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Abstract 
 
Grid computing emerges in part from the need to 
integrate a collection of distributed computing resources 
to offer performance unattainable by any single 
machine. Grid technology facilitates data sharing across 
many organizations in different geographical locations. 
Data replication is an excellent technique to move and 
cache data close to users. Replication reduces access 
latency and bandwidth consumption. It also facilitates 
load balancing and improves reliability by creating 
multiple data copies. One of the challenges in data 
replication is to select the candidate sites where replicas 
should be placed, which is known as the allocation 
problem. One performance metric to determine the best 
place to host replicas is select for optimum average (or 
aggregated ) response time. We use the p-median model 
for the replica placement problem. The p-median model 
has been exploited in urban planning to find locations 
where new facilities should be built.  In our problem, the 
p-median model finds the locations of p candidate sites 
to place a replica that optimize the aggregated response 
time. A Grid environment is highly dynamic so user 
requests and network latency vary constantly. Therefore, 
the candidate sites currently holding replicas may not be 
the best sites to fetch replica on subsequent requests. We 
propose a dynamic replica maintenance algorithm that 
re-allocates to new candidate sties if a performance 
metric degrades significantly over last K time periods.  
Simulation results demonstrate that the dynamic 
maintenance algorithm with static placement decisions 
performs best in dynamic environments like Data Grids. 
 
Keyword: Data Replication, Grid, Replica Allocation, 
Replica Reallocation, Replica Placement. 
 
 

1. Introduction 
 

The availability of powerful computers and the rapid 
increase of network speed are leading to an increasingly 
decentralized approach to providing compute 
infrastructures. Science today is more collaborative and 
multi-institutional [6] so access to computing resources 
and special classes of scientific devices or instruments 
should be made available to as many users as possible 
irrespective of their global location. A large number of 
scientific and engineering applications require a huge 
amount of computing time to carry out their experiments 
by simulation [1].  Research driven by this need has 
promoted the exploration of a new architecture 
commonly known as “The Grid” for high performance 
distributed application and systems. 
   Grid computing can coordinate resource sharing and 
problem solving across dynamic multi-institutional 
environments [3]. Large scientific initiatives such as 
global climate change, high energy physics, and 
computational genomics require large data collections 
which are now being curated in various diverse 
locations.  These large data stores must be shared by 
researchers around the world. High performance Data 
Grid architectures facilitate these requirements by 
applying the various technologies required in a 
coordinated fashion to support data intensive petabyte 
scale applications. Data replication becomes critical as 
Data Grids are developed that permit data sharing across 
many organizations in different geographically disperse 
locations [10]. One such instance is the hierarchical one 
envisioned by GriPhyN [8]. It consists of multiple tiers 
with all data generating at Tier 0; Tier 1 consists of 
national centers; and below that there are regional 
centers. Each tier has its own storage capacity, but this 
can vary from tier to tier. Using the storage capacity at 
each tier, replicas can be placed at each tier to increase 
the data availability among different sites. The general 



idea of replication is to store copies of data in different 
locations so data can be easily recovered if one copy at 
one location is lost or unavailable. 
   Transferring a file from a server to client consumes a 
substantial bandwidth.  One possible way to reduce the 
access latency and bandwidth consumption is to replicate 
data across different sites. Replication also facilitates 
load balancing and improves reliability by creating 
multiple data copies. However, the files in Grid are large 
(i.e., sizes of 500 MB-1 GB are typical) so replication to 
every site is infeasible. One of the challenges is to locate 
the candidate sites for replica placement. One approach 
is to place replica at sites to optimize aggregated 
response time. Response time is calculated by 
multiplying the number of request at site i with the 
distance between the nearest replication site to the 
requester. The sum of the response times for all sites 
constitute the aggregated response time. We will use the 
terms total response time  and aggregated response time 
interchangeably throughout this research. We propose a 
p-median model [9] that finds the locations of p 
candidate sites to place a replica that will minimize the 
aggregated response time. However, the optimization 
problem is NP-hard so a large network requires an 
unacceptable computation time without directing to the 
optimal solution [5]. Therefore, heuristics are needed 
that can generate optimal/near-optimal solutions for the 
p-median model. The Lagrangean Relaxation technique 
is one such heuristic technique that is popular because it 
provides bounds on the objective function. The 
Lagrangean technique solves the p-median model by 
locating p candidate sites to place replicas optimally.  
The Grid environment is highly dynamic where user 
requests and network latency vary constantly. The 
candidate sites that hold replicas currently may not be 
the best sites to fetch replicas subsequently. Thus we  
propose a dynamic replica maintenance algorithm that 
first finds the optimal/near-optimal cumulative 
aggregated response time for K time periods by allowing 
relocation with a positive transportation cost and then 
compare it with current cumulative aggregated response 
time. The current response time is calculated by adding 
aggregated response time for K periods assuming that 
replicas are placed at sites that provide the optimal value 
using the p-median problem at period K=1.  The 
relocation decision is then made bas ed on the 
comparison, i.e., if the difference is greater than an 
allo wable threshold. 

The paper is organized by presenting related work in 
Section 2. Optimal static replica placement strategy is 
discussed in Section 3. Dynamic replica maintenance 
strategy is presented in Section 4. The simulation model 
is described in Section 5. Section 6 evaluates and 
compares the replication strategies. Section 7 concludes 
and indicates possible future research directions. 
 

2. Related Work 
 
Decision problems arise in wide range of public and 
private sector environments. Different models such as 
the set covering model [14], p-center, and p-median 
models address such problems. The general problem is 
to locate objects (or facilities) to optimize some 
objective. Distance, or some measure more or less 
functionally related to distance (e.g., travel time or cost, 
demand satisfaction), is fundamental to those problems. 
The set covering and p-center models are based on 
maximum distance, whereas the p-median model is 
based on the total (or average) distance. The set covering 
model locates the minimum number of facilities required 
to cover all the demand nodes  (i.e., requesting sites). The 
p-median model finds p locations to minimize the total 
traverse distance that customers must traverse to reach 
the closest facility [5]. The p-center model addresses the 
problem of minimizing the maximum distance to the 
closest facility. Applications for these models include 
locating bus stops, licensing bureaus, airports, blood 
bank, emergency medical services, etc [4, 5]. 
 
  Kavitha et al. [12] propose a strategy for creating 
replicas automatically in a generic decentralized peer-to-
peer network. The goal of their model is to maintain 
replica availability with some probabilistic measure. 
Although the approach may be applicable on DataGrids, 
each peer only utilizes partial information (the part they 
retain); so a more global approach is likely to achieve 
better results . Ranganathan and Foster [10] discuss 
various replication strategies for a hierarchical DataGrid 
architecture. They test six different replication strategies: 
1) No Replication: only root node holds replicas; 2) Best 
Client: replica is created for the client who accesses the 
file the most; 3) Cascading: a replica is created on the 
path to the best client; 4) Plain Caching: a local copy is 
stored upon initial request; 5) Caching plus Cascading: 
combines plain caching and cascading; 6) Fast Spread: 
file copies are stored at each node on the path to the best 
client. They show that the cascading strategy reduces 
response time by 30% over plain caching when data 
access pattern contain both temporal and geographical 
locality. When access pattern contains some locality, 
Fast Spread significantly saves bandwidth over other 
strategies. The replication algorithms assume that 
popular files at one site are popular at others. The client 
site counts hops for each site that hold replicas, and the 
model selects the one with the least number of hops from 
the requesting client. However it does not consider 
current network bandwidth. Our model captures both 
Grid file transfer and other network traffic over the same 
link and it considers heterogeneous link capacities that 
are not necessarily  hierarchical. 
   Kavitha et al. [11] develop a family of job scheduling 
and replication algorithms and use simulation studies to 



evaluate them. Three different replica placement 
algorithms are considered: 1) no active replication; 2) a 
replica is created at random site based on a threshold; 
and 3) a replica is created at the site with the smallest 
number of waiting jobs based on a threshold. These three 
replication strategies are combined with the four 
scheduling strategies: 1) jobs are scheduled to a random 
site; 2) jobs go to the site with fewest waiting jobs; 3) 
jobs are scheduled to the site containing the required 
data and with the fewest waiting jobs; 4) jobs are always 
run locally. They show that when there is no replication, 
simple local scheduling performs best. However, when a 
replication is used scheduling jobs to sites containing the 
required data is better. The key lesson for our study is 
that dynamic replication reduces hotspots created by 
popular data and enables load sharing. OptorSim [2] is a 
simulator developed as a part of European DataGrid 
project to carry out different replication and scheduling 
algorithms. The simulator models a Grid consisting of 
several sites where each site has zero or more computing 
elements and /or zero or more storage elements. The 
computing element facilitates job execution whereas the 
storage sites are data repositories. The simulator also 
supports routers which forward requests to other sites but 
do not have any processing power or storage capacity. A 
resource broker acts as a meta-scheduler that controls the 
scheduling of jobs to different computing elements. The 
simulator uses an economic model in which sites buy 
and sell file using an auction mechanism.  
  Several research efforts [2, 10, 11] assume user 
requests is the only parameter considered for replica 
placement so network latencies are ignored. However, 
network bandwidth plays a vital role in file transfer. We 
can save substantial transfer time if we place a replica of 
a file at a site that is connected to its neighbors with 
limited bandwidth and if its request for that file is above 
average. Earlier work [13] shows that considering both 
the current network state and file requests  produce better 
results than file requests times alone. The replication 
algorithm begins by placing the master files at one site. 
The expected utility or risk index is calculated for each 
site that does not currently hold a replica and then one is 
placed on the site that optimizes the expected utility or 
risk. The algorithms proposed based on utility selects a 
candidate site to host a replica by assuming that future 
requests and current load will follow current loads and 
user requests. Conversely, algorithms using a risk  index 
expose sites far from all other sites and assume the worst 
case whereby future requests will primarily originate 
from that distant site. One major drawback of these 
strategies is that the algorithms select only one site per 
iteration and places a replica there. The Grid 
environment is highly dynamic and there might be a 
sudden burst of requests indicating multiple sties should 
simultaneously get replicas to quickly satisfy the large 
spike of requests. Our work does not consider about the 

relocation of the candidate sites. In this research, we 
extend earlier work by selecting p candidate sites to host 
replicas as well as a dynamic maintenance using a 
previous static placement strategy.  
 
3. Static Replica Placement Algorithm 
 
On a Data Grid different jobs are submitted from various 
sites. Total job execution time measures effectiveness of 
the replication strategies. Jobs in the Data Grid may 
request a number of files. If the file is at a local site, 
response time is assumed to be zero; otherwise the file 
must be transferred from the nearest replication site. 
Thus, job execution time includes the latency required to 
transfer a file.  The best replication strategy minimizes 
the total job execution time and should also minimize the 
total response time. Response time for a requesting site i 
is given by the product of number of requests at site i 
(i.e., hi ) and the time required  between the requesting 
site i and the nearest replication site. Therefore, our 
objective is to find the p best candidate (replication) sites 
such that total response time for all of the requesting 
sites is minimized. The identified problem is closely 
analogous to the p-median [9] model used extensively 
for facility location problems in urban planning. In the 
following sections we formally restate the model and 
provide a heuristic solution approach that leads to 
optimal/near-optimal solution for our replica placement 
problem. 
 
3.1 P-Median Model 
 
The p-median model finds the p replica placement sites  
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to minimize the request-weighted total distance between 
the requesting sites and the replication sites holding 
copies assigned. This model is formulated with the 
equations presented above. 



 

The objective function (1) minimizes the request-
weighted distance between each requesting site and the 
nearest replication site. Constraint (2) states that 
exactly p sites to be located to place the replica. 
Constraint (3) states that each requesting site should be 
allocated exactly one replication site from which it can 
fetch the replica. Constraint (4) states that requests at site 
i can only be assigned at replication site j  if a replica is 
placed at site j . Constraints (5-6) are general integrity 
constraints. Here ih represents the requests at site i . For 
a small network and small number of p any of the well-
known algorithms such as branch and bound can be used 
[5] to solve the p-median problem optimally. However, 
for a large number of constraints and variables the 
problem is classified as NP-Hard [5]. Therefore, the 
problem needs to be solved heuristically that find good 
solutions to the problem. 
 
3.2. Lagrangean Relaxation: A Heuristic 
Approach 
 
   A major benefit of the Lagrangean heuristic [7] over 
other heuristic approaches is it gives both upper and 
lower bounds for the objective function. Thus, it 
provides a range in which the optimal value of the 
solution lies. The basic idea is to relax some constraints 
of the original model and add those constraints, 
multiplied by Lagrange multiplier to the objective 
function. We then try to solve the relaxed problem 
optimally. The model uses a search technique to find a 
set of values for Lagrange mu ltipliers that lead to a 
solution of the problem that satisfies the relaxed 
constraints. If the lower and upper bound of the solution 
coincides we have found the optimal solution, otherwise 
we can iterate or search for the best Lagrange multipliers 
until the gap between upper and lower bound is 
acceptably narrow. We outline the relaxation algorithm 
in the next section. 
3.2.1 Lower Bound Calculation: 
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If we relax constraint (3) and add this one into objective 
function, the relaxed problem can be stated as  equations  
(8-9). 

The other constraints (2, 4-7) remain the same as the p-
median problem. To minimize the objective function in 
(9) we would like to set 1=ijy  if its coefficient 

( ) 0<− iijidh λ and 0=ijy  otherwise. To set he value of ijy , 

i.e., 1=ijy , the corresponding jx ’s value should be 1 (by 

constraint 4). However, constraint (2) states that we can 
choose at most p  replica sites for which 1=jx . 

Therefore, we have to rank the values of jV s, where jV  

is defined by ( )∑
=

−=
n

i
iijij dhV

1

,0min λ . Find the p  smallest 

values of jV  that have the largest impact on the 

objective function. Set the corresponding .1=jx   Then 

set 1=ijy , if 1=jx  and ( ) 0<− iijidh λ otherwise set 0=ijy . 

Calculate the lower bound of the solution ( )LBZ by 
finding the objective function from constraint (9) which 
includes ijy  that are set to 1. 

3.2.2. Upper Bound Calculation 
 
Recall that in the relaxed problem we relax constraint (2) 
which states that each requesting site must be assigned to 
a replication site is eased. The objective function value 
found by the lower bound program ignores this 
constraint. Therefore, this constraint may remain 
unsatisfied which lead to an infeasible solution to the 
original problem. We must find an upper bound 
( )UBZ of the objective function by assigning each 
requesting site to the nearest replication site. The 
replication sites are found from the lower bound 
calculation, i.e., the sites for which the corresponding 

.1=jx  

3.2.3. Multiplier Adjustment 
 

The multipliers are updated by subgradient optimization 
which maximizes the lower bound of the solution to 
satisfy the relaxed constraint that is relaxed. The steps 
for updating the Lagrange Multipliers are given below: 

1. Define subgradients t
iG for the relaxed constraint in 

the current iteration by: 
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3. With this step size the values of iλ  are updated 
by the following relationship 
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The algorithm terminates either after a specified number 
of iterations or the value of π becomes sufficiently 
small. A more detailed discussion about this Lagrangean 
relaxation technique and its application to p-median 
problem can be found elsewhere [4, 5] 

4. Dynamic Maintainability of Static 
Placement 

   The Lagrangean relaxation technique assures the 
optimal or near-optimal solution based on the user 
requests and network characteristics for the current 
period. However, the candidate sites that hold replicas 
currently may not be the best sites to fetch replica if the 
user requests and network latency changes . Therefore, 
relocation needs to be considered if the performance is to 
be maintained. However, the relocation is costly. Files in 
Grid are typically in the magnitude of 500MB-1GB, so 
before relocating a file replica to another site, we must   
consider the file transfer cost for this evolution. To 
determine the performance degradation occurring in last 
K time periods, we must determine the optimal 
cumulative average response time for K time periods if 
reallocation is permitted while accounting for the 
transfer costs. Fortunately, the solution of this aspect of 
the problem also finds the replica placement needed to 
achieve an optimal /near optimal cumulative average 
response time. Wesolowsky and Truscott [15] analyze a 
multi-period facility location-allocation problem that 
allows facilities to move. They propose a dynamic model 
that minimizes three factors, (1) distributing cost, (2) 
construction and removal cost for a given time period, 
and (3) determines possible facility allocation to achieve 
the optimal/near-optimal cumulative cost.  
 
  In Data Grid system, the performance monitoring is 
often done by a meta-scheduler or resource broker. To 
remove a file from a site’s local storage the resource 
broker must send a message, a small overhead message 
to initiate the much larger file transfer. We will also 
ignore the cost of removing a file from local storage.   
We use their dynamic model [15] to find the optimal 
cumulative total response time for K periods: 
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   Equations (10-16) are the multiperiod versions of (1-7) 
respectively.  The constraint (17) ensures that we can 
consider the reallocation cost if a replica is relocated on 
that site. Wesolowsky et al. [15] use dynamic 
programming to solve the mathematical model optimally 
for a small network size and limited number of periods. 
For a large network and large value of K, the dynamic 
programming generates huge state spaces and stages, 
therefore the authors suggest heuristics to generate good 
solutions.  
 
   We can use the Lagrangean relaxation technique to 
generate the optimal or near-optimal solutions to the 
dynamic model. Once achieved, we compare this result 
with the current one. The current result is calculated by 
adding total response time for K periods assuming that 
replicas are placed to the sites that gave the optimal 
value for the p-median problem at period K=1. We must 
then decide if relocation is appropriate. Table 1 presents 
4 cases to consider when determine if relocation should 
occur and it also identifies a candidate target. For 
simplicity, we consider a 2-median problem and 3 time 
periods for the dynamic model. We compare the current 
result (CR) with optimal result (OR) and check whether 
the difference is more than the allowable threshold (T). 
For example, the solution found by the p-median 
problem at period K=1 suggests that the replica should 
be placed at Site A and Site B. We must analyze the 
performance of this placement decision with respect to 
three consecutive periods that include the first period 
when the static optimal decision was made and the 
subsequent two periods. 



 
Table 1: Replica Reallocation Decision 

 
Case (CR–

OR)>T  
Period 
1 

Period 
2 

Period 
3 

Decision  

1 No A, B  A, B A, B No 
Relocation  

2 No A, B A, B C, D Relocate  at 
C, D 

3 Yes X, Y X, Y X,Y Relocate at X, 
Y 

4 Yes P, Q R, S M, N Re-optimize 
by p- median 
with aver-age 
requests and 
average 
bandwidth for 
last 3 periods 

 
In Case 1, we find that the optimal solution complies 
with our early decision so replicas are placed correctly. 
In Case 2, we find an optimal solution that suggests 
replica should be placed at Site A and Site B for time 
period 1 and 2 but to get the optimal value we should 
consider a relocation to Site C and D for time period 3. 
Therefore, we can relocate at C and D at the end of time 
period 3. In Case 3, we found that site (X, Y) is giving 
the optimal cumulative response time suggesting that 
Site(X,Y) show a consistent performance since last three 
periods even we consider the relocation cost, i.e., 
transportation time of a file to site X, Y from the best 
candidates (which are A and B currently). Moreover, the 
difference between current and optimal solution is above 
the prescribed thres hold. The Case 4 addresses a random 
situation where we are not able to find a set of sites that 
perform satisfactory throughout the last three time 
periods. Moreover, the tolerance level is above the 
threshold, so we must consider relocation. 
Unfortunately, the sites must now be found by solving 
the p-median problem that takes average request and 
average network latency as parameters. The averages are 
calculated by averaging the request and latency for last 
three time periods. 
 
5. Simulation  
 

Replica placement algorithms must be tested 
thoroughly before deploying them in real Data Grid 
environments. One way to achieve a realis tic evaluation 
of the various strategies is through simulation that 
carefully reflects real Data Grids. On a Data Grid 
different jobs are submitted from various sites. Mean job 
execution time is a good measure of effectiveness of the 
replication strategies. Jobs in the Data Grid request a 
number of files. If the file is at a local site, response time 
is assumed to be zero; otherwise the file must be 
transferred from the nearest replication site. Thus, job 
execution time incorporates the response time required 
to transport a file.  The best replication strategy 
minimizes the mean job execution time and also 

minimizes the average response time. We validate our 
replica placement algorithms with average response 
times. We will validate our placement algorithms with 
mean job execution time in the future. Our replica 
placement algorithms are evaluated with a simulator 
written in Java. The simulation generates random 
background traffic and grid data requests. 
. 
 

5.1 Grid Configuration 
 

The study of our replica placement algorithms was 
carried out using a model of the EU Data Grid Testbed 1 
[2] sites and their associated network geometry. Site 0 is 
the CERN (European Organization for Nuclear 
Research) location. Initially all master files are 
distributed to CERN. A master file contains the original 
copy of some data samples and cannot be deleted. Each 
circle in Figure 2 represents a testbed site and a star 
represents a router. Each link between two sites shows 
the available network bandwidth. The network 
bandwidth is expressed in Mbits/sec (M) or Gbits/sec 
(G).  We include the storage capacity at each router, i.e., 
intermediate nodes. The intermediate nodes have higher 
storage capacity than the testbed sites but smaller 
capacity than CERN. Placing data at intermediate nodes 
moves it closer and hence more accessible to testbed 
sites. The file requests are generated from the testbed 
sites. 
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Figure 1: The EU Data Grid Testbed 1 Sites and the  
Approximate Network Geometry. 
 
5.2 Simulation Input 
 

Our program’s input is from two configuration files. One 
file describes the network topology, i.e., the link between 
different sites, the available network bandwidth between 
sites, and the size of disk storage of each site. The 
second configuration file contains information about the 
number of requests generated by each testbed site and 
the current network load. The network load is varied to 
test the impact on our replication algorithm. We consider 
low, medium or heavy traffic. File requests may either 
follow uniform distribution or normal distribution. We 
set three maximum values for uniform file requests 
where each testbed site can generate requests that are 
uniformly distributed with a maximum of 10, 30, or 50. 



We also consider ten random normal requests with 
different mean and variance. The testbed site that 
generates each of those random requests is chosen 
arbitrarily.  We consider uniform and normal requests 
with diverse variances to analyze how well the 
replication algorithms performs when there is no co-
relation among previous requests, that is ., the requests 
are totally random. 
 
 
6. Simulation Results 
 

Each site records the time taken for each file requested to 
be transferred to it. This time record forms the basis to 
compare various replication strategies. We compare our 
replication algorithm with respect to average response 
time. Response time is the time that elapses from a 
request for a file until it receives the complete file. The 
average of all response times for the length of the 
simulation is calculated. The best replication strategy 
will have lowest response time. Each file is 100 MB in 
size.  After some initial runs, we place a replica at sites 
that will optimize either one of the objectives, i.e., the 
request objective (place the replicas to the p sites that 
request most of the files), static p-median, and dynamic 
p-median. The Best_Client strategy considers the request 
objective. After six (K=6) time periods we consider  
relocation. For simplicity we set the value of Thres hold 
to zero (T=0), i.,e., we consider relocation when we can 
find an optimum aggregated response for the last six 
periods that is better than the current accumulated 
response time. We plan to work with variable threshold 
in future. We test our algorithm for two diffe rent values 
of p, i.e., p=5 or p=7. We calculate the average response 
time for future requests in different network load by 
assuming the replicas are now at the candidate sites. 

Table  2. Average response time for different 
models, network loads, user requests when p=5 

Traffic Request Best_ 
Client 

Static P-
Median 

Dynamic 
 P-Median 

Low Uniform (10) 2883 896 714 
Medium Uniform (10) 8765 1669 1368 
High Uniform (10) 9906 2975 1737 
Low  Uniform (30) 8216 2734 1753 
Medium Uniform (30) 17140  4205 3310 
High Uniform (30) 25189  7862 5320 
Low  Uniform (50) 15483  3434 3184 
Medium Uniform (50) 25115  7243 6054 
High Uniform (50) 28649  12585  6798 
Low Normal 40970  7925 7076 
Medium Normal 86454  16381  11714  
High Normal 57585  16547  12232  

 
We accumulate the average response time for the next 
sixty runs to analyze the performance of the replica 
placement algorithms. We also vary the network load 
with other background traffic to see its impact on the 
replication algorithm. The results of accumulated 

average response time (in seconds) are shown in Table 2 
and 3. 

    Table 2, 3 show that the response time increases with 
increasing requests. There is a strong correlation 
between response time and user requests as one would 
expect. We have highest average response time in peak 
period, i.e., when user requests reach the maximum, as 
well the background traffic is highest. We include the 
dynamic traffic condition and random requests to see the 
impact on the dynamic model. The dynamic model that 
considers the relocation shows significant performance 
improvement compared to static and best-client model in 
different background traffic conditions as well when user 
requests vary randomly, that is, no relation with previous 
requests (uniform random), or the future requests are 
normally distributed and centered on previous requests.  
We can get a significant performance improvement with 
dynamic model if the previous best paths become 
congested because of high background traffic or if 
current user requests vary significantly. 

Table  3. Average response time for different 
models, network loads, user requests when p=7 

Traffic Request Best_ 
Client 

Static  
P-
Median 

Dynamic  
P-Median 

Low Uniform (10) 3297 149 146 
Medium Uniform (10) 2865 246 218 
High Uniform(10) 7670 382 381 
Low  Uniform (30) 5995 433 409 
Medium Uniform (30) 16642  838 709 
High Uniform (30) 19237  1052 951 
Low  Uniform (50) 9549 723 706 
Medium Uniform (50) 30699  1249 1204 
High Uniform (50) 26136  1245 1220 
Low Normal 22243  1312 1312 
Medium Normal 68454  3196 3022 
High Normal 100073 4032 3674 

The proposed mathematical models require little 
computational time to reach the solution by both static 
and dynamic p-median models. The simulation was 
carried out on a Pentium 4 processor 2GHz with 512 MB 
RAM. With current network size, the computational time 
is only 10 seconds on average to reach a solution using 
static or dynamic p-median model. 
 
7. Conclusions 
 

  We consider a p-median model for the replica 
placement problem. The model finds the locations of p 
candidate sites to place replica that will minimize the 
aggregated response time. Due to dynamic nature of 
Grid, the placement decision may not be optimal for 
subsequent periods. Therefore, we need to decide about 
relocation. However relocation needs transportation cost 
for transferring the file to the relocated sites. We propose 
a dynamic replica maintenance algorithm that suggest 
for a relocation of candidate sites by considering the 
relocation cost. The decision of relocation is made when 



the performance metric degrades significantly in last K 
time periods. We validate our model by using a model of 
the EU Data Grid testbed 1 sites and their associated 
network geometry. However, we need to decide about 
the value of p for our p-median problem that gives a 
satisfactory response time to the requesting sites. 
Moreover, the term Threshold (T) needs to be calculated 
before using the dynamic maintenance algorithm. Its 
value should not be too small or too large. One of the 
choices may be to use a value that changes 
proportionally with respect to the average response time 
in each time period.  
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