
A Dynamic Replica Placement Strategy
in Grid Environment

Mohammad Rashedur Rahman

Department of Computer Science
University of Calgary

2500 University Drive, N.W
Calgary, Alberta, Canada T2N 1N4

{rahmanm,barker,alhajj}@cpsc.ucalgary.ca

Abstract

Grid computing emerges in part from the need to
integrate a collection of distributed computing resources
to offer performance unattainable by any single
machine. Grid technology facilitates data sharing across
many organizations in different geographical locations.
Data replication is an excellent technique to move and
cache data close to users. Replication reduces access
latency and bandwidth consumption. It also facilitates
load balancing and improves reliability by creating
multiple data copies. One of the challenges in data
replication is to select the candidate sites where replicas
should be placed, which is known as the allocation
problem. One performance metric to determine the best
place to host replicas is select for optimum average (or
aggregated) response time. We use the p-median model
for the replica placement problem. The p-median model
has been exploited in urban planning to find locations
where new facilities should be built. In our problem, the
p-median model finds the locations of p candidate sites
to place a replica that optimize the aggregated response
time. A Grid environment is highly dynamic so user
requests and network latency vary constantly. Therefore,
the candidate sites currently holding replicas may not be
the best sites to fetch replica on subsequent requests. We
propose a dynamic replica maintenance algorithm that
re-allocates to new candidate sties if a performance
metric degrades significantly over last K time periods.
Simulation results demonstrate that the dynamic
maintenance algorithm with static placement decisions
performs best in dynamic environments like Data Grids.

Keyword: Data Replication, Grid, Replica Allocation,
Replica Reallocation, Replica Placement.

1. Introduction

The availability of powerful computers and the rapid
increase of network speed are leading to an increasingly
decentralized approach to providing compute
infrastructures. Science today is more collaborative and
multi-institutional [6] so access to computing resources
and special classes of scientific devices or instruments
should be made available to as many users as possible
irrespective of their global location. A large number of
scientific and engineering applications require a huge
amount of computing time to carry out their experiments
by simulation [1]. Research driven by this need has
promoted the exploration of a new architecture
commonly known as “The Grid” for high performance
distributed application and systems.
 Grid computing can coordinate resource sharing and
problem solving across dynamic multi-institutional
environments [3]. Large scientific initiatives such as
global climate change, high energy physics, and
computational genomics require large data collections
which are now being curated in various diverse
locations. These large data stores must be shared by
researchers around the world. High performance Data
Grid architectures facilitate these requirements by
applying the various technologies required in a
coordinated fashion to support data intensive petabyte
scale applications. Data replication becomes critical as
Data Grids are developed that permit data sharing across
many organizations in different geographically disperse
locations [10]. One such instance is the hierarchical one
envisioned by GriPhyN [8]. It consists of multiple tiers
with all data generating at Tier 0; Tier 1 consists of
national centers; and below that there are regional
centers. Each tier has its own storage capacity, but this
can vary from tier to tier. Using the storage capacity at
each tier, replicas can be placed at each tier to increase
the data availability among different sites. The general

idea of replication is to store copies of data in different
locations so data can be easily recovered if one copy at
one location is lost or unavailable.
 Transferring a file from a server to client consumes a
substantial bandwidth. One possible way to reduce the
access latency and bandwidth consumption is to replicate
data across different sites. Replication also facilitates
load balancing and improves reliability by creating
multiple data copies. However, the files in Grid are large
(i.e., sizes of 500 MB-1 GB are typical) so replication to
every site is infeasible. One of the challenges is to locate
the candidate sites for replica placement. One approach
is to place replica at sites to optimize aggregated
response time. Response time is calculated by
multiplying the number of request at site i with the
distance between the nearest replication site to the
requester. The sum of the response times for all sites
constitute the aggregated response time. We will use the
terms total response time and aggregated response time
interchangeably throughout this research. We propose a
p-median model [9] that finds the locations of p
candidate sites to place a replica that will minimize the
aggregated response time. However, the optimization
problem is NP-hard so a large network requires an
unacceptable computation time without directing to the
optimal solution [5]. Therefore, heuristics are needed
that can generate optimal/near-optimal solutions for the
p-median model. The Lagrangean Relaxation technique
is one such heuristic technique that is popular because it
provides bounds on the objective function. The
Lagrangean technique solves the p-median model by
locating p candidate sites to place replicas optimally.
The Grid environment is highly dynamic where user
requests and network latency vary constantly. The
candidate sites that hold replicas currently may not be
the best sites to fetch replicas subsequently. Thus we
propose a dynamic replica maintenance algorithm that
first finds the optimal/near-optimal cumulative
aggregated response time for K time periods by allowing
relocation with a positive transportation cost and then
compare it with current cumulative aggregated response
time. The current response time is calculated by adding
aggregated response time for K periods assuming that
replicas are placed at sites that provide the optimal value
using the p-median problem at period K=1. The
relocation decision is then made bas ed on the
comparison, i.e., if the difference is greater than an
allo wable threshold.

The paper is organized by presenting related work in
Section 2. Optimal static replica placement strategy is
discussed in Section 3. Dynamic replica maintenance
strategy is presented in Section 4. The simulation model
is described in Section 5. Section 6 evaluates and
compares the replication strategies. Section 7 concludes
and indicates possible future research directions.

2. Related Work

Decision problems arise in wide range of public and
private sector environments. Different models such as
the set covering model [14], p-center, and p-median
models address such problems. The general problem is
to locate objects (or facilities) to optimize some
objective. Distance, or some measure more or less
functionally related to distance (e.g., travel time or cost,
demand satisfaction), is fundamental to those problems.
The set covering and p-center models are based on
maximum distance, whereas the p-median model is
based on the total (or average) distance. The set covering
model locates the minimum number of facilities required
to cover all the demand nodes (i.e., requesting sites). The
p-median model finds p locations to minimize the total
traverse distance that customers must traverse to reach
the closest facility [5]. The p-center model addresses the
problem of minimizing the maximum distance to the
closest facility. Applications for these models include
locating bus stops, licensing bureaus, airports, blood
bank, emergency medical services, etc [4, 5].

 Kavitha et al. [12] propose a strategy for creating
replicas automatically in a generic decentralized peer-to-
peer network. The goal of their model is to maintain
replica availability with some probabilistic measure.
Although the approach may be applicable on DataGrids,
each peer only utilizes partial information (the part they
retain); so a more global approach is likely to achieve
better results . Ranganathan and Foster [10] discuss
various replication strategies for a hierarchical DataGrid
architecture. They test six different replication strategies:
1) No Replication: only root node holds replicas; 2) Best
Client: replica is created for the client who accesses the
file the most; 3) Cascading: a replica is created on the
path to the best client; 4) Plain Caching: a local copy is
stored upon initial request; 5) Caching plus Cascading:
combines plain caching and cascading; 6) Fast Spread:
file copies are stored at each node on the path to the best
client. They show that the cascading strategy reduces
response time by 30% over plain caching when data
access pattern contain both temporal and geographical
locality. When access pattern contains some locality,
Fast Spread significantly saves bandwidth over other
strategies. The replication algorithms assume that
popular files at one site are popular at others. The client
site counts hops for each site that hold replicas, and the
model selects the one with the least number of hops from
the requesting client. However it does not consider
current network bandwidth. Our model captures both
Grid file transfer and other network traffic over the same
link and it considers heterogeneous link capacities that
are not necessarily hierarchical.
 Kavitha et al. [11] develop a family of job scheduling
and replication algorithms and use simulation studies to

evaluate them. Three different replica placement
algorithms are considered: 1) no active replication; 2) a
replica is created at random site based on a threshold;
and 3) a replica is created at the site with the smallest
number of waiting jobs based on a threshold. These three
replication strategies are combined with the four
scheduling strategies: 1) jobs are scheduled to a random
site; 2) jobs go to the site with fewest waiting jobs; 3)
jobs are scheduled to the site containing the required
data and with the fewest waiting jobs; 4) jobs are always
run locally. They show that when there is no replication,
simple local scheduling performs best. However, when a
replication is used scheduling jobs to sites containing the
required data is better. The key lesson for our study is
that dynamic replication reduces hotspots created by
popular data and enables load sharing. OptorSim [2] is a
simulator developed as a part of European DataGrid
project to carry out different replication and scheduling
algorithms. The simulator models a Grid consisting of
several sites where each site has zero or more computing
elements and /or zero or more storage elements. The
computing element facilitates job execution whereas the
storage sites are data repositories. The simulator also
supports routers which forward requests to other sites but
do not have any processing power or storage capacity. A
resource broker acts as a meta-scheduler that controls the
scheduling of jobs to different computing elements. The
simulator uses an economic model in which sites buy
and sell file using an auction mechanism.
 Several research efforts [2, 10, 11] assume user
requests is the only parameter considered for replica
placement so network latencies are ignored. However,
network bandwidth plays a vital role in file transfer. We
can save substantial transfer time if we place a replica of
a file at a site that is connected to its neighbors with
limited bandwidth and if its request for that file is above
average. Earlier work [13] shows that considering both
the current network state and file requests produce better
results than file requests times alone. The replication
algorithm begins by placing the master files at one site.
The expected utility or risk index is calculated for each
site that does not currently hold a replica and then one is
placed on the site that optimizes the expected utility or
risk. The algorithms proposed based on utility selects a
candidate site to host a replica by assuming that future
requests and current load will follow current loads and
user requests. Conversely, algorithms using a risk index
expose sites far from all other sites and assume the worst
case whereby future requests will primarily originate
from that distant site. One major drawback of these
strategies is that the algorithms select only one site per
iteration and places a replica there. The Grid
environment is highly dynamic and there might be a
sudden burst of requests indicating multiple sties should
simultaneously get replicas to quickly satisfy the large
spike of requests. Our work does not consider about the

relocation of the candidate sites. In this research, we
extend earlier work by selecting p candidate sites to host
replicas as well as a dynamic maintenance using a
previous static placement strategy.

3. Static Replica Placement Algorithm

On a Data Grid different jobs are submitted from various
sites. Total job execution time measures effectiveness of
the replication strategies. Jobs in the Data Grid may
request a number of files. If the file is at a local site,
response time is assumed to be zero; otherwise the file
must be transferred from the nearest replication site.
Thus, job execution time includes the latency required to
transfer a file. The best replication strategy minimizes
the total job execution time and should also minimize the
total response time. Response time for a requesting site i
is given by the product of number of requests at site i
(i.e., hi) and the time required between the requesting
site i and the nearest replication site. Therefore, our
objective is to find the p best candidate (replication) sites
such that total response time for all of the requesting
sites is minimized. The identified problem is closely
analogous to the p-median [9] model used extensively
for facility location problems in urban planning. In the
following sections we formally restate the model and
provide a heuristic solution approach that leads to
optimal/near-optimal solution for our replica placement
problem.

3.1 P-Median Model

The p-median model finds the p replica placement sites

 Minimize ∑∑
= =

n

i
ij

n

j
iji ydh

1 1

(1)

Subject to px
n

j
j =∑

=1

(2)

,1
1

=∑
=

n

j
ijy ni ,.....,1=

(3)

,0≤− jij xy ni ,.....,1= nj ,.....,1= (4)

(),1,0∈jx nj ,.....,1=
(5)

(),1,0∈ijy nj ,.....,1= ; ni ,.....,1=
(6)

otherwise 0
 siten replicatio toallocated is site requesting if 1





=
ji

yij

(7)

to minimize the request-weighted total distance between
the requesting sites and the replication sites holding
copies assigned. This model is formulated with the
equations presented above.

The objective function (1) minimizes the request-
weighted distance between each requesting site and the
nearest replication site. Constraint (2) states that
exactly p sites to be located to place the replica.
Constraint (3) states that each requesting site should be
allocated exactly one replication site from which it can
fetch the replica. Constraint (4) states that requests at site
i can only be assigned at replication site j if a replica is
placed at site j . Constraints (5-6) are general integrity
constraints. Here ih represents the requests at site i . For
a small network and small number of p any of the well-
known algorithms such as branch and bound can be used
[5] to solve the p-median problem optimally. However,
for a large number of constraints and variables the
problem is classified as NP-Hard [5]. Therefore, the
problem needs to be solved heuristically that find good
solutions to the problem.

3.2. Lagrangean Relaxation: A Heuristic
Approach

 A major benefit of the Lagrangean heuristic [7] over
other heuristic approaches is it gives both upper and
lower bounds for the objective function. Thus, it
provides a range in which the optimal value of the
solution lies. The basic idea is to relax some constraints
of the original model and add those constraints,
multiplied by Lagrange multiplier to the objective
function. We then try to solve the relaxed problem
optimally. The model uses a search technique to find a
set of values for Lagrange mu ltipliers that lead to a
solution of the problem that satisfies the relaxed
constraints. If the lower and upper bound of the solution
coincides we have found the optimal solution, otherwise
we can iterate or search for the best Lagrange multipliers
until the gap between upper and lower bound is
acceptably narrow. We outline the relaxation algorithm
in the next section.
3.2.1 Lower Bound Calculation:

Minimize ∑∑
= =

n

i

n

j
ijiji ydh

1 1

+∑ ∑
= =
















−

n

i

n

i
iji y

1 1

1λ

(8)

()∑∑ ∑
= = =

+−=
n

i

n

j

n

i

iijiiji ydh

1 1 1

λλ

(9)

If we relax constraint (3) and add this one into objective
function, the relaxed problem can be stated as equations
(8-9).

The other constraints (2, 4-7) remain the same as the p-
median problem. To minimize the objective function in
(9) we would like to set 1=ijy if its coefficient

() 0<− iijidh λ and 0=ijy otherwise. To set he value of ijy ,

i.e., 1=ijy , the corresponding jx ’s value should be 1 (by

constraint 4). However, constraint (2) states that we can
choose at most p replica sites for which 1=jx .

Therefore, we have to rank the values of jV s, where jV

is defined by ()∑
=

−=
n

i
iijij dhV

1

,0min λ . Find the p smallest

values of jV that have the largest impact on the

objective function. Set the corresponding .1=jx Then

set 1=ijy , if 1=jx and () 0<− iijidh λ otherwise set 0=ijy .

Calculate the lower bound of the solution ()LBZ by
finding the objective function from constraint (9) which
includes ijy that are set to 1.

3.2.2. Upper Bound Calculation

Recall that in the relaxed problem we relax constraint (2)
which states that each requesting site must be assigned to
a replication site is eased. The objective function value
found by the lower bound program ignores this
constraint. Therefore, this constraint may remain
unsatisfied which lead to an infeasible solution to the
original problem. We must find an upper bound
()UBZ of the objective function by assigning each
requesting site to the nearest replication site. The
replication sites are found from the lower bound
calculation, i.e., the sites for which the corresponding

.1=jx

3.2.3. Multiplier Adjustment

The multipliers are updated by subgradient optimization
which maximizes the lower bound of the solution to
satisfy the relaxed constraint that is relaxed. The steps
for updating the Lagrange Multipliers are given below:

1. Define subgradients t
iG for the relaxed constraint in

the current iteration by:

() niyG t
ij

t
i ,...,1 1

n

1j

=−= ∑
=

.

2. Define a step size
()

()∑
=

−
= n

i

t
i

t
LB

t
UBt

G

ZZ
T

1

2

π where π is initially

set to 2. If there is not much improvement after a

certain number of iterations π is replaced by
2
π .

3. With this step size the values of iλ are updated
by the following relationship

 () niGT t
i

nn
i

t
i ,...,1;,0max1 =+=+ λλ

The algorithm terminates either after a specified number
of iterations or the value of π becomes sufficiently
small. A more detailed discussion about this Lagrangean
relaxation technique and its application to p-median
problem can be found elsewhere [4, 5]

4. Dynamic Maintainability of Static
Placement

 The Lagrangean relaxation technique assures the
optimal or near-optimal solution based on the user
requests and network characteristics for the current
period. However, the candidate sites that hold replicas
currently may not be the best sites to fetch replica if the
user requests and network latency changes . Therefore,
relocation needs to be considered if the performance is to
be maintained. However, the relocation is costly. Files in
Grid are typically in the magnitude of 500MB-1GB, so
before relocating a file replica to another site, we must
consider the file transfer cost for this evolution. To
determine the performance degradation occurring in last
K time periods, we must determine the optimal
cumulative average response time for K time periods if
reallocation is permitted while accounting for the
transfer costs. Fortunately, the solution of this aspect of
the problem also finds the replica placement needed to
achieve an optimal /near optimal cumulative average
response time. Wesolowsky and Truscott [15] analyze a
multi-period facility location-allocation problem that
allows facilities to move. They propose a dynamic model
that minimizes three factors, (1) distributing cost, (2)
construction and removal cost for a given time period,
and (3) determines possible facility allocation to achieve
the optimal/near-optimal cumulative cost.

 In Data Grid system, the performance monitoring is
often done by a meta-scheduler or resource broker. To
remove a file from a site’s local storage the resource
broker must send a message, a small overhead message
to initiate the much larger file transfer. We will also
ignore the cost of removing a file from local storage.
We use their dynamic model [15] to find the optimal
cumulative total response time for K periods:

Minimize ∑
=

K

k 1

k
j

n

i

K

k

N

j

k
j

k
ij

n

j

k
ij

k
i acydh∑ ∑ ∑∑

= = ==

+
1 2 11

(10)

Subject to px
kn

j
j =∑

=1

 for k=1.,2...,K

(11)

,1
1

=∑
=

kn

j
ijy ni ,.....,1= ; k=1,2,...,K

(12)

,0≤− k
j

k
ij xy ni ,.....,1= ; nj ,.....,1= ; k=1,2,...,K

(13)

(),1,0∈k
jx nj ,.....,1= ; k=1,2,...,K

(14)

(),1,0∈k
ijy nj ,.....,1= ; ni ,.....,1= ; k=1,2,...,K

(15)

otherwise 0
 periodat siten replicatio toallocated is site requesting if 1





=
kji

y k
ij

 (16)





=
otherwise 0

k periodin siteat relocated is replica a if 1 j
a k

j

(17)

kj

c k
j

 periodat node tositen replicationearest from file

 theofcost on ansportati t the=

(18)

 Equations (10-16) are the multiperiod versions of (1-7)
respectively. The constraint (17) ensures that we can
consider the reallocation cost if a replica is relocated on
that site. Wesolowsky et al. [15] use dynamic
programming to solve the mathematical model optimally
for a small network size and limited number of periods.
For a large network and large value of K, the dynamic
programming generates huge state spaces and stages,
therefore the authors suggest heuristics to generate good
solutions.

 We can use the Lagrangean relaxation technique to
generate the optimal or near-optimal solutions to the
dynamic model. Once achieved, we compare this result
with the current one. The current result is calculated by
adding total response time for K periods assuming that
replicas are placed to the sites that gave the optimal
value for the p-median problem at period K=1. We must
then decide if relocation is appropriate. Table 1 presents
4 cases to consider when determine if relocation should
occur and it also identifies a candidate target. For
simplicity, we consider a 2-median problem and 3 time
periods for the dynamic model. We compare the current
result (CR) with optimal result (OR) and check whether
the difference is more than the allowable threshold (T).
For example, the solution found by the p-median
problem at period K=1 suggests that the replica should
be placed at Site A and Site B. We must analyze the
performance of this placement decision with respect to
three consecutive periods that include the first period
when the static optimal decision was made and the
subsequent two periods.

Table 1: Replica Reallocation Decision

Case (CR–

OR)>T
Period
1

Period
2

Period
3

Decision

1 No A, B A, B A, B No
Relocation

2 No A, B A, B C, D Relocate at
C, D

3 Yes X, Y X, Y X,Y Relocate at X,
Y

4 Yes P, Q R, S M, N Re-optimize
by p- median
with aver-age
requests and
average
bandwidth for
last 3 periods

In Case 1, we find that the optimal solution complies
with our early decision so replicas are placed correctly.
In Case 2, we find an optimal solution that suggests
replica should be placed at Site A and Site B for time
period 1 and 2 but to get the optimal value we should
consider a relocation to Site C and D for time period 3.
Therefore, we can relocate at C and D at the end of time
period 3. In Case 3, we found that site (X, Y) is giving
the optimal cumulative response time suggesting that
Site(X,Y) show a consistent performance since last three
periods even we consider the relocation cost, i.e.,
transportation time of a file to site X, Y from the best
candidates (which are A and B currently). Moreover, the
difference between current and optimal solution is above
the prescribed thres hold. The Case 4 addresses a random
situation where we are not able to find a set of sites that
perform satisfactory throughout the last three time
periods. Moreover, the tolerance level is above the
threshold, so we must consider relocation.
Unfortunately, the sites must now be found by solving
the p-median problem that takes average request and
average network latency as parameters. The averages are
calculated by averaging the request and latency for last
three time periods.

5. Simulation

Replica placement algorithms must be tested
thoroughly before deploying them in real Data Grid
environments. One way to achieve a realis tic evaluation
of the various strategies is through simulation that
carefully reflects real Data Grids. On a Data Grid
different jobs are submitted from various sites. Mean job
execution time is a good measure of effectiveness of the
replication strategies. Jobs in the Data Grid request a
number of files. If the file is at a local site, response time
is assumed to be zero; otherwise the file must be
transferred from the nearest replication site. Thus, job
execution time incorporates the response time required
to transport a file. The best replication strategy
minimizes the mean job execution time and also

minimizes the average response time. We validate our
replica placement algorithms with average response
times. We will validate our placement algorithms with
mean job execution time in the future. Our replica
placement algorithms are evaluated with a simulator
written in Java. The simulation generates random
background traffic and grid data requests.
.

5.1 Grid Configuration

The study of our replica placement algorithms was
carried out using a model of the EU Data Grid Testbed 1
[2] sites and their associated network geometry. Site 0 is
the CERN (European Organization for Nuclear
Research) location. Initially all master files are
distributed to CERN. A master file contains the original
copy of some data samples and cannot be deleted. Each
circle in Figure 2 represents a testbed site and a star
represents a router. Each link between two sites shows
the available network bandwidth. The network
bandwidth is expressed in Mbits/sec (M) or Gbits/sec
(G). We include the storage capacity at each router, i.e.,
intermediate nodes. The intermediate nodes have higher
storage capacity than the testbed sites but smaller
capacity than CERN. Placing data at intermediate nodes
moves it closer and hence more accessible to testbed
sites. The file requests are generated from the testbed
sites.

S15

S16

S11

S13

S12

S9

S2 S0
S8

S1

S7

S6

S5

S4

S10

S14

S3

2.5 G 2.5 G 10 G 155 M

2.5 G
622 M

155 M

2.5 G

10 G

10 G

2.5 G

10 G

155 M

1 G

10 G

10 G

10 G 45 M

155 M45 M

10 M

S17

RAL Imperial
College

Nordu
Grid

NIKHEF

CERN
Lyon

Milano

Torino

Catania

Bologna

Padova

Figure 1: The EU Data Grid Testbed 1 Sites and the
Approximate Network Geometry.

5.2 Simulation Input

Our program’s input is from two configuration files. One
file describes the network topology, i.e., the link between
different sites, the available network bandwidth between
sites, and the size of disk storage of each site. The
second configuration file contains information about the
number of requests generated by each testbed site and
the current network load. The network load is varied to
test the impact on our replication algorithm. We consider
low, medium or heavy traffic. File requests may either
follow uniform distribution or normal distribution. We
set three maximum values for uniform file requests
where each testbed site can generate requests that are
uniformly distributed with a maximum of 10, 30, or 50.

We also consider ten random normal requests with
different mean and variance. The testbed site that
generates each of those random requests is chosen
arbitrarily. We consider uniform and normal requests
with diverse variances to analyze how well the
replication algorithms performs when there is no co-
relation among previous requests, that is ., the requests
are totally random.

6. Simulation Results

Each site records the time taken for each file requested to
be transferred to it. This time record forms the basis to
compare various replication strategies. We compare our
replication algorithm with respect to average response
time. Response time is the time that elapses from a
request for a file until it receives the complete file. The
average of all response times for the length of the
simulation is calculated. The best replication strategy
will have lowest response time. Each file is 100 MB in
size. After some initial runs, we place a replica at sites
that will optimize either one of the objectives, i.e., the
request objective (place the replicas to the p sites that
request most of the files), static p-median, and dynamic
p-median. The Best_Client strategy considers the request
objective. After six (K=6) time periods we consider
relocation. For simplicity we set the value of Thres hold
to zero (T=0), i.,e., we consider relocation when we can
find an optimum aggregated response for the last six
periods that is better than the current accumulated
response time. We plan to work with variable threshold
in future. We test our algorithm for two diffe rent values
of p, i.e., p=5 or p=7. We calculate the average response
time for future requests in different network load by
assuming the replicas are now at the candidate sites.

Table 2. Average response time for different
models, network loads, user requests when p=5

Traffic Request Best_
Client

Static P-
Median

Dynamic
 P-Median

Low Uniform (10) 2883 896 714
Medium Uniform (10) 8765 1669 1368
High Uniform (10) 9906 2975 1737
Low Uniform (30) 8216 2734 1753
Medium Uniform (30) 17140 4205 3310
High Uniform (30) 25189 7862 5320
Low Uniform (50) 15483 3434 3184
Medium Uniform (50) 25115 7243 6054
High Uniform (50) 28649 12585 6798
Low Normal 40970 7925 7076
Medium Normal 86454 16381 11714
High Normal 57585 16547 12232

We accumulate the average response time for the next
sixty runs to analyze the performance of the replica
placement algorithms. We also vary the network load
with other background traffic to see its impact on the
replication algorithm. The results of accumulated

average response time (in seconds) are shown in Table 2
and 3.

 Table 2, 3 show that the response time increases with
increasing requests. There is a strong correlation
between response time and user requests as one would
expect. We have highest average response time in peak
period, i.e., when user requests reach the maximum, as
well the background traffic is highest. We include the
dynamic traffic condition and random requests to see the
impact on the dynamic model. The dynamic model that
considers the relocation shows significant performance
improvement compared to static and best-client model in
different background traffic conditions as well when user
requests vary randomly, that is, no relation with previous
requests (uniform random), or the future requests are
normally distributed and centered on previous requests.
We can get a significant performance improvement with
dynamic model if the previous best paths become
congested because of high background traffic or if
current user requests vary significantly.

Table 3. Average response time for different
models, network loads, user requests when p=7

Traffic Request Best_
Client

Static
P-
Median

Dynamic
P-Median

Low Uniform (10) 3297 149 146
Medium Uniform (10) 2865 246 218
High Uniform(10) 7670 382 381
Low Uniform (30) 5995 433 409
Medium Uniform (30) 16642 838 709
High Uniform (30) 19237 1052 951
Low Uniform (50) 9549 723 706
Medium Uniform (50) 30699 1249 1204
High Uniform (50) 26136 1245 1220
Low Normal 22243 1312 1312
Medium Normal 68454 3196 3022
High Normal 100073 4032 3674

The proposed mathematical models require little
computational time to reach the solution by both static
and dynamic p-median models. The simulation was
carried out on a Pentium 4 processor 2GHz with 512 MB
RAM. With current network size, the computational time
is only 10 seconds on average to reach a solution using
static or dynamic p-median model.

7. Conclusions

 We consider a p-median model for the replica
placement problem. The model finds the locations of p
candidate sites to place replica that will minimize the
aggregated response time. Due to dynamic nature of
Grid, the placement decision may not be optimal for
subsequent periods. Therefore, we need to decide about
relocation. However relocation needs transportation cost
for transferring the file to the relocated sites. We propose
a dynamic replica maintenance algorithm that suggest
for a relocation of candidate sites by considering the
relocation cost. The decision of relocation is made when

the performance metric degrades significantly in last K
time periods. We validate our model by using a model of
the EU Data Grid testbed 1 sites and their associated
network geometry. However, we need to decide about
the value of p for our p-median problem that gives a
satisfactory response time to the requesting sites.
Moreover, the term Threshold (T) needs to be calculated
before using the dynamic maintenance algorithm. Its
value should not be too small or too large. One of the
choices may be to use a value that changes
proportionally with respect to the average response time
in each time period.

References:

[1] Buyya, R., Abramson, D., and Giddy, J.
Nimrod/G: An Architecture of a Resource
Management and Scheduling System in a Global
Computational Grid, HPC Asia 2000, May14-17,
2000, pp 283-289, Beijing, China.

[2] Bell, W., D. G. Cameron, L.Capozza, A., P.
Millar, K. Stockinger, and F. Zini. OptorSim- A
Grid Simulator for Studying Dynamic Data
Replication Strategies. International Journal of
High Performance Computing Applications,
17(4), 2003.

[3] Chervenak, A., I. Foster, C. Kesselman, C.
Salisbury, and S. Tuecke. The Data Grid: To
wards and Architecture for the Distributed
Management and Analysis of Large Scientific
Data Sets. Journal of Network and Computer
Applications, 23(3):187-200, 2000.

[4] Daskin., M.S, Network and Discrete Location
Models: Algorithms and Applications, John
Wiley & Sons, 1995.

[5] Drezner, Z., and H. W. Hamacher. Facilty
Location Applications and Theory, Springer
Verlag, Berlin, Germany, 2002.

[6] Foster, I. Internet Computing and the Emerging
Grid, Nature Web Matters, 2000.

[7] Fisher, M.L. The Lagrangian relaxation method
for solving integer programming problems,
Management Science, 27, 1-18

[8] The GriPhyN Project, http://www.griphyn.org
[9] Hakami, S. Optimum location of switching

centers and the absolute centers and medians of a
graph, Operations Research, 12, 450-459

[10] Kavitha, R., and I. Foster. Design and Evaluation
of Replication Strategies for a High Per-
formance Data Grid, in Computing and High
Energy and Nuclear Physics 2001 (CHEP’01)
Conference.

[11] Kavitha, R., and I. Foster. Decoupling
Computation and Data Scheduling in Distributed
Data-Intensive Applications. Proceedings of
11th. IEEE International Sy mposium on High

Performance Distributed Computing (HPDC-11),
Edinburgh, Scotland, July 2002

[12] Kavitha, R., A. Iamnitchi, and I. Foster.
Improving Data Availability through Dynamic

Model Driven Replication in Large Peer-to-
Peer Co mmunities. Proceedings of Global and
Peer-to-Peer Computing on Large Scale
Distributed Systems Workshop, Berlin, Ge rmany,
May 2002.

[13] Rahman, R. M., K. Barker and R. Alhajj. Replica
Placement on Data Grid: Considering Utility and
Risk. IEEE International Conference on Coding
and Computing (ITCC), April, 2005, pp. 354-
359.

[14] Toregas, C., R. Swain, C. Revelle and L.
Bergman, The location of emergency service
facileties, Operations Research, 19, 1363-1373.

[15] Wesolowsky, G.O., and W.G. Truscott. The
multiperiod location-allocation problem with
relocation of facilities. Management Science, 22,
September, 1975.

