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Abstract 

This thesis proves the following result: Let K be a p-adic field (see Definition 1.10.1) 

with valuation ring K° (see Definition 1.1.13). Let X be an integral affine scheme 

(see Definition 4.5.2) finitely generated over Sch(K°) such that the special fibre of 

X (see Definition 4.9.2) is also an integral affine scheme (see Definition 4.5.10). Let 

X denote the formal scheme (see Definition 4.8.1) obtained by completing X along 

the special fibre of X. Let X denote the affinoid adic space over K associated to the 

formal scheme X (see Definition 5.5.1). Then there is a canonical bijection between 

the set of K°-rational points on X and the set of K-rational points on X. 
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Introduction 

Rigid analytic spaces and representation theory of p-adic groups are widely re-

searched areas in mathematics, especially in the Langlands program. Michael Harris 

and Richard Taylor used rigid analytic geometry to solve certain cases of Langlands' 

conjectures. The category of rigid analytic spaces is a subcategory of the category 

of adic spaces. 

In the thesis, I'look at two categories (affine schemes and affinoid adic spaces) 

and describe a relationship between them. In particular, given an affine scheme I 

describe how to associate an affinoid adic space to the affine scheme and describe 

a relationship between these two objects. A lot of research has been done on the 

category of affine schemes but the category of affinoid adic spaces has only been 

studied in the last ten years, primarily by Roland Huber. Thus, the machinery to 

move from the category of affine schemes to the category of affinoid adic spaces will 

quickly advance the research on affinoid adic spaces since "many of the basic results 

of the étale cohomology of schemes also hold for the étale cohomology of adic spaces 

[10]". 

The following theorem is the main result of this thesis which, to the best of my 

knowledge, does not appear in the literature: 

Theorem 6.0.5 Let Içbe a p-adic field (see Definition 1.10.1) with valuation ring 

K (see Definition 1.1.13). Let X be an integral affine scheme (see Definition 4.5.2) 

finitely generated over Sch(K°) such that the special fibre of X (see Definition 4.9.2) 

is also an integral affine scheme (see Definition 4.5.10). Let X denote the formal 

scheme (see Definition 4.8.1) obtained by completing X along the special fibre of X. 
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Let X denote the affinoid adic space over K associated to the formal scheme X (see 

Definition 5.5.1). Then there is a canonical bijection 

HomsCh(Ko) (Sch(K°), X) HomAd C(K,KO) (Adic(K, K°), ). 

The above geometric theorem is a consequence of the following algebraic theorem: 

Theorem 3.0.8 Let K be a p-adic field with valuation ring K° and residue field ,i. 

Let A be an integral domain and let cr : K° -- A be a ring homomorphism such that 

A ®K0 Ic is an integral domain. Let A be the completion of A with respect to I (see 

Definition 2.1.1) where I is the kernel of PA : A - A OK- ic defined by PA (a) = a® 1. 

Then (A (OK. K, A) is an affinoid ring (see Definition 2.8. 1) and the map 

Horn (K,KO) ((A (OK0 K, A), (K, K 0)) - HOmKQ(A, K°) 

o a 

is bijective, where a : A —+ A is the unique morphism guaranteed by the universal 

property of inverse limits (see Proposition A..2.2). 

Notice that the geometric result requires an extra condition - that X is finitely 

generated over Sch(K°). Thus, Theorem 3.0.8 implies Theorem 6.0.5 but the converse 

does not necessarily hold. 

Since these results are fairly technical, a large proportion of this thesis will be 

devoted to defining the various terms appearing in the theorems above. Specifically, 

p-adic fields, adic rings, f-adic rings, Tate rings and affinoid rings, affine schemes, 

formal schemes and affinoid adic spaces will be discussed. 

In this thesis we use the term 'ring' to indicate a commutative ring with unity 

and 'ring homomorphism' to indicate a ring homomorphism of commutative rings 

such that the identity is mapped to the identity. 
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Algebra 



Chapter 1 

p-adic Fields 

For each prime number p, the field Qp is constructed by completing the rational num-

bers with respect to the p-adic valuation vi,. A p-adic field is, by definition, a finite 

field extension of Q,. This chapter is devoted to creating a general understanding of 

the p-adic fields (as found in Gouvêa [7]). 

1.1 Valuations 

Definition 1.1.1. A totally ordered abelian group is a non-empty set I' with binary 

operations and < such that {F, .} is an abelian group and {F, <} is a totally ordered 

set such that for all x, y, z E F, x <y implies xz < yz. 

Example 1.1.2. The set of positive real numbers is a totally ordered abelian group 

(with multiplication). 

Definition 1.1.3. Let A be a ring and r be a totally ordered abelian group. Let 

F0 := {O} U F. Set 0 <'y, -/ - 0 = 0, and 0 . = 0 for all 'y E F. Since F is totally 

ordered, F0 is totally ordered. A valuation on a ring A is a function v A - * ro 

that satisfies the following conditions 

i) v(0) = 0 

V(1) = 1 

v(xy) = v(x)v(y) for all x, y E A 

2 



3 

iv) v(x+y) ≤v(x)+v(y) for all x,y EA. 

If, in addition, v satisfies the following condition 

v) v(x+y) ≤ max{v(x) ,v(y)} for all x,y E A 

then v is said to be non-archimedean; otherwise, v is called archimedean. Note that 

the conditions listed above are not independent: condition (v) implies condition (iv) 

and condition (iii) implies condition (ii). 

The pair (A, v) is called a valued ring. The group generated by the image of v in 

r is called the valuation group of v and is denoted by r,. If the valuation group is 

finitelygenerated then the rank of v is defined to be the rank of the valuation group. 

If r is not finitely generated, then the rank of v is said to be infinite. 

Remark 1.1.4. Valuations can also be defined additively. In other words, let r be 

an ordered abelian group written additively, and let F U fool =: F. Set 00 > 'y, 

'y +00 = 00, and oc + 'y = oo for all E F. Since F is totally ordered, r,,. is totally 

ordered. The function ord: A ' F is an additive valuation if 

i) ord(0) = 00 

ii) ord(1) = 0 

iii) ord(xy) = ord(x) + ord(y) 

iv) ord(x + y) ≥ ord(x)ord(y) 

and is non-archimedean if 

v) ord(x + y) ≥ min{ord(x) , ord(y)}. 

Example 1.1.5. 

1. Let A be a ring, u be a rank-i multiplicative valuation of A, and -Y be a generator 

for r,,. For each a E A with u(a) 0, let n(a) be the unique integer n such 
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thatu(a) yfl. Define  A —* NUfool by v(a) = n(a) ifu(a) O and 

v(a) = 00 otherwise. Then v is an additive valuation. 

2. Conversely, let v be an additive rank-1 valuation of A and let g be a generator 

for T. For each a E A with v(a) oo let m(a) be the unique integer m such 

that v(a) = mg. Define w : A — f NU{O} by w(a) = m(a) if v(a) =A oo and 

w(a) = 0 otherwise. Then w is a multiplicative valuation. 

Remark 1.1.6. In this thesis all valuations are multiplicative and non-archimedean 

unless otherwise noted. 

Example 1.1.7. 

1. Let A be a ring. Then 

Ii if X0A 

0 if XOA 

is a non-archimedean rank zero valuation called the trivial valuation. 

2. Let A=R. Then 

—x ifx≤O 

is an archimedean valuation. Note that the rank of v is infinite since the 

valuation group is R>° which is not finitely generated. 

S. Let AZ and pE7L be prime. Then 

n where x = mp and p % m 
ord(x) = 

00 ifx=0 

is a non-archimedean additive valuation. 
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4. Let A = Z and p be prime. Then 

v(x) = { p_-d(z) if x 7L 0 

0 ifx=0 

is a non-archimedean valuation called the p-adic valuation. The p-adic valua-

tion on Z can be extended to a p-adic valuation on Q by defining v1, () = 

5. Let A be a ring and let I be a prime ideal of A. Then 

v1(x) = sEI} 

is a non-archimedean valuation called the 1-adic valuation. If the base e is 

replaced with any real number greater than 1, the resulting valuation is equiva-

lent to the 1-adic valuation (see Definition .1.2.5). If A = 7L and I = (p), take 

e = p then v1 = vi,. Now ordi(x) = max{n E N I x E I2} is called the 1-adic 

additive valuation. 

6. Let A = Z and let p be prime. Then 

1 v,0 (x) = 1 p%x 

10 plx 

is a non-arc himedean valuation. Notice that v7,,o =h v, as shown in Exam-

ple 1.1.10. 

Remark 1.1.8. 

.1. If v is a rank zero valuation, then V 28 not necessarily the trivial valuation. To 

see this, fix a prime p. If v = v,,o (see Example 1.1.7(6)), then ry 1} SO V 

is rank zero, however, v is not the trivial valuation. 
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2. Note that if vi is a valuation then I is a prime ideal of A. To see this suppose v1 

is a valuation and consider part (iii) of the Definition 1.1.3. Suppose x, y E A 

and xy E I. Then by Definition 1.1.7 (5), vi (x) ≤ 1, vi (y) ≤ 1, and vi(xy) < 

1. Thus, vi(x) < 1 or vi(y) < 1 which implies vi(x) e I or v1 E I, so I is 

prime. 

Definition 1.1.9. The subset v-1(0) of A is called the support of v and is defloted 

by supp(v). 

Example 1.1.10. 

1. SUPP(Vp) = (0) 

2. SUPP(Vp,O) = (p) 

3. supp(vo) = (0) 

4. supp(v) = (0) 

5. supp(vi) = (0) 

Proposition 1.1.11. The support of v is a prime ideal of A. 

Proof. Suppose s E supp(v) and a E A. Then v(.sa) = v(s)v(a) = O(v(a)) = 0. Now, 

sa E supp(v). Similarly as E supp(v). Now if s,t E supp(v), then v(s + t) ≤ v(s) + 

v(t) = 0. Therefore, supp(v) is an ideal. To show that it is prime let ab E supp(v). 

Then v(ab) = v(a)v(b) = 0. So v(a) = 0 or v(b) = 0. Therefore, a € supp(v) or 

b E supp(v), and therefore supp(v) is a prime ideal. 0 

Proposition 1.1.12. Let K be a field and v be a non-archimedean valuation on K. 

Then K' = {x € K I v(x) ≤ 1} is a subring of  andpK = {x € K I v(x) < 1} is 

a maximal ideal of K°. 
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Proof. By definition v(0) = 0 and v(1) = 1. Therefore, 0, 1 E K°. Suppose x, y E 

K°. Then v(x+y) ≤ max{v(x), v(y)} ≤ 1. Thus, x+y E K°. Now v(xy) = v(x)v(y) 

and by Definition 1.1.1 v(x)v(y) ≤ 1. Therefore, xy E K°. Hence, K° is a subring 

of K. Following the same arguments, PK is a subring of K°. Now let x E K° and 

y E PK. Then v(xy) = v(x)v(y) and by Definition 1.1.1 v(x)v(y) <v(x) ≤ 1. Hence, 

PK is an ideal of K°. To show PK is maximal consider the quotient ring K 0/PK . 

Consider X+PK E K0/PK. Then x+PK 0 if and only if v(x) = 1. Let x+PK 5z 0. 

Since x E K°, x E K, so x 1 exists since K is a field. Since v(xx') = 1 implies 

v(x') = 1, x 1 E K° Thus, x' + Pic E K°/PK and X 1 + PK 0. Therefore, 

K°/PK is a field so PK is maximal. o 

Definition 1.1.13. Let K be a field and v be a non-archimedean valuation on K. 

Then the subring Kk = {x E K I v(x) ≤ 1} is called the valuation ring of v. The 

maximal ideal pjç = {x E K I v(x) < 1} is called the valuation ideal of v, and the 

quotient field IK = K°/PK is called the residue field of v. 

Example 1.1.14. Let K = Q. If v is the trivial valuation, then Kk = Q and 

Q. 

1.2 Equivalent Valuations 

Recall that a base for a topology is defined as follows: Let X be a set with a topology 

T.Let Bbe a collection of open sets and let x E X. Let 2 := {U E Tx E U} 

and 23 := {V E B I x E V}. Then B is a base for the topology if for all x E X and 

for all U E 2 there exists V E B such that V C U. 
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Let A be a ring equipped with a topology. Recall that A is a topological ring if 

f : A - p A defined by f(x) = a + bx is continuous for all x E A and for all a, b E A. 

Definition 1.2.1. Let v : A -+ F U {O} be a valuation. The topology induced on 

A by v is the coarsest topology on A making A a topological ring and such that 

v 1{x E F U {O} I x <'y} is open in A for each y E F. 

Example 1.2.2. Let A be a ring and I an ideal of A. Notice that if I = (0), the 

1-adic valuation (see Example .1.1.7 (5)) on A is the trivial valuation. The topology 

for A induced by the trivial valuation (see Example 1.1.7 (1)) is the discrete topology. 

Definition 1.2.3. Let A be a ring. If v and w are valuations on A, then v and w 

are equivalent if they define the same topology on A. 

Theorem 1.2.4 (Ostrowski). Every non-trivial valuation on Q with F = IR>° is 

equivalent to one of the valuations v, where either p is a prime number or p = cc. 

Proof. [7, Theorem 3.1.3] Let V be a non-trivial valuation on Q. We divide the 

proof into two cases: when the valuation is archimedean and when the valuation is 

non-archimedean. 

Case 1: Suppose v is archimedean. We want to show that v is equivalent to va,. 

Let no be the least positive integer for which v(no) > 1. Such an integer exists since 

v is archimedean. Find a E R≥° such that v(no) = ng. By Gouvêa [7, Lemma 3.1.2], 

the valuations v1 and v2 are equivalent if there exists a positive real number a such -

that for every x E Q we have vi(x) = v(x). In other words, it will be shown that 

v(n) = n for any n E Z≥°. This is clearly true for n = no. If n no write n in base 

no notation: n = a0 + a1n0 + a2n + akn where 0 ≤ a <n0 - 1 and ak 0. 
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Now n ≤ n < n 1 implies k 'J21L' Then [1ognoj 

v(n) = v(ao+ajno+a2n+••+akri) 

< ka v(ao)+v(ai)n+v(a2)n+ +v(ak)n. 

Since no is the smallest integer such that v(no) > 1, v(a) 1 for all i. We now have 

v(n) < 

= n koe (1--nr+n2-i-...+n) 

00 

kcx no 
i=0 

—ia no 

ka  no'  
= no a 

Let C = > 0. Then v(n) ≤ Cn ≤ Cn. This is true for every n E 7L≥°. Thus 

v(n) ≤ Cn N, which implies v(n) ≤ /dn. Now, as N - oo, —* 1. Thus, 

v(n)≤n. 

To obtain the other inequality consider again n = a0 + a1n0 + a2 + + 

Now 

Thus, 

(k+1) = v(n+l) no 

= v(n +n 1 —n) 

≤ v(n) + v(n' - n). 

v(n) > (k+1)c v(n - n) - no - 

n 1 - (no  - 

(k+1)o no (i - (i - = - 

no I 
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We now pull the same trick as before. Let C' = 1 - (i - _) . Then C'n ' ≥ 

C'nOI which is true for all n. Thus v(nN) ≥ O'n, which implies v(n) ≥ /C-7n. 

Now, as N — oo, —+ 1. Thus, v(n). ≥ na. Now, v(n) = n as required. 

Therefore, v is equivalent to v. 

Now suppose v is non-archimedean. Then v(n) ≤ 1 for all n E Z. Since v is 

non-trivial, there exists a smallest integer no such that v (no) < 1. We claim that no 

is prime. Suppose no = ab where a, b < no. Then v(a) = v(b) = 1 since no is the 

smallest integer sucl that v("no) < 1. This is a contradiction. Hence, no is prime. 

Set p = no. We will show that v is equivalent to v. Suppose p%n where n E Z. Then 

n = rp + s and 0 < s <p. By the minimality of p, v(s) = 1. Now, V(rp) < 1 since 

v is non-archimedean and v(p) < 1. Now since all triangles are isosceles when v is 

non-archimedean [7, Corollary 2.3.4], v(n) = 1. Given any m E Z, write m = puns 

where p%n'. Then v(m) = (v(p))uv(ni) = (v(p))u. Thus, v is equivalent to the p-adic 

valuation as claimed. [] 

1.3 p-adic Expansion 

Let p be a prime number and let a be an arbitrary but fixed integer. Using the 

Quotient Remainder Theorem consider 

a=q0p+r0, 0 ≤ro<p 

qo=q1p+r1, 0≤r1<p 

qn = qn+ip + r+i, 0 ≤ r+i <p. 
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In other words, consider the sequences 

• q0, q1, q,... defined by qn+1 = (qn div p), q0 = a div p 

• r0, r1, r2,... defined by r+i = (q mod p), ro = a mod p. 

Definition 1.3.1. Given an integer a, the formal Laurent series r/p1 where 

rk is defined above is called the p-adic expansion of a. 

Lemma 1.3.2. Given any a E Z, the p-adic expansion as defined in Definition 1.9.1 

converges to a with respect to v. 

Proof. We will show that for all a E Z and for all e E Q there exists an N E N such 

that v (a -  En  0rkp'') <e for all n> N. Let a E Z and n EN. Then 

a = q0p+ro 

= q1p2+rip+ro 

= qpm+l + E rkpk. 

k=O 

Fixe>O. Let NENbesuchthatqE{O,1}andp<foral1n>N. Then 

a = E fr orkpk and hence v. (a -  E Tn  orkplc) VP (0) = 0 < e. D 

Remark 1.3.3. With the above arugument, we can now write x >JJ rp1. Note 

that this equality in Q refers to the toppology for Q induced by vi,. 

Lemma 1.3.4. Any rational number a can be represented as a formal Laurent series 

00 rkp' where 0 <Tk <P. 



12 

Proof. Suppose a where y E Z and p% y. Then y skpk by Remark 1.3.3 

and s0 0 50 v skp c) 1. Define J tkp' by 

to = (mod p) 

which gives 

soto = 1 + qop 

for a unique q0 E Z; arid for n ≥ 1 

which gives 

tn = —8' (n-10  
0 

—1+ 

for some unique q E Z. Then 

Now, 

k=0 i+j=n 

tkPk) 

_jtj + am_i) 

. j ) P k 
= 

= ( ) k = 1+ qpfl+l• 

k=0 i+j=k 

1  
urn vp ( 

Ek-oSkpk k=0 I 

= urn vp (E skpk - ( ) \ ( n tA)) n-oo 
= \k=O k=0 

= urn v 
n.-+oo SkPk) VP (1 ( SkpII (nE=O 

k=o I) 
= urn V 1_ (E Skpk) ( t,pc'\ 

/ \k=o )) 
= urn v(1 - 1 + qnp ') 

n-oo 

=0. 

\  
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Thus, we can now write = >IJ tkOO p'' as defined above. Therefore, if a = p E Q 

where 1 E Z, then x = rkp!C and ' = =o tkp'C by Remark 1.3.3. Therefore, 

a = pt >rkPk >tkp1c = E apk 

k=O k=0 kEZ 

where t,p' is defined above and ak = pt i+j=k r,t. o 

1.4 Completions of Q 

It is well known that the real numbers are formed by completing the rational numbers 

with respect to vco. This is done by adding limit points of Cauchy sequences to the 

rational numbers. The valuation v extends to IR, the topological ring JR is complete 

with respect to this valuation, and Q is dense in JR with respect to v. However, JR 

is not the only complete topological field containing Q as a dense subfield. 

Definition 1.4.1. Let v be a non-trivial valuation on Q with F = JR>° (see The-

orem 1.2.4). Let C(Q) denote the set of all Cauchy sequences in Q with respect 

to V. Let .A1, (Q) denote the set of null sequences in Q with respect to v (i.e. 

(afl)flEN E JV.,(Q) implies limflEN v(a) = 0 in Ia). 

Lemma 1.4.2. If a E C(Q), then 

1. there is some Ma E JR>° such that v(a) <Ma for all n E N 

2. lim + v(a) exists. 

Proof: Since a is Cauchy in Q, {v(a) J n E N} is Cauchy in JR≥O, so {v(a) I n E N} 

is Cauchy in R. Since Cauchy sequences in JR are bounded [12, Lemma 10.10], v(a) 

is bounded and since Cauchy sequence are convergent [12, Theorem 10.11], v(a) is 

convergent. 0 
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Proposition 1.4.3. The set C, (Q) is a ring and J\f(Q) is a maximal ideal of C, (Q). 

Proof. Pick a = (afl)flEN, b = (bfl)flEN E C(Q). Let c = (c)p where c,- = anbn. Fix 

€> 0. Let Ma and Mb be as in Lemma 1.4.2 (1). Take N1 such that if n,m> N1, 

then v(a - am ) < and N2 such that if n, m> N1, then v(b bm) < fr-. Let 
2MbN=max{Ni,N2}. Suppose m,m>N. Then 

v(cn — cm) = v(ab + ambm - anbm - ambm) 

≤ v(a,,)v(b. - bm) + v(bm)v(an - am ) 

< Ma J+Mb 

= 6. 

Therefore, if a, b E C, (Q), then a  E C,, (0). Now choose N3 such that v(a,-, —am) < 

for all n, m > N3 and N4 such that v(b - bm) < for all n, m > N4. Let N' = 

max{ N3, N4}. Let c, = a + bn and suppose n, m> N'. Then 

v(c,—cm) = v(an+bn—am —bm) 

≤ v (an — am) +v(bm —bm) 

< 

6. 

Therefore, C., (Q) is closed under addition. Clearly (0) flEN is in C,, (Q). Therefore, 

C, (Q) is a ring. 

To show A1,(Q) is a subring, notice that (0)flEN E f,(Q). Let a = (a)EN, b = 
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(b,,) eN E (Q). Let c = (cfl)flEN where cn = a + b. Then 

urn v(c) = urn v(a + b) 
Th—*oo n—oo 

≤ urn v(a) + urn v(b) 
n—oo n—*oo 

=0. 

Thus, X, (Q) is closed under addition. To show X,(Q) is closed under multiplication 

suppose cn = anbn. Then 

lim v(c) = urn v(ab) 
fl-400 fl-OO 

lim v(a) urn v(b) 
n—Qo 

=0. 

Thus, .M0(Q) is a subring. To show that it is an ideal suppose a = (afl)fl€N E 

JV'0(Q), b = (b) EN E C(Q), and c = (cfl,)flEN where c,, = a,bn. Let Mb be as in 

Lemma 1.4.2 (1). Then 

lim v(c) = lim v(ab) 
n-,00 n—,00 

= lim v(a)v(b) 
Th-400 

< urn v(a)Mb 
n--too 

=0. 

Thus, A'(Q) is an ideal. Now, to show .Ai(Q) is maximal suppose A1.,(Q) C I C 

C(Q) and let c = (cfl)flEN E I, c 0 .N,(Q). Let L = lim EN v(c). This limit exists 

by Lemma 1.4.2 (2) and is not equal to zero since c 0 .N,(Q). Therefore, there exists 

N E Nsuchthatforalln > N, O=h L-5<v(c) <L+6. Thus, forn> N, 
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v(ç') < (L - 6)-' m 1 < 1. Now define b = (bfl)flEN by 

and a = (afl)flEN by 

b = 

an = 

0 ifc 2,=0 

ç' if C'  

0 ifc0. 

Now, a E .M, (Q) C C(Q).-Let n, m> N. Then 

v(bn bm) = v(c'—c;') 

= v(c - cm )v((cmcm)') 

< 

<6. 

Therefore b E C(Q) and (1) flEN = cb + ci E I = I = C(Q), Hence, .A4(Q) is 

maximal. 0 

Definition 1.4.4. Let Q denote the quotient field C((Q)/J\f((Q). If a = (afl) flEN E 

Q, let x = [a], the equivalence class of a. Define w,, Q 11≥° by w(x) = 

v(a). 

Lemma 1.4.5. The function w defined above is a well-defined valuation. 

Proof. Suppose x = [a] = [b]. Then 

w(x - x) = 0 urn v(a - b) = 0 
n—+oo 

urn v(a) - urn v(b) = 0 
fl-4 fl-CO 

w(x)—w(x)=O. 
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Therefore, w is well-defined. 

Now we will show that w, is a valuation. Let A E C(Q)/A1 (Q). Then A = 0 if 

and only if (xfl)flEN representing A is in A1,(Q). Thus, w(A) = 0 if and only if 

limn-" v(x) = 0. Let A represent (xfl)flEN and represent (Y-) -EN in CV(Q)/.ATV(Q). 

Then Ai is represented by (XnYn)n EN. For each n we have V(XnYn) = v(xn)v(yn). 

Taking the limit gives WV(AIt) = w(A)w(ji). Also for each n, v(x + y) ≤ v(x) + 

v(y). Thus, w, (A + ) ≤ w,, (,\) + WV(/). Thus, w is a valuation. 

Remark 1.4.6. The field Qv. is exactly ]I by definition. 

Proposition 1.4.7. The field Qv is a complete topological field. 

0. 

Proof. Let (afl)flEN be Cauchy in Q with respect to v. In other words, for all e> 0 

there exists N EN such that if n,m> N, v (an —am) <e. Let an = [(afl,)EN] where 

an,j E C(Q) and b = [(18n)nEN] where /5, = a. Now, fix e > 0. Then there exists 

N EN such that 

Therefore, 1im_ a 

Proposition 1.4.8. 

continuous. 

n,k>N 

' v(a.,i - ak,k) < € 

V(an,k I3k) <€ 

v (an —b)<€. 

b and hence, Q is complete. 0 

The ring homomorphism t : Q - QV defined by inclusion is 
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Proof. By Remark 1.4.6 Q00 = JR and therefore t : Q —+ JR is continuous. Now 

suppose v = v and consider v o t Q — Q 4 JR °. Now, v, o t is continuous (since 

the valuation group is JR≥O C R) and V is continuous. Hence, t is continuous. D 

Proposition 1.4.9. The rationals are dense in Q. 

Proof. Fix e> 0 and let x = [a] E Q,. Then there is an N E N such that for all 

n, m > N, v(a - am) < L Consider the constant sequence y = (XN)fleN. Now 

w(a - y) = lim.v (an — y). If n > N, then V(a — y) = V(a — aN) < and 

therefore, V(a — y) <. Thus, y E B(x) e) and Q is dense in Q. 0 

1.5 p-adic Fields 

For each prime p a field Qp will be constructed that is complete with respect to the 

p-adic valuation v. 

Definition 1.5.1. The p-adic field Q. is defined to be Q. Extend v to Q by 

setting v := w (see Definition 1.4.4). The ring 74, {x E Qp I v(x) ≤ 1} is 

called the ring of p-adic integers. Both 74, and Q, are equipped with the topology 

induced by v, (see Definition 1.2.1). 

Proposition 1.5.2. The Valuation ring, valuation ideal, and residue field of as 

defined in Definition 1.1.13 are given by: K° = 74,, PK = p74, and 'x = ?Zp/p7Lp = 

Fp. 

Proof. The valuation ring is 74, by definition. Now, PK = {.\ E Qp I < 1} = 

{). E Q, I ord(A) > 0} = p I A. Thus, PK = P74. It follows that 'K = 74,/p74, = 

0 
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Proposition 1.5.3. The set p74, is both open and closed in 74,. 

Proof. Consider [o, I which is closed in R≥°. Then 

VP' ([o]) = {xEzPvP(x)≤} 

= {xE7L I ord(x)≥p} 

= PZp. 

Since v, is continuous, p74, is closed in Z. 

Let 0 < e < 14 and consider [o, +6) which is open in R°. Then 

(10' p, 
+E)] P I 1 1 = 

= {xEzIV(x)≤} 

= p74,. 

Thus, p74, is also open in 74,. 

Proposition 1.5.4. The ring Z, is an open subring of Q. 

Proof. 

v;'([O,l+€)] = {xEZ Iv(x)≤1+6} 

= {xE7LpI?Jp(x)≤1} 

=zP. 

D 

Working with elements of Q, as equivalence classes of Cauchy sequences is diffi-

cult. Using the p-adic expansion from Section 1.3 gives us a nice way of viewing the 

elements in this field. 
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Lemma 1. 5.5. Every x E Q. can be written in the form x = OEZ r,p' with 0 < 

rk ≤p —  l. 

Proof. Let x = [(a)EN] E Q. Where an E Q. Then by Lemma 1.3.4, a = 

00 fl,kp1V. Define b := rk,kpk. Now, fix e> 0. Since [(afl)flEN} is Cauchy, 

k= ithere exists N E N such that 

n,k>N v(a—ak)<E 

v(a,,j - ak,k) < e 

v(a—b)<e. 

Therefore, 1im an = b. Thus, x can be represented in the desired form. D 

Example 1.5.6. In Q, for any prime p, we have 
00 

—1= (p-1)p. 
i=0 

Moreover, if x = Eo ap then 

00 

—x = p - a0 + - (1+ a))p. 
i=1 

Proof. First, notice that 

77, 

1+p—l+ 
i=0 

n 

( 
i=1 

- 1)p 

= p + (p - l)p + - 1)p 
• i=2 

77, 

= p2+(p_1)p2+1+(p.. 

i=3 

= p n+1 . 

1)p 
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Therefore, 

limv 1 
fl—too 

i=0 

(p - 1)pi urn Vp(p 1) 
n—oo 

=0 

The proof of the second equation is similar to the proof of the first: 

so 

urn vp 
fl-400 

ip i ) +p — ao+ 

i ) +p — ao+ 

n 

n 

i=1 

i=1 

( 

( - (1+a))p pfl+l 

- (1+ ai))Pi urn vp(p 1) 
n—oo 

=0. 

0 

Remark 1.5.7. It should be noted that adding, subtracting, and dividing p-adic 

numbers results in carrying forward as demonstrated in the above proof. 

Corollary 1.5.8. The ring Z, is complete. 

1.6 Hensel's Lemma 

Lemma 1.6.1 (Hensel's Lemma). Let f(x) = a0 + a1x + a2x2 + + arri' E 7L[x]. 

Suppose that there exists a p-adic integer a1 EZp such that 

and 

f(a) 0 (mod p7L) 

f(a1) 0 0 (mod p74,). 

Then there exists a p-adic integer a E 74, such that a a1 (mod p74,) and f(a) = 0. 
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Example 1.6.2. Let f(x) = x2 +1 E Z5 [x]. Then 

f(2)=22+1=5O (mod 57Z5) 

and 

f'(2)=4$O (mod 5Z5). 

Thus, by Hensel's Lemma, there exists a p-adic integer a E Z5 such that a 

2 (mod 5Z5) and f(a) = 0. Thus, \/i E Q. 

Lemma 1.6.3 (Hensel's Lemma, 2nd version). Let f(x) E Z[x], and assume that 

there exist polynomials gi(x) and hi(x) in 7z[x] such that 

• 1. gj(x) is monic 

2. g, (x) and h1 (x) are relatively prime modulo p 

S. f(x) g1(x)hi(x) (mod p). 

Then there exist polynomials g(x), h(x) E Z[x] such that 

.1. g(x) is monic 

2. g(x) gi(x) (mod p) and h(x) hi(x) (mod p) 

3. f(x)—g(x)h(x). 

Proof. See Gouvêa [7, Section 3.4] for a proof of either version of Hensel's Lemma. El 

Proposition 1.6.4. The second version of Hensel's lemma (see Lemma 1.6.3) im-

plies the first version (see Lemma 1.6.1). 
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Proof. Let f(x) be a monic polynomial. Let g1 (x) = x—a1 and let hi (x) be relatively 

prime to g1 (x) such that f(x) gi(x)hi(x) (mod p). Then a1 is not a double root. 

Thus f'(ai) # 0 (mod pZ) and therefore by the second version of Hensel's Lemma 

there exists polynomials g(x), h(x) E 74 such that g(x) = 1—a and f(x) = g(x)h(x). 

This is Lemma 1.6.1. 

Remark 1.6.5. The converse of Proposition 1.6.4 is also true. 

1.7 Extension of v 

El 

Let K Qp be a field extension. Since (Q,, v) is a valued field one wants to consider 

valuations v K -+ R≥O such that these valuations extend the p-adic valuations on 

Q. 

Lemma 1.7.1. There is at most one valuation on K extending the p-adic valuation 

on Q,. 

Proof. Suppose v and w are valuations on K which extend the p-adic valuation. 

Then v and w are equivalent [7, Corollary 5.3.21. Thus, by Gouvêa [7, Lemma3.1.2] 

there is a positive real number a such that v(x) = (w(x)) for every x E K. But 

v(x) = w(x) whenever x E Q, since both valuations extend the p-adic valuation. 

Compute both valuations at x = p. Then v(p) = MM = a = 1. Thus, v 

and w are equal. 0 
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1.8 Norm Function 

Let K: Q, be a finite extension. Lemma 1.7.1 tells us that there can be at most one 

valuation on K extending p-adic valuation on Q,. However, the existence of such a 

valuation has not yet been established. This section defines the norm function and 

uses this function to construct the desired valuation. 

Definition 1.8.1. Let K : F be a finite extension. There exists a function NK:F 

K -+ F called the norm from K to F. Think of K as a finite-dimensional F-vector 

space. Take a E K, and consider the F-linear map /3 : K -+ K given by x i-+ ax. 

Since 3 is linear, it corresponds to a matrix. Then NK:F(a) is defined to be the 

determinant of this matrix. 

Proposition 1.8.2. Let K : F be a finite extension of degree n. 

a) Suppose a E K and let ma,F = x  - ad..1x ' + ... + (-1)'ao be the minimal 

polynomial of a over F. Then NK:F(a) = 

b) If K: F is normal, then NK:F(a) = floEGal(K:F) 0( 

Proof. A sketch of the proof is found in Christie [2, Prop. 2.4]. 0 

Example 1.8.3. Let F = Q5 and K = Q5(\/). Compute NK:F(a + b\/). There 

are two automorphims in the Galois group: cr(a+bv') = a+b/ 'and o'(a+bv') = 

a - Thus NK:F(a + b/) = (a+ b/)(a - b\/) = a2 - 2b2. 

Lemma 1.8.4. Norms are multiplicative: NK:F(a/3) = NK:F(a)NK:F(/3). 

Proof. Using Definition 1.8.1, a norm is a determinant and determinants are multi-

plicative. 0 
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Remark 1.8.5. Norms are not additive. Let F = Q5 and K = Q(y'). From 

Example 1.8.8 NK:F(a + b\/) = a2 - 2b2. Similarly, NK:F(a - b/) = a2 - 2b2. 

However, NK:F (2a) = 2a =h 2a2 - 4b2 

Theorem 1.8.6. Let K Q. be a finite extension of degree n. The function VK 

K - R ° defined by 

VK(X) = Vv,(NK-,Q,(X)) 

is a non-archimedean valuation on K which extends the p-adic valuation on Q,. 

Proof. Check the four criterion for a valuation (see Definition 1.1.3). 

1. vK(0) = 0 and VK(1) = 1 are clear. 

2. Since NK:Qp(XY) = NK:Qp(X)NK:Qp(Y) by Lemma 1.8.4, and v, is multiplicative, 

it follows that vK(xy) = v(x)vK (y). 

3. If x E Q,, then NK:Qp(X) = X1 by Proposition 1.8.2(a), so that VK(X) '= 

= v(x). 

4. To show vK(x+y) ≤ max{vK (x), vK(y)}, show that VK(X+1) ≤ max{vK (x), 1}. 

Observe that VK(X) ≤ 1 will happen exactly when Vp(NK:Qp(X)) ≤ 1. Thus, it 

needs to be shown that 

Vp(NK:Qp(X)) ≤ 1 VK(NK:Qp(X - 1)) ≤ 1 

or 

NK:Qp(x) E 7Lp NK:Qp(X - 1) E 7/ 
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which is true from Lemma 1.8.8. Thus VK(x) <1 => VK(X - 1) <1 and 

VK(X) ≤ 1 => VK(— X) ≤ 1 

VK(X1)<1 

=. VK(X +1)<1. 

Case 1: if v1 (x) ≤ 1, then max{vK (x) , 1} = 1, thus VK(X+ 1) ≤ max{vK(x), 1}. 

Case 2: if VK(X) > 1, then VK () < 1, which yields 
\ 

VK(  j ' )VK( I l+ —i J<l x xl 

which says VK(X + 1) VK(X) = max{vK(x), 11-

0 

Lemma 1.8.7. If f(x) = xm +' + ax + a0 is a monic irreducible polynomial with 

coefficients in Q. and a0 E 74, then a2 E 74 for all 1 ≤ i ≤ n - 1. 

Proof. [7, Lemma 5.3.6] Assume that a0 E Z, but some a1 0 74. Choose m to be 

the smallest exponent such that ptm a1 E Z, for every i ≥. 1. Set g(x) = ptmf(x) = 

bx1 + b_1x' + . . . b1x + b0, so that bi = pma1. Since f(x) is m6nic, bn = pm is 

divisible by p; since a0 E Zr,, b0 = ptma0 is also divisible by p. Let k be the smallest 

i such that b1 is not divisible by p. Then 

g(x) (bx' +... + bk)x'(mod p) 

and the two factors are relatively prime modulo p. By the second version of Hensel's 

Lemma (see Proposition 1.6.3), it follows that g(x) = pmf( c) is reducible, and 

therefore so is f(x) itself. This contradicts the assumption. Hence, a1 E Z for all 

1≤i≤n - 1. 0 
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Lemma 1.8.8. Let K : Qp be a finite extension of degree n and let a E K. Then 

NK:Q(a) E Zp NK:Qp(a — 1) E Z. 

Proof. Since the formula for the norm does not depend on the choice of field con-

taining a [7, Proposition 5.3.4], we can assume that K = Q(a), the smallest 

field containing a. Let m a,Q = - a_ix' + + (- 1)_'aix + (-1)ao 

be the minimal polynomial for a. ,Then the minimal polynomial for a — 1 is 

= x7" — (an_i + + ... + (-)n(l + a_ + + a1 + ao) (since 

m_1,Q (a - 1) = 0 and the degree is right). Using the second definition of the norm 

(see Proposition 1.8.2 (a)), NK:Qp(X) = a0 and NKQ(x-1) = 1+a_1-i-•• 

Now mc,,Qp is an irreducible polynomial and a0 E Zp, so 1+ a_ + + a1 + a0 c ZP 

by Lemma 1.8.7. El 

Given any finite extension K: Qp of degree n it has been shown that there exists 

a unique valuation on K which extends the p-adic valuation on Q. This additive 

valuation is called the p-adic valuation on K. For any x E K>< this valuation is 

defined by 

ordK (x) = Vp(NK:Qp(X)). 

1.9 Finite Extensions of Q 

Definition 1.9.1. Let K: Qp be a finite extension of degree n, and let e = e(K: Q,) 

be the unique smallest positive integer defined by 

ordK (K ><) = Z. 
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The integer e is called the ramification index of K over Q,. The extension K: Q, 

is unramified if e = 1, ramified if e> 1, and totally ramified if e = n. An element 

ir E K is a uniformizer if ordK (-r) = 

Remark 1.9.2. It is easy to see that 1 ≤ e ≤ n. In fact e divides n. 

Example 1.9.3. Consider the fields Q5(v') and Q5(V'). In the following two 

examples we will determine the ramification index, type of extension, valuation ring, 

valuation ideal, and residue field'of these two fields. 

1. Let K = Q5(V'). Then n = 2. Thus, 1 ≤ e ≤ 2. To determine the exact 

value of e, the image of ordK must be calculated. The Galois group Gal(K 

Q) = {1, o} where o(x + 's/y) = x - Thus by Proposition 1.8.2 (b), 

NK:Q5(X+V') = x2-2y2. Therefore, ordK = ord5(x2-2y2). Write x = 

y = 5mv, where m,n E 7L, u,v E Z. Then x2 - 2y2 = 52 u2 - 2(5 2mV2). 2(52mv2). Now, 

ord5(x2-2y2) ≥ min.{ 2n, 2m} with equality if n 0 m. If n = m then x2-2y2 = 

521(u2 - 2v2) => ord5(x2 - 2y2) = 2n.+ ord5(u2 - 2v2). If ord5(u2 - 2v2) > 0 

then u2 - 2v2 0(mod 5). 

- If u 0, then v 0 which is not possible since u, v E 7Z. 

- If u 1, —1, then 2v2 1 which is a contradiction since v2 3 has no 

solutions (mod 5). 

- If u 2, —2, then 2v2 —1 which is a contradiction since v2 2 has no 

solutions (mod 5). 

Thus, ord5(u2 - 2v2) = 0 = ord5(x2 - 2y2) = 2n E 2Z, and e = 1. Therefore, 

Q5(\/) : Q5 is an unramified extension. 
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Now, ordK(x+v'y)=1  >ord5(x2-2y2)=2. Let i=x+v'y=5=p. 

K° = {zEKlordK≥O} 

= {x + /y e K I ord5(x2 - 2 Y2) 2y2) ≥ O} 

= {x+V'yEKIx,yEZ5} 

= Z5 [V"21 

PK = {zEKIordK >O} 

= {x + v'-2y e K I ord5(x2 - 2Y2) > O} 

= {x+V'yEKix,yE5Z5} 

= 5Z5[\/] 

TJ0I 'K= Pic = Z5[v']/5Z5[v] 

= 

IF25 

. Let K = Qs(') so n = 2 and 1 ≤ e ≤ 2. As above, it is easy to calculate the 

norm: NK:Q5(X + V5-y) = X 2 - 5y2. To calculate the ramification index, it is 

sufficient to find x + /y E K such that ord5(x2 - 5y2)= 1. Let x = 0, y = 1. 

- Then ordK (/) = v5(-1) = . Thus, im(ordK) 7Z, e = 2, and Q(V') 

Q5 is totally ramified. A uniformizer, ir = x + /'5-y = was calculated when 
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finding the ramification index. 

K° = {z E K I ordK ≥ 0} 

= {x+V'yEKIord5(x2-5y2)≥ 0} 

= 

PK = {zEKIordK >0} 

= {x + /y E K I ord5(x2 - 5y2) > 0} 

= 5Z5+V'gZ5 

= K°/PK = Z5[v'5]/(5Z5 + v'Z5) 

/ ,77 
1L45/)1Z.i5 

rj 11' 
= .IJ.5 

Remark 1.9.4. Notice that the uriform'izer of K is not unique. In the unramified 

case, p is usually chosen as the uniformizer. 

1.10 p-adic Fields and Hensel's Lemma Revisited 

Definition 1.10.1. A field K is a p-adic field if K is a finite extension of Q. 

Proposition 1.10.2. Let K° be the valuation ring of K, let PK be its maximal ideal, 

and let 'K be the residue field. Fix a uniformizer ir in K. Then 

1. the ideal PK C K° is principal and it is a generator 

2. any element x E K can be written in the form x = uir01), where u E (K0)>< 

is a unit 
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3. the residue field xK is a finite extension of 1F whose degree is less than or equal 

to the degree {K : Q] 

4. any element of K° is the root of a monic polynomial with coefficients in Z 

5. if x E K is the root of a monic polynomial with coefficients in Z, then x E K°. 

Proof. 

1) 

2) 

X E PK = VK(X) <1 

= ordjc(x) > 0 

= ordjc(x) ≥ 

= ordj<(ir'x) ≥ 0 

VJ-('1r'x) ≤ 1 

=> ir 1xEK 

= xEirK° 

x E K = VK(X)<OO 

ordj(x) > —Co 

Ill 
xEK° -

3) The result follows from Proposition 1.10.3. 

4) If a is the root of such a polynomial then its norm (up to a sign) is a power 

of the constant term, which is in 7L. Hence vK(a) = /vp(NK:Q(a)) ≤ 1-

5) Follows from Lemma 1.8.7 and Hensel's Lemma. 0 
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Proposition 1. 10.3. Let K Q, be a field extension and let IcK be the residue field 

of K. Let f = f(K : Q) be as defined in Definition 1.9.1. Then ['cK : F] = f, so 

that 'K = lFpf is the finite field with p1 elements. 

The proof to this proposition is quite long and the reader is referred to Gouvêa [7, 

Prop. 5.4.6]. The proposition was stated to illustrate that the degree [K : Q,] = n of 

a finite extension breaks up into factors e and f := 2, where e measures the change 

in the image of the additive p-adic valuation ord and f = [K F] measures the 

change in the residue field. 

Lemma 1.10.4 (Hensel's Lemma, general version). Let K be a p-adic field and let 

ir be a uniformizer. Let f(x) = ax' + + + a1x + a0 be a polynomial 

whose coefficients are in the valuation ring K° = {x E K I v(x) ≤ 1}. Suppose that 

there exists a E K° such that f(a) 0 (mod 7r) and f(a) # 0 (mod ir). Then there 

exists a0 E K° such that a ao (mod ir) and f(4) = 0. 

Notice that Lemma 1.6.1 is a specific case of Lemma 1.10.4. If K = Q, then 

K° = 74, by Definition 1.5.1. Let ir = p. Lemma 1.6.1 is now obtained from 

Lemma 1.10.4 and thus a general version of Lemma 1.6.3 could be obtained in a 

similar manner. 



Chapter 2 

Classes of Rings 

This chapter will introduce the category of affinoid rings with an emphasis on Tate 

rings. To define Tate rings, adic and f-adic rings are introduced. The completion of 

rings is discussed to provide examples of such rings. 

2.1 Completion of Rings 

Let A be a ring and let I and J be a ideals of A. Recall that the multiplication of 

two ideals is defined as follows: for I i A and J i A, 

aibi I ai E I, bi E J,n E N}. 

Then we have natural homomorphisms 

A/I +- A/I2 A/I3 

which make (A/I1)€N into an inverse system of rings (see Definition A.2i.). Note 

that each natural homomorphism A/Itm - A/I' is surjective and is defined by 

a + 1m+1 i- p a + I. 

Let V : A -+ F U {O} be a function defined by v'1(x) = xEP} The 

topology on A induced by v is the coarsest topology on A making A a topological 

ring and such that v 1{x E r U {O} I x < 'y} is open in A for each 'y E I'. Recall 

from Chapter 1, if I is a prime ideal, then v is a valuation. 

33 
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Definition 2.1.1. Let A be a ring and I be an ideal of A and make (A/P") flEN into 

an inverse system of rings as above. The set 

A:= lim A/In 
mEN 

(see Definition A.2.1) is called the completion of A with respect to I. Let I {a € 

A I a1 = O} where a= (a1,a2,a3 ... ) and Cen E A/Ia. 

Lemma 2.1.2. The set A is a ring and f is an ideal of A. 

Proof. Clearly 0 = (0,0,...) and 1= (1, 1,..) are in A. Let a = (a1, a2,...), /3 = 

E A. Then a)3=(aj/3i,a2)32,. ..) and a+/3=(ai+/3i,a2+/32,...) 

are in A since A/Ia A/I' is a homomorphism for all n. Thus, A is a ring. The 

set f is clearly a subring of A and since multiplication is computed component wise, 

a! I and fa C I for all a c A. Therefore I is an ideal of A. 

Lemma 2.1.3. The ideal P consists of those a = (a1, a2,...) E A such that ak = 0. 

Proof. If a E P. Without loss of generality, take a = /3l/32• /5k where /3, E I. Let 

a2 = J•J1. 0/3,j. Choose a representative a2 from the equivalence class a2 and b2, 

from 192,i. Then a2 = flob2,i and b2, I (since ,8 i,j =  0). Thus, fl0/32 ,i E 1k 

which implies a2 E JIC• Hence, a2 = 0. 0 

Proposition 2.1.4. There exists a bijection between Ali and A/I. Thus, I is a 

prime ideal in A if and only if I is a prime ideal in A. 

Proof. Consider the following diagram 
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such that (a +1) = /L(a) + I for a € A. Then the diagram commutes. Since a E A 

if and only if a1 e I, çô is bijective. 

Corollary 2.1.5. There exists a bijection between A/ I' and A/Isv. 

Example 2.1.6. 

1. Let I = {pThZ I n E N} be the partially ordered set with respect to 

7L/pmZ —p Z/pZ defined by k +ptm7L '—* k +p7Z when n ≤ m (with the regular 

order on N; i.e., n ≤ m m - n ≥ 0). An element of limZ/pTh7L is then a 
nEN 

sequence (a)>i such that an E 7Z/p7Z and if n < m then a am(mod pfl). 

Every natural number m defines such a sequence and can therefore be regarded 

as a p-adic integer. For example, 35 as a 2-adic integer would be written as 

the sequence {1,3,3,3,3,35,35,...}. In fact, the ring lim Z/p7L has already 
nEN 

appeared; it is exactly the ring of p-adic integers (see Definition 

Let a = (an)nEN E 7L/p'7L. For each a, choose a representative an E 
nEN 

Z. Without loss of generality choose 0 ≤ an < p and consider the base p 

expansion (see Definition 1.3.1) of a (i.e. a = rn,kpk = rfl,kp + 

higher order terms). Define b :=r +i,. 

Now consider 

p:limZ/p'Z —f zP 
nEN 

a = (an)nEN i.' /3 
n=O 
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where bn is defined above. Also consider 

- 

00 

lim Z/pThZ 
nEN 

i- a=(afl)flEN 

where an = a + p7Z and an = bjp'. 

Now cc is surjective since for any bp E Z, we can define a sequence 

a = (afl)flEN in lim Z/pZ by a, = a + pZ and a = The 
mEN 

map cc is injective since it has an inverse, namely L'. To illustrate this, let 

a E lim Z/pmZ. Then 
mEN 

(''oç)(a) 

Thus, 'p is bijective (and ç' is its inverse). To show that these rings are iso-

morphic as topological rings, we will show 0 is continuous. Consider 1r(). 

Now, a1 = 0 =' a1 E (p) so choose a1 = 0. Hence, b0 = 0 and therefore, 

= a() = P72p• Thus, is continuous. 

We now have two constructions of the p-adic integers: the inverse limit con-

struction and the algebraic construction illustrated in Chapter 1. 

2. Let Z7,[T] denote the completion of Z[T] with respect to the ideal (p), thus, 

1im7Z[T]/(p)7Z[T]. Then 7Z[T] = Z{T}, the ring of convergent 
nEN 

power series. The verification here is identical to the argument above. 

Proposition 2.1.7. Let  be a ring and  an ideal of A. For each  we have a natural 

map A - A/Itm so by the universal property of inverse limits (see Proposition A.2.2) 
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we obtain a homomorphism A —* A. Then A is complete, the ring homomorphism 

0 A —+ A is continuous (where A is given the 1-adic topology and A is given the 

I-adic topology), and A is dense in A. 

Proof. Since ci : A -+ A is unique, V1 = v1 o ci. Thus, ci is continuous since v1 and v1 

are continuous. 

Let (afl)flEN be Cauchy in A with respect to v1. In other words, for all e > 0, 

there exists N N such that if n, m> N, v1 (a - am ) < e. Let a = (a,k) kEN where 

an,k E A/I'. Let b = ()30,)31, e A where )3n = c and a = an,n under the 

bijection from Corollary 2.1.5. Fix €> 0. Then there exists N N such that 

n,k>N vf(a,k—ak,k)<6 

v(c,k - I3k) <C 

v1 (an —b)<6. 

Therefore lini., an = b and hence, A is complete. 

Since A is a ring equipped with the I-adic topology, f In I n E N} is a base at 

0 E A. Therefore A = U°=0 (A + P). Now 
00 

xEU(A+I) 

x=y+z, YEA, zEITh 

y=x—zE(x+I)flA 

xEA. 

Therefore A is dense in A. 

Remark 2.1.8. If a ring A is complete it may not be of the form described above. 

For example, the real numbers are complete but not of this form. 
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Proposition 2.1.9. Let A be a ring, K be a p-adic field. Let a: K° —+ A be a ring 

homomorphism and let ir denote the image of a uniforinizer (see Definition 1.9.1) 

of K under a. Let ço : A — p A be the canonical map (see Proposition A.2.2). Define 

* := (o u) (7r). Then A®KO K = A (where A®Ko K is the pushout of A — A <--

K O --+ K). 

K° > K 

Proof. Recall that K is the ring K° localized at ir and A is the localization map (see 

Definition B.O.3). Notice that K = K. Let a E A and 4 E K: Define = 

(coou)(k)  - (coo)(k)  ( oo )(irfl) Then ('oA.)(k) = (A.000)(k). Suppose goA',. = fooa. Then 
- 

(fooa)(k) = g('fl. Now define 9 : A - B by -- -- Then (0oA*)(a) = f(a) f()" 

and 

(00 0) (;) rn \• .frn 

- (fooa)(k) 

= (fooa)(k)  

(f 0 ço 0 a)(irm) 
1k 

= g(;;;;) . 

Thus, 0 exists. To show the uniqueness of 0, suppose 0': A1. —* B such that 0'oA. = f 
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and 0' 0 0 = g. Then 

0' ('\ = (0' o )) (*Ol) 
= f( •Cr, :;) 

Therefore 0' = 0 and 0 is unique. 

2.2 Adic Rings 

Definition 2.2.1. Let A be a topological ring. An ideal I of A is called an ideal of 

definition if gn I n E N} is a base for the topology (see Section .1.2) at 0 E A. A 

topological ring A is said to be adic if A contains an ideal of definition. If A and 

B are adic rings and f : A -+ B a ring homomorphism such that given an ideal of 

definition I of A, f(I) is an ideal of definition of B, then f is called an adic ring 

homomorphism. 

Lemma 2.2.2. The composition of adic ring homomorphisms is adic. 

Proof. Let A, B and C be adic rings with adic ring homomorphisms f A - 4 B and 

g: B -+ C. Let I be an ideal of definition of A. Since f is adic, f(I) is an ideal of 

definition of B. Since g is adic, g(f(I)) is an ideal of definition of C. Therefore g 0 f 

is adic. 
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Example 2.2.3. 

1. Let A = Z p and consider I = P7Zp. Then In is a base at 0 

/[0' 
1 

xEv'( \ Ptm1) • v,(x)≤-

ord,(x) ≥ n 

a E p'Z, 

xEIn. 

Thus, p74, is an ideal of definition for Z,, and hence, 74, is adic. 

2. The ring Q, is not adic since the only prime ideal is (0) which cannot be an 

ideal of definition. 

S. Consider the ring A = 74,{T} (see Example 2.1.6(2)) with ideal I = p{T}. 

Let f = E °=0 apTh E A. Then Itm is a base for the topology at 0 if im = 

i]). Without loss of generality, take the base of the valuation to be 
v71 ([o,  

p (see Example 1.1.7 (5)). 

fCv7'([ 0])PM 1 
v1(f)E[0, rn-] 

vi(a)≤-,VnEN 
PM 

aEpmZ,VnEN 

fEpmZ{T} =IM . 

Thus, 74,{T} is adic and I = p{ T} is an ideal of definition. 

4. The ring Q{T} is an adic ring and pQ{T} is an ideal of definition. 

5. The ring Z[[T]] is adic and p74,[[T]] is an ideal of definition. 
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Proposition 2.2.4. An adic ring homomorphism is continuous. 

Proof. Let A and B be adic rings with adic ring homomorphism f A - p B. Sup-

pose I and J = f(I)B are ideals of definition of A and B respectively. Then f is 

continuous at 0 if for all N E N there exists M E N such that vi(a) < e' which 

implies vj(f(a)) <c_N, or equivalently, for all N E N there exists M E N such that 

a EIMf(a)EJIr. Take M:=N. Then aEIM, f(a)Ef(IM )=f(I)M C 

jM• Thus, f is continuous at 0 E A. To show that f is continuous at x E A, let U 
'S 

be an open neighbourhood of x. Since I is an ideal of definition there exists• K e N 

such that x E x + 1< U => f(x) e f(x + I'<) = f(x) + f(I)' C f(x) + J'<•. 

Therefore f is continuous. 

0 

Example 2.2.5. 

1. The identity map is adic. 

. Define cc: Q{T} - Q{T} by W(T) = pT and cc is Q-linear. Then cc is a 

ring homomorphism and 

= { nEN 

bTm € Q{T} I bn E pm7, and — —+ 0 7L{T}. 
pm J 

Thus, cc is continuous, and an adic ring homomorphism. More generally, cok: 

Q{T} — Q{T} is an adic homomorphism where Wk(T) = pkT and cok is 

Q-linear. 
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2.3 f-adic Rings 

Definition 2.3.1. A topological ring A is said to be f-adic if there exists an open 

adic subring A0 g A such that A0 has a finitely generated ideal of definition. If A is 

f-adic then any open adic .subring of A is called a ring of definition of A. Let A, B 

be f-adic rings. If g A -+ B such that g(Ao) 9 Bo and g 0 A0 - B0 is adic, then 

g is said to be an f-adic homomorphism. 

Example 2.3.2. 

1. Any adic ring which is also noetherian (i.e. every ideal is finitely generated) is 

f-adic by taking A0 = A. 

. Let A=7L,, A0 =7L,, and I=p7L. Then  isf-adic. 

S. Let A = Q, A0 = Z, and I = P74,. Then A is f-adic, but not adic. 

. Let A = Q {T} be the ring of convergent power series equipped with the 

topology defined by v(EflEN aTTh) = SUPN Then A is an f- adicring 

with ring of definition A0 = 74 {T} and ideal of definition (for A0) given by 

I— p74 {T}. 

Proposition 2.3.3. Let A and B be f-adic rings. If g : A -+ B is an f-adic 

homomorphism, then g is continuous. 

Proof. Let A, B be f-adic rings and let g: A - p B be an f-adic homomorphism. Let 

U C B be open in B. Since B is a topological rihg, without loss of generality, take 

U = g(I)Bo where I is an ideal of definition of A0. Now, gIA0 is continuous, since 

gIA0 is adic. Therefore, A0 -4 g(I)Bo B is continuous which implies g: A - B is 

continuous. 0 
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Example 2.3.4. The adic ring homomorphisms described in Example 2.2.5 are also 

f-adic. 

2.4 Power-bounded Elements 

Definition 2.4.1. Let A be an f-adic ring. An element a E A is power-bounded if 

a E B where B is a ring of definition of A (see Definition 2.3.1). Define A° to be 

the set of all power-bounded elements of A. In other words, a E A° if a E U B, the 

union of all rings of definition B of A. 

Example 2.4.2. 

1. Let A = Q. Then A° = Z. 

2. Let A = 74,. Then A° = 74,. 

3. Let A = k((T)) with ideal of definition Tk[[T]]. Then A° = k[[T]]. 

Corollary 2.4.3. A° is a subring of A. 

Proof. Clearly 0, 1 E A° since 0 and 1 are in all rings of definition. Now consider 

b, c € A°. If b, c are both in the same ring of definition, B, then bc and b + c are in 

A°. Suppose b E B and c E C where B and C are rings of definition of A and B 54 C. 

Then B has an ideal of definition I and C has an ideal of definition J. Now, B + C 

is a ring of definition of A since I + J is an ideal of definition. Since B + C is the 

smallest ring containing both B and C, bc and b + c are in B + C. Thus B + C C A° 

implies b, c E A° . 0 



44 

2.5 Topologically Nilpotent Elements 

Definition 2.5.1. Let A be an f-adic ring with ring of definition A0. Then a E A 

is topologically nilpotent if for all ideals of definition I of A0, and for all m E N<, 

there exists some N E N< such that ak E im for all k ≥ N. Define A°° to be the set 

of all topologically nilpotent elements of A. 

Example 2.5.2. 

1. For every prime, p E Q, is topologically nilpotent. 

2. The unity 'A E A is not topologically nilpotent. 

Proposition 2.5.3. Let A be f-adic. Let I and J be ideals of definition of A. Pick 

a E A. Then for all m E NX there exists some N E N>< such that ak E 1m for 

all k ≥ N if and only if there exists some M e N< such that ak E Jm for all 

k ≥ M. Thus, to see if a E A is topologically nilpotent, it suffices to check one ideal 

of definition. 

Proof. Let A be an f-adic ring and a E A be topologically nilpotent with respect to 

I. Consider the ideal of definition J I. Then there exists m E N such that Itm ç j 

Since a E A is topologically nilpotent with respect to I there exists some N E 

such that ak E jm for all k ≥ N. Thus ak E I J for all k ≥ N. Therefore, a E A 

is topologically nilpotent with respect to J. 0 

Corollary 2.5.4. Let A be an f-adic ring. Then a E A°° if and only if there exists 

an ideal of definition I such that for all m E N>< there exists some N E N>< such that 

ak E im for all k ≥ N. 
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Proposition 2.5.5. The set of topologically nilpotent elements is an ideal in A0. 

Proof. Let A be an adic ring, I be an ideal of definition of A, and a, b E A°°. Then 

for all k E N there exists N E N such that an E Ik for all n ≥ N and there exists 

M E N such that btm E I' for all m ≥ M. Let N + M = K. Then 

(a + b)K = (K) A  K-i. 

i+O 

Now, 0 ≤ i < N implies -N ≤ -i ≤ 0 which implies 0 < N-i < IV so M < K-i ≤ 

K. Thus b<_i E 1k• Similarly N < i < K = a E 1'. Thus a + b E A°°. Also, if 

a € A and b E A°°, then there exists M E N such thatbm E for all m > M. Now, 

(ab)tm = atmbtm E Thus, A°° is an ideal in A0. 0 

2.6 Tate Rings 

Definition 2.6.1. An f-adic ring A is a Tate ring if there exists a topologically 

nilpotent unit in A. 

Example 2.6.2. 

1. The field Q, is a Tate ring since Qp is f-adic and p E Q. is a topologically 

nilpotent unit. 

2. The ring Z, is not a Tate ring. Let x E (4)°°• Then x E Z if limflEN v(x) = 

0. But limflEN v(y) = 1 for all y E Z. Thus, there are no units in 74, that are 

topologically nilpotent. 

Proposition 2.6.3. Let A be a topological ring, fix s E A, and consider the lo-

calization A3 (see Definition B.O.3). Equip A3 with the coarsest topology such that 
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A: A -+ A8 is continuous. Then A8 is a Tate ring. Conversely, if A is a Tate ring 

then A = B8 for some topological ring B and for some s E B where B8 is equipped 

with the adic topology generated by {(Th) I n E N}. 

Proof. To show that A3 is a Tate ring we need to show A3 is f-adic and has a 

topologically nilpotent unit. To show that A3 is f-adic we need to' find an open 

subring A0 of A with an ideal of definition. We claim that B = A((s)°) = A(A) = 

{ a E Al is a ring of definition. It is clear that B is both open and is a subring 

of A8. We take I = A(s) = { a E Al = fB which is clearly an ideal of B, and 
In = (A(s)) = A((s)) since A is a ring homomorphism, and hence I is a fundamental 

system of neighbourhoods. Therefore, A8 is f-adic. We claim that t := E A8 is 

a topologically nilpotent unit. Now, t is a unit since () () = = 13. Consider 

ftn I n ≥ 1} C I = tB. Then {tc n ≥ i} C 1' which implies t is topologically 

nilpotent. 

Conversely, suppose A is a Tate ring. Choose a Wring of definition B of A. Then 

the result follows from Lemma 2.6.4 and Lemma 2.6.5. 

Lemma 2.6.4. Let A be a Tate ring and let B be a ring of definition of A. Then B 

contains a topologically nilpotent unit of A., 

Proof. Since A is a Tate ring, by definition, there exists a topologically nilpotent 

unit t E A. Then for all U C A open, 0 E U, there exists N E N such that 
N, 

• {tn I n > N} C U. Since B is a ring of definition of A it is an open neighbourhood 

of 0 in A. Set U = B and the result follows. 0 

Lemma 2.6.5. Let A be a Tate ring, let B be a ring of definition of A, and let s E B 

be a topologically nilpotent unit of A. Then A B8 and sB is an ideal of definition 
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of B. 

Proof. Let A be a Tate ring, let B be a ring of definition of A, and let s E B be a 

topologically nilpotent unit of A. Then A = A3 since s is a unit. Let : B3 - f A3. 

Define cc (*) = 
A A3=A 

Now, 

W 
b b' 
-=- s s7 

?(b?' - b's') = 0 for some m E N 

bs' - b's = 0 since s is a unit 

b81' = b/sm 

bs = b's'. 

Thus, cc is one-to-one. To show that cc is onto, pick a E A. We need to find b E B, 

n E N such that (jr) = a. In other words bs = a b = sa. Consider the 

map fa : A -* A where x '- ax. This is a continuous map. Thus, fa-'(B) = {x 

A I ax E B} is an open neighbourhood of 0 in A. Since s E B and s is a topologically 
nilpotent unit, there exists N E N such that is  n ≥ N} 9 fa-'(B). In particular, 

asn E B and thus cc is onto and hence an isomorphism. 

To show sB is an ideal of definition of B, let U C A be open and 0 E U. Then 

there exists n E N such that 0 E In C U. Since s is topologically nilpotent, E I 

for some m E N. Thus, stmB C ItmB = PB C U. So, (sB)' = stmB C U for some 

m E N. Therefore sB is an ideal of definition for B. 0 
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Example 2.6.6. 

1. The ring Q{T} is Tate and Q{T} = (7z{T}). 

2. The field Q, is Tate and Q, = (7Z). 

2.7 Integral Elements 

Definition 2.7.1. Let A and B be rings with A C B. Then a E A is integral over 

B if and only if there exists fE B[x] such that f 0, f is monic, and f(a) = 0. A 

is integral over B if and only if for all a E A, a is integral over B. If every element 

of A that is integral over B belongs to B, then B is integrally closed in A. A ring 

A is said to be a subring of integral elements over an f-adic ring B if 

• A is a subring of B 

• A is open in B 

• A is integrally closed in B 

• ACB°. 

Example 2.7.2. Let B=Q and 4_—Z. Then 

• A is a subring of B by Definition 1.5.1. 

• A is open in B by Proposition 1.5..4. 

• For each a E A, let Ja(X) = x—a E B[x]. Then fa (a) = 0. Thus A is integrally 

closed in B. 

• A C B° by Example 2.4.2(1). 

Thus, the ring 74, is a subring of integral elements in Q,. 
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2.8 Affinoid Rings 

Definition 2.8.1. An affinoid ring is a pair A = (A>, A) where A> is an f-adic 

ring and A is a subring of integral elements over A> (see Definition 2.7.1). Let A 

and B be affinoid rings. A morphism g = (g>, g) : A -> B is called an affinoid 

ring homomorphism if g> : A> - B> is f-adic, g"' (A+) 9 B, and g : A -* B is 

defined by g+ (a) = g>(a) for each a E A. 

Remark 2.8.2. 'By Lemma 2.3.3, g> is continuous. 

Example 2.8.3. 

1. The pair (Q, Z) is an affinoid ring. 

2. The pair (Q{T}, Z{T}) is an affinoid ring. 

3. Let A = (Q, Q) be equipped with the p-adic topology and let B = (Q, Q) be 

equipped with the discrete topology. Then the identity map id: A - B is not 

continuous and hence not affinoid. To see this notice that {O} is open in B> 

but there is no power of (p) such that (p) C {O}. 

Proposition 2.8.4. Let A be an integral domain and let ir be a prime element in 

A. Let A denote the completion of A with respect to irA (see Definition 2.1.1). Let 

if denote the image of ir in A under the unique ring homomorphism A -+ A. Then 

A is a Tatering, and (Ak, A) is an affinoid ring. 

Proof. Let R = A and s = pi. Then R8 = A7. and I = sR is an ideal of definition. 

Now, the ring R3 is Tate by Proposition 2.6.3 (note that R is a topological ring with 

the topology given by vi). Thus, R is f-adic by Definition 2.6.1. Since multiplication 
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in R is done component wise, R is an integral domain since A is an integral domain 

and s is prime in R since ir is prime in A. Thus, R is integrally closed in R8 by 

Lemma 2.8.5, R is clearly a subring of R8, and R is open in R8 since 

R = {rER3Ivr(r)≤l} 

= v7'([O,l]) 

= v'([0,1+e)) for some e >0. 

To show that R C (R8)°, it is sufficient to show that R is a ring of definition of 

R3. Thus, it remains to be shown that R has a finitely generated ideal of definition 

(see Definition 2.2.1). Without loss of generality, take s to be the base in the I-adic 

valuation (see Example 1.1.7 (5)). Then {Th n E N} is a base for the topology on 

R so (s) is an ideal of definition of R. Therefore, (R3, R) is affinoid. 0 

Lemma 2.8.5. If A is an integral domain and s is a prime element of A, then A is 

integrally closed in A8. 

Proof. We must show that if b E A8 is integral over A then b E A. Write b = with sn 

aEA and nEN. If n = 0, then b E A trivially. 

Therefore, to begin, suppose b = is integral over A with n = 1. Let fSn = 

aT be a monic polynomial such that f(b) = 0. Then >LJ aj = 0 in A8 and Z=Ost 

since A is an integral domain, aa 5d_j = 0 in A. Thus, 

aosd + alas ' + a2a2dd_2.. . + ad_lad_ls + adad = 0. 

Since f is monic, ad = 1, from which it follows that ad E sA. Since s is prime, this 

implies a E sA. Writing a = sal we have = = ¶, so b E A. 
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Next, suppose b = is integral over A with n> 1. Since f e A3 is integral over 

A and since the set of elements of A3 which are integral over A is a subring of A8 

[4, 15.3, Corollary 19] then   = is integral over A. As above, it follows that 

a = sal, so b = Again, it follows that - is integral over A, so a1 = .sa2, whence 

b = Continuing in this manner have b = showing that b E A. .11 



Chapter '3 

The Main Algebraic Result 

The previous chapters have provided all of the tools necessary to prove the main 

algebraic result - Theorem 3.0.8. This result will be interpreted geometrically in 

Chapter 6 as the main geometric result - Theorem 6.0.5. 

Definition 3.0.6. Let A, B and R be rings. Let a R - A and r: R - B. Then 

HomR(A,B):={:A—B I çooa =r}. 

Lemma 3.0.7. Let A, B and Rbe rings and let a: A - A, ,8 B -+ be the unique 

maps guaranteed by the universal property of inverse limits (see Proposition 

where A is the completion of A with respect to an ideal I of A and f3 is the completion 

1 

Figure 3.1: Extension of ring homomorphisms in Horn-sets 

52 
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of B with respect to an ideal J of B. Let a: R — p A and 'r : R - B. Then for all 

W E HomR(A, B) such that ço(I) C J there exists a unique ç' E HomR(A, f3) such 

that o a o a )30T. 

Proof. Let the hypotheses of Lemma 3.0.7 be satisfied and consider the commuting 

diagram in Figure 3.1. Since ço(I) 9 J, there is a map w 

n EN defined byw(a+In) = co(a)+J. Then 

(iioy)(a) = ço(a)+J 

= w(a+In) 

= (wo'y)(a). 

A/Itm - B/Jn for all 

Now define ((a + I)flEr) := (cc(an) + J)mEN. The ring homomorphism 0 is well 

defined since if (a + I)flEN = (b + I)GN, then 

ç((a + Itm)flEN - (b + In ) flEN) = 0 4' ((a - b + In = 0 

Let r E R. Then 

(co(afl — bfl) -'-JTh)flEN=O 

@' (cc (an)+ JTh)nEN - (co(b) + JTh) ThEN = 0 

((a + ITh) ThEN) - 0((b + ITh) mEN) 0 

(/3 o T)(r) = (r(r) + JTh)nEN 

= (ço(a(r)) + JTh) ThEN 

= ço((a(r) + I)nEN) 

= ('oaocr)(r). 
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A®KO I 

I 

To show that çisunique, suppose ç' : A -+ B such that ç'oa=80. If  E A, 

then 

= ((a) + J)-EN = c(a(a)). 

Thus, ç'=ç2. E 

Theorem 3.0.8. Let K be a p-adic field with valuation ring K° and residue field ic 

(see Definition 1.1.13). Let A be an integral domain and let u : K° - p A be a ring 

homomorphism such that A OK- /c is an integral domain. Let A be the completion of 

A with respect to I (see Definition 2.1.1) where I is the kernel of PA : A -+ A OK-

defined by pA(a) = a ® 1. Then (A ®Ko K, A) is an affinoid ring and the map 

Horn (K,Ko) ((A OK. K, A), (K, K°)) - p HomKo(A, K°) 

a 

is bijeetive, where a : A —+ A is the unique morphism guaranteed by the universal 

property of inverse limits. 

Proof. Let ço E HomKo(A, K°). Then by Definition 3.0.6 çü: A - f K° and ço 0 ci = 

idKo. Now, the kernel of PA A - A OK- ic is cr('ir)A where ir is a uniformizer of K. 

A®KOK< -A >A®KOK 

I al I "*111• 

A )A®KoK 

 >kY 
Figure 3.2: Algebraic Theorem 
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Since K° is complete with respect to ir, K° = K°. Recall that by Proposition 2.1.9, 

A ®KO K = A.. Thus, by Proposition 2.8.4, (A ®Ko K, A) is an affinoid ring. 

Since, ço(cr(7r)A) = 'irço(A) C irK°, by Lemma 3.0.7 there is a unique : A —p K° 

such that 0 o a = cc. Let I = {a E A I a1 = 0}; then I is an ideal of definition in A 

and ç2'(I) = W(I) = (ir). Therefore, çZ' is adic. 

A=A®KoK K 

17A  177K 
A  

To extend 0 to a ring homomorphism q5 A —+ K, observe that 

K=K°®KoK=K. 

Thus, the homomorphism 01 only needs to be defined on . Define qP () = I. 
To show 01 is f-adic, notice that A is a ring of definition of A., K° is a ring of 

definition of K, and q(A) 9 K°. Now, Q5'IA = which is adic. Therefore, q 

is fadic. Let q5 A — K°. Then q5 is adic. Thus, (q, ) E 

Hom(K,Ko) ((A OKo K, A), (K, K 0)) and (q, q5+) q5+ o 0 by construction. Thus, 

Hom(K,Ko) ((A OKo K, A), (K, K0)) .+ HomKo (A, K0) is bijective. 

Proposition 3.0.9. There exists a bijection between Homz (7L[T], Z) and A• 

Proof. Let ci : 7Z — Z[T]. Define a map eT : Homz(7L[T], Z) —* 74, by cc 1-4 

ço(T). To show eT is surjective let z E 74,. Since cc o ci = idz,, there exists cc E 
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Homz (Z[T], 74,) such that (p (T) = z. Thus, eT is surjective. To show eT is injective 

let ço, 'b E Homz([T], 74,) and suppose et(W) = eT('cb). Thus, (T) = '(T). Now 

let IJ aT'' E Z, [T]. Then 

( 00 an m 

n=O n=O 

Thus, cc = 'b and eT is injective. 

= 

co 

n=O 

ab(T)"' = anT m). 

Example 3.0.10. Let K = Q and A = ZT]. By Definition 1.5.1, K° = Z. Thus, 

there is a ring homomorphism cr: 74, - 7z[T] defined by o(x) = x. Then by Exam-

ple ..1.6 (s), A = 7z{TI. By Remark 1. 9.4 ir p and thus by Example B.O.5 (4) 

= Q{T}. Then I PA C1 
Hom(Q ,z)((Q{T}, 7L{T}), (Q,, 74,)) Homz(Z[T], 74,) 74,. 

1F[T] _K  Z{T} '> Q{T} 

I 
Z [T] 77 Yp A >• Q,, [T] 

PK I)_I! 74 fiK Q 
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Chapter 4 

Category of Schemes 

The following chapter introduces the basics of scheme theory such as found in Chap-

ter 1 of The Geometry of schemes by David Eisenbud and Joe Harris. By studying 

the spectrum, of a ring, assigning the Zariski topology, and attaching a sheaf to this 

topological ring, one can construct affine schemes. A scheme is an object that is 

locally an affine scheme. 

4.1 The Set of Prime Ideals 

Definition 4.1.1. Let A be a commutative ring with unity. Then the spectrum of 

A is the set of prime ideals of A and is denoted by I Spec(A)j. 

Remark 4.1.2. Note that A itself is not a prime ideal, and the zero ideal (0) is 

prime if and only if A is an integral domain. 

Example 4.1.3. 

1. Let K be afield. Then I Spec (K)I = {(0)}. 

2. Let A = C[T]. Then the spectrum of A is {(T - a) I a E C}U {(0)}. 

3. The spectrum of the integers is {(p) I p prime} U {(0)}. 

. The spectrum of the p-adic integers is {(0), (ir)}. 

Proposition 4.1.4. Let A and B be rings and let ço : A -* B be a ring homomor-

phism. If I is a prime ideal of B, then çr'(I) is a prime ideal in A. 

58 
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Proof. Let A and B be rings and let I be a prime ideal of B. Let x E A. Then 

W(x) E W(A) C B. Since I is an ideal,W(a)c5(x) = W(ax) e I = ax E ço'(I) for 

all a E ço'(I). Similarly, W(x)W(a) xa E ço_1(I). Therefore, ço'(I) is an ideal 

of A. Now, let xy e ço_'(I) for x, y E A. Then (xy) E r = W(x)W(y) E I W(x) 

or W(y) E I. Without loss of generality, suppose W(x) E I. Then x E ço_'(I), and 

hence, ' is a prime ideal of A. 0 

Remark 4.1.5. It is worth noting that, while the inverse image of a prime ideal is a 

prime ideal, the inverse image of a maximal ideal is not, in general, a maximal ideal. 

To see this, consider the inclusion map i. : Z -• Q. The ideal I = (0) is maximal in 

Q but c'(I) = (0) is not maximal in Z. 

Definition 4.1.6. Let  be a ring. A subset V(I) I Spec(A) is closed in I Spec(A)I 

if there exists an ideal I of A such that V(I) = {p E Spec(A) I p D I}. We define 

open sets U(I) as áimply the complement of the closed set V(I) (i.e. U(I) = {p E 

Spec(A) I P 

Example 4.1.7. 

1. Let A = C[x] and I = (x2). Then 

V(I) = {p E I Spec(C[x])i I (x2)} = {(x)} 

. Let A be a ring and let I be a maximal ideal. Then V(I) = {I}. 

8. Let A = K°. Then V((ir)) = {(ir)}. 

Lemma 4.1.8. Let A be a ring and X I Spec(A). Then for any ideal I of A there 

exists a bijection between V(I) and I Spec(A/I) I. 
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Proof. The fourth isomorphism theorem for rings [4, 7.3 Theorem 8 (3)], when ap-

plied to commutative rings with unity, states that if A is a ring and B is an ideal of 

A then a ideal I of B is an ideal of A if and only if B/I is an ideal of All. Thus, 

p is prime in All p is prime in A and I ç p 

pEV(I). 

0 

Definition 4.1.9. Let A be a ring and let X = I Spec(A). For each s E A, define 

X8={pElSpec(A)I Is V P}. 

Any set of this from is called a distinguished open set. We will also use the symbol 

I Spec(A)1,to denote this set. 

Remark 4.1.10. Although I Spec(A) 8 0 1 Spec(A3) (see Definition .B.O.8), there 

is a canonical bijection between these sets defined by p E I Spec(A)I3 A5(p)A3 E 

I Spec(A). 

Definition 4.1.11. Let A be a ring and let I be an ideal of A. Then v'i denotes 

the set {a E A I ac E I} for some k E N called the radial of I. 

Lemma 4.1.12. Let A be a ring and let I be an ideal of A. Then -./it is an ideal 

and I C 

Proof. Let i E /7 and a E A. Then jIV E I for some k E N. Since I is an ideal 

(ai)' = a'i' E I, so ai E \/7. Now, (a + j)C = () ak O—n E I (since each term 
is in I and I is an ideal), so a + i E v'i. Thus, 'i/it is an ideal. The fact that I ç 

is obvious by the definition. 0 
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Lemma 4.1.13. Let A be a ring, X = I Spec(A)I. Then X Xt if and only if 

(s) 

Proof. Let S = (s) and T = (t). Then 

= U(S)cU(T) 

= V(S)2V(T) 

= npflp 
PS) PEV(T) 

= 

Conversely, suppose (s) E \/'. Then 8k = tr for some r E A and some k E N. 

Now, 

= {p E I Spec(A) I I s 0 pj 

= {p E (Spec(A) 8k g p} since p is prime 

JCS 

= xtr 

cx. 

(4.1) 

0 

Corollary 4.1.14. Let A be a ring and let X = I Spec(A). If X3 9 X,, then there 

exists r E A such that X3 = X.. 

Proof. A direct result from Lemma 4.1.13, Equation 4.1. 0 
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4.2 Zariski Topology 

Proposition 4.2.1. Let A be a ring. The sets V(I), as I runs over all ideals of A, 

define a topology Z on I Spec(A). 

Proof. Let X = I Spec(A) 1. To show that the sets V(I) define a topology on 

I Spec(A) 1, we begin by showing 0 2 and X E 2 

V((0))={peX Ip(0)}=X 

V(A)={pEXIpA}=O. 

To show that 2 is closed under arbitrary intersection consider flEJ V(I 11 ). Now 

PEflV (Ic) I for all a 
cxEJ 

P;? U 
oEJ 

PEV( EJ U 1c). 
Thus, 2 is closed under arbitrary intersection so it only remains to be shown that 

2 is closed under finite union. Consider V(I) U V(J) where I and J are ideals in 

A. Since IJ C I and JI J it is clear that V(I) U V(J) 9 V(IJ). To prove 

V(IJ) g V(I) U V(J), let p E V(IJ) and suppose J Z p. Then we want to prove 

I c p. Let f E J such that f 0 p and let g E I. Then fg E P. Since p is a prime 

ideal and f V p, we conclude that g E p. This means I p since g was arbitrary. 

Hence p E V(I) as required. Thus, 2 is indeed a topology on I Sec(A) I. D 

Definition 4.2.2. Let A be a ring. The topology 2 on I Spec(A) I is called the Zariski 

Topology. Write Spec(A) for the topological space formed by equipping I Spec(A) I 

with Z. 
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Proposition 4.2.3. The distinguished open sets form a base for the Zariski topology. 

Proof. By Section 1.2, it suffices to show that for all points p in an open subset 

U C A there is a distinguished open set X' such that p E Xf 9 U. Let S C A and 

p E Spec(A). Suppose P E U(S). Then S g p, so let f E S, f 0 p. Thus, P E Xf. 

To show that Xf U(S), let q E Xf. Then f 0 q so that S q: Hence cj E U(S). 

Thus for every p E U(S), there is some X1 such that p E Xf U(S) and hence, the 

distinguished open sets form a base for the topology. 0 

Lemma 4.2.4. A singleton {p} in Spec(A) is closed if and only if p is a maximal 

ideal of A. 

Proof. Suppose p is a maximal ideal of A. Then there are no ideals I of A such 

that p C I and especially no such prime ideals. Thus, V(p) = {p} so p is closed. 

Now suppose p E X is a closed point. Then there exists some ideal I of A such 

that V(I) = {p} so I C p. Now suppose J is an ideal of A such that p c J C A. 

Assume J A. By Zorn's Lemma, every proper ideal is contained in some maximal 

ideal. Therefore, let iii be a maximal ideal such that J c m. Since every maximal 

ideal is prime, m E V(I). This contradicts V(I) = {p}, and hence J = A and p is 

maximal. 

Definition 4.2.5. 'Let ço A - B be a ring homomorphism. Let 

Spec() : Spec(B) - Sec(A) 

J ço''(J). 

Recall that ço'(J) is a prime ideal by Proposition .4.1.4. 
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Proposition 4.2.6. If co: A -+ B is a ring homomorphism, then Spec(), as defined 

above, is continuous. 

Proof. Consider the open subset X Spec(A). Then, 

(Spec())'(X3) = {b E Spec(B) I Spec()(b) E X3} 

= {b E Spec(B) I '(b) E X8} 

= {b E Spec(B) I 5 0 

={b E Spec(B) I p(s) 0 b} 

= Y0(8) C Spec(B). 

0 

Remark 4.2.7. The functor Spec is a contravarient functor. 

4.3 Local Ringed Spaces 

The following section introduces the category of local ringed spaces and assumes the 

reader has some background knowledge on sheaves of rings. If needed see Appendix C 

for an introduction to the study of sheaves. For further details see Eisenbud and 

Harris [5] or Hartshorne [8]. 

Definition 4.3.1. A local ringed space is a pair (X, Ox) where X is a topological 

space and Ox is a sheaf on X such that for each x E X the stalk °X,x (see Defini-

tion C.O.21) is a local ring. The unique maximal ideal in °X,x is denoted Mx,. A 

morphism of local ringed spaces from (X, Ox) to (Y, Oy) is a pair (f, f#) consisting 

of a continuous morphism f X -+ Y and a morphism f# Oy - f. Ox of sheaves 
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of rings on Y such that if x E X and y = f(x), then (f#y)_l(mx,$) = where 

f, denotes the composition Oy, - p (fQx) 0 X,X (where these maps result from 

the universal property of direct limits (see Proposition A.1. 3)). 

Example 4.3.2. The pair (Spec(A), QA) is a local ringed space where (9A is the 

sheaf defined in Definition C. 0.23. 

Remark 4.3.3. Local ringed spaces form a category. 

Definition 4.3.4. Let A and  be rings with ring homomorphism ço A - B. 

Let Sch(A) denote the local ringed space (Spec(A), 04. Define Sch() : Sch(B) -+ 

Sch(A) by Sch() := (f, f#) such that f := Spec() from Definition 4.2.5 and 

f#(Spec(A)) 8(A8) as in Deftnition B.0.6. 

Remark 4.3.5. Let ço : A -+ B, X = Spec(B), and Y = Spec(A). To see that 

Sch(ço) is well-defined let Y3 Yt and consider the following commutative diagram 

0y(Ys) >f*0x(Ys) 

0y(Y) >-f*0 x(Yt) 

Then f*0x(Ys) = 0x(f'(Ys)) = 0X(Xr,()) = B,(8). Thus, we have 

As ). B 8) 

Now by Corollary 4.1.14 there exists r E A such that A3 = At,.. Thus, the above dia-

gram commutes by Lemma B. 0.7. Hence Sch() is well-defined by Proposition C. 0.18 

(2). 
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Lemma 4.3.6. If çü : A -* B and'çb: B -* C, then Sch( o = Sch()oSch(b). 

Proof. Let 

Sch(B) - Sch(A) induced by 

Sch(C) - Sch(B) induced by 

(h, h#) : Sch(C) - Sch(A) induced by 'J o W. 

Let P E Spec(C). Then 

h(p) = (Spec(o))(p) 

= ( )o )_1(p) 

= (_1(p)) 

= (Spec() (Spec(b)) (p) 

= (Spec() o Spec())(p) 

= (fog)(p) 

and 

h#(Spec(C)8) = ( o By Definition 4.3.4 

= o ço8 By Lemma B.O.8 

= (g# o f#) (Spec (C)8) By Definition 4.3.4. 

0 

4.4 Residue Fields 

Definition 4.4.1. Let (X, Ox) be a local ringed space and let x E X. If X = Spec(A) 

then the residue field ic(x) is the quotient field of A/p, where p is the prime ideal 

corresponding to x. If f E A define f(x) to be the image of f via the morphisms 

AA/p—i(x). 
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Remark 4.4.2. Let X = Sch(A) (see Definition 4.3.4). Then O, = OA and (9Xx = 

A where x = p and mx,x = pAp. Thus, the residue field is qf (A/p) which is (A/p) (0) 

[see Appendix B.O.5 (5)], which is also Ap/pAp, which can be written as Ox,/mx,. 

This last expression can be used to define the residue field n(x) for x E X when X 

is an arbitrary local ringed space. 

Example 4.4.3. Let K be a p-adic field and let X = Spec(K°). Then X = {x, y} 

where x = (0) and y = (ir). Then 

it(x) = qf (K°/(0)) = qf (K') = K 

ic(y) = qf (K°/(,7r)) = qf (n) = ,c. 

Recall that by Example 4.1.7 (3), (ir) is closed in Spec(K°). Thus, this example 

illustrates that the residue field defined in Chapter 1 is the residue field of a closed 

point in Spec(K°). 

Remark 4.4.4. The Zariski topology can also be thought of in terms of residue fields. 

For each subset S C A, 

V(S) = {x E Spec(A) I f(x) = 0 for all f E S}. 

Likewise, if X = Spec(A) then, for each f E A, 

Xf = {x E Spec(A) I f(x) 0}. 
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4.5 Affine Schemes 

Definition 4.5.1. Recall the definition of a stalk from Definition C. 0.21. For any 

local ringed space (X, Ox) define 

OX (X) - 
0 X,x 

5 -* IX, 81 

where [X, s] ' [U, t] if there exists V U X, open in X, with x e V, u E Ox(V) 

such that 0(V C X)(s) = Ox (V C U)(t). If  E Ox (X), then 

Xf = {xEXIf(x)O} 

= {cc e X I irx,(f) 0 mx,} 

= {x c X I f 0 

Definition 4.5.2. An affine scheme is a local ringed space (X, Ox) such that 

1. the ring of sections Ox(Xf) (see C.O.9) equals the localization Ox(X)f for all 

fEOx(X) 

2. the morphism X --> Sch(Ox(X)) defined by x '- 1r'(mx,) is a homeomor-

phism where 1rX, : Ox(X) - °x,x and mx,x is the maximal ideal of °X,x• 

Definition 4.5.3. Let X and S be affine schemes. The pair (X, a) is called an 

affine S-scheme (also called an affine scheme over S) if a: X -+ S. A morphism of 

affine S-schemes (X, a) and (X, b) is a morphism of schemes f : X -+ Y such that 

bof=a. 

Proposition 4.5.4. If (X, Ox) is an affine scheme there exists an isomorphism in 

the category of local ringed spaces (X, Ox) - Sch(Ox(X)). 
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Proof. We want to define an isomorphism in the category of local ringed spaces. Let 

f X - f Spec(Ox (X)) be defined by x '-f ir(mx,). This is a homeomorphism by 

Definition 4.5.2 (2). Now let A = Ox(X) and let s E A. Then 

f'(Spec(A3)) = {x E X I f(x) E Spec(A3)} 

= {x E X 1-7r. (ni.x,x) E Spec(A3)} 

= Ix E x I S 0 ir(mx)} 

= {x E X I irx,(s) 0 (Mx,)} 

= {xEXIs(x)O} 

=xs. 

Now, f#(Spec(A3)) OA(Spec(AS)) - (f*Ox)(Spec(As)) = Ox(f'(Spec(As))) can 

be viewed as f#(Spec(As)) : A8 —+ Ox(X3) or f#(Spec(A3)) : A3 —+ A3. Therefore 

we can define f(Spec(A3)) = idA3. Hence (f, f) : (X, Qx) — Sch(Qx(X)) is an 

isomorphism. 

Proposition 4.5.5. Let (f, f#) : (X, Ox) -+ (Y, Oy) be a morphism of affine 

schemes. Let çü = f# (Y). Then (f, f) = Sch(). 

(XI OX) (f,f#) > (Y,Oy) 

4 ch(p) ___B._  
Sch(Ox(X)) S  Sch(O(Y)) 

(4.2) 

Proof. Let the morphisms e and b be viewed as the isomorphism shown to exist in 
Proposition 4.5.4. Therefore we have (f, f#) = Sch(') if Diagram 4.2 commutes. 

First consider the morphisms on sheaves. Recall that the stalk (f,,Ox)y is a direct 
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QY1y 

1' _ 1 
Dy >-(f*Ox) 0x 

Figure 4.1: Sheaves and Stalks 

limit of rings taken over the direct system of open sets containing y (see Defini-

tion C.0.21). Since Y is one such set, by the definition of direct limits there exists 

a ring homomorphism py: (f*Ox)(Y) -* (fOx). Given iiy :(f*Ox)(Y) - 0 X,X 

there is a unique map 0: (fQx) 0 X,X by the universal property of direct limits 

(see Proposition A.1.3). Thus, the triangle on the right in Figure 4.1 commutes. 

A similar argument shows the square on the left commutes. Therefore, the entire 

diagram commutes and (f, f#) = Sch() on the level of sheaves. Now on the level 

of sets, Diagram 4.2 gives 

P := ir(mx,) 

) f(x) =: y 

T 
 >.irj,(myy) =: q 

To show that p '- f q recall that mx, is the maximal ideal in 0x, and myy is the 

maximal ideal in 0Y,y• Since the morphisms on sheaves commute in Figure 4.1, we 

have p i-p q. Thus, (f, f#) = Sch('). o 

Definition 4.5.6. Let ASchemes denote the category consisting of affine schemes 

and morphisms of local ringed spaces as objects and morphisms respectively. 

Theorem 4.5.7. The category of affine schemes is equivalent to the category of 

commutative rings. 
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Proof. Let A be a ring and (X, Ox) be an affine scheme with ring homomorphism 

çü : A - f Ox (X). Let Sch: Rings - ASchernes and F: ASchemes -* Rings be 

defined by 

• Sch(A) = (Spec(A),OA) 

• Sch() = (Spec(), f#) where f#() = cos (see Definition 4.3.4) 

• r((X, ox)) = Ox(X) (see Definition 0.0.23) 

• F((f, f))  

Now, 

• (F o Sch)(A) = F(Spec(A), 04 = OA(Spec(A)) = A by Definition 0.0.23 

• (F o Sch)() = I'(f, f#) = cc by Proposition 4.5.5 

• (Sch o F)(X, ox) = Sch(ox(X)) = (X, Ox) by Proposition 4.5.4 

• (Sch o F)(f, f) = Sch(cc) = (f, f) by Definition 4.3.4. 

Thus, r o Sch = dASchemes and Sch o F = idRj9. Therefore, the category of affine 

schemes is equivalent to the category of rings. 0 

Corollary 4.5.8. Let A,B and C be rings and let X = Sch(B), Y = Sch(A) and 

S=Sch(C). Then 

Homo (A, B) Horns (X, Y). 
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Proof. Let çü E Homc(A, B). By Theorem 4.5.7 we have the following 

Sch 

C 

Thus, (f, f#) E Horns (X, Y). U 

Proposition', 4.5-9. If  = Sch(Z) and X = Sch(7Z[T]), then there exists a bijec-

tion between Horns(S, X) and 7Z. 

Proof. By Corollary 4.5.8 Homs(S, X) Homz(Z[T], 7L) which is equivalent to 

74 by Proposition 3.0.9. 0 

Definition 4.5.10. An affine integral scheme is an affine scheme (X, Ox) such that 

Ox (X) is an integral domain. 

Example 4.5.11. Let A = 74[T]. The affine scheme (Spec(A), OA) is an, integral 

affine scheme over 74. 

4.6 Schemes 

In this paper all examples and results deal with affine schemes, however, for corn-

pletenessjjhe more general notion of a scheme will be defined. 

Definition 4.6.1. A scheme is a local ringed space (X, Ox) in which every point 

has an open neighbourhood U such that the topological space U together with the 

restricted sheaf (9xIU (see Definition C.O.15) is an affine scheme. Let X and S be 
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a schemes. The pair (X, a) is called an S-scheme (also called a scheme over S) if 

a: X -+ S. A morphism of S-schemes (X, a) and (X, b) is a morphism of schemes 

f:X—Ysuch that bof=a. 

4.7 Varieties 

Definition 4.7.1. Let X = Sch(A) be an affine scheme and let I be an ideal of A. 

4variety is X(I) := Sch(A/I) equipped with a morphism f : X(I) -+ X defined as 

Sch(A - Al-T). 

Remark 4.7.2. Note that by Lemma 4.1.8, X(I) = V(I). 

Example 4.7.3. 

1. If X = Sch(K[x]), then X(I) = Sch(K[x]/(x)) = {(0)} is a variety. 

2. If X = Sch(Z()), then X(I) = Sch(Z()/pZ(p)) = {(0)} is a variety. 

8. If X = Sch(K°), then X(I) = Sch(ic) is a variety. 

4.8 Formal Schemes 

Formal Schemes are used in a very limited way in the main Geometric Theorem. 

The sheaf is not needed in the main results but is stated here for completeness. 

N 

Definition 4.8.1. Let X(I) be a variety. The completion of X along the variety 

X(I) is the set of open prime ideals in Spec(A) where A is the completion of A 

with respect to I (see Definition 2.1.1). This set is denoted by ISpf(A)I. If equipped 

with the subspace topology, the topological space is denoted by Spf(A). A sheaf on 
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X is Ox = lim Ox/' where 1x = ox(U C X)(I)Ox(U). The local ringed space 
mEN 

Schf(A) = (X, Ox) is a formal scheme. 

Remark 4.8.2. Affine formal schemes are not affine schemes as illustrated in the 

following example. 

Example 4.8.3. Consider the affine formal scheme (X, Ox) obtained by completing 

k[x] along k[x]l(x). Then ISpf(k[x]) = {(0)} and O(k[x]) = K[[x]]. If this were 

an affine scheme then I Spec(Ox(k[x]))I = ISpf(k[x])l. However, 

Spec(K[[x]]) = {(0) (x)} 0 ISpf(k[x])I. 

Thus, this is not an affine scheme. 

4.9 Special Fibres 

Definition 4.9.1. Let K be a p-adic field and let K° and x be the ring of integers 

and residue field respectively. Let X = Sch(A) be an affine scheme. The special fibre 

is the pull-back of 

X Sch(K0) < Sch(ic). 

Let X,ç denote the special fibre'. 

Example 4.9.2. If K = Q, K° = 74k,, and ic = F, then Sch(1F[T]) is the special 

fibre along with the canonical morphisms. 

Lemma 4.9.3. If X = Sch(A), then the special fibre is Sch(A/cr(PK )A) with the 

canonical morphisms. 
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Sch(B) 

Sch(A)< Sch(A/cr(pi)A) 

Sch(K°) < Sch(ic) 

Figure 4.2: Special Fibre of Sch(A) 

Proof. In Figure 4.2, take global sections of each affine scheme (see Definition 0.0.9). 

Thus, we have 

0...• 

f A >-A/cr(pK)A 

0*1 K. :1 
By Proposition 0.0.13, it suffices to show that with morphisms f and g defined 

belOw, A/0(PK)A is the pushout in the above diagram. Let a E A and k E X. Define 

f(a) = a + 0(PK)A and g(k) = o(s) + o(PK)A where k = s + PK with S E K°. Then 

(f o o-) (s) = o(s) + 0(PK)A and (g o )(s) = g(ço(s)) = g(s + p) = o(s) + 0(PK)A. 

Therefore, the diagram commutes. Suppose, v a o- = 0 o V. Then (ii a a)(s) 

v(o(s)) = = /(s + PK) = 1(k). Define O(a + o(PK)A) = v(a). Now, 

(9 a f)(a) = O(a + o(p)A) = v(a) and (0 a g)(k) = O(o(a)) = o(PK)A = v(a(a)) = 

1(a)) = b(k). 

Now consider 0': A/0(pK)A -+ B such that 9' a f = ii and 0' a g = . Then 

0'(a + a(PK)A) = (0' a f)(a) = v(a) = 0(a + U(PK)A) and therefore 9' = 0 and 0 is 

unique. 0 
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Corollary 4.9.4. If X is an affine scheme then X,ç is a variety. 

Example 4.9.5. By Corollary 4.9.4 special fibres, varieties, and formal schemes are 

all related. Let K = Q, K° = 74, and ic = F7,. Then X = Sch( 7,TJ) is an integral 

affine scheme over K° by Example 4.5.11 and Sch(F7,[T]) = Sch(ZZ7,[t]/p7Z7,[T]) is 

the special fibre by Example 4.9.2. The completion of X along the special fibre is 

Schf(limZ7,[T]/pZ7,[T]) = Schf(7Z7,{T}) by Example 2.1.6 (2)., 
nEN 



Chapter 5 

Adic Spaces 

This chapter gives an introduction to affinoid adic spaces. For a more thorough 

understanding of the subject, see Huber [10]. The reader should notice that the 

construction of affinoid adic spaces parallels the construction of affine schemes. 

5.1 The Set of Continuous Valuations 

Definition 5.1.1. Let A = (A, A) be an affinoid ring (see Definition ..8.1). The 

set of equivalence classes of continuous non-archimedean valuations v on A (written 

multiplicatively) such that v(a) ≤ 1 V a E A is denoted by Spa(A) I. 

Example 5.1.2. 

By Ostrowski (see Theorem 1.2.4) the non-archimedean valuations on Q are (up to 

equivalence) v0 and v, where p is prime. 

1. Equip Q with the discrete topology. Then all valuations are continuous. 

(a) Since v(a) ≤ 1 V a E Z for all v, ISpa(Q, Z)I = {v I p prime} U {vol. 

(b) Since v(a) ≤ 1 V a E Q if and only if v is trivial, tSpaC(Q, Q)I = {v0}. 

. Fix a prime p and equip Q with the p-adic topology. Since {0}-is not open in 

Q with the p-adic topology, v0 is not continuous. Thus, 

(a) I Spa(Q, 7L)l = {v} 

(b) ISpa(Q, Q)I = 0 since v(a) 1 V a E Q (Vp(p1) = P> 1) 
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(c) Spa(Q,Z)I = {v}. 

5.2 Adic Spectrum 

Definition 5.2.1. Let A = (A, A) be an affinoid ring. A subset U C ISpa(A) I is 

called rational if there exist a1, a2... . , a, b E A such that the ideal a1A-i--. 

is open in A and 

U = ISpa(A) I (ai ...  = {v E ISpa(A)l I v(a) ≤ v(b), v(b) 0 0, i  

The adic spectrum Spa(A) is the topological space generated by the rational subsets 

on Spa(A)I. 

Example 5.2.2. 

1. Equip Q with the discrete topology. Then 

(a) if 1 is prime, then Spa(Q, Z)I (4.) = {v I p =A l} U{vo} (note that since 
Q is equipped with the discrete topology Q is àpen in Q) 

(b) Spa(Q, Z)I () = {v I pa} U {vo} (note that since Q is equipped with 
the discrete topology RQ is open in Q). 

2. Equip Q with the p-adic topology. Then Spa(Q, Z) () = {vo} (note that 

since Q is a field IQ = Q is open in Q). 

Lemma 5.2.3. [9, page 68] If V is a finite subset of A>, then V. A> is open in A> 

if and only if (A>)°° ç 

Example 5.2.4. Let A = (Q{T}, Z{T}). By Lemma 5.2.3, pQ{T} is open in 

Q{ T} but TQP{T} is not open. To see the latter, consider p E (Q{T})°°. There 

is no natural number n such that pfl C (T). 
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Remark 5.2.5. Let aA be open in A. It follows that is open in A when b is a 

unit in A. Thus, the rational subsets Spa(A) I () and Spa(A)J Mare equivalent 

if b is a unit in A. 

Definition 5.2.6. Let A = (A, A) and B = (B, B) be affinoid rings and çü = 

(, ) : A -+ B an affinoid ring homomorphism. Define Spa(y) Spa(B) -* 

Spa(A) by v i-+ v o 

Remark 5.2.7. The morphism Spa() is well-defined since if b  B, (voçd)(b) = 

v(ço(b)) 1 since b) E A. 

Proposition 5.2.8. If ço : A -+ B is an affinoid ring homomorphism, then Spa() 

as defined above is continuous. 

Proof. Let a, b E A, b =A 0 and consider the rational subset Spa(A) I (). Then 
(a)) 

.Spa() ( T Spa(A) 

= {vESpa(B)Ivo?Espa(A)( 1)} 

= {v E Spa(B) I (v o ?a) ≤ (v o )(b), (v o 0} 

= Spa(B) (,,P(a) ) . 

0 

5.3 A Presheaf on Spa(A) N 

Definition 5.3.1. [11, page 89] Let A = (A ) A) be an affinoid ring and let U be a 

rational subset of Spa(A). Then 

....,a\ 
OA(U) := A (1 b ) 
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such that A (a1...an) is the localization (A)b (see Definition B. 0.3) equipped with the 

f-adic topology such that if B is a ring of definition of A and  is an ideal of definition 

ofB then B[-,...,?] isaringofdefinitionof(A")bandI.B[- , ... ,an] is an 

ideal of definition of B , 

Example 5.3.2. 

1. Equip Q with the discrete topology and let U Spa(Q, Z) I (). Then 

OA(U)=Q. 

. Equip Q with the p-adic topology and let U = Spa(Q, Z)I (). Then 

QA(U) = Q. 

Definition 5.3.3. Let U and V be rational subsets of Spa(A) such that U V. The 

restriction map OA(V) - OA(U) is defined in Huber [10, Lemma 1.5]. Thus, if W 

is an open subset of Spa(A), then a presheaf on Spa(A) is OA(W) = liM (-9(U) 
Ucw 

where U is rational. For every x E Spa(A) let °A,x = lim c9(U) be the stalk of 0 A 
xEU 

at x. 

Remark 5.3.4. The presheaf 0A is not, in general, a sheaf. See Huber [10, page 

520] for an example. 

Proposition 5.3.5 ([10, Theorem 2.2]). Let A = (Ak, A) be an affinoid ring such 

that A has a noetherian ring of definition or A is a strongly noetherian Tate ring. 

Then °A is a sheaf of complete topological rings on Spa(A). 

Example 5.3.6. The ring Qp has a noetherian ring of definition, namely 74,. Hence, 

the affinoid ring (Q, Z) satisfies the hypotheses of Proposition 5.3.5. 
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Remark 5.3.7. All affinoid rings A discussed in this paper will satisfy the hypotheses 

of Proposition 5.3.5, and thus, 0A is always a; sheaf. 

5.4 Adic(A) 

Definition 5.4.1. Let (V) be the category of triples (, O, (v I x E )) where 

is a topological space, Ox is a sheaf (see Definition C-0-12) of topological rings on 

, and for every x E 3C, vx is an equivalence class of valuations of the stalk (see 

DefinitionC.O.21) O. The morphisms (, O, (vx I x E )) —+ (3, O, (vi, I y E 

J)) are the pairs (f, f#) where f = —> 2J is a continuous function and f# O —+ 

f, Ox such that for every x E X, Vf(x) = Vx 0 f. 

Definition 54.2. Let A be an affinoid ring satisfying the hypotheses of Proposi-

tion 5.3.5. Let Adic(A) be the triple (Spa(A), 0A, (Va I a E Spa(A))) E (V) where 

Spa(A) is the topological space defined in Definition 5.2.1 and °A is the sheaf of 

topological rings defined in Definition 5.3.1, Let ço : (, ) : (A, A) — (B, B+). 

Define Adic(cp) : Adic(B) — Adic(A) by Adic(') := (f, f#) where f := Spa(W) as 

in Definition 5.2.6 and f#(ISpa(A)I (%)) b where c°'b is the morphism such that 

the following diagram commutes 

A> (R) \ (b)) 

2' 
  W(b) 

Lemma 5.4.3. Let çÜ: (A )A) — (B>, B) and b: (B>, B') — (C>, Ct). Then 

Adic('1' 0 = Adic() 0 Adic(b). 
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Proof. Let 

(f, f#) : Adic(B) —* Adic(A) induced by ço 

(g, g#) : Adic(C) — Adic(B) induced by b 

(h, h#) : Adic(C) - Adic(A) induced by '' o W. 

Let v E Spa(C). Then 

h(v) (Spa( o )) (v) 

= vo(o 

= vobo? 

(Spa() o Spa('çb))(v) 

(f o g)(v). 

Let U be a rational subset of Spa(C). Then 

h#(U) = C'cboc)b 

= bço(b) °Pb 

= (go f#)(U). 

Now if Vf(x) = vx o ff and V9() = v o gf then 

= V(gof) (x) 

= Vf(x) ° 9x) 

= vxoftog) 

vo(f#og#) 

= vx o(h#)x. 

Therefore, Adic( o = Adic() oAdic('). 0 
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5.5 Affinoid Adic Spaces 

Definition 5.5.1. An affinoid adic space is a triple (, O, (v I x E )) which is 

isomorphic to the adic space associated to an affinoid ring as in Definition5.4.. 

5.6 Adic Spaces 

In this paper all examples and results deal with affinoid adic spaces, however, for 

completeness the general notion of an adic space will be defined. 

Definition 5.6.1. An Adic Space is a triple (, O, (v I X E )) in which every 

x E X has an open neighbourhood U C X such that (U, Olu, (vx I x E U)) is an 

affinoid adic space. 

5.7 Some Results in Affinoid Adic Spaces 

Definition 5.7.1. Let K° be the valuation ring of a p-adic field K. Let X = 

(Spec(A), QA) be an integral affine scheme finitely generated over Sch(K°) such that 

the special fibre of X is also an integral affine scheme. Let X denote the formal 

scheme obtained by completing X along the special fibre of X. The affinoid adic 

space over K associated with the formal scheme X is Adic(A ®KO K, A). 

Example 5.7.2. Let K = Q,, and X = Sch(7L[T]). Then K° = 74, ic = IF,, (see 

Proposition .1.5.2), the special fibre of X is Sch(7Z[T]) (see Example 4.9.2), and 

X = Schf(Z{T}) (see Example 4.9.5). Therefore, the affinoid adic space over K 

associated with the formal scheme X is Adic(Q{T}, Z{T}). 
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Proposition 5.7.3. Let K be a p-adic field with valuation ring K°. Let  = 

(Spec(A), 04 be an integral affine scheme finitely generated over Sch(K°) such that 

the special fibre of X is also an integral affine scheme. Let X denote the formal 

scheme obtained by completing X along the special fibre of X. Let X denote the 

affinoid adic space over K associated to the formal scheme X. Then 

llomAdlC(K,Ko) (Adic(K, K°), ) Hom(K,Ko) ((A OK. K, A), (K, K0)) 

Proof. Let the hypotheses of the above proposition by satisfied. By Proposition 2.1.9, 

A ®Ko K A and by the proof of Proposition 2.6.3, a ring of definition of A ®K° K 

is A. The ring A is noetherian because A is finitely generated over K°. Thus, by 

Proposition 5.3.5, X is an affinoid adic space. By Huber [10, Prop.2.1(i)], the map 

Hom(K,Ko) ((A (&K. K, A), (K, K 0)) , HomAd1(K,Ko) (Adic(K, K°), ) 

ço - Adic() 

is a bijection. (See Definition 5.4.2 for Adic().) 0 



Chapter 6 

The Main Geometric Result 

All of the tools have now been introduced to prove the main geometric result - 

Theorem 6.0.5. This result uses the categorical equivalence between the category 

of commutative rings and the category of affine schemes (see Theorem 4.5.7) to 

restate Theorem 3.0.8 geometrically. Notice that in the geometric' theorem, X is 

finitely generated over Sch(K°), however in the algebraic theorem A is not necessarily 

finitely generated over K°. Thus, the geometric theorem is only a consequence of 

the algebraic theorem. 

Definition 6.0.4. Consider the affinoid ring (K, K°) (see Definition 2.8. 1) where 

K is a p-adic field with valuation ring K°. Let X be an affine scheme over K° 

(see Definition .4.5.2) and X an affinoid adic space (see Definition 5.5.1). Let s 

X - Sch(K°) be a morphism of affine schemes, then f E Homsch(Ko)(Sch(K0),X) 

ifsof = idsch(Ke). 

Sch(K°) 
/ 

Sch(K0) 

Similarly, if t Adic() - Adic(K, K°) is a morphism of affinoid adic spaces, then 

g E HomAd(K,Ko)(Adic(K, K°), ) if t 0 g = idAdj(K,KO). - 

Adic(K, K°) 
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Theorem 6.0.5. Let K be ap-adic field with valuation ring K°. Let X be an integral 

affine scheme finitely generated over Sch(K°) àuch that the special fibre of X is also 

an integral affine scheme. Let X denote the formal scheme obtained by completing X 

along the special fibre of X. Let X denote the affinoid adic space over K associated 

to the formal scheme X. Then there is a canonical bijection 

HomsCh(Ko)(Sch(K°), X) llomAdlC(K,Ko)(Adic(K, K°), ). 

Proof. Let the hypotheses of the Theorem 6.0.5 be satisfied. Then 

HomAd1C(K,Ko) (Adic(K, K°), ) 

Hom,ico ((A OK. K, A), (K, K0)) 

Homo (A, K°) 

Homsico (Sch(K°), X) 

by Proposition 5.7.3 

by Theorem 3.0.8 

by Proposition 4.5.8 

0 

Example 6.0.6. Consider the geometric interpretation of Example 8.0.10. Let X = 

Sch(Z[T]), and let K Qp. Thus, using results from Example 5.7.2, Theorem 6.0.5 

gives 

Homsh(z) (Sch(Z), Sch(Z[T])) 

HomAd1(Q,z) (Adic(Q, 74,), Adic(Q{T}, 7L{T})). 

Recall from Proposition 4.5.9 that Homsh(Z) (Sch(Z), Séh(74,[T])) 74,. Thus, 

HomAd(Q,z) (Adic(Q, Zr), Adic(Q{T}, ZIT})) 74,. 
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Appendix A 

Direct and Inverse Limits 

A.1 Direct Limits 

Definition A.1.1. Suppose we have a partially ordered set I and a set of rings 

f Ai I i E I} such that 

• for all i,jEl there exists kEl such that i≤k and j≤k 

• for every pair of indices i, j with i < j there is a map Pij A -* Aj such that 

the following hold 

.l• Pik ° Pij = Pik whenever i ≤ j ≤ k 

. pii = idAi for all i E I. 

Let B Ai be the disjoint union of all the Ai and define a relation on B by 

a b if and only if there exists k E I with i, j ≤ k and pjk(a) = Pik (b) for a E Ai 

and b E A. Then "-' is an equivalence relation on B and we define lim Ai = B/ , 

iEZ 

the direct limit of {Aj} iEX Let a denoted the equivalence class of a in lim A, and 
jET 

define pi : Ai - urn Ai by pi (a) = a. Then the diagram 
iET 

1imA 
jET 

P1 

Pu > I Pi 

Aj-

commutes. If a, ,8 E lim, Ai where a = a, a E Ai and /3 = , b E A, then a + /3 

a + b = Pik(a) + Pik(b) for some k E I, k ≥ i, k ≥ j. 
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'ii 

limA 
iEI 

/ I Pi 
Pij A 

> .frlj 

B 

210 

Figure A.1: Universal Property of Direàt Limits 

Example A.1.2. Let K be a field and let I = {L I L: K finite }. Define a partial 

order on I by L L2 4=> £2 L : K. Then I is directed since L K finite = 

Li : K algebraic, finite = Li = K(ai,.. . , a,,) for some a1, . . . , Cen algebraic over 

K. Similarly, £2 = K(/31,. . . , /3) for some /3k, . .. ,on algebraic over K. Let £ = 

then L: K is finite, L: L K, and  : £2: K. Define 

the rings AL = £ and for L ≤ L2 the maps PL1L2 : AL, - AL, to be inclusion. 

Then urn £ = where E is the algebraic closure of K. 
L:Kfinite 

Proposition A.1.3 (Universal Property). Let 17, JAj I i E I}, {pij I i,j E I,i ≤ j} 

satisfy the conditions of a direct limit. Let B be a commutative ring with unity 

equipped with maps 7j, : A - B for all i, such that 77j o pij =77i for all i < j. Then 

there exists a unique map 0 : limA —+ B such that 77i = 0 o p. 
iEZ 

A.2 Inverse Limits 

The inverse limit is defined similarly to that of the direct limit. Essentially all of the 

maps used in direct limits are reversed to define, the inverse limit. 
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Definition A.M. Let .T be a partially order set and suppose for every pair of indices 

i, j with i < j there is a map Itji : A1 - Ai szich that the following hold 

1. ujio/.Lkj =/Lki whenever  _<j ≤ k 

2. =idA for all iEl. 

Such a set is called an inverse system. The inverse limit of the system {Ai} jET is 

the subset of elements (a)Ex in the direct product fuEl Ai such that jijj (aj) = a 

whenever i ≤ j. The inverse limit is denoted lim A. For each i E I let uj : lim A —+ 
I  iEI 

A be the projection onto its component. Then the following diagram 

commutes. 

Proposition A.2.2 (Universal Property). Let l, {Ai I i E I}, {i-i I i,j E I,i ≤ j} 

satisfy the conditions of a inverse limit. Let B be a commutative ring with unity 

equipped with maps v: B —+ Ai for all i such that ,ji o vj = vi for all i < j. Then 

there exists a unique map 0 : B - 1im Ai such that vi = pi o 0. 
jET 

'Li 

B 

3!O 

Figure A.2: Universal Property of Inverse Limits 



Appendix B 

Localization 

Definition B.O.3. Let A be a ring and let M A be a multiplicative set (1A E M 

and rn1, m2 E M = rn1rn2 E M). Consider A x M = {(a, rn) I a E A, rn E M} with 

an equivalence relation (a, rn) (b, n) k(an - brn) = 0 for some k E M. The 

equivalence class (a, rn) is denoted by . Then AM = { a E A, rn E M} is called 

the localization of A at M and comes equipped with a map )'M A -+ AM defined by 

Remark B.0.4. 

1. If A is an integral domain and M = A><, then AM is the quotient field of A. 

2. Let A be a ring and p a prime ideal of A. Then the complement of p is a 

multiplicative set, but we notate the localization as A. 

Example B.O.5. 

.1. LetA-7LandM=7L><. Then ='•k (an —brn)=O for some kEM'•i 

an — bm. Then AM=Q. 

2. Let A = C [t], and M = {t12 I n E N}. Then AM = C[t] = { j- I f E C[[t]] }. 

3. Let A = C[t], and M = {a E A J a 0 pl. Then AM = AO = C[t](t) = 

{Ec(t) Ig0(t)}={EC(t) tXg} 

4. Let A = 74,, and M = {pfl I n E N}. Then AM = (7L) = Q,. 

5. Let A be a ring. Then A(o) = { I s 54 0}, the quotient field of A. 
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Definition B.O.6. Let go : A - B be a ring homomorphism. Let s E A, t = W(s), 

and A3 be the ring localized at the multiplicatitie set generated by s. Then go : A3 

Bt is defined by '— 

Lemma B.O.7. Let A and B be rings and go : A - B. Let r, t E A. Then the 

following diagram commutes. 

tr p 
At,. > -'-'cp(tr) 

Proof. Let f. E A. Then 

(a\ w(a)  co(a) - go(a) 
(A(r) "pt) tn ) = (r) (go(t)n) = 1 . go(t) - 

and 
,a) = / a \go(a) 

r 0g0tr) ( gotr - 

Thus, the diagram commutes. 0 

Corollary B.O.8. Let go A - B andb: B —4G. If s E A, then (bogo)8 

Proof. Consider the following diagram. 

A B C 

Ix, IAW(S) If 
As B 3 ) 

Take t = 1 in Lemma B.O.7 and the two outside squares in the above diagram 

commutes. Hence, the entire diagram commutes and the result follows. 0 



Appendix C 

Sheaves of Rings 

Definition C.O.9. Let X be a topological space. A presheaf assigns a ring .F(U) 

to each open U C X and a ring homomorphism F(U C V) : - T(U) called 

the restriction homomorphism to every pair of nested open subsets U C V. The 

restriction homomorphism must satisfy the following conditions 

1. F(U = U) = idF (u) 

. F(U cW)=j(UcV)oP(VcW) for all Uc_VcW. 

The ring .F(U) is called the ring of sections, elements of.P(U) are called the sections 

of F over U, and elements of .F(X) are called global sections. 

Remark C.O1O. A presheaf is a functor from the category of open subsets of X to 

the category of rings. 

Example C.O.11. [8] 

1. Consider the topological spaces R and C (with the usual topology). For all 

open U C R we can define a presheaf of sets by taking .F(U) to be the set of 

continuous functions from U to C. Here the restriction maps are the usual 

restriction of a function from one set to a smaller set contained inside it. The 

presheaf takes its values in the category of commutative rings by defining point 

wise addition and multiplication on the functions. 
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. Give R the usual topology. For all U C R define a presheaf on R by taking 

(U) to be the ring of constant functioné on U with values in R. 

Definition C.O.12 (Sheaf Axiom). A presheaf is called 'a sheaf if it satisfies one 

extra condition, the sheaf axiom: for each f fi E F(U) j i E I} such that 1(U n 

Uj --> U) (f) = -T (vi n Uj U) (f) for all i,j E I there exists a unique f E 

F(UiEI U) such that .F(Uk UEI U)(f) = fk for all k E I. 

Proposition C.O.13. A sheaf is a functor which takes pullbacks to pushouts. 

Proof. A sketch of the proof in the simplest case: Let U and V be sets. Clearly 

U U V is the pushout of U -' U fl V V with inclusion maps. Now by the sheaf 

axiom, 

3(UuV) 

_ I 
.1(UriV)-< 3'(U) 

.P(U U V) is the pullback in the above diagram. 

Example C.O.14. [3] 

1. The presheaf in Example C.0.11 (1) is a sheaf. Let U and V be open in I. 

If f is a continuous function on U fl V, then f can clearly be extended to a 

continuous function on U U V. 

2. The presheaf in Example C. 0.11 (2) is not a sheaf. Suppose U can be written as 

the disjoint union of two open subsets V and W. Look at the section s E (V) 

that takes on the constant value 0, and at the section t E (W) that takes on the 

constant value 1. Because the intersection v fl w is empty, the sections s and 
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t restrict to the same (trivial) function on their intersection. However, there 

is no way to patch these two sections to.iether to define a compatible constant 

function on the entire space U. 

Definition C.O.15. If Z C X, the restriction of a sheaf F on X to Z is simply 

(-iz)(U) := .F(U) where U is an open subset of Z. If U and V are both open subsets 

of  such that Uç V  Z, then ..'FIz(UC_V):—_.'F(Uc V). 

Definition C.O.16. A morphism ço : F -f of presheaves on a space X is defined 

simply to be a collection of maps W(U) : '(U) —* (U) such that for every inclusion 

U C V the diagram 

P(V) ç(V (V) 

F(UcV)j 

..'F(U) g(U) 

commutes. If J and 9 are sheaves on X, the same definition defines a morphism of 

sheaves. 

Definition C.O.17. Let B be a base for a topology. A B-sheaf is a collection 

{F(U) I U E B} of rings equipped with a collection 

{F(UçV):P(V) —*.F(U) I U,VcB} 

of maps between the rings such that 

.7. .F(UçW)=.F(UcV)o.F(VcW) for all UcVcWEB 

. F(U = U) = id(u) for all U E 13 

3. for each Ifi E .F(U) I i E I} such that V C (UflU), V,U E 13 implies 

—* U) (f) = F(V Uj)(f) there exists a unique f E .2(U1 U) such 

that .(Uk U1 U) (f) = fk for all. k E I. 
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Proposition C.O.18. [5, Prop. I-1.] Let B be a base of open sets for X. Then 

1. Every B-sheaf on X extends uniquely to a sheaf on X 

. Given sheaves .T and g on X and a collection of maps 

c(U) : F(U) — (U) 

for all U E B commuting with restrictions, there is a unique morphism çü 

— g of sheaves such that W(U) = (U) for all U E B. 

Definition C.O.19. Let a : X --• Y be a continuous map on topological spaces and 

let J be a presheaf on X. The pushforward a,F of .F by a is defined to be the 

presheaf on Y given by a.F(V) := ..'F(a'(V)) for any open V C Y. 

Proposition C.O.20. The pushforward of a sheaf of rings is again a sheaf of rings. 

Proof. Let g := aF. Let U be open in X. Note that if t: U —* V is the inclusion 

map then (V) - .F(U) is a restriction map and a 1 o t : a'(V) - 

Therefore, g(t) := F(a' o ) :.F(a'(V)) — (a'(U)). Hence, g is a presheaf. 

To show that 9 satisfies the sheaf condition, let X D U = UEI U, fi € 

and fj E .T(U). Since .F is a sheaf, if F(U fl U U) (f) = F(U fl Ui 

then there exists a unique f '(U€1 U) such that F(Uk c U€1 U) (f) = fk for 

all k G.E. Now let Y D V = UjEI Vi, gj E a.T(V), and fj E a..'F(Vj). Then 

aP(Vi n V c—* )(g) = aJ'(V fl Vj c* Vj)(g) 

= 2 ! ' such that .P(a'(V) —+ a'(U V)) (g) = gj 

iEI iEI 

3 1 g E a..'F(V) such that a*J(Vi V)(g) = gi. 
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Since UET a—' (Vi) = a' (U Vi), the pushforward satisfies the sheaf axiom and is 

therefore a sheaf. 0 

Definition C.O.21. If .F is a presheaf on X and x E X, then the stalk of .F at x is 

J= lim .F(U). 
xEU, open 

Remark C.O.22. Note that a morphism çÜ: F -* g of presheaves of X induces a 

morphism q : -+ 9x on the stalks for any x in X. 

Definition C.O.23. Let X = Spec(A) and consider the distinguished open sets X 

of X (see Definition .1.9). Define OX (X,) := A8 (see Definition B.O.3). Then O 

is a 13-sheaf (see Definition C.O.17) and by Proposition C.O.18 0x extends uniquely 

to a sheaf on X. If U C X and U is open, then 

O(U) urn Ox(X8) 
zU 

and if Y8 C Y, the following diagram commutes. 

(9y(Ys) -> (f* OX) (Ys) = Ox(f'(Ys)) = OX(X(s)) 

Oy(Y) (f*Ox)(Yt) = Ox(f'(Yt)) = Ox(X(t)) 


