_{n} \leqslant 1+h m_{n-1} .
$$

Since $m_{0}=0, h \geqslant 2$ implies that $m_{n} \leqslant\left(h^{n}-1\right) /(h-1)$ and $h=1$ implies that $m_{n} \leqslant n$.

Let $\underset{\sim}{T}$ be a take and break game. If $\forall u, \sim_{u}^{d} \leqslant \underset{\sim}{3}$ (and $\underset{\sim}{d} u=\underset{\sim}{0}$ for $u \leqslant 0$),
 then $\underset{\sim}{T}$ is called an octal game. If $\forall u, \underset{\sim}{d} \leq \underset{\sim}{F}(=\underset{\sim}{15})$, then T is called a sedecimal game. In each case, if there are only a finite number of non-zero code digits, we call the game finite.

4.3. Periodic G-Sequences

Let $\underset{\sim}{T}$ be a take and break game. If a heap of n tokens may be replaced by h heaps of $i_{1}, i_{2}, \ldots, i_{h}$ tokens in a legal move, then $G\left(i_{1}\right) \stackrel{*}{+} G\left(i_{2}\right) \stackrel{*}{+} \ldots \stackrel{*}{+} G\left(i_{h}\right)$ is an excluded value for $G(n)$. To show that
$G(n)=g$ it is necessary and sufficient to show that every non-negative integer less than g is an excluded value, but that g is not an excluded value.

Consider the game . F . We list the options of the first few positions as well as their G-values. Beneath the options of n we write the excluded values.
Position Options G-values
\{0\}
\{1\}
\{0\} $G(0)=0$

0 1
$G(2)=2$
\{3\}
\{4\}
$\{1\},\{2\},\{1,1\}$
$G(3)=3$
102
$G(4)=0$
\{5\}

$$
\{3\},\{4\},\{1,3\},\{2,2\},\{1,1,2\}
$$

$$
G(5)=1
$$

$$
\{2\},\{3\},\{1,2\},\{1,1,1\}
$$

$$
\{4\},\{5\},\{1,4\},\{2,3\},\{1,1,3\},\{1,2,2\}
$$

$$
G(6)=2
$$

$\begin{array}{llllll}0 & 1 & 1 & 1 & 3 & 1\end{array}$

The G-sequence for . F 3 appears to be $012301230123 .$. . If a take and break game has the property that there exists integers $p>0$ and $e \geqslant 0$ such that

$$
\begin{equation*}
G(n+p)=G(n) \text { for all } n>e \tag{*}
\end{equation*}
$$

we say that the G-sequence is periodic with period p. In each case we choose the least integers e, p satisfying (*). Then e is called the last irregular value, and p is referred to as the period. We indicate the
periodic values by writing a dot over the first and last members of the period. For example the G-sequence of $\cdot \mathbb{Z} 3$ appears to be $\dot{0} 12 \dot{3}$. Guy and Smith [11] proved a periodicity theorem for octal games of the form
 where ${\underset{4}{4}}^{\prime} s$ occur before the octal point. We, generalize Kenyon's proof to arbitrary take and break games.

THEOREM 4.1. Suppose that $\underset{\sim}{T}=\underset{\sim}{d} \underset{v+1}{d} \cdots{\underset{\sim}{d}}_{0}^{d}{\underset{\sim}{d}}_{\sim}^{d} \sim_{2} \ldots \sim_{w}^{d}$ is a finite take and break game, in which a move replaces just one heap by at most h heaps, i.e. for $v \leqslant u \leqslant w, d_{u}<2^{h+1}$, and that there exist integers $p>0$ and $e \geqslant 0$ such that

$$
G(i+p)=G(i) \text { for all } i \text {, such that } e<i \leqslant h e+(h-1) p+t
$$

where $t=\max \{|v|, w\}$. Then $G(i+p)=G(i)$ for all $i>e$.

PROOF. Assume inductively that $\forall i$ satisfying $e<i<n$ we have $G(i+p)=G(i)$ where $n>h e+(h-1) p+t$. To show that $G(n+p)=G(n)$ we show that $G(n+p)$ and $G(n)$ have the same set of excluded values.

Suppose we can remove u tokens from a heap of $n+p$ to leave heaps of $i_{1}, i_{2}, \ldots, i_{h}$ where $0 \leqslant i_{1} \leqslant i_{2} \leqslant \ldots \leqslant i_{h}<n+p$, and $i_{1}+i_{2}+\ldots+i_{n}=$ $=n+p-u$. Then $G\left(i_{1}\right) \stackrel{*}{+} G\left(i_{2}\right) \stackrel{*}{+} \ldots \stackrel{*}{+} G\left(i_{h}\right)=g$ is an excluded value for $n+p$. But $G\left(i_{h}\right)=G\left(i_{h}-p\right)$ since $i_{h}-p<n$, and

$$
\begin{aligned}
i_{h} & \geqslant \frac{1}{h}(n+p-u) \\
& >\frac{1}{h}(h e+(h-1) p+w+p-u) \\
& \geqslant e+p, \text { since } w-u \geqslant 0
\end{aligned}
$$

Moreover, if $h \geqslant 2$, the heaps $i_{j}, 1_{h} \leqslant j \leqslant h-1$ are of size $<n$, since $i_{h-1} \geqslant n$ would imply that $n+p-u=\sum_{j=1}^{h} i_{j} \geqslant i_{h}+i_{h-1} \geqslant 2 i_{h-1} \geqslant 2 n$, contradicting our assumption that $n>h e+(h-1) p+t(\geqslant p+|v| \geqslant p-u)$. Hence $G\left(i_{1}\right) \stackrel{*}{+}\left(G^{*} i_{2}\right) \stackrel{*}{+} \ldots \stackrel{*}{+} G\left(i_{h}-p\right)=g$ is an excluded value for $G(n)$. On the other hand, if $G\left(i_{1}^{\prime}\right) \stackrel{*}{+} G\left(i_{2}^{\prime}\right) \stackrel{*}{+} \ldots \stackrel{*}{+} G\left(i_{h}^{\prime}\right)$ is any excluded value for $G(n)$ where $i_{1}^{\prime} \leqslant i_{2}^{\prime} \leqslant \ldots \leqslant i_{h}^{\prime}$, then $i_{h}^{\prime}>e$ since $n>h e+(h-1) p+l$. Then

$$
G\left(i_{1}^{\prime}\right) \stackrel{*}{+} G\left(i_{2}^{\prime}\right) \stackrel{*}{+} \ldots \stackrel{*}{+} G\left(i_{h}^{\prime}\right)=G\left(i_{1}^{\prime}\right) \stackrel{*}{+} G\left(i_{2}^{\prime}\right) \stackrel{*}{+} \ldots+{ }_{+}^{+} G\left(i_{h}^{\prime}+p\right)
$$

so that this is also an excluded value for $G(n+p)$. Thus $G(n), G(n+p)$ have the same set of excluded values, so that they are equal.

For example, consider the game . 772 . The G-sequence begins

$$
012341624163416341634163416 \ldots
$$

and appears to periodic with period 4 and last irregular value $G(7)=2$. Since .772, is an octal game we need only calculate $G(n)$ for $n \leqslant 2 \cdot 7+2 \cdot 4+3=25$ to establish that the game is periodic.

4.4. The Standard Form of Take and Break Games

The G-sequences for the games 4.02 and .73 are 00123 and 012% respectively, so that $G_{\cdot 73}(n)=G_{4} \cdot 02(n+1), n=0,1,2, \ldots$. In this section we specify the sense in which 4.02 is a disguised form of $\cdot 73$.

We write $\underset{\sim}{T} \equiv \underset{\sim}{U}$ if $\underset{\sim}{T}(n)=G_{\mathbb{U}}(n)$ for all n, and $T \equiv{ }_{p}$ U if

 we have $\cdot 137 \equiv_{1} \cdot 07 \equiv_{1} \cdot 4$ and $\cdot 137 \equiv_{2} \cdot 4$. Equivalently if $\underset{\sim}{T} \equiv \underset{\sim}{\mathrm{U}}$, we may write $\underset{\sim}{U} \equiv_{-r}$ T. Hence $\cdot \frac{4}{\sim} \equiv_{-2} \cdot 137$. If $\underset{\sim}{T} \equiv_{r} \underset{\sim}{U}$ we refer to $\underset{\sim}{U}$ as the r th cousin of $\underset{\sim}{\sim}$. Then $\cdot 07$ is a first cousin of $\cdot 137$ and $\cdot \frac{4}{\sim}$ is a second cousin of $\cdot 137$.

THEOREM 4.2. [1] $\underset{\sim}{13}, \mathrm{p} .37$, Theorem 14]. If $\underset{\sim}{d}$ is even, and $\underset{\sim}{d}$ includes $\underset{\sim}{2}$ $(u>0)$, then the G-sequence is not affected by the inclusion of $\underset{\sim}{\sim}$ in $\underset{\sim}{d}+1$.

PROOF. If $\underset{\sim}{d}$ is even, then $G(1)=0$.
If $\underset{\sim}{\sim} u$ includes $\underset{\sim}{2}(u>0)$, then $\{1\}$ is an option of $\{u+1\}$, so that $G(u+1) \neq G(1)=0$, regardless of whether $\underset{\sim}{\sim} u+1$ includes $\underset{\sim}{1}$ or not. E.g. $\cdot \underset{\sim}{66} \equiv .67 \equiv .671$.

Theorem 4.2 generalizes in the following manner.

THEOREM 4.3. If $\underset{\sim}{\underset{\sim}{d}}$ is even, and $\underset{\sim}{\underset{\sim}{d}}$ includes $\underset{\sim}{2} \underset{\sim}{k}, u>1-k, k \geqslant 1$ then the G-sequence is not affected by the inclusion of ${\underset{\sim}{2}}^{k-j}, 1 \leqslant j \leqslant k$, in $\stackrel{\mathrm{d}}{\sim} u+j$

PROOF. If ${\underset{\sim}{d}}_{1}$ is even, then $G(1)=0$.
If $\underset{\sim}{d} u$ includes $\underset{\sim}{\underset{\sim}{2}} \underset{\sim}{k}, u>1-k, k \geqslant 1$, then for $n+u \geqslant k+u$, $\left\{i_{1}, i_{2}, \ldots, i_{j}, i_{j+1}, \ldots, i_{k-1}, n-\left(i_{1}+i_{2}+\ldots+i_{k-1}\right)\right\}$ is an option of $n+u$ where $1=i_{1}=i_{2}=\ldots=i_{j} \leqslant i_{j+1} \leqslant \ldots \leqslant i_{k-1} \leqslant n-\left(i_{1}+\ldots+i_{k-1}\right)$.
$G\left(i_{1}\right) \stackrel{*}{+} G\left(i_{2}\right) \stackrel{*}{+} \ldots \stackrel{*}{+} G\left(i_{k-1}\right) \stackrel{*}{+} G\left(n-\left(i_{1}+i_{2}+\ldots+i_{k-1}\right)\right)=$

$$
=G\left(i_{j+1}\right) \stackrel{*}{+} \ldots \stackrel{*}{+} G\left(i_{k-1}\right) \stackrel{*}{+} G\left(n-\left(i_{1}+\ldots+i_{k-1}\right)\right)
$$

so $G\left(i_{j+1}\right) \stackrel{*}{+} \ldots \stackrel{*}{+} G\left(i_{k-1}\right) \stackrel{*}{+} G\left(n-\left(i_{1}+\ldots+i_{k-1}\right)\right)$ is an excluded value for $G(n+u)$.

Now the additional moves made available by the possible inclusion of 2^{k-j} in ${\underset{\sim}{n}}_{u+j}$ are to replace $\{n+u\}$ by
$\left\{i_{j+1}, i_{j+2}, \ldots, i_{k-1}, n-j-\left(i_{j+1}+\ldots+i_{k-1}\right)\right\}$
$=\left\{i_{j+1}, i_{j+2}, \ldots, i_{k-1}, n-\left(i_{1}+i_{2}+\ldots+i_{k-1}\right)\right\}$
where $1 \leqslant i_{j+1} \leqslant i_{j+2} \leqslant \ldots \leqslant i_{k-1} \leqslant n-\left(i_{1}+\ldots+i_{k-1}\right)$, which exc1ude the same values as before.

For example, $\cdot \mathrm{A} \equiv$. $A 4 \equiv$. $A 42 \equiv$. $A 421$.

THEOREM 4.4. [$\underset{\sim}{13}, ~ p .38$, Theorem 15]. If $\underset{\sim}{d} u$ includes $\underset{\sim}{4}(u \geqslant 0)$, then the G-sequence is not affected by the inclusion of $\underset{\sim}{1}$ in $\underset{\sim}{d} u+2 v$ for $v>0$.

PROOF. If d_{u} includes $\underset{\sim}{4}$, then $\{v, v\}$ is an option of $\{u+2 v\}$, so $G(u+2 v) \neq 0$ regardless of whether ${\underset{\sim}{c} u+2 v}$ includes 1 or not.

THEOREM 4.5. If $\underset{\sim}{d} u$ includes ${\underset{\sim}{2}}^{k}, k \geqslant 2, u>1-k$, then the G-sequence is not affected by the inclusion of $2^{k-2 j}(0 \leqslant 2 j \leqslant k)$ in $\underset{\sim}{d} u+2 v$, where $v \geqslant j$.

PROOF. If d_{u} includes $2^{k}, k \geqslant 2, u>1-k$, then for $n \geqslant k$ $\left\{i_{1}, i_{2}, \ldots, i_{2 j}, i_{2 j+1}, \ldots, i_{k-1}, n-\left(i_{1}+i_{2}+\ldots+i_{k-1}\right)\right.$ is an option of $n+u$ where $1 \leqslant i_{1}=i_{2} \leqslant i_{3}=i_{4} \leqslant \ldots \leqslant i_{2 j-1}=i_{2 j} \leqslant i_{2 j+1} \leqslant \cdots \leqslant i_{k-1} \leqslant$ $\leqslant n-\left(i_{1}+\ldots+i_{k-1}\right)$, and $i_{1}+i_{2}+\ldots+i_{2 j}=2 v$.

$$
\begin{aligned}
G\left(i_{1}\right) \stackrel{*}{+} G\left(i_{2}\right) & \stackrel{*}{+} \ldots+G\left(i_{2 j-1}\right) \stackrel{*}{+} G\left(i_{2 j}\right) \stackrel{*}{+} \ldots \stackrel{*}{+} G\left(i_{k-1}\right) \stackrel{*}{+} G\left(n-\left(i_{1}+i_{2}+\ldots+i_{1}-1\right)\right) \\
& =G\left(i_{2 j+1}\right) \stackrel{*}{+} \ldots \stackrel{*}{+} G\left(i_{k-1}\right) \stackrel{*}{+} G\left(n-\left(i_{1}+\ldots+i_{k}\right)\right)
\end{aligned}
$$

so that $G\left(i_{2 j+1}\right) \stackrel{*}{+} \ldots \stackrel{*}{+} G\left(i_{k-1}\right) \stackrel{*}{+} G\left(n-\left(i_{1}+\ldots i_{k-1}\right)\right)$ is an excluded value for $n+u$.

Now the additional moves made available by the possible inclusion of $2^{k-2 j}$ in ${\underset{\sim}{d}}_{u+2 v}$ are to replace $\{n+u\}$ by

$$
\begin{aligned}
& \left\{i_{2 j+1}, i_{2 j+2}, \ldots, i_{k-1}, n-2 v-\left(i_{2 j+1}+\ldots+i_{k-1}\right)\right\}= \\
& \quad=\left\{i_{2 j+1}, i_{2 j+2}, \ldots, i_{k-1}, n-\left(i_{1}+\ldots+i_{k-1}\right)\right\}
\end{aligned}
$$

where $1 \leqslant i_{2 j+1} \leqslant \ldots \leqslant i_{k-1} \leqslant n-\left(i_{1}+\ldots+i_{k-1}\right)$, which exclude the same values as before.

For example . F \equiv. FO 3 ․ F0 302 .

THEOREM 4.6 (cf. [1] $13, p .39$, Theorem 17]). If for the game T, d_{\sim}^{d} is even, and we define a second take and break game $\underset{\sim}{\mathrm{U}}$ as follows:
(i) If $\underset{\sim}{d}$, includes ${\underset{\sim}{2}}^{k}(k \geqslant 0, v>1-k)$ then $\underset{\sim v+k-1}{ }$ includes ${\underset{\sim}{2}}_{2^{k}}^{2^{k-1}}, \ldots, 1$.
(ii) If $\underset{\sim}{d}$, includes ${\underset{\sim}{2}}^{k}(k \geqslant 2, v \leqslant 1-k)$ then $\underset{\sim}{e} \underset{v-k-1}{ }$ includes ${\underset{\sim}{2}}_{\sim}^{k}, 2_{\sim}^{k-1}, \ldots, 4^{4}$. Then $\underset{\sim}{U} \equiv \underset{\sim}{T}, ~ i . e . ~ G_{\underset{\sim}{U}}(n)=G_{\underset{\sim}{T}}(n+1), n=0,1,2, \ldots$.

PROOF. We prove $\mathbb{U} \equiv_{1}$ D by showing that $G_{\underset{U}{U}}(n)$ and $G_{\sim}^{T}(n+1)$ have the same set of excluded values.
(i) We consider separately the cases $k=0$ and $k \geqslant 1$. If d_{v} includes ${\underset{\sim}{2}}^{0}=\underset{\sim}{1}(v \geqslant 2)$ and $\underset{\sim}{\sim} v_{-1}$ includes $\underset{\sim}{1}$, then $\underset{\sim}{T}(v) \neq 0, G_{\sim}^{T}(v-1) \neq 0$, i.e. $G_{\underset{T}{T}}(n+1) \neq 0, G_{\underset{U}{U}}(n) \neq 0$ for $n=v-1$.

If $\frac{d}{i}$, includes ${\underset{\sim}{2}}^{k}(k \geqslant 1, v>1-k)$ and $\underset{\sim}{e} v+k-1$ includes ${\underset{\sim}{2}}_{2_{\sim}^{k}}^{2^{k-1}}, \ldots, \frac{1}{\sim}$ then for $n \geqslant 0$,
$G_{\sim}^{T}(n+1+v+k-1) \neq G_{\sim}^{\sim}\left(i_{1}+1\right) \stackrel{*}{+} G_{\mathrm{T}}\left(i_{2}+1\right) \stackrel{*}{+} \ldots \stackrel{*}{+} \underset{\sim}{G_{\mathrm{T}}}\left(i_{k-1}+1\right) \stackrel{*}{+} G_{\mathrm{T}}\left(n+1-\left(i_{1}+\ldots+i_{k-1}\right)\right)$
where $0 \leqslant i_{1} \leqslant i_{2} \leqslant \ldots \leqslant i_{k-1} \leqslant n-\left(i_{1}+\ldots+i_{k-1}\right)$, and

$$
G_{\underset{\sim}{U}}(n+v+k-1) \neq G_{\mathrm{U}}\left(i_{1}\right) \stackrel{*}{+} G_{\underset{\sim}{U}}\left(i_{2}\right) \stackrel{*}{+} \ldots \stackrel{*}{+} G_{\underset{\sim}{U}}\left(i_{k-1}\right) \stackrel{*}{+} G_{\mathrm{U}}\left(n-\left(i_{1}+\ldots+i_{k-1}\right)\right)
$$

where $0 \leqslant i_{1} \leqslant i_{2} \leqslant \ldots \leqslant i_{k-1} \leqslant n-\left(i_{1}+\ldots+i_{k-1}\right)$.
(ii) If d ${ }_{v}$ includes ${\underset{\sim}{2}}_{k}^{k}(k \geqslant 2, v \leqslant 1-k)$, e ${ }_{v+k-1}$ includes ${\underset{\sim}{2}}^{k}, 2^{k+1}, \ldots, 4$, then

$$
\begin{aligned}
G_{\mathrm{T}}((n+1)+v+k-1) \neq G_{\mathrm{D}}\left(i_{1}+1\right) & \stackrel{*}{+} G_{\mathrm{T}}\left(i_{2}+1\right) \stackrel{*}{+} \ldots \stackrel{*}{+} G_{\mathrm{T}}\left(i_{K-1}+1\right) \cdot+ \\
& +G_{\mathrm{T}}\left(n+1-\left(i_{1}+i_{2}+\ldots+i_{K-1}\right)\right),
\end{aligned}
$$

where $1 \leqslant i_{1}+1 \leqslant i_{2}+1 \leqslant \ldots \leqslant i_{k-1} \leqslant n+1-\left(i_{1}+\ldots+i_{k-1}\right)$, and each heap is strictly less than the original:

$$
\begin{aligned}
& 1+i_{j}<n+1+v+k-1, \quad 1 \leqslant j \leqslant k-1, \\
& n+1-\left(i_{1}+i_{2}+\ldots+i_{k}\right)<n+1+v+k-1,
\end{aligned}
$$

ie.

$$
i_{j} \leqslant n+v+k-2,
$$

so that

$$
\sum_{j=1}^{k-1} i_{j} \leqslant(k-1)(n+v+k-2)
$$

or

$$
2-v-k \leqslant \sum_{j=1}^{k-1} i_{j} \leqslant(k-1)(n+v+k-2) .
$$

On the other hand $G_{\underset{\sim}{U}}(n+v+k-1) \neq G_{\underset{\sim}{U}}\left(i_{1}\right) \stackrel{*}{+} G_{\underset{\sim}{U}}\left(i_{2}\right) \stackrel{*}{+} \ldots \stackrel{*}{+} G_{\underset{\sim}{U}}\left(i_{k-1}\right) \stackrel{*}{+}$ $\stackrel{*}{+}{\underset{\sim}{U}}\left(n-\left(i_{1}+\ldots+i_{k-1}\right)\right)$ where $0 \leqslant i_{1} \leqslant i_{2} \leqslant \ldots \leqslant i_{k-1} \leqslant n-\left(i_{1}+i_{2}+\ldots+i_{k-1}\right)$, and each heap is strictly less than the original:

$$
\begin{gathered}
i_{j}<n+v+k-1, \quad 1 \leqslant j \leqslant k-1 \\
i_{j} \leqslant n+v+k-2 \\
\sum_{j=1}^{k-1} \leqslant(k-1)(n+v+k-2) \\
n-\left(i_{1}+i_{2}+\ldots+i_{k-1}\right) \leqslant n+v+k-2
\end{gathered}
$$

so that

$$
2-v-k \leqslant \sum_{j=1}^{k-1} \leqslant(k-1)(n+v+k-2)
$$

as before. Note that here $k \geqslant 2$ and

$$
i_{k-1}^{i} \geqslant \frac{1}{k-1} \sum_{j=1}^{k-1} i_{j} \geqslant \frac{2-v-k}{k-1} \geqslant \frac{2-(1-k)-k}{k-1}=\frac{1}{k-1}>0
$$

so that at least 2 nonempty heaps result from the heap of $n+v+k-1$.

We may repeat the above process until the first code digit is odd, i.e. $\underset{\sim}{T} \equiv_{-1} \underset{\sim}{U} \equiv_{-1} \cdots \equiv_{-1} \underset{\sim}{W}$ with ${\underset{\sim}{W}}_{1}$ odd. Then $\underset{\sim}{W}$ is in standard form and its G-sequence begins $01 .$.
E.g. $\quad .08 \equiv_{-1} \cdot \sim 000 \mathrm{~F} \equiv_{-1} \cdot 00137 \mathrm{~F} \equiv_{-1} \quad .0113377 \mathrm{~F} \equiv_{-1}$. $111333777 \mathrm{~F} ;$

$$
\xrightarrow[\sim]{80000} \cdot 02 \equiv_{-1} \cdot .000 \cdot 03 \equiv_{-1} \cdot 4 \mathrm{C} \cdot 13 .
$$

4.5. Periodicity of Take and Break Games

It is not yet known whether all finite take and break games are either periodic, as described in Section 4.3, or arithmetico-periodic (see Section 6.1). We have so far analyzed only octal and sedecimal games, and even for these classes the question is still undecided. Information about octal games of the form $\underset{\sim}{\sim} \cdot \underset{\sim}{d} \underset{\sim}{d}$ or $\cdot{\underset{\sim}{d}}_{1}^{d}{\underset{\sim}{d}}_{2}^{d} 3$ is contained in Tables 7.2 and 7.3. Some of the games are periodic with very few irregularities. There are many however, which so far show no sign of periodicity though the G-values have been calculated to or beyond $n=9999$. No octal game has been shown not to be ultimately periodic.

We may also ask whether all take and break games that are not arith-metico-periodic are bounded.

THEOREM 4.7. Let $\underset{\sim}{T}$ be a take and break game, $\underset{\sim}{T}=\cdot \underset{\sim}{d}{\underset{\sim}{2}}_{\sim}^{d} \sim_{3} \ldots\left(H u \leqslant 0, d_{n}^{d}=0\right)$. Then for all $n, G(n) \leqslant n$.

PROOF. By induction. $G(0)=0, G(1) \leqslant 1$ for any such game $\underset{\sim}{T}$. Assume inductively that $G(k) \leqslant k, \forall k<n$. We show that if g is an excluded value for $G(n)$, then $g \leqslant n-1$. If by a legal move we may take u counters from a heap of n to leave heaps of $i_{1}, i_{2}, \ldots, i_{h}$, then by the remark after Lemma 3.1,

$$
\begin{aligned}
g=G\left(i_{1}\right) \stackrel{*}{+} G\left(i_{2}\right) \stackrel{*}{+} \ldots & \stackrel{*}{+} G\left(i_{h}\right) \leqslant G\left(i_{1}\right)+G\left(i_{2}\right)+\ldots+G\left(i_{h}\right) \\
& \leqslant i_{1}+i_{2}+\ldots+i_{h} \\
& =n-u \\
& \leqslant n-1 .
\end{aligned}
$$

The periods of the games $\cdot 356, .165, .055 \equiv_{-1} \cdot 1177, .644 \equiv_{-1} \cdot 3777$ are displayed in Figures 4.1-4.6. These games will be used to illustrate certain patterns that have been observed in some of the octal games known to be periodic. Though the significance of these patterns is not yet known, they occur sufficiently often to be worthy of note. We discuss them briefly, and then examine the periods of the aforementioned games in more detail.

To simplify the ensuing discussion, we let $\underset{\sim}{T}$ be a periodic octal. game with last irregular value e and period p. If p is even, it is sometimes the case that there exists k such that for $n>e$

$$
G(n+p / 2)=G(n) \stackrel{*}{+} k
$$

The game .34 has G-sequence 010120103121203 with last irregular iaine $\sigma(6)=1$ and period 8. For $n>6, G(n+4)=\theta(n) \stackrel{*}{+} 1$. This qane alo. exhibits another feature: observe that $G(7)=G(14)+3, G(8)=G(13)+3$, $G(9)=G(12)+3, G(10)=G(11)^{*}+3$. The period is symmetrical in the following sense: if $n_{1}, n_{2}>6, n_{1} \equiv a(\bmod 8), n_{2} \equiv 5-a(\bmod 8)$, then $G\left(n_{1}\right)+G\left(n_{2}\right)=3$.

Those games \mathbb{N} in which p is large but $G(n)$ is small often exhibit subpemiodicity, i.e. for some $p^{\prime}, 0<p^{\prime}<p$ there is a strong tendency toward $G\left(n+p^{\prime}\right)=G(n)$ though this is not exact.

Figure 4.1 displays the period of $\cdot 356$ which has last irregular value $G(7314)=2$ and period 142. G-values greater than 9 are denoted by the following symbols:

$$
x=11, \quad T=12, \quad f=15, \quad S=16
$$

We list $G(n), n>7314, n \equiv 14,15, \ldots, 141,0,1, \ldots, 13(\bmod 142)$ in rows of 26 (excepting the first row which has only 12 entries) to illustrate the subperiodicity.

														x			1	5	1				8	62		2	S
X	f	1	5	1				T 2	26	62	26	6 x	f	X		5	1	5	1				8	62	6	2	f
x	f	1	5	1	5		8	T 2	26	62	26	6 x	f	x		5	1	5	1			T	8	62		2	1
x	f	1	5	1	S		8	T 2	26	62	26	6 x	f		1	5	1	5		S		T	8	62	6	2	1
x		51	5	1		T	8	T 2	26	62	26	6 x	f		1	5	1	5			8	T'	8	6:2	6	2	I
x		51	5				8	T 2	26	62	26	6 x	f		I	5	1	5					8	62	6		S f

Figure 4.1. The period of . 356.

For $n>7314$, if $G(n)=16$, then $G(n+\dot{7} 1)=16$. For all other $n>7314$, $G(n+71)=G(n) \stackrel{+}{+} 7$. A cursory look at the period of this game reveals that the distribution of the G-values is abnormal. The only values that occur in the period are $1,2,5,6,8,11,12,15,16$.

For any take and break game $\underset{\sim}{U}$ (not necessarily periodic) we define a G-value g to be rare if $\lim _{n \rightarrow \infty} g_{n} / n=0$ where $g_{n}=|\{m \mid G(m)=g, m \leqslant n\}|$. For periodic games this is equivalent to requiring that g appear only a finite number of times in the G-sequence. It sometimes happens that
while a G-value appears in the period, the frequency of its occurrence is small. Such a G-value is called sparse. A G-value that is not sparse or rare is said to be common. For $\cdot 356$ the rare G-values, written in binary, are $0,11,100,111,1001,1010,1101$, and $1110,1 . e$ those with an even number of $I^{\prime} s$, ignoring the 2^{2} bit. Note that if g is rare, then $g^{*}+1, g^{*}+2, g^{*}+8$ are common, and $g^{*}+4$ is rare.

In general the rare G-values are those for which the number of bits that are 1 in some fixed set of digits in the binary expansion, is even, and the common G-values are those for which this number is odd. Defined in this way, if $\underset{\sim}{T}$ is a game in which every G-value is either rare or common, then
(i) if g_{1}, g_{2} are rare G-values, then $g_{1} \stackrel{*}{+} g_{2}$ is rare,
(ii) if g_{1}, g_{2} are common G-values, then $g_{1}+{ }_{2}^{*}$ is rare,
(iii) if g_{1} is a rare G-value, g_{2} is common, then $g_{1} \stackrel{*}{+} g_{2}$ is common.

For $n>5180$, the game .165 is periodic with period 1550 , but it also exhibits strong subpatterns and subperiodicities. These are illustrated in Figure 4.2 , in which the 310 exhibited G-values are to be read consecutively from left to right down the page, disregarding spaces. They are the values of $G(n)$ for $n \equiv-47,-46, \ldots,-1,0,1, \ldots, 262, \bmod 310$, and must be repeated four more times to produce the complete period of: length 1550. They are displayed in 14 rows of 24 values, except that rows 4 and 11 each contain 15 values instead of 12 in the first "half" and rows 7 and 14 contain only 8 values: The array is divided hori-zoncally to illustrate the subperiodicity of 155 with "saltus nim 7 ": i.e. for most n

$$
G(n+155)=G(n) \stackrel{*}{+} 7
$$

Figure 4.2. The period of .165 .

Residue class 117126148155165187192213218235244256261 of n, mod $1550 \quad 1181281501571691892111216232 \quad 237247259$

Table 4.3. G-values missing from Figure 4.2.

Indeed this is always true for $G(n)=1,2,5$, or 6 . The diagram is also divided vertically to illustrate the relation between the "NW quarter" and the "SE" one, and between the "NE quarter" and the "SW" one, i.e. it is often the case that

$$
G(n+143) \& / \text { or } G(n+167)=G(n) \stackrel{*}{+} 4
$$

The following symbols are used to denote G-values greater than 9 :
$x=11, \quad T=12, \quad f=15, \quad S=16, \quad a=19, \quad V=20, \quad \tau=23, \quad \phi=25$.

If one of these symbols, or a single digit appears in Figure 4.2, then these are G-values with a true subperiodicity of 310 . Where values do not always exhibit this subperiodicity, a hyphen appears. The G-values so represented can be found in Table 4.3 , whose rows are the residue classes of $n, \bmod 1550$; the usual value of $G(n)$ insofar as it can be determined; $G(n) ; G(n+310) ; G(n+620) ; G(n+930)$; and $G(n+1240)$. These last five rows contain a hyphen if the G-value is usual, and the actual G-value otherwise. To facilitate the reading of Table 4.3 , vertical bars separate values from different rows of Figure 4.2, the double bar occurring after the seventh row. E.g., there are 5 hyphens in the first row of Figure 4.2 , corresponding to the first five columns (before the vertical bar) in Table 4.3.

For example $7707 \equiv-43(\bmod 1550)$. Since the usual G-value for $n \equiv-43$ is 8 , we have

$$
\begin{array}{cl}
G(7707+1550 k)=8 & \text { for } k \geqslant-1 \\
G(7707+310+1550 k)=8 & \text { for } k \geqslant-1 \\
* & \text { for } k \geqslant-2 \\
G(7707+620+1550 k)=8 & \text { for } k \geqslant-2 \\
G(7707+930+1550 k)=11 & \text { for } k \geqslant-2 \\
G(7707+1240+1550 k)=8 & \text { for } k \geqslant-20
\end{array}
$$

For .165 we have that 3 occurs 10 times in a period of 1550,4 occurs 7 times, and 19 and 20 occur once. Those G-values that contain an even number of 1 bits in their binary expansions, omitting the coefficient of 2^{2} are either sparse or rare.

Figure 4.4. The period of . 055.

					53	54			55	
	57	58				59	60		62	
		65	66				68			70
	71	72		73		74	73			
B	71	70	69	68	67	66				
	63	62	61		60	59				
	56	55	54]			53	52	51	50	
	49	48			46	45	44			
B	43	42	41	40	39	38	37			
	35	34	33		32	31	30			29
		27	26			25	24			
					21	20			19	18
A	17	16				15	14		12	
	10	9	8			7	6	5	- 4	3
C	2	1				1	2	3		
	4	5	6	7	8	9	10			
	12	13	14		15	16			17	18
	19	20				21	22	23	24	25
	26	27		28	29	30	31			
C	C 32	33	34	35	36	37	38	39		
	40	41	42		43	44	45			46
	47	48	49			50	51	52		

Figure 4.5. Residue classes of n (mod 148) (italic numbers are negative).

Figure 4.4 shows the period of $\cdot 055 \equiv_{-1} \cdot 1172$, which has last irregular value $G(257)=2$ and period 148. The G-values illustrated in Figure 4.4 are to be read consecutively from left to right down the page. They are the values of $G(n)$ for $n>257, n \equiv 53,54, \ldots, 147,0,1, \ldots, 52$ (mod 148). Figure 4.5 shows the residue class modulo 148 to which n belongs for $G(n)$ in the corresponding position in Figure 4.4.

There is a strong tendency to subperiodicity with "saltus nim 5", and in fact
(i) if $G(n)=8$, then $G(n+74)=8$,
(ii) if $G(n) \neq 8$ then $G(n+74)=G(n) \stackrel{*}{+}$,
for those values $G(n)$ for which n appears in a region of Figure 4.5 beside which an A appears, i.e. for $n \equiv a(\bmod 148)$ where $53 \leq a \leq 69$, $-53 \leqslant a \leqslant-50,-21 \leqslant a \leqslant-5$ or $21 \leqslant a \leqslant 24$. Pure periodicity of this kind is prevented by the appearance of the boxed values or by the absence of values in the empty boxes: For values in region B, i.e. for $-78 \leqslant a \leqslant-55$ or $-49 \leqslant a \leqslant-23$
(i) if $G(n)=8$ then $G(n-73)=G(n)=G(n+75)$,
(ii) if $G(n) \neq 8$ then $G(n-73)=G(n)+5=G(n+75)$,
and for values in region C, i.e. for $-3 \leq \alpha \leq 20$ or $26 \leq a \leq 52$
(i) if $G(n)=8$ then $G(n-75)=G(n)=G(n+73)$,
(ii) if $G(n) \neq 8$ then $G(n-75)=G(n) \stackrel{*}{+}=G(n+73)$.

The rare G-values are those that contain an even number of bits that are 1 in the binary expansion, i.e. $3=11_{2}, 5=101_{2}$, and $6=110_{2}$. Those G-values that are not rare are common.

The game $\cdot 644 \equiv$ - 3727 has last irregular value $G(3254) \doteq 32$ and period 442. For all $n>3254$

$$
G(n+221)=G(n) \stackrel{*}{+} 7 .
$$

S			F			2							9	
S			F	$\tau \quad 2$	9		S				τ			2
S		F 5		$\tau \quad 2$	9		S		5	F			9	
S	σ	5		2	9		S		5	F	т		9	
S		5		$\tau \sim$		2	S				τ		9	
S		5	F	T 2	9				5	F	τ	α		2
S		5	F	$\tau \quad 2$	9		S		5	F	τ			2
S	σ	5		τ	9	2	S		5	F	τ	2	9	
S		5		2	9		S		F 5				9	
S	σ	5		$\tau \alpha$		2	S		5	F	τ	2	9	
S		5	F	τ		2	S	σ	5	F			9	
S		5	F	$\tau 2$	9		S		5		τ	α		2
S				$\tau \quad 2$	9		S		5	F	τ			2
S	σ	5		$\tau \propto 2$	9				5	F	τ	2	9	
S		5		$\tau \propto$		2	S				τ	2	9	
S		5		$\tau \quad 2$	9		S		F 5		τ			
S		5	F	τ		2	S		5		τ			
S		5	F	τ		2	S		5	F				
S	σ	5		$\tau \quad 2$	9		S				τ	2		
						2	S			F				

Figure 4.6. The period of . 644 .

Figure 4.6 lists $G(n)$ for $n>3245$ and $n \equiv-7,-6, \ldots,-1,0,1, \ldots, 213$ (mod 442). The following symbols are used to represent G-values greater than 9:

$$
F=14, S=16, \tau=23, \sigma=27, \alpha=28
$$

The subperiodicity (of 11) is illustrated by writing the G-values in rows of 11 , except that rows $4,8,10,14$ and 19 contain 12 , row 9 has 10 , and the last row has 8 . For $n>3254, n \equiv 214,215, \ldots, 434(\bmod 442)$ nim-add 7 to $G(n-221)$, obtained from Figure 4.6. This game also shows that it is
not necessary that the highest power of 2 decurring in the G-sequence occur in the period. We have $G(62)=G(3254)=32, G(333)=64$ but for $n>3254, G(n)<32$.

The notes to Table 7.2 contain further observations about periodic octal games.
4.6. Relations between the G-sequence and the rules of the game.

Related to the question of whether all take and break games exhibit some form of periodicity is the question of the relationship between the G-sequence and the rules of the game. This question appears very difficult and may not be possible to answer in general. Guy has made some advances in this area with theorems concerning the G-sequences of octal games (cf. Kenyon [13]). The restatements of these theorems for more general take and break games are straightforward.

The following theorems due to Guy describe the G-sequence of certain octal games. For conciseness we represent a sequence of r identical $G-$ values, say $g=G(n)=G(n+1)=\ldots G(n+r-1)$ by g^{p}. For example $0 i^{3} \cdot 0^{5} i^{2}$ represents the G-sequence 0 il1000001i. We use a similar notation for r identical code digits.

THEOREM 4.8. For $s \geqslant 3$, the octal game $\cdot 1^{s} 4$ has period $4 s+5$, irregularities $G(0)=G(s+1)=G(s+2)=G(5 s+6)=0$, and $G(n)$ takes the values

$$
\dot{4} 1^{s} 441^{s} 2^{s+1} 1 \dot{2}^{s}
$$

for $n \equiv 0,1,2, \ldots, 4 s+4(\bmod 4 s+5)$ otherwise.

PROOF. The legal moves are of two kinds:
(a) remove complete heaps of size at most s, and
(b) split heaps of size $n \geqslant s+3$ into two heaps of $i, n-s-1-i$, where $1 \leqslant i \leqslant n-s-2$.

The excluded values, x, for $G(n)$ are thus:
(a) $x=0$ for $1 \leqslant n \leqslant s$, and
(b) $x=G(i) \stackrel{*}{+} G(n-s-1-i), 1 \leqslant i \leqslant n-s-2$, for $n \geqslant s+3$.
(1) $G(0)=G(s+1)=G(s+2)=0$, and $G(n)=1$ for $1 \leqslant n \leqslant s$.
(2) For $s+3 \leqslant n \leqslant 2 s+2, x=1 \stackrel{*}{+} 1=0$, so that $G(n)=1$ in this interval.
(3) For $2 s+3 \leqslant n \leqslant 3 s+3, x=1 \stackrel{*}{+} 1$ or $1 \stackrel{*}{+} 0$ (or $0 \stackrel{*}{+} 0$ in the case that $i=s+1$, and $n=3 s+3$). Moreover ($i=n-2 s-2, n-2 s-1$) both these values occur, so $G(n)=2$ in this interval.
(4) If $n=3 s+4, x=G(i) \stackrel{*}{+} G(2 s+3-i)=1 \stackrel{*}{+} 1$ (or $0 \stackrel{*}{+} 0$ in the case that $i=s+1, s+2)$ for all i, so $(f(3 s+4)=1$.
(5) From the G-values found sn far, 2 can only be excluded by $0+2$, and $G(n)=0$ only for $n=s+1, s+2$. For $3 s+5 \leqslant n \leqslant 4 s+4, x=0$ and 1 for two of $i=s, s+1, s+2, s+3$, and $x \neq 2$, so $G(n)=2$ in this interval.
(6) For $n=4 s+5, x \leqslant 3$, and $x=0,1,2,3$, for $i=s+3, s+2, s+1, s$, so $G(4 s+5)=4$.
(7) From the G-val.ues so far found, 1 can only be excluded by $0 \stackrel{*}{+}$ 1. For $4 s+6 \leqslant n \leqslant 5 s+5, G(n-s-1-i)=2$ when $i=s+1, s+2$, so $x \neq 1$. But $x=0$ for $i=2 s+2$ so $G(n)=1$ in this interval.
(8) For $n=5 s+6, G(i) \neq G(n-s-1-i)$ so $G(5 s+6)=0$.
(9) For $s=5 s+7, x=0,1,2,3$, for $i=2 s+3, s+2, s+1, s$, and $x \neq 4$ so $G(5 s+7)=4$.
(10) For $5 s+8 \leqslant n \leqslant 6 s+7, G(n)=1$ (cf. (7) above).
(11) For $6 s+8 \leqslant n \leqslant 7 s+8, x \neq 2$ (as in (5) since $G(i)=0$ only for $i=s+1, s+2 ; 5 s+6) . \quad x=2 \stackrel{*}{+} 2=0$ for $i=2 s+3$ or $2 s+4$, and $x=0 \stackrel{*}{+} 1=1$ for $i=5 s+5$ or $5 s+6$, so $G(n)=2$ in this range.
(12) For $n=7 s+9, i=1$ gives $x=1 \stackrel{*}{+} 1=0$ and $G(7 s+9)=1$ as in (7) above.
(13) For $7 s+10 \leqslant n \leqslant 8 s+9, G(n)=2$ (cf. (11) above).
(14) For $n=8 s+10, x \neq 4$ since this can only be formed by $0 \stackrel{*}{+} 4$. But $\dot{x}=0,1,2,3$ for $i=s+3, s+2, s+1, s$, so $G(8 s+10)=4$.
(15) For $8 s+11 \leqslant n \leqslant 9 s+10, G(n)=1$ as in (7) above.
(16) For $n=9 s+11, x=0,1,2,3$ for $i=4 s+5, s+1, s+2, s+3$, and $G(9 s+11)=4$ as in (14).
(17) For $n=9 s+12, x=0,1,2,3$ for $i=2 s+3, s+1, s+2, s+3$, and $G(9 s+11)=4$ as in (14).
(18) For $9 s+13 \leqslant n \leqslant 10 s+12, G(n)=1$ as in (7).
(19) For $10 s+13 \leqslant n \leqslant 11 s+13, G(n)=2$ as in (11).
(20) For $n>11 s+13(=2(5 s+6)+s+1)$ Table 4.7 displays values of $x=G(i) \stackrel{*}{+} G(n-s-1-i)$, the rows corresponding to $i=s+1$ (or $5 s+6$), $i=s+2$ (exceptions); $i \equiv s+3, s+4, \ldots, 4 s+4,0, \ldots, s(\bmod 4 s+5)$ and $(i>5 s+6) i \equiv s+1, i \equiv s+2(\bmod 4 s+5)$, and the columns to $n>11 s+13$, $n \equiv 3 s+4,3 s+5, \ldots, 4 s+4,0, \ldots, 3 s+3(\bmod 4 s+5)$. The G-values are given in the final row, being the mex of the entries in the corresponding columns.

Table 4.7. Excluded values, $G(i) \stackrel{+}{+} G(n-s-1-i)$, for $\cdot \frac{1^{s}}{\sim}$.

The following theorems may be established in a similar manner.
THEOREM 4.9. The G of $.1^{s}$ 位 is $0 \dot{1}^{s+1} 01^{s+1} 2^{s+1} 1 i^{s+1}$.
E.g. 15 has G-sequence 0 i10112212í,
-115 has G-sequence $0 i 110111222122 \dot{2}$.
THEOREM 4.10. The G-sequence of $\cdot 1^{s} \sim_{4}$ is $01^{s} 00 i^{s} 2^{2 s+2} 44 i^{s+2}$.
E.g. 1.144 has G-sequence $0100122224411 i$.

THEOREM 4.11. The G-sequence of $.1_{\sim}^{s} \sim_{\sim}^{s}$ is $01^{s} 0 \dot{1}^{s+1} 2^{2 s+2} 4 \dot{i}^{s+1}$. E.g. $\quad 145$ has G-sequence $010 i 1222241 i$.

THEOREM 4.12. The G-sequence of $\cdot 1^{s} 53$ is

$$
0.1^{s+2} 2^{s+2} 1^{s+1} 02^{s+2} 4^{s+1} 0 \dot{i}^{s+1} 2^{s+2} 1_{1}^{s+2} 2^{s+2} 4^{s+1} i
$$

E.g. . 153 has G-sequence 0111222110222440 ,
i122211122244i.

THEOREM 4.13. For $s \geqslant 0$, the G-sequence of $.1^{s} 54$ is $01^{s+1} 0 i^{s+1} 2^{2 s+3} 4 i^{s+2}$.
E.g. 54 has G-sequence 010122241 ,
. 154 has G-sequence 01101122222411 .
THEOREM 4.14. For $s \geqslant 1$, the G-sequence of $.1^{s} 47$ is $01^{s} 02^{s+2} 4^{s+1} \dot{1}^{s+1}$.
E.g. 147 has G-sequence 010 i222441.i.

THEOREM 4.15. For $s \geqslant 0$, the G-sequence of $.1^{s} 57$ is $0 \dot{1}^{s+2} \dot{2}^{s+2}$.
E.g. . 57 has G-sequence $0 i 12 \dot{2}$,
.157 has G-sequence $0 i 11222^{\circ}$.

Chapter 5

Subtraction Games

5.1. Introduction

For any set $\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$ of positive integers with $s_{1}<s_{2}<\ldots<s_{k}$ we define the subtraction game $S\left(s_{1}, s_{2}, \ldots, s_{k}\right)$ in which the legal moves are those that reduce a sufficiently large heap of n tokens by s_{i}, $1 \leqslant i \leqslant k$. The set $\{1,2,4\}$, for example, determines the subtraction game $S(1,2,4)$ in which we may remove 1,2 , or 4 tokens from a heap to leave 0 or 1 heaps, so that $S(1,2,4) \equiv .3303$. Because the legal moves are of a simple nature, much more is known about the class of subtraction games. than about arbitrary take and break games.

LEMMA 5.1. For the game $S\left(s_{1}, s_{2}, \ldots, s_{k}\right), G(n) \leqslant k$ for all $n \geqslant 0$.

PROOF. This is an immediate consequence of the fact that for any n, there are at most k options.

THEOREM 5.2. Every finite subtraction game is periodic.

PROOF. For $S\left(s_{1}, s_{2}, \ldots, s_{k}\right)$, pick n_{0} sufficiently large. Then $G\left(n_{0}\right)=\operatorname{mex}\left\{G\left(n_{0}-s_{1}\right), G\left(n_{0}-s_{2}\right), \ldots, G\left(n_{0}-s_{k}\right)\right\}$. Moreover there are precisely $(k+1){ }^{s} k$ sequences $g_{1} g_{2} \cdots g_{s_{k}}$ where $0 \leqslant g_{i} \leqslant k$ for $i=1,2, \ldots, s_{k}$. Hence there exists $p \leqslant(k+1)^{s_{k}}+s_{k}$ such that $G\left(n_{0}+p-s_{k}\right)=G\left(n_{0}-s_{k}\right), G\left(n_{0}+p-s_{k}-1\right)=$ $=G\left(n_{0}-s_{k}-1\right), \ldots, G\left(n_{0}+p-1\right)=G\left(n_{0}-1\right)$. But then, for all $n \geqslant n_{0}, G(n+p)=$. $=G(n)$.

Although Lemma 5.2 shows that all subtraction games are periodic, the bound on the period given in the proof seems Brobdingnagian when compared with data provided by the actual analysis of games. However in certain cases it is possible to provide a more reasonable bound.

A subtraction game is said to be exactly pemiodic with period p if for all $n \geqslant 0, G(n+p)=G(n)$.

THEOREM 5.3. Let $U=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$ be a non-empty set of positive integers. If there exists $p>0$ such that $u \in U$ whenever $p-u \in U$, then $S\left(s_{1}, s_{2}, \ldots, s_{k}\right)$ is exactly periodic.

PROOF. By induction on the G-value g. Let $n \geqslant 0$. If $G(n)=0$, then $G\left(n+s_{1}\right) \neq 0, G\left(n+s_{2}\right) \neq 0, \ldots, G\left(n+s_{k}\right) \neq 0$ since n is an option of each of $n+s_{1}, n+s_{2}, \ldots, n+s_{k}$. Moreover, for all $s_{i} \in U$, there exists $s_{j}=p-s_{i} \in U$ so $n+s_{i}=n+p-s_{j}$. Hence the options of $n+p$ are precisely $n+s_{1}, n+s_{2}, \ldots, n+s_{k}$ and

$$
G(n+p)=\operatorname{mex}\left\{G\left(n+s_{1}\right), G\left(n+s_{2}\right), \ldots, G\left(n+s_{k}\right)\right\}=0 .
$$

Assume inductively that for $n \geqslant 0, G(n)=2$ implies $G(n+p)=2$ for $0 \leqslant \tau<g$. If $G(n)=g$, then $G\left(n+s_{1}\right) \neq g, G\left(n+s_{2}\right) \neq g, \ldots, G\left(n+s_{k}\right) \neq g$, since $n \cdot$ is an option of $n+s_{1}, n+s_{2}, \ldots, n+s_{k}$.

Furthermore, since $s_{i} \dot{\in} U$ implies $p-s_{i} \in U$, each $n+s_{i}$ is an option of $n+p$, so that g is not an excluded value for $G(n+p)$, i.e. $G(n+p) \leqslant g$. As $G(n)=g$, if $0 \leqslant Z<g$, there exists s_{i} such that $G\left(n-s_{i_{q}}\right)=Z$. By the induction hypothesis $G\left(n-s_{i_{q}}\right)=G\left(n+p-s_{i_{q}}\right)$. For $s_{j_{q}}=p-s_{i}$,
$G\left(n+s_{j}\right)=G\left(n+p-s_{i_{q}}\right)=\eta$. Thus every value strictly less than g is an excluded value for $G(n+p)$, so that $G(n)=G(n+p)$.

Since $G(n)=G(n+p)$ for all $n \geqslant 0, S\left(s_{1}, s_{2}, \ldots, s_{k}\right)$ is exactly periodic with a period p.

Example. The game $S(2,5)$ has G-sequence $001102 \dot{1}$, with period $7=2+5$. In section 5.2 we describe completely the G-sequence of the games $S\left(s_{1}\right)\left(p=2 s_{1}\right), S\left(s_{1}, s_{2}\right)\left(p=s_{1}+s_{2}\right)$, and $S\left(s_{1}, s_{2}, 2 s_{2}-s_{1}\right)\left(p=2 s_{2}\right)$.

By Theorem 5.2, every subtraction game is ultimately periodic, though it is not the case that all subtraction games are exactly periodic. As a counter-example $S(2,3,5,8)$ has G-sequence

$$
0011223041304 \dot{1} 223001123302140 \dot{3}
$$

Table 7.1 lists the G-sequences of all subtraction games in which the subtrahends do not exceed 8 .

The games $S(1), S(1,3), S(1,3,5), S(1,5), \ldots$ all have G-sequence oi. For the game $S(1), G(n) \neq G(n+2 k+1)$ for all $n, k \geqslant 0$. Hence we may adjoin $2 k+1$ to the subtraction set of $S(1)$ without affecring the outcome of the game. More generally, if for $S\left(s_{1}, s_{2}, \ldots, s_{k}\right), G(n) \neq G(n+s)$ for all $n \geqslant 0$ then we may adjoin s to the subtraction set without affecting the G-sequence of the game.

LEMMA 5.4. If $S\left(s_{1}, s_{2}, \ldots, s_{k}\right)$ is exactly periodic with period p and s may be adjoined to the subtraction set without affecting the G-sequence, then p-s may also be adjoined to the subtraction set.

PROOF. Since s may be adjoined to the subtraction set, it must be the case that for all $n \geqslant 0, G(n+p) \neq G(n+p-s)$. However, since $S\left(s_{1}, s_{2}, \ldots, s_{k}\right)$ is exactly periodic, $G(n)=G(n+p) \neq G(n+p-s)$ so that $G(n) \neq G(n+p-s)$. Hence by the reriark just before the statement of the lemma, we may adjoin $p-s$ to the subtraction set.

As an immediate consequence of this lemma we have

LEMMA 5.5. If $S\left(s_{1}, s_{2}, \ldots, s_{k}\right)$ is exactly periodic with period p, then ; $p-s_{1}, p-s_{2}, \ldots, p-s_{K}$ may be adjoined to the subtraction set without affecting the G-sequence.

- The condition of exact periodicity in Lemma 5.5 is necessary. Consider the game $S(2,3,5,8)$ whose G-sequence appears above. The period is 17, with last irregular value $G(12)=4$. While we may 'adjoin' 8 to the subtraction set, $9=17-8$ may not be adjoined since $G(5)=G(14)=2$. Nor is it true that if p is even, we can necessarily adjoin $p / 2$ to the subtraction set. $S(3,7)$ has G-sequence 000111022 i with period 10. However $S(3,5,7)$ has G-sequence $000111222 \dot{3}$.

5.2. G-sequences of Subtraction Games.

No general expression for the period length of arbitrary subtraction games is known: However in certain cases we can give rules that enable us to write down the G-sequence immediately. In doing so, it suffices to consider only those subtraction games where the greatest common divisor of the members of the subtraction set is 1 .

LEMMA 5.6. Let $\underset{\sim}{T} \equiv S\left(s_{1}, s_{2}, \ldots, s_{k}\right), \underset{\sim}{\mathrm{U}} \equiv S\left(d s_{1}, d s_{2}, \ldots, d s_{k}\right)$ where $d>1$. Then $\forall n \geqslant 0$

$$
\begin{equation*}
G_{\underset{\sim}{T}}(n)=G_{\underset{\sim}{U}}(d n)=G_{\underset{\sim}{U}}(d n+1)=\ldots=G_{\underset{U}{U}}(d n+d-1) . \tag{*}
\end{equation*}
$$

PROOF. By induction. Since $G_{T}(0)=G_{T}(1)=\ldots G_{T}\left(s_{1}-1\right)=0$, and $G_{\underset{\sim}{U}}(0)=G_{\underset{\sim}{U}}(1)=\ldots G_{\underset{\sim}{U}}\left(d\left(s_{1}-1\right)+d-1\right)=0,(*)$ holds for $n=0,1, \ldots, s_{1}-1$. Assume inductively that (*) holds for $n<n_{0}$. It suffices to show that g is an excluded value for $G_{\mathrm{T}}\left(n_{0}\right)$ if and only if g is an excluded value for $G_{\underset{\sim}{U}}\left(d n_{0}+r\right)$, where $0 \leqslant r<d$.

If we can remove s_{i} tokens from a heap of n_{0}, and $G_{\sim}\left(n_{0}-s_{i}\right)=g$, then we can remove $d s_{i}$ tokens from a heap of $d n_{0}+x$, and by the induction hypothesis

$$
\begin{aligned}
G_{\underset{U}{U}}\left(d n_{0}+r-d s_{i}\right) & =G_{\underset{\sim}{U}}\left(d\left(n_{0}-s_{i}\right)+r\right) \\
& =G_{\underset{\sim}{T}}\left(n_{0}-s_{i}\right) \\
& =\mathscr{G}
\end{aligned}
$$

Similarly if g is an excluded value for $G_{\underset{\sim}{U}}\left(d n_{0}+r\right)$, then g is an excluded value for $G_{\underset{T}{T}}\left(n_{0}\right)$.

For subtraction games $\underset{\sim}{\mathcal{D}}, \underset{\sim}{\mathbb{U}}$, defined as in Lemma 5.6, we say that $\underset{\sim}{U}$ is a d-plicate of $\underset{\sim}{T}$, e.g. $S\left(s_{1}\right)$ is an s_{1}-plicate of $S(1)$. The G sequence of $S\left(s_{1}\right)$ is just $\dot{0} \ldots 001 \ldots 1 i$, where each string of $0^{\prime} s$ and $1^{\prime} s$ is of length s_{1}.

The G-sequence of $S(1,2 k+1)$ is the same as that of $S(1)$, since we may adjoin $2 k+1$ to the subtraction set of $S(1)$ without affecting the
outcome of the game. For $S(1,2 k)$, a period is $2 k+1$ by Theorem 5.3, and since the G-sequence is $0101 \ldots 01 \dot{2}$, the period is just $2 k+1$.

For $S(a, b)$, where $1<a<b$, we may assume that a, b are relatively prime, for if g.c.d. $(a, b)=d$ s 1 , then $S(a, b)$ is just the d-plicate of $S(a / d, b / d)$. By Theorem 5.3, $S(a, b)$ is exactly periodic with a period $a+b$. Let $b=2 h \alpha \pm r$, where $0<r<a$.

We write down the G-sequence as follows. Put $a 0^{\prime}$ s, then $a 1^{\prime \prime}$ s. Repeat this pattern until we have $a+b$ digits. Then change the last $a-r$ 0 's into 2 's. For example consider $S(4,13)$. Since $a=4, b=2 \cdot 2 \cdot 4-3$, so that $b=2$ and $r=3$. We write

00001111000011110
then change $a-p=4-3=10^{\prime}$'s to 2 's so that the G-sequence is $\dot{0} 0001111000011112$.

For $S(4,9), a=4, b=2.4+1$. We write

0000111100001
then change the last $\alpha-r=4-1=30^{\prime}$ s to $2^{\prime} \mathrm{s}$. Hence the G-sequence is 0000111102221.

It is also possible to describe completely the period of $S(a, b, 2 b-a)$. If $a=1$, and b is odd, then $2 b-a$ is odd, so the G-sequence is just $\dot{0} i$. If $a=1$, and $b_{i j}=2$, then $2 b-a=3$ and the period is $\dot{0} 12 \dot{3}$. Otherwise,
let $b=2 h a \pm r$ where $0<r<a$. Write down $a 0^{\prime} s$ followed by $\alpha I^{\prime} s$, and repeat this pattern until there are $b+a$ digits. Continue with $a 0^{\prime}$ s followed by $a l^{\prime}$ s, and repeat this pattern until there are $b-\alpha$ further digits. Then change the last $\alpha-x$ 0's in each of the sets of $b+a, b-a$ digits to 2 's. If $h=1$, and $b=2 \alpha+r$, and $\alpha-2 r>0$, further change the first $a-2 r 2$'s in the second set of $a-x 2^{\prime}$'s to 3 's. If $h=1, b=2 \alpha-r$, and $\alpha-2 r>0$ then replace the last $\alpha-2 r 2$'s in the second set of $\alpha-r 2^{\prime}$'s to 3's. E.g. for $S(4,13,22), a=4, b=2.2 \cdot 4-3$. We write 40 's, followed by 4 I's, until we have $b+a=17$ digits, then repeat, stopping this time after $b-a=9$ digits

$$
000011110000111100000011110
$$

Then $a-r=4-3=1$, so that we replace the last 0 in each set by a 2 . The G-sequence is then

00001111000011112000011112.

For $S(4,9,14), \alpha=4, b=2.4+1$. We write

$$
0000111100001.00001 .
$$

Since $\alpha-r=4-1=3$, the last 30 's in each set are replaced by 2^{\prime} s, yielding

$$
0000111102221 \quad 02221
$$

As $h=1, a-2 r=4-2=2>0, b=2 a+r$, we change the first 2 's in the second set to $3^{\prime} s$. The G-sequence is then

For $\mathcal{S}(4,7,10), a=4, b=2: 4-7$. We write

$$
000011110000,000
$$

Since $\alpha-x=4-1=3$, the last three 0 's in each set are replaced by 2 's, yielding

$$
000011111222022
$$

As $h=1, a-2 x=4-2=2>0$, we change the first two 2 's in the second set to 3 's. The G-sequence is thus
$0000111122223 \dot{3}$.
5.3. $S(a, b, a+b)$ and the Berlekamp Method.

We can determine the period of $S(a, b, a+b)$, and in some cases specify the G-values themselves. However in the general case, a concise description of the period, such as we have for $S(a, b)$ seems out of reach. The analysis which will appear in [$\underset{\sim}{1]}$ rests upon the following theorem of Ferguson [9].

LEMMA 5.7. (Ferguson's Pairing Property). Let $S\left(s_{1}, s_{2}, \ldots, s_{k}\right)$ be a subtraction game $\left(s_{1}<s_{2}<\ldots<s_{k}\right)$. Then $G(n)=1$ if and only if $G\left(n-s_{1}\right)=0$. PROOF. We give' a proof by contradiction. Observe that $G\left(s_{1}\right)=1$ since 0 is the only option of s_{1}. If the statement fails, then there is a smallest number n for which it does so, and either
or
(i) $\quad G(n)=1$ and $G\left(n-s_{1}\right) \neq 0$

$$
\text { (ii) } \quad G\left(n-s_{1}\right)=0 \text { and } G(n) \neq 1
$$

(i) If $G\left(n-s_{1}\right) \neq 0$, then for some $s_{j}, 1<j \leqslant k, G\left(n-s_{1}-s_{j}\right)=0$. Since n is the least number for which the statement fails, $G\left(n-s_{j}\right)=1$. But $n-s_{j}$ is an option of n, so that $G(n) \neq 1$.
(ii) Certainly $G(n) \neq 0$ since $n-s_{1}$ is an option of n, and $G\left(n-s_{1}\right)=0$. Hence $G(n)>1$, and there exists $s_{j}, 1<j \leqslant K$ suchrithat $G\left(n-s_{j}\right)=1$. Since n is the least number for which the above statement fails $G\left(n-s_{1}-s_{j}\right)=0$. But $n-s_{1}-s_{j}$ is an option of $n-s_{i}$, so that $G\left(n-s_{1}\right) \neq 0$. Berlekamp has suggested the following method for calculating the P and N-positions. For $S\left(s_{1}, s_{2}, \ldots, s_{k}\right)$ set up $k+1$ columns. The first entries in each of the columns are the numbers $0, s_{1}, s_{n}, \ldots, s_{l}$. The first entry in each of the succeeding rows is the mex, say n, of those numbers already written. The remaining entries in the row are the numbers $n+s_{1}, n+s_{2}, \ldots, n+s_{k}$. E.g. for $S(3,10,13)$ we have

0	3	10	13
1	4	11	14
2	5	12	15
6	9	16	19
7	10	17	20
8	11	18	21
22	25	32	35
23	26	33	36
24	2.7	34	37
28	31	38	41
29	32	39	42
30	33	40	43
44	47	54	57
45			\ddots

Figure 5.1. Analysis of $S(3,10,13)$.

The sample table has been divided into three sections. Every number in the second section may be obtained by adding 22 to a number in the corresponding, position in the first section. In this sense, the table
for $S\left(s_{1}, s_{2}, \ldots, s_{k}\right)$ will eventually become periodic: each entry may be obtained by adding p to an earlier occurring number in a corresponding position.

While Berlekamp's method does not describe the period completely, the first column contains all numbers n such that $G(n)=0$. By Ferguson's pairing property the second column contains those n for which $G(n)=1$. The remaining columns contain those n such that $G(n) \geqslant 2$, inless the entry is a duplicate of an entry occurring in an earlier column. In Figure 5.1, the numbers $10,11,32,33$ appear in both the second and the third column, so that $G(10)=G(11)=G(32)=G(33)=1$.

For $S(a, b, a+b)$, if duplicates occur, it must be the case that a number occurring in the second column is a duplicate of a number in the third. By definition, no number in the first column is a duplicate of a number in the others. If a number n occurred in both the second and four th columns; then $n-\alpha$ would appear in the first and third columns. If n occurred in the third and fourth columns, then $n-b$ would appear in the first and second.

The analyses of $S(1,2 k, 2 k+1)$, and $S(1,2 k+1,2 k+2)$ are straightforward. Figure 5.2 illustrates the Berlekamp analysis of $S(1,2 k, 2 k+1)$. Since there are no repetitions, the game is exactly periodic, with period $2 b=4 k$ and the G-sequence is $\dot{0} 101 \ldots 012323 . . .2 \dot{3}$, the period consisting of $k 0^{\prime} s$, k I's , k 2's and k 3's.

0	1	$2 k$	$2 k+1$
2	3	$2 k+2$	$2 k+3$
4	5	$2 k+4$	$2 k+6$
\cdot	\cdot	\cdot	\cdot
\cdot	\cdot	\cdot	\cdot
$2 k-4$	$2 k-3$	$4 k-4$	$4 k-3$
$2 k-2$	$2 k-1$	$4 k-2$	$4 k-1$

Figure 5.2. Analysis of $S(1,2 k, 2 k+1)$.

0	1	$2 k+1$	$2 k+2$
2	3	$2 k+3$	$2 k+4$
4	5	$2 k+5$	$2 k+6$
\cdot	\cdot	\cdot	\cdot
\cdot	\cdot	\cdot	\cdot
$2 k-2$	$2 k-1$	$4 k-1$	$4 k$
$2 k$	$2 k+1$	$4 k+1$	$4 k+2$
gure 5.3.	Analysis of $S(1,2 k+1,2 k+2)$.		

Figure 5.3 illustrates the Berlekamp analysis of $S(1,2 k+1,2 k+2)$. For each set of $4 k+4$ entries there is just one repetition, so that the period is $4 k+3=2 b+1$, and the G-sequence is

$$
\dot{0} 101 \ldots . . .010123 \dot{2} 3 \ldots 23 \dot{2}
$$

where there are $k+10^{\prime} s, I^{\prime} s$, and $2^{\prime} s$, and $k 3^{\prime} s$. The Berlekamp analysis of $S(1,13,14)$ is illustrated in Figure 5.4.

0	1	13	14
2	3	15	16
4	5	17	18
6	7	19	20
8	9	21	22
10	11	23	24
12	13	25	26

Figure 5.4. Analysis of $S(1,13,14)$.

The 13 is repeated in the second and third columns, so that the period is 27 , and the G-sequence is

$$
\dot{0} 1010101010101232323232323 \dot{2} .
$$

For $a>1$, we assume that a, b are relatively prime, and consider. separately the cases $b=2 h a-r, b=2 h a+r$ where $0<r<a$. The case where $b=2 h a-r$ is reasonably straightforward. The diagram of the Berlekamp analysis is illustrated in Figure 5.5.

There are h sections to the diagram, where a section consists of a rows, so that there are 4 ha entries in total. However the x boxed numbers in the second column are duplicates of the boxed numbers in the third column. Allowing for these r repetitions, the period is $4 h a-r=2 b+r$.

The analysis of the case $b=2 h a+r$ is more complicated as the period is a times as long. It is best described with reference to a specific example. Figure 5.6 illustrates the diagram of the Berlekamp analysis of $S(5,22,27)$.

For $S(\alpha, 2 h \alpha+r,(2 h+1) \alpha+r), 0<x<\alpha$, the diagram consists of a sets of four columns. Within each set there are h or $h+1$ sections of a rows. In Figure 5.6 there are 5 sets of 4 columns and each set contains either 2 or 3 sections of 5 rows. Further, 2 of the sets contain 3 sections. In general r of the sets of columns contain $h+1$ sections of α rows, and $\dot{\alpha}-\dot{r}$ of the sets contain h sections. In each set of 4 columns, the last section of a rows may be divided into 2 subsections. For the kth set of columns, the subsections contain $(k r)_{a}$ and $a-(k r)_{a}$ rows respectively, where $(k r)_{\alpha}$ denotes the least non-negative residue of $k r, \bmod a$.

0	5	22	27					94	99	116	121								
1	6	23	28					95	100	117	122						-		
2	7	24	29					96	101	118	123								
3	8	25	30					97	102	119	124								
4	9	26	31					98	103	120	125								
10	15	32	37	52	57	74	79	104	109	126	131	146	151	168	173	188	193	210	215
11	16	33	38	53	58	75	80	105	110	127	132	147	152	169	174	189	194	211	216
12	17	34	39	54	59	76	81	106	111	128	133	148	153	170	175	190	195	212	217
13	18	35	40	55	60	77	82	107	112	129	134	149	154	171	176	191	196	213	218
14	19	36	41	56	61	78	83	108	113	130	135	150	155	172	177	192	197	214	219
20	25	42	47	62	67	84	89	114	119	136	141	156	161	178	183				
21	26	43	48	63	68	85	90					157	1262	179	184	198	203	220	225
				64	69	86	91	137	142	154	164	158	163	180	185	199	204	221	226
44	49	66	71	65	70	87	92	138	143	160	165					200	205	222	227
45	50	67	72					139	144	161	166	181	186	203	208	201	206	223	228
46	51	68	73	88	93	110	115	140	145	162	167	182	187	204	209	202	207	224	229

Figure 5.6. Analysis of $S(5,22,27)$.

Figure 5.7. Part of analysis of $S(\alpha, 2 h a+r,(2 h+1) \alpha+r)$.

In each set of 4 columns, there are exactly r duplicates. These occur in the second column, duplicating numbers that have already occurred in the third. (For $S(5,22,27), r=2$ and in each of the sets of columns displayed in Figure 5.6 there are 2 duplicates.) Hence the total number of entries is $4(h a)(\alpha-r)+4(h a+\alpha) r=4(h a+r) a$. Allowing for the r duplicates occurring in each set of columns, the period is $4(h a+x) \alpha-a r=$ $=(4 h a+3 r) a=(2 b+r) a$.

Figure 5.7 shows the diagram of the first set of α columns. There are $h+1$ sections of α rows, and the last section is divided into two subsections of r and $\alpha-r$ rows respectively. The duplicates that occur are boxed.

Consider now the $(k+1)$ st set of 4 columns. If $\alpha-(k r)_{\alpha} \geqslant r$, then $a \geqslant(k r)_{a}^{+r}=((k+1) r)_{a}$, and there will be no split in the duplicates. The ($k+1$) st set contains h sections of a rows, and the last section is divided into subsections of $((k+1) r)_{a}$, and $\alpha-((k+1) r)_{a}$ rows where $r<((k+1) r)_{\alpha} \leqslant a$. The first r entries in the second column of the $((k+1) r)_{\alpha}$ rows are duplicates as the last r entries occurring in the third column of the kth set of 4 columns. Figure 5.8 illustrates the situation when $a-(k r)_{a} \geqslant r$. The upper portion of the diagram shows the last $a-(k r)_{a}$ rows of the k th set of 4 columns. In the $(k+1)^{\text {st }}$ set of columns, the entries have been grouped in sections of a rows, but only the first $((k+1) r)_{\alpha}$ rows of the last section are shown. The boxed numbers in the second column are duplicates of earlier occurring numbers in the third column.

Last $a-(k r)_{a}$ rows of $k t h$ set of columns

	$\begin{gathered} n \\ n+1 \end{gathered}$	$n+a$ $n+a+1$	$\begin{gathered} n+2 h a+1 \\ n+2 h a+x+1 \end{gathered}$	$\begin{gathered} n+(2 h+1) a+x \\ n+(2 h+1) a+x+1 \end{gathered}$
$a-(k r)_{a}$	$\begin{gathered} n+a-r-(k r)_{a}^{-1} \\ n+a-p-(k r)_{a} . \end{gathered}$	$\begin{gathered} n+2 a-r^{2-(k r)} a^{-1} \\ n+2 a-r-\left(k r^{r}\right) a \end{gathered}$	$\frac{n+(2 h+1) a-(k r)_{a}^{-1}}{n+(2 h+1) a-(k x)_{a}}$	$\begin{gathered} n+(2 h+2) a-(k r)_{a}^{-1} \\ n+(2 h+2) a-(k r)_{a} \end{gathered}$
	$n+a-\left(k r^{n}\right)_{a}^{-1}$	$n+2 a-(k r) a^{-1}$	$n+(2 h+1) a+2^{-(k r)} \cdot a^{-1}$	$n+(2 h+2) a+r-(k r) a^{-1}$

$(k+1) s t$ set of 4 columns

$(k+1) r^{\prime}{ }_{a}$	$n+2 h a-(k r)_{\alpha}$	$n+(2 h+1) a-(k x)_{a}$	$n+4 h a+r-(k r)_{\alpha}$	$n+(4 \pi+1) a+r-(k x){ }_{a}$
	$n+2 T_{0}\left(x \cdot x-2-(k r)_{0}\right.$ $n+(2 n+1) ~$	$\left.n+4 n a+22^{r-2-(k r}\right)_{a}$	$n+(4 h+1) a+2 r-2-(k r)_{a}$
	$\begin{gathered} n+2 h a+m-1 \cdots(k r)_{a} \\ n+2 h a+2-(7: r)_{a} \end{gathered}$	$\begin{gathered} n+(2 h+1) a-r-1-(k r)_{a} \\ n+(2 h+1) a-r-(k r)_{a} \end{gathered}$	$\begin{gathered} n+4 h a+2 r^{2-1-(k r)_{a}} \\ n+4 h a+2 r-\left(k r^{2}\right)_{a} \end{gathered}$	$\begin{gathered} n+(4 h+1) a+2 r-1-(1 ; r)_{a} \\ n+(4 h+1) a+2 r-(k x)_{a} \end{gathered}$
	$n \cdot 1 \% h e+y-1$	$n \cdot(2 h+1) a \cdot 2 \cdot-1$	$n+4 h a+2 y \cdots-1$	$n-1(41+1 .) a+2 y^{\prime \cdots} 1$

Last $a-\left(k_{r}\right)_{a}$ rows of k th set of colums.

If $\alpha-(k r)_{\alpha}<r$, then $\alpha<(k r)_{\alpha}^{+r=a+((k+1) r)} \alpha$. In this case the $(k+1)$ st set contains $h+1$ sections of a rows, and the r duplicates are split into two groups, one of size $\alpha-(k r) \alpha$ and the other of size $r-\left(\alpha-(k r)_{\alpha}\right)$. Their relative positions are illustrated in Figure 5.9. Once again the upper portion of the diagram shows the last $\alpha-(k r)_{\alpha}$ rows of the k th set of 4 columns. In the $(k+1)$ st set of columns the entries have been grouped in sections of a rows, but only the first $r-(k r){ }_{a}$ rows of the last section are shown. The boxed numbers represent those entries that are duplicates.

5.4. Tetra1 Games

The subtraction game $S\left(s_{1}, s_{2}, \ldots, s_{k}\right)$ is equivalent to the tetral game $\cdot \underset{\sim}{d}{\underset{\sim}{d}}_{2}^{d} d_{3} \ldots$ where $\underset{\sim}{d} u=3$ whenever $u \in\left(s_{1}, s_{2}, \ldots, s_{k}\right)$, $\underset{\sim}{d} u=\underset{\sim}{0}$ for all other u. Some of the results proved here hold for finite tetral games In which we also allow digits $\underset{\sim}{d}=1$ or $\underset{\sim}{d} u=2$.

The proof that every finite subtraction game is ultimately periodic rested upon the fact that for all n, the number of options of n was bounded by an integer k. Since this is also true of finite tetral games, a similar argument shows that every finite tetral game is ultimately periodic.
 and $k=\mid\left\{\left.u\right|_{\sim} ^{d}{\underset{u}{u}}\right.$ contains $\left.\underset{\sim}{2}\right\} \mid$. If there exists p such that $\underset{\sim}{d}$ contains $\underset{\sim}{2}$ whenever ${\underset{\sim}{p}-u}$ contains 2, then for all $n>v+k p, G(n+p)=G(n)$.

PROOF. Observe that for $n>v, G(n) \leqslant k$, since n has at most k options. For $n>v$, an argument identical to that of Theorem 5.3 shows that if $G(n)=0$, then: $G(n+p)=0$. We assume indictively that if $n>v+j p$, $0 \leqslant j<g$, then $G(n)=j$ implies $G(n+p)=j$, and show that if $n>v+g p$, $G(n)=g$ implies $G(n+p)=g$ by an argument similar to that of Theorem 5.3. The remaining results proved for subtraction games do not necessarily hold for arbitrary tetral games. Ferguson's pairing property does not hold, as .1223 shows. This game has G-sequence $0100221 i$ and $G(2)=0$, $G(4) \neq 1$. Consequently no results about the G-sequence of tetral games analogous to those of sections 5.2 and 5.3 have been established.

Chapter 6

Arithmetico-periodicity

6.1. Introduction

There are numerous games for which $G(n)$ is unbounded. The game of Nim, $\dot{\sim}, ~$ has G-sequence $012345 \ldots$. It is periodic in the following. generalized sense. A game $\underset{\sim}{D}$ is said to be axithmetico-periodic if there exist $e, p, s(s>0)$ such that for all $n>e, G(n+p)=G(n)+s$. The least e, p, s for which this is true are called the last irregular value e, the period p, and the saltus s. For $n>e$, we may write $G(n)=\frac{s(n-c)}{p}$ where c_{n} depends only on the residue class to which n belongs modulo p.

6.2. Finite Octals and Arithmetico-Periodicity

In his analyses of octal and sedecimal games, Kenyon [13] observed that no finite octal appeared to be arithmetico-periodic. To establish this, we follow an analysis due to J. Conway.

The Fibonacci numbers are defined by the following recurrence relation: $F_{0}=0, F_{1}=1$, and for $n \geqslant 2, F_{n}=F_{n-1}+F_{n-2}$, e.g. $F_{2}=1$, $F_{3}=2, F_{4}=3, F_{5}=5$.

For $n \geqslant 0$, let $f(n)$ be the number of distinct values assumed by $a^{*}+b$, where $a \geqslant 0, b \geqslant 0, a+b=n-1$, e.g. $f(0)=0, f(1)=f(2)=1$, $f(3)=2, f(4): 1, f(5)=3, f(6)=2$.

ILEMMA 6.1. (i) $f(2 n)=f(n)$
(ii) $f(2 n+1)=f(n+1)+f(n)$
(iii) if $n \leqslant 2^{k}$, then $f(n) \leqslant F_{k+1}$

PROOF. (i) $f(2 n)=\left|\left\{a^{*}+b \mid a+b=2 n-1\right\}\right|$. If $a+b=2 n-1$, without loss of generality we may write $a=2 a^{\prime}+1, b \neq 2 b^{\prime}$, where $a^{\prime}+b^{\prime}=n-1$. Then $a^{*}+b=\left(2 a^{\prime}+1\right) \stackrel{*}{+} 2 b^{\prime}=2\left(a^{\prime *}+b^{\prime}\right)+1$ by Lemma 3.1 (iii). Hence there is a bijection between $\left\{a^{*}+b \mid a+b=2 n-1\right\}$ and $\left\{a^{\prime}+b^{\prime} \mid a^{\prime}+b^{\prime}=n-1\right\}$, so that $f(2 n)=f(n)$.
(ii) $f(2 n+1)=\left|\left\{a^{*}+b \mid a+b=2 n\right\}\right|$. If a, b are both even, $a=2 a^{\prime}$, $b=2 b^{\prime}$ where $a^{\prime}+b^{\prime}=n$, then $a^{\prime \prime}+b^{\prime}=2 a^{\prime}+2 b^{\prime}=2\left(a^{\prime}+b^{\prime}\right)$. If a, b are both odd $a=2 a^{\prime \prime}+1, b=2 b^{\prime \prime}+1$ where $a^{\prime \prime}+b^{\prime \prime}=n-1$, then $a^{*}+b=\left(2 a^{\prime \prime}+1\right)+\left(2 b^{\prime \prime}+1\right)=$ $=2\left(a^{\left.\prime 1^{*}+b^{\prime \prime}\right) \text {. If } n \text { is even, } a^{\prime}+b^{\prime}=n \text {, then } a^{\prime}+b^{\prime} \equiv 0(\bmod 2) \text { so that. } . ~ . ~ . ~}\right.$ $2\left(a^{\prime \prime}+b^{\prime}\right) \equiv 0(\bmod 4)$, and $2\left(a^{\prime \prime *}+b^{\prime \prime}\right) \equiv 2(\bmod 4)$. Similarly, if n is odd the sets $\left\{2\left(a^{\prime}+b^{\prime}\right) \mid a^{\prime}+b^{\prime}=n\right\},\left\{2\left(a^{\prime \prime *}+b^{\prime \prime}\right) \mid a^{\prime \prime}+b^{\prime \prime}=n-1\right\}$ are distinct. Hence $f(2 n+1)=f(n)+f(n+1)$.
(iii) The result is true for $n=0,1,2$. Assume inductively that (iii) holds for $n \leqslant 2^{k}, k \geqslant 1$. If $n \leqslant 2^{k+1}$, and $n=2 n^{\prime}, n^{\prime} \leqslant 2^{k}$, then by (i) and the inductive hypothesis

$$
\begin{equation*}
f(n)=f\left(2 n^{\prime}\right)=f\left(n^{\prime}\right) \leqslant F_{k} \tag{1}
\end{equation*}
$$

If $n=2 n^{\prime}+1$, then $n^{\prime}+1 \leqslant 2^{k}, f(n)=f\left(n^{\prime}\right)+f\left(n^{\prime}+1\right)$. Just one of n^{\prime}, $n^{\prime}+1$ is even, so by (1) and the inductive hypothesis, $f(n) \leqslant F_{k}+F_{k+1}=$ $=F_{k+2}$.

THEOREM 6.2. No finite octal game is arithmetico-periodic.

PROOF. Suppose on the contrary that a finite octal game $\underset{\sim}{D}$ has period p, saltus $s \geqslant I$, and is (ultimately) arithmetico-periodic. Choose o such that
(a) $\quad d_{u}=\ell$ for $u<-2^{c}$ and $u \geqslant 2^{c}$
(b) $p \leqslant 2^{c}$
(c) $G(n+p)=G(n)+s$ for all $n \geqslant\left(2^{c}-1\right) p$.

By (a), there are at most 2^{c+1} splitting moves (${ }_{\sim}^{d} u$ contains $\underset{\sim}{4}$) and at most 2^{c} taking moves (d_{u} contains 2). The total number of different moves from a heap of n tokens is thus at most $2^{c+1}(n / 2)+2^{c}=2^{c}(n+1)$. Therefore

$$
\begin{equation*}
G(n) \leqslant 2^{c}(n+1) \tag{*}
\end{equation*}
$$

and

$$
s / p=\lim _{n \rightarrow \infty} G(n) / n \leqslant 2^{c}
$$

so that $s \leqslant 2^{c} p$.
Let $2^{h} \leqslant n<2^{h+1}$, where $h \geqslant 2 c+2$. The number of distinct G-values arising from taking moves is at most 2^{c}. The number of distinct G-values arising from splitting moves in which one of the resulting heaps has size less than $2^{c} p$ is at most $2^{c} p 2^{c+1}=2^{2 c+1} p$. Other moves consist in choosing a splitting move (in one of at most $2^{\text {c+1 }}$ ways) and choosing a residue class, μ_{1}, $\bmod p, 0 \leqslant \mu_{1} \leqslant p-1$ (in one of at most p ways) and replacing a heap of n tokens by two heaps of a and b, where $a+b=n-u$, $-2^{c}<u \leqslant 2^{c}, a, b \geqslant 2^{c} p$, and $a=\lambda_{1} p+\mu_{1}, \lambda_{1} \geqslant 2^{c}$. Write $b=\lambda_{2} p+\mu_{2}$, where $0 \leqslant \mu_{2} \leqslant p-1, \lambda_{2} \geqslant 2^{c}$. Note that $n-u=a+b=\lambda_{1} p+\mu_{1}+\lambda_{2} p+\mu_{2}$ so that when n, u, μ_{1} are chosen, μ_{2} is fixed, and $\lambda_{1}+\lambda_{2}=\left(n-u-\mu_{1}-\mu_{2}\right) / p$.

By (c), $\exists g_{1}, g_{2}$ such that $G(a)=G\left(\lambda_{1} p+\mu_{1}\right)=\lambda_{1} s+g_{1}=\alpha$, say, and $G(b)=G\left(\lambda_{1} p+\mu_{2}\right)=\lambda_{2} s+g_{2}=\beta$, say. We observe

$$
\begin{array}{rlrl}
2^{c} s+g_{1} & =G\left(2^{c} p+\mu_{1}\right) & \text { by (c) } \\
& \leqslant 2^{c}\left(2^{c} p+\mu_{1}+1\right) & \text { by (*) } \\
& \leqslant 2^{c}\left(2^{c}+1\right) p & & \text { by (b) } \\
& \leqslant 2^{3 c+1} & & \text { by (b). }
\end{array}
$$

Hence $g_{1} \leqslant 2^{3 c+1}$, and by a similar argument, $g_{2} \leqslant 2^{3 c+1}$. Further $\alpha+\beta=\lambda_{1} s+g_{1}+\lambda_{2} s+g_{2}=\left(\lambda_{1}+\lambda_{2}\right) s+g_{1}+g_{2}=\frac{s}{p}\left(n-u-\mu_{1}-\mu_{2}\right)+g_{1}+g_{2}$ is a fixed integer, m say, where

$$
m \leqslant 2^{c}\left(n+2^{c}-0-0\right)+2^{3 c+1}+2^{3 c+1}<2^{h+c+2}+2^{3 c+2}<2^{h+c+3} .
$$

The G-values resulting from such moves are a subset of $\{\alpha+\beta \mid \alpha+\beta=m\}$ whose cardinality is $f(m+1)$, which by Lemma 6.1 (iii) is less than or equal to F_{h+c+4}. Therefore

$$
G(n) \leqslant 2^{c+1} p F_{h+c+4}+2^{2 c+1} p+2^{c} \leqslant 2^{2 c+1} F_{h+c+4}+2^{3 c+1}+2^{c} \text { by (b). }
$$

Now it is easy to see by induction that $F_{h}<\tau^{h}$ where $\tau^{2}=\tau+1$, $\tau=\frac{1}{2}(1+\sqrt{5})=1.618 \ldots<2$, so

$$
\frac{s}{p}=\lim _{n \rightarrow \infty} G(n) / n \leqslant \lim _{h \rightarrow \infty} \frac{2^{2 c+1} \tau_{1}^{h+c+4}+2^{3 c+1}+2^{c}}{2^{h}}=0
$$

contrary to our assumption that $s \geqslant 1$.

6.3. An Arithmetico-Periodicity Theorem for Sedecimal Games

We now prove a theorem for arithmetico-periodicity analogous to Theorem 4.2 for normal periodicity. We first establish several lemnas that will be used in the proof.
 break game, and that for some integer n there exist integers e, p, and s such that

$$
\begin{aligned}
& \text { (1) } G(i+p)=G(i)+s, \text { for all } i, e<i \leqslant n \\
& \text { (2) } G(i)<s \text { for all } i \leqslant e \\
& \text { (3) } G(i)<2 s \text { for all } i \leqslant e+p .
\end{aligned}
$$

Then
(i) if $i>e+q p$ and $q \geqslant 0$ then $G(i) \geqslant q s$
(iii) if $G(i) \geqslant q s$ and $q \geqslant 1$ then $i>e+(q-1) p$.

PROOF. (i) Let $i=e+\alpha p+r$ where $\alpha \geqslant q \geqslant 0,0<r \leqslant p$. Then

$$
\begin{equation*}
G(i)=G(e+a p+p)=G(e+p)+a s \geqslant 0+q s=q s . \tag{1}
\end{equation*}
$$

(ii) $\quad q=1$. If $G(i) \geqslant s$, then (2) implies $i>e=e+(q-1) p$. $q=2$. If $G(i) \geqslant 2 s$, theri (3) implies $i>e+p=e+(q-1) p$ so we may assume $q>2$ and

$$
\begin{equation*}
G(i) \geqslant q s>2 s . \tag{4}
\end{equation*}
$$

Then by (3), $i=e+a p+r$ where $a \geqslant 1, p \geqslant r>0$, so that

$$
\begin{array}{rlrl}
G(i) & =G(e+\alpha p+x) \\
& =G(e+x)+a s \\
& <2 s+\alpha s & & \text { by }(1) . \\
& =(a+2) s . & & \text { by }(3) \\ \tag{5}
\end{array}
$$

Inequalities (4) and (5) yield

$$
(a+2) s>q s \Rightarrow a+2>q \Rightarrow a>q-2
$$

and since α is an integer $\alpha \geqslant q-1$.
Thus $i=e+a p+r \geqslant e+(q-1) p+r>e+(q-1) p$.
COROLLARY 6.4. Suppose that $\underset{\sim}{T}=\underset{\sim}{d} \underset{\sim}{d} v+1 \cdots{\underset{\sim}{d}}_{0}^{d} \cdot \stackrel{d}{\sim}_{1}^{d}{\underset{\sim}{\sim}}_{2}^{d} \ldots$ is a take and break game, and that for some integer n, there exist integers e, p, and s (assumed to be a power of $2, s=2^{k}$) such that
(1) $G(i+p)=G(i)+s$ for all $e<i \leqslant n$
(2) $G(i)<s$ for all: $i \leqslant e$
(3) $G(i)<2 s$ for all $i \leqslant e+p$.

If $G(i)$ contains $2^{m}, m \geqslant k$, then $i>e+\left(2^{m-k}-1\right) p$. If $G(i)$ contains 2^{m}, 2^{τ}, where $m>\tau \geqslant k$, then $i>e+\left(2^{m-k}+2^{z-k}-1\right) p$.

PROOF. This follows as an immediate consequence of Lemma 6.3 (ii) by taking $s=2^{k}$.

For such a game $\underset{\sim}{\mathbb{T}}$, if $G(i)>g>G(i)-3 s$, then g is an excluded value for $G(i)$. If $\forall u, d_{u} \leqslant 15$, there is a move taking u tokens from a heap of i and leaving three non-negative heaps of i_{1}, i_{2}, i_{3} tokens so
that $i-u=i_{1}+i_{2}+i_{3}$ and $g=G\left(i_{1}\right) \stackrel{*}{+} G\left(i_{2}\right) \stackrel{*}{+} G\left(i_{3}\right)$. The next lemma provides information about the binary expansions of $G\left(i_{1}\right), G\left(i_{2}\right), G\left(i_{3}\right)$.

LEMMA 6.5. Let $\underset{\sim}{T}={\underset{d}{d}}_{0} \cdot \stackrel{d}{N}_{1}^{d_{2}} \underset{\sim}{d}{\underset{\sim}{3}} \ldots$ be a take and break game in which a move replaces one heap by at most three heaps (i.e. $d_{u} \leqslant 15$) and suppose $\underset{\sim}{T}$ satisfies the assumptions of Corollary 6.4. Let

$$
\begin{gathered}
G(i)>g>G(i)-3 s, \\
i-u=i_{1}+i_{2}+i_{3}, \\
g=G\left(i_{1}\right) \stackrel{*}{+} G\left(i_{2}\right) \stackrel{*}{+} G\left(i_{3}\right) .
\end{gathered}
$$

If 2^{Z} is the largest power of 2 contained in g, and $Z \geqslant k+1$ then 2^{z+1} is not contained in $G\left(i_{1}\right), G\left(i_{2}\right), G\left(i_{3}\right)$:

PROOF. Since $g>G(i)-3 s$, and 2^{l} is the largest power of 2 contained in g,

$$
\begin{equation*}
2^{z+1}>G(i)-3 s . \tag{6}
\end{equation*}
$$

As g contains $2^{Z}, g=G\left(i_{1}\right) \stackrel{*}{+} G\left(i_{2}\right) \stackrel{*}{+} G\left(i_{3}\right), 2^{2}$ is contained in an odd number of $G\left(i_{1}\right), G\left(i_{2}\right), G\left(i_{3}^{\prime}\right)$. Without loss of generality we may assume that 2^{l} is contained in $G\left(i_{1}\right)$. Either 2^{z+1} is not contained in any of $G\left(i_{1}\right), G\left(i_{2}\right), G\left(i_{3}\right)$ and there is nothing to prove, or 2^{l+1} is contained in just two of them. We give an argument by contradiction to show the latter is not possible. It suffices to consider the two cases where
(i) $G\left(i_{1}\right), G\left(i_{2}\right)$ contain $2^{\tau+1}$,
(ii) $G\left(i_{2}\right), G\left(i_{3}\right)$ contain 2^{z+1}.
(i) If $G\left(i_{1}\right)$ contains $2^{Z}, 2^{Z+1}, G\left(i_{2}\right)$ contains 2^{Z+1}, then

$$
\begin{gathered}
i \geqslant i-u \\
=i_{1}+i_{2}+i_{3} \\
>e+\left(2^{z+1-k}+2^{z-k}-1\right) p+e+\left(2^{z+1-k}-1\right) p \text { by Corollary } 6.4 \\
\geqslant e+\left(2^{z+2-k}+2^{z-k}-2\right) p
\end{gathered}
$$

so that by Lemma 6.3 (i),

$$
\dot{G}(i) \geqslant\left(2^{z+2-k}+2^{z-k}-2\right) s=2^{z+2}+2^{z}-2 s .
$$

Therefore

$$
\begin{aligned}
G(i)-3 s & \geqslant 2^{Z+2}+2^{\tau}-5 s \\
& =2^{Z+1}+6.2^{\tau-1}-5 s \\
& \geqslant 2^{\tau+1}+s \quad \text { since } \tau \geqslant k+1
\end{aligned}
$$

which contradicts (6).
(ii) If $G\left(i_{1}\right)$ contains $2^{\tau}, G\left(i_{2}\right), G\left(i_{3}\right)$ contain 2^{z+1} then

$$
\begin{gathered}
i \geqslant i-u \\
=i_{1}+i_{2}+i_{3} \\
>e+\left(2^{z-k}-1\right) p+e+\left(2^{z+1-k}-1\right) p+e+\left(2^{z+1-k}-1\right) p \text { by Corollary } 6.4 \\
\geqslant e+\left(2^{z+2-k}+2^{z-k}-3\right) p
\end{gathered}
$$

so that by Lemma 6.3 (i)

$$
G(i) \geqslant\left(2^{\imath+2-k}+2^{l-k}-3\right) s=2^{l+2}+2^{l}-3 s .
$$

Therefore

$$
G(i)-3 s \geqslant 2^{z+2}+2^{z}-6 s=2^{z+1}+6.2^{z-1}-6 s \geqslant 2^{z+1} \text { since } z \geqslant k+1
$$

which contradicts (6).

LEMMA 6.6. Under the assumptions of Lemma 6.3 suppose that for each g, $0 \leqslant g<2 s$ there exists i such that $G(i)=g$. If $i_{1}>e+2 p$ and $G\left(i_{1}-2 p\right) \geqslant g_{1}$, then there exists $i_{2}<i_{1}$ such that $G\left(i_{2}\right)=g_{1}$.

PROOF. Since $i_{1}>e+2 p$,

$$
\begin{equation*}
i_{1}-2 p>e \tag{7}
\end{equation*}
$$

so that by (1), $G\left(i_{1}-2 p\right)=G\left(i_{1}\right)-2 s$. Let $g_{1} \leqslant G\left(i_{1}-2 p\right)$. If $0 \leqslant g_{1}<2 s$ then by hypothesis there exists i such that $G(i)=g_{1}$, and

$$
\begin{aligned}
i & \leq e+2 p \quad \text { by Lemma } 6.3 \text { (i) } \\
& <i_{1} .
\end{aligned}
$$

Take $i_{2}=i$.
If $2 s \leqslant g_{1} \leqslant G\left(i_{1}-2 p\right)=G\left(i_{1}\right)-2 s$, then let $g_{1}=q s+p$, where $q \geqslant 2$, $0 \leqslant r<s$. Thus $G\left(i_{1}\right)-2 s \geqslant q s+r$ so that $G\left(i_{1}\right) \geqslant(q+2) s$. By Lemma 6.3 (i) $i_{1}>e+(q+1) p$. By hypothesis there exists i such that $G(i)=s+r$ where $e<i \leqslant e+2 p$, so that

$$
\begin{aligned}
G(i+(q-1) p) & =G(i)+(q-1) s \\
& =s+r+(q-1) s \\
& =g_{1}
\end{aligned}
$$

where

$$
i+(q-1) p \leqslant e+2 p+(q-1) p=e+(q+1) p<i_{1} .
$$

Take $i_{2}=i+(q-1) p$.
LEMMA 6.7. Under the assumptions of Corollary 6.4, suppose that for each g, $0 \leqslant g<2 s$, there exists $2 v+1>0,2 w>0$, such that $G(2 v+1)=G(2 w)=g$. If $i_{1}>e+2 p$ and $G\left(i_{1}-2 p\right) \geqslant g_{1}$ then there exist $2 v_{1}+1,2 w_{1}$, $0<2 w_{1}, 2 v_{1}+1<i_{1}$ such that $G\left(2 w_{1}\right)=G\left(2 v_{1}+1\right)=g_{1}$.

PROOF: The proof is similar to that of Lemma 6.6, but it is necessary to consider separately the cases where p is even, \dot{p} is odd.

THEOREM 6.8. Suppose that $\underset{\sim}{T}=d_{0} \cdot d_{1} d_{2} \ldots d_{t}\left(d_{u}=0\right.$ for $\left.u>t \geqslant 1, u<0\right)$ is a take and break game in which a move replaces just one heap by at most three heaps, i.e. $d_{u} \leqslant 15$ and that there exist integers e (the last irregular value), $p \geqslant t+2$ (a period) and $s \geqslant 1$ (a saltus, assumed to be a power of $2, s=2^{k}$) such that
(1) $G(i+p)=G(i)+s$ for all $i, e<i<e+7 p+t$
(2) $G(i)<s$ for all $i \leqslant e$
(3) $G(i)<2 s$ for all $i \leqslant e+p$
(4) either there exist $\underset{\sim}{d} 2 v+1,{ }_{2}^{d} 2 w$ both of which contain $\underset{\sim}{8}$, and for each $g, 0 \leqslant g<2 s$, there exists $i>0$, such that $G(i)=g$ or there exists $\underset{\sim}{d}$ which contains $\underset{\sim}{8}$, and for each $g, 0 \leqslant g<2 s$, there exist $2 v+1,2 w \geqslant 0$ such that $G(2 v+1)=G(2 w)=g$.

Then for all $i>e$

$$
\begin{equation*}
G(i+p)=G(i)+s . \tag{*}
\end{equation*}
$$

Note that in order to satisfy (2), (3), and the condition $p \geqslant t+2$, it may be necessary to choose appropriate multiples of the period, and the saltus which are defined as the least p and s satisfying (1), e.g. the game . F 8 has G-sequence $0101023234 \dot{5} 4567 \dot{8}(+4)$, where the period is 6 , and the saltus 4 is indicated in parentheses. In order to apply Theorem 6.8 it was necessary tio choose a period of 12 , and a saltus of 8 .

Kenyon [13] has solved the game. $3 E$ and shown that the G-sequence is $\dot{0} 1201 \dot{2}(+3)$. Similarly we have shown the game .162 has G-sequence $0 \dot{10210213 \dot{2}(+3) . ~ H o w e v e r, ~} \cdot 2 E \equiv \cdot 3 \dot{2} \dot{i}$ and $\cdot 162 \equiv \cdot 1610 \dot{0}$, so that both of these games are equivalent to infinite recurring octal games (see section 6.4). No theorem for sedecimal games exhibiting arithmetico-periodicity with a saltus other than a power of 2 has been proved.

PROOF. By hypothesis, (*) holds for $e<i<e+7 p+t$. Assume inductively that (*) holds for $e<i<n$ where $n \geqslant e+7 p+t$. To show $G(n+p)=G(n)+s$ we prove that:
(i) $G(n)+s$ is not an excluded value for $G(n+p)$
(ii) For each $g, 0 \leqslant g<G(n)+s, g$ is an excluded value.
(i) We suppose that $G(n)+s$ is an excluded value for $G(n+p)$ and show that this leads to a contradiction. We consider five cases, where each case leads to a result that contradicts our induction hypothesis.

If $G(n)+s$ is an excluded value for $G(n+p)$, then it must be excluded by removing u tokens from a heap of $n+p$ to leave three non-negative heaps
of i_{1}, i_{2}, i_{3} tokens where $n+p-u=i_{1}+i_{2}+i_{3}$ and $G(n)+s=G\left(i_{1}\right) \stackrel{*}{+} G\left(i_{2}\right) \stackrel{*}{+} G\left(i_{3}\right)$. Since $n \geqslant e+7 p+t, n-7 p \geqslant e+t>e$, and we have by (1),

$$
\begin{aligned}
& G(n)=G(n-7 p+7 p) \\
&=G(n-7 p)+7 s \\
& \geqslant 7 s \\
& \Rightarrow \quad G(n)+s \geqslant 8 s
\end{aligned}
$$

so that if 2^{m} is the largest power of 2 contained in $G(n)+s, m \geqslant k+3$. As $G(n)+s=G\left(i_{1}\right) \stackrel{*}{+} G\left(i_{2}\right) \stackrel{*}{+} G\left(i_{3}\right), 2^{m}$ is contained in an odd number of $G\left(i_{1}\right)$, $G\left(i_{2}\right), G\left(i_{3}\right)$, and we may assume without loss of generality that 2^{m} is. contained in $G\left(i_{1}\right)$.

CASE I: If $G\left(i_{1}\right)$ also contains 2^{Z}, where $Z \geqslant k, Z \neq m$ (sce Figure 6.1), then

$$
n-\left(2^{m-k}-1\right) p-u=\left(i_{1}-2^{m-k} p\right)+i_{2}+i_{3}
$$

and

$$
G\left(n-\left(2^{m-k}-1\right) p\right)=G\left(i_{1}-2^{m-k} p\right) \stackrel{*}{+} G\left(i_{2}\right) \stackrel{*}{+} G\left(i_{3}\right) ;
$$

but by definition $G\left(n-\left(2^{m-k}-1\right) p\right) \neq G\left(i_{1}-2^{m-k} p\right) \stackrel{*}{+} G\left(i_{2}\right) \stackrel{*}{+} G\left(i_{3}\right) . \quad$ As $G\left(i_{1}\right)$ contains $2^{m}, 2^{\tau}, \tau \geqslant k, \tau \neq m$,

$$
G\left(i_{1}\right) \geqslant 2^{m}+2^{z}=\left(2^{m-k}+2^{z-k}\right) s
$$

Figure 6.1. Case I.
$X=0$ in both places or $X=1$ in both places.
so that by Corollary 6.4

$$
\begin{aligned}
& i_{1}>e+\left(2^{m-k}+2^{i-k}-1\right) p \\
& \geqslant e+2^{m-k} p \\
& \Rightarrow \quad i_{1}-2^{m-k} p>e
\end{aligned}
$$

and by (1)

$$
\begin{align*}
G\left(i_{1}-2^{m-k_{p}}\right. & =G\left(i_{1}\right)-2^{m-k_{p}} \\
& =G\left(i_{1}\right)-2^{m} \tag{8}
\end{align*}
$$

Since

$$
\begin{align*}
n-\left(2^{m-k}-1\right) p-u & =n+p-u-2^{m-k_{p}} p \\
& =i_{1}+i_{2}+i_{3}-2^{m-k_{p}} \\
& =\left(i_{1}-2^{m-k_{p}} p\right)+i_{2}+i_{3} \tag{9}
\end{align*}
$$

we see that we can remove u tokens from a heap of $n-\left(2^{m-k}-1\right) p$, leaving three non-negative heaps, the first of which contains more than e tokens. So we can apply (1) to give

$$
\begin{aligned}
\dot{G}\left(n-\left(2^{m-k}-1\right) p\right) & =G(n)-\left(2^{m-k}-1\right) s \\
& =G(n)+s-2^{m} \\
& =G\left(i_{1}\right) \stackrel{*}{+} G\left(i_{2}\right) \stackrel{*}{+} G\left(i_{3}\right)-2^{m} \\
& =\left(G\left(i_{1}\right)-2^{m}\right) \stackrel{*}{+} G\left(i_{2}\right) \stackrel{*}{+} G\left(i_{3}\right),
\end{aligned}
$$

since $G\left(i_{1}\right)$ contains 2^{m}, and an even number of $G\left(i_{2}\right), G\left(i_{3}\right)$ do. By (8),

$$
\left(G\left(i_{1}\right)-2^{m}\right) \stackrel{*}{+} G\left(i_{2}\right) \stackrel{*}{+} G\left(i_{3}\right)=G\left(i_{1}-2^{m-k_{p}} p \stackrel{*}{+} G\left(i_{2}\right) \stackrel{*}{+} G\left(i_{3}\right) .\right.
$$

But by (9), $G\left(i_{1}-2^{m-k} p\right) \stackrel{*}{+} G\left(i_{2}\right) \stackrel{*}{+} G\left(i_{3}\right)$ is an excluded value for $G\left(n-\left(2^{m-k}-1\right) p\right)$. Therefore $G\left(i_{1}\right)$ does not contain $2^{\tau}, \tau \geqslant k, \tau \neq m$.

CASE II: If $G\left(i_{1}\right)$ contains $2^{m}, G\left(i_{1}\right)$ does not contain $2^{z}, \tau \geqslant k, \tau \neq m$, and either $G\left(i_{2}\right), G\left(i_{3}\right)$ both contain 2^{m-1}, or both do not contain 2^{m-1} (see Figure 6.2), then

$$
n-\left(2^{m-1-k}-1\right) p-u=\left(i_{1}-2^{m-1-k} p\right)+i_{2}+i_{3},
$$

and

$$
G\left(n-\left(2^{m-1-k}-1\right) p\right)=G\left(i_{1}-2^{m-1-k} p\right) \stackrel{*}{+} G\left(i_{2}\right) \stackrel{*}{+} G\left(i_{3}\right) ;
$$

but by definition

$$
G\left(n-\left(2^{m-1-k}-1\right) p\right) \neq G\left(i_{1}-2^{m-1-k} p\right) \stackrel{*}{+} G\left(i_{2}\right) \stackrel{*}{+} G\left(i_{3}\right)
$$

$$
2^{m} \cdot 2^{m-1} \quad 2^{k}
$$

$G\left(i_{1}\right)$. . 0	1	0	0 . . . 0	0
$G\left(i_{2}\right)$	-•••	X	y	- . .	-
$G\left(i_{3}\right)$	- . . .	X	y	-••••	
$G(n)+s$. 0	1	0	- • . .	-

Figure 6.2. Casie II.
$X=0$ in both positions or $X=1$ in both positions. $y=0$ in both positions or $Y=1$ in both positions.

As $G\left(i_{1}\right)$ contains $2^{m}, G\left(i_{1}\right) \geqslant 2^{m}=2^{m-k} s$, so that by Corollary 6.4,

$$
\begin{gather*}
i_{1}>e+\left(2^{m-k}-1\right) p>e+2^{m-1-k_{p}} \\
\Rightarrow \quad i_{1}-2^{m-1-k} p>e \tag{10}
\end{gather*}
$$

and by (1)

$$
\begin{align*}
\left.i_{G(}-2^{m-1-k_{1}} p\right) & =G\left(i_{1}\right)-2^{m-1-k_{s}} \\
& =G\left(i_{1}\right)-2^{m-1} \tag{1.1}
\end{align*}
$$

Since

$$
\begin{align*}
n-\left(2^{m-1-k}-1\right) p-u & =n+p-u-2^{m-1-k_{p}} p \\
& =i_{1}+i_{2}+i_{3}-2^{m-1-k_{p}} \\
& =\left(i_{1}-2^{m-1-k_{p}} p\right)+i_{2}+i_{3} \tag{1.2}
\end{align*}
$$

we see that we can remove u tokens from a heap of $n-\left(2^{m-1-k}-1\right) p$, leaving three non-negative heaps, the first of which contains more than e tokens
by (10). So we can apply (1) to give

$$
\begin{aligned}
G\left(n-\left(2^{m-1-k}-1\right) p\right) & =G(n)-\left(2^{m-k-1}-1\right) s \\
& =G(n)+s-2^{m-1} \\
& =G\left(i_{1}\right) \stackrel{*}{+} G\left(i_{2}\right) \stackrel{*}{+} G\left(i_{3}\right)-2^{m-1} \\
& =\left(G\left(i_{1}\right)-2^{m-1}\right) \stackrel{*}{+} G\left(i_{2}\right) \stackrel{*}{+} G\left(i_{3}\right)
\end{aligned}
$$

since $G\left(i_{1}\right)$ does not contain 2^{m-1}, and an even number of $G\left(i_{2}\right), G\left(i_{3}\right)$ do. By (11)

$$
\left(G\left(i_{1}\right)-2^{m-1}\right) \stackrel{*}{+} G\left(i_{2}\right) \stackrel{*}{+} G\left(i_{3}\right)=G\left(i_{1}-2^{m-1-k_{p}} \stackrel{*}{+} G\left(i_{2}\right) \stackrel{*}{+} G\left(i_{3}\right) .\right.
$$

But by (12) $G\left(i_{1}-2^{m-1-k_{p}} \stackrel{*}{+} G\left(i_{2}\right) \stackrel{*}{+} G\left(i_{3}\right)\right.$ is an excluded value for $G\left(n-\left(2^{m-1-k}-1\right) p\right)$.

If just one of $G\left(i_{2}\right), G\left(i_{3}\right)$ contains 2^{m-1} without loss of generality we may assume that $G\left(i_{2}\right)$ contains 2^{m-1}.

CASE III: $G\left(i_{1}\right)$ contains $2^{m}, G\left(i_{1}\right)$ does not contain $2^{\tau}, \tau \geqslant k, i \neq m$, and $G\left(i_{2}\right)$ contains $2^{m-1}, G\left(i_{3}\right)$ does not contain 2^{m-1}. If $G\left(i_{2}\right)$ also contains 2^{Z}, where $l \geqslant k, Z \neq m-1$ (see Figure 6.3), then

$$
n-\left(2^{m-1-k}-1\right) p-u=i_{1}+\left(i_{2}-2^{m-1-k_{p}} p\right)+i_{3}
$$

and

$$
G\left(n-\left(2^{m--k}-1\right) \dot{p}\right)=G(i) \stackrel{*}{+} G\left(i-2^{m--k} p\right) \stackrel{*}{+} G(i) ;
$$

but by definition

$$
G\left(n-\left(2^{m-1-k}-1\right) p\right) \neq G\left(i_{1}\right) \stackrel{*}{+} G\left(i_{2}-2^{m-1-k} p\right) \stackrel{*}{+} G\left(i_{3}\right) .
$$

Figure 6.3. Case III.
$X=0$ in both places or $X=1$ in both places.

As $G\left(i_{2}\right)$ contains $2^{m-1}, 2^{\tau}, \tau \geqslant k, \tau \neq m-1$

$$
\begin{aligned}
G\left(i_{2}\right) & \geqslant 2^{m-1}+2^{\tau} \\
& =\left(2^{m-1-k}+2^{\tau-k}\right) s
\end{aligned}
$$

so that by Corollary 6.4

$$
\begin{align*}
& i_{2}>e+\left(2^{m-1-k}+2^{l-k}-1\right) p \\
& \geqslant e+2^{m-1-k} p \\
& \Rightarrow \quad i_{2}-2^{m-1-k} p>e \tag{13}
\end{align*}
$$

and by (1)

$$
\begin{align*}
G\left(i_{2}-2^{m-1-k_{p}}\right) & =G\left(i_{2}\right)-2^{m-1-k_{s}} \\
& =G\left(i_{2}\right)-2^{m-1} \tag{14}
\end{align*}
$$

Since

$$
\begin{align*}
n-\left(2^{m-1-k}-1\right) p-u & =n+p-u-2^{m-1-k_{p}} \\
& =i_{1}+i_{2}+i_{3}-2^{m-1-k_{p}} \\
& =i_{1}+\left(i_{2}-2^{m-1-k_{p}}\right)+i_{3} \tag{15}
\end{align*}
$$

we see that we can remove u tokens from a heap of $n-\left(2^{m-1-k}-1\right) p$, leaving three non-negative heaps, the second of which contains more than e tokens by (13). So we can apply (1) to give

$$
\begin{aligned}
G\left(n-\left(2^{m-1-k}-1\right) p\right) & =G(n)-\left(2^{m-1-k}-1\right) s \\
& =G(n)+s-2^{m-1} \\
& =G\left(i_{1}\right) \stackrel{*}{+} G\left(i_{2}\right) \stackrel{*}{+} G\left(i_{3}\right)-2^{m-1} \\
& =G\left(i_{1}\right) \stackrel{*}{+}\left(G\left(i_{2}\right)-2^{\dot{m}-1}\right) \stackrel{*}{+} G\left(i_{3}\right),
\end{aligned}
$$

since $G\left(i_{2}\right)$ contains $2^{m-1}, G\left(i_{1}\right)$ and $G\left(i_{3}\right)$ do not. By (14)

$$
G\left(i_{1}\right) \stackrel{*}{+}\left(G\left(i_{2}\right)-2^{m-1}\right) \stackrel{*}{+} G\left(i_{3}\right)=G\left(i_{1}\right) \stackrel{*}{+} G\left(i_{2}-2^{m-1-k_{p}} p \stackrel{*}{+} G\left(i_{3}\right) .\right.
$$

But by (15), $G\left(n-\left(2^{m-1-k}-1\right) p\right) \neq G\left(i_{1}\right) \stackrel{*}{4} G\left(i_{2}-2^{m-1-k_{p}} p \stackrel{*}{+} G\left(i_{3}\right)\right.$. Therefore $G\left(i_{2}\right)$ does not contain $2^{2}, \tau \geqslant k, \tau \neq m-1$.

CASE IV: $G\left(i_{1}\right)$ contains $2^{m}, G\left(i_{1}\right)$ does not contain $2^{l}, l \geqslant k, l \neq m$, $G\left(i_{2}\right)$ contains $2^{m-1}, G\left(i_{2}\right)$ does not contain $2^{\tau}, \tau \geqslant k, \tau \neq m-1$. If $G\left(i_{3}\right)$ does not contain 2^{m-2} (see Figure 6.4), then

$$
n-\left(2^{m-2-k}-1\right) p-u=i_{1}+\left(i_{2}-2^{m-2-k} p\right)+i_{3}
$$

and

$$
G\left(n-\left(2^{m-2-k}-1\right) p\right)=G\left(i_{1}\right) \stackrel{*}{+} G\left(i_{2}-2^{m-2-k} p\right) \stackrel{*}{+} G\left(i_{3}\right) ;
$$

but by definition

$$
G\left(n-\left(2^{m-2-k}-1\right) p\right) \neq G\left(i_{1}\right) \stackrel{*}{+} G\left(i_{2}-2^{m-2-k} p\right) \stackrel{*}{+} G\left(i_{3}\right) .
$$

					2^{m-1}						2				k	
$G\left(i_{1}\right)$	-	-	0	1.	0	0	0	-	-	0	0	0	-	.	0	-
$G\left(i_{2}\right)$.	-	0	0	1	0	0	-	-	0	0	0	-	. ${ }^{\text {, }}$	0	-
$G\left(i_{3}\right)$	-	-	0	0	0	0	.	.	-	-	-	.	.	-	-	-
$G(n)+s$		-	0	1	1	0		-	-	-	-	-	.		0	*

Figure 6.4. Case IV.

Since $G\left(i_{2}\right)$ contains $2^{m-1}, G\left(i_{2}\right) \geqslant 2^{m-1}=2^{m-1-k_{s}}$, so that by Corollary 6.4,

$$
\begin{align*}
& i_{2}>e+\left(2^{m-1-k}-1\right) p \\
&>e+\left(2^{m-2-k} p\right) \\
& \Rightarrow \quad i_{2}-2^{m-2-k}>e \tag{16}
\end{align*}
$$

and by (1)

$$
\begin{align*}
G\left(i_{2}-2^{m-2-k_{p}}\right. & =G\left(i_{2}\right)-2^{m-2-k_{s}} \\
& =G\left(i_{2}\right)-2^{m-2} \tag{17}
\end{align*}
$$

Since

$$
\begin{align*}
n-\left(2^{m-2-k}-1\right) p-u & =n+p-u-2^{m-2-k_{p}} \\
& =i_{1}+i_{2}+i_{3}-2^{m-2-k_{p}} \\
& =i_{1}+\left(i_{2}-2^{m-2-k_{p}} p\right)+i_{3} \tag{18}
\end{align*}
$$

we see that we can remove u tokens from a heap of $n-\left(2^{m-2-k}-1\right) p$, leaving three non-negative heaps, the second of which contains more than e tokens by (16). So we may apply (1) to get

$$
\begin{aligned}
G\left(n-\left(2^{m-2-k}-1\right) p\right) & =G(n)-\left(2^{m-2-k}-1\right) s \\
& =G(n)+s-2^{m-2} \\
& =G\left(i_{1}\right) \stackrel{*}{+} G\left(i_{2}\right) \stackrel{*}{+} G\left(i_{3}\right)-2^{m-2} \\
& =G\left(i_{1}\right) \stackrel{*}{+}\left(G\left(i_{2}\right)-2^{m-2}\right) \stackrel{*}{+} G\left(i_{3}\right),
\end{aligned}
$$

since $G\left(i_{2}\right)$ contains $2^{m-1}, G\left(i_{1}\right)$ and $G\left(i_{3}\right)$ do not contain $2^{m-2}, 2^{m-1}$. By (17)

$$
G\left(i_{1}\right) \stackrel{*}{+}\left(G\left(i_{2}\right)-2^{m-2}\right) \stackrel{*}{+} G\left(i_{3}\right)=G\left(i_{1}\right) \stackrel{*}{+} G\left(i_{2}-2^{m-2-k} p\right) \stackrel{*}{+} G\left(i_{3}\right) .
$$

But by (18) $G\left(n-\left(2^{m-2-k}-1\right) p\right) \neq G\left(i_{1}\right) \stackrel{*}{+} G\left(i_{2}-2^{m-2-k} p\right) \stackrel{*}{+} G\left(i_{3}\right)$.
CASE V: $G\left(i_{1}\right)$ contains $2^{m}, G\left(i_{1}\right)$ does not contain $2^{2}, \tau \geqslant k, \tau \neq m$, $G\left(i_{2}\right)$ contains $2^{m-1}, G\left(i_{2}\right)$ does not contain $2^{Z}, Z \geqslant k, Z \neq m-1$, and $G\left(i_{3}\right)$ contains 2^{m-2}. Then

$$
n-\left(2^{m-3-k}-1\right) p-u=i_{1}+i_{2}+\left(i_{3}-2^{m-3-k} p\right)
$$

and

$$
G\left(n-\left(2^{m-3-k}-1\right) p=G\left(i_{1}\right) \stackrel{*}{+} G\left(i_{2}\right) \stackrel{*}{+} G\left(i_{3}-2^{m-3-k} p\right)\right.
$$

since $m \geqslant k+3$. . But by definition

$$
G\left(n-\left(2^{m-3-k}-1\right) p\right) \neq G\left(i_{1}\right) \stackrel{*}{+} G\left(i_{2}\right) \stackrel{*}{+} G\left(i_{3}-2^{m-3-k} p\right)
$$

Figure 6.5. Case V.

Since $G\left(i_{3}\right)$ contains 2^{m-2}, by Corollary 6.4,

$$
\begin{align*}
& i_{3}>e+\left(2^{m-2-k}-1\right) p \\
& \geqslant e+2^{m-3-k} p \\
& \Rightarrow \quad i_{3}-2^{m-3-k_{p}} p>e \tag{19}
\end{align*}
$$

and by (1)

$$
\begin{align*}
G\left(i_{3}-2^{m-3-k_{p}}\right. & =G\left(i_{3}\right)-2^{m-3-k_{s}} \\
& =G\left(i_{3}\right)-2^{m-3} \tag{20}
\end{align*}
$$

Since

$$
\begin{align*}
n-\left(2^{m-3-k}-1\right) p-u & =n+p-u-2^{m-3-k} p \\
& =i_{1}+i_{2}+i_{3}-2^{m-3-k_{p}} p \\
& =i_{1}+i_{2}+\left(i_{3}-2^{m-3-k_{p}} p\right) \tag{21}
\end{align*}
$$

we see that we can remove u tokens from a heap of $n-\left(2^{m-3-k}-1\right) p$, leaving three non-negative heaps, the third of which contajns more than e tokens by (19). So we can apply (1) to give

$$
\begin{aligned}
G\left(n-\left(2^{m-3-k}-1\right) p\right) & =G(n)-\left(2^{m-3-k}-1\right) s \\
& =G(n)+s-2^{m-3} \\
& =G\left(i_{1}\right) \stackrel{*}{+} G\left(i_{2}\right) \stackrel{*}{+} G\left(i_{3}\right)-2^{m-3} \\
& =G\left(i_{1}\right) \stackrel{*}{+} G\left(i_{2}\right) \stackrel{*}{+}\left(G\left(i_{3}\right)-2^{m-3}\right),
\end{aligned}
$$

since $G\left(i_{3}\right)$ contains 2^{m-2}, and $G\left(i_{3}\right), G\left(i_{2}\right)$ do not contain $2^{m-2}, 2^{m-3}$. By (20),

$$
G\left(i_{1}\right) \stackrel{*}{+} G\left(i_{2}\right) \stackrel{*}{+}\left(G\left(i_{3}\right)-2^{m-3}\right)=G\left(i_{1}\right) \stackrel{*}{+} G\left(i_{2}\right) \stackrel{*}{+}\left(G_{r}\left(i_{3}\right)-2^{m-3-k_{p}} p\right) .
$$

But by (21) $G\left(n-\left(2^{m-3-k}-1\right) p\right) \neq G\left(i_{1}\right) \stackrel{*}{+} G\left(i_{2}\right) \stackrel{*}{+} G\left(i_{3}-2^{m-3-k_{p}} p\right)$.
If we assume there exists a move from $n+p$ of takiary u tokens to leave three non-negative heaps of i_{1}, i_{2}, i_{3} tokens where $G(n)+s=$ $=G\left(i_{1}\right) \stackrel{*}{+} G\left(i_{2}\right) \stackrel{*}{+} G\left(i_{3}\right)$ then $G\left(i_{1}\right), G\left(i_{2}\right), G\left(i_{3}\right)$ will satisfy the conditions of one of Case I - Case V. Hence $G(n)+s$ is not an excluded value for $G(n+p)$.
(ii) We first show that (4) allows us to exclude g for $0 \leqslant g \leqslant G(n-2 p)$. Then using Lemma 6.5 we find moves from $n+p$ to positions of g-value g. for $G(n-2 p)<g<G(n)+s$. Since $n \geqslant e+7 p+t$, $n-2 p \geqslant e+5 p+t$, so that by (1), $G(n-2 p)=G(n)-2 s$.
(A) If there exist $\underset{\sim}{\sim} \underset{2 v+1}{ }, \underset{\sim}{d} \underset{\sim 2}{ }$, both of which contain $\underset{\sim}{\sim}$, and for each g $0 \leqslant g<2 s$ there exists i such that $G(i)=g$, let $0 \leqslant g \leqslant G(n)-2 s$. Then. by Lemma 6.6 there exists $i<n$ such that

$$
\begin{equation*}
G(i)=g \cdot \tag{2.1}
\end{equation*}
$$

As $p \geqslant t+2$, where t is the maximum number of tokens we may remove

$$
\begin{aligned}
& n+p-(2 v+1) \geqslant n+2 \\
& n+p-2 w \geqslant n+2
\end{aligned}
$$

For $1 \leqslant i_{1}=i_{2} \leqslant \frac{1}{2}(n+p-(2 v+1)-1)$

$$
\begin{aligned}
G(n+p) & \neq G\left(i_{1}\right) \stackrel{*}{+} G\left(i_{1}\right) \stackrel{*}{+} G\left(n+p-(2 v+1)-2 i_{1}\right) \\
& =G\left(n+p-(2 v+1)-2 i_{1}\right)
\end{aligned}
$$

For $1 \leqslant i_{1}=i_{2} \leqslant \frac{1}{2}(n+p-2 w-1)$

$$
\begin{aligned}
G(n+p) & \neq G\left(i_{1}\right) \stackrel{*}{+} G\left(i_{1}\right) \stackrel{*}{+} G\left(n+p-2 w-2 i_{1}\right) \\
& =G\left(n+p-2 w-2 i_{1}\right)
\end{aligned}
$$

Thus $G(1), G(2), \ldots, G(n)$ are excluded values. But by (21) this excludes $g, 0 \leqslant g \leqslant G(n)-2 s$.
(B) If there exists $\underset{\sim}{d}$ which contains $\underset{\sim}{8}$, and for each $g 0 \leqslant g<2$, there exist $2 v+1,2 w>0$ such that $G(2 v+1)=G(2 w)=g$, let $0 \leqslant g \leqslant G(n)-2 s$. By Lemma 6.7 there exist $2 v+1,2 w$ such that $0<2 v+1,2 w<n$, and

$$
\begin{equation*}
G(2 v+1)=G(2 w)=g . \tag{22}
\end{equation*}
$$

Since $p \geqslant t+2$,

$$
n+p-u \geqslant n+2
$$

For $1 \leqslant i_{1}=i_{2} \leqslant \frac{1}{2}(n+p-u-1)$,

$$
\begin{aligned}
G(n+p) & \neq G\left(i_{1}\right)+G\left(i_{1}\right) \stackrel{*}{+} G\left(n+p-u-2 i_{1}\right) \\
& =G\left(n+p-u-2 i_{1}\right)
\end{aligned}
$$

so that either $G(1), G(3), G(5),, \ldots$ or $G(2), G(4), G(6), \ldots$ are excluded values. But by (22), this excludes $g, 0 \leqslant g \leqslant G(n)-2 s$.

Let $G(n)+s>g>G(n)-2 s$. Since $G(n)+s \geqslant 8 s, g>5 s$, so that if 2^{m} is the largest power of 2 contained in $g, m \geqslant k+2$.
(a) If g also contains 2^{m-1},

$$
\begin{align*}
& G(n)+s-2^{m}>g-2^{m} \\
& \geqslant 2^{m-1} \tag{23}\\
& \Rightarrow \quad G(n)>\left(2^{m-k}+2^{m-1-k}-1\right) s,
\end{align*}
$$

so that by Corollary 6.4,

$$
\begin{aligned}
n & >e+\left(2^{m-k}+2^{m-1-k}-2\right) p \\
& \geqslant e+2^{m-k} p .
\end{aligned}
$$

We can apply (1) to get

$$
\begin{aligned}
G\left(n-\left(2^{m-k}-1\right) p\right) & =G(n)-\left(2^{m-k}-1\right) s \\
& =G(n)+s-2^{m} \\
& >G-2^{m} \\
& >G(n)-2 s-2^{m} \\
& =\left(G(n)+s-2^{m}\right)-3 s \\
& =G\left(n-\left(2^{m-k}-1\right) p\right)-3 s
\end{aligned}
$$

or

$$
\begin{equation*}
G\left(n-\left(2^{m-k}-1\right) p\right)>g-2^{m}>G\left(n-\left(2^{m-k}-1\right) p\right)-3 s_{s} \tag{24}
\end{equation*}
$$

so that $g-2^{m}$ is an excluded value for $G\left(n-\left(2^{m-k}-1\right) p\right)$. Therefore it must be the case that we can remove u tokens from a heap of $n-\left(2^{m-k}-1\right) p$ to. leave three non-negative heaps of i_{1}, i_{2}, i_{3} where

$$
\begin{align*}
& n-\left(2^{m-k}-1\right) p-u=i_{1}+i_{2}+i_{3} \\
& g-2^{m}=G\left(i_{1}\right) \stackrel{*}{+} G\left(i_{2}\right) \stackrel{*}{+} G\left(i_{3}^{*}\right) . \tag{25}
\end{align*}
$$

As $g-2^{m}$ contains 2^{m-1}, an odd number of $G\left(i_{1}\right), G\left(i_{2}\right), G\left(i_{3}\right)$ contain 2^{m-1}. Without loss of generality we may assume that $G_{r}\left(i_{1}\right)$ contains 2^{m-1}, where. $m-1 \geqslant k+1$, so that

$$
G\left(i_{1}\right) \geqslant 2^{m-1}
$$

$$
\geqslant 2 s,
$$

and by (2)

$$
i_{1}>e+p
$$

Therefore by (1)

$$
\begin{equation*}
G\left(i_{1}\right)+2^{m}=G\left(i_{1}+2^{m-k_{p}}\right) . \tag{26}
\end{equation*}
$$

We apply Lemma 6.5 to (25), (26) with $Z=m-1$, and $i=n-\left(2^{m-k}-1\right) p$ to show that 2^{m} is not contained in any of $G\left(i_{1}\right), G\left(i_{2}\right), G\left(i_{3}\right)$ so that

$$
\begin{align*}
g & =g-2^{m}+2^{m} \\
& =G\left(i_{1}\right) \stackrel{*}{+} G\left(i_{2}\right) \stackrel{*}{+} G\left(i_{3}\right)+2^{m} \\
& =\left(G\left(i_{1}\right)+2^{m}\right) \stackrel{*}{+} G\left(i_{2}\right) \stackrel{*}{+} G\left(i_{3}\right) \\
& =G\left(i_{1}+2^{m-k_{p}} p \stackrel{*}{+} G\left(i_{2}\right) \stackrel{*}{+} G\left(i_{3}\right)\right. \tag{26}
\end{align*}
$$

Since

$$
\begin{aligned}
i_{1}+2^{m-k_{p}}+i_{2}+i_{3} & =i_{1}+i_{2}+i_{3}+2^{m-k_{p}} \\
& =n-\left(2^{m-k_{-1}}-1\right) p-u+2^{m-k_{p}} \\
& =n+p-u
\end{aligned}
$$

g is an excluded value for $G(n+p)$.
(b) Suppose a contains 2^{m}, but \subsetneq does not contain 2^{m-1}.

$$
\begin{aligned}
& f(n)+s-2^{m-1}>a-2^{m-1} \\
& \geqslant 2^{m-1} \\
& \Rightarrow \quad G(n)>\left(2^{m-k}-1\right) s
\end{aligned}
$$

so that by Corollary 6.4,

$$
\begin{aligned}
n & >e+\left(2^{m-k}-2\right) p \\
& \geqslant e+2^{m-1-k} p
\end{aligned}
$$

We can apply (1) to obtain

$$
\begin{align*}
G\left(n-\left(2^{m-1-k}-1\right) p\right) & =G(n)-\left(2^{m-1-k}-1\right) s \\
& =G(n)+s-2^{m-1} \tag{27}\\
& >G-2^{m-1} \\
& >G(n)-2 s-2^{m-1} \\
& =\left(G(n)+s-2^{m-1}\right)-3 s \\
& =G\left(n-\left(2^{m-1-k}-1\right) p\right)-3 s \tag{28}
\end{align*}
$$

or

$$
\begin{equation*}
G\left(n-\left(2^{m-1-k}-1\right) p\right)>g-2^{m-1}>G\left(n-\left(2^{m-1-k}-1\right) p\right)-3 s . \tag{29}
\end{equation*}
$$

Therefore $g-2^{m-1}$ is an excluded value for $G\left(n-\left(2^{m-1-k}-1\right) p\right)$. It must be the case that we can remove u tokens from a heap of $n-\left(2^{m-1-k}-1\right) p$ to leave three non-negative heaps of i_{1}, i_{2}, i_{3} where

$$
\begin{align*}
& n-\left(2^{m-1-k}-1\right) p-u=i_{1}+i_{2}+i_{3} \\
& g-2^{m-1}=G\left(i_{1}\right) \stackrel{*}{+} G\left(i_{2}\right) \stackrel{*}{+} G\left(i_{3}\right) . \tag{30}
\end{align*}
$$

As $9-2^{m-1}$ contains 2^{m-1}, an odd number of $G\left(i_{1}\right), G\left(i_{2}\right), G\left(i_{3}\right)$ contain 2^{m-1}. Without loss of generality we may assume that $G\left(i_{1}\right)$ contains 2^{m-1}, so that $G\left(i_{1}\right) \geqslant 2^{m-1} \geqslant 2 s$, and by (2), $i_{1}>e+p$.

We can therefore apply (1) to obtain

$$
\begin{equation*}
G\left(i_{1}\right)+2^{m-1}=G\left(i_{1}+2^{m-1-k} p\right) \tag{31}
\end{equation*}
$$

We apply Lemma 6.5 to (30), (31) with $Z=m-1, i=n-\left(2^{m-1-k}-1\right) p$ to show that 2^{m} is not contained in any of $G\left(i_{1}\right), G\left(i_{2}\right), G\left(i_{3}\right)$, so that by (26),

$$
\begin{aligned}
g & =g-2^{m-1}+2^{m-1} \\
& =G\left(i_{1}\right) \stackrel{*}{+} G\left(i_{2}\right) \stackrel{*}{+} G\left(i_{3}\right)+2^{m-1} \\
& =\left(G\left(i_{1}\right)+2^{m-1}\right) \stackrel{*}{+} G\left(i_{2}\right) \stackrel{*}{+} G\left(i_{3}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
\left(i_{1}+2^{m-1-k_{p}}\right)+i_{2}+i_{3} & =i_{1}+i_{2}+i_{3}+2^{m-1-k_{p}} \\
& =n-\left(2^{m-1-k_{-}}-1\right) p-u+2^{m-1-k_{p}} \\
& =n+p-u .
\end{aligned}
$$

Hence g is an excluded value for $G(n+p)$.

For example, the game . $\underset{\sim}{88}$, has G-sequence $010102323 \dot{4} 54567 \dot{6}(+4)$ with last irregular value $G(8)=3$, period 7 and saltus 4. To apply Theorem 6.8 it was necessary to calculate $8+8 \cdot 7+2-1=65 G$ values.

Section (i) of the proof of Theorem 6.8 generalizes to take and break games $\underset{\sim}{T}=\underset{\sim}{d} \cdot{\underset{\sim}{d}}_{1}^{d} \underset{2}{d} \cdots{\underset{\sim}{d}}_{d}$ where the saltus is a power of $2, s=2^{k}$. If we permit one heap of tokens to be replaced by h heaps, then we require

$$
\begin{aligned}
& G(i+p)=G(i)+s, \quad e<i<e+\left(2^{h}-1\right) p+t \\
& G(i)<s \text { for all } i \leqslant e \\
& G(i)<2 s \text { for all } i \leqslant e .
\end{aligned}
$$

In fact, section (i) applies even to finite octal games. The difficulty lies in ensuring that every lesser value will be excluded. E.g. the game -16C has initial G-values 010012234456678893... . No sedecimal game has been found which satisfies condition (1) of Theorem 6.8 , but not condition (4). If one heap may be replaced by $2 h+1$ heaps ($h \geqslant 1$), $p \geqslant t+2 h$, and (4) holds, an analysis similar to (ii) may enable us to show that every lesser value is excluded.

Table 7.7 displays those sedecimal games that were discovered to be arithmetico-periodic.

6.4. Infinite Recurring Games and Arithmetico-Periodicity.

In section 5.1 we proved that no finite tetral game is arithmeticoperiodic, and in section 6.2 we established the same result for finite octal games. There are numerous infinite octal games that can be shown to be arithmetico-periodic.

A take and break game $\underset{\sim}{T}=\underset{\sim}{d}{\underset{\sim}{\sim}}_{\sim}^{d} \underset{\sim}{d} .$. is said to be an infinite recurring game if:
(i) there exist v, t such that for all $u>v, \underset{\sim}{\sim} \underset{\sim}{d} \underset{\sim}{d}+t$ and (ii) there exists $w>v, \underset{\sim}{\mathrm{~d}} \underset{\sim}{0} \underset{\sim}{0}$.

We now prove theorems concerning, this class of games. As with sedecimal games, it may be necessary to choose appropriate multiples of the period and the saltus.
 recurring octal game satisfying:
(a) $\underset{\sim}{d} u=\underset{\sim}{\sim} u+t$ for all $u>v$,
(b) if $\underset{\sim}{\underset{\sim}{d}}$ contains $\underset{\sim}{\sim}(u \geqslant 0)$, then $\underset{\sim}{\underset{\sim}{\sim}} \underset{\sim}{d}$ contains $\underset{\sim}{4}$, and that there exist integers e (the Last irregular value), $p \geqslant v+t$ (a period), and $s \geqslant 1$ (a saltus, assumed to be a power of $2, s \doteq 2^{k}$) such that
(1) $G(i+p)=G(i)+G$ for all $i, e<i \leqslant e+6 p$
(2) $G(i)<s$ for all $i \leqslant e$
(3) $G(i)<2 s$ for all $i \leqslant e+p$.

Then for all $i>e$,

$$
\begin{equation*}
G(i+p)=G(i)+s \tag{*}
\end{equation*}
$$

PROOF. By hypothesis (*) holds for all i, $e<i \leqslant e+6 p$. Assume induçtively that (*) holds for all $i, e<i<n$ where $n>e+6 p$. To show that $G(n+p)=$ $=G(n)+s$ we prove that:
(i) $G(n)+s$ is not an excluded value for $G(n+p)$.
(ii) For each $g, 0 \leqslant g<G(n)+s, ~(1$ is an excluded value.
(i) We suppose that $G(n)+s$ is an excluded value for $G(n+p)$ and show this leads to a contradiction. If $G(n)+s$ is an excluded value for $G(n+p)$, then it must be excluded by removing u tokens from a heap of $n+p$ to leave two non-negative heaps of i_{1}, i_{2} tokens where

$$
\begin{gathered}
n+p-u=i_{1}+i_{2} \\
G(n)+s=G\left(i_{1}\right) \stackrel{*}{+} G\left(i_{2}\right) .
\end{gathered}
$$

Since $n>e+6 p, n-6 p>e$, and we have by (1)

$$
\begin{aligned}
& G(n)=G(n-6 p+6 p) \\
&=G(n-6 p)+6 s \\
& \geqslant 6 s \\
& \Rightarrow \quad G(n)+s \geqslant 7 s,
\end{aligned}
$$

so that if 2^{m} is the largest power of 2 contained in $G(n)+s, m \geqslant k+2$. As $G(n)+s=G\left(i_{1}\right) \stackrel{*}{+} G\left(i_{2}\right), 2^{m}$ is contained in just one of $G\left(i_{1}\right), G\left(i_{2}\right)$. Without loss of generality we may assume that 2^{m} is contained in $G\left(i_{1}\right)$ and is not contained in $G\left(i_{2}\right)$. There are three cases to consider, where each case leads to a result that contradicts the induction hypothesis.

CASE I: $G\left(i_{1}\right)$ contains $2^{m}, 2^{Z}, Z \geqslant k, Z \neq m$. The argument that leads to a contradiction is similar to that of Case I, Theorem 6.8 (i), since we may assume that the i_{3} of Theorem 6.8 equals 0 .

CASE II: $G\left(i_{1}\right)$ contains $2^{m}, G\left(i_{1}\right)$ does not contain $2^{z}, \tau \geqslant k, \tau \neq m$, and $G\left(i_{2}\right)$ does not contain 2^{m-1}. The argument that leads to a contradiction is similar to that of Case JI, Theorem 6.8 (i), since we may assume that the i_{3} of Theorem 6.8 equals 0 .

CASE III: $G\left(i_{1}\right)$ contains $2^{m}, G\left(i_{1}\right)$ does not contain $2^{\tau}, \tau \geqslant k$, and $G\left(i_{2}\right)$ contains 2^{m-1}. The argument that leads to a contradiction is similar, to that of Case III Theorem 6.8 (i) since we may assume that the i_{3} of Theorem 6.8 equals 0 .

If we assume there exists a move from $n+p$ of taking u tokens to leave two non-negative heaps of i_{1}, i_{2}, where $G(n)+s=G\left(i_{1}\right) \stackrel{\star}{+} G\left(i_{2}\right)$ then $G\left(i_{1}\right), G\left(i_{2}\right)$ will satisfy the conditions of one of Cases I to III. Hence $G(n)+s$ is not an excluded value for $(G(n+p)$.
(ii) We first show that g is an excluded value $0 \leqslant g \leqslant G(n)-2 s$. Then, using Lemma 6.5 we find moves from $n+p$ to positions of G-value g for $G(n)-2 s<g<G(n)+s$.

Let $0 \leqslant w \leqslant v$. Since $n>e+6 p$, and $p^{\prime} \geqslant v+t$, we have $n-2 p>e+4 p$,. $n+p-\omega-t>e+6 p$, so that

$$
\begin{align*}
G(n-2 p) & =G(n)-2 s, \tag{4}\\
G(n+p-w-t) & =G(n-w-t)+s \tag{5}
\end{align*}
$$

There exists $q \geqslant 6$ such that e+qp<n<e+(q+1)p. By Lemma 6.3

$$
\begin{gathered}
q s \leqslant G(n)<(q+2) s \\
\Rightarrow \quad(q+1) s \leqslant G(n) \div s<(q+3) s .
\end{gathered}
$$

By (4),

$$
\begin{equation*}
(q-2) s \leqslant G(n-2 p)<q s \tag{6}
\end{equation*}
$$

Since $0 \leqslant w \leqslant v, p \geqslant w+t$ so that

$$
\begin{aligned}
n-w-t & >e+q p-w-t \\
& \geqslant e+(q-1) p .
\end{aligned}
$$

By Lemma 6.3 and (5),

$$
\begin{align*}
& G(n-w-t) \geqslant(q-1) s \\
& G(n-w-t)+s \geqslant q s \\
& G(n+p-w-t) \geqslant q s . \tag{7}
\end{align*}
$$

Then (6) and (7) yield

$$
\begin{equation*}
G(n+p-w-t)>G(n)-2 s \tag{8}
\end{equation*}
$$

for all $w, 0 \leqslant w \leqslant v$.
Let $g \leqslant G(n)-2 s$. By (8), g is an excluded value for $G(n+p-t)$..
Hence there exists a move taking u tokens from a heap of $n+p-i$ to leave two heaps of $i_{2}, i_{2}, i_{1} \geqslant i_{2} \geqslant 0$.

$$
\begin{gathered}
n+p-u-t=i_{1}+i_{2}, \\
g=G\left(i_{1}\right) \stackrel{*}{+} G\left(i_{2}\right) .
\end{gathered}
$$

If $i_{2}>0$, then $\underset{\sim}{d}$ contains $\underset{\sim}{4}$. By (b), ${\underset{\sim}{u}}^{d}$ t contains $\underset{\sim}{4}$, so that

$$
\begin{aligned}
n+p-(u+t) & \doteq n+p-u-t \\
& =i_{1}+i_{2} \\
g & =G\left(i_{1}\right) \stackrel{*}{+} G\left(i_{2}\right) .
\end{aligned}
$$

Hence g is an excluded value for $G(n+p)$. If $i_{2}=0$, then $\underset{\sim}{d}$ contains $\underset{\sim}{2}$ and $u>v$ by (8). Therefore $\underset{\sim}{d} u+t$ contains $\underset{\sim}{2}$, and

$$
\begin{aligned}
G(n+p-(u+t)) & =G(n+p-u-t) \\
& =G\left(i_{1}\right) \\
& =g
\end{aligned}
$$

so that g is an excluded value.
Let $G(n)+s>g>G(n)-2 s$. Since $G(n)+s>7 s, g>4 s$. If 2^{m} is the largest power of 2 contained in $g, m \geqslant k+2$.

The remainder of the argument is identical to that of Theorem 6.8 (ii), (b), since we may take $i_{3}=0$ in Theorem 6.8.

Thus for each $g, 0 \leqslant g<G(n)+g, g$ is an excluded value. Hence $G(n+p)=G(n)+s . \quad \square$

For example, the game . $\dot{\Sigma} \dot{\sim}$ has G-sequence $011 \dot{2} \dot{2}(+2)$, with last irregular value $G(2)=1$, period 2, and saltus 2. To apply Theorem 6.9 it was necessary to calculate $2+7.2=16$ values.

That $G(i+p)=G(i)+s$ for $e<i \leqslant e+6 p$ is used only in section (ii) of the proof. To establish (1) it suffices that $G(i+p)=G(i)+s$ for $e<i \leqslant e+3 p$. However, to exclude g, for $G(n)-2 s<g<G(n)+s$, we need that g contains 2^{m}, where $m \geqslant k+2$. This in turn requires that $G(n)-2 s \geqslant 4 s$ or $G(n) \geqslant 6 s$. Only if $n>e+6 p$ can we ensure that $G(n) \geqslant 6 s$.

The same . $2 \dot{2} \dot{0}$ appears to be arithmetico-periodic with G-sequence
 satisfy the assumption (b). While section (i) of the proof applies to any octal satisfying (1), (2), (3), and hence to $\cdot \boldsymbol{7} \boldsymbol{7} \dot{0}$, the argument used in section (ii) breaks down. The reason for which it fails is similar to the reason for which it was necessary to assume (4) in Theorem 6.8. If $g<G(n)-2 s$ then g is an excluded value for $G(n)$. Let g be excluded by the removal of u tokens ($u \leqslant v$) from a heap of n to leave two positive heaps of i_{1}, i_{2}, where $g=G\left(i_{1}\right) \stackrel{*}{+} G\left(i_{2}\right)$. Only if the binary expansions of $G\left(i_{1}\right), G\left(i_{2}\right)$ satisfy certain conditions can we say that g will be an excluded value for $G(n+p)$. In general this is not the case.

We now prove an arithmetico-periodicity theorem for infinite recurring tetral games. We no longer require the saltus be a power of 2 .
 and not all $d_{v+u} \leqslant 1$. If there exist integers p, a period, $s \geqslant 1$, and e, the last irregular value such that
(1) $G(i+p)=G(i)+s$, for all i, e $<i \leqslant e+p+v+t$
(2) $G(i)<s$, for all $i \leqslant e$
(3) $G(i) \leqslant 2 s$ for all $i \leqslant e+p$.

Then for all $i>e$,

$$
\begin{equation*}
G(i+p)=G(i)+s . \tag{*}
\end{equation*}
$$

PROOF. By hypothesis ($*$) holds for all $i, e<i \leqslant e+p+0+t$. Assume inductively that (*) holds for $e<i<n$ where $n>e+p+u+t$. To show $G(n+p)=G(n)+s$ we prove that:
(i) $G(n)+s$ is not an excluded value for $G(n+p)$,
(ii) For each $g, 0 \leqslant g<G(n)+s, g$ is an excluded value.
(i) We suppose that $G(n)+s$ is an excluded value and show that this leads to a contradiction. If $G(n)+s$ is an excluded value then there exists a move from $n+p$ of taking u tokens, $0<u \leqslant n+p$, such that $G(n+p-u)=G(n)+s$. Since $n>e+p+v+t$ let $n=e+p+c$ where $c>0$. Then

$$
\begin{align*}
G(n) & =G(e+p+c) \\
& =G(e+c)+s \tag{1}\\
& \geqslant s,
\end{align*}
$$

so that

$$
\begin{align*}
& G(n)+s \geqslant 2 s \\
& \Rightarrow \quad G(n+p-u) \geqslant 2 s \\
& \Rightarrow \quad n+p-u>e+p \tag{3}\\
& \Rightarrow \quad n-u>e .
\end{align*}
$$

Hence we may remove u tokens from a heap of n to leave a heap $n-u$ where

$$
\begin{aligned}
G(n) & =G(n)+s-s \\
& =G(n+p-u)-s \\
& =G(n+p-u-p) \\
& =G(n-u)
\end{aligned}
$$

which is a contradiction. Hence $G(n)+s$ is not an excluded value.
(ii) If $0 \leqslant g-s<G(n)$, then $g-s$ is an excluded value for $G(n)$. Therefore it must be the case that we can remove u tokens from a heap of n tokens where $G(n-u)=g-s$. If $g-s \geqslant s$, then by (2), $n-u>e$, so that

$$
\begin{aligned}
g & =g-s+s \\
& =G(n-u)+s \\
& =G(n+p-u)
\end{aligned}
$$

Hence if $2 s \leqslant g<G(n)+s$, then g is an excluded value for $G(n+p)$. Let $n^{\prime}=n+p-t . \quad$ Then

$$
\begin{align*}
n^{\prime} & =n+p-t \\
& >e+p+v+t+p-t \\
& =e+2 p+v \tag{4}
\end{align*}
$$

so that by Lemma 6.3 $G\left(n^{\prime}\right) \geqslant 2 s$. If $0 \leqslant g<2 s$, then g is an excluded value for $G\left(n^{\prime}\right)$: Therefore it must be the case that we can remove u tokens from a heap of n^{\prime} where $G\left(n^{\prime}-u\right)=g$. Moreover, $u>v$. If not, by (4), $n^{\prime}-u>e+2 p$, so that by Lemma $6.3, G\left(n^{\prime}-u\right) \geqslant 2 s$, which contradicts the choice of u. Therefore $u>v$, and by hypothesis, $\underset{u}{ }{\underset{U}{t}}=\stackrel{\underset{\sim}{\sim}}{\sim}$. 'There is then a move, taking $u+t$ tokens from $n+p$, where

$$
\begin{aligned}
n+p-(t+u) & =n+p-t-u \\
& =n^{\prime}-u
\end{aligned}
$$

so that $G(n+p-(t+u))=G\left(n^{\prime}-u\right)=g$. Hence g is an excluded value for $G(n+p)$.

Since $G(n)+s$ is not an excluded value for $G(n+p)$ and every value stricily less than $G(n)+s$ is an excluded value, $G(n+p)=G(n)+s$. E.g. the game $\cdot 3 \dot{3} \dot{0}$ has G-sequence $\dot{0} 1201 \dot{2}(+3)$. To apply Theorem 6.10 it was necessary to calculate $0+12+1+2=15 G$-values.

Table 7.4 displays those infinite recurring octal and tetral games that exhibit arithmetico-periodicity.

Chapter 7

The G-sequences of Take and Break Games

7.1. Introduction

The tables of this chapter contain information about the G-values of take and break games. Table 7.1 dispiays the G-sequence of all subtraction games whose subtrahends do not exceed 8. The initiall G-values of some octal games are listed in Table 7.2. Where the G-sequence is known to be periodic, the length of the period is listed. Table 7.3 indexes Table 7.2, enabling us to find the initial G-values of any octal
 infinite recurring octal games that exhibit arithmetico periodicity. Tables 7.5 and 7.6 complement Table 7.4 as Table 7.3 complements Table 7.2 . The G-sequences of those sedecimal games that were discovered to be arith-metico-periodic are displayed in Table 7.7.

Tables 7.2 to 7.6 were compiled by Guy [$\underset{\sim}{1}]$. Additions and corrections to Table 7.2 were made by the author.

7.2. Subtraction Games

Table 7.1 lists the G-sequences of some subtraction games. The first column contains the members of the subtraction set. The second column displays the numbers that we may adjoin to the subtraction set without affecting the outcome of the game. The table therefore includes all subtraction games that may be described by a subtraction set, the members of which do not exceed 8 . The third column contains the G-sequence, where a dot is placed over the first and last members of the period. The period is listed in the last column.

Table 7.1. G-sequences of subtraction games.
Subtraction Optional Members G-sequence Period

Set

```
            1(3,5,7,9,11,\ldots) \ddot{0}\dot{1}
            2(6,10,14,18,\ldots) \dot{0}01i
            1,2(4,5,7,8,10,11,\ldots) 0.. 012
            3 (9,15,21,27,\ldots) 0ं0011i
            2,3(7,8,12,13,17,18,22,23,\ldots) \dot{0}011\dot{2}
            1,2,3(5,6,7,9,10,11,13,14,15,\ldots.) \dot{0.12\dot{3}}4
                    4 (12,20,28,36,44,52,\ldots) \dot{0000111.j.}
            1,4 (6,9,11,14,16,19,21,24,\ldots) 0..012
            01012 5
            2,4(3,8,9,10,14,15,16,20,21,22,\ldots) 0.01122 ( 
            3,4 (10,11,17,18,24,25,31,32,\ldots..) 0ं001112
            1,3,4 (6,8,10,11,13,15,17,18,20,\ldots) O..101232
        1,2,3,4 (6,7,8,9,11,12,13,14,\ldots.) 0}0123
            5(15,25,35,45,55,\ldots) 0.00001111i
            2,5 (9,12,16,19,23,26,30,33,\ldots.)
            3,5 (4,11,12,13,19,20,21,\ldots..) \dot{0}0011122
            2,3,5 (4,9,10,11,12,16,17,18,19,\ldots) 0.011223
                    - 7
            4,5 (13,14,22,23,31,32,40,41,...) \dot{000011112}
            1,4,5 (3,7,9,11,12,13,15,17,19,20,\ldots)
                    0}101232\dot{39
```

```
            1,4,5 (3,7,9,11,12,13,15,17,19,20,...)
            2,4,5 (3,9,10,11,12,16,17,18,19,\ldots) 0..011223
                            8
            012345
\(1,2,3,4,5(7,8,9,10,11,13,14,15,16,17, \ldots)\) 012345 ..... 6
6 (18,30,42,...) \(00000011111 i\) ..... 1.2
\(1,6(8,13,15,20,22,27, \ldots)\) 0101012 ..... 7
\(1,2,6(5,8,9,12,13,15,16,19,20, \ldots)\) 0120123 ..... 7
\(3,6(4,5,12,13,14,15,21,22,23,24, \ldots)\) ..... 9
```

 1,3,6 (8,10,12,15,17,19,21,24,26,\ldots.)
 0
    ```
\(1,3,6(8,10,12,15,17,19,21,24,26, \ldots)\) 010101232 ..... 9
\(2,3,6(7,11,12,15,16,20,21,24,25, \ldots) 001120312\) ..... 9
\(4,6(5,14,15,16,24,25,26, \ldots) \quad 0000111122\) ..... 10
\(2,4,6(3,5,10,11,12,13,14,18,19, \ldots) \quad 0011223 \dot{3}\) ..... 8
\(1,2,4,6(7,9,10,12,14,15,17,18,20,22, \ldots)\) ó1201234 ..... 8
\(5,6(16,17,27,28,38,39,49,50,60, \ldots)\) \(0000011111 \dot{2}^{\circ}\) ..... 11
\(1,5,6(3,8,10,12,14,16,17,19,21, \ldots)\) 01010123232 ..... 11
\(2,5,6(9,13,16,17,20,24,27,28, \ldots)\) \(0011021302 i\) ..... 11
\(2,3,5,6(4,10,11,12,13,14,18,19,20, \ldots) \quad 0011223 \dot{3}\) ..... 8
\(1,4,5,6(3,8,10,12,13,14,15,17,19,21, \ldots) 010123234\) ..... 9
\(1,2,4,5,6(8,9,11,12,14,15,16,18,19,21, \ldots) 0120123453\) ..... 10
\(1,2,3,4,5,6(8,9,10,11,12,13,15,16,17,18, \ldots) 012345 \dot{6}\) ..... 7

Subtraction
Set
```

 7(21,35,49,63,77,91,\ldots.)
 2,7 (11,16,20,25,29,34,38,\ldots)
 3,7 (13,17,23,27,33,\ldots)
 4,7 (5,6,15,16,17,18,26,\ldots)
 1,4,7 (9,12,15,17,20,23,...)
 2,4,7 (10,13,16,19,22,25,28,\ldots..)
 3,4,7(5,6,13,14,15,16,17,\ldots)
 1,3,4,7 (5,9,11,12,13,15,\ldots.)
 2,3,4,7 (8,9,13,14,15,18,19,\ldots)
 5,7 (6,17,18,19,29,\ldots)
 2,5,7 (11,15,17,20,24,27,\ldots)
 3,5,7(4,6,13,14,15,16,17,\ldots)
 2,3,5,7 (4,6,11,12,13,14,15,16,20,21,\ldots)
 2,4,5,7 (3,6,11,12,13,14,15,16,20,\ldots) 0... (1122334
 6,7(19,20,32,33,45,46,58,\ldots) \dot{0}0000011111112
 1,6,7(3,5,9,11,13,15,17,\ldots) 0. 010101232323.
 2,6,7(11,15,19,20,24,28,32,33,\ldots) 0. 0111001120312 1 13
 1,2,6,7 (4,9,10,12,14,15,17,18,20,\ldots) \dot{0}1201.23\dot{4}
 3,6,7 (4,5,13,14,15,16,17,23,24,\ldots) 0ं001112223 }1
 1,4,6,7 (9,12,14,17,19,20,\ldots) \dot{0}10120123201\dot{2}
 001122334
 1,3,4,6,7 (5,9,11,13,14,15,16,17,19,21,\ldots)
 2,5,6,7 (10,14,17,18,19,22,26,29,\ldots)
 1,2,5,6,001102132233 12
 1,2,5,6,7 (4,9,10,12,13,15,16,17,18,\ldots) 0. 12012345344
 1,4,5,6,7 (3,9,11,13,14,15,16,17,19,21,\ldots) 0.10123234\dot{5}
 1,2,3,4,5,6,7(9,10,11,12,13,14,15,17,18,19,···) 0.1234567ं 8
8(24,40,56,72,...)
1,8 (10,17,19,26,28,···)
2,8(12,18,22,28,32,38,···)
3,8 (14,19,25,30,36,···)
1,3,8(10,12,1.4,19,21,23,25,...)
1,2,3,8 (6,7,10,11,12,15,16,17,19,···
4,8(5,6,7,16,17,18,19,20,28,···)
1,4,8(6,11,13,16,18,20,23,...)
3,4,8 (9,15,16,20,21,27,···)
5,8(6,7,18,19,20,21,31,···)
1,5,8(3,10,12,14,16,18,21,···)
2,5,8(12,15,18,22,25,28,···)
3,5,8(4,6,7,14,15,16,17,18,19,25,···)
2,3,5,8(14,22,25,31,39,···)
1,2,3,5,8(7,9,11,12,13,15,17,18,19,···)
1,4,5,8(3,6,10,12,13,14,15,17,···)
2,4,5,8(11,14,17,20,23,...)
2,3,4,5,8(9,10,11,15,16,17,18,21,22,···)
6,8(7,20,21,22,34,35,36,···)

```
\(G\)-sequence
Period
Optional Members

\begin{abstract}

\end{abstract}
-
e
\(\dot{0} 000000111111 i \quad 14\)
\(\dot{0} 0110011 \dot{2}\). 9
\(\dot{0} 00111022 \dot{1} \quad 10\)
0000111122211
\(0101201 \dot{2}\). 8
00112203102 . 3
\(0 \dot{0} 001112223\) - 10
\(\begin{array}{lr}011012323 & 8\end{array}\)
\(\dot{0} 0112203142\). 11
\(\dot{0} 0000111112 \dot{2} \quad 12\)
\(\dot{0} 011021322031001122332 \quad 22\)
\(000111222 \dot{3} 10\)
\(\begin{array}{lr}\dot{0} 0112233 \dot{4} & 9\end{array}\)
\(\dot{0} 0112233 \dot{4} \quad 9\)
\(\dot{0} 00000111111 \dot{2} 13\)
\(\dot{0} 1010123232 \dot{3}\). 12
\(0011001120312 \quad 13\)
\(01201.23 \dot{4} \quad 8\)
\(000111222 \dot{3} \quad 10\)
\(\dot{0} 10120123201 \dot{2} \quad 13\)
001122334
\(0 \dot{1} 10123234 \dot{5} \quad 10\)
\(\dot{0} 01102132233^{\dot{3}} \quad 12\)
011201234534
\begin{tabular}{lr}
\(\dot{0} 1212356 \dot{7}\) & 10 \\
\hline
\end{tabular}
\(\dot{0} 00000001111111 i \quad 16\)
\(\dot{0} 1010101 \dot{2}\). 9
\(001100112 \dot{2} \quad 10\)
\(0001110021 \dot{1}\). . 11
01010101232 1.1.
\(\dot{0} 1230123 \dot{4} \quad 9\)
\(00001111222 \dot{2}\)
\(\dot{0} 1012010123 \dot{2}\)
\(\dot{0} 00111202313.12\)
\(\dot{0} 00001111122 \dot{2} \quad 13\)
010101012323213
\(001102102 \dot{1} .10\)
\(0 \dot{0} 001112223 \dot{3} \quad 11\)
0011223041304 \(12230011233021403 \quad 17\)
\(0 ் 123012345 \quad 10\)
010123234 . 9
001122304 j .02 3
\(\dot{0} 01122304152 \dot{3} \quad 13\)
\(\dot{0} 00001111112 \dot{2} \quad 14\)

Table 7.1 (continued)
```

 Subtraction Optional Members F Feriod
 Set
 2,6,8(7,12,16,20,21,22,26,30,···)

```

Table 7.1. (concluded).

\subsection*{7.3. Octal Games}

Table 7.2 contains information about octal games. When used in conjunction with Table 7.3 , it lists the initial \(G\)-values for all octal games of the form \(\underset{\sim}{4} \cdot \underset{\sim}{d} \underset{\sim}{d}\) or \(\cdot \underset{\sim}{d}{\underset{\sim}{d}}_{2}^{d}{\underset{\sim}{3}}_{3}\). Each row of the table contains information about one game. The row is indexed by a number \(\left(d_{1} d_{2} d_{3}\right.\) or \(\left.4 . d_{1} d_{2}\right)\) appearing in the first column, and the row refers to the standard form of the
 cousin if any, and the third column lists the standard form, e.g. \(.002 \equiv \equiv_{-1} 013 \equiv_{-1} .113\) so that the row indexed by 002 contains the \(G-\) sequence of the game .113 , and has \(\cdot 013\) listed as a first cousin.

The main entry consists of the initial \(G\)-values. As \(G(0)=0\) always, it has been omitted except in the first two rows. We list \(30 G\)-values, unless the \(G\)-sequence is periodic, and it may be described in less. For those games that are periodic, the beginning and end of the period are indicated by dots over the first and last members of the period. \(G\)-values greater than 9 are represented by the following symbols:
\[
\begin{array}{ccccccccccc}
\mathrm{X} & \mathrm{x} & \mathrm{~T} & \mathrm{t} & \mathrm{~F} & \mathrm{f} & \mathrm{~S} & \mathrm{~s} & \mathrm{~A} & \mathrm{a} & \mathrm{~V} \\
10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 1.8 & 19 & 20
\end{array}
\]

In the case of those games which have essentially the same \(G\) - sequence, but different code digits, only one reference appears, e.g. the games . \(151,4.1,21,211\) have \(G\)-sequence \(0 . i\), but only \(\cdot 51\) is displayed.

The last colurm contains the neriod, \(p\), and a reference to the notes that follow. If there is no entry in the column for the period, this indicates that the period, if any, is not yet known.

Table 7.2. G-sequences of octal games.
\begin{tabular}{cc} 
Ist & Standard \\
cousins & Form
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 001 & .01 & - 1 & 0.10 & & & 1. & \\
\hline 002 & \[
.013
\] & . 113 & \(0.111000^{\circ}\) & & & 6 & \\
\hline 004 & . 011332 & . 1113332 & . 1111222033 & 3111104433 & 3322224440 & & (3) \\
\hline 005 & . 0107 & . 10137 & . 1011222033 & 4110154333 & 2221601045 & & (4) \\
\hline 006 & .01332 & . 113337 & . 1112220331 & 1122433355 & 2144333222 & & (5) \\
\hline 014 & . 014 & . 1007 & . 1001012212 & 3401051212 & 5303451211 & & \\
\hline 015 & . 015 & . 1107 & . 1101021223 & 0142.145122 & 3234014512 & & \\
\hline 016 & .016 & . 1037 & . 1012220101 & 4422161604 & 2127661512 & & (8) \\
\hline 017 & . 017 & .1137 & . 1112023114 & 0451320211 & 1402616404 & 60 & (9) \\
\hline 02 & . 03 & -13 & . 1100 & & & 4 & \\
\hline 022 & . 033 & . 133 & . 11200 & & & 5 & \\
\hline 024 & . 0307 & . 13137 & . 1122304112 & 5324115560 & 31251.48142 & & \\
\hline 026 & . 0332 & . 13337 & . 1122304112 & 5334112530 & 4421133442 & & \\
\hline 034 & . 034 & . 1307 & . 1102231401 & 4312210514 & 5632481402 & & \\
\hline 04 & . 0132 & . 11337 & . 1112203311 & 1043332224 & 4055222330 & & (15) \\
\hline 044 & . 01372 & . 113372 & . 1112223331 & 1144433322 & 2111444222 & 36 & (16) \\
\hline 045 & . 0177 & . 11377 & . 1112223311 & 1444332221 & 1144222664 & 32 & (17) \\
\hline 05 & . 05 & . 107 & . 10 & & & 2 & (18) \\
\hline 051 & . 053 & . 117 & . 1110221340 & 1113222340 & 1543222310 & 48 & (19) \\
\hline 054 & . 056 & . 1072 & . 1012223441 & 1163222411 & 6667344511 & & \\
\hline 055 & . 057 & . 1172 & . 1112223111 & 4443222111 & 4222644411 & 1.48 & (21) \\
\hline 06 & . 036 & - 1332 & . 1122031122 & 3344053342 & 2113022114 & & (22) \\
\hline 064 & . 0372 & . 13377 & . 1122334115 & 5332211544 & 2266841122 & & \\
\hline . 07 & .071 & . 132 & . 1120311033 & 2240522330 & 1130211045 & 34 & (24) \\
\hline 101 & & . 101 & . 1010 & & & 1 & \\
\hline 102 & & . 102 & . 100011 & & & 6 & \\
\hline 104 & & . 104 & . 1000102212 & 2410401566 & 1228104015 & & (27) \\
\hline 106 & & . 106 & . 1000122214 & 4010621242 & 1045166512 & & (28) \\
\hline 11 & .011 & . 11 & . 110 & & & 1 & \\
\hline 111 & & . 111 & . 1110 & & & 1. & \\
\hline 112 & & . 112 & . 110001 & & & 6 & \\
\hline 114 & & . 114 & . 1100112021 & 2041104115 & 241.5241120 & & \\
\hline 115 & & . 115 & . 11110111222 & 1222 & & 14 & (33) \\
\hline 116 & & . 116 & . 1.100212021 & 1044152411 & 2041204115 & 96 & (34) \\
\hline 12 & & . 12 & . 1001. & & & 4 & \\
\hline 121 & & . 121 & . 1021001 & & & 4 & \\
\hline 122 & & . 122 & . 10021 & & & 5 & \\
\hline 123 & & . 123 & . \(10221002 i\) & & & 5 & \\
\hline 124 & & . 124 & . 1001102130 & 2130113023 & 3223425042 & 62 & (39) \\
\hline 125 & & . 125 & . 1021102130 & 1130234223 & 4253225320 & & \\
\hline 126 & & . 126 & . 1002133210 & 4250315041 & 5041.304130 & & \\
\hline 127 & & . 127 & . 1022104412 & 2014461770 & 1226144812 & & (42) \\
\hline 131 & & . 131 & . 112001.1 & & & 4 & \\
\hline 132 & & . 132 & . 11002 & & & 5 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \[
\begin{gathered}
\text { 1st } \\
\text { cousjus }
\end{gathered}
\] & Standard Form & & G-sequence & & Period & Notes \\
\hline 134 & & . 134 & . 1100112031 & 2031103122 & 3322435143 & 62 & (45) \\
\hline 135 & & . 132 & . 1120112031 & 1031224322 & 4352235221 & & \\
\hline 136 & & . 136 & . 1100213021 & 1022334251 & 4223342011 & & \\
\hline 14 & & . 14 & . 1001021221 & 0414412212 & 0104126164 & & (48) \\
\hline 141 & & . 14.1 & . 1011012212 & 4101121221 & 2412 & 11 & \\
\hline 142 & & - 142 & . 1002221103 & 3241063231 & 0162240115 & & \\
\hline 143 & & . 143 & . 1012220104 & 2215.047228 & 0412228104 & & (51) \\
\hline 144 & & . 144 & . 1001222244 & 111 & & 10 & (52) \\
\hline 145 & & . 142 & . 1011222241 & . & & , & (53) \\
\hline 146 & & . 1.146 & . 1002224111 & 3324446662 & 3111766842 & & \\
\hline 147 & & . 142 & . 1012224411 & & & 8 & (55) \\
\hline 15 & & . 15 & . 1101122122 & & & 10 & (56) \\
\hline 152 & & . 152 & . 1102220104 & 3231013224 & 0104223101 & 48 & (57) \\
\hline 153 & & . 153 & . 1112221102 & 2244011222 & 111222441 & 14 & (58) \\
\hline 154 & & . 154 & . 1101122222 & 4111 & & 11 & (59) \\
\hline 156 & & . 156 & . 1102224411 & 1322444666 & 2111576688 & 349 & (60) \\
\hline 157 & & . 152 & . 111222 & & & 6 & (61) \\
\hline 16 & & . 16 & . 1001221401 & 4214014214 & 2102142145 & & (62) \\
\hline 161. & & . 161 & . 1021021321 & 3243043241 & 2312012415 & & (63) \\
\hline 162 & & . 162 & . 1002231104 & 2261034265 & 0542330142 & & \\
\hline 163 & & . 163 & . 1022310422 & 6104226104 & 3221043265 & & (65) \\
\hline 164 & & . 164 & . 1001223445 & 1163223415 & \(66738211 \times 7\) & & \\
\hline 165 & & . 165 & . 1021321344 & 3623128126 & 5445182182 & 1550 & (67) \\
\hline 166 & & . 166 & . 1002234116 & 6224411338 & 5446633118 & & \\
\hline 1.67 & & - 162 & . 1022341162 & 2441133544 & 663315866X & & \\
\hline 17 & . 43 & . 17 & . 1102130113 & 2234153223 & 1103120114 & 34 & (70) \\
\hline 171 & & - 171 & . 1122110214 & 0112211221 & 42 & 11 & \\
\hline 172 & & . 172 & . 1102230113 & 2244063224 & 0163220116 & & \\
\hline 173 & . 432 & - 173 & . 1122310432 & 0112235143 & 2211023741 & 40 & (73) \\
\hline 174 & & . 174 & . 1102132214 & 4564223115 & 4128865741. & & \\
\hline 176 & & - 176 & . 1102234411 & 6223441166 & 33241166334 & 8 & (75) \\
\hline 204 & . 204 & . 3007 & . 1012010123 & 1212314303 & 1432324323 & & \\
\hline 205 & . 205 & . 3107 & . 1201012312 & 3134034532 & 3253210202 & & \\
\hline 206 & . 206 & . 3032 & . 1012320101 & 2323451232 & 3454010342 & & \\
\hline 207 & . 202 & . 3132 & . 12120301.24 & 5312124303 & 021.4358213 & & \\
\hline 22 & . 22 & . 33 & . 120 & & & 3 & \\
\hline 224 & . 224 & . 3307 & . 1201231231 & 4304314213 & 2102142641 & & \\
\hline 226 & . 226 & . 3337 & . 1234012345 & 1234512305 & 1234 & 5 & \\
\hline 244 & . 244 & . 3072 & . 1012323451 & 5673232158 & 9767654548 & & \\
\hline 245 & . 245 & . 3172 & . 1212345156 & 7321289765 & 64T9212X74 & & \\
\hline 26 & . 26 & . 333 & . 1230 & & & 4 & (85) \\
\hline 264 & . 264 & . 3372 & . 1234516325 & 1867524816 & X45267X518 & & \\
\hline
\end{tabular}

Table 7.2 (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \[
\begin{gathered}
\text { 1st } \\
\text { cousins }
\end{gathered}
\] & Standard Form & & \(G\)-sequence & & Period & Notes \\
\hline 31 & . 201 & . 31 & . 12001 & & & 2 & \\
\hline 312 & & . 312 & . 1202001 & & & 2 & \\
\hline 316 & & . 316 & . 1202123010 & 30123 & & 12 & (89) \\
\hline 32 & & . 32 & . 102 & & & 3 & \\
\hline 324 & & . 324 & . 1021301340 & 2342132034 & 1346201253 & & (91) \\
\hline 331 & & . 331 & . 123012 & & & 3 & \\
\hline 332 & & . 332 & . 1203 & & & 4 & \\
\hline 334 & & . 334 & . 1201203123 & 1243503426 & 1241302172 & & \\
\hline 336 & & - 336 & . 1203124031 & 2034123612 & 3051306413 & & (95) \\
\hline 34 & & - 34 & . 1012010312 & 1203 & & 8 & (96) \\
\hline 342 & & . 342 & . 1012320103 & 2345023254 & 0102321456 & & \\
\hline 344 & & . 344 & . 1012324514 & 6232145876 & 7X14123264 & & \\
\hline 346 & & . 346 & . 1012324516 & 7232158676 & X548923Xx4 & & \\
\hline 35 & & . 35 & . 120102 & & & 6 & \\
\hline 351 & & . 351 & . 12120102 & & & 8 & \\
\hline 353 & & . 353 & . 12120 & & & 2 & \\
\hline 354 & & . 354 & . 1201243123 & 5243513524 & 7247864762 & & \\
\hline 356 & & . 356 & . 1202124516 & 7512826281 & \(5 \times 79581212\) & 142 & (104) \\
\hline 36 & & . 36 & . 1021021321 & 3243043241 & 2312012415 & & (105) \\
\hline 362 & & . 362 & . 1023410234 & 1523714237 & 0123750132 & & \\
\hline 364 & & . 364 & . 1021321345 & 3423125125 & 7457482962 & & \\
\hline 366 & & . 366 & . 1023451623 & 4576891276 & 85432915×3 & & \\
\hline 37 & - \(\sim_{\sim}^{6}\) & . 37 & . 1201231234 & 0342132102 & 1451451201 & & (109) \\
\hline 371 & & . 371 & . 1231032402 & 3401241.632 & 012.3413421 & & \\
\hline 373 & -603 & . 373 & . 1234012341 & 52.31.472.104 & 321402640 & & \\
\hline 374 & & . 374 & . 1201243123 & 5243513524 & 7247864762 & & \\
\hline 375 & & . 375 & . 1231243213 & 4274814812 & 4814381482 & 18 & (113) \\
\hline 376 & & - 376 & . 1203124352 & 4351432645 & \(867 \times 827362\) & & \\
\hline 404 & & . 13737 & . 1122334115 & 6332211087 & 7255401122 & & (115) \\
\hline 414 & . 414 & . 1707 & . 11.02234401 & 1322344566 & 3223118763 & & \\
\hline 416 & . 416 & . 1737 & . 1122341166 & 3221066844 & 5X17833241 & & (117) \\
\hline 44 & . 077 & . 1377 & . 1122331144 & 3322114422 & 6644112277 & 24 & (1.18) \\
\hline 444 & . 0777 & . 13777 & . 1122334115 & 6332211887 & 7655441122 & & \\
\hline 45 & . 45 & . 177 & . 1122311443 & 2211422644 & 1122711443 & 20 & (120) \\
\hline 454 & . 454 & . 1777 & . 1122341166 & 3221166844 & 5X11833447 & & \\
\hline 51 & & . 51 & .i & & & , & \\
\hline 512 & & . 512 & . \(11122210^{\circ}\) & & & 6 & \\
\hline 52 & & . 52 & . 1022103 & & & 4 & \\
\hline 524 & & . 524 & . 1022104416 & 7012261446 & 1.8701 .87614 & 52 & (125) \\
\hline 53 & & . 53 & . 1122102240 & i2211224i & & 9 & \\
\hline 532 & & . 532 & . 1122401224 & i. & & 5 & \\
\hline 536 & & . 536 & . 11224 & & & 5 & \\
\hline 54 & & . 54 & . 10122241 i . & & & 7 & \\
\hline 544 & & . 544 & .101222441i & & & 8 & \\
\hline
\end{tabular}

Table 7.2 (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \[
\begin{aligned}
& \text { lst } \\
& \text { cousins }
\end{aligned}
\] & Standard Form & & G-sequence & & Period & Notes \\
\hline 56 & & . 56 & . 1022411324 & 4662117684 & 1165481174 & & (131) \\
\hline 564 & & . 564 & . 1022441132 & \(5476823 \times 76\) & 8932 T 65432 & & \\
\hline 57 & & . 22 & . 1122 & & & 4 & \\
\hline 604 & . 604 & - 3707 & . 1201231234 & 5345321321 & 0254754768 & & \\
\hline 606 & . 606 & . 3732 & . 1234012345 & 1234562345 & 6734167891 & & \\
\hline 64 & . 64 & . 372 & . 1234153215 & 4268123745 & 8295476814 & & \\
\hline 644 & . 644 & . 3772 & . 1234516325 & 896X5496FX & 42367S 49FX & 442 & (137) \\
\hline 71 & -203 & - 21 & . 1210 & & & 2 & \\
\hline 72 & & . 72 & . 1023 & & & 4 & \\
\hline 74 & & . 74 & . 1012324146 & 23215.17685 & 1Xx26845X6 & & \\
\hline 744 & & . 244 & . 1012324516 & 723218967X & \(45981 \times \times X 45\) & 2 & \\
\hline 75 & & - 75 & . 12 & & & 2 & \\
\hline 76 & & . 76 & . 1023416234 & 1673216752 & 89652871X4 & & \\
\hline 764 & & . 764 & . 1023451623 & 4576891X76 & 8543261543 & & \\
\hline 77 & \(\stackrel{4}{4}\) & . 27 & . 1231432142 & 6412714321 & 4674128547 & 12 & (145) \\
\hline 772 & & - 222 & . 1234162416 & & & 4 & \\
\hline 774 & & . 274 & . 1231456713 & 289546T219 & 645Tt298X5 & & \\
\hline 776 & 4.44 & . 776 & . 1234163216 & 74581X5476 & 1236143218 & & \\
\hline 4. 12 & & 4.12 & .1122042112 & & & 7 & \\
\hline 4.3 & & 4.3 & -120 & & & 2 & \\
\hline 4.72 & & 4.72 & . 124 & & & 3 & \\
\hline & & & Table 7.2. (cand & concluded). & & & \\
\hline
\end{tabular}

Notes to Table 7.2.
Unless otherwise indicated, all games have been analyzed to \(n=9999\), where \(n\) pertains to the form of the game listed in tho first column.
(3) \(n=14,999\). Notes in this form indicate that \(G(n)\) has been calculated to or beyond the indicated value, and periodicity has not been observed.
(4) \(n=19,999\).
(5) \(n=14,999\).
(8) \(n=19,999\).
(9) \(\quad G(0)=0, G(7)=3, G(13)=5\). Otherwise for \(n \equiv 0,1,2, \ldots, 59\) \((\bmod 60), G(n)=\)

411120261140461320211140261640 411120261540461320211180261640.

There is a strong tendency towards a period of 30 .
(15) \(n=3216\).
(16) Triplicate Kayles, see Guy and Smith [ \(\underset{\sim}{11}]\).
(17) The last irregular value is \(G(186)=6\). For \(n>186\), \(n \equiv 28,29, \ldots, 31,0,1, \ldots, 27(\bmod 32), G(n)=\)

7744411122288111
4447722211188222 .

There is a strong resemblence to ' \(8 / 3\)-plicate Kayles'. For .77 the last irregular value is 70 , and \(\left\lfloor\frac{8 \times 70}{3}\right\rfloor=186\). Exactly the same values appear in the period of the two games, so that in each case the rare \(G\)-values are those that contain an even number of I's in their binary expansions. Furthermore, in each case there is a strong tendency, for \(n>e\), to \(G\left(n+\frac{p}{2}\right)=G(n)+3\).
(18) "She loves me, She loves me not".
(19) \(G(7)=G(12)=1 ; G(6)=G(16)=G(26)=G(36)=2 ; G(22)=G(45)=5\);
otherwise, for \(n \equiv 0,1,2, \ldots, 47,(\bmod 48), G(n)=\)
\[
\begin{array}{lll}
01010232 & 34010132 & 32340104 \\
32323101 & 04323201 & 01043234 .
\end{array}
\]

For \(n>e=45, n \neq 9,19,23(\bmod 24), G(n+24)=G(n)+3\).
(21) The last irregular value is \(G(257)=2\). There are 128 irregular values. For \(n>257\), there is a strong tendency towards \(G(n+74)=G(n) \stackrel{*}{+}\).

For more information about the period see section 4.5 .
(22) \(n=17,999\).
(24) Dawson's Kayles. See Guy and Smith \(\underset{\sim}{1]} \underset{\sim}{1]}\), Dawson [6] \([\underset{\sim}{7}]\).
(27) \(n=47,549\).
(28) \(n=42,724\).
(33) See Theorem 4.9.
(34) \(G(3)=0 ; G(88)=1 ; G(n)=2\) for \(n=5,9,25,35,37,47 ; G(31)=G(41)=4 ;\)
\(G(42)=G(94)=G(138)=8 ;\) otherwise, for \(n \equiv 0,1,2, \ldots, 95,(\bmod 96)\)
\(G(n)=\)
\[
\begin{array}{lll}
01120 \% 12 & 06110441 . & 52411204 \\
15041152 & 425 \mathrm{X} 0 \mathrm{X} 15 & 42 \mathrm{~T} 58285 \\
524 \mathrm{X1X0X} & 52425114 & 05120211 \\
4 \mathrm{X} \perp 4201 & 120 \mathrm{X} 120 \mathrm{X} & 818981 \mathrm{~T} 2
\end{array}
\]
where \(X=10, T=12\).
(39) \(G(n)=0\) for \(n=0,2,3,28,64 ; G(1)=1 ; G(n)=2\) for \(n=26,30,34\), 59,95; \(G(n)=3\) for \(n=24,32,121\); otherwise for \(n \equiv 0,1,2, \ldots, 61\), \((\bmod 62), G(n)=\)

7584110213021301130233227465445
5796332031103120312011405547564.

For \(n>121\), there is a strong tendency towards \(G(n+31)=G(n) \stackrel{*}{+}\).
(42) \(n=17,999\).
(45) \(G(0)=G(3)=0 ; G(1)=G(28)=1 ; G(24)=G(32)=G(59)=2 ; G(26)=\) \(=G(30)=G(34)=3\); otherwise, for \(n \equiv 0,1,2, \ldots, 61,(\bmod 62) G(n)=\)

For \(n>59\), there is a strong tendency towards \(G(n+31)=G(n) \stackrel{*}{+} 3\). Note the similarity between \(\cdot \frac{134}{}\) and \(\cdot 124\). It is often the case that for \(n\) odd, \(G_{\cdot 134}(n)=G_{\cdot 124}(n)\), and for \(n\) even \(G \cdot{ }_{\cdot 134}(n)=\) \(=G \cdot \frac{124}{(n) \stackrel{*}{+1}}\).
(48) \(n=35,949\).
(51) \(\quad n=34,874\).
(52) See Theorem 4.10.
(53) See Theorem 4.11.
(55) See Theorem 4.14.
(56) Guiles; see Guy and Smith [ \(1 \underset{\sim}{11}]\).
(57) The only irregular values are \(G(0)=0, G(1)=1\). Otherwise for \(n \equiv 0,1, \ldots, 47,(\bmod 48) G(n)=\)

401022201043231013224010 422310132340102220104323.

For \(n>1\), there is a tendency towards \(G(n+24)=G(n) \stackrel{*}{+}\).
(58) See Theorem 4.12.
(59) See Theorem 4.13.
(60) See J.C. Kenyon [ \(\underset{\sim}{13}]\). The last irregular value is \(G(3478)=8\). The \(G\)-values illustrate a remarkable tendency to a period of 10 , and for \(n>3478\), to \(G(n+1.74)=G(n)^{*}+4\).
(61) See Theorem 4.15.
(62) \(n=50,174\).
(63) The \(G\)-sequence of \(\cdot 36\) and \(\cdot \frac{161}{\sim}\) agree as far as \(n=518\).
(65) \(n=54,424\).
(67) The last two irregular values are \(G(5180)=G(3495)=4\). There are 251 irregular values. See section 4.5.
(70) See Guy and Smith [11]. The irregular values are \(\dot{\sim}(0)=0\), \(G(15)=1, G(17)=3, G(32)=2\); otherwise, for \(n \equiv 0,1,2, \therefore, 33\) \((\bmod 34), G(n)=\)

41102130113223445 72231103120114436 .

For \(n>32\), there is a strong tendency toward \(G(n+17)=G(n)+3\).
(73). \(G(0)=0 ; G(1)=1 ; G(9)=G(16)=G(20)=3\); otherwise, for \(n \equiv 0,1,2, \ldots, 39,(\bmod 40) G(n)=\)

40122310462011227514
72211023741322104627.

For \(n>20, n \neq 1,9,15(\bmod 20), G(n+20)=G(n)+3\).
(75) For \(n>23, G(n+4)=G(n) \stackrel{*}{+} 2\).
(85) See Ferguson [9]. When played under misère rules, 73 and \(\cdot 333\) are not equivalent.
(89) For \(n>3, G(n+6)=G(n) \stackrel{*}{+} 2\).
(91) \(n=29,999\).
(95) \(n=29,999\).
(96) Except for \(n=0,2\), and \(6, G(n+4)=G(n)+1\).
(104) The last irregular value is \(G(7314)=2\). There are 6419 irregular values. These are part of prior attempts to establish a period. For \(n>7314\), if \(G(n)=16\), then \(G(n+71)=16\). If \(G(n) \neq 16\), then \(G(n+71)=G(n)^{*}+7\).
(105) \(n=17,999\).
\((109) n=10,342, G(10,342)=256\).
(113) \(G(0)=0 ; G(4)=1 ; G(5)=G(8)=2 ; G(n)=3\) for \(n=3,7,10,25\); \(G(n)=4\) for \(n=11,17\), and \(35 ; G(13)=7\) and \(G(18)=G(36)=8 ;\) otherwise, for \(n \equiv 0,1,2 ; \ldots, 17,(\bmod 18) G(n)=\)
\[
\dot{4} 12481478148214817 .
\]
(115) The \(G\)-sequences of .404 and .444 agree as far as \(G(19)\).
(117) The \(G\)-sequences of \(\cdot 416\) and .454 agree as fas as \(G(15)\).
(118) Duplicate Kayles, see Guy and Smith [11].
(120) See Guy and Smith [1]. ]. The ultimate period is 20; the last irregular value is \(G(497)=8\). In some sense this is "5/3-plicate Kayles" [cf. note (17)].
(125) The only irregular value is \(G(0)=0\). Otherwise, for \(n \equiv 0,1,2, \ldots, 51\), \((\bmod 52), G(n)=\)
\[
8102210441670 \quad 1226144618701
\]
87614761078167410721078167.

For \(n>0\), there is a tendency towards \(G(n+26)=G(n)+6\).
(131) \(n=49,999\).
(137) The last irregular value is \(G(3254)=32\). There are 2179 irregular values. See section 4.5 .
(145) Kayles, see Guy and Smith [11], Dudeney [8], and Loyd [15].

The \(G\)-sequence of the standard form of any octal game \(\cdot d_{1} d_{2} d_{3}\) or \(4_{4} \cdot d_{1} d_{2}\) appears in Table 7.2. To find the \(G\)-sequence, look in Table 7.2 for the row \(d_{1} d_{2} d_{3}\) or \(4 . d_{1} d_{2}\). If this does not appear, find that entry in Table. 7.3 and consult the row of Table 7.2 to which the entry refers.

A'-' in the entry of Table 7.3 indicates that the row appears in Table 7.2. The \(*\) indicates that the \(G\)-sequence of the game \(\dot{\sim} \dot{\sim}\) is just \(\dot{0}\).

Table 7.3. Guide to Table 7.2.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \(d_{3}\) & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline \multicolumn{9}{|l|}{\(d_{1} d_{2}\)} \\
\hline 00 & * & - & - & 002 & -: & - & - & 04 \\
\hline 01 & 001 & 11 & 05 & 002 & - & - & - & - \\
\hline 02 & - & 02 & - & 022 & - & 024 & - & 026 \\
\hline 03 & 02 & 02 & 022 & 022 & - & 034 & 06 & 06 \\
\hline 04 & - & 017 & 04 & 017 & - & - & 044 & 045 \\
\hline 05 & - & - & 05 & 051 & - & - & 054 & 055 \\
\hline 06 & - & 06 & 06 & 06 & - & 064 & 064 & 064 \\
\hline 07 & \(\cdots\) & 07 & 07 & 07 & 44 & 44 & 44 & 44 \\
\hline 10 & 001 & - & - & 05 & - & 05 & - & 05 \\
\hline 11 & - & - & - & 002 & - & - & - & 051 \\
\hline 12 & - & - & - & - & - & - & - & - \\
\hline 13 & 02 & - & - & 022 & - & - & - & 07 \\
\hline 14 & - & - & - & - & - & - & - & - \\
\hline 15 & - & 51 & - & - & - & 51 & - & - \\
\hline 16 & - & - & - & - & - & - & - & - \\
\hline 17 & - & - & - & - & - & 57 & - & 45 \\
\hline 20 & 05 & 31 & 05 & 71 & - & - & - & - \\
\hline 21 & 05 & 31 & 05 & 71 & 204 & 205 & 206 & 207 \\
\hline 22 & - & 22 & 26 & 26 & - & 224 & - & - 226 \\
\hline 23 & 22 & 22 & 26 & 26 & 224 & 224 & 226 & 226 \\
\hline 24 & 05 & 71 & 05 & 71 & - & - & 244 & 245 \\
\hline 25 & 05 & 71 & 05 & 71 & 244 & 245 & 244 & 245 \\
\hline 26 & - & 26 & 26 & 26 & - & 264 & 264 & 264 \\
\hline 27 & 2.6 & 26 & 26 & 26 & 264 & 264 & 264 & 264 \\
\hline 30 & 05 & 05 & 05 & 05 & 05 & 05 & 05 & 05 \\
\hline 31 & - & 71 & - & 71 & 31 & 71 & - & 71 \\
\hline 32 & - & 32 & 72 & 72 & - & 324 & 72 & 72 \\
\hline 33 & 22 & - & - & 26 & - & 26 & - & 26 \\
\hline 34 & - & 34 & - & 342 & - & 344 & - & 346 \\
\hline 35 & - & - & 4.3 & - & - & 75 & - & 75 \\
\hline 36 & - & 36 & - & 362 & - & 364 & - & 366 \\
\hline 37 & - & - & 332 & - & - & - & - & 64 \\
\hline 40 & 07 & 07 & 07 & 07 & - & 404 & 404 & 404 \\
\hline 41 & 17 & 17 & 173 & 173 & - & 414 & - & 416 \\
\hline 42 & 07 & 07 & 07 & 07 & 404 & 404 & 404 & 404 \\
\hline 43 & 17 & 17 & 173 & 173 & 414 & 414 & 416 & 416 \\
\hline 44 & - & 44 & 44 & 44 & - & 444 & 44.4 & 444 \\
\hline 45 & - & 45 & 45 & 45 & - & 454 & 454 & 454 \\
\hline 46 & 44 & 44 & 44 & 44 & 444 & 444 & 444 & 444 \\
\hline 47 & 45 & 45 & 45 & 45 & 454 & 454 & 454 & 454 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \(d_{3}\) & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline \multicolumn{9}{|l|}{\(d_{1} d_{2}\)} \\
\hline 50 & 05 & 05 & 05 & 05 & 05 & 05 & 05 & 05 \\
\hline 51 & - & 51 & - & 512 & 51 & 51 & 157 & 157 \\
\hline 52 & - & 52 & 52 & 52 & - & 524 & 524 & 524 \\
\hline 53 & - & 53 & - & 532 & 57 & 57 & - & 536 \\
\hline 54 & - & 54 & 54 & 54 & - & 544 & 544 & 544 \\
\hline 55 & 51 & 51 & 157 & 157 & 51 & 51 & 157 & 157 \\
\hline 56 & - & 56 & 56 & 56 & - & 564 & 564 & 564 \\
\hline 57 & - & 57 & 536 & 536 & 57 & 57 & 536 & 536 \\
\hline 60 & 37 & 37 & 373 & 373 & - & 604 & - & 606 \\
\hline 61 & 37 & 37 & 373 & 373 & 604 & 604 & 606 & 606 \\
\hline 62 & 37 & 37 & 373 & 373 & 604 & 604 & 606 & 606 \\
\hline 63 & 37 & 37 & 373 & 373 & 604 & 604 & 606 & 606 \\
\hline 64 & - & 64 & 64 & 64 & - & 644 & 644 & 644 \\
\hline 65 & 64 & 64 & 64 & 64 & 644 & 644 & 644 & 644 \\
\hline 66 & 64 & 64 & 64 & 64 & 644 & 644 & 644 & 644 \\
\hline 67 & 64 & 64. & 64 & 64 & 644 & 644 & 644 & 644 \\
\hline 70 & 05 & 05 & 05 & 05 & 05 & 05 & 05 & 07 \\
\hline 71 & - & 71 & 71 & 71 & 71 & 71 & 71 & 71 \\
\hline 72 & - & 72 & 72 & 72 & 72 & 72 & 72 & 72 \\
\hline 73 & 26 & 73 & 26 & 26 & 26 & 26 & 26 & 26 \\
\hline 74 & - & 74 & 74 & 74 & - & 744 & 744 & 744 \\
\hline 75 & - & 75 & 75 & 75 & 75 & 75 & 75 & 75 \\
\hline 76. & - & 76 & 76 & 76 & - & 764 & 764 & 764 \\
\hline 77 & - & 77 & - & 772 & - & 774 & - & 776 \\
\hline 4.0 & 05 & 05 & 26 & 26 & 05 & 05 & 26 & 26 \\
\hline 4.1 & 51 & 51 & - & 4.12 & 51 & 51 & 57 & 57 \\
\hline 4.2 & 05 & 05 & 26 & 26 & 05 & 05. & 26 & 26 \\
\hline 4.3 & - & 4.3 & 332 & 332 & 4.3 & 4.3 & 332 & 332 \\
\hline 4.4 & 77 & 77 & 77 & 77 & 776 & 776 & 776 & 776 \\
\hline 4.5 & 51 & 51 & 57 & 57 & 51 & 51 & 57 & 57 \\
\hline 4.6 & 77 & 77 & 77 & 77 & 776 & 776 & 776 & 776 \\
\hline 4.7 & 75 & 75 & - & 4.72 & 75 & 75 & 4.72 & 4.72 \\
\hline
\end{tabular}

Table 7.3. (concluded).

\subsection*{7.4. Infinite recurring octal games.}

Table 7.4 contains information about infinite recurring octal games of the form \(\cdot \dot{d}_{1} \dot{d}_{2}\), \(\cdot \underset{\sim}{d}{\underset{\sim}{d}}_{2}\), and \(4 \cdot \dot{d}_{1}\). The organization of the table is similar to the organization of Table 7.2. The number in parentheses following the \(G\)-sequence indicates the saltus. An extra column has been added adjacent to the column for the period to permit inclusion of the saltus. \(G\)-values greater than 9 are represented by the following. symbols
\[
\begin{array}{ccccccccccc}
10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 \\
\mathrm{X} & \mathrm{x} & \mathrm{~T} & \mathrm{t} & \mathrm{~F} & \mathrm{f} & \mathrm{~S} & \mathrm{~s} & \mathrm{~A} & \mathrm{a} & \mathrm{~V}
\end{array}
\]

For completeness we have included .52 and \(\cdot 5 \dot{\sim} \dot{3}\) in the table. Mhese games appear to be arithmetico-periodic, but this has not been established. We have also included . \(3 \mathbf{3} 0\) and \(\cdot 300300 \dot{0}\). The former is equivalent to the sedecimal game . 3 N first analyzed by J.C. Kenyon [13]. The latter provides another example of a game whose saltus is not a power of 2 .

To find the \(G\)-sequence for any game \(\cdot{\underset{\sim}{d}}_{1}^{\underset{\sim}{\sim}} \underset{2}{ }\) or \(\underset{\sim}{4} \cdot \underset{\sim}{\dot{d}}{ }_{1}\) look in Table 7.5 . The entry refers to the row of the table in which the \(G\)-sequence of the game in standard form may be found. An asterisk indicates that the \(G\) -

 sequence \(0 \dot{1} \dot{2}\), and \(\cdot \dot{0} \dot{5}, \dot{2} \dot{\sim}, ~ \cdot \dot{2} \dot{\sim}, ~ \cdot \dot{2} \dot{\sim}\) and \(\cdot \dot{2} \dot{\sim}\) are all first cousins of
 \(001 i 22^{\circ}\). The ? corresponding to .61 indicates that this game is as yet unsolved, though it has been analyzed to \(n=14,999\).

To find the \(G\)-sequence for any game \(\cdot \dot{d}_{1}^{d} \dot{d}_{2}\), apply an analogous procedure to 7.6 .
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & 1st cousins & standard form & C-Sequencé & Period & Saltus & Notes \\
\hline \(\dot{0} 12\) & . 012 & . 103 & \(\dot{0} \cdot 10\) ( +1\()\) & 3 & 1 & \\
\hline 02 & . 03 & . 13 & 0.ii ( +1 ) & 2 & 1 & (a) \\
\hline 04 & . 0137 & . \(1133 i\) & \(0.11 i(+1)\) & 3 & 1 & (b) \\
\hline \(0 \dot{5}\) & . 05 & . 117 & \(0.11122{ }^{(+2)}\) & 4 & 2 & \\
\hline 12 & & . 12 & \(0.10022(+1)\) & 2 & 1 & \\
\hline 14 & & . \(14^{4}\) & \(0.100122224444(+4)\) & 7 & 4 & \\
\hline 16 & & . 16 & 0.100223 ( +2) & 3 & 2 & \\
\hline 17 & - 47 & . 17 & \(0.1122 \dot{3}(+2)\) & 3 & 2 & \\
\hline 2. & - \(\dot{\sim}\) & . \({ }^{3}\) & \(0 . i(+1)\) & 1 & 1 & (c) \\
\hline 24 & . 24 & - 307 & \(0.1012(+2)\) & 4 & 2 & (d) \\
\hline 25 & . \(2 \dot{5}\) & . 317 & \(0.12123454(+4)\) & 6 & 4 & \\
\hline \(300300 \dot{3}\) & & -3003003 & \(\dot{0} .1012012323453454 \dot{5}^{(+6)}\) & 18 & 6 & \\
\hline 32 & & - 32 & \(0.102(+1)\) & 1 & 1 & \\
\hline 330 & & . 330 & \(0.12012(+3)\) & 6 & 3 & (e) \\
\hline 34 & & . 34 & \(0.101232(+2)\) & 3 & 2 & \\
\hline 52 & & . \(5 \dot{2}\) & \(0.1022443355 \dot{7} 688 \mathrm{xx} 99 \mathrm{xxt} \dot{T}(+8)\) & 12 & 8 & \\
\hline \(5 \dot{3}\) & & . \(5 \dot{\sim}\) & \[
\begin{gathered}
0.112244633557788 \times X T 99 \mathrm{xxt} \mathrm{\dot{tFF}} \\
\text { 88Affssaa }(+8)
\end{gathered}
\] & 13 & 8 & \\
\hline 54 & & . 24 & \(0.1012 \dot{2} 244 \dot{4}(+4)\) & 5 & 4 & \\
\hline 56 & & . \(\sim_{6}^{6}\) & \(0.1022(+2)\) & 2 & 2 & \\
\hline 57 & & . 57 & \(0.1122(+2)\) & 2 & 2 & \\
\hline 74 & & . 74 & \(0.101232 \dot{45467}(+4)\) & . & 4 & \\
\hline 12 & & . 12 & \(0.10{ }^{(101)}\) & 2 & 1 & \\
\hline 14 & & . 1.14 & \(0.101121223244446 \dot{6}(+4)\) & 7 & 4 & \\
\hline 16 & & . \(\mathrm{i}_{6}\) & \(0.102132445(+2)\) & 3 & 2 & \\
\hline 4.3 & & \(4 \cdot 3\) & \(0.1243(+4)\) & 4 & 4 & (f) \\
\hline 4.7 & & \(\stackrel{4}{\sim}\) & \(0.12(+2)\) & 1 & 2 & \\
\hline
\end{tabular}

Table 7.4. \(G\)-sequences of infinite recurring octal games.




Table 7.6. Games of the form \(\cdot{\dot{\underset{d}{d}}}_{1}^{\dot{d}_{2}}\).

Notes to Table 7.4.
(a) Duplicate Nim.
(b) Triplicate Nim. This game is equivalent to Nim in which an exact power of \(2\left(2^{0}=1\right)\) may not be taken.
(c) Nim.
(d) Double Duplicate Nim.
(e) This game is equivalent to \(\cdot 3 \mathrm{~F}\), the sedecimal game analyzed by J.C. Kenyon which has a period of 6, saltus 3 .
(f) Lasker's Nim.
7.5. Arithmetico-periodic sedecimal games.

Table 7.7 contains the \(G\)-sequences of those sedecimal games that were discovered to be arithmetico-periodic. The layout of the table is identical to that of Table 7.4. \(G\)-values greater than 9 are represented, both in the table and the notes that follow, by the following symbols:
\begin{tabular}{rrrrrrrrrrr}
10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 \\
X & x & T & t & F & f & S & s & A & a & V
\end{tabular}

Table 7.7. G-sequences of sedecimal games.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & Standard Form & \(G\)-sequence & & & Perio & ltus & Notes \\
\hline OAO & . 13137 F & . \(\mathrm{ii}(+1)\) & & & 2 & 1 & \\
\hline OBO & -130F & . \(31022(+1)\) & & & 2 & 1 & \\
\hline OCO & . 113, 2777 F & .i1i(+1) & & & 3 & 1 & \\
\hline 11B & . 11 B & . 1110002223 & 3344455566 & \(\dot{6}(+4)\) & 11 & 4 & \\
\hline 128 & . 128 & . \(100110{ }^{(+2)}\) & & & 5 & 2 & \\
\hline 138 & . 13 A & . 110022 & & & 2 & 1 & \\
\hline 13C & . 13 C & . 1100122332 & \(445546677(+4)\) & & 9 & 4 & \\
\hline 169 & . 162 & . \(102102132(+3)\) & & & 9 & 3 & \\
\hline 18C & . 18 C & . 1000222244 & 4466663333 & 8888777755 & 48 & 16 & (9) \\
\hline 18 E & . 18 E & .10002223(+2) & & & 4 & 2 & \\
\hline 18F & . 18F & . \(10102223(+2)\) & & & 4 & 2 & \\
\hline 794 & . 124 & . 1100222244 & 4466663333 & 8888777755 & 48 & 16 & (12) \\
\hline 198 & . 12 C & . 1110002223 & 3344455566 & \(6(+4)\) & 10 & 4 & \\
\hline 19F & . 19 F & . \(11102223(+2)\) & & & 4 & 2 & \\
\hline 1 AO & . 1 A & . 100122 (+1) & & & 2 & 1 & \\
\hline 280 & -300F & . 1012010123 & 2345343456 & 7678976789 & 53 & 16 & (16) \\
\hline 3F & -3F & . \(120123(+3)\) & & & 6 & 3 & \\
\hline 890 & . 10 FF & . \(1012 \mathbf{2 2 2 3}(+2)\) & & & 4 & 2 & \\
\hline 9 BO & -9B & . 1100223344 & 556\% \({ }^{\circ}+4\) ) & & 7 & 4 & \\
\hline 9 CO & . 2 c & . 1002224446 & 6633388877 & 7555999xxX & 36 & 16 & (20) \\
\hline 9E0 & . 2 E & . \(100223(+2)\) & & & 3 & 2 & \\
\hline A80 & - 30FE & . 1012323 (+2) & & & 4 & 2 & \\
\hline B80 & - \({ }^{\text {B8 }}\) & . 1010232345 & \(45676(+4)\) & & 7 & 4 & \\
\hline BAO & . \({ }^{\text {BA }}\) & . 102 (+1) & & & 1 & 1 & \\
\hline BB & - \({ }^{\text {BB }}\) & . \(1203(+1)\) & & & 1 & 1 & \\
\hline BC & . \({ }_{\sim}^{\text {BC }}\) & . \(101232(+2)\) & & & 3 & 2 & \\
\hline C9 & .17EE & . 1122 (+2) & & & 3 & 2 & \\
\hline F8 & . F 8 & . \(1010232345^{\circ}\) & 45678 (+4) & & 6 & 4 & \\
\hline FB & - FB & . 12304 (+1) & & & 1 & 1 & \\
\hline FC & . FC & . 1012324546 & \(7(+4)\) & & 5 & 4 & \\
\hline
\end{tabular}

\section*{Notes to Table 7.7.}
(9) There are only four irregular values. \(G(0)=0 ; G(1)=1 ; G(16)=6\); \(G(36)=9\); otherwise, the \(G\)-sequence is
\[
\begin{array}{rllll}
0.00000 & 2222 & 4444 & 666 \overline{4} & 3333 \\
8888 \\
7777 & 5555 & 9991 & \text { xxxX tttt fffí }(+16),
\end{array}
\]
where the entry \(\overline{4}\) means that for \(k \geqslant 1, G(16+48 k)=16 k-4\).
(12) There are only seven irregular values. \(G(0)=0 ; G(1)=G(2)=1\); \(G(15)=G(16)=6 ; G(35)=G(36)=9\); otherwise, the \(G\)-sequence is
\[
\begin{array}{rllll}
0 . \dot{0} 000 & 2222 & 4444 & 66 \overline{4} 4 & 3333 \\
7777 & 5555 & 9911 \text { xxXX tttt ffFF }(+16),
\end{array}
\]
where 4 means that for \(k \geqslant 1, G(15+48 k)=G(16+48 k)=16 k-4\).
(16) There are no irregular values. The \(G\)-sequence is
\(\dot{0} 1012010123234534345676789\).
7678989XxXxTXxXxTtFfFftFfFf(+16).
(20) There are only four irregular values. \(G(0)=0 ; G(1)=1 ; G(12)=6\); \(G(27)=9\); otherwise the \(G\)-sequence is
\(0.00022244466 \overline{4} 333888\)
777555991 xxX tet fffí(+16),
where \(\overline{4}\) means that for \(k \geqslant 1, G(12+36 k)=16 k-4\).

\section*{Bibliography}
1. F. Berlekamp, J.H. Conway and P.K. Guy, Winning Ways, Freeman, 1977.
2. C.L. Bouton, Nim, a game with a complete mathematical theory, Ann. Math., (2), 3(1902), 35-39.
3. J.H. Conway, All games bright and beautiful, The University of Calgary, Department of Mathematics, Research Paper No. 295, Dec. 1975.
4. -. .. AlZ numbers great and small, The University of Calgary, Department of Mathematics, Research Paper No. 1.49, Feb. 1972.
5. _ On Numbers and Games, Academic Press, 1976.
6. T.R. Dawson, Caissa's wild roses, 1935, p.13.
7. _. Faimy Chess Review, Dec. 1935, Problem 1604, p. 94.
8. H.E. Dudeney, Canterbury puzzles, London, 1910, pp. 118, 120.
9. T.S. Ferguson, On sums of graph games with last player Zosing, Internat. J. Game Theory 3(1974), 159-167.
10. P.M. Grundy, Mathematics and Games, Eureka 2(1939), 6-8.
 Cambridge Philos. Soc., \(52(1956), 514-526\).
12. J.C. Kenyon, A Nim-like game with period 349, The University of Calgary, Department of Mathematics Research Paper No. 13.

13 . \(\qquad\) , Nim-Zike Gomes and the Sprague-Gmundy Theory, M.Sc. Thesis, University of Calgary, 1967.
14. D.E. Knuth, Surreal Numbers, Addison-Wesley, 1974.
15. Sam Loyd, Cyclopedia of Tricks and PuzzZes, New York, 1914, p. 232.
16. R.P. Sprague, Uber mathematische KampfspieZe, Tôhoku Math. J., \(41(1935-36) 438-444\).```

