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Abstréct

This thesis proves the following result: Let K be a p-adic field (see Deﬁﬁition 1.10.1)
with valuation ring K° (see Definition 1.1.13). Let X be an integral affine scheme
(see Definition 4.5.2) finitely generated over Sch(K*°) such that the special fibre of
X (see Definition 4.9.2) is also an integral affine scheme (see Definition 4.5.10). Let
X denote the formal scheme (see Definition 4.8.1) obtained by completing X along
the special fibre of X. Let ¥ denote the affinoid adic space over K associated to the
formal scheme X' (see Definition 5.5.1). Then there is a canonical bijection between

the set of K°-rational points on X and the set of K-rational points on X.
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Introduction

Rigid analytic spaces and representation theory of p-adic groups are Wiciely re-
searched areas in mathematics, especially in the Langlands program. Michael Harris
and Richard Taylor used rigid analytic geometry to solve certain cases of Langlands’
conjectures. The category of rigid analytic spaces is a subcategory of the category
of adic spaces.

In the thesis, I'look at two categories (affine schemes and affinoid adic spaces)
and describe a rélationship between them. In particular, given aﬁ affine scheme I
describe how to associate an affinoid adic space to the affine scheme and describe
a relationship between these two objects. A lot of research has been done on tﬂe
category of affine schemes but the category of affinoid adic spaces has only been
studied in the last ten years, primarily by Roland Huber. Thus, the machinery to |
move from the category of affine schemes to the category of affinoid aaic spaces will
quickly advance the research on affinoid adic spaces since “many of the basic results
of the étale cohomology of schemes also hold for the étale cohomology of adic spaces
[10].

The following theorem is the main result of this thesis which, to the best of my
knowledge, does not appear in the literature: '

Theorem 6.0.5 Let K be a p-adic field (see Definition 1.10.1) with valuation ring ‘
K° (see Definition 1.1.13). Let X be an integral affine scheme (see-Definition 4.5.2)
finitely generated over Sch(K°) such thé,t the special fibre of X (see Definition 4.9.2)
is also an integral affine scheme (see Definition 4.5.10). Let X denote the formal

- scheme (see Definition 4.8.1) obtained by completing X along the special fibre of X.
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Let X denote the affinoid adic space over K associated to the formal scheme x (see

Definition 5.5.1). Then there is a canonical bijection
HomSch(Ko) (SCh(KO), X) = HomAdic(K,Ko) (AdlC(K, KO), X) .

The above geometric theorem is a consequence of the following algebraic theorem:
Theorem 3.0.8 Let K be a p-adic field with valuation ring K° and residue field x.
Let A be an integral domain and let ¢ : K° — A be a ring homomorphism such that
A ®po k is an integral domain. Let A be the completion ;)f A with respéct to I (see
Definition 2.1.1) where I is the kernel of p4 : A — A®go « defined by ps(a) = a®1.
Then (A ®k- K, A) is an affinoid ring (see Definition 2.8.1) and the map

Homx o) ((A oo K, 4), (K, K°)) — Homge(4, K°)
(@, ¢") = ¢Toa
is bijective, where o : A — A is the unique morphism guaranteed by the universal
property of inverse limits (see Px“oposition‘ A.2.2).

Notice that the geometric result requires an extra condition - that X is finitely
generated over Sch(K°). Thus, Theorem 3.0.8 implies Theorem 6.0.5 but the converse
does not necessarily hold.

Since these results are fairly technical, a large proportion of this thesis will be
devoted to defining the various terms appearing in the theorems above. Specifically,
p-adic fields, adic rings, f-adic rings, Tate rings and affinoid rings, affine schemes,
formal schemes and affinoid adic spaces will be discussed.

In this thesis we use the term ‘ring’ to indicate a commutative ring with unity
and ‘ring homomorphism’ to indicate a ring homomorphism of commutative rings

such that the identity is mapped to the identity.
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Chaptér 1
p-adic Fields

For each prime number p, the field Q, is constructed by completing the rational num-
bers with respect to the p-adic valuation v,. A p-adic field is, by definition, a finite
field extension of Q,. This chapter is devoted to creating a general understanding of

the p-adic fields (as found in Gouvéa [7]).

1.1 Valuations

Definition 1.1.1. A totally ordered abelian group s a non-empty set I' with binary
operations - and < such that {I', -} is an abelian group and {T, <} is a totally ordered

set such that for all x,y,2 € ', x < y implies xz < yz.

Example 1.1.2. The set of positive real numbers is a totally ordered abelian group

(with multiplication,).

Definition 1.1.3. Let A be a ring and T’ be a totally ordered abelian group. Let
To:={0}UT. Set0<v,v7-0=0,and0-v=0 for ally €. Since T’ is totally
ordered, Ty is totally ordered. A valuation on a ring A is a functionv: A — Ty
that satisfies the following conditions ‘
1) v(0) =0
i) v(1) =1

iii) v(zy) = v(z)v(y) for allz,y € A



iv) v(z +y) < v(z) +v(y) for allz,y € A.
If, in addition, v sat'z'sﬁes the following condition

v) v(z +y) < max{v(z),v(y)} for allz,y € A
then v 1s said to be non-archimedean; otherwise, v is called archimedean. Note that
the conditions listed above are not independent: condition (v) tmplies condition (iv)
and condition (iii) implies condition (ii).

The pair (A,v) is called a valued ring. The group generated by the image of v in
T is called the valuation group of v and is denoted by I',. If the valuation group is
finitely generated then the rank of v is defined to be the rank of the valuation group.

If T, is not finitely generated, then the rank of v is said to be infinite.

Remark 1.1.4. Valuations can also be defined additively. In other words, let T' be
an ordered abelian group written additively, and let I' U {oo} =: T'sy. Set co > v,
7Y + 00 = 00, and oo+ =00 for ally €T'. Since I’ is totally ordered, T, is totally
ordered. The function ord : A — T, is an additive valuation if

i) ord(0) = o0

ii) ord(1) =0

iii) ord(zy) = ord(z) + ord(y)

iv) ord(z +y) = ord(z)ord(y)
and 1s non-archimedean if

v) ord(z +y) = min{ord(z), ord(y)}.

Example 1.1.5.

1. Let A be a ring, u be a rank-1 multiplicative valuation of A, andy be a generator

for T'y. For each a € A with u(a) # 0, let n(a) be the unique integer n such
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that u(a) = y*. Definev : A — NU {oco} by v(a) = n(a) if u(a) # 0 and
v(a) = oo otherwise. Then v is an additive valuation.

2. Conversely, let v be an additive rank-1 valuation of A and let g be a generator
for T'y. For each a € A with v(a) # oo let m(a) be the unigque integer m such
that v(a) = mg. Definew : A — NU {0} by w(a) = m(a) if v(a) # oo and

w(a) = 0 otherwise. Then w is a multiplicative valuation.

Remark 1.1.6. In this thesis all valuations are multiplicative and non-archimedean

Fe AN

unless otherwise noted.

Example 1.1.7.

1. Let A be a ring. Then

1 'Lf 513750‘4
0 ’Lf $=0A

vo(z) =

is a non-archimedean rank zero valuation called the trivial valuation.

2. Let A=R. Then

x ifz>0
Voo (T) =
-z ifz<0

is an archimedean valuation. Note that the rank of v, 1s infinite since the

valuation group is R>® which is not finitely generated.

3. Let A=17 and p € Z be prime. Then

n  wherez=mp" andp [ m
ordy(x) = '

co ifzx=0

is @ non-archimedean additive valuation.



4. Let A=17Z and p be prime. Then

por® if z A0
0 ife=0

up(z) =

is a non-archimedean valuation called the p-adic valuation. The p-adic valua-

tion on Z can be extended to a p-adic valuation on Q by defining v, (%) = %%;—
p

5. Let A be a ring and let I be a prime ideal of A. Then

> 'UI(.’E) — 6—ma.x{n€N | zel™}

is a non-archimedean valuation called the I-adic valuation. If the base e is
replaced with any real number greater than 1, the resulting valuation is equiva-
lent to the I-adic valuation (see Definition 1.2.3). If A=17 and I = (p), take
e = p then vr = vp. Now ordi(z) = max{n € N |z € I"} is called the I-adic

additive valuation.

6. Let A=17 and let p be prime. Then

1 pfx

0 plz

Upo(T) =

is a non-archimedean valuation. Notice that vyo # v, as shown in Ezam-

ple 1.1.10.
‘Remark 1.1.8.
1. Ifwv is a rank zero valuation, then v is not necessarily the trivial valuation. To

see this, fix o prime p. If v = v, (see Example 1.1.7(6)), then T, = {1} so v

is rank zero, however, v is not the trivial valuation.
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2. Note that if vr is a valuation then I is a prime ideal of A. To see this supﬁose vr
is a valuation and consider part (i) of the Definition 1.1.8. Suppose z,y € A
and zy € I. Then by Definition 1.1.7 (5), vr(z) < 1, vr(y) < 1, ‘cmd vr(zy) <
1. Thus, vr(z) < 1 or vi(y) < 1 which implies vi(z) € I or vy € I, so I is
prime.
Definition 1.1.9. The subset v=1(0) of A is called the support of v and is denoted
by supp(v).
Example 1.1.10.
1. supp(vp) = (0)
2. supp(vp0) = (p)
3. supp(vo) = (0)
4. supp(Voo) = (0)
5. supp(vy) = (0).

Proposition 1.1.11. The support of v is a prime ideal of A.

Proof. Suppose s € supp(v) and a € A. Then v(sa) = v(s)v(a) = 0(v(a)) = 0. Now,
sa € supp(v). Similarly as € supp(v). Now if s, € supp(v), then v(s +¢) < v(s) +
v(t) = 0. Therefore, supp(v) is an ideal. To show that it is prime let ab € supp(v).
Then v(ab) = v(a)v(b) = 0. So v(a) = 0 or v(b) = 0. Thereforc;,, a € supp(v) or

b € supp(v), and therefore supp(v) is a prime ideal. O

Proposition 1.1.12. Let K be a field and v be a non-archimedean valuation on K.
Then K° = {z € K | v(z) < 1} is a subring of K and px = {z € K | v(z) < 1} is

a mazimal ideal of K°.
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Proof. By definition v(0) = 0 and v(1) = 1.“ Therefors, 0,1 € K°. Suppose z,y €
K°. Then v(z+y) < max{v(z),v(y)} < 1. Thus, z+y € K°. Now v(zy) = v(z)v(y)
and by Definition 1.1.1 v(z)v(y) < 1. Therefore, zy € K°. Hence, K ° is a subring
of K. Following the same arguments, px is a subring of K°. Now let z € K° and
y € pr. Then v(zy) = v(z)v(y) and by Definition 1.1.1 v(z)v(y) < v(z) < 1. Hence,
px is an ideal of K°. To show px is maximal consider the quotient ring K°/pg.
Consider z+px € K°/px. Then z+px # 0 if and only if v(z) = 1. Let z-+px # 0.
Since z € K°, z € K, so 27! exists since K is a field. Since v(zz~!) = 1 implies
v(@'l) =1, 27! € K°. Thus, 7' + px € K°/px and 271 + pg # 0. Therefore,

K°/pk is a field so px is maximal. O

Definition 1.1.13. Let K be a field and v be a non-archimedean valuation on K.
Then the subring K3 = {z € K | v(z) < 1} is called the valuation ring of v. The
mazimal ideal prr = {z € K | v(z) < 1} 4s called the valuation ideal of v, and the

quotient field kx = K°/px is called the residue field of v. -

Example 1.1.14. Let K = Q. If v is the trivial valuation, then K3 = Q and

KZK:Q.

1.2 Equivalent Valuations

Recall that :a base for a topology is defined as follows: Let X be a set with a topology
T.-Let B be a collection of open sets and let z € X. Let 7, := {U € T | z € U}
and B, :={V € B| z € V}. Then B is a base for the topologyif for all z € X and
for all U € 7 there exists V € B, such that V C U.



Let A be a ring equipped with a topology. Recall that A is a topological ﬁng if
f: A— A defined by f(z) = a + bz is continuous for all z € A and for all a,b € A.

Definition 1.2.1. Let v : A — I’ U {0} be a valuation. The topology induced on
A by v is the coarsest topology on A making A a topological ring and such that

vz € TU{0} | z <7} 4s open in A for each vy € T.

Example 1.2.2. Let A be a ring and I an ideal of A. Notice that if I = (0), the
I-adic valuation (see Example 1.1.7 (5)) on A is the trivial valuation. The topology

for A induced by the trivial valuation (see Example 1.1.7 (1)) is the discrete topology.

Definition 1.2.3. Let A be a ring. If v and w are valuations on A, then v and w

are equivalent if they define the same topology on A.

Theorem 1.2.4 (Ostrowski). Every non-trivial valuation on Q with I' = R>0 s

equivalent to one of the valuations v,, where either p is a prime number or p = co.

Proof. [7, Theorem 3.1.3] Let v be a uon-trivial v.aluation on Q. We divide the
proof into two cases: when the valuation is archimedean and when the valuation is
non-archimedean. |

Case 1: Suppose v is archimedean. We want to show that v is equivalent to ve.
Let ng be the least positive integer for which v(np) > 1. Such an ipteger exists since
v is archimedean. Find o € R2? such that v(np) = ng. By Gouvéa [7, Lemma 3.1.2], ‘
the valuations v; and v, are equivalent if there exists a positive real number o such™
that for every z € Q we have vy(z) = v$(z). In other words, it will be shown that

v(n) = n® for any n € Z=°. This is clearly true for n - ng. If n # ny write n in base

ng notation: n = ap + aing + agni + - + aknlg where 0 < a; < ng — 1 and a3 # 0.



Now nk < n < nf*! implies k = \_%’—%J Then
v(n) = wv(ap+aino+ aznﬁ 4+t akn’g)

< wv(ap) + v(a)n§ + v(az)ng“ ot v(ak)nlg"‘.

Since 7y is the smallest integer such that v(ng) > 1, v(a;) < 1 for all i. We now have

v(n) < 14+ng+n2+...+nk
= nf(l+ng®+ng? + -+ gt

0o
< ,nlga Z naza

=0

[+
_ ko L)
= Ty ™ .

Let C = —2_ > 0. Then v(n) < Cnk® < Cn®. This is true for every n € Z2°. Thus

a_
ng—1

v(n) < Cn™* which implies v(n) < ¥/Cn®. Now, as N — co, ¥/C — 1. Thus,

v(n) < n*.
" To obtain the other inequality consider again n = ag + a1n07+ agnd + -+« -+ agnk.
Now
n(()k+1)a — 'U(’I’L’g-l-l)

= o(n+nktt —n)

< v(n) +v(nEtt — ).
Thus, N

o(n) = DY _ypktt —p)
> n(()k+1)a _ (n§+1 _ n)a

1 [+
n{tie (1 - (1 - 5;) ) .
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We now pull the same trick as before. Let ¢’/ = 1 — (1 - nio)a ‘Then C’n((,k'i'l)a >
C'n® which is true for all n. Thus v(n") > C'n®, which implies v(n) > ¥Cne.
Now, as N — oo, ¥C — 1. Thus, v(n). > n® Now, v(n) = n® as required.
Therefore, v is équivalent £0 Vgo.

Now suppose v is non-archimedean. Then v(n) < 1 for all n € Z. Since v is
non-trivial, there exists a smallest integer ng such that v(ng) < 1. We claim that ng
is prime. Suppose ng = ab where a,b < ny. Then v(a) = v(b) = 1 since ny is the
smallest integer such that v(\no) < 1. This is a contradiction. Hence, ng is prime.
Set p = ng. We will show that v is equivalent to v,. Suppose p /n where n € Z. Then

=rp-+sand 0 < s < p. By the minimality of p, v(s) = 1. Now, v(rp) < 1 since
v is non-archimedean and v(p) < 1. Now since all triangles are isosceles when v is
non-archimedean [7, Corollary 2.3.4], v(n) = 1. Given any m € Z, write m = p¥n/
where p /n'. Then v(m) = (v(p))*v(n') = (v(p))*. Thus, v is equivalent to the p-adic

valuation as claimed. 0O

1.3 p-adic Expansion

Let p be a prime number and let ¢ be an arbitrary but fixed integer. Using the

Quotient Remainder Theorem consider

a=qp+ry, 0<ro<p

Q=qp+r, 0rm<p

On = Gn410 + Tny1, 0 < 7Tpqa1 <P
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In other words, consider the sequences
® Q, q1, G2 .. defined by gny1 = (gn div p), go=adivp
" e 79, T1, T3,... defined by 7,1 = (¢, mod p), ro = @ mod p.

Definition 1.3.1. Giwen an integer a, the formal Laurent series Y oo Tkd* where

ry, is defined above is called the p-adic expansion of a.

Lemma 1.3.2. Given any a € Z, the p-adic expansion as defined in Definition 1.8.1

converges to a with respect to vp.

Proof. We will show that for all a € Z and for all € € Q7 there exists an N € N such

that v, (@ — Y p_oTkp") <eforalln > N. Let a € Z and n € N. Then

a = @gp-+To

= qp’+mp+ro

m
= gmp™+ ) it
k=0

Fix € > 0. Let N € N be such that ¢, € {0,1} and p™ < e for all n > N. Then

a=> k0" and hence vy(a — Y 1 o 7ep®) = v,(0) =0 < e. ]

Remark 1.3.3. With the above arugument, we can now write x - Yoo TED®. Note

that this equdlity in Q refers to the toppology for Q ind@ced by vp.

Lemma 1.3.4. Any rational number a can be represented as a formal Laurent series

ZZi—i Tip* where 0 < 1 < p.
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Proof. Suppose a% where y € Z and pfy. Then y = Y30, 50" by Remark 1.3.3

and s 7 0 50 vp (g 5kP") = 1. Define > 22 txp” by
to= sy (mod p)

which gives

Soto = 1+ qop

for a unique gy € Z; and forn > 1
1
_30 (z Sn—jtj + Qn-1 )
j=

which gives

t+j=n

for some unique ¢, € Z. Then

() (S ) -3 (35 o) =1

k=0 k=0 \i+j=k

Now,

e
= Jm o <1 - (E) (Eo))

= lim v,(1 — 1+ g,p™*")
n—cQ

= 0.
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Thus, we can now write -?1; = > reotkp® as defined above. Therefore, if a = p' % €Q

where | € Z, thenz = p_,rxp* and y=> 1 trp" by Remark 1.3.3. Therefore, -

' n n [0}
a=p' Y rp"> trf=>
k=0 k=0 kezZ
where 3¢ txp® is defined above and a; =p' Y, it Tt 0

1.4 Completions of Q

It is well known that the real numbers are formed by completing the rational numbers
with respect to voc;. This is done by adding limit points of Cauchy sequences to the .
rational numbers. The valuation v., extends to R, the topological ring R is complete
with respect to this valuation, and Q is dense in R with respect t0 voo. However, R

is not the only complete topological field containing ) as a dense subfield.

Definition 1.4.1. Let v be a non-trivial valuation on Q with I' = R>® (see The-
orem 1.2.4). Let C,(Q) denote the set of all Cauchy sequences in Q with respect
to v. Let N,(Q) denote the set of null sequences in Q with respect to v (i.e.

(@n)nen € Ny(Q) implies lim,env(a,) =0 in R).

Lemma 1.4.2. Ifa € C,(Q), then
1. there is some M, € R>° such that v(a,) < M, for alln € N
2. lim, o v(ay,) exists.

Proof.” Since a is Cauchy in Q, {v(a,) | n € N} is Cauchy in R2?, so {v(a,) | n € N}
is Cauchy in R. Since Cauchy sequences in R are bounded [12, Lemma 10.10], v(ay,)
is bounded and since Cauchy sequence are convergent 12, Theorem 10.11], v(a,) is

convergent. 0O
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Pfoposition 1.4.3. The set C,(Q) is a ring and Ny,(Q) is a mazimal ideal of CU(Q).

Proof. Pick a = (an)nen, b = (bn)nen € Co(Q). Let ¢ = (cn)nen Where ¢, = apb,. Fix
€ > 0. Let M, and M, be as in Lemma 1.4.2 (1). Take N; such that if n,m > Ny,
then v(ap — ap) < ﬁ; and N, such that if n,m > Ny, then v(b, — by,) < ﬁ Let
N = max{Ny, No}. Suppose n,m > N. Then

v(en —Cm) = V(anbn + nbm — Gnbm — ambr)
< v(an)v(by — by) +v(bp)v(an — am) -~
€ €
< Morgpr+Mo-opp

= €.

Therefore, if a,b € C,(Q), then ab € C,(Q). Now choose N3 such that v(a, —am) < £
for all n,m > N3 and N, such that v(b, — by) < § for all n,m > N;. Let N' =

max{N3, N4}. Let ¢, = a, + b, and suppose n,m > N’. Then

v(en —Cm) = V(an+ bp— Gm — b)
< v(ap — am) +v(by — bp)
P

2 2

= €

Therefore, C,(Q) is closed under addition. Clearly (0)new is in C,(Q). Therefore,

—

C»(Q) is a ring.
To show N,(Q) is a subring, notice that (0)peny € Ny(Q). Let a = (an)nen, b =
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(bn)nen € Ny(Q). Let ¢ = (cn)nen Where ¢, = an + b,y Then
Hmvlen) = Jimg v(an +5s)
< lim v(an) + lim v(by)

= 0.

Thus, N, (Q) is closed under addition. To show N, (Q) is closed under multiplication

suppose ¢, = a,b,. Then

s &S
A vlen) = i v(anbe)

< lim v(a,) lim v(b,)

n—eo 00

= 0.

Thus, N,(Q) is a subring. To show that it is an ideal suppose a = (ap)nen €
Ny(Q), b = (bn)nen € Cu(Q), and ¢ = (Cn)nen Where ¢, = anb,. Let M, be as in
Lemma 1.4:2 (1). Then

lim v(c,) = lim v(a,by)
n—oo n—00
= lim v(a,)v(b,)

< lim v(ap) M
n—roo
= 0.

~

Thus, NV;(Q) is an ideal. Now, to show N(Q) is maximal suppose N,(Q) C I C
Co(Q) and let ¢ = (Ca)nen € I, ¢ &€ Ny(Q). Let L = limpenv(cs). This limit exists
by Lemma 1.4.2 (2) and is not equal to zero since ¢ & N,(Q). Therefore, there exists

N € N such that foralln > N, 0% L—§ < v(c,) < L+6. Thus, for n > N,
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v(c;t) < (L—68)"t:=m < 1. Now define b = (b,)nen by

0 ife,=0

b, =
it ife,#£0
and a = (a,)nen by
1 ife,=0
Qp =
0 ifc, #0.

Now, a € N,(Q) C C,(Q).-Let n,m > N. Then
v =bm) = v(q' —cq)
= v(cn = cm)v((Cacm) ™)
< e-m™t
< €
Therefore b € C,(Q) and (L)pey = cb+a € I = I = C,(Q), Hence, N,(Q) is

maximal. O
Definition 1.4.4. Let Q, denote the quotient field C,(Q)/Ny(Q). If a = (an)nen €
Qy, let z = [a], the equivalence class of a. Define w, : Q, — R2? by w,(z) =
limy, 00 v(an)-

Lemma 1.4.5. The function w, defined above is a well-defined valuation.

Proof. Suppose z = [a] = [b]. Then

wy(z—2z)=0 & limv(a,—b,) =0
< lim v(a,) — lim v(b,) =0

& wy(z) — wy(z) = 0.
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Therefore, w, is well-defined.

Now we will show that w, is a valuation. Let A € C,(Q)/N,(Q). Then X = 0 if
and only if (z,)nen representing A is in M,(Q). Thus, w,(A) = 0 if and only if
lim,,—co v(x) = 0. Let A represent (2, )nen and p represent (y,;)neN in C,(Q)/N,(Q).
Then Ay is represented by (Zn¥n)nen. For each n we have v(z,yn) = v(z,)v(¥n).
Taking the limit gives w,(Ay) = wy(N)w,(p). Also for each n, v(z, + yn) < v(z,) +
V(Yn). Thus, wy(A + ) < wy(A) + wy(p). Thus, w, is a valuation. 0.

Remark 1.4.6. The field Q, is ezactly R by definition.
Proposition 1.4.7. The field Q, is a complete topological field.

Proof. Let (an)nen be Cauchy in Q, with respect to v. In other words, for all € > 0
there exists N € N such that if n,m > N, v(ap—am) < €. Let a, = [(0t3)ien] where
0n,i € Cy(Q) and b = [(Br)nen] Where B, = ann. Now, fix € > 0. Then there exists
N € N such that

nk>N = va,—ar) <e
< v(ank — arr) < €
= v(an,k —_ ,Bk) < €
< v(a,—b)<e
Therefore, lim, o, @, = b and hence, Q, is complete. O

Proposition 1.4.8. The ring homomorphism ¢ : Q — Q, defined by inclusion is

continuous.
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Proof. By Remark 1.4.6 Q,., = R and therefore ¢ : Q — R is continuous. Now
suppose v = v, and consider v,0¢: Q — Q, — R2°. Now, v, 0¢ is continuous (since

the valuation group is R2° C R) and vp is continuous. Hence, ¢ is continuous. O
Proposition 1.4.9. The rationals are dense in Q.

Proof. Fix € > 0 and let z = [a] € Q,. Then there is an N € N such that for all
n,m > N, v(an — am) < §. Consider the constant sequence y = (N )nen. Now
w(ay — y) = limpov(an — ). If n > N, then v(a, —y) = v(an —an) < £ and

therefore, limy 0 v(an — ¥) < § < e Thus, y € B(x,€) and Q is dense in Q,. 0O

1.5 p-adic Fields

For each prime p a field Q, will be constructed that is complete with respect to the

p-adic valuation v,.

Definition 1.5.1. The p-adic ﬁeld'Qp is defined to be Q,,. Eztend v, to Q, by
setting v, = w,, (see Definition 1.4.4). The ring Zp := {x € Q, | vp(z) < 1} is
called the ring of p-adic integers. Both Z, and Q, are equipped with the topology
induced by v, (see Definition 1.2.1).

Proposition 1.5.2. The valuation ring, valuation ideal, and residue field of Q,, as
defined in Definition 1.1.18 are given by: K° = Zy, px = pZy and Ky = Zp/pr =
Fp.

Proof. The valuation ring is Z, by definition. Now, px = {} € @, | v,(\) < 1} =
{Ae @, | ord(\) >0} = p | X\ Thus, px = pZ,. It follows that kx = Z,/pZ, =
F,. O
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Proposition 1.5.3. The set pZ, is both open and closed in Z,.

Proof. Consider [O, %] which is closed in R, Then

5 (3])

{oez, luw <1}
= {z €Z,| ordy(z) > p}
= plyp.

Since vy, is continuous, pZ, is closed in Z,. |

Let 0 <e< % and consider [O, % + e) which is open in R2%. Then

v;1<[0,%+6>] = {meZp]vp(a:)S%-i-e}
= {xEZplvp(x)S%}

DLy

Thus, pZ, is also open in Z,. _ g
Proposition 1.5.4. The ring Zy, is an dpen subring of Qy.

Proof.

Il

G ([01+6)] = {z€Z | @) <1+e
= {z€%Zy | v(x) <1}

= Z,
O

Working with elements of @@, as equivalence classes of Cauchy sequences is diffi-
cult. Using the p-adic expansion from Section 1.3 gives us a nice way of viewing the

elements in this field.
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Lemma 1.5.5. Every z € Q, can be written in the form z = 3 72, rip* with 0 <

T, <p—1.

Proof. Let 2 = [(@n)nen] € Qp. Where a, € Q. Then by Lemma 1.3.4, a, =
S e _;Tnkp". Define b:= 32 Te,xp". Now, fix € > 0. Since [(an)nen] is Cauchy,
there exists N € N such that

nk>N = v(a,—ag) <e
& vk — okr) < €

< v(a, —b) <e
Therefore, lim, o0 an = b. Thus, z can be represented in the desired form. O

Example 1.5.6. In Q,, for any prime p, we have

[o,0]
—1=> (p— 1)
=0
Moreover, if £ =Y oop aip* then
empmaot S o (L4 ey
i=1

Proof. First, notice that

1+ Xn:(p - 1)p’

n
1+p—1+3 (p—1)p
p—1+) (p—1)p

=0 i=1
n
= p+@—-1p+> (p—1)
Toi=2 '

n
= PP+ -1’ +1+ ) (p— 1)
e ——r

=3

n-+1

/
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Therefore,

I

n .
: _ % n+1
Lim v, (1 +> (p-1)p ) Lim_ v, (p™)

i=0
= 0

The proof of the second equation is similar to the proof of the first:

(Eazp>+p—ao+z (1+ a;))p = g

=0 i=1

SO

~

_ — : n-+1
1%11_>r£1°vp<<2a1p)+p ao+2(p (1+a)) ) 7}1_)11301;,,(1) )

i=0 =1

O

Remark 1.5.7. It should be noted that adding, subtracting, and dividing p-adic

numbers results in carrying forward as demonstrated in the above proof.

Corollary 1.5.8. The ring Z, is complete.

1.6 Hensel’s Lemma

Lemma 1.6.1 (Hensel’s Lemma). Let f(z) = ag + @12 + aa2® + - - - + anz™ € Z,[7].

Suppose that there exists a p-adic integer oy € Zy, such that
f(c) =0 (mod pZ,)

and
f'(01) #0 (mod pZy).

Then there ezists a p-adic integer a € Z, such that o = ay (mod pZ,) and f(a) =
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Example 1.6.2. Let f(z) = 22+ 1 € Zs[z]. Then
f(2)=22+1=5=0 (mod 5Zs)
and
f'(2) =4 %0 (mod 5Zs).

Thus, by Hensel’s Lemma, there exists a p-adic integer o € Zs such that o =

2 (mod 5Zs) and f(a) =0. Thus, v~1 € Qs.

Lemma 1.6.3 (Hensel’s Lemma, 2nd version). Let f(x) € Zy[z], and assume that
there ezist polynomials gi(z) and hi(z) in Zy[z] such that

1. g1(z) is monic

2. g1(z) and hi(z) are relatively prime modulo p

8. f(z) = g1()ha() (mod p).

Then there exist polynomials g(z), h(z) € Z,[z] such that

1. g(z) is monic
2. g(z) = g1(z) (mod p) and h(z) = hi(z) (mod p)
. F(@) = g()h(z).

Proof. See Gouvéa [7, Section 3.4] for a proof of either version of Hensel’s Lemma. [

-

Proposition 1.6.4. The second version of Hensel’s lemma (see Lemma 1 63) im-

plies the first version (see Lemma 1.6.1).
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Proof. Let f(z) be a monic polynomial. Let g1(z) = £—0o and let hy(z) be relétively
prime to g;(z) such that f(z) = g1(z)hi(z) (mod p). Then a; is not a double root.
Thus f/(c4) # 0 (mod pZ,) and therefore by the second version of Heﬁsel’s Lemma,
there exists polynomials g(m), h(z) € Z, such that g(z) = 1—o and f(z) = g(z)h(z).
This is Lemma 1.6.1. 0

Remark 1.6.5. The converse of Proposition 1.6.4 is also true.

N

1.7 Extension of v,

Let K : Q, be a field extension. Since (Qp, vp) is a valued field one wants to consider

valuations v : K — R2Y such that these valuations extend the p-adic valuations on

Qp.

Lemma 1.7.1. There is at most one valuation on K extending the p-adic valuation

on Qp.

Proof. Suppose v and w are valuations on K which extend the p-adic valuation.
Then v and w are equivalent [7, Corollary 5.3.2]. Thus, by Gouvéa [7, Lemma3.1.2]
there is a positive real number « such that v(z) = (w(z))® for every z € K. But
v(z) = w(z) whenever x € Q, since both valuations extend the p-adic valuation.
Compute both valuations at z = p. Then v(p) = % = (w(p))* = o = 1. Thus, v

and w are equal. O
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1.8 Norm Function

Let K : Q, be a finite extension. Lemma 1.7.1 tells us that there can be at most one
valuation on K extending p-adic valuation on Q,. However, the existence of such a
valuation has not yet been established. This section defines the norm function and

uses this function to construct the desired valuation.

Definition 1.8.1. Let K : F be a finite extension. There ezists a function Ng.p :
K — F called the norm from K to F. Think of K as a finite-dimensional F-vector
space. Take o € K, and consider the F-linear map B : K — K given by x — az.-
Since 8 is linear, it corresponds to a matriz. Then Ni.r(a) is defined to be the

determinant of this matriz.

Proposition 1.8.2. Let K : F be a finite extension of degree n.

a) Suppose o € K and let mop = 3% — ag_12% + - -+ + (—1)%aq be the minimal

polynomial of o over F. Then N, K:f(a) = ag/ “

b) If K : F' is normal, then Ng.r(c) = ] Loegayx.r) o(@)-
Proof. A sketch of the proof is found in Christie [2, Prop. 2.4]. O

Example 1.8.3. Let F = Q5 and K = Q5(\/§). Compute Ng.p(a + b\/i) There
are two automorphisms in the Galois group: o(a+bv2) = a+bv/2and o(a+bv/2) =
a — bv/2. Thus Ng.p(a +bv2) = (a+bv/2)(a — bv/2) = a? — 2b°.

Lemma 1.8.4. Norms are multiplicative: Ng.r(af) = Nk.p(a)Nk.r(5).

Proof. Using Definition 1.8.1, a norm is a determinant and determinants are multi-

plicative. a
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Remark 1.8.5. Norms are not additive. Let F = Qs and K = Qs(V/2). From
Ezample 1.8.8 Nx.p(a + bV/2) = a® — 20%. Similarly, Nx.r(a — bv/2) = a® — 202,
However, Nk.r(2a) = 2a # 2a% — 4b%.

Theorem 1.8.6. Let K : Q, be a finite extension of degree n. The function v :

K — R2° defined by

vk () = {/vp(Nro,(%))

is a non-archimedean valuation on K which extends the p-adic valuation on Q.

Proof. Check the four criterion for a valuation (see Definition 1.1.3).
1. vx(0) =0 and v (1) =1 are clear.

2. Since Nk.q,(2y) = Nk.q,(2)Nk,(y) by Lemma 1.8.4, and v, is multiplicative,

it follows that vk (zy) = vk (z)vk ().

3. If z € Qp, then Nkq,(z) = 2™ by Proposition 1.8.2(a), so that vx(z) =

3/ (vp(2))™ = vp()-

4. To show vg(z+y) < max{vk(z), vk (y)}, show that vk (z+1) < max{vg(z),1}."
Observe that vg(z) < 1 will happen exactly when v,(Nk.q,(z)) < 1. Thus, it

needs to be shown that
Up(Nr:g, (%)) < 1= vk (N, (z — 1)) < 1°

or

NK:QP(-T) € Zp = NK;QP(x —_ 1) S Zp .
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which is true from Lemma 1.8.8. Thus vx(z) K 1 =>vkg(z —1) <1 and
vg(z) <1 = v;{(—x) <1
= vg(-z—-1)<1
= wvg(z+1) <1

Case 1: ifvg(z) < 1, then max{vk(z),1} = 1, thus vx (z+1) < max{vk(z),1}.

Case 2: if vk () > 1, then vk (1) < 1, which yields

1 1
z T

which says vk (z + 1) < vk (z) = max{vk(z),1}.

a

Lemma 1.8.7. If f(z) =z"+---+ a1 + ap s a monic irreducible polynomial with

coefficients in Qp, and ag € Zy, then a; € Zy, for all1 <i<n—1.

Proof. [7, Lemma 5.3.6] Assume that ap € Z, but some a; & Z,. Choose m to be
the smallest exponent such that p™a; € Z, for every ¢ > 1. Set g(z) = p™f(z) =
baz™ + bp_12™ L + ... b1z + by, so that b; = p™a;. Since f(z) is monic, b, = p™ is
divisible by p; since ag € Z,, by = p™ay is also divisible by p. Let k be the smallest

7 such that b; is not divisible by p. Then
g(m) = (by2™ F + - - - + by,)z" (mod p)

and the two factors are relatively prime modulo p. By the second version of Hensel’s
Lemma (see Proposition 1.6.3), it follows that g(z) = p™f(x) is reducible, and
therefore so is f(x) itself. This contradicts the assumption. Hence, a; € Z, for all

1<i<n-—-1 (]
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Lemma 1.8.8. Let K : Q, be a finite extension of degree n and let o € K. Then

NK:QP(OZ) S Zp = NK:QP(OZ - 1) € Zp.

Proof. Since the formula for the norm does not depend on the choice of field con-
taining o [7, Proposition 5.3.4], we can assume that K = Q,(«), the smallest
field containing . Let magq, = 2" — Gpaa™  + .o + (—i)”‘lalm + (=1)"ag
be the minimal polynomial for c. .Then the minimal polynomial for o — 1 is
Ma-1,0y, = " = (Gn-1 +n)2" 1+ oo+ (=1)*(1 + @ny + -+ + a1 + ag) (since
Ma-1,0,(c¢—1) = 0 and the degree is right). Using the second definition of the norm
(see Proposition 1.8.2 (a)), Nk:q,(z) = ao and Nk.q,(z—1) = 1+ap-1+---+a1+ao.
Now my,q, is an irreducible polynomial and ag € Zy, 50 1 +ap—1+-+-+a1+ag € Z,

by Lemma 1.8.7. |

.Giver_l any finite extension K : Q, of degree n it has been shown that there exists

a unique valuation on K which extends the p-adic valuation on Q,. This additive

valuation is called the p-adic valuation on K. For any x € K* this valuation is
defined by

ord(z) = v, (Nica, (0))

1.9 Finite Extensions of Q,

—

Definition 1.9.1. Let K : Q, be a finite extension of degree n, and let e = e(K : Q)

be the unique smallest positive integer defined by

ordg(K*) = éZ.
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The integer e is called the ramification index of K over Q,. The extension K Qp
is unramified if e = 1, ramified if e > 1, and totally ramified if e = n. An element

7 € K is a uniformizer if ordg(w) = L.
Remark 1.9.2. It is easy to see that 1 < e < n. In fact e divides n.

Example 1.9.3. Consider the fields Qs(v/2) and Qs(v/5). In the following two
examples we will determine the ramification index, type of extension, valuation ring,

valuation ideal, and residue field-of these two fields.

1. Let K = Qs5(v/2). Thenn = 2. Thus, 1 < e < 2. To determine the ezact
value of e, the image of ordx must be calculated. The Galois group Gal(K :
Qs) = {1,0} where o(z + V2y) = & — +/2y. Thus by Proposition 1.8.2 (b),
Ng.qs(x++/2) = 22 —2y%. Therefore, ordg = zords(z? —2y*). Write z = 5,
y = 5™y, where m,n € Z, u,v € Z%. Then 2% — 2y? = 52" — 2(52™v?). Now,
ords(z?—2y?) > min{2n, 2m} with equality ifn # m. Ifn = m then zé—2y2 = .
52 (u? — 20%) = ords(z? — 2y%) = 2n + ords(v® — 20%). If ords(u? — 2v%) > 0

then u? — 2v% = 0(mod 5).
- If u =0, then v = 0 which is not possible since u,v € Zg.

- Ifu=1,-1, then 2v* = 1 which is a contradiction since v* = 3 has no
solutions (mod 5).
- Ifu=2,-2, then 20% = —1 which s a contradiction since v* = 2 has no
solutions (mod 5). |
Thus, ords(u? — 2v?) = 0 = ords(z? — 2y*) = 2n € 2Z, a;zd e = 1. Therefore,

Q5(\/§) : Qs is an unramified extension.
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Now, ordg(z ++v/2y) = 1 <= ords(z? — 2y?) = 2. Letm =z + /2y = 5= .

K° = {z¢€ K |ordx >0}
= {z+V2y € K | ords(z® — 2y°) > 0}
= {z+V2 e K |zyeEZs}

= Zs[V?)

P ~ {z € K | ordg > 0}
= {z+V2y € K | ords(z* — 2y?) > 0}
= {z4+V2 €K | z,y € 5Zs}

= 5Zs[V?2]

kg =K°[px = Zs[V2]/5Zs[V2]
>~ F[v2
= Fs5(v2)

]F25

R

2. Let K = Qs(\/g) son=2andl<e<2. As above, it is easy to calculate the
norm: Nx.qs(z +v5y) = 22 — 5y®. To calculate the ramification indes, it is
sufficient to find z + /5y € K such that ords(z? — 5y?) = 1. Let =0,y = 1. |
Then ordg(v/5) = Sus(—1) = 1. Thus, im(ordx) = }Z, e = 2, and Q(v/5) :

Qs is totally ramified. A uniformizer, m = x -+ VBy = /5, was calculated when
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finding the ramification indes.
K° = {ze€ K |ordg >0}
= {z+Vby € K | ords(z® — 5y%) > 0}

= Zs[V5]

b = {ZGK'O’I"d}{>0}
= {z++/5y € K | ords(z® — 5¢4%) > 0}

= 575+ V5Zs

kx =K°[px = Zs[V5)/(5Zs + V'5Zs)
> 7,/5Zs
&~ I,

Remark 1.9.4. Notice that the uniformizer of K is not unique. In the unramified

case, p is usually chosen as the uniformizer.

1.10 p-adic Fields and Hensel’s Lemma Revisited

Definition 1.10.1. A field K is a p-adic field if K is a finite extension of Q.

Proposition 1.10.2. Let K° be the valuation ring of K, let px be its mazimal ideal, -
and let ki be the residue field. Fiz o uniformizer w in K. Then
1. the ideal px C K° is principal and w is a generator

2. any element & € K can be written in the form z = un®% @) where u € (K°)*

18 a unit
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3. the residue field kx is a finite extension of F, whose degree is less than or equal

to the degree [K : Qp)

4. any element of K° is the root of a monic polynomial with coefficients in Z,

5. ifx € K is the root of a monic polynomial with coefficients in Z,, then xz € K°.

Proof.
1)

TPy =

L

2)

r e K

4

vg(z) <1
ordg(z) > 0
ordg(z) > é
ordg(r™z) >0
vg(rlz) <1
1z € K°

zenK®

vr(z) < 00

= ordg(z) > —o0

=

zeK° P]
T

- 3) The result follows from Proposition 1.10.3.

4) If « is the root of such a polynomial then its norm (up to a sign) is a power

of the constant term, which is in Z,. Hence vk (o) =

Y/vp(Nr:g,(a)) < 1.

5) Follows from Lemma 1.8.7 and Hensel’s Lemma. O
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Proposition 1.10.3. Let K : Q, be a field extension and let ki be the resz'dde field
of K. Let f = f(K : Qp) be as defined in Definition 1.9.1. Then [kg : Fp] = f, so

that ki = Fps is the finite field with pf elements.

The proof to this proposition is quite long and the reader is referred to Gouvéa {7,
Prop. 5.4.6]. The proposition was stated to illustrate that the degree [K : Q] =n of
a finite extension breaks up into factors e and f := %, where e measures the change
in the image of the additive p-adic valuation ord and f = [s : F,] measures the

~

change in the residue field.

Lemma 1.10.4 (Hensel’s Lemma, general version). Let K be a p-adic field and let
T be a um'f'ormz'zer. Let f(z) = apz" + ap12™ 1 + - ~7+ a1 + ag be a polynomial
whose coefficients are in the valuation ring K° = {z € K | vp(z) < 1}. Suppose that
there exists o € K° such that f(a) =0 (mod 7) and f'(a) # 0 (mod w). Then there

exists cp € K° such that o = o (mod m) and f(agp) = 0.

Notice that Lemma 1.6.1 is a specific case of Lemma 1.10.4. If K = Q,, then
K° = Z, by Definition 1.5.1. Let 7 = p. Lemma 1.6.1 is now obtained from
Lemma 1.10.4 and thus a general version of Lemma 1.6.3 could be obtained in a

similar manner.



Chapter 2
Classes of Rings

This chapter will introduce the category of affinoid rings with an emphasis on Tate
rings. To define Tate rings, adic and f-adic rings are introduced. The completion of

rings is discussed to provide examples of such rings.

el ~

2.1 Completion of Rings

Let A be a ring and let I and J be a ideals of A. Recall that the multiplication of

two ideals is defined as follows: for I <A and J < A,

n
I.J:= {Zaib,- | aieI,bieJ,neN}.
i

Then we have natural homomorphisms
AJT — AJI? — AJT? — ---

which make (A/I™),en into an inverse system of rings (see Definition A.2.1). Note
that each natural homomorphism A/I™ « A/I"*! is surjective and is defined by
a+ I — a4+ I

Let v : A — T'U {0} be a function defined by v;(z) = e~ max{neN* | z€I"} e
topology on A induced by v is the coarsest topology on A making A a topological
ring and such that v™{z € T U {0} | z < 7} is open in A for each v € T". Recall

from Chapter 1, if I is a prime ideal, then v is a valuation.

33
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Definition 2.1.1. Let A be a ring and I be an ideal of A and make (A/T ”)ne'N into

an inverse system of rings as above. The set

A= lim A/I"

neN

(see Deﬁﬁz’tz’on A.2.1) is called the completion of A with respect to I. Let I:= {a e

A | cy = 0} where & = (aq,q0,03...) and o, € A/I™.
Lemma 2.1.2. The set A is a ring and I is an ideal of A.

Proof. Clearly 0= (0,0,...) and 1= (1,1,7..) are in A. Let o = (o, 3,...), B =
(61, B2,--.) € A. Then aff = (011, 02fs,...) and a+ B = (cu + B, 00+ Ba, ... )-
are in A since A/I™ « A/I™*! is a homomorphism for all n. Thus, A is a ring. The
set I is clearly a subring of A and since multiplication is computed component wise,

I
al - Iand Ia - I for all @ € A. Therefore I is an ideal of A. , O
Lemma 2.1.3. The ideal I* consists of those oo = (oq,a9,...) € A such that oy, = 0.

Proof. If o € I*. Without loss of generality, take o = B102 + + - By, Where B, € I. Let
Qy = Hf:o B2,i. Choose a representative ap from the equivalence class ap and by;
from (4. Then ag = Hf:o by; and by; € I (since fy; = 0). Thus, H?:o Be; € IF

which implies ag € I*. Hence, ap = 0. O

Proposition 2.1.4. There egists a bijection between A/I and AJI. Thus, I is a

prime ideal in A if and only if I is a prime ideal in A.

™~

Proof. Consider the following diagram”™

N
b~

_‘-7>,21/

Y

.y

o

—_—

S
~
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such that ¢(a+f) = p(e) + I for o € A. Then the diagram commutes. Since aed

if and only if oy € I, ¢ is bijective. ‘ O
Corollary 2.1.5. There eists a bijection between A/I* and A/I*.

Example 2.1.6.

1. Let T = {p"Z | n € N} be the partially ordered set with respect to pmn :
Z/p™Z — Z[p"Z defined by k+p™Z v k+p"Z whenn < m (with the regular
“order on N; i.e., n <m & m—n>0). An element of }iLnZ/an is then a
sequence (an)n>1 Such that a, € Z[/p"Z and if n < m the;ecl:]n = ap(mod p™).
Every natural number m defines such a sequence and can therefore be regarded
as a p-adic integer. For example, _35 as a 2-adic integer would be written as
the sequence {1,3,3,3,3,35,35,...}. In fact, the ring imZ/p"Z has already
appeared; it is ezactly the ring of p-adic integers (see DZ]E‘iI:n'tion 1.5.1).

Let o = (Qn)nen € UmZ/p"Z. For each: Qn, choose a representative a, €
Z. Without loss of Z:Zemlity choose 0 < a, < p and consider the base p
expansion (see Definition 1.8.1) of an (i.e. an =Y reg Tr D" = ZZ;& T kP° +
higher order terms). Define by = rni1n-

Now consider

@ : IimZ/p"Z — Zp
neN

o= (On)nen + B= anpn

n=0
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where by, is defined above. Also consider

$:Z, — lLmZ/p"Z

neN

B=3"bp" = a=(@n)nen

n=0
where oy = ap, +P"Z and a, = 3 p—g bip".

Now ¢ s surjective since for any > .-, bpp™ € Z, we can define a sequence
a = (Gn)neN N l(i_en_N;Z/p”Z by a, = ap +p"Z and a, = ZZ;; bip*. The
n

map @ 1s injective since it has an inverse, namely 1. To illustrate this, let

o € im Z/p"Z. Then
neN

Wop)e) = ¥ (f bnpn)

n=0
= a.

Thus, @ is bijective (and v is its inverse). To show that these rings are iso-

morphé’c as topological Tings, we will shbw 1 is continuous. Consider ¢;1 (52)

Now, c; = 0 = ay € (p) so choose a; = 0. Hence, by = 0 and therefore,

»=1(pZ) = a(pZ) = pZy. Thus, % is continuous.

We now have two constructions of the p-adic integers: the inverse limit con-

struction and the algebraic construction illustrated in Chapter 1.
2. Let Z/p\[T] denote the completion of Z,[T| with respect to the ideal (p); thus,
Z/p\[T] = lim Z,[T]/(»")Z,[T]. Then Z/p\[T] = Z,{T'}, the ring of convergent
neN

power series. The verification here is identical to the argument above.

Proposition 2.1.7. Let A be a ring and I an ideal of A. For eachn we have a natural

map A — A/I™ so by the universal property of inverse limits (see Proposition A.2.2)
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we obtain a homomorphism A — A. Then A is complete, the ring homomorphism
o: A— A is continuous (where A is given the I-adic topology and A is given the

I-adic topology), and A is dense in A.

Proof. Since o : A — A is unique, v; = v;oo. Thus, o is continuous since vy and v;
are continuous.

Let (an)nen be Cauchy in A with respect to v;. In other words, for all € > 0,
there exists N € N such that if n,m > N, v;(an —an) < €. Let a, = (0 1 )keny Where
ang € AJI*. Let b= (Bo,Bn,...) € A where f, = .y @0d O, = Oty under the

bijection from Corollary 2.1.5. Fix € > 0. Then there exists N € N such that
n k>N = vilank —or) <€
& vilane — Br) <€
& vi(a, —b) <e
Therefore limn_ﬂ‘,o a, = b and hence, A is complete.

Since A is a ring equipped with the I-adic topology, {I" | n € N} is a base at
0 € A. Therefore A = [J%, (A + I"). Now

n=0

reldA & xeG(A+I")
& z=1gL/=-(;7z,yeA,z€In
& y=z—z€(z+I")NA
& zeA

Therefore A is dense in A. ‘ i

Remark 2.1.8. If a ring A is complete it may not be of the form described above.

For example, the real numbers are complete but not of this form.
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Proposition 2.1.9. Let A be a ring, K be a p-adic field. Let o : K° — A be c.z ring
homomorphism and let w denote the image of a uniformizer (see Definition 1.9.1)
of K under o. Let ¢ : A — A be the canonical map (see Proposition A22) Define
= (poo)(r). Then AQ®yo K = A; (where A®yo K is the pushout of A — A —
K°— K). |

Proof. Recall that K is the ring K° localized at 7 and A is the localization map(see
Definition B.0.3). Notice that K = K2. Let « € A and ¢ € K3. Define ¢(%) =

(fp“;"of’;)(giz) = (‘p°f’)(k). Then (o) (k) = (Azopoo)(k). Suppose gO)\ = fopoco. Then

(fopoo)(k) = g(£). Now define 0 : A; —>Bby—.—>ff(<C;>,, Then (§o)z)(e) = f(a)

oeo() - o(e28)

(fopoo)(k)
f(@m)

(fopoa)(k)

(fopoa)(mm)

)

Thus, 4 exists. To show the uniqueness of 8, suppose ¢ : Az — B such that #'o)\; = f

and
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and ¢ o9 = g. Then

0(E) - oo (3)
N~
fla
(76)
= (%)

Therefore 8’ = 6 and 0 is unique. O

2.2 Adic Rings

Definition 2.2.1. Let A be a topological ring. An ideal I of A is called an ideal of
definition if {I" | n € N} is a base for the topology (see Section 1.2) at 0 € A. A
topological ring A is said to be adic if A contains an ideal of definition. If A and
B are adic rings and f : A — B a ring homomorphism such that given an tdeal of
definition I of A, f(I) is an ideal of definition of B, then f is called an adic ring

homomorphism.
Lemma 2.2.2. The composition of adic ring homomorphisms is adic.

Proof. Let A, B and C be adic rings with adic ring homomorphisms f : A — B and
g: B — C. Let I be an ideal of definition of A. Since f is adic, f(I) is an ideal of
definition of B. Since g is adic, g(f(I)) is an ideal of definition of C. Therefore go f

is adic. O
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Example 2.2.3.

1. Let A =7y and consider I = pZy. Then I™ is o base at 0

Thus, pZy, s an ideal of definition for Z, and hence, Z, is adic.
2. The ring Q, is not adic since the only prime ideal is (0) which cannot be an
ideal of definition.

3. Consider the ring A = Z,{T} (see Example 2.1.6(2)) with ideal I = pZ,{T}.

n=0

Let f = 3.0 janp" € A. Then I™ is a base for the topology at 0 if I™ =
vyt ([O, ;};]) Without loss of generality, take the base of the valuation to be

p (see Exzample 1.1.7 (5)).

1 1
c vt [0,—]) & v(f) €0, —
rev (o, () € 0, )
& UI(CLn)Spim,VnEN
& 0 €%y, YVNEN

& fepmZ{T}=1I"

Thus, Z,{T'} is adic and I = pr{T} is an ideal of definition.
4. The ring Qu{T} is an adic ring and pQ,{T} is an ideal of definition.

5. The ring Z,[[T]] is adic and pZ,[[T] is an ideal of definition.
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Proposition 2.2.4. An adic ring homomorphism is continuous.

Proof. Let A and B be adic rings with adic ring homomorphism f : A — B. Sup-
pose I and J = f(I)B are ideals of definition of A and B respectively. Then f is
continuous at 0 if for all N € N there exists M € N such that v;(a) < e™™ which
implies v, (f (a)) < eV, or equivalently, for all N € N there exists M € N such that
a €M = f(a) € JN. Take M .= N. Then a € IM = f(a) € f(fM) = f(I)M C
JM. Thus, f is continuous at 0 € A. To show\ that f is continuous at z € A, let U
be an open neighbourhood of z. Sinc;\I is an~ ideal of definition there exists K € N

such that z € z +I¥ C U = f(z) € f(z + I¥) = f(z) + f(D)X C f(z) + JX.

Therefore f is continuous.

Example 2.2.5.
1. The identity map is adic.

2. Define ¢ : Qp{T} — Qu{T} by o(T) = pT' and ¢ is Qy-linear. Then ¢ is a

ring homomorphism and

o(Zp{T}) = {Z b T" € Q{T} | b, € p"Z, andz—z — O} C Z,{T}.

neN

Thus, @ is continuous, and an adic ring homomorphism. More generally, oy :

Q{T} — Q,{T?} is an adic homomorphism where wx(T) = p*T and ¢y, is

—

Qp-linear.
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2.3 f-adic Rings

Definition 2.3.1. A topological ring A is said to be f-adic if there exists an open
adic subring Ag C A such that Ao has a finitely generated ideal of definition. If A is
f-adic then any open adic subring of A is called a ring of definition of A. Let A, B
be f-adic rings. If g : A — B such that g(Ao) C By and gla, : Ao — By is adic, then

g s said to be an f-adic homomorphism.

Exémple 2.3.2.

1. Any adic ring which is also noetherian (i.e. every ideal is finitely generated) is
f-adic by taking Ag = A.

2. Let A =17y, Ay =Ly, and I = pZ,. Then A is f-adic.

3. Let A=Qp, Ao =Zyp, and I = pZ,. Then A is f-adic, but not adic.

4. Let A = Q,{T'} be the ring of convergent power series equipped with the
topology defined by ’U(ZnGN anT™) = Sup,en Up(an)- Then; A is an f-adic ring
with ring of definition Ay = Z, {T} and ideal of definition (for Ag) given by
I =pZ,{T}.

Proposition 2.3.3. Let A and B be f-adic rings. If g : A — B is an f-adic

homomorphism, then g is continuous.

Proof. Let A, B be f-adic rings and let g : A — B be an f-adic homomorphism. Let
U QIB be open in B. Since B is a topological ring, without loss of generality, take
U = g(I)B, where I is an ideal of definition of Ay. Now, g|4,-is continuous, since
9la, is adic. Therefore, Ay 2, g(IB, <> B is continuous which implies g : A — B is

continuous. 0
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Example 2.3.4. The adic ring homomorphisms described in Example 2.2.5 are also

f'-ad'l:c.

2.4 Power-bounded Elements

Definition 2.4.1. Let A be an f-adic ring. An element a € A is power-bounded if
a € B where B is a ring of definition of A (see Definition 2.8.1). Define A° to be
the set of all power-bounded elements of A. In other words, a € A° if a € |J B, the
unton of all rings of definition B of A.
Example 2.4.2.

1. Let A=Q,. Then A° = Z,.

2. Let A=17Z,. Then A° = Z,.

3. Let A = k((T)) with ideal of definition TK[[T]]. Then A° = k[[T}].
Corollary 2.4.3. A° is a subring of A.

Proof. Clearly 0,1 € A° since 0 and 1 are in all rings of definition. Now consider
b,c € A°. If b, c are both in the same ring of definition, B, then bc and b+ c are in
A?. Suppose b € B and ¢ € C where B and C are rings of definition of A and B # C.

" Then B has an ideal of definition I and C has an ideal of definition J. Now, B+ C

is a ring of definition of A since I + J is an ideal of definition. Since B + C is the
smallest ring containing both B and C, bc and b+ ¢ are in B+ C. Thus B+C C A°

implies b,c € A° . : O
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2.5 Topologically Nilpotent Elements

Definition 2.5.1. Let A be an f-adic ring with ring of definition Ap.- Then a € A
is topologically nilpotent if for all ideals of definition I of Ay, and for all m € N%,
there exists some N € N* such that o® € I™ for all k > N. Define A°° to be the set

of all topologically nilpotent elements of A.

Example 2.5.2.
1. For every prime, p € Q, is topologically nilpotent.

2. The unity 1a € A is not topologically nilpotent.

Proposition 2.5.3. Let A be f-adic. Let I and J be ideals of definition of A. Pick
a € A. Then for oll m € N* there exists some N € NX such that o* € I™ for
all k > N if and only if there exists some M € N* such tﬁat a* € J™ for all
k> M. Thus, to see if a € A is topologically nilpotent, it suffices to check one ideal

of definition.

Proof. Let A be an f-adic ring and a € A be topologically nilpotent with respect to
I. Consider the ideal of definition J # I. Then there exists m € N such that I™ C J.
Since a € A is topologically nilpotent with respect to I there exists some N € N*
such that af € I™ for all k > N. Thus a* € I™ C J for all k > N. Therefore, a € A

is topologically nilpotent with respect to J. O

Cdrollary 2.5.4. Let A be an f-adic ring. Then a € A if and only if there exists
an ideal of definition I such that for all m € N* there exists some N € N* such that
ak € I™ for allk > N.
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Proposition 2.5.5. The set of topologically nilpotent elements is an ideal in 'Ao.

Proof. Let A be an adic ring, I be an ideal of definition of A, and a,b € A®. Then
for all k € N there exists N € N such that a® € I* for all n > N and there exists
M € N such that b™ € I* for allm > M. Let N+ M = K. Then
K _ (K iy K—i
(a+b) —;(i)ab .
Now, 0 < i < N implies —N < —i < 0 which implies0 < N—i < NsoM < K—i <
K. Thus b¥—% € I*. Similarly N <i < K = a* € I*. Thus a+b € A*°. Also, if
a € A and b € A%, then there exists M € N such that' b™ € I* for all m > M. Now,
(ab)™ = oa™b™ € I*. Thus, A is an ideal in Ao. |

2.6 Tate Rings

Definition 2.6.1. An f-adic ring A is a Tate ring if there exists a topologically

nilpotent unit in A.

Example 2.6.2.

1. The field Q, is a Tate ring since Qp is f-adic and p € Q, is a topologically

nilpotent unit.
2. The ring Z, s not a Tate ring. Let & € (Z,)*°. Thenz € Z;‘;' if limpenyv(2™) = -
0. But limpenv(y™) =1 for ally € Z;,. Thus, there are no units in Zy, that are

topologically nilpotent.

Proposition 2.6.3. Let A be a topological Ting, fix s € A, and consider the lo-

calization A, (see Definition B.0.3). Equip A, with the coarsest topology such that
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A: A — A, is continuous. Then As is a Tate ring. Conversely, if A is a Tate ring
then A = B, for some topological ring B and for some s € B where B is equipped

with the adic topology generated by {(s") | n € N}.

Proof. To show that A, is a Taté ring we need to show A; is f-adig and has a
topologically nilpotent unit. To show that A, is f-adic we need to find an open
subring A of A with an ideal of definition. We claim that B = A((s)°) = A(4) =
{2 | a € A} is a ring of definition. It is clear that B is both open and is a subring
of As. We take I = A(s) = {2 | a € A} = $B which is clearly an ideal of B, and
I™ = (A\(s))™ = A((s)") since A is a ring homomorphism, and hence I is a fundamental
system of neighbourhoods. Therefore, A, is f-adic. We claim that ¢ := { € A, is
a topologically nilpotent unit. Now, ¢ is a unit since (2) () = 1 = 1,,. Consider
{t" |n>1} ¢ I =tB. Then {t"** | n > 1} C I* which implies ¢ is topologically
nilpotent.

Conversely, suppose A is a Tate ring. Choose a ring of definition B of A. Then

the result follows from Lemma 2.6.4 and Lemma 2.6.5. O

Lemma 2.6.4. Let A be a Tate ring and let B be a ring of definition of A. Then B

contains a topologically nilpotent unit of A.

Proof. Since A is a Tate ring, by definition, there exists a topologically nilpotent
unit + € A. Then for all U C A open, 0 € U, there exists N € N such that
{t* |n> N} CU. Since B is a ring of definition of A it is an open neighbo;rhood
of 0 in A. Set U = B and the result follows. _ D

Lemma 2.6.5. Let A be a Tate ring, let B be a ring of definition of A, and let s € B

be a topologically nilpotent unit of A. Then A = B, and sB s an ideal of definition
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of B.

Proof. Let A be a Tate ring, let B be a ring of definition of A, and let s € B be a
topologically nilpotent unit of A. Then A = A, since s is a unit. Let ¢ : B; — A,.

Define ¢ (&) = &.

sn

Now, ~ ~

s™(bs™ — b's™) = 0 for some m € N
bs™ — b's™ = 0 since s is a unit

bs™ =b's"™

r ¢ ¢ ¢ ¢

— —_m!
bs™™ =1bs"".

Thus, ¢ is one-to-one. To show that ¢ is onto, pick a € A. We need to find b € B,
n € N such that ¢ (&) = a. In other words bs™ = a < b = s"a. Consider the
map f, : A — A where z — az. This is a continuous map. Thus, f;*(B) = {z €
A | az € B} is an open neighbourhood of 0 in A. Since s € B and s is a topologically
nilpotent unit, there exists N € N such that {s" | n > N} C f;7*(B). In particular,
as™ € B and thus ¢ is onto and hence an isomorphism. . r
. To show sB is an ideal on definition of B, let U C A be op/eh and 0 € U. Then
there exists n € N such that 0 € I C U. Since s is topologically nilpotent, s™ € I"
for some m € N. Thus, s™B g ImB =J"B C U. So, (sB)™ = s™B C U for some

m € N. Therefore sB is an ideal of definition for B. O
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Example 2.6.6.
1. The ring Q{T} is Tate and Qp{T} = (ZP{T})p.

2. The field Q, is Tate and Qp = (Zyp)p.

2.7 Integral Elements

Definition 2.7.1. Let A and B be rings with A C B. Then a € A is integral over
B if and only if there exists f<€ Blz] such that f # 0, f is monic, and f(a) =0. A
is integral over B if and only if for all a € A, a is integral over B. If every element
of A that is integral over B belongs to B, then B is integrally closed in A. A ring

A is said to be a subring of integral elements over an f-adic ring B if
o A is a subring of B
e A isopenin B
o A is integrally closed in B
e AC B°.
Example 2.7.2. Let B=Q, and A=7Z,. Then
o A is a subring of B by Definition 1.5.1.
e A is open in B by Proposition 1.5.4.

e Foreacha € A, let ¥,(z) = z—a € Blz]. Then f,(a) = 0. Thus A is integrally

closed in B.
e A C B° by Example 2.4.2(1).

Thus, the ring Z, is a subring of integral elements in Q,.
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2.8 Affinoid Rings

Definition 2.8.1. An affinoid ring s a pair A = (A%, A") where A” is an f-adic
ring and At is a subring of integral eiements over A® (see Definition 2.7.1). Let A
and B be affinoid rings. A morphism g = (¢°,g%) : A — B s called an affinoid
ring homomorphism if ¢> : A~ — B” is f-adic, g”(A*) C B, and gt : A* — B* is

defined by g*(a) = g°(a) for each a € A*.
Remark 2.8.2.~By Lemma 2.5.3, ¢> is continuous.

Example 2.8.3.
1. The pair (Qp, Zy) is an affinoid ring.
2. The pair (Qu{T}, Z,{T'}) is an affinoid ring.
3. Let A = (Q,Q) be equipped with the p-adic topology and let B = (Q,Q) be
equipped with the discrete topology. Then the identity map id : A — B is not

continuous and hence not affinoid. To see this notice that {0} is open in B>

but there is no power of (p) such that (p) C {0}.

Proposition 2.8.4. Let A be an integral domain and let w be a prime element in
A. Let A denote the completion of A with respect to wA (see Definition 2.1.1). Let
# denote the image of ™ in A under the unique ring homomorphism A — A. Then

A is a Tate-ring, and (Az, A) is an affinoid ring.

Proof. Let R = Aand s = 152 Then R, = A;, and I = sR is an ideal of definition.
Now, the ring R, is Tate by Proposition 2.6.3 (note that R is a topological ring with

the topology given by vr). Thus, R is f-adic by Definition 2.6.1. Since multiplication
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in R is done component wise, R is an integral domain since A is an integral domain
and s is prime in R since w is prime in A. Thus, R is integrally closed in R, by

Lemma 2.8.5, R is clearly a subring of R;, and R is open in R, since

R = {reR,|vf(r)<1}

= v ([0,1])

= v;7%([0,1+¢)) for some € > 0.

To show that R C (Rs)°, it is sufficient to show that R is a ring of definition of
R,. Thus, it remains to be shown that R has a finitely generated ideal of definition
(see Definition 2.2.1). Without loss of generality, take s to be the base in the I-adic
valuation (see Example 1.1.7 (5)). Then {s" | n € N} is a base for the topology on
R s0 (s) is an ideal of definition of R. Therefore, (R, R) is affinoid. 0O

Lemma 2.8.5. If A is an integral domain and s is a prime element of A, then A is

integrally closed in As.

Proof. We must show that if b € A is integral over A then b € A. Write b = % with

a € Aandn €N. If n=0, then b € A trivially.

Therefore, to begin, suppose b = % is integral over A with n = 1. Let f =

Z?=o a;T* be a monic polynomial such that f(b) = 0. Then Z;LO ai-‘s‘—: =0in A; and

since A is an integral domain, 3% a;a?s?™* = 0 in A. Thus,
aosd + alas‘l“1 + agade“z et ad_lad‘ls + adad = 0.

Since f is monic, ag = 1, from which it follows that a® € sA. Since s is prime, this

implies a € sA. Writing a = sa; we have £ =22 =%, s0 b € A.
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Next, suppose b = % is integral over A with n > 1. Since § € A, is integrél over

A and since the set of elements of A; which are integral over A is a subring of A,

[4, 15.3, Corollary 19] then £ 1_3% = 2 is integral over A. As above, it follows that
a = sa1, 50 b = ;7. Again, it follows that % is integral over A, so a; = say, whence

b= 2;. Continuing in this manner have b = %* showing that b € A. .0



Chaptér'3
The Main Algebraic Result

The previous chapters have provided all of the tools necessary to prove the main
algebraic result - Theorem 3.0.8. This result will be interpreted geometrically in

Chapter 6 as the main geometric result - Theorem 6.0.5.
Definition 3.0.6. Let A, B and R be rings. Let 0 : R — A and 7 : R — B. Then

Hompg(A,B) :={p: A— B|poo=r1}

4. B

h

Q
—_—
\

=y

Lemma 3.0.7. Let A, B and R be rings and let o : A — A, B: B — B be the unique
maps guaranteed by the universal property of inverse limits (see Proposition A.2.2),

where A is the completion of A with respect to an ideal I of A and B is the completion

A B

Cn Bn
Om ’ B

A/ 2mm Al o B/JrZmm B/ gm s

‘NA

23

R

s

\

Figure 3.1: Extension of ring homomorphisms in Hom-sets
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of B with respect to an ideal J of B. Letoc: R — A and T : R — B. Then for all
v € Hompg(A, B) such that ¢(I) C J there exists a unique ¢ € Homg(A, B) such

that poaoo=[forT.

Proof. Let the hypotheses of Lemma 3.0.7 be satisfied and consider the commuting
diagram in Figure 3.1. Since ¢(I) C J, there is & map w, : A/I" — ‘B/J“ for all
n € N defined by wp(a + I™) = ¢(a) + J*. Then

(how)e) = o(@)+T"
= wp(a+I")
= (wn o M)(a)-

Now define @((an + I™)nen) := (¢0(an) + J™)nen. The ring homomorphism ¢ is well
defined since if (an, + I™)nen = (bn + I™)nen, then

Qb((an + In)neN h (bn + In)neN) = 0 < (ﬁ((an - bn + In)neN = 0
& (plan —bp) + " )nen =0
<~ ((P(&n) + Jn)neN - ((P(bn) + Jn)neN =0

& @((an + I")new) — G((bn + I™)nen) = 0
Let r € R. Then
(Bonr) = () + T
= (p(o(r)) + J")nen

= @((o(r) + I")nen)

= (poaoco)(r).
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To show that ¢ is unique, suppose ¢’ : A — B such that oo =fo. If a€ A,
then k
¢'(e(a)) = (¢(a) + T")nen = P(e(a)-

Thus, @' = @. O

Theorem 3.0.8. Let K be a p-adic field with valuation ring K° and residue field
(see Definition 1.1.18). Let A be an integral domain and let o : K° — A be a ring
homomorphism such that AQ®go k is an integral domain. Let A be the completion of
A with respect to I (see Definition 2.1.1) where I is the kernel of pa : A — A®xe k
defined by pa(a) =a® 1. Then (A®xk- K, A) is an affinoid ring and the map

Homgexe) (A @0 K, 4), (K, K°)) — Homgs(4,K°)

Poot) = ptoa

is bijective, where o : A — A is the unique morphism guaranteed by the universal

property of inverse limits.

Proof. Let ¢ € Homgo (A, K°). Then by Definition 3.0.6 ¢ : A — K° and p oo =

idgo. Now, the kernel of ps : A — A ®xe & is o(m)A where 7 is a uniformizer of K.

A@Ko Kl*——fi_""'*z‘i@}{o K

IS

A®Ko E<—“A—>A®KOK

RN

K K°

Figure 3.2: Algebraic Theorem
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Since K° is complete with respect tb , K° = K°. Recall that by Proposition'2.1.9,
A ®xo K = A;. Thus, by Proposition 2.8.4, (fl Qo K, A) is an affinoid ring.

Since, @(o(n)A) = mp(A) C 7K°, by Lemma 3.0.7 there is a uniqué ®:A—K°
such that ¢poa = ¢. Let [ = {o¢ € A | oy = 0}; then I is an ideal of definition in A
and ¢(I) = @(I) = (). Therefore, ¢ is adic.

¢D

Aﬁ. = A ®K° K ............ > K
4 Tnx
A ............... (,5 .......... > Ko s ~
“ |
A—2t > Ko
o /
id3
KO

To extend ¢ to a ring homomorphism ¢” : A: — K, observe that
K = K°®x- K = K.

Thus, the homomorphism ¢” only needs to be defined on %. Define ¢ (3) =1
To show ¢” is f-adic, notice that A is a ring of definition of Az, K° is a ring of
definition of K, and ¢°(A) C K°. Now, ¢°|; = ¢ which is adic. Therefore, ¢
is f-adic. Let ¢ = ¢°|; = ¢ : A — K°. Then ¢* is adic. Thus, (¢",¢%) €
Homxk, k) ((fl Qo K, fl), (K , K°)) and (¢”, ¢*) — ¢T o 0 by construction. Thus,

Homyx, ko) ((fl ®xo K, A), (K, K°)) — Hompgo (A, K°) is bijective. O~

—

Proposition 3.0.9. There exists a bijection between Homg,(Z,[T), Zy) and Zy.

Proof. Let o : Z, — Zp[T]. Define a map er : Homg,(Z,[T],Zp) — Zp by ¢ —

o(T). To show er is surjective let z € Z,. Since ¢ 0 o = idg,, there exists ¢ €
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Homg, (Z,[T}, Zp) such that o(T) = z. Thus, er is surjective. To show ez is inj'ective
let @,% € Homg,(Z,[T], Z,) and suppose e;(¢) = er(y). Thus, ¢(T) = 4(T). Now
let 3°°° ) anT™ € Z,[T]. Then

2 (Z anTn> = Z (p(a,n)(p(T)n = Z anw(T)n =1 <Z’anTn) .

n=0 n=0 n=0 n=0

Thus, ¢ = 9 and er is injective. ]

Example 3.0.10. Let K = Q, and A = Z,[T]. By\Deﬁm’tz’on 1.5.1, K° = Z,. Thus,
there is a ring homomorphism o : Z, — Z/;[T] def%ned by o(z) = x. Then by Ezam-
ple 2.1.6 (2), A = Z,{T}. By Remark 1.9.4 = = p and thus by Ezample B.0.5 (4)
Az = Q{T}. Then

Hom(q, z,) (Qu{T}, Zp{T}), (Qp, Zy)) = Homg, (Z,[T), Zp) = Zy.

Fy[T] <2 Z,{T} —2> Q,{T’}

IR T

Fp[T] <= Z,[T] —— Q[T

| ), |

Fy Qp

Figure 3.3: Algebraic Theorem for Example 3.0.10

/
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Chaptér 4
Category of Schemes

The following chapter introduces the basics of scheme theory such as found in Chap-
ter 1 of The Geometry of schemes by David Eisenbud and Joe Harris. By studying
the spectrum of a ring, assigning the Zariski topology, and attaching a sheaf to this
B topological ring, one can construct affine schemes. A scheme is an object that is

locally an affine scheme.

4.1 The Set of Prime Ideals

Definition 4.1.1. Let A be a commutative ring with unity. Then the spectrum of

A is the set of prime ideals of A and is denoted by | Spec(A)|.

Remark 4.1.2. Note that A iself is not a prime ideal, and the zeré ideal (0) is
prime if and only if A is an integral domain.
Example 4.1.3.

1. Let K be a field. Then |Spec(K)| = {(0)}.

2. Let A= C[T]. Then the spectrum of A is {(T'—a) | a € C}U {(0)}.

\

3. The spectrum of the integers is {(®) | p prime} U {(0)}.

4. The spectrum of the p-adic integers is {(0), (7)}.

Proposition 4.1.4. Let A and B be rings and let goV: A — B be a ring homomor-

phism. If I is a prime ideal of B, then ¢~ 1(I) is a prime ideal in A.

58
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Proof. Let A and B be rings and let I be a prime ideal of B. Let z € A. "Then
o(z) € p(A) C B. Since I is an ideal, p(a)p(z) = ¢(az) € I = az € ¢~ (1) for
all a € ~Y(I). Similarly, p(z)p(a) = za € ¢~*(I). Therefore, go‘l(j ) is an ideal
of A. Now, let zy € ¢~Y(I) for z,y € A. Then p(zy) € I = o(z)p(y) € I = ¢(z)
or @(y) € I. Without loss of generality, suppose ¢(z) € I. Then z € ¢™(I), and

hence, ¢! is a prime ideal of A. 0

Remark 4.1.5. It is worth noting that, while the inverse tmage of a prime ideal is a
prime ideal, the inverse image of a mazimal ideal is not, in general, a mazimal ideal.
To see this, consider the inclusion map v : Z — Q. The ideal I = (0) is mazimal in

Q but . Y(I) = (0) is not mazimal in Z.

Definition 4.1.6. Let A be a ring. A subset V(I) C | Spec(A)| is closed in | Spec(A)|
if there exists an ideal I of A such that V(I) = {p € Spec(A) | p 2 I}. We define
open sets U(I) as simply the complement of the closed set V(I) (i.e. U(I) = {p €
1 Spec(A)| | p 2 1})-

Example 4.1.7.

1. Let A=Clz] and I = (z?). Then

V(I) = {p € | Spec(C[a])| | » 2 (z*)} = {(2)}

2. Let A be a ring and let I be a mazimal ideal. Then V(I) = {I}.

9. Let A= K°. Then V() = {(m)}.

Lemma 4.1.8. Let A be a ring and X = | Spec(A)|. Then for any ideal I of A there -
exists a bijection between V(I ) and | Spec(A4/I)|.
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Proof. The fourth isomorphism theorem for rings [4, 7.3 Theorem 8 (3)], when ap-
plied to commutative rings with unity, states that if A is a ring and B is an ideal of

A then a ideal I of B is an ideal of A if and only if B/I is an ideal of A/I. Thus,

pis primein A/ < pisprimein Aand I Cp

s peV().
O

Definition 4.1.9. Let A be a ring and let X = |Spec(A)|. For each s € A, define

Xs={p € |Spec(4)| | s & p}.

Any set of this from is called o distinguished open set. We will also use the symbol

| Spec(A)|, to denote this set.

Remark 4.1.10. Although |Spec(A)|, # |Spec(As)| (see Definition B.0.8), there
is a canonical bijection between these sets defined by p € |Spec(4)|, — As(p)A4;s €
| Spec(A4s)]- '

Definition 4.1.11. Let A be a ring and let I be an ideal of A. Then /I denotes
the set {a € A | a* € I} for some k € N called the radial of I.

Lemma 4.1.12. Let A be a ring and let I be an ideal of A. Then /I is an ideal
and I € V/T.

Proof. Let i € VT and a € A. Then i* € I for some k € N. Since I is an ideal |
(ai)F = aki¥ € I, so0 ai € V/I. Now, (a+14)* = 3F_; (F)a*i*" € I (since each term

is in I and I is an ideal), so a4+ € v/I. Thus, +/T is an ideal. The fact that I C /T

is obvious by the definition. O
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Lemma 4.1.13. Let A be a ring, X = |Spec(A)|. Then X, C X; if and bnly if

(s) € V/(®)-
Proof. Let S = (s) and T = (¢). Then

= V(58) 2 V(T)

= [1rS () »
peV(S) peV(T)

= VSCVT
= SCVT.

Conversely, suppose (s) € 1/(t). Then s* = ¢r for some r € A and some k € N.

Now,

Xs = {p€|Spec(4)||s ¢&p}

{p € |Spec(4)| | s* ¢ p} since p is prime

= X

= -Xt’r (41)
C X

0o -

Corollary 4.1.14. Let A be a ring and let X = |Spec(A)|. If Xs C X, then there

exists v € A such that X; = X,,.

Proof. A direct result from Lemma 4.1.13, Equation 4.1. O
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4.2 Zariski Topology

Proposition 4.2.1. Let A be a ring. The sets V(I), as I runs over all ideals of A,

define a topology Z on | Spec(A4)|.

Proof. Let X = |Spec(4)|. To show that the sets V(I) define a topology on
| Spec(A)|, we begin by showing § € Z and X € Z

V() ={peX[p20)}=X
V) ={pecX|p24}=0.
To show that Z is closed under arbitrary intersection consider (,c; V(la). Now,

pe(|Vl) & p2 I forala
acJ

& p2UL

acd

& pev <U Ia> .
acJ o
Thus, Z is closed under arbitrary intersection so it only remains to be shown that
Z is closed under finite union. Consider V(I) U V(J) where I and J are ideals in
A Since IJ C Iand JI C J it is clear that V(I) UV(J) C V(IJ). To prove
V(IJ) CV(I)UV(J),let p € V(IJ) and suppose J € p. Then we want to prove
I Cyp. Let f € Jsuch that f € p andlet g € I. Then fg € p. Since p is a prime
ideal and f & p, we conclude that g € p. This means I C p since g was arbitrary.

Hence p € V(I) as required. Thus, Z is indeed a topology on | Spec(4)|. O

Definition 4.2.2. Let A be a ring. The topology £ on | Spec(A)| is called the Zariski
Topology. Write Spec(A) for the topological space formed by equipping | Spec(A)|
with 2.
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Proposition 4.2.3. The distinguished open sets form a base for the Zariski topology.

Proof. By Section 1.2, it suffices to show the;t for all points p in an open subset
U C A there is a distinguished open set X such that p € X; CU. Let S C A and
p € Spec(A). Suppose p € U(S). Then S Z p, so let f €S, fdyp. Thus,pe X;.
To show that Xy C U(S), let g € X;. Then f ¢ q so that S Z q. Hence q € U(S).
Thus for every p € U(S), there is some Xy such that p € Xy C U(S) and hence, the

distinguished open sets form a base for the topology. |

s N

Lemma 4.2.4. A singleton {p} in Spec(A) is closed if and only if p is a mazimal
ideal of A.

Proof. Suppose p is a maximal ideal of A. Then there are no ideals I of A such
that p C I and especially no such prime ideals. Thus, V(p) = {p} so p is closed.
NQW éuppose p € X is a closed point. Then there exists some ideal I of A such
that V(I) = {p} so I C p. Now suppose J is an ideal of A such that p € J C A.
Assume J # A. By Zorn’s Lemma, every proper ideal is contained in some maximal
ideal. Therefore, let m be a maximal ideal such that J C m. Since every maximal
ideal is prime, m € V(). This contradicts V(I) = {p}, and hence J = A and p is

maximal. O

Definition 4.2.5. ‘Let ¢ : A — B be a ring homomorphism. Let

~

Spec(p) : Spec(B) — Spec(A)

J = o HJ).

Recall that ¢~*(J) is a prime ideal by Proposition 4.1.4.
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Proposition 4.2.6. Ifp : A — B is a ring homomorphism, then Spec(y), as deﬁned

above, is continuous.

Proof. Consider the open subset X C Spec(A). Then,

(Spec())(Xs) = {b € Spec(B) | Spec(y)(b) € X}
= {b € Spec(B) | ¢7'(b) € X}
= {b€Spec(B) | s & p'(0)}
=" {6 < Spec(B) | (s) ¢ 5}

= Y,s) C Spec(B).

Remark 4.2.7. The functor Spec is a contravarient functor.

4.3 Local Ringed Spaces

The following section introduces the category of local ringed spaces and assumes the
reader has some background knowledge on sheaves of rings. If needed see Appendix C
for an introduction to the study of sheaves. For further details see Eisenbud and

Harris [5] or Hartshorne [8].

| Definition 4.3.1. A local ringed space is a pair (X, Ox) where X is a topological
space and Ox is a sheaf on X such th;t for-each x € X the stalk Ox, (see Defini-
tion C.0.21) is a local ring. The unique mazimal ideal in Ox g is denoted mx,. A
morphism of local ringed spaces from (X, Ox) to (Y, Oy) is a pair (f, f#) consisting

of a continuous morphism f : X —Y and a morphism f# : Oy — f.Ox of sheaves
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of rings on'Y such that if z € X and y = f(z), then (f¥,)H(mxs) = my,y,'where
f#, denotes the composition Oyy — (fuOx)y — Ox,x (where these maps result from

the universal p'roperty of direct limits (see Proposition A.1.8)).

Example 4.3.2. The pair (Spec(A), O4) is a local ringed space where (’)A is the
sheaf defined in Definition C.0.23.

Remark 4.3.3. Local ringed spaces form a category.

Definition 4.3.4. Le?A anJ\B be rings with ring homomorphism ¢ : A — B.
Let Sch(A) denote the local ringed space (Spec(A)-, O4). Define Sch(yp) : Sch(B) —
Sch(A) by Sch(p) = (f, f*) such that f := Spec(p) from Definition 4.2.5 and
f#(Spec(A),) = ps(As) as in Definition B.0.6. A

Remark 4.3.5. Let ¢ : A — B, X = Spec(B), and Y = Spec(4). To see that

Sch(¢p) is well-defined let Y, C'Y; and consider the following commutative diagram

OYst) — fu O)T{ (Ys)
OY(K&) — f:O0x (Yt)

Then f,Ox(Ys) = Ox(F71(Ys)) = Ox(Xy(s)) = By(s). Thus, we have

As— Bys)

o

Ay — By
Now by Corollary 4.1.14 there exists r € A such that A; = A4 . Thus, the above dia-

gram commutes by Lemma B.0.7. Hence Sch(yp) is well-defined by Proposition C.0.18

(2).
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Lemma 4.3.6. If o : A— B and ¢ : B — C, then Sch(v o ¢) = Sch(p) o Scﬁ(zﬁ).
Proof. Let |

(f, f#) : Sch(B) — Sch(A) induced by ¢

(g,97) : Sch(C) — Sch(B) induced by 9

(h, h#) : Sch(C) — Sch(A4) induced by 9 o .
Let p € Spec(C). Then

h(p) = (Spec(o¢))(p)

= (Pop)(p)
= (¢ @)
= (Spec()(Spec(¥)) ()
= (Spec(y) o Spec(¥))(p)
= (fog)p)
and |
h#(Spec(C),) = (o), By Definition 4.3.4
= P(s) © Ps By Lemma B.0.8

= (g% o f#)(Spec(C),) By Definition 4.3.4.

4.4 Residue Fields

Definition 4.4.1. Let (X, Ox) bé a local ringed space and letx € X. If X = Spec(A)
then the residue field r(z) is the quotient field of A/p, where-p is the prime ideal
corresponding to x. If f € A define f(z) to be the image of f via the morphisms
A— Alp — k(z).
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Remark 4.4.2. Let X = Sch(A) (see Definition 4.3.4). Then Ox = O4 and bX,m =.
A, where x = p and mx, = pAp. Thus, the residue field is gf (A/p) which is (A4/9) )
[see Appendiz B.0.5 (5)], which is also Ap/pAp, which can be written a.s Oxo/Mxz-
This last expression can be used to deﬁne_ the residue field k(z) for ¢ € X when X

s an arbitrary local ringed space.

Example 4.4.3. Let K be a p-adic field and let X = Spec(K°). Then X = {z,y}
where z = (0) and y = (7). Then

w(z) = ¢f (K°/(0)) = ¢f (K°) = K

K(y) = af (K°/(m)) = ¢f (k) = &.

Recall that by Example 4.1.7 (3), (7) is closed in Spec(K®). Thus, this ezample
illustrates that the residue field defined in Chapter 1 is the residue field of a closed

point in Spec(K°).

Remark 4.4.4. The Zariski topology can also be thought of in terms of residue fields.

For each subset S C A,
V(S) = {z € Spec(A4) | f(z) =0 for all f € S}.
Likewise, if X = Spec(A) then, for each f € A,

X; = {z € Spec(4) | £(@) # 0}.
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4.5 Affine Schemes

Definition 4.5.1. Recall the definition of a stalk from Definition C.0.21. For any
local ringed space (X, Ox) define
Txg: Ox(X) — Oxp
s = [X, 3]

where [X, ] ~ [U,t] if there exists V C U C X, open in X, with z € V,u € Ox(V)
such that Ox(V C X)(s) = Ox(V CU)(¢). If f € Ox(X), then

X; = {zeX|f(z)#0}
= {ze€X | mx.(f) & mx.}

= {zeX|f¢nrxa(mxq)}

Definition 4.5.2. An affine scheme is a local ringed space (X, Ox) such that

1. the ring of sections Ox(Xy) (see C.0.9) equals the localization Ox(X)s for all
f € Ox(X)

2. the morphism X — Sch(Ox(X)) defined by z — Tx5(Mmxq) i a homeomor-

phism where Txq : Ox(X) — Oxq and mxz s the mazimal ideal of Ox 4.

Definition 4.5.3. Let X and S be affine schemes. The pair (X, a) is called an
affine S-scheme (also called an affine scheme over S) if a : X — S. A morphism of ‘
affine S-schemes (X,a) and (X,b) is a morphism of schemes f : X — Y such that
bo f=a.

Proposition 4.5.4. If (X, Ox) is an affine scheme there exists an isomorphism in

the category of local ringed spaces (X, Ox) — Sch(Ox(X)).
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Proof. We want to define an isomorphism in the category of local ringed spaces. Let
f: X — Spec(Ox(X)) be defined by z — W)_{}a; (mx,). This is a homeomorphism by
Definition 4.5.2 (2). Now let A= Ox(X) and let s € A. Then

F(Spec(4s)) = {z € X | f(z) € Spec(4;)}

= {z € X | ¥, (mxz) € Spec(4s)}

= {z€X|s¢ry,(mxz)}

= {z€X | mxq(s) & (mxz)}

= {z€X|s(z)#0}

= X,
Now, f#(Spec(4s)) : Oa(Spec(As)) — (fxOx)(Spec(4s)) = Ox(f(Spec(4s))) can
be viewed as f#(Spec(4s)) : As — Ox(X;) or f#(Spec(4s)) : As — A,. Therefore
we can define f#(Spec(As)) = ida,. Hence (f, f#) : (X, Ox) — Sch(Ox(X)) is an
isomorphism. | - 0O
Proposition 4.5.5. Let (f, f#) : (X,0x) — (Y,O0y) be a morphism of affine
schemes. Let ¢ = f#(Y). Then (f, f#) = Sch(¢p).

(%, 0x) 2, (v, 0) | (42)

{ B

Sch(Ox (X)) 2 Sch(Oy (v))
Proof. Let the morphisms £ and 9 be viewed as the isomorphism shown to exist in
Proposition 4.5.4. Therefore we have (f, f#) = Sch(y) if Diagram 4.2 commutes.

First consider the morphisms on sheaves. Recall that the stalk (f.Ox), is a direct

Py
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OY,y (f «Ox )y

T |

Oy — (f:O0x) = Ox

OX,:::

Figure 4.1: Sheaves and Stalks

limit of rings take;n over the direct system of open sets containing y (see Defini-
tion C.0.21). Since Y is one such set, by the definition of direct limits there exists
a ring homomorphism py : (fO0x)(Y) — (f«Ox)y. Given vy : (fOx)(Y) — Ox,q
there is a unique map 8 : (f,Ox)y — Ox4 by the universal property of direct limits
(see Proposition A.1.3). Thus, the triangle on the right in Figure 4.1 commutes.
A similar argument shows the square on the left commutes. Therefore, the entire
diagram commutes and (f, f#) = Sch(p) on the level of sheaves. Now on the level

of sets, Diagram 4.2 gives

_ T% flz) =y

p = W}?}m(mX,:c) R W}'%]?;(mxy) =:q
To show that p +— q recall that my, is the maximal ideal in Ox,, and my,, is the
maximal ideal in Oy,,. Since the morphisms on sheaves commute in Figure 4.1, we

have p — q. Thus, (f, f#) = Sch(yp). . 0

Definition 4.5.6. Let ASchemes denote the category consisting of affine schemes

and morphisms of local ringed spaces as objects and morphisms respectively.

Theorem 4.5.7. The category of affine schemes is equivalent to the category of

commutative Tings.
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Proof. Let A be a ring and (X, Ox) be an affine scheme with ring homomorphism
@ : A — Ox(X). Let Sch : Rings — ASchemes and T : ASchemes — Rings be
defined by

e Sch(A) = (Spec(4),O4)
e Sch(y) = (Spec(p), f#) where f#(Y,) = ps (see Definition 4.3.4)
o T'((X,0x)) = Ox(X) (see Definition C.0.23)
o T((f, ) = . SRR
Now,
e (I'oSch)(A) =I'(Spec(A), O4) = O4(Spec(A)) = A by Definition C.0.23
e (I" 0 Sch)(p) = I'(f, f#) = ¢ by Proposition 4.5.5
e (SchoT)(X,Ox) = Sch(Ox(X)) = (X, Ox) by Proposition 4.5.4
e (SchoT)(f, f*) = Sch(p) = (f, f*) by Definition 4.3.4.
Thus, I' o Sch = idaschemes and Sch o I' = idging. Therefore, the category of affine

schemes is equivalent to the category of rings. O

Corollary 4.5.8. Let A,B and C be rings and let X = Sch(B), Y = Sch(4) and
S = Sch(C). Then
Hom¢(4, B) = Homg (X,Y).

s
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Proof. Let ¢ € Homg(A, B). By Theorem 4.5.7 we have the following

A @ B v (£,1#) x ,
Sch
RN
V\p/
C S
Thus, (f, f#) € Homg (X,Y). O

Proposition 4.5.9. If S = Sch(Z,) and X = Sch(Z,[T]), then there exists a bijec-

tion between Homg(S, X) and Z,.

Proof. By Corollary 4.5.8 Homg(S, X) = Homg,(Z,[T], Z,) which is equivalent to

Zp by Proposition 3.0.9. O

Definition 4.5.10. An affine integral scheme is an affine scheme (X, Ox) such that

Ox(X) is an integral domain.

Example 4.5.11. Let A = Z,[T]. The affine scheme (Spec(A), O4) is an integral

affine scheme over Zy,.

4.6 Schemes

In this paper all examples and results deal with affine schemes, however, for com- .

pleteness the more general notion of a scheme will be defined.

Definition 4.6.1. A scheme is a local ringed space (X, Ox) in which every point
has an open neighbourhood U such that the topological space U together with the
restricted sheaf Ox|y (see Definition C.0.15) is an affine scheme. Let X and S be
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a schemes. The pair (X, a) is called an S-scheme (also called a scheme over S) if
a:X — S. A morphism of S-schemes (X,a) and (X,b) is a morphism of schemes
f: X =Y such thatbo f =a.

4.7 Varieties

Definition 4.7.1. Let X = Sch(A) be an affine scheme and let I be an ideal of A.
A variety is X(I) := Sch(A/I) equipped with a morphism f: X(I) — X defined as
Sch(A — A/I).

Remark 4.7.2. Note that by Lemma 4.1.8, X(I) =V (I).

Example 4.7.3.
1. If X = Sch(K|[z]), then X(I) = Sch(K[z]/(x)) = {(0)} is a variety.
2. If X = Sch(Zyy), then X(I) = Sch(Z)/pZy)) = {(0)} is a variety.

3. If X = Sch(K°), then X(I) = Sch(k) is a variety.

4.8 Formal Schemes

Formal Schemes are used in a very limited way in the main Geometric Theorem.

The sheaf is not needed in the main results but is stated here for completeness.

Definition 4.8.1. Let X(I) be a variety. The completion of X along the variety
X(I) is the set of open prime ideals in Spec(A) where A is the completion of A
with respect to I (see Definition 2.1.1). This set is denoted by [Spf(A)|. If equipped

with the subspace topology, the topological space is denoted by Spf(A). A sheaf on
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X is Ox = lim Ox /T% where Ix = Ox(U C X)(I)Ox(U). The local ringed space
neN

Schf(A) = (X, Ox) is a formal scheme.

Remark 4.8.2. Affine formal schemes are not affine schemes as illustrated in the

following example.

Example 4.8.3. Consider the affine formal scheme (X, Ox) obtained by completing
k[z] along k[z]/(z). Then |Spf(k(z])| = {(0)} and Ox(k[z]) = K[[z]]. If this were
an affine scheme then | Spec(Ox(k[z]))| = |Spf(k[z])|. However, ‘

| Spec(K([]])| = {(0), (z)} # |Spf(k[z])].

Thus, this is not an affine scheme.

4.9 Special Fibres

Definition 4.9.1. Let K be a p-adic field and let K° and K be the ring of integers
and residue field respectively. Let X = Sch(A) be an affine scheme. The special fibre
1s the pull-back of

X — Sch(K°) <— Sch(k) .

Let X, denote the special fibre.

Example 4.9.2. If K = Q,, K° = Z,, and k = F,, then Sch(F,[T]) is the special |

fibre along with the canonical morphisms.

Lemma 4.9.3. If X = Sch(A), then the special fibre is Sch(A/o(px)A) with the

canonical morphisms.
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la

Sch(K°)

Js

Sch(k)

©

Figure 4.2: Special Fibre of Sch(A)

Proof. In Figure 4.2, take global sections of each affine scheme (see Definition C.0.9).

Thus, we have

By Proposition C.0.13, it suffices to show that with morphisms f and g defined
below, A/o(px)A is the pushout in the above diagram. Let a € A and k € k. Define
f(a) = a+o(px)A and g(k) = o(s) + o(px)A where k = s+ px with s € K°. Then
(foo)(s) = a(s) +o(px)A and (g0 )(s) = g((s)) = g(s + pg) = o(s) + o (px) A.
Therefore, the diagram commutes. Suppose, ¥ 0 0 = o ¢. Then (v o o)(s) =
V(o(5) = B(o(s)) = $(s + px) = $(k). Define 8(a + o(px)A) = v(a). Now,
(90 £)(a) = 6(a+ o(px)A) = ¥(a) and (60 g)(k) = 6(o(@)) = o(px)A = w(0(a)) =
$(0(@)) = B(k). |

"Now consider & : A/o(px)A — B such that ¢ o f = v and ' o g = 9. Then
0'(a+ o(px)A) = (0 o f)(a) = v(a) = 8(a+ o(px)A) and therefore 6 = 6 and 0 is

unique. W
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Corollary 4.9.4. If X is an affine scheme then X, is a variety.

Example 4.9.5. By Corollary 4.9.4 special fibres, varieties, and formal schemes are
all related. Let K = Qp, K° =7, and k =Ty, Then X = Sch(Z,[T)) is an integral
‘affine scheme over K° by Example 4.5.11 and Sch(F,[T) = Sch(Z,[t]/pZ,[T]) is
the spectal fibre by Example 4.9.2. The completion of X along the special fibre is
Schf (%ZP[T] [0Z,|[T]) = Schi(Z,{T}) by Example 2.1.6 (2).



Chapter 5
Adic Spaces

This chapter gives an introduction to affinoid adic spaces. For a more thorough
understanding of the -subject, see Huber [10]. The reader should notice that the

construction of affinoid adic spaces parallels the construction of affine schemes.

P '~

5.1 The Set of Continuous Valuations

Definition 5.1.1. Let A = (4", AY) be an affinoid ring (see Definition 2.8.1). The
set of equivalence classes of continuous non-archimedean valuations v on A> (written
maultiplicatively) such that v(a) < 1V a € A is denoted by |Spa(4)].
Example 5.1.2.
By Ostrowski (see Theorem 1.2.4) the non-archimedean valuations on Q are (up to
equivalence) vo and v, where p is prime.

1. Equip Q with the discrete topology. Then all valuations are continuous.

(a) Since v(a) <1V a €Z for all v, |Spa(Q, Z)| = {v, | p prime} U {vo}.

(b) Since v(a) <1V a € Q if and only if v is trivial, |Spa(Q, Q)| = {wo}.

2. Fiz a prime p and equip Q with the p-adic topology. Since {0}-is not open in

Q with the p-adic topology, vo is not continuous. Thus,
(a) 18pa(Q, Z)| = {v,}
(b) |Spa(Q, Q)| = 8 since vy(a) €1V a € Q (np(p7") =p>1)

7



78

(c) 1Spa(Qyp, Zy)| = {vp}-

5.2 Adic Spectrum

Definition 5.2.1. Let A = (4>, A*) be an affinoid ring. A subset U C |Spa(A)| is
called rational if there exist a3, ag, . . ., an, b € A” such that the ideal a; A”+- - -+ a, A"
s open in A” and '

AyyeeeyQp

U = |Spa(A)] (—T—) — {v € Spa(A)] | v(as) < v(b), v(d) £0, i=1,...,n}..
The adic spectrum Spa(A) is the topological space generated by the rational subsets
on |Spa(A)|.
Example 5.2.2.
1. Equip Q with the discrete topology. Then
(a) if | is prime, then |Spa(Q, Z)| (—?—) = {v, | p# 1} U{we} (note that since
Q is equipped with the discrete topology $Q-is open in Q)
(b) 1Spa(Q,Z)| (%) = {vp | pfa} U {wo} (note that since Q is equipped with
the discrete topology £Q is open in Q ).
2. Equip Q with the p-adic topology. Then |Spa(Q,Z)| (%) = {w} (note ?hat
| since Q is a field %Q = Q is open in Q).
Lemma 5.2.3l [9, page 468] If V is a finite subset of A®, %hen 174 A is open in A”
if and only if (A%)° C \/(V_) .
Example 5.2.4. Let A = (Qu{T},Zp{T}). By Lemma 5.2.3; pQ,{T} is open in

Qp{T} but TQ,{T} is not open. To see the latter, consider p € (Qu{T})*°. There

is no natural number n such that p™ C (T).

/

™
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Remark 5.2.5. Let aA” be open in A>. It follows that A" is open in A when b is a
unit in A, Thus, the rational subsets |Spa(4)| (%) and |Spa(A)] (J?—) are equivalent

if b s a unit in A”.

Definition 5.2.6. Let A = (4", A™) and B = (B”, B*) be affinoid rings and ¢ =
(¢", %) : A — B an affinoid ring homomorphism. Define Spa(p) : Spa(B) —

Spa(A) by v vo .

Remark 5.2.7. The morphism Spa(yp) is we/l}-deﬁnegl since if b € BT, (vo ) (b) =
v(p”(b)) < 1 since ©*(b) € A*.

Proposition 5.2.8. If ¢ : A — B is an affinoid ring homomorphism, then Spa(yp)

as defined above is continuous.

Proof. Let a,b € A, b 0 and consider the rational subset |Spa(A)| (¢). Then

Spa(e) ™ (Spa(4) (5))
— {oespa(B) [voy’ e Spala) (3)}

= {v€Spa(B) | (voy")(a) < (vo¢)(b), (voy")(b)# 0}

= Spa(B) <z:—(((£—> .

5.3 A Presheaf on Spa(A)

~

—

Definition 5.3.1. [11, page 89] Let A = (A", A*) be an affinoid ring and let U be a
rational subset of Spa(A). Then .

e ——

Oa(U) = A (“1_5_912)
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such that A (S=222) is the localization (A”)y (see Definition B.0.3) equipped with the
f-adic topology such that if B is a ring of definition of A> and I is an ideal of definition
of B then B[%,---,%] is a ring of definition of (A)y and I - B [%, , %] is an
ideal of definition of B [%,---,%].

Exémple 5.3.2.

1. Equip Q with the discrete topology and let U = |Spa(Q, Z)| (3). Then
<~ OxU)=Q.
2. Equip Q with the p-adic topology and let U = |Spa(Q, Z)| (%). Then
O4(U) = Qp.

Definition 5.8.3. Let U and V' be rational subsets of Spa(A) such that U CV. The
restriction map O4(V) — O4(U) is defined in Huber [10, Lemma 1.5]. Thus, if W
is an open subset of Spa(A), then a presheaf on Spa(A) is Oa(W) = ‘li_m(’)A(U.)
where U is rational. For every x € Spa(A) let Oy = h_?r?jOA(U ) be the Z;‘fl‘;{ of Oy

at .

Remark 5.3.4. The presheaf O4 is not, in general, a sheaf. See Huber [10, page

520] for an example.

Proposition 5.3.5 ([10, Theorem 2.2]). Let A = (4", A*) be an affinoid ring such
that A> has a noetherian ring of definition or A is a strongly noetherian Tate Ting.

Then O4 is a sheaf of complete topological Tings on Spa(A).

Example 5.3.6. The ring Q, has a noetherian ring of definition, namely Z,. Hence,

the affinoid ring (Qp,Z,) satisfies the hypotheses of Proposition 5.8.5.
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Remark 5.3.7. All affinoid rings A discussed in this paper will satisfy the hypétheses

of Proposition 5.3.5, and thus, O4 is always a sheaf.

5.4 Adic(4)

Definition 5.4.1. Let (V') be the category of triples (X, Oz, (v, | x € X)) where X
is a topological space, Ox is a sheaf (see Definition C’ 0.12) of topological rings on
%‘{ and for every x € X, vy is an equivalence class of valuations of the stalk (see
DefinitionC.0.21) Ox,. The morphisms (X, 0z, (vz | € X)) — (9,09, (vy |y €
D)) are the pairs (f, #) where f = X — ) is a continuous function and f# Oy —

f+Ox such that for every z € X, vjz) = vz 0 fF.

Definition 5.4.2. Let A be an affinoid ring satisfying the hypotheses of Proposi-
tion 5.8.5. Let Adic(A) be the triple (Spa(A), Oa, (vs | a € Spa(A4))) € (V) where
Spa(A) is the topological space defined in Definition 5.2.1 and Q4 is the sheaf of
topological rings defined in Definition 5.3.1. Let ¢ : (¢*, @) : (4", AY) — (B, BY).
Define Adic(e) : Adic(B) — Adic(A) by Adic(p) = (f, f*) where f := Spa(y) as
in Definition 5.2.6 and f#(|Spa(A)| (2)) := &5, where @, is the morphism such that

the following diagram commutes

# (5) 2 (58)

| 3

A Ay

> 5

Lemma 5.4.3. Let ¢ : (4%, A1) — (B>, B*) and ¥ : (B>, B*) — (C*,C*). Then

Adic(ep 0 @) = Adic(e) o Adic(t).
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Proof. Let
(f, f#) : Adic(B) — Adic(4) induced by ¢
(g, g™) : Adic(C) — Adic(B) induced by %
(h, h#) : Adic(C) — Adic(4) induced by 9 o ¢.
Let v € Spa(C). Then
h(v) = (Spa(¥oy))(v)
= vo(pog)f
= voyP oy’
= (Spa(¢p) o Spa(¥))(v)
= (fog)(v).

Let U be a rational subset of Spa(C). Then

e —

V) = @op)
= ")’[;go.(b) o Py
= (g% o f*)(U).

Now if vf(z) = vy © f# and vg() = vg 0 g¥ then

Un(z) = Y(gof)(x)
= V) © Gfw)
= wofFogh,
= yyo(f*og¥),

= v, o0 (h¥),.

Therefore, Adic(y) o ) = Adic(yp) o Adic(v). O
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5.5 Affinoid Adic Spaces

Definition 5.5.1. An affinoid adic space is a triple (X, Oz, (v, | © € X)) which is

isomorphic to the adic space associated to an affinoid ring as in Definition.4.2.

5.6 Adic Spaces

In this paper all examples and results deal with affinoid adic spaces, however, for

completeness the general notion of an adic space will be defined.

Definition 5.6.1. An Adic Space is a triple (%, Ox, (v; | ¢ € X)) in which every
z € X has an open neighbourhood U C X% such that (U,Oly,(vz | z € U)) is an

affinoid adic space.

5.7 Some Results in Affinoid Adic Spaces

Definition 5.7.1. Let K° be the valuation ring of d p-adic field K. Let X =
(Spec(A), O4) be an integral affine scheme finitely genefated over Sch(K°) such that
the special fibre of X s also an integral affine scheme. Let X denote the formal
scheme obtained by completing X along the special fibre of X. The affinoid adic

space over K associated with the formal scheme X is Adic(4 ®x- K, A).

Example 5.7.2. Let K = Q,, and X = Sch(Z,[T]). Then K° = Z,, k =F, (see |
Proposition 1.5.2), the special fibre of X is Sch(Zy[T)]) (see Example 4.9.2), and
X = Schf(Z,{T}) (see Example 4.9.5). Therefore, the affinoid adic space over K
associated with the formal scheme X is Adic(Qp{T'}, Zp{T}).
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Proposition 5.7.3. Let K be a p-adic field with valuation ring K°. Let X =
(Spec(A), O4) be an integral affine scheme finitely generated over Sch(K°) such that
the special fibre of X is also an integral affine scheme. Let X denoie the formal
scheme obtained by completing X along the special fibre of X. Let X denote the

affinoid adic space over K associated to the formal scheme X. Then

Homaae(x o) (Adie(K, K°), %) = Homge,xe) (A @ K, 4), (K, K°))

Proof. Let the hypotheses of the above proposition by satisfied. By Proposition 2.1.9,
A®yo K = A; and by the proof of Proposition 2.6.3, a ring of definition of AQye K
is A. The ring A is noetherian because A is finitely generated over K°. Thus, by

Proposition 5.3.5, X is an affinoid adic space. By Huber [10, Prop.2.1(i)], the map

Homx x°) ((A ®x K, 4), (K, K°)) —  Homagiox, ko) (Adic(K, K°), %)

@ +—  Adic(y)

is a bijection. (See Definition 5.4.2 for Adic(yp).) 0



Chapter 6
The Main Geometric Result

All of the tools have now been introduced to prove the main geometric result -
Theorem 6.0.5. This result uses the categorical equivalence between the category
of commutative rings and the category of affine schemes (see Theorem 4.5.7) to
restate Theorem 3.0.8 geometrically. Notice that in the geometrié theorem, X is
finitely generated over Sch(X*), however in the algebraic theorem A is not necessarily
finitely generated over K°. Thus, the geometric theorem is only a consequence of

the algebraic theorem.

Definition 6.0.4. Consider the affinoid ring (K, K°) (see Definition 2.8.1) where
K is a p-adic field with valuation ring K°. Let X be an affine scheme over K°
(see Definition 4.5.2) and X an affinoid adic space (see Definition 5.5.1). Let s :
X — Sch(K°®) be a morphism of affine schemes, then f € Homsm(xe)(Sch(K°), X)

if s 0 f = idscn(ke)-

Sch(K°)
Similarly, if t : Adic(¥) — Adic(K, K°) is a morphism of aﬁinozd adic spaces, then

ge HomAdic(K,K°)(AdiC(K , K°),%) iftog= 'LdAdic(K,K")- -

Adic(K, K°)

~

Adic(K, K°)

85
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Theorem 6.0.5. Let K be a p-adic field with “'ualuation ring K°. Let X be an iﬁteg;r*al
affine scheme finitely generated over Sch(K°) such that the special fibre of X is also
an integral affine scheme. Let X denote the formal scheme obtained by completing X |
along the special fibre of X. Let X denote the affinoid adic space over K associated

to the formal scheme X. Then there is a canonical bijection
HomsCh(Ko) (SCh(Ko), X) = HomAdic(K,Ko) (AdlC(K, Ko), X)

Proof. Let the hypotheses of the Theorem 6.0.5 be satisfied. Then

Homagdic(k, ko) (Adic(K, K°), %)
= Homx,xo) ((fl Qo K, fl), (K, K°)> by Proposition 5.7.3
= Hompgo(4, K°) by Theorem 3.0.8
= Homgen(xe) (Sch(K°), X) by Proposition 4.5.8

O

Example 6.0.6. Consider the geometric interpretation of Example 3.0.10. Let X =
Sch(Z,[T)), and let K = Q,. Thus, using results from Example 5.7.2, Theorem 6.0.5

gives

Homse(z,) (Seh(Zy), Sch(Z,[T1)) =

HomAdic(Qp,Zp) (AdiC(Qp, Zp), AdiC(Qp{T}, ZP{T})) .

~.

Recall from Proposition 4.5.9 that Homgez,) (Sch(Zy), S¢h(Zp[T])) = Z,. Thus,
Homadic(@y,2,) (Adic(Qyp, Zp), Adic(Qp{TY}, Zp{T})) = Z,.
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Appendix A

Direct and Inverse Limits

A.1 Direct Limits

Definition A.1.1. Suppose we have a partially ordered set Z and a set of rings
{4; | i € I} such that

o for alli,j € I there exists k € T such tﬁatz’ <kandj<k

o for every pair of indices i, j with i < j there is a map p;; : A; — A; such that

the following hold
1. pjr o pij = pix wheneveri < j<k
2. py=1dy, foralli €.

Let B = 1,7 As be the disjoint union of all the A; and define a relation ~ on B by
a ~ b if and only if there exists k € T with i, j < k and pi(a) = pjxr(b) for a € A;

and b € A;. Then ~ is an equivalence relation on B and we define lim A; = B/ ~,
iz
the direct limit of {A;}icz. Let @ denoted the equivalence class of a in lim A;, and
et
define p; : A; — lim A; by p;(a) = a. Then the diagram
ez

-lim A;
—
=

Pi pi

Aii>Aj
commutes. If o, 8 € l_i_%nA,; where @ = G,a € A; and 3 = b,b € A;, then a+ 3 =
e
@+ b= pi(a) + pjr(b) for some k € T,k >4,k > j.

89
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Figure A.l: Universal Property of Direct Limits

Example A.1.2. Let K be a field and let T = {L | L : K finite }. Define a partial
order on I by ‘Ll < Ly & Ly: Ly : K. Then T is directed siﬁce Ly : K finite =
Ly : K algebraic, finite = Ly = K(oa,...,0,) for some aa,..., o, algebraic over
K. Similarly, Ly = K(bu,...,Br) for some By,..., B, algebraic over K. Let L =
K(ag, .. 0ny 1y, 0n), then L : K is finite, L : Ly : K, and L : Ly : K. Define
the rings A = L and for Ly < Ly the maps pr,r, : AL, — Ar, to be inclusion.

Then lim L = K where K is the algebraic closure of K.
L:K finite

Proposition A.1.3 (Universal Property). LetZ, {4; | i € I}, {,0zJ | 4,7 €Z,i< 5}
satisfy the conditions of a direct limit. Let B be a commutative ring with unity
equipped with maps 1; : A; — B for all i, such that n; o p;; = 1; for alli < j. Then

there exists a unique map 0 : lim A; — B such that 1; = 6 o p;.
iz

A.2 Inverse Limits

The inverse limit is defined similarly to that of the direct limit. Essentially all of the

maps used in direct limits are reversed to define.the inverse limit.
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Definition A.2.1. Let T be a partially order set and suppose for every pair of indices

i, 7 with i < j there is a map pj; : A; — A; such that the following hold
1. pji 0 pgs = pei wheneveri < j <k
2. i =1da, foralli e T.

Such a set is called an inverse system. The inverse limit of the system {A;}ier is
the subset of elements (a;)icz in the direct product [[,.; As such that psi(a;) = a;
whenever i < j. The inverse limit is denoted im A;. For eachi € T let y; : lim A; —

€T iel
A; be the projection onto its it component. Then the following diagram

lim A;
LLIT]
i€

Hi 15

s

commutes.

Proposition A.2.2 (Universal Property). Let Z, {A; | i € I}, {m; | 4,5 € Z,i < 5}
satisfy the conditions of a inverse limit. Let B be a commutative ring with unity
equipped with maps v; : B — A; for all i such that pj; 0 v; = v; for alli < j. Then
there exists a unique map 0 : B — lim A; such that v; = p; o 0.

el

—
1€l

; »
Hi i

A<EE A P30

B

Figure A.2: Universal Property of Inverse Limits



Appendix B
Localization

Definition B.0.3. Let A be a ring and let M C A be a multiplicative set (14 € M
and my,me € M = mymy € M). Consider Ax M = {(a,m) | a € A,m € M} with
an equivalence relation (a,m) = (b,n) & k(an — bm) = 0 for some k € M. The
equivalence class (a,m) is denoted by &. Then Ay = {Z | a € A,m € M} is called
the localization of A at M and comes equipped with a map Apr @ A — Apr defined by
a— 7.
Remark B.0.4.
1. If A is an integral domain and M = A*, then Ay is the quotient field of A.
2. Let A be a ring and p a prime ideal of A. Then the complement of y is a
multiplicative set, but we notate the localization as A,.

Example B.0.5.

1. Let A=7 and M = Z*. Then & = L & k(an — bm) =0 for some k € M &
an =bm. Then Ay = Q.

2. Let A=C[t], and M = {t* | n € N}. Then Ay =C[t]: = {£ | f € C[[{]]}.

?. Let A= C[t], and M = {a € A|a & p}. Then Ay = A; = Cft]y =
{tect)lgg ()} ={LeC) |tls)

4. Let A=Z,, and M = {p" | n € N}. Then Ay = (Zyp)p = Qp.

5. Let A be a ring. Then Ap) = {2 | s # 0}, the quotient field of A.

92
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Definition B.0.6. Let ¢ : A — B be a ring homomorphism. Let s € A, ¢ =.<p(s),

and As be the ring localized at the multiplicative set generated by s. Then s : As —

B; is defined by L (ﬁ(s‘;z,

Lemma B.0.7. Let A and B be rings and ¢ : A — B. Let r,t € A. Then the

following diagram commutes.

Ay —=> By

)\rl lAtp(r)

Ay =% Biyiir)

Proof. Let & € A;. Then

Aoty © ) (5;) = A(r) (w(a)> - e _ o)

e(®)") Lol )
and
ay _ a \ _ ¥(a)
(Aré%r) (tn> = Qtr (1 -tn) — o
Thus, the diagram commutes. O

Corollary B.0.8. Letp: A— Bandvy: B — C. Ifs € A, then (¥0p)s = (s)0Ps.

Proof. Consider the following diagram.

A—2-p—* ¢

l,\s lAp(s) 1f\¢(¢(s»

As —5> By(s) o Gt

Take ¢ = 1 in Lemma B.0.7 and the two outside squares in the above diagram

commutes. Hence, the entire diagram commutes and the result follows. O



Appendix C
Sheaves of Rings

Definition C.0.9. Let X be a topological space. A presheaf assigns a ring F(U)
to each open U C X and a ring homomorphism F(U C V) : F(V) — F(U) called
the restriction homomorphism to every pair of nested open subsets U C V. The

restriction homomorphism must satisfy the following conditions
.i. FU=U)= idr)
2. FUCW)=FUCV)oFVCW) foralUCV CW.

The ring F(U) is called the ring of sections, elements of F(U) are called the sections

of F over U, and elements of F(X) are called global sections.

Remark C.0.10. A presheaf is a functor from the category of open subsets of X to

the category of rings.

Example C.0.11. [3]

1. Consider the topological spaces R and C (with the usual topology). For all
open U C R we can define a presheaf of sets by taking F(U) to be the set of
continuous functions from U to C. Here the restriction maps are the usual
restrictz'qn of a function from one set to a smaller set contained inside it. The
presheaf takes its values in the category of commutative rings by déﬁning point

wise addition and multiplication on the functions.
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2. Give R the usual topology. For all U C R define a presheaf on R by iaking

G(U) to be the ring of constant functions on U with values in R.

Definition C.0.12 (Sheaf Axiom). A presheaf is called a sheaf if it satisfies one
extra condition, the sheaf axiom: for each {fi € F(U;) | ¢ € I} such that F(U; N
U; — Up)(f;) = F(U;NU; < Uj)(f;) for all i,j € I there ezists a unique f €
F(User Us) such that F(Uy < U;er Us)(f) = fie for allk € 1.

Proposition C.0.13. A sheaf is a functor which takes pullbacks to pushouts.

Proof. A sketch of the proof in the simplest case: Let U and V be sets. Clearly

U UV is the pushout of U «+= U NV < V with inclusion maps. Now by the sheaf

axiom,
FV)y<——FU UYV)
7 FUNV)~—FU)
F(U UYV) is the pullback in the above diagram. O

Example C.0.14. [3]

1. The presheaf in Example C.0.11 (1) is o sheaf. Let U and V be open in R.
If f is a continuous function on U NV, then f can clearly be extended to a

continuous function on UU V.

2. The presheaf in Example C.0.11 (2) is not a sheaf. Suppose U can be written as
 the disjoint union of two open subsets V and W. Look at the section s € G (V)
that takes on the constant value 0, and at the sectiont € G(W) that takes on the

constant value 1. Because the intersection V N'W is empty, the sections s and
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t restrict to the same (trivial) function on their intersection. However,' there
s mo way to patch these two sections together to define a compatible constant

function on the entire space U.

Definition C.0.15. If Z C X, the restriction of a sheaf F on X to Z is simply
(F|2)(U) := F(U) where U is an open subset of Z. If U and V' are both open subsets
of Z such that U CV C Z, then Flz(UCV):=FUCV).

Definition C.0.16. A morphism ¢ : F — G of presheaves on a space X is defined
P [N

simply to be a collection of maps p(U) : F(U) — G(U) such that for every inclusion

U CV the diagram

Fv) X gv)

FUCY) g(ucv)
F0) 2% 6

commutes. If F and G are sheaves on X, the same definition defines a morphism of

sheaves.
Definition C.0.17. Let B be a base for a topology. A B-sheaf is a collection
{F(U) | U € B} of rings equipped with a collection
{FUCV): F(V)—-F{U) | U,V e B}
of maps between the rings such that
L FUCW)=FUCV)oF(VCW) foradiUCVCWeB
2. FU=U) =idry) for allU € B -

3. for each {f; € F(U;) | i € I} such that V C (U; NU;), V,U; € B implies
F(V = U)(fi) = F(V = U;)(f;) there exists a unique f € F(J;; Us) such
that F(Ux = U Us)(f) = fr for allk € T.
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Proposition C.0.18. [5, Prop. I-12] Let B be a base of open sets for X. Then

1. Buery B-sheaf on X extends uniquely to a sheaf on X

2. Given sheaves F and G on X and a collection of maps
o(U): F(U) — 6(U)

for all U € B commuting with restrictions, there is a unique morphism ¢ :

F — G of sheaves such that o(U) = g(U) for allU € B.

e N

Definition C.0.19. Let o : X — Y be a continuous map on topological spaces and
let F be a presheaf on X. The pushforward a.F of F by « is defined to be the
presheaf on'Y given by . F(V) := F(a (V) for any open V C Y.

Proposition C.0.20. The pushforward of a sheaf of rings is again a sheaf of rings.

Proof. Let G := auF. Let U be open in X. Note that if . : U — V is the inclusion
map then F(V) — F(U) is a restriction map and a“.1 ot : oY (V) — o« HU).
Therefore, G(1) := F(a~t o) : F(a}(V)) — F(a™'(U)). Hence, G is a presheaf.

To show that G satisfies the sheaf condition, let X D U = Uie Uiy i € F(UR),
and f; € F(U;). Since F is a sheaf, if F(U; NU; — Us)(fi) = F(U:NU; — U;)(fy),
then there exists a unique f € F(U;; Us) such that F(Uy < U;e; Us)(f) = fi. for
allk e Z. Nowlet ¥ DV =Uic; Vi 9 € uF (i), and f; € e F(V;). Then

W F (Vi AV; < Vi)(g) = e (V; AV = V) (g5)
= Fla'(V) na ™ (V;) = a2 (Vi) (g:) = Fla™ (Vi) N (V;) = o7 (V;))(95)
= 3Jlge F(U o~} (V;) such that F(a™1(V;) — Oz—l(U Vi)(g) = g

i€T ieT
= 3! g€ a.F(V) such that a,F(V; — V)(g) = g:-
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Since |J;ez @ (Vi) = 07Uz Vi), the pushforward satisfies the sheaf axiom and is

therefore a sheaf. ' 0

Definition C.0.21. If F is a presheaf on X and x € X, then the stalk of F at z is
Fe=_lim F(U).

zeU, open
Remark C.0.22. Note that a morphism ¢ : F — G of presheaves of X induces a

morphism ¢ : Fu — Gz on the stalks for any x in X.

AN

Definition C.0.23. Let X = Spec(A) and consider the distinguished open sets X,
of X (see Definition 4.1.9). Define Ox(X;) := As (see Definition B.0.8). Then Ox
is a B-sheaf (see Definition C.0.17) and by Proposition C.0.18 Ox extends uniquely
to a sheaf on X. If U C X and U is open, then

Ox(U) = lim Ox(X,)

XsCU

and if Yy CYs, the following diagram commautes.

Oy (Ys) — (£:0x)(Y5) = Ox(F71(¥s)) = Ox(Xy(s))

! |

Oy (V;) — (f+0x)(¥z) = Ox(f 1 (V1)) = Ox (X))



