
THE UNIVERSITY OF CALGARY

Optimized Inspection Times of Systems

in

Stochastic Decay

by

Thomas Boyes Morrison

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF MATHEMATICS AND STATISTICS

CALGARY, ALBERTA

April, 1993

© Thomas Boyes Morrison 1993

THE UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of

Graduate Studies for acceptance, a thesis entitled, "Optimized Inspection Times

of Systems in Stochastic Decay," submitted by Thomas Boyes Morrison in partial

fulfillment of the requirements for the degree of

Date

Dr. E. G. Enns
Department of Mathematics and Statistics

of Science.
/ 7

/ 2 74

J. R. Collins
Department of Mathematics and Statistics

4••
Dr. R.J. Brown
Department of Geology and Geophysics

11

Abstract

Dynamic programming techniques are used to examine the problem of determin-

ing inspection times of a system that can be modelled as a Markov process. The

computer algebra system MACSYMA is used as the programming language. Rec-

ommendations for future work on determining optimized inspection times for more

general systems than were examined in this thesis are documented.

111

Acknowledgements

A lot of friends have contributed to my being able to write this thesis and successfully

attend graduate school. Without the support of any one person of the following the

project would have been unimaginably more difficult.

To Robert Worthingham of the Department of Design Engineering of Nova Cor-

poration of Alberta I owe my greatest thanks upon the completion of this project.

Bob has supported me financially through several projects dealing with exterior cor-

rosion growth on high pressure line pipe, and is responsible for introducing me to the

problem of determining optimized inspection times. It was Bob's idea that I try to

return to school after many years in the work force. His moral support since we met

nearly 20 years ago, in particular since 1989 when I started working on the series of

projects, has directly led to my success in graduate school.

Dr. Ernest G. Enns has given me much moral support during the two or so

years we have known each other during the course of this project. Dr. Enns also

provided funds for a wonderful trip to the Statistical Society of Canada convention in

Edmonton during May 1992 and unexpectedly and most graciously provided funds

for travel to the International Symposium on Symbolic and Computer Algebraic

Computation (ISSAC '92) at the University of California, Berkeley in July 1992,

and the Statistical Society of Canada convention at Acadia University in June 1993.

A large amount of the fun of this project and being a graduate student has been due

to Dr. Enns. While Bob Worthingham is responsible for my beginning this project,

the assistance and support of Dr. Enns is responsible for my completing this project

and being proud of the work.

iv

Halsey Boyd has taught me how to be a student again and has convinced me

that panic is not a viable methodology for completing assignments. During the very

difficult time when my code could not match the results published in a paper Halsey

helped me go through my code line by line and helped convince me that what I had

programmed was indeed what the authors had written. Few people are as fortunate

as I was to have the help of a close friend also experiencing the "joys" of graduate

school.

Mike Nemeth has kept a close and watchful eye on my sanity during the past 21

months, and has provided financial and sanity support in the form of making sure I

was always prepared for the next day's work. His sense of humour during the project

has been most valuable. Mike has lived this project with me on a nearly day-by-day

basis and without his help the probability of success would have been much lower.

While the thesis examines optimized inspection times of systems, his intervention

provided optimized maintenance of me before I broke and had to be replaced.

Alan Trigg and the Facility Integrity Group of the Field Services Department of

Nova Corporation of Alberta have contributed financial and moral support to the

work herein by hiring Morrison Scientific to determine whether corrosion pits from in-

line-inspections of their pipelines can be automatically correlated from one inspection

to the next. Some of the preparatory work for this NOVA work is examined in

Chapters 7 and 8 of this thesis.

Bob Marcellus of C.M.E.L. Enterprises Ltd. has given me support since 1981.

Bob has told me he always believed I had the capability to get an advanced degree.

Here is the proof. The many projects I have had a part in while at C.M.E.L. were a

fine training ground for the type of work required for preparing a thesis.

v

Lloyd Rankin of Mount Royal College offered much moral support and enthusiasm

for my returning to graduate school. Without his support it would have been much

more difficult to make those important decisions two years ago.

Mike Paolucci helped me understand how to calculate the logarithm of a matrix.

His phone call and letter explaining how to do it were most welcome and provided

insight as to how to turn a discrete Markov chain into an equivalent continuous-time

Markov chain. How to do this is virtually impossible to find in the literature.

Ralph Kiassen provided me financial support for four years from 1988 to 1992 and

directly contributed to my starting my own company in Calgary. The foundation

upon which this thesis was built was constructed by Ralph.

Dave Edwards contributed to my well being with moral support throughout the

duration of this project, and checking of code during the difficult period of this

project. Indy Lagu provided moral support and advice as the project neared its end.

At the completion of this project my supervisor, Dr. E.G. Enns, and the other

members of my committee, Dr. J.R. Collins and Dr. R.J. Brown, made many con-

structive comments and made this thesis a better paper.

Finally, I would like to thank several other friends who have quietly asked "how

school was going" every single week and have lived the highs and lows of the project

with me. After over 90 weeks I can tell Margaret Kiedynk, Mike Nemeth and

Jonathan Levine and Craig Friedt and the other members of Tuesday Night Mental

Health Committee, Rosemary Snead and my running friends David McInnis and

Joyce Stach that the project is complete and successful.

vi

Dedication

I began running two years ago. I entered graduate school less than two years ago.

Throughout this period I have been motivated by my silent friends Mabel C. Bragg

and Watty Piper who wrote and retold, respectively, their wonderful stories "The

Pony Engine" and "The Little Engine That Could." The stories are now over 60

years old and perhaps still serve as the first literature a child can read and under-

stand where the objective of the protagonist is to reach some impossible goal. Each

time I have been faced with difficulties running or being in graduate school I have

remembered the wonderful phrase "I think I can. I think I can."

I dedicate this thesis to the memories of Mabel C. Bragg and Watty Piper, and to

my mother Pat, my father Tom and my sister Sheila who also live by this unspoken

family motto.

vii

Contents

Approval Page

Abstract

Acknowledgements

Dedication

1 Introduction and Motivation 1
1.1 Outline of this Thesis 2

2 Literature Search: The State-of-the-Art 5
2.1 The Work of the Mine Group 6

2.1.1 General Overview of the Mine Group Papers 7
2.1.2 Mine and Kawai, 1975 [31] 8
2.1.3 Ohnishi, Kawai and Mine, 1986 [40] 8

2.2 The Work of the Plisica Group 9
2.2.1 General Overview of the Pliska Group Papers 10

2.3 Other Individual Contributions 11
2.4 Other Interesting Contributions 14

3 The Simplest Type of Inspection Problem 15
3.1 Introduction and Definitions: A Markov Chain 15

3.1.1 . A Markov Process 15
3.1.2 Discrete Semi-Markov Process 16
3.1.3 Continuous Semi-Markov Process 16
3.1.4 Continuous Markov Process 16

3.2 How Are the Values in the Continuous Transition -

Matrix Interpreted? 17
3.3 Stochastic Deterioration of a Three-Level System 18

4 Dynamic Programming 26
4.1 Introduction 26
4.2 The Car Rental Agency 27

4.2.1 Overview of the Program DYNAMIC1 34
4.2.2 The Value Determination (Equation-Solve) Routine 35
4.2.3 The Policy Iteration (Improvement) Routine 35
4.2.4 The MACSYMA Output for the Program DYNAMIC1 . 36

vi"

5 The Mine and Kawai Dynamic Programming Algorithm 40
5.1 Introduction 40
5.2 The Mine and Kawai Model 42

5.2.1 Equations, Definitions and Notation 42
5.2.2 The Dynamic Programming Algorithm 46

5.3 Comparison of Results 48
5.4 A Full Optimized Inspection Analysis 51

6 The Ohnishi, Kawai and Mine Dynamic Programming Algorithm 58
6.1 Introduction 58
6.2 The Model 60
6.3 A Full Optimized Inspection Analysis 64

6.3.1 State 2 Equations 64
6.3.2 State 1 Equations 64
6.3.3 State 0 Equations 65

7 The Real World 69
7.1 Introduction 69
7.2 Determining a Transition Matrix from Observations: The Raw Data 71
7.3 Making a Continuous Markov Model from a Discrete Model: The

Logarithm of a Matrix 74
7.3.1 Logarithm of a Matrix: Infinite Series Approximation 74
7.3.2 An 8 x 8 Example Using the Infinite Series Approximation . 75
7.3.3 Logarithm of a Matrix Using the Spectral Resolution of f(A) 81

7.4 Summary: It is proposed to use the Discrete Transition Probability
Matrix in Place of the Continuous Transition Probability Matrix . . . 84

8 Summary and Recommendations 85
8.1 Why The Models Presented Herein Cannot he Used for the Problem

Examined for this Project 85
8.2 What about the Pliska Group? 86
8.3 Recommendations and Future Plans 86

8.3.1 A State-Dependent Decision 87
8.3.2 Lack of Total Positivity Criterion 88
8.3.3 More General Decay Modes 88
8.3.4 More General Cost and Reward Structure 89
8.3.5 Series Systems 89

8.4 Summary of the Method That Must Be Developed 91

Bibliography 92

ix

A Mine and Kawai MACSYMA Code 98

B Ohnishi, Kawai and Mine MACSYMA Code 113

x

List of Figures

3.1 Transition Diagram for the Simplest Inspection Problem 19
3.2 Cumulative Probability of Failure for a System Inspected to be in

State 2 22
3.3 Cumulative Probability of Failure for a System Inspected to he in

State 1 23
3.4 Cumulative Probability of Failure for a System Inspected to be in

State 0 25

4.1 The Dynamic Programming Algorithm for the Car Rental Agency . . 30
4.2 The MACSYMA Program DYNAMIC1 31
4.3 Policy Evaluation or Equation Solving Routine for the Program DY-

NAMIC1 32
4.4 Policy Iteration Routine for the Program DYNAMIC1 33
4.5 First Part of Output from MACSYMA 37
4.6 Second Part of MACSYMA Output 38
4.7 Third and Final Part of MACSYMA Output 39

5.1 Transition Diagram for the Mine and Kawai Problem 41
5.2 Definitions of the Mine and Kawai Problem 43
5.3 The Dynamic Programming Algorithm for the Mine and Kawai Problem 45
5.4 Illustration of Minimum of H in Comparison to Replace Option . . . 49
5.5 Comparison of Inspection Policies for the Mine and Kawai Work, and

for this Project 50
5.6 Mine and Kawai Inspection Policy 52
5.7 Inspection Policy for this Project 53
5.8 Values Used in the Example 53
5.9 Minimum of H in Comparison to Replace Option for State 1 56
5.10 Minimum of H in Comparison to Replace Option for State 0 57

6.1 Dynamic Programming Algorithm: Ohnishi, Kawai and Mine Problem 63
6.2 Values Used in the Example 64
6.3 Illustration of G for State 2 66
6.4 Illustration of G for State 1 67
6.5 Illustration of G for State 0 68

7.1 The Continuous Time Differential Equations Determined From the
Logarithm of the Discrete Transition Probability Matrix 79

xi

7.2 Comparison of Probabilities as a Function of Time from the Differen-
tial Equation and Matrix Multiplication Solutions 80

xii

Chapter 1

Introduction and Motivation

In this thesis two methods for determining the inspection times of a system operating

under stochastic' deterioration are examined. The project was motivated by several

studies the author has conducted for the Department of Design Engineering, and the

Facility Integrity Group of the Field Services Department of NOVA Corporation of

Alberta. The studies began with a short review, or translation from "mathematics"

into "english", of a paper describing a mathematical model that was used to describe

the reliability of a decaying system [35, 48, 49]. The project developed into the

implementation of the model for the Department of Design Engineering so they

could use the model as part of their cost estimating procedures. Specifically, the

model was used to examine exterior corrosion growth on high pressure natural gas

pipelines. The idea was that the growth of corrosion on the outside of the pipeline

could be modelled as being due to the quality of coating, desciibed by a one or

two element vector input by the user. A high quality coating reduces the corrosion

growth to very small levels while a lesser quality coating does not inhibit growth and

the reliability of the pipeline as a function of time is much less [36, 37].

The model prepared for the Department of Design Engineering was a brute-force

model where a large system of differential equations was solved using Runge-Kutta

techniques. Among the several options the user could select were those to determine

a single time to inspect the pipeline such that the probability of failure (or repair)

'satisfying the laws of probability

1

2

of the pipeline would be a minimum over a preselected lifetime. The user could also

select to determine two "optimized" inspection times. It was during the course of

this work that the question arose as to whether it was possible to determine the next

time to inspect the pipeline if its present state were known, over a not predetermined

lifetime (i.e., over an infinite horizon). It is the determination of inspection times

over the infinite horizon, motivated by the NOVA projects, that formed the problem

to be solved in this thesis.

Given the differential equation model it remained to determine approximate val-

ues for the transition parameters [5].

Further motivation for solving the problem in this thesis was generated by other

work dealing with analyzing corrosion growth data and, based on the data, estimat-

ing the reliability of the pipeline as a function of time. In this work, performed for

the Facility Integrity Group of the Field Services Department of NOVA [6], mea-

surements from two inspections of a pipeline were analyzed with the goal being to

determine the rate of corrosion growth on the pipeline. The work is referred to as the

"automatic correlation" problem because the idea is to write software that, given two

inspection data sets, will automatically generate a Markov chain transition matrix

for the growth of the corrosion between the two inspections. As preparation for this

work, some of the problems have been analyzed in this thesis.

1.1 Outline of this Thesis

The work conducted for this thesis is presented in seven parts beginning with the

next chapter.

3

In Chapter 2 the results of a literature search on the optimized inspection timing

problem are presented.

The actual calculations of optimized inspection times are presented in Chapters

3, 5 and 6 with Chapter 4 giving some necessary preparation.

In Chapter 3 the simplest model of a deteriorating system is examined. Say

the system has N + 1 states and the system can be in any state from 0 to N and

still operate. In this model the ith state can only decay into the i + 1st state. The

ultimate state is the failed state. The objective is to determine, given that the system

is observed to be in state i, the time of next inspection such that the probability of

the system having failed (or gone into the failed state) is kept below some chosen

level c. No cost considerations are included in this model. It is assumed that the

decay rates are known by the user.

A review of the dynamic programming methodology is presented in Chapter 4.

This serves as an introduction to the more complicated dynamic programming models

presented in Chapters 5 and 6.

Three of the models created by Mine and his co-workers in Japan during the

1970's and 1980's were implemented in software. Results from two of the models

and their output are described in Chapters 5 and 6. These models use dynamic

programming methodologies and illustrate what can be done solving the optimized

inspection time problem from a theoretical viewpoint in contrast to the practical

viewpoint of the final chapters. The model in Chapter 5 uses policy iteration; the

model in Chapter 6 uses successive approximations. In contrast to the models pre-

sented in Chapters 3 and 4, cost considerations are used to determine optimized

inspection times in the models considered in Chapters 5 and 6.

4

In Chapter 7 the problem of determining the decay rates is examined in detail.

Given the transition matrix created by analyzing the system at two different times,

the deterioration regime of the system must be determined. This is not a trivial

problem. The objective of the work conducted for this chapter is to begin with

a data set and end with a calculation of the failure probability of the system as a

function of time into the future. Among other difficulties presented to someone trying

to conduct the analysis for this chapter is the changing of the data from the discrete

time Markov chain data into a continuous-time Markov chain for use in solving a

system of differential equations. The greatest effort is concerned with obtaining the

logarithm of a matrix. Only probabilities enter the calculations in this chapter. No

cost considerations are involved.

Several other aspects of the optimized inspection time problem that are important

to real-world systems are reviewed in Chapter 8. As well, for completeness, and to

show what problems still must be solved for real-world situations, future work and

recommendations are also reviewed in this chapter.

Chapter 2

Literature Search: The State-of-the-Art

The objective of this work is to determine inspection times over an infinite horizon.

The literature obtained during the course of the research conducted for this project

can be divided into four groups, or:

1. The exact knowledge situation, as documented by Mine and his group of re-

searchers from Japan.

2. The false positive/ negative situation, as documented by Pliska and his group

of researchers.

3. Individual contributions from several researchers, mostly in the form of only

a single paper, in contrast to the several contributions from the two previous

groups.

4. Other interesting contributions.

There is a great difference in the models depending upon whether the failure of

the system is immediately obvious to the researcher. The Mine and Pliska groups

use models where failure is obvious. Many of the other researchers use models where

failure is only known by inspection.

5

6

2.1 The Work of the Mine Group

Mine and his co-workers have produced several papers examining the problem of

determining optimized inspection times. In each of the papers they use the same

model for the deterioration and failure of the system. The failure of the system is

obvious to the researcher. The topics of the papers are:

1. Mine and Kawai, 1974 [30]: Description of the deterioration model.

2. Mine and Kawai, 1975 [31]: Determination of optimized inspection times using

minimum average cost per unit time as the criterion. Operating and repair

costs do not depend on the state.

3. Mine and Kawai, 1976 [32] : Determination of optimized inspection time us-

ing minimum average cost per unit time as the criterion when the inspection

interval is governed by a probability function, e.g. exponential distribution.

4. Mine and Kawai, 1982 [33]: Determination of optimized inspection times us-

ing minimum total discounted time when the system is not operating as the

criterion.

5. Kawai, 1983 [15, 16]: Determination of ordering and replacement times us-

ing minimum average cost per unit time as the criterion, when the system is

observed continuously.

6. Kawai, 1984 [17]: Determination of optimized inspection times using minimum

expected total discounted cost as the criterion.

7

7 Ohnishi, Kawai and Mine, 1984 [39]: determination of optimized inspection

times using minimum average cost per unit time as the criterion. The infor-

mation about the state of the system is not exact.

8. Ohnishi, Kawai and Mine, 1986 [40]: Determination of optimized inspection

times using minimum average cost per unit time as the criterion. Operating

and repair costs depend on the state.

In each of these papers either a policy iteration procedure or a successive approx-

imation procedure is used to determine the inspection times.

An attempt has been made to develop software to duplicate the results for three

of the papers, ([31, 17, 40]) in the above list. In Chapter 5 the model for Mine and

Kawai [31] is presented. In Chapter 6 the model for Ohnishi, Kawai and Mine [40]

is presented. The model for Kawai [17] is not presented in this thesis.

2.1.1 General Overview of the Mine Group Papers

In all of the papers the majority of the effort is spent determining a function the

authors refer to as H or G. In general the function will be referred to as H. The

function H depends on the criteria used to solve the problem.

Each paper rehashes a proof that the function H has at most one minimum, or

a minimum at oo .

The system is described as being in a state ranging between 0 and N. The

failure state is N + 1. For each state, except state N, there exist three alternatives:

i) immediately replace the system; ii) inspect t years in the future or iii) inspect at

oo, i.e. let the system decay until failure. For state N the two alternatives are to

8

replace immediately or let the system decay. (This might not be correct for all of

the papers, but the generality of three alternatives is correct.)

For each state the alternative giving the least cost is chosen. If H has a minimum,

then the value of H at the minimum is compared with the replacement option. If

H does not have a minimum, then the value of H at t = 00 is compared with the

replacement option. An inspection time is chosen if H has a minimum, and if the

value of H at this minimum is less than the replacement option.

2.1.2 Mine and Kawai, 1975 [31]

This paper is examined in detail in Chapter 5.

This is the only paper of the group that uses policy iteration. A system of

equations is solved repeatedly until the average cost per unit time is repeated in two

successive steps.

The software gives the same basic form of results as documented in the paper;

however, a table of results in the paper cannot be completely reproduced.

2.1.3 Ohnishi, Kawai and Mine, 1986 [40]

This paper is examined in detail in Chapter 6.

The method used is successive approximation. Each state has associated with it

an operating cost per unit time. At each step the option minimizing the cost per

unit time is solved successively for each state.

9

2.2 The Work of the Pliska Group

S. R. Pliska, his graduate students and co-workers approach the optimized inspection

time problem in a very different manner than the Mine group. Again, the failure of

the system is obvious to the researcher. The major difference between the two groups

is that instead of the exact state of the system begin made known to an inspector

after an inspection, combinations of false positives and false negatives are included

in the model. Another theme in the papers is that only one corrective action can

be made during the infinite time period. These models are far more appropriate to

medically oriented problems than machine oriented problems. None of the Pliska

group models were analyzed as part of this thesis. The topics of some of their papers

are:

1. Milioni, A.Z., 1987 [27]: This work forms Milioni's Ph.D. thesis, supervised

by Pliska. Two general methods are used to determine inspection times. The

optimized inspection times are determined by minimizing the probability of

failure. They can also be determined by minimizing the budget such that

the probability of failure is bounded from above. The applications examine

the medical screening situation where, for example, breast cancer or a post-

operative infection is the failed state. In situations such as these the cost of

failure cannot be measured with a monetary cost, so a catastrophic (infinite

cost) procedure is also modelled.

2. Milioni, A.Z., and S.R. Pliska, 1988 [28, 29]: These two papers are reviews and

extensions of Milioni's dissertation. In the first a binary (positive/negative)

test with finite probability of a false positive is modelled. A single repair (or

10

corrective action) can occur during the life of the system (i.e. a single oper-

ation). They use dynamic programming to compute the minimum expected

cost, and the cost is a function of the age of the system. In the second paper

the catastrophic case is examined in detail.

3. Ozekici, S., and T. Papazyan, 1988 [42]: In this paper the authors also ex-

amine the catastrophic failure case. Inspection models comparing number of

inspections and probability of detection of positives are analyzed.

4. Ozekici, S., and S.R. Pliska, 1991 [43]: The possibility of false positives and

false negatives are modelled in this paper.

2.2.1 General Overview of the Pliska Group Papers

The flavour of the Mine papers is significantly different from the flavour of the Pliska

papers. The major difference is that the former group is more concerned with engi-

neering applications where a measurement system can yield an accurate assessment

of the state of the system. In the case of a machine the system can be repaired an

infinite number of times. In the latter set of papers medical testing applications are

modelled. In these cases false results from tests are important and once the system

has failed (or the patient has died or suffered horribly), the model terminates.

The Pliska types of analyses, incorporating both false test results and catastrophic

failure into the models, yield much more complicated models to be solved than do

the Mine papers.

11

2.3 Other Individual Contributions

Literature reviews of the maintenance problem are presented in [21, 38, 41, 45, 52, 60].

Several other researchers have contributed to the optimized inspection time prob-

lem, although it was not obvious in the literature search conducted for this project

that they have published as much on the specific problems as have the Mine and

Pliska groups.

Barlow and Proschan [3] (and other work referenced in their book) are usually

acknowledged as one of the starting points for work on inspection times. In Chapter 4

of their book several maintenance policies are examined. The models reviewed by

Barlow and Proschan are different from those above in that the system modelled

can fail without the researcher so knowing. The objective is to minimize the time

between failure of the system and detection of the failure by the researcher. A

typical example of such a system is a ballistic missile. A system such as this has to

be operable continuously; however, failure of a guidance component is not obvious

to an observer.

A variant of the Barlow and Proschan work is presented by Beichelt [4]. Failure

can only be detected after the next inspection. Minimax techniques are used.

Failure can only be detected by inspection in the, model of Kaio and Osaki [12].

Checking time and imperfect inspections are analyzed in this paper.

Minimization of average cost per unit time is used by Kao [13] to determine

optimized inspection times. Policy iteration is used. This paper is similar in tone to

the Mine group work.

Kander [14] models a system where failure can only be determined by inspection.

12

The efficiency of modelling the system as having N levels compared to a two level

system is examined. Various checking and time costs are used as the optimization

criteria.

The number of checks per unit time is used by Keller [18] to model the optimized

inspection time problem. The failure can only be determined by inspection. The

calculus of variations is used to determine the optimum frequency of inspections.

As with the Barlow and Proschan model, the duration of time between failure and

detection is important. A more accurate result than this is given in a second paper

by Keller [19]. A non-linear differential equation is solved for the optimum frequency

of checking.

Luss' master's thesis work is reviewed in [25]. Several different models are solved

by differentiation and by dynamic programming. The main emphasis is on including

a non-zero inspection time.

Costs of occupancy are included in the optimized inspection time analysis in

another paper by Luss [26]. The deterioration rate for each state is exponential (and

equal). Inspections are at constant time intervals. The model assumes an infinite

number of cycles between repairs.

Constant and increasing failure rates are used to model the system deterioration

in a paper by Mokkapati and Venkata [34]. The maintenance plan described in this

paper is applied to a coal mine power system where groups of equipment, all with

different failure rates, are analyzed.

The minimization of the expected average cost per unit time is used as a criterion

by Sengupta [50]. The information obtained during an inspection is not perfect. A

delayed replacement is possible when the salvage value of a system is taken into

13

account. State occupancy costs are accounted for by revising the costs. The model

then becomes a single-cycle problem.

A two-state system is modelled by Sernik and Marcus [51]. The machine produces

material with or without inspection. The situation is modelled by the underlying

probability distribution of the machine being in the good or bad state. Several

examples are presented.

Two simplifying assumptions are incorporated into the work of Sherwin [53].

The first is that incorporating an equal conditional probability of failure between

two inspections, given survival to the inspection, results in a near optimal schedule.

The second is that the fraction of failures prevented by inspection is a function only of

the interval-risk under failure-only maintenance. The analyses presented by Sherwin

"tend to justify traditional schedules and urge better supervision of maintenance".

A gamma failure distribution is used to model deterioration in the work by Sim

and Endrenyi [55]. The mean time to preventive maintenance under Poisson dis-

tributed failures is used as the optimization criterion.

Incomplete information is used by Sondik [56] to model the inspection problem.

A detailed example to a two-state system is given in the paper.

Optimal reliability based inspection schedules are being implemented for offshore

petroleum structures in the North Sea. In particular, crack length criteria and the

ability to determine the presence of cracks in a structure are among the criteria used

in minimizing the total expected cost of the structure over its lifetime. This work is

reviewed by Sorensen et al. [57] and papers referenced therein.

14

2.4 Other Interesting Contributions

A Brownian motion developing in time with associated cost and inspection cost is

analyzed in two large papers by Anderson and Friedman [1, 2].

Various applications to the medical screening situation are given in [20], [24],

[46], [47] [54], and [61].

Kumar, Kapoor and Gupta [22] examine a series system using policy iteration.

Chapter 3

The Simplest Type of Inspection Problem

In this chapter some terminology will be defined and a simple model of a decaying

system will be examined.

3.1 Introduction and Definitions: A Markov Chain

In all of the transition schemes reviewed here, in the simplest case, the probabilities

that describe the state-to-state transitions do not change with time.

3.1.1 A Markov Process

The concept of a Markov process is very powerful. A sequence of states occupied by a

system at times t = n,t = n—i,... ,t = 0 can be represented as i, k,. . . ,rn [ii, page

3, Volume 1]. The researcher usually desires to know (or calculate) the probability

that, after the next transition, the system will be in state j given that the system

has visited states i, k,. .. , m in order, or

P{s(n+i)=js(n)=,s(n—i)=k, ... ,s(0)=MI.

Markov's assumption was that only the last state occupied by the system is necessary

to calculate the future development, or

P{s(n + 1) =jI() = i,s(n —1) = k, ... ,s(0) = m} = P{s(n+ 1) =jls(n) =i}.

An english translation of Markov's 1907 paper is provided in Appendix B of Volume 1

of Howard [11].

15

16

In other words, a transition takes place at each time instant. The probabilities

governing what state the process makes a transition to are given by the transition

matrix. In order to calculate the future development of the process at any time, only

the last state occupied by the process is relevant.

3.1.2 Discrete Semi-Markov Process

The system no longer makes a transition at every time instant. The duration the

system is in any state is determined by an integer-valued random variable that de-

pends on the state presently occupied and the state to which the transition will be

made [11, page 577, Volume 2].

3.1.3 Continuous Semi-Markov Process

In the continuous semi-Markov process the transitions can occur at any time [11,

page 687, Volume 2].

3.1.4 Continuous Markov Process

In the continuous-time Markov process only the state presently occupied by the sys-

tem is relevant to its future development. The probability density function describing

the duration the system is in a state does not depend on the state to which the sys-

tem will go next. The length of time the system has been in a state is irrelevant

both to estimating the state to which the system will go, and the remaining time

the system will spend in the present state [11, page 769, Volume 2].

17

3.2 How Are the Values in the Continuous Transition

Matrix Interpreted?

The discrete transition matrix is used to determine the probability P(0, t) the sys-

tem will be in state j at time t given that it was in state i at time 0. As stated above,

most often it is assumed that the values in the transition matrix do not depend on

time.

The probability vectors and the general transition matrix are

P, (0) T / pii (0)t) p12(0)t) ... pi (0,t) \

P2 (0) p21 (0,t) P22(0, t) . . . p(0,t)

\pn(t)J \Pn(0)/ \Pm i(O,t) pm2(0,t) pmn(0,t)/

The vector on the left is the probability vector measured at time t. The vector on

the right hand side is the probability distribution at the start of the simulation at

time 0. The matrix on the right is the transition matrix.

Differential equations can used to solve the continuous problem. A typical exam-

ple of continuous-time differential equations are

p1(t) =
dt

Pk(t) = kPk(t) + Ak_i Pk_1(t),
dt

k>1.

The differential equations are for a very simple system, namely that where the

system can either stay in the same state (1 or k) or can move to the next larger state

(k + 1) . In the situation to be analyzed in Chapter 7 of this thesis the system can

move from its present state to any higher state.

18

The coefficients of the differential equations can be represented in matrix fashion.

The diagonal of the coefficients matrix has all negative values or zero's as elements.

The negative values indicate the system is leaving that particular state. A zero value

means the system remains in that state. All the off-diagonal elements are either zero

or some positive number. For each row the sum of the off-diagonal elements equals

the negative of the diagonal element.

In Chapter 7 the problem of estimating the elements of the transition matrix

Pij (0, t) and the coefficients of the differential equations)j, will be reviewed.

Knowledge of the decay regime is necessary before optimized inspection times can

be determined. In the next section the simplest model of deterioration of a system

will be examined.

3.3 Stochastic Deterioration of a Three-Level System

As an introduction to the inspection time problem, in this section the simplest pos-

sible inspection time problem will be examined.

The model examined here is a continuous-time Markov process.

In Figure 3.1 the transition diagram for a three (operating) state system is illus-

trated. The operating states are labeled 0, 1 and 2. The arrows between the states

indicate that when the system is in state 0 the system can only decay to state 1, and

when in state 1 the system can only decay to state 2, etc.

The rates of decay, assuming an exponential model, are given by

AO = 1/200

A1 = 1/100

19

Figure 3.1: Transition Diagram for the Simplest Inspection Problem. The exponen-
tial transition parameters are given above the arrows.

20

A2 = 1/50

The notation above means that the system decays out of state 0 according to an

exponential distribution with A0 = 1/200, or as e/200. The values are arbitrary;
200

what is important for this simple model is that no two of the A values are equal.

If the reader prefers, a different picture of the decay chain may make the intro-

duction easier. The system shown in Figure 3.1 can model a radioactive decay chain

if only those transitions shown are valid.

If knowledge of the system is obtained at some time, it is possible to calculate

the probabilities of the system being in all states of greater decay at any time in the

future. If none of the Ai for each state are equal (as in this example), it is shown

by Chiang ([7, page 215]) that the probability of the system being in State j, given

that it is in State i at time zero is given by

P(t) = P{ system in State j at time tsystem in State i at time 0)

k=i fl(Ak - A1)

-

This type of process is known as a pure birth process; each state has a different

decay rate and the system can only decay to the next state. How to derive the

above formula is shown by Chiang [7, page 215] and by Taylor and Karlin [59, pages

213-215].

In order to determine when the next inspection should occur the above formula

21

can be solved for any of the states 0, 1 or 2. These are cumulative probabilities.

Consider a situation where it is desired to maintain the probability of failure of

the system below a = 0.1.

If the system is inspected and is found to be in state 2, the researcher can deter-

mine that the cumulative probability of failure as a function of time is given by

P(failure) = 1 - P22

= 1 - At e 2

This function is illustrated in Figure 3.2.

Similarly, if the system is observed to be in state 1, the researcher can determine

that the cumulative probability of failure as a function of time is given by

P(failure) = 1 - P11 - P12

e_2t

= 1 _e1t - (-1)2'A1 IAj 2 + A2 -

This function is illustrated in Figure 3.3.

The cumulative probability of failure as a function of time if the system is ob-

served to be in State 0 is given by

P(failure) = 1 - Poo - P01 - P02

I e_0t
= 1— - (_1)l_°AO1A —A1 + A1— Ao

0t
-

(1)2°A0A1 { e - (A0 - A1)(A0 - A2)

e_)1 t e.\2t

+(A - - A2) + (A - Ao)(A2 - A1)}

22

1.0 -

0.9 -

0-8 -

0.7 -

0-6 -

Probability 0.5 -

0.4 -

0.3 -

0.2 -

0.1

I I I I I I I I I
0 10 20 30 40 50 60 70 80 90 100

years

Figure 3.2: Inspection Time For State 2. If the system is Inspected to be in State
2, then the Cumulative Probability of Failure as a Function of Time is Given by the
Curved Line. To Maintain a Cumulative Probability below 0.1 the System Must be
Inspected Again before 5.26 Years.

23

1.0 -

0.9 -

0.8 -

0.7 -

0.6 -

Probability 0.5 -

0.4-

0.3 -

0.2 -

0.1

I I•••••••••••••••••' I I I I I I

0 10 20 30 40 50 60 70 80 90 100

years

Figure 3.3: Inspection Time For State 1. If the system is Inspected to be in State
1, then the Cumulative Probability of Failure as a Function of Time is Given by the
Curved Line. To Maintain a Cumulative Probability below 0.1 the System Must be
Inspected Again before 38.01 Years.

24

This function is illustrated in Figure 3.4.

If observed in state 2 the next inspection should occur before or at 5.26 years. If

observed in state 1 the next inspection should occur before or at 38.01 years, and if

observed in state 0 the next inspection should occur before or at 76.06 years.

25

Probability

1-0 -

0.9 -

0.8 -

0.7 -

0.6 -

0.5 -

0.4 -

0.3 -

'0.2 -

0.1 -

0 10 20 30 40 50 60 70 80 90 100

years

Figure 3.4: Inspection time For State 0. If the system is Inspected to be in State 0,
then the Cumulative Probability of Failure as a Function of Time is Given by the
Curved Line. To Maintain a Cumulative Probability below 0.1 the System Must be
Inspected Again before 76.06 Years.

Chapter 4

Dynamic Programming

4.1 Introduction

Dynamic programming is a well established technique for solving decision problems

when decisions can be made iteratively. The problem of examining a car rental

agency will be reviewed in this chapter as an introduction to dynamic programming.

The dynamic programming technique consists of two steps.

To begin the problem an arbitrary set of decisions is created. At each state more

than one alternative or decision can be made. The objective is to determine the

optimal decision path for all states.

I. In the first step a single value for the entire set of decisions is determined. When

a researcher is using the policy iteration technique the value is determined by

solving a set of equations based on the decisions at each state for variables

that depend upon the steps chosen. When a researcher is using the successive

approximation technique a value is determined by solving a single equation for

each state.

2. The effort for the second step has its beginning at the penultimate state. Based

on the values determined in the above step, the decision yielding the maximum

reward (or minimum cost) is determined. Then, using the chosen decision for

the penultimate state, the decision yielding the maximum reward (or minimum

26

27

cost) for the second but penultimate state is determined. As an introduction

to this and the next two chapters: In the problem examined in this chapter the

objective is to determine the decisions such that the gain or reward per unit

time on the rented cars is a maximum; in Chapters 5 and 6 the objective is to

determine the decisions such that the costs between the present time and the

next installation of a new system are minimized.

The two procedures are repeated until the decisions obtained at each state do

not change from one iteration to the next.

The dynamic programming formulation is completely general. In order to intro-

duce the reader to the process, and the method proposed for solving problems of this

type, a simple problem from Howard [11, pages 983-993] will be examined.

4.2 The Car Rental Agency

Consider a car rental agency interested in maximizing the average reward per unit

time over an infinite time frame. The objective is to determine how the car rental

agency should operate in order to receive a maximum amount of money (gain or

reward) per unit time.

The computer algebra system MACSYMA [58] will be used as the programming

language here and elsewhere in this thesis. Variables and parameters in the program

are denoted by italic type. MACSYMA functions and control structures (such as

"for" loops) are denoted by typewriter type.

The parameters used in the problem DYNAMIC 1 are:

• i is the state,

28

• k is an alternative, and where used below indicates that the parameter depends

upon the alternative chosen,

g is the gain or reward per unit time, to be maximized,

• vi the relative value of state i. The value of v2 is set to zero. The relative

values are measured from a reference point of state 2, otherwise the system of

equations would not equal the number of unknowns. The state with value set

to zero is arbitrary.

• r is the expected reward per occupancy. The reward depends on the state

and the alternative. The reward is known as r or reward in the MACSYMA

program.

• .•k is the mean waiting time in each state. The waiting time is known as w or

waiting in the MACSYMA program.

• q is the earning rate for each state, and is equal to r/i/c,

• Pk are the transition probabilities between states. The probability of transi-

tion from state i to state j depends upon alternative k. In the program the

transition probabilities are called transition-matrix.

• r is the test quantity, used to determine the alternative for each state that

maximizes the return.

N

PjVj - !i]

In the program the test quantity is known as test _quan.

29

A flow chart of the procedure is illustrated in Figure 4.1.

The MACSYMA program is given in Figure 4.2. The value determination routine

is given in Figure 4.3 and the policy iteration routine is given in Figure 4.4.

30

Policy Evaluation

For the present policy solve
N

j= 1

with vN = 0, for the gain g, and the relative values

V1l.12. .. ,1'N-i.

Policy Improvement Routine

For each state i, find the alternative Ic that maximizes

Tik [:• ij

using the relative values vi of the previous policy.

Make this alternative the new decision in state i.

Repeat for all states to find the new policy.

Figure 4.1: The Dynamic Programming Algorithm for the Car Rental Agency

31

array(r,2,2);

r[i,1]: 45 , r[i,2): 90 $
r[2,1]: 60 , r[2,2]: 20 $

w matrix(C 3.6, 6], 1 9.6, 4])$

array(transition, 2,2,2);

transition[1,1,1] : 0.8 , transition[1,2,1] 0.2 $
transition[1,1,2] : 0.0 , transition[1,2,2] : 1.0 $
transition[2,1,1] 0.3 , transition12,2,1] : 0.7 $
transition[2,1,2] : 1.0 , transition[2,2,2] : 0.0 $

states 2 $

alternative-max 2 $
array(alternative_start, alternative-max);

alternative-start[l] : 2;

alternative-start[2] 2;

test_i

test-2

alternative-start $
-alternative-start $

for ± : 1 thru 100 while test_i # test-2 do (
test-2 : test-1,

answer : equation_solve(states, r, transition, w, test-1),

test_i : improvement(states, r, transition, w, v,

alternative-max));

g : part(answer,1), numer;

print(" g = ", g);

for i : 1 thru states do (
t[±] : v[i],numer,

print(" state 11 , i, " v = ", t[i],

It new policy ", test-1[i]));

Figure 4.2: The MACSYMA Program DYNAMIC1

32

/* EQUATION-SOLVE */

equation_solve(num_states, reward, transition-matrix, waiting,

alternative) :=

block([g, i, j, k, v, g_stuff, eqn, list_of_ans],

remvalue(g),
for i : 1 thru num_states do (

remvalue(v[i]), g_stuff[i] : 0);

v[num_states] : 0,

for i:1 thru num_states do

for j:1 thru num_states do (
k : alternative [i],

g_stuff[i] : g_stuff[i] + transition_matrix[i,j ,k] * v[j]),

for 1:1 thru num_states do C
k : alternative[i],

eqn[i]: v[i] + g * waiting[i,k] - reward[i,k] - g_stuff [i]),

for 1: 1 thru num_states do

display(eqn Ci] ,g_stuff [i]),

globalsolve: true,

linsolve(C eqn[1], eqn[2]],[g, v[1]]),

list_of_ans:[g, vC1]],
return[list_of_ans])$

/* END OF FUNCTION EQUATION-SOLVE */

Figure 4.3: Policy Evaluation or Equation Solving Routine for the Program DY-
NAMIC1

33

1* IMPROVEMENT *1

improvement(num_states, reward, transition-matrix, waiting, v,

alternative_max) :=
block([max_test, p_stuff, test_quan, alternative],

for i:1 thru num_states do (
for k:1 thru num_states do

p_stuff[i,k]: 0),

for i: 1 thru num_states do (
for k: 1 thru alternative-max do (

for j: 1 thru num_states do (
p_stuff[i,k] : p_stuff[i,k] +

transition_matrix[i,j,k] * vEji),
test_quan[i,k] : (reward[i,k] + p_stuff[i,k] v[i]) /

waiting[i,k])),

for i: 1 thru num_states do (
for k: 1 thru alternative-max do

print(i, k, p_stuff[i.,k], test_quan[i,k])),

for i: 1 thru num_states do (
max-test: -1000,

for k: 1 thru alternative-max do (
if test_quan[i,k] > max-test then (

max-test : test_quan[i,k],
alternative[i] : k))),

return(alternative)) $

/* END OF FUNCTION IMPROVEMENT */

Figure 4.4: Policy Iteration Routine for the Program DYNAMIC1

34

4.2.1 Overview of the Program DYNAMIC1

In Figure 4.2 the driver for the program is illustrated. At the start of the program the

values for the reward, waiting time and transition parameters are initialized. The two

variables alternative-1 and alternative-2 are the beginning set of alternatives. The

program begins by setting alternative-2 as the chosen alternative for both states.

The two variables test-1 and test-2 are the two sets of alternatives before and after

the iteration. They are deliberatly set to different values at the beginning of the

program.

The for loop is implemented until test-1 is equal to test-2 (i.e., the alternatives

on two iterations of the loop remain the same). An arbitrary maximum of 100 times

through the loop is set. test-2 is updated to equal test-1 at the beginning of the

loop. test-1 is changed in the loop.

In the function equation-solve the equations for the gain (g) and the relative

value of state 1 (v1) are first determined and then solved (Figure 4.3). .g_stuff[i] is

the sum Pjjv. The equation eqn[i] is written in the form where the equation

is set to zero (MACSYMA assumes the equation is to be set to zero if the user

does not explicitly set the equation using an equal sign). The MACSYMA function

linsolve(E eqn[l], eqn[2]] , C g, vEl]]) solves the two equations for g and

V[1].

In the function improvement the alternative maximizing test _quari for each state

is determined.

The final result (the value of g and the value of ii1) is printed out at the end of

the program. test-1 and test-2 are compared as the loop counter is increased by 1 in

35

the MACSYMA program. If they are not equal the counter is increased by 1 and the

routines equation-solve and improvement are enacted again. If test-1 and test-2

are equal the program stops.

4.2.2 The Value Determination (Equation-Solve) Routine

The MACSYMA command remvalue removes the value bounded to g, the v 's for

each state, and the sum of the products of pijvj, (g-stuff).

The equations are built up and solved using linsolve. The parameter

globalsolve : true bounds the values of g and ii such that they can be used

in other places in the program and are not unique to the function. The return

statement passes g and xi to the main program where they can be used in the policy

iteration routine.

4.2.3 The Policy Iteration (Improvement) Routine

All parameters are reset to zero values.

In the first for loop the test quantity is determined. The second for loop displays

the values of the test quantity as a function of alternative and the third for loop

determines the alternative that yields a maximum for each state. The alternatives

are used as the new values for test-1.

Upon returning to the main program, test-1 and test-2 are compared to determine

if it is necessary to perform the equation-solve and improvement routines again.

36

4.2.4 The MACSYMA Output for the Program DYNAMIC1

The output from the program is illustrated in Figures 4.5, 4.6 and 4.7. It is a

relatively straightforward matter for an interested reader to follow the output.

In the first figure the equations to be solved are created in the routine

equation-solve. g_.stuff is printed out for debugging purposes. Upon leaving

equation-solve the values of g (11) and ii (24) are returned to the main program

to be used in improvement.

In the second figure the improvement routine is entered. the values printed out

are, in order, the state i, the alternative k, the sum 1_Vj and the test quantity

T. Note that the values for g and v1 from the previous iteration are recognizable in

this printout. For state 1 the maximum test quantity occurs for alternative-1. For

state 2 the maximum test quantity occurs for alternative-2. Since test-1 is not equal

to test-2 the second iteration of the loop is done. New equations are created and

solved. Upon leaving equation-solve the values of g (53521150/4805981 = 11.136)

and v1 (117964980/4805981 = 24.545) are returned to the main program to be used

in improvement.

In the third figure the alternatives maximizing the gain are determined as being

alternative-1 for state 1 and alternative-2 for state 2. test-1 and test-2 are equal,

so the program stops (prints DONE) and the values of g, zi and the alternatives are

printed.

The problem of maximizing the gain has been solved in two iterations.

37

(Di) \MACSYMA\THESIS\dynamic . out

(C2) BATCH("C:\\MACSYMA\\THESIS\\DYNANICi.MAC");

REITERATION OF THE ROUTINES OMITTED FROM THE OUTPUT

(C29) for i : 1 thru 100 while test-1 # test-2 do (
test-2 : test-1,

answer : equation_solve(states, r, transition, w, test_i),

test-I ': improvement(states, r, transition, w, v,

alternative-max));

C
1 Enter EQUATION-SOLVE [2, R, TRANSITION, C

C
ALTERNATIVE_ START]

36 6]

96 4]

EQN = 6 G + V - 90.0

1 1

G_STUFF = 0.0

1

EQN = 4 G - 1.0 V 20

2 1

G_STUFF = 1.0 V

2

1 Exit EQUATION_SOLVE RETURN

Cii, 24]

Figure 4.5: First Part of Output from MACSYMA

38

[3.6 6

1 Enter IMPROVEMENT [2, R, TRANSITION, [], V, 2]

[9.6 4

1 1 19.2 11.16666

1 2 0.0 11.0

2 1 7.2 7.0

2 2 24.0 11.0

1 Exit IMPROVEMENT ALTERNATIVE

[3.6 6

1 Enter EqUATION_SOLVE [2, R, TRANSITION, [], ALTERNATIVE]
[9.6 4]

EQN =3.6G+0.2V -45

1 1

G_STUFF = 0.8 V

1

EQN =4G-1.OV -20

2 1

G_STUFF = 1.0 V

2

1 Exit EQUATION-SOLVE RETURN

[53521150/4805981, 117964980/4805981]

Figure 4.6: Second Part of MACSYMA Output

39

[3.6 6]
1 Enter IMPROVEMENT [2, R, TRANSITION, [], V, 2]

[9.6 4
1 1 19.63635 11.13636

1 2 0.0 10.90909

2 1 7.36363 7.01704

2 2 24.54545 11.13636

1 Exit IMPROVEMENT ALTERNATIVE

(D29) DONE

(C30) g : part(a.nswer,1), numer;

(D30) [11.13636, 24.54545]

(C32) for ± : 1 thru states do (
t[i] : v[±],numer,

print(state ", i, v = ", t[i] ,
new policy = ", test-I[i]));

117964980

state 1 v

state 2 v = 0

(D32) DONE
(C33) CLOSEFILEQ;

4805981
new policy = 1

new policy = 2

Figure 4.7: Third and Final Part of MACSYMA Output

Chapter 5

The Mine and Kawai Dynamic Programming

Algorithm

5.1 Introduction

As documented in Chapter 2 there are a multitude of different repair, replacement

and inspection time optimization scenarios that' can be modelled. In this chapter

the implementation of an example from the literature is used as an introduction to

some of the possibilities for different models.

The objective is to determine the optimized inspection plan for a system subject

to failure or degradation such that the cost per unit time over an infinite horizon is

minimized. No discounting is taken into account. The state of the system is only

known through inspection and the inspections are perfect.

The system consists of a single component that can be described as being in one

of several states. A failure of the component is immediately obvious and corrective

repairs are performed. A transition diagram is illustrated in Figure 5.1.

40

41

Figure 5.1: Transition Diagram for the Mine and Kawai Problem

42

5.2 The Mine and Kawai Model

5.2.1 Equations, Definitions and Notation

The system is modelled as a semi-Ma.rkov chain'. The time spent in each state is

exponentially distributed. The system's states are numbered from 0 (perfect) to N

(penultimate). State N + 1 is the failed state. The only state obvious to the user

is the failed state. Degradation, the gradual increase in state number from state i

to state 1+ 1, is modelled with parameter f3. Failure, the immediate increase from

state i to state N + 1 (the failed state), is modelled with parameter cei. In the Mine

and Kawai model Aj = aj + fl.

Several of the other parameters are defined in Figure 5.2.

Three options are available to the user once the results of an inspection are known.

The options are:

1. prevent a future failure by replacing the system immediately, denoted M,

2. do not replace the system, and never inspect the system again, denoted I(oo),

a special case of the next option, or

3. plan to inspect the system at some future time, denoted 1(t).

The probability the system will be in state j, as a function of time t, given that

the system was in state i at time 0, is given by

P(t) = ...

k=i

e_t

(An - '\)
l=ijk

for i <j.

'The authors refer to the model as a semi-Markov process in the paper reviewed in this chapter,
and as a continuous-time Markov process in the paper reviewed in Chapter 6.

43

Description Definition

probability unit is in state i at time
tif it is in state at time O

.P(t) = e-Ait (P(t) = 1 - .P(t))

failure rate from state i to state
N+1

aj, cj < aj for i <j

degradation rate from state i to
state i + 1

/3, (ON = 0), ,8 /9, i <j

total degration and failure rate Ai = cj + f3

inspection cost Cl

repair cost per unit time Cr

maintenance cost per unit time c

cost rate or cost per unit time for a
given policy (this is the parameter
to be minimized)

g

relative value of a state vi, (v0 = 0 by definition)

Figure 5.2: Definitions of the Mine and Kawai Problem

44

The distribution function of the failure of the system is given by

N

F(t)= l—P(t)= l—P(t).

The one step transition probability is given by

one step trans. prob.
.P(t) to state 1, . . . , N if system has not failed, or

=
F(t) to state 0 if system has failed.

The cost to the next transition is given by

C(t) CrTrFi(t) + c1P(t) if Di = 1(t),

eT if D = M.

The time to the next transition is given by

/ T(t) = It Pj(x)dx + TrFj(t) f D = 1(t),

T, ifD2=M.

Mine and Kawai use a shorthand notation in their dynamic programming routine.

N

H(t,g) = C(t) - gT(t) + .P(t)zi(g) /.Pi(t).

The formula has the units of cost per unit time. Recall that the zi are the relative

values or costs of a state. For a given state, the minimum of the cost rate for

the inspection option is given by the above formula. The product of cost rate and

time until the next inspection is subtracted from the cost per unit time until the

next replacement of the system. To this sum is added. the relative value of all the

j = i + 1 to N states weighted by the probability the system moves to those states

in time t.

45

Policy Evaluation

For the present policy let

N

C(t) + pij /P (t), W = T(t)/P(t)
j=i+1

if the option for state i is 1(t), or

Vi =cpTp, and T4,'i = T if the option for state i is M.

Set v0 = 0. Solve

gWo=Vo, gW+v=V

for the cost rate g and relative values vi, i > 0.

Policy Improvement Routine

For each state i, find the alternative Ic that minimizes

where for the 1(t) case one writes H, (which is the same thing)
N

vi(g) = H1(1,g) = C(t) —gT(t) + E P(t)v(g) /Fi(t).
j=41 I

The relative value for VN is first determined, then

substituted into the equations, then VN_j is solved for, etc.

The alternative yielding a minimum ii is the new decision for

state I. Repeat for all states to find the new policy.

Figure 5.3: The Dynamic Programming Algorithm for the Mine and Kawai Problem

46

5.2.2 The Dynamic Programming Algorithm

A flow chart for the algorithm is illustrated in Figure 5.3.

When the option is to inspect at some later time (including t = oo), the equations

are as follows:

n

Vi = [C2(t) + P(t)zj]/P(t)
j=i+l

W, = T(t)/Pi(t).

The maintenance option equations are

Vi = CPTP

W =T,.

The following set of equations are solved for g and all the v's but 710, which is

arbitrarily set equal to zero. The relative values are determined if vo is set to 0.

gWo = V0

9W1+v1 = V2,for i≥1.

If the g obtained from solving the system of equations is the same as the previous

iteration the optimal solution has been found. If is different the policy improvement

routine (FIR) is initiated.

The details of the algorithm are as follows. To begin, pick an arbitrary decision

or alternative for each state as the initial policy. The easiest starting option is to

assume that, no matter what state the system is inspected to be in, maintain the

system immediately. This choice results in the least amount of effort in getting

through the first step.

The policy evaluation routine consists of three steps:

47

1. The Policy Evaluation Routine (PE): For the policy create the equations in V,

W and v.

2. Solve the equations for g and hi,... ,

3. If g obtained from this set of equations is the same as obtained for the last

iteration then the optimal solution has been found; otherwise implement the

policy improvement routine (FIR).

The policy improvement routine consists of three steps:

I. The Policy Improvement Routine (FIR): Beginning with state N and working

backwards to state 0, determine the decision or alternative that minimizes the

relative cost zi of the current state. Note that for state N it can be shown that

the only viable alternatives are M and I(oo). Use the alternative that gives

the minimum in all further calculations in the FIR. The objective is to create

a set of alternatives that minimizes the relative value of ho.

2. How to get time into the problem: II has only one minimum. The minimum

may occur at oc. If the minimum occurs for i < oo then this t must be

determined. The minimum can be found by differentiating H(t,g) and solving

for H. MACSYMA (surprisingly!) does not have a function to determine where

the minimum of a function occurs. To determine were the minimum occurs,

H is differentiated with respect to time, and the zero of dH/dt is determined

using the MACSYMA routine root-by-bisection. The vi is determined as

min {Hj(t*(g),g),cpTp - gT}, where t is the time of the minimum.

3. Return to the policy evaluation (PE) routine to check the new solution.

48

5.3 Comparison of Results

Mine and Kawai give results for selected values of the parameters. For a unit with

two degraded states, four types of policy are possible, viz. [M, M, M], [1(t0), M, M],

[1(t0), 1(t1), 1k!] and [I(oo), I(c'o), I(co)].

The values of their parameters are .X0 = 0.10,) = 0.15, and A2 = 0.20, which

means a2 = 0.20 since 02 = 0.0. Continuing, a0 = 0.05, a1 = 0.10, Cr = 10., Tr = 4,

Tp = 2 and c1 = 1. The maintenance cost c is given the values 2, 5, 10 and 13 to

illustrate the different results possible with the model.

To illustrate again how time enters into the problem, consider the State 0 case

of the c, = 5 example on the first iteration. The output from the program for H is

—2625e'/" + 4324et12° - 1481
H = 218et/5 -

Obviously I(c) = 0 because the exponent of the leading exponential in the denom-

inator is greater than those in the numerator. The costs and times are such that

M = 5.60. In Figure 5.4 an illustration of H, I(oo) and M illustrates that the

minimum of H is lower than M and that the minimum occurs at 8.82 years, and has

a relative value of -1.478. Thus, of the three possible decisions, the decision selected

would be to do nothing now and reinspect the system 8.82 years in the future.

It was expected that the implementation of the Mine and Kawai dynamic pro-

gramming algorithm for optimized inspection times would be simple, and would also

serve as a good stepping stone to solving more complicated models. This did not

turn out to be so. Fully six weeks of full—time work on the implementations was

not able to create results equal to those of their paper. A comparison is given in

Figure 5.5.

49

H

8-

7-

6-

5-.-

4-

3-

2-

5

M option relative value = 5.6

I

0 1 2 3 4 5 6 7 8 9 10 1112 13 14 15 16 17 18 19 20 2122 23 24 25

years

Figure 5.4: Illustration of Minimum of H in Comparison to Replace Option

50

CP Optimal Policy Cost Rate g

2 [M,M,M] 2.00
5 [15.10,M,M] 2.15

10 [34.30,11.24,M] 2.18
13 [I(co),I(oo),I(oo)} 2.20

Mine and Kawai Inspection Policy

c, Optimal Policy Cost Rate g

2 [M,M,M] 2.00
5 [8.16,M,M] 2.10

10 [I(oo),11.36,M] 2.20
13 [I(oo),I(co),I(oo)} 2.20

Inspection Policy for this Project

Figure 5.5: Comparison of Inspection Policies for the Mine and Kawai Work, and
for this Project

51

Note that for the c = 10 case the work for this project does not appear to be

among the valid selections from the Mine and Kawai paper, although the results are

reasonable. This is most frustrating. A more detailed comparison, for intermediate

values of the maintenance cost, is given in Figures 5.6 and 5.7.

The only reasonable explanation for the lack of a match is that somehow the

author has not implemented the correct algorithm. Several attempts over a six

week period were made to compare the software and the algorithm. After minor

corrections no difference could be found between the software implemented for this

project and the algorithm as given in the Mine and Kawai paper.

5.4 A Full Optimized Inspection Analysis

A full optimized inspection analysis was conducted. The system modelled was a

three state system, the states being numbered 0, 1 and 2 in order of increasing

deterioration. The values of the parameters are shown in Figure 5.8.

The major portion of the effort of the analysis is determining whether the func-

tion H has a minimum, and whether the minimum value of H (i.e. the cost rate

for inspecting t or oo years in the future) is less than the cost rate calculated for

preventive maintenance of the system (i.e. immediate replacement).

In State 2 the function H does not have a minimum. The only available options

are to replace the system immediately or let the system continue to decay for an

infinite amount of time. This situation is unique to the state penultimate to failure

of the system. In the other states of lesser deterioration the function H may have

a minimum. The results for State 1 are shown in Figure 5.9 and the results for

52

Inspection Time

00-

30 -

20 -

10 -

M

o State 0
State 1

x State 2
0

0

0t< lX x

I I I I I I I I I I I I I I

0123456789101112131415

Maintenance Cost

Figure 5.6: Mine and IKawai Inspection Policy

53

Inspection Time

00-

30 -

20 -

10 -

M

o State 0
State 1

X State 2

0

0 0 0<1 0<1

<1
0

0 <1

0<1X 'IX <X<X<X X >(X X

0
I I I I I I I I I I I I I I I

123456789101112131415

Maintenance Cost

Figure 5.7: Inspection Policy for this Project

parameter
cost of repair Cr 15
time of repair tr 4
time of maintain t, 2
cost of inspection Cl 1
cost of maintain c 10

Value

Figure 5.8: Values Used in the Example

54

State 0 are shown in Figure 5.10. In both cases the preventive maintenance option

M is also illustrated. In both figures the solid line is the second iteration and the

dashed line represents the third and subsequent iterations. The convergence to the

inspection time occurs very quickly. The first evaluation of H is off the figures in

both cases. In the State 1 case the preventive maintenance option has a lesser cost

than inspecting approximately four years in the future: the optimal decision when

the system is inspected to be in State 1 is to maintain the system immediately,

returning the system to State 0. In the State 0 case the optimized inspection time of

approximately 9 years has a cost rate far less than that for preventive maintenance:

the optimum decision when the system is observed to be in State 0 is to inspect the

system 9 years in the future.

One advantage of using a computer algebra system is that the function H can

be determined in a the form of a formula instead of a. list of numbers. To illustrate

some of the flavour of the output the formulas generated for each iteration are listed

below.

H1,first iteration

,second iteration

H1,third iteration

Ho,fit iteration

- 190 et/5 - 196 +3

- 3 - 3 et/20

2100 et/5 - 3722 et/'o + 1731

109 et/5 - 109 et/20

= 22660861599517428620 t/5 - 39935631019167555306 e t/20

+18393182946617172483/

1118413526967045797 ett5 - 1118413526967045797 et/20

730 et/5 - 745 t/10 + 12 et/20 3

6 e' - 6 et/10

55

H0 second iteration

H0 third iteration

2575 et/10 - 4524 + 1731

218 et/5 - 218 &/°

= 3280148857205501240 e" - 32199113876363295095 et/1O

+49548975019709057932 eu/20 - 18393182946617172483/

2236827053934091594 et/5 - 2236827053934091594 e10

56

25 -

24 -

23 -

22 -

21 -

20 -

19 -

18 -

17-

16 -

15 -

14 -

13-

12 -

11 -

10

second iteration

- - - - third and subsequent iterations

M option relative value = 13.56

I

0 1 2 3 4 5 6 7 8 9 10 1112 13 14 15 16 17 18 19 20 2122 23 24 25

years

Figure 5.9: Minimum of H in Comparison to Replace Option for State 1

57

15 -

14 -

13 -

12 -

11 -

10 -

9-

8-

7-

6—

H 5-

4-

3-

2-

1-

0-

-1 -

—2 -

-3 -

-4 -

5

M option relative value = 13.56

second iteration

- - - - - third and subsequent iterations

I
0 1 2 3 4 5 6 7 8 9 10 1112 13 14 15 16 17 18 19 20 2122 23 24 25

years

Figure 5.10: Minimum of H in Comparison to Replace Option for State 0

Chapter 6

The Ohnishi, Kawai and Mine Dynamic

Programming Algorithm

6.1 Introduction

In contrast to the model presented in the previous chapter, in this chapter the results

of implementing a model incorporating operating costs for a given state are presented.

Ohnishi, Kawai and Mine [40] minimize the average cost per unit time. They use

successive approximations to determine optimized inspection times.

The successive approximation methodology is implemented as:

1. Begin with an arbitrary policy to initialize the model (the simplest policy is

one where for each state one chooses the option to replace immediately), as

was the case for the model examined in the previous chapter.

2. Determine, for the initial set of options, the cost per unit time.

3. Perform the successive approximation analysis,

• beginning at the penultimate state, determine the optimized strategy, i.e.

select one of: i) replace immediately, ii) let the system fail naturally and

wait until failure to replace, or iii) determine whether it is most cost

effective to inspect the system t years in the future.

58

59

4. Determine, for the new policy, whether the cost per unit time is the same as

that of the previous step. If the costs are the same then the optimal policy has

been determined; if not, then perform the successive approximation algorithm

again.

The model incorporates the same variables as those given in the previous chapter

except for a state dependent operating cost a1 and a state dependent replacement

cost C. The transition scheme is identical to that of the Mine and Kawai model

presented in Chapter 5 (see Table 5.2), and most importantly,

and

O < 1 < <N_i

What these two sets of equations mean is that both the degradation and failure

rate increase with increasing system degradation. The system can only decay more

quickly as a function of increasing decay.

The costs of the system have to satisfy stringent criteria as well.

CO≤C1 ... ≤CN≤CN+1,

and

The system becomes more costly to operate as it deteriorates. The system becomes

more costly to replace as it deteriorates. Replacement becomes a better option with

increasing deterioration.

'Note, cj = failure rate (transition rate from state ito state N), and ai = cost per unit time to
operate in state i.

60

Failure of the system is obvious to the user, and a failed system is immediately

replaced.

The probability transition scheme, coupled with the costs, is necessary for the

function G (same idea as given by H in the previous chapter) to have a minimum.

The development of the Ohnishi, Kawai and Mine model is now considered.

6.2 The Model

The failure probability as a function of time is

F(t) Pi,N+1 (t)

where P,(t) is the probability the system is in state j at time t, given that it was

in state i at time 0 (recalling that in all cases it is assumed that the transition

parameters do not change with time).

N
F1 (t) i - P(t) =

Another function 'that has to he defined is

Qjj(t) f Pjj

The policy is denoted as 8, i.e. S is a vector of decisions. If the optimum policy is

to inspect 5 years in the future if the system is observed in state 0, and to maintain

the system immediately if the system is observed in either of states 1 or 2, then

5= [5,M,MI.

The function G is evaluated based on the time and costs to the next replacement

of the system. The expected time from an inspection to the next replacement is

61

given by

IPi (u)du + >P(t)xs(i) if D&(i) = 1(t)

r,Fi(u)du if Ds(i) = I(oo)

1 0 ifD5(i)=M.

The cost is made up of several components. In the 1(t) option, to inspect the system

t years in the future, the time is the expected value of ./ and the times for all states

j = i to N + 1 weighted by the probability the system enters those states. If the

time of next inspection is infinite the expected time until the next replacement is

simply the expected value of P. If the system is to be replaced in state i the time

until the next replacement is zero.

The expected cost from an inspection to the next replacement is given by

IV t MF(t) + j P(u)du a + P1(t)y6(j) if D6 (i) = 1(t)

116 (2) = 100 Pij a + CN+1 if D6(i) = I(oo)

Ci if Ds(i)=M.

The cost until the next replacement formula is similar to the time formula. If the

option is to inspect t years in the future, the cost to the next replacement is the

sum of the inspection cost, weighted by .P, the cost per unit time of being in each

state i to N weighted by the probability of entering the states and the weighted cost

of all states of i to N + 1. If the option is to inspect the system at infinite time

in the future the inspection cost M drops out and the cost is the sum of the state

dependent costs per unit time and the cost of replacing the failed system (CN+1).

If the option is to replace the system immediately the cost is that of replacing the

system in its current state (Ci).

62

During the successive approximation cycle, g is determined by setting

- Y6 (0)
X6(0)

The model is set up such that g is approached monotonically from above.

The function (similar to H in the previous chapter) is given by

G(t;g,8)
1

1 - P(t) {M(t) + I Pj(u)dua

+P1 (t) [yo(j) - gx(j)] - t (u)du}
The denominator of the quotient goes to zero as t goes to zero. The limits of G as

time approaches 0 and oo are:

limG(t;g,5) = 00,
tLO

and
N

limG1(t;g,S) = 100 Pia(u)duaa+CN+l_g P(u)du.
t—oo

A flow chart for the Ohnishi, Kawai and Mine algorithm is given in Figure 6.1.

63

Initialization

Begin with an arbitrary choice model, i.e. maintain

no matter what state the system is observed to be in.

If the model has not converged on an answer then

continue, else stop.

Successive Approximations

For each state i = N, N - 1,. . . , 1, 0, find the alternative

that minimizes v(i) = mm fo<t<00mmnci(;g, 8), c1}.

'if min G1(t;g, 8) ≥ C1, then D6 = R

• if a finite t satisfies miji 01(i;g,8) ≤ G1(oo;g,6)
O<t<oo

and the minimum is less than C1, then D6 = 1(t)

• if min G1(t;g,8) = G(oo;g,8),
O<t<oo

and the minimum is less than C, then D6 = I(oo).

Figure 6.1: Dynamic Programming Algorithm: Ohnishi, Kawai and Mine Problem

G2,2fld iteration - — et/5
31335 e/ +7610 2t/5 + 7610 t/5 - 28112

G2,3rd iteration = 761 e3x/5 - 761 e2 x/5

64

6.3 A Full Optimized Inspection Analysis

The values for G1 for states 2, 1 and 0 are given in Figure 6.3, Figure 6.4 and

Figure 6.5. The values used in the analysis are shown in Figure 6.2.

Parameter Value
operating costs [5, 10, 15, 20]
replacement costs [10, 15, 20, 30]
time of maintain t 2
inspection cost 10
Ai [0.1, 0.15, 0.2]

[0.05, 0.05, 0]

Figure 6.2: Values Used in the Example

The formula for G becomes more complicated with lower state number and in-

creasing number of iterations.

6.3.1 State 2 Equations

G21lst iteration =
- 1

25 e2t/5 + 10 e' - 24

70 etl5 - 60

6.3.2 State 1 Equations

G1,1st iteration =

iteration

—250 e2t/5 + 190 6t/4 + 30 et/5 + 180 et/20 - 180

3 et/4 - 3 e/

= 25 e3t/5 + 60 e9t/20 - 30 62 t/5 + 8 e310 - 30 et/5 - 72 et/10 + 72

3 e3t/5 - 3 e9t/20

65

G1,3rd iteration = 80575 + 45660 el3t/20 - 22830 g3t/5 + 45660 et/2 - 22830 62t/5

—48076 e7 t/20 - 22830 et/5 - 84336 e31/20 +84336/

2283 - 2283 e13 t/20

6.3.3 State 0 Equations

iteration

Go,2d iteration

GO,3rd iteration

= 245 e11 '20 - 170 e9t120 - 60 e2i/5 + 15 67t/20 - 190 e3t/bO + 70 et/4

+210 e' —90 e3 t/20 - 180 etllo + 360 et/20 - 180 /
3 - 3 e9 t/20

= - (275 e3 t/4 - 150 e'3'120 + 120 e3t/5 - 401 11 t/20 + 120 69t/20

—16 e2t/5 + 102 e7 t/20 - 188 e3t/10 + 204 et/4 - 60 et1'5

—72 0t/20 - 144 et/20 + 144) /
6 e3t4 - 6 e3 /'

= 5e19/2O - 114150e'7 t/20 + 91320 64t/' - 136980e3t/4 + 3487e-13 t/20

_22830e11 t/20 + 187472et/2 + 129996e92/20 - 214332 P2 t/5

+95350€7t/20 - 45660e3t/20 + 45660e' - 45660e' - 253008e3t/20

1686726t/10 - 168672e 1/20 + 168672/

4566&-19 t/21 - 4566et/20

66

100 -

90-

80-

70-

60—

H 50-

40-

30 -

20 -

10 -

0

first iteration

second iteration

third iteration

I I I

0 5 10 15 20 25

years

Figure 6.3: Illustration of G for State 2

67

first iteration

100 - second iteration

90 - \ third iteration

80-

70-

60—

H 50-

30-

20-

10 -

0 I I I I
0 5 10 15 20 25

years

Figure 6.4: Illustration of G for State 1

68

100 -

90 -

80 -

70 -

60 -

50 -

40 -

30 -

H 20-

10 -

0-

-10 -

-20 -

-30 -

-40 -

-50 -

-60

'

\
N

first iteration

second iteration

third iteration

I I I I

0 5 10 15 20 25

years

Figure 6.5: Illustration of G for State 0

Chapter 7

The Real World

7.1 Introduction

This chapter was prepared for a project Morrison Scientific Problem Solving is con-

ducting for NOVA Corporation of Alberta. This chapter is included in this thesis

because the discussion herein is important for determining the state specific transi-

tion probabilities that are to be incorporated into models such as those presented

in Chapters 3, 5 and 6. The Mine group models assume very specific transition

parameters. In all of their models the system can only pass from one state to the

next state of higher severity or the system can fail. The main question is: Given

a data set from the real world, is it possible to mould the real world data into a form

amenable for analysis using the models presented earlier?

The best analysis would be for the data to be directly incorporated into one

of the models presented in Chapters 5 or 6. An acceptable analysis, though not

immediately capable of being examined using dynamic programming techniques,

would be to mould the data into a form similar to that of the model presented in

Chapter 3. In this latter form the reliability of the system as a function of time could

be examined.

As a secondary goal, it is desired to know if the discrete data obtained on two

separate inspections of a system can be incorporated into a system of differential

equations. This is important because the matrix of transition probabilities is ob-

69

70

tamed at discrete intervals. If the data can be made into a continuous form then

the researcher would not have to worry about interpolating between discrete time

periods.

In a rather cryptic comment Howard [10] mentions that to transform a discrete

transition matrix into a continuous transition matrix that has the same state prob-

abilities at multiples of the discrete time period it is necessary to solve

C=1nD,

where C is the continuous transition matrix and D is the discrete transition matrix.

The cryptic comment is that "Methods for accomplishing this exist, ...", and the

reader is referred to a 1959 MIT Operations Research Center Report. Paolucci [44]

indicated how to determine the logarithm of a matrix.

Calculating the logarithm of a matrix that has multiple eigenvalues is not a trivial

matter. For large matrices (e.g. 25 x 25, or even 10 x 10) the calculations necessary

to calculate the logarithm of a matrix are prohibitive. One reason for the prohibitive

nature of the calculations is roundoff errors when an infinite series approximation

is used. The roundoff errors get out of hand for matrices on the order of 8 x 8.

Another reason for the prohibitive nature of the calculations is that, to determine

the logarithm of a matrix using the spectral resolution of 1(A), the function of a

matrix A, the set of linear equations that must be solved varies as the cube of the

size n of the matrix. For an 8 x 8 matrix a system of 512 equations must be solved.

The studies presented in this chapter are also important in their own right because

the connection between the discrete (matrix) analysis of a Markov chain and the

continuous (differential equation) analysis is never examined deeply enough for the

71

reader to be able to answer the question: How are the elements of a Markov chain

related to the coefficients of the differential equations?

First the raw data will he reviewed. Then the calculation of the logarithm using

the different methods will be reviewed.

7.2 Determining a Transition Matrix from Observations:

The Raw Data

Consider a decaying system. In this section a methodology for analyzing the decay

of the system will he presented. In order to make the situation more real, the

system will be a pipeline, and the data will be that data obtained from two different

inspections of the pipeline.

Inspections are conducted according to some plan created by the user of the

pipeline. During an inspection an in-line-inspection tool (or ILl tool) is passed

through the pipeline. Transducers on the tool can indicate the characteristics of

corrosion pits on the outside of the pipeline. It is possible to match corrosion pits

from one inspection to a second inspection. What results is a matrix of frequencies

of growth (on some scale determined by the researcher) during the time between the

two inspections. New pits initiated between the inspections can be ignored in this

analysis. It remains to transform the frequencies of growth into a useful model from

which to garner information relating to the reliability of the pipeline as a function

of time.

The form of the matrix that can be expected from this type of analysis is the

following (an 8 x 8 example). Each value represents the frequency of observations of

72

a corrosion pit from an initial state to a state observed during the inspection.

/100 75 42 25 10 7 2 0\

0 45 20 10 8 0 0 4

0 0 17 8 3 0 1 0

0 0 0 9 12 4 6 0

0 000 7620

0 00 00431

0 0 0 00020

o 0 0 0 0 0 0. 0/

The matrix upper triangular because (ignoring possible resolution problems, etc.)

the state of the system cannot decrease to one of lessor severity.

In terms of the risk analysis it is desired to replace all the zero's in the upper

triangular portion of the matrix with non-zero values, otherwise a growing pit would

have zero probability of entering certain states. Two options come to mind as to

how to remove the zeros1

This is an inference problem. It now remains to determine a method whereby

an estimate of all the values in the upper triangular portion of the matrix can be

estimated. Among obvious candidates for estimating the values are

1. regression analysis, and

2. probability distribution analysis.

The regression analysis is problematic because of having to normalize the sum of the

rows to 1.0. The probability distribution analysis has several advantages such as

1. ease of implementation,

2. several distributions can he used, such as

'In reality the matrix is of such size that only the upper leftmost corner of the matrix has non
zero elements. Clearly, for a system operating far from failure, significant extrapolation is necessary.

73

• exponential,

• gamma,

• Poisson,

• log-normal,

3. can be implemented with a minimal number of data points (a very important

criterion, especially for higher seventies where not many pits are observed),

4. rows are forced to sum to 1.0, and

5. error bars are easily estimated assuming binomial probabilities of an element

of the matrix having that particular value determined by the probability dis-

tribution.

The only disadvantage of the probability distribution method is determining that

distribution most appropriate for modelling a row of the matrix.

The easiest distribution to fit to the data is the exponential. When the cutoff

of the distribution occurs at 0 the parameter for the exponential distribution is the

average, therefore the value used to determine the exponential for a given row is the

average change in state number between the inspections.

74

7.3 Making a Continuous Markov Model from a Discrete

Model: The Logarithm of a Matrix

In this section two methods for determining the logarithm of a matrix will be

reviewed2.

What should the logarithm of the matrix look like? Based on the "data" matrix

presented above one should see that transitions to higher states decrease as the higher

state increases. As one examines a row of the logarithm of the matrix, one would

expect to see decreasing values towards the right, except for possibly the rightmost

element which is the sum from that state to oo .

7.3.1 Logarithm of a Matrix: Infinite Series Approximation

The formula for the logarithm of a number is

S2 x3

ln(1+x)=x---+-----+...,Ixj<1

Since the logarithm of x is desired, it can be determined by simply writing s - 1

instead of x in the formula, giving

ln(1+(x-1)) =(x-1)— (_1)2 + (x)3 (x — i) +...,IxI <1

The matrix A can be substituted for x in the above formula, yielding the continuous

transition matrix. The identity matrix replaces "1."

2The methods reviewed here are not the only methods for determining the logarithm of a matrix.
The presence of multiple eigenvalues significantly complicates the analysis. With time, as more of
these methods become familiar to the author, a suitable method will be determined (or discov-
ered). The important aspect of this chapter is the relationship between the discrete and continuous
representations of the decay of the system.

by

75

Consider an original matrix (after fitting with the exponential distribution) given

7.181269 .148411 .670320\

0 .181269 .818731

0 0 1

After summing the first 10 elements of the series the estimate of the logarithm of

the matrix is
7-1.6653 0.70793 0.95737\

0 —1.6653 1.6653

\ 0 0 0)

After 30 elements of the series the logarithm of the matrix is

7-1.70745 0.8167 0.89075\

0 —1.70745 1.70745

\ 0 0 01

After 100 elements of the series the logarithm of the matrix is

7-1.70776 0.8172 0.88903\

0 —1.70776 1.70776

\ 0 0 01

7.3.2 An 8 x 8 Example Using the Infinite Series Approximation

The calculation using the infinite series is fraught with roundoff errors and for large

matrices the numerical instabilities quickly render the matrix unusable because many

of the off-diagonal elements become negative.

76

A simulation was conducted. The original matrix used in the simulation was'

(3.29676 - 1 2.20996 - 1 l.4813b - 1 9.92986 - 2 6.6566 - 2 4.46166 - 2 2.99076 - 2 6.08096 - 2 \

0.obo 5.50676 - I 1.4813b - 1 9.9298b - 2 6.6566 - 2 4.46166 - 2 2.9907b - 2 6.0809b - 2

0.obo 0.obo 2.48526 - 1 1.8675b - 1 1.40346 - 1 1.05466 - 1 7.92556 - 2 2.39656 - 1

0.060 0.060 0.060 2.21196 - 1 1.722Gb - 1 1.3416b - 1 1.0448b - 1 3.6787b - 1

0.060 0.060 0.060 0.obo 1.99266 - 1 1.5955b - 1 1.27766 - 1 5.13416 - 1

0.060 0.060 0.060 0.060 0.060 1.81266 - 1 1.4841b - 1 6.7031b - 1

0.060 0.060 0.ObO O.Obo 0.060 0.060 1.81266 - 1 8.18736 - 1

\ 0.obO 0.060 0.060 O.ObO 0.060 0.060 0.060 1.obo I

All the rows were generated from exponential distributions. The first two rows were

generated from the same exponential distribution to determine if the values in the

logarithm of the matrix were the same.

The computer algebra system MACSYMA [58] was used to multiply the matrices

using "bigfioats,", thus the exponents are b's instead of e's. The floating point

precision (fpprec) parameter was set to 30 and 40 digits of precision and no differences

were discerned in the final matrix.

After 30 elements of series the matrix was

/ -1.109660 5.13016 - 1 3.9005b - 1 1.38156 - 1 5.57726 - 2 2.20116 - 2 6.79856 -3 -1.61776 - 2\

0.060 -5.96616 - 1 3.90056 - 1 1.3815b - 1 5.57726 - 2 2.20116 - 2 6.79856 - 3 -1.61776 - 2

0.060 0.obo -1.392260 7.9581b - 1 3.05286 - 1 1.46026 - 1 7.8126b - 2 6.6954b - 2

0.060 0.obo 0.060 -1.5086b0 8.19466 - 1 3.28446 - 1 1.6054b - 1 2.00176 - 1

0.obo 0.060 0.060 0.060 -1.612960 8.37696 - 1 3.38036 - 1 4.37256 - 1

0.obo 0.060 0.obo 0.060 0.060 -1.7074b0 8.1676 - 1 8.90746 - 1

0.obo 0.060 0.obo 0.obo 0.060 0.060 -1.707460 1.707460

0.obo 0.060 0.obo 0.060 0.060 0.060 0.060 0.060 /

3This matrix is not the exponential fit to the "raw" data matrix presented on page 72.

77

After 70 elements of series the matrix was

/ -1.109660 5.13016 - 1 3.90066 - 1 1.3805b - 1 5.6133b - 2

0.060 -5.96616 - 1 3.90066 - 1 1.38056 - 1 5.61336 - 2

0.060 0.Obo -1.392260 7.96086 - 1 3.0396 - 1

0.060 0.obo 0.060 -1.508660 8.20176 - 1

0.060 0.060 0.obo 0.060 -1.613160

0.obo 0.obo 0.obo 0.060 0.060

0.060 0.obO 0.obo 0.060 0.obo

0.060 0.060 0.060 0.obO 0.060

After 100 elements of the series the matrix was
f-1.109660 5.1301b -1 3.9006b - 1 1.38056 - 1 5.61336-2

0.obo -5.96616 - 1 3.90066 - 1 1.38056 - 1 5.6133b - 2

0.060 0.obo -1.3922b0 7.96086 - 1 3.039b - 1

0.obo 0.060 0.obo -1.508660 8.20176 - 1

0.060 0.obO 0.obo 0.060 -1.6131b0

0.060 0.obo 0.060 0.obo 0.060

0.060 0.obo 0.060 0.obo 0.060

0.060 0.060 0.obo 0.060 0.060

2.16676 - 2 6.60466 - 3

2.16676 - 2 6.60466 - 3

1.4856 - 1 7.74666 -2

3.2559b - 1 1.64076 - 1

8.39226 - 1 3.33866 - 1

-1.707760 8.18736 - 1

0.obo -1.707760

0.060 0.060

2.16666 - 2 6.6062b - 3

2.16666 - 2 6.60626 - 3

1.485b - 1 7.74596 - 2

3.2559b - 1 1.64086 - 1

8.39226 - 1 3.33866 - 1

-1.707760 8.18736 - 1

0.060 -1.707760

0.obo 0.060

-1.59086 - 2\

-1.59086 - 2

6.62536 - 2

1.98836 - 1

4.4003b - 1

8.89046 - 1

1.7077b0

0.060 1

-1.59096 - 2\

-1.59096 - 2

6.625gb - 2

1.98836 - 1

4.40036 - 1

8.89036 - 1

1.7077b0

0.060 /

Notice the two small negative values in the upper right hand corner of the matrix.

These values should be positive. For matrices larger than $ x 8 the number of

negatives in the upper right hand corner grew rapidly, making these matrices all but

useless.

The final matrix is the logarithm of the discrete matrix. The discrete matrix is

used in the matrix multiplication method of determining probabilities. The contin-

uous (logarithm) matrix is used in solving the problem using differential equations.

The differential equations are shown in Figure 7.1.

The output from the differential equation (continuous) code is shown in Figure 7.2.

The comparison conducted above compared the discrete and continuous proba-

bilities on an equal time basis. When the discrete data are obtained over a different

time basis (such as four time periods, for example), the discrete and continuous

78

probabilities are compared by thinking "one time increment in the continuous case

is equal to the number of time increments between measurements in the discrete

case." Thus, for a four time period span between the measurements a "1" in the

time column for the continuous calculation represents four periods of growth. To

integrate the continuous equations one year at a time the user would integrate 0.25

time units at a time.

79

dydx[1] = -1.1096e0 * yEl];
dydx[2] = 5.1301e-1 * y[l] - 5.9661e-1 * yE2];
dydxE3] = 3.9006e-1 * yEl] + 3.9006e-1 * yE2] - 1.3922e0 * y[3];
dydxE4] = 1.3805e-1 * yCi] + 1.3805e-1 * yE2] + 7.9608e-1 * yE3] -

1.5086e0 * yE4];
dydx[5] = 5.6133e-2 * yEl] + 5.6133e-2 * yE2] + 3.0390e-1 * y[3] +

8.2017e-1 * y[4] - 1.6131e0 * yE5];
dydxE6] = 2.1666e-2 * yCi] + 2.1666e-2 * y[2] + 1.4850e-1 * yE3] +

3.2559e-1 * y[4] + 8.3922e-1 * y[S] - 1.7077e0 * yE6];
dydx[7] = 6.6062e-3 * y[l] + 6.6062e-3 * y[2] + 7.7459e-2 * yC3] +

1.6408e-1 * y[4] + 3.3386e-1 * y[S] + 8.1873e-1 * y[6] -

1.7077e0 * yC7];
dydx[8] = -1.5909e-2 * y[l] - 1.5909e-2 * yC2] + 6.6259e-2 * yE3] +

1.9883e-1 * yC4] + 4.4003e-1 * yES] + 8.8903e-1 * yC6] +
1.7O7YeO * y[Y];

• Figure 7.1: The Continuous Time Differential Equations Determined From the Log-
arithm of the Discrete Transition Probability Matrix

80

time yE1] yE2] yC3] yE4]
0.00000 1.00000 0.00000 0.00000 0.00000

1.00000 0.32969 0.22099 0.14814 0.09930

2.00000 0.10870 0.19455 0.11839 0.10432

3.00000 0.03584 0.13116 0.07435 0.07530

4.00000 0.01181 0.08014 0.04322 0.04713

5.00000 0.00390 0.04674 0.02436 0.02763

6.00000 0.00128 0.02660 0.01356 0.01569

7.00000 0.00042 0.01493 0.00750 0.00877

8.00000 0.00014 0.00832 0.00414 0.00487

9.00000 0.00005 0.00461 0.00228 0.00269

10.0000 0.00002 0.00255 0.00126 0.00148

time yEl]

0.00000 1.00000

1.00000 0.32968

2.00000 0.10869

3.00000 0.03583

4.00000 0.01181

5.00000 0.00389

6.00000 0.00128

7.00000 4.233E-4

8.00000 1.39553E-4

9.00000 4. 60081E-5

10.0000 1.51679E-5

yES] yE6] yE7] yE8]
0.00000 0.00000 0.00000 0.00000

0.06656 0.04462 0.02991 0.06081

0.08782 0.07223 0.05914 0.25489

0.07227 0.06712 0.06201 0.48200

0.04892 0.04909 0.04919 0.67054

0.03005 0.03169 0.03356 0.80212

0.01754 0.01908 0.02096 0.88535

0.00996 0.01104 0.01242 0.93502

0.00557 0.00624 0.00713 0.96365

0.00309 0.00349 0.00402 0.97983

0.00171 0.00193 0.00224 0.98887

Differential Equation Solution

yE2] yE3] yE4] yES] yE6] yE7] yE8]

0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

0.22099 0.14814 0.09930 0.06656 0.04462 0.02991 0.06081

0.19455 0.11839 0.10431 0.08781 0.07222 0.05913 0.25489

0.13115 0.07434 0.07529 0.07227 0.06711 0.06201 0.48199

0.08014 0.04321 0.04712 0.04892 0.04909 0.04919 0.67052

0.04674 0.02436 0.02762 0.03005 0.03169 0.03355 0.80209

0.02660 0.01356 0.01569 0.01754 0.01907 0.02095 0.88531

0.01493 0.00750 0.00877 0.00996 0.01103 0.01242 0.93497

0.00832 0.00414 0.00487 0.00557 0.00624 0.00713 0.96360

0.00461 0.00228 0.00269 0.00309 0.00349 0.00402 0.97977

0.00255 0.00126 0.00148 0.00171 0.00193 0.00224 0.98881

Matrix Multiplication Solution

Figure 7.2: Comparison of Probabilities as a Function of Time from the Differential
Equation and Matrix Multiplication Solutions

81

7.3.3 Logarithm of a Matrix Using the Spectral Resolution of f(A)

Lancaster and Tismenetsky [23] show how the spectral resolution of a function of

a matrix can be used to determine the logarithm by solving a system of equations.

This method is good for small matrices however the number of equations in the

system varies as the cube of the size of the matrix. An 8 x 8 matrix would require

512 equations; a 25 x 25 matrix would require over 15,000 equations. A review of

this method is included here for completeness.

The key of the calculation is that the function of a matrix can be written in the

form
3

f(A) = fk,Zk,
k=1 2=0

where f is some polynomial and the Z's are matrices, linearly independent and

capable of commuting with each other and the matrix A. The spectrum of the

matrix is the set of eigenvalues .Ak. The multiplicity of each eigenvalue is denoted

Mk. The total number of different eigenvalues is s. The minimal polynomial is

fl(. -

k

A three by three example, with one repeated root, illustrates the technique well.

Consider the following matrix

/.181269 .148411 .670320\

0 .181269 .818731

0 0 11

The eigenvalues of this matrix are .181269, with m1 = 2, i.e. this root is repeated,

and 1, with m2 = 1,

82

The minimal polynomial is

m(J) = (X - 1)(\ - .181269)2.

The functions fk, are linearly independent polynomials. In this case reasonable

polynomials are -1, (X - .181269), and (.\ - .181269)2. The function is given by

s Mk - 1

f(A) =

k=1 j=O

f(1)Z10 + f(.181269)Z20 + f'(.181269)Z21

The polynomials are substituted into the above equation and the Z's are determined

from the resulting system of equations.

The f) = 1 Equation

The equation that results is

I=;ZiO+Z20 +Z30 +Z40,

where I is the identity matrix.

83

The f(A) - .181269) Equation

The equation that results is

A - .181269 = (.181269 - .181269)Z10 (= 0)

+z11

+ (.199263— .181269)Z20

+ (.221199— .181269)Z30

+ (1 - .181269)Z40,

where A is the matrix of which the logarithm is desired.

The f(.X) = - .181269)2 Equation

The equation that results is

A - .181269 (.181269 - .181269)2Z10

+z11

+ (.199263—.18126 9)2Z20

+ (.221199 - .181269)2Z30

+ (1 - .181269)2Z40.

0)

The other matrices of higher powers are developed in the same manner.

Each of the Z matrices contains a maximum of 25 elements. There are five

separate Z matrices for a single A matrix. The number of elements to solve for is

thus 53 = 125. The calculation becomes prohibitive very rapidly.

84

7.4 Summary: It is proposed to use the Discrete Tran-

sition Probability Matrix in Place of the Continuous

Transition Probability Matrix

It is proposed to use the discrete matrix in place of the continuous matrix because

the calculations are simply too prohibitive. The value of this chapter is that the

connection between the discrete matrix and the system of continuous differential

equations has been demonstrated.

Chapter 8

Summary and Recommendations

8.1 Why The Models Presented Herein Cannot be Used

for the Problem Examined for this Project

The Mine group methodology depends upon creating a function, called H or G,

that has a single minimum on the range 0 < t ≤ oo. The functions are reasonably

simple to calculate and, since the functions are sums of exponentials, differentiation

and subsequent determination of the minimum are also easy. Parenthetically, the

aesthetics of their models are most attractive.

Unfortunately for the work proposed in Chapter 7, in the real world one is not

guaranteed that the appropriate functions will have the properties ascribed to them

that are necessary for the single minimum (of costs) to develop. For instance, the

Mine group methodology depends upon the distributions being totally positive of

order 2. Total positivity is a non-trivial aspect of distributions. Consider the func-

tions used in the analyses presented in Chapters 5 and 6. For each t the P1 (t) are

totally positive of order 2 if

Pim(t) P(t)

Pjm (t) Pj(t)
≥ 0 for j

0<m<n<N.

85

86

For each i the P(t) are totally positive of order 2 if

P1 (t) Pij

Pik (t) Pik (U)

0<k<N
≥0for ≤j -

0<t<u<co.

For each t the Q(t) are totally positive of order 2 if

Qim(t) Qj,,,(u)

Qjm(t) Q(u)
≥Ofor j-

0<m<n<oo.

For each t, F1(t) is non-decreasing in i. These four conditions are necessary for

there to be a single minimum in the functions H and G. It can be shown that the

derivative of the function changes sign only once, and if it changes sign the change

is from negative to positive [40].

8.2 What about the Pliska Group?

The Pliska group work is not applicable because of the false positives and negatives.

As well, a medical problem has a well defined "end" even if it is an infinite horizon

problem (as in having a point mass at infinity). The Pliska group work does not

divide into a set of procedures specifying what to do if the system is observed in a

given state—the system is either observed to be healthy or deteriorated.

8.3 Recommendations and Future Plans

It is frustrating that, with over 18 months of thinking and working on this project,

an appropriate model has not been developed. The models created by the Mine

and Pliska groups are wide ranging and have required much effort to program. To

87

understand the models that were not programmed required nearly as substantial an

effort. In this last section of the thesis an outline of what is required to solve a

problem on the approximate scale of the NOVA problem is presented.

As an idea of what may not be possible, consider that the Mine group models

are constrained in such a manner so as to force the single minimum in the H and

G functions. The Mine group models depend on minimizing costs. It was thought

to be a relatively simple matter to change the models slightly to maximize rewards

instead of minimizing costs. This has, sadly, proved not to be possible because of the

characteristics of the models. The benefit of the attempt to model rewards instead

of costs was the discovery of what kinds of modifications to the models had to be

made in order to use them in a situation such as that presented in Chapter 7.

It should be realized that the general inspection problem that was examined in

Chapter 7 can be solved if all that is desired is to determine the next inspection such

that the probability of failure of the system is kept below some chosen value. Both

the differential equation and matrix multiplication solutions can be implemented—

the former for systems with less than about 8 states and the latter for systems with

more states. This is similar to what was done in Chapter 3.

In the case where it is desired to prepare an answer as to what to do if the system

is observed in a given state, as in the Mine group models, a much more complicated

set of model criteria is needed. These criteria are listed in the following subsections.

8.3.1 A State-Dependent Decision

What is desired is a more general state-dependent model in the same class as the

Mine group models analyzed for this thesis. A state-dependent decision is the most

88

important criterion because this creates a truer infinite horizon model than the Pliska

group models. An infinite number of repairs must be a possibility. In the Pliska group

models only one repair is allowed.

8.3.2 Lack of Total Positivity Criterion

It would be more realistic if the total positivity criterion could be waived. Certainly

the operators of a piece of equipment would try as hard as possible to minimize

the deterioration rate of their system. Systems in the real world, where there is a

large amount of operator interaction will not necessarily decay more rapidly with

increasing level of deterioration.

8.3.3 More General Decay Modes

In Chapter 7 a realistic situation of what can be expected from real world measure-

ments of real world systems was presented. The system may decay from one state

only to the next highest state, however, as analyzed by the owner of the system, over

a discrete time period the system will appear to decay from one state to all states of

greater decay. Transforming the data into a continuous-time Markov process does

not automatically create a simple "one-state-at- a- time" decay chain. The simpler

models require a simple decay chain. A model created for a real world system has

to be more robust than the Mine group models in that general decay chains are

possible.

Another aspect of the Mine group models that can be criticized is the decay

mode having the gradual and failure aspects (see Figure 5.1). While some criticism

can be directed at that decay chain, it should be noted that the differentiation of

89

the decay rate into the a and fi portions (failure and gradual decay respectively),

becomes important in the proofs of the characteristics of the systems they analyze

in virtually all of their papers.

8.3.4 More General Cost and Reward Structure

The costs in the Ohnishi, Kawai and Mine algorithm rise with increasing decay. An

attempt to replace the costs with a decreasing reward structure, and then placing a

minus sign in front of the G formula presented in Chapter 6 in order to maximize

rewards, did not prove fruitful. The objective was to create a model based on rewards

because the relative magnitude difference between costs and rewards could change

the decision to maintain immediately, inspect t years in the future, or to leave the

system to fail (i.e. inspect oo years in the future).

Including a more general cost and reward structure into th model is an interesting

task for future work.

8.3.5 Series Systems

Many of the papers examined during the course of the literature search for this

project examined parallel redundant and standby systems. Only one paper, by

Kumar, Kapoor and Gupta [22] examined a series system. In this particular paper

the series system could be maintained under expensive or inexpensive maintenance.

For a large system such as a pipeline the system is obviously a series system with

each single corrosion pit, weld section (each about 18 m long), or each kilometre of

pipe forming a unique part of the system. A railroad or highway is another example

of a series system, as examined by Hatoyama, Fukuoka and Suzuki [9], though in

90

this particular case the model depends on making decisions after a regular inspection

is made, i.e. inspections are not planned in the sense of the Mine group optimized

inspection time inspections.

Interesting aspects of inspections such as these are the possibility of replacement

or maintenance costs depending upon the number of elements replaced at any given

time. A pipeline is an obvious candidate for this type of analysis as well.

91

8.4 Summary of the Method That Must Be Developed

A method must be developed that can analyze optimized inspection times in the same

flavour as the Mine group work but that does not depend upon the artificiality of

the total positivity of the probability distributions. The desired method must yield a

state-dependent decision for machine oriented problems over an infinite horizon—an

infinite number of inspections must be possible.

The method should he able to analyze the system in terms of both rewards and

costs.

The method should be applicable to a series system such as a pipeline, railroad,

highway or other obvious series systems. Parallel system results already exist in the

literature in the form of examination of redundant systems.

The method developed should be easily implementable on modern computers in

order to make it easy for researchers to analyze real world problems.

Now to solve these new problems...

Bibliography

[1] Anderson, R.F., and A. Friedman, Optimal Inspections in a Stochastic Control
Problem with Costly Observations, Mathematics of Operations Research, Vol.
2, No. 2, pp. 155-190, 1977.

[2] Anderson, R.F., and A. Friedman, Optimal Inspections in a Stochastic Control
Problem with Costly Observations, Mathematics of Operations Research, Vol.
3, No. 1, pp. 67-81, 1978.

Barlow, Richard E., and Frank Proschan, Mathematical Theory of Reliability,
The SIAM Series in Applied Mathematics, John Wiley & Sons, New York, 1965.

[4] Beichelt, F., Minimax Inspection Strategies for Single Unit Systems, Naval Re-
search Logistics Quarterly, Vol. 28, No. 3, pp. 375-381, 1981.

Boyd, H., and T.B. Morrison Answers to Several Questions About Predicting
Exterior Corrosion Growth on High Pressure Line Pipe, Morrison Scientific
Problem Solving Report prepared for Department of Design Engineering, NOVA
Corporation of Alberta, January 1993.

[6] Boyd, H., G. Haggins and T.B. Morrison, An Automatic Correlation Method-
ology for Determining Exterior Corrosion Growth on High Pressure Line Pipe.
Morrison Scientific Problem Solving Report prepared for the Facility Intregity
Group of the Field Services Department of NOVA Corporation of Alberta, April
1993.

[3]

[9]

[51

[7] Chiang, C.L., An Introduction to Stochastic Processes and Their Applications,
Robert E. Krieger Publishing Company, Huntington, New York, 1980.

[8] Gantmacher, F.R., The Theory of Matrices, Volume 1 and Volume 2, Chelsea
Publishing Company, New York, N.Y., 1959.

Hatoyama, Y., H. Fukuoka and K. Suzuki, Application of Markovian Decision
Theory to the Problem of Highway Maintenance, in Stochastic Models in Relia-
bility Theory, Proceedings of a Symposium Held in Nagoya, Japan, April 23-24,
1984, Eds. S. Osaki and Y. Hatoyama. Lecture Notes in Economics and Mathe-
matical Systems, Managing Editors M. Beckmann and W. Krelle, Volume 235,
Springer Verlag, New York, pp. 198-212, 1984.

[10] Howard, Ronald A., Dynamic Programming and Markov Processes, The M.I.T.
Press, Cambridge, Massachusetts, 1960.

92

93

[11] Howard, Ronald A., Dynamic Probabilistic Systems, Volume 1 and Volume 2,
John Wiley & Sons, Inc., New York, 1971.

[12] Kaio, N., and S. Osaki, Some Remarks on Optimum Inspection Policies, IEEE
Transactions on Reliability, Vol. R-33, No. 4, pp. 277-279, 1984.

[13] Kao, E.P.C., Optimal Replacement Rules when Changes of State are Semi-
Markovian, Operations Research, Vol. 21, pp. 1231-1249, 1973.

[14] Kander, Z., Inspection Policies for Deteriorating Equipment Characterized by N
Quality Levels, Naval Research Logistics Quarterly, Vol 25, pp. 243-255, 1978.

[15] Kawai, H., An Optimal Ordering and Replacement Policy of a Markovian Degra-
dation System Under Complete Observation, Part I, Journal of the Operations
Research Society of Japan, Vol. 26, No. 4, pp. 279-291, 1983.

[16] Kawai, H., An Optimal Ordering and Replacement Policy of a Markovian Degra-
dation System Under Complete Observation, Part II, Journal of the Operations
Research Society of Japan, Vol. 26, No. 4, pp. 292-307, 1983.

[17] Kawai, H., An Optimal Inspection and Replacement Policy of a Markovian
Deterioration System, in Stochastic Models in Reliability Theory, Proceedings
of a Symposium Held in Nagoya, Japan, April 23-24, 1984, Eds. S. Osaki and Y.
Hatoyama. Lecture Notes in Economics and Mathematical Systems, Managing
Editors M. Beckmann and W. Krelle, Volume 235, Springer Verlag, New York,
pp. 177-186, 1984.

[18] Keller, J. B., Optimum Checking Schedules for Systems Subject to Random
Failure, Management Science, Vol. 21, No. 3, pp. 256-260, 1974.

[19] Keller, J.B., Optimum Inspection Policies, Management Science, Vol. 28, No.
4, pp. 447-450, 1982.

[20] Kirch, R.L.A., and M. Klein, Surveillance Schedules for Medical Examinations,
Management Science, Vol. 20, No. 10, pp. 1403-1409, 1974.

[21] Kumar, A., and M. Agarwal, A Review of Standby Redundant Systems, IEEE
Transactions on Reliability, Vol. R-29, No. 4, pp. 290-294, 1980.

[22] Kumar, A., V.B. Kapoor and M.C. Gupta, On Optimal Maintenance of a Series
System, Microelectronics Reliability, Vol. 23, No. 5, pp. 827-831, 1983.

[23] Lancaster, P. and M. Tismenetsky, The Theory of Matrices, Second Edition
with Applications, Academic Press, Inc., Harcourt Brace Jovanovich, Publish-
ers, Orlando, 1985.

94

[24] Lincoln, T. L., and G.H. Weiss, A Statistical Evaluation of Recurrent Medical
Examinations, Operations Research, pp. 187-205, March-April, 1964.

[25] Luss, H., and Z. Kander, Inspection Policies when Duration of Checkings is
Non-Negligible, Operational Research Quarterly, Vol. 25, pp. 299-309, 1974.

[26] Luss, H., Maintenance Policies When Deterioration Can be Observed by Inspec-
tions, Operations Research, Vol. 24, No. 2, pp. 359-366, 1976.

[27] Milioni, A. Z., Optimal Scheduling of Inspections for Systems Under Stochastic
Deterioration, Ph.D. Dissertation, Northwestern University, Evanston, Illinois,
June 1987.

[28] Milioni, A. Z., and S. R. Pliska, Optimal Inspection under Semi-Markovian
Deterioration: Basic Results, Naval Research Logistics, Vol. 35, pp. 373-392,
1988.

[29] Milioni, A.Z., and S. R. Pliska, Optimal Inspection under Semi-Markovian De-
terioration: The Catastrophic Case, Naval Research Logistics, Vol. 35, pp. 393-
411, 1988.

[30] Mine, H., and H. Kawai, An Optimal Maintenance Policy for a 2-Unit Parallel
System with Degraded States, IEEE Transactions on Reliability, Vol. R-23, No.
2, pp. 81-86, 1974.

[31] Mine, H., and H. Kawai, An Optimal Inspection and Replacement Policy, IEEE
Transactions on Reliability, Vol. R-24, No. 5, pp. 305-309, 1974.

[32] Mine, H., and H. Kawai, Marginal Checking of a Markovian Degradation Unit
when Checking Interval is Probabilistic, Journal of the Operations Research
Society of Japan, Vol. 19, No. 2, pp. 158-173, 1976.

[33] Mine, H., and H. Kawai, An Optimal Inspection and Maintenance Policy of
a Deteriorating System, Journal of the Operations Research Society of Japan,
Vol. 25, No. 1, pp. 1-14, 1982.

[34] Mokkapati, C., and S. S. Venkata, A Technique for Optimal Sequential
tenance Scheduling, IEEE Transactions on Reliability, Vol. R-30, No.
265-271, 1981.

Main-

3, pp.

[35] Morrison, T.B., Review of Markov Chain Analysis and Statistics of Extremes
for use in a Methodology of Analyzing Corrosion Pitting, prepared for the De-
partment of Design Engineering, NOVA Corporation of Alberta, May, 1989.

95

[36] Morrison, T.B., Final Report, RKNOVA, Creation of a Stochastic Model of
Corrosion Growth on High Pressure Line Pipe, Morrison Scientific Problem
Solving Report prepared for the Department of Design Engineering, NOVA
Corporation of Alberta, June 1991.

[37] Morrison, T.B., and R.G. Worthingham, Reliability of High Pressure Line Pipe
under External Corrosion. Proceedings of the 11th International Conference
on Offshore Mechanics and Arctic Engineering, S.T. Barbas, D. Dall'aglio, M.
Fernandez, M. Mohitpour, A.T. Wang and Y.S. Wang, eds., Vol. V, Part B, pp.
401-408, Calgary, Canada, June 7-12, 1992.

[38] Naidu, R. S., and M.N. Gopalan, Analysis of Systems Subject to Inspection and
Repair: A State-of-the-Art Survey, Microelectronics Reliability, Vol. 24, No. 5,
pp. 939-945, 1984.

[39] Ohnishi, M., H. Mine and H. Kawai, An Optimal Inspection and Replacement
Policy Under Incomplete State Information: Average Cost Criterion, in Stochas-
tic Models in Reliability Theory, Proceedings of a Symposium Held in Nagoya,
Japan, April 23-24, 1984, Eds. S. Osaki and Y. Hatoyama. Lecture Notes in
Economics and Mathematical Systems, Managing Editors M. Beckmann and
W. Krelle, Volume 235, Springer Verlag, New York, pp. 187-197, 1984.

[40] Ohnishi, M., H. Kawai and H. Mine, An Optimal Inspection and Replacement
Policy for a Deteriorating System, Journal of Applied Probability, Vol. 23, pp.
973-988, 1986.

[41] Osaki, S., and T. Nakagawa, Bibliography for Reliability and Availability of
Stochastic Systems, IEEE Transactions on Reliability, Vol. R-25, No. 4, pp.
284-286, 1976.

[42] Ozekici, S., and T. Papazyan, Inspection Policies and Processes for Deteriorating
Systems Subject to Catastrophic Failure, Naval Research Logistics, Vol. 35, pp.
481-492, 1988.

[43] Ozekici, S., and S. R. Pliska, Optimal Scheduling of Inspections: A Delayed
Markov Model with False Positives and Negatives, Operations Research, Vol.
39, No. 2, pp. 261-273, March-April 1991.

[44] Paolucci, M., Computing the Logarithm of a Matrix Personal Communication
to Mr. Morrison, Mike Paolucci, 1992.

[45] Pierskalla, W.P., and J.A. Voelker, A Survey of Maintenance Models: The
Control and Surveillance of Deteriorating Systems, Naval Research Logistics
Quarterly, Vol. 23, No. 3, pp. 353-388, 1976.

96

[46] Prorok, P.C., The Theory of Periodic Screening I: Lead Time and Proportion
Detected, Advances in Applied Probability, Vol. 8, pp. 127-143, 1986.

[47] Prorok, P.C., The Theory of Periodic Screening II: Doubly Bounded Recurrence
Times and Mean Lead Time and Detection Probability Estimation, Advances
in Applied Probability, Vol. 8, pp. 460-476-143, 1986.

[48] J.W. Provan and E.S. Rodriguez III, Part I: Development of a Markov De-
scription of Pitting Corrosion, Corrosion, Vol. 45, No. 3, pp. 178-192, March,
1989.

[49] E.S. Rodriguez Ill and J.W. Provan, Part II: Development of a General Fail-
ure Control System for Estimating the Reliability of Deteriorating Structures,
Corrosion, Vol. 45, No. 3, pp. 193-206, March, 1989.

[50] Sengupta, B., Maintenance Policies Under Imperfect Information, European
Journal of Operations Research, Vol. 5, pp. 198-204, 1980.

[51] Sernik, E.L., and S.I. Marcus, Optimal Cost and Policy for a Markovian Re-
placement Problem, Journal of Optimization Theory and Applications, Vol. 71,
No. 1, pp. 105-126, 1991.

[52] Sherif, Y.S., and M.L. Smith, Optimal Maintenance Models for Systems Subject
to Failure: A Review, Naval Research Logistics Quarterly Vol. 28, pp. 47-74,
1981

[53] Sherwin, D.J., Inspection Intervals for Condition-Maintained Items Which Fail
in and Obvious Manner, IEEE Transactions on Reliability, Vol. R-28, No. 1,
pp. 85-89, 1979.

[54] Shwartz, M., A Mathematical Model Used to Analyze Breast Cancer Screening
Strategies, Operations Research, Vol. 26, No. 6, pp. 937-955, 1978.

[55] Sim, S.H., and J. Endrenyi, Optimal Preventative Maintenance with Repair,
IEEE Transactions on Reliability, Vol. 37, No. 1, pp. 92-96, 1988.

[56] Sondik, E.J., The Optimal Control of Partially Observable Markov Processes
over the Infinite Horizon: Discounted Costs, Operations Research, Vol. 26, No.
2, pp. 282-304, 1978.

[57] Sorensen, J.D., M.H. Faber, R. Rackwitz and P. Thoft-Christensen, Modelling
in Optimal Inspection and Repair, Proceedings of the 11th International Con-
ference on Offshore Mechanics and Arctic Engineering, C. Guedes Soares, C.

97

Ostergaard, M.J. Baker, A. Pittaluga, M. Hunter and P. Thoft-Christensen,
eds., Vol. II, pp. 281-288, Calgary, Canada, June 7-12, 1992.

[58] Symbolics, Inc., MACSYMA Reference Manual, Computer Aided Mathematics
Group, Symbolics Inc., 1988.

[59] Taylor, H. M. and S. Karlin, An Introduction to Stochastic Modelling, Academic
Press, Inc., Harcourt Brace Jovanovich, Publishers, Orlando, 1984.

[60] Valdez-Flores, C. and R. M. Feldman, A Survey of Preventive Maintenance
Models for Stochastically Deteriorating Single-Unit Systems, Naval Research
Logistics, Vol. 36, pp. 419-446, 1989.

[61] Weiss, G.H., and M. Zelen, A Semi-Markov Model for Clinical Trials, Journal
of Applied Probability, Vol. 2, pp. 269-285, 1965.

Appendix A

Mine and Kawai MAC SYMA Code

1* PROGRAM H.MAC, MINE AND KAWAI DYNAMIC PROGRAMMING PROGRAM *1
kill (all)$

batchload('c : \\macsyma\\mk\\data . mac")$

batchload(" c : \\macsyma\\mk\\f_bar . macit) $
batchload("c :\\macsyma\\mk\\val_det .mac")$

load("c:\\macsyma\\share\\bisect.fas")$

load("c:\\macsyma\\share\\adaplot .fasht)$

1* write_tex_file("h.tex"), *1

g: 1$

array(nu, 3) $
nu[2] : 0 $
nu[i] : 0 $
nu[O] : 0 $

1* ALTERNATIVE'S: 1: M, 2: I(inf), 3: 1(t) *1
alternative-max: 3 $
array(alternative_start, 3) $
alternative-start[2] : 1 $
alternative_ start [1] : 1 $
alternative-start[0] : 1 $

1* initialize time
array(time,3) $
time[2] : 0 $
time[1] : 0 $
time[0] : 7.06 $

cost-repair : 30 $
time-repair : 4 $
time-maintain : 2 $
cost-inspection : 1 $

98

99

cost-maintain : 20 $ 1* 2, 5, 10 and 13 */

test-1 : alternative-start $
test-2 : -alternative-start $

1* trace(value_determinatjon)$
* trace(solve)$

* trace(f_bar)$

* trace(int_f_bar)$

* trace(p_ij_nu)$

output : value-determination(g, nu, num_states, test_i, lambda,

beta, cost-maintain, time-maintain, cost_repair,

time-repair, cost-inspection, time);

1* g : part(output,i,i,2);

* nu[i] : part(output,1,2,2);

* nu[2] : part(output,1,3,2);
*

*

*

* for i: 1 thru 2 do

* print('nu[ij = nuCi]);
*

*1

1* close_tex_file(true); *1
1* END OF PROGRAM *1

100

1* DATA *1

a.rray(1ainbda,3)

lambda[O] : 10/100 $
lambda[1] : 15/100 $
lambda[2] : 20/100 $

array(beta,3) $
beta[0] : 5/100 $
beta[l] : 5/100 $
beta[2] : 0 $

num_states : 2 $

/* END OF DATA */

101

1* VALUE DETERMINATION ROUTINE *1

value-determination(g, nu, n, alternative, lambda, beta,

cost-maintain, time-maintain, cost_repair,

time-repair, cost-inspection, time) :=
block([test-g, v, w, i, j, f_b, _b-nu, mt_f_b, tau, eqn,

g-out, flu_out, v_temp, w_temp, test-number, flu_temp,

alternative-chosen, max-alt, solutions_this_time,

t, h, x, k],

test-g: g, print("test_g ", test-g,

/* initialize the v and w arrays
for i:0 thru n do (

vii] : 0,

w[i] : 0),

for i:0 thru ii do

remvalue (vii], w[i]),

for i:0 thru n do nu[i] : 0,

for i:0 thru n do remvalue(nu[i]),

for i:0 thru n do display(nu[i]),

119 = It , g) ,

for i : 0 thru n do (
if alternative [i] = 1 then (/* M for maintain */

vii] : cost-maintain * time-maintain,

w[i] : time-maintain

)
else if alternative [i] = 2 then (

1* 1(t) = inf for never inspect *1
assume(x > 0),
/* f_b and f_b_nu are zero because the exponentials

* are all evaluated at infinity.

f_b : 0,

f_b_nu : 0,

mt_f_b : int_f_bar(i, n, lambda, beta, x, 1, time),

display(f_b, f_b_nu, mt_f_b),
vii] cost-repair * time-repair * (1 f_b) +

cost-inspection * f_b + f_b_nu,

102

w[i] : mt_f_b + time-repair * (1 - f_b)

)
else if alternative [i] = 3 then (

1* 1(t) for inspect later */

f_b : f_bar(i, n, lambda, beta, time[i]),

if i = n then

answer : read("i = n, this is impossible, type C now")

/* because max_alt at i = n is equal to 2 *1
else if i = n - 1 then

1* august 16, hard wiring *1
f_b_nu : beta[n-1] * nu[n] * (

%e(lambda[n-1] * time[i]) /
(lambda[n] lambda[n-1]) +

%e(-lambda[n :i * time[i]) /
(lambda[n-1] - lambda[n]))

else 1* i <= n - 2 */
f_b_nu p_ij_nu(i, n, lambda, beta, nu, time[i]),

int.f_b : int_f_bar(i, n, lambda, beta, x, 0, time[i]),

),

display(f_b, f_b_nu, mt_f_b),
vEiJ (cost-repair * time-repair * (1 - f_b) +

cost-inspection * f_b +

f_b_nu) / (1 - %e(-lambda[i] * time[i])),

w[i] : (int_f_b+time_repair*(1 - f_b)) /
(1 %e(-lambda[i] * time[i]))

1* end of alternative = 3 */
display(v[i], w[i])

1* END OF v AND w PART OF EQUATION GENERATION LOOP */

1* remove the values of nu, solve for a new set of nu's *1
1* build--up the equations *1
for i:0 thru n do remvalue (g, nu[1], nu[2]),
for i:0 thru n do (

if i = 0 then

nu[O] : 0,

eqn[i] : factor(expand(radcan(g * w[i] + nu[i] - v[i]))),

print(" "),

display(eqn[i])

103

algexact: true, solveradcan: true, globalsolve:true,

solutions-this-time : solve([eqn[O], eqn[1], eqn[2]

[g, nu Ell , nu[2]]),
g : part(solutions_this_time,1,1,2),

nu[1] : part(solutions_this_time,1,2,2),

nu[2] : part(solutions_this_time,1,3,2),

print("g = ", g, "test_g = " test_g,

" nu [1] = " flu [1] , "flu [2] = " nu [2]),

1* Evaluation of V_0A (g'A)

test_v_a (cost-repair * time-repair *
(1 - f_bar(O, 2, lambda, beta., x))
+ cost-inspection * f_bar(O, 2, lambda, beta, x)

+ p_ij_nu(0, 2, lambda, beta, nu, x))
/ (1 - %e(-lambda[0] *

display (test_v_a),

1* if test_g = g then
* print(" bingo! The g's match and the optimum

* solution has been found! ")

* else

* print(" looking for more optimization ")

*1

1* POLICY IMPROVEMENT PART OF THE ROUTINE *1

for i : n step -1 thru 0 do (
if i = n then max-alt : 2 else max_alt : 3,

1* max-alt : 3, */

for j : 1 thru max-alt do (
f = 1 then (1* M for maintain *1

v_temp[j] : cost-maintain * time-maintain,

w_temp[j] : time-maintain

)

104

else if j = 2 then (
1* I(inf) = infinity for never inspect *1
assume(x > 0),
f_b 0,

f_b_nu : 0,

mt_f_b : int_f_bar(i, n, lambda, beta, x, 1, time),

display(f_b, f_b_nu, mt_f_b),
v_temp[j] : cost-repair * time-repair * (1 - f_b) +

cost-inspection * f_b + f_b_nu,

w_temp[j] : mt_f_b + time_repair * (1 - f_b)
)
else if j = 3 then C

f_b : f_bar(i, n, lambda, beta, x),

tex(h),

/*

if

i will never equal n because max-alt = 2 if i = n */

i = n - 1 then

/* august 16, hard wiring f_b_nu */
f_b_nu : beta[n-1] * nu[n] * (

%e(-lambda[n-1] * x) /
(lambda[n] - lambda[n-11) +

%e -(-lambda[n] * x) /
(lambda[n-11 - lambda[n]))

else /* i <= n 2 */
f_b_nu : p_ij_nu(i, n, lambda, beta, nu, x),

mt_f_b : int_f_bar(i,n,lambda, beta, x, 2, time),

display(f_b, f_b_nu, mt_f_b),

h radcan((cost-repair * time-repair * (1 f_b)

+ cost-inspection * f_b

g * mt_f_b

g * time-repair * (1 f_b)

+ f_b_nu)
/ (1- 7.e(-lambda[i] * x))),

display(h),

xmax : 100,

xmin : 0,

ymin : limit(h,x,inf) - 1,

105

ymax : limit(h,x,inf) + 1,

adaplot2(h, x, 0.1, 100, ymin, ymax),

kill(xmax, xmin, ymin, ymax),

if ± = n then (
1* limit(h,x,inf) should equal

v_temp[2] - g * w_temp[2] *1
print('n = ", n, "i = ", i),

print("limit of h at infinity =

print ("v_temp[2] - g * w_temp[2] =

v_temp[2] - g * w_tempC2]),

1* check to see that dH/dt <= 0 for
h_derivative : radcan(diff(h,x)),

display (h_derivative)

adap10t2(h_derivative, x, 1, 100, -1,

limit(h,x,inf)),

t>= 0 if i = n *1

+1)

pr±nt("limit of h at infinity = ", limit(h,x,inf)),

if i = n then print

("you must select option 1 because i = n "),

print("YOUR OPTIONS AR:

type 1 to only compare M and I(oo),"),

print(" H has a minimum: type 2,"),

answer : read("choose a selection"),

prnt("you chose : ", answer),

(if answer = 1 then

1* want to compare M and I(oo), so make alt 3 fail *1
v_temp[j] : v_temp Cj-1] + 1,

w_temp[j] : w_temp[j-1])
else if answer = 2 then (

h_derivative : radcan(diff(h,x)),

display (h_derivative),

adap1ot2(h_derivative, x, 1, 100, -1, +1),

minimum-time root_by_bisection(h_derivative,x, 1,50),

print("m±nimum_time = ", minimum-time),

time [i] minimum-time,

h_test : ev(h, x: minimum_time),

v_temp[j] : h_test,

106

w_temp[j] 0,

display(minimum_time, h_test)

) 1* end of answer = 2, alternative
), 1* end of alternative 3 *1

display(v_temp[j], w_temp[j])

), 1* end of j loop *1

= 3 */

for j : 1 thru max-alt do (
nu-temp[j] : v_tempCj] - g * w_temp[j],

1* force test-number to equal nu-temp[l] *1
if j = 1 then test-number nu_temp[1],

if nu-temp[j] <= test-number then (
nu[i] nu_tempEj],

alternative-chosen .:

test-number nu-temp[j]),
print(" max-alt = ", max-alt,

)

II j = II j

II

11 nuE" , I,"] = It, flu [1]

If a_chosen = ", alternative-chosen,

11 test-no ", test-number)
1* bottom of alternative determination loop *1

1* bottom of policy iteration routine, i loop */

print(" got to bottom of val_det.mac

display(g, nu[0], nu[1J, nu[2J),

test_v_b (cost-repair * time-repair *
(1 f..bar(O, 2, lambda, beta, x))
+ cost-inspection * f_bar(0, 2, lambda, beta, x)

+ p_ij_nu(0, 2, lambda, beta, nu, x))
/ (1 %e(lambda[O] *

display(test_v_b),

plot(test_v_a, x, 0.01, 100),

plot(test_v_b, x, 0.01, 100),

(g, nuCO], nu[1], nu[2])

)$

107

/* END OF VALUE-DETERMINATION
* ANSWER OF OPTIMUM ALTERNATIVES FOR EACH STATE

* SHOULD RESULT FROM THIS

108

/* f_bar

f_bar(i, n, lambda, beta, time) (
block[j, k, index, answer, beta_prod, exp_part, lambda_prod,

exp_lambda_stuff],

array(answer, 3),

answer[O] : 0,

answer[1] 0,

answer[2] : 0,

array(exp_lambda_stuff, 3),

exp_lainbda_stuff[O] : 0,

exp_lainbda_stuff[1] 0,

exp_lambdà_stuff[2] 0,

for j : i thru n do (
if j = i then

answer[j] %e(-lambda[i] * time)

else if j = i + 1 then
answer[j] . beta[i] * (

7.e'(-lambda[i] * time) /
(lambda[j] - lambda[i]) +

°he(-lainbda[j] * time) /
(lambda[i] - lambda[j]))

else ifj>i+l then (

beta-prod : product (beta [k], k, i, j-1),

/* LOOP OVER I TO .3 , LEAVING OUT K,

THE CURRENT ELEMENT OF THE SERIES */
/* note the cool way the negative signs pop into this *1
for index ± thru j do (

lambda-prod 1,

exp_part : %e(-lambda[index] * time),

for k : i thru j do (
if k # index then

lambda-prod : lambda-prod *

(lambda[k] - lambda[index]

exp_lainbda_stuff [index] : exp_part / lambda-prod
),
answer[j] : beta-prod *

)),

sum(exp_lainbda_stuff [index], index, i, j)
),
display(answer[j])

109

),
display(sum(answer[j], j, 1, n)),

sum(answer[j], j, 1, n)

)
/* END OF f_bar *1

110

/* p_ij_nu

* recall that j starts at i+1

p_ij_nu(i, n, lambda, beta, flu, time) : (
block[k],

array(answer, 3),

answer[0] : 0,

answer [l] : 0,

answer[2] 0,

1* only way to get here is if i = 0, n = 2 *1
print("i = ", i, "n = ", n, "time = ", time),

print("printout of the flu's supplied to p...ij_nu"),
for k : 0 thru 2 do print("k = ", k, "nu[k] = ", nuCk]),

beta[0J * nu[l] *

(%e(-lambda[0] * time) / (lambda[l] - lambda[O]) +

7.e(-lambda[1] * time) / (lambda[O] - lambda[1]))
+

beta[0] * beta[l] * nu[2] *

(%e(-lambda[OJ * time) /
((lambda [1] -lambda [0]) * (lambda [2] -lainbda[0]))+
%e(-lainbda[l] * time) /
((lambda[0]-lambda[l]) * (lambda[2]-lambda[1]))+

%e(-lainbda[2] * time) /
((lambda[0]-lambda[2]) * (lambda Ci] -lambda [2])))

)$
/* END OF p_ij_nu *1

111

1* mt_f_bar
* used in the integral of \bar{F}_i(time),

* to calculate the time of the next expected transition

int_f_bar(i, n, lambda, beta, time_x, it-flag, time) : (
block[j, k, index, answer, beta-prod, exp_part, lambda_prod,

temp, t, sex-1, exp_lambda_stuff],

array(answer, 3),

answer[O] : 0,

answer[i] : 0,

answer[2] : 0,

array(exp_lambda_stuff, 3),

exp_lambda_stuff[O] 0,

exp_lambda_stuff[i] : 0,

exp_lambda_stuff[2] : 0,

for j : i thru n do (
if j = i then

answer[j] %e(-lambda[i] * time-x)

else if j = i + 1 then

answer[j] : beta[i] * (
%e(-lambda[i] * time-x) /
(lambda[j] - lambda[i]) +

°he(-lambda[j] * time-x) /
(lambda[i] - lambda[j]))

else ifj>i+i then (

beta-prod : product(beta[k], k, i, j1),

/* LOOP OVER I TO 3 , LEAVING OUT K,
THE CURRENT ELEMENT OF THE SERIES */

/* note the cool way the negative signs pop into this */
for index : i thru j do C

lambda-prod : 1,

exp_part : %e-(-lambda[index] * time-x),

for k : i thru j do (
if k # index then

lambda-prod : lambda-prod *

(lambda[k] lambda[index])),
exp_lainbda_stuff [index] : exp_part / lambda-prod

),
answer[j] : beta-prod *

sum(exp_lambda_stuff[mndex], index, i, j)

112

),
display(answer[j])

temp sum(answer[j], j, 1, n),

assume(x > 0, tau > 0),

if it-flag = 0 then 1* integrate to time[i] */

integral : integrate(temp, time-x, 0, time[i])

else if it-flag = 1 then /* integrate to infinity *1
integral : integrate(temp, time-x, 0, inf)

else if it-flag = 2 then (
/* val of integral as a function of time (x) */
temp-tau : subst(tau, time-x, temp),

integral : integrate(temp-tau, tau, 0, time-x)

)'

display(mntegral),

integral

)$
/* END OF mt_f_bar */

Appendix B

Ohnishi, Kawai and Mine MACSYMA Code

1* OKM.MAC, 0KM TOTAL AVERAGE COST DYNAMIC PROGRAMMING PROGRAM *1

load("c:\\macsyma\\share\\bisect .fas")$

load('c: \\macsyma\\share\\adaplot .fas")$

write_tex_file("h.tex"),

kill (all) $

batchload('c \\macsyma\\okm\\data .macu) $
batchload("c:\\macsyma\\okm\\int_fbar.mac')$

batchload("c:\\macsyma\\okm\\p_ij .mac")$

batchload("c : \\macsyma\\okm\\m .mac")$

batchload('c :\\macsyma\\okm\\int_a.mac")$

/* begin the main loop of the program here *1
for count : 1 thru 20 do (

print(top of count loop results, g = "., g),

for m : 0 thru 3 do (
print(" m = ", m,

If alternative[",m,"] = ", alternative[m])),

for ± : n step -1 thru 0 do (/* state loop */

x_okm[i] : int_f_bar(i, n, lambda, beta, x,int_flag,time) +

p_ij(i, n, lambda, beta, x, x_okm),

y_okm[i] : m(i, n, lambda, beta, x, inspection_cost) +

int_a(±, n, lambda, beta, x, mt_flag, time,

operating-cost) +

p_ij(i, n, lambda, beta, X. y_okm),

g_okm[i] : (y_okm[i] - g * x....okm[i]) I
(1-%e(-lambda[i] * x)),

113

114

display(g_okm[i]),

limit_inf limit(g_okmCi], x, inf),

xmax : 100,

xmin : 0,

ymin : limit-it - 2,

ymax :limit_inf + 2,

ymin : limit-it - 0.1,

ymax : limit-it + 0.1,

ymin limit-it - 10,

ymax limit-it + 10,

plot(g...okmCi], x, 1, 100, ymin, ymax),

print("limit of g_okm[i]

print ("replacement cost
print (H H , , Hj = II ,

at infinity = ", limit_inf),

replacement_cost Ei3),

print("YOUR OPTIONS ARE: type 1 to only compare c_i and I(oo),"),

print(" type 2 if g...okm[i] has a minimum,"),

answer : read("choose a selection"),

print("you chose ", answer),

if answer = 1 then (1* want to compare i(oo) and c_i *1
it limit-it < replacement-cost[i] then (

alternative[i] : 1 /* choose i(oo) */

)
else (

alternative[i] : 2 /* choose

)
)
else if answer = 2 then (

/* want to compare min-Cg_okm[i]} and c_i */

g_derivative : radcan(dift(g_okm[i] ,x)),

115

display (g_derivat ive),

xmax : 100,

xmin 0,

ymin : -5,

ymax : 5,

plot(g_derivative, x, 1, 100, ymin, ymax),

minimum-time : root_by_bisection(g_derivative, x, 1, 100),

print("minimum_time = 11 minimum-time),

time[i] : minimum-time,

g_test : ev(g_okm[i], x: minimum-time),

if g_test < replacement-cost[i] then (
alternative[i] : 3 1* choose h *1

)
else (

alternative [i] : 2 1* choose c_i + v_C */
)

)

), 1* end of i (state) loop *1

print("count = ", count),

print(completed state loop "),

1* We need to know alternative [0] because we need to know
* where to evaluate y_okm[0] and x_okm[0].

* alternative[0] = 1, then I(oo), so evaluate x and y at 00

* alternative[O] = 2, then C_i, ratio is oo, so set to 1000

* alternative[O] = 3, then 1(t), so evaluatex and y at t

if alternative[0] = 2 then

g : replacement-cost[O] 1* g should be infinite? *1
else if alternative[0] = 1 then

g : sfloat(ev(y_okm[0], x inf) I ev(x_okm[0], x: inf))

else if alternative[0] = 3 then

g : sfloat(ev(y_okm[0], x minimum-time) I ev(x_okm[0],
x: minimum-time)),

print('alternative[",i,"] = ", alternative[i], "g = ", g),

116

print(bottom of count loop results

for m : 0 thru 3 do (
print(m = ", m,

alterna.tive[11 ,m,hh] = ", alternative[m]))

);/* end of count loop *1

1* END OF PROGRAM */

117

1* DATA *1

n :2$

it-flag : 2$

array(x_okm, 3)$

x_okm[0] : 1$

x_okm[1] : 1$

x_okm[2] : 1$

array(y_okin, 3)$

y_okm[0] : 1$

y_okm[1] 1$

y_okm[2] : 1$

array(g_okm, 3)$

g_okm[0] : 1$

g_okm[1] : 1$

g_okm[2] 1$

g : y_okm[0] / x_okm[0] $

array(operating_cost ,4)

operating-cost[O] : 5

operating-cost[l] : 10

operating-cost[2] : 15

operating-cost[3] : 20

array(replacement_cost .4)

replacement-cost[O] : 10

replacement-cost[l] : 15

replacement-cost[2] : 20

replacement-cost[3] .: 30

inspection-cost : 10 $
alpha : 1/10 $

array(laiubda , 3) $
lambda[0] : 10/100 $
lambda[l] : 15/100 $

118

lambda[2] : 20/100 $

array(beta,3) $
beta[O] : 5/100 $
beta[l] 5/100 $
beta[2] : 0 $

num_states : 2 $

array(time,3) $
time[O] : 0 $
tirneEl] : 0 $
time[2] : 0 $

array(alternative, 4) $
alternative[0] : 0 $
alterna.tive[1] 0 $
alternative[2] : 0 $
alternative[3] : 0 $

/* END OF DATA */

119

1* mt_f_bar
* used in the integral of \bar{F}_i(time),

* to calculate the time of the next expected transition

int_f_bar(i, n, lambda, beta, time-x, it-flag, time) := (
block[j, k, index, answer, beta-prod, exp_part, lambda_prod,

temp, t, sex-1, exp_laxnbda_stuff],

array(answer, 3),

answer[O] : 0,

answer[i] : 0,

answer[2] 0,

array(exp_lambda

exp_lambda_stuff

exp_lambda_stuff

exp_lambda_stuff

for j : ± thru n
if j = i then

answer[j]

else if j = ±
answer[j]

else if j > i

_stuff, 3),

[0] : 0,

[1] : 0,

[2] : 0,

do (

%e(-lambda[i] * time-x)

+ 1 then

beta[i] * (
%e(-lambda[iJ * time-x) /
(lambda[j] - lambda[i]) +

%e'(-1ambda[j] * time-x) /
(lambda[i] - lambda[j]))

+ 1 then (
beta-prod : product(beta[k], k, i, j-i),
1* LOOP OVER I TO J , LEAVING OUT K,

THE CURRENT ELEMENT OF THE SERIES */

/* note the cool way the negative signs pop into this */
for index : i thru j do (

lambda-prod 1,

exp....part : %e -(-lambda[index] * time-x),

for k : i thru j do (
if k # index then

lambda-prod : lambda-prod *

(lambda[k] lambda[index])),
exp_lainbda_stuff [index] exp_part / lambda-prod

)
answer[j] beta-prod *

120

sum(exp_lainbda.stuff [index], index, i,

),
display(answer[j])

temp : sum(answer[j], j,
a.ssume(x > 0),

assume(tau > 0),

if int.flag = 0 then /*
integral : integrate(temp, time_x, 0,

else if it-flag = 1 then 1* integrate
integral : integrate(temp, time-x, 0,

else if it-flag = 2 then (
/* val of integral as a function of time
temp-tau subst(tau, time-x, temp),

integral : integrate(temp_tau, tau, 0, time-x)

display(integral),

integral

)$
/* END OF mt_f_bar */

n),

integrate to

time [i])
to infinity */
inf)

time[i] */

j)

121

/* p_ij.mac */

p_ij(i, n, lambda, beta, time, cost-time) : (
block[j, k, index, answer, beta_prod, exp_part, lambda-prod,

exp_lambda_stuff],

/* cost-time is an array that can be y_okm or x_okm */

array(answer, 3),

answer[O] 0,

answer[1] 0,

answer[2] 0,

array(exp_lambda_stuff, 3),

exp_lambda_ stuff [0] : 0,

exp_lambda_stuff[1] : 0,

exp_lambda_stuff[2] 0,

for j : i thru n do (
if j = i then

answer[j] cost-time[j] * %e (̂-lambda[i] * time)

else if j = i + 1 then
answer[j] : beta[i] * cost-time[j] * (

°he(lambda[iJ * time) /
(lambda[j] lambda[i]) +

%e(-lambda[j] * time) /
(lambda[i] - lambda[j]))

else if j > i + 1 then (
beta-prod : product(beta[k], k, i, j-1),

/* LOOP OVER I TO J , LEAVING OUT K,

THE CURRENT ELEMENT OF THE SERIES */

1* note the cool way the negative signs pop into this */
for index : i thru j do (

lambda_prod : 1,

exp_part : %e -(-lambda[index] * time),

for k : i thru j do (
if k # index then

lambda-prod : lambda-prod *

(lambda[k] - lambda[index])),
exp_lambda_ stuff [index] : exp_part / lambda-prod

122

answer[j] : beta-prod * cost-time[j] *

sum(exp_lambda_stuff[index], index, i,

),
display(answer[j])

),
sum(answer[j], j, i, n)

)$
/* END OF p_ij */

j)

123

1* m.mac

m(i, n, lambda, beta, time, inspection-cost) (
block[j, k, index, answer, beta-prod, exp_part, lambda_prod,

exp_lambda_stuff],

array(answer, 3),

answer[O] 0,

answer[1] : 0,

answer[2] : 0,

array(exp_lainbda_ stuff, 3),

exp_lambda_stuff[0] 0,

exp_lambda_stuff[1] : 0,

exp_lainbda_stuff[2] : 0,

for j : i thru n do (
if j = i then

answer[j] : %e (̂-lambda[i] * time)

else if j = i + 1 then
answer[j] beta[i] * (

7.e'(-lambda[iJ * time) /
(lambda[j] - laxnbda[i]) +

%e(-lambda[jJ * time) /
(lambda[i] - lambda[j]))

else ifj>i+l then (

beta-prod product(be-ta[k], k, i, j-i),
/* LOOP OVER I TO J , LEAVING OUT K,

THE CURRENT ELEMENT OF THE SERIES */

/* note the cool way the negative signs pop into this */
for index : ± thru j do (

lambda-prod 1,

exp_part %e -(-lambda[index] * time),

for k : i thru j do (
if k # index then

lambda-prod lambda-prod *

(lambda[k] - lambda[index])),
expj.ambda_ stuff [index] : exp_part / lambda-prod

answer[j] : beta-prod *

sum(exp_lambda_stuff[index], index, i J)

124

display(answer[j])
),
/* display(sum(answer[j], j, 1, n) * Ye-(-alpha * time) *

* inspection_cost),

* suin(answer[j], j, i, n) * %e -(-alpha * time) *

* inspection_cost

sum(answer[j], j, 1, n) * inspection_cost

)$
/* END OF inspect */

125

/* mt_a

* integral of cost of operating beginning in each state i

* hard-wired for three states (0,1,2)

int_a(i, n, lambda, beta, time_x, it-flag, time,

operating-cost) : (
block[j, k, index, answer, beta-prod, exp_part, lambda-prod,

temp, t, sex-1, exp_lambda_stuffj,

array(answer, 3),

answer[0] 0,

answer [l] : 0,
answer[2] 0,

array(exp_lambda_stuff, 3),

exp_lambda_stuff [0] : 0,

exp_lainbda_stuff[i] : 0,

exp_lambda_stuff [2] 0,

for : i thru ndo (
if j = i then

answer[j] : %e(-lambda[i] * time-x)

else ifj=i+lthen

answer[j] : beta[i] * (
%e'(-lambda[i] * time-x) /
(lambda[j] - lambda[i1) +

%e^(-lambdaCj] * time-x) /
(lambda[i] - lambda[j]))

else ifj>i+l then (

beta-prod : product(beta[k], k, i, j-1),

/* LOOP OVER I TO J , LEAVING OUT K,
THE CURRENT ELEMENT OF THE SERIES */

1* note the cool way the negative signs pop into this */
for index : i thru j do (

lambda-prod : 1,

exp_part : %e -(-lambda[index] * time-x),

for k : i thru j do (
if k # index then

.lambda-prod : lambda-prod *

(lambda[k] - lambda[index])),
exp_lambda_ stuff [index] : exp_part / lambda-prod

),
answer[j] : beta-prod *

126

sum(exp_lambda_stuff [index], index, i,

assuiue(x > 0),
assume(-tau > 0),

j)

1* put the integration here *1
if it-flag 0 then /* integrate to time[i] *1

answer[j] : integrate(answer[j], time-x, 0, time[i])

else if it-flag = 1 then /* integrate to infinity *1
answer[j] : integrate(answer[j], time-x, 0, inf)

else if it-flag = 2 then (
/* val of integral as a function of time (x) */
assume(x > 0),

temp-tau : subst(ta.u, time-x, answer[j]),

answer[j] : integrate(temp_tau, tau, 0, time-x)

),

display(answer[j])

suiti(answer[j] * operating_cost[j], j, i, n)
)$
/* END OF mt_a */

