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ABSTRACT 

The parallelizability question for spheres was solved in 1958 

independently by M. Kervaire and J. Milnor. The vector field problem 

for spheres and projective spaces was settled by J.F. Adams in 1962. 

W.A. Sutherland proved in 1964 that the (real) Stiefel manifolds Vflk 

are parallelizable for k ≥ 2. 

The Grassmann manifolds are a natural generalization of the 

projective spaces, and are themselves particular cases of the much 

wider class of F-flag manifolds. These manifolds attracted closer 

attention of mathematicians in the mid seventies. 

In this thesis, stable parallelizability and parallelizability of 

F-flag manifolds, F = I, C, or 1H , and most of the closely related flag 

manifolds have been determined. Some of these are known results, 

others are new. The proofs given here are new, and in the case of 

existing results seem to be conceptually simpler. They also unify a 

variety of cases. 

With varying degrees of success estimations for the span of 

Grassmann manifolds have been obtained. Some very general estimates on 

the span of flag manifolds have also been given. 

Formulae for Stiefel-Whitney classes of tensor products, exterior 

and symmetric powers of Euclidean vector bundles have been obtained in 

full generality. 
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CHAPTER ONE 

INTRODUCTION 

%I. Basic Concepts and Definitions.  

Let M be a smooth ( i.e. C differentiable) manifold of dimension d, 

and let r(M) denote its tangent bundle. Span of M, written span M, is 

defined to be the largest integer k for which r(M) is bundle equivalent 

to q W kC for some real vector bundle ri of rank (d-k) over M, where k 

denotes a trivial k-plane bundle over M. Span M is a diffeomorphism 

invariant of the manifold M, (but not in general a homeomorphism 

invariant.) Equivalently, span M is the maximum number of everywhere 

linearly independent vector fields defined on M. If span M = dim M, 

then M is said to be parallelizable. M is defined to be stably 

parallelizable, or a ir-manifold, if r(M) is stably trivial as a real 

vector bundle, i.e. T(M) ED re is a trivial vector bundle for some 

r ?: 0. In this thesis we attempt to determine the span, 

parallelizability and stable parallelizability of Grassmaxm manifolds, 

and the closely related flag and flag manifolds. 

The concept of a fibre bundle 9 = (E,B,F,p,G), where E is the total 

space, B the base space, F the fibre space, p : E B the projection 

of C, and G the structure group, is used here in the same sense as in 

Steenrod' a book [39]. When G is the full group of homeomorphisms of F, 

is referred to as a locally trivial bundle. Mostly we deal with 

F-vector bundles (F = I the reals, C the complex numbers, or II the 
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quaternions) in which case F is the ( left) vector space F". The 

structure group 0 is the group GL(F"), or, in case t admits a 

"Hermitian" metric, 0 is the group U(F"), where U(V) = 0(n). ( the 

orthogonal group), U((") = U(n) ( the unitary group) and U(0) = Sp(n) 

(the symplectic group). 

By the standard orientation on RI' we mean the orientation of RI' 

given by the canonical ordered basis el, .... e of RI', where e. = 

(x ii ,..., x in ) and x ij . . = 6 ij . .. The standard Hermitian product on F" for 

F = R,C or H is defined as <x,y> = x • y. for x (x 1,...,,x 1 ), 

lin 

y = (y1, . . . ,y) E F where x denotes the conjugate of x. in F. 

Let H be a closed subgroup of a Lie group G. Then 0/H, with the 

quotient topology, is a manifold of dimension dim 0 - dim H. It has a 

unique smoothness structure such that the canonical projection 7r: 

0 i 0/H is the projection of a differentiable bundle with fibre H 

and group 0/H0, where H is the largest normal subgroup of G contained 

in H. The manifolds of type 0/H will be assumed to have this 

smoothness structure. We write "0/H G'/H" to mean that 0/H is 

diffeomorphic to G'/H'. 

For vector bundles and rl over a topological space X, t7 if 

and q are bundle equivalent. The notation is also used to denote 

equivalence in the appropriate K-group of the space X. We use the same 

symbol t to denote both the vector bundle and the equivalence class it 

represents in the K-group or the I-group of X, and to avoid confusion 
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we make explicit in which sense the expression " g s4s is to be 

interpreted. Equivalence in I--group is denoted as "-". Thus, 

r(S3) 3C as vector bundles, T(S') nC in KO(S"), and r(S) 0 in 

KO(S') for any n. 

By a vector field on a smooth manifold M we mean a continuous cross 

section s : M TM, where N denotes the total space of the tangent 

bundle r(M) of M. Following E. Thomas [44], by a k-field on M we mean 

a collection of k vector fields 51'••'5k on M which is linearly 

independent at each point of M. If a collection 51'"'5k of vector 

field on M is linearly dependent at some ( finitely many) points on M, 

then it will be called a k-field with (finite) singularities. 

2. Functors of Vector Bundles.  

Let r denote the category of all finite dimensional vector spaces 

over IR and vector space isomorphisms. Note that for any two vector 

spaces V and W in 1, the set (possibly empty) of all isomorphisms of V 

onto W has a natural topology. Define a functor T : r "1 to be 

continuous if T(f) depends continuously on f. Continuity of a functor 

T : r x •• x r r covariant in the first r variables and 

contravariant in the remaining variables is defined similarly. Given a 

continuous functor T in k variables and real vector bundles 

over a topological space B, one obtains a new vector bundle 

over B whose fibre F  over b 6 B is the vector space 
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T(Fl(b),...,Fk(b)). Here F1(b) denotes the fibre of over b € B. 

For details see [ 32]. 

THEOREM 2.1 

Let B : T T' be a natural equivalence of two continuous 

functors T,T' of ¶ x x ir into T. Then, for real vector bundles 

over B, and are isomorphic vector 

bundles. 

Proof: 

Let 9 = T( 1, . Let E,F,w denote the total space, fibre 

space and projection of C respectively. ', E',F',7r 5 are defined 

similarly. Define g9: E ES as follows: 

go (X) = O(Fl(b),...,Fk(b))(x) where F1(b) denotes the fibre of 

over b, 1 i ≤ k, b = 1T(x). It follows readily that g0 I 7r-'(b) is an 

isomorphism of the vector space Fb onto F, 1 for each b € B, and that 

70 ° g0 rr. The continuity of is easily verified. Thus g9 defines 

a bundle isomorphism from 9 onto 91 . 

COROLLARY 2.2. 

Let 9,q and be real vector bundles with the same base space B, 

with rank 9 = m, rank t7 = ii, and rank ' = 1. Then we have the 

following vector bundle isomorphisms: 

(i) (9 ED ) st, W A 0 
i+j=k 

(ii) S $ ii) sks ED S ® S(). 
i+j=k 
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(iii) Ao () C, A () ', A k() 0 for k 2, 

o  S () k C, S () ' 0 " 0 ' (k-times). 

k th k th Here A denotes the k -exterior power functor and S , the k 

symmetric power functor. 

Proof: 

Isomorphisms ( 1) and ( ii) are functorially valid when 9 and r are 

replaced by any V and W in V. Isomorphism ( iii) is functorially valid 

if is replaced by any one dimensional vector space L, C by I and 0 by 

the vector space 0. Thus in each case these isomorphisms define 

natural transformations of suitable functors of V x V or Y into V. The 

rest of the proof now follows from Theorem 2.1. 

In like manner, one could consider the category 3 of all oriented, 

finite dimensional (real) inner product spaces and vector space 

isomorphisms which preserve inner products and orientations. 

Continuity of a functor T : '( x x V 'V is defined as before. 

Let 9 1'•••'k be oriented vector bundles over B in the sense of Milnor 

[32]. (We will in fact generalize this in U6. Compare 6.5. See 

Remark 6.2.) Assume that 9 1  possess Euclidean metrics. As 

before one obtains a new vector bundle g = T 1'•••'k which is 

oriented and has a Euclidean metric. Further, if two functors T and T' 

are equivalent, then 9 and ' are isomorphic bundles. 
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PROPOSITION 2.3. 

Let 9 be an orientable vector bundle over B in the sense of Milnor 

[32]. If k possesses a Euclidean metric then A () n-k A () as vector 

bundles, where n = rank . 

Proof: 

Choose a specific orientation and a specific Euclidean metric on . 

Then each fibre of has an orientation and an inner product. 

The functors 1, An : are naturally equivalent, the 

equivalence being established by the Hodge star operation *. Therefore 

it follows that I and 4n-k induce isomorphic vector bundles when 
applied to an oriented vector bundle of rank n with an Euclidean 

metric. Thus I() ru Ank() as vector bundles, as was to be shown. 

COROLLARY 2.4. 

Let t be as in Proposition 2.3 above. If rank 2, then 

A2() ps C. If rank 9 = 3, then 42(e) , as vector bundles. 

Proof: 

Immediate from the above Proposition, and the facts that A°() C, 

as vector bundles for any vector bundle 9. 

%3. Known Results on Span.  

In the present section some well-known theorems on the span of a 

smooth compact manifold are stated. The reader is referred to standard 

sources in the literature for their proofs. These theorems link 
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geometric properties of a manifold with its algebraic invariants. 

Throughout this section by an orientable manifold is meant a 

manifold whose tangent bundle is orientable in the sense of 

Milnor [32]. (Compare 6.1, and Theorem 6.5.) 

The following theorem was first proved in full generality by H. 

Hopf [20] in 1926. As consequences a smooth compact manifold of odd 

dimension admits a 1-field - i.e., a nowhere vanishing vector field, 

and span S 2n = 0. 

THEOREM 3.1 

Let M be a smooth compact manifold, and let ((M) denote its Euler 

characteristic. Then span M 1 if and only if (M) = 0. 

If there exists a nowhere vanishing vector field on M its flow, 

which is homotopic to the identity map of M, has no fixed points. 

Hence its Lefschetz number ( of. [10]) must be zero. But the Lefschetz 

number of any map homotopic to the identity map of M is (M). Thus the 

necessity part of the theorem follows. The converse part is more 

difficult. See [ 2]. 

Let x*(M) denote 1 ,(M) e Q when M is even dimensional and 

dim H.(M;?2) mod 2 E if dim M = 2r + 1. ,c*(M) is called the 

0-<i-<r 

semi-characteristic of M. Closely related is the invariant real 

Kervaire semicharacteristic k(M) defined as follows: k(M) = 

Z rank H2 . (M;Z2) (mod 2). The signature 0(M) of a compact oriented 

smooth manifold M is defined to be zero if dim M 1,2 or 3 mod 4. If 
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dim M = 4k, o(M) is defined as follows: Let p e H4k(M;Q) be the 

(rational) fundamental class of M ( see Appendix A of [32]). Let 

a1,.. ., a be a basis for H21 (M;Q) such that the Kronecker index 

<a1 u = 0 if i j. o(M) = number of positive entries minus the 

number of negative entries of the diagonal matrix (<at u aj lp >) 

THEOREM 3.2 (Bredon-Kosinski). 

Let M  be stably parallelizable. Then ( 1) either M is 

parallelizable or span M = span sd. ( ii) for d * 1,3 or 7, M is 

parallelizable if and only if Y, *(M) = 0. 

The reader is referred to [ 9] for a proof. Classical results in 

linear algebra due to Radon [34], and Hurwitz [ 21] show that 

span S 1 ? p(n) - 1. Here p denotes the Radon-Hurwitz function. See 

%23. Using K-theory, J.F. Adams [ 1] proved in 1961 that 

span S' 1 = p(n) - 1. 

Our next theorem gives conditions for the existence of a 2-field in 

the case of a compact smooth orientable M. 

THEOREM 3.3 

Let M be a compact smooth orientable manifold of dimension d. Then 

span M ? 2 if and only if ( 1) when d S 1 mod 4, one has wd_l(M) = 0, 

k(M) = 0; ( ii) when d 2 mod 4, x(M) = 0; ( iii) d 3 mod 4 

(iv) when d ? 4 and d a 0 mod 4, ((M) = 0, and a(M) S 0 mod 4. 

The proof uses obstruction theory and known results on the index of 

a 2-field with finitely many singularities. See the survey article by 
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E. Thomas [44] for details. In all our applications of the above 

theorem, d E 1 mod 4. In order to simplify the computation of k(M) in 

these cases, we use the following theorem. 

THEOREM 3.4. 

Let M be a compact orientable manifold of dimension 4n + 1. Then 

- k(M) equals the Stiefel-Whitney number w w [M]. 
2 4n-1 

Proof: 

Refer to [ 28]. 

In our applications, M will be a boundary manifold, i.e. the 

boundary of a compact smooth manifold with boundary, so that all its 

Stiefel-Whitney numbers are zero. Consequently ,(*(M) will equal k(M). 

Let F denote one of the division rings I, C or $1, and let FGfl k = 

1 k :5 n-1, denote the Grassmann manifold of k-planes in F'. 

Then FGflk is a compact smooth manifold of dimension dk(n-k) where 

d = dimF. We write Gflk to abbreviate n,k and TF (or simply 

T n,k n,k if F = I) denotes the canonical F-vector bundle over FG of rank 

k whose fibre over an arbitrary point A E FGflk is the F-vector space 

H A. With respect to the usual Hermitian , /3 product on i 1 = (zF ) J. 
fl,xi fl,n 

is the complementary bundle of rank n - k. Its fibre over A E FGflk is 

the vector space A1. 

Consider the Ehresmann cell structure on FGnk as given in [ 32], 

which is applicable for F = The proof of the following lemma 

can be found in [19], page 452. 
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LEMMA 3.5. 

Let n = 2t or 2t + 1 and k = 2p or 2p + 1. Let N and N denote 

respectively the number of cells in FGflk of even and odd F-dimension. 

Then 

N = N = 1 In ) for n even and k odd, 
e o k 

N 1 ffnl + IJ 
= iiIe tiki  

N - 111 - 

o 2tkj It)] 

otherwise 

THEOREM 3.6. 

(FGfl,k) = 0 if and only if F = R, n even and k odd. Consequently 

span FGflk a 1 if and only if F = R , n even and k odd. 

Proof: 

We use the well-known property that the Euler characteristic of a 

finite CW complex X is equal to 7 (-1)'c. where c1 stands for the 

iO 

number of i-cells in X. Now using Lemma 3.5, and the fact that a cell 

of F-dimension i is a cell of real dimension di, d = dimF, we see 

readily that ( FGfl k) = 0 if and only if F = R , n even and k odd. The 

rest of the proof now follows from Theorem 3.1. 

Let G n,k 1 k S n-1, denote the smooth manifold of oriented 

k-planes X in I. Gflk is called the oriented Grassmann manifold. The 

map p : n, G that forgets the orientation is a (universal) 

double covering of Gflk (for n > 2). Therefore we obtain 
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COROLLARY 3.8. 

x( fl ,k) = 2x(Gfl, k). 

and k odd. 

Thus span Gnk ?t 1 if and only if n is even 

We conclude this section with the following 

Example 3.9. 

span G63 ≥ span G6,3 2. 

Proof: 

Since p : G 6,3 G . is a local diffeomorphism, 
•.1 

span G6 ≥: span G6 • We now use Theorem 3.3. Note that 

dim G6 = 9 1 mod 4. It will be shown in Theorem 24.6 that 

w(G63) = 1 + w(T63 ). Hence w8 (G63 = 0. By Theorem 3.4, it 

follows that k (C6,3 )  = , (06,3 ).  Now 

''(Gt \ 
63' L 

O≤i≤4 

dim H21(063;Z2) mod 2 by Poincarè 

05 4 

duality, and the Kunneth formula. Let P(M;t) = aiti where 

iko 

a. = dim H'(M;Z2). P(M,t) is known as the Z2-Poincarê polynomial of M. 

In this notation, 

*(a63) (.(P(G63 ;l) + P(063,-l)) mod 2. 

= (. P(06 3;l)) mod 2, as 

P(063 ; -l) = x(063) = 0. 

H1(G6,3; 2) mod 2. 

Now P(G63 ;l) = 20 using Lemma 3.5 and the knowledge of H*(G63;Z2) 

from Exercise 7-B of [32]. Hence N*(G63) = 0, completing the proof. 
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%4. Methods, Notations, and Results.  

In this thesis, we obtain solutions to stable parallelizability and 

parallelizability questions for the real, complex, and quaternionic 

flag manifolds as well as most of the flag manifolds, of which the 

oriented Grassmann manifolds are special cases. The vector field 

problem for Grassmann manifolds has also been considered. Span of 

has been determined for infinitely many "nontrivial" cases - i.e., the 

cases where n is even and k odd. 

Before we state the precise results, let us describe the methods 

employed to obtain them. 

Let M  be a smooth manifold, with tangent bundle TM. Let 

W. E Hi(M;Z) denote the i th Stiefel-Whitney class w.(M) = w.(rM) of M. 

If the stable geometric dimension of rM is k - i.e., rM ns 9 S (d-k)C 

in KO(M) - then w(M) = 0 for j > k. It follows that span M m, if 

wd_m(M) 0 0. This is one of the most useful ways to obtain upper 

bounds for span M, and has been found to be effective in many cases. 

If M is a ( stably) parallelizable manifold and N is a submanifold 

of M with trivial normal bundle, a simple argument show that N is 

stably trivial. Thus to show that a certain manifold M is not stably 

parallelizable, we search for a suitable submanifold N, known a priori 

to be not a it-manifold, with trivial normal bundle in M. This 

elementary concept has been exploited in Chapters 3 and 4 to obtain 

results for the non-stable parallelizability of many of the manifolds 
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considered here. In certain cases the concept of n-universality ( see, 

e.g. [39]) has been used to guarantee the existence of maps with 

certain properties. The existence of such maps are then shown to lead 

to a contradiction, should the manifold in question be stably 

parallelizable. This is probably a new method. 

In the other direction, for positive results on stable 

parallelizability, the functor A2 on vector bundles has been found to 

be quite useful. Once stable parallelizability has been established 

the Bredon-Kosinski Theorem 3.2 can be applied to decide the 

parallelizability of M. In many cases this is no easy task. To 

circumvent the difficulty, a homotopy theoretic approach has been made 

to establish directly the parallelizability of certain flag manifolds 

in Chapter 4. This method has been used by Zvengrowski [48] to prove 

parallelizability of the Stiefel manifolds V 2. 

The earlier proofs of known results that have been re-established 

here use calculations, often lengthy and involving Schubert calculus, 

of Stiefel-Whitney classes. The proofs of stable parallelizability of 

3nk and related manifolds given by I.D. Miatello and R. J. Miatello in 

[30] make heavy use of Lie group theory that is conceptually quite 

involved. Their proof that G , r > 2, is not parallelizable seems 
2r,2 

to contain an error. It may be noted that as far as possible 

computations involving Stiefel-Whitney classes have been avoided in 

Chapter 3 and 4. Geometric arguments have been preferred to the use of 

theorems from the theory of Lie groups. 
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In Chapter 2 the concept of orientability of ( real) vector bundle 

has been generalised. Using this and the splitting principle, formulae 

for Stiefel-Whitney classes of tensor products, exterior and symmetric 

powers of vector bundles have been obtained, under the modest 

assumption that the vector bundles in question admit Euclidean metrics. 

Our proof is similar to that of Theorem 4.4.3 of [ 18] in that it is 

axiomatic. No assumptions have been made about the base spaces. To 

the best of the author's knowledge, formulae for Stiefel-Whitney 

classes of symmetric powers of a vector bundle (that admits a Euclidean 

metric) are not found in the literature. 

Some of our results overlap with those of Korba [24], Leite and 

I.D. Miatello [27], I.D. Miatello and R.J. Miatello [30] and 

Stong [42]. It will be mentioned clearly which of our results are not 

new in the appropriate context. In all cases our proofs are new and 

apparently much simpler. 

F denotes one of the division rings R,E or II. Let i = (n1,...,n5) 

be a sequence of positive integers with s ? 2. Let 1 r s, and let 

n = n1++n. The following notations will be used in the sequel. 

Details will appear in lO and % 15. 

n n 
FG(p) = U(F')/(U(F ) x •" x U(F S)), 

G(p;r) = 0(n)/(SO(n1) x x SO(n) x 0(nr+1) x ••• x O(n)) 

FG() are called F-flag manifolds. When F = I we write G(M) to 

abbreviate FG(). G(M;r) are called the flag manifolds, in the sense 

that they are flag manifolds with the additional structure of 
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orientations on the first r components of each flag. 

The following are the main results of this thesis: 

4.1. Z-orientability in the sense of Definition 6.1 of a ( real) 

vector bundle t is equivalent to w1() = 0. Also proofs of formulae 

for the Stiefel-Whitney classes of tensor products, exterior and 

symmetric powers of vector bundles in a general setting. 

4.2. (Stable) parallelizability of flag manifolds: Assume s 3 

(s = 2 case is known due to Trew and Zvengrowski [45]). FG(p) is 

stably parallelizable if and only if n1 n5 = 1, and is 

parallelizable if and only if n1 = n = 1, F 

4.3. (Stable) parallelizability of flag manifolds: The oriented 

Grassmann manifold Gfl,k, 2 k n-2, is stably parallelizable if and 

only if n = 2k, k = 2,3 and is parallelizable only in the case n = 6, 

k = 3. 

Now assume that s ≥ 3, 1 ≥ r ? s. The list below shows the 

relatively "small" subcollection of the flag manifolds for which the 

parallelizability is not solved. More precisely, up to diffeomorphisms 

+ 
arising from the permutations of n1, ... , n and n+1,...,n, the flag 

manifolds G(n1,...,n ; r) not classified below known to be either 

parallelizable, or stably parallelizable but non-parallelizable, or not 

stably parallelizable. See Theorems 17.1, 17.3 and 18.1. 
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The following manifolds are not known to be stably parallelizable: 

(i) G(6,l, .... 1;s-2) n ≥ 10 

(ii) G(6,l, .... l;s-3) n ≥ 9 

(iii) G(l,...,l,k;s-2) k = 3,7, s ≥ 3. 

4.4. Span of flag manifolds: 

Ci) Span G(n1, ... ,n) ≥ p(n) - 1. 

(ii) Span G(n1,...,n) ≥ 1 if and only at least two of the 

numbers n 1 , . . . ,n are odd. s 

(iii) Span G = p(m) 1 if m = 4,8, r ? 1 
m (2n1+l) ,3 

2 1fzn2. 

(iv) Span G ? 2 only if (n) 0 mod 4. 
n,k(v) 3  Span G63 7. 

The Chapters 2-6 are arranged as follows. Chapter 2 deals with 

orientability of real vector bundles and formulae for tensor product, 

exterior and symmetric powers of vector bundles. (Stable) 

parallelizability of real, complex and quaternionic flag manifolds is 

considered in Chapter 3. In Chapter 4, we address the same question 

for oriented Grassmann manifolds and flag manifolds. Chapter 5 deals 

with Z2-cohomology of the flag manifolds of the type p =  

Computational techniques developed here are used in Chapter 6 to obtain 

certain Stiefel-Whitney classes of Grassmann manifolds, lower and upper 

bounds for span G 
n,k 
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The following diagram shows how various manifolds that will be 

encountered here are related. (For the definition of Xfl,k see % lO.) 

{F-Flag Manifolds} 

U 

(F - Projective spaces} c {F-Grassmann Manifolds} 

(Oriented Grassmann Manifolds) C {Flag Manifolds) D 

U U 

(Spheres) C (Stiefel Manifolds) 
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CHAPTER TWO 

GENERALITIES ON STIEFEL-WHITNEY CLASSES 

%5. Introduction 

In this chapter we establish formulae for the Stiefel-Whitney 

classes of tensor products, symmetric and exterior powers of real 

vector bundles which admit Euclidean metrics. 

In [ 36] it is shown that a real vector bundle g over an arbitrary 

base space B is orientable if and only if w() = 0. This is proved 

in %6. In %12 of [ 32] it is proved that if 9 is orientable over a 

paracompact base space B then w1() = 0. That the converse is also 

true for CW complexes is left as an exercise (see Problem 12A). 

Exercise H on Page 281 of [ 88) deals with Stiefel-Whitney classes of 

sphere bundles, and 3(d) of this exercise states that a sphere bundle q 

is orientable if and only if w1(z) = 0. In case g possesses a 

Euclidean metric one can apply this result to the associated sphere 

bundle of . But when B is not paracompact, it is not true in general 

that a vector bundle t over B possesses a Euclidean metric. See 

Example 6.8. 

In 7 the splitting principle is proved using the Leray-Hirsch 

theorem. 

Theorem 8.3, which contains the main results of this chapter is 

proved using Theorem 6.7 and the results of %6. These, and analogous 

results for Chern classes in the case of complex vector bundles, are 
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obtained in [ 7] under suitable restrictions on the base spaces, using 

entirely different techniques. The axiomatic approach of the proof of 

Theorem 8.3 parallels the one found in %4 of [ 18] in the case of 

complex vector bundles. 

%6. Orientability of Vector Bundles.  

An orientation on a real vector space V of dimension n >-O is an 

equivalence class of ordered bases of V. Here two ordered bases 

u1,.. . 0 and v1,... , v are equivalent if and only if the matrix (a1 ) 

has positive determinant, where v1 = Z Thus there are precisely 

two orientations on any real vector space V # 0. The vector space 

has a standard orientation given by the canonical ordered basis 

el, ... , e of IR". 

It is shown easily that choosing a specific orientation on a vector 

space V # 0 is equivalent to choosing a specific generator for the 

cohomology group H'(V,V0;Z) vs Z. Here V 0 = V - {0}. See Page 95 

of [ 32]. 

Let R be a commutative ring with identity, Let be a real 

vector bundle of rank n > 0 over an arbitrary base space B. Let E = 

E() denote the total space and E the complement of the zero cross 

section in E. Let 7t : E -* B denote the projection of 9 and u the 

restriction of u to E0. For b 6 B, F  denotes the fibre of 9 over b 
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and Fb,o b b the non-zero elements of F . Let j denote the inclusion 

(Fb ,Fb) -, (E,E). 

DEFINITION 6.1 

is said to be R-orientable if there exists an assignment, called 

an H-orientation on t, of a preferred generator R 11 of (Fb,Fb 0;R) 

to each b E B satisfying the following local compatibility condition: 

H 

For each b E B, there exists a neighbourhood N of b0 and an 

element u in H"(7i1(N),w'(N);R) such that uI ( Fb ,Fb ) = u for all b 

(Fb , Fb, o) 

2-orientable. 

in N. Here u = IA(u) where jub is the inclusion 

-, (71'(N),711(N)). g is said to be orientable if it is 

If t is fi-orientable, we denote an fl-orientation on 9 by % bEB or 

by NO if H is clear from the context. 

Note that if t is orientable, then it is H-orientable for every 

commutative ring H with identity. In fact, letting r denote the unique 

ring homomorphism 2 - z R, if {%} is a 2-orientation of 2 then {r(u.0)} 

gives an H-orientation of 9 where r denotes the map in cohomology 

induced by the homomorphism r between the coefficient groups. 

Let R denote either 22 or, if 9 is 2-orientable, an arbitrary 

commutative ring with identity. Let u denote the unique non-zero 

element of H" (Fb ,Fb O;22) a 22 

2 H 2 
let ub = r(%). We have 

For a proof see S 10 of [32]. 

and if t is 2-oriented with orientation 

the following Thom Isomorphism Theorem. 
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THEOREM 6.2 

. iin There exists a unique cohomology class u H in (E,E0;R) such that 

.*R H H 
jb(U ) = 11b for each b E B. Moreover, the correspondence y i y u u 

j i j+n maps H (E;R) somorphically onto H (E,E0;R) for every integer j. 

is called the Thom class of 9. 

Remark 6.3 

Our definition of Z-orientability is weaker in general than the one 

used in p.96 of [32]. However the proof of the above theorem in the 

oriented case as given in SlO of [ 32] requires only that g be 

2-oriented in the sense formulated above. 

Example 6.4. 

Consider the deleted comb space 

D = I x 0 u n 1) x I u {(0,l)} C P X IR where I = [0,1] a R. 

D has two path components P1 = {(0,l)}, P2 = D -P1 Hence 
ff 

H 0 (D;) 2 x Z. Using the Kunneth formula we obtain 

H1(D x (,R-0)) (2 x 2) ® H1(,fl-O;Z). Let a be the generator of 

H1(I,I-O;Z) 2 that corresponds to the standard orientation on I. Let 

U = (-1,1) $ a. Now consider the trivial line bundle C over D whose 

total space is D x P. It is readily verified that UJ ( Fb ,Fb ) is a 

generator of H1(Fb,Fb ; Z) for each b E D. U defines a 2-orientation £2 

of C. In fact the orientation of F  = b x P given by Uf ( Fb ,Fb ) is 

the standard orientation on b x R F if and only if b (0,1). Since 

D is connected, it follows that there is no neighbourhood of (0,1) over 

which there exists an orientation preserving local trivialization of 



22 

the Z-oriented vector bundle (,ü). Therefore 12 is not an orientation 

in the sense of Milnor [32]. 

The following theorem shows, for example, that in the context of 

manifolds the concept of orientability used here coincides with that 

used in Milnor's book [32] page 96. 

THEOREM 6.5. 

Let B be locally path connected. Let 9 ' be a Z-oriented vector 

bundle. Then, given any b € B there exists a neighbourhood ( V,h) 

with b0 E V such that h : V x is orientation preserving 

- i.e. for each b E V, lib: b x Rn F  maps the standard basis of IR' 

onto an ordered basis in the orientation of Fb. 

Proof: 

Let u be the preferred generator of H'(Fb,Fb ;2) 2 for each 

b E B. Let b C B be given. Choose a neighbourhood (N,h) as in 

Definition 6.1. Since B is locally path connected there exists a path 

connected open set V c N with bE V. Denote hV by the same letter h. 

Let u = u (7r 1(V),7(1(V)). It follows readily that u (Fb,Fb) 

= u for all b e V. Without loss of generality assume that h preserves 

orientation at b0. Equivalently, we assume that hb (% ) = the 

generator a of H'(b x (,-O);Z) Hn(n,n_O;Z)Z 2 that 

corresponds to the standard orientation on 0 gi b0 x 

Since V is path connected, 

H(V x ( nn);2) 2 0 H"(',I-O;2) by the Kunneth formula. 
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Writing h (uv) as 1 0 ka for some integer k € Z, we see from the 

conunutativity of the diagram below with b = b, 

H(VX (,-O);) 

"restriction" I "restriction" 
* 4, 

H' (Fb ,Fb O;Z) H''(b x (P,&'-O);Z) 

that (1 0 ka)JI(b x (,"-O)) = a. Hence k = 1. Therefore for any 

b  V, (h*(u))I(b x (R',-O)) = (10 cc) I(b x (I,["-O)) a. By the 

commutativity of the above diagram again, h(u) = a. Equivalently, 

hb: b x Fb preserves orientation, as was to be shown. 

Theorem 6.2 shows, among other things, that every real vector 

bundle t is Z2-orientable. The following proposition gives a criterion 

for orientability in terms of R-orientability. It is my pleasant duty 

to thank Prof. K. Varadarajan who helped me with the following 

proposition. 

Let U(R) denote the group of units in R. 

PROPOSITION 6.6 

Let t be a real vector bundle of rank n over B and R a commutative 

ring with the property that U(R) is a group with two elements ± 

Then is orientable if and only if is R-orientable. 

Proof: 

From the comments in an earlier paragraph we see that to prove the 
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proposition we have only to show that if 9 is R-orientable, then it is 

Z-orientable. 

Assume that 9 is R-orientable. Let {u} be an R-orientation on . 

Thus u is a generator of H"(Fb,Fb ; R) R for each b E B. Further, 

given b e B, there exists an open set N in B with b E N and an element 

N - •, ., ,., satisfying = for all c E N. We N c 

assume, as we may, that tIN is trivial. Let 8 - N x F' yield 

a trivialization of 91N. 

Let (NT) Ter denote the path components of N, so that H°(N;R) R 

for each T E F. Choose a generator e' E H1(I,I-O;Z) Z. Then 

e  = e'X ... Xe' e tE'',-OZ) is a generator of H"(I, RZO;Z) Z. 

Using the isomorphism H°(N..;2) Xe X I,NT x (E"-O);Z) and 

xr*(e ) 
H(Nr x I , NT x (R n_0)  (see p.106 of [32]) we 

see that H'(N,1, X I , NT x (-O); R) V R. Let Or = 8 Iw '(N). Then 

8: En(Nr xRx,Nr x (I-O);Z) 

8: fi"(Nr x I,Nr x (&-O); R) 

isomorphisms. Identifying Ht1(w1(N) , i( 1(N) ; R) 

H"(7r1(Nr) , 7r'(Nr);z) and 

7r'(N);R) are 

with 

H H'(71(N),i'(N );R) we see that u = 11 4 where 
° TEl 

4 E Hn1(l(NT), 7r01(N);R) R is an R-generator for 11. Since 

r : Z i R maps U(Z) isomorphically onto U(R), we see that there 

exists a unique generator z u.. 

property that r*(uZ  R ) u,. 

in H'(7(' (Nr) ,w '(Nr);z) Z with the 
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For the same reason as above, there exists a unique generator u in 

H'(Fb ,Fb O;Z) 2 with r*(u) = u for each b E B. We claim that the 

assignment of u to b for each b in B is a Z-orientation of . In fact 

consider the element u = if 4 in if H' (7r'(Nr) ,7i'(Nr); 2) 
Ter TEl 0 

H'(ii1(N), 7r 1(N);Z). Clearly, we have r(u) = u. From the 

connnutativity of the following diagram 

* 

H" (F , F ; Z) 

r*! ° c1 c,o 

H(7r'1(N),7r01 (N);R) C Hn(F F0;R) 

for any C E N, we see that rp(u) = u. But 1(u) is a generator of 

H' (F ,F;Z) Z. Since u is the unique generator of 

H'(F,F0;Z) 2 satisfying r(u) u we obtain (u) u for all 

c E N. This completes the proof of Proposition 6.6. 

We are now ready to prove the following main theorem of this 

section. 

THEOREM 6.7. 

Let 9 be a real vector bundle over an arbitrary base space B. Then 

is orientable if and only if w1() = 0. 

Proof: 

Assume that has rank n ≥ 1. We know that is always 

2 
?2-orientable and that there exists a unique element u 2 E H"(E,E0;22) 
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with the property that Jb(U 2) is the non-zero element of 

H"(Fb,Fb;22) a Z 2 for all b E B. Then, by definition, 

w1() = # 1(Sq1 u 2) where # : H1(B;22) 1H 1(E,E;Z2) is the Thom 

isomorphism. Thus w1() = 0 if and only if Sq1 u 2 = 0. Consider the 

exact sequence 

S S 
0 — p 22 Z4 --. - i 0 (i) 

where s(l) = 2 and s is the canonical quotient map, that is s(l) = 1. 

Then Sq': It(E,E0;Z2) —, It' 1(E,E0;Z2) is same as the connecting 

homomorphism /3 in the exact cohomology sequence 

H"(E,E0;22) ?(E,E;Z4) * HXI(E,E;22) 

10 P H 1(E,E;Z2) ... (ii) 

corresponding to the coefficient sequence ( i). Hence 

2 
w1() = 0 /3(u 2) = 

u E H'(E,E;Z4). 

__ 22 24 
0 u 6 (u ) for some element 

2 
Assume that w1() = 0, and choose an element u E H"(E,E0;24) with 

2 
G*(u 4) = u . Under s : Z4 -0 Z the only elements of 24 that get 

mapped onto 1 E 22 are ±1 of 24 and they are the multiplicative units 

2 24 
in the ring 24. Define Ub = j(u ) for all b E B. From the 

commutativity of the diagram below, 
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H" (E , E;Z 4) 

6 * 

H"(E,E0;Z2) 

* 

H"(Fb,Fb;Z4) 

* 16* 
Jb H"(Fb,Fb;Z2) 

and the facts H"(Fb,FbO;24) Z; H"(Fb ,Fb, O;Z2) we see that ub 

is a generator of H"(Fb,Fb 0;Z4) for all b E B. This shows that 

Z4 

z 
the assignment of u  to each b in B is a Z4-orientation of . Since 

TJ(Z4) = {±l}, it follows by Proposition 6.6 that 9 is orientable. 

Conversely, assume that 9 is orientable. Then by the Thom 

z 
Isomorphism Theorem, there exists an element u e H"(E,E0;24) with 

* (U z4 
j 4) a generator of H"(Fb,FbO;24) for all b e B. Then ei(u ) is 

the unique non-zero element of H"(Fb,FbO;Z2). The coinmutativity of 

the above diagram shows that the element G*(u 4) E H"(E,E0;2) has the 

property that js(u4) is the non-zero element of H"(Fb,FbO;22). It 

follows therefore that w1() 0. 

This completes the proof. 

Example 68. 

Let L denote the Alexandroff half line and g the tangent bundle of 

L+ with respect to some smoothness structure on L+. Then C is an 

orientable line bundle as can be seen either directly or by using 

Theorem 6.7. But is a manifold that is not paracompact. Hence 

does not admit a Euclidean metric. Since clearly every trivial vector 
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bundle admits a Euclidean metric, 9 is an example of a line bundle that 

is orientable but not trivial. 

The following theorem gives another characterisation of 

orientability of a real vector bundle 9 over an arbitrary base space B. 

THEOREM 6.9. 

Let t be a real vector bundle of rank n 1 over an arbitrary base 

space B. Then 9 is orientable if and only if the line bundle A() is 

orientable. 

Proof: 

By Theorem 6.7 we need only to show that w1() = 0 if and only if 

w1(A')) = 0. In fact we will prove that w1() = w1(A')). By 

Theorem 6.7 and the Whitney product formula, again, this is equivalent 

to showing that A() is orientable. Let b 6 B. Let v1, ... ,v be 

any basis for F . Then the orientation of the vector space determined 

by the ordered basis v1A ...,.. V is independent of the 

choice of the basis v1, .... v of Fb, and hence orients F  W i1XI (Fb) 

canonically. 

Let ' = A"(), E' = E('), 71' the projection of ' and Fb the 

fibre, F  4b' of 91 over b for each b € B. Let b be any element 

of B. Choose an open set N with b0 € N and tIN trivial. Let 

h : N x R n i 71'(N) be an explicit trivialization for CIN. Then 

h': N x 1n+1 ir' 1(N) is defined by 

h'(b,x,y) = (h(b,x), I1"(h)(y)) for b e N, x E y € R, where 

hb = h1bxRn and A'(hb) : b x 4'(Fb) is the map induced by 
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h,0. Note that h' is orientation preserving, that is, h, maps the 

standard oriented basis of b x R n+l = b x (R' onto the 

canonically oriented basis of F1 for each b E N. This implies that ' 

is orientable, completing the proof. (See Remark 6.3) 

We record the following fact established in the above proof as a 

lemma. 

ILE!'44A 6.10. 

Let g be a real vector bundle of rank n over an arbitrary base 

space B. Then w1() = 

Example 6.11. 

Let be a real vector bundle of rank 3 that admits a Euclidean 

metric. Then 42(e) 0 4(), as vector bundles. 

Proof: 

Let ' 43() Then admits a Euclidean metric. It is easily 

verified that the map (x 0 su) ^ (y 0 tu) st(x ^ y) for x 0 su, 

y 0 tu of 0 and u a unit vector (with respect to some Euclidean 

metric on ') is a bundle isomorphism. Thus A 2 () 2 A ( 0 '). Since 

0 ' is orientable by Lemma 6.10, we see that, according to 

Corollary 2.4 

Hence 

A 2 (9 0 9 0 

A2() 0 
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%7 The Splitting Principle.  

In this section we continue to use the notations of U6. 

Let 9 be a real vector bundle of rank n ? 1 over an arbitrary base 

space B. We construct a fibre bundle P() over B with fibre space 

RP n-1 as follows. Denoting both the fibre bundle and its total space 

by the same symbol P(), P() = U {[ x] x E Fb O}. Here [ x] denotes 
beB 

the 1-dimensional subspace of F  spanned by x, for x E Fb,o. Thus P() 

is the set of all equivalence classes of E under the equivalence 

relation: x .... x' for x,x' E E0 if and only if it0(x) = 7r 0(x') and 

x = tx' for some t C IR - {0}. P() is then given the quotient 

topology. The map p : P() B induced by w is the projection of 

the bundle P(). Clearly p-1 (b)IP 1 for each b E B. The 

GL(n)-action on induces a GL(n)-action on P(). P() is called the 

projective bundle associated to 9. 

We now assume that g possesses a Euclidean metric. Consequently 

the induced bundle, also possesses a Euclidean metric. Consider 

the canonical line bundle ' over P() whose fibre over a point 

[x] E P() is the vector space [xi. Clearly is a subbundle of p*()• 

Since p*() possesses a Euclidean metric, has a complementary 

subbundle z' of rank n - 1. Thus p(). 

Remark 7.1 

More generally, given a Euclidean vector bundle 9, and a flag 

manifold G(p) with IMI = n = rank 9, one can associate with it a fibre 
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bundle G(p)() called the G(p)-bundle over B associated to C, with 

fibre space the real flag manifold G(M). There exist canonical 

n.-plane bundles ti, 1 i s, over G()() where ,u = (n1 .... , n), 

sastisfying the following relation: 

p' where p is the projection p : G()() B. 

The main theorem of this section is the following: 

THEOREM 7.2. (The Splitting Principle.) 

Let t be a Euclidean vector bundle of rank n over an arbitrary base 

space B. Then there exists a space B' and a map f : B' P B such 

that f*() splits as a Whitney awn of n line bundles gl,•••'n and 

f*: H*(B;Z ) H*(BI;Z2) is a monoinorphism. 

f': B' B or, by an abuse of terminology, B', will be called a 

splitting bundle of in this case. 

In order to prove the above theorem we need the following form of 

the Leray-Hirsch Theorem. 

THEOREM 7.3. 

Let p X B be a locally trivial fibre bundle over an 

arbitrary base space B with, fibre F. Let K be a field. Suppose that 

there exist finitely many elements X1 ,... ,X E H*(X ; K) such that 

forms a K-basis for H*(p_l(b);K) for each b E B, 

where 'b p 1(b) i X denotes the inclusion of the fibre over b. 
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Then 

# : H* (B ; K) 0 H* (F ; K) H* (E ; K) defined by 

0 a) = p*(y) u x is a K-isomorphism. 

Here a1 = i(x.), 1 i r, under the identification of F with p-1 (b) 

for some b E B. 

Method of Proof: First one proves the above theorem for product 

bundles where p : X B is the first projection, X = B x F. Then, 

using an argument involving a Mayer-Vietoris sequence, one proves the 

theorem for bundles where B = B1 u B2 and the theorem is known to be 

valid for p : p 1(B1) B, p1 = p1p 1(B1), i = 1,2. An obvious 

induction shows that the theorem is valid when B = B1 u ••• u B  and 

the theorem is known to be valid for p1 : p'(B1) i B1, 1 i k. 

Finally, in the general case one uses local triviality of the bundle 

and the fact that, since K is a field, H1(B;K) is naturally isomorphic 

to the inverse limit, urn H1(C;K), of H'(C;K) as C runs through all 

compact subsets of B. 

Remarks 7.4. 

The hypothesis of the above theorem can be weakened. It is easy to 

see that the theorem still holds if one assumes only that 

.* .* *-1 
forms a K-basis for H (p (b);K) for some b in each 

path component of B. 
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PROPOSITION 7.5. 

Let 9 be a real vector bundle of constant rank n over an arbitrary 

base space B. Let a = w1(') where is the canonical line bundle over 

the projective bundle P() of 9. Then H*(P();Z2) is an 

H*(B;Z2)_module freely generated by the basis elements 

where ya = p*(y) u a for y e H*(B;Z2), a E 

Proof: 

First we note that, denoting by 'b the inclusion of the fibre over 

b E B into P(g), i() is the line bundle over p '(b) = P(Fb) P() 

= RP n-1 whose fibre over [x] E p 1(b) is the one-dimensional subspace 

[x] c Fb. Therefore, up to the identification p-1 (b)i() is 

the canonical line bundle over p -1 ( b). Hence l,lb(a),...,i n-i b * (a ) 

forms a Z2-basis for H*(p1(b);Z2), since 

= ib(Wl()) = lb(a). The theorem now follows by applying 

Theorem 7.3. 

We are now ready to prove Theorem 7.2. 

Proof of Theorem 7.2: 

If rank 9 = 1, take B' = B and f = the identity map. If rank 9 = n 

2, then take X = P(). As we have noted before, p*() W z for 

some bundle q of rank n - 1 and moreover r admits a Euclidean metric. 

Further, p*(H*(B;2)) C  H*(X;Z2) is generated as an H*(B;Z2)_module by 

the basis element 1, by Proposition 7.5. Hence p is a monomorphism. 

By induction assume that there exists a topological space X' and 
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n-1 line bundles 2'•• ' over it, a map f': X' i X such that 

... n 

and that ft * : H* (X ;Z2 ) ' H(X';Z) is a monomorphism. 

Now taking B' = X', f = p ° V , and 9 = ft*(,) one easily verifies 

that the conclusions of Theorem 7.2 follow. 

COROLLARY 7.6. 

Let 9 1 k be k real vector bundles over B, each of which 

possesses a Euclidean metric. Then there exists a space B' and a map 

f : B' P B which induces a monomorphism f* in Z2-cohomology such 

that f*(•) splits as a sum of n1 line bundles, 1 I S k, where 

n. = rank 9 :1. .. 1.  

Proof: 

Follows from Theorem 7.2 by an induction on k. 

Remarks 7.7 

(I) Theorem 7.2 is usually proved under some restrictions on the 

base space. (cf. %5, Chapter 4 [33].) The theorem is used to define 

Stiefel-Whitney classes in %5, Chapter 16 of [ 22] and p.73, [ 18]. 

(ii) The assumption that t admit a Euclidean metric means that 

its structure group GL(n,) can be reduced to 0(n) C GL(n,I). If t ' is 

an (arbitrary) vector bundle over an arbitrary topological space B, we 

can only assert that there exists a space B' and a map f : B' P B 

which induces a monomorphism f* : H*(B ;Z2) H*(B1;Z2) and there are 
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vector bundles t 1 ns '71' .. . "7n-1 over B' such that the following 

are exact sequences of vector bundles: 

0 i '1i-1 0 '7i 

with 0 = f*() 17n = 0 and rank = 1; 

8 Applications.  

1 i n, 

In this section we establish formulae for Stiefel-Whitney classes 

of Ak() S'), and " 1r in terms of the Stiefel-Whitney 

classes of g, It is assumed that are all vector 

bundles over the same base space B and that each of them admits a 

Euclidean metric. 

Choose B' and a map f : B' B such that 

f*: H*(B;Z2) H(B';Z2 ) is a monomorphism and there exist line 

bundles t 1'•'n' ' i.j' i' 1 ≤ i.≤ r, where n = rank , 

n. rank z., such that 

1 f*() = 

f*() = QD 1 ljcn. " 

1 

Such a choice is possible by Corollary 7.6. Let m denote the 

rn-fold tensor product ø"@ t. 
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LEMMA 8.1 

With the above notations, one has the following vector bundle 

isomorphisms. 

(i) AS ED ('7 
lj.≤n. 1j1 e•••ø 
11 

li:Sr 

(ii) For 1 k ≤ n, f*(4k()) ns ED  (. e..® ). 
lLl<<ikfl '1 

(iii) For any k ≥: 1, 

f*(Sk()) k k 

0-5k 1 kk 

• .-t-k r =k 

Proof: 

(i) follows immediately from the fact that the tensor product 

distributes over Whitney sums. 

(ii) follows from the repeated application of the formula 

W A'(a) 0 4"(18) 
i+j=k 

and the fact that A°(') C, ', and all other exterior powers 

are zero for a line bundle '. 

Note that the symmetric power Suh1(?) of a line bundle ' is bundle 

isomorphic to the rn-fold tensor product m, for m 1. Hence, using 

the formula ( cf. Corollary 2.2(u)) 

Sk(a ffi/3) S'(a) 0 Si  (See 2) 
i+j=k 
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we obtain 

f*sk() sk(1  ... s 

k k 

Ok1, ... . k≤k 

k 1 +...+kk r =k 

This proves ( iii). 

Let 1 k n, denote the unique polynomial in the variables 

for which the following defining relation 

% k °1'"'' n = 11 (1 + x. + ••• + x. ) 
lsil<<ikn -1 

holds in Z2[x1,...,x]. Here o denotes the 1th elementary symmetric 

polynomial in the indeterminates x1,...,x. Similarly we let 

n,k 1, denote the unique polynomial defined by the relation 

5n,k(0l0n) = II (1 + k 1 x 1 + + k x rr 

•+k=k 

in Z{x1,.. ., x]. 

Let a.(i) denote the j th elementary symmetric polynomial in 

indeterminates y 1, . . 

polynomial 

Then it is easily seen that the 

H H (l+y1++y ) rj 
li≤r l≤j.≤n 1 r 

i i 

in Z 2 ij [y: 1 :5j ni l 1 i in 1 r} is symmetric in y 1,...,y and thus 

uniquely expressible as a polynomial in the variables 

1 j n.1 , 1 i r. Let p denote the unique polynomial 
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defined by the relation 

II (l+Y1i+3i) 

11 

Examples 8.2 

(i) q 1 It (l+x1)1+o1 +'"+a. 
n lin 

q32 = 1 + + 02 + 0102 + 03 

ii (1 + y + y1) 
l≤1≤n 

= (1+) fl +(1) fl-4oI ••• 

n 

where is the ith_eient.y symmetric polynomial in 

(iv) Define 4) to be 
n n 

Then 4) [ It (l+x 
1≤i<j≤n I jJ 

= Ii. (l+x.+x)2 
li<jn 1 j 

= ( ,2)2 

2 

since 2x. = 0. 
1 

yl, . .. ,yn. 

We are now ready to prove the following main result of this 

section. 

Let w1 denote w.() and w.(j) = w.(q.). 

THEOREM 8.3 

With the above notations, 

(i) w( 1ø ••• ® ' r = 
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(ii) w(A1 )) = ) 
n 

(iii) w(Sk()) = sn k(wl ,... ,wfl ). 

Proof of ( ii): 

By Lemma 6.10 and the Whitney product formula we have 

w1(. 1 e . ) w1('.  W s 

w1(. 1 ) + ••• +w1(. ). 
1 

Therefore, writing x = w1() for 1 I n, 

(*) w('.  0 0 . ) 1 1 + x. + + x. 
1 1 

By naturality, another use of the Whitney product formula, Lemma 8.1, 

and (*), we now find 

= w(f*i()) = w(@(. 1 0•'@. )) 
1 

= H (1 + x. + ••• + x. ) 
11 

= 

Since f* is a monomorphism and since 

w(A k(g)) = 

(i) and ( iii) are established similarly. 

Remarks 8.4 

= 0., 
1 

it follows that 

Theorem 8.3 ( i), ( ii) and analogous formulae for Chern and 

Pontrjagin classes are proved in ( 7] using group representations and 

the description of characteristic classes in terms of root systems of 

suitable Lie groups. It may be noted that their proof applies for a 

suitable class of base spaces for which the classification theorem for 
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vector bundles holds. Exercise 7C in [ 32] gives another proof for PM,n 

that holds for paracompact base spaces. The above proof, which holds 

for any bundles admitting a Euclidean metric, parallels the proof of an 

analogous result for complex vector bundles given in %4.4 page 63, 

of [ 18]. 

To the best of the author's knowledge, the formula for w(Sk()) is 

not found in standard references. 

In view of Theorem 8.3, Examples 8.2 ( i) - (iii) can be rewritten 

to give formulae for Steifel-Whitney classes of vector bundles obtained 

from given vector bundles by applying 1, S  or by taking tensor 

products. Thus, by Example 8.2 ( ii), w(A2()) = 1+ w + w2 + w1w2 + 

for a three plane bundle 9 (writing w() = 1 = w1 + w2 + w3). We 

conclude this chapter with the following formula for w(A 2(c)) for an 

oriented four plane bundle t. 

Example 8.5. 

Let t be an orientable vector bundle of rank 4. Then 

w(A2()) = 1 + w + w (again w. W2 3 ()). 

Proof: 

By Theorem 8.3, w(A2()) q42 (0,w2, w3, w4).Hence, it suffices 

to compute q42 modulo the ideal <ai> generated by Cl. Equivalently, 

we let a x1+ x2+ x3+ x4 = 0 in the computation of 

14,202,03,04) = q42(0,o2,a3,a4). 
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Now q42 = if (l+x + x) 
li<j4 

= [ ff (l+x+x ). (l+x1+x4)(l+x2+x4)(l+x3+x4) 
1ijS3 ' ' 

(1+x +x )1 (1+x2+x3)(l+x1+x3)(1+x1+x2) 
LSi<j≤3 ' 

by substituting for x4 from the relation x1 + X2 + x + X4 = 0. Thus 

q4,2   + x. + x.) 2 
LSi<j3 1 J 

2 ,4 ,2 •2,2 ,2 
q321+o1+o2 + 0102+03, 

where a' = a(xi,x2,x3), by Example 8.2 ( ii) above. By a 

straightforward and easy computation, or due to symmetry in x1,x2,x3 

and x4, the a 'a can be replaced by a = a1(x1,x2,x3,x4 ). Since 

= 0 this yields 

q4,2 = 1 + 0 + 02 2 3 

Remark 8.6 

By Example 8.2 ( iv) and the above example, for an oriented 4-plane 

bundle , one has w(9 0 (1 + w2() + w3())4. This is in 

agreement with the formula for announced in [30]. The direct 

computation of is very difficult. Since 

17 0 q (ri 0 0 (z 0 A4 (17)) for any four plane bundle j7 and since 

rl 0 is always orientable (see Lemma 6.10), we can compute 

w(r7 0 z) using Examples 8.2 ( iii), ( iv) and the above formula for 

Indeed, in their application, r = T84. Thus the above formula 

simplifies the computation of w( 84 0 T84) greatly. 

q4 2 
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CHAPTER THREE 

FLAG MANIFOLDS 

%9. Introduction.  

That the only stably parallelizable real Grassmann manifolds are 

the obvious ones, namely, G1(R2), G1(R4) G3(R') and G1(! 8) G7(U 8) 

which are all parallelizable, was first noted by T.Yoshida [46]. A 

proof using only elementary concepts and results from K-theory that 

also covers the complex and quaternionic Grassmann manifolds was found 

by Trew, Zvengrowski [45]. In this chapter we determine exactly which 

of the real, complex and quaternionic flag manifolds are stably 

parallelizable and parallelizable. See Theorem 11.1. Recently 

Korba [24] has obtained the same results for real flag manifolds, 

where the negative results are based on computations of Stiefel-Whitney 

classes. 

In § 10 we state, without proof, some known results which will be 

made use of in the proof of Theorem 11.1. In % ll we prove the main 

theorem of this chapter. In % 12 an explicit trivialization for the 

"classical" real flag manifolds is given. 

The results of this chapter appear in [ 37]. 

%lo. Summary of Known Results.  

First we introduce some notations. F will denote either the field 

of real numbers, or C of complex numbers, or the division ring 1 of 
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quaternions. Denote by p a sequence (n1,...,n5) of positive integers, 

with s ≥ 2.. Denote by pr the subsequence (ni  .... nr), for 1 < r S s. 

We write ' ar' = n + + 1r and n = IpI. 

FG(p) denotes the F-flag manifold FG(n1, ... , n) and will be called 

the F-flag manifold of type p. The notation GF(nl,... , n5) for the flag 

manifold FG(p) is used by many authors. When F = J, we write G(p) 

instead of G(p). When p = (it .... l), FG(p) are the so called 

"classical" flag manifolds. 

Note that there are s canonically defined F-vector bundles 

over FG(p), with rank g(p) = n for 1 i s. The 

total space of p) is {(A, x.') I i..' 6 A = (A1,...,A5) r= FG(p)) 

c FG(p) x F" and the fibre of p) over a flag A = (All .... As) 6 FG(p) 

is the F-vector space A1. In case s = 2, it is customary to denote 

and t (n1,n2) by and respectively (see p.9). 

Denoting F-vector bundle isomorphism by F it is clear that 

(p) W W (p) F nCr' 

where nc ' denotes the trivial F-vector bundle of rank n. 

The following theorem is due to Lam. See Corollary 1.2 of { 26}. 

Let Z(F) denote the centre of F. 

THEOREM 10.1 

The tangent bundle r '(p) of FG(p) is isomorphic to 

-F F 
ED OF 

L≤i<jSs J 
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as Z(F)-vector bundles. Here j denotes the "conjugate" vector bundle 

of t. 

Let us now focus on the Grassmann manifolds, the case s = 2. In 

this case the above formula gives the familiar description, 

where r F denotes the 
n,k 

F F F 
T l S 
n,k n,k F n,k 

tangent bundle of Gk(F) = FG(k,n-k). The 

following theorem, due to Trew and Zvengrowski [45], will be made use 

of in the proof of Theorm 11.1. 

THEOREM 10.2 

The only Grasamairn manifolds that are stably parallilizable as real 

manifolds are G1(F2), G1(I 4) G3(I 4), G1(8) G7 (I 8), where F = 

or II. 

The above theorem is proved by imbedding FPr1 in Gk(F') in a 

natural way and showing that the pull back of the tangent bundle 

is not stably trivial, except in precisely the obvious oases noted in 

the theorem. 

Let Vflk denote the (real) Stiefel manifold of orthonormal k-frames 

in the Euclidean space I, with standard inner product. Let Xn,k be 

the projective Stiefel manifold obtained from Vn,k by identifying each 

a = (vl,...,Vk) E Vflk with -a (-vl,...,-vk) in Vn k Xflk is just 

the homogeneous space 0(n)/{±Ik}} x O(n-k). 

Let p : V X fl,n denote the double covering map that maps 

a E Vuk onto [a] = {±a} in Xflk. Let denote the associated line 
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bundle over Xflk. By Theorem 3.2 of [ 26] the tangent bundle of Xflk is 

stably equivalent to nk . One can use the following proposition to 

decide the stable parallelizability of Xflk in many cases. For further 

results regarding (stable) parallelizability of Xnk, see [4]. Also 

see Theorem 14.5. 

PROPOSITION 10.3 

Let k < n, and let N = min{j I n-k < j n and () 1 mod 2}. The 

cohomology algebra H*(X k; Z2) is isomorphic, as a Z2-graded algebra, 

to 

(Z2[Y]/N) 0 V(Yk ' N-2''N' ' 

where y = w1('), and V(Ynk,...,YN_2,YN,...,Yfl1) is a suitable 

Z2-algebra which has {yfll ... yflhCjl I 0 or 1 for 1 S i :9 k-11 as an 

additive basis and deg y= j. 

Proof: 

The proof of this proposition can be found in [ 13]. 

Let Mm, N" be smooth paracompact manifolds. Let f : M N be a 

smooth map. f is said be an immersion ( resp. submersion) if 

(if) : TM i Tf N is a monomorphism (resp. an epiinorphism) for 

all x E M. Here TM denotes the tangent space to M at x, and ( Tf) x is 

the derivative of f at x. 
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Note that if f : M N is an immersion, then f*T(N) contains 

r(M) as a subbundle and that if f is a submersion f*r(N) is a subbundle 

of r(M). Let v(M) denote the normal bundle in the former case and the 

"vertical" bundle in the latter case. Thus f*r(N) r(M) S v(M) when f 

is an immersion and, r(M) f* ( r(N)) v(M) when f is a submersion. We 

have the following lemma. 

LEMMA 10.4. 

Let u(M) be trivial. Then M is stably parallelizable if N is 

stably parallelizable. In case f is a submersion and rank v(M) 1, M 

is parallelizable if N is stably parallelizable. 

Proof: 

Let k = rank z.'(M). Let N be stably parallelizable. 

In case f is an immersion, we have 

C f*(T(N)) szs r(M) su r(M) S kC. 

Hence M is stably parallelizable. 

In case f is a submersion, we have 

r(M) f*((N)) ifi z(M) f*((N)) 6 kC f*((N)) 

Since r(N) - 0, it follows that f*(r(N)) 0. Thus M is stably 

parallelizable. If k 1, then r(N) S IcC szs ( n+k)C. Therefore 

f*(T(N)) 6D kC is a trivial vector bundle. Since r(M) f*(r(N)) * kC, 

it follows that, in this case, M is parallelizable. 

The above lemma is used to obtain results on stable 

parallelizability of flag manifolds. 
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all. Stable Parallelizability of Flag Manifolds.  

In this section our aim is to prove the following theorem. 

Notations are as in the previous section. 

THEOREM 11.1. 

Let a ≥ 3, p = (n1,... , n). Then, 

(i) FG(p) is stably parallelizable when 

in this case, parallelizable only when F = I. 

(ii) If n i > 1 for some i, then FG(p) is not stably 

n S = 1, and, 

parallelizable. 

Note: The case s = 2 is just that of Grassmann manifolds, for which 

the result is known by Theorem 10.2. 

Proof of ( i): 

Let p = (n1,...,n5) with n1 = 1. The stable parallelizability of 

FG(p) has been noted in [26]. The parallelizability of RG(p) 

O(n)/O(l) x x 0(1) follows from the fact that the quotient of a 

Lie group by a finite subgroup is parallelizable [p.502, 8]. However, 

an explicit trivialization for the tangent bundle of RG(p) is 

constructed in % 12. To prove that FG(p) is not parallelizable for F = 

C or IN, we show that the Euler characteristic in these cases is 

non- zero. Note that wn: FG(p) F? 1 a FG(n-1,1), the projection 

map that sends to A E F?' 1, is the projection of a fibre 

bundle with fibre FG(p 1). This bundle is orientable for F = C or 1H . 



48 

Further, (FP") > 0 for F = t,Il and in ≥ 1. Using induction and the 

multiplicative property of Euler characteristic we see that ( FG(p)) > 

0 for F = t or II. 

Proof of ( ii): 

Since FG(n1,...,n) FG(n ,...,n1 ) where {i {1'... 's) = {l,...,s} 
1 S 

we assume, without loss of generality, that n1 ?•? n. Now let 

> 1. By Theorem 10.1 one has 

r' ED jF (p) Z F (,) 
ii<jss 

Now consider the inclusion i : FG(p5_1) FG (p) which is 

I I i'_ii fl 
induced by the identification F'' F' S F S . Clearly one has 

the following isomorphisms of F-vector bundles: 

(P.) for 1 i s-1 

and j*( F()) 

Therefore, denoting stable equivalence of Z(F)-vector bundles by , 

(p) 0 
li<jSs 1 3 

(PS-1)  0 F() [ F )0n FJ 
1< -1 1 1<-1 1 S_ S  

F -F -F F 
_ r (P S-1 since W g.(p -1 I 

lis-1 1 S S 

Let j denote the composition of inclusions 

FG(p2) . ... FG(p). 

By applying i successively, we obtain 

.* F F 
j (r (ii)) • 

Now ( ii) follows from the negative results on the stable 
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parallelizability of Grassmann manifolds except when F = I, n2 = 1 and 

n1 = 3 or 7. See Theorem 10.2. 

In the (3,1,1) or (7,1,1) cases, consider the double covering map 

G(n-2, 1,1) 

where p([a]) = ({v1,v2}1,v1,v2) for a = (v1,v2) in V 2, 

[a] = {±a} e X 2. 

As for any covering map, 

p*(rI(n_2,1,l)) T(X2) 

By Proposition 10.3, and using the fact r(X ,2) 2n, it follows that 

w2(X 2) * 0 for n = 5,9, (since [1],[1] 1 mod 2). Hence X 2 is 

not stably parallelizable for n = 5,9. Consequently, G(3,l,].) and 

0(7,1,1) are not stably parallelizable. This completes the proof 

of ( ii). 

Remark 11.2. 

The top Chern class of CG(l,...,l) is its Euler class. Since the 

Euler characteristic of CG(l,...,l) is non-zero it follows that the top 

Chern class of (G(l,...,l) is non-zero. Hence (G(l,...,l) is not 

stably parallelizable as a complex manifold. 

Remark 11.3. 

In the case F = I, many of our results follow from the work of 

Miatello-Miatello [ 30] by considering the covering map f : 

that forgets the orientations. However there are 

numerous cases where (n1,...,n) is stably parallelizable and hence 
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gives no information about the stable parallelizability of the 

corresponding unoriented flag manifolds G(n1,...,n). (See 115 for the 

notation 

112. Parallelizability of G(l...,l).  

We conclude this chapter by constructing an explicit trivialization 

for the tangent bundle r(l,.  of the "classical" real flag 

manifold G(1,.. .,I). 

For each pair of integers k,, 1 k < L n we will construct a 

tangent vector field and show that these (n) vector fields are 
everywhere linearly independent. Since dim G(l, . . . , 1) = [n), the 

manifold is therefore parallelizable. 

Let a = ([a1]...[a]) e G(l,...,l) where {a1,...,a} is an 

orthonormal basis for R, and [a1) = [-a1] = {a1, -a1). Define If as 

follows: Writing a1 in E tR' for 1 I 

1° (a) = IV (a. ij a. - a a )a. 0 a. 
kk L ikj k 1 j 

li<jn 

for 1 s k < n. 

It is clear that ?kL: G(l,...,l) 1(l,...,l), the total space 

of r(l, ... , 1) z W 9 1 0 . is well-defined and continuous. 
J 

Now consider the homomorphism f ED A. 0 A. 
li<jn 1 J 

defined by 

f(a. 1 3 0 a. 1 ) 3 = a. , a., 
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where A. = Ia.. Since {a1, . . ,a} is an orthonormal basis for En, 

{a. A a. 1 i < j n} is an orthonormal basis for 

Therefore f preserves inner products and is an isomorphism. Now 

= - a.a.k)a. A a 

].i<jn 

= Uk A U 

where U1K = Z a.ka. = Z a.ka.e m = Z 6km e = ek , {e1,...,e} being the 

standard orthonormal basis for E'. Therefore 

k < L n} {ek A  eLI 1 k < L n} 

2 .. n is an orthonormal basis for ii (u< ). Consequently 

I 1 k < L n} is an orthonormal basis for the tangent space 

at a to G(1,...,l). Since a E G(1,...,1) was arbitrary, it follows 

that 'kL' 1 5 k < L n} is everywhere linearly independent. 
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CHAPTER FOUR 

FLAG MANIFOLDS AND 'thliIR PARALLELIZAB ILITY. 

%13. Introduction.  

The parallelizability of oriented Grassmann manifolds is known by 

the work of Miatello-Miatello [30]. Their results are based on 

computations of Stiefel-Whitney classes involving Schubert calculus, 

and techniques from the theory of Lie groups. The oriented flag 

manifolds were also considered in [30). 

In the present chapter we consider the wider class of flag+ 

manifolds. With a few exceptions, the question of stable 

parallelizability and parallelizability for these manifolds are solved. 

These results include those of [30], and the proofs are generally based 

on more geometric and conceptually simpler methods. 

In t14 some well-known results that will be made use of in the 

subsequent sections of this chapter are stated without proof. In rj15 

flag manifolds are defined. These manifolds first appeared in 3 of 

[26]. Here we establish some properties of these manifolds which will 

be made use of in U17. U16 deals with (stable) parallelizability of 

oriented Grassmann manifolds. The stable parallelizability results are 

i obtained for most flag + manifold n % 17, and the parallelizability 

results in % 18. 
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%14 Some Well-known Results.  

Recall that a principal G-bundle T = (E,q,B) is called n-universial 

if, given any n-complex K with a principal G-bundle 9 over K, and given 

a map f : L B such that f*(T) L with L a subcomplex of K, then 

f can be extended to a map f : K i B such that f*(T) $ 9. T is 

called a universal G-bundle if it is n-universal for all n. 

The proofs of Theorems 14.1 and 14.2 below can be found in l9 of 

[39]. 

THEOREM 14.1 (Classification Theorem): 

Let K be an rn-complex, rn < n, and let t = (E,q,B) be an n-universal 

principal G-bundle with B path connected. Then the set of principal 

G-bundles over K is in bijective correspondence with the set [K,B] of 

homotopy class of maps of K into B. Under this correspondence, 

f : K P B corresponds to the bundle f*(T). 

THEOREM 14.2. 

A principal G-bundle T = (E,q,B) is n-universal if and only if E is 

(n-l)-connected; that is, ir1(E) = 0 for 1 i < n, and E is path 

connected. 

The following are well-known examples. (See [39], [32].) 

Examples 14.3 

(i) T n,n over G fl,zi fl,n is (n-k)-universal for SO(k) and T over 

Gfl k is (n-k)-universal for 0(k). 
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(ii) Took (resp. rOOk) over Gook (resp. Gook) is a universal 

bundle for SO(k) (resp. 0(k)). 

The following result, due to B.J. Sanderson [35], is used to obtain 

non-parallelizability results for Gflk. See also [ 12] and [ 19]. 

Let w be the canonical complex line bundle over (P2. Let 9 denote 

its underlying real vector bundle. Denote by y the element 

(-2C) E KO((P2). As in all, "" denotes "stably isomorphic". 

PROPOSITION 14.4 

KO(CP2) is the truncated polynomial ring Z[y] with y2 = 0. Thus 

has infinite order and 4. 

It will be seen that the class of flag manifolds contain the 

projective Stiefel manifolds X 2. The parallelizability of projective 

Stiefel manifolds, except for X128, is known from the works of 

Antoniano [ 3] and Zvengrowski [48]. See also [4]. We record their 

results here as a 

THEOREM 14.5 

(1) X4k, X8k, X16,8' X , X and X are all n,n n,n-1 2n,2n-2 

paralelizable. 

(ii) Xflk is not stably parallelizable if (n,k) * ( 12,8) and is 

not listed in ( i) above. 

Remark 14.6 

The parallelizability of Xn,n and X also follows from the fact 
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C(1,...,l) are parallelizable and X n,n n,n and X are finite coverings 

of G(l, . . . , 1). Using the fact that T(Xflk) - nk where is the 

canonical line bundle over Xflk (see flO) and Proposition 10.3, a 

Stiefel-Whitney class argument shows that many of Xflk are not 

iT-manifolds. 

%15 Flag Manifolds.  

Let p = (n1, ... , n5) be a sequence of positive integers with s ? 2, 

and 1 ≤ r s. Let p = ih1r) ' r' = n + + nr for 1 r ≤ s 

and  = II. 

DEFINITION 15.1 

The flag' manifold G(p;r) of type ( i;r) is the manifold 

Ar+i••As) I (All ... ,As) e G(p) ), where A is the 

vector space A. with an orientation, for 1 I r. When r = a, we 

require that the orientations in A1 give the vector space A1 + ... + A 

the standard orientation on so that G(p;s-l) = G(p;s). We 

write (i) to denote G(p;s). A point of G(p;s) will be referred to as 

a flag + 

Examples 15.2 

(i) When a = 2, (p) is just the oriented Grassmann manifold 

. G(n1 2 n1+n2,n1 nl+n2,n2 
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(ii) When n1 = = n5_1 = 1, (p) is readily seen to be the 

(real) Stiefel manifold V1,5_1. 

(iii) G(n-2,l,l;l) can be identified with the (real) projective 

Stiefel manifold X n,2 as follows: identify [a] E X n, 2 for 

a = (a1,a2) e V with (A,a1,Ra2) in G(n-2,l,l;l) where A = {a1,a2} i 
n, 2 

and the orientation on it being given by an ordered basis (b1,... b_2) 

of A such that (equivalently 

gives I its standard orientation. 

The flag manifold G(p;r), 1 r S s-i, is just the homogeneous 

space O(n)/(SO(n1) x ••• x SO(nr) x O(nr+i) x ••• x O(n)). The map 

f : G(;r) G(p) that maps each flag (X,.. • ArAr+l••• , A5) in 

G(p;r) to the flag (A1, ... ,A5) is a 2r-covering map for 1 r s-i and 

a 2 1-covering map when r = a. Denote by (; r) the bundle 

for 1 s i ≤ s. In case r = s-1,s we write () instead of 

Note that 9 (; r) is canonically oriented for 1 1 S r, the fibre over 

being the oriented vector space A. As for any 

covering map f*(r(,1)) = r(p;r), the tangent bundle of G(p;r). Thus we 

have the following description of the tangent bundle of G(p;r) as noted 

by K.Y. Lam [26]: 

'r(p;r) W g1(p;r) 0 
].i<jSs 

Also we have 1(z;r) nC. 

Let x(p;r) denote the Euler characteristic of G(;r). 
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THEOREM 15.3 

(i) x(p;r) = 0 if and only if there are at least two odd numbers 

in the sequence p = 

(ii) (FG(p)) > 0 for F = C, 11. 

Proof: 

(i) Since G(p) = G(p;s) is a finite covering space of G(p;r), 

x(p;r) = 0 if and only if ,c(p;s) = 0. Therefore we need only prove the 

theorem for r = s. 

When s = 2, G(p) is the oriented Grassmann manifold G , for 
n1+n2,n1 

which we have seen in Corollary 3.7, Theorem 3.6 that ((G n + ) 0 
+n 2'  

if and only if n1 is odd and n1 + n2 even. Thus the statement of the 

theorem is true in case s = 2. 

Now let s ? 3. Consider the bundle projection p : 

with p' = (n1 + n2,n3 ,... ins) where p(X1,...,X5) = (A1 + 

The orientation on A1 + A2 is determined by the ordered basis 

(a11 ,...,a1 ) where (a11 ,...,a1 ) is in the orientation 
1 21 2n 2 

of A. , i = 1,2. It is clear that the fibre of this bundle is 

SO(n1+n2) x SO(n3) x•••x SO(n) SO(n1 + n2) 

SO(n1) x 50(n2) X•"X 50(n) 25 SO(n1) X SO(n2) 

Further, since G(p') is simply connected, the bundle is orientable. 

Hence 

,((p') . ) (*) 
nl+n2 "1 
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Now assume that there are at least two odd numbers in the set 

Without loss of generality, assume that n1 and n2 are 

odd. By (*) and the fact that n1 +n ,n1 ) = 0 it follows that 

x(p;s) = 0. 

If at most one of the n 1 .' s is odd, then x(G ) • 0. 

Moreover, there is at most one odd number in the set 

Using (*) and an induction argument now completes the proof. 

Proof of ( ii): 

Let FtorM4. When s2,FG(p)FG • 
n  n2,nl 

,c(FG(p)) = ((FG(')) . ,( FG ). 
n1 n2,n1 

The proof is now completed by an induction argument. 

COROLLARY 15.4 

(i) Span G(p;r) is positive if and only if there exist at least 

two odd numbers in the sequence n1,...,n. ( ii) Span FG(p) = 0 for 

F = E, 1H. 

Remarks 15.5 

(1) Theorem 15.3 ( ii) and the case r = s of ( i) also follow from 

the fact that the homogeneous space C/K where C is a compact connected 

Lie group and K a closed connected subgroup of G has vanishing Euler 

characteristic if and only if rank of K is less than that of C. See 

Vol. 11 [ 14]. 
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(ii) Korba [ 24] has obtained Theorem 15.3 (i) and its corollary 

using the knowledge of the Z2-Poincarè polynomial of G(#). 

The following lemma will be used to show that certain 

Stiefel-Whitney classes are non-zero. 

Let be a real line bundle with a Euclidean metric over a 

connected topological space B. Let B B be the associated 

0 
S -bundle. 

LEMMA 15.6 

Let w1 = w1(). Then p*(a) = 0 for a E H*(B;Z2) if and only if a 

is in the ideal of H1(B;Z2) generated by w1. 

Proof: 

Consider the Gysin exact sequence 

uw * 
H'1(BZ) 1 H'(B;Z2) p H1(B; 2) li1(B;Z2) 

associated to the line bundle . For a E H*(B ;Z2), p*(a) = 0 

a E ker p a E Im(uw1) a is in the ideal of H*(B;Z2) generated 

by w1. 

Examples: 15.7 

(i) The only relations among the Stiefel-Whitney classes 

w. 1 = w. 1 (n,k T ) in G n,k are those that arise from the relation 

(l+w2 + w3 + ••• + Wk) • (1 + W2 + " = 1 

where w = wi(6fl,k). 
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Proof: 

We know that the only relations among the Stiefel-Whitney classes 

wj(Tfl k) in H*(Gflk;Z2) are those that arise from the single 

inhomogeneous relation w(Tflk)•wC8flk) = 1. (See, for example, Problem 

7B, [32].) 

The example now follows from Lemma 15.6 by taking ' to be the line 

bundle ,i1(r fl,n i,. .1. ) so that w1(') = w1.&. (T fl, k by Lemma 6.10. 

(ii) The only relations among the Stiefel-Whitney classes 

w(g(;r)), 1 i s, in H*(G(p;r);12) are those that arise from the 

relation 

ii'  
lSis 1 

Proof of ( ii) requires the knowledge of relations among 

which is given in Proposition 20.2, in the following chapter. The 

proof is completed by induction on r, the case r = 1 being similar to 

Example 15.7 ( 1) above. 

A more natural name for what has been called flflag+ manifold" here 

might be "partially oriented flag manifold". But this may be 

misleading since many of the flag+ manifolds are not orientable as 

manifolds. The concept of orientability of a manifold refers to its 

tangent bundle. Thus "partially oriented flag manifolds" could be 

interpreted as conveying that part of the flag manifold has been 

oriented. We think of flag + manifolds as flag manifolds with 

additional structures. The terminology we have chosen also achieves 

greater economy in space. 
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U16. Stable Paralielizability of  
k-

The main result of this section is the following: 

THEOREM 16.1 

Let 2 k n-2. Gflk is stably parallelizable if and only if 

(n,k) = (4,2) or (6,3), and is parallelizable if and only if 

(n,k) = (6,3). 

Note that in case k = 1 or n-i, S' and the solution for 

their parallelizability was obtained independently by Kervaire [23], 

and Milnor, [31]. 

We first prove the following proposition: 

PROPOSITION 16.2 

Let p = (n1, ... , n5), with n1 = n = 2 or 3 and 

= = n s = 1. Then G(p;r) is stably parallelizable if n1 = 2, 

kr; orn1 =3 and rs. 

Proof: 

To simplify notations, let us write .(p;r). As noted in % 15, 

we have the following bundle isomorphism: 

n 

Applying A 2 -functor to both sides, 

(n)9 = A2(n) A2( 

OD A 2 (9 1 )( g®g) 
1 J 
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V4 ED A 2 ED r(;r). 
1ik 1 

(*) 

The last bundle equivalence is due to the fact that A2(') = Ofor a 

line bundle , and the description of -r(p;r) noted in 915. 

Since t are oriented for 1 i k, C if rank 

A2() A32 (ti ) if rank t = 3. See %2. Therefore, if 

"1 = k = 2, k r, from (*) 

(n] kC M r(i;2) 

proving that G(p;r) is stably parallelizable in this case. 

If n1 = = n  = 3, r = s then l nC implies that 

is stably trivial since for k-i-i j a, 9j, being an 

oriented line bundle over a manifold, is trivial. From (*) we now 

obtain 

= 2 and 

In 
t2 

W 
l≤ik 1 

This completes the proof. 

We are now ready to prove the main theorem of this section. 

Proof of Theorem 16.1: 

The stable parallelizability of G4,2 (2,2) and G6 99 G(3,3) 

follow from Proposition 16.2 above. The non-parallelizability of 

follows from the fact that span a 2 = 0 as ((G4 .) * 0, by 

Corollary 15.4. By Example 3.8 Span G63 2. Since dim G63 = 9, by 

Bredon-Kosinski's Theorem 3.2 it follows that G63 is parallelizable. 

As in the proof of Proposition 16.2, we see that 
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bC A2 A2 2 A2C85 2 

Al $ 

185,2 

where rnk denotes Therefore Tnk r5,2 * 0. Thus G5,2 and 

G5 2 are not stably parallelizable. 

Now only the cases Gflk with n ≥ 6 and (n,k) # (6,3) need to be 

considered. Assume as we may that 2k n. It follows that n-k ? 4 = 

dim (P2 in the cases presently under consideration. By Example 

14.3 ( i) and the Classification Theorem 14.1, there exists a 

2 -. 

map g : CP G such that g (T ) fl 'z1 W (k-2)C, 9 being the 

underlying real 2-plane bundle of the canonical complex line bundle 

over Consequently, the following equalities hold in KO(CF'2): 

- Tn k) 

nC - 

(n - k + 2)C - 

Thus 

g*( 0 

ss g*() ® 

(9 W (k-2)C) 0 ((n-k+2)C - 

ft (n-2k+4) - 

for a suitable m. 

By Proposition 14.4, we obtain 

(n-2k+4) 9 ED inC - 49 ED 29 

(n-2k), (*) 
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where '-' denotes the equality in RKO. From (*) and Proposition 14.4 

again, it follows immediately that Gflk is not stably parallelizable if 

2k * n. 

In case n = 2k, k ≥ 4, consider the "inclusion" 

(4,4) = 8,4 G2kk = (k,k) 
- - - - - - -k4 

where j(A,B) = (X + A, B + Y) where X = 0 M 0 and 

= o S o w IR14 in IR 2k k-4 ED IR8 S k-4 it is clear that 

* •1 * - - 
i 8,4 W (k-4)C and j p8,4 (k-4). Hence 

*— 
. ® 2k,k . '2k,k 0 2k,k 

W (k-4)) 0 ' 8 4 S (k-4) 9) 

(T 8,40 '8,4  0 (k-4)C 0 8,4 W (k-4) 2C 

' 8,4 (k-4)9 0 8 (k-4) 2 

- 2 
r8,4 ED ((k-4) + (k-4)8), 

using the relation 8,4 p8,4 s 8. The above relation shows that 

G2k k is stably trivial only if G8 is. We will show that 

w( 84) * 1. Indeed, from the relation 

'r8,4 0 8,4) 8,4 0(A8,4 T8,4) 8,4 0 

we obtain 

w( 84) = (w( 84 )) 8 (w( 84 0 

Using Examples 8.5 and 8.2 ( iv) 

w( 84) (1 + w + w) • (1 + w + 

where w(78,4 )= 1 + w2 + w3 + w4. Thus 

- 4 
w8(G84) = w2. 
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To show that w * 0, we use Example 15.7(i). We have the following 

relation that generates all other relations among wi's 

(l+w2 +w3 +w4)(l+ 2 +i 3 + 4)=l, 

where w = w( 684 ). Thus the only relations among the w1s in degree 8 

are additively generated by the following relations: 

2 4 
w3w2 + w2 = 0 

2 2 
w4 + w4w = 0 

It follows immediately that w 0 0. Consequently G84, and hence 

k ≥: 4, are not stably parallelizable. 

This completes the proof. 

Remarks 16.3 

(i) The above theorem has also been obtained by 

Miatello-Miatello [30]. Their proof of non-parallelizability is based 

on computations of Stiefel--Whitney classes involving Schubert calculus, 

and Pontrjagin classes. The proof that G and G are not 
2',2 2r 2,3 

stably parallelizable for r ? 3 given in [ 30] seems to contain an 

error. The stable parallelizability of (3,.. . ,3), of which C63 is a 

particular case, required the knowledge of certain properties of the 

adjoint representation of SO(3) x •• x SO(3). Our proof is quite 

elementary in that it uses only basic properties of n-universal 

bundles. The appearance of Stiefel-Whitney classes at the end of the 

proof seems to be unavoidable. However calculations have been greately 

simplified. 
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(ii) Theorem 16.1 readily gives the solution for the stable 

paralelizability of 0nk for 2 k n-2 and (n,k) * (4,2), (6,3). In 

these two cases one sees easily that w(Gk) * 1. This proves the 

"real part" of Theorem 11.1. 
it 

(iii) Using Plucker co-ordinates one can prove that 

04,2 S2 X S2, showing that 042 is stably parallelizable but not 

parallelizable. See also [14], vol. 2, p.104. 

%17. Stable Parallelizability of Flag Manifolds.  

In this section we consider the problem of determining which of the 

flag manifolds are stably parallelizable. Theorem 17.1 summarizes the 

negative results and Theorem 17.3 the positive results. The further 

question of parallelizability is treated in the following section (see 

Theorem 18.1). These theorems solve the questions of parallelizability 

or stable parallelizability for most flag manifolds, and an appendix 

summarizing the still unsolved cases appears at the end of U18. 

Let i = (n1, ... , n) and let 1 r s. Let s 3 (when s = 2, 

G(p;r) is just the oriented Grassmann manifold whose parallelizability 

was considered in the previous section.) Since G(p;s-l) Q G(p;s) as 

noted in Definition 15.1 it will be assumed that r * s-l. Further, in 

case r = s we assume that at least two of the n. ' s are different from 

1, for, otherwise, G(p;s) = V 51 by Example 15.2 and hence are 

parallelizable by [ 26] or [48]. As in l0 we let pk 
= 

= n1+• for 1 k s, and let n = Jf. 

We state the main results of this section in Theorems 17.1 and 

17.3. 
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THEOREM 17.1 

With the above notations, G(i;r) is not stably parallelizable in 

the following cases: 

(i) r s, and {n1,. . ., n5} {2,l} or {3,l}. 

Now assume that {n1,...,n} c {2,1},{3,l} or that n  * 1 for precisely 

one value of q, 1 q s. 

(ii) Let n = = ,n = 1. (a): 1 r s-2, n. * r+l a 1 

for some i, 1 i r. (b): r s-4, and n * 1,2 for some j, 

1 j 5 r. 

(iii) n > 1 for some j, r+1 j s, 1 r s-3. 

(iv) Let r = s-2, n1 > 1 for some i > r. The cases 

{ns-i ,n a } * (1,3), { l,7}. 

Examples 17.2 

None of the following are stably paralielizable using 

(iii) and ( iv) respectively: 

(3,2,2,2) 

G(10,1,1,1;3) 

G(3,1,1,l,l;l) 

G(5,4,2,2,l;2) 

G(4,l,l,8,7;2), G(l,l,l,3,7;3) 

1,2, or 6 

(1), •( ii)(a), 
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THEOREM 17.3. 

G(p;r) is stably parallelizable in the following cases: 

(i) r = s and p = ( 2,...,2), ( 2,...,2,1). 

(ii) See also Theorem 18.1 for parallelizable cases. 

We now prove a general lemma on "inclusions" for flag+ manifolds. 

The notation is somewhat awkward and will be dealt with first. 

Let I' = (ki,...,k) t 2, be an increasing subsequence of 

I = (l,...,$). Let r' be the number of terms in I' which are r. Let 

= (mi , ... , mt) where m = k1 Thus p' is a subsequence of M. When 

r' = 0, we convene that G(p',r') = G(p'). Let I : G(p') P G(p) and 

T : G(p';r') P G(p;r) be the inclusions induced by the inclusion 

ofIhhhI = x into IR IMI= 

1 lj≤s 

n. 
where X. = {(a1,...,a ) E W I i a. = 0 if i * j}. More precisely, 

J 1i≤s 1 

A ) E 
for (A1,..., t {(A.) if j = k. for some i 

i(A1 ,... ,At) 
otherwise. 

In the case of the flag manifold G(p';r') T is defined similarly, 

with orientation on B. J for 1 ≤ j r being the same as on Ak 1 , j = k. 
1  

n . 
for some i, and the standard orientation on XJ.  ff i otherwise. There 

is a commutative diagram 

I I 1 G(p ; r ) G(p;r) 

f, I if 

1 G(p) 
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f and f' being the maps that forget the orientations. Note that f and 

V are ( finite) covering projections. Therefore 

r(p;r) 

fi * (r(pI)) r(p';r') 

as vector bundles. As in the proof of Theorem 11.1 one verifies that 

. _ * 
1 (r(p)) T(A). 

Hence, using the commutativity of the above diagram, (or directly), one 

obtains 

The following lemma is now immediate. 

LEMMA 17.4 

With the above notations, i (r(p;r)) is stably equivalent to 

r(it;r') and f*(r(p)) is isomorphic as a vector bundle to r(i;r). Thus 

G(;r) is not stably parallelizable if G(p';r') is not, and is (stably) 

parallelizable if G() is (stably) parallelizable. 

We are now ready to prove Theorem 17.1. 

Proof of 17.1 ( i): 

By assumption, there exist two numbers i and j, 1 S i,j s such 

that n i n > 1 and (n1 n) * (2,2),(3,3). Take I' = ( i,j) so that 

ml = (nn). By Lemma 17.4, and Theorem 16.1 it follows that G(;r) 

is not stably parallelizable. 
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Proof of 17.1 ( ha): 

When 1 ≤ r s-2, take I (i,s-1,$) so that r' = 1 and 

= (n.,1,1). Thus G(P';r') X  +2 2 by Example 15.2. The statement 
i , 

in this case follows from Theorem 14.5 and Lemma 17.4. 

Proof of 17.1 ( jib): 

When 1 r s-4, we may assume, from what has just been shown, 

that n1 = 6. Take I' = (j,s-3,s-2,s-1,$), so that G(',r') 

= G(6,l,l,l,l;l) = M, say. Now, consider the covering projection 

: 

where p([v1, ... , v4 ]) = ({v1,v2,v3,v4}1, Rv1,Iv2,Rv3,Iv4) for 

(v1,v2,v3,v4) V104. The orientation on {v1,v2,v3,v4} is that 

defined by an ordered basis u1, ... , u6 of {v1,...,v4}1 such that 

U19 ... ' U6 t v1,... , v4 (equivalently u1,. .. ,u6 , -v1,... ,-v4) is in the 

10 
standard orientation of I . Now since X10 is not stably 

parallelizable (see Theorem 14.5) M is not stably parallelizable. 

Again, by Lemma 17.4 it follows that G(p;r) is not stably 

parallelizable. 

Proof of 17.1 ( iii): 

When 1 S r s-3, take I' = (r+l,...,$) so that 

and r' = 0. Thus G(i',r') = G(p'). The statement in this case follows 

from Theorem 11.1 and Lemma 17.4 again. When r = s-2, the same proof 

applies in case G(n5_i,n) is not stably parallelizable. 
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Proof of 17.1 ( iv): 

We now make use of the assumption that for some i, i > r = s-2, 

n * 1. Let I' = (s-1,$). Then G(p') is not stably parallelizable 

when {n 1,n} * {3,1},{7,l} by 10.2. Consequently, G(p;r) is not 

stably parallelizable in these cases. We now prove that N = G(3,3,l;l) 

is not stably parallelizable. Let 9p = ç,(33l;l) and let 

T = r(3,3,l;l). Since g • 9 2 • 9 3 Ps 7s and t l is orientable, 

(91  and C W 9 is orientable. Since 9 is a line bundle, we 

must have A3(2). Thus (see Example 6.11) A2(2) 2 Now 

from the bundle equivalences g 1 6D 9 2 ED 9  3 and 

(7jS s, 42(e) • I1() • A2() • r 
2 3 

r4 g 1 ID 9  2 0 9 3 (D 

we see that, to show that r is not stably trivial it suffices to prove 

that w( 2 0 * w( 2 W 9 3). Now w4(2 0 0' 

By Example 15.7 ( ii), 

w4( 2 WY =w3( 2)w1(3) * 0, 

showing that G(3,3,1;l) is not stably parallelizable. By Lemma 17.4 

again, this proves ( iv). 

Proof of Theorem 17.3: 

Refer to Proposition 16.2. 
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Remark 17.5. 

The results of Theorem 17.1 for the cases r = s-i, s are known 

mostly from the work of I.D. Miatello and R.J. Miatello [30]. However, 

their proof that G and C 2r2 , r > 2, are not stably 
3 

parallelizable seems to contain an error. Consequently, there appears 

to be some gap in their proof that (6,2,2), for example, is not stably 

parallelizable. Our proof of non-stable parallelizability of flag 

manifolds in some other cases is quite similar to theirs. 

18. Parallelizability of Flag Manifolds.  

In this section we continue to use the notations of U17. The main 

results of this section are contained in the following. 

THEOREM 18.1 

Let (a,...,a, 
k m 

(i) G(p;r) is parallelizable if a = 1; or if a = 2, k < r 

m>l; orifa=3, r=s. 

(ii) G(6,l,l;1) and G(6,l,l,l;2) are parallelizable. 

(iii) (2,...,2) and (2,...,2,1) are not parallelizable. 

In order to prove Theorem 18.1 we convert the parallelizability 

problem to a lifting problem in homotopy theory. For this purpose we 

now turn to the ,i2 construction, a key tool in our work. It seems to 

have been first utilized by K.Y. Lam [ 26] to obtain immersion results 

for flag manifolds. 



73 

For p = 1,.,n5), et ii = ( (ni) n I 
[)d} where 

is the subsequence of p obtained by omitting the l's in the sequence p, 

andd{} - 
n. 

, I' 
L 12 

Lis 

= dim G(p). Let 1 r ≤ s and let 

1 = I(iI 1 p r}I. Thus L is the number of oriented components in 

each flag of G(p;r) of dimension greater than one. We define a map 

g : G(p;r) G(v;) as follows. 

Regard R IVI = R 2 as A2() For A = (11S.—JA r E G(p;r) 

g(A) = (A2(A. 1 ),...,A2(A. ), TA) 
1 - 

where TA is the orthogonal complement of A2(A. 1 ) + + A2 (A. ) in 
- 1 

R IVI  with respect to the induced inner product on R A 2(,n) Also 

note that the orientation on A2(A1 ) for 1 p L is that defined by 
p 

the ordered basis a1 a2,...,a1 .... am,...,am_l A  am of A2(A.), where 

in n, and a1,...,a is any positively oriented basis of A1 . It is 

clear that g is a well defined, continuous map of G(p;r) into G(i';). 

We now prove the following le-ma. 

LEMMA 18.2. 

With the above notations, g*(+1(z,;)) is bundle isomorphic to 

r(p;r). 
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Proof: 

Recall that r(i;r) sts ED .' (p;r) 0 9 .( r) as vector bundles. 
li<js  

Let T(;r) denote the total space of the tangent bundle r(p;r). Define 

T(p;r) E(k+l(zJ;)) as follows: For 

=...,A r E G(M;r), J is the map defined by 

0 a.) = (g(A), a1 ^ a) for a1 0 a e A1 0 A c r(;r)IA. Note 

that a1 .. a. is in the image of k+l(v;) over g(A), for clearly if 

i * j then A ^ A is orthogonal to all ,12(A1 ) = A1 A1 , 1 m k. 

Since exterior product is linear, j is well-defined. J is continuous, 

fibre preserving, and restricted to each fibre it is a vector space 

isomorphism. Therefore J is a bundle map, which covers g. Hence 

s r(p;r) as vector bundles. 

COROLLARY 18.3 

G(i;r) is parallelizable if and only if g can be lifted to a map 

making the following diagram commutative 

- ,G1l, .... l,1' "-- ' [21 
g I L d 2 J   ] +a} 

, 

G(M;r) g G(zi;) 

where 

= 

.. ,Bk) 

Proof: 

If g can be lifted to a map g as in the above diagram, then 
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r(;r) ft g*((•j;)) = (ir 0 

as vector bundles, since 7r*(g+1(jJ;)), being a Whitney sum of d 

oriented line bundles over a compact manifold, is a trivial bundle of 

rank d. 

If r(p;r) is trivial, then there exist d orthonormal sections 

* 
of g r(p;r). g is defined by 

where 

This completes the proof. 

Proof of Theorem 18.1. ( i): 

The case a = 1 follows from the fact that G(l,...,i) is 

parailelizable. See Theorem 11.1 and Lemma 17.4. 

When a = 2, k r s-i, we use Corollary 18.3. Note that 

= (l,...,1,d) and e = k. Hence G(z';L) is the Stiefel 
k 

manifold Vk+d,k. 

Let m ≥ 2. Consider the following diagram: 

1t4_,1 .1 ,v 
I ' 

- 

k+d, k 

p 

g' 

G(p';r) 
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where p' = (2,... , 2, 1,..., 1, 2) and p is the map that sends the 

k m-2 
+ . 

flag A = (A1,...,A ,A 1,...,A) to 

A). Since g(A) depends only on 

for each A e G(#; r), g defines a map g': G(p' ; r) Vk+d k 

such that g'° p = g. Now dim G(p';r) = dim G(;r) - 1 = d - 1 equals 

the connectivity of Vk+dk. Therefore there exists a map g': G(p';r) 

so that w ° = g' in the diagram above. Taking 9 = ° p, we see 

that 

rOgO ( IOp) =(it ° ') °pg' ° pg 

completing the proof of parallelizability in this case. 

It will be shown in 23 that span G(p;r) > span S in case a = 3, 

m ≥ 2, r = s-i or s. Since by Propositiion 16.2, G(p;r) is stably 

parallelizable, it follows by the Bredon-Kosinski Theorem 3.2 that 

G(p;r) is parallelizable.The cases m = 0,1 are due to Stong [42]. 

Proof of 18.1 ( ii): 

Parallelizability of (3(6,l,l;1) X82 is a known result due to 

Zvengrowski [48] ( cf. Theorem 14.5.). 

Let = and let r denote the tangent bundle of 

M = G(6,l,1,1;2). Thus 9 2 sts C. Since .1 9C, and since and 

are oriented, it follows that w1(3) = w1(4 ). Since 9 and 9 are 

line bundles, it follows that 9 3 sts 9 as vector bundles. Let 

We now have the following bundle equivalences: 
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$ 
li<j4 1 J 

( 3 $ 4)m 3 0 t 4 

vector bundles. Therefore 

r' 1 W 

vs 99 0 2. 

Hence span M 9 > span S2'. 

Since dim M = 21, by the Bredon-Kosinski Theorem 3.2 we need only 

show that r 0. In KO(M), - 2 - 3 - 8 - 2. 

Therefore 

Consider the map q : M 0 RP  which is the projection onto the 

last co-ordinate. Denoting the canonical line bundle over F!P8 by T, we 

see that q*() ri t4  = '. Since the order of T is 16 by [1], it follows 

that 16 - 0. Hence M = G(6,l,1,1;2) is parallelizable. 

Proof of 18.1 ( iii): 

The non-parallelizability of G(2, ... ,2) and (2, . . . ,2,l) follow 

from the fact that their span are zero by Corollary 15.4. 

Remarks 18.4. 

The proof of parallelizability in the case 

k r, given here is more direct than the one found in [30]. Further, 

it covers a much wider class of manifolds. For example, 

parallelizability of X222 follows from that of M = G(2,l,..,l;l) by 

2n-2 
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considering the covering map f : X2,2 _2 M which sends 

[v1,...,v22) to (LRv1, .... Rv2 2 with A the oriented 2-plane 

Ru1 + R 2 (the orientation being given by the ordered basis u1,u2 where 

u1,u2,v1,...,v22 is an ordered basis in the standard orientation on 

The proof of parallelizability of (3,...,3,l,...,1) is the same 

as that given in [ 30]. 

(ii) Theorems 17.1, 17.3, and 18.1 do not settle the question of 

parallelizability and stable parallelizability of all the flag 

manifolds. The following table indicates the types of flag manifolds, 

up to diffeomorphisms arising from the permutations of n1, . . . n and 

not known to be parallelizable. By a proof similar to 

that of Theorem 18.1 ( ii), one shows easily that ,-(ji;s-2) 16C in 

case ( a), and in case (b) r(/4;s-3) 8( 52W Similarly, in 

case ( c) r(/4;s-2) (a+l) 1. 

Table 18.5  

The following flagmanifolds are not known to be stably 

parallelizable. 

(a) G(6,l,...,l;s-2) n ? 10. 

(b) G(6,...,1;s-3) n 9. 

(c) G(l,...,l,a;s-2) a = 3 or 7, s a 3. 
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CHAPTER FIVE 

H*(Yfl,k;Z2) - A COMPUTATIONAL AID 

l9 Introduction.  

The Z2-cohomology of real flag manifolds has been computed by 

Borel [6]. In this chapter we study the relations among a set of 

algebra-generators of the cohomology algebra H*(Y n,k ;Z2), where Yn,k is 

the flag manifold n-k). 

The space Y n,k n,k is related to the Grassmann manifold G as 

follows: The map q : V G flz can be factored as 

V 
n,k n,k n,k 

where P(V1II ... ,V k) = (Rvlp CVl, ... ,Vk}) E Yn,k and 

= (AjJL 1 Ak+l) € 

It is shown here that f induces a monomorphism in Z2-cohomology and 

that the relations among the generators of H * k;Z2) have a very 

simple description. See Theorem 20.8. Thus 

f*: ll*(G ; Z,) H*(Y n,k ;Z0) can be used to decide the vanishing 

(or not) of Stiefel-Whitney classes of Gnk• Applications of the 

results of this chapter are postponed to the next. 

We remark that Hiller [ 15], Stong [40] and Hiller-Stong [ 17] have 

made use of the space Y to study the relations among the generators 

wl(r n,k ), 1 i k, of H*(G n,k ), by considering the map in cohomology 

induced by the map Y n,n n,k G that takes the flag (A1,...,A) in 
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to (A1 + + A Ak+l + ' + A) in Gflk. Using the relations 

so obtained, Hiller and Stong [ 17] derive some lower bounds for the 

immersions of Gflk in Euclidean spaces. Hiller [ 15] also obtains lower 

bounds for the Lusternik-Schnirelmann category for real Grassmann 

manifolds. 

The observation that the use of Y n,k n,n rather than Y makes 

computations comparatively much easier in the calculation of 

Stiefel-Whitney classes of Grassmann manifolds is due to 

Prof. P. Zvengrowski. 

%20. The Canonical Generators for H*(Y k2 2) 

Let A *= A' be a graded commutative algebra over Z with unit 1. 

io 

For a subset S C A*, <S> denotes the ideal of A* generated by S. Let 

A denote the subalgebra A' of A*. For a e A*, a(m) denotes the 

i≥:l 

mt11-degree term of a. Thus, 

(0) (m) 
aa +••+ a + 

with a = 0 for j > J a J, the degree of a. 

Let A** denote the commutative Z2-algebra of formal sums 

a(0) + + a(m) + " with a(m) E Am, m ? 0, where for a,b e 

() (m) = a(i)b(i) (*) 

i+j-m 

Note that if a E A** with a ° € U(A°), the group of units of A°, then 
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** * 
a has an inverse in A . We consider A as a subalgebra of A in the 

obvious way. 

Let S[X1,.. ., X] denote the subalgebra of symmetric polynomials in 

of the polynomial algebra Z2 [X1,...,X] freely generated by 

elements Xi••Xr with deg X1 = 1, 1 S i r. o.(Xl,...,X) denotes 

th 
the i -elementary symmetric polynomial in X1,.. ., X for 1 i r. If 

r is clear from the context we simply write a instead of 

a i (X1 ,... , X r ). Note that ( 1 + 01 + + a ) = II (1 + X.) gives 
.. r 1ir 

(1 + 0 1 01 + ••• + a) -1 
r 

= II. 
lSir 

= ii (1 + X + X + i ... ). 
lir  i 

This can be written as 1 + t1 + t2 + , where tm = Z X11•••Xr" the 

sum being taken over all sequences (m1,...,m) with m1 0, 

+ + m = m. We call t  = t(X1,...,X) the total symmetric 

polynomial of degree m; by convention X = 1 = a = t0. For example 

2  t2(X1 X2,X3) = X + X • 4 + x1x2 + x1x3 + x2 x3. 
Let V denote the infinite Stiefel "manifold" of orthonorinal 

n-frames in I°°. We have the universal principal 0(n)-bundle 

= (V0 BO(n), 0(n)). Note that 0(n1) x x 0(n) C 0(n) acts 

on Vn for n1 + +n5 = n by restriction of the 0(n)-action on it. 

Consider the following commutative diagram: 
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X xO(n) p0(n) 

I I 
V   VW, 

I I 
0(p) B(0(n1) x ••• x 0(n5)) p BO(n) 

Here B(0(n1) x X 0(n5 )) = V/(0(n1) x ••• x 0(n5)) is a 

classifying space for the group 0(n1) x x 0(n). A point in 

B(0(n1) x ••• x 0(n)) is a sequence A = (A1,...,A5) of pairwise 

orthogonal subspaces A1,...,A5 of with dim A = n1, and 

= A1 + + A E B0(n) = 

Taking I' E BO(n) as the base point, j is the inclusion of the 

fibre, which is the ( real) flag manifold 0(p), into 

B(0(n1) x ••• x 0(n)) (p = 

Let T denote the 1t11-canonical ni-plane bundle over 

B(0(n1) x ••• x O(n)) whose fibre over A is the vector space A1. Then 

j*(Tr ) = tr for 1 r ≤ s, and p*(T) = Let 

0(p) 

w. 1 (r) 1 w.( r r ) for 1in , 1rs. 

We state, without proof, the following theorem due to.Borel [ 6]. 

Recall that H*(BO(m);Z2) = Z2[Wl(T m' ,wmc:TQomfl 

under the algebra isomorphism that take w1(T) to Oi(Xi••Xm)• 

(cf. [ 32]). 

THEOREM 20.1 

is a monomorphism and H*(G(p);Z2) is isomorphic as an algebra to 

the quotient of H*(B(0(n1) x---x O(n)); 2) by the ideal generated by 
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elements of positive degree in the image of p. Thus 

s[x ,..., x ]e•••eS[x ,..., x I 

2 

1 n n-n+l n 
*  1 S 

H (G();Z)  + 

<S 

The Z2-Poincarè polynomial of G(p) is 

P(G(p);t) -   (l-t' 1)(l-t'')  

IT 2)  
irs 

We now prove the following. 

PROPOSITION 20.2. 

H*(G(p);Z2) is generated by the Stiefel-Whitney classes w1(r), 

1 r s, as a polynomial algebra subject only to the 

relations which arise from the relation 

11 (1 + w1(r) + •'• + w (r)) = 1. 
1<r-<s r 

Proof: 

Note that w.(r) = w.() = j* i(Tr)). Since 

{W.(rr) ' r 1 r s} generates the 22-cohomologyof 

B(O(n1) x ••• xO(n)) it follows from the above theorem that 

{w1(r) 11r' lrs} generates the cohomology algebra 

Also gts = nC gives w( 1 $ ... ) = 1. Hence 

IT (1 + w1(r) + + w (r)) 

To show that there exist no further relations among w(r)'s other 

than those that arise from (*) we proceed as follows: 

Let S[p] denote the subalgebra of Z2[X1,...,X] generated by the 



84 

elements a. 1 1 (r) = o. Ii r-l+l' ...' X (X 11 ), where rt = + ••. + n 
bu r-11+"  

1 r s, 1p 01= 0. Note that letting 

0 1 = 

1+0. + •.. + 
1 a = n H (l+X.) = H 1 { H (l+X.) 

l< 1 irs I11r_1I<IPrI  

= II (1 + a1(r)+"+o 
1rs r 

Thus the ideal I generated by the relations 

fl (1 + o1(r) + + a (r)) = 1 
nr 

is the same as that generated by (a. I LSiSn}. Therefore the Poincaré 

polynomial of S[M]/I is 

Poincaré polynomial of S[p]  

Poincaré polynomial of 

H (l-t)1 (, -t r)_]. 

- 1rs 

(1-t) 1 (lth1)-1 

P(G(p) ; t). 

Since there exists an algebra homomorphism 

r : S[] onto H*(G(p);z2) with q(a.(r)) = w(r) and since their 

Poincaré polynomials are equal, it follows that z is an isomorphism. 

Hence the only relations among w.(r) are those that arise from the 

relation (*). 

This completes the proof. 

In case ti = (1,.. ., 1, n-k), G(1) = n,k Write x1= 1( gi  for 

1 i k. Using the above proposition one can consider the 
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Stiefel-Whitney classes of as being defined in terms of x1's. 

Indeed, writing a. = a. (xl  .... xk) we have 

1 = (1 + W l(k+1) + + -kk+l if ( 1 + x.) 
liSk 

= (1 + w1(•1) + ••• + wfl k(k+l)(l + 01 + + Ok). 

Hence 1 + W1(k+l) + + W kk+l = (1 + I + + 

=l+t +...+ t + t + 
1 n-k n-k+l 

Therefore we obtain the following corollary. 

COROLLARY 20.3 

H * n k is generated by 1-dimensional classes x w1( 1), 

1 i k subject to the conditions that 

(1 + a1+ "+ Ck)(l + t1+•..+ tn_k) = 1 ( i.e. that t = 0 

for j > n-k.) 

Proof: 

From the above computation, wj(k+l) = t for 1 i n-k and 

t. = 0 for j > n-k. The corollary now follows from Proposition 20.2. 

COROLLARY 20.4 

f : Yn k Gflk induces a monomorphism of Z2-cohomology 

algebras. In fact Im f* is generated by {a I 1 I k} as a 

subalgebra. 

Proof: 

Note that f*(.f) = l k Hence 

f*(w (T )) = 0. 1 and f*( j '8nk = 
J 
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Therefore, by Corollary 20.3, Ker f* is generated as an algebra by 

w j .(8n , k for j > n-k. Since 8 k is an (n-k)--plane bundle, it follows 

that wjCoflk) = 0 for j > n-k. The corollary follows. 

Remark 20.5. 

The above corollary also follows from the Splitting Principle once 

we note that f : Y n,k n,k n,k G is a splitting bundle of 't . Compare 

[%2, 40j. 

Since the total symmetric polynomials are difficult to handle we 

need to describe the relations among the generators x1's  in H*(Yflk ;Z2) 

in terms of monomials. For this purpose we need the following lemmas. 

Let 1 k n, n 2. For 1 r k define 'n r to be the ideal of 

Z2 [Xl, .... Xk] generated by Ct(r) I j > n-r}. Here t(r) denotes the 

total symmetric polynomial We follow the convention 

that whenever we write a monomial X "• the subscripts 
1 r 

are understood to be distinct. 

LEMMA 20.6. 

I CI k for 1rk. 

Proof: 

t(r) is the coefficient of zm in the formal expansion of 

H (1+ X.) 1 = IT (1+ X. 1 z) 1• H (1+ X.z) 
lir iik r+ljk 

(1 + t1z + t 2 z 2 + ) (1 + Q1z + •• + 

• ' 
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where t = t.(k) and Q1 are some elements of Z2 [X +l ,...,Xk ]. 

Now the coefficient of zm of the expression on the right hand side 

is 

t + t Q +•••+ t Q 
rn rn-i 1 iu-k+r k-r 

Note that if rn > n-r and r m - k + r > n - k. Therefore, it 

follows that t m rn-i + t Q + + t m-k+r k-r n,k Q E I for m > n-r. Hence 

t m Cr) e I n,k for m > n-r. The lemma follows. 

LEMMA 20.7 

The ideal I contains the monomials ; X' 1 X 1; 
n,k '1 '1 12 

x' 2; ... ;x'.1 ,-2 n-r+1 n-r+i for X. 
1 i 12 '3 '1 12 r-1 r 

{i1,...,i} C {i,...,k}, 2 r k. 

Proof: 

Proof is by induction on r. 

X = t(l) E 

Now assume that 

I  n,i CI n,k , by Lemma 20.6 

n-r+2 n-r+2 € for any ( r-l) 
ri 'r-1 n,k 

distinct numbers i between 1 and k, for some r k. 
m 

By Lemma 20.6 again, tn_r+i(r) But 

n-i -r+i 
X t (r) 
1 r-1 n-r+l 

n-i n-r+i n-r+l 
X " X X + terms ,nl 
1 r-1 r n,k 

(due to the induction hypothesis). 

Hence Xr' ... • -r+l € 'nk' completing the proof. 

We are now ready to prove the main theorem of this section. 
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THEOREM 20.8. 

Let m  ≥: m be a decreasing sequence of non-negative 

integers. 

in in 
(1) The monomial x • 1 1 ••• • fl k;Z2) is non r E H*(Y--zero if and 

11  r 

only if n-j. 

n-i n-k n-i n-k 
(ii) x 1 xk = x. •• x. * 0. 

Proof: 

The "only if" part of ( 1) follows from Corollary 20.3 and 

Lemma 20.7. 

Note that d dim Yn,k = (n)  - [n-k) (n-i). Since 

it follows that there must be a monomial of degree d 

that is non-zero. By the "only if" part of ( 1), it follows that 

#0 
11 

for some sequence of distinct integers il,...,ik between 1 and k. 

Now let {j1, j} = {1,...,k). The map induced in cohomology by 

the homeomorphism Y n,k Yn,k that takes (Al, ... ,Ak+l) to 

(B1,... ,Bk,Ak+l) where B1 = A. , 1 r k, maps ,... ,x i  onto 
r r 1 k 

n-i n-k 
x. ,..., x. respectively. It follows that x. ... jk  * 0. Since 

there is only one non-vanishing class in H''(Yflk;22), it follows that 

n-1 n-k n-i n-k 
x. x = x. x. * 0. This proves ( ii). The "if part" of ik '1 

(i) now follows from ( ii). 
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(Al, .... Ak+l) E 

f*(H*(G ;Z )) 

%21. Computations in H*(Y12L . 

We continue to use the notations of %20. 

Recall that f : Y k G k denotes the map that sends the flag 

n,k to (Ak+l,Ak+l) in Gflk. In view of Corollary 20.4 

is the subalgebra generated by the elementary symmetric 

polynomimals l'•••'0 k• In this section we derive formulae for 

* 
multiplying two symmetric monomials in H (Y k,Z2) for k = 3, the 

formula for an arbitrary k n being very difficult. 

Notation: 21.1 

Let m1, . . . ,m be a sequence of non-negative integers with 

+ + m > 0. Denote by [ml,...,mk] the symmetric polynomial 

m1 Mk 
X. • . '1 'k in Z2[X,. . . ,X] where the sum is taken over all possible 

sequences 11'•••'1k' 1 ≤ ≤ k, which yield distinct monomials. 

will be called the symmetric monomial of type 

We caution the reader that symmetric monomials are are not inônomials, 

unless k = 1. If k is clear from the context we write [m1,...,mj to 

denote [mi ,... ,mr,0, ..., 0 ]. It is clear from the definition that all 
k-r 

symmetric monomials (of a given degree in) form a Z2-basis for the 

vector subspace of symmetric polynomials (of degree in). By a little 

abuse of notation we denote the image of [ml, .... nlk] in H*(Yflk ;Z2) 

Z2 [xl,...,xk] under the algebra homomorphism that sends X. to x. for 

1 i k, by the same symbol 
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Examples 21.2 

(i) [1,...,l] = for 1 ≤ r S k. 
r 
k 

Li 

= i=1 [m l,.... mk]. (iii) t 
in 

m1+" +ink=m 

(iv) Assume that m  ? inJ. By Theorem 20.8 

[ml,...,Ink] E H*(Yfl,k;22) is zero if for some r, m n-i for 

1jr-1 and m > n-r. 
r 

We now prove the following lemma, which is found to be very useful 

in all the computations in H*(Y,3;Z2) that we will need to carry out. 

LEMMA 21.3 

Let m  > in2. The coefficient of a symmetric monomial [a,a,b] is 

zero in the expression of the product [m1,m2][n1,n2,n3] in 

Z2 [X1,X2 ,X3] as a Z2-linear combination of the symmetric monomials, 

unless m  = 0, n1 = n, for some i * j, and b = k + m1, where {i,j,k} = 

(1,2,3). 

Proof: 

In the expansion of [m1,m23•[n1,n2,n3] the monomial X X X occurs 

only if a= ''k or b = "k for some k. 

Case ( i): Let b = nk. Then a = m  + n = m  + n for some i,j, 

{i,j,k) = {l,2,3). Since in1 * in2 , n. * n. Therefore X X X occurs 
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an even number of times: for, X x2 • x' x x n.  can be paired with 

x x • x x X. Hence the coefficient of X X X is zero. By 

symmetry the required coefficient of [a,a,b] is zero. 

Case ( ii): Let a = n1. In view of case ( 1) we assume b * a. Then 

2 +n. j and   

monomial X X X occurs in the multiplication [m1,m2:l {n1,n2,n3] 

= + n with j,k such that {i,j,k) = {1,2,3}. The 

first as x2 X3  . X i 

X * x x x. 

X 2 v 1. X J 
in in n. X n. 

i 
'1 ' 3 ' l ' 2 

n 
x3 

n  
X . If n. * n., then 

j 

Therefore X1 a X2 a X b 3 appears again as 

As before, we conclude that in case n. 1 n J . the required 

coefficient of (a,a,b) is zero. If, 

completing the proof. 

The following example will be used to obtain certain 

Stiefel-Whitney classes of the Grassmann manifolds G 
n,3 

Example 21.4. 

however, n. 1 J = n., then 

Assume that n = q(2r + 1), r 2, and k = 3. 

in2 = 0, 

For 1 S j S r one has 

ii {21)q,21lq] = [L r q,2 r q - 2j-1 r q,2 q - 23q] 
jSpSr 

in H*(Y3;Z2). 

Proof: 

When j = r the statement is trivially valid. 

Assume that the formula is valid for some j + 1 with 1 j < r. 
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Then 2"q + 2 1q k n. Therefore, using Example 21.2 ( iv) and 

Lemma 21.3, we obtain 

IT [ 2t'q,21'1q] = [2q,2 1q]• [21'q,2rq_23q,2'q_23lq] 
jp≤r 

= [2rq, 2rq_2Jq+2J_lq, 2"q21q+2q} 

r r i-i r 
= {2 q,2 q-2 q,2 q-2j qj, 

completing the proof. 

The reader is referred to Chapter I, [ 29] for an exposition of 

symmetric functions that deals with the relationships among the 

symmetric monomials, total symmetric polynomials, elementary symmetric 

polynomials, etc. in a more general setting. 
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CHAPTER SIX 

SPAN OF FLAG MANIFOLDS. 

%22. Introduction.  

The problem of determining the span of a Grassmann manifold Gflk 

appears to be very difficult in general. Some progress has been made 

in obtaining lower bounds by Leite-Miatello [ 27] and more recently by 

Korba [24], who considers the wider class of flag manifolds. Bartk 

and Korbas [5] have also obtained upper bounds for span Gflk by 

computations of the Stiefel-Whitney classes wi(Gflk) for 1 i 9. 

In the present chapter, we consider the question of span of flag 

manifolds. Our methods are well-known. We use a Stiefel-Whitney class 

argument to obtain upper bounds, and the results of Thomas [44] to 

obtain better lower bounds than those known from the work of Leite and 

Miatello. The span of Gflk.has been determined in infinitely many 

non-trivial cases. The computational techniques of Chapter 5 are used 

throughout to calculate Stiefel-Whitney classes. Korba has used 

completely different methods to calculate the Stiefel-Whitney classes. 

The present chapter is organized as follows: In %23, a lower bound 

for the span of flag manifolds is given in terms of the Radon-Hurwitz 

function. %24 deals with upper bounds for the span of Grassmann 

manifolds. In 25 we obtain better lower bounds for span Gflk using 

mainly the results of Thomas [44]. 

%23. The Radon-Hurwitz Function.  

Let n be a positive integer. Write n as n = s 24a+b where s is 
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odd and 0 5 b 3, a 2t 0. Define p(n) = 8a + 2k'. p is called the 

Radon-Hurwitz function. 

The following well-known result is due to Radon [ 34] and 

Hurwitz [21]. See also [ 11]. 

Let n be even, so that p(n) 2. 

THEOREM 23.1 

There exist p(n) - 1 antisymmetric orthogonal linear 

transformations Y' E 0(n), 1 i p(n) - 1 satisfying the conditions: 

= -I and r.71. + Y'V. = 0 for 1 i< i ≤ p(n)-1, where I stands for 

the identity transformation. 

For a construction of such linear transformations cf. [47]. 

LEMMA 23.2 

Let a1 E IR, 1 5 i p(n)-1 with a = 1. Let 10. E 0(n) 

lip(n)-1 

be as in Theorem 23.1 above. Then for the antisymmetric transformation 

= a1?1 one has ?2 = i. Equivalently? E 0(n). 

lip(n)-1 

Proof: 

V 
L 

li<jn 

+0 

= -I. 

a. 1 a. J (1°.1'. + ?Y.) 
1J Ji 

Since ? is antisymmetric, equivalently ? E 0(n). 
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The following lemma gives some useful properties of the 

Radon-Hurwitz function p. 

LEMMA 23.3 

Let k, m be non-negative integers. Then, 

(i) if xii r.21C, r odd, then p(m) = (2k) 

(ii) p(2 k ) < p(2 k+l ). 

(iii) 2k < (2k) ≤ 2k+2. 

Proof: 

(i) is obvious from the definition of p. Writing k = 4a + b with 

0 S b 5 3, a ?t 0, (2k) = 8a +2b+l If 0 5 b 5 2, then it is clear 

that (2k+l) = 8a +2b+l hence (2k) < (2k+l) When b = 3, 

k + 1 = 4(a+l). Therefore p(2 k+1 = 8(a+l) + 20 > 8a + 2 = (2k) 

This proves ( ii). 

(iii) is immediate from the following inequalities: For 0 5 b 5 3, 

2b < 2b 2b + 2. Hence, for a ≥ 0, 

2(4a+b) S 8a + 2b 2(4a+b) +2. 

The following theorem is a first step towards obtaining the span of 

flag manifolds. We use the notations of Chapter 3 and 4. Thus 

p = (n1, ... , n) is a sequence of positive integers with s 2, 

n = n1 + •• +n = II. 

THEOREM 23.4 (Zvengrowski). 

Ifn.is odd for some i, 1SiSs, then span G(p)p(n)-l. 
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Proof: 

Since p(n) = 1 when n is odd, obviously span G(p) ? p(n) - 1 in 

this case. 

Now assume that n is even. Without loss of generality, let n1 be 

odd. Recall that 

T (p) 0 
li<js 

® W .(p) 0 
2Sjs ' 2Si<jn ' 

Hom( 1 OA) , 
aSjSs 

ffi Hom(.(IA). ()) (*) 
2i<j≤s 

Hence, to show that span G(p) ?: p(n) - 1, it suffices to prove that 

Hom( 1(p), which is a subbundle of r(M) by (*), admits 
aSjSs 

p(n) - 1 linearly independent cross sections. To simplify notations we 

let = ](P) and z' = .(p). Note that the fibre of 
2Sjs ' 

(respectively z) over an arbitrary flag A = (A1, ... ,A s )  in G(i) is A1 

(respectively A7. We construct (p(n)-l) cross sections 

1'.: G() Hom(,zi) as follows: 

Choose linear transformations .: P" 
1 

1 i p(n)-1,satisfying the conditions of Theorem 23.1. For a 

subspace X of I, let qx denote the orthogonal projection of 0 onto 

with respect to the standard inner product on Define 

li(A) E Hom(A1,4) as 1.(A) = ° 
1 1 1 

xi. 
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CLAIM: 

1 I p(n)-1, are linearly independent for each A in G(p). 

For, otherwise, there would exist a1 € I, 1 S i S p(n)-1 with Z a2 = 1 

and Z a.10.(A) = 0 for some A € G(p). For such an A, we therefore have 

o = Z i 1 1 A = Z aq i0 (?11A1) (Z a 1 1 .10. )JA 1 

= qA 1 0 10(A1 where 10 = Z a 1 .10 1 .. This means that 10(A1) C A1, 

in other words A1 is an invariant subspace of 10. Since 10 is real 

antisyinmetric and orthogonal by Lemma 23.2 and since A1 is of odd 

dimension, this is impossible. This establishes our claim that 1.(A), 

1 I p(n)-1, are linearly independent for each A € G(p). 

To complete the proof of the theorem, we need only check for 

continuity of the everywhere linearly independent cross sections 10, 

11i S p(n)-l. To see that are continuous, note that as A € G(p) 

varies continuously in G(M) one obtains a continuous splitting, 

= A1 S Ai L , of This shows. that # 1 G(p) Hom(,nC), q : G(p) 

Hom(nC,) defined respectively as # 1(A) = 10 IA1, 1 i p(n)-1, 

and q(A) = q for all A E G(p) are continuous. Now 10. 1 is the 
1  

composition G(p) (#1,q) Hom(,nC) Hom(nC,z)  composition  

Hom(,). Hence is continuous for 1 i p(n)-1, completing the 

proof. 

COROLLARY 23.5 

Span G(p;r) p(n)-1 providing at least one of the n.'s is odd. 
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Proof: 

Since f : G(p;r) G(M), the map that forgets the orientations, 

is a covering projection span G(p;r) ≥ span G(M). The corollary is now 

immediate from the theorem. 

Remark 23.6 

Theorem 23.4 was obtained also by Korba [24] using a different 

description of the tangent bundle G(), generalizing the results of 

Leite-Miatello [27] for oriented Grassmann manifolds. 

By Corollary 15.4, all complex and quaternionic flag manifolds have 

For this reason only flag or real flag manifolds G() span zero. 

where at least two of the n.'s are odd will be considered in what 
1 

follows. Hence in the case of Grassmann manifolds G n,k n is assumed to 

be even and k odd. 

THEOREM 23.7. 

Let n1 = l and let 2krs. 

span G(M) ? k(2n-k-l) 

Then 

Proof: 

When k ≥ s-1, G(p;r) Vn,k by Example 15.2, and in this case the 

theorem follows from the parallelizability of the Stiefel manifold Vfl,k 

for k 2. 
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Assume that r S s-i. Let p' = (i,...,l,flk+l+ ±n5). Now 

consider the map q : G(p;r) G(i';k) defined as 

= 'k' Ak+l+ ... +A). 

Clearly, q*((;)) - J.(i;r) for 1 i ≤ k 

lk+l<-j<s 
Now an easy computation shows that q*(r(1;k)) is a subbundle of 

r(p;r). Since by Example 15.2, G(p';k) 25 Vik r(p';k) is a trivial 

bundle of rank dim Vfl k = (2n-k-l). Consequently r(M;r) has a 

trivial subbundle of rank at least k(2n-k-l). The theorem follows. 

THEOREM 23.8. (Miatello-Miatello.) 

Let k S a and let n = ... = n5 = 3. Then (4) is parallelizable 

in the following cases: 

= = k = 1, k ?: 2, or k = 1 = n  and n 0,1,2,5,6 

mod 8. 

(ii) k = 0, xi 0, 3 mod 4. 

Proof: 

It was shown in %16 that the manifolds () of cases ( i) and ( ii) 

are stably parallelizable (see Proposition 16.2). Recall that a stably 

parallelizable manifold of dimension d is either parallelizable or has 

span p(d+l), where d = dim G(p) for the cases under consideration. 

When n1 = = l,k ≥ 2, span (p) ? k(2n-k-l) 2n-3, by 

Theorem 23.6. Now d = dim G(p) = (n] - [} < [} - 1. Therefore 

lis 
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d+1 . n2. Let L be a positive integer such that 21< cl-Fl < 

Then 21 < (n). Now using Lemma 23T.3, 

p(d+l) p(2 1) 2-2. 

Since 21 < {J, and since n ? 5, we have 2-2 < 2n-3. Hence 

p(d-4-1) < 2n-3. Therefore (p) is parallelizable in this case. 

In case k = 1 = n1, n 1,2 mod 4, or k 0, n 0,3 mod 4, 

dim (p) = d = [} - (n-k) is even. Therefore p(d+1) = 0. Since span 

(p) ≥: 1 by Corollary 15.4, parallelizability of (/1) follows. 

When k = 1 = n1, and n 0 mod 8, dim (p) = d = [2) - n + 1. Thus 

d + 1 = • (n-3) + 2 2 mod 4. Therefore 

p(d-i-l) = 2 < 7 p(n) - 1 span (g1) by Theorem 23.4. 

%24. Upper Bounds.  

In this section we adopt the notations of Chapters 2 and 5. Thus 

denotes the ( real) flag manifold G(l,...,l,n-k) and 

f : Yn,k Gn,k the map that sends the flag (A1,... , Ak+l) E n,k to 

E C . r denotes the tangent bundle of G . We write w 
k+1 n,k n,k n,k n,k 

to denote the total Stiefel-Whitney class w(G ) of C , Thus 
n,k n,k n,k 

=w i n,k ). ). 

PROPOSITION 24.1 

MWn,k = (w(Tfl k))"(w(rfl k 0 rn,k)). 

(ii) w' = 0 if and only if f*(w1) = 0. 
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Proof: 

By Theorem 10.1, r n, k n, k • Hence 

W(r øi )(r e3 ) ED (r 0  ) 
n,k n,k n,k n,k n,k n,k n,k 

Tn,k n,k mn ,k) X1Tn,k since Tflk '8 n,k sts  nC. ( i) follows from 

this. 

(ii) is an immediate consequence of the fact that 

f : H * (Gflk;Z2) H *(Y n,k ,Z2) is a monomorphism. 

Recall from Corollary 20.4 that f*(w1) = o the i th elementary 

symmetric polynomial in the canonical generators x1,... ,xk of 

Therefore, from Theorem 8.3 ( i) and Example 8.2 ( iv) 

f*(w(rnk n,k in H*(Y n,k ;22), where 

= k°l''°k etc. Also since f*w(t ) n,k 

the following. 

C0R0LLA1Y 24.2. 

f*( k (l+x1)') 4, k 1 
]—<i—<k 

Proof: 

Apply f* to 24.2 ( i). 

= 71 ( 1+x), we have 
]ik 

We now prove the following main theorem of this section: 

THEOREM 24.3. 

Let m = 0 or 2 r, r 1. 

(i) If n = 4(m+l), then span G 3 = 3. 

(ii) If n 8(m+l), then span Gn3 = 7. 
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Proof: 

-We know by Theorem 23.4 that span Gflk ≥: p(n) - 1. Denoting 

dim Gflk - p(n) + 1 by s, we see that to prove the theorem it suffices 

to show in each case that f*(w$(Gflk )) 0 0. 

Case ( 1). 

When m = 0, and the statement is true in this 

case. When m = 2, a direct computation shows that f*(w4) = [8,8,8], 
12,3 

which, by Theorem 20.8, is non-zero (see also Remark 24.5). 

Now assume that m 4. By Corollary 24.2 

f*(w xi, ) = (1 + [1] + [1,1] + 

= (1 + 14] + [4,4] + [4,4,4]) • (1 + [4in] + 

[4m,4m] + (4m,4m,4m)) • (*) 

since m is a power of 2. This leaves the computation of 

Now by Theorem 20.8, ,4m+4 = 0. Hence x1 = 0. Therefore, by 

Example 21.2 ( iv) 

411 = (1 + [4] + [2,2] + (4,2])'" = 1. Consequently, 

= (1 + [4] + [2,21 + [42])41n1 

r+2 

Since 4m - 1 = '' 21 we have 
L 
p=l 

'I 
1pr+2 

(1 + [2 1] + [2P,2P] + 

= (1 + [4m,4m]) a • (1 + [4] + [2,2] + [4,2]) 

where a = H (1 + [2P+l] + [2P,2P] + [2P+1 ,21])• 

2pr+2 

Note that (1 + [4m] + (4m,4m] + [4m,4m,4in])(1 + [4m,4m]) = 1 + [4m] 
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since x 8m = 0 and thus [4m][4m,4m] = [4m,4m,4in], [4m,4m][4m,4m] 

[4m,4in]•[4m.4m,4m] = 0. Then substituting in (*) we obtain 

f*(w3) = (1 + [4m])a(1 + [41 + [4,4] + [4,4,4]) 

(1 + [4] + [2,2] + [4 ,2]). 

Note that a = z4 for some z e H*(Y,3;Z2) and that 

a = 3(n-3) - 3 = 12m. Before we proceed further, we now look at 

Ann{4mJ, the annihilator of [4m] in H*(Y3;Z2). Since x1 = 0, 

[a,b,c] € Ann[4m] if a,b,c 4. Thus the symmetric monomials of 

H*(Y3;2) which are of the form [4a,4b,4c] and possibly not in 

Ann[4m] in degree 8m - 41, 1 = 0,1,2,3 are listed in the table below. 

Table 24.4 

Degree ?2-basis 

8m (4m, 4m] 

8m-4 [4m,4m-4] 

8ni-8 [4m,4m-8], [4m-4, 4m-4] 

am-12 [4m,4m-12], [4m-4, 4in-8] 

Note that in ? 4 is used in the above table so that 8m-12 4m+4. Using 

Lemma 21.3 one sees that [4m,4xn-4j] € Ann[4m] for j = 1,2,3. Also 

[4][4m-4, 4m-4], [4,4][4m-4, 4m-8] € Ann[4m]. 

Now degree a = 12m - 12. Hence 

= a' 1 '4 = 0. 

(12m-12) Also a = if [2P+1,2P1 [4m,4m-4,4m-8] by Example 21.4. 
2pr+l 
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Consider a (12m-16) = [4m, 2rn] [ 16,8]([8] + [4,4]). (Again 

in 4 is crucial here.) [4,4,4][4m,2m] = 0 gives 

= 0. 

From (**), 

We are now ready to calculate f * (w (12m) 
n,3 

* ( 12m) - 

f(w )- n, 3 
8m) (8m--4)   

(4m] -{a + a ( ) 
(8m-8) 

+ a ([4,4] + [4])[4] + [2,2])) 

(8m-12) 
+ a ([4,4,4] + {4,4J (  

(8m-16). [4,4,4](  )} 

(12m-12).{[4,4,4] [4,4]•(  

(12m-16). '[4,4,4](  

where the precise expressions inside ( ) will be found to be 

irrelevant. 

From the above observations, (4m] - a ( 8m-4) = 0, 

(8m-8) (8in-12) 
[4m]a [4] 0, a [4,4,4][4m] = 0 and 

(8m-12). [4,4] 0. Also 

(l2im-12) (12m_16) [4,4,4] (12m-12) 
a [4,4,4] 0 = a a [4,4] = 0. 

Hence f* ((12m) w ) = [4m]•a ' + iin (8m-8) [4,4]. n,3 

Now 

a (8m-8) 
= ([4m] + [2m,2m]) ([8] + [4,4]) 

+ terms having [2 l ,i-i 2 ] as a factor for some i ≥ 3 

= [2m,2m] [4,4] + terms having 

i i-i i 
[2 , 2 ] or [2 ] as a factor 

= [4m-4, 4m-4] + terms of the form [4a, 4b, 4c] where 

a,b,c 1 or terms having [21] or [21,21_2] as a factor. 



105 

Applying Lemma (21.3), we find that terms having [21] or 2i,2i_l1 

as a factor, in the above expression must be a Z2-linear combination of 

symmetric monomials of the form [4a,4b,4c] with a 0 b if c = 0. Hence 

such terms are in Ann[4m]. We see therefore that 

[4m][4,4Ja 8"8 = [4m,4m,4m] * 0. 

(See Theorem 20.8) 

By a similar argument 

[4m]a (8m) =0. 

Hence f*(Wl2m)) = [4m,4m,4m] 0 0. 

Proof of ( ii) is similar and will therefore be omitted. In this case 

one obtains 

f*(w(24111+B)) = [8m+4, 8m+4, 8m] 
n, 3 

0 0. 

As in ( i), one computes w (56) 243 

4pr+41 + [21)] 
II 

(8) 
and w8,3 directly, and lets a equal 

+ [2P1,2P1] + [2P,2Pl ]) 

Remarks 24.5 
(24) (56) (8) 

(i) To simplify calculations of w,.) ., w . and N '3 the reader 

may follow the method of proof used above. 

(ii) Note that [4m,4m,4m] = [4][4m,4m,4m-4] in H*(Yns ;22), n as 

in 24.3(i). Since [4] = f*(w), w 1 " e Im(uw1). Consequently 

Wi(Gn3) = p*(wl) = 0 where p : Gn,k Gflk is the double 

covering map that forgets the orientation. Similarly w248( 3) = 0 

since [8m+4,, 8m+4, 8m] = [41- [8m+4, 8m+4, 8m-4] in H*(Y3;Z2), where 
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n is as in 24.3 ( ii). Thus a Stiefel-Whitney class argument does not 

yield the same upper bound in the corresponding oriented Grassmann 

manifolds. 

(iii) When n = 24a(2C+l) p(n) - 1 is even. In this case 

s = dim - p(n) + 1 is odd when k is odd. Since the total 

Stiefel-Whitney class of Gflk is a square element when n is even (see 

Corollary 24.2 and Example 8.2(iv)), it follows that w(Gk) = 0. 

Thus the upper bound obtainable by a Stiefel-Whitney class argument 

does not equal the lower bound given by Theorem 23.4. 

The proof of the following theorem is similar to the that of 

Theorem 24.3 above and will therefore be omitted. Note that the fact 

* *  * 
that f : H (Gn k;Z2) i H (Yflk;Z2) s a monomorphism is crucial 

here. 

THEOREM 24.6 

Let n = 2(m+l), m = 2r r ≥ 1. Then w5(G 3) = 0 where 

s = dim G 3- p(n) + 1 = 3n - 10. w(G63) = 1 + (w1(T63 )) 2. 

The above theorem will be helpful in obtaining lower bounds for the 

span of G 3 (where n is as in the theorem above). 

%25. Lower Bounds.  

We begin this section with an application of the following theorem 

due to Pontrjagin and Thom. Its proof can be found in [41]. 
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THEOREM 25.1 

A compact smooth manifold M is cobordant to zero if and only if all 

its Stiefel-Whitney numbers are zero. 

We state also the following lemma, proof of which can be found in 

the book of Husemoller [ 22]. 

LEI'.?4A 25.2. 

Let M be a compact smooth manifold on which Z acts effectively. 

Then M is cobordant to zero. 

PROPOSITION 25.3 

(i) Gnk is cobordant to zero for any n,k. 

(ii) Gflk is cobordant to zero if n is even and k odd, or if 

n = 2k. 

Proof: 

Note that the map 8 : G n,k n,k C that sends A E Gn,k to the 

vector space A with the opposite orientation defines a smooth effective 

2 2 n,k -n,k action on C . Hence C is cobordant to zero. 

Ifn=2k,°:G o G that sends AEG toA1 EG 
n,k n,k n,k n,k 

defines a smooth effective 2 -action. As before, it follows that G 
2 n,k 

is cobordant to zero. 

In case n is even and k odd, dim G = d = k(n-k) is odd. We know 

from 24.1(i) and 8.2(iv) that in this case w(G n,k ) is square of a 

* 
certain element of H (G k'22 Consequently all the monomials 
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in in 

(wl(Gfl k)) '"(wd(Gflk)) d are either zero or of even degree. It 

follows since dim Gflk is odd that all the Stiefel-Whitney numbers are 

zero. By Theorem 25.2 Gflk is cobordant to zero. This completes the 

proof of the proposition. 

Similarly Lemma 25.2 can be applied to prove the following. It 

will simplify notations to let G(p;O) = 

PROPOSITION 25.4 

A flag manifold G(p;r) is cobordant to zero if r 1 or if n = 

for some.i 0 j, where p = (n1) ... ,n5). 

We are now ready to prove the following. 

THEOREM 25.5. 

(i) Span G ≥ 2 only if (n)  0 mod 4. 
n,k 

(ii) Span G n,3 ≥ 2 if n = 2(2r1), r 1. 

Proof of ( i): 

Let Span Gflk ≥ 2. Then n is even and k odd. If n = 4m, in ≥ 1, 

then since k is odd {J = . (j = 4 . { [iiJ}k-1 k1  0 mod 4. It 

remains to consider n 2mod 4. In this case dim G k a 1 mod 4. 

Therefore by Theorem (3.3), k(M) = 0. Since Gfl,k is a boundary 

manifold by Proposition 25.3, we see that by Theorem 3.4 

k(M) = x*(Gflk). Proceeding as in the proof of Example (3.9), 

E { P(Gfl,k;l)}mod 2, 

where P(M;t) denotes the Z2-Poincarè polynomial of M. By Theorem 20.1, 
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P(G ' k t) - (l-t') ••• (i-t' 11) 

(l-t) •• (1-t ) 

- (1+t + ••• + t" 1) ••• (1 + ••• + 

1 • (l+t) •.. (i+t + •.. + 

Hence 

- n (n-i) (n-k+i) - [n 
P(Gfl k;l) - 1 • 2 •• k - 1k1 

Thus 0 = (k)(Gflk) = X* (M) (.,2' P(Gflk;l)] mod 2 gives. 
P(G ; l) n,k = kJ - = 0 mod 4. 

Proof of ( ii): 

Let n = 2 • (2r+1), r 1. Then [3) 0 mod 4. Therefore 

k(Gn,3) = *(G,3 I. P(G3;l)} =  [I (n] 0 mod 2. By 

Theorem 24.6, wd_l(Gfl,$) = 0. It follows from Theorem 3.3, that 

span G3 2: 2. 

Remark 25.6. 

Leite and Miatello have shown in [27] that when n = 2(r+s) + 2, 

k = 2r + 1 where r and s have same parity, span Gnk > 1 if and only if 

[r+s] 0 mod 2. Theorem 25.5 ( i) also follows from this (since 

'" 2 implies span (G n,k ) ? 2). 

We now state, without proof the following theorem due to 

U. Koschorke. The author is grateful to Professor J. Korbas of Katedra 

Matematiky VDS, Czechoslovakia, for bringing this reference, and 

Theorem 25.8, to his notice. 
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THEOREM 25.7. 

Let Md be a compact orientable manifold such that d 9, 

d B 1 mod 4. Assume that Sq' : H1(M;Z2) H2(M;Z2) is injective. 

Then span M 3 if and only if wdl(M) = 0, WJ_2(M) = 0 in 

and k(M) = 0. Here the " integral" Stiefel-Whitney class Wd_2(M) is 

equal to ,8 wd3(M), $ being the Bockatein homomorphism associated to 

____ _ 

the coefficient exact sequence 0 x2 r ___ i 0. 

Proof: 

Refer to p.166 of [ 25]. 

Let us apply the above theorem to the case 063• Recall from 24.6 

that w(063) = 1 +w w, = w(T6,3). Since w1(06,3) = 0, is 6,3 

orientable. The only element of H1(063 ;Z2) is w1 and 

Sq1(w1) = w 0. w6(G6 3) = 0 implies that W7(06 3) 0. Also since 

w8(G63) = 0 and k(063) (6) 0 mod 4, it follows that all the 

conditions of Theorem 25.7 are satisfied when M = 06 3• Thus we have 

shown that span 063 ≥ 3. Since w2(g63) = w # 0, and dim 063 = 9, 

we obtain span G63 S 7. We record these facts as a 

THEOREM 25.8 (Korba). 

3 span G63 7. 

As another application of the computational techniques developed in 

Chapter 5, we determine the height of w1 e H1 (Gflk;Z2) for k = 2 or 

n = 2 + 1, k = 3. Complete results for height of w1 have been 

obtained by Stong [40]. 
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Example 25.9 

Let 2 < n < 2s-I-1 Height of w1= 2s-F]._ 2 for w1 E H'(Gflk;2) if 

(i)k2or(ii)n=25+l,k=3. 

Proof: 

(1) 

Cl = 

Now 

Multiplying both sides 

n-2 S-1n-25 25+12 
X2 01 

In view of Corollary 19.3, it suffices to show that 

+ x2 = (w 1 has height 2s+l_ 2 where f : 

21_2 2 2 2 2 
= (x1 + x2 ) (x1 + x2 ) 

+ i L X1 

(i,j)(2s ,2s-2 ) 

n-2 S-1 n-2 s 
byx1 

= + 

we obtain 

G 
n,2* 

n-28--l+i n-2 5+j 
L Al X2 

(i,j)(25,25-2) 

Since i and j are even and i+j = 21 - 2, using Theorem 20.8 one sees 

readily that each term in the summation Z must be zero (either x1 or x2 

will have exponent n). x1 n-1 x2 n-2 being-non--zero, it follows that 

21 2 
a0 0. 

Consider 

(ii) As in ( i), 

is  s+1 - 2wheref: 

2s+1 
a 

2 2 2 2 
= (x1 + x ) (x1 + X2 )(X + x2 ) 

t +1 = 0 by Corollary 20.3. 

we show that height of Cl = x1 + x2 + x3 = f*(w1) 

Y 
2+1,3 

= (x + %.,2 s + %,2 s 2 2 2 
(x1 + x2 + x3) 
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2 2-2 
=xl • x2 + 

n-i n-3 
=xl • x2 + 

'V '1'2'3 xl x2 x3 

(11,12,i3)*(2S,25_2,O) 

'V 
L 

(ilpi i3)*(n-1,n-3,O) 

Multiplying both sides by x2 x 3 we obtain 

n_3 2-2 
x2.x3 •o 

i '2 13 
x1 x2 x3 

n-i n-2 n-3 'V 1 2+1 3 +n-3 
X1 X2 X3 + L X I 1 X 1 2 X 1 3 

c'].' '2' 13)*(n-1,n-3,0) 
The only (necessarily even) values for 13 which give possibly 

non-zero monomials in the sum are 0 and 2. In case 13 = 0, one must 

have {i,12+l} = {n-1,n-2} to obtain a non-zero monomial inside Z. This 

forces i = n-2 = 12. But i2 for monomials appearing in the sum 

due to uniqueness of binary expansion. In case 13 = 2, binary 

expansions again show ≥ 4, so {il,12+l} # {n-2,n-3}. 

Therefore, we see by Theorem 20.8 again that the only non-zero term on 

n-i n-2 n-3 2 S+1_2 
the right hand side is x1 x2 x3 . Hence o 1 * 0. 

Now 

2 1 
01 

n-i n-i n-i 
(x1 + x2 + x3 ) 

n-i (x 
5 
2-i 

x1 2+ x3) + 

n-i 
x1 2-i t (x2, x3) 

2s-i 
+ x2 + x3) 

5 S 
n-i 2-1 2-i 
X2 (x3+x1) + x3(x1-I- x2) 

n-i 
+ x9 t (x 2,x1) 

2-1 
n-i 
t (x,x2) 
2-1 

We will now prove that xr 1t (x2,x3) = 0. Using symmetry, it 
2-1 
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s+l 
follows that o = 0. Since by Corollary 20.3, t_2(x1,x2,x3) = 0, 

we have t_2(x2 x3) = x1 P(x1,x2,x2) for some polynomial P. Therefore 

n-i x1 n-i t 5 (x2,x3) x1 x1 P(x1,x2,x3) 

= 0. 
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