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Abstract

Conway has recently developed a theory particularly well suited to
fhe analysis of two-person games that are completely determined; Using
this theory we consolidate some results due to Conway and Guy about the
partisan game Col, as well as proving some new results for take and break
games, In Chapter\4, the results obtained by Guy and Smith, and Ken&on
for octal games are generalized torarbitrary take and break games.
Chapter 5 discusses subtraction games. We show that all subtraction
games are perilodic, and prove that in certain ciréumstances it is possible
to determine the period length exactly., We also state the rules, due t§
Conway and Guy respectively, for writing down the period of the games
S(a,b), S(a,b,2b-a). Using Ferguson's Pairing Property, we give the
analysis, again due'to Conway and Guy, of S(a,b,ath). “Chépter 6 deals
with arithmeti§o~§er£odicity. Conway's proof that no octal game is
arithmetico-periodic is given. We prove newrarithmetico—periodicity
theorems for sedecimal and infinite recurring octal and tetral éames.
Chapter 7 contains Tables that list the G-sequence of certain types of .
games. With the exception of Table 7.7, the basis for these was provided
by Gﬁy. Table 7.1 was expanded by the author to include all subtraction
games in which the subtrahends do not exceed 8. The games .033, .163,

356, and .644 were also solved by the author.
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"There is plenty of time to win this game,
and to thrash the Spaniards too."

Sir Francis Drake, 20 July 1588.



Chapter 1

The Classes Ug and No

1.1. Introduction

Our aim in this chapter is to develop a theory that Qill enable usr
to evaluate positions in games, so that we may determine what‘édvantage,
if any, a position confers upon a particular player. To achieve this
end, we define a class Eg of games, as well as addition and a partial
order on this class. It turns out that the advantage conferred'upon a
player by some positions can be thought of as a number of moves advantage
to one of the players, Left or Right. As a result, we find that tﬁé
class‘E§ strictly contains a real ordered.field No as a subclass, which
in turn strictly contains the real numbers.

Qur discussion is necessarily brief. In most insiances we émit
proofs so that we may more quickly apply the techniques to the analysis

of games. For a more complete treatment, we refer the reader to [§j.

1;2. Games

By a game G we mean a set of positions together with rules which say
for any two positions P, @ and either of the two players, Left and Right,
whetherrit is legal for the player to move from P to ¢. We require that
the state of play be known to both players, and that moves be determined
only by the rules, not by any external conditions such as the throwing
of dice. The games under discussion bear more similarity to Chess or

Checkers than to Bridge or Monopoly.
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The initial position of a game G is the position from which play
starts. If from the initial position, Left has moves only to positions
AlsAy e and Right has moves only to positions Bl’Bz""’ we write

G = {Al,Az,...lB ’Bz""} and refer to A ,,4,,... as the left options

1

of G,‘Bl,B as the right options of G. The typical left or right

NIXE
option will be denoted by GL or GR respectively, so that G = {GLIGR}.
Note that GL, GR here represent sets, empty, finite, or infinite. TFor
simplicity we have omitted the usual braces; we will also, by a common
abuse of notation, often use GL to denote a particular option, rather
£han the set of all left optlons.

Tﬁe game G will end when the player whose turn it is to move cannot
do so. TFor example, if from G = {Al,A2| } it is Right to move,.then the
game G has ended, as the set of options available to Right is empty. In
the case of an ended game, the outcome depends upon the convention under
which the game is being played. 1In normal pZay; a player loses if it is
his turn to move and he is unable to do so, i.e. these games are last |
player winning. Under mislre play, the last player able to make a legal
move loses, i.e. these pames are last player losing.

A game G is said to be impartial if from each position of (, exactly
the same moves are available to each player. A game that is not im~
partial is said to be partisan. For example, Col (see Chapter 2) is a
partisan game. An example of an impartial game is Nim. It is played
with a finite number of heaps of tokens, each heap containing a finite
number of tokens. The players move alternately, choosing one heap and

removing at least one token from that heap.
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If in Nim an infinite number of heaps were allowed, the game would
not terminate. A game G is said to satisfy the terminating play condition
ié there is no infinite sequence PO’P£’P2”" of positions for which
there exist legal moves from Pn to Pn+1’ n=10,1,2,... . Observe that
a game in which there is an infinite sequence of moves for just one of
the players does not satisfy the terminating play condition. The reason
we do not restrict the condition to alternating sequences (Left, Right,
Left,...) will become clear when we define addition of games. 1In the
following we restrict ourselves to last player winning games that satisfy
the terminating play condition.

A disjunctive compound (sum) of the games {Go,Glg...;Gn} is played
in the following manner. The player whose turn it is to move selects

one of the component games, GO,G "Gn’ and makes a legal move in that

12°°

component. The disjunctive compound, denoted by Go + Gl + ...+ G

n’

ends when each of the components had ended. Nim is a disjunctive com-
pound of.component games of one-heap Nim. If G, H are games, the positions of
G+H are ordered pairs (P,Q) where P is a position of ¢, @ is a position
of H. From (P,Q), Left may move to (PL,Q) or (P,QL), and Right may move
to (PR,Q) or (P,QR).
For each game G, there is a set of positions GL to which Left may
move, and a set of positions GR to which Right may move. Each P.E ¢’ U GR
is a shortened game, so that G is determined by the games that form its
left and right options. This observation provides us with a definition

of a game.
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DEFINITION 1.1 (Conway [§]). If GL and GR are two sets of games, then

i
there is a game {GL|GR}. All games are constructed in this way.

DEFINITION 1.2. (i) If G

1

1¢*|%y, then -6 = {~c%|-c"3.
(ii) 1f G {GLIGR}, H= {HLIHR} then
G+H = {GL+H,G+HL|GR+H,G+HR}.

]

Note that the game -G is obtained from G by reversing the réles of Left
and Right throughout.

Definitions 1.1 and 1.2 are inductive definitions. We show the
operatiop of the induction by consideration of some simple games. The
simplest of all games is the Endgame { | }. Tt is reasonable to denote
this by 0 (take GL = GR = (@ in Defini;ion 1.2) since =0 = 0, and
O+H = {O+HL|0+HR} = {HLIHR} = H. As no player may make a legal move,

‘the one required to move first loses, i.e. this is a second player

winning game. Consider {0] }. Moving first, Left may make a legal move

to 0, which ends the game, so that Left wins. If Right is required to

move first, Left also wins, as the set 5f'right options is empty.

Similarly in the game { IO}, Right wins regardless of which player starts.
However * = {0|0} (pronounced star) is a first player winning gome, sicce
the first player moves to 0, and becomes the second player in the shér:enef
game. |

To illustrate the play of games, we represent the game as a ttee;

Tﬁe positions are represented by nodes, and a legal move from P to @ is
represented by a line joining P to @. We draw the tree so that moves

for Left are represented by lines sloping upward to the left, and moves
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for Right are represented by lines sloping upward to the right. TFigure

1.1 shows the trees of the games discussed above.

ANVARAVA

{ } {o]| 3} { |o} {o|o}

Figure l.1l. The trees of some simple games.

Any game G that satisfies the terminating play condition belongs
to one of the outcome classes listed above. We define these classes

more formally in' the following manner.

DEFINITION 1.3, The four outcome classes are:
G > 0 if Left can win no matter who starts.

G

A

0 if Right can win no matter who starts.,

He

G 0 if the second player can win.

G|l 0 (G is fuzzy, or G is confused with 0) if the first player can win.

These symbols combine in a natural way.
G > 0 means that if Right starts, Left wins.
G ¢ 0 means that if Left starts, Right wins.
GIl> 0 means that if Left starts, Left wins.

¢<]] 0 means that if Right starts, Right wins.

We let Ug denote the class of ail games. Equality in Ug is defined

~aew ‘ o
in terms of equivalence classes. We first introduce the concept of iso-
horphic games.d For G, H € Ug, G = H (G is isomorphic to H) if there is a

one to one correspondence between the legal moves of (¢ and /I,



LEMMA 1.4. (i) 0+G

1
!

(ii) GH+H = H+G

(iii) (GHH)+K = G+(H+K).

PROOF. We prove (i) to provide an example of the general inductive

argument.

0+G

I

{OL+G,O+GL|OR+G,O+GR}

{o+GL|o+aR}
(|

]

=G u]

Suppose we wish to establish a propositionEP(G) for all games G. It
suffices to prove that T(GL), F(GR) imply T(&) . What is perhaps not
so clear is that these inductions never require a basis, since state-

ments about the empty set are vacuously true.
IEMMA 1.5. If H = 0 then G+H has the same outcome as G.

LEMMA 1.6 (Tweedledum and Tweedledee Principle). Y& ¢ Ug, G+(-5) = 0.

(2

PROOF. The second player mimics his opponent's move in the opposite
component of the disjunctive sum.
(Lemma 1.6 explains our formulation of the Terminating Play Cordition.

If an infinite sequence PO’PI’PZ"" of moves for one player was per-—

mitted, then the game G+(~G) might never end.)
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LEMMA 1.7, 1If G+(-H) = 0 then G+X has the same outcome as H+K, VK € Ug.

PROOF. By Lemma 1.5, H+K has the same outcome as G+(-H)+H+K, and

G+ (~H)+H+K = G+K+(H+(-H)). Then by Lemmas 1.5 and 1.6 GH+K+(H+(-H))

has the same outcome as GH+X.
DEFINITION 1.8, G = H if G+(=H) = 0.’

The definition of equality is based on the observation (Lemmg 1.7) -
that 1if G+(-H) = 0, it will not affect the outcome of a disjunctive sum
that includes G aé one of the component games if G .is replaged by H. ‘
Notice in particular G = 0 implies G = 0. For example, consider thg
game G = {{ [0}|{0| }}. If Right starts, we go to {0] }. Left now
moves to 0 and wins. Similarly if Left starts, Right wins, so thgt G
is a second player winning game. Hence {{ |0}]{0] 3} = 0. In future
when we speak of a game G, we mean all games H such that G+(-H) = 0.

For example, by O we mean not only { | } but also the games {{ loy|{o] 3}°

and * + * = {0]|0} + {0]0}, illustrated in Figure 1,2, and G+(~G) for

any game G,

{o| }

{{ |o}|/{o] 1

Figure 1.2. Games equivalent to O.



Definition 1.3 enablés us to define a partial order on Ug. For

two.games, G, H, G 3 H if G+(-H) 3 0, i.e. the game G+(-H) is Left

to win if Right starts, By G > H we mean G > H and G # H.

"LEMMA 1.9, If G > H, H > K, then G 2 K,

Lemina 1.9 assures us that there is no ambigulty in the use of the
symbol '>' to denote the partial order.

There is an alternative formulation of the partial order that we

will often use. ForrG = {GLlGR}, H= {HLIHR}, we have '
G 2z H if:thefé is 1o HL $‘Grand there~is-no GR guch that H 3‘GR. This
formulation, like ﬁhé;methbd cf“coﬁétruétiohrof games, is inductive. éo
décidé whether G 2 H'it is first neceséary t6 determine:the order relations
that hold between all the HL and G, and the order relations that hold be-
tween H and all the GR. If it is the case that no HL 2 G and H > no GR,
then G ; H. ‘ )
By G|[>H we shall mean G+(-H)|[>0, i.e, the game G+(-H) is Left to

win if Left starts. As an immediate consequence of the definition we have
LEMMA 1.20, For all games G, GR|D > .

There are some games that behave like numbers, i.e. they provide
a certain number of free moves to one of the players. We can consider
n to be the game with n successive moves available to Left, and no

moves to Right. Figure 1.3 illustrates the tree of moves of .



Figure 1.3. The tree of moves of #n.

In the game 7, Left moves to the position #-~1, which suggests the

following inductive definition:

.

n = {n-1] 3.

For example, 1 = {0| } so that by Definition 1.2 ki), —i = { IO}.

If we play the game {0]|1} + {0]|1} + (-1) we discover that this is
. ; second player winning game, so that it seems {0|1} provides Left wifh
1/2 move advantage. For this reason, we call {0|1} = 1/2, so that by
- Definition 1.2‘(i), - 1/2 = {-1]0},

It turns out that we can define a subclass No of Eg’which is a
real ordered field that strictly contains the real numbers. In {51,
Conway details tﬁe construction of the class No. We limit oﬁrselves to
a discussion of the réle of numbers within Ug and a statement of several

~Y

of the results.
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Ly R :
DEFINITION 1.11. & = {« Ix } is a number provided it has a form in which
(1) all the xL, xR are numbers

(ii) xL < xR (for each pair‘xL,xR).

Note that 0 = { | }, n = {n-1] } are numbers (in each case (ii) is
vacuously true) so that there are some numbers. In verifying that a
number x = {xL|xR} satisfies (ii), we consider xL, xR as games (for
numbers are also games) and show that xR—xL > 0. TFor example 1/2 = {Oll}.
Since 1-0 = 1 is Left to win, regardless of which player starts, 1-0 > 0
and 1/2 is a number. But * = {O|O} is not a number, since O'# 0.

We have already defined addition, and a partial order on games.,
These are inherited by the class Ng fromlgg. For completgnéss we re-

state these in terms of numbers.

DEFINITION 1.12 (Conway [4]). Let z,y be numbers.

(i) x

WV

y if VxR, y ¥ mR, VyL, yL fx,y cxif x>y,

(ii) =«

yifax >y andy > x,
R R
(iii) oty = {wa,w’ryle +y 0ty ),

(1v) -z = {~a |-}
We also have
LEMMA 1.13. No is totally ordered.

LEMMA 1,14, For any number x, xL <z < xR.



- 11 -

Consider x = {0 l}. Since this satisfies Definition 1.1l x is a number.
2

If we play {0\%} + {Ol%} - %3 we see that it is second player winning.

For this reason we call {Ol%} = %.
From the examples considered so far, it might be thought that
{- %11} is also equal to-%. If Left moves first he goes to ~-% = {-1|0}

and Right wins, while if Right moves first, he goes to 1 and Left wins.
Hence {—'%11} is a second player win, so that {- %11} = 0.

Therefore we cannot answer the question 'What number is x£?' when &
is a number by taking the arithmetic mean of xL and xR. By way of the
Creation Story (cf. Knuth [}&]) we are ablé to provide an answer.

We think of games as being created on consecutive days, where each
day is numbered with an ordinal a. On day o we create (by Definition 1.1)
all games G = {GLlGR}, for which each member of GL U GR has been pre-
viously created. Since ﬁgris strictly contained in 25’ we know that
every number has associated with it a birthday, the day on which it was
creatéd. On day 0 we create the ﬁumber 0= { l }. On day 1, we use O
to create 1 = {0] J, —i = { |o} (= {0|0} is also created on day 1).
On day 2, the numbers -2 = { |1}, —'% = {~1]0}, %'= {o|1}, 2 = {1] 3

are created. Figure 1.4 illustrates the tree of numbers.
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Day 0

Day 1

Day 2

Day 3

Day 4

Figure 1.4. The tree of numbers.

On day n, the largest number created is n, and the least number is
-n. Every other number created on day n is the arithmetic mean of two
numbers adjacernt in the chain of all numbers previously created. Hence
on day 3, we create the numbers 3 = {2] }, I% = {1]2}, %-= {%11},
%’= {Oll}, and their negatives.

On day 3, we also create the number x = {0,1,2[ }. By Lemma 1.14,

we have ¢ > 2, £ > 1, x > 0. However & > 2 implies & > 1, & > 0, so that

1 and O seem redundant in some sense. Lemma 1,15 shows this to be so.

(d|d%.
1.

LEMMA 1.15. (1) If G = {G",H|G"}, and ¢ 3 H, then G

(11) 1£ ¢ = {¢"|65,H}, and B 3 G”, then @

Such an option H, for either Left or Right, is saild to be a dominated

option, e.g. 3 = {2| } = {1,2] } = {0,1,2] }.
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The Gift Horse Principle enables us to simplify numbers further.
- We state it in its most general form in terms of gameé. The Gift Horse

Principle asserts that it is'always possible to give a player a new move

without affecting the value of the game, provided that it does him no good.

LEMMA 1.16 (The Gift Horse Principle). Let G = {GLIGR}.
{GL,H]GR}.
{GLIGR,H}.

(1) If H<]|G, then @

(ii) If H|[>G, then @

It

For example, O[*, so that 0 = { | } = {*| } = {*#|*}. Such a 'Gift Horse'
ic referred to as an irrelevant option. The Gift Horse Principle is
usually applied in reverse to simplify games. Suppose G = {GL,HIGR}.

If for the game ¢ = {GL|GR}, H<j|G', then by Lemma 1.16
¢ = *|
{GL;HIGR}

ft

Figure 1.5 illustrates the effect of irrelevant and dominated options

by displaying some equivalent forms of some simple games.



]

o\\\ |

{o] } = {-1,0] }

-

Figure 1.5. Equivalent forms of some simple games.

The form of a game.may be simplified by elimiﬁating irreievanﬁ and
dominated options. It m;y be the case that after such simplificatiqns
have been made, that the game is a number. The Simplicity Theorem
enéples us to state precisely what number G = {GLIGR} is when G is a

number. The word simplest is taken as synonymous with egrliest ereated.’

THEOREM 1,17 (The Simplicity Theorem). Let G = {GLIGR}. If there is
any number x such that VGL, VGR, GE31 x<ﬂ|GR, then ¢ is the simplest such
x, i.e. if there is an integer x, then G is the integer nearest to 0, and

if there is no integer, G is the binary fraction with least denominator.
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For example':

0 = {-47|12} since 0 is the simplest (earliest created) number

such that —-47 < 0 < 12.

1 = {1H%| 145}

1 {lﬂ 9

2 T ‘gl

We have already seen one game that is not a number. We list several

others.

4 = {0|*} (pronmounced "up")

v = {*|0} (dowm)
#1 = {+1]-1} (plus or minus one)
n% = nt* = {n|n} (n star)
+, = {o]{0]-2}} (tiny two).

Our treatment of the classes Ug and No is by no means complete.
a2

However we now have sufficient information to begin our analysis of games.



Chapter 2

The Game of Col

2.1. Introduction

Col is a partisan game suggested by Colin Vout. We may imagine the
game as being pléyed on a brown paper map. The two players Black (Left)
and White (Right) equipped with pots of black and white paint in turn
paint countries on the map subject to the restrictions that no country
already painted may be repainted, and no two adjacent reglons may be
painted the same colour.

In passing we mention Snort, a companipn game to Col, but thét we
now require that no two adjacent regions be painted opposite colours.
The theory of Snort appears much more difficult than that of Col, and
no results analogous to those presented here for Col have been dis-
covered. However, the general character of Snort is well understood,
namely that most positions are "hot", i.e. the first player often has
a considerable advantage.

Col and Snort are typical (if not the actual prototypes) of the two
very different classes of partisan games, cool and snorting, i.e. cold
and hot. In the first a player usually does himself harm by moving
(helps his opponent); in the second he gains some advantage by dolng
so (harms his opponent). ;

The latter are the '"good" (worthwhile) games, like Chess, where the
move is all-important. The Zugawang positions in which it is actually

a disadvantage to move seldom occur.

- 16 -
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We follow én analysis of Col due to J.H. Conway. First, éimple
positions were analyzed.and uséd to build a dictionary of wvalues. &he '
table of values sugéested certain theorems Which once pfoved,were used
to condense the table.

In the game of Col, when Black paints a region, in the play that
follows he is not permitted to move in any of the contiguous regions.
We speak of regions as having a white ¢int to indicate that they are
reserved for White. Similarly if White paints a region, we speak of
contiguous countries as having a black tint. The map may be simplified
by deleting regions already painfed, orsregions thaﬁzare tinted both
colours as neither player is permitted to move in them.

We represent arbitrary maﬁs by graphs in the following manner. To
each country of the map not already painted there corresponds a node,
and an edge joins two nodes that correspond to adjacent regions. fhé
nodes are labelled to correspond to the states of their respective

regions according to the following scheme:

- tinted black

- tinted white

+ -~ untinted
'0) — tinted either black or white
Gb — tinted both black and white

) -~ tinted black or white, or untinted.
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In the actual play of games, we often represent a region in which a
player has moved by QD » since this prohibits either player from moving
there in the play that follows, just as the move does.

The graph may be simplified by deleting edges joining oppositeiy
tinted nodes. An edge affects the graph by preventing adjacent nodes
from being similarly painted. As the tinting already accomplishes this,

the edge is redundant. Such an edge is called explosive.

Figure 2.1 shows a map with one region painted black (represented by
'b') and one region painted white (represented by 'w') as well as the graph
that corresponds to it. We analyze a slightly more general game than the
one with which we started. The "brown paper' will only generate pZandr
graphs, while the theory applies to arbitrary graphs, so that one can play

on pieces of brown paper of any genus.

—~_

Figure 2.1. The correspondence between maps and graphs.
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In the analysis presented here we primarily discuss chains, though
results will be generalized to arbitrary graphs whenever possible. The
following notation facilitates the descriptioﬁ of arbitrary graphs,
but is particularly appropriate when discussing chains. Let '+!' corres-
pond to a black node: +* then represents a chain of 7 nodes tinted
black. Let '-' correspond to a white node: R represents a chain
of 7 nodes tinted white. Those nodes about whose tint we are uncertain
are represented by 0. A string of n untinted nodés is represented by

n
°o’, TFor example

@——@: +o+ &—+—+—0O0—0 : + -

@+ —+O—+0O : +ome-

A similar technique is used when referring to a vertex, say a, joined to
a set A of nodes. Note that a is not tonsidered part of the set 4, i.e.
4 is interpreted as the subgraph induced by the nodes other than a. Then

the node a is described by the symbols outlined above. For example
: <A0)° A - ; O y
a ¥ N\ 3

. (A0)o ~ o(+B)

2.2. The Values of some Col Positions.

The analysis of Col is simpler than that of Snort as the values that
arise are of a very restricted kind. ‘Consider the values of the following

simple positions:
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+ = {O|O} = * i.e. a single untinted node is a first player win.

® . (®1-0/1-1 O ={(]|®=--1
@ - {(®| 1 =1{]1)r=1 &—O = O =6

@ - (0.®| &) - ion-=-1

{*,~1,1|1} =
1+ % = 1%

9 -{(®+, O, & |

In the analysis of more:éomplicated positions, no values but or
xt+* where x is a number were observed. Conway and Guy have proved this

is always the case. The proof depends upon the following lemmas.

LEMMA 2.1. (Hindering One's Opponent is No Harm). The value of a
position is |

(1) unaltered or increased by tinting a node black,'

(ii) unaltered or decreased by tinting a node white,

(11i) unaltered or increased by deleting a node tinted white,

(iv) unaltered or decreased by deleting a node tinted black.

PROOF¥. (i), (ii) follow from the observation that tinting a node black
decreases the number of right options, while tinting it white decreases
the number of left options. To establish (1iii) observe that if a node v

is already tinted white, we may tint v black by (1) and the value of the
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position is unaltered or increased. However the node ¢y then is doubly

tinted and may be deleted. A similar argument establishes (iv).

LEMMA 2.2. The value of a graph is
(i) unaltered or increased by deleting any edge one end of which
is tinted black,

(ii) unaltered or decreased by deleting any edge one end of which

is tinted white.

PROOF. (i) The deletion of an edge, one end of which is tinted black,
cannot hinder Black since it may provide Black with an extra move in
an adjacent node, while if White plays in the node at the other end of
such an edge, the tinted node is unaffected.

(1i) is the same statement with colours reversed.

THEOREM 2.3. The value of any position G in Col is either x or «*

(¥ x+%*) where £ is a number.

PROOF. By Lemma 1.9, we know that GQQI <l GR. It suffices to prove

that
Frrcacd 4

Suppose White moves by painting y in G, 1.e.

%

where G = or
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Then G £ Gy where Gy is the position obtained by tinting black those

nodes adjacent to y

i.e. G = or

by Lemma 2.2(1)

< or
= GR + % or
and since GR—l < GR + *, we have
G <G < GR + %, o

Y

When evaluating positions it is normal to consider all Left and Right
options., ‘ﬁowever it can be shown that in certain positions this is un-
necessary. Some of the moves are dominated, and certain options are
equivalent to other positions which are easier to evaluate. In specilal
circumstances we can completely determine the values assumed by classes

of positions.
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In the case that n = -1
Q+n—\~o, @ 8 , O+ - - @ >

are interpreted as O , & , @ , with values -1, 1, O.

THEOREM 2.4. (1) " If n > -1, then +o 4 = 1;

i.e., @,’ = H = T o T lo
(i1) If # > -1, then (+o'=) = 0;
l.e. @ = M = @__‘____O = ,., = 0.

(1ii) 1 5 > 1, then (+°n) = —;—'—;
i.e.,@‘=@_’__4=@—-+-—+_..4=.”=—1-.
. 2

(iv) If n > 2, then (°n)' = 03

ie, by = F—p— = pgg—g = ce. =0

PROOF. Straightforward calculation yields

to = 4004 = ot = 4o = 1,
to e = 400l = qom = 40%- = 0,
Fo = +o° = %,

> =0,

so the above statements hold for n < 2. Let m > 3, and assume inductively

3

that the above statements hold for n < m. Then

-1 - 2 i . . .y .
+o e =;{—om +, ~o™ 2+, (+o7’—,—°‘7+) where 7 > 0, 7 > 0, 7+J

-

[
3

i
(93]

| (+o¥+ 407 4) where © 3 -1, § 3 ~1, i+j

m-3}

= {0|2} = 1.



-2 ;
oM = {—om ’ (°’b- -°‘7) where 7 =2 0, g =2 0, 2+j = m—-3|—GL}
1.1, ool o1
= {~ 'é', "1?(7/:0)’ -1(2>0) l'é', 1'2"9 1}
= 0.
~1 A i . . ..
tol= = {=o" -, (+01_’_°J_) where 7 2 -1, 4 2 0, <+j = m—3|—GL}

ft

{-1]1}

il

0.

m m-1 2 j . . " -2
+o = {-o , (+°$_’~°J) where 7 2 -1, j 2 0, 72+j = m-3, +om -,

. j . , ‘L - -2
|(+°$+,+o;) where 7 2 =1, § 2 1, i+j = m-3, (+om 3+,+), (+om +)}

L —1,0|1l,2,1}

= - 3,

-1
5 - O

In the proof of the above theorem, the list of Left and Right options was
extensive. In more complicated positions, the list of options is even
longer. Fortunately, it is not always necessary to evaluate every option,

as certain among them will always be dominated.
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LEMMA 2.5. Let 4,B be arbitrary graphs.

Black prefers the move ¢ to b.

For both Black and White, the mbvev
d is at least as good as b or c.

For both Black and White, the move
e is at least as good as b, ¢, or d.

For both Black and White .the move d
is at least -as good as ¢ or e.

PROOF. (i) Black may move to

@O
by moving in b by moving in c.

However by Lemma 2.1 (ii)

O
® O S @ O <
(i1) Black may move to '
— o

by moving in b by moving in e by moving in-'d.




Now

A

0

by Lemma 2.2{(ii)

by Lemma 2.1(ii)

by Lemma 2.1(i)

IN

" and

O S
1

In the same position. the white options are

.n A

by moving in ¢

O by Lemma 2.1(iv)

0 €

and

by Lemma 2.2(i).

W

Hence‘for each of the players the move in d is at least as good as the

other moves.
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(1i1i) Black may move to

by moving in d by moving in e.

Now,:for the option that results from moving in b

by Theorem 2.4

—e by Lemma 2.1(ii) (this
is  the result of painting
&y

A

by Lemma 2.1(iv) (this is
the result of painting e)

and for the option that results from moving in d

4 by Lemma 2.2(ii)

O O <
7/

by Lemma 2.1(i1)
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Hence the move in ¢ 1s at least as good for Black as the other moves.

To see that this is also true for White, consider his options:

s -

by moving in ¢ by moving in d by moving in e.

However

by Lemma 2.1(1)

' | 3 by Lemma 2.2(i).
@ y

(iv) The ﬁodes ¢,e are both tinted, similarly or oppositely. If

A

and

N

c,e are tinted similarly we may without loss of generality assume both ‘
tints are white. Then Black muét, by the rules, prefer d to ¢ or e.

. White also does at least as well playing d, since
»fo = O o by Theorem 2.4(ii)

B by Lemma 2.2(idi)

N

¢

by Lemma 2.1(1)

o
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and this is the result of White's playing in c. Similarly White will
not prefer e to d.

If ¢,e are tinted oppositely, by symmetry we need only consider

Black's move in

by Lemma 2.1(ii)
C}—{é:::::::> by Lemma 2.1(1)

which is the result of Black's playing at c. o

The preceding lemma enables us to prove the Half Measures and Elastic

Ends Theorem which may be used to simplify the analysis of Col positions.

THEOREM 2.6. 1If 4 is any graph and

3
(A+)°. = = x"
then for n > 1:
+2
(1) (AP = "y =,

n+2




(ii) (A+)°7Z= e R

N -

(iii) (4+) o+ =

PROOF. We first show by induction on the number of nodes in A that

1+ = ' (%%)

1+( (A+) o=) ((A+) o)

i

By Theorem 2.4 .
& —+—O -0
®o——@® =1

so that (*%) holds when A is empty. If (**) holds for all subgraphs AL

of 4, then

GRl = R GR} = z by Lemma 2.5(iv)
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where GL,GR denote the options that result from moves in A and

say, where HL,HR denote the options that result from moves in A. By the
induction hypothesis, for each HL,HR there exists GL,GR such that HL = GL+1,
HR = GR+1 and vice versa. TFor those moves in 4 at a node b by Black that

tint the node a white, we have options

/O ’ ; S
& = e " .
. ‘lll).) —0 #o= <Zi;>x) —®

1 l‘ "
so that HL = GL +1. Since HLl = GL1+1, HH1 = GR1+1, the value of every
option of H is 1 greater than a corresponding option in G, so that y = x+l.
To show that (A+)o3 = ((4+)o=) +:%, we use the above result and play

the game ((4H)o%) - 3 = (UH)e-), L.e.
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and show that it is a second player winning.game. Moves by either playgr“
in A (in either -G or H) are covered by the induction hypothesis and
Lemma 1.5, the Tweedledum and Tweedledee principle. By Lemma 2.5(iii),
(1) and (ii), aside from moves in A, we need only consider the mo?es

d, e, and f.

If White moves in d, and Black moves in e, leaving

we have that the player who moved first loses because he becomes the first
player in a shortened second player winning game.

If White moves in e, and Black moves in d, leaving

we have again that whichever player moved first, loses.
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If Black moves in -G at f, he may also move in H at ¢ to leave

which is a second player winning game. Note that the move by Black in
-G at f is equivalent to a first move by White in the game H - %’4 G.
If White moves in —~G at f (a first move by Black in H - %'— @, he may

also move in A at ¢ to leave

[~
Ty

* which is a second player winning game. Hence we have

The three parts of the theorem are now proved simultaneously by induction
on n. At each step we ignore moves in A4, assuming that they are covered
by the induction hypothesis. Note that this is not the same as the in-

duction hypothesis on n. 1In reality, the proof is a double induction
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in which for each #, we induce on the number of nodes in 4. Theorem 2.4(i),
(ii), (iii) provide the basis for the induction on A at each step. ‘When'

hn=2:

a¢ the other options

are dominated
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e—@ J since the
_ : . other options

are dominated
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1

since the other options

are dominated

by what has already

been shown

This establishes the theorem for n = 2.
Assume that (i), (ii), (iii) are true for 1 < n. We show the
inductive step for (i). The rest follow by an equally straightforward

analysis.
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O+ D5 A ¢ O +O 3
n-1 \ n-2

D) OO (OsTen-2)

7 n-1-3

e - @+ O (-1t sn~2) L

7 n-1-3 .

where O -+ +O @+ - +@® and @+ - - - +TO are interpreted

7 i i

in the case ¢ = -1,a O , @& and @ , with values -1,1,0. Hence

Kz
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For Black the second option is at least as good as the first by Lemma )
2.1(id). The third option is domlnated by the second by Lemma 2. L2(4),
and the remalning options are no better than the second by the induction
hypothesis. For White, by Lemma 2.1(ii) the option that results‘from

taking ¢ = -1 is at least as good as the others. Hence

2.3. Equivalent Positions

Given a graph ¢, a node is said to be explosive if the value of the
graph is unaltered when we tint the node either black or white. For

example,

(e+e): @y’ ={O O, + I@*-‘}

it

!

)

*
DO =
——
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so that

Hence the middle node is explosive.

LEMMA 2.7. (i) Forn > 1, oy = 0,

(i1) For n » 2, oto’ = %u

(iii) For n > 3, o% 4o’ = %u
(iv) For n,m % 3, oo = 0,
PROOF. It is easy to verify that
2, 2 3,3

odo = o Ho” = o 4o = O,

°+°2,= 6+03 = -:[LT’
02+o3 = %‘-’

from which (i), (ii), (iii) and (iv) follow by a straightforward appli-
cation of Theorem 2.6.°
The following lemma enables us to simplify the evaluation of

positions.

LEMMA 2.8. For n even, n > 2

PROOF. It is sufficient to prove
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‘ ‘ X .
as the general case will follow from repeated applications of the above

result. However

H@

W

by Lemma 2.1(ii)

by Lemma 2.1(ii)

by Lemma 2.2(i).

W

We summarize the results established so far. In a chain of length
n > 1, 1f there is no tint whatsoever, tﬂe chain has value 0. If there is
a tinted node, we may assume by Theorem 2.6 that the tinted node is at most
three nodes from the end. If the end node is tinted, and the penultimate
node is also tinted, we may use either the remark éoncerning explosivé nodes
or the remark concerning explosive edges to simplify the chain. If the

nodes are similarly tintéd, the penulfimate node is explosive. If the
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nodes are oppositely tinted, then the edge joining them is explosive and
may be deleted.
We prove another equivalence that enables us to simplify positions.

However we first establish three lemmas that will be used in the proof.

LEMMA 2.9. If 4 is any graph, and n > 0

W

7 J 20
i+j =n
PROOF. This is an immediate consequence of Lemma 2.1(iv).
LEMMA 2.10. If 4 is any graph, and n > 2
o9 - - = o0~ +n

PROOF. This is an immediate consequence of Lemma 2.8, and Theorem 2.6.
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LEMMA 2.11. If A is any graph,

(1) S
(i1) g
PROOF,
(1) = O—® by Theorem 2.4(ii)
ES by Lemma 2.1(ii)
(i) = Oo—+—& by Theorem 2.4(ii)

by Lemma 2.2(ii)

n
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THEOREM 2.12. For any graphs 4, B, and n > 1

-

'b.

v
n+l
l<isntl

providéd that if ¢ is untinted then 4 is empty, and if f is untinted,

then B is empty.

PROOF., Let’

n+1l
lsign+l

e d wj e f
H= O—+—-0O0—O0~ + - O+
" 7 ‘
lsisn ,

We show that H4n-G is a second player winning game. For moves at e, d

>

e, f, we show that if the first player moves iﬁ H(G), he may make a move
in G(H) so that eitﬁer HL+n—GL =0 or‘HE;n-GR = 0. This is estébliéhed
by showing that a move at ¢ in @ corresponds to a move at & in H, andv

a move at d in G corresponds to a move at d in H.” The érgumenf concerning
moves at e, f will followrby a symmetrical argument. Note that by Lemma
2.5, it is only necessary to consider a move at ¢ in the case where ¢ is

untinted, so that by hypothesis, 4 is empty!
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Consider moves by Black at ¢ in G and at ¢ in H. He leaves options

GL, HL such that

¢ -009 - - -08+(

n+l

n+l

+n+l

%

ntl

ON & ik

. ntl

I

by Lemma 2.10
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so GL = HL-m, and HL-m-GL = 0, If White moves at ¢ then we have

R
Hin= @ OO— ' O ‘e
n

W

n+2
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Moves by Black in # at d and in G at d correspond. He leaves options

H[', G'L such that

= [a )

&
n
+w
#4n = » OO0 -
7
+w
= e by Lemma 2.10.
n

where we indicate that the node ¢ acquires a white tint in addition to
whatever tint it already possesses by writing '+w'. Should White move

at the same node we have

+b .
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by Lemma 2.10

+b
0 -0

1

e e by Lemma 2.8
n+l

so that GR = HR+n.

By Lemma 2.5, the legal moves at bl, bn+1’ wl’ wn are no better
than moves at ¢ or d.

We now assume that # > 2 and consider a move by Black in the chain
of black nodes of G. This is equivalent to a first move by White in the

game HL+n—G. It suffices to show that GL < Htn.
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GL = |4 & @ - - -
1 J
itj = n-2
= A .: . ——O O— . : . B +n-2 by Lémma 2.10
v ity = n-2 J :
= A - - =0 O-0O O e B 4n~1
4 J
i+ = n-2
$ ®>+& OO0 - OO n=1 by Lemma 2.2(11)
n

Similarly we show that if n > 2 a move in H in the chain of white nodes
by White leaves an option HR+n > G so that the game HR+n—G is Black to

win.
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H4n =
= .- Om F N +1 by Lerma 2.10
7 4 J ‘
itj = n-3
> e 60— - - H— B +1 by Lemma
n+l 2.2(id)

> G

It remains to consider the situation in which Black moves in 7.
Consider first the situation in which at least one of ¢, f is not
tinted. Suppose ¢ is not tinted, so that 4 is empty. To a move by

Black in n White may respond by mév‘iﬂg in ¢ leaving



IN
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B (n-1)-G
® OO 0O+ +(n-1)~ |+—+—@—&- - -
| n '

n n+1

0 - - Q@M...@ +—O
n : n

0>

~ so that White as the second player can win.

by Lemma
2.10

by Lemma
2.1(iv)

1f e, f are tinted, and Black moves in n to n-1, White answers by

moving in H at d. He leaves



i

A

+b
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J

by Lemma i.l(ii)

by Lemma 2.11.
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The values of some simple positions in Col are displayed in Table
2.3, TFigure 2.2 illustrates a typical element of the table. The set
. | .
of nodes under consideration is described by A. Then the values of
i

o$(A)oJ,‘0 <7 <£3,0%<J <3 appear in ‘the corresponding podition of

the array.

A (4) o (4) o> (4) o>
o(4) oMo  o(A)e®  o(A)o’

20)  F)e  oT()e”  eZ(A)e”

Sy oPye oo Pw)e®

Figure 2.2. A guide to Table 2.3.
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Chapter 3

The Sprague~Grundy Theory

3.1. Introduction

In the remaining chapters we restrict ourselves to the class of im-
partial games under normal play. We still require that the state of play
be known to both players, that the moves ndt be determined by any external
means, and that the games satisfy the terminating play conditions. For
reasons which will become clear, these games are known as Nim-like games.

The theory of the class of Nim—-like games was first developed‘by
Sprague‘[lé] and Grundy [10] independently. We develop the theory within
the more general context of Chapter 1: To facilitate the ensuing dis-

cussion we first introduce Nim-addition.

3.2. Nim—addition

For two non-negative integers a and b, the nim-sum of a and b, de-

*
noted by a+b (pronounced "a nim b'") is defined as follows: let

a= ) a.2j, b= 7

bjzj, e = .Z

e.29, a.,b.,c. =0 or 1 be the binary
0 PLARE A MM

* .
expansions of a, b, ¢. Then ¢ = atb if cj za.+ b, (mod 2) for each jJ.

J o d
%
For example consider 12+15. In binary form 12 = 11002, 15 = llllz.

Writing this as 1111

*
1100 and adding the columns mod 2 we obtain 12415 = 11, = 3.

2

LEMMA 3.1. Nim addition is
(1) commutative,
(ii) associative,
\ (iii) distributive with respect to multiplication

by powers of 2.

- 55 -~
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Further

%
(iv) a+b = atb mod 2,

m

*
(v) ata = 0.
The proof follows immediately from the definition.
%* -
We also observe that at+b < at+b, and if the inequality is strict,

then by Lemma 3.1(iv) the two sums differ by at least 2.

3.3. The game of Nim

Nim (see section 1.2) is an impartial game and will be used as the
starting point from which we develop the theory for the class of Nim~
like games. The game of Nim is actually a disjunctive compound of com-
ponent games of Nim, each component consisting of a single heap of tokens.

A position in Nim is a set of positive integers corresponding to the
number of tokens in the respective heaps. To analyze this game we let
*n (not to be confused with n* = n+%*) denote the value of a nim heap of

n tokens. Since any game 1s completely determined by its options we have

*0={]1}=0
¥1 = {0]|0} = *
%) = {0,*|0’*}

so that inductively
fno= {0,%,%2,. .., %(n-1) |0,%,%2,...,%(n-1) }.

This notation is consistent with that of Chapter 1 since a nim heap of

size 0 is a second player win, and a nim heap of size 1 is a first player
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win. More generally, ;f n > 0 then *n||0 éince the first pléyer may remove
all the fokens to win.

In the theory of partisan games, it is possible éo speak of positibﬁs
from which Left may always wiﬂ, regardless bf whether he moves first or
second. In the game of Nim, it is only possible to speak of positions
from which the first player may of may not win. If Left can win from a
position G by playing first, so can Right, since the options available
to éither %layer are the same. For any impartial game, a P—positioﬁ is
a position from which the previous player (the player who moved to that
position) can win, i.e. a P-position is a‘Second player winning poéition,
so that, if ¢ is a P-position G = 0. For example in Nim, *n 4+ *n is
a P-position. The second player mimics the moves of the first player in
the opposite com%onent of the disjunctive sum. An N-position is one from
which the next player can win, i.e. it is a first player winning position.
For example, in Nim, if n # m, then % + *m is an N-position. The next
player equalizes the size of the two heaps, and becomes the previous -

player at a P-position.

3.4. The Sprague—Grundy Theodry

If {gl,gz,...,gn} is any set of non-nepative integers, ST N

(minimal excluded value) is the least non-negative integer different from

all the g;» ©-8-

mex{0,2,4,1,7} = 3

mex ¢ = 0.

NS
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Using this definition, the theory of the game of Nim generalizes to the

class of Nim—-like games.

THEOREM 3.2. Let G be an impartial game whose options are all equai in

value to some *g., where g, 2 0, i.e. G = £*g1,*g2,...,*gml*gl,*gz,...,*g }

Then G = *g where g = mex{gl,gz,...,gm}t

m "’

PROOF., Let g = mex{gl,gz,...,gm}. Then from G + *g, the only moves are

to G + % (n<g), *n + *g (n<g), *n + *g (gn), all of which are N-

positions (see Figure 3.1). Hence G + *g = 0, so that

G = G + (¥%g+*g)

= (G«}-*g) 4 *g

=0+*g

= *g,

*n + *n

G+ *¥g

Figure 3.1. The play of G + *g.

*g-{-*g
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‘As an immediate consequence of Theorem 3.2 We obtain E y

COROLLARY 3.3. Every Nim-like game is equal in value to *g for some non-
Aegative integer g.

In particular Theorem 3.2 and Corollary 3.3 imply that Nim itself
must have’a solufion. Given two nim heaps ‘of values *n, *m, fheir dis-
junctive sum *» + *m is an impartial game, so that we must have *n + #m = *g
for some g, where g is a function of n, m. Further, for two positions
G = 7, H= %m in an impartial game, we will have evaluated the disjunc-
tive sum G+H the moment we have determined g. It suffices therefore to
evaluate disjunctive compounds of nim heaps.

Recall that for any games G,H,
Gl = (o4l ,ovil | el o+ Y.

This definition, with Corollary 3.3 and Theorem 3.2 can be used to compute -
%y + *m inductively. Figure 3.2 lists the values of *g = *n + *m for

ngl,msg7.

%) %1 k2 %3 %4 %5 kg %7

%0 | *Q k1 %2 %3 %4 k5 k6 X7
*1 *1 %0 %3 %2 *5 %4 %7 *6
%2 | %2 %3 %0 %] k6 %7 k4 %5
3 | %3 %2 %1 %0 %7 x6 %5 k4
x4 | k4 k5 k6 %7 %0 *i %2  ®3
%5 | %5 %4 *7 %6 %1 ®%Q k3 %2

%6 | %6 %7 %4 k5 %2 %3 %0  *1

%7 | %7 %6 k5 x4 %3 %2 k1 %0

Figure 3.2. *n + *m, n <7, m< 7.
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Figure 3.2 suggests that given twd nim heaps of values *2 and *m,.

* . . .
*g = *n 4+ *m, where g = n+m. The proof of this fact depends upon the

following theorem.

THEOREM 3.4. (i)

(i1)

If m < ZZ, then *ZZ + %pm o= *(2Z+m)

If *g = *m + *n where m,;m < 2Z+1, then g < 2Z+1.

PROOF. By induction. Figure 3.2 establishes (i), (ii) for 7 = 0,1,2.

Assume inductively

establish (i) requires a further induction on m. WNote that %2

= *(2k+0). Assume

If my < 2k, and *g

= *ml + *m, then bv (ii), g < 2k. Hence, le < 2

that (1), (ii) hold for all I <.k where k > 3. To’

Ky g =
therefore that (i) holds for m' < m where 1 = k.

k

(*m,+*m) + *m = *m, + (*mt*m)

*m, o+ %0

*.
m

“ , . k .
so that there are moves to *m1 by moving in *2°. Further if we move in.

\i 1
*m to *m where m
k

*Zk + *m

]

1

52K 4w’ = %2’

< m, then by the induction hypothesis on m,
)
}
k 1 k 1
mex{(*m1+*m)+*m,*2 +*m |05m1<2 ,0<m <m}

mex{*ml,*(2k+m')IOsm1<2k,Oém'<m}

*(2k+m).
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If m < 2k, n < Zk, then by the induction hypothesis g < Zk where

*g = *m + *n, Fet Zk gm< 2k+1, m = 2k +m. Ifn < 2k
kg = *hm + *n
.= *(2%+m') + *n
= %2k & (o'
= 52 4w’ = xRy,
By the induction hypothesis g' < Zk so that g < 2k+1. If

Zk <n < 2k+1, let #n = *(2k+n'). Then

*g:*m+*n

= %2y + =20
k

1
AT LI,

= w2k 4wk g en e

= *m‘ 4 *n"
k . . .
and g < 2 by the induction hypothesis. al

We use this result to prove that the value of a disjunctive sum of

nim heaps is just the nim sum of the values of the individual heaps.

THEOREM 3.5. The value of the position {n,m} in the game of Nim is

%
*g, where g = n+m.
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PROOF. Let 7

Z n.ZJ, m = X m.ZJ, g = Zg.ZJ be the binary expansions of
g J J J J ,

% .
ntm,

n,m,z wvhere ¢

* + %m

* .zj + % .2j
<§nJ ) "g.’"a ‘>

Z*n.ZJ + Z*m.ZJ by Theorem 3.4
g dJ . d

= T (on 27 4um 27
J dJd d

I

Yrg .27
i?

it

*ZQJZJ by Theorem 3.4
J

= *g. (n]

By repeated applications of Theorem 3.5 arBitrary positions in Nim
can be evaluated. More important, Theorem 3.5 allows us to evaluate
arbitrary positions in disjunctive sums of Nim-like games. We summarize

the results in the following theorem.

THEOREM 3.6. Let G be a Nim-like game.E Then all the optiouns 7 zre
equal in value to *g, for some g > O.
1f G = {*gl,*gz,...,ﬁgjl*gl,*gz,...,*gj}, then G = *n where
n = mex{gl,gz,...,gj}. Moreover, if H is another Nim-like game and H = *m

*
then G+H = *k, where k = ntm.
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3.5. The Sprague-Grundy Function

Consider a Nim—iike game T played with heaps of tokens. By Theorem
3.6 we know that each position of G is equivalent to a nim heap of size
g, for some g. To avoid confusing the number of tokens in a heap and
the size of the nim heap to which it is equivalent, we introduce the

Sprague-Grundy function G(x) of the positions x of I. It is defined by
G(x) = g if © is equivalent to a nim heap of size g.

The following properties are immediate consequences of the definition
and Theorem 3.7:
(i) For all positions z, G(x) = mex{G(y) |y is an option of x}
(ii) For the disjunctive sum of positions xl,xz;...,xn
* * *
G(x1+x2+...+xn) = G(xl) + G(xz) + ...+ G(xn)
(iii) A player wins by consistently moving to a position.x for
which G(x) = 0.
Note that (i) implies G(x) = O for all terminal positions x.
Consider the Nim—-like .72 played with heaps of tokens in which a
legal move affects only one heap. A player may, in his turn
(i) remove one token from a heap, provided that the remaining
tokens in the heap (if any) are left in at most two hears

(ii) remove two tokens from a heap provided that some remain.

Suppose we play this game with a heap of eight tokens. Then we have
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Position dptions

{0}
{1} {0}
{2} {1}
{3} {2}, {1,1}, {1}
(4} {3}, 11,2}, {2}
{5} {4}, 11,3}, {2,2}, {3}
{6} {5}, 1,4}, 12,3}, {4}
{7} {6}, {1,5}, 12,4}, 13,3}, {5}
{8} {7}, (1,6}, {2,5}, (3,4}, {6}
so that
G(0) = 0
G(1) = mex(G(0)) = mex(0) = 1
6(2) = mex(G(L)) = mex(1) = 0
G(3) = mex(G(2),G(1,1),G(1)) = mex(0,131,1) = 2
G4y = mex(G(3),G(1,2),G(2)) = mex(2,130,0) = 3
G(5) = mex(G(4),G(1,3),G(2,2),6(3)) = mex(3,12,040,2) = 1
6(6) = mex(G(5),G(1,4),G(2,3) ,G(4)) = mex(l,1$3,042,3) = 0
6(7) = mex(G(6) ,G(1,5) ,G(2,4) ,G(3,3),G(5)) = mex(0,131,0+3,2%2,1) = 2
6(8) = mex(G(7),G(1,6),G(2,5),G(3,4),G(6)) = mex(2,150,0%1,2¥3,0) = 3.

Those positions & for which G(x) = 0 are the P-positions. For example

{o}, {23}, {6}, {1,5}, {3,3}, {1,3,4} are P-positions.
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1f we allow heaps of tokens of arbitrary size, then this game has
G4seqpence 0102310231023... where the G-sequence is the sequence of

G—balues G(0), G(1), G(2),..., for those games in which disjunctive

compounds of heips of tokens {n}, n = 0,1,2,... are possible positions.



Chapter &

Take and Break Games

4.1. Introduction

We now consider an infinite class of Nim—-like games with a particularly
concise description. The method of description was first suggested by
Guy and Smith [1l] and later generalized by Guy [v. 13]. These gameé
are played with a finite number of heaps.of tokens, each heap containing
a finite number of tokens. A legal move affects only one of the heaps,
removing some of the tokens and possibly splitting those remaining in
the heap into a number of heaps.

Tor the class of 'octal games', the legal moves are describted by the
following octal notation. Consider any inf&nite sequence of numerals
'.gqg2g3..., where Q < Qu < 7. The uth numéral describes the conditions

under which we may remove u tokens from a single heap as follows.

. Value Of'gu Conditions for removal of ¥ tokens from a single heap
9 Not permitted.
py Only if the heap contains exactly u tokens.

2 Only if, after removing u, the remaining tokens
in the heap are left as a single non-empty heap.
3, Only if the remaining tokens in the heap are left

as a single (possibly empty) heap.

pa=S

Only if, after removing u, the remaining tokens in

the heap are left as two non-empty heaps.

- 66 -
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Value of gu Conditions for removal of u tokens from a single heap

2, Only if, after removing u, the remaining tokens in
the heap (if any) are left as two non—-empty heaps.
5, Only if, after rémoving u, the remaining tokens in

the heap are left as one or two non-empty heaps.

o~

Only if, after remowving u, the remaining tokens in

the heap (if any) are left as at most two heaps.

For example, in Nim we remove any number (possibly all) of the tokens
from a heap so that Nim is denoted as .333... = .é,

Kayles [8] is denoted by .77. It is the game in which we may remove
one or two tokens from a heap, leaving the reméining tokens in that heap
as at most two heaps.

Tor conciseness we express the fact that the removal of the entire
heap of u is permitted by saying 'remove u tokens to leave O heaps'.

Then unless stated otherwise, we assume that for k > 0, k heaps means k
non-empty heaps. .156 is the game in which we may remove 1 token to
leave 0 heaps, two tokens to leave zero or two heaps, or three tokens to
leave one or two heaps.

We allow digits Qu = 4 before the point. If gu = 4, (uz0) then a
heap of »n tokens may be replaced by two heaps of 1 and n-u-1, where we
maintain the terminating play condition by requiring that both n-u-i
and 7 be less than n, so that -u < 2 < n. For example 44.3 is the game
in which we may divide a heap of n tokens into two heaps of i‘and n+i—1
(1<i<n), or divide a heap of n tokens into two heaps of 7 and n-i (0<i<n)

or remove one token from a heap.
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4.2. Take and Break Games

Let ¢ = 0020 + 0121 + ... + ck2k be the binary expansions of ¢,

= 0 or 1. We say that ¢ contains Zh (or ¢ includes Zh) if = 1.

e, o,
e.g. 5 contains 1 and 4
6, contains 2 and 4.

The notation for Nim—-like games introduced above can be generalized

to arbitrary take and break games. Express the code digits ,g,u (u = 1,2,...

in binary form as

k

d =d 2°+d 28+ ...+4 2%

U U,0 Uyl ‘ u.k

Then in a move a heap of n tokens may be replaced by exactly h heaps of
i;,ﬁz,,,,,ih (i1+i2+...+ih = n-y) if and only if du,h =1, We write
AsBsC,D,ELE in place of &,g,%,&,%,& respectively.

For example, .FF is the game in which we can remove one or two
tokens from a heap, and leave it as zero, one, two, or three
heaps. .63A is the game in which we can remove one token
from a heap and leave the remaining tokens in the heap as &ne
heap or two, remove two tokens from a heap and leave the re-—
maining tokens in the heap, if any, as one heap, or remecwve
three tokens froﬁ a heap and leave the remaining tokens in
the heap as three heaps or one. |

A digit Qu with u < 0 may be allowed -provided that Qu does not contain

2 or 1, and provided that the terminating play condition is still sat-

isfied. TFor example if gu (ug0) contains 2? (h22), a heap of n tokens
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may be replaced by % heaps of il,iz,...,ih, where il + iz + ... ih = n-u
Cand for 1 £ 4 sh, 1% ij < n.

For example: 80.4 is the game in which we can remove one token
from a heap and split the remainder into two non-zero heaps,
or add a token to a heap of n and divide it into three non-
zero heaps of il, iz, i3 where il + iz + i3 = n+l.

To see that the terminating play condition is still satisfied, con-

sider the (even larger) class of games in which any move replaces a
heap of n by at most % heaps with at most n-1 tokeﬁs in a heap. Let

mn be the maximum number of possible moves starting from a heap of n.

Then

m <1+ hm .
n n-1

Since m, = 0, # 2 2 implies that m, < (hn—l)/(h—l) and h =1
implies that mn < N, '

Let T be a take and break game. 1f yu,gu < 3 (and éu = 0 for u g 0,

then T is called a tetral game., Mim, .én is a tetral game. 1f Vu,gu < 7,

~J

then T is called an octal game. If Vu,gu < F (=15, then T is called

a sedecimal game. In each case, if there are only a finite number of

non-zero code digits, we call the game finite.

4.3. Periodic G-Sequences

Let T be a take and break game. If a heap of n tokens may be re-
placed by % heaps of il,iz,...,ih tokens in a legal move, then

* % * '
G(il) + G(iz) + ..+ G(ih) is an excluded value for G(n). To show that
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G(n) = g it is necessary and sufficient to show that every non-negative
integer less than g is an excluded value, but that g is not an excluded
value.

Consider the game .F3. We list the options of the first few positions

as well as their G-values. Beneath the options of n we write the excluded

values.
~ Position Options . . G~values

{0} G(0) =0

{1} {o} G(L) =1
0

{2} {o},{1} G(2) = 2
0 1 )

{3} {1},{2},{1,1} G(3) = 3
1 2 0

{4} {2},133,{1,2},11,1,1) 24 = 0
2 3 3 1

{5} {3},{4},{1,3},{2,2},{1,1,2} G(5) = 1
3 0 2 0 2

{6} {4},{5},{1,4},{2,3},{2,1,3},{1,2,2} G(6) = 2
0 1 1 1 3 1

{7} {5},{6},{1,5},{2,4},{3,3},{1,1,4},{2,2,3},{2,2,2} G(7) = 3
1 2 0 2 0 0 0 2

The G-sequence for .E3 appears to be 012301230123... . TIf a take and break

game has the property that there exists integers p > 0 and ¢ 3 0 such that

G(ntp) = G(n) for alln > e (%)

we say that the G-sequence is periodic with period p. TIn each case we
choose the least integers e,p satisfying (*). Then e is called the last

irregqular value, and p is referred to as the period. We indicate the
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periodic values by writing a dot over the first and last members of the
period. For example the G-sequence of éEQ afpears to be 0123. Guy and
Smith [1l] proved a periodicity theorem for octal games of the form |
'QﬂQQ"'Q% which wgs modified by Kenyon [}g] to include those octal games
where 4's occur before the octal point. We, generalize Kenyon's proof to

arbitrary take and break games.

4

coad
~ 1

1., T = .o i Find
THEOREM 4.1. Suppose that T = d d 4 Qw is a finite take and

+1 0 2
break game, in which a move replaces just one heap by at most i heaps,

ht+l
i.e. for v g u < W, du < 2 , and that there exist integers p > 0 and

e > 0 such that
G(itp) = G(2) for all 7, such that e < < het+(h-1)p+t
where t = max{|v|,w}. Then G({4p) = G(Z) for all i > e.

PROOF. Assume inductively that V7 satisfying ¢ < 7 < n we have G(i+p) = G(2)
where n > he+(h-1)p+t. To show that G(ntp) = G(n) we show that G(ntp) and
G(n) have the same set of excluded values.

Suppose we can remove y tokens from a heap of ntp to leave heaps

< vo. € ih <ntp, and 2, + 7, + ... ¥ i% =

of‘wl,zz,...,th where 0 < 2., € 7 1 9

1 2

+%

‘ * %
= n+p~u. Then G(il) + G(iz) cel ¥ G(ih) = g is an excluded value for

ntp. But G(ih) = G(ih—p) since ih—p < n, and
1, > l(n+p—u)
h”h
1
> z(he+(h—l)p+w+p—u)

> etp, since w-u 2 0.
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Moreover, if A > 2, the heaps ij, 1 <J g h-1 are of size < n, since
h -

. ) = s i+ 4 '
%h—l > n would imply that nip-u jzl @J > %h ﬂh_l > zth > 2n,

-1
contradicting our assumption that n > het(A-1)p+t (= p+|u| > p-u) .

% X % ‘
Hence G(i]) + Gyi?) oo+ G(ih—p) = g is an excluded value for G(n).

% % . % .
On the other hand, if G(i;) + G(i;) + .4, +=G(té) is any excluded

value for G(n) where i; < i; < .o £ ii, then ié > ¢ since n > he+(h-1)p+i.
Then
R R * 1 T Lt % % .
G(al) + G(zz) + ... F G(@h) = G(@l) + G(zz) + ...+ G(@h+p)

so that this is also an excluded value for G(ntp). Thus G(n), G(ntp)

have the same set of excluded values, so that they are equal. o
For example, consider the game .772. The G—ééquence begins
012341624163416341634163416. ..

and appears to periodic with period 4 and last irregular value G(7) = 2.
Since .77Z is an octal game we need only calculate G(n) for

n g 2:7+ 2:4 + 3 = 25 to establish that the game is periodic.

4.4, The Standard Form of Take and Break Games

The G-sequences for the games 4.02 and .73 are 00123 and 0127%

respectively, so that G Zéfn) =G, 02(n+l), n=20,1,2,... . 1n this

~y

section we specify the sense in which 4.02 is a disguised form of .73.
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We write T = U if GT(n) = qg(n) for all n, and T =, U if

5. (n) =G (n+r), n > 0 and GU(n) =0, 0 <»n < r. For example .73 =, 4.0

rI/ H; 1 (AN
Since G.137(7’L) = G.Q’Z(n'*'l) = G.’é‘(n"'z): n = 0,1,2,..- and G‘,{",(O) = G‘,é,(l) =0
we have .137 =, .07 El .4 end .137 3, 4. EBquivalently if T e U, we may

write U = » T. Hence .4 = 9 A37. If T Er U we refer to U as the rth
cousin of T. Then .Q7 is a first cousin of .137 and .4 is a second’

cousin of .137.

THEOREM 4.2, [13, p.37, Theorem 14]. If 4, is even, and 'clu includes 2

(u>0), then the G-sequence is not affected by the inclusion of 1 in [

PROOF. If ,@1 is even, then G(1l) = 0.

If '@u includes 2 (u>0), then {1} is an option of {u+l}, so that

Glut+l) # G(1) 0, regardless of whether

’c‘l'u+1 includes 1 or mot. O

Theorem 4.2 generalizes in the following manner.

THFOREM 4.3, If 'Sl'l is even, and rc\l'u includes ,%k, u> 1=k, k > 1 then

‘the G-sequence is not affected by the inclusion of ,%kﬂg, l<gsk, in
gu+j'
PROOF. 1If 91 is even, then G(1) = 0.

If ’C\lu includes ,%k’,‘ u> 1l-k, k » 1, then for nt+u > k+u,

{%1,1,2,...,7, ,n-—(7/1+7,2+...+7,k_1)} is an option of ntu

j’$j+1""’$k~1

where 1 =4. =42_= ... =1, < 1. < ves £ 7T < n-(L +...+ .
1, =1, zJ <1 < STy $7 (7/1 -H,k__l)
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* . * * . * .. .

G(zl) + G(%z) + ...+ G(%k_l) + G(n—($1+¢2+...+¢k_1)) =
6, ) ¥ ... %66, ) ¥en-d ;
= . .o 1 - v
7/J+1 k_l (n (’L1+ %k—l))

. * * . * . .
so G(tj+1) + ... + G(wk_l) + G(n—(t1+...+zk~1)) is an excluded value for
G(nt+u) .

Now the additional moves made available by the possible inclusion of

QF_J in 4,,; are to replace {ntu} by

{7,

J+1’$j+2""’$k—1’n-J—($j+1+'"+$k—1)}‘

= {¢j+1,zj+2,...,tk_l,n—(zl+¢2+...+¢k_1)}

L, L, PP 3 < n-(1 .. i
where 1 ¢ $J+1 < $J+2 < < %k_l < n ($1+ +1k_1), which exclude the

same values as before. u]

For example, .A = .A4 = .A42 = .A421.

~J ~rs

THEOREM 4.4. [13, p.38, Theorem 15]. If 4, includes 4 (u20), then the

G—sequénce is not affected by the inclusion of 1 in Qu+20 for v > 0.

PROOF. 1If Qu includes 4, then {v,v} is an option of {u+2v}, so

~o?

G(u+2v) # 0 regardless of whether Qu+zv intludes 1 or not.

THEOREM 4.5. If gu includes 2?, k> 2, u> 1l-k, then the (-sequence is

. . k-24 .. : .
not affected by the inclusion of 2 J (0<24¢k) in Qu+20, where v 2 J.



- 75 =

3

PROOF. If Qu includes ZF, k> 2, u>1-k, then for n > k

R

L.
24° 24+ k-1

{il,iz,...,i ,n—(i1+i2+...+ik_1) is an option of ntu

where 1 € 2. =4 €1_ =17, € vvs £1_. =1 _,51T_., < v..
1 2 3 b 2J-1 2J 2g+1 ° N

4+ tz + ... + %zj = 20.

g

k=1

< n—(11+...+tk_19, and 7y

+.n.+ik_]))

. * G . * . * G . * * . * I -
G(i)) + G(Zy) + ...+ G(zzj_l) + (sz) + ...+ G($k~1) + G(n-(i,+2,
*
+

ST I T I A

1 G(n—(i1+...+ik))

2J+1

% * %
so that G2 ) ¥oo% G(ik_l) + G(n—(i1+...ik_1)) is an excluded value

2J+1

for ntu.

Now the additional moves made available by the possible inclusion of

k=2 in are to replace {ntu} by
+20

{ J-20-(1

)} =

A R R T
24+1° 24427 >7k-1 27+1 k-1

= { ’n~(i1+"'+ik~1)}

7 . i . vl
2d+1’ T2gto’ T T Tk

where 1 < < .. € ik—l < n-(i1+...+ik_1), which exclude the same

7 .
2441 °
values as before.

For example .F = .F03 = .F0302.

G

THEOREM 4.6 (cf. [13, p.39, Theorem 17]). If for the game g;'gd is even, and

we define a second take and break game J as follows:

. . k . k k-1
(1) If Qv includes 2 (k20,v>1-k) then &ptk-1 includes 2,2 ~,-..,1.
- . k : . k k-1
(ii) If Qv includes 2 (kz2,v¢1-k) then &th-1 includes 27,2 seeash.
Then U = I, i.e. GU(n) = GT(n+l), n=20,1,2,... .

1~
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PROOF. We prove H‘El I by showing that GU(n) and GT(n+l) have the same
set of excluded values.

(i) We consider separately the cases k = 0 and k 3 1, If gv

. ‘
includes 2 = 1 (v22) and gv_l'includes 1, then GT(U) # 0, GT(v—l) # 0,

i.e. GT(n+l) # 0, GU(n) # 0 for n = v-1.

includes 2°,257% ... 1

~~

. k
Iif éb includes 2~ (kz1,v>1-k) and Skt

then for n 2 0,

L

. * . % %* ] : %* o, .
Gz(n+1+v+k—1) # G£(¢1+1) + G (1, 41) + ...+ GIJ(Lk_1+l) + Gg(n+l—(1,l+...-m _

wvhere 0 s 2) $2, € ... €7y, < n—(i1+...+ik_1), and
G (k1) # G (1) + G (5.) + ¥ 5 e tnee ;
.H;n -1) H}zl) + ﬁl(tz) + ...+ ﬁi(ﬁkll) + %l(n—(zl+...+tk_1))
where 0 < 1y % Z, < ... % Ty < n—(zl+...+$k~1).
(11) If d_includes 2% (k2 X k oktl
ii gv includes 2~ (k>2,v5l-k), & k1 includes 27,27 7,...,4,
then
G (AL +v+k-1) # G (£ 41) + G.(.41) + ... ¥+ 6.4, +1)-F
T ],31 27/2) l(v,kl)

* . * . . V
+ GI,(nH (T4, +. . .-mk__l)) ,

where 1 < 7 4+l ¢ 2 +1 ¢ ... ¢ 1 < nHl-(Z +.. .4+ i
) z, < STy, 1 1 (11+ +1k_1), and each heap is

strictly less thHan the original:
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l+ij < nt+ltotk-1, 1 <4 < k-1,

L= ()40, o) < mElAvRR-,

i.e. : ij < ntotk-2,
so that k-1
Y 2, < (k-1) (ntvtk-2),
g=1 7 ,

k-1
or 2-v-k < Z 1, ¢ (k-1) (nto+k-2) .

27

dJd

her hand +k’1 teG@)teun ... s ¥
On the other han qg(n+v -1) Hltl H'iz) cen % zk_l) +
L% ‘ ‘ ~
o , . . . s .

+€Q\n ($1+...+$k_1)) where 0 < 182, 8o sty 8n ($1+$2+"7+tk—1)’

and each heap is striétly less than the original:
'zij < ntvik-1, 1l <4 < k-1,

1, < ntoHk-2,
dJ
k-1
< (k-1) (mo+k=2)
1

| LI e B

J
n—(¢1+12+...+1k_1) < ntotk-2,

so that - = k-1

2-v-k < < (k-1) (ntvt+k=-2)

It o~1 3§

J=1

as before. Note that here k 2 2 and

Po1 k-1 ;5 2wk 220k 1
L e A U R

> 0

so that at least 2 non-empty heaps result from the heap of ntotHk—1. 0
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We may repeat the above process until the first code digit is odd,

ie. T = U= .vo = Y with y odd. Then ¥ is in standard form

-1 -1 1

and its G-sequence begins 01...

E.g. .08 = . .OOOF = ) Q0137F = . QL13377F = . SALL33ITIIE,

-80000.02 = I.COO.03 = . 4C.13.

RN RO -1 ~HY

4.5, Periodicity of Take and Break Games

It is not yet known whether all finite take and break games are
either periodic, as described in Section 4.3, or arithmetico-periodic
(see Section 6.1). We have so far analyzéd only octal and sedecimal
games, and even for these classes the question is still undecided. In-

or .d.d. d. is contained

formation about octal games of the form 4.d 44,45

, 1<
in Tables 7.2 and 7.3. Some of the games are periodic with very few
irregularities. There are many however, which so far show no sign of
periodicity though the G-values have been calculated to or beyond

n = 9999, No octal game has been shown not to be ultimately periodic.

We may also ask whether all take and break games that are not arith-

metico-periodic are bounded.

THEOREM 4.7. Let T be a take and bredk game, T = .d (Yuz0,4 =0).
Y.

148,
Then for all n, G(n) < n.

PROOF. By induction. G(0) = 0, G(1) < 1 for any such game I. Assume
inductively that G(k) < k, Vk < n. We show that if g is an excluded
value for G(n), then g < n-1l., If by a legal move we may take u counters

from a heap of n to leave heaps of il,iz,.:.,ih, then by the remark after

Lemma 3.1,
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. * . * x . ) . ' .,
g = u(ﬁl) + G(%z) + ... + G(th) < G(tl) + G(az) + ...+ G(@h)

A

m1+w2+...+1h

= n-u
< n-1 o
The periods of the games .336, .165, .033 = 1177, 644 = ) 37711

are displayed in Figures 4.1-4.6. These games will be used to illustrate
certain patterns that have been observed in some of the octal games known
to be periodic. Though the significance of these patterns is not yet
known, they occur sufficiently often to be worthy of note. We discuss
them briefly, and then examine the periods of the aforementioned games
in more detail.

To simplify the ensuing discussion, we let T be a periodic octal
game with last irregular value e and period p. 1f p is even, it is some-

times the case that there exists k such that for n > e
‘ %
Gntp/2) = G(n) + k.

The game .34 has G-sequence 010120163121203 with last irregular rziie
G(6) = 1 and period 8. For 7 > 6, Gntd) = G&x) i l.. Thiz gank z2lne
exhibits another feature: observe that G(7) = G(lé)iB, G(8) = GClB)iB,
G(9) = G(lZ)iB, G(10) = G(ll)i3. The period is symmetrical in the

following sense: i1f n,an £ 5-a (mod 8), then

1 2

2>6,n = q (mod 8), n

G(nl)IG(nz) = 3,
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Those games T in which p is large but G(n) is small often exhibit
subperiodicity, i.e. for some p', 0<p' < p there is a strong tendency
toward G(n+p') = G(n) though this is not exact.

Figure 4.1 displays the period of .356 which has last irregular value -
G(73145 = 2 and period 142. (-values greater than 9 are denotéd by the

following symbols:

x=11, T=12, f =15, S = 16.

Hi

We list G(n), n > 7314, »n 14,15,...,141,0,1,...,13 (mod 142) in rows
of 26 (excepting the first fow which has only 12 entries) to illustrate

the subperiodicity.

x 5151 T8626 28
xf 1515 8T2626xfx 5151 T86262 f
xf 1515 8T2626xfx 5151 T86262 f
xf 151 S 8T2626xf 1515 S T86262 f
x 5151 T8T2626xf 1515 8 T86:262 f
x 5151 T8T2626xf 1515 8 T8626 Sf

Figure 4,1. The period of .356.

For n > 7314, if G(#n) = 16, then G(n+7l) = 16. For all other n > 7314,
Gn+71) = G(n)i7. A cursory look at the period of this game reveals that
thé distribution of the G-values is abnormal. The only values that occur
in the period are 1,2,5,6,8,11,12,15,16.
For any take and break game U (not necessarily periodic) we define
a G-value g to be rare if 1iz gn/n = 0 where g, = | {m|G(m)=g ,mgn}].
n

For periodic games this is equivalent to requiring that g appear only a

finite number of times in the G-sequence. It sometimes happens that
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while a G-value appears in the period, the frequency of its occurrence
is small, Such a G-value is called sparse. A G-value that is not sparse
or rare is said to be common. For .336 the rare G-values, written in

binary, are 0, 11, 100, 111, 1001, 1010, 1101, and 1110, i.e. those with

-~ 1

an even number of 1l's, ignoring the 2 bit, Note that if 4 is rare, then
L% * % b * .
g+l, g+2, g+8 are common, and gt+4 is rare.

In general the rare G-values are those for which the number of bits
that are 1 in some fixed set of digits in the binary expansion, is even,
and the common G-values are those for which this number is odd. Defined
in this way, if T is a game in which every G-value is either rare or
common, then

‘ %
(D if g,,9, are rare G-values, then g1+-g2 is rare,
. * .
(ii) if g,,9, are common G-values, then g,tg, is rare,

*
(1ii) if g, is a rare G-value, g, is common, then g,+g, is common.

For n > 5180, the game nééi is periodic with period 1550, but it
also exhibits strong subpatterns and subperiodicities. These are illus-
trated in Figure 4.2, in which the 310 exhibited G-values are to be read
consecutively from left to right down the page, disregarding spaces.
Théy are the values of G(n) for n = -47,-46,...,-1,0,1,...,262, mod 310,
and must be repeated four more times to produce the complete period of
length 1550. They are displayed in 14 rows of 24 values, except that
rows 4 and 11 each contain 15 values instead of 12 in the first "half"
and rows 7 and 14 contain only 8 values. The array is divided hori-
zontally to illustrate the subperiodicity of 155 with "saltus nim 7"

i.e. for most n

*
G(n+155) = G(n) + 7;
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1821 - T6 5 T s-1|281281 -6 - -6
182182 -~ 56 -5 1281281 865T6 -
1821821 56456 2-12812 65T65

1-2182186-56 - s 1]|2812- 5T65~6
1-~21- 6£56T5 S 2812 - 5-65T6.
1-~218 6 -56-56 2-128 5-65T6
1s218 6 -5 ;

6 T56T s1 2 8 ~~-6|5T65€f6 -1 - 8 1
6 T56T5 S 2182 6| 57T65-6 -1281 -
6 -56T56 21-21 5-65T65 12812

6S56T56-1-21- T 6| 5T605f 281281
6T56 - 1-21-2 - 5T65 f 281281
6 ~56 - 1-21321 5-65 - 281281
6 -56 - 1-2

Figure 4.2. The period of .165.

Residue class -43 -29 -26 -14 14 34 44 51 56 70 77 85 94
of n, mod 1550 -37 -27 -17 0 26 37 49 53 68 75 82 89 106

usual G-value 8 8 S £ T|S T ¢|{8|S £ £f8TS|888TS|8Ff 4 88T|E
unusual G(n) - -~ - ~S|f £ f|l-|- - T -~ f =|= = = £ =[x - - - f|=~
G- Gn+310) - ST - ~|-f ~-|x|8T~S ~-8|xxa~-¢|-TTzx~|V
val- G(n+620) - - - T S|- = =|=|-T T - - 8|xx - £f~|xSTS.f ¢
ues Gn+930) x - - - 8|~ f Ffl~l=- =T = f =|- = =~ f =|x = = - f|~

G(nt+1240) -8 -~ T =|- = ~{x|- TT--8|xx~f~|xSTS f|¢

Residue class 117 126 148 155 165 187 192 213 218 235 244 256 261
of n, mod 1550 118 128 150 157 169 189 211 216 232 237 247 259

usual G-value 8 fs 8/fS ¢|f 3 £]888f88Sff8Ff fiSTf8
unusual Gn) - ~--=T~-~-[-871T|T-~|Tx~¢{~-TxTT~THT
G- Gn+310) - ¢ 8S|-8 ~|--F|T=-~=|Tx~-={-Tx7T-|-TTr
val- G(n+620) - - 8 S|-8 8|~ - T|{-x xX|- -3 $|T -~ 7 T - -
ues Gn+930) 1 - - =T - ~|T - ~-|T-%|Tx~¢|TTx ~T|-Tx

G(n+l240) -t 8S[-8 8|~ ~T|l-x%X|- -~ ~|T == 1 =[~ = -

N

Table 4.3. G-values missing from Figure 4.

NN w
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indeed this is always truz for G(n) = 1, 2, 5, or 6. The diagram is
also divided vertically to illustrate the relation between the NW
quarter" and the "SE" one, and between the "NE quarter’ and the ''SW"

one, i.e. it is ofﬁen the case that
Gn+143) &/or G(nt+l67) = G(n) I,
The following symbols are used to denmote G-values greaterrthan 9:
x =11, T =12, £ =15, 8§ =16, a =19, Vv =20, 1 = 23, ¢ = 25.

1f one of these symbols, or a single digit appears in Figure 4,2, then
these are G-values with a true subperiodicity of 310. Where values do
not always exhibit this subperiodicity, a hyphen appears. The G-values
so represented can be found in Table 4.3, ﬁhose rows are the residue
classes of n, mod 1550; the usual value of G(n) insofar as it can be
determined; G(n); Gn+310); G(n+620); G(nt+930); ;nd G(n+1240), These
last five rows contain a hyphen if the G-value is usual, and. the actual
G-value otherwise. To facilitate the reading of Table 4.3, vertical
bars separate values from different rows of Figure 4.2, the double bar
occurring after the seventh row. E.g., there are 5 hyphens in the
first- row of Figure 4.2, corresponding to the first five columns (before
the vertical bar) in Table 4.3.

For example 7707 = —-43 (mod 1550). Since the usual G—-value for

n = ~43 is 8, we have
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G(7707+1550k) = 8
G(7707+ 310+1550k)
G(7707+620+1550K)

G(7707+930+1550Kk)

G(7707+1240+1550k) = 8

for k = -1
8 fork z -1
8 for k > -2
11 for k = -2
for k > -2

For .165 we have that 3 occurs 10 times in a period of 1550, 4 occurs

7 times, and 19 and 20 occur once.

Those G-values that contain an even

number of 1 bits in their binary expansions, omitting the coefficient of

2
2" are either sparse or rare.

7 4 7 8
11 4 4 4{_%IJL,
1 1 1 4 4 4 8
1" 1 2 4 4 4
1 11 2 7 4 4 4
1 1.1 7 4 7 2
1 1 [1] 4 4 4 7] ]
1 1 2 8 4 4
1 1 1 2 7 4 4 4
1 1 1 8 4 4 2
11 1 4 4 4 7]

2 1 2 8
4 4 1 1 1 2
4 4 4 1 1 1 |2| 8
4 4 7 1 1 1
4 4 4 7 2 1 1 1
4 4 4 2 1 2 7
4 4 | ] S 11 1 212

44 7 8 1 1

4 4 4 7 2 1 11
4 4 4 8 1 1 7
4 4 4 111 [T
Figure 4.4. The period of .033.

53 54 . 55 56
A 57 58 59 60 61 62 63
64 65 66 67 68 69 [ |70
71 72 73 74 73 72
B 71 70 69 68 67 66 65 64
63 62 61 60 59 58 57
A 56 55 B4 5355 51 50| |
49 48 — 47 46 45 42
B 43 42 41 40 39 38 37 36
35 34 33 33 31 30 29
28 27 26 25 24 23 B
21 20 19 18
A 17 16 15 14 13 12 11
10 9 8 7 6 5[4]3
c 2 1 1 2 3
4 5 6 7 8 9 10 11
1213 14 15 16 17 18
A 19 20] ] 71 22 23 2425 |
26 27 28 29 30 31
C 3233 34 35 36 37 38 39
40 41 42 43 44 45 46
47 48 49 50 51 52 []

Figure 4.5.
n (mod 148) (italic numbers are
negative).

Residue classes of
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Figure 4.4 shows the period of .033, = 4 4177, which has last
irregular value G(257) = 2 and period 148. The G-values illustrated
in Figure 4.4 are to be read consecutively from left to right down the
page. They are the values of G(n) for m > 257, n = 53,54,...,147,0,1,..

i(mod 148). Figure 4.5 shows the residue class modulo 148 to which n
belongs for G(n) in the c;rresponding position in Figure 4.4,

There is a strong tendency to éubperiodicity wiéh "saltus nim 5%,
and in fact

(1) if G(n) = 8, then G(nt+74) = 8,

(11) if G(n) # 8 then G(n+74) = G(m)%s,
for those values G(n) for which » appears in a region of Figure 4.5

beside which an A appears, i.e. for n = g (mod 148) where 53 < a £ 69,

-53 ¢ a ¢ =50, 21 g a S_~5 or 21 < a £ 24, Pure periodicity 6f this
kind is prevented by the appearance of the boxed values or by the
absence of values in the empfy boxes, TFor values in region B, i.e.
for -78 < a € =55 or =49 < a < 23

(i) if G(n) = 8 then G(n-73) = G(n) = G(nt75),

(11) 1if G(n) # 8 then G(n-73) = G5 = G(n+75),
and for values in region C, i.e. for —3 <a <20 o0r 26 < a g 52

(i) if G(n) = 8 thenh G(n-75) = G(n) = G(n+73), |

(11) if G(n) # 8 then G(n=75) = G(m¥5 = G(n+73).

The rare G-values are those that contain an even number of bits that
are 1 in the binary expansion,'i.e. 3 = 1129 5 = 1012, and 6 = 1102.

Those (G-values that are not rare are common.
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1

The game .Qﬁg -1

period 442. TFor all n > 3254

3117 has last irregular value G(3254) = 32 and

‘ %
G(n+221) = Gn)+7.

S 5F T 925 5F 9 2

S 5Fr= 29 s F5 T 2

S F5 T 29 S 5F 29
.S o 5 T 29 S 5F 1 29

S. 5 TiQ 28 F5 T 29

S 5F 1 29 5F1a 2

S 5F 1 29 S .5 F 1t 2

S o 5 T 9 28 5F 29

S 5 T 29 S F5 29

S o 5 T o 28 5F 29

S 5F <t 280 5F 29

S 5F <t 29 S 5 T O 2

S F 5 T 29 S 5F 1 2

S o 5 Taoa29 5FtT 29

S ‘5 1o 28 F5 T 29

S 5 T 29 S F5 T 9 2

S SF1 2So 5 T 9 2

S 5F T 9258 5F 9 2

So 5 T 29 S F5 T 29

F5 T O 28 5F

Figure 4.6. The period of .644.

Figure 4.6 lists G(n) for n > 3245 and 7 = =7,-6,...,-1,0,1,...,213
(mod 442). The following symbols are used to represent G-values greater

than 9:
F=14, S =16, T = 23, 0 = 27, a = 28.

The subperiodicity (of 11) is illustrated by writing the G-values in rows
of 11, except that rows 4, 8, 10, 14 and 19 contain 12, row 9 has 10, and
the last row has 8. For »n > 3254, n 55214,215,...,434 (mod 442) nim—add

7 to G(n-221), obtained from Figure 4.6. This game also shows that it is
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not necessary that the highest‘power of 2 dccurring in the G-sequence
occur in the period. We have G(62) = G(3254) = 32, G(333) = 64 but for
‘n > 3254, G(n) < 32.

The notes to Table 7.2 contain further observations about periodic

octal games.

4.6. Relations between the_Gmsequence and the rules of the game.

Related to the question of whether all take and break games exﬂibit
some fofm of periodicity is the question of the relationship bétween the
G-sequence and the rules of the game. This question appears very difficult
and may not be possible to answer in general. Guy has made some advances
in this area with theorems concerning the G-sequences of octal games
(ef. Kenyon [}g]). The restatements of these theorems for more general
take and break games are straightforward.

‘The following theorems due to Guy describe the G-sequence of certain
octal games. For conciseness we represent a sequence of r ideﬁtical G-
values, say g = G(n) = G(ntl) = ... G(ntr-1) by gr. For example OiB“OSi2
represents the G-sequence 01110000011. We use a similar notation for r

identical code digits.

THEOREM 4.8. TFor s > 3, the octal pame .;ii has period 4s+5, irregularities

G(0) = G(s+1) =;G(s+2) = G(58+6) = 0, and G(n) takes the values

5184415251 15°

for n £ 0,1,2,...,48+4 (mod 43+5) otherwise.
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PROOF. The legal moves are of two kinds:

(a) remove complete heaps of size at most s, and

(b) split heaps of size n > s+3 into two heaps of %, n-s-1-7,
where 1 < 7 < n—s—é.

Therexcluded values, x, for G(n) are thus:

(a) =0 for 1L ¢<n <8, and

]

" ‘
(b) x=GE) + Gn-s-1-7), 1 < 1 < n-8-2, for n > s+3.

(1) G(0) = G(s+1) = G(s+2) = 0, and G(n) =1 for 1L < n < s.
. ‘
(2) PFor s+3 < »n < 2s+2, x = 1+ 1 = 0, so that G(n) = 1 in this interval.

% % %
(3) For 28+3 s n < 3s+3, x =1+ 1or 1l ¥ 0 (or 0 + 0 in the case that

7 = s+l, and n = 3s+3). Moreover (¢ = n-28-2, n-2s~1) both these values

occur, so G(n) 2 in this interval. ‘

% % %
(4) Ifn = 3s+h, x = G(2) + G(26+3~2) = 1 + 1 (or 0 + 0 in the case that
7 = s+l, s+2) for all Z, so G(3s+4) = 1.

%
(5) From the G-values found sn far, 2 can only be excluded by 0 + 2, and

G(n) 0 only for m = s+1, s+2. For 3s+5 < n < 4s+4, & = 0 and 1 for two

s, &+l, s+2, s+3, and & # 2, so G(n) = 2 in this interval.

of 7
(6) Forn = 4s+5, x < 3, and x = 0,1,2,3, for ¢ = 8+3, s+2, s+l, 3; 80
G(4s+5) = 4.

(7) TFrom the G-values so far found, 1 can only be excluded by 0 i 1. For
4§+6 < n g 58+5, G(n-s-1-7) = 2 when ¢ = g+l, 8+2, so x # 1. But x =0
for € = 28+2 so G(n) = 1rin this interval.

'(8) Tor mn = 5s+6, G(Z) # G(n-s-1-1) so G(5s+6) = 0.
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(9) TFor s = 5s+7, x = 0,1,2,3, for 7 = 2s+3, s+2, s+l, s, and & # 4 so
G(58+7) = 4.

(10) For 5s+8 < n g 6s+7, G(n) = 1 (cf. (7) above).

(11) For 6s+8 < n < 78+8, = # 2 (as in (5) since G(Z) = 0 only for

i = g+l, s+2, 5s+6). x = 2 i 2 =0 for ¢ = 28+3 or 2st4, and = =-0 i 1=
for 1 = 58+5 or 58+6, so G(n) = 2 in this range.

(12) Por n = 7849, i = 1 gives £ = 1 + 1 = 0 and G(7s49) = 1 as in (7)
above.

(13) For 7s+10 < n < 83+9, G(n) = 2 (cf. (11) above).

(14) For n = 8s+10, x # 4 since this can only be formed by O i 4. But
x=0,1,2,3 for i = s+3, s+2, s+l, s, so G(8s+10) = &,

(15) For 8s+1l < n < 98+10, G(n) = 1 as in (7) above.

(16) For n = 9s+ll, x = 0,1,2,3 for < = 4s+5, s+l, s+2, s+3, and G(9s+1l)
és in (14).
(17) For n = 9s+12, x = 0,1,2,3 for 7 = 23+3, s+l, s+2, s+3, and G(9s+1l).
as in (14).

(18) For 9s+13 < n < 10s+12, G(n) = 1 as in (7).
(19) For 10s+13 < n g 1ls+l3, Gn) = 2 as in (11).

(20) For n > 1lls+l3 (= 2(5s8+6)+s+l) Table 4.7 displays values of

i

*
x = G(1) + G(n-s-1-7), the rows corresponding to ¢ = s+l (or 5s5+6),

i

i = g+2 (exceptions); © = s+3,s+b4,...,4s+4,0,...,8 (mod 4s+5) and

(Z > 58+6) © = s+l, ¢ = s+2 (mod 4s8+5), and the columns to n > 1ls+13,

n = 3s+4,38+5,...,48+4,0,...,38+3 (mod 4s+5). The G-values are given in

the final row, being the mex of the entries in the corresponding columnms.

L



3g45 . . . hotd 1 . . . s s+2 : 28+3 . . . . 3343

...06._

n>1ls+13,m=  3st+éb 0 s+1 s+3 . . . 28+2
1=g+1,5s+6 4 11 . ., 112 . . ., 2411412 . 2 a1 . . 1 |-
i=g+2 4 &1 1 . 1] 2 ..o 21 1] 2 21 4 |1 3
£2s+3 I 5 5] : 0 5
LI L L] ] l . O
O = .7 O 3 | : 3 -
1Z28+2 : | 5 5] 0 i
1225+3 6 6 6 | 3 : “
L L' . I )
1. L )
O - 3 Lyt 3 = ©° 39
£=3s+3 : 6 16 6 | ‘ | z
1=3s+4 0}l 3 . . . 315 0 . . . 015 510 . . . ., 0 |3 3
123s+5 3 16 , L6 6|
| O 1 o 3 LT 3 O
isbst+h 3 6 6 6
220 6 . .- . 6151686 — 6 lo 15 . . . s5]0 015 5
i=1 0 5 EER
. » l . l l_ l
: ol 3 ~1 3 ' O 1. /10O
izs : | 0 | 5 | 5 5
£=s+1(>58+6) ol s . . . 516 . . . . 6 [5 16 . . . 6 10}ts5 .. 5] 0
125+2(>5+2) o o 1ls . . . 516 . . . . 61516 . . . & 0] 5 5
2 2 4 1 1 4 4 1 . 1 2 2

G(n)= 1

La¥a ard

® .
Table 4.7. Excluded values, G(1) + G(n-s-1-i), for 154,
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The following theorems may be established in a similar manner.

THEOREM 4.9. The G of ~lf§,is 0i3+10is+123+11és+1€

E.g. .l3 has G-sequence 01101122122,

.115 has G-sequence 011101112221223.

2g+2,, tg+2

THEOREM 4.10. The G-sequence of .gfgg is 01%001°%2 441

E.g. .l44 has G-sequence 01001222244111.

THEOREM 4.11. The G-sequence of .1%45 is 015015+ 228%241871,

E.g. .145 has G-sequence 010112222411,

THEOREM 4.12. The G-sequence of .1°53 is
+ . -
018 223+2 1s+1 023+2 4s+1 0 ls+1 23+2 ls+223f2 4s+1 1.

E.g. .153 has G-sequence 0111222110222440 ,
11222111222441.

b1 eg+l.28+3 162
THEOREM 4.13. TFor s > 0, the G-sequence of .1°54 is 015719151 2873,1%

E.g. .B4 has G-sequence 0101222411,

.154 has G-sequence 011011222224111.

. + “a+ .
THEOREM &4.14. TFor s > 1, the G-sequence of .1°47 is 0150125245+ 157

E.g. .147 has (-sequence 01012224411,

N ° .S+
THEOREM 4.15. For s 3 0, the G-sequence of .1%57 is 01$+22 2,

E.g. .57 has G-sequence 0i12é,

.157 has G-sequence 0111222.



Chapter 5

Subtraction Games

5.1. Introduction

For any set {Sl’SZ""’Sk} of positive integers with s, < §, < een <

[v2)
P

we define the subtraction game 3(31’32""’3k) in which the legal moves
are those that reduce a sufficiently large héap of n tokens by Si’

1 <7 < k. The set {1,2,4}, for example, determines the subtraction game
5(1,2,4) in which we may remove 1, 2, or 4 tokens from a heap to leave

0 or l'heaps, so that S(1,2,4) = .3303. Because the legal moves are of
a simple nature, much more is known about the class of subtraction gameé.

than about arbitrary take and break games.
LEMMA 5.1. TFor the game S(sl,sz,...,sk), G(n) ¢ k for all n 2 0.

PROOF. This is an immediate consequence of the fact théﬁ for any n, there

are at most K options.

THEOREM 5.2. Every finite subtraction game is periodic.

PROOF. TFor 3(31,32,...,sk), pick 7, sufficiently large. Then

G(no) = mex{G(nO—sl),G(no—sz),...,G(no—sk)}. Moreover there are precisely
8 . .

(k+1) K sequences g,g,---Jg where 0 < g; ¢ k for 1 = 1,250 0058 Hence

" there exists p < (k+lf7¢ + sk such that G(n0+ —sk) = G(n0~sk),G(ﬁ0+p~sk—1) =

G(no—sk—l),oo-’G(no'*'p-l) = G(no—-l)‘ But then? for all n >’ no’ G(n-l-p) =,

G(n). D
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Although Lemma 5.2 shows that all subtraction games are periodic, the
bound on the period given in the ﬁroof seems Brobdingnagian when compared
with data provided by the actual analysis of games. However in certain
cases it 1s possible to prévide a more reasonable bound.

A subtraction game is said to be exactly periodic with period p if

for all n = 0, G(ndp) = G(n).

THEOREM 5.3. Let U = {sl,sz,...,sk} be a non-empty set of positive integers.
If there exists p > 0 such that u € U whenever p-u € U, then S(sl,sz,...,sk)

is exactly periodic.

PROOF. By induction on the G-value g. Let n'2 0. If G(n) = 0, then
G(n+sy) # 0, Glntsy) # O,...,G(n+sk) # 0 since n is an option of each of
n+sl, n+32,...,n+skf Moreover, for all si € U, there exists sj = p—si €U

so n+si = n+p—sj. Hence the options of ntp are precisely n+s?,n+€2,...,n+sk

and

Gntp) = mex{G(n+sl),G(n+sz),...,G(n+sk)} = 0.

Assume inductively that for n > 0, G(n) = I implies G(ntp) = 1 for
0<1<g. Lf Gn) =g, then Gints)) # g, G(nts,) # g,.--,G(n+Sk) + g,
since n-is an option of n+31,n+sz,...,n+sk.

Furthermore, since si € U implies p~si € U, each n+si is an option

of ntp, so that g is not an excluded value for G(ntp), i.e. Gntp) < g-

As G(n) = g, if 0 ¢ 1 < g, there exists s; such that G(n—si ) = 1. By
A [
the induction hypothesis G(n—si ) = G(n+p—si ). For s, =p-s. ,

7 1 J1 *1
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G(n+sj ) = G(n+p—si ) = L. Thus every value strictly less than g is an
vl A
excluded value for G(ntp), so that G(n) = G(ntp).

Since G(n) = G(ntp) for alln % 0, S(sl,sz,...,sk) is exactly per-

iodic with a period p.

Example. The game S(2,5) has G-sequence 6011021, with period 7 = 2+5.
In section 5.2 we describe completelyrthe G-sequence of ‘the games
S(sl)(p=231)3 S(sl,sz?(p=sl+sz), and 5(31’82’232"31)(p=232)’

By Theorem 5.2, every subtraction game is ultimately periodic, though
it is not the case that all subtraction games are exactly periodic. As

a counter—example $(2,3,5,8) has G-sequence
001122304130412230011233021403 .

Table 7.1 lists the G-sequences of all subtraction games in which the
subtrahends do not exceed 8.

The games 5(1), S(1,3), $(1,3,5), 5(1?5), ... all have G-sequence
01. TFor the game S(1), G(n) # G(n+2kil) for all n,k > 0. Hence we may
;djoin 2k+1 to the subtraction set of S(1) without affecting thé outcome
of the game. More generally, if for S(sl,sz,...,sk), G(n) # Gnts)
for all n > 0 then we may adjoin s to the subtraction set without

affecting the G-sequence of the game.

LEMMA 5.4. If S(sl,sz,...,sk) is exactly periodic with period p and s
may be adjoined to the subtraction set without affecting the G-sequence,

then p-s may also be adjoined to the subtraction set.
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PROOF. Since s may be adjoined to the subtraction set, it must be thel
case that for all n > O, G(n+p) # G(n+p-s). However, since S(sl,sz,...;sk)
is exactly periodic, G(n) = Gn+p) # G(ntp-s) so that G(n) # Glntp-s).
Hence by the reéarﬁ just before the statement of the lemma, we may adjoiﬁ

p-s to the subtraction set. u|
As an immediate consequence of this lemma we have

LEMMA 5.5. 1If S(sl,sz,...,sk) is exactly periodic with period p, then
p—sl,p—sz,...,p—sk may be adjoined to the subtraction set without affectiﬁg
the G-sequence. |

The condition of exact periodicity in Lemma 5.5 is necessary. Con-
sider the game S(2,3,5,8) whose G-sequence appears above. The period is
17, with last irregular value G(12) = 4. While we may 'adjqin' 8 to the
subtraction set, 9 = 17-8 may not be adjoined since G(5) = G(1l&) = 2.
Nor is it true that if p is even, we can necessarily adjoin p/2 to the
subtraction set. 5(3,7) has G-sequence 6001110221 with period 10. How-

ever 5(3,5,7) has G-sequence 0001112223,

5.2. (G-sequences of Subtraction Games.

No general expression for the period length of arbitrary subtraction
games is known: However in certain cases we can give rules that enable
us to Write.down the G-sequence immediately. In doing so, it suffices
to:consider oﬁly those subtraction games where the greatest common divisor

of the members of the subtraction set is 1.
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LEMMA 5.6. Let T S(sl,sz,...,sk), U= S(dsl,dsz,...,dsk) where d > 1.

Then Y > 0

!
1

Gg(n) Gg(dn) = G'g’(dn +1) . = Gg(dn-!-d—l). (%)

I

PROOF. By induction. Since GT(O) GT(l) = ...GT(sl~l) = 0, and

0, (*) holds for n = 0,1,...,8 -1.

6y(® = Gy = ...Gy(dey-D+d-D) .

Assume inductively that (%) holds for n < n,. It suffices to show that
g is an excluded value for GT(nO) if and only if g is an excluded value
for GU(dn0+r), where 0 < » < d.

If we can remove 8, tokens from a heap of nys and GT(n0~si) = g,
then we can remove dsi tokens from a heap of dn0+r,’and by the induction

hypothesis

qg(dn0+r—dsi) qg(d(no—si)+r)

I

GT(no—si)

~J

=9‘.

Similarly if g is an excluded value for GU(dn0+r), then g is an excluded

~o

‘value for ?E(no). O

For subtraction games I, U, defined as in Lemma 5.6, we say that
Uis a d-plicate of L, e.g. S(Sl) is an sl—plicate of $(1). The G-
sequence of S(sl) is just 6...001...11, where each string of 0's and 1's
is of length 8-

The G-sequence of S5(1,2k+l) is the same as that of S(1), since we

may adjoin 2k+1 to the subtraction set of S(1) without affecting the



- 97 =

‘outcome of themgame. Fdr S(l,Zk), a period is 2k+1 by Theofem 5.3, and
since the G-sequence ;s 6101...Olé, the period is just 2k+l1.

. For S(a,b), Qhere 1< a < b, we may assume that a, b are relatively
prime, for if g.c.d. (a,b) =d % 1, then S(a,b) is just the d-plicate of
S(a/d,byd). By Theorem 5.3,|S(a,b) is exactly periodic with a period atb.
let b = Zhairf where 0 < » < q, |

We write down the G-sequence as foliows. Put ¢ 0's, then g 1's:.
Repeat this pattern until we have gtb digiﬁs. Then change the 1ast a-r
0's into 2's. TFor example consider S(4,13). Since g = 4, b = 2.2.4~3,

so that b = 2 and » = 3. We write
00001111000011110
then change g~r = 4-3 = i 0's to 2's so that the (G-sequence is
00001111000011113.
For 5(4,9), a = 4, b = 2.4+1. We write
0000111100001
then change the last g-r = 4-1 = 3 0's to 2's. Hence the G-sequence is
0000111102221.

It is also possible to describe completely the period of S(a,b,2b=-q) .

If ¢ = 1, and b is odd, then 2b-ag is odd, so the G-sequence is just 01i.

I1f «a 1, and bf= 2, then 2b-g = 3 and the period is 612é. Otherwise,
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let b = 2hatr where 0 < r < a. Write down a 0's followed by a 1's, and
repeat this pattern until there are b+a digits. Continue with a O's
followed by a 1's, and repeat this pattern until there are b-a further
digits. Then change the last a-r 0's in each of the sets of b+a, b-a
digits to 2's. If h =1, and b = 2a+r, and a-2r > 0, further change the
first q-2r 2's in the second set of g-r 2's to 3's. If h =1, b = 2g-r,
and g-2r > 0 then replace the last g-2r 2's in the second set of a-r 2's
to 3's. E.g. for S(4,13,22), a = 4, b = 2.2.4-3. We write 4 0's,
followed by 4 1's, until we have b+q = 17 digits, then repeat, stopping

this time after b~a = 9 digits
000011112000011110 00001111 0.

Then g~-» = 4-3 = 1, so that we replace the last 0 in each set by a 2.

The G—sequence ?s then
60001111000011112000011112.
For S(4,9,14), a = 4, b = 2.4+1. Ve write
0000111100001 0000 1.

Since a-r = 4-1 = 3, the last 3 0's in each set are replaced by 2's,

yielding
0000111102221 02221.

As h =1, a-2r

4-2 = 2 > 0, b = 2a+r, we change the first 2 2's in the

second set to 3's. The G-sequence is then

60001111022210332i.
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For $(4,7,10), ¢ = 4, b = 2,4 - 7. Ve write
00001111000, 00 0.

Since g-r = 4-1 = 3, the last three 0's in each set are replaced by 2's,

yieldiné
00001111222 2 2 2.

As h =1, gq=2r = 42 = 2.> 0, we change the first two 2's in thersecond

set to 3's. The G-sequence is thus

00001111222233.

5.3, S(a,b,atb) and the Berlekamp Method.

We.can deterﬁine the period of S(a,b,atb), and in éﬁme cases specify
the G-values themselves. However in the general case, a concise descrip-
tion of the period, such as we have for S(a,b) seems out of reach. The
analysis which will appear in [1l] rests upon the following theorem of

Ferguson [9].

LEMMA 5.7. (Ferguson's Pairing Property). Let S(sl,sz,...,sk) be a sub-

traction game (Sl<32<...<sk). Then G(n) = 1 if and only if G(n—sl) = Q.

PROOF. We give;g proof by contradiction. Observe that G(s;) = 1 since
0 is the only optipn of si. If the statement fails, then theréris a smallest
number # for which it does so, and either

(i) Gn) = 1 ana G(n—sl) # 0

or (ii) G(n—sl) =0 and G(n) # 1.
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]

ii) If G(n—sl) # 0, then for some Sj’ 1<y <k, G(n—sl—sj) 0. Since

]

n is the least numBér for Whi%h‘the stateﬁent}fails, G(n-sj) 1. But

n—sj is an option of n, so thét Gn) # 1. A

(ii) Certainly G(n) # 0 since n-slris an option of n, and Gﬂn-sl) = 0.

Hence G(n) > 1, and there exists sj, 1<4<ck subhzkhat G(n—sj) = 1.

Since # is the least number for which the above statement fails

G(n—sl~33) = 0. But n~sl~§j‘is‘an option of n—s{, so that G(n-sl) # 0.
Berlekamp has suggesfed the following method for calculating the P—‘

and N-positions. For S(sl,s .,sk) set up k+1 columns. The first

pot
entries in each of the columns are the numbers 0,8,358, 5458+ The

first entry in each of the succeeding rows is the mex, say n, of those
numbers already written. The remaining entries in the row are the numbers

n+sl,nfs ,...,n+3k. E.g. for S(3,10,13) we have

2
0 3 10 13
1 4 11 14
2 5 12 15
6 9 16 19
7 10 17 20
8 11 18 21
22 25 32 35
23 26 33 36
24 27 34 37
28 31 38 41
29 . 32 . 39 42
30 33 40 43
b4 47 54 57
45 -

Figure 5.1l. Analysis of S(3,10,13).

The sample table has been divided into three sections. Eﬁery number
in the second section may be obtained by adding 22 to a number in the

corresponding position in the first section. In this sense, the table



- 101 -

for S(Sl,s ""’Sk) will eventually become periodic: each entry may be

2
obtained by adding é tb an eérlier occurring number in a ;orresponding
position.

While Berlekamp's ﬁethod does not;describe the period completely,
the first column contains all numbers »n such that Gn) = O.f By Ferguson's
pairing property the second column contains those n for which G(n) = 1.
The remaining columns contain thosern ‘such that G(n) > 2, unless the
entry is a duplicate of én entry occurring in an earlier column. In
Figufe 5.1, the numbers 10, 11, 32, 33 appear in both the second and the
third column, so that G(10) = G(L1) = G(32) = G(33) = 1.

For S(a,b,at+h), if duplicates occur, it must be the case that a

_number occurring in the second column is a duplicate of a number in the
third.. By definition, no number in the first column is a duplicate of a
number in the others; If a numbef n occurred in both the second and
foﬁrth columns; then n-a woﬁld appear ig the‘fifst and third coiumﬁs. If
7 occurred in therthird and foufth columns, then n~b would appear in.the
first and second.
| The analyses of S(l,2k,2k+l),:and S(Ly2k+1,2k+2) are straightforward..
Figure 5.2 illustrates the Berlekamp analysis of S(1,2k,2k+1). Since
there are no repetitioné, the game is exactiy periodic, with period 2b = 4k
and the G-sequence is 6101..u012323...2§,jthe period consisting of k O's,

k 1's , k 2's and k 3's.
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0 1 2k . 2k+1
' 2k+2 2k+3

4 5 2k+4 . 2k+6

2k-4 2k-3 bk-4 4k-3

2k~-2 2k~1 4k~2 4k-1

Figure 5.2. Analysis of S(1,2k,2k+1).

0 1 pktl]  2k+2
7 2k+3 2k+4
4 5 2k+5 2k+6

2k~2 2k-1 k-1 4k
2k 4k+1 4k+2

Figure 5.3. Analysis of S(1,2k+1,2k+2).

Figurce 5.3 illustrates the Berlekamp analysis of S(1,2k+1,2k+2) . Tor
each set of 4k+4 entries there is just one repetition, so that the period

is 4k+3 = 2b+1l, and the G-sequence 1is
0101...01012323...232,

where there are k+1 0's, 1's, and 2's, and k 3's. The Berlekamp'analysis

of $(1,13,14) is illustrated in Figure 5.4.
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0 1 13 14
3 15 16

4 5 17 18
7 19 20

8 9 21 22
10 11 23 24
12 [13] 25 26

Figure 5.4. Analysis of S5(1,13,14).

The 13 is repeated in the second and third columns, so that the period is

27, and the G-sequence is

01.0161010101012323232323232.

For a > 1, we assume that a, b are relatively prime, and consider
separately the cases b = 2ha~r, b = 2hat+r where 0 < r < a. The case
where b = 2ha-r is reasonably straightforward. The diagram of the

Berlekamp analysis is illustrated in Figure 5.5.

There are h sections to the diagram, where a section consists of
a rows, so that there are bha entries in total. However the r boxed
numbers in the second column are dupligates of the boxed numbers in the
third column. Allowing for these r r;petitions, the period is bha-r = 2b+r.
The analysis of the case b = 2hatr is more complicated as the periodr
is q times as long. It is best described with reference to a specific
example. TFigure 5.6 illustrates the diagram of the Berlekamp analysis

of 5(5,22,27).
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For S(a,2ha+r;(2h+l)a+r5, 0 <»r <a, the diagram consists of a sets
of four columns. Within each set there are or h+l sections of a rows.
In Figure 5.6 there are 5 sets of 4 columns and each set contains either
2 or 3 sectibns of 5 rows. Further; 2 of the sets contain 3 sections.
In general r of the sets of columns contain %+l sections of a rows, and
a-7 of the sets contain % séctions. In each set of 4 columns, the last
section of .a rows ﬁay be divided into 2 subsections. TFor the kth set of
columns, the subsections contain (kr)a andrqr(kr)a rows respectively,

where (kr)a denotes the least non—ﬁegative residue of kr, mod a.
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0 a 2ha-r ) (2h+l)a-r
1 R 2ha-rtl (2h+1) a@=r+l
2 a+2 2ha~r+2 (2h+1) a-r+2

® 406000 s s veseP et et et s s s el esPeOEIPNOEECEOTS

p-1 a+r-1 2ha-1 (2h+1)a-1
r atr " 2ha (2h+1)a
a-1.  2a-1. (2Rt g-r-1 (2h+2) a=r-1
2 3a (2h+2) - (2h+3)a-r
2041 3a+l (2h+2)a—r+l (2h+3) a-r+1
3a-1 ba-1 (2h+3)a-r-1 (2h+4) a-r-1
ba 5a (2h+b4)a-r (2h+5)a~-r
batl Satl - (2ht4)a-r+l (2h+5)a~r+1
S5a-1 6a-1 (2h+5)a-r-1 (2h+6) a-r-1
(2h-2)a (2h-1)a (4h-2)a~r (4h-1)a-r

(2h-2)atl  (h-l)a+l (4h-2)a-r+l  (4h-1)a-r+l

(2h-1)a-r-1  2ha-r-1  (4h-2)a-2r-1 (4h-1)a-2r-1

(2h-1L)a-r 2ha-r (4h-2)aq-2» (4h-1)a-2»r
(2h~1)a-1 2ha-1 (4h-1)a-r-1 4ha-r-1

Figure 5.5. Analysis of S(a,2ha-r,(2h+l)a-r).
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50
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23
24
25

32
33
34
35
36

27
28
29
30
31

37
38
39
40
41

47
48

71
72
73

52
53
54
55
56

62
63
64
65

88

99

94

95 100

96 101

97 102

98 103

57 74 79 | 104 109

58 75 80 | 105

59 76 81 |106 111

60 77 82 |107 112

61 78 83 |108 113

67 84 89 |114
68 85 90

69 86 91 |[137 142

70 87 92 | 138 143

139 144

93 [110} 115 | 140 145

Figure 5.6.
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130

136

154
160
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141

164
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166
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146
147
148
149
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181
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168
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178
179
180

203

204

Analysis of 5(5,22,27).
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210
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218
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226
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0 0 - a . 2hatr (2h+1)atr
1 atl | 2hatr-1 2h+1) atr-1
a a-r-1 2q-r~1 (2h+1)a-1 (2h+2)a-1
| a-r 2a~r 7—7(2h+1)a (2h+2)a
a-r+l sg-r+1 | @+l atl (2h+2)a+l
L _ a-1 2a-1 (2h+D) atr-1] _ (2h+2)atr-1
2a 3a (2n+2) atr (2h+3) atr
3q-1 La-1 (2h+3)atr-1 (2h4+3) atr-1
(2h-2)a (2h-Da (4h-2)atr (&h-L)atr
(2h-1L)a-1 2ha-1 (Lh-1)atr-1 Lhatr-1
X ona | @rla khatr (4hF1) atr
Y eeeee v e s e e R P R R R
l 2hat+r-1 (2h+l)atr-1 4ha+2r-l (4h+1)at2r-1
I Lthat2y (4h+l)a+2r 6ha+3r (6h+1) at3r
a-r . .o T S R R I R R
l (&h+1l)atr-1 (4h+2) atr-1 (6h+1)a+2r~1 (6h+2) at2r-1

?iguré 5.7. Part of analysis of S(a,2hatr, (2htl)atr) .
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In each set of 4 columns, there afe exactly r duplicates. These
occur in the secoéond column, duplicating numbers that have already occurréd
in the third. (For 5(5,22,27), r = 2 and in each of the sets of columns |
displayed in Figure 5.6 there are 2 duplicates.) Hence the- total number
of entries is &4(ha) (a-r) + 4(hata)r = 4(hatr)a. Allowing for the r
duplicates occurring in each set of columns; the pefiod is 4(hatr)a - ar =
= (4ha+3r)a = (2b+r)a.

Figure 5.7 shows thée diagram of the first set of a columns. There
are h+l sections of a rdws, and the last section is divided into two
subsections of r and a-r rows respectively. The duplicates that‘ocgur
are boxed.

Consider now the (k+1)st set of 4 columns. If a—(kr)a > », then
a = (kr)a+r = ((k+l)r)a, and there will bé no split in the duplicates.

The (k+1)St set contains % sections of a rows, and the last section is
divided into subsections d6f ((k+l)r)a,‘and a—((k+l)r)a rows where

r < ((k+1)r)a < a. The first r entries in the second column of the
'((k+l)r)a rows are duplicates as the last » entries occurring in the

third column of the kth set of 4 columns. Figure 5.8 1llustrates the
éituation when a—(kr)a zr. The upper poftion of the diagram shows the
last a—(krzzrows of the kth set of 4 columns. In the (k+1)St set of
columns, the entries have been grouped in sections of a rows, but only

the first ((k+1)r)a rows of the last section are shown. The boxed numbers
in the second column are duplicates of earlier occurring numbers in éhe

third column.
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1
i

Last a-—(kr)a rows of ktl set of columns

n nta ' "n+2hatr n+(2h+l)atr
ntl nta+l n+2hatrtl n+(2htl)atril

0'!"0.0olcl-coo.nooq..¢;oqoquqc.loolu-ou'ooouootonuoqc...ncn'lccotttclotc..ccttc

a- (k) 2 ‘nta-r— (kr) a-—l nt+2a-r-(kr} a-—l © n+ Rt a- (k) o« 1 n+(2h+2)a-(kr) a-—l

nta-r- (kr)a ' ' n+2a~r-(kr) a | nt-(2h+1) a~ (kr) « n+(2hi2)a-(kr) “

0.0‘0'00l.aq‘cl.oo'l.ol.Olblll.Qlllvda.lt..'l..'l""to'. AT R R R R R A LA

l nta- (k) o L. n+2a-(kr) a 1 nt(2ht+L)atr- (kr)a-l n+(2h+2) atr- (kr)a- 1

(k+1)st set of 4 columns

at2a-~(kr) a nt3as(kr) « nt+(2hi+2)atr- (kr)a 2t (2h¥3) atr- (kr)a

a 'tocoao.o.ctocvnuoabtn'0000.:0;-.n.qc-a-oocvtqooqoooanoaoc-cc-no-ooo--ouoooqoo-ooc

n+3a- (o) a-—l nid-3a- (kr)a—l n+(2h+3)atr- (kr)_g:l n+(2h+4)a+r—-(kr)~a:-l

n+ha- (k':n)(z nt5a- (kr) a n+(2h+lc)a+r- (kr) a n+(?.h;l-5)a+r- (kr) a

a lltlcl'l."lo.tlci.Ccll'o.l'v.volvtUl'o'c"l-lolt.oon.qolt‘l-u.ou‘t'tlcan't'cl'ltool

n+S5a~ (kr)a-~l © ntba- (kr) a—l nt+(2h+5)atr— (kr)a. n+(2h+6) wtr- (k‘p)a

‘G'll.'.‘llllOl'l'Cll.'l'.lOI'bll‘lolcllt..'l‘....(lolltlo‘covoa. -----

( : .
wt(@h-2a-kr) , w(h-Da=(ke) nt(bh-2)atr=(kr) nt(4h-Datr-(kr)
L n+(2h=-1)a- (kr) a n+27za—(7<r)q-1 n+(4h-1) atr- (kz‘l)a—l ntbhatr-(kr) -1
R ; ... a
(

n+zha-(kr) « nt(2h+l)a- (kr) a nt+bhatr-(kr) « nt-Caht1) atr- (kr)
a

ves s tan e
P I R R R N NN R RN NN E R RS RN A

4 2hadr-2-(kr -+ (2 ~p-2~(k 7
n42hadr-2 ,(lr)a nt(2h+1)a~r-2 (Im)(Z n-l-lma-*-2r~2—-(kz‘»)a n+(4h+l)a~l-2r-?.—(kr)a

(1)) 3tk 2ha =1 ey 42 .

a ) nF2hatr=1-(ky )a nt (il a~r-1- ("m)a nkbhat2r-1- (kr)a nt+(Ght1) at2r-1-(ir)

n.i.z) - (] . - e (o ‘
+2hats ¢4 )a n+(2ht+1)a-r- (kr) nibhat2r- (kr)a n+(aht1) at2r- (7:1')(Z

H

\ 1 2hgtr-1 nwt(Zh+L)atr-3 - n‘i'471a+21"'l o (A D) a2

Fieure 5.8, Part of the analy.j , P v
gurce 5.0 Part of the analy.js «f 5, 2hetr, (2t atr) when a-(hp)

3
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Last a-(khr)a rows of kth set of colums,

n nta n+2ha+r n+(2h+1) atr

- (k)
a a L R R R R R R N R P R L L LR T R R T T T DY

na- (kr) -1 ntat(a-(kr) )-1 nt2hatr+(a-(ke) ) -1 n+(2h+1)atret(a- (k) =1

(k+1)st set of columng,

3 r' . .
n+at(a~(kr) a) - n+2a+(a-(kr) a) n+(2h+1)atr+(a-(kr) a) n+(2h+2) atr+(a~(kr) a)
n+2at(a-(kr) a-r) n+3at(a-(kr) a-—r) n+(2h+2)at(a-(kr) a) n+(2h+3)at(a-(kr) a)
a 1 ......-...Q...-...a...uu...--.....-u.........1-..........n............o.---.-.........-...............
nt2a-1 : n+3a-1 n+{2h+2) adr-1 n+(2h+3) atr-l
\ nt2at+(a~(kr) a)—l . n+3a-(a-(kr)a)-1 n+(2h+2)a+z‘+(a-(kr)a) -1  n+(2h+3)atrd(a- (kr)a)—l
1 n+3at(a- (kr) a) . nthat(a-(kr) a) n+(2h+3)atrt+(a- (kr) a) n+(2h+4) atrt (aj (kr) a)
a 4 seserersestececee esecerecevasesenese s assrasesereseeerestateertasefotosbsasascetsacrsretetttodtesesansent
L " ntbat(a- (kr)a) -1 ntbat(a-(kr) a—l n+(2h+4)a+r-i-(q+(kr)a) -1  n+(2h+S)atrt(a- (kr)a) -1
) :
n+(2h—-3)a+(a~(kr)a) n+(2h-2)a+(a~ (kr)a) n+(4h-3)atr+(a- (kr)a) n+{&h-2)atr+(a- (kr)a)
a S i et rerereetaarerietetntterotitenteenan o ereeenereeenaas Cheeereeiniaaas eterereanaas febeeeenaans
L n+(2h-2)at(a~ (kp)a)-l n+(2h-1)a+(a-(kr)a)-l n+(4h—2)a+r+(a—(kr)a)—l n+(4h-1)atr+(a- (kr)a)-l
[ n+(2h-L)at(a~- (kr)a) n+2hat(a~- (kr)a) n+(4h~L)a+r+(a- (kz’)a) n+bhatri-(a~(k») a)
n¥(2h-1atr-1 v n+2hatr-1 ' n+(4h-1)a+2r-1 ntbhat2r-1,
a 1 n+ (2~ atr . n¥2hair n+{4h-1)a+2r n+ihat2r
-+ (2h-1) atrd (- (I:r)a)-l n+2ha+r+(a- (kr)a)—-l n+(4h-1)a+2r+(a~- (kr)a)—l n+ghat2ri-(a- (kz')a)—l
L n+2hat(a- (kr)a)-l a+(2h+1) at(a~ (kr) a)—l n+bhatr+(a- (kr)a)-—l n+(Lh+L)atrt (a- (kr)a)-l
) n+(2h+1)at(a~(ir) a) 7,n+(2h+2)a+(a- (kr) a) nt+-(4h+L)atrt(a~ (kr) a) n+(4h42)atr+(a- (kr)a)
r-(kr)a P F T Geeeitenaaessee vevess Ceveersreteananan .
n+(2ht))atr-1 n+(2h42)4-1 n+(4h+l)a+2r-1 wk(4h+2)ad2r-1

Figuie 5.9. Port of the analysis of &(a,2hatr,(2k41)atr) when a-(hr) < r.
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If a—(kr)a < P,'then a < (kr)a+r = a+((k+l)r)a. In this case the
,(k+l)st set contains A+l sections of a rows, and the » duplicatés are
split into two groups, one of size a—(kr)a‘and the other of size
r—(a—(kr)a). Their relaﬁive positions are illustrated in Figure 5.9.
Once again the upper porqion of the diagram shows the last a~(kr)a TOwWS
of the kth sét of 4 columms. 1In the <k+1)st set of columns the entries
have been grouped in sections of a rows, but only the first r—(kr)a TOWS
of the last section are shown. The boxed numbers represent tﬁose entries

that are duplicates.

55.4. Tetral Games

The subtraction géme S(Sl’sz""’sk) is equivalent to the tetral
game .4,4,4,. .- where &, =:§,whenevef u € (31’32""’sk)’ 4, = Q for all
other u. Some of the results proved here hold for finite tetral games
in which we also allow digits ¢ = lor d = 2.

) ~U ~U

The proof that every finite subtraction game is ultimately periodic
rested upon the. fact that for all n, the number of options of n was
bounded by an integer k. Since this is also true of finite tetral games,

a similar argument shows that every finite tetral game is ultimately

periodic.

THEOREM 5.8. Let T = ’éqéa"°év,(vu’9u < 3, and for u < 0, u > v, éu =0)

and k = |{u‘§u contains‘gjl. If there exists p such that Qu contains

PO

whgnever gp_u contains 2, then for all n > v+kp, Gntp) = G(n).

[
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PROOF. Observe that for n > v, G(n) < k, since n hasrat most k options.

For n > v, an argument identical to that of Theorem 5.3 shows that if

Gn) = 0, tﬁeﬁ»G(n+p) = 0. We assumé ind@ctively that if n > vtjp,

0 <4 <g, then G(n) = j‘implies Gntp) = J, and show that if n > vigp,

G(n):= g implies G(nip) = g by an argumen% similar to that of Theorem 5.3.
The remaining results proved for subtraction games do not necessarily

hold for arbitrary tetral games. Ferguson's pairing property does not

hold, as .1223 shows. This game has G-sequence 01002211 and G(2) = 0,

G(&j ¥:1' Consequently no results about the G-sequence of tetral games

analogous to those of sections 5.2 and 5.3 have been established.



Chapter 6

Arithmetico-periodicity

6.1. Introduction

There are numerous games for which G(n) is unbounded. The game of
Nim,.éﬁ has G~séquence 012345... . It is periodicnin the following gen-—
eralized sense. A game D is said to be arithmetico-periodic if there
exist e, p, 8 (¢>0) such that for all n > e, Gntp) = Gn)+s. The least

e,p,s for which this is true are called the last irregular value e, the
s(n~cn)

p

where e, depends only on the residue class ﬁd which #n belongs modulo p.

period p, and the saltus s. For n > e, we may write G(n) =

6.2. Finite Octals and Arithmetico-Periodicity

In his analyses of octal and sedecimal games, Kenyon [13]Voboerved
that no finite octal appeared to be arithmetico-periodic. To establish
this, we follow an analysis due to J. Conway.

The Fibonacct numbers are defined by éhe %ollowing recurrence re-
lation: F_ =10, F_ = 1, and for n.2 2, F = Fn—l + Fn—z’ e.g. F_ =1,

For n > 0, let f(n) be the numbetr of distinct values assumed by
b, where @ 3 0, b 3 0, ath = n-1, e.g. £(0) =0, f(1) = f(2) =

£(3) =2, f(&) =1, f5) =3, f(6) =

LEMMA 6.1. (i) fFf(2n) = f(n)
(i1) f(2n+l) = f(n+l) + f(n)

(111) if n < 2%, then £(n) € Py,

- 113 ~
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PROOF. (i) f(2n) 2 |{adblath = -1}, If atb = 2n-1, i thout loss of
generality we may write a = 2a'+l,;b = Zb', where a'+b' = n=-1. lThen
&b = a'+1) ¥ 2p" = 2(a'") + 1 by Lemna 3.1‘.(111). Hence there
"is a bijection betweenr {dib‘|a+b,= 2n-1} and {a'ib'ld'+b' = n-1}, so
that f(2n) = F(). ‘ |
(ii) f(an}) =:|{aib|a+b‘= 2n}l: If a,b are both even, a =72a',
b = be where‘a%%i= ", tﬁen‘aib‘= Za'izb' = 2(a'ib'). If a,b are bogh
odd @ = 2a"+1, b = 2b"+1 where a'"+b" = n-1, then ab = (2d'+1) ¥ (2b;’+1) -

* . ,
= Z(a"%b")a If n is even, a'+b' = n, then a'+b' = 0 (mod 2) so that

& ’ . - .
2(a"+h') = 0 (mod 4), and 2(a"+b") = 2 (mod 4). Similarly, if n is odd
‘ . i SR IR N B nk TIPRL ) . s
the sets {2¢(a'+b ) la'+b =n}, {2(a +b yla"'+p" = n-1} are distinct.
Hence f(2n+l) = f(n) + f(n+l). '

(iii) The result is. true for n = 0,1,2. Assume inductivelyrthat‘

2k+1

(iii) holds for n < 2k, k‘a 1. Tfn s , and n = 2n', n' < 2k, then

by (i) and the inductive hypothesis
fy = fn') = f(xr') s Fy. (L)

If n = 21'+1, then n'+l g Zk, fn) = fn') + f(n'+1). Just one of n',
n'+1 is even, so by (1) and the’inductive‘hypothesis, f(n) < Fk + Fk+1 =

= Fk+2'

THEOREM 6.2. No finite octal game is arithmetico-periodic.
PROQF. Suppose on'the contrary that a finite octal game D has period p,

saltus s > 1, and is (ultimately) arithmetico-periodic. Choese ¢ such

that
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=0 for u < -2% and u > 2¢

(a)
(v)

c

d
~U
p s 2

(c) Gwip) = G(n)+s for all n 3 (2°-L)p.

+ . . ’
By (a), there are at most o1 splitting moves (Qu contains 4) and at
most 2¢ taking moves (Qu contains 2). The total number of different moves
. ! e+l e e —
from a heap of n tokens is thus at most 2 n/2)+2~ = 2" (nt+l). There-

fore
e
Gn) ¢ 27 (nt+l) ‘ (%)
and

s/p = lim G(n)/n < 2°
Ve

e
so that s £ 27p.

Let Zh <n < Zh+l

<

, where h > 2¢+2. The number of distinct G-values
. . . . c .
arising from taking moves is at most 27. The number of distinct G-values

arising from splitting moves in which one of the resulting heaps has size

< e 2c+1 . .
less than 27p is at most 2 p20+1 = 2 ot p. Other moves consist in

A ; -+ . '
choosing a splitting move (in one of at most 2¢ ! ways) and choosing a
residue class, My mod p, 0 < LI p~1 (in one of at most p ways) and

_replacing a heap of n tokens by two heaps of «a and b, where atb = n-u,

&) (4]

2% <u 2% ab 2%, anda=Ap+u, A 2. Writeh = dp+u,,

where 0 <y srp—l, A

Ie]
) > 2, Note that n-u = atb = AP + uy + Azp + U,

2 ~

so that when n, u, ) are chosen, B, is fixed, and Al + Az = (n—u-u1~u2)/p.
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By (¢), ﬂgl,gz suqh~that G(a) = G(X1p+ul) =‘A13 + g, = o, say, and

G(b) = G(k1p+u2) =‘A23 + g, = B, say. We observe

2% +g, = G(ch+ul) by (c)
< 20(26p+u1+l) by (%)
< 2°0%p by (b)
¢ 23 by (b).
llence 9155 23@+1’ and by a similar argument, g, < 23c+1. Further

.,
otf = N8+ gy F A F G, T (A Fr)8 +g) +9, = p(nfu’”l—uz) t9, T 9

is a fixed integer, m say, where

n < 20(n+20—0¥0)~+ 23c+1 + 23@+1 < 2h+c+2 + 23¢+2 . 2h+c+3.

. *
The G-values resulting from such moves are a subset of {a+5|u+8 = m}
whose cardinality is f(m+l), which by Lemma 6.1 (iii) is less than or

equal to Fh+c+u' Therefore

c+l + 220+1p + 20 < 22@+1F + 23¢+1 + 20 by b).

GO £ 2 Phyyon Tt

Now it is easy to see By induction that Fh < Th where 12 = T+i,
T = %(1+/§) = 1.618... < 2, so

2041 htots 3ot | e
= 1im Gn)/n < lim u 7 + 2 + 2 =0

P poe hveo 2

S

contrary to our assumption that s > 1.
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6.3. An Arithmetico-Periodicity Theorem for Sedecimal Games

We now prove a theorem for arithmetico-periodicity analogous to
Theorem 4.2 for normal periodicity. We first establish several lemmas

that will be used in the proof.

LEMMA 6.3. Suppose that T =gd d 1 7 §hrgo'édé2@3"' is a tak~ and

break game, and that for some integer n there exist integers e, p, and ©

such that
(1) G@EHp) = GE)+s, For all i, e <1 g n
(2) G) <s for all < < e
(3) G(2) < 28 for all © < etp.

Then

(i) if 7 > etqgp and g > O then G(Z) = gs

(ii) if G(Z) > gs and ¢ > 1 then Z > e+(g-1)p.
PROOF. (i) Let © = etap+r where a > g > 0, 0 < r < p. Then

G(1) = G(etaptr) = G(etr)+as > 0+gs

qs. by (1)

(ii) qg=1. If G(Z) > s, then (2) implies 7 > e = e+(g-Dp.
g=2. If G(1) = 2s, ﬁheﬁ (3) implies 7 > etp = e+(q-1l)p so we may assume

1

q > 2 and
G(Z) = gs > 2s. 4)

Then by (3), © = et+aptr where ¢ > 1, p > » > 0, so that
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G(i)

= G(et+ap+r)

= G(etr)+as by (L)
< 2stas b? (3)
= (at+2)s. (5)

Inequalities (4). and (5 yiéld
(a+2)s > qs = at2 > qg=a?> q-2

and since a is an integer a 2 g-l..

Thus 7 = etaptr > et(q-L)ptr > et+(g-Vp.

COROLLARY 6.4. Suppose that T=4d4d vees 4 .4 d ... is a take and
breék game, and that for some integer n, there exist integers &, p, and

g (assumed to be a power of 2, 8 = Zk) such that

(1) Gltp) = G(i)+s for all e <@ <7
(2) G() <s for all« < e

(3) G@) < 28 for all i < etp.

If G(1) contains Zm, m > k, then © > e+(2m”k—l)p. if G(Z) contains Zm,

ZZ, where m > 1 % k, then 7 > e%(szk+22—k—l)p.

PROOF. This follows as an immediate consequence of Lemma 6.3 (ii) by
taking § = 2k.

For such a game T, if G(L) > g > ¢(4)~3s, then g is an excluded
value for G(Z). If‘Vu,du < 15, there is a move taking u tokens from a

" heap of 7 and leaving three non-negative heaps of il,iz,is tokens so



- 119 -

. . % Co%
that T-u = 1 41,4+ and g = G(il) + G(iz) + G(ig).  The next lemma

3

provides information about the binary expansions of G(il), G(iz), G(ig).

LEMMA 6.5. Let T = Q@’QHQQQS ... be a take and break game in_which,a
move replaces one heap by at most three heaps (i.e. du < 15) and suppose

I satisfies the assumptions of Corollary 6.4. Let

G(Z) > g > G(2)-3s, '
1=-U = ¢1+¢2+$3,_

g = 6@ ¥ eE) Feuy.

If 2Z is the largest power of 2 contained in g, and 7 > k+1 then 2Z+1

is not contained in G(il), G(iz), G(ia):

PROOF. Since g > G(2)-3s, and 2Z is the largest power of 2 contained

in g,

oM S G(d)-3s. (6)

: * *

As g contains ZZ, g = G(il) + G(iz) + G(is), 2; is .contained in an odd
number of G(il), G(iz), G(ié). Without loss of generality we may assume
that 2Z is contained in G(il). Either ZZ+1 is not contained in any of

G(il), G(iz), G(ig) and there is nothing to prove, or 2Z+1

is contained
in just two of them. We give an argument by contradiction to show the

latter is not possible. It suffices to consider the two cases where

(i) G(il), G(iz) contain ZZ+1,

(ii) G(iz), G(is) contain ZZ+1.
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14+

. 7 ‘ . 1
(i) 1If G(%l) contains 2 ., 2 , G(%Z) contains 2Z+ , then

1> 1i-u
=4 + +
-1 2 3

Z+1"k+zz—k—1)p+e-|7(2Z-H“k—l)p by Corollary 6.4

22+2—k+22—k_2

> e+(2

> et+( )p

so that by Lemma 6.3 (i),

G(2) 2,(ZZ+2~k+2Z_k-2)s = ZZ+2 + 2Z - 2s.
Therefore
Giy-3s » 2072 + 2% ~ sg
D S LAt N

+ | .
> ZZ 1 + 8 since 7 > k+1

which contradicts (6).

(i1) If G(il) contains ZZ, G(iz), G(i3) contain 2Z+1 then

7 > 1-uU
= 7:1“%7;2"'7:3 ,
> e#(ZZ—k—l)p+e+(2Z+1—k—l)p+e+(22+1—k—l)p by Corollary 6.4
5 e+(22+2—k+21—k_3)p
so that by Lemma 6.3 (i)
6@y 5 PRt R gyg = 212 4 9l - 3,
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Therefore

2Z+2 1 7+1 -1 7+1

G(1)-=3s = + 27 -6 =2 + 6.2 7 -~ 68 2 2 since 7 > k+1

which contradicts (6).

LEMMA 6.6. Under the assumptions of Lemma 6.3 suppose that for each g,
0 s g < 28 there exists 7 such that G(¢) = g. If 2, > et+2p and.

G(t,~2p) > g,» then there exists i, < i, such thdt G(i,) =g

1 1°

PROOF. Since %, > e+2p,
1,-2%p > e . (N

S0 phat by (1), G(il—Zp) = G(il)—Zs. Let g, < G(il—Zp). If 0 < g, < 28

. then by hypothesis there exists ¢ such that G(2) = g,» and ‘

1 < et2p by Lemma 6.3 (1)

< 1.,
“

Takg ?2 = 1. | 7
If 28 ¢ g, € G(i1~2p)‘= G(il)—Zs, then let g, = qs+r, where'q > 2,

0

A

‘yp < 8. Thus G(il)—Zs % gs+r so that G(il) > (g+2)s. By Lemma 6.3 (i)‘

7

e et+(q+l)p. By hypothesis there exists ¢ such that G(Z) = s+r where

e <1 g et2p, so that

G(i+(g-Lp) = G(Z) + (g-1)s by (1)

]

s+ r+ (q—i)s

91
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where -
7+ (@-L)p se+ 2p + (g-Lp = e + (qg+l)p < il.

Take'i2 =7 + (¢g=Dp.

LEMMA 6.7. Under the assumptions of Corollary 6.4, suppose that for each g,
0 5 g < 2s, there exists 2v+l > 0, 2w > 0, such that G(2v+l) = G(w) = ¢.
If il > e+2p and G(il—Zp) 2 g, then there exist 2v +l, 2w1, 7

0 <2w1,201+1 < il such that G(Zwl) = G(2v1+l) =g -

PROOF. Thé‘proof is similar to that of Lemma 6.6, but it is necessary to

consider separately the cases where p is even, p is odd.

THEOREM_6.8.' Suppose that T = do'dle"'dt(du =0 foru>tzx1l, ucx< d)

is a take and break‘géme in which'a move replaces just one heap by at most
three heaps, i.e. du < 15 and that there exist integers e (the lé;t irre-

gular value), p 2 t+2 (a period) and s 3 1 (a saltus, assumed to beja

. power of é, s = 2k) such that

(1) G@4p) = G(i)+s for all £, e < 4 < e+7p+t' 

(2) G(i)r< s for all i <e

(3) G(2) < 28 for all 7 < etp

(4) either there exist d

'V20+1”@2w both of which contain §,

and for each g, 0 ¢ g < 2s, there exists Z > 0, such
that G(Z) = g or there exists’@u which contains §,
and for each g, 0 < g < 2s, there exist 2v+l, 2w > O

such that G(2p+1)

G(2w) = g.

Then for all Z > e

G(itp) = GH)+s. (%)
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Note that'in order to satisfy (2), (3), and the condition p > t+2, it
may be necessary to choose apbropriate multiples of the peridd, and the
saltus whicﬁ are definedras the least p and s satisfying‘(l); e.g; the
game .F8 has Gmsequence‘010102323454567é(+4), where the period is 6,
and the saltus 4 is indicated in parentheses. In order to apply Theorem
6.8[it was necessary td choose a period of 12, and a saltus of 8.

Kenyon [%é] has solved the game .3F and shown thét the G-sequence
is 61201é(+3). Similarly we have shown the game .169 has G—sequence
0102102132(+3). However, JF = ;QéQ,and A9 = .;Q;Qz so that both of
these games are equivalent to infinité recurring octal‘games'(see section
6.4). No theorem for sedecimal games exhibiting arithmetico~periodicity

with a saltus other than a powér of 2 has been proved.

- PROOF. By hypothesis, (%) holds for e‘<'i < e+7p+t. Assume inductively
that (*) holds for e < i < n where n > e+7p+t. To show G(ntp) = &(n)+s
we prove that:

(i) G(n)+s is not an excluded value fér G(n+p)

(ii) TFor each g, 0 < g < Gn)+s, g is an excluded value.

(i) We suppose that G(n)+s is an excluded value for‘G(n+p) and show that
this leads to a contradiction. We consider five cases, where each case
leads to a resﬁlt‘that contradicts our induction hypothesis. |

If G(n)+s is an excluded value for G(nitp), then'it must be excluded

by removing u tokens from a heap of ntp to leave three non-negative heaps
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of 1., ©

. C e Sk Lk
) z,zstdmmvmaenwﬂt—tﬁ%ﬁ% demHS—G@1)+G@2)+G@Q-

Since n » et7p+t, n~Tp 3 e+t > e, and we have by (1),

G(n) = Gn~Tp+ip)

il

G (n~Tp)+is

W
~3
v}

= Gn)+s 2 8s

so that if 2™ is the largest power of 2 contained in G(n)+s, m » k+3. ‘As
* % .

G(n)+s = G(il) + G(iz) + G(i3), 9™ is contained in an odd number of G(Zy),

G(iz), G(is), and we may assume without loss of generality that 2" is

contained in G(il).

CASE I: If G(il) also contains ZZ, where 7 2 k, L # m (see Figure 6.1),

then

n - (Zm-k*l)P -u = (il-zm_kp) + 1, + i

and
R - — %* ES3 .
¢t *enypy = 6, 2"y Y e Few,);

but by definition G(n—(thk—l)p) # G(il—zm—kp) i G(iz) i G(ia)l As G(il)

Lisk, 14m,

contains Zm, 2

iy 3 2" 2t - @ kbR

'8
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oM 27,‘ 2k
CIC70 N PR I N O I 0
GE) ||
G2 N R
Gmy+s | .+ . .0 0 o] 1]..

' Figure 6.1. Case I.
X = 0 'in both places or X = 1 in both places.

so that by Corollary 6.4

il > e + (2m k+21_k—l\p
> e + 2m- Ds
= il—z—p>e,
and by (1)
e 2Ry =gy - I
z p) =G, P
=g - 2" (8)
Since
m=K =
n-(@ -p-~u=n+tp-u-2 7
. . . m-jk
=1 +1 +7,3—2 p
A A O

) m—K .
we see that we can remove ¥ tokens from a heap of n-(2 -1)p, leaving
three non-negative heaps, the first of which contains more than e tokens.

So we can apply (1) to give
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- %)) =aw) - @ Fo13

=Gn) +s8 - Vi

il

S * . * . amn
G(wl) +-G(¢2) tG(@y) - 2

Ga-" Few,) Feay,

since G(il) contains jm, and an even number of G(iz), G(is) do. By (8),
‘ X * " ‘ - % .
@@ -2 ¥ e ¥ e - e, -2 2y Fea) ¥eu,.

: - % % ’ L
But by (9),'G(i1—2m.kp) + G(iz) + G(i3) is an excluded value for

G(n—(Zm—k—l)p). Therefore G(il) does mnot contéin ZZ, 7>k, 1 +#m.

CASE II: If G(il) contains Zm, G(il) does not contain 21, T2k, 7 #m,

o . . . m-— ) . I"].
and either G(té), G($3) both contain 2 1, or both do not contain 2"

(see Figure 6.2), then

m=-1-k . -1k , ,
n = (2 -p - u = (-2 ; p) + i, + i

and

m-1-k

cin-@" *nypy = 6 - ) Y et Fed,)s

but by definition

G- ) # 662" ) F ey ¥ty



oM 2m~-1 zk
G(i1> ...0}l1}l0]lo...0]0O
G(zz): « e e XY
G(z3) e e e e X 1Y
Gy+s | . . .0l 1]o].

Figure 6.2. Case II.

1 in both positions.

o
i

0 in both positions or X

[

1 in both positions.

<
Il

0 in both positions or Y

As G(il) contains Zm, G(il) > M = Zm—ks, so that by Corollary 6.4,

‘il > e + (Zm_k—l)p > e + zm"l—kp
- il _ Zm—l—kp > o (10)
and by (1)
260, -2" Ty = 6 - K
=6y - 7 (11)
Since
g - (zm—}—k_l)p cu=ntp-u- 2m—17k
=4, +i, +ig - 1k,
= (il_zm—l—kp) + ié iy (12)
we see that we can remove u tokens from a heap of n—(zm—l-k-l)p’ leaving

three non-negative heaps, the first of which contains more than e tokens
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by (10). So we can apply (1) to give
e N S I AN
“G@) +s - 2"
-G Yad) Fed,) - -1
= @@)-2"h ey ¥ ey,

since G(il) does not contain Zm_l, and an even number of G(iz), G(ig) do.

By (11)

k

- * * m—1- J . .
G-I Toay Faay =662 T Yaay *edy.

—1— * *
But by (12) G(il—Zm 1 kp) + G(iz) + G(ig) is an excluded value for
m-1-k
G(n-(2 -Lp) .
If just one of G(iz), G(is) contains 2™ ! without loss of generality

. R m-1
we may assume that G(az) contains 2 .

CASE II1: G(il) contains Zm, G(il) does not contain ZZ, 12 k, i #m,
. - . -1 . ’
and G(tz) contains oM 1, G(tg) does not contain oM . If G(%z) also con-

tains ZZ, where 7 2 k, L # m-1 (see Figure 6.3), then

m-1-k X .o m-
n - (2 -p ~u = CH + ($2—2

1— .
kp) 4+ g

and

«
1

con-@™ *eypy = 6 ) ¥ o -2 'kp) ila(i )3
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but by definition

G(n-(zm"l"k—l)p) # G(1)) ¥ G(iz-z”’“l’"kp) i G(,).

27" 2 2 2
¢¢pl. . . of1|ofjo . . ofo0o . . 00
7 N P P R O

Gy |- - - | X 0

G+ | . . . 0] 1]1

Figure 6.3. Case IIL

X = 0 in both places or X = 1 in both places.

As G(iz) contains 2™ ZZ, 13k, L #m1
G(t,) > gty gt
_ (zm—l-k+21—k)s’
so that by Corollary 6.4
i > e+ (zm 1~k+2Z k Lp
> e+ 2m—1—kp,
= i, = Zm—l—kp > e, | (13)
and by (1)
G(iz—Zm—l—kp) - G<¢2) ~ zm—l—ks

G(,) - M1, . (14)
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Since
" - (zm—l—k_l)p cweEntp -u- Zm—l—kp
=i+t vi, -2
=i (i2~2m“1"kp) vi, (S
we see that we can remove u tokens from é heap of n—(Zm—l_k~l)p, leaving

three non-negative heaps, the second of which contains more than e tokens

by (13). So we can apply‘(l) to give

o=@ ) = ) - @ R

Gtn) +s - 2™ 1

i

m-1

1]

Gi)) ¥ G(2,) ¥ 6G,) - 2

* ey %

i) F @)= ¥ e ),
1 2 3

since G(iz) contains 2m—1, G(il) and G(is).&o not. By (14)

m-1-K

. % . m—1 ,* . to * . * .
G(tl)h+ (G(i,)-2" ") + G(zg) = G(tl) + G(12—2 p) + G(L3).

But by (15), Goi-(2" R-1p) # 06 ) * G(iz—zm”l‘kp) $6(). Theretore

G(iz) does not contain 22, 7>k, 1T # m1l. :

© CASE 1V: G(il) contains 2m, G(il) does not contain 22; 132k, 1L #m,
G(i?) contains Zm—l, G(iy) does not contain ZZ, 1>k, 1L # m1l., 1If G(i%)

. m-—2 . )
does not contain 2 2 (see Figure 6.4), then
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n- @Ry cu= i+ (1,22 p) + i

and

_ % o *

Gin-2" 2 1ypy = G2, + G(i,-2" 27k % G(i,);

but by definition

-2 % . - * .

G- 1y # 66 e, 2" ) F ey,
oM 2@1 2m—-2 ZZ 27{
G(Z,) olxrlololo . . ofo]o 0
G(iz) D 0 1 0 0 0 0 0 0
G(Zy) oclojo0¢}o0
G(n)+s . 0 1 1 0 0
Figure 6.4. Case IV.
: , . m-1 . m-1 m-1-k '
Since G(az) contains 2 , G(tz) > 2 = 2 s, so that by Corollary
6.4,
P> e+ @Koy
> e + (Zm—z—kp)
- i, - 2k, (16)
- and by (1)
. -2~k . -2-k
(i, p) = 6(i,) - 2" s
= G(i,) ~ 22, (17)
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Since
no- @R p cu=ntp - u- 2m'2“k.p
=i, +i,+ D, - 2k
=i, + (iz_zm—z—kp) + g, (18)
2

m=2- .
we see that we can remove u tokens from a heap of n-(2 k—l)p, leaving
three non-negative heaps, the second of which contains more than e tokens

by (16). So we may apply (1) to get

k

cr-2" 2K ypy = ¢y - @ R1)s

-2
Gn) + s - 2m

ciiy ¥ ey ¥ eu o2
(%1) (7/2) "(7“3) -

o) ¥ (662" ¥ Gy,

. . . m-1 . . , m-2 . m-
since G(tz) contains 2 , G(@l) and G(%a) do not contain 2 y2 L

By (17)
6t ¥ @iy tea) - o6 ¥ 62"y ¥ 6(,)

But by (18) G- ("2 F-Dpy # 6 ) ¥ e, ) ¥ 6.

CASE V: G(il) contains Zm, G(il) does not contain ZZ, 7>k, 24 m-
G(iz) contains Zm—l, G(iz) does not contain ZZ, 7>k, 1 # ml, and

. -2
G(%s) contains 2™™% . Then
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n - (Zm_s_k—ljp - U= il + iz + (i3—2m_3—kp),
i
and
e Qe 3 * —
6™ oy = 6 ) ¥ o) ¥ ot 2,

since m > k+3. 'éut by definition |

=@ Ry # i) ¥ oGy ¥ e, 2" ).

oM zmﬂ.inz ins Zk

ey |- . . ofijojojol. . .0

GEy |- - - 0 ol1lofo}. . . o

G(i3)' .. . 0o olil2). . 1.
¢oyts | . . . oolrlrfrje|. .

Figure 6.5. Case V,

Since G(i3f contains Zm_z, by Coroliary 6.4,

i > e+ @Dy
o + 2m—s—kp
= Aig‘— 2m~3—kp > e, (19)
and by (1)
662" Ry = 66 - g3k

6@, - 3, (20)
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Since

n - (2m~3—k—l)p -u=n+ p‘—‘u - 2m«3—kp
. , .. m=-3-K
=1, + Ty + 1y - 2 o}
, . . -3k .
=1, + T, + ($3—2 P> ‘(21)

3'-k—-l)p, leaving

. ) . . m-—
we see that we can remove u tokens from a heap of n-(2
threée non-negative heaps, the third of which contains more than 2 tokens

by (19). So we can apply (1) to give

G-y = ) - @A

)8

3

i

Gn) + s - 2™

3

|

R * , i e M=
G(¢1) + G(zz) ;(¢3) -

]

o) ¥ ey ¥ eap-2",

n=2

since G(i3) coritains Zm—z, and G(i]), G(iz) do not contain 2 , 2m~3.

By (20),
e d o) §@ap-2" - 66 Fe) ¥ (6@ ="

—F a % . * . —3
But by (21) G(n-(2" 3 k—l)p) # G(al) + G(%z) + G(z3~2m kp)-
If we assume there exists a move from nip of taking u tokens to

leave three non-negative heaps of il, T, ig tokens where G(n)+s =

2
X k
= G(il) ¥ G(iz) ¥ G(i3) then G(il), G(i?), G(is) will satisfy the con-

ditions of one of Case I - Case V. Hence G(n)+s is not an excluded

value for G(ntp).
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(i1) We first show that (4) allows us to exclude g for 0 < g < G(n-2p).
Then using Lemma 6.5 we find moves £froi ntp to positions of (G~value g-
for G(n-2p) < g < G(n)+s. Since n » etTptt, n-2p > et5ptt, so that by

(1), Gn-2p) = G(n)~2s.

(A) If there ex1st1é2v+l,’é2w, hoth of which contalnlg, and for each g

0 5 g < 28 there exists ¢ such that G(£) = g, let 0 ¢ g < G(n)-2s. Then

by Lemma 6.6 there exists 7 < n such that
G(z) = g. (21)
Ag p > t+2, where t is the maximum number of tokens we may remove
n+p- Qutl) >n + 2

n+p-2wxn-t+2.

For 1 54, = 4, < 30rp-(20+1)-1)
Glntp) # (L) F (L) * Glrip-(2041)=21 )
= Glrip-(20+1)=24 ) -
For 1 < il = 'L2 < ~21-(n+p—2w—1)

Gintp) # G5 ¥ G()) + Glnp-20-21))
= Glrp-20-21 ).

Thus G(1), G(2), ..., G(n) are excluded values. But by (21) this excludes

g, 0 g g s Gn)-2s.
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(B) 1If there éxistsl@u which contains 8, and for each g0 <g < is, there
exist 20+1, 20 > 0 such that G(2v0+1) = G(W) = g, let 0 < g < G(n)-2s. By’

Lemma 6.7 thére exist 2v+1, 2w such that 0 < 2v+l, 2w < »n, and

v

G(20+1) = G(w) = g. (22)
Since p » t+2,
nt+p-uzn+2,

.. 1 ——
For 1 < N —.12 < z(nfp u-1),

Gontp) # G(L) + G(L)) + Glmip-u=2i))
= G(n+p—u-2il)

so that either G(1), G(3), G(5),,.. or G(2), G(4), G(6),... are excluded
values. But by (22), this excludes g, 0 < g‘s Gn)-2s.
Let Gn)+s > g > G(n)-2s. Since G(n)+s > 8s, g > 5s, so that if oM

is the largest power of 2 contained in g, m > k+2.

-1
(a) 1If g also contains 2" ,

Gn) +g - 2" s g 2"

5 2

(23)
- Gy > (2T Redm IRy

so that by Corollary 6.4,




- 137 -

n>e -+ (zm—k+2m—l"k—2)p

z e +,2m~kp. . ’

We can apply (1) to get

Il

¢ 2" Kypy = 6o - @ K1)s

1l
)
~
3
N
+
2}

I
N

v

¢y - 25 - 2"

() +s=2™) - 38

1t

G- 2" *-1yp) - 3,
or
G-y > g - 27 5 G- RD)p) - 3, (24)

\ so that g~2m is an excluded value for G(n—(Zm—k—l)p). Therefore it must
be the case that we can remove u tokeps from a heap of n—(Zm—k—l)p:to_r

, 1., 1, where

leave three non-negative heaps of il 5 3

n- @R p —w= i+ D+

m . R * Ll % L
g=-2 =6E)+GE) + G(E,). - (25)
m . am1 . . . om1
As g-2° contains 2 , an odd number of G(tl), G(t?), G(ig) contain 2
Without loss of generality we may assume that G(él) contains Zm_l, where

m-1 > k+1, so that
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G(L) > 7
> 28,
and by (2)
i, > e +p.
Therefore by (1)
o)) + 2" = oG #2"p). | (26)

We apply Lemma 6.5 to (25), (26) with 7 = m-1, and 1 = n—(2m—k—l)p to

show that o™ is not contained in any of G(il), G(iz), G(i3) so that

g =g - 2™y "
. * . * . m
= G(@l) + G(@z) + G(tg) + 2
. m * . % .
= (G(v,l)+2 ) + G(7,?) + (7(7,3)
. =k . . % )
= G(7,1+2 p) + G(7,2) + G(7,3) by (26),
Since
, m-K , .. . ., omk
v +2 pte, i, =1 + , + Ty 2 p

" - (Zm_k—-l)p o+ Zm—kp

1

n+p-u,

g is an excluded value for G(ntp) .
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-1

: . m .M
(b) Suppose ¢ contains 2, but ¢ does not contain 2

) +8 -2 s g - 2"
5 ™1
= Gn) > (2m~k—l)s

so that by Corollary 6.4,

n>e+ (Zm_k—Z)p

> e+ 2m~1—kp.
We can app1§ (1) to obtain
e F1ypy = 6oy - @™ Res

=Gy +s - 2™
o g - o
> Gn) - 28 - 27 ¢
= Gm+s-2" - 38
= G(n—kzm_l_k~l)p) - 3s,

or

G(n—(zmnl—knl)p) > g - 2m~1 > G(n—(qul_k~l)p) - 3s.

(27)

(28)

(29)
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1"k--‘l)p). It must be

m-1-k

-1 -
. Therefore g—Zm is an excluded value for G(n—(zm

the case that we can remove U tokens from a heap of n-(2 -Lp to
leave three non-negative heaps of il, iz, is where
m-1-K ., s .
n - (2 -Dp ~u=1, +1, +1,
m-1 . * . * .
g - 2 = G(@l) + G(az) + G($3). (30)

m-1 —1 . . .
As g-2 contains 2m -, an odd number of G(%l), G(tz), 0(13) contain

m-1 . . -
2 . Without loss of generality we may assume that G(@l) contains o™

so that G(il) > 2m—1 > 2s, and by (2), il > e + p.

We can therefore apply (1) to obtain

k

L. G(i1+2m—1— p). (31)

G(i)) + o™=

We apply Lemma 6.5 to (30), (31) with 7 = m=1, 7 = n—(2m_1”k~1)p to
show that 2™ is not contained in any of G(il), G(iz), G(i3), so that

by (26),

g=g - 2)77-1 +2m-—1

. * . * . m=1
G(tl) + G(%z) + G(¢3) + 2

i

1

@™ ey Fedy,

where

]

3
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. M=k . . . , m=-1~k

(7,1+2 p)+7,2+7/3—7,1+’1/2+7,3+-2 p
- - (?_m—l—k_l)p -yt 2m~1-—7<p
=n+p - u.

Hence g is an excluded value for G(n+p). 0

For example, the‘game .B8 has G-sequence 010102323&54567é(+4) with
last irregular value G(8) = 3, period 7 and saltus 4. To apply Theorem
6.8 it was necessary to calculate 8+8.7+4+2-1 = 65 G values.

Section (i) of the proof of Theorem 6.8 genefalizes to take and

K

break games I = QD'QQQQ"'Qﬁ where the saltus is a power of 2,'3 = 2",

If we permit one heap of tokens to be replaced by’ heaps, then we require

G(itp) = G(Z) +s8, e <1 <e + (Zh—-l)p + ¢
G(1) < &8 for all < ge
G(1) < 28 for all 7 < e.

In fact, section (i) applies even to finite octal games. The difficulty
lies in ensuring that every lesser value will be excluded. E.g. the game
,;ég has initial G-values 010012234456678893... . No sedecimal game has
been found which satisfies condition (1) of Theorem 6.8, but not condition
(4); If one heap may be replaced by 2hi+1 heaps (h>1), p > t+2h, and (4)
holds, an analysis similar to (ii) may enable us to show that every lesser
value is excluded.

Table 7.7 displays those sedecimal games that were discovered to be

arithmetico~periodic.
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6.4. Infinite Recurring Games and Arithmetdico-Periodicity.

In sgction 5.1 we proved that no finite tetral game is.arithmétiéo—
periodic, and in section 6.2 we established the same result for finite
octal games. There are numerous infinite octal games that can be shown
to be arithmetico-periodic.

A take and break game T, = d..d d ... is said to be an infinite
recurring game if

(i) there exist v,¢ such that for all u > v, gu.= d and
(ii) there exists w > v, gw #0. .
We now prove theorems concerning this class. of games. As with sedecimal

games, it may be necessary to choose appropriate multiples of the\period

and the saltus.

EORE .9. ’ T = . eood G - i infini
THEOREM 6.9 Suppose that T ’QO gqu d d 1 év+t is an infinite
recurring octal game satisfying:

(@) d,=4d,, forall u>v,
(b) if ,@u contains 4 (u30), then ’d*uH; contains 4,
and that there exist integers e (the last irregular value), p > vttt (a

period), and s > 1 (a saltus, assumed to be a power of 2, g = 2k) such

that

(1) Gl4p) = G(Z) + s for all 2, e < 7 £ etbp
(2) G(Z) <8 for all 7 z e

(3) G(L) < 28 for all 7 < etp.
Then for all ©Z > e,

G(itp) = G(1) + s. ‘ %)
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PROOF. By hypothesis (*) holds for all %, e < 7 < et+bp. Assume induqtiveiy
that (%) holds for all i, e < 1 < n where n. > et6p. 'i‘o show that G(ntp) =
= G(n)+s we prove that:

(i) Gn)+s is not an excluded value for G(utp).

(ii) For each g, 0 < g < Gn)+s, g is an excluded value.

(1) We suppose that G(n)+s is an excluded value for G(ntp) and show this
leads to a contradiction. If G(n)+s is an excluded value for G(u+p),
then it must be excluded by removing u tokens from a heap of nip to leave
two non-negative heaps of il, iz tokens where
n+p-u=1<i +4%
p 1 2

Gn) + s = G(il) i G(i2)~

Since n > etbp, n—6p > e, and we have by (D

G(n) = G(n—6p+ép)
= G(n—-6p) + 6s
> 6s

= Gn) +s 3 7s,

so that if 2™ is the largest power of 2 gontained in G(n)ts, m > k+2.

%
As G(n)+s = G(il) + G(iz), 2™ is contained in just one of G(il), G(i?).
Without loss of generality we may assume that 2™ is contained in G(il)
and is not contained in G(iz). There are three cases to consider, where

each case leads to a result that contradicts the induction hypothesis.
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. : A ‘
CASE T: G(%l) contains 2m, 27, 12k, T # m. The argument that leads to

a contradiction is similar to that of Case I, Theorem 6.8 (i), since we

may assume that the is of Theorem 6.8 equals O.

t

CASE I1: G(il) contains Zm, G(il) does not contain ZZ, 1>k, L #m,
. -1

and G(%z) does not contain Zm, . The argument that leads to a contra-

diction is similar to that of -Case II, Theorem 6.8 (i), since we may

assume that the i3 of Theorem‘6.8‘equals 0.

CASE IITL: G(il) contains Zm, G(él) does not contain ZZ, 7 > k, and G(iz)
contains Zm_l. The argument that leads t0'a:contradiction is similar_to
that of Case III Theofem 6.8 (i) since we may assume that the is of
Theorem 6.8 equals O.

| If we assume there exists a move from nt+p of taking u tokens to leavé
two non—negativé heaps of il, iz, whére G(n)+s = G(il) i G(iz) then

G(il), G(iz) will sétisfy the conditions of one ofVCases I to III.

Hence G(n)+s is not an excluded value for G(nip).

(ii) We first show that g is an excluded value 0 < g < G(n)-2s8. Then,
using Lemma 6.5 we find moves from nip to‘positions of- G-value g for
G(n)-2s.< g < G(n)+s.

Let O <w < v. Since n > etbp, and p'x vtt, we have n-2p > etbp,

ntp~w-t > etbp, so that

G(n-2p) = G(n) - 2s, (4)

Glntp-w-t) = Gln-w-t) + s. (5)
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There exists ¢ > 6 such that etqp <7 ¢ é+(q+;)p. By Lemma 6.3
gs < G(n) < (q+2)s
“= (g+tl)s < G(n) + 8 < (g+3)s.
By (4),
(g-2)s < G(n-2p) < gs. - ) (6)
Since 0 ¢ w < v, p 2 wtt so that
o m-w-T>e+qp -~ W th
> e+ (d—l)p~
By Lemma 6.3 anq (5),
Gln-w-t) » (q-L)s
Gn-w-t) + 8 > gs
G(ntp~w-t) > gs. (7
Then (6) and (7) yieid
G(n+p;@—t) ; Gn) ~ 2s : .(8)

for'all w, 0 w £ v.
‘Let g € G(n)~2g. By (8), g is an excluded value for Gntp-t) .-
Hence there exists a move taking u tokens from a heap of nip-# to leave

Z., 2, 2 1, = 0.

two heaps of Tys Ty 1 0
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n+p-u-ts= i17+ Ty,

' . .Ik .
g = G(tl) + G(zz).

If 1, ” O,‘then gu contgins 4. By (b), Qu+t contains 4, so that

f-

n + é - (utt) =n+p ~-u-~t

]

71 + Tos

il

g = GG toa,).

“Hence g is an excluded value for G(ntp). If i2'= 0, then Qu'containsjg

and u > v by (8). Therefore Qu+ contains 2, and

¢
Glrtp-(utt)) = Glnrp-u-t)
| = G(2)

| =g,

so that g is an excluded value.

Let G(n)+s > g > G(n)-2s. Since Gn)+s > 78, g > 4s. If M is
the largest power of 2 contained in g, m > k+2. .

The remainder of the argument is identical to that of Theorem 6.8
(ii), (b), since we may take i3 = 0 in Theorem 6.8.

Thus for each g, 0 < g < G(n)+s, g is an excluded value. Hence

Gntp) = G(n)+s. o
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For example, the game .53,has G-sequence Olléé(+2), with 1astrirregular
value G(2) = 1, period 2, and saltus 2. To apply Theorem 6.9 it was
necessary to calculate 24+7.2 = 16 values.

That G(i4p) = G(£)+s for e < 1 < e+bp is used oq}y in section (ii)
of the proof. To establish (1) it suffices that G(i+p) = G(i)+s for
e <1 < e+3p. However, to exclude g, for G(n)-2s < g < G(n)+s,.we
need that g contains Zm, where m > k+2. This in turn requires that
G(n)=2s % 4s or G(n) > 6s. Only if n > et+bp can we ensure that Gn) = 6s.

The game .JiQ,appears to be arithmetico-periodic with G-sequence
612314324567(+8). We cannot apply Theorem 6.9 to .ZZQ since it does not
satisfy the assumption (b). While section (i) of the proof applies to
any octal satisfying (1), (2), (3), and hence to‘.zzg, the argument used
in section (ii) breaks down. The reason for which it fails is similar
to the reason for which it was necessary to assume (4) in Theorem‘6.8.

If g < G(n)-2s then g is an excluded value for G(n). Let g be excluded

by the removal of u tokens (ugv) from a heap of n to leave two |

positive heaps of il, iz’ where g = G(il) i G(iz). Only if the Einary

expansions of G(il), G(iz),satisfy certain conditions can we say that

g will be an excluded value for G(n#p). In general this is not the case.
We now prove an arithmetico-periodicity theorem for infinite re- |

curring tetral games. We no longer require the saltus be a power of 2.

.

THEOREM 6.10. LetT = .d. d ...dd  d

. . .o > <
4,4, 1304, £v+t where for u = 1, du 3,

and not all dv ¢ 1. If there exist integers p, a period, s > 1, and

-+

¢, the last irregular value such that
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(1) G@E+4p) = G(E) + 8, for alli, e << e +p+v +¢
(2) G() <s, for all i < e
(3) G() < 25 for all © s e + p.

Then for all ©i > e,
G(itp) = G(i)+s. (*)

<

PROOF. By hypothesis (%) holds for all<, e < © < edp+v+. Assume in-
ductively that (*) holds fore < ¢ < n wheren > edp+t+ . To show
G(ntp) = G(n)+s we prove that:

(i) G@)+s is not an excluded value for G(nip),

(ii) For each g, 0 £ g < Gn)ts, g is an excluded value.

(i) We suppose that G(n)+s is an excluded value and show that this leads
to a contradiction. If G(n)+s is an excluded value then there exists a
move from n+p of taking u tokenms, 0 < u £ ntp, such that Gnip-u) = Gn)+s.

Since n > etptv+t let n = etp+c where ¢ > 0. Then

G(n) = G(etpte)

fflete) + s by (1)

so that
Gn) + s = 28
= G(ntp-u) ; 28
= n+p-u>e+p by (3)

= n - u>e,.
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Hence we may remove U tokens from a heap of n to leave a heap n-u where

G(n)

- Gn) +5.- 8
= G(h#p—u) - 8
,=‘G(n+p—u—p)

G (VL"?A) ]
which is a contradiction. Hence G(n)+s is mnot an excluded value.

(ii) If 0 £ g-s < G(n), then g-s is an excluded value for G(n). There-
fore it must be the case that we can remove u tokens from a heap ‘of n

'tokens where G(n—u) = g-s. If g-s > s, then by (2), n-u > e, so that

el g -8 +s

Gn-u) +s

G(ntp-u) . by (1)

Hence if 28 ¢ g < G(n)+s, then g is an excluded value for G(n#p).; Let

1

n = ntp-t. Then
n =n+p-*%t

>e+ptovo+t+p -t

e+ 2p+ov, (4)
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so that by Lemma 6.3 G(n'):a 28, 1f 0 < g < 28, then g is an excluded
value for G(n'j: Therefore it must be the case that we can remove U
tokens from a heap of n' where G(n'-u) = g. Moreover, u > v. Lf not,

by (4), n'-u > e+2p, so that by Lemma 6.3, G(n'—u) > 28, which contradicts
Fhe choice of u. Therefore u > v, and by hypothesis,,€u+t = d . There

~NU

is then a move, taking utt tokens from nip, where

n+p = (t+u)

n+p-1T-u

1
=n - u

so that G(ntp—-(t+u)) = G(n'-u) = g. Hence g is an excluded value for
G(ntp) .

Since G(n)+s is not an excluded value for G(ntp) and every value
gstrictly less than G(n)+s is an excluded value, G(ntp) = Gn)+s. E.g.
the game vgéé has G-sequence 012012 (+3). To apply Theorem 6.10 it was
necessary to calculate 0+12+1+2 = 15 G~values.

Table 7.4 displays those infinite recurring octal and tetral games

that exhibit arithmetico-periodicity.



Chapter 7

The G-sequences of Take and Break Games

7.1. Introduction

The tables of this chapter contain information about the G -values
of take and break games. Table 7.1 dispiays the G-sequence of all sub-
traction games éﬁose subtrahends do not exceed 8. The initia].G~;alues
of some octal games are listed in Table 7.2. Where the G -sequence is
known to be periodic, the length of the period is listed. Table 7.3
indexes Table 7.2, enabling us to find the initial G-values of any octal
;game of the form l\t'dq@z or .,@1@2,@3. Table 7.4 contains information about
infinite recurring octal games that exhibit arithmetico periodicity.
Tables 7.5 and 7.6 complement Table 7.4 as Table 7.3 complements Table 7.2.
The G-sequences of those sedecimal games that were discovered to be arith-
metico-periodic are displayed iﬁ Table 7.7.

Tables 7.2 to 7.6 were compiled by Guy [}]. Additions and corrections

to Table 7.2 were made by the author.

7.2. Subtraction Games

Table 7.1 lists the G-sequences of some subtraction games. The first
column contains the .mewbers of the subtraction set. The second column
displays the numbers that we ma} adjoin to the subtraction set without
affecting the outcome of the game. The table therefore includes all sub--
traction gamés that may be described by a subtraction set, the members of
which do not exceed 8. The third column contains the G -sequence, where a
dot is placed over the first and last members of the period. The period

is listed in the last column.
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Table 7.1. G-sequences of subtraction games.

Subtraction Optional Members G-sequence Period

Set ‘
1 (3,5,7,9,11,...) 01 2
2 (6,10,14,18,...) o1l 4

1,2 (4,5,7,8,10,11,...) 012
3 (9,15,21,27,...) ~ 0oo11i 6
2,3 (7,8,12,13,17,18,22,23,...) 00112 5
1,2,3 (5,6,7,9,10,11,13,14,15,...) 0123 4
4 (12,20,28,36,44,52,...) 00001113, 8
1,4 (6,9,11,14,16,19,21,24,...) 01012 5
2,4 (3,8,9,10,14,15,16,20,21,22,...) 001122 6
3,4 (10,11,17,18,24,25,31,32,...) 0001112 7
1,3,4 (6,8,10,11,13,15,17,18,20,...) 0101232 7
1,2,3,4 (6,7,8,9,11,12,13,14,...) 01234 5
5 (15,25,35,45,55,...) 0000011111 10
2,5 (9,12,16,19,23,26,30,33,...) 0011021 7
3,5 (4,11,12,13,19,20,21,...) 00011122 8
2,3,5 (4,9,10,11,12,16,17,18,19,...) 0011223 7
4,5 (13,14,22,23,31,32,40,41,...) 000011112 9
1,4,5 (3,7,9,11,12,13,15,17,19,20,...) 01012323 8
2,4,5 (3,9,19,11,12,16,17,18,19,...) 0011223 7
1,2,3,4,5 (7,8,9,10,11,13,14,15,16,17,...) 012345 6
6 (18,30,42,...) 000000111111 12
1,6 (8,13,15,20,22,27,...) 0101012 7
1,2,6 (5,8,9,12,13,15,16,19,20,...) 0120123 7
3,6 (4,5,12,13,14,15,21,22,23,24,...) 000111222 9
1,3,6 (8,10,12,15,17,19,21,24,26,...) 010101232 9
2,3,6 (7,11,12,15,16,20,21,24,25,...) 001120312 9
4,6 (5,14,15,16,24,25,26,...) 0000111122 10
2,4,6 (3,5,10,11,12,13,14,18,19,...) 00112233 8
1,2,4,6 (7,9,10,12,14,15,17,18,20,22,...) 01201234 8
5,6 (16,17,27,28,38,39,49,50,60,...) (00000111113 11
1,5,6 (3,8,10,12,14,16,17,19,21,...) 01010123232 11
2,5,6 (9,13,16,17,20,24,27,28,...) 00110213021 11
2,3,5,6 (4,10,11,12,13,14,18,19,20,...) 00112233 8
1,4,5,6 (3,8,10,12,13,14,15,17,19,21,...) 010123232 9
1,2,4,5,6 (8,9,11,12,14,15,16,18,19,21,...) 0120123453 10
1,2,3,4,5,6

(8,9,10,11,12,13,15,16,17,18,...) 0123456 7

(continued)
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Optional Members

(21,35,49,63,77,91,..
(11,16,20,25,29,34,38, .
)
(5,6,15,16,17,18,26,..
(9,12,15,17,20,23,..
(10,13,16,19,22,25,28,..
(5,6,13,14,15,16,17,..
(5,9,11,12,13,15,..
(8,9,13,14,15,18,19,..

(13,17,23,27,33,..

(6,17,18,19,29,..

(4,6,11,12,13,14,15,16,20,21,
(3,6,11,12,13,14,15,16,20,..

-
(11,15,17,20,24,27

-)

-)

)

)
2

-)
)

sees)
(4,6,13,14,15,16,17,..

-)

(19,20,32,33,45,46,58,..
3,5,9,11,13,15,17,..

(11,15,19,20,24,28,32,33,..
(4,9,10,12,14,15,17,18,20,..
(4,5,13,14,15,16,17,23,24,..
(9,12,14,17,19,20,
(3,5,11,12,13,14,15,16,20,..

(10,14,17,18,19,22,26,29,..
(4,9,10,12,13,15,16,17,18,..
(3,9,11,13,14,15,16,17,19,21,...
(9,10,11,12,13,14,15,17,18,19,..

(24,40,56,72,...)

(10,17,19,26,28,..
(12,18,22,28,32,38,..
(14,19,25,30,36,..

(6,7,10,11,12,15,16,17,19,..
(5,6,7,16,17,18,19,20,28

-)

cel)

)

-)
(10,12,14,19,21,23,25,..

)

(6,11,13,16,18,20,23, ..
(9,15,16,20,21,27, ..
(6,7,18,19,20,21,31,. .
(3,10,12,14,16,18,21, ..
(12,15,18,22,25,28,..
(4,6,7,14,15,16,17,18,19,25, ..
)

(14,22,25,31,39,..

(7,9,11,12,13,15,17,18,19,..

2

.)

)

.)

)

(3,6,10,12,13,14,15,17,..
-)
(9,10,11,15,16,17,18,21,22,...
(7,20,21,22,34,35,36,..

(11,14,17,20,23,..

Table 7.1 (continhed)

.)

)

D

-)
.)

)
(5,9,11,13,14,15,16,17,19,21,...

-)

.)

)
beed)
.)

)
)

)

.)

N’ N

G-sequence Period
0000001111111 L4
001100112 9
0001110221 10
00001111223 11
01012013 8
00112203102 3
0001112223 10
01012323 8
00112203142 11
000001111123 12
0011021322031001122333 22
0001112223 10
001122334 9
001122334 9
6000001111113 13
010101232323 12
0011001120312 13
01201234 8
0001112223 10
(0101201232012 13
001122334 9
0101232345 10
001102132233 12
01201234534 11
0101232345 10
01234567 8
0000000011111111 16
010101012 9
0011001123 10
00011100211 11
01010101232 1l
012301234 9
000011112223 12
010120101232 12
000111202313 12
0000011111222 13
0101010123232 13
0011021021 10
00011122233 11
0011223041304

12230011233021403 17
0123012345 10
010123234 9
001122304102 3
0011223041523 13
0000011111123 14
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Optional Members

(7,12,16,20,21,22,26,30,...)

(4,5,7,14,15,16,17,18,19,25,..

(7,11,12,16,17,20,21,22,...)
(3,5,7,12,13,14.,15,16,17,18,

(5,9,11,12,14,15,16,18 19,~l .

(9.12,16,19,20,22,23,26,30,.

(4,7,12,13,14,15,16,17,18,22

-)

o)
)

"

.)

(9,10,12,13,14,16,17,19;20,21,..)

(22,23,37,38,52,53,..

)

(3,5,10,12,14,16,18,20,22,23,..

(12,17,22,27,32,.
(13,18,23,28,33,..
(10,15,17,18,21,24,26,29,32,..

o)
-)

(3,9,13,14,15,18,19,20,...)
(5,6,14,15,16,17,18,19,...)
(5,6,10,12,14,15,16,17,18,19,..

.(15,16,18,21,25,28,30,31...
(4,6,12,13,14,15,16,17,18,22,...
(3,6,10,12,14,15,16,17,18,19,.
(3;6,12,13,14,15,16,

(3,5,10,12,14,16,18,19,20,21,...
(4,5,10,11,13,14,16,17,18,19,.

)

(10,13,15,18,20,21,22,24,27, .

(11,15,18,19,20,21,24,28, ..
(10,11,12,14,15,16,18,19,20

)

)

2

)
o)
17,18,22,...)
)
o))

o)

2
yeen)

(10,11,12,13,14,15,16,17,19,20,.)

Table 7.1 (concluded).

G -sequence Period
00110011223322 14
00011122233 11
00112031220312 14
0011223344 10
0120123453 10
00110213223021 14
0011223344 10
01230123456 11
000000013111112 15
010101012323232 15
00110011220312001 5
0001110221300211 5
010120123230130101 :

2324323 25
00112203142 11
00011122233 11
01012323454 11
00110213220310011322332 23
0011223344 10
01012323454 11
0011223344, 10
0101012323234 13
012012345345 12
01012012323453 14
0011021322334 13
0123012345674 13
012345678 9
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7.3. Octal Games

Table 7.2 contains information about octal games. When used in con-
junction with Table 7.3, it lists the initial G-valﬁes for all octal games
of the form 4.4,d, or ,@1,4,2,@3 Tach row of the table contains information
about one game. The row is indexed by a number (d1d2d3 oY A.dldz) appear-
ing in the first column, and the row refers to the standard form of the
game ;"C\Z'l'd'zig or r{b.,c]llfcj,z. The second column contains the name of a first
cousin if any, and the third column lists the standard form, e.g.

'992’5—1 013 E—l sL13 so that the row indexed by 002 contains the £-
sequence of the game .113, and has .Ql3 listed as a first cousin.

The nain entry consiéts of the initial ¢-values. As G(0) = 0 always,
it has been omitted except in fhe first two rows. We list 30 G-values,
ﬁnless the G~sequence is periodic, and it may be described in less. For
‘ those games tﬁat are périodic, the beginniﬁg and end of the period are
indicated by dots over the first and last members of the period. @G-values
greater than 9 are represented by the following symbols:

X = T t F f S s A a V
10 11 12 13 14 15 16 17 18 19 20 .

In:the case of those games which have essentially the same G- sequence,
but different code digits, only one reference appea%s, e.g. the games
JAS5L, 4.1, .31 all have G -sequence O.i, but only .51 is displayed.

fhe last column contains the period, p, and a reference to the notes

that follow. If there is no entry in the column for the period, -this

indicates that the period, if any, is not yet known.



001
002
004
005
006
014
015
016
017
02

022
024
026
034
04

044
045
05

051
054
055
06

064

07

101
102
104
106
11

111

112
114
115
116
12

121
122
123
124
125
126
127

131

132
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Table 7.2.
lst Standard
cousins  Form
0L A 0.10 |
013  .113  0.111000
011337 1113337 .1111222033
0107 L0137 .1011222033
01337 113337 .1112220331
014~ .1007 ~ .1001012212
015  .1107  .1101021223
016  .1037  .1012220101
017  .1137  .1112023114
03 .13 .1100
033 .133  .11200
0307, -13137  .1122304112
0337  -13337  .1122304112
034 .1307  .1102231401
0137  .1l337 .1112203311
01377 .113377 1112223331
0177 11377 1112223311
05 .67 16
053 .117  .1110221340
036  .1077  -1012223441
057 1177 .1112223111
036 1337 - .1122031122
0377 13377  .1122334115
071 137 .1120311033
101 .1010 |
.102, .100011
104 .1000102212
.106 .1000122214
011 Wil .110,
1L .1110
112 .i1o00i
14 .1100112021
15 1110111222
116, .1100212021
12 .1001
121 .102ig0i
122 .i0021
123 .102210021
2% 1001102130
125 .1021102130
.%%Q .1002133210
127 .1022104412
37 .1120011
132 .116002

G-sequence

3111104433
4110154333
1122433355
3401051212
0142145122
4422161604
0451320211

5324115560
5334112530
4312210514
1043332224
1144433322
1444332221

1113222340
1163222411
4443222111
3344053342
5332211544
2240522330

2410401566
4010621242

2041104115
1222
1044152411

2130113023
1130234223
4250315041
2014461770

(continued)

G-sequences of octal games.

3322224440
2221601045
2144333222
5303451211
3234014512
2127661512
1402616404

3125148142

4421133442
5632481402
4055222330
2111444222
1144222664

1543222310
6667344511
4222644411
2113022114
2266841122
1130211045

1228104015
1045166512

2415241120

2041204115

3223425042
4253225320
5041304130
1226144812

Period Notes

et

36

32

48

148

34

oy

N

14
96
4

62

Ul

(3)
(4)
(5)

(8)
(9)

(15)
(16)
(17)
(18)
(19

(21)
(22)

(24)

Q7
(28)

(33)

(34)

(39?

(42)
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Ist Standard G —sequence

Period Notes

cousins Form

2031103122

(45)

134 .1100112031 3322435143 62

135 .1120112031 1031224322 4352235221

136 .1100213021 1022334251 4223342011

14 1001021221 0414412212 0104126164 (48)
141 .1011012212 4101121221 2412 11

142 .1002221103 3241063231 0162240115

143 1012220104 2215047228 0412228104 (51)
144 1001222244 111 10-  (52)
145 1011222241 1 : 9 (53)
146 .1002224111 3324446662 3111766842

147 .1012224411 8 (55)
15 .1101122122 o 10 (56)
152 .1102220104 3231013224 0104223101 48  (57) -
153 .1112221102 2244011222 111222441 14 (58)
154 .1101122222 4111 11 (59)
156 1102224411 1322444666 2111576688 - 349  (60)
157 111222 : 6. (61)
16 1001221401 4214014214 2102142145 (62)
161 1021021321 3243043241 2312012415 (63)
162 .1002231104 2261034266 0542330142

163 1022310422 6104226104 3221043265 (65)
164 .1001223445 1163223415 66738211X7

165 1021321344 3623128126 5445182182 1550  (67)
166 .166, .1002234116 6224411338 5446633118

167 167 .1022341162 2441133544 663315866X

17 A7 1102130113 2234153223 1103120114 34 (70)
171 AL .1122110214 0112211221 42 11
172 172, .1102230113 2244063224 0163220116

173 .432 173 .1122310432 0112235143 2211023741 40 (73)
174 L74 .1102132214 4564223115 4128865741,

176 76 1102234411 6223441166 33241166334 8  (75)
204 .204 .3007,  .1012010123 1212314303 1432324323
1205 .205 3107 .1201012312 3134034532 3253210202

206 .206, 3037 1012320101 2323451232 3454010342

207 .207 3137 .12120301.24 5312124303 0214358213

22 .22 .33 .120 3

224 .224 .3307, 1201231231 4304314213 2102142641

226 .226 3337 1234012345 1234512305 1234 5

244 244 3077 .1012323451 5673232158 9767654548

245 .245 317 .1212345156 7321289765 64T9212X74

26 .26 .333 .1230 : 4 (85)
264 .264 33717, .1234516325 1867524816 X45267X518 .

Table 7.2 (continued)



312
316
32

324
331
332
334
336
34

342
344
346
35

351
353
354
356
36

362
364
366
37

371
373
374
375
376

404
414
416
&4

444 .

45
454

51
512
52
524
53
532
536
54
544

1st

cousins

.201

o

OO O
AN PN P o Lnal O
IOV O
~J ~J

|

Standard
Form

(™
—

RE

SR

(%]
o~
(*2)

SRR

(O8]
O
(*2)
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1201
.120201
.1202123010
.i02
.1021301340
.123012
.1203
.1201203123
.1203124031
.1012010312
.1012320103
.1012324514
.1012324516
.i20102
.12120102
.12120
.1201243123
.1202124516
.1021021321
. 1023410234
.1021321345
.1023451623
.1201231234
.1231032402
.1334012341
.1201243123
.1231243213
.1203124352

.1122334115
.1102234401
.1122341166
.1122331144
.1122334115
.1122311443
.1122341166

A
.11122210
.1022103
.1022104416
.1122102240
.1122401224
1224
.10i222411
.10i2224411

G —-sequence

30123

2342132034

1243503426
2034123612
1203

2345023254
6232145876
7232158676

5243513524
7512826281
3243043241
1523714237
3423125125
4576891276
0342132102
3401241632
5231472104
5243513524
4274814812
4351432645

6332211087
1322344566
3221066844
3322114422
6332211887
2211422644
3221166844

7012261446
122112241
i

Table 7.2 (continued)

1346201253

12431302172
3051306413

0102321456
7¥14123264
X548923Xx4

7247864762
5%79581212
2312012415
0123750132
7457482962
85432915%3
1451451201
0123413421
321402640

7247864762
4814381482
867X827362

7255401122
3223118763
5X17833241
6644112277
7655441122
1122711443

5X11833447

18701.87614

Period Notes

o O

142

18

24

20

fo o BE NIV, RNV, e R Al

(89)

(91)

(95)
96)

(104)
(105)

(109)

(113)

(115)

(117)
(118)

120)

125)



1st Standard

cousins Form
56 20,
564 264
57 L
604 .604 3707
606 .606, L3737
64 .64 3L
644 644 S
71203 Ik
72 A2
74 14,
744 44
75 A3,
76 16,
764 . 164,
7 AL DL
772 2
774 JI14
776  4.44 18
4,12 4. 12
4.3 4.3
4.72 4.72

%

Unless otherwise indicated, all games have been
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.1022411324
.1022441132
L1122

.1201231234
.1234012345
.1234153215
.1234516325

.1210

.1023
.1012324146
.1012324516
12
.1023416234
.1023451623
.1231432142

G-sequence

4662117684
5476823K76

5345321321
1234562345
4268123745
896X5496FX

2321517685
723218967X

1673216752
4576891X76
6412714321

.1234162416 3

.1231456713
.1234163216

.1122042112
.120
.124.

2895461219
74581X5476

21

Table 7.2. (concluded).

Notes to Table 7.2.

11654811T4
8932T 65432

0254754768
6734167891
8295476814
423673 49FX

1Xx26845X6
45981%xX45

89652871X4
8543261543
4674128547

645Tt298X5
1236143218

analyzed to n =

Period Notes

(13D
4
442 (137)
2
4
2
12 (145)
4
7
2
3
9999,

where »n pertains to the form of the game listed in theo first column.

(3) n = 14,999.

Notes in this form indicate that ¢ (n) has been cal-

culated to or beyond the indicated value, and periodicity has not

been observed.

(4) »n = 19,999
(5) n = 14,999.
(8) »n = 19,999,



(9)

(15)
(16)

(17)

(18)

(19)
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G(0) = 0, G(7) 3, G(13) = 5. Otherwise for n = 0,1,2,...,59

(mod 60), G(n)

4111202611 4046132021 1140261640
4111202615 4046132021 1180261640.
There is a strong tendency towards a period of 30.
n = 3216.
Triplicate Kayles, see Guy and Smith [111.
The last irregular value is G(186) = 6. TFor n > 186,
n = 28,29,...,31,0,1,...,27 (mod 32), G(n) =
7744411122288111
4447722211188222.
There is a strong resemblence to '8/3 -plicate Kayles'. TFor .77
the 1ast‘irregular value is 70, and t?%;%J = 186. Exactly the same
values appear in the period of the two games, so that in each case
the rare G-values are those thaﬁ contain an even number of 1l's in
their binary expansions. Furthermore, in each case tﬁere is a '
strong tendency, for n > e, to G(n+%ﬁ = G(n)iB.
"She loves me, She loves me not".
G(7) = G(12) = 1; G(6) = G(16) = G(26) = G(36) = 2; G(22) = G(45) = 5;
otherwise, for n = 0,1,2,...,47, (mod 48), G(n) =

01010232 34010132 32340104
32323101 04323201 01043234,

*
Forn > e = 45, n # 9,19,23 (mod 24), G(nt24) = G(n)+3.
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(21) The last irregular value is G(257) = 2. There are 128 irregular values.
For n > 257, there is a strong tendency towards G (n+74) = G(ﬁ)iS.‘
For more information about the pefiod éee section 4.5.

(22) n = 17,999.

(24) Dawson's Kayles. See Guy and Smith 11], Dawson [6],[7].

(27) n.= 47,549.

(28) n = 42,724,

(33) See Theorem 4.9.

(34) G(3) = 0; G(88) =1; G(n) = 2 for n = 5,9,25,35,37,47; G(31) = G(4l) = &4;
G42) = G(94) = @(138) = 8; otherwise, for n = 0,1,2,...,95, (mod 96)
G(n) =

01120712 06110441 52411204

15041152 425X0X15 42158285

524X1X0X 52425114 05120211

4%X514201 120X120X 818981T2
where X = 10, T = 12.

(39) @) = 0 for n = 0,2,3,28,64; G(1) = 1; GM) = 2 for n = 26,30,34,
59,95; G(n) = 3 for n“= 24,32,121; otherwise for n = 0,1,2,...,61,
(mod 62), Gn) =

7584110213 0213011302 33227465445
5796332031 1031203120 11405547564.

. ! * Y
For n > 121, there is a strong tendency towards G(n+31l) = Gny+2.

(42) n = 17,999.

(45) G(0) = G(3) = 0; G(1) =.G(28) = 1; G(24) = G(32) = G(59) = 2; (7{(26)

= G(30) = G(34) = 3; otherwise, for n = 0,1,2,...,61, (mod 62) G(n)

6514011203 1203110312 23326475447
5627322130 1130213021 10415446374,



(48)
(51)
(52)
(53)
(55)
(56)

(57)

(58)
(59)

(60)

(1)
(62)

(63)
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%
For n > 59, there is a strong tendency towards G(n+3l) = G(n)+3.

Note the similarity between .134 and .124. It is often the case

that for » odd, Gg%%ﬁ(n) = Goqza(n), and. for n even G.134(n) =
*

= G.Jza(n)+1.

n = 35,949,

n = 34,874,

See Theorem 4.10.
See Theorem 4.11.
See Theorem 4,14,
Guile;; see Guy and Smith [}%].
The only irregular values are G(0) = 0, G(L) ; 1. Otherwise-for
n = 0,1,...,47, (mod 48) G(n) =
401022201043 231013224010
422310132340 102220104323.
For n > 1, there is a tendency towards G(nt24) = G(n)i3.
See Theorem 4.12.
See Theorem 4.13.
See J.C. Kenyon [}%]. The last irregular value is (G(3478) = 8. The
G-values illustrate a remarkable tendency to a period of 10, and for
n > 3478, to GGrHLT4) = G(n)Th.
See Theorem 4.15.
n = 50,174,
The G-sequence of .36 and .161 agree as far as n = 518.

518) = 60225518) = 2, but & (519) = 2, G-QQ(Slg) = 4.

161¢ 161
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(65) n = 54,424, |

(67) The last two irregular wvalues a;e G(5180) = G(3495). = 4. _Thé?e are
251 irregular values. Sée section 4.5. ' .

(70) " See Guy and Smith [}}]. The irregular values are G(O) =.0,
G(15) = 1, G(17) =‘3, G(32) = 23 othérwisé, for n = 0,1,2,...,33
(mod 34), G(n) = '

41102130113228445
72231103120114436.

: *
For n > 32, there 18 a strong tendency toward G(n+l7) = G(n)+3.

(73) G(0) = 03 G(1) = 13 G(9) = G(16) = G(20) = 3; otherwise, for

n 2 0,1,2,...,39, (mod 40) G(n) =

4012231046 2011227514
7221102374 1322104627,

G(n)iB.

For n > 20, n # 1,9,15 (mod 20), G(n+20)

(75) For n > 23, G(n+s) = Gm)¥2. | |

(85) See Ferguson [?]. When played uﬁder'misére rules, .73 and;.Qgg
| are not equivalent. | : :

' L%k
(89) For n > 3, G(nt6) = G(n)+2.

D n

i

29,999,

it

(95) n = 29,999.

' %
(96) Except for n = 0,2, and 6, G(nts) = G(n)+1.



(104)

(105)
(109)

(113)

(115)
(117)
(118)

(120)

(125) The only irregular value is G (0) = 0. Otherwise, for n = 0,1,2,...,51
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The last irregular value is ((7314) = 2. There are 6419 irregular
values. These are part of prior attempts to establish a period.

TForn > 7314, if G(n) = 16, then G(n+71) = 16. 1If G0) # 16, then

I

G+l = Co)T.

n = 17,999,

n = 10,342, ¢(10,342) = 256,

G(0) =0; G(4) =1; GB) =G(B) =2; Gn) =3 forn =.3,7,10,25;

G(n) = 4 for m = 11,17, and 35; G(13) = 7 and G(18) = G(36) = 8;

otherwise, for n = 0,1,2;...,17, (mod 18) ¢ (n) =
412481478148214817.

The G -sequences of .404 and .444 agree as far as ¢ (19).

The G-sequences of .416 and .454 agree as fas as G(lS).

Duplicate Kayles, see Guy and Smith [11].
See Guy and Smith [}}]. The ultimate period is 20; the last irregular

value is ¢ (497) ='8. 1In some sense this is "5/3-plicate Kayles'"

[cf. note (17)].

b

(mod 52), G (n) =

8102210441670 1226144618701
8761476107816 7410721078167.

. %
For n > 0, there is a tendency towards G(n+26) = G(n)+6.

(131)

(137)

(145)

n o= 49,999.

The last irregular value is G(3254) = 32. There are 2179 irregular

values. See section 4.5.

Kayles, see Guy and Smith [11], Dudeney [8], and Loyd [15].
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'fhe n-sequence of thé :standard: form of any octal game .gz,lg"ag; or 4.4,d,
appears in Table‘7.2. To find the G-sequence, look in Table 7.2 for ;he
TOoWw d1d2d3 or 4.d1d2. If this does not appear, find that entry in Table
7;3 and consult the row of 'Table 7.2 to which the entry refers.

A '-' in the entry of Table 7.3 indicates thatiﬁhe row appears in

Table 7.2. The * indicates that the G-:-'sequence of the game ,Q is just 0.



d,d,

00
01
02
03
04
05
06
07

10
11
12
13
14
15

16
17

20
21
22
23
24
25
26
27

30
31
32
33
34
35
36
37

40
41
42
43
44
45
46
47

(]
[an I
=

02

v

001

Table 7.3.
1 2
11 05
02 ——n
02 022
017 04
b — 05
06 06
07 07
51 —
31 05
31 05
22 26
22 26
71 05
71 05
26 26
26 26
05 05
71 —
32 72
34 -_—
— 4.3
36 —
— 332
07 07
17 173
07 07
17 173
44 44
45 45
44 44
45 45
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3

002
002
022
022
017
051

71
71
26
26
71
71
26
26

05
71
72
26
342

362

07
173
07
173
b
45
b4
45

(continued)

404
414

4b4
454

024
034

064
44

205
224
224
245
264
264

05
71
324
26
344

75

364

404
414
404
414
bbh
454
4u4
454

Guide to Table 7.2.

06
044
054
064

44

404

404
416
444
454
444
454

04

02¢
06
045
055
064
44

05
051

07

45

207

1226

226
245
245
264
264

05
71
72
26
346
75
366
64

404
416
404
416
444
454
444
454



dle
50
51
52
53
54
55
56
57

60
61
62
63
64
65
66
67

70
71
72
73
74
75

77

R N R o S S
N oS LN O

05
51
52
53
54
51
56
57

37
37
37
37
64
64
64

64.

05
71
72
72
74
75
76
77

‘05
51
05

4.3
77

51

77
75

05
52

54
157
56
536

373
373
373
373
64
64
64
64

05 .

71
72
26
74
75
76

26

26
332
77
57
77
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05
512
52
532
54
157
56
536

373
373
373
373
64
64
64
64

05
71
72
26
74
75
76

772

26
4.12
26
332
77
57
77
4.72

05
51

57

51

57

604
604
604

644
644
644

05
71
72
26

75

05
51
05
4.3
776
51
776
75

05
51
524
57
544
51
564
57

604
604
604
604
644
644
64 4
644

b5
71
72
26
744
75
764
774

05
51

05.

4.3
776
51
776
75

Table 7;3.(concluded).

05
157
524
544
157

564
536

606
606
606
644
644
644
644

05
71
72
26
744
75
764

26
57
26
332
776
57
776
4.72

05
157
524
536
544
157
564
536

606
606
606
606
644
644
644
644

07
71
72
26
744
75
764
776

26
57
26
332
776
57
776
4.72
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7.4, Infinite recurring octal games.

Table 7.4 contains information about infinite recurring octal games

of the form .QQQQ, .4.4 , and Q,é

~1

1 The organization of the table is
. similar to the organization of Table 7.2. The number in parentheses
following the 'G-sequence indicates the saltus. An extra column has

been added adjacent to the column for the period to permit inclusion

of the saltus. G-values greater than 9 are represented by the following

symbols

10 11 12 13 14 15 16 17 18 19 20
X x T ¢t F £ S s A a V

For completeness we have included .Qé,and .Qé in the table. These
games appear to be arithmetico-periodic, but this has not been estab-
lished. We.have also included néig and .360300§. The former is equi-
valent to the sedecimal game .3F first analyzed by J.C. Kenyon [13].
The latter provides another example of a game whose saltus is not a

power of 2.

To find the (G-sequence for any game 'gdgﬁ Or,inél look in Table 7.5.

The entry refers to the row of the table in which the G-sequence of the

game in standard form may be found. An asterisk indicates that the G-

values are bounded. For example, L .5, .géﬁ .ii, néi’ .éi, 4.1 and 4.5

32, 14, Z,Il_l, .,Z’i, ’ZIQJ all have G~

3y

all have G-sequence Oi, ”%i, 31,

o -

sequence Oié, and .Qé, .2Q, 2L, .24 and .éi are all first cousins, of
.Agz, ”ég, n%éi’ .ig and .ig,which have G-sequence 61; .éi,has G~sequence
001i23. The ? corresponding to .61 indicates that this game is as yet
unsolved, though it has béen analyzed to n = 14,999.

To find the G-sequence for any game "QIQQ’ apply an analogous

procedure to 7.6.
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ist standard :
cousins form G—-Sequencé Period Saltus Notes
012 .012 103 0.10(+1) 3 1
02 .03 A3 0.11(+1) 2 1 (@
04 0137 .11337 0.111(+1) 3 1
05 .05 L7 0.111222(+2) 4 2
12 A2 0.10022 (+1) 2 1
14 14 0.100122224444 (+4) 7 4
16 .16 0.100223(+2) 3 2
17 47 A7 0.11223(+2) 3 2
2 2 3 0.1(+1) 1 1 (o
24 .24 307 0.1012(+2) 4 2 (a)
25 .25 317 0.12123454 (+4) 6 4
3003003 ©.3003003  0.10120123234534545(+6) 18 6
32 .32 0.102(+1) 1 1
330 .330 0.12012 (+3) 3 (e
34 34 0.101232 (+2) 3 2
52 .52 © 0.10224433557688XX99xxtT (+8) 12 8
53 .53 0.112244633557788XXT99xxt tFF
88Af£ssaaV (+8) 13 8
54 54 0.101222444 (+4) 5 4
56 .56, 0.1022 (+2) 2 2
57 .57 0.1122(+2) : 2 2
74 7k 0.10123245467 (+4) 5 4
12 A2 0.10(+1) 2 1
14 14 0.1011212232444466 (+4) 7 4
16 16 0.102132445 (+2) 3 2
4.3 0.1243(+4) 4 boo(£)

4.7 0.12(+2) 1

Table 7.4. (G-sequences of infinite recurring octal games.
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1 2 3 4 5 6 7 Ay
*x 03 02 0k 05 02 02 ko
« 12 03 14 16 17 %
* 2 2 24 25 3 2 2
s 33 sk % 3 3 4.3
« 03 17 02 17 02 17 2
x 55 53 54 * 56 57 %
? 5 2 2 2 5 3 )
32 2 74 £ 32 3 4.7
Table 7.5. Games of the form .,@l,c:ljp, ,{;J,g,l
4, 0 1 2 3 4 5 6 7
* * 02 02  Oh x 02 02
% 12 02 14 16 17
% * 2 2 * * 2 2
* 32 2 34 33 2
02 17 02 17 02 17 02 17
x ® 56 57 54 % 56 57
2 2 2 2 2 5 2 3
* x 32 2 74 x 32 2
Table 7.6. Games of the form .d d -

~12



(a)

(b)
(c)
(d)

(e)

()
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Notes to Table 7.4.

Duplicate Nim.

Triplicate Nim. This game is eduivalent t§ Nim in which an exact '
power of 2 (20 = 1) may not be taken.

Nim.

Double Duplicate Nia.

This game is quivalent to .3F, thg sédecimal game analyzed b§

J.C. Renyon which has a period of 6, saltus 3. |

Lasker's Nim.

Arithmetico-periodic sedecimal games.

Table 7.7 contains the G-sequences of those sedetimal games that were -

discovered tb bé arithmetico—periodic. The layout of the table is iden-

tical to that of Table 7.4, G-values greater than 9 are represented,

both in the table and the notes that folloﬁ, by the following symbols:

10 11 12 13 14 15 16 17 18 19 20
X X T t F f S s A a ‘V
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Table 7.7. G-sequences of sedecimal games.

i

Standard . ,
Form G-sequence ‘Period Saltus Notes
0A0 .13137F  .ii¢D 2 1
0B0 .130F .11033(+1) 2 1
0C0 1133777 .i1ic+1) 3 1
118 .11B .1110002223 3344455566 6 (+4) 11 4
128 .128 100110 (+2) 5 2
138 .13A .110022 ) . 2 1
13¢  .13C .1100122332 h45546677 (+4) 9 4
169 .169 .102102133 (+3) , : 9 3 ,
18C  .18C .1000222244 4466663333 8888777755 48 16 (9)
18E .18 .10002223 (+2) : 4 5
18F .18F .10102223 (+2) 4 5 _
194 194 .1100222244 4466663333 8888777755 48 16 (12)
198 198 .1110002223 3344455566 6 (+4) 10 4
19F .19F .11102223(+2) 4 2
140 .1A .100133 (+1) 2 1
280 .300F .1012010123 2345343456 7678976789 53 16 (16)
3F L3F .120123 (+3) | 6 3
890 .L0FF .1012223(+2) 4 P
980 .98, .1100223344  5566(+4) “ 74
9c0 .9€ .1002224446 6633388877 7555999xxX 36 16 (20)
980 .9E .100223(+2) | 3 2
A80 .30FF .1012323(+2) 4 2
B8O .BY .1010232345  45676(+4) 7 4
BAO .BA .102 (+1) - 1 1
BB  .BB .1203(+1) 11
BC  .BC .101232 (+2) 3 2
c9  .L7FE L1122 (+2) 3 2
F8  .E8 .1010232345 45678 (+4) 6 4
FB  .FB .12304(+1) , 1 -1
FC  .EC .1012324546 7(+4) 5 4
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Notes to Table 7.7.

(9) There are only four irregular values. G(0) = 0; G(1) = i; G(16) = 6;

G(36) = 9; otherwise, the G-sequence is

0.0000 2222 4444 6664 3333 8888
7777 5555 9991 xxxX tttt fffF({(+16),

where the entry 4 means that for k > 1, G(1l6+48k) = 16k-4.
(12) There are only seven irregular values. G(0) = 0; (1) = G(2) = 1;

G(15) = G(16) = 6; G(35) = G(36) = 9; otherwise, the G-sequence is

0.0000 2222 4444 6644 3333 8888
7777 5555 9911 xxXX tttt E£fFF(+16),

where 4 means that for k > 1, G(15+48k) = G(16+48k) = 16k-4.

(16) There are no irregular values. The G-sequence is

01012010123234534345676789 |
7678989XxXxTXxXx TtFEFEtFEFE (+16) .

(20) There are only four irregular values. G(0) = 0; G(1) = 1: G(12) = 6;

G(27) 9; otherwise the G~sequence is

0.000 222 444 664 333 888
777 555 991 xxX ttt £EF(+16),

where 4 means that for k > 1, G(12+36k) = 16k~4.

~
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