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Abstract 

Conway has recently developed a theory particularly well suited to 

the analysis of two-person games that are completely determined. Using 

this theory we consolidate some results due to Conway and Guy about the 

partisan game Col, as well as proving some new results for take and break 

games. In Chapter 4, the results obtained by Guy and Smith, and Kenyon 

for octal games are generalized to arbitrary take and break games. 

Chapter 5 discusses subtraction games. We show that all subtraction 

games are periodic, and prove that in certain circumstances it is possible 

to determine the period length exactly. We also state the rules, due to 

Conway and Guy respectively, for writing down the period of the games 

S(a,b), S(a,b,2b-a). Usiitg Ferguson's Pairing Property, we give the 

analysis, again due to Conway and Guy, of S(a,b ,a+b). Chapter 6 deals 

with arithmetico-periodiciiy. Conway's proof that no octal game is 

arithmético-periodic• is given. We prove new aritbmetico-periodicity 

theorems for sedecimal and infinite recurring octaland tetral games. 

Chapter 7 contains Tables that list the G-sequence of certain types of. 

games. With the exception of Table 7.7, the basis for these was provided 

by Guy. Table 7.1 was expanded by the author to include all subtraction 

games in which the subtrahends do not exceed 8. The games .5,, .), 

and .,64.4 were also solved by the author. 
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"There is plenty of time to win this game, 
and to thrash the Spaniards too." 

Sir Francis Drake, 20 July l58. 



Chapter 1 

The Classes a and XZ 

1.1. Introduction  

Our aim in this chapter is to develop a theory that will enable us 

to evaluate positions in games, so that we may determine what advantage, 

if any, a position confers upon a particular player. To achieve this 

end, we define a class jJg of games, as well as addition and a partial. 

order on this class. It turns out that the advantage conferred upon a 

player by some positions can be thought of as a number of moves advantage 

to one of the players, Left or Right. As a result, we find that the 

class Ug strictly contains a real ordered field &o as a subclass, which 

in turn strictly contains the real numbers. 

Our discussion is necessarily brief. In most instances we omit 

proofs so that we may more quickly apply the techniques to the analysis 

of games. For a more complete treatment, we refer the reader to [5]. 

1.2. Games  

By a game G we mean a set of positions together with rules which say 

for any two positions F, Q and either of the two players, Left and Right, 

whether it is legal for the player to move from P to Q. We require that 

the state of play be known to both players, and that moves be determined 

only by the rules, not by any external conditions such as the throwing 

of dice. The games under discussion bear more similarity to Chess or 

Checkers than to Bridge or Monopoly. 

-1--
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The initial position of a game 0 is the position from which play 

starts. If from the initial position, Left has moves only to positions 

/1 1 ,A 2 ,... and Right has moves only to positions B1,B2 , ... , we write 

O = {A 1,A2, ... IB1,B2 .... } and refer to A1,A 2 ,... as the left options 

of G, B1,B2,... as the right options of G. The typical left or right 

option will be denoted by or GR respectively, so that 0 = 

Note that G', GR here represent sets, empty, finite, or infinite. For 

simplicity we have omitted the usual braces; we will also, by a common 

abuse of notation, often use to denote a particular option, rather 

than the set of all left options. 

The game 0 will end when the player whose turn it is to move cannot 

do so. For example, if from 0 = {A 1,A21 } it is Right to move, then the 

game 0 has ended, as the set of options available to Right is empty. In 

the case of an ended game, the outcome depends upon the convention under 

which the game is being played. In normal play, a player loses if it is 

his turn to mou and he is unable to do so, i.e. these games are last 

player winning. Under misre play, the last player able to make a legal 

move loses, i.e. these games are last player losing. 

A game 0 is said to be impartial if from each position of (3, exactly 

the same moves are available to each player. A game that is not im-

partial is said to be partisan. For example, Col (see Chapter 2) is a 

partisan game. An example of an impartial game is iVim. It is played 

with a finite number of heaps of tokens, each heap containing a finite 

number of tokens. The players move alternately, choosing one heap and 

removing at least one token from that heap. 
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If in Nim an infinite number of heaps were allowed, the game would 

not terminate. A game G is said to satisfy the terminating play condition 

if there is no infinite sequence PQ,P1,P2,... of positions for which 

there exist legal moves from P to P ,1' 0,1,2 .....Observe that 

a game in which there is an infinite sequence of moves for just one of 

the players does not satisfy the terminating play condition. The reason 

we do not restrict the condition to alternating sequences (Left, Right, 

Left,...) will become clear when we define addition of games. In the 

following we restrict ourselves to last player winning games that satisfy 

the terminating play condition. 

A disjunctive compound (sum) of the games {G0 G1,...G} is played 

in the following manner. The player whose turn it is to move selects 

one of the component games, G0 ,G1 ,... and makes a legal move in that 

component. The disjunctive compo.ind, denoted by G + G + ... + 

ends when each of the components had ended. Nim is a d1sjunctTve com-

pound of.component games of one-heap Nim. If 0, H are games, the positions of 

Gd-H are ordered pairs (P,Q) where P is a position of C, Q is a position 

of H. From (P,Q), Left may move to (L-' ,Q) or (P,QL ), and Right may move 

to (P ,Q) or (P ,Q') . 

For each game G, there is a set of positions G' to which Left may 

move, and a set of positions e to which Right may move. Each P E G U CI' 

is a shortened game, so that G is determined by the games that form its 

left and right options. This observation provides us with a definition 

of a game. 
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DEFINITION 1.1 (Conway [53). If GE and GR are two sets of games, then 

there is a game {GEIGR}. All games are constructed in this way. 

DEFINITION 1.2. (i) If G = {GEIGR }, then -G = 

(ii) If G = {GLIGR} H = HLI F} then 

G+H = 

Note that the game -G is obtained from G by reversing the roles of Left 

and Right throughout. 

Definitions 1.1 and 1.2 are inductive definitions. We show the 

operation of the induction by consideration of some simple games. The 

simplest of all games is the Endgame { 3. It is reasonable to denote 

this by 0 (take GE = G ' = 0 in Definition 1.2) since O = 0, and 

O+H {O+HEI O+HR} {HLIHR} = H. As no player may make a legal move, 

the one required to move first loses, i.e. this is a second player 

winning game. Consider {OI 3. Moving firèt, Left may make a legal move 

to 0, which ends the game, so that Left wins. If Right is required to 

move first, Left also wins, as the set of right options is empty. 

Similarly in the game { 103, Right wins regardless of which player starts. 

However * = {OO} (pronounced star) is a first player winning game, since 

the first player moves to 0, and becomes the second player in the shor:erc 

game. 

To illustrate the play of games, we represent the game as a tree. 

The positions are represented by nodes, and a legal move from P to Q is 

represented by a line joining P to Q. We draw the tree so that moves 

for Left are represented by lines sloping upward to the left, and moves 



for Right are represented by lines sloping upward to the right. Figure 

1.1 shows the trees of the games discussed above. 

/  0 

{I} 
* 

Figure 1.1. The trees of some simple games. 

Any game G that satisfies the terminating play condition belongs 

to one of the outcome classes listed above. We define these classes 

more formally in the following manner. 

DEFINITION 1.3. The four outcome classes are: 

G > 0 if Left can win no matter who starts. 

G < 0 if Right can win no matter who starts.. 

G 0 if the second player can win. 

0 11 0 (G is fuzzy, or G is confused with 0) if the first player can win. 

These symbols combine in a natural way. 

O >1 0 means that if Right starts, Left wins. 

O < 0 means that if Left starts, Right wins. 

means that if Left starts, Left wins. 

O- IO means that if Right starts, Right wins. 

We let TJg denote the class of all games. Equality in Ug is defined 

in terms of equivalence classes. We first introduce the concept of iso-

thorphic games. For 0, H E TJg, 0 H (0 is isomorphic to H) if there is a 

one to one correspondence between the legal moves of 0 and 11. 
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LEMMA 1.4. (i) 0+0 E G 

(ii) G+H E H+G 

(iii) (G+H)+K E G+(H+K). 

PROOF. We prove (i) to provide an example of the general inductive 

argument. 

0+0 = {OL+G o+GEJI OR+GO+GR} 

= {O+0110+01?} 

{GIGR} 

=0. 0 

Suppose we wish to establish a proposition r(G) for all games G. It 

suffices to prove that P(G), r(GR) imply r(G)1 What is perhaps not 

so clear is that these inductions never require a basis, since state-

ments about the empty set are vacuously true. 

LEMMA 1.5. If H 0 then C-I-H has the same outcome as G. 

LEMMA 1.6 (Tweedledum and Tweedledee Principle). '10 E ijg, G+(-C) 0. 

PROOF. The second player mimics his opponent's move in the opposite 

component of the disjunctive sum. 

(Lemma 1.6 explains our formulation of the Terminating Play Condition. 

If an infinite sequence P0 ,P1 ,P2 .... of moves for one player was per-

mitted, then the game 0+(-G) might never end.) 
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LEMMA ,1.7 4 If G+(-H) 0 then G+J< has the same outcome as H+K, VK E Ug. 

PROOF. By Lemma 1.5, H+K has the same outcome as G+(-H)+H+X, and 

G+K+(H+(-H)). Then by Lemmas 1.5 and 1.6 G+K+(H+(-10) 

has the same outcome as G+K. 

DEFINITION 1.8. 0 = H if G+(-7H) 

The definition of equality is based on the observation (Lemma 1.7) 

that if G+(-H) 0, it will not affect the outcome of a disjunctive sum 

that includes 0 as one of the component games if G.is replaced by H. 

Notice in particular 0 0 implies 0 = 0. For example, consider the 

game 0 = U I0}I{01 fl. If Right starts, we go to {OI }. Left now 

moves to 0 and wins. Similarly if Left starts, Right wins, so that 0 

is a second player winning game. Hence {f IO}I{01 H 0. In future 

when we speak of a game 0, we mean all games H such that G+(-H) = 0. 

For example,. by 0 we mean not only { } but also the games U IO}I{01 

and * + * {OO} + {OO}, illustrated in Figure 1.2, and G+(-G)• for 

any game G. 

*+ * 

Figure 1.2. Games equivalent to 0. 

H 



Definition 1.3 enables us to define a partial order on Ug. For 

two..gaiues, G; H, G i if G+(-H) 0, the game G+(-H) is Left 

to win if Right starts. By G > H we mean 0 H and G 4 H. 

'LEMl.9'. IfG  Hip HK, then GK. 

Lemma 1.9 assures us that there is no ambiguity in the use of the 

symbol I > to denote the partial order. 

There is an alternative formulation of the partial order that we 

will often use. For G = {GhlGR}, H = {HH, we have 

0 H if thee is-xiO Hr Grand ther"ino e áuch that H This 

formulation, like utethb1 of'cojtrudtion of games, is itductive. To 

deidd whether 0 H'it is first necessary tS determine'the order relations 

that hold between all the HP and G, and the order relations that hold be-

tween H and all the d?. If 'it is the case that no HE > 0 and H no 

then GH. 

By GJ.H we 6hall mean G+(-H)I> 0, i.e. the game G+(-H) is Left to 

win if Left starts. As an immediate consequence of the definition we have 

LEMMA Lb. For all games 0, ORft> Glt).G. 

There are some games that behave like numbers, i.e. they provide 

a certain number of free moves to one of the players. We can consider 

n to be the game with n successive moves available to Left, and no 

moves to Right. Figure 1.3 illustrates the tree of moves of n. 
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n-

Figure 1.3. The tree of moves of n. 

In the game n, Left moves to the position n-1, which suggests the 

following inductive definition: 

n = {n-11 1. 

For example, 1 = {O } so that by Definition 1.2 (i), -1 = I0}. 

If we play the game {OIl} + {OIl} + (-1) we discover that this is 

a second player winning game, so that it seems {OI1} provides Left with 

1/2 move advantage. For this reason, we call {OIl} = 1/2, so that by 

Definition 1.2(i), - 1/2 {-110}, 

It turns out that we can define a subclass No of Ug which is a 

real ordered field that strictly contains the real numbers. In [5], 

Conway details the construction of the class No . We limit ourselves to 

a discussion of the role of numbers within Ug and a statement of several 

of the results. 
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DEFINITION 11] x = {xlxR} is a number provided it has a form in which 

(i) all the xr# R are numbers 

(ii) a!? (for each pair' s,a!?). 

Note that 0 = { I }, n = {n—lI } are numbers (in each case (ii) is 

vacuously true) so that there are some numbers. In verifying that a 

number a = {xLIa!?} satisfies (ii), we consider xL, R as games (for 

numbers are also games) and show that > 0. For example 1/2 = {0I1}. 

Since 1-0 = 1 is Left to win, regardless of which player starts, 1-0 > 0 

and 1/2 is a number. But * = {0IO) is not a number, since 0 0. 

We have already defined addition, and a partial order on games. 

These are inherited by the class XZ from 13g. For completeness we re-

state these in terms of numbers. 

DEFINITION 112 (Conway [4]). Let x,y be numbers. 

R 
(i) x y if Va, , y i XR I I , Vy , y c, y a if 

(ii) x=yifxy and yX, 

(iii) x+y = {a,I ya,yLja,R y,a,+yR}, 

(iv) -x = {-x R I-x I ). 

We also have 

LEMMA 1.13. No is totally ordered. 

LEMMA 1.14. For any number x, X L < a, < 



Consider x = {O I+}. Since this satisfies Definition 1.11 x is a number. 

If we play {0111 + {OlI} - we see that it is second player winning. 

For this reason we call Ol) = 

From the examples considered so far, it might be thought that 

{- ll} is also equal to . If Left moves first he goes to - = {-llO} 

and Right wins, while if Right moves first, he goes to 1 and Left wins. 

Hence {-l1} is a second player win , so that {- 11} = 0. 

Therefore we cannot answer the question 'What number is xV when m 

is a number by taking the arithmetic mean of and R. By way of the 

Creation Story (cf. Knuth [14)) we are able' to provide an answer. 

We think of games as being created on consecutive days, where each 

day is numbered with an ordinal c. On day c we create (by Definition 1.1) 

GLUGR 
all games G = GGR}, for which each member of has been pre-

viously created. Since is strictly contained in 1Jg, we know that 

every number has associated with it a birthday, the day on which it was 

created. On day 0 we create the number 0 { I }. 0nday 1, we use 0 

to create 1= {O ), -1 = {101 (* = {OIO} is also created on day 1). 

On day 2, the numbers -2 = -l}, - = {-llO}, {OI1}, 2  

are created. Figure 1.4 illustrates the tree of numbers. 



Figure 1.4. The tree of numbers. 
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Day 0 

Day 1 

Day 2 

Day 3 

Day 4 

On day n, the largest number created is n, and the least number is 

-n. Every other number created on day n is the arithmetic mean of two 

numbers adjaceii in the chain of all numbers previously created. Hence 

on day 3, we create the numbers 3 = {2J }, 1 {].I2}, - = {I 1 }, 

{01}, and their negatives. 

On day 3, we also create the number x = {0,1,21 1. By Lemma 1.14, 

we have x > 2, x > 1, x > 0. However x > 2 implies x > 1, x > 0, so that 

1 and 0 seem redundant in some sense. Lemma 1,15 shows this to be so. 

LEMMA 1.15. (i) If G = 

(ii) If G = {Gld?,H}, 

and H, then 0 = {0L1101?}• 

and H G, then G = 

Such an option H, for either Left or Right, is said to be a dominated 

option, e.g. 3 = {21 1 = {1,2! 1 = {O,1,2j }. 
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The Gift Horse Principle enables us to simplify numbers further. 

We state it in its most general form in terms of games. The Gift Horse 

Principle asserts that it is always possible to give a player a new move 

without affecting the value of the game, provided that it does him no good. 

LEMMA 1.16 (The Gift Horse Principle). Let G = {GL lG'}. 

(i) If H1IG, then G = {G,HlGR}. 

(ii) If HfG, then 0 = {GlId?,H}. 

For example, 011*, so that 0 ) = {* } = {*I*). Such a 'Gift Horse' 

i referred to as an irreieVant option. The Gift Horse Principle is 

usually applied in reverse to simplify games. Suppose 0 

If for the game C' = {00R}, H<UG', then by Lemma 1.16 

0' = 

= {Hl} 

= G. 

= 

Figure 1.5 illustrates the effect of irrelevant and dominated options 

by displaying some equivalent forms of some simple games. 
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0 0 0 

4: 

1 
2 

I } 0 = {* ) = 

Figure 1.5. Equivalent forms of some simple games. 

The form of a gaiiiemay be simplified by eliminating irrelevant and 

dominated options. It may be the case that after such simplifications 

have been made, that the game is a number. The Simplicity Theorem 

enables us to state, precisely what number G = {dIG} is when G is a 

number. The word sinrpist is taken as synonymous with earliest breated.' 

THEOREM 1.17 (The Simplicity Theorem). Let G = {c/IGR}. If there is 

any 'number x such that VG1 , VG ?, G' G'?, then G is the simplest such 

x, i.e. if there is an integer x, then G is the integer nearest to 0, and 

if there is no integer, 0 is the binary fraction with least denominator. 
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For exampl( 

O = {-47112} since 0 is the implest (earliest created) number 

such that -47 < 0 < 12. 

1 = {1+*1+} 

1 = {1 1 9 } 

2 a1T 

We have already seen one game that is not a number. We list several 

others. 

+ = {O*} (pronounced ttUpt) 

4 = {*lo} (down) 

(plus or minus one) 

= n+* = {nln) (n star) 

+2 = {01{Ol-2}} (tiny two). 

Our treatment of the classes Ug and & is by no means complete. 

However we now have sufficient information to begin our analysis of games. 



Chapter 2 

The Game of Col 

2.1. Introduction 

Col is a partisan game suggested by Cblin Vout. We may imagine the 

game as being played on a brown paper map. The two players Black (Left) 

and White (Right) equipped with pots of black and white paint in turn 

paint countries on the map subject to the restrictions that no country 

already painted may be repainted, and no two adjacent regions may be 

painted the same colour. 

In passing we mention Snort, a companion game to Col, but that we 

now require that no two adjacent regions be painted opposite colours. 

The theory of Snort appears much more difficult than that of Col, and 

no results analogous to those presented here for Col have been dis-

covered. However, the general character of Snort is well understood, 

namely that most positions are "hot s", i.e. the first player often has 

a considerable advantage. 

Col and Snort are typical (if not the actual prototypes) of the two 

very different classes of partisan games, cool and snorting, i.e. cold 

and hot. In the first a player usually does himself harm by moving 

(helps his opponent); in the second he gains some advantage by doing 

so (harms his opponent). 

The latter are the "good" (worthwhile) games, like Chess, where the 

move is all-important. The Zugaang positions in which it is actually 

a disadvantage to move seldom occur. 

- 16 - 
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• We follow an analysis of Col due to J.H. Conway. First, simple 

positions were analyzed and used to build a, dictionary of values. The 

table of values suggested certain theorems khich once proved were used 

to condense the table. 

In the game of Col, when Black paints a, region, in the play that 

follows he is not permitted to move in any of the contiguous regions. 

We speak of regions as having a white tint to indicate that they are 

reserved for White. Similarly if White paints a region, we speak of 

contiguous countries as having a black tint. The map may be simplified 

by deleting regions already painted, or.- regions that are tinted both 

colours as neither player is permitted to move in them. 

We represent arbitrary maps by graphs in the following manner. To 

each country of the map not already painted there corresponds a node, 

and an edge joins two nodes that correspond to adjacent regions. The 

nodes are labelled to correspond to the states of their respective 

regions saccording to the following scheme: 

• - tinted black 

0 - tinted white 

- untinted + 

- tinted either black or white 

- tinted both black and white 

- tinted black or white, or untinted. 



In the actual play of games, we often represent a region in which a 

player has moved by ® , since this prohibits either player from moving 

there in the play that follows, just as the move does. 

The graph may be simplified by deleting edges joining oppositely 

tinted nodes. An edge affects the graph by preventing adjacent nodes 

from being similarly painted. As the tinting already accomplishes this, 

the edge is redundant. Such an edge is called explosive. 

Figure 2.1 shows a map with one region painted black (represented by 

tbt) and one region painted white (represented by 'w') as well as the graph 

that corresponds to it. We analyze a slightly more general game than the 

one with which we started. The "brown paper "  will only generate planar 

graphs, while the theory applies to arbitrary graphs, so that one can play 

on pieces of brown paper of any genus. 

w 
b 

Figure 2.1. The correspondence between maps and graphs. 
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In the analysis presented here we primarily discuss chains, though 

results will be generalized to arbitrary graphs whenever possible. The 

following notation facilitates the description of arbitrary graphs, 

but is particularly appropriate when discussing chains. Let '+' corres-

pond to a black node: + then represents a chain of n nodes tinted 

black. Let '—' correspond to a white node: represents a chain 

of n nodes tinted white. Those nodes about whose tint we are uncertain 

are represented by 0. A string of n untinted nodes is represented by 

For example 

+0+ 

0 +0 3_0— 

A similar technique is used when referring to a vertex, say a, joined to 

a set A of nodes. Note that a is not considered part of the set A, i.e. 

A is interpreted as the subgraph induced by the nodes other than a. Then 

the node a is described by the symbols outlined above. For example 

(AO)o 

2.2. The Values of some Col Positions. 

The analysis of Col is simpler than that of Snort as the values that 

arise are of a very restricted kind. Consider the values of the following 

simple positions: 
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+ = 0l0} = * i.e. a single untinted node is a first player win. 

• I ={O }=l 0 e. } = -1 

__ = {} = {OI}=l -o = 0 

= { ®-, 0 • I = {*,l,lIl} = 

In the analysis of more complicated positions, no values but x or 

x+* where x is a number were observed. Conway and Guy have proved this • 

is always the case. The proof depends upon the following lemmas. 

LENMA 2.1. (Hindering One's Opponent is No Harm). The value of a 

position is 

(i) unaltered or increased by tinting a node black, 

(ii) unaltered or decreased by tinting a node white, 

(iii) unaltered or increased by deleting a node tinted white, 

(iv) unaltered or decreased by deleting a node tinted black. 

PROOF. (i), (ii) follow from the observation that tinting a node black 

decreases the number of right options, while tinting it white decreases 

the number of left options. To establish (iii) observe that if anode v 

is already tinted white, we may tint v black by (i) and the value of the 
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position is unaltered or increased. However the node v then is doubly 

tinted and may be deleted. A similar argument establishes (iv). 

LEMMA 2.2. The value of a graph is 

(i) unaltered or increased by deleting any edge one end of which 

is tinted black, 

(ii) unaltered or decreased by deleting any edge one end of which 

is tinted white. 

PROOF. (i) The deletion of an edge, one end of which is tinted black, 

cannot hinder Black since it may provide Black with an extra move in 

an adjacent node, while if White plays in the node at the other end of 

such an edge, the tinted node is unaffected. 

(ii) is the same statement with colours reversed. 

THEOREM 2.3. The value of any position G in Col is either r or 

(= x+*) where X is a number. 

PROOF. By Lemma 1.9, we know that G11 0E? suffices to prove 

that 

+ * < G < e + *. 

Suppose White moves by painting y in 0, i.e. 

oR where G = or 
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Then G < G where G is the position obtained by tinting black those 

nodes adjacent to y 

i.e. G 
Y 

= G + * or 

and since < G + *, we have 

or 

or 

1 

GG 0 
y 

by Lemma 2.2(1) 

When evaluating positions it is normal to consider all Left and Right 

options. However it can be shown that in certain positions this is un-

necessary. Some of the moves are dominated, and certain options are 

equivalent to other positions which are easier to evaluate. In special 

circumstances we can completely determine the values assumed by classes 

of positions. 
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In the case that n = -1 

n n 0 

are interpreted as 0 , , , with values -1, 1, 0. 

THEOREM 2.4. (1) If n ?. -1, then = 1; 

(ii) If n -1, then (+o?) = 0; 

i.e., = 0 - 0  = 1 0 = = 0. 

If n 1, then (+o) = 

= I = • +  

(iv) If n >. 2, then = 0; 

1 1  

PROOF. Straightforward calculation yields 

= +00+ = +0+ = + 2+ = 

= +0_ = +0- = = 0, 

+0 = + 2 = 

0 2 = 0, 

2 

=0. 

so the above statements hold for ii 2. Let m 3, and assume inductively 

that the above statements hold for n < m. Then 

+0m+  _0m_ 2+, (+0 _,_0a+) where i 0, j 0, i+j = m-3 

where i -1, j -1, i+j = m-3} 

= {012} = 1. 
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{_0m-2, (o_,_o) where i 0, j 0, i+j = m-3l--G} 

-l(i=O), -1(i>0)12, l, l} 

= 0. 

+om_ = {_0m-1_ (+O_,_0a_) where i -1, j 0, i+j = rn-3I-} 

= 0. 

= {_0m-1, (+O-,_Oa) where i -1, j 0, i+j = m-3, +-

I(+. where i -1, j 1, i+j = m-3, (+Om-3+ ,+) , (+O m 2+)} 

1 
2 

0 

In the proof of the above theorem, the list of Left and Right options was 

extensive. In more complicated positions, the list of options is even 

longer. Fortunately, it is not always necessary to evaluate every option, 

as certain among them will always be dominated. 
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LEMMA 2.5. Let A,B be arbitrary graphs. 

C 

PROOF. (i) Black may move to 

, 0 

by moving in b 

However by Lemma 2.1 (ii) 

(ii) Black may move to 

by moving in b 

Black prefers the move c to b. 

For both Black and White, the move' 
d is at least as good as h or C. 

For both Black and White, the move 
e is at least as good as b, c, or d. 

Forboth Black and White the move d 
is at least as good as core. 

by moving in a. 

by moving in a 

< 

by moving md. 
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Now 

= Qc• 1--• 

0 

and 

In the same position, the white options are 

0 

by moving in c 

and 

by moving in d 

by Lemma 2.2(u) 

by Lemma 2.1(u) 

by Lemma 2.1(i) 

by Lemma 2.l(iv) 

by Lemma 2.2(i). 

Hence for each of the players the move in d is at least as good as the 

other moves. 
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(iii) Black may move to 

0 

by moving in b 

by moving in d 

0 

by moving in c 

by moving in e. 

Now, for the option that results from moving in h 

i-O by Theorem 2.4 

= CA ) 1   

and for the option that results from moving in d 

(A 

by Lemma 2.1(11) (this 
is'the result of painting 

by Lemma 2.l(iv) (this is 
the resul.t of painting e) 

0 by Lemma 2.2(u) 

C A  0 by Lemma 2.1(11) 



28 - 

Hence the move in e is at least as good for Black as the other moves. 

To see that this is also true for White, consider his options: 

by moving in c 

However 

and 

C A 0 C A :#—• 

by moving in ci by moving in e. 

by Lemma 2.1(1) 

• by Lemma 2.2(1) 

by Lemma 2.2(i). 

(iv) The nodes c,e are both tinted, similarly or oppositely. If 

c,e are tinted similarly we may without loss of generality assume both 

tints are white. Then Black must, by the rules, prefer ci to c or, e. 

White also does at least as well playing ci, since 

by Theorem 2.4(u) 

B by Lemma 2.2(u) 

by Lemma 2.1(i) 
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and this is the result of White's playing in c. Similarly White will 

not prefer e to d. 

If c,e are tinted oppositely, by symmetry we need only consider 

Black's move in 

and his move in d leads to 

by Lemma 2.1(u) 

by Lemma 2.1(1) 

which is the result of Black's playing at c. a 

The preceding lemma enables us to prove the Half Measures and Elastic 

Ends Theorem which may be used to simplify the analysis of Col positions. 

THEOREM 2.6. If A is any graph and 

(A+) o3 

then for n 1: 

(i) (A+) n+2o = 

n+2 

= 
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(ii) (A+)o = 

(iii) (A+)-n+ = 

n 

1; •--- 

PROOF. We first show by induction on the number of nodes in A that 

1 + A ' = A (**) 

l+((A+)o—) = ((A+)o+ 

By Theorem 2.4 

• I— o=O 

•—±--• =1 

so that (**) holds when A is empty. If (**) holds for all subgraphs A 

of A, then 

G 

0R} x by Lemma 2.5(iv) 
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where G,GR denote the options that result from moves in A and 

0 

say, where H,HR denote the options that result from moves in A. By the 

induction hypothesis, for each HL,HI? there exists G!,G such that FI = 

HR = d?+l and vice versa. For those moves in A at a node b by Black that 

tint the node a white,, we have options 

so that HL = T+i Since H 1 = ji = R1+i the value of every 

option of H is 1 greater than a corresponding optiçn in 0, so that y = x+l. 

To show that (A+) 03 = ((A+)o-) + we use the above result and play 

the game ((A+) - - ((A+) --) , i.e. 

+ 0 

1 
-G 
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and show that it is a second player winning.game. Moves by either player 

in A (in either -G or H) are covered by the induction hypothesis and 

Lemma 1.5, the Tweedledum and Tweedledee principle. By Lemma 2.5(iii), 

(i) and (ii), aside from moves in A, we need only consider the moves 

d, e, and f. 

If White moves in d, and Black moves in e, leaving 

+0 -  0 

I 

=0 

we have that the player who moved first loses because he becomes the first 

player in a shortened second player winning ganie. 

If White moves in e, and Black moves in di leaving 

=0 

we have again that whichever player moved first loses. 
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If Black moves in -G at f, he may also move in H at c to leave 

0 0  0 -

0 

=0 

which is a second player winning game. Note that the move by Black in 

-G at f is equivalent to a first move by White in the game H - - G. 

If White moves in .-G at f (a first move by Black in H - - - G), he may 

also move in H at c to leave 

•---% O- - 

which is a second player winning game. Hence we have 

1 
2' 

The three parts of the theorem are now proved simultaneously by induction 

on n. At each step we ignore moves in A, assuming that they are covered 

by the induction hypothesis. Note that this is not the same as the in-

duction hypothesis on n. In reality, the proof is a double induction 
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in which for each n, we induce on the number of nodes in A. Theorem 2.4(i), 

(ii), (iii) provide the basis for the induction on A at each step. When 

n = 2, 

I 

0'0; 

0-0 

0-0 

} 
as the other options 

are dominated 
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I .1 since the 

other options 

are dominated 
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since the other options 

are dominated 

by what has already 

been shown 

This establishes the theorem for n = 2. 

Assume that (1), (ii), (iii) are true for i < n. We show the 

inductive step for (i). The rest follow by an equally straightforward 

analysis. 
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0-F-••o; 
n-i 

Q4.. '+0 
n-2 

• +0 0-f-' •. —'.-() (0<in-2) 

n-i-3 

1- * -.a  -C 
i n-i-3 

where 34- ..' •4 -+ and • -- • +0 

in the case •1' = -1, as 0 

n 

-1; 

are interpreted 

and J , with values .-1,1,0. Hence 

• .-i--Q -l(1in-2 
•2-

• 44  
'V 
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For Black the second option is at least as good as the first by Lemma 

2.1(u). The third option is dominated by the second by Lemma 2.2(i), 

and the remaining options are no better than the second by the induction 

hypothesis. For White, by Lemma 2.1(u) the option that results from 

taking i = -1 is at least as good as the others. Hence 

-1 

n 

0 

1 

2.3. Equivalent Positions  

Given a graph G, a node is said to be explosive if the value of the 

graph is unaltered when we tint the node either black or white'. For 

example, 

= 0, 

I0----4 J 
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so that 

  = e =   

Hence the middle node is explosive. 

LEMMA 2.7. (i) For n >. 1, 0 +0 = 0. 

1 
(ii) For n n 2, 0 + 0 = 

(ii) For n 3, 2+ fl ; 

(iv) For n,m .' 3, 0 +0 = 0. 

PROOF. It is easy to verify that 

0 + 0 = 0 2+ 2 0  = 0 51 

2. 3 1 
0+0 = 0+0 = 

411 
23 1 

0 +0 = 

from which (i), (ii), (iii) and (iv) follow by a straightforward appli-

cation of Theorem 2.6. 

The following lemma enables us to simplify the evaluatioh of 

positions. 

LEMMA 2.8. For n even, n 2 

2 
n 

PROOF. It is sufficient to prove 

= 1+ 

+ 
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as the general case will follow from repeated applications of the above 

result. However 

> 

= 1+ 

= 

by Lemma 2.1(u) 

by Lemma 2.1(U) 

by Lemma 2.2(1). 

0 

We summarize the results established so far. In a chain of length 

n > 1, if there is no tint whatsoever, the chain has value 0. If there is 

a tinted node, we may assume by Theorem 2.6 that the tinted node is at most 

three nodes from the end. If the end node is tinted, and the penultimate 

node is also tinted, we may use either the remark concerning explosive nodes 

or the remark concerning explosive edges to simplify the chain. If the 

nodes are similarly tinted, the penultimate node is explosive. If the 
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nodes are oppositely tinted, then the edge joining them is explosive and 

may be deleted. 

We prove another equivalence that enables us to simplify positions. 

However we first establish three lemmas that will be used in the proof. 

LEMMA 2.9. If A is any graph, and n 0 

n+l 

i+j = n 

PROOF. This is an immediate consequence of Lemma 2.l(iv). 

LEMMA 2.10. If A is any graph, and n 2 

i 0, j ? 0 

+fl 

n 

'ROOF. This is an immediate consequence of Lemma 2.8, and Theorem 2.6. 
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LE1MA 2.11. If A is any graph, 

PROOF. 

(i) 

(i) 

< 

by Theorem 2.4(u) 

by Lemma 2.1(u) 

I a by Theorem 2.4(u) 

by Lep ma 2.2(u) 0 
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THEOREM 2.12. For any graphs A, B, and n 1 

w. 
= Adb *_ •0, 

n 
1jn 

provided that if a is untinted then A is empty, and if j' is untinted, 

then B is empty. 

PROOF. Let 

w. 

1jn 

We show that H+n-G is a second player winning game. For moves at a, d, 

e, f, we show that if the first player moves in H(G), he may mak a move 

in G(H) so that either H1-fn-G = 0 or HR+n_GR = 0. This is established 

by showing that a move at a in 0 correponds to a move at d in H, and 

a move at d in 0 corresponds to a move at d in H. The argument concerning 

moves at e, f will follow by a symmetrical argument. Note that by Lemma 

2.5, it is only necessary to consider a move at a in the case where a is 

untinted, so that by hypothesis, A is empty.. 
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Consider moves by Black at c in G and at c in H. He leaves options 

G2', HL such that 

Gl =o•_-o_ ... 

n-I-i 

0-0-
n+1 

n+1 

O#---:' 
.n+l 

by Lemma 2.10 
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so = and HL+n_GE1 = 0. If White moves at c then we have 

= 

n+2 

= 0-c 

__ * 

n+2 

n 

by Lemma 2.10 
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Moves by Black in H at d and in 0 at d correspond. He 1eays options 

yt 
such that 

0-0 

n 

n 

by Lemma 2.10. 

where we indicate that the node c acquires a white tint in addition to 

whatever tint it already possesses by writing t+WI. Should White move 

at the same node we have 

n+1 



- 47 - 

o-o-. 
n-i 

. O-O-- , 
n-i 

.-. .—.— 
n-i 

n+l 

by Leivma 2.10 

by Lemma 2.8 

so that 

By Lemma 2.5, the legal moves at b1, b+1 w1, w are no better 

than moves at c or d. 

We now assume that n 2 and consider a move by Black in the chain 

of black nodes of G. This is equivalent to a first move by White in the 

game H-I-n-G. It suffices to show that < H4-n. 
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GrJ 

1- i+j=n-2 a 

•-OO--O C: 
i a 

j+j = n-2 

<H. 

+n-2 by Lemma 2.10 

+n-1 

-4-n-i by Lemma 2.2(11) 

Similarly we show that if n > 2 a move in IJ in the chain of white nodes 

by White leaves an option HR+n > G so that the game Tf+n-G is Black to 

win. 
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H" 1? +n = -o 
i+j = n-3 

0-
a 

.-o,-.-.-. 02.. 
4 a 

i+j = n-3 

..-..*•-. s-.. 
i 4 

i+j n-3 

> G. 

n#1 

+n-2 

+1 by Lemma 2.10 

+1 by Lemma 
2.2(u) 

It remains to consider the situation in which Black moves in n. 

Consider first the situation in which at least one of c, f is not 

tinted. Suppose c is not tinted, so that A is empty. To a move by 

Black in n White may respond by moviiig in c leaving 
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HR+(n_1)_G 

n 

n 

n 

= 0 

( 

n+l 

n+l 

by Lemma 
2.10 

by Lemma 
2.1(iv) 

so that White as the second player can win. 

If c, f are tinted, and Black mdves iii n to n-i, White answers by 

moving in H at d. He leaves 
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= 

0-4-•• 
n-i 

n+1 

n-' 

by Lemma 2.1(u) 

by Lemma 2.11. 

0 
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The values of some simple positions in Col are displayed in Table 

2.3. Figure 2.2 illustrates a typical element of the table. The set 

of nodes under consideration is described by A. Then the values of 

i 3, 0 j 3 appear In 'the corresponding poition of 

the array. 

A 

A (A)o (A)o 2 (A) _3 

0(A) o(A)o o(A)o 2 o(A)0 3 

o2(A) o2(11) o o2(J1)02 02(A)o3 

o3(A) o3(A)o 03(11) 02 o(A)o 

Figure 2.2. A guide to Table 2.3. 
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11 
a-

I - 4 

1 

1 
2 
11 

1 1 1 
2 2 2 

1 1 
0 
44 

1 
2 4 2 
111 
242 

/ 
11 

I - 

.-1 

o 

__.i *_- 0 
8 

•1 
4 

0 

1 
2 

8 
0 0 

O 0 0 

+2- +2+, 

/0 - I 44  Iii 
- - 

1 '2 4'  1 

0 * 0 4 2 2 2 
-.. 

I 112: .1 

1 
8 ±1 

0 * 0 0 - 1 2 2 2' 

11*11 
0 0 

0 

0 

0 

1 
4 '2 

0 
1 
4 
1 

1 
4 

0 0 

+1+1+ 

I .1 
1 11 

7331 
8442 

3 1 
1 41 2 

2 2 2 

I 

1 

+1-2+ 

+1+2- +1+2+ ' +2+1'-

± I 
I I 

-1 

1 1 1 
0 2 2 2 

1 1 1 
2 4 0 

1 1 1 1 
2442 
11 1 
244 

0 

TV 

Table 2.3. The values 

I .4 

7 3 3 1 
8442 

3 
1 4 4 

3 1 3 
1 424 

of some Col positions 

I 

I 

' I 

- 

3 1 
4 2 

3 1 1 3 
4 2 2 8 

2 2 2 
1 3 1 1 
2 8 2 2 

1 1 1 
2 2 2 

1 1 1 
2 "44 
1 1 1 1 
2 4 2 2 
1 1 1 
242 

244 
1 1 1 
244 

0 
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+2-2+ 

2 2 2 

I 1. 

1 1. 

111 

1 1 
2 0 

1 1 0 1 
24 2 

242 
0 

-i--I I 
I I 

-4 

1 1 1 1 
2 4 2 2 

4 

2, 

1 

8 
0 

0 

0 0 0 

-I 

1 1 1 
2 2 2 

1 3 1 1 
2 8 2 2 

+2+2- +2+2+ 

11 

ti. 

0 

* 

1 1 1 

0 

0 1 0 
4 2 
1 1 

0 
4 2 

0 

1311 
2 4 2 2 

1 1 3 
2 4 8 
1 1 .1 

0 2 2 2 

0 111 
842 

Table 2.3 (concluded) 

11 

+1+1+1+ 

11 
1 

I I 

7 7 3 
8 8 4 
7 
8 

1 1 

3 1 1 .L 



Chapter 3 

The Sprague-Grundy Theory 

3.1. Introduction  

In the remaining chapters we restrict ourselves to the class of im-

partial games under normal play. We still require that the state of play 

be known to both players, 

means, and that the games 

reasons which will become 

that the moves mit be determined by any external 

satisfy the terminating play conditions. For 

clear, these games are known as Ni-like gaines. 

The theory of the class of Him-like games was first developed by 

Sprague [16] and Grundy [10] independently. We develop the theory within 

the more general context of Chapter 1 To facilitate the ensuing dis-

cussion we first introduce Him-addition. 

3.2. Nun-addition  

For two non-negative integers a and b, the nm -sum of a and b, de-

noted by ab (pronounced 'ta nim bIt) is defined as follows: let 

a = a.2 ', b = b.2t, c c.2, a.,b.,c. = 0 or 1 be the binary 
j=0 j=0 a j0 a a a a 

expansions of a, b, c. Then c = a-b if c. a. + b. (mod 2) for each j. 
* 

For example consider 12+15. In binary form 12 = 1100 2, 15 = 11112. 

1111 * 
Writing this as 1100 and adding the columns mod 2 we obtain 12+15 112 3. 

LEMt4A 3.1. Nim addition is 

by powers of 2. 

(i) commutative, 

(ii) associative, 

(iii) distributive with respect to multiplication 
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Further 

(iv) a+b a+b mod 2, 

(v) a+a = 0. 

The proof follows immediately from the definition. 

We also observe that a+b < a+b, and if the inequality is strict, 

then by Lemma 3.l(iv) the two sums differ by at least 2. 

3.3. The game of Nim 

Nim (see section 1.2) is an impariial game and will be used as the 

starting point from which we develop the theory for the class of Nim-

like games. The game of Nim is actually a disjunctive compound of com-

ponent games of Nim, each component consisting of a single heap of tokens. 

A position in Nim is a set of positive integers corresponding to the 

number of tokens in the iespective heaps. To analyze this game we let 

*n (not to be confused with n* = n+*) denote the value of a nim heap of 

n tokens.. Since any game is completely determined by its options we have 

*0 = { I ) = 0 

= {0O} = * 

*2 = {0,*I0,*} 

so that inductively 

*n = 

This notation is consistent with that of Chapter 1 since a nim heap of 

size 0 is a second player win, and a nim heap of size 1 is a first player 
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win. More generally, if n > 0 then *nhlO since the first player may remove 

all the tokens to win. 

In the theory of partisan games, it is possible to speak of positions 

from which Left may always win, regardless bf whether he moves first or 

second. In the game of Nim, it is only possible to speak of positions' 

from which the first player may or may not win. If Left can win from a 

position G by playing first, so can Right, since the options available 

to either player are the same. For any impartial game, a ?-osition is 

a position from which the previous player (the player who moved to that 

position) can win, i.e. a P-position is a second player winning position, 

so that, if G is a P-position G = 0. For example in Nim, *n + is 

a P-position. The second 

the opposite component of 

which the next player can 

For example, in Nim, if n 

player mimics the moves of the first, player in 

the disjunctive sum. An N-position is one from 

win, i.e. it is a first player winning position. 

in, then *n + *rn is an N-position. The next 

player equalizes the size of the two heaps, and becomes the previous 

player at a P-position. 

3.4. The Sprague-Grundy TheOry  

If is any' set of non-negative ±ntege' 

(minimal exluded value) is the least non-negative integer different from 

all the gi , e.g. 

mex{0,2,4,l,7} = 3 

mex 0 = 0. 
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Using this definition, the theory of the game of Nim generalizes to the 

class of Nim-like games. 

THEOREM 3.2. Let G bean impartial game whose options are all equal in 

value to some *g., where 0, i.e. G = 

Then 0 = *g where g = mex{g1 ,g2 ,.. 

PROOF. Let g = mex{g1,g2 ,...,g}. Then from G + *g , the only moves are 

to 0 + *n (n<g), *n + *g (n<g), *n + *g (gn), all of which are N-

positions (see Figure 3.1). Hence G + *g 0, so that 

0 = 0 + (*g+*g) 

= (G+*g) + 

*n + *n 

G+*n *n+*g 
n<g fl%T g<n 

0 + *g 

Figure 3.1. The play of 0 + *g. 

*g + *g 
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As an immediate consequence of Theorem 3.2 t.ie obtain 

COROLLARY 3.3. Every Nim-like game is equal in value to g for some non-

negative integer 9. 

In particular Theorem 3.2 and Corollary 3.3 imply that Nim itself: 

must have a solution. Given two nim heaps of values *, *, their dis-

junctive sum *n + *m is an impartial game, so that we must have *vj + in = *9' 

for some g, where g is a function of n, m. Further, for two positions 

G = *n, H m in an impartial game, we will have evaluated the disjunc-

tive sum G+H the moment we have determined g. It suffices therefore to 

evaluate disjunctive compounds of nim heaps. 

Recall that for any games G,H, 

cl+H = {a+H,a+HLlGhi'+H,a+Hhi). 

This definition, with Corollary 3.3 and Theorem 3.2 can be used to compute 

*n + *m inductively. Figure 3.2 lists the values of *g = *n + *m for 

n < 7, m < 7. 

*0 *1 *2 *3 *4 *5 *6 *7 

*0 

*1 

*2 

*3 

*4 

*5 

*6 

*7 

*0 *1 *2 

*1 

*3 *4 *5 *5 *7 

*0 *3 *2 *5 *4 *7 *6 

*2 *3 *0 *1 *6 *7 *4 *5 

*3 *2 *1 *0 *7 *6 *5 *4 

*4 *5 *6 *7 *0 *1 *2 *3 

*5 *4 *7 *6 *1 *0 *3 *2 

*6 *7 *4 *5 *2 *3 *0 *1 

*7 *6 *5 *4 *3 *2 *1 *0 

Figure 3.2. *n + *m, n < 7, m 7. 
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Figure 3.2 suggests that given twd nim heaps of values and *rn, 

* 
= *rj + *in, where 7 = n+m. The proof of this fact depends upon the 

following theorem. 

THEOREM 3.4. (i) If in < 21, then *2 1 + * 

(ii) If *g = ra + n where rn,n < 21+1, then q < 21+1. 

PROOF. By induction. Figure 3.2 establishes (i), (ii) for 1 = 0,1,2. 

Assume inductively that (i), (ii) hold for all 1 <k where k 3. To 

establish (i) requires a further induction on in. Note that 2k + 

= *(2 <+O), Assume therefore that (i) holds for < in where 1 = k. 

If in1 < and *q = *in + *m, then by (ii), Hence, Vm1 < 

(*m+*m) + *m = *m1 + (*in+*m) 

= *m1 + *0 

= *ml 

so that there are moves to * 1 by moving in *27<. Further if we move in. 

*m to *m' where in ' < in, then by the induction hypothesis on in, 

*27< + *77?? = 

*27< + *m = mex(*rn1+*m)+*m,*27<+*m' Oin1<27< ,0m ' <in) 

= mex{*m1*(27<in')jOm1<27<,Oin'<in) 

/ 

= 
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If m < then by the inductiOn hypothesis q < 2 where 

= *m + *n. Let m < 2k+1 m + m'. If n < 

*9' = * + *n 

2k+t) + *71 

=*2 k + (*m'+*n) 

=*2+*g  = *(2 7< +g). 

i 7< k+1 
By the induction hypothesis g < 2 so that g < 2 . If 

k k+i k 
2 n<2 , let *n=*(2+n). Then 

*9' = * + *71 

= *(27<n') + 

*2 k *mt + *2 7< + 

*2 k + *2 7< + (*m'+*n') 

and g <k by the induction hypothesis. 0 

We use this result to prove that the value of a disjunctive sum of 

nim heaps is just the nim sum of the values of the individual heaps. 

THEOREM 3.5. The value of the position {n,in} in the game of Nim is 

* 
*9', where q = n+ra. 
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PROOF. Let fl = fl 2a, m =m.2 , g = q2a be the binary expansions of 

j 

n,m, where g = n+m. 

*n + *fl = *( n .2a) + *(m.2 1) 

a 

= + *m2 7 by Theorem 3.4 

j 

= X (*n.2a+ m .2a) 

a a a 

by Theorem 3.4 

*g. 0 

By repeated applications of Theorem 3.5 arbitrary positions in Nim 

can be evaluated. More important, Theorem 3.5 allows us to evaluate 

arbitrary positions in disjunctive sums of Nim-like games. We summarize 

the results in the following theorem. 

THEOREM 3.6. Let G be a Nim-like game. Then all the options are 

equal in value to *g, for some g ?. 0. 

If G = {*g1 ,*g2 ,... 21 ,*g1}, then G = *n where 

n = mex{g1 ,g2 ,. .. ,g.}. Moreover, if H is another Nim--like game and H = 

then G+H = *k, where 7< = nm. 
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3.5. The Sprague-Grundy Function  

Consider a Nim-like game played with heaps of tokens. By Theorem 

3.6 we know that each position of G is equivalent to a nim heap of size 

g, for some g. To avoid confusing the number of tokens in a heap and 

the size of the nim heap to which it is equivalent, we introduce the 

Sprague-Grundy function G(x) of the positions x of X. It is defined by 

0(x) = g if x is equivalent to a nim heap of size g. 

The following properties are immediate consequences of the definition 

and Theorem 3.7: 

(i) For all positions x, G(x) = mex{G(y)Iy is an option of x} 

(ii) For the disjunctive sum of positions 

* * * 
G(x1+x2+...+x) = 0(x1) + 0(x2) + ... + 0(x) 

(iii) A player wins by consistently moving to a position.x for 

which G,(x) = 0. 

Note that (i) implies 0(x) = 0 for all terminal positions x. 

Consider the Nim-like .a played with heaps of tokens in which a 

legal move affects only one heap. A player may, in his turn 

(i) remove one token from a heap, provided that the remainir' 

tokens in the heap (if any) are left in at most two hear. 

(ii) remove two tokens from a heap provided that some remain. 

Suppose we play this game with a heap of eight tokens. Then we have 
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Position Options 

{O } 

{i} {o} 

{1} 

{3} {2}, {1,1}, {1} 

{4} {3}, {1,2}, {2) 

{5} {4}, {1,3}, {2,2}, {3} 

{6} {5}, {1,4}, {2,3), {4} 

C7} {6}, {l,5}, {2,4}, {3,3}, {5} 

C8} {7}, {1,6}, {2,5}, {3,4}, {6) 

so that 

0(0) = 0 

0(1) = mex(0(0)) = mex(0) = 1 

0(2) = mex(G(1)) = mex(1) = 0 

* 
G(3) niex(G(2),G(1,1),G(1)) = mex(O,1+1,1) = 2 

* 

0(4) = mex(G(3),G(l,2),G(2)) = mex(2,1+O,O) = 3 

* * 

0(5) = mex(G(4),G(1,3),G(2,2),G(3)) = mex(3,1+2,0+O,2) = 1 

* * 

0(6) = mex(G(5),G(1,4),G(2,3),G(4)) = mex(1,1+3,O+2,3) = 0 

* * * 

0(7) = xuex(G(6),G(1,5),G(2,4),G(3,3),G(S)) = inex(0,1±1,O+3,2+2,1) = 2 

* * 

0(8) = mex(G(7),G(1,6),G(2,5),G(3,4),G(6)) = mex(2,1+O,O+1,2+3,O) = 3. 

Those positions x for which C(s) = 0 are the P-positions. For example 

(O}, 2}, {6}, {1,5}, {3,3}, {l,3,4} are P-positions. 
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If we allow heaps of tokens of arbitrary size, then this game has 

G-sequence 0102310231023... where the a-sequence is the sequence of 

(-values G(0), G(l), 0(2),..., for those games in which disjunctive 

compounds of hetps of tokens {n}, n = 0,1,2,... are possible positions. 



Chapter 4 

Take and Break Games 

4.1. Introduction  

We now consider an infinite class of Nim-like games with a particularly 

concise description. The method of description was first suggested by 

Guy. and Smith [11] and later generalized by Guy [v. 13]. These games 

are played with a finite number of heaps of tokens, each heap containing 

a finite number of tokens. A legal move affects only one of the heaps, 

removing some of the tokens and possibly splitting those remaining in 

the heap into £ number of heaps. 

For the class of 'octal games', the legal moves are described by the 

following octal notation. Consider any infinite sequence of numerals 

where Q, Z. The uth numeral describes the conditions 

under which we may remove u tokens from a single heap as follows. 

• Value of d Conditions for removal of u tokens from a single heap  

Not permitted. 

1 Only if the heap contains exactly u tokens. 

Z Only if, after removing U, the remaining tokens 

in the heap are left as a single non-empty heap. 

Only if the remaining tokens in the heap are left 

as a single (possibly empty) heap. 

Only if, after removing u, the remaining tokens in 

the heap are left as two non-empty heaps. 
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Value of d ni Conditions for removal of u tokens from a single heap  

Only if, after removing u, the remaining tokens in 

the heap (if any) are left as two non-empty heaps. 

Only if, after removing U, the remaining tokens in 

the heap are left as one or two non-empty heaps. 

Only if, after removing U, the remaining tokens in 

the heap (if any) are left as at most two heaps. 

For example, in Nim we remove any number (possibly all) of the tokens 

from a heap so that Nim is denoted as = A. 

Kayles [8] is denoted by Z7,. It is the game in which we may remove 

one or two tokens from a heap, leaving the remaining tokens in that heap 

as at most two heaps. 

For conciseness we express the fact that the removal of the entire 

heap of u is permitted by saying 'remove u tokens to leave 0 heaps'. 

Then unless stated otherwise, we assume that for k > 0, k heaps means k 

non-empty heaps. is the gaiie in which we may remove 1 token to 

leave 0 heaps, two tokens to leave zero or two heaps, or three tokens to 

leave one or two heaps. 

We allow digits ,ç = , before the point. If d = 4, (ucO) then a 

heap of n tokens may be replaced by two heaps of i and n-u--i, where we 

maintain the terminating play condition by requiring that both n-u-i 

and i be less than n, so that -u < i < n. For example is the game 

in which we may divide a heap of n tokens into two heaps of i and n+l-i 

(l<i<n), or divide a heap of n tokens into two heaps of i and n-i (O<i<n) 

or remove one token from a heap. 
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4.2. Take and Break Games  

Let C 0 1 k c02 + c12 + ... + c<2 be the binary expansions of c, 

c  = 0 or 1 We say that c contains 2 (or c includes 2 h ) if ch = 1. 

e.g. contains I and , 

6 contains 2 and A. 
'.1 

The notation for Nim-like games introduced above can be generalized 

to arbitrary take and break games. Express the code digits ,cl (u = 1,2,...) 

in binary form as 

d u =d u,0 u.k 2° +d 21+...+d 2k 

Then in a move a heap of n tokens may be replaced by exactly h heaps of 

(i1+i2+..,-I-i = n-u) if and only if dUh = 1. We write 

in place of respectively. 

For example, ., is the game in which we can remove one or two 

tokens from a heap, and leave it as zero, one, two, or three 

heaps. .63A is the game in which we can remove one token 

from a heap and leave the remaining tokens in the heap as one 

heap or two, remove two tokens from a heap and leave the re-

maining tokens in the heap, if any, as one heap, or rerncve 

three tokens from a heap and leave the remaining tokens in 

the heap as three heaps or one. 

A digit d with u < 0 may be allowed provided that d does not contain 
-  

or ,, and provided that the terminating play condition is still sat-

isfied. For example if , (uO) contains (h2), a heap of n tokens 
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may be replaced by h heaps of where i + 1 ) + = n-u 

and for 1 j 1i., 1 i. <Ri. 

For example: is the game in which we can remove one token 

from a heap and split the remainder into two non-zero heaps, 

or add a token to a heap of n and divide it into three non-

zero heaps of i1, i2, i3 where i + i + i = n+l. 

To see that the terminating play condition is still satisfied, con-

sider the (even larger) class of games in which any move replaces a 

heap of n by at most h heaps with at most n-1 tokens in a heap. Let 

m be the maximum number of possible moves starting from a heap of n. 

Then 

ra < 1 + hrn 1. 

Since rn0 = 0, h 2 implies that m n < (h"-1)/(h-l) and h = 1 

implies that M n < n. 

Let T be a take and break game. If Vu,d < 3 (and d = 0 for u < 0), "'U 11V  

then Z is called a tetral game. Nim, .,, is a tetral game. If Vu, 

then T is called an octal game. If Vu, (= ,), then T is called 

a sdecimal game. In each case, if there are only a finite number of 

non-zero code digits, we call the game finite. 

4.3. Periodic 0-Sequences  

Let , be a take and break game. If a heap of n tokens may be re-

placed by h heaps of i 1'2'•••'h tokens in a legal move, then 

0(i 1) 0(i2) + I.. ± 0(i/) is an excluded value for 0(n). To show that 
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G(n) = g it is necessary and sufficient to show that every non-negative 

integer less than g is an excluded value, but that g is not an excluded 

value. 

Consider the game .. We list the options of the first few positions 

as well as their G-values. Beneath the options of n we write the excluded 

values. 

Position Options G-values 

{0} 0(0) = 0 

{l} {o} 0(1) = 1 
0 

{2} {0},{l} 0(2) = 2 
0 1 

{3} {l},{2),{l,l} 0(3) = 3 
1 2 0 

(4} {2},{3},{l,2},{l,l,l} 0(4) = 0 
2 3 3 1 

5} {3},{4},{l,3},{2,2},{l,l,2} 0(5) = 1 
3 0 2 0 2 

{6} {4},{5},Cl,4}j2,3},{1,1,3},{l,2,2} 0(6) = 2 
0 1 1 1 3 1 

{7} 5},{6},{l,5},{2,4},{3,3},{l,l,4},{l23},{2,2,2} 0(7) = 3 
1 2 0 2 0 0 0 2 

The 0-sequence for ., appears to be 012301230123... . If a take and break 

game has the property that there exists integers p > 0 and e 0 such that 

G(n+p) = 0(n) for all n > e (*) 

we say that the 0-sequence is periodic with period p. In each case we 

choose the least integers e,p satisfying (*). Then e is called the last 

irregular value, and p is referred to as the period. We indicate the 
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periodic values by writing a dot over the first and last members of the 

period. For example the 0-sequence of ;3 appears to be 0123. Guy and 

Smith [11] proved a periodicity theorem for octal games of the form 

. which was modified by Kenyon [131 to include those octal games 

where ,,'s ocôur before the octal point. We, generalize Kenyon's proof to 

arbitrary take and break games. 

THEOREM 4.1. Suppose that is a finite take and 

break game, in which a move replaces just one heap by at most h heaps, 

i.e. for v < u w, d < and that there exist integers p > 0 and 

e > 0 such that 

G(i+'p) = G(i) for all i, such that e < i 

where t = max{jvj ,w}. Then 0(i±p) = G(i) for all i > e . 

PROOF. Assume inductively that Vi satisfying e < i < n we have G(i+p) = 0(i) 

> he+(h-i)p+t. To show that G(n+p)= 0(n) we show that 0(n+p) and where n 

0(n) have the same set of excluded values. 

Suppose we can remove u tokens from a heap of n-4-p to leave heaps 

of il,i2,...,ih where 0 ••• i < n+p, and i1 + i2 + ... + i. 

= n-I-p-u. Then 0(i) + 0(1) + ... + G(i) = q is an excluded value for 

n-I-p. But G(ih) = since < n, and 

1 
(n-I-p-u) 

> -(he+(h-l)p+w+p-u) 

+p, since W - U 0. 
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Moreover, if h 2, the heaps i., 1 j h-1 are of size < n, since 
h 

h-i n would imply that n+p-u = I i. ?. + 2. 2n, 
j=l a h-i 

contradicting our assumption that n > he+(h-l)p+t ( p+v p-u). 

* * * 
Hence G(i) + Gi 2) + ... + G(ih-p) = g is an excluded value for 0(n). 

I * I 

On the other hand, if 0(i 1) + 0(i 2) +* .. +.G(i) is any excluded 

value for 0(n) where i < i < ... i1 , then 

Then 

> e since n > he+(h-l)p4-t. 

I * I * * I I * I * * 
0(i 1) + 0(i 2) + ... + G(i) = 0(i 1) + 0(i2) + ... + 

so that this is also an excluded value for G(n+p). Thus 0(n), 0(n+) 

have the same set of excluded values, so that they are equal. o 

For example, consider the game • Z17 J • The 0-sequence begins 

012341624163416341634163416... 

and appears to periodic with period 4 and last irregular value 0(7) = 2. 

Since .ZZ.2J is an octal game we need only calculate 0(n) for 

n 2•7 + 24 + 3 = 25 to establish that the game is periodic. 

4.4. The Standard Form of Take and Break Games  

The 0-sequences for the games k.Q,2, and are 06123 and 612 

espectively, so that 0 73 (n) = 04 02 (n+l), n = 0,1,2,... 1n this 
• ,(j 

section we specify the sense in which is a disguised form of .,. 



- 73 - 

We write Z = U if GT(n) = G(n) for all n, and T E U if 

GT (n) = G(n+r) , n 0 and G(n) = 0, 0 n < r. For example Z, =_1 

Since G 137 (n) = G 07 (n+1) = 0 4 (n+2), n 0,1,2,... and G 4 (0) = 0 4 (1) = 0 
WI rrj 

we have 4,Z E1 QL E .4 and 2 .4. Equivalently if  Er U we may 

write  Z .. Hence -A E 2 .)3. If T E , U we refer to U as the rth 

cousin of T. Then .OJ is a first cousin of •2 and ./ is a second 

cousin of •Z• 

THEOREM 4.2. [13, p.37, Theorem 14]. If d is even, and d includes 

(u>0), then the 0-sequence is not affected by the inclusion of 1 in d. 

PROOF. If A is even, then 0(1) = 0. 

If d includes ,2, (u>0) , then {l} is an option of {u+l}, so that 

G(u+l) 0 0(1) = 0, regardless of whether I d includes I or not. o 

E.g.  .,Q,6,, E , 7 E 

Theorem 4.2 generalizes in the following manner. 

THEOREM 4.3. If d is even, and d includes 2<, u > 1-k, k 1 then 

the  0-sequence is not affected by the inclusion of k-j 1 < j < k, in 

u+j . 

PROOF. If dl is even, then 0(1) = 0. 

If d includes 21<, u > 1-k, k 1, then for n+u k+u, 

is an option of n+u 

where 1 = ii =  = ... = k-i n-(i1+.. 'k-i 
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G(i 1) ± G(i 2) ... G(i 1) G(n-(i +j = 

= G(i 1) ... G(i 1) G(n-(i+.. 

so G(i. i) ± G(n-(i1+. . is an excluded value for 

G(n+u). 

Now the additional moves made available by the possible inclusion of 

k-j in are to replace {n±u} by 

{i.+1i+2.. 'k-i ,n-j-(i . 

= k-i 

where 1 i. i. ... i n-(i J+i j+2 k-i +. +ik-1' which exclude the 

same values as before. o 

For example, . . E 

THEOREM 4.4. [13, p.38, Theorem 15]. If AU includes 4 (uO), then the 

G-sequence is not affected by the inclusion of in d ±2v for v > 0. 

PROOF. If A. includes ,, then {v,v} is an option of {u+2v}, so 

G(u+2v) 0 0 regardless of whether A±2 inbludes ,, or not. 

THEOREM 4.5. If kincludes ,j<, k > 2, u > 1-k, then the C-sequence is 
not affected by the inclusion of 2 (O2jk) in where v j. 
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PROOF. If A. includes , k > 2, u > 1-k, then for n k 

is an option of n+u 

where li =i i =i s... i =i .<i 
1 2 3 ' 21 -1 2TJ 2a+1 k-i 

n-(i1+. k- it,  and + + + 2j = 2v. 

G(i 1) 0(i) ... + G(i2 ) ± ... ± G(i 7< ) G(n-(i 1+i2+. ...+i,_ 1)) 

= G(i2.1) G(i 1) G(n-(i ±. 'k 

so that G(ia+1) ... G(i 1) G(n-(i+. is an excluded value 

for n+u. 

Now the additional moves made available by the possible inclusion of 

in 42+2V are to replace {n±u} by 

2j+1 '2j+2'" 'k-i n_2v_(i2+1+.. 

= {i2j+i,i2j±Z,... ,ik 1,n(i1+. 

where 1 i2.1 k-1 n-(11+. . .+i k1) which exclude the same 

values as before. 

For example .,: 

THEOREM 4.6 (cf. E13, p.39, Theorem 171). If for the game ,, ç is even, and 

we define a second take and break game U as follows: 

(i) If d includes 2k (kO,v>l-k) k k-i then e includes 2 ,2 ,... ,,. 

(ii) If d includes 2k (k32,vl-k) then e includ k k-i es 2 ,2 ,...,. 

Then U  T, i.e. G11 n) = GT(n±l), n  
r'J 
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PROOF. We prove 7 , by showing that G(n) and GT(n+l) have the same 

set of excluded values. 

(i) We consider separately the cases k = 0 and 7< 1. If d 

includes 2. = ) (v2) and includes , then GT(v) 0, G,.(v-l) 0, 

i.e. GT(n+l) 0, G(n) 0 for n = v-i. 

If includes 2 (kl,v>l-k) and includes 2 312 

then for n 0, 

* * * * 

GT (n+l+v+k-l) G(i 1+1) + G(i2+l) + ... + GT(ik +l) + GT (n+l(il+...+ik l)) 

where 0 < il < i 2 ik-i fl (1+. .+V7< ), and 

* * * * 

Gu.(n+v+?.C-l) G(ii) + Gu(i2) + •.. + + Gu (n_(ii+...+i7< 1)) 
pJ rj lJ 

where 0 ii < i 2 < ... 

(ii) If AV includes (k>..2,vl-k), +ki includes 27< 27<+1,...,,,, 

then 

G((n+l)+v+k-1) G(ii+l) + G(i 2+l) + ... + GT(ikl+l)+ 

where 1 < j+l j+l n+1-(i i+...-FL7< and each heap is 

strictly less than the original: 
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1+1. < n+1+v+k-1, 1 < j k-i, 

• .-Fi <) < n+1+v+k-1, 

i.e. 

so that 

or 

i. a n+v+k-2, 

k-i 
i. (k-i)(n+v+k-2), 

j=i a 

k-i 
2-v-k i i. (k-1)(n+v+k-2). 

j=1 a 

* * * * 

On the other hand G(n+V+k_1) G13 (i 1) + G(i2) + ... + 'uk1 +rIj 

Ili 

where 0 i •• k-i n-(i2+.-.,), 

and each heap is strictly less than the original: 

so that 

1. < n+v+k-1, i < j k-i, 

i. a n+v+k-2 

k-i 
(k-i) (n+v+k-2) 

j=1 

n-(i1-f-2+. "k-1' n+v+k-2, 

k-i 
2-v-k < X < (k-i) (n+v+k-2) 

j=1 

as before. Note that here k 2 and 

ki • 2vk 2-(l-k)-k > 

so that at least 2 non-empty hears result from the heap of n+i'+k-'l. 0 
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We may repeat the above process until the first code digit is odd, 

i.e. T E U E ... with w odd. Then W is in standard form 

and its G-sequence begins 01... 

E. g. .  OOOF E E E 

80000.O2 = .COO.0r-'3 .4C.13. 
-1 .- - 

4.5. Periodicity of Take and Break Games  

It is not yet known whether all finite take and break games are 

either periodic, as described in Section 4.3, or arithmetico-periodic 

(see Section 6.1). We have so far analyzed only octal and sedecimal 

games, and even for these classes the question is still undecided. In-

formation about octal games of the form or AlA2A, is contained 

in Tables 7.2 and 7.3. Some of the games are periodic with very few 

irregularities. There are many however, which so far show no sign of 

periodicity though the G-values have been calculated to or beyond 

n = 9999. No octal game has been shown not to be ultimately periodic. 

We may also ask whether all take and break games that are not arith-

metico-periodic are bounded. 

THEOREM 4.7. Let T be a take and break game, T = (Vu0,d=O). 

Then for all n, 0(n) < n. 

PROOF. By induction. 0(0) = 0, G(1) < 1 for any such game T. Assume 

inductively that 0(k) < k, Vk < n. We show that if g is an excluded 

value for G(n), then g n-l. If by a legal move we may take u counters 

from a heap of n to leave heaps of i1,i2,.. 'h' then by the remark after 

Lemma 3.1, 
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g = G(i) ± G(i 2) ± ... ± G(i) G(i 1) + + ... + 

= n_u 

n-l. 0 

The periods of the games rl•  .3777 llxlf• 1 

are displayed in Figures 4.1-4.6. These games will be used to illustrate 

certain patterns that have been observed in some of the octal games known 

to be periodic. Though the significahce of these patterns is not yet 

known, they occur sufficiently often to be worthy of note. We discuss 

them briefly, and then examine the periods of the aforementioned games 

in more detail. 

To simplify the ensuing discussion, we let Z be a periodic octal 

game with last irregular value e and period p. If p is even, it is some-

times the case that there exists k such that for n > 

G(n+p/2) = G(n) k. 

he game ., has G-sequence 010120103121203 with last irrauLr rau 

= 1 and period 8. For n >6, G(n+4) = G(n) + 1. Thi name L:c 

* * 

exhibits another feature: observe that G(7) = G(14)+3, G(8) G(13)+3, 

* * 
G(9) = G(12)+3, G(10) = G(11)+3. The period is symmetrical in the 

following sense: if n1 ,n2 > 6, n1 = a (mod 8), n2 5-a (mod 8), then 

* 
G(n 1)+G(n2) = 3. 
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Those gamed Z in which p is large but G(n) is small often exhibit 

subperiodicity, i.e. for some p', 0 < p' <p there is a strong tendency 

toward G(n4pt) = G(n) though this is not exact. 

Figure 4.1 displays the period of A56 which has last irregular value 

G(7314) = 2 and period 142. 0-values greater than 9 are denoted by the 

following symbols: 

x=ll, T=12, f=15, S=16. 

We list 0(n), n > 7314, n 14,15,...,141,0,l,...,13 (mod 142) in rows 

of 26 (excepting the first ow which has only 12 entries) to illustrate 

the subperiodicity. 

X 5151 T 8 6 2 6 2 S 
X  1515 8 T 2 6 2 6 x f x 5151 T 8 6 2 6 2 £ 
X  1515 8 T 2 6 2 6 x f x 5151 T 8 6 2 6 2 f 
X  151 S 8 T 2 6 2 6 x f 1515 S T 8 6 2 6 2 f 
X 5151 T 8 T 2 6 2 6 x f 1515 8T86262 f 
X 5151 T 8 T 2 6 2 6 x f 1515 8 T 8 6 2 6 S  

Figure 4.1. The period of 

For n > 7314, if 0(n) = 16, then 0(n+1) = 16. For all other n > 7314, 

G(n+71) = 0(n)7. A cursory look at the period of this game reveals that 

the distribution of the 0-values is abnormal. The only values that occur 

in the period are 1,2,5,6,8,11,12,15,16. 

For any take and break game U (not necessarily periodic) ;we define 

a 0-value g to be rare if lim g/n = 0 where g = {mI0(m)=g,mn}. 

For periodic games this is equivalent to requiring that g appear only, a 

finite number of times in the 0-sequence. It sometimes happens that 
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while a G-value appears in the period, the frequency of its occürrence 

is small. Such a G-value is called sparse. A G-value that is not sparse 

or rare is said to be common. For Z5,6 the rare G-values, written in 

binary, are 0, 11, 100, ill, 1001, 1010, 1101, and 1110, i.e. those with 

an even number of l's, ignoring the 2 bit. Note that if cj is rare, then 

* * * • * 
g+l, g+2, g+8 are common, and g+4 is rare. 

In general the rare G-values are those for which the number of bits 

that are 1 in some fixed set of digits in the binary expansion, is even, 

and the common G-values are those for which this number is odd. Defined 

in this way, if T is a game in which every G-value is either rare or 

common, then 

* 
-)if 91192 are rare G-values, then g1+g2 is rare, 

if 91192 are common G-values, then g1+g2 is rare, 

* 
(iii) if g, is a rare G-value, g2 is common, then g1+g2 is common. 

For n > 5180, the game .165 is periodic with period 1550, but it 

also exhibits strong subpatterns and subperiodicities. These are illus-

trated in Figure 4.2, in which the 310 exhibited G-values are to be read 

consecutively from left to right down the page, disregarding spaces. 

They are the values of G(n) for n -47,-46,. . ,-1,0,l,. . . ,262, mod 310, 

and must be repeated four more times to produce the complete period of 

length 1550. They are displayed in 14 rows of 24 values, except that 

rows 4 and 11 each contain 15 values instead of 12 in the first "half" 

and rows 7 and 14 contain only 8 values. The array is divided hori-

zontally to illustrate the subperiodicity of 155 with "saltus nim 7": 

i.e. for most n 

* 
G(n+155) = 0(n) + 7; 
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1821- t6 5 T S-i 
182182 - 56-5 
18'21821 56456 
1-2182186-56-, S 
1-21- 6f565 S 
1-218 6-56-56 
1S218 6-5 

6 T 5 6 T Si 
6 T 5 6 T 5 S 
6-56 T5 6 
6 S 5 6 T 5 6 
6 T 5 6 - 
6-56-
6-56-

2 8 --6 
2182 6 
21-21 

-1-21- -r 6 
1-21-2 - 

1-21321 
1-2 

281281 -6 - -62 
281281 565T6 - 

2-12 812 6 5 T 6 5 
2812- 5T65-6-
2812- 5-65T6-
2-128 5 -65T65 

5 T 6 5 f 6 -1 - 815 
5T65-6 -1281 - 

5-65T65 12812 
5 T 6 5 f 2 8 1 2 8 1 S 
5 T 6 5 f 2 8 1 2 8 1 S 
5-65- 2812812 

Figure 4.2. The period of 

Residue class -43 -29 -26 -14 14 34 44 51 56 70 77 85 94 
of n, mod 1550 -37 -27 -17 0 26 37 49 53 68 75 82 89 106 

usual G-value 8 8 S f T 

unusual G(n) 
0-- G(n+310) 
val- G(n+620) 
ues G(n+930) 

G(n+1240) 

Residue class 
of n, mod 1550 

usual 0-value 

unusual 0(n) 
0- G(n+310) 
val- G(n+620) 
ues G(n+930) 

G(n+1240) 

ST 

f f f 
- 

8 

x 

ff 
x 

S f f 8 T S 

-- T - f-- 
8T-S-8 
  TT--8 
-  -T -f -- 
-TT -- 8 

88 8 T S 8f48T 

- - f 

x S T S.f 

x  TS f 

f 

V 

117 126 148 155 165 187 192 213 218 235 244 256 261 
118 12 150 157 169 189 211 216 232 237 247 259 

8 f  8 

-8S 
--8S 

- T 8 S 

f  4 

T--
-8-
-8S 

-8S 

f 3 f 

T 

Table 4.3. 0-values 

8 -r 
- T 

- T 

T 

888 

T 

T 
x  
-x 
x  

f 8 8 S 

T 
T 

T 
-3 
x-

ff8ff 
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indeed this is always true for 0(n) = 1, 2, 5, or 6. The diagram is 

also divided vertically to illustrate the relation between the "NW 

quarter" and the "SE" one, and between the "NE quarter" and the "SW" 

one, i.e. it is often the case that 

0(n+143) &/or G(n+167) 0(n) 4. 

The following symbols are used to denote 0-values greater than 9 

x = 11, T = 12, £ = 15, S = 16, a = 19, V = 20, T = 23, j = 25. 

If one of these symbols, or a single digit appears in Figure 4.2, then 

these are 0-values with a true subperiodicity of 310. Where values do 

not always exhibit this sub'periodicitY, a hyphen appears. The 0-values 

so represented can be found in Table 4.3, whose rows are the residue 

classes of n, mod 1550; the usual value of 0(n) insofar as it can be 

determined; 0(n); G(n+310); G(n+620); G(n+930); and G(n+1240), These 

last five rows contain a hyphen if the 0-value is usual, and the actual 

0-value otherwise. To facilitate the reading of Table 4.3, vertical 

bars separate values from different rows of Figure 4.2, the double bar 

occurring after the seventh row. E.g., there are 5 hyphens in the 

first row of Figure 4.2, corresponding to the first five columns (before 

the vertical bar) in Table 4.3. 

For example 7707 = -43 (mod 1550). Since the usual G-value for 

n E -43 is 8, we have 
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G(7707+1550k) = 8 for k -1 

G(7707+310+1550k) = 8 for k -1 

G(7707+620+1550k) = 8 for k -2 

G(7707+930+1550k) = 11 for k -2 

G(7707+1240+1550k) = 8 for k -2. 

For .,1,U  we have that 3 occurs 10 times in a period of 1550, 4 occurs 

7 times, and 19 and 20 occur once. Those G-values that contain an even 

number of 1 bits in their binary expansions, omitting the coefficient of 

22 are either sparse or rare. 

7 4 78 
11 44472 
1 1 1 4 4 41  8 
Fl 2 444 
11127 444 
111 7 4 72 
11 
11 
111 
111 
111 

Lii 4447 ] 
28 44 
27 444 

8 44 2 
4 4 4 lz_J 

2 1 28 
44 11127 

444 111 I2I 8 
44 7 111 
44472 111 
444 2 1 27 
44 
44 
44 
44 
44 

A 17 16 
10 9 8  

C2 1 
45678 

12 13 14 15 

A 57 58 
64 65 66 
7172 .73 

B 71 70 69 68 67 
63 62 61 60 

A 56 55 
4948 4746 

B 43 42 41 40 39 
35 34 33 32 
28 27 26 

53•' 54 55 56 
59 60 61 62 63 
67 68 69 70 
74 7 72 
66 65 64 
59 5857 
53 52 51 50 54-
5 44 
38 37 36 
31 30 
25 24 23 

29 

21 20 1918 
15 14 13 12 11. 
76543 
123 
9 10 11 

16 1718 
21 22 23 24 125 1 1 1 . [j A1920J 

7 8 1 1 26 27 28 29 30 31 
4 7 2 1 1 1 1 C 32 33 34 35 36 37 38 39 
4 8 1 1 7 40 41 42 43 44 45 46 
4 1 1 1 LI 47 48 49 50 51 52 {  

Figure 4.4. The period of .,Q,,. Figure 4.5. Residue classes of 
n (mod 148) (italic numbers are 
negative). 
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Figure 4.4 shows the period of IL7which has last 

irregular value 0(257) = 2 and period 148. The 0-values illustrated 

in Figure 4.4 are to be read consecutively from left to right down the 

page. They are the values of 0(n) for n > 257, n E 53,54,... ,147,O,l,. . . ,52 

(mod 148). Figure 4.5 shows the residue class modulo 148 to which n 

belongs for G(n) in the corresponding position in Figure 4.4. 

There is a strong tendency to subperiodicity with "saltus nim 5", 

and in fact 

(i) if 0(n) = 8, then G(n+74) = 8, 

(ii) if 0(n) 8 then G(n+74) = G(n)5, 

for those values 0(n) for which n appears in a region of Figure 4.5 

beside which an A appears, i.e. for n a (mod 148) where 53 < a 69, 

-53 a -50, -21 < a < -5 or 21 a 24. Pure periodicity of this 

kind is prevented by the appearance of the boxed values or by the 

absence of values in the empty boxes. For values in region B, i.e. 

for, -78 a < -55 or -49 a < -23 

(i) if 0(n) = 8 then 0(n-73) = G(n) = G(n+75), 

(ii) if 0(n) 8 then 0(n-73) = 0(n)5 = 0(n+75), 

and for values in region C, i.e. for -3 < a 20 or 26 a 52 

(i) if 0(n) = 8 then 0(n-75) = 0(n) = G(n+73), 

(ii) if G(n) 8 then G(n-75) = 0(n)5 = G(n+73). 

The rare 0-values are those that contain an even number of bits that 

are 1 in the binary expansion, i.e. 3 = 112, 5 = 10129 and 6 = 1102. 

Those G-values that are not rare are common. 
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The game A4,4 E 1 .,3JJJ has last irregular value 0(3254) 32 and 

period 442. For all n > 3254 

G(n+221) = 0(n)-7. 

S 5 F T 9 2 S 5F 92 
S 5 F T 29 S F5 T 2 
S F5 T 29 S 5F 29 
S  5 'r 29 S 5 F T 29 
S. 5 T 25 F5 T 29 
S 5 F T 29 5 F T a 2 
S 5Ft 29 S 5FT 2 
S  5 'r 9 2 S 5Ft 29 
S 5 -r 29 S F5 29 
S  5 -rc 2S 5 T 29 
S 5F -r 2Sa 5F 29 
S 5Ft 29 S 5 TO, 2 
S F5 -r 29 S 5F-r 2 
So 5 T a 2 9 5 F T 29 
S 5 T  2S F5 t 29 
S 5 -r 29 S F5 -r 92 
S 5 F T 2Sa 5 -r 92 

S SFT 9 2 S 5F 92 
So 5 -r 29 S F5 -r 29 

F5 T a 2S SF 

Figure 4.6. The period of 

Figure 4.6 lists 0(n) for n > 3245 and n 

(mod 442). The following symbols are used to represent 0-values greater 

than 9: 

F = 14, S = 16, T = 23, a = 27, o. = 28. 

The subperiodicity (of' 11) is illustrated by writing the (7-values in rows 

of 11, except that rows 4, 8, 10, 14 and 19 contain 12, row 9 has 10, and 

the last rowhas 8. For n > 3254, n E214,215,...,434 (mod 442) nim-add 

7 to G(n--221), obtained from Figure 4.6. This game also shows that it is 
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not necessary that the highest power of 2 dccurring in the 0-sequence 

occur in the period. We have 0(62) = 0(3254) = 32, G(333) = 64 but for 

'n > 3254, G(n) < 32. 

The notes to Table 7.2 contain further observations about periodic 

octal games. 

4.6. Relations between the. G--sequence and the rules of the game. 

Related to the question of whether all take and break games exhibit 

some form of periodicity is the question of the relationship between the 

0-sequence and the rules of the game. This question appears very difficult 

and may not be possible to answer in general. Guy has made some advances 

in this area with theorems concerning the C-sequences of octal games 

(cf. Kenyon [13]). The restatements of these theorems for more general 

take and break games are straightforward. 

The following theorems due to Guy describe the 0-sequence of certain 

octal games. For conciseness we represent a sequence of r identical G-

52 
values, say g = 0(n) = G(n+l) = ... G(n+r-l) by g . For example 010 1 

represents the G-sequence 01110000011. We use a similar notation for r 

identical code digits. 

THEOREM 4.8. For s 3, the octal game .1 has period 4s+5, irregularities 

0(0) = G(s+l) = G(s+2) = G(5s+6) = 0, and 0(n) takes the values 

41'441'2"' ns 

for n 0,1,2,... ,4s+4 (mod 4s+5) otherwise. 
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PROOF. The legal moves are of two kinds: 

(a) remove complete heaps of size at most s, and 

(b) split heaps of size n s+3 into two heaps of i, n-s--i--i, 

where 1 i n-s--2. 

The excluded values, x, for G(n) are thus: -

(a) x=O for lns, and 

* 
(b) x = G(i) + G(n-s-l-'z), 1 < i.- 1< n-s-2, for n > s+3. 

(1) 0(0) = G(s+l) = G(s+2) = 0, and G(n) = 1 for 1 < n < s. 

(2) For s+3 < n < 2s+2, x = 1 +* 1 = 0, so-that 0(n) = 1 in this interval. 

* * * 
(3) For 2s+3 < n 3s+3, x = 1 + 1 or 1 + 0 (or 0 + 0 in the case that 

i = s+l, and n = 3s+3). Moreover (i = n-2s-2, n-2s--l) both these values 

occur, so 0(n) = 2 in this interval. 

* 
(4) If n = 3s+4, x = 0(i) +* G(2s+3-i) = 1 + 1 (or 0 +* 0 in the case that 

= s+1, s+2) for all i, so G(3s+4) = 1. 

(5) From the 0-values found so far, 2 can only be excluded by 0 + '2, and 

G(n) = 0 only for n = s+l, s+2. For 3s+5 n 4s+4, x = 0 and 1 for two 

of i = 8, s+l, s+2, s+3, and x 2, so 0(n) = 2 in this interval. 

(6) For n = 4s+5, x < 3, and X =  0,1,2,3, for i = s+3, s+2, s+l, s, so 

G(4s+5) = 4. - 

(7) From the G-values so far found, 1 can only be excluded by 0 ± 1. For 

4s+6 n < 5s+5, G(n-s-1-i) = 2 when i = s+l, s+2, so 1. But x = 0 

for i = 2s+2 so G(n) = 1 in this interval. 

(8) For n = 5s+6, 0(i) G(n-s-l-i) so G(5s+6) = 0. 
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(9) For s = 5s+7, x = 0,1,2,3, for i = 2s+3, s+2, s+1, a, and x 4 so 

0(58+7) = 4. 

(10) For 5s+8 < n 6s+7, 0(n) = 1 (cf. (7) above). 

(11) For 6s+8 n 7s+8, x 2 (as in (5) since 0(i) = 0 only for 
* * 

i = s+l, s+2, 5s+6). x = 2 + 2 = 0 for i = 2s+3 or 2s+4, and x =0 + 1 = 1 

for i = 5s+5 or 5s+6, so 0(n) = 2 in this range. 
* 

(12) •For n = 7s+9, i = 1 gives x = 1 + 1 = 0 and G(7s+9) = 1 as in (7) 

above. 

(13) For 7s+10 < n < 8s+9, 0(n) = 2 (cf. (11) above). 

(14) For n = 8s+10, x 4 since this can only be formed by 0 - 4. But 

= 0,1,2,3 for i = s+3, s+2, s+l, s, so G(8s+10) = 4. 

(15) For 8s+ll n 9s+10, 0(n) = 1 as in (7) above. 

(16) For n = 9s+11, x = 0,1,2,3 for i = 4s+5, s+l, s+2, e+3, and G(9s+11) = 4 

as in (14). 

(17) For n = 9s+12, x = 0,1,2,3 for i = 2s+3, s+1, s+2, s+3, and G(9s+11) = 4 

as in (14). 

(18) For 9s+13 n l0s+12, 0(n) = 1 as in (7). 

(19) For 10s+13 < n lls+13, 0(n) = 2 as in (11). 

(20) For n > lls+13 (= 2(5s+6)+s+1) Table 4.7 displays values of 
* 

x = G(i) + G(n-s-1-z), the rows corresponding to i- = s+1 (or 5+6), 

i = s+2 (exceptions); I E s+3,s+4,...,4s+4,0,...,s (mod 4s+5) and 

(I > 5s+6) i H s+1, i s+2 (mod 4s+5), and the columns to n > lls+13, 

n E 3s+4,3s+5,... ,4s+4,0,...,3s+3 (mod 4s+5). The 0-values are given in 

the final row, being the mex of the entries in the corresponding columns. 



n>1ls+13,n 3s+4 

i=s+1,5s+6 
i=s+2 
is+3 

i=-2s+2 

i=-3s+3 
i=-3s+4 
i=-3s+5 

i=-4s+4 
jE0 
jEl 

jE3 
i s+l(>5s+6) 
js+2(>s+2) 

38+5 .4s+4 
0 

S s+2 
s+1 s+3 

• 2s±3 
• 2s+2 

3a-e-3 

211  2 . 2 4 1  
•4 1. . . 1 2 . • . . 

LL12.-L-7• 1-1 1 - . C 
-3 .   I 

- o o o . 

6 

03 . . 350 . • . 015 5H0 ... . QJ3  . . . . 3 
. 

1L1 

6 656 . . . 605.. .-. 50 015 . .. 5 
. . .-. 

0 5 1 1 

o 3 3 
_ H5  

0 5 . 56 . . • . 65-6 . . . 6 0-5.. . . 5[9_ 

0 0 
. 

5 . . 56 • . . . 6 5 6 . . .. 6 0 5 . . 5 
. 

1 9 241 1 4 4 •1 

Table 4.7. Excluded values, G(i) G(n-s-1-i), for 

1 2 
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The following theorems may be established in a similar manner. 

THEOREM 4.9. The 0 of is 01 Ois+1 28+1 1is+l t 

E.g. ., has G-sequence 01101122122, 

has 0-sequence 011101112221222. 

THEOREM 4.10. The 0-sequence of 1S44 is 0180013226+24413+2. 

E.g. has 0-sequence 01001222244111. 

THEOREM 4.11. The 0-sequence of .l45 is 016018+1228+2418+1. 

E.g. has 0-sequence 010112222411. 

THEOREM 4.12. The 0-sequence of .1653 is 
,'J .-.JJ 

01S+2 28+2 16+1028+2 48+10 js+128+218+228+248+l 1. 

E.g. has 0-sequence 0111222110222440 

11222111222441. 

THEOREM 4.13. For s 0, the 0-sequence of is 0l b0i6+122) 341 

E.g. . has 0-sequence 0101222411, 

has 0-sequence 011011222224111. 

THEOREM 4.14. For s 1, the 0-sequence of is 0160126+248+116+1. 

E.g. has 0-sequence 010122244].i. 

S .5+2.C'+2 
THEOREM 4.15. For s 0, the 0-sequence of is 01 2 

E.g. ., has 0-sequence 01122, 

has 0-sequence 0111222. 



Chapter 5 

Subtraction Games 

5.1. Introduction  

For any set 1'2'" S7} of positive integers with SI < S2 < . < 

we define the subtraction gne S(s1,s2,... 'k in which the legal moves 

are those that reduce a sufficiently large heap of n tokens by Si , 

1 < i < k. The set {l,2,4}, for example, determines the subtraction game 

S(l,2,4) in which we may remove 1, 2, or 4 tokens from a heap to leave 

O or 1 heaps, so that S(1,2,4) Because the legal moves are of 

a simple nature, much more is known about the class of subtraction games 

than about arbitrary take and break games. 

LEMMA 5.1. For the game S(s1,s2,... 'k' G(n) < 1< for all n 0. 

PROOF. This is an immediate consequence of the fact that for any n, there 

are at most k options. 

THEOREM 5.2. Every finite subtraction game is periodic. 

PROOF. For S(sl,52,...,Sk), pick n0 sufficiently large. Then 

G(n 0) = mex{G(nQ_S l),G(fl O_S 2), ... ,G(fl0 5k)}. Moreover there are precisely 

(k+l) k sequences g1g2 ... g where 0 < g.1 k for i = 1,2,... ,Sk. Hence 

there exists p < (k+l)5k + s such that G(n o+p_Sk) = G(n o_sk) ,G(n o+psk 1) = 

= G(no_sk_l),...,G(flo+pl) = G(n 0-l). But then, for all  n0, G(n+p) = 

=G(n). 0 
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Although Lemma 5.2 shows that all subtraction games are periodic, the 

bound on the period given in the proof seems Brobdingnagian when compared 

with data provided by the actual analysis of games. However in certain 

cases it is possible to provide a more reasonable bound. 

A subtraction game is said to be exactly periodic with period p if 

for all n ? 0, G(n+p) = G(n). 

THEOREM 5.3. Let U = s1 ,S 2 ,. . ,s} be a non-empty set of positive integers. 

If there exists p > 0 such that u E U whenever p-u E U, then S(s1,s2,.. . ,$) 

is exactly periodic. 

PROOF. By induction on the G-value g. Let n>, 0. If G(n) = 0, then 

G(n+s 1) 0, G(n+s2) 0,... ,G (n+sk) 0 since n is an option of each 'of 

n+5 1, n+S2,...,fll8k. Moreover, for all 8 E U, there exists a i = p-si E U 

so = n4p-S. Hence the options of n-I-p are precisely n+s i ,fl+SZ,...,fl+Sk 

and 

G(n+p) = mex{G(n+s 1) ,G(n+s2) ,. .. ,GI-8,<)} = 0. 

Assume inductively that for n 0, G(n) = 1 implies G(n+p) = 1 for 

O 1 < g. If G(n) = g, then G(n+s 1) j g, G!(n+5 2) g,...,G(n+S) 

since n-is an option of n+81,fl+52,. . 

Furthermore, since S. E U implies p-si E U, each n-I-s. is an option 71 

of n+p, so that g is not an excluded value for G(n+p), i.e. G(n+p) < g. 

As G(n) = g, if 0 1 < g, there exists s. such that G(n-s. ) = 1. By 
•z-i 

the induction hypothesis G(n-s. ) = G(n+p-s. ). For s.  
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G(n+s. ) = G(n+p-s. ) = Z. Thus every value strictly less than g is an 
.1.1 

excluded value for G(n+p), so that 0(n) = G(n+p). 

Since 0(n) = G(n+p) for all n 0, S(s1,s2,... 'sk) is exactly per-

iodic with a period p. 

Example. The game S(2,5) has 0-sequence 0011021, with period 7 = 2+5. 

In section 5.2 we describe completely the C-sequence of the games 

S(s)(p=2s 1), S(s 1 ,s 2)(p6 1+3 2), and S(s 1,8 2 ,232-81)(r2S 2). 

By Theorem 5.2, every subtraction game is ultimately periodic, though 

it is not the case that all subtraction gates are exactly periodic. As 

a counter-example S(2,3,5,8) has C-sequence 

001122304130412230011233021403 

Table 7.1 lists the C-sequences of all subtraction games in which the 

subtrahends do not exceed 8. 

The games (1), S(1,3), S(l,3,5), S(1,5), ... all have C-sequence 

01. For the game S(1), 0(n) 0(n+2k+l) for all n,k 0. Hence we may 

adjoin 2k+l to the subtraction set of S(1) without affecting the outcome 

of the game. More generally, if for S(s1,s2,...6k) 0(n) C(n-i-s) 

for all n 0 then we may adjoin s to the subtraction set without 

affecting the C-sequence of the game. 

LEMMA 5.4. If S(s1,s2,... 'k is exactly periodic with period p and s 

may be adjoined to the subtraction set without affecting the C-sequence, 

then p-s may also be adjoined to the subtraction set. 
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PROOF. Since s may be adjoined to the subtraction set, it must be the 

case that for all n ? 0, G(n+p) & G(n+pS). However, since S(s 1,s 2 ,...,s 

is exactly periodic, G(n) = G(n+p) G(n+p-S) so that G(n) G(n+p-s). 

Hence by the reriark just before the statement of the lemma, we may adjoin 

p-s to the subtraction set. o 

As an immediate consequence of this lemma we have 

) 

LEMMA 5.5. If i'2'" is exactly periodic with period p, then 

,p-s may be adjoined to the subtraction set without affectilig 

the 0-sequence. 

The condition of exact periodicity in Lemma 5.5 is necessary. Con-

sider the game S(2,3,5,8) whose G-sequence appears above. The period is 

17, with last irregular value 0(12) = 4. While we may 'adjoin' 8 to the 

subtraction set, 9 = 17-8 may not be adjoined.SiflCe G(5) = 0(14) = 2. 

Nor is it true that if p is even, we can necessarily adjoin p12 to the 

subtraction set. S(3,7) has 0-sequence 0001110221 with period 10. How-

ever S(3,5,7) has 0-sequence 0001112223. 

• 5.2. 0-sequences of Subtraction Games. 

No general expression for the period length of arbitrary subtraction 

games is known However in certain cases we can give rules that enable 

us to write down the G-sequence immediately. In doing so, it suffices 

to consider only those subtraction games where the greatest common divisor 

of the members of the subtraction set is I. 
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LEMMA 5.6. Let 1 E S(Sl,Sz,...,Sk), g E S(dsl,d52,...,dsk) where d > 1. 

Then Vn 0 

GT(n) =G(dn) = Gu(dn +1) = = Gu (dz+d_l). (*) 

PROOF. By induction. Since GT (0) = GT (l) .. .GT(sl_l) = 0, and 

G(0) = = . . .Gu(d(si_l)±d_l) = 0, (*) holds for n  

Assume inductively that (*) holds for n < no. It suffices to show that 

g is an excluded value for GT(no) if and only if q is an excluded value 

for G (dn0+r), where 0 r < d. 

If we can remove S. tokens from a heap of n0, and GT(nO-s) = 
11.1 

then we can remove ds. tokens from a heap of dn 0+r, Sand by the induction 

hypothesis 

G(dn0+r-ds) = G(d(n 0_s) +r) 

=G(n-s.) 

Similarly if q is an excluded value for G(dn0+r), then g is an excluded 

value for GT(nO). 0 

For subtraction games T, ,, defined as in Lemma 5.6, we say that 

U is a d-plicate of T, e.g. S(s 1) is an s1-plicate of S(l). The G-

I of S(s) is just 0_001... 11, where each string of Os and ls 

is of length 6r 
The G-sequence of S(l,2k+l) is the same as that of ,S(l), since we 

may adjoin 2k+l to the subtraction set of 8(1) without affecting the 
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outcome of the game. For S(l,2k), a priod is 2k+1 by Theorem 5.3, and 

since the G-sequence is 0101...012, the period is just 2k+l. 

For S(a,b); where 1 < a < b, we may assume that a, b are relatively 

prime, for if g.c.d. (a,b) = d 1, then S(a,b) is just the d-plicate of 

S(a/d,b/d). By Theorem 5.3,S(a,b) is exactly periodic with a period a+b. 

Let b = 2ha±r, where 0 < r < a. 

We write down the G-sequence as follows. Put a 0's, then a l's'. 

Repeat this pattern until we have a+b digits. Then change the last a-r 

0's into 2's. For example consider 5(4,13). Since a = 4, b = 2.2.4-3, 

so that b = 2 and r = 3. We 7rite 

00001111000011110 

then change a-r = 4-3 = 1 0's to 2's so that the G-sequence is 

Ô000llll0000llll. 

For 5(4,9), a = 4, h = 2.4+1. We write 

0000111100001 

then change the last a-r = 4-1 = 3 0's to 2's. Hence the 0-sequence is 

600011110222i. 

It is also possible to describe completely the period of S(a,b,2b-a). 

If a = 1, and b is odd, then 2b-a is odd, go the 0-sequence is just Ôj. 

If a = 1, and b 2, then 2b-a = 3 and the period is 0123. Otherwise, 
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let b = 2ha±r where 0 < r < a. Write down a U's followed by a l's, and 

repeat this pattern until there are b+a digits. Continue with a 0's 

followed by a l's, and repeat this pattern until there are b-a further 

digits. Then change the last a-r 0's in each of the sets of b+a, b-a 

digits to 2's. If h = 1, and b = 2a4-r, and a-2r > 0, further change the 

first a-2r 2's in the second set of a-r 2's to 3's. If h = 1, b = 2a-r, 

and a-2r > 0 then replace the last a-2r 2's in the second set of a-r 2's 

to 3's. E.g. for S(4,13,22), a = 4, l = 2.2.4-3. We write 4 0's, 

followed by 4 l's, until we have b+a = 17 digits, then repeat, stopping 

this time after b-a = 9 digits 

00001111000011110 000011110. 

Then a-r = 4-3 = 1, so that we replace the last 0 in each set by a 2. 

The G-sequence is then 

0000 11110000 ill 12 0000 11112 

For S(4,9,14), a = 4, b = 2.4+1. We write 

0000111100001 00001. 

Since a-r = 4-1 = 3, the last 3 U's in each set are replaced by 2's, 

yielding 

0000111102221 02221. 

As h = 1, a-2r = 4-2 = 2 > 0, b = 2a+r, we change the first 2 2's in the 

second set to 3's. The G-sequence is then 

60001111022'210332 i.. 
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For S(4,7,1O), a = 4, b = 2.4 - 7. We write 

0000ll1l000 000_. 

Since a-r 4-1 3, the last three 0's in each set are replaced by 2's, 

yielding 

00001111222 222. 

As h = 1, a-2r = 4-2 = 2..> 0, we change the first two 2's in the second 

set to 3's. The G-sequence is thus 

OOOO1u122223. 

5.3. S(a,b,a+b) and the Berlekamp Method. 

We can determine the period of S(a,b,a+b), and in some cases specify 

the G-values themselves. However in the general case, a concise descrip-

tion of the period, such as we have for S(a,b) seems out of reach. The 

analysis which will appear in [1] rests -upon the following theorem of 

Ferguson [9]. 

LEMMA 5.7. (Ferguson's Pairing Property). Let S(sl,82,...,sk) be a sub-

traction game (äl<s2< ... <6k). Then G(n) = 1 if and only if G(n-s 1) = 0. 

PROOF. We givea proof by contradiction. Observe that G(s 1) = 1 since 

0 is the only option of s. If the statement fails, then there is a smallest 

number n for which it does so, and either 

(i) G(n) = 1 and G(n-s 1) 0 

or (ii) G(n-s 1) = 0 and G(n) 1. 
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(1) If G(n-s 1) 0, then for some s., 1 < k, G(n-s 1-s 1) = 0. Since 

n is the. least number for whiqh the statement fails, G(n-s 1. But 

n-s. is an option of n, so that G(n) 1. 

(ii) Certainly G(n) 0 since n-s 1 is an option of n, and G(n-s1) = 0. 

Hence G(n) > 1, and there, exists s., 1 < j ' k siicw1that G(n-s) = 1. 

Since n is the least number.for which the above statement fails 

G(n- s 1 -s) = 0. But n-s 1-s. is an option of n-se ) so that G(n-s1) 0. 

Berlekamp has suggested the following method for calculating the P-

and N--positions. For S(s1$2,. 'k set up k+l columns. The first 

entries in each of the columns are the numbers 0,s,,s,,...,s,. The 

first entry in each of the succeeding rows is the mex, say n, of those 

numbers alreadywritten. The remaining entries in the row are the numbers 

n+si,n±S2,...,n+Sk. E.g. for S(3,10,13) we have 

0 3 10 13 
1 . 4 11 14 
2 5 12 15 
6 ' 9 16 19 
7 .]0 17 20 
8 11 18 21 

22 25 32 35 
23 26 33 36 
24 27 34 37 
28 ' 31 38 41 
29 32 39 42 
30 33 40 43 

44 47 54 . 57 
45 

Figure 5.1. Analysis of S(3,lo,13). 

The sample table has been divided into three sections. Every number 

in the second section may be obtained by adding 22 to a number in the 

corresponding position in the first section. In this sense, the table 
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for S(s 1 ,s 2 ,... ,sk) will eventually become periodic: each entry may be 

obtained by adding p to an earlier occurring number in a corresponding 

position. 

While Berlekamp ts method does not describe the period completely, 

the first column contains all numbers n such that G(n) = 0. By Ferguson's 

pairing property the second column contains those n for w1ich 0(n) = 1. 

The remaining columns contain those n suêh that 0(n) > 2, unless the 

entry is a duplicate of an entry occurring in an earlier column. In 

Figure 5.1, the numbers 10, 11, 32, 33 appear in both the second and the 

third column, so that 0(10) = 0(11) = 0(32) = 0(33) = 1. 

For S(a,b,a+h), if duplicates occur, it must be the case that a 

• number occurring in the second column is a duplicate of a number in the 

third. By definiti9n, no number in the first column is a duplicate of a 

number in the others. If a number n occurred in both the second and 

fourth columns; then n - a would appear in the first and third columns. If 

n occurred in the third and fourth columns, then n -b would appear in the 

first and second. 

The analyses of S(l,2k,2k+1), -and S(l2k+l,2k+2) are straightforward.-

Figure 5.2 illustrates the Berlekamp analysis of S(l,2k,2k+l). Since 

there are no repetitions, the game is exactly periodic, with period 2b = 4k 

and the 0-sequence is 0101. ..012323. ..23, the period consisting of k 0's, 

k l's , k 2's and k 3's. 
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0 1 2k 2k+1 

2 3 2k+2 2k+3 

4 5 2k+4 , 2k+6 

2k-4 2k-3 4k-4 4k-3 

2k-2 2k-J. 4k-2 4k-i 

Figure 5.2. Analysis of S(l,2k,2k+1). 

0 1 12k±1I 2k+2 

2 3 2k+3 2k+4 

4 5 2k+5 2k+6 

2k-2 .2k-i 

2k 12k+lI 

4k-i 4k 

4k+l 4k+2 

Figure 5.3. Analysis of S(1,2k+1,2k+2). 

Figure 5.3 illustrates the Berlekamp analysis of S(1,2k+1,2k+2). For 

each set of 4k+4 entries there is just one repetition, so that the period 

is 4k+3 = 2b+l, and the 0-sequence is 

ólol .. . 01012323.. .232, 

where there are k+l 0's, l's, and 2's, and k 3's. The Berlekamp analysis 

of S(1,13,14) is illustrated in Figure 5.4. 
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0 1 131 14 

2 3 15 16 

4 5 17 18 

6 7 19 20 

8 9 21 22 

10 11 23 24 

'12 1.131 25 26 

Figure 5.4. Analysis of S(1,13,14). 

The 13 is repeated in the second and third columns, so that the period is 

27, and the G-sequence is 

óiolb1Ololo101232323232323. 

For a > 1, we assume that a, b are relatively prime, and consider 

separately the cases h = 2ha-r, b = 2ha+r where 0 < r < a. The case 

where b = 2ha-i" is reasonably'straightforWard The diagram of the 

Berlekamp analysis is illustrated in Figure 5.5. 

There are h sections to the diagram, where a section consists of 

a rows, so that there are 4ha entries in total. However the r boxed 

numbers in the second column are duplicates of the boxed numbers in the 

third column. Allowing for these r repetitions, the period is 4ha-r = 2b+r. 

The analysis of the case b = 2ha+r is more complicated as the period 

is a times as long. It is best described with reference to a specific 

example. Figure 5.6 illustrates the diagram of the Beriekamp analysis 

of S(5,22,27). 
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For S(a,2ha+r, (2h+1)a±r), 0 < r < a, the diagram consists of a sets 

of four columnâ. Within each set there are h or h+i sections of a rows. 

In Figure 5.6 there are 5 sets of 4 columns and each set contains either 

2 or 3 sections of' 5 rows. Further, 2 of the sets contain 3 sections. 

In general r of the sets of columns contain h+l sections of a rows, and 

d-r of the sets contain h sections. In each set of 4 columns, the last 

section of ,a rows may be divided into 2 subsections. For the ktLh set of 

columns, thesubsections contain (kr) a and a(kr)a rows respectively, 

where (kr) denotes the least non-negative residue of kr, mod a. 
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0 

2 

a 

a+1 

a+2 

r-i 

r 

a+r-1 

a+r 

2ha-r 

2ha-r+1 

2ha-r+2 

2/ia-i 

2/ia 

(2h+i)a-r 

(2h+i) a-r+1 

(2/i-f-i) a-r-f-2 

(2h+1) a-i 

(2/i-f-i) a 

a-1 2a-1 (2h+i)a-r--i 

2a 3a (2h+2)a-r 

2a+1 3a+1 (2h+2)a-r+1 

(Th+2) a-r-1 

(2h+3) a-r 

(2h-f-3) a-r+1 

3a-i 4a-1 (2h+3)a-r-1 

4a 5a (.2h+4)a-r 

4a+1 5a-1-i (2h+4)a-r+1 

(2h+4)a-r---i  

(2h-i-5 ) a-r 

(2h+5)a-r+1 

5a-1 6a-1 (2h+5)a-r-I (2h+6)a-r-1 

(2h-2)a (2h-i)a (4h-2)a--r 

(2h-2)a+1 (2/i-1)a+1 (4h-2)a-r+i 

(4/i-i) a-r 

(4/i-i) a-r+1 

(2h-i)a-r-1 2ha-r-1 (4h-2)a-2r-1 

(2/i-i) a-r 

(2/i-i) a-i 

2ha-r 

2/ia-i 

(4h-2)a--2r 

(4h-1)a-2r-1 

(4/i-i) a-2r 

(4h-1)a--r-1 4ha-r-1 

Figure .5.5. Analysis of S(a,2ha-r,(2h+i)a-r). 



0 5 
16 
2 7 
3 8 
49 

22 
23 
24 
25 
26 

27 
28 
29 
30 
31 

10 15 32 37 
11 16 33 38 
12 17 34 39 
13 18 35 40 
14 19 36 41 

20 
21 

25 
26 

42 47 
43 48 

44 49 66 71 
45 50 67 72 
46 51 68 73 

52 57 74 79 
53 58 75 80 
54 59 76 81 
55 60 77 82 
56 61 78 83 

62 1671 84 89 
63 6 85 90 
64 69 86 91 
65 70 87 92 

88 93 liiot 115 

94 99 
95 100 
96 101 
97 102 
98 103 

104 
105 
106 
107 
108 

114 

109 
110 
111 
112 
113 

11191 

11 
117 
118 
119 
120 

121 
122 
123 
124 
125 

126 131 
127 132 
128 133 
129 134 
130 135 

136 141 

137 142 154 164 
138 143 160 165 
139 144 11611 166 
140 145 .i.a. 167 

146 151 168 173 
147 152 169 174 
148 153 170 175 
149 154 171 176 
150 155 172 177 

156 IEET 178 183 
157 1162 179 184 
158 163 180 185 

181 186 
182 187 

203 
204 

Figure 5.6. Analysis of S(5,22,27). 

208 
209 

188 193 210 215 
189 194 211 216 
190 195 212 217 
191 196 213 218 
192 197 214 219 

198 03 220 225 
199 04 221 226 
200 205 222 227 
201 206 223 228 
202 207 224 229 
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0 a 2ha+r (2h+1)a+r 

1 a+1 2ha+r-1 (2h+1)a+r-1 

a-r-1 2a-r-1 

a-r 2a-r 

a-r*1 2a-r+1 

(2h+1)a-1 

(2h+1)a 

(2h+1) a+1 

a-i 2a-1 

2a 3a 

(2h+2)a-1 

(2h+2)a 

(2h+2) a+l 

(2h+1)a+r-1 (2h+2)a+r-1  

(27-t+2)a+r (2h+3)a+r 

3a-1 4a-1 (2h+3)a+r1 (2h+3)a+rj 

(2h-2)a (2h-i)a (4h-2)a+r (4h-1)a+r 

(2h-1)-1 

2/ia 

2ha+r- I 

2/ia-i 

(2h+1)a 

(2h+1) a+r- 1 

(4h-1),a+._..  4ha+r- 1  

4ha+r (4hFl)a+r 

4ha+2r-1 (4h+1)a+2r-1 

4ha+2r (4h+i)a+2r 6ha+3r (6h+1)a+3r 

(4h+1)a+r1 (4h+2)a+r1 (6h+1)a+2r-1 (6h+2)a+2r1 

Figure 5.7. Part of analysis of S(a,2ha+r,(2h+1)a+r). 
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In each set of. 4 columns, there are exactly r duplicates. These 

occur in the second column, duplicating numbers that have already occurrd 

in the third. (For 3(5,22,27), r = 2 and in each of the sets of columns 

displayed in Figure 5.6 there are 2 duplicates.) Hence the total number 

of entries is 4(ha)(a-r) +,4(ha+a)r = 4(ha+r)a. Allowing for the r 

duplicates occurring in each set of columns, the period is 4(ha+r)a - ar = 

= (4ha+3r)a = (2b+r)a. 

• Figure 5.7 shows the diagram of the first set of a columns. There 

are h+1 sections of a rows, and the last section is divided into two 

subsections of r and a-r rows respectively. The, duplicates that occur 

are boxed. 

Consider now the (k+l) 5t set of 4 columns. If a_(l<r)a r, then 

a (kr)+r = ((k+l)r)a, and there will be no split in the duplicates. 

The (k+i)St set contains h sections of a rows, and the last section is 

divided into subsections öf ((k+l)r) a, and a((k+I)r)a rows where 

r < ((k+l)r)a< a. The first r entries in the second column of the 

• ((k+:L)r)a rows are duplicates as the last r entries occurring in the 

third column of the kth 'set of 4 columns. Figure 5.8 illustrates the 

situation when a_(kr)a r. The upper portion of the diagram shows the 

last a_(kr)arows of the kth set of 4 columns. In the (k+l)st set of 

columns,' the entries have been grouped in sections of a rows, but only 

the first ((k+l)r) rows of the last section are shown. The boxed numbers 

in the second column are duplicates of earlier occurring numbers in the 

third column. . 
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Last a_(l<r)a rows of ktll set of columns 

a- (kr) a 

a 

a 

a 

n+4a- (k')a 

n 

n+1 

n-I-a 

n+a-I-1 

n+2ha+r 

n+2lza+rf 1 

n+ (2h-f-l) a-Fr 

n-I- (2h-I-l) a+rl-1 

n+a-r-(kr) 0 1 

n+a-r- (kr)a 

n+2a-r- (kr) a1 

n+2a-r- (kt') 

n+(211+l)a-(kr) a-1 

n+(2h+l)a(kr) a 

" n+cz-(kr) (j: 

n+2a- '> a 

n±2a- (kr)- 1 n+(2h+1)a+r(kr) -1 
a  

(k+1)st set of 4 columns 

n+3a(kr) a 

n+(2h+2)a_(kr) a l 

n+(2h+2)a(kr) a 

n+( 2/i+2) a+r- (kr)l 

n+(2h±3)a+r(kr) a 

n+3a- (kr) 1 
a. 

n-1-5a- (kr) a 

n+(212+3)a+r- (kr)l 

n+(2h+4)a+r_(kr) a 

n+ (2h+4) a+r- (kr - 1 
ra 

n+(2h+5)a+r(kr) a 

n+5a_(lr)a'l n+6a- (1cr) -1 ,2+(2h+5 )a+r- (kr) n4-(2)i16)a+r (kr) 

n+(Th-l)a-(kr) 
a 

n+(4h-2)a+r- (kr) 

a 

n+21ic- (kr) 
a 

n+2/?a- (1r) - 1 
la 

n+(2h+]-)a- (kr) 
a 

n+ (4h-l) a+r- (k≥') -1 n+4lia-I-r- (Pr) -1 
a.. 

n-4-4ha+r- (ki') n±(4+l)a+r- (kr) 
a 

n 27 z+r_2_.(kr) a 

n+21ia 1r-1- (kr) 

n+2hcrh'- (1:r) a 

n-I- (2)i+l) a-r- 2- (kr) a 

n-I (2h+1)cz-r-l-- ('.i) 

n-f-4ha+2r-2-- (kr) a 

n-}-ha-I-2r-1- (kr) 
a 

n+lilzaI-2r- a 

n+(lih-+-1)a-I-2r--2-- (kr) 

n-I- (4/i-I-i) a-1-2r- a 

n+(4/z±1)a-2r-

fl 2/i c+r-1 n-t-(2/i+i)a+r--) n+4lza+2r--1 

u rc- 5- 8,  Pt r t of the naiy i f (a 2h 4-I-r, (2h-i-.1 ) (z-i-r) when a-'- (1:,) a 
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Last a-(kr) rOJB of kth set of columns. 

0 

a 

a 

a 

a 

r- (kr) 

I 

I 

n fl+0 

ni-a- (kr)-1 

n+a+(a- (kr) 0) 

n+c-I-(a- (kr))-1 

ni-2ha+r 

n+2ha+r+(a-(kr)) 1 

n+(2h+1)a+r 

n+(2h+1)a+i*(a-(kr)) 1 

(k+1)at set of columns. - 

n+2a+(a_(kr)0) n+(2h+1)a+r+(a_(kr)a) n+(2h+2)a+r+(a_(kr) a) 

n420+(a_(kr) a_r) n+3o+(a-(kr)--r) 

n+2a-1 n+3a-3. 

n-f (2h-I-2)a+(a- (kr) 0) 

n+(2h+2)a+r-1 

n+(2h+3)a+(a-(kr) a 

n+(2h+3)a+r-1 

n+2a4-(a-(kr))-1' 

n+3a+(a- (kr)) 

n+3a-(a-(kr)0)-3. n-4-(2h+2)a+r+(a-(kr)) -1 n+(2h+3)a+r+(a- 'a) -1 

n-f4a4-(a- (kr)) n+(2h+3)a+r+(a- (kr) 0) n+(2h+4)a+r+(a- (kr) 0) 

n+4o+(a-(kr) 0)-3. n+4a+(a-(kr)-1 n+(2h+4)a+r+(a+(kr) 0)-1 n+(2h+5)a+r+(a-(kr))-1 

n+(2h-3) a+(a- (kr)) n+(2h-2)a+(a-(kr)) n+(4h-3)a+,*(a- (kr) 0) n+(4h-2)a+r+(a- (kr) 0) 

n+(2h-2)a4-(a-(Pr) a 1 n+(2h-1)a+(a-- (kr))-1 

n-f (2k-i) a+(a- (kr) 0) - n+2ha+(a- (kr)0) 

n+(4h-2)a+r+(a- (kr)) -3. n+(4h-1)a+r+(a-- (kr)) 1 

n+(',h-i)a+r+(a- (kr) a) n+4ho4-*(a--(kr) 0) 

n1(2.h-1)a--+-r-1 

n+(21i-1)a+r 

n+2ha+r-1 

n+2ha+r 

n+(4h-1)a+2r-1 

n+(4h-1) a+2r 

n+4ho+2r-3, 

n+4ha+2r 

-n+(2h-i) a+r-1-(a- (kr)) -1 n+2ha+x*(a- (kr)a) n+(4h-1)a4-2r-f(o- (kr)a)_1 n-I-ha+2r-F(a- (k2,)) 

n+2ha-f(o-- (kr))-1 

n+( 21H-1) a-I- (a- (kr) a) 

n+(2h+1)a4-(a-(kr) 0)-1 

n-I-(2h+2)a+(a---(ki)) 

n+1iho-r4-(a- (kr)0) -1 n+(h+1)a+rf (a- (kr)) -i 

n+(4h+1)a-I-rl-(a- (kr) n+(4h+2)a-I-i4-(a- (kr)) 

n+(2h+J)aI-r-1 n+(2h+2)+i'-i n-f(4h4-1)o+2r-1 n+(4h+2)ai-2r- 1 

Fiuie 5.9. P'rt of the onn]yIir of S(a,Th.--ir,(2h$--i)a+r) when -(kr) 0 < r. 



If a-(kr) a a a < r,then a < (kr) +r = a+((k+l)r) . In this case the 

(k+l)st set contains h+1 sections of a rows, and the r duplicates are 

split into two groups, one of size a_(kr)a and the other of size 

r_(a_(kr)a). Their relative positions are illustrated in Figure 5.9. 

Once again the upper portion of the diagram shows the last a.(kr)a rows 

of the kth set of 4 columns. In the (k+l)st set of columns the entries 

have been grouped in sections of a rows, but only the first r_(kr)a rows 

of the last section are shown. The boxed numbers represent those entries 

that are duplicates. 

5.4. Tetral Games  

The subtraction game S(Sl,82, .... 8k) is equivalent to the tetral 

game where ,& =,whenever u E (sl,s2 ,... ,Sk), , = for all 

other u. Some of theresultsPrOVed here hold for finite tetral games 

in which we also allow digits d = 1 or d = 2. 

The proof that every finite subtraction, game is ultimately periodic 

rested upon the fact that for all n, the number of options of n was 

bounded by an integer k. Since this is also true of finite tetral games, 

a similar argument shows that every finite tetral game is ultimately 

periodic. 

THEOREM 5.8. Let (Vu,,& ,, and for u 0, u > v, = 

and k = l{uI contains,}I. If there exists p such that d contains 2 

whenever d contains •, then for all n > v+kp, G(n-ip) = G(n). 
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PROOF. Observe that for n > V, G(n) < k, since n has at most k options. 

For n > v, an argument identical to that of Theorem 5.3 shows that if 

0(n) = 0, tien0(n+p) = 0. We assume indictive1y that if n > v+jp, 

O j <g, then 0(n) = j implies G(n+p) = j, and show that if n > v+gp, 

0(n), = g implies G(n+p) = g by an argument similar to that of Theorem 5.3. 

The remaiàing results proved for subtraction games do not necessarily 

hold for arbitrary tetral games. Ferguson's pairing property does not 

hold, as .12 shows. This game has 0-sequence 01002211 and 0(2) = 0, 

0(4) 4 1. Consequently no results about the 0-sequence of tetral games 

analogous to those of sections 5.2 and 5.3 have been established. 



Chapter 6 

Arithmetico-periodicity 

6.1. Introduction 

There are numerous games for whidh G(n) is unbounded. The game of 

Nim,.3, has G-sequence 012345... . It is periodic in the following gen-

eralized sense. A game D is said to be arithmetico-periodic if there 

exist e,,p, s (e>0) such that for all n > e, G(n+p), G(n)+s. The least 

e,p,s for which this is true are called the last irregular value e, the 
s(n-c ) 

period p, and the saltus s. For n > e, we may write G(n) p 

where c depends only on the residue class to which n belongs modulo p. 

6.2. Finite Octals and ArithmetiCOPeriodiCitY  

In his analyses of octal and sedecimal games, Kenyon [13] observed 

that no finite octal appeared t0 be arithmeticoPeri0diC. To establish 

this, we follow an analysis due to J. Conway. - 

The Fibonacci numbers are defined by the kollowing recurrence re-

lation: F 0, F1 I,'and for n 2, F = F 1 + F 2 e.g. F2 = 1, 

13 = 2, F = 3, F5 = 5. 

For n 0, let f(n) he the number of distinct values assumed by 

ab, where a 0, b 0, a+b = n-i, e.g. f(0) = 0, f(1) = f(2) = 1, 

f(3) = 2, f(4) *- 1, f(5) = 3, (6) = 2. 

LEMMA 6.1. (i) f(2n) = f(n) 

(ii) f(2n+1) = f(n+l) + f(n) 

(iii) if n <k then f(n) 
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PROOF. W f(2n) = I{a-ba+b = 2n-1}i. If a+b = 2n-1, without loss of 

generality we may write a = 2a t-l-1,.b 2b', where al+bT = n-1. Then 

ab = (2a t+l) ± 2b t = 2(at±b') + 1 by Lemma 3.1 (iii). Hence there 

is a bijectiôn between (a±bLa+b 2n-1} and {a'b'la'+b' = n-1}, so 

that f(2n) = f(n). 

(ii) f(2n±l) = I{a+*bla+h'= 2n}I. If a,b are both even, a = 2a 

I *. * I 
b = 2b where a4 n, tliena+b = 2a +2b = 2(a +b'). If a,b are both 

odd a = 2at+l, b = 2b"+1 where = n-i, then ab = (2a"+l) 4 (2b±l) 

= 2(ahtbU). If n is even, at.Ibt = n, then a'+b" 0 (mod 2) so that 

2(a t+bl) E 0 (mod ) ,and 2-(a"b") 2 (mod' 4). Similarly, if n is odd 

he sets {2(a 1 bt)kt+b t ='n}, {2(ahtt)a1t+bht. n-i} are distinct. 

Hence f(2n+l) = f(i) + f(n+l). 

(iii) The result is-true for n = 0,1,2. Assume inductively that 

(iii) holds for n 2k, k . 1; If < 2k+i, and n = 2n', n' 2k, then 

by (i) and the inductive hypothesis - - 

f(n) f(2n 1) = f(n') F<. (1) 

If n = 2n'+1, then n'+l 2k, f(n) = f(n') + f(n'+l). Just one of fl ', 

n'+l is even, sob,y (1) and the inductive hypothesis, f(n) < F< +Fk+l = 

= Fk+2. 

THEOREM 6.2. No finite octal game is aritbrnetic0 peri0diC. 

PROOF. Suppose on the contrary that a finite octal game , has period p, 

saltus s 1, and is (ultimately) arithmetic0peri0diC. Choose c such 

that 
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(a) d = ,Q for U <C and U 

(b) p 

(c) G(n+p) G(n)+s for all n (2C_l)p. 

By (a), there are at most 21 splitting moves (,d contains ,) and at 

most 2C taking moves ( contains ,2). The total number of different moves 

from a heap of n tokens is thus at most 2l(n/2)+2C = 2C(fl+l). There-

fore 

G(n) < 
2C(1) (*) 

and 

= G(n)/n 

so that s < 2p. 

h h+1 Let 2 < 2 , where h 2c+2. The number of distinct G-vaiues 

arising from taking moves is at most 2 C . The number of distinct G-values 

atising from splitting moves in which one of the resulting heaps has size 

c c c-Fl 2c+l 
less than 2 p is at most 2 p2 = 2 p. Other moves consist in 

choosing a splitting move (in one of at most 2 C+1 ways)and choosing a 

residue class, p 1W , mod p, 0 p-i (in one of atmost p ways) and 

replacing a heap of n tokens by two heaps of a and b, where a+b = n- u, 

< u < 20 , a,b 2°p, and a A1p + u, x 2. Write b X2p + 

where 0 < p2 X2 2C Note that n-U = a+b = X 1 + + Ap + 

so that when n, u, p1 are chosen, p2 is fixed, and A1 + A2 = 
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By (c), j1 ,g2 such that 0(a) G(X 1p+p 1) X1s + q1 = , say, and 

0(h) = = 'X2s + = , say. We observe 

2 CS + g, = 0(2C p+ii 1) by (c) 

by 

by (*) 

by (b) 

by (b). 

3c+1 
Hence g1 2 , and by a similar argument, g2 231 . Further 

= X1S + + A2s + .= (X 1+X2)s + ' S = (nTulz) + 91 

is a fixed integer, in say, where 

in 2C(+2COO) + 23c+l + 23c+1 < 2 2 + 232 2h+c+3 

+ 
92 

The 0-values resulting from such moves are a subset of = in) 

whose cardinality is f(m+1), which by Lemnia 6.1 (iii) is less than or 

equal to • Therefore 

p 0(n) 2'pFh+C+ 2 2c+]. + 2C < 2 2c+1 + 2 3c+]. + 2 by (b). 

Now it is easy to see by induction that F  < Th where T = T+l, 

= F1+v') = 1.618... < 2, so 

S 

P 

2c+1 h+c+L 3c+1 
Jim 0(n)/n lirn •-  •r + 2 + 2C  - 

n-

contrary to our assumption that s 1. 
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6.3. An  Arithmetico-Periodicity Theorem for Sedecimal Games  

We now prove a theorem for arithmetico-pei'iodicity analogous to 

Theorem 4.2 for normal periodicity. We first establish several 1ernrna 

that will be used in the proof. 

LEMMA 6.3. Suppose that T =AA,+ is a tak' and 

break game, and that for some integer n there exist integers e, p, and c 

such that 

Then 

(1) •G(i+p) = G(i)+s, for all i, e < i n 

(2) G(i) < s for all i 

.(3) 0(i) < 2s for all i < e+p. 

(1) if i > e+qp and q 0 then G(i) qs 

(ii) if 0(i) qs and q 1 then i > e+(q-1)p. 

PROOF. (i) Let i = +ap+r where a q 0, 0 < r < p. Then 

0(i) = 0(e+ap+r) = G(e+r)+as 04-qs = qs. by (1) 

(ii) q = 1. If 0(i) s, then (2) implies i > e = e+(q-l)p. 

q = 2. If G(i) 2s, theii (3) implies i > e-f'p = e+(q-1)p so we may assume 

q > 2 and 
0(i) qs > 2s. (4) 

Then by (3), 1 = e+ap+r where a 1, p r > 0, so that 
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G(i) G(e+ap+r) 

= G(+r)+aS 

< 2s+as 

= (a+2)s. 

Inequalities (4). and (5) yield 

(a+2)s > qs . a+2 > q a > q-2 

and since a is an integer a q-1. 

Thus i = +ap+r e+(q-i)p+r > e+(q-1)p. 

by (1) 

by (3) 

(5) 

COROLLARY 6.4. Suppose that Z = A is a take and 

break game, and that for some integer n, there exist integers e, p, and 

s (assumed to bepoWer of 2, s = 2 ) such that 

(1) G(i+p) = G(i)+s for all e n 

(2) G(i) < s for all i e 

(3) G(i) < 2s for all i e+p. 

If G(i) contains m k, then i > e+(2 m-k-l)p. If G(i) contains 

2, where m > 1 k, then i > e±(2mk+21k_l)P. 

PROOF. This follows as an immediate consequence of Lemma 6.3 (ii) by 

k 
taking s = 2 . 

For such a game -TI. if G(i) > q > G(i)-36, then q is an excluded 

value for (7(i). If Vu,d 15, there is a move taking u tokens from a 

heap of i and leaving three non-negative heaps of j1,i2,i3 tokens so 
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that i--u = and g = G() + G(i-2) + G(i- 3). The next lemma 

provides information about the binary expansions of G(i 1), G(i2), G(i 3). 

LEMMA 6.5. Let  = o123 ... be a take and break game inwhicha 

move replaces one heap by at most three heaps (i.e. d U < 15) and suppose 

satisfies the assumptions of Corollary 6.4. Let 

G(i) > g > G(i)-3s, 

i-u = i1-Ii 2+i- 3, 

* * 
g = G(i 1) + G(i2) + G(1 3). 

If 2 is the largest power of2 contained in g, and 1 k+l then 21+1 

is not contained in G(i 1), G(i2), G(i 3). 

PROOF. Since g > G(i)-3s, and 21 is the largest power of 2 contained 

in g, 

21+1 > G(i)-3s. (6) 

1 * * • 1 
As g contains 2 , g = G(-z- 1) + G(i- ) + G(v 3), 2 is.contained in an odd 

number of G(i 1), G(i2), G(i). Without loss of generality we may assume 

that 21 is contained in G(i 1). Either 21+1 is not contained -in any of 

G(i 1), 0(i2), 0(i 3) and there is nothing to prove, or 21+1 is contained 

in just two of them. We give an argument by contradiction to show the 

latter is not possib'le. It suffices to consider the two cases where 

1+1 
(i) G(i 1), 0(i 2) contain 2 

(ii) 0(i2), 0(i 3) contain 21+1. 



- 120 - 

1 •l+i 1+1 
(i) If G(i 1) contains 2, 2 , G(i2) contains 2 , then 

j i-u 

1 2 3 

> byCorollary 6.4 

e+(2l 2 k+2lk_2)p 

so that by Lemma 6.3 (i), 

Ô(i) (2 +2 Z+2-k i-k-2)s = 21+2 + 21 - 2s. 

Therefore 

G(i)-3s 2 + 2 - 5s 

= 21+1 + 6.211 - 58 

21+1 + s since 1 k+i 

which contradicts (6). 

(ii) If 0(i 1) contains 2, 0(i2), 0(i 3) contain 21+1 then 

= i1-i 2+i 3 

> e+(21 k_l)p+±(2i+1 _l) p++(2i+1k_l) P by Corollary 6.4 

g(2l+2k 2ik 3)p 

so that by Lemma 6.3 (i) 

G(i) 1+2-k 1-k_ 3)s = 21+2 + 21 - 3s. (2 +2  
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Therefore 

1+2 1 1+1 1-i 1+1 
G(t.)-3s2 +2 -6s=2 +6.2 -6s2 sindelk+1 

which contradicts (6). 

LEMMA 6.6. Under the assumptions of Lemma 6.3 suppose that for each-g, 

o < g < 2s there exists i such that 0(i) = g. If i1 > e+2p and. 

0(i 1-2p) then there exists i < i1 such that 0(i2) = 

PROOF. Since i1 > 

i1-2p > e (7) 

so that by (1), G(i 1-2p) = G(i 1)-28. Let G(i 1-2p). If 0 < 2s 

then by hypothesis there exists i such that 0(i) = g1, and 

i < e+2p by Lemma 6.3 (i) 

Take i2 =i. . 

If 2s G(i 1-2p) = G(i 1)-2s, then let g, = qs+r, whereq 2, 

O r < S. Thus G(i 1)-2s qs+r so that 0(i 1) . (q+2)s. By Lemma 6.3 (i) 

ii > +(q+1)p. By hypothesis there exists i such that G(i) = s+r where 

< i +2p, so that 

0(i+(q-1)p) = 0(i) + (q-1)s 

= s+ r + (q-1)s 

=g1 

by (1) 
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where 

'i. + (q-1)p e + 2p + (q-1)p = e + (q+1)p < i1. 

Take i = i + (q-l)p. 

LEMMA 6.7. Under the assumptions of Corollary 6.4, suppose that for each 

0 < g < 2s; there exists 2v+1 > 0, 2w > 0, such that G(2v+l) = 0(2w) = g. 

If i > e+2p and G(i1-2p) then there exist 2v1+1, 2w1, 

0 <2w 1,2v1+i < i such that 0(2w1) = G(2v1+1) = g1. 

PROOF. The proof is similar to that of Lemma 6.6, but it is necessary to 

consider separately the cases where p is even, is odd. 

THEOREM 6.8. Suppose that Z = do.didz ... dt (d = 0 for u' > t 1, u < 0) 

is a take and break game in which 'a move replaces just one heap by at most 

three heaps, i.e. d < 15 and that there exist integers e (the list irre-

gular value), p t+2 (a period) and s 1 (a saltus, assumed to be a 

power of 2, s = 2 k) such that 

(1) G(i4p) = G(i)+s for all i, e < i < e+7p-f't 

(2) 0(i) < s for all i e 

(3) 0(i) < 2s for all i e+p 

(4) either there exist d2+1 '.2w both of which contain  

and for each g, 0 g < 2s, there exists i > 0, such 

that 0(i) = g or there exists d which contains  

and for each g, 0 g < 2s, there exist 2v+l, 2w 0 

such that G(2v+l) = G(2w) = g. 

Then for all i > e 

G(i'+'p) = G(i)+s. (*) 
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Note that in order to satisfy (2), (3), and the condition p t+2, it 

may be necessary to choose appropriate multiples of the period, and the 

saltus which are defined as the least p and s satisfying (1), e.g. the 

game .;F has 0-sequence 0101023234545678(+4) where the period is 6, 

and the saltus 4 is indicated in parentheses. In order to apply Theorem 

6.8 it was necessary tb choose a period of 12, and a saltus of 8. 

Kenyon [13] has solved the game •31 and shown that the 0-sequence, 

is 012012(+3). Similarly we have shown the game 4,69 has G-sequence 

0102102132 (+3). However, anda = qkIU  so that both of 

these games are equivalent to infinite recurring octal games (see sectiop. 

6.4). No theorem for sedecimal games exhibiting arithmetico-periodicity 

with a saltus other than a power of 2 has been proved. 

PROOF. By hypothesis, (*) holds for e <. i < e+7p+t. Assume inductively 

that (*) holds for e < i < n where n . e+7p+t. To show G(n+p) = G(n)+s 

we prove that: 

(i) G(n)+s is not an excluded value for G(n+p) 

(ii) For each g, 0 < g < G(n)+s, g is an excluded value. 

(i) We suppose that G(n)+s is an excluded value for G(n+p) and show that 

this leads to a contradiction. We consider five cases, where each case 

leads to a result that contradicts our induction hypothesis. 

If G(n)+s is an excluded value for G(n+p), then it must be excluded 

by removing u tokens from a heap of n-I-p to leave three non-negative heaps 
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of i1, i2 , i3 tokens where n-lp-u = i I 4 i 2 4i and G(n)+s = 0(i 1) G(i2) 9(i3). 

Since n e+7p+t, n-7p e+t > e, and we have by (1), 

0(n) = G(n-7p+7p) 

= G(n-7p)+7s 

7s 

G(n)+s 8s 

so that if 2m is the largest power of 2 contained in 0(n)+s, m k+3. As 

* * • 

G(n)+s = 0(v 1) + G(1.) + G(i.), 2 is contained in an odd number of G(z 1), 

G(i2), G(i3), and we may assume without loss of generality that 2m is 

contained in G(i1). 

CASE I: If 0(i 1) also contains 21, where 1 k, l m (see Figure 6.1), 

then 

rn-k n - (2 -l)p - U = (.2rnk) + i2 + i3 

and 

m-k rn-k * 
G(n-2 -l)p) = 0(i1-2 p) ± G(i2) + 0(i 3); 

rn-k * * 
but by definition G(i 1-2 p) + 0(i2) + 0(i 3). As G(i 1) 

Ml 
contains 2 , 2 , 1 k, 1 

G(i1) 2m. 2 = (2rnk+21k)( 



21 

1 

G(n)+s ...O 0 0 1 

Figure 6.1. Case I. 

X = 0 in both places or X = 1 in both places. 

so that by Corollary 6.4 

and by (1) 

Since 

i1 > e + (2rn_k 2l_k 1) 

rn-k 
e+2 p, 

2 
rn-k 

Q(2rn_k ) = i,) - 2rn-kp 

G(i1) - 2rn 

rn-k rn-k 
n-(2 -l)p-un+p-u2 p 

= + 1 2 ± i 
- in-k 

rn-k 
= (i1-2 ) + + 

(8) 

we see that we can remove u tokens from a heap of fl_(2m<_1), leaving 

three non-negative heaps, the first of which contains more than e tokens. 

So we can apply (1) to give 
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0(fl_k1)) = 0(n) - 

=0(n) +s - 

= 0 (i ±0(i2) 0(i3),- rn 

= (G(i1)) +0(i2) +G(i3) 

since 0(i) contains and an even number of 0(i2 ), 0(i3) do. By (8), 

(0()2rn) G(12) G(i3) = 0( 21fl_k ) - 0(i2) - d(i 3). 

rn-k * * 
But by (9), G(i. 1-2 p) + 0(1.2) + 0(1. 3) is an excluded value for 

Therefore G(i1) does not contain 21, 1 k, 7. 0 rn. 

CASE II: If 0(i1) contains 2711 0(i1) does not contain 2, 7. ? k, 1 rn, 

and either 0(i2 ), 0(i3) both contain 2m1, or both do not contain 27711 

(see Figure 6.2)., then 

and 

rn-i-k . th-1-k 
n - (2 -l)p - u @.-2 p) + •'2 + 

rn-i-k * * 
G(fl_(2m1k_l)P) = G(i 1-2 p) + 0(i2) + 0(i 3); 

but by definition 

G(n_(2m 1 <_l) p) Q(_2flll 
p 

* • * 

+ 0(1.2) + G(13). 
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2m •2rn-i 

1 

A, 

A, 

0 

A, 

.1' 

0 

0(n) +3 1 0 

Figure 6.2. Cage II. 

X = 0 in both positions or X = 1 in both positions. 

A, = 0 in both positions or .1' = 1 in both positions. 

As 0(i1) contains 2m, 0(i1) 2rn = 2rn-k6 so. that by Corollary 6.4, 

and. by (1) 

Since 

ii > e 
+ (2m_<_1) > e +2m-1-k , 

m-1 -k i1 -2 p > e 

= G( • ) - 2m-i-k 

rn-i-k rn-i-k 
-1)p-u=n+p-u-2 p 

= + + 2rn-i-k 

(10) 

= ( 2rn1k) + i + i3, (12) 

we see that we can remove u tokens from a heap of _(2m1<_1), leaving 

three non-negative heaps, the first of which contains more than e tokens 
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by (10). So we can apply (1) to give 

G(n_(f1k_l)p) Go  

=G(n) +s - 

= G(i 1) + G(i2) + 0(i 3) - ,., 

rn-i * * 
= (G (ii )-2 ) + G(i 2) + 0(i3), 

since G(i 1) does not contain 2m1 , and an even number of 0(i2), G(i3) do. 

By (11) 

* * 0 (i2) + rn-i-k + G(i3) = G(i p) 
* * 
± (7(i2) + 0(i3). 

rn-i-k * * 
But by (12) G(i 1-2 p) + G(i2) + G(i 3) is an excluded value for 

0(fl_(2mik_l)) 

If just one of G(i2), 0(i 3) contains 2m1 without loss of generality 

we may assume that G(i2) contains 2m1• 

CASE III: G(i 1) contains 2m, G(i 1) does not contain 2, 1 k, m, 

and G(i 2) contains 2"1-1 , G(i3) does not contain 2ro- . If 0(1,2) also con-

tains 21, where l k, l rn-i (see Figure 6. 3), then 

and 

n - (2mh1<_1) - U = i1 + (. 2rnlk) + 

0( _(2m _k1)) = G(i ) G(i 2rn 7<p) ± G(i ); 
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but by definition 

* rn-i-k * 
G( fl_(2m1k_l) P) G(i 1) + G(i2-2 p) + G(i 3). 

0 

2m 2117i 

1 

x 

x 

0 

1 

0 

2 

0 

1 

1 

0 0 

G(n)+s 0 1 1 

Figure 6.3. Case III. 

X = 0 in both places or K = 1 in both places. 

As 0(i 2) contains 2rn-i 21, 1 k, 1 rn-i 

so that by Corollary 6.4 

and by (1) 

G(i2) + 2 

rn-i-k 1-7< 
=(2 +2 )s, 

rn-i-k 1-k _,)p 
>e+(2 +2 -l)p 

2 

+2 rn-i-k e 

_ rn-i-k 

2 

= G(i2) - 2rn-i--k 

(13) 

= 02) - 2117_i (14) 
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Since 

n• - (2m1k_1) - U = fl + p u - 2rn-i-k 

.i+12132M_ i-k rn-i-k p 

=• rn-i + (i -2 -k ) (15) 
i 2 

we see that we can remove u tokens from a heap of fl_(21k_1), leaving 

three non-negative heaps, the second of which contains thore than e tokens 

by (13). So we can apply (1) to give 

= G(n) - (2m-i-k1)8 

= G(n) + 2 1 

* * 
= G(i1) + + 0(i 3) - 2M_ 1. 

* 
= G(i1) + (0(2)_2m1) 0(i3), 

since 0(i2) contains 2m1, 0(i 1) and 0(i 3) i?Io not. By (14) 

* * rn-i-k * 
0(i1) (G(i2)_2in1) + 0(i) = G(L 1) + G(i2-2 p) + G(1 3). 

* rn-i-k * 
But by (15), 0(_(2m1k_1)) G(i ) 1- 1 2 G(i -2 p) ± 0 (i 3). Therefore 

G(i2) does not contain 21, 1 k, 1 in-i. 

• CASE IV: 0(i 1) contains 2M G(i) does not contain 21, i k, 1  

0(i2) contains 2M_ 1, 0(i2) does not contain 21, 1 k, 1 rn-i. If 0(j) 

rn-2 
does not contain 2 (see Figure 6.4), then 
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- (2m2_k_1) - = i + (. 2rn2k) + 

and 

* rn-2-k * 
G(fl(2m2k1)P) = G(i 1) + G(i2-2 p) + 

but by definition 

* m-2 -k * 
0(fl_(2m2k_1)) +j2-2 p) + G(j). 

2m 2m-1 2rn-2 21 

0 3. 

0 

0 

0 

0 

0 

1 

0 

o 0 

o 0 

0 

• 0 

• 0 

0 

0 

0 

0 

0 

0 

G(n)+s 0 1 1 0 

Figure 6.4. Case IV. 

0 

Since G(i2) contains 2m1, G(i2) rn-i rn-i-k > 2 = 2 s, so that by Corollary 

6.4, 

and by (1) 

> e + (2m1_1) 

rn-2-k 
>e+(2 p) 

• rn-2-k 
- 2 > 

= G(i2) T 2rn-2--k 

(16) 

= G( 2)2 (17) 
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Since 

rn-2-k rn-2-k 
(2 -l)p-u=n+p - U 2 p 

rn-2-k 
1 + 23 p 

= i1 + (i rn-2-k-2 p) + 13 (18) 

we see that we can remove u tokens from a heap of _(2m2k_1), leaving 

three non-negative heaps, the second of which contains more than e tokens 

by (16). So we may apply (1) to get 

rn-2 - 7< rn1< 
G(n-(2 -1)p) = 0(n) - (2 - 2 - -l)s 

= 0(n) +s - 

* * rn-2 
= 0(i 1) + 0(i2) + 0(i , 3) - 

* * 
= G(i 1) (0(i )_2rn2) + 

rn-i rn-2 rn-i 
since 0(i 2) contains 2 , 0(i 1) and 0(i 3) do not contain 2 ,2 By (17) 

* 
0 (i 1) + (G(11  G(i) = 0(i1) 0(2mk) 0(i3). 

2-k * 
But by (18) Q( (2rn2k1)) 0(i1) 0(.2rn p) + 0(i 3). 

CASE V: 0(i 1) contains 2m, 0(i 1) does not contain 2, 1 k, 1 rn, 

0(i 2) contains 2m1, 0(i2) does not contain 2 k, 1 rn-i, and 

0(i3) contains 2rn-2 Then 
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n - (2m3k_ 1) U = + i2 (2m3k) 

and 

(2m3k * m-3-1< 
G(n - -l)p = G(i 1) + G(z-2) + G(i 3-2 

since m k+3. But by definition 

m-3-k * * m-3-k 
G(n-(2 -l)p) G(i 1) + G(i 2) + G(i 3-2 P). 

0 

0 

0 

2m ?1 m-2 n-3 

1 

0 

0 

0 

1 

0 

0 

0 

1 

0 

0 

2k 

0 

G(n)+s 0 1 1 '2 

Figure 6.5. Case V 

m-2 
Since G(i 3)' contains 2 , by Corollary 6.4, 

and by (1) 

i3 ,> 8 + (2m2k 1) 

2m- 3-k 
p 

2 
m-3-k 

- p>e, 

0(3_2m3k) = G(i 3) - 2m-3-k 

(19) 

(20) 



- 134 - 

Since 

m-3-k m-3-k 
-l)p-un+PU2 p 

u1 + 1 m-3-k2 +12 p 

= i + m-3--k + (i 3-2 p), (21) 

we see that we can remove u tokens from a heap of _(2m3k_1)1,, leaving 

thre non-negative heaps, the third of which contains more than i' tokens 

by (19). So we can apply (1) to give - 

= G(n) - (2M_ 3-k_ I)p 

= G(n). + S - 2m3 

* * 
= G(i 1) + G(i2) + 0(1 3) - 

* * 

= G(i) + G(i) + 

M- 2 
since 0(1 3) contains 2 , and 0 

By (20) 

•1. 
rn-2 2m-3 

0(12) do not contain 2 

* * m-3-k 
G(1 1) + G(i) (0(.)2m3) = 0(i 1) + 0(i 2) + (G(j)-2 P). 

But by (21) G(fl_(2m 3 k_l) P) G(i 1) + G(i2) 

If we assume there exists a move froii n+p of takiug u tokens to 

leave three non-negative heaps of i1, i2 , 13 tokens where G(n)+s = 

= G(1 1) + G(12) - 0(1 3) then G(i), 0(i), 0(1 3) will satisfy the con-

- ditions of one of Case I - Case V. Hence- G(n)+s is. not an excluded 

value for G(n+p). 
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(ii) We first show that (4) allows us to exclude g for 0 g < G(n-22). 

Then using Lemma 6.5 we find moves from n+p to positions of G-value g. 

for G(n-2p) < g < G(n)+s. Since n e+7p+t, n-2p e+5p+t, so that by 

(1), G(n-2p) = G(n)-2s. 

(A) If there exist d d , both of which contain 8, and for each q 
'2V+1 2& 

0 < 2s there exists i such that G(i) = g, let 0 < g G(n)-2s. Then 

by Lemma 6.6 there exists i < n such that 

G  = g. (21) 

As p t+2, where t is the maximum number of tokens ie may remove 

n+p - (2v+l) n+2 

n + p - 2w n + 2. 

For 1 = --(n+p-(2v+l)-l) 

G(n+p) G(i 1) + G(i 1) ± G(i*p-(2v+l)-2i 1) 

G(n+p-(2v+l)-2i 1). 

For 1 < i = j -(n±p-2w-l) 

* * 
G(n-I-p) G(i 1) + G(i 1) + G(n+p-2w--2i 1) 

= G(n+p-2w-2i 1). 

Thus 0(1), G(2), ..., (7(n) are excluded values. But by (21) this excludes 

g, 0 < g < G(n)-2s. 
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(B) If there exists d which contains Q, and for each g 0 g < 2s, there 

exist 2v+1, 2w > 0 such that G(2v+l) = 0(2w) = g, let 0 g < G(n)-2s. By 

Lemma 6.7 there exist 2v+l, 2w such that 0 < 2v+1, 2w < n, and 

0(2v+l) = 0(2w) = g. (22) 

Since p . t+2, 

n + p u n• + 2. 

For 1 = i -!(n+p-u-l), 

G(n+p) 0(i 1) + 0(i 1) 1 G(n+p-u-2i 1) 

= G(n-i-p-u-2i 1) 

so that either 0(1), 0(3), 0(5),,.. or 0(2), 0(4), 0(6),... are excluded 

values. But by (22), this excludes g, 0 < g G(n)-2s. 

Let G(n)+s > g > G(n)-2s. Since G(n)+s >. 8s, g > 5s, so that if 

is the largest powe'r of 2 contained in g, rn k+2. 

(a) If g also contains 2 rn-i 

0(n) +s - 2rn > m 

2m1 

(2m-k rn-i-k 0(n) > (2 +2 -1)s, 

so that by Corollary 6.4, 

(23) 
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n > g + (22m1k_2) 

rn 
e+2 -k p. 

We can apply (1) to get 

Q(fl(2rn_k 1)) = G(n) - (2'k 1) 

( ) + 2m 

>-2 rn 

>G(n)_ 28 _2m 

(G(fl)+S_2m) - 3s 

= ((n (2rnk 1)) - 3s, 

or 

Q((2rnk1)) > - 2m > (( (2rnk 1)) - (24) 

rn-k 
so that g-2M is an excluded value for 0(n- (2 -1)p). Therefore it must 

be the case that we can remove u tokens from a heap of _(2mk..l) to 

leave three non-negative heaps of j1, j2, i3 where 

n - (2mk_ 1) - '= l + 
S 

q - 2m = 0(i 1) 0(i) 0(i). (25) 

As 0_2m contains 2fl11 an odd number of G(i 1), 0(i 2), 0(i3) contain 2m1 

Without loss of generality we may assume that 0(i1) contains 2m 1, where 

rn-i > k+i, so that 



and by (2) 

Therefore by (1) 

0(i1) + = G( 1+2mkP). (26) 

We apply Lemma 6.5 to (25), (26) with 1 = rn-i, and i fl_(2mk_1) to 

show that 2m is not contained in any of 0(i 1), 0(i2), 0(i 3) so that 

Since 

q=g-2 rn +2 rn 

* * 
= 0(i 1) + 0(i2) + 0(i3) + 

* 
= (0(1)2m) +* 0(i2) + (7(i 3) 

rn-k * * 
G(i 1+2 p) + 0(i2) + 0(i 3) 

.2rn-k. 2 +i 3 =i 1 2 3 rn-K +i +i +2 p 

2m-k 
p 

rn-k - +2 =n-(2 l)p u 

= n + p - U, 

g is an excluded value for G(n-+p). 

by (26)• 
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(b) Suppose a contains but a does not contain 2m1 

7, -1 rn-i 
z(n) + s - 2 > a - 2 

in-i 
, 

Cr(n) > (2rn_k i) 

so that by Corollary 6.4, 

n > e + (2rnk2) 

rn-i-k 
e+2 P. 

We can apply (1) to obtain 

Q( - (2lflik rn-i-k 
-l)p) = G(n) - (2 -1)s 

=G(n)+s-2 rn-i 

or 

rn-i 
> (7 - 2 

> G(n) - 2s - 2m-i 

= (G(n)+s_2ini) - 3s 

= r(n (2m1 1)) - 3s, 

(27) 

(28) 

rn-i-k 
(fl(2rn_i_k 1)) > - > G(n-(2 -l)p) - 38. (29) 
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rn-i rn-i-k 
Therefore g-2 is an excluded value for G(n-(2 -1)p). It must be 

the case that we can remove u tokens from a heap of fl_(2m1k_1) to 

leave three non-negative heaps of i1, i2, i3 where 

n - (2rn1k_ 1) - = + i + 

rn-i * * 
- 2 = 0(i 1) + 0(i2) ± 0(i 3). (30) 

rn-i rn-i 
As g-2 contains 2 , an odd number of G( . 1), 0(2), G( 3) contain 

rn-i rn-I 
2 . Without loss of generality we may assume that 0(i) contains 2 

so that G(11) 2mi 2s, and by (2), i1 > e + p. 

We can therefore apply (1) to obtain 

0(i 1) + 2m1 = 0( .+2m1k ) (31) 

We apply Lea 6.5 to (30), (31) with 1 = rn-1, i = _(2m1k_1) to 

show that 2m is not contained in any of 0(i 1), 0(12), G(1 3), so that 

by (26), 

rn-i rn-i 
+2 

* * 
= 0(i 1) + 0(i 2) + G(13) + 2m1 

= (0(1)2m1) 0(i2) 0(1 3), 

where 
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• +2m-'-k rn-i-k ( i  p)+i2 +i 3 -i 1 +i+i+.2 p 

(2m-'-k _ rn-i-k =n- l)p-u+2 p 

=n+p-u. 

Hence g is an excluded value for G(n+p). o 

For example, the game .,has G-sequence 0101023234545676(+4) with 

last irregular value G(8) = 3, period 7 and saltus 4. To apply Theorem 

6.8 it was necessary to calculate 8+87+2-1 = 65, 0 values. 

Section (i) of the proof of Theorem 6.8 generalizes to take and 

break games T = . where the saltus is a power of 2, s = 21. 

If we permit one heap of tokens to be replaced byh heaps, then we require 

G(i+p) = 0(i) + s, e <i < e + (2h_1) + 

0(i) <s for all i e 

0(i) < 2s for all i e. 

In fact, section (i) applies even to finite octal games. The difficulty 

lies in ensuring that every lesser value will be excluded. E.g. the game 

.16C has initial 0-values 010012234456678893... . No sedecimal game has 

been found which satisfies condition (1) of Theorem 6.8, but not condition 

(4). If one heap may be replaced by 2h+l heaps (h1), p t+27i, and (4) 

holds, an analysis similar to (ii) may enable us to show that every lesser 

value is excluded. 

Table 7.7 displays those sedecimal games that were discovered to be 

an thme tico'-periodi c. 
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6.4. Infinite Recurring Games and Arithmetdco-Periodicity_ 

In section 5.1 we proved that no finite tetral game is arithmetico-

periodic, and in section 6.2 we established the same result for finite 

octal games. There are numerous infinite octal games that can be shown 

to be arithmetico-periodic. 

A take and break game T = , .d1,... is said to be an infinite 

recurring game if 

(i) there exist v,t such that for all u > v, d . d and 
'  

(ii) there exists w > v, 
11-W 11 

We now prove theorems concerning this class, of games. As with sedecimal 

games, it may be necessary to choose appropriate multiples of the period 

and the saltus. 

THEOREM 6.9. Suppose that  = is an infinite 

recurring octal game satisfying: 

(a) ci =d for all u>v 
u u+t 

(b) if d r•u contains , (u>0), then U+t contains , 

and that there exist integers e (the last irregular value), p v+t (a 

period), and s 1 (a saltus, assumed to be a power of 2, s 2k) such 

that 

(1) G(i+p) = G(i) + s for oll i, e < i e+6p 

(2) 0(i) < s for all i ' e 

(3) 0(i) < 2s for all i e+p. 

Then for all i > 

0(i+p) = 0(i) + s. (*) 
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PROOF. By hypothesis (*) holds for all i, e < i e+6p. Assume inductively 

that (*) holds for all i, e < i < n where n, > e+6p. To show that G(n+p) = 

= G(n)+s we prove that: 

(i) G(n)+s is not an excluded value for G(n+p). 

(ii) For each g, 0 < g < G(n)+.3, q is an excluded value. 

(i) We suppose that G(n)+s is an exciudedvalue for G(n+p) and show this 

leads to a contradiction. If G(n)+s is an excluded value for G(n+p), 

then it must be excluded by removing u tokens from a heap of n+p to leave 

two non-negative heaps of i 1 2 , i tokens where 

1 2 

G(n) + s = G(i 1) 0(i2). 

Since n > e+6p, n-6p >e, and we have by (1) 

0(n) = G(n-6p+6p) 

G(n-6p) + 6 

?. 6s 

G(n)+s 7s, 

so that if 2 is the largest power of 2 contained in 0(n)+s, in k+2. 

As G(n)+s = G(i 1) G(i2),2 is contained in just one of G(1 1), 0(i2 ). 

Without loss of generality we may assume that 2 is contained in 0(i 1) 

and is not contained in 0(i2). There are three cases to consider, where 

each case leads to a result that contradicts the induction hypothesis. 
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CASE I: G(i 1) contains 2m, 2, 7. 7<, l, rn. The argument that leads to 

a contradiction is similar to that of Case I, Theorem 6.8 (i), since we 

may assume that the i of Theorem 6.8 equals 0. 

CASE II: G(i1) contains 2m, G(i 1) does not contain 21, 1 7<, 1 

and G(i2) does not contain 2 The argument that leads to 'a contra-

diction is similar to that of Case II, Theorem 6.8 (i), since we may 

assume that the i 3 of Theorem 6.8 equals 0. 

CASE III: G(i) contains 2m, G(i 1) does not contain 2, 7. k, and G(I) 

contains 2m1• The argument that leads toa contradiction is similar to 

that of Case III Theorem 6.8 (i) since we may assume that the i3 of 

Theorem 6.8 equals 0. 

If we assume there exists a move from n+p of taking u tokens to leave 

* 
two non-negativ heaps of v1, 1.2, where G(n)+s = G + G( 2) then 

0(i 1), 0(i2) will satisfy th conditions of one of Cases I to III. 

Hence 0(n)+s is not an excluded value for (7(n+p). 

(ii) We first show that g is an excluded valuC 0 g G(n) -28. Then, 

using Lemma 6.5 we find moves from n-I-p to positions of- 0-value g for 

G(n)-2s,< g < 0(n)+s. 

Let 0 w v. Since n > e+6p, and p' v+t, we have n-2p > e±4p, 

n+p-W-t > e+6p, so that 

0(n-2p) = 0(n) - 2s, (4) 

0(n+p-w --t) = GOi-w-t) + s. (5) 
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There exists q 6 such that e-fqp < n e+(q+1)p. By Lemma 6.3 

qs G(n) < (q+2)s 

(q+l)s < G(n) ± S < (q+3)s. 

By (4), 

(q-2)s < G(n-2p)• < qs. 

Since 0 W p W+t so that 

• n-w.-1;>e+qp--W-t 

-t- (q-1)p. 

By Lemma 6.3 and (5), 

Then (6) and (7) yield 

.G(n-w-t) (q-1)s 

G(n-w-t) + s qs 

G(n+p-w-t) qs. 

(6) 

(7) 

G(n+p-w--b) > G(n) - 2s (8) 

for all W, 0 w < V. 

Let q < G(n)-2s. By (8), g is an excluded value for cr(n+p-t). 

Hence there exists a move taking u tokens from a heap of n±p- to leave 

two heaps of i2, i2, i1 0. 
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n + p - U - = + i2, 

* 
9r G(i 1) + G(i 2). 

If i > 0, then Iqu contains ,. By (b), u+t contains ,, so that 

n+p - (u+t) n+p - u - t 

* 
(i i) + GL 2). 

Hence g is an excluded value for G(n+p). If = 0, then ,a  'contains Z 

and U > V by (8). Therefore I d contains Z, and 

O(n+p-(u+t)) = G(n+p-u-t) 

= 0(i 1) 

= 

so that q is an excluded value. 

Let 0(n)+s > q > G(n)-2s. Since G(n)+s > 7s, q > 4s. If 2 is 

the largest power of 2 contained in g, in k+2. 

The remainder of the argument is identical to that of Theorem 6.8 

(ii), (b), since we may take i3 = 0 in Theorem 6.8. 

Thus for each g, 0 g < 0(n)+s, g is an excluded value. Hence 

0(n+p) = 0(n)+s. 13 
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For example, the game has C--sequence 01122(+2), with last irregular 

value 0(2) = 1, period 2, and saltus 2. To apply Theorem 6.9 it was 

necessary to calculate 2+7.2 = 16 values. 

That 0(i+p) = G(i)+3 for e < i +6p is used only in section (ii) 

of the proof. To establish (1) it suffices that G(i+p) = G(i)+s for 

e < i e+3p. However, to exclude q, for G(n)-2s < g < G(n)+s, we 

need that g contains 2m, where m k+2. This in turn requires that 

G(n)-2s 4s or 0(n) 6s. Only if n > e+6p can we ensure that 0(n) 6s. 

The came appears to be arithmetico--periodic with 0-sequence 

ô12314324567(+8). We cannot apply Theorem 6.9 to .7)j since it does not 

satisfy the assumption (b). While section (i) of the proof applies to 

any octal satisfying (1), (2), (3), and hence to the argument used 

in section (ii) breaks down. The reason for which it fails is similar 

to the reason for which it was necessary to assume (4) in Theorem 6.8. 

If g < G(n)-2s then g is an excluded value for 0(n). Let g be excluded 

by the removal of u tokens (uv) from a heap of n to leave two 

positive heaps of i, i2, where g = 0(i 1) G(i2). Only if the binary 

expansions of 0(i 1), 0(i2) satisfy certain conditions can we say that 

g will be an excluded value for G(n+p). In general this is not the case. 

We now prove an arithmetico-periodicity theorem for infinite re-

curring tetral games. We no longer require the saltus bQ a power of 2. 

THEOREM 6.10. Let  = . where for u 1, d 3, 

and not all d+ < 1. If there exist integers p, a period, s 1, and 

e, the last irregular value such that 
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(1) G(i+p) = G(i) + s, for all i, e < i e + p + V + t 

(2) 0(i) < s, for all i e 

(3) G(i) < 2s for all i e + p. 

Then for all i > 

G(i-fp) = 0(i)+s. 

PROOF. By hypothesis (*) holds for all i, e < i e-p+v+t. Assume in-

ductively that (*) holds for e < i < n where n > p4v+/;. To show 

C(n+p) = 0(n)+a we prove that: 

(i) G(n)+s is not an excluded value for G(n+p) 

(ii) For each g, 0 < g < G(n)+s, g is an excluded value. 

(i) We suppose that G(n)+s is an excluded value and show that this leads 

to a contradiction. If G(n)+s is an excluded value then there exists a 

move from n4'p of taking u tokens, 0 < u n+p, such that G(n+p-u) = G(n)+s. 

Since n > +p+v+t let n = e+p+c where c > 0. Then 

0(n) = (7(+p+c) 

= 0(+c) + 6 by (1) 

so that 

0(n) + s 2s 

- G(n+p-u) 2s 

n+p-u>e+p by (3) 

n - u>e. 
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Hence we may remove U tokens from a heap of n to leave a heap n-u where 

G(n)= G(n) + s- s 

= G(n±p-u) - S 

G(n+-u-p) 

= G(n-u), 

which is a contradiction. Hence G(n)+s is not an excluded value. 

(ii) If 0 < g-s < G(n), then g-s is an excluded value for G(n). There-

fore it mist be the case that we can remove u tokens from a heap of n 

tokens where G(z-u) = g-s. If g-s > s, then by (2), n-u> e, so that 

g=g-8+S 

= G(n-u) + S 

= G(n+p-u). by (1) 

Hence if 2s < G(n)+s, then g is an excluded value for G(n+p). Let 

fl y = n+p-t. Then 

fl y = fl + p -  t 

> a + ,p + V + t + p - t 

= a + 2p + V (4) 
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so that by Lemma 6.3 0(n') 2s. If 0 < 2s, then 7 is an excluded 

value for Q(t). Therefore it must be the case that we can remove u 

tokens from a heap of n' where G(n'-u) = g. Moreover, u > V. If not, 

by (4), neU> e+2p, so that by Lemma 6.3, G(n'-u) 2s, which contradicts 

the choice of u. Therefore u > v, and by hypothesis, k+ 
is then a move, taking u+t tokens from n+p, where 

n+p - (t+u) =n+p - t - U 

=n -u 

so that G(n+p-(t+U)) = G(n'-u) = g. Hence g is an excluded value for 

G(n+p). 

Since G(n)+s is not an excluded value for G(n+p) and every value 

otrictiy less than G(n)+s is an excluded value, G(n+p) = G(n)+s. E.g. 

the game ., has G-sequence ô12012(+3). To apply Theorem 6.10 it was 

necessary to calculate 0+12+1+2 = 15 G-values. 

Table 7.4 displays those infinite recurring octal and tetral games 

that exhibit arithmetico-periodicity. 



Chapter 7 

The a-sequences of Take and Break Games 

7.1. Introduction  

The tables of this chapter contain information about the C-values 

of take and break games. Table 7.1 displays the C-sequence of all sub-

traction games whose subtrahends do not exceed 8. The initial C-values 

of some octal games are listed in Table 7.2. Where the C-sequence is 

known to be periodic, the length of the period is listed. Table 7.3 

indexes Table 7.2, enabling us to find the initial a-values of any octal 

game of the form or Table 7.4 contains information about 

infinite recurring octal games that exhibit arithmetico periodicity. 

Tables 7.5 and 7.6 complement Table 7.4 as Table 7.3 complements Table 7.2. 

The G-sequences of those sedecimal games that were discovered to he arith-

metico-periodic are displayed in Table 7.7. 

Tables 7.2 to 7.6 were compiled by Guy [1}. Additions and corrections 

to Table 7.2 were made by the author. 

7.2. Subtraction Games  

Table 7.1 lists the C-sequences of some subtraction games. The first 

column contains the members of the subtraction set. The second column 

displays the numbers that we may adjoin to the subtraction set without 

affecting the outcome of the game. The table therefore includes all sub--

traction games that may be described by a subtraction set, the members of 

which do not exceed 8. The third column contains the C-sequence, where a 

dot is placed over the first and last members of the period. The period 

is listed in the last column. 
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Table 7.1. G-se  of subtraction games. 

Subtraction 
Set 

Optional Members 

1 (3,5,7,9,11,...) 

2 (6,10,14,18,...) 
1,2 (4,5,7,8,10,11,...) 

3 (9,15,21,27,...) 
2,3 (7,8,12,13,17,18,22,23,...) 

1,2,3 (5,6,7,9,10,11,13,14,15,...) 

4 
1,4 
2,4 
3,4 

1,3,4 
1,2,3,4 

5 
2,5 
3,5 

2,3,5 
4,5 

1,4,5 
2,4,5 

1,2,3,4,5 

6 
1,6 

1,2,6 
3,6 

1,3,6 
2,3,6 

4,6 
2,4,6 

1,2,4,6 

5,6 
1,5,6 
2,5,6 

2,3,5,6 
1,4,5,6 

1,2,4,5,6 
1,2,3,4,5,6 

(12,20,28,36,44,52,...) 
(6,9,11,14,16,19,21,24,...) 
(3,8,9,10,14,15,16,20,21,22,...) 
(10,11,17,18,24,25,31,32,...) 
(6,8,10,11,13,15,17,18,20,...) 
(6,7,8,9,11,12,13,14,...) 

(15,25,35,45,55,...) 
(9,12,16,19,23,26,30,33,...) 
(4,].l,12,13,'19,20,21,...) 
(4,9,10,11,12,16,17,18,19,...) 
(13,14,22,23,31,32,40,41,...) 
(3,7,9,11,12,13,15,17,19,20,...) 
(3,9,1J,11,12,16,l7,18,19,...) 
(7,8,9,10,11,13,14,15,16,17,...) 

(18,30,42,...) 
(8,13,15,20,22,27,...) 
(5,8,9,12,13,15,16,19,20,...) 
(4,5,12,13,14,15,21,22,23,24,...) 
(8,10,12,15,17,19,21,24,26,...) 
(7,11,12,15,16,20,21,24,25,...) 
(5,14,15,16,24,25,26,...) 
(3,5,10,11,12,13,14,18,19,...) 
(7,9,10,12,14,15,17,18,20,22,...) 

(16,17,27,28,38,39,49,50,60,...) 
(3,8,10,12,14,16,17,19,21,...) 
(9,13,16,17,20,24,27,28,...) 
(4,10,11,12,13,14,18,19,20,...) 
(3,8,10,12,13,14,15,17,19,21,...) 
(8,9,11,12,14,15,16,18,19,21,...) 
(8,9,10,11,12,13,15,16,17,18,...) 

(continued) 

G-sequence 

01 

ooli 
012 

600111 
00112 
6.12 

6000111i 
01012 
001122 
000111 
6101232 
01234 

90OOO111i 
0011021 
00011122 
OO1122 
Ô00011112 
01012323 
óO1122 
012345 

000000111111 
O101012 
O12O12 
000111222 
01010123? 
001120312 
0000111122 
00112233 
01201234 

00000111112 
O1010123232 
60110213021 
O011223 
610123234 
612012 345 
6123456 

Period 

2 

4 
3 

6 
5 
4 

8 
5 
6 
7 
7 
5 

10 
7 
8 
7 
9 
8 
7 
6 

12 
7 
7 
9 
9 
9 

10 
8 
8 

11 
11 
11 
8 
9 

10 
7 
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Subtraction 
Set 

7 
2,7 
3,7 
4'7 

1,4,7 
2,4,7 
3,4,7 

1,3,4,7 
2,3,4,7 

5,7 
2,5,7 
3,5,7 

2,3,5,7 
2,4,5 ,7 

6,7 
1,6,7 
2,6,7 

1,2,6,7 
3,6,7 

1,4,6,7 
2,4,6,7 

1,3,4,6,7 
2,5,6,7 

1,2,5,6,7 
1,4,5,6,7 

1,2,3,4,5,6,7 

8 
1,8 
2,8 
3,8 

1,3,8 
1,2,3,8 

4,8 
1,4,8 
3,4,8 

5,8 
1,5,8 
2,5,8 
3,5,8 

2,3,5,8 

Optional Members 

(21,35,49,63,77,91,...) 
(11,16,20,25,29,34,38,...) 
(13,17,23,27,33,...) 
(5,6,15,16,17,18,26,...) 
(9,12,15,17,20,23,...) 
(10,13,16,19,22,25,28,...) 
(5,6,13,14,15,16,17,...) 
(5,9,11,12,13,15,...) 
(8,9,13,14,15,18,19,. 
(6,17,18,19,29,...) 
(11,15,17,20,24,27,...) 
(4,6,13,14,15,16,17,...) 
(4,6,11,12,13,14,15,16,20,21,... 
(3,6,11,12,13,14,15,16,20,...) 
(19,20,32,33,45,46,58,...) 
(3,5,9,11,13,15,17,...) 
(11,15,19,20,24,28,32,33,...) 
(4,9,10,12,14,15,17,18,20,...) 
(4,5,13,14,15,16,17,23,24,...) 
(9,12,14,17,19,20,...) 
(3,5,11,12,13,14,15,16,20,...) 
(5,9,11,13,14,15,16,17,19,21,...) 
(10,14,17,18,19,22,26,29,...) 
(4,9,10,12,13,15,16,17,18,...) 
(3,9,11,13,14,15,16,17,19,21,...) 
(9,10,11,12,13,14,15,17,18,19,..) 

..) 

(24,40,56,72,...) 
(10,17,19,26,28,...) 
(12,18,22,28,32,38,...) 
(14,19,25,30,36,...) 
(10,12,14,19,21,23,25,...) 
(6,7,10,11,12,15,16,17,19,...) 
(5,6,7,16,17,18,19,20,28,...) 
(6,11,13,16,18,20,23,...) 
(9,15,16,20,21,27,...) 
(6,7,18,19,20,21,31,...) 
(3,10,12,14,16,18,21,...) 
(12,15,18,22,25,28,...) 
(4,6,7,4,15,16,17,18.19,25,...) 
(14,22,25,31,39,...) 

1,2,3,5,8 (7,9,11,12,13,15,17,18,19,...) 
1,4,5,8 (3,6,10,12,13,14,15,17,...) 
2,4,5,8 (11,14,17,20,23,...) 

2,3,4,5,8 (9,10,11,15,16,17,18,21,22,...) 
6,8 (7,20,21,22,34,35,36,...) 

Table 7.1 (continued) 

) 

0-sequence Period 

00000001111111 
001100112 
0001110221 
O00011112ñ 
O1O12O1 
00112203102 
O0O111222 
O10122 
O01122O314 
O0000llillñ 
001102132203 100 1.122332 
OOO111222i 
601122334 
001122334 
0000001111112 
010101232323 
0011001120312 
61201.234 
0001112223 
610120123201i 
Ô01122 334 
O10123234 
001102132233 
61201234534 
0101232345 
0123450 

0000000011111111 
010101012 
01100 1122 

00011100211 
01010101232 
612301234 
000011112222 
01012010123? 
000111202313 
0000011111222 
0101010123232 
0011021021 
ÔOO1112223 
0011223041304 

12230011233021403 
O12301234 
610123234 . 
00 1122 304102 
0011223O4i52j 
00000011111122 

14 
9 

10 
1:1. 
8 
3 

10 
8 

ii 
12 
22 
10 
9 
9 

13 
12 
13 
8 

10 
13 
9 

10 
12 
11 
10 
8 

16 
9 

10 
11 
ii 
9 

12 
12 
12 
13 
13 
1.0 
11 

17 

.10 

:3 
.13 
14 
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Subtraction 
Set 

Optional Members 

2,6,8 (7,12,16,20,21,22,26,30,...) 
3,6,8 (4,5,7,14,15,16,17,18 319,25,...) 

2,3,6,8 (7,11,12,16,17,20,21,22,...) 
2,4,6,8 (3,5,7,12,13,14.15,16,17,18 .. .. ) 

1,2,4,6,8 (5,9,11,12,14,15,16,18,19,21,...) 
2,5,6,8 (9,12,16,19,20,22,23,26,30,...) 

2 ,3,5,6,8 (4,7,12,13,14,15,16,17,18,22,...) 
1,2,3,5,6,8 (9,10,12,13,14,16,17,19,20,21,..) 

7,8 (22,23,37,38,52,53,...) 
1,7,8 (3,5,10,12,14,16,18,20,22,23,...) 

• 2,7,8 (12,17,22,27,32,...), 
3,7,8 (13,18,23,28,33,...) 

1,4,7,8 (10,15,17,18,21,24,26,29,32,...) 

2,4,7,8 (3,9,13,14,15,18,19,20,...) 
3,4,7,8 (5,6,14,15,16,17,18,19,...) 

1,3,4,7,8 (5,6,10,12,14,15,16,17,18,19,...) 
2,5,7,8(15,16,18,21,25,28,30,31....) 

2,3,5,7,8 (4,6,12,13,14,15,16,17,18,22,...) 
1,4,5,7,8 (3,6,10,12,14,15,16,17,18,19,...) 
2.4,5,7,8 (36,12,13,14,15,16,i7,18,22....) 

1,6,7,8(3,5,10 ,12,1446,18 ,19 ,20 ,21 ,...) 
:L,2 ,6 ,7,8 (4,5,10,11,13,14,16,17,18,19,...) 
1,4,6,7,8 (10,13,15,18,20,21,22,24,27,,..) 
2,5,6,7,8 (11,15,18,19,20,21,24,28,...) 

1,2,3,5,6,7,8 (1041,12,14,15,16,18,19,20,...) 
1,2,3,4,5,6,7,8 (10,11,12,13,14,15,16,17,19,20,.) 

Table 7.1. (concluded). 

0-sequence 

00110011223322 
O001i12223 
O011203122O31 
6011223344 
6120123453 
O0110213223021 
0011223344 
61230123456 

0000001]•11111 
010101012323232 
00110011220312001 
0001110221300211 
010120123230130101 

2324323 
0011220314? 
00011122233 
01012323454 
0011021322031003.1322332 
9011223344 
Ôl01232 3454 
Q0i12233Li 14. 
0101012323234 

032012345345 
01012012323453 
0011021322334 
0123012315674 
61.2345678 

Period 

14 
11 
14 
10 
10 
14 
10 
11 

15 
15 

5 

25 
11 
11 
1]. 
23 
10 
11 
10 
13 

12 
14 
13 
13 
9 
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7.3. Octal Games  

Table 7.2 contains information about octal games. When used in con-

junction with Table 7.3, it lists the initial 0-values for all octal games 

of the form 4.d d or Each row of the table contains information 

about one game. The row is indexed by a number (d1d2d3 or 4.dd) appear-

ing in the first column, and the row refers to the standard form of the 

game •123 or 4.d d . The second column contains the name of a first 

cousin if any, and the third column lists the standard form, e.g. 

1 E so that the row indexed by 002 contains the 0-

sequence of the game and has .,QU listed as a first cousin. 

The rain entry consists of the initial G-values. As 0(0) = 0 always, 

it has been omitted except in the first two rows. We list 30 0-values, 

unless the 0-sequence is periodic, and it may be described in less. For 

those games that are periodic, the beginning and end of the period are 

indicated by dots over the first and last members of the period. 

greater than 9 are represented by the following symbols: 

X  T t F f S s A a V 

10 11 12 13 14 15 16 17 18 19 20 

0-values 

In the case of those games which have essentially the same 0-sequence, 

but different code digits, only one reference appears, e.g. the games 

4,5),, .a all have 0-sequence 01, but only ., is displayed. 

The last column contains the period, p, and a reference to the notes 

that follow. If there is no entry in the column for the period, .this 

indicates that the period, if any, is not yet known. 
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Table 7.2. G-sequences of octal games. 

1st Standard 
cousins Form 

sequence Period Notes 

001 .Q,] O.iO 3. 
002 .Q 0.111000 6-
004 .1111222033 3111104433 3322224440 (3) 
005 .1011222033 4110154333 2221601045 (4) 
006 ,W  , .1112220331 1122433355 2144333222 (5) 
014 .,J, .1001012212 3401051212 5303451211 
015 .0iL5. .lifJJ. .1101021223 0142.145122 3234014512 
016 .Q,) .,1Q,3, .1012220101 4422161604 2127661512 (8) 
017 .017 .1112023114 0451320211 1402616404 60 (9) 
02 . .1100 4 
022 .Q,J •1 J .1120O 5 
024 .1122304112 5324115560 3125148142. 
026 .Q;3,3J, .1),3JJ .1122304112 533≥112530 4421133442 
034 U4, .1 UO .1102231401 4312210514 5632481402 
04 • J ILW  .1112203311 1043332224 4055222330 (15) 
044 •PZ AI= .1112223331 1144433322 2111444222 36 (16) 
045 .Q,l,7J .13JJ .fl.12223311 1444332221 1144222664 32 (17) 
05 .Q .,7 .10 2 (18) 
051 .Q, •Z .1110221340 1113222340 1543222310 48 (19) 
054 •,Q2Z .1012223441 1163222411 6667344511 
055 .1112223111 4443222111 4222644411 148 (21) 
06 Q6 4,3, . .1122031122 3344053342 2113022114 (22) 
064 .J,7J .1122334115 5332211544 2266841122 
.07 .)jUZ .1120311033 2240522330 1130211045 34 (24) 

101 .1O1O 1 
102 .100011 6 
104 A.O4 .1000102212 2410401566 1228104015 (27) 
106 .,Q.Q .1090122214 4010621242 1045166512 (28) 
11 .011 
111 .:!_110 . 1 
112 ., .1 , 10001 6 
114 jt4, .1100112021 2041104115 2415241120 
115 .1110111222 1222 14 (33) 
116 4100212021 1044152411 2041204115 96 (34) 
12 .,12 .1001 4 
121 .1021001 4 
122 .10021 5 
123 .123 .102210021 5 
124 .I'2 .1001102130 2130113023 3223425042 62 (39) 
125 .125 .1021102130 1130234223 4253225320 
126 .126 .1002133210 4250315041 5041304130 
127 .127 .1022104412 2014461770 1226144812 (42) 
131 .131 .1120011 4 
132 ., .11002 5 

(continued) 
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1st Standard 
cousins Form 

0-sequence Period Notes 

134 .1100112031 2031103122 3322435143 62 (45) 
135 .1120112031 1031224322 4352235221 
136 .1100213021 1022334251 4223342011 
14 .,1, .1001021221 0414412212 0104126164 (48) 
141 .1011012212 4101121221-2412 S 11 
142 A,42 .1002221103 3241063231 0162240115 
143 .1012220104 245,047228 0412228104 (51) 
144 .,1,4S .1091222244 lli 10. (52) 
145 .1011222241 1 . 9 (53) 
146 .1002224111 3324446662 3111766842 
147 401222441. 8 (55) 
15 .101122122' 10 (56) 
152 .1102220104 3231013224 0104223101 48 (.si) 
153 .1112221102 2244011222 111222441 14 (58) 
154 .1101122222 4111 11 (5.9) 
156 .L5, .1102224411 1322444666 2111576688 349 (60) 
157 .111222 6. (61) 
16 .,1 .1001221401 4214014214 2102142145 (62) 
161 .1021021321 3243043241 2312012415 (63) 
162 X2 .1002231104 2261034266 0542330142 
163 .1022310422 6104226104 3221043265 (65) 
164 .1001223445 1163223415 66738211X7 
165 .1021321344 3623128126 5445182182 1550 (67) 
166 .1002234116 6224411338 5446633118 
167 .1022341162 2441133544 663315866X 
17 .43 Az .1102130113 2234153223 1103120114 34 (70) 
171 .,), .1122110214 0112211221 42 11 
172 Z2 .1102230113 2244063224 0163220116 
173 .1122310432 0112235143 211023741 40 (73) 
174 .1102132214 4564223115 4128865741. 
176 Z6 .1102234411 6223441166 332 1166334 8 (75) 

204 •ZQ,J •,Q,QZ .1012010123 1212314303 1432324323 
205 •QZ .1201012312 3134034532 3253210202 
206 .1012320101 2323451232 3454010342 
207 •,QZ .12120303.24 5312124303 0214358213 
22 . . .12O 
224 .,33Q,7 .1201231231 4304314213 2102142641 
226 .226 .3337 .1234012345 1234512305 1234 
244 ,t44 ,OJ,, .1012323451 5673232158 9767654548 
245 .,, 4212345156 7321289765 64T9212X74 
26 . ., .1230 
264 .264 .,,7, .1234516325 1867524816 X45267X518 

Table 7.2 (continued) 

3 

5 

4 (85) 
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1st Standard 
cousins Form 

G-sequence Period Notes 

31 .,3J, .1201 2 
312 .120201 2 
316 .1202123010 30123 12 (89) 
32 .102 3 
324 .102391340 2342132034 1346201253 (91) 
331 .123012 3 
332 .1203 4 
334 .1201203123 1243503426 1241302172 
336 .1203124031 2034123612 3051306413 (95) 
34 •,3j! .1012010312 1203 8 (96) 
342 .1012320103 2345023254 0102321456 
344 . 1012324514 6232145876 7X14123264 
346 .34,f .1012324516 7232158676 X548923Xx4 
35 ., .12010 6 
351 .3)), .121?9102 8 
353 .,3)j3, .12120 2 
354 .1201243123 5243513524 7247864762 
356 Z56 .1202124516 7512826281 5x79581212 142 (104) 
36 ., .1021021321 3243043241 2312012415 (105) 
362 .362 .1023410234 1523714237 0123750132 
364 Z64 .1021321345 3423125125 7457482962 
366 .Q .1023451623 4576891276 85432915X3 
37 ., . .1201231234 0342132102 1451451201 (109) 
371 .371 .1231032402 3401241632 0123413421 
373 .'373, .1234012341 5231477.]04 321402646 
374 .1201243123 5243513524 7247864762 
375 .1231243213 4274814812 4814381482 18 (113) 
376 •.3)JL .1203124352 4351432645 867X827362 

404 .Ojj, .1122334115 6332211087 7255401122 (115) 
414 .414 .1707 .11D2234401 1322344566 3223118763 
416 .416 .1737 .1122341166 3221066844 5X17833241 (117) 
44 •VJ •L.ZZ .1122331144 3322114422 6644112277 24 (118) 
444 .9JJJ .))JJ), .1122334115 6332211887 7655441122 
45 .45 . 177 .1122311443 2211422644 1122711443 20 (120) 
454 .454 .]Jjj, .1122341166 3221166844 5X11833447 

51 .51 .1 
512 .11122210 6 
52 .52 .1022103 4 
524 .524 .i022104416 7012261446 18701.87614 52 (125) 
53 ., .1122102240 122112241 9 
532 .1122401224 1 5 
536 .11222k 5 
54 .54 101222411 7 
544 .1012224411 8 

Table 7.2 (continued) 
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1st Standard 
cousins Form 

56 
564 
57 

604 
606 
64 
644 

71 
72 
74 
744 
75 
76 
764 
77 4.4 
772 
774 
776 

4-.12 
4.3 
4.72 

.5k. 

•z 

s-sequence Period Notes 

.1022411324 4662117684 11654811T4 

.1022441132 5476823)C76 8932T65432 

. un 

.1201231234 

.1234012345 

.1234153215 

.1234516325 

1210 
.1023 
.1012324146 
912324516 

.12 

.1023416234 

.1023451623 

.1231432 142 
• 1234162416 

.1231456713 
• 1234163216 

5345321321 
1234562345 
4268123745 
896X5496FX 

2321517685 
72 32 1896 7X 

1673216752 
45 76 891X76 
6412714321 

289546T219 
7458lX5476 

.1.?20421l2 21 
• 120 
.124 

Table 7.2. (concluded). 

(131) 

4 

0254754768 
6734167891 
8295476814 
42367S49FX 442 (137) 

1Xx26845X6 
459 8]XxX 45 

89652871X4 
8543261543 
4674128547 

645Tt298X5 
1236143218 

2 
4 

2 

12 (145) 
4 

7 
2 
3 

Notes to Table 7.2. 

Unless otherwise indicated, all games have been analyzed to n = 9999, 

where n pertains to the form of the game listed in the first column. 

(3) n = 14,999. Notes in this form indicate that (3(n) has been cal-

culated to or beyond the indicated value, and periodi city has not. 

been observed. 

(4) n = 19,999. 

(5) n = 14,999. 

(8) n = 19,999. 
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(9) 0(0) = 0, 0(7) = 3, 0(13) = 5. Otherwise for n 0,1,2,... ,59 

(mod 60), (3(n) = 

4111202611 4046132021 1140261640 
4111202615 4046132021 1180261640. 

There is a strong tendency towards a period of 30. 

(15) n = 3216. 

(16) Triplicate Kayles, see Guy and Smith [ill. 

(17) The last irregular value is 0(186) = 6. For n > 186, 

n 28,29,...,31,O,1,..., 27 (mod 32), 0(n) = 

7744411122288111 
4447722211188222. 

There is a strong resemblence to T8/3 -plicate Kayles'. For .,7j 

x 1 
the last irregular value is 70 , and L9i - 186. Exactly the same 

values appear in the period of the two games, so that in each case 

the rare 0-values are those that contain an even number of l's in 

their binary expansions. Furthermore, in each case there is a 

strong tendency, for n > e, to G(n-1-) = G(n)±3. 

(18) "She loves me, She loves me not". 

(19) 0(7) = 0(12) = 1; 0(6) = 0(16) = G(26) = 0(36) = 2; G(22) = 0(45) = 5; 

otherwise, for n 0,1,2,...,47, (mod 48), 0(n) = 

01010232 34010132 32340104 
32323101 04323201 01043234. 

For n > e = 45, n 7 9,19,23 (mod 24), 0(n+24) = (7(n)±3. 
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(21) (21) The last irregular value is G(257) = 2. There are 128 irregular values. 

* 

For n > 257, there is a strong tendency towards G(n+74) = G(n)+5. 

For more information about the period see section 4.5. 

(22) n = 17,999. 

(24) Davison's Kayles. See Guy and Smith 

(27) n,= 47,549. 

(28) n = 42,724. 

(33) See Theorem 4.9. 

(34) 0(3) = 0; 0(88) = 1; 0(n) = 2 for n = 5,9,25,35,37,47; 0(31) = G(4-) = 4; 

0(42) = G(94) = 0(138) = 8; otherwise, for n E 0,1,2,...,95, (mod 96) 

0(n) = 

ii], Dawson  

01120X12 06110441 52411204 
15041152 425.XOX15 42.T58285 
524X1X0X 52425114 05120211 
4x5:L4201 l2QX12QX 818981T2 

where X = 10, T = 12. 

(39) 0(n) = 0 for n = 0,2,3,28,64; 0(1) = 1; G(n) = 2 for ii = 26,30,34, 

59,95; 0(n) = 3 for n = 24,32,121; otherwise for n 0,1,2,... ,61, 

(mod 62), 0(n) = 

7584110213 0213011302 33227465445 
5796332031 1031203120 11405547564. 

For n > 121, there is a strong tendency towards Gn+3i) = (2n)+2. 

(42) n = 17,999. 

(45) 0(0) = 0(3) = 0; G(l) = .G(28) = 1; 0(24) = 0(32) = 0(59) = 2; 0 (26) 

= 0(30) = 0(34) = 3; otherwise, for n F 0,1,2,... ,61, (mod 62) 0(n) 

6514011203 1203110312 23326475447 
5627322130 1130213021 10415446374. 
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* 
For n > 59, there is a strong tendency towards G(n+31) = G(n)+3. 

Note the similarity between A,34 and It is often the case 

that for n odd, G 4 (n) = and. for n even = .34 

= G(n)±l. 

(48) n = 35,949. 

(51) n = 34,874. 

(52) See Theorem 4.10. 

(53) See Theorem 4.11. 

(55) See Theorem 4.14. 

(56) Guiles; see Guy and Smith [11]. 

(57) The only irregular values are 0(0) = 0, 0(1) = 1. Otherwise for 

n E 0,1,...,47, (mod 48) 0(n) = 

401022201043 231013224010 
422310132340 102220104323. 

* 
For n > 1, there is a tendency towards 0(n+24) = G(n)+3. 

(58) See Theorem 4.12. 

(59) See Theorem 4.13. 

(60) See J.C. Kenyon [13]. The last irregular value is G(3478) = 8. The 

G-values illustrate a remarkable tendency to a period of 10, and for 

* 
n > 3478, to G(n+174) = G(n)+4. 

(61) See Theorem 4.15. 

(62) n = 50,174. 

(63) The G-sequence of .36 and .161 agree as far as n = 518. 

0.161(518) = G 36 (518) =  2, but G161. (519) = 2, G36, (519) = 4. 
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(65) n = 54,424. 

(67) The last two irregular values are G(5180) = G(3495) = 4. There are 

251 irregular values. See section 4.5. 

(70) See Guy and Smith [11]. The irregular values are G(0) = 0, 

• G(15) = 1, G(17) = 3, G(32) = 2; otherwise, for n 0,l,2,...',33 

• (mod 34), G(n) = 

41102130113223445 
72231103120114436. 

For n > 32, there is a strong 'tendency toward G(n+17) = G(n)3. 

(73) G(0) = 0; G(1) = 1; G(9) = G(16) = G(20) = 3; otherwise., for 

n 0,1,2,....,39, (mod 40) G(n) = 

4012231046 2011227514 
7221102374 1322104627. 

For n > 20, n A 1,9,15 (mod 20), G(n+20) = G(n)3. 

(75) For n > 23, G(n+4) = G(n)2. 

(85) See Ferguson [9]. When played under ñdsère rules, ., and 

are not equivalent. 

(89.) For n > 3, G(n+6) = G(n)-2. 

(91) n = 29,999. 

(95) n = 29,999. 

(96) Except for n = 0,2, and 6, G(n+4) = G(n)1. 
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(104) The last irregular value is 0(7314) = 2. There are 6419 irregular 

values. These are part of prior attempts to establish a period. 

For n > 7314, if G (n) =16, then Gn+7l) = 16. If G(n) 16, then 

* 

G(n+71) = G(n)+7. 

(105) n = 17,999. 

(109) n = 10,342, 0(10,342) = 256. 

(113) GO) = 0; 0(4) = 1; 0(5) = G.(8) = 2; 0(n) = 3 for n = 3,7,10,25; 

G(n) = 4 for n = 11,17, and 35; 0(13) = 7 and 0(18) = G(36) = 8; 

otherwise, for  0,1,2, .... ].7, (mod 18) 0(n) = 

412481478148214817. 

(115) The G-sequences of A,0,4 and .,4 agree as far as 0 (19). 

(117) The 0-sequences of and agree as fas as 0(15). 

(118) Duplicate Kayles, see Guy and Smith [11]. 

(120) See Guy and Smith till. The ultimate period is 20; the last irregular 

value is 0(497) =8. In some sense this is"'5/3-plicate Kayles" 

[cf. note (17)]. 

(125) The only irregular value is 0(0) = 0. Otherwise, for n F 0,1,2,... ,51, 

(mod 52),O(n) = 

8102210441670 1226144618701 
8761476107816 7410721078167. 

For n > 0, there is a tendency towards G(n+26) = G(n)+*6. 

(131) n = 49,999. ' 

(137) The last irregular value is 0(3254) = 32. There are 2179 irregular 

values. See section 4.5. 

(145) Kayles, see Guy and Smith [n], Dudeney [8 ], and Loyd [15]. 
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The ,-sequence of the standard form of any octal game or 

appears in Table 7.2. To find the 0-sequence, look in Table 7.2 for the 

row d1d2d3 or 4.d1. d2' If this does not appear, find that entry in Table 

7.3 and consult the row of Tab1e 7.2 to which the entry refers. 

A '-' in the entry of Table 7.3 indicates that the row appears in 

Table 7.2. The * indicates that the 0-sequence of the game .,is just Y. 
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Table 7.3. Guide to Table 7.2. 

d3 0 1 2 3 4 5 6 7 

.did 2 

00 * - - 002 - - - 04 

01 001 11 05 002 
02 - 02 - 022 - 024 026 
03 02 02 022 022 - 034 06 06 
04 - 017 04 017 - - 044 045 
05 - ' 05 051 - - 054 055 
06 - 06 06 06 - 064 064 064 
07 - 07 07 07 44 44 44 44 

10 001 - - 05 - 05 - 05 
11 - - - 002 - - - 051 

12 - - 

13 02 - - 022 - - - 07 

14 
15 - 51 - - 51 

16 
'17 57 - 45 

20 05 31 05 71 
21 05 31 05 71 204 205 
22 - 22 26 26 - 224 
23 22 22 26 26 224 224 
24 05 71 05 71 - - 

25 05 71 05 71 244 245 
26 26 26 26 - 264 
27 26 26 26 26 264 264 

30 05 05 05 05 
31 -- 71 - 71 
32 - 32 72 72 
33 22 - - 26 
34 - 34 - 342 
35 - - 4.3 
36 - 36 - 362 
37 - - 332 

05 
31 

05 
71 

324 
26 

344 
75 

364 

206 

226 
244 
244 
264 
264 

05 

72 

207 
226 
226 
245 
245 
264 
264 

05 
71 
72 
26 

346 
75 

366 
64 

40 07 07 07 07 - 404 404 404 
41 17 17 173 173 - 414 - 416 
42 07 07 07 07 404 404 404 404 
43 17 17 173 173 414 414 416 416 
44 44 44 44 - 444 444 444 
45 45 45 45 - 454 454 454 
46 44 44 44 44 444 444 444 444 
47 45 45 45 45 454 454 454 454 

(continued) 
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d3 0 1 2 3 4 5 6 7 

did 2 

50 05 05 05 05 05 05 05 05 
51 - 51 - 512 51 51 157 157 
52 - 52 52 52 - 524 524 524 
53 - 53 - 532 57 57 - 536 
54 - 54 54 54 - 544 544 544 
55 51 51 157 157 51 51 157 157 
56 - 56 56 56 - 564 564 564 
57 - 57 536 536 57 57 536 536 

60 37 37 373 373 - 604 - 606 
61 37 37 373 373 604 604 606 606 
62 37 37 373 373 604 604 606 606 
63 37 37 373 373 604 664 606 606 
64 - 64 64 64 - 644 644 644 
65 64 64 64 64 644 644 644 644 
66 64 64 64 64 644 644 644 644 
67 64 64 64 64 644 644 644 644 

70 05 05 05 05 05 65 05 07 
71 - 71 71 71 71 71 71 71 
72 - 72 72 72 72 72 72 72 
73 26 72 26 26 26 6 26 26 
74 - 74 74 74 - 744 744 744 
75 75 75 75 75 75 75 75 
76' - 76 76 76 - 764 764 764 
'77 - 77 - 772 - 774 - 776 

4.0 05 05 26 26 05 05 26 26 
4.1 51 51 - 4.12 51 51 57 57 
4.2 05 05 26 26 05 05. 26 •26 
4.3 - 4.3 332 332 4.3 4.3 332 332 
4.4 77 77 77 77 776 776 776 776 
4.5 51 51 57 57 51 51 57 57 
4.6 77 77 77 77 776 776 776 776 
4.7 75 75 - 4.72 75 75 4.72 4.72 

Table 7.3. (concluded). 
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7.4. Infinite recurring octal James. 

Table 7.4 contains information about infinite recurring octal games 

of the form •, and The organization of the table is 

similar to the organization of Table 7.2. The number in parentheses 

following theG-sequence indicates the saltus. An extra column has 

been added adjacent to the column for the period to permit inclusion 

of the saltus. C-values greater than 9 are represented'by the following 

symbols 

10 11 12 13 14 15 16 17 18 19 20 
X x T t F f S s A a  

For completeness we have included ., and in the table. These 

games appear to be arithmetico-periodic, but this has not been estab-

lished. We have also included .Q, and The former is equi-

valent to the sedeciinal game ., first analyzed by J.C. Kenyon [13]. 

The latter provides another example of a game whose saltus is not a 

power of 2. 

To find the C-sequence for any game .d d or 4.d look in Table 7.5. 
Y'-'2 ""-1 

The entry refers to the row of the table in which the C-sequence of the 

game in standard form may be found. An asterisk indicates that the C-

values are bounded. For example, .1, .5, .15 .i5, .5), /), and 4. 

all have G-sequence 0i , .3i , .3i .35 .71 .71 .75 .75 all have C- , 

sequence 012, and ., ., ., .2 and ., are all first cousins of 

.,3Q, ZU, .5Q, and •ZQ which have C-sequence Ôi; .41 has C-sequence 

001122. The ? corresponding to a indicates that this game is as yet 

unsolved, though it has been analyzed to n = 14,999. 

To find the C-sequence for any game apply an analogous 

procedure to 7.6. 
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1st standard 
COUSinS form G-Sequence' Period Saltus Notes 

012 .012 .iO3 0.10(+1) 3 1 

02 .03 .13 O.ii(+1) 2 1 (a) 

04 .0137 .11337 0.ill(+1) 3 1 (b) 

05 .05 .117 0.111222(+2) 4 2 

12 . 0.10022(+1) 2 1 

14 . 0.100122224444(+4) 7 4 

16 ., 0.100223(+2) 3 2 

17 .47 .17 O.112(+2) 3 2 

0.i(+1) 1 1 (c) 

24 .24 0.1012(+2) 4 2 (d) 

25 .25 .317 0.12123454(+4) 6 4 

3003003 .3003003 0.10120123234534545(+6) 18 6 

32 .,g 0.102(+1) 1 1 

3Ô .gQ o.12012(+3) 6 3 (e) 

34 0.101232(+2) 3 2 

52 .52 0.10224433557688XX99xxtT(+8) 12 8 

53 . 0.112244633557788XXT99xxttPF 
88AffssaaV(+8) 13 8 

54 .54 0.101222444(+4) 5 4 

56 0.1022(+2) 2 2-

57  .57 0.1122(+2) 2 

74 .74 0.10123245467(+4) 5 4 

12 .12 0.iô(-f-1) 2 1 

14 .14 0.1011212232444466(+4) 7 4 

16 .16 0.102132445(+2) 3 2 

4.3 4.i 0.i243(±4) 4 4 (f) 

4.7 4.7 0.12(+2) 1 2 

Table 7.4. G--sequences of infinite recurring octal games. 
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1 2 3 4 5 6 7 

0 

2 

3 

4 

5 

6 

7 

,1 0 

1 

2 

3 

4 

5 

6 

7 

* 0 Oi 0 o o * 

* 12 02 14 * 16 17 * 

* 2 2 24 25 2 2 2 

* 32 2 34 * 32 2 4.3 

* 02 17 02 17 02 17 2 

* 52 53 54 * 56 57 * 

2 2 2 2 2 2 2 

* 32 2 74 * 32 2 4.7 

Table 7.5. Games of the form 

42 0 1 2 3 4 5 6 7 

* * 02 02 04 * 02 o 

* * H Oi j4 * i. i 

* * * * 

* * 32 2 34 * 32 2 

02 17 02 17 02 17 02 17 

* * 56 57 4 * 56 57 

2 

* * 32 2 74 * 32 2 

Table 7.6. Games of the form 
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'Totes to Table 7.4. 

(a) Duplicate Nim. 

(b) Triplicate Nim. This game is equivalent to Nim in which an exact 

power of 2 (20 = 1) may not be taken. 

(c) Nim. 

(d) Double Duplicate Nim. 

(e) This game is equivalent to the sedecimal game analyzed by 

J.C. Kenyon which has a period of 6, saltus 3. 

(f) Lasker's Nim. 

7.5. Arithmetico-periodic sedecimal games. 

Table 7.7 contains the C-sequences of those sedeiitnal games that were 

discovered tb be arithmetico-periodic. The layout of the table is iden-

tical to that of -,Table 7.4. C-values greater than 9 are represented, 

both in the table and the notes that follow, by the following symbols: 

10 11 12 13 14 15 16 17 18 19 20 
X x T t F f S s A a V 
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Table 7.7. 0-sequences of sedecimal games. 

Standard 
Form 0-sequence Period Saltus Notes 

OAO .11(±l) 2 1 
OBO .11022(+l) 2 1 
OCO .fl33]J7?. . ili(+1) 3 1 

11B .1110002223 3344455566 6(+4) 11 4 
128 IZ,8 .100110(+2) 5 2 
138 .110022 . 2 1 
l3C .1100122332 445546677(+4) 9 4 
169 .102102132(+3) 9 3 
18C .1000?22?44 4466663333 8888777755 48 16 (9) 
18E X&E .10002223(+2) 4 2 
18F .10102223(+2) 4 2 
94 1100222244 4466663333 8888777755 48 16 (2) 

19B 1110002223 3344455566 (+4) 10 4 
19F •92 11102223(+2) 4 2 
lAO 4, .100l(+1) 2 1 

280 .1012010123 2345343456 7678976789 53 16 (16) 

3F . .120123(+3) 6 .3 

890 .1012223(+2) 4 2 

9B0 . .1100223344 5566(+4) 4 
9C0 . .10022?4446 6633388877 7555999xxX 36 16 (20) 
9E0 .100223(+2) 3 2 

A80 AQYF .101323(+2) 4 2 

B80 ., .1010232345 45676(+4) 7 4 
BAO . .10+1) 1 1 
BB . .120(t1) 1 .1 
BC . .101232(+2) 3 2 

C9 .1122(+2) 3 2 

P8 ., .1010232345 45678(+4) 6 4 
FB ., .12304(+1) 1 1 
PC . .1012324546 7(+4) 5 4 
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Notes to Table 7.7. 

(9) There are only four irregular values. 0(0) = 0; 0(1) = 1; 0(16) = 6; 

0(36) = 9; otherwise, the 0-sequence is 

0.O000 2222 4444 6664 3333 8888 
7777 5555 9991 xxxX tttt fffF(+16), 

where the entry 4 means that for 7< 1, 0(16+487<) = 16k-4. 

(12) There are only seven irregular values. 0(0) = 0; 0(1) = 0(2) = 1; 

0(15) = 0(16) = 6; 0(35) = 0(36) = 9; otherwise, the 0-sequence is 

0.0000 2222 4444 6644 3333 8888 
7777 5555 9911 xxXX tttt ffFF(+16), 

where 4 means that for k 1, 0(15+487<) = 0(16+487<) = 16k-4. 

(16) There are no irregular values. The 0-sequence is 

61012010123234534345676789 
76 789 89XxXxTXxXxTtFf Ff t1'fFf (+16) 

(20) There are only four irregular values. 0(0) = 0; 0(1) = 1; 0(12) = 6; 

0(27) = 9; otherwise the 0-sequence is 

0.000 222 444 664 333 888 
777 555 991 xxX ttt ff'(+16) 

where 4 means that for k 1, 0(12+367<) = 16k--4. 
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