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Abstract 

Dynamic programming techniques are used to examine the problem of determin-

ing inspection times of a system that can be modelled as a Markov process. The 

computer algebra system MACSYMA is used as the programming language. Rec-

ommendations for future work on determining optimized inspection times for more 

general systems than were examined in this thesis are documented. 
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Chapter 1 

Introduction and Motivation 

In this thesis two methods for determining the inspection times of a system operating 

under stochastic' deterioration are examined. The project was motivated by several 

studies the author has conducted for the Department of Design Engineering, and the 

Facility Integrity Group of the Field Services Department of NOVA Corporation of 

Alberta. The studies began with a short review, or translation from "mathematics" 

into "english", of a paper describing a mathematical model that was used to describe 

the reliability of a decaying system [35, 48, 49]. The project developed into the 

implementation of the model for the Department of Design Engineering so they 

could use the model as part of their cost estimating procedures. Specifically, the 

model was used to examine exterior corrosion growth on high pressure natural gas 

pipelines. The idea was that the growth of corrosion on the outside of the pipeline 

could be modelled as being due to the quality of coating, desciibed by a one or 

two element vector input by the user. A high quality coating reduces the corrosion 

growth to very small levels while a lesser quality coating does not inhibit growth and 

the reliability of the pipeline as a function of time is much less [36, 37]. 

The model prepared for the Department of Design Engineering was a brute-force 

model where a large system of differential equations was solved using Runge-Kutta 

techniques. Among the several options the user could select were those to determine 

a single time to inspect the pipeline such that the probability of failure (or repair) 

'satisfying the laws of probability 
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of the pipeline would be a minimum over a preselected lifetime. The user could also 

select to determine two "optimized" inspection times. It was during the course of 

this work that the question arose as to whether it was possible to determine the next 

time to inspect the pipeline if its present state were known, over a not predetermined 

lifetime (i.e., over an infinite horizon). It is the determination of inspection times 

over the infinite horizon, motivated by the NOVA projects, that formed the problem 

to be solved in this thesis. 

Given the differential equation model it remained to determine approximate val-

ues for the transition parameters [5]. 

Further motivation for solving the problem in this thesis was generated by other 

work dealing with analyzing corrosion growth data and, based on the data, estimat-

ing the reliability of the pipeline as a function of time. In this work, performed for 

the Facility Integrity Group of the Field Services Department of NOVA [6], mea-

surements from two inspections of a pipeline were analyzed with the goal being to 

determine the rate of corrosion growth on the pipeline. The work is referred to as the 

"automatic correlation" problem because the idea is to write software that, given two 

inspection data sets, will automatically generate a Markov chain transition matrix 

for the growth of the corrosion between the two inspections. As preparation for this 

work, some of the problems have been analyzed in this thesis. 

1.1 Outline of this Thesis 

The work conducted for this thesis is presented in seven parts beginning with the 

next chapter. 
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In Chapter 2 the results of a literature search on the optimized inspection timing 

problem are presented. 

The actual calculations of optimized inspection times are presented in Chapters 

3, 5 and 6 with Chapter 4 giving some necessary preparation. 

In Chapter 3 the simplest model of a deteriorating system is examined. Say 

the system has N + 1 states and the system can be in any state from 0 to N and 

still operate. In this model the ith state can only decay into the i + 1st state. The 

ultimate state is the failed state. The objective is to determine, given that the system 

is observed to be in state i, the time of next inspection such that the probability of 

the system having failed (or gone into the failed state) is kept below some chosen 

level c. No cost considerations are included in this model. It is assumed that the 

decay rates are known by the user. 

A review of the dynamic programming methodology is presented in Chapter 4. 

This serves as an introduction to the more complicated dynamic programming models 

presented in Chapters 5 and 6. 

Three of the models created by Mine and his co-workers in Japan during the 

1970's and 1980's were implemented in software. Results from two of the models 

and their output are described in Chapters 5 and 6. These models use dynamic 

programming methodologies and illustrate what can be done solving the optimized 

inspection time problem from a theoretical viewpoint in contrast to the practical 

viewpoint of the final chapters. The model in Chapter 5 uses policy iteration; the 

model in Chapter 6 uses successive approximations. In contrast to the models pre-

sented in Chapters 3 and 4, cost considerations are used to determine optimized 

inspection times in the models considered in Chapters 5 and 6. 
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In Chapter 7 the problem of determining the decay rates is examined in detail. 

Given the transition matrix created by analyzing the system at two different times, 

the deterioration regime of the system must be determined. This is not a trivial 

problem. The objective of the work conducted for this chapter is to begin with 

a data set and end with a calculation of the failure probability of the system as a 

function of time into the future. Among other difficulties presented to someone trying 

to conduct the analysis for this chapter is the changing of the data from the discrete 

time Markov chain data into a continuous-time Markov chain for use in solving a 

system of differential equations. The greatest effort is concerned with obtaining the 

logarithm of a matrix. Only probabilities enter the calculations in this chapter. No 

cost considerations are involved. 

Several other aspects of the optimized inspection time problem that are important 

to real-world systems are reviewed in Chapter 8. As well, for completeness, and to 

show what problems still must be solved for real-world situations, future work and 

recommendations are also reviewed in this chapter. 



Chapter 2 

Literature Search: The State-of-the-Art 

The objective of this work is to determine inspection times over an infinite horizon. 

The literature obtained during the course of the research conducted for this project 

can be divided into four groups, or: 

1. The exact knowledge situation, as documented by Mine and his group of re-

searchers from Japan. 

2. The false positive/ negative situation, as documented by Pliska and his group 

of researchers. 

3. Individual contributions from several researchers, mostly in the form of only 

a single paper, in contrast to the several contributions from the two previous 

groups. 

4. Other interesting contributions. 

There is a great difference in the models depending upon whether the failure of 

the system is immediately obvious to the researcher. The Mine and Pliska groups 

use models where failure is obvious. Many of the other researchers use models where 

failure is only known by inspection. 

5 
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2.1 The Work of the Mine Group 

Mine and his co-workers have produced several papers examining the problem of 

determining optimized inspection times. In each of the papers they use the same 

model for the deterioration and failure of the system. The failure of the system is 

obvious to the researcher. The topics of the papers are: 

1. Mine and Kawai, 1974 [30]: Description of the deterioration model. 

2. Mine and Kawai, 1975 [31]: Determination of optimized inspection times using 

minimum average cost per unit time as the criterion. Operating and repair 

costs do not depend on the state. 

3. Mine and Kawai, 1976 [32] : Determination of optimized inspection time us-

ing minimum average cost per unit time as the criterion when the inspection 

interval is governed by a probability function, e.g. exponential distribution. 

4. Mine and Kawai, 1982 [33]: Determination of optimized inspection times us-

ing minimum total discounted time when the system is not operating as the 

criterion. 

5. Kawai, 1983 [15, 16]: Determination of ordering and replacement times us-

ing minimum average cost per unit time as the criterion, when the system is 

observed continuously. 

6. Kawai, 1984 [17]: Determination of optimized inspection times using minimum 

expected total discounted cost as the criterion. 
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7 Ohnishi, Kawai and Mine, 1984 [39]: determination of optimized inspection 

times using minimum average cost per unit time as the criterion. The infor-

mation about the state of the system is not exact. 

8. Ohnishi, Kawai and Mine, 1986 [40]: Determination of optimized inspection 

times using minimum average cost per unit time as the criterion. Operating 

and repair costs depend on the state. 

In each of these papers either a policy iteration procedure or a successive approx-

imation procedure is used to determine the inspection times. 

An attempt has been made to develop software to duplicate the results for three 

of the papers, ([31, 17, 40]) in the above list. In Chapter 5 the model for Mine and 

Kawai [31] is presented. In Chapter 6 the model for Ohnishi, Kawai and Mine [40] 

is presented. The model for Kawai [17] is not presented in this thesis. 

2.1.1 General Overview of the Mine Group Papers 

In all of the papers the majority of the effort is spent determining a function the 

authors refer to as H or G. In general the function will be referred to as H. The 

function H depends on the criteria used to solve the problem. 

Each paper rehashes a proof that the function H has at most one minimum, or 

a minimum at oo . 

The system is described as being in a state ranging between 0 and N. The 

failure state is N + 1. For each state, except state N, there exist three alternatives: 

i) immediately replace the system; ii) inspect t years in the future or iii) inspect at 

oo, i.e. let the system decay until failure. For state N the two alternatives are to 
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replace immediately or let the system decay. (This might not be correct for all of 

the papers, but the generality of three alternatives is correct.) 

For each state the alternative giving the least cost is chosen. If H has a minimum, 

then the value of H at the minimum is compared with the replacement option. If 

H does not have a minimum, then the value of H at t = 00 is compared with the 

replacement option. An inspection time is chosen if H has a minimum, and if the 

value of H at this minimum is less than the replacement option. 

2.1.2 Mine and Kawai, 1975 [31] 

This paper is examined in detail in Chapter 5. 

This is the only paper of the group that uses policy iteration. A system of 

equations is solved repeatedly until the average cost per unit time is repeated in two 

successive steps. 

The software gives the same basic form of results as documented in the paper; 

however, a table of results in the paper cannot be completely reproduced. 

2.1.3 Ohnishi, Kawai and Mine, 1986 [40] 

This paper is examined in detail in Chapter 6. 

The method used is successive approximation. Each state has associated with it 

an operating cost per unit time. At each step the option minimizing the cost per 

unit time is solved successively for each state. 
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2.2 The Work of the Pliska Group 

S. R. Pliska, his graduate students and co-workers approach the optimized inspection 

time problem in a very different manner than the Mine group. Again, the failure of 

the system is obvious to the researcher. The major difference between the two groups 

is that instead of the exact state of the system begin made known to an inspector 

after an inspection, combinations of false positives and false negatives are included 

in the model. Another theme in the papers is that only one corrective action can 

be made during the infinite time period. These models are far more appropriate to 

medically oriented problems than machine oriented problems. None of the Pliska 

group models were analyzed as part of this thesis. The topics of some of their papers 

are: 

1. Milioni, A.Z., 1987 [27]: This work forms Milioni's Ph.D. thesis, supervised 

by Pliska. Two general methods are used to determine inspection times. The 

optimized inspection times are determined by minimizing the probability of 

failure. They can also be determined by minimizing the budget such that 

the probability of failure is bounded from above. The applications examine 

the medical screening situation where, for example, breast cancer or a post-

operative infection is the failed state. In situations such as these the cost of 

failure cannot be measured with a monetary cost, so a catastrophic (infinite 

cost) procedure is also modelled. 

2. Milioni, A.Z., and S.R. Pliska, 1988 [28, 29]: These two papers are reviews and 

extensions of Milioni's dissertation. In the first a binary (positive/negative) 

test with finite probability of a false positive is modelled. A single repair (or 
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corrective action) can occur during the life of the system (i.e. a single oper-

ation). They use dynamic programming to compute the minimum expected 

cost, and the cost is a function of the age of the system. In the second paper 

the catastrophic case is examined in detail. 

3. Ozekici, S., and T. Papazyan, 1988 [42]: In this paper the authors also ex-

amine the catastrophic failure case. Inspection models comparing number of 

inspections and probability of detection of positives are analyzed. 

4. Ozekici, S., and S.R. Pliska, 1991 [43]: The possibility of false positives and 

false negatives are modelled in this paper. 

2.2.1 General Overview of the Pliska Group Papers 

The flavour of the Mine papers is significantly different from the flavour of the Pliska 

papers. The major difference is that the former group is more concerned with engi-

neering applications where a measurement system can yield an accurate assessment 

of the state of the system. In the case of a machine the system can be repaired an 

infinite number of times. In the latter set of papers medical testing applications are 

modelled. In these cases false results from tests are important and once the system 

has failed (or the patient has died or suffered horribly), the model terminates. 

The Pliska types of analyses, incorporating both false test results and catastrophic 

failure into the models, yield much more complicated models to be solved than do 

the Mine papers. 
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2.3 Other Individual Contributions 

Literature reviews of the maintenance problem are presented in [21, 38, 41, 45, 52, 60]. 

Several other researchers have contributed to the optimized inspection time prob-

lem, although it was not obvious in the literature search conducted for this project 

that they have published as much on the specific problems as have the Mine and 

Pliska groups. 

Barlow and Proschan [3] (and other work referenced in their book) are usually 

acknowledged as one of the starting points for work on inspection times. In Chapter 4 

of their book several maintenance policies are examined. The models reviewed by 

Barlow and Proschan are different from those above in that the system modelled 

can fail without the researcher so knowing. The objective is to minimize the time 

between failure of the system and detection of the failure by the researcher. A 

typical example of such a system is a ballistic missile. A system such as this has to 

be operable continuously; however, failure of a guidance component is not obvious 

to an observer. 

A variant of the Barlow and Proschan work is presented by Beichelt [4]. Failure 

can only be detected after the next inspection. Minimax techniques are used. 

Failure can only be detected by inspection in the, model of Kaio and Osaki [12]. 

Checking time and imperfect inspections are analyzed in this paper. 

Minimization of average cost per unit time is used by Kao [13] to determine 

optimized inspection times. Policy iteration is used. This paper is similar in tone to 

the Mine group work. 

Kander [14] models a system where failure can only be determined by inspection. 
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The efficiency of modelling the system as having N levels compared to a two level 

system is examined. Various checking and time costs are used as the optimization 

criteria. 

The number of checks per unit time is used by Keller [18] to model the optimized 

inspection time problem. The failure can only be determined by inspection. The 

calculus of variations is used to determine the optimum frequency of inspections. 

As with the Barlow and Proschan model, the duration of time between failure and 

detection is important. A more accurate result than this is given in a second paper 

by Keller [19]. A non-linear differential equation is solved for the optimum frequency 

of checking. 

Luss' master's thesis work is reviewed in [25]. Several different models are solved 

by differentiation and by dynamic programming. The main emphasis is on including 

a non-zero inspection time. 

Costs of occupancy are included in the optimized inspection time analysis in 

another paper by Luss [26]. The deterioration rate for each state is exponential (and 

equal). Inspections are at constant time intervals. The model assumes an infinite 

number of cycles between repairs. 

Constant and increasing failure rates are used to model the system deterioration 

in a paper by Mokkapati and Venkata [34]. The maintenance plan described in this 

paper is applied to a coal mine power system where groups of equipment, all with 

different failure rates, are analyzed. 

The minimization of the expected average cost per unit time is used as a criterion 

by Sengupta [50]. The information obtained during an inspection is not perfect. A 

delayed replacement is possible when the salvage value of a system is taken into 
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account. State occupancy costs are accounted for by revising the costs. The model 

then becomes a single-cycle problem. 

A two-state system is modelled by Sernik and Marcus [51]. The machine produces 

material with or without inspection. The situation is modelled by the underlying 

probability distribution of the machine being in the good or bad state. Several 

examples are presented. 

Two simplifying assumptions are incorporated into the work of Sherwin [53]. 

The first is that incorporating an equal conditional probability of failure between 

two inspections, given survival to the inspection, results in a near optimal schedule. 

The second is that the fraction of failures prevented by inspection is a function only of 

the interval-risk under failure-only maintenance. The analyses presented by Sherwin 

"tend to justify traditional schedules and urge better supervision of maintenance". 

A gamma failure distribution is used to model deterioration in the work by Sim 

and Endrenyi [55]. The mean time to preventive maintenance under Poisson dis-

tributed failures is used as the optimization criterion. 

Incomplete information is used by Sondik [56] to model the inspection problem. 

A detailed example to a two-state system is given in the paper. 

Optimal reliability based inspection schedules are being implemented for offshore 

petroleum structures in the North Sea. In particular, crack length criteria and the 

ability to determine the presence of cracks in a structure are among the criteria used 

in minimizing the total expected cost of the structure over its lifetime. This work is 

reviewed by Sorensen et al. [57] and papers referenced therein. 



14 

2.4 Other Interesting Contributions 

A Brownian motion developing in time with associated cost and inspection cost is 

analyzed in two large papers by Anderson and Friedman [1, 2]. 

Various applications to the medical screening situation are given in [20], [24], 

[46], [47] [54], and [61]. 

Kumar, Kapoor and Gupta [22] examine a series system using policy iteration. 



Chapter 3 

The Simplest Type of Inspection Problem 

In this chapter some terminology will be defined and a simple model of a decaying 

system will be examined. 

3.1 Introduction and Definitions: A Markov Chain 

In all of the transition schemes reviewed here, in the simplest case, the probabilities 

that describe the state-to-state transitions do not change with time. 

3.1.1 A Markov Process 

The concept of a Markov process is very powerful. A sequence of states occupied by a 

system at times t = n,t = n—i,... ,t = 0 can be represented as i, k,. . . ,rn [ii, page 

3, Volume 1]. The researcher usually desires to know (or calculate) the probability 

that, after the next transition, the system will be in state j given that the system 

has visited states i, k,. .. , m in order, or 

P{s(n+i)=js(n)=,s(n—i)=k, ... ,s(0)=MI. 

Markov's assumption was that only the last state occupied by the system is necessary 

to calculate the future development, or 

P{s(n + 1) =jI() = i,s(n —1) = k, ... ,s(0) = m} = P{s(n+ 1) =jls(n) =i}. 

An english translation of Markov's 1907 paper is provided in Appendix B of Volume 1 

of Howard [11]. 

15 
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In other words, a transition takes place at each time instant. The probabilities 

governing what state the process makes a transition to are given by the transition 

matrix. In order to calculate the future development of the process at any time, only 

the last state occupied by the process is relevant. 

3.1.2 Discrete Semi-Markov Process 

The system no longer makes a transition at every time instant. The duration the 

system is in any state is determined by an integer-valued random variable that de-

pends on the state presently occupied and the state to which the transition will be 

made [11, page 577, Volume 2]. 

3.1.3 Continuous Semi-Markov Process 

In the continuous semi-Markov process the transitions can occur at any time [11, 

page 687, Volume 2]. 

3.1.4 Continuous Markov Process 

In the continuous-time Markov process only the state presently occupied by the sys-

tem is relevant to its future development. The probability density function describing 

the duration the system is in a state does not depend on the state to which the sys-

tem will go next. The length of time the system has been in a state is irrelevant 

both to estimating the state to which the system will go, and the remaining time 

the system will spend in the present state [11, page 769, Volume 2]. 
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3.2 How Are the Values in the Continuous Transition 

Matrix Interpreted? 

The discrete transition matrix is used to determine the probability P(0, t) the sys-

tem will be in state j at time t given that it was in state i at time 0. As stated above, 

most often it is assumed that the values in the transition matrix do not depend on 

time. 

The probability vectors and the general transition matrix are 

P, (0) T / pii (0)t) p12(0 )t) ... pi (0,t) \ 

P2 (0) p21 (0,t) P22(0, t) . . . p(0,t) 

\pn(t)J \Pn(0)/ \Pm i(O,t) pm2(0,t) pmn(0,t)/ 

The vector on the left is the probability vector measured at time t. The vector on 

the right hand side is the probability distribution at the start of the simulation at 

time 0. The matrix on the right is the transition matrix. 

Differential equations can used to solve the continuous problem. A typical exam-

ple of continuous-time differential equations are 

p1(t) = 
dt 

Pk(t) = kPk(t) + Ak_i Pk_1(t), 
dt 

k>1. 

The differential equations are for a very simple system, namely that where the 

system can either stay in the same state (1 or k) or can move to the next larger state 

(k + 1) . In the situation to be analyzed in Chapter 7 of this thesis the system can 

move from its present state to any higher state. 
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The coefficients of the differential equations can be represented in matrix fashion. 

The diagonal of the coefficients matrix has all negative values or zero's as elements. 

The negative values indicate the system is leaving that particular state. A zero value 

means the system remains in that state. All the off-diagonal elements are either zero 

or some positive number. For each row the sum of the off-diagonal elements equals 

the negative of the diagonal element. 

In Chapter 7 the problem of estimating the elements of the transition matrix 

Pij (0, t) and the coefficients of the differential equations )j, will be reviewed. 

Knowledge of the decay regime is necessary before optimized inspection times can 

be determined. In the next section the simplest model of deterioration of a system 

will be examined. 

3.3 Stochastic Deterioration of a Three-Level System 

As an introduction to the inspection time problem, in this section the simplest pos-

sible inspection time problem will be examined. 

The model examined here is a continuous-time Markov process. 

In Figure 3.1 the transition diagram for a three (operating) state system is illus-

trated. The operating states are labeled 0, 1 and 2. The arrows between the states 

indicate that when the system is in state 0 the system can only decay to state 1, and 

when in state 1 the system can only decay to state 2, etc. 

The rates of decay, assuming an exponential model, are given by 

AO = 1/200 

A1 = 1/100 
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Figure 3.1: Transition Diagram for the Simplest Inspection Problem. The exponen-
tial transition parameters are given above the arrows. 
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A2 = 1/50 

The notation above means that the system decays out of state 0 according to an 

exponential distribution with A0 = 1/200, or as e/200. The values are arbitrary; 
200 

what is important for this simple model is that no two of the A values are equal. 

If the reader prefers, a different picture of the decay chain may make the intro-

duction easier. The system shown in Figure 3.1 can model a radioactive decay chain 

if only those transitions shown are valid. 

If knowledge of the system is obtained at some time, it is possible to calculate 

the probabilities of the system being in all states of greater decay at any time in the 

future. If none of the Ai for each state are equal (as in this example), it is shown 

by Chiang ([7, page 215]) that the probability of the system being in State j, given 

that it is in State i at time zero is given by 

P(t) = P{ system in State j at time tsystem in State i at time 0) 

k=i fl(Ak - A1) 

- 

This type of process is known as a pure birth process; each state has a different 

decay rate and the system can only decay to the next state. How to derive the 

above formula is shown by Chiang [7, page 215] and by Taylor and Karlin [59, pages 

213-215]. 

In order to determine when the next inspection should occur the above formula 
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can be solved for any of the states 0, 1 or 2. These are cumulative probabilities. 

Consider a situation where it is desired to maintain the probability of failure of 

the system below a = 0.1. 

If the system is inspected and is found to be in state 2, the researcher can deter-

mine that the cumulative probability of failure as a function of time is given by 

P(failure) = 1 - P22 

= 1 - At e 2 

This function is illustrated in Figure 3.2. 

Similarly, if the system is observed to be in state 1, the researcher can determine 

that the cumulative probability of failure as a function of time is given by 

P(failure) = 1 - P11 - P12 

e_2t 

= 1 _e1t - (-1)2'A1 IAj 2 + A2 - 

This function is illustrated in Figure 3.3. 

The cumulative probability of failure as a function of time if the system is ob-

served to be in State 0 is given by 

P(failure) = 1 - Poo - P01 - P02 

I  e_0t 
= 1— - (_1)l_°AO1A —A1 + A1— Ao 

0t 
- 

( 1)2°A0A1 { e - (A0 - A1)(A0 - A2) 

e_ )1 t e.\2t 

+(A - - A2) + (A - Ao)(A2 - A1)} 



22 

1.0 -

0.9 -

0-8 -

0.7 -

0-6 -

Probability 0.5 -

0.4 -

0.3 -

0.2 -

0.1   

I I I I I I I I I 
0 10 20 30 40 50 60 70 80 90 100 

years 

Figure 3.2: Inspection Time For State 2. If the system is Inspected to be in State 
2, then the Cumulative Probability of Failure as a Function of Time is Given by the 
Curved Line. To Maintain a Cumulative Probability below 0.1 the System Must be 
Inspected Again before 5.26 Years. 
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1.0 -
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0.6 -

Probability 0.5 -
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Figure 3.3: Inspection Time For State 1. If the system is Inspected to be in State 
1, then the Cumulative Probability of Failure as a Function of Time is Given by the 
Curved Line. To Maintain a Cumulative Probability below 0.1 the System Must be 
Inspected Again before 38.01 Years. 
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This function is illustrated in Figure 3.4. 

If observed in state 2 the next inspection should occur before or at 5.26 years. If 

observed in state 1 the next inspection should occur before or at 38.01 years, and if 

observed in state 0 the next inspection should occur before or at 76.06 years. 
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Probability 

1-0 -

0.9 -
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Figure 3.4: Inspection time For State 0. If the system is Inspected to be in State 0, 
then the Cumulative Probability of Failure as a Function of Time is Given by the 
Curved Line. To Maintain a Cumulative Probability below 0.1 the System Must be 
Inspected Again before 76.06 Years. 



Chapter 4 

Dynamic Programming 

4.1 Introduction 

Dynamic programming is a well established technique for solving decision problems 

when decisions can be made iteratively. The problem of examining a car rental 

agency will be reviewed in this chapter as an introduction to dynamic programming. 

The dynamic programming technique consists of two steps. 

To begin the problem an arbitrary set of decisions is created. At each state more 

than one alternative or decision can be made. The objective is to determine the 

optimal decision path for all states. 

I. In the first step a single value for the entire set of decisions is determined. When 

a researcher is using the policy iteration technique the value is determined by 

solving a set of equations based on the decisions at each state for variables 

that depend upon the steps chosen. When a researcher is using the successive 

approximation technique a value is determined by solving a single equation for 

each state. 

2. The effort for the second step has its beginning at the penultimate state. Based 

on the values determined in the above step, the decision yielding the maximum 

reward (or minimum cost) is determined. Then, using the chosen decision for 

the penultimate state, the decision yielding the maximum reward (or minimum 

26 
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cost) for the second but penultimate state is determined. As an introduction 

to this and the next two chapters: In the problem examined in this chapter the 

objective is to determine the decisions such that the gain or reward per unit 

time on the rented cars is a maximum; in Chapters 5 and 6 the objective is to 

determine the decisions such that the costs between the present time and the 

next installation of a new system are minimized. 

The two procedures are repeated until the decisions obtained at each state do 

not change from one iteration to the next. 

The dynamic programming formulation is completely general. In order to intro-

duce the reader to the process, and the method proposed for solving problems of this 

type, a simple problem from Howard [11, pages 983-993] will be examined. 

4.2 The Car Rental Agency 

Consider a car rental agency interested in maximizing the average reward per unit 

time over an infinite time frame. The objective is to determine how the car rental 

agency should operate in order to receive a maximum amount of money (gain or 

reward) per unit time. 

The computer algebra system MACSYMA [58] will be used as the programming 

language here and elsewhere in this thesis. Variables and parameters in the program 

are denoted by italic type. MACSYMA functions and control structures (such as 

"for" loops) are denoted by typewriter type. 

The parameters used in the problem DYNAMIC 1 are: 

• i is the state, 



28 

• k is an alternative, and where used below indicates that the parameter depends 

upon the alternative chosen, 

g is the gain or reward per unit time, to be maximized, 

• vi the relative value of state i. The value of v2 is set to zero. The relative 

values are measured from a reference point of state 2, otherwise the system of 

equations would not equal the number of unknowns. The state with value set 

to zero is arbitrary. 

• r is the expected reward per occupancy. The reward depends on the state 

and the alternative. The reward is known as r or reward in the MACSYMA 

program. 

• .•k is the mean waiting time in each state. The waiting time is known as w or 

waiting in the MACSYMA program. 

• q is the earning rate for each state, and is equal to r/i/c, 

• Pk are the transition probabilities between states. The probability of transi-

tion from state i to state j depends upon alternative k. In the program the 

transition probabilities are called transition-matrix. 

• r is the test quantity, used to determine the alternative for each state that 

maximizes the return. 

N 

PjVj - !i] 

In the program the test quantity is known as test _quan. 
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A flow chart of the procedure is illustrated in Figure 4.1. 

The MACSYMA program is given in Figure 4.2. The value determination routine 

is given in Figure 4.3 and the policy iteration routine is given in Figure 4.4. 
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Policy Evaluation 

For the present policy solve 
N 

j= 1 

with vN = 0, for the gain g, and the relative values 

V1l.12. .. ,1'N-i. 

Policy Improvement Routine 

For each state i, find the alternative Ic that maximizes 

Tik [:• ij 

using the relative values vi of the previous policy. 

Make this alternative the new decision in state i. 

Repeat for all states to find the new policy. 

Figure 4.1: The Dynamic Programming Algorithm for the Car Rental Agency 
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array(r,2,2); 

r[i,1]: 45 , r[i,2): 90 $ 
r[2,1]: 60 , r[2,2]: 20 $ 

w matrix( C 3.6, 6 ], 1 9.6, 4 ] )$ 

array(transition, 2,2,2); 

transition[1,1,1] : 0.8 , transition[1,2,1] 0.2 $ 
transition[1,1,2] : 0.0 , transition[1,2,2] : 1.0 $ 
transition[2,1,1] 0.3 , transition12,2,1] : 0.7 $ 
transition[2,1,2] : 1.0 , transition[2,2,2] : 0.0 $ 

states 2 $ 

alternative-max 2 $ 
array(alternative_start, alternative-max); 

alternative-start[l] : 2; 

alternative-start[2] 2; 

test_i 

test-2 

alternative-start $ 
-alternative-start $ 

for ± : 1 thru 100 while test_i # test-2 do ( 
test-2 : test-1, 

answer : equation_solve(states, r, transition, w, test-1), 

test_i : improvement( states, r, transition, w, v, 

alternative-max)); 

g : part(answer,1), numer; 

print(" g = ", g); 

for i : 1 thru states do ( 
t[±] : v[i],numer, 

print( " state 11 , i, " v = ", t[i], 

It new policy ", test-1[i] ) ); 

Figure 4.2: The MACSYMA Program DYNAMIC1 
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/* EQUATION-SOLVE */ 

equation_solve(num_states, reward, transition-matrix, waiting, 

alternative) := 

block([ g, i, j, k, v, g_stuff, eqn, list_of_ans], 

remvalue( g ), 
for i : 1 thru num_states do ( 

remvalue( v[i] ), g_stuff[i] : 0 ); 

v[num_states] : 0, 

for i:1 thru num_states do 

for j:1 thru num_states do ( 
k : alternative [i], 

g_stuff[i] : g_stuff[i] + transition_matrix[i,j ,k] * v[j] ), 

for 1:1 thru num_states do C 
k : alternative[i], 

eqn[i]: v[i] + g * waiting[i,k] - reward[i,k] - g_stuff [i] ), 

for 1: 1 thru num_states do 

display(eqn Ci] ,g_stuff [i]), 

globalsolve: true, 

linsolve(C eqn[1], eqn[2] ],[ g, v[1] ]), 

list_of_ans:[ g, vC1] ], 
return[list_of_ans])$ 

/* END OF FUNCTION EQUATION-SOLVE */ 

Figure 4.3: Policy Evaluation or Equation Solving Routine for the Program DY-
NAMIC1 
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1* IMPROVEMENT *1 

improvement(num_states, reward, transition-matrix, waiting, v, 

alternative_max) := 
block([max_test, p_stuff, test_quan, alternative ], 

for i:1 thru num_states do ( 
for k:1 thru num_states do 

p_stuff[i,k]: 0), 

for i: 1 thru num_states do ( 
for k: 1 thru alternative-max do ( 

for j: 1 thru num_states do ( 
p_stuff[i,k] : p_stuff[i,k] + 

transition_matrix[i,j,k] * vEji ), 
test_quan[i,k] : ( reward[i,k] + p_stuff[i,k] v[i] ) / 

waiting[i,k]) ), 

for i: 1 thru num_states do ( 
for k: 1 thru alternative-max do 

print(i, k, p_stuff[i.,k], test_quan[i,k])), 

for i: 1 thru num_states do ( 
max-test: -1000, 

for k: 1 thru alternative-max do ( 
if test_quan[i,k] > max-test then ( 

max-test : test_quan[i,k], 
alternative[i] : k ))), 

return(alternative)) $ 

/* END OF FUNCTION IMPROVEMENT */ 

Figure 4.4: Policy Iteration Routine for the Program DYNAMIC1 
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4.2.1 Overview of the Program DYNAMIC1 

In Figure 4.2 the driver for the program is illustrated. At the start of the program the 

values for the reward, waiting time and transition parameters are initialized. The two 

variables alternative-1 and alternative-2 are the beginning set of alternatives. The 

program begins by setting alternative-2 as the chosen alternative for both states. 

The two variables test-1 and test-2 are the two sets of alternatives before and after 

the iteration. They are deliberatly set to different values at the beginning of the 

program. 

The for loop is implemented until test-1 is equal to test-2 (i.e., the alternatives 

on two iterations of the loop remain the same). An arbitrary maximum of 100 times 

through the loop is set. test-2 is updated to equal test-1 at the beginning of the 

loop. test-1 is changed in the loop. 

In the function equation-solve the equations for the gain (g) and the relative 

value of state 1 (v1) are first determined and then solved (Figure 4.3). .g_stuff[i] is 

the sum Pjjv. The equation eqn[i] is written in the form where the equation 

is set to zero (MACSYMA assumes the equation is to be set to zero if the user 

does not explicitly set the equation using an equal sign). The MACSYMA function 

linsolve(E eqn[l], eqn[2] ] , C g, vEl] ]) solves the two equations for g and 

V[1]. 

In the function improvement the alternative maximizing test _quari for each state 

is determined. 

The final result (the value of g and the value of ii1) is printed out at the end of 

the program. test-1 and test-2 are compared as the loop counter is increased by 1 in 
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the MACSYMA program. If they are not equal the counter is increased by 1 and the 

routines equation-solve and improvement are enacted again. If test-1 and test-2 

are equal the program stops. 

4.2.2 The Value Determination (Equation-Solve) Routine 

The MACSYMA command remvalue removes the value bounded to g, the v 's for 

each state, and the sum of the products of pijvj, (g-stuff). 

The equations are built up and solved using linsolve. The parameter 

globalsolve : true bounds the values of g and ii such that they can be used 

in other places in the program and are not unique to the function. The return 

statement passes g and xi to the main program where they can be used in the policy 

iteration routine. 

4.2.3 The Policy Iteration (Improvement) Routine 

All parameters are reset to zero values. 

In the first for loop the test quantity is determined. The second for loop displays 

the values of the test quantity as a function of alternative and the third for loop 

determines the alternative that yields a maximum for each state. The alternatives 

are used as the new values for test-1. 

Upon returning to the main program, test-1 and test-2 are compared to determine 

if it is necessary to perform the equation-solve and improvement routines again. 
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4.2.4 The MACSYMA Output for the Program DYNAMIC1 

The output from the program is illustrated in Figures 4.5, 4.6 and 4.7. It is a 

relatively straightforward matter for an interested reader to follow the output. 

In the first figure the equations to be solved are created in the routine 

equation-solve. g_.stuff is printed out for debugging purposes. Upon leaving 

equation-solve the values of g (11) and ii (24) are returned to the main program 

to be used in improvement. 

In the second figure the improvement routine is entered. the values printed out 

are, in order, the state i, the alternative k, the sum 1_Vj and the test quantity 

T. Note that the values for g and v1 from the previous iteration are recognizable in 

this printout. For state 1 the maximum test quantity occurs for alternative-1. For 

state 2 the maximum test quantity occurs for alternative-2. Since test-1 is not equal 

to test-2 the second iteration of the loop is done. New equations are created and 

solved. Upon leaving equation-solve the values of g (53521150/4805981 = 11.136) 

and v1 (117964980/4805981 = 24.545) are returned to the main program to be used 

in improvement. 

In the third figure the alternatives maximizing the gain are determined as being 

alternative-1 for state 1 and alternative-2 for state 2. test-1 and test-2 are equal, 

so the program stops (prints DONE) and the values of g, zi and the alternatives are 

printed. 

The problem of maximizing the gain has been solved in two iterations. 
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(Di) \MACSYMA\THESIS\dynamic . out 

(C2) BATCH("C:\\MACSYMA\\THESIS\\DYNANICi.MAC"); 

REITERATION OF THE ROUTINES OMITTED FROM THE OUTPUT 

(C29) for i : 1 thru 100 while test-1 # test-2 do ( 
test-2 : test-1, 

answer : equation_solve(states, r, transition, w, test_i), 

test-I ': improvement( states, r, transition, w, v, 

alternative-max)); 

C 
1 Enter EQUATION-SOLVE [2, R, TRANSITION, C 

C 
ALTERNATIVE_ START] 

36 6] 

96 4] 

EQN = 6 G + V - 90.0 

1 1 

G_STUFF = 0.0 

1 

EQN = 4 G - 1.0 V 20 

2 1 

G_STUFF = 1.0 V 

2 

1 Exit EQUATION_SOLVE RETURN 

Cii, 24] 

Figure 4.5: First Part of Output from MACSYMA 
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[3.6 6  

1 Enter IMPROVEMENT [2, R, TRANSITION, [ ], V, 2] 

[9.6 4  

1 1 19.2 11.16666 

1 2 0.0 11.0 

2 1 7.2 7.0 

2 2 24.0 11.0 

1 Exit IMPROVEMENT ALTERNATIVE 

[3.6 6  

1 Enter EqUATION_SOLVE [2, R, TRANSITION, [ ], ALTERNATIVE] 
[ 9.6 4 ] 

EQN =3.6G+0.2V -45 

1 1 

G_STUFF = 0.8 V 

1 

EQN =4G-1.OV -20 

2 1 

G_STUFF = 1.0 V 

2 

1 Exit EQUATION-SOLVE RETURN 

[53521150/4805981, 117964980/4805981] 

Figure 4.6: Second Part of MACSYMA Output 
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[ 3.6 6 ] 
1 Enter IMPROVEMENT [2, R, TRANSITION, [ ], V, 2] 

[9.6 4  
1 1 19.63635 11.13636 

1 2 0.0 10.90909 

2 1 7.36363 7.01704 

2 2 24.54545 11.13636 

1 Exit IMPROVEMENT ALTERNATIVE 

(D29) DONE 

(C30) g : part(a.nswer,1), numer; 

(D30) [11.13636, 24.54545] 

(C32) for ± : 1 thru states do ( 
t[i] : v[±],numer, 

print( state ", i, v = ", t[i] , 
new policy = ", test-I[i] ) ); 

117964980 

state 1 v 

state 2 v = 0 

(D32) DONE 
(C33) CLOSEFILEQ; 

4805981 
new policy = 1 

new policy = 2 

Figure 4.7: Third and Final Part of MACSYMA Output 



Chapter 5 

The Mine and Kawai Dynamic Programming 

Algorithm 

5.1 Introduction 

As documented in Chapter 2 there are a multitude of different repair, replacement 

and inspection time optimization scenarios that' can be modelled. In this chapter 

the implementation of an example from the literature is used as an introduction to 

some of the possibilities for different models. 

The objective is to determine the optimized inspection plan for a system subject 

to failure or degradation such that the cost per unit time over an infinite horizon is 

minimized. No discounting is taken into account. The state of the system is only 

known through inspection and the inspections are perfect. 

The system consists of a single component that can be described as being in one 

of several states. A failure of the component is immediately obvious and corrective 

repairs are performed. A transition diagram is illustrated in Figure 5.1. 

40 
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Figure 5.1: Transition Diagram for the Mine and Kawai Problem 
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5.2 The Mine and Kawai Model 

5.2.1 Equations, Definitions and Notation 

The system is modelled as a semi-Ma.rkov chain'. The time spent in each state is 

exponentially distributed. The system's states are numbered from 0 (perfect) to N 

(penultimate). State N + 1 is the failed state. The only state obvious to the user 

is the failed state. Degradation, the gradual increase in state number from state i 

to state 1+ 1, is modelled with parameter f3. Failure, the immediate increase from 

state i to state N + 1 (the failed state), is modelled with parameter cei. In the Mine 

and Kawai model Aj = aj + fl. 

Several of the other parameters are defined in Figure 5.2. 

Three options are available to the user once the results of an inspection are known. 

The options are: 

1. prevent a future failure by replacing the system immediately, denoted M, 

2. do not replace the system, and never inspect the system again, denoted I(oo), 

a special case of the next option, or 

3. plan to inspect the system at some future time, denoted 1(t). 

The probability the system will be in state j, as a function of time t, given that 

the system was in state i at time 0, is given by 

P(t) = ... 

k=i 

e_t 

(An - '\) 
l=ijk 

for i <j. 

'The authors refer to the model as a semi-Markov process in the paper reviewed in this chapter, 
and as a continuous-time Markov process in the paper reviewed in Chapter 6. 
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Description Definition 

probability unit is in state i at time 
tif it is in state  at time O 

.P(t) = e-Ait (P(t) = 1 - .P(t)) 

failure rate from state i to state 
N+1 

aj, cj < aj for i <j 

degradation rate from state i to 
state i + 1 

/3, (ON =  0), ,8 /9, i <j 

total degration and failure rate Ai = cj + f3 

inspection cost Cl 

repair cost per unit time Cr 

maintenance cost per unit time c 

cost rate or cost per unit time for a 
given policy (this is the parameter 
to be minimized) 

g 

relative value of a state vi, (v0 = 0 by definition) 

Figure 5.2: Definitions of the Mine and Kawai Problem 
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The distribution function of the failure of the system is given by 

N 

F(t)= l—P(t)= l—P(t). 

The one step transition probability is given by 

one step trans. prob. 
.P(t) to state 1, . . . , N if system has not failed, or 

= 
F(t) to state 0 if system has failed. 

The cost to the next transition is given by 

C(t) CrTrFi(t) + c1P(t) if Di = 1(t), 

eT if D = M. 

The time to the next transition is given by 

/ T(t) = It Pj(x)dx + TrFj(t) f D = 1(t), 

T, ifD2=M. 

Mine and Kawai use a shorthand notation in their dynamic programming routine. 

N 

H(t,g) = C(t) - gT(t) + .P(t)zi(g) /.Pi(t). 

The formula has the units of cost per unit time. Recall that the zi are the relative 

values or costs of a state. For a given state, the minimum of the cost rate for 

the inspection option is given by the above formula. The product of cost rate and 

time until the next inspection is subtracted from the cost per unit time until the 

next replacement of the system. To this sum is added. the relative value of all the 

j = i + 1 to N states weighted by the probability the system moves to those states 

in time t. 
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Policy Evaluation 

For the present policy let 

N 

C(t) + pij  /P (t), W = T(t)/P(t) 
j=i+1 

if the option for state i is 1(t), or 

Vi =cpTp, and T4,'i = T if the option for state i is M. 

Set v0 = 0. Solve 

gWo=Vo, gW+v=V 

for the cost rate g and relative values vi, i > 0. 

Policy Improvement Routine 

For each state i, find the alternative Ic that minimizes 

where for the 1(t) case one writes H, (which is the same thing) 
N 

vi(g) = H1(1,g) = C(t) —gT(t) + E  P(t)v(g) /Fi(t). 
j=41 I 

The relative value for VN is first determined, then 

substituted into the equations, then VN_j is solved for, etc. 

The alternative yielding a minimum ii is the new decision for 

state I. Repeat for all states to find the new policy. 

Figure 5.3: The Dynamic Programming Algorithm for the Mine and Kawai Problem 
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5.2.2 The Dynamic Programming Algorithm 

A flow chart for the algorithm is illustrated in Figure 5.3. 

When the option is to inspect at some later time (including t = oo), the equations 

are as follows: 

n 

Vi = [C2(t) + P(t)zj]/P(t) 
j=i+l 

W, = T(t)/Pi(t). 

The maintenance option equations are 

Vi = CPTP 

W =T,. 

The following set of equations are solved for g and all the v's but 710, which is 

arbitrarily set equal to zero. The relative values are determined if vo is set to 0. 

gWo = V0 

9W1+v1 = V2,for i≥1. 

If the g obtained from solving the system of equations is the same as the previous 

iteration the optimal solution has been found. If  is different the policy improvement 

routine (FIR) is initiated. 

The details of the algorithm are as follows. To begin, pick an arbitrary decision 

or alternative for each state as the initial policy. The easiest starting option is to 

assume that, no matter what state the system is inspected to be in, maintain the 

system immediately. This choice results in the least amount of effort in getting 

through the first step. 

The policy evaluation routine consists of three steps: 
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1. The Policy Evaluation Routine (PE): For the policy create the equations in V, 

W and v. 

2. Solve the equations for g and hi,... , 

3. If g obtained from this set of equations is the same as obtained for the last 

iteration then the optimal solution has been found; otherwise implement the 

policy improvement routine (FIR). 

The policy improvement routine consists of three steps: 

I. The Policy Improvement Routine (FIR): Beginning with state N and working 

backwards to state 0, determine the decision or alternative that minimizes the 

relative cost zi of the current state. Note that for state N it can be shown that 

the only viable alternatives are M and I(oo). Use the alternative that gives 

the minimum in all further calculations in the FIR. The objective is to create 

a set of alternatives that minimizes the relative value of ho. 

2. How to get time into the problem: II has only one minimum. The minimum 

may occur at oc. If the minimum occurs for i < oo then this t must be 

determined. The minimum can be found by differentiating H(t,g) and solving 

for H. MACSYMA (surprisingly!) does not have a function to determine where 

the minimum of a function occurs. To determine were the minimum occurs, 

H is differentiated with respect to time, and the zero of dH/dt is determined 

using the MACSYMA routine root-by-bisection. The vi is determined as 

min {Hj(t*(g),g),cpTp - gT}, where t is the time of the minimum. 

3. Return to the policy evaluation (PE) routine to check the new solution. 
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5.3 Comparison of Results 

Mine and Kawai give results for selected values of the parameters. For a unit with 

two degraded states, four types of policy are possible, viz. [M, M, M], [1(t0), M, M], 

[1(t0), 1(t1), 1k!] and [I(oo), I(c'o), I(co)]. 

The values of their parameters are .X0 = 0.10, ) = 0.15, and A2 = 0.20, which 

means a2 = 0.20 since 02 = 0.0. Continuing, a0 = 0.05, a1 = 0.10, Cr = 10., Tr = 4, 

Tp = 2 and c1 = 1. The maintenance cost c is given the values 2, 5, 10 and 13 to 

illustrate the different results possible with the model. 

To illustrate again how time enters into the problem, consider the State 0 case 

of the c, = 5 example on the first iteration. The output from the program for H is 

—2625e'/" + 4324et12° - 1481 
H = 218et/5 - 

Obviously I(c) = 0 because the exponent of the leading exponential in the denom-

inator is greater than those in the numerator. The costs and times are such that 

M = 5.60. In Figure 5.4 an illustration of H, I(oo) and M illustrates that the 

minimum of H is lower than M and that the minimum occurs at 8.82 years, and has 

a relative value of -1.478. Thus, of the three possible decisions, the decision selected 

would be to do nothing now and reinspect the system 8.82 years in the future. 

It was expected that the implementation of the Mine and Kawai dynamic pro-

gramming algorithm for optimized inspection times would be simple, and would also 

serve as a good stepping stone to solving more complicated models. This did not 

turn out to be so. Fully six weeks of full—time work on the implementations was 

not able to create results equal to those of their paper. A comparison is given in 

Figure 5.5. 
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Figure 5.4: Illustration of Minimum of H in Comparison to Replace Option 
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CP Optimal Policy Cost Rate g 

2 [M,M,M] 2.00 
5 [15.10,M,M] 2.15 

10 [34.30,11.24,M] 2.18 
13 [I(co),I(oo),I(oo)} 2.20 

Mine and Kawai Inspection Policy 

c, Optimal Policy Cost Rate g 

2 [M,M,M] 2.00 
5 [8.16,M,M] 2.10 

10 [I(oo),11.36,M] 2.20 
13 [I(oo),I(co),I(oo)} 2.20 

Inspection Policy for this Project 

Figure 5.5: Comparison of Inspection Policies for the Mine and Kawai Work, and 
for this Project 
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Note that for the c = 10 case the work for this project does not appear to be 

among the valid selections from the Mine and Kawai paper, although the results are 

reasonable. This is most frustrating. A more detailed comparison, for intermediate 

values of the maintenance cost, is given in Figures 5.6 and 5.7. 

The only reasonable explanation for the lack of a match is that somehow the 

author has not implemented the correct algorithm. Several attempts over a six 

week period were made to compare the software and the algorithm. After minor 

corrections no difference could be found between the software implemented for this 

project and the algorithm as given in the Mine and Kawai paper. 

5.4 A Full Optimized Inspection Analysis 

A full optimized inspection analysis was conducted. The system modelled was a 

three state system, the states being numbered 0, 1 and 2 in order of increasing 

deterioration. The values of the parameters are shown in Figure 5.8. 

The major portion of the effort of the analysis is determining whether the func-

tion H has a minimum, and whether the minimum value of H (i.e. the cost rate 

for inspecting t or oo years in the future) is less than the cost rate calculated for 

preventive maintenance of the system (i.e. immediate replacement). 

In State 2 the function H does not have a minimum. The only available options 

are to replace the system immediately or let the system continue to decay for an 

infinite amount of time. This situation is unique to the state penultimate to failure 

of the system. In the other states of lesser deterioration the function H may have 

a minimum. The results for State 1 are shown in Figure 5.9 and the results for 
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Figure 5.6: Mine and IKawai Inspection Policy 
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Figure 5.7: Inspection Policy for this Project 

parameter 
cost of repair Cr 15 
time of repair tr 4 
time of maintain t, 2 
cost of inspection Cl 1 
cost of maintain c 10 

Value 

Figure 5.8: Values Used in the Example 
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State 0 are shown in Figure 5.10. In both cases the preventive maintenance option 

M is also illustrated. In both figures the solid line is the second iteration and the 

dashed line represents the third and subsequent iterations. The convergence to the 

inspection time occurs very quickly. The first evaluation of H is off the figures in 

both cases. In the State 1 case the preventive maintenance option has a lesser cost 

than inspecting approximately four years in the future: the optimal decision when 

the system is inspected to be in State 1 is to maintain the system immediately, 

returning the system to State 0. In the State 0 case the optimized inspection time of 

approximately 9 years has a cost rate far less than that for preventive maintenance: 

the optimum decision when the system is observed to be in State 0 is to inspect the 

system 9 years in the future. 

One advantage of using a computer algebra system is that the function H can 

be determined in a the form of a formula instead of a. list of numbers. To illustrate 

some of the flavour of the output the formulas generated for each iteration are listed 

below. 

H1,first iteration 

,second iteration 

H1,third iteration 

Ho,fit iteration 

- 190 et/5 - 196 +3  

- 3 - 3 et/20 

2100 et/5 - 3722 et/'o + 1731 

109 et/5 - 109 et/20 

= 22660861599517428620 t/5 - 39935631019167555306 e t/20 

+18393182946617172483/ 

1118413526967045797 ett5 - 1118413526967045797 et/20 

730 et/5 - 745 t/10 + 12 et/20 3 

6 e' - 6 et/10 
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H0 second iteration 

H0 third iteration 

2575 et/10 - 4524 + 1731 

218 et/5 - 218 &/° 

= 3280148857205501240 e" - 32199113876363295095 et/1O 

+49548975019709057932 eu/20 - 18393182946617172483/ 

2236827053934091594 et/5 - 2236827053934091594 e10 
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Figure 5.9: Minimum of H in Comparison to Replace Option for State 1 
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Figure 5.10: Minimum of H in Comparison to Replace Option for State 0 



Chapter 6 

The Ohnishi, Kawai and Mine Dynamic 

Programming Algorithm 

6.1 Introduction 

In contrast to the model presented in the previous chapter, in this chapter the results 

of implementing a model incorporating operating costs for a given state are presented. 

Ohnishi, Kawai and Mine [40] minimize the average cost per unit time. They use 

successive approximations to determine optimized inspection times. 

The successive approximation methodology is implemented as: 

1. Begin with an arbitrary policy to initialize the model (the simplest policy is 

one where for each state one chooses the option to replace immediately), as 

was the case for the model examined in the previous chapter. 

2. Determine, for the initial set of options, the cost per unit time. 

3. Perform the successive approximation analysis, 

• beginning at the penultimate state, determine the optimized strategy, i.e. 

select one of: i) replace immediately, ii) let the system fail naturally and 

wait until failure to replace, or iii) determine whether it is most cost 

effective to inspect the system t years in the future. 
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4. Determine, for the new policy, whether the cost per unit time is the same as 

that of the previous step. If the costs are the same then the optimal policy has 

been determined; if not, then perform the successive approximation algorithm 

again. 

The model incorporates the same variables as those given in the previous chapter 

except for a state dependent operating cost a1 and a state dependent replacement 

cost C. The transition scheme is identical to that of the Mine and Kawai model 

presented in Chapter 5 (see Table 5.2), and most importantly, 

and 

O < 1 < <N_i 

What these two sets of equations mean is that both the degradation and failure 

rate increase with increasing system degradation. The system can only decay more 

quickly as a function of increasing decay. 

The costs of the system have to satisfy stringent criteria as well. 

CO≤C1  ... ≤CN≤CN+1, 

and 

The system becomes more costly to operate as it deteriorates. The system becomes 

more costly to replace as it deteriorates. Replacement becomes a better option with 

increasing deterioration. 

'Note, cj = failure rate (transition rate from state ito state N), and ai = cost per unit time to 
operate in state i. 
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Failure of the system is obvious to the user, and a failed system is immediately 

replaced. 

The probability transition scheme, coupled with the costs, is necessary for the 

function G (same idea as given by H in the previous chapter) to have a minimum. 

The development of the Ohnishi, Kawai and Mine model is now considered. 

6.2 The Model 

The failure probability as a function of time is 

F(t) Pi,N+1 (t) 

where P,(t) is the probability the system is in state j at time t, given that it was 

in state i at time 0 (recalling that in all cases it is assumed that the transition 

parameters do not change with time). 

N 
F1 (t) i - P(t) = 

Another function 'that has to he defined is 

Qjj(t) f Pjj  

The policy is denoted as 8, i.e. S is a vector of decisions. If the optimum policy is 

to inspect 5 years in the future if the system is observed in state 0, and to maintain 

the system immediately if the system is observed in either of states 1 or 2, then 

5= [5,M,MI. 

The function G is evaluated based on the time and costs to the next replacement 

of the system. The expected time from an inspection to the next replacement is 
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given by 

IPi (u)du + >P(t)xs(i) if D&(i) = 1(t) 

r,Fi(u)du  if Ds(i) = I(oo) 

1 0 ifD5(i)=M. 

The cost is made up of several components. In the 1(t) option, to inspect the system 

t years in the future, the time is the expected value of ./ and the times for all states 

j = i to N + 1 weighted by the probability the system enters those states. If the 

time of next inspection is infinite the expected time until the next replacement is 

simply the expected value of P. If the system is to be replaced in state i the time 

until the next replacement is zero. 

The expected cost from an inspection to the next replacement is given by 

IV t MF(t) + j P(u)du a + P1(t)y6(j) if D6 (i) = 1(t) 

116 (2) = 100 Pij  a + CN+1 if D6(i) = I(oo) 

Ci if Ds(i)=M. 

The cost until the next replacement formula is similar to the time formula. If the 

option is to inspect t years in the future, the cost to the next replacement is the 

sum of the inspection cost, weighted by .P, the cost per unit time of being in each 

state i to N weighted by the probability of entering the states and the weighted cost 

of all states of i to N + 1. If the option is to inspect the system at infinite time 

in the future the inspection cost M drops out and the cost is the sum of the state 

dependent costs per unit time and the cost of replacing the failed system (CN+1). 

If the option is to replace the system immediately the cost is that of replacing the 

system in its current state (Ci). 



62 

During the successive approximation cycle, g is determined by setting 

- Y6 (0)  
X6(0) 

The model is set up such that g is approached monotonically from above. 

The function (similar to H in the previous chapter) is given by 

G(t;g,8) 
1 

1 - P(t) {M(t) + I Pj(u)dua 

+P1 (t) [yo(j) - gx(j)] - t (u)du} 
The denominator of the quotient goes to zero as t goes to zero. The limits of G as 

time approaches 0 and oo are: 

limG(t;g,5) = 00, 
tLO 

and 
N 

limG1(t;g,S) = 100 Pia(u)duaa+CN+l_g P(u)du. 
t—oo  

A flow chart for the Ohnishi, Kawai and Mine algorithm is given in Figure 6.1. 
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Initialization 

Begin with an arbitrary choice model, i.e. maintain 

no matter what state the system is observed to be in. 

If the model has not converged on an answer then 

continue, else stop. 

Successive Approximations 

For each state i = N, N - 1,. . . , 1, 0, find the alternative 

that minimizes v(i) = mm fo<t<00mmnci(;g, 8), c1}. 

'if min G1(t;g, 8) ≥ C1, then D6 = R 

• if a finite t satisfies miji 01(i;g,8) ≤ G1(oo;g,6) 
O<t<oo 

and the minimum is less than C1, then D6 = 1(t) 

• if min G1(t;g,8) = G(oo;g,8), 
O<t<oo 

and the minimum is less than C, then D6 = I(oo). 

Figure 6.1: Dynamic Programming Algorithm: Ohnishi, Kawai and Mine Problem 



G2,2fld iteration - — et/5 
31335 e/ +7610 2t/5 + 7610 t/5 - 28112 

G2,3rd iteration = 761 e3x/5 - 761 e2 x/5 
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6.3 A Full Optimized Inspection Analysis 

The values for G1 for states 2, 1 and 0 are given in Figure 6.3, Figure 6.4 and 

Figure 6.5. The values used in the analysis are shown in Figure 6.2. 

Parameter Value 
operating costs [5, 10, 15, 20] 
replacement costs [10, 15, 20, 30] 
time of maintain t 2 
inspection cost 10 
Ai [0.1, 0.15, 0.2] 

[0.05, 0.05, 0] 

Figure 6.2: Values Used in the Example 

The formula for G becomes more complicated with lower state number and in-

creasing number of iterations. 

6.3.1 State 2 Equations 

G21lst iteration = 
- 1 

25 e2t/5 + 10 e' - 24 

70 etl5 - 60 

6.3.2 State 1 Equations 

G1,1st iteration = 

iteration 

—250 e2t/5 + 190 6t/4 + 30 et/5 + 180 et/20 - 180 

3 et/4 - 3 e/ 

= 25 e3t/5 + 60 e9t/20 - 30 62 t/5 + 8 e310 - 30 et/5 - 72 et/10 + 72 

3 e3t/5 - 3 e9t/20 
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G1,3rd iteration = 80575 + 45660 el3t/20 - 22830 g3t/5 + 45660 et/2 - 22830 62t/5 

—48076 e7 t/20 - 22830 et/5 - 84336 e31/20 +84336/ 

2283 - 2283 e13 t/20 

6.3.3 State 0 Equations 

iteration 

Go,2d iteration 

GO,3rd iteration 

= 245 e11 '20 - 170 e9t120 - 60 e2i/5 + 15 67t/20 - 190 e3t/bO + 70 et/4 

+210 e' —90 e3 t/20 - 180 etllo + 360 et/20 - 180 / 
3 - 3 e9 t/20 

= - (275 e3 t/4 - 150 e'3'120 + 120 e3t/5 - 401 11 t/20 + 120 69t/20 

—16 e2t/5 + 102 e7 t/20 - 188 e3t/10 + 204 et/4 - 60 et1'5 

—72 0t/20 - 144 et/20 + 144) / 
6 e3t4 - 6 e3 /' 

= 5e19/2O - 114150e'7 t/20 + 91320 64t/'  - 136980e3t/4 + 3487e-13 t/20 

_22830e11 t/20 + 187472et/2 + 129996e92/20 - 214332 P2 t/5 

+95350€7t/20 - 45660e3t/20 + 45660e' - 45660e' - 253008e3t/20 

1686726t/10 - 168672e 1/20 + 168672/ 

4566&-19 t/21 - 4566et/20 
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Figure 6.3: Illustration of G for State 2 
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Figure 6.4: Illustration of G for State 1 
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Figure 6.5: Illustration of G for State 0 



Chapter 7 

The Real World 

7.1 Introduction 

This chapter was prepared for a project Morrison Scientific Problem Solving is con-

ducting for NOVA Corporation of Alberta. This chapter is included in this thesis 

because the discussion herein is important for determining the state specific transi-

tion probabilities that are to be incorporated into models such as those presented 

in Chapters 3, 5 and 6. The Mine group models assume very specific transition 

parameters. In all of their models the system can only pass from one state to the 

next state of higher severity or the system can fail. The main question is: Given 

a data set from the real world, is it possible to mould the real world data into a form 

amenable for analysis using the models presented earlier? 

The best analysis would be for the data to be directly incorporated into one 

of the models presented in Chapters 5 or 6. An acceptable analysis, though not 

immediately capable of being examined using dynamic programming techniques, 

would be to mould the data into a form similar to that of the model presented in 

Chapter 3. In this latter form the reliability of the system as a function of time could 

be examined. 

As a secondary goal, it is desired to know if the discrete data obtained on two 

separate inspections of a system can be incorporated into a system of differential 

equations. This is important because the matrix of transition probabilities is ob-
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tamed at discrete intervals. If the data can be made into a continuous form then 

the researcher would not have to worry about interpolating between discrete time 

periods. 

In a rather cryptic comment Howard [10] mentions that to transform a discrete 

transition matrix into a continuous transition matrix that has the same state prob-

abilities at multiples of the discrete time period it is necessary to solve 

C=1nD, 

where C is the continuous transition matrix and D is the discrete transition matrix. 

The cryptic comment is that "Methods for accomplishing this exist, ...", and the 

reader is referred to a 1959 MIT Operations Research Center Report. Paolucci [44] 

indicated how to determine the logarithm of a matrix. 

Calculating the logarithm of a matrix that has multiple eigenvalues is not a trivial 

matter. For large matrices (e.g. 25 x 25, or even 10 x 10) the calculations necessary 

to calculate the logarithm of a matrix are prohibitive. One reason for the prohibitive 

nature of the calculations is roundoff errors when an infinite series approximation 

is used. The roundoff errors get out of hand for matrices on the order of 8 x 8. 

Another reason for the prohibitive nature of the calculations is that, to determine 

the logarithm of a matrix using the spectral resolution of 1(A), the function of a 

matrix A, the set of linear equations that must be solved varies as the cube of the 

size n of the matrix. For an 8 x 8 matrix a system of 512 equations must be solved. 

The studies presented in this chapter are also important in their own right because 

the connection between the discrete (matrix) analysis of a Markov chain and the 

continuous (differential equation) analysis is never examined deeply enough for the 
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reader to be able to answer the question: How are the elements of a Markov chain 

related to the coefficients of the differential equations? 

First the raw data will he reviewed. Then the calculation of the logarithm using 

the different methods will be reviewed. 

7.2 Determining a Transition Matrix from Observations: 

The Raw Data 

Consider a decaying system. In this section a methodology for analyzing the decay 

of the system will he presented. In order to make the situation more real, the 

system will be a pipeline, and the data will be that data obtained from two different 

inspections of the pipeline. 

Inspections are conducted according to some plan created by the user of the 

pipeline. During an inspection an in-line-inspection tool (or ILl tool) is passed 

through the pipeline. Transducers on the tool can indicate the characteristics of 

corrosion pits on the outside of the pipeline. It is possible to match corrosion pits 

from one inspection to a second inspection. What results is a matrix of frequencies 

of growth (on some scale determined by the researcher) during the time between the 

two inspections. New pits initiated between the inspections can be ignored in this 

analysis. It remains to transform the frequencies of growth into a useful model from 

which to garner information relating to the reliability of the pipeline as a function 

of time. 

The form of the matrix that can be expected from this type of analysis is the 

following (an 8 x 8 example). Each value represents the frequency of observations of 
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a corrosion pit from an initial state to a state observed during the inspection. 

/100 75 42 25 10 7 2 0\ 

0 45 20 10 8 0 0 4 

0 0 17 8 3 0 1 0 

0 0 0 9 12 4 6 0 

0 000 7620 

0 00 00431 

0 0 0 00020 

o 0 0 0 0 0 0. 0/ 

The matrix upper triangular because (ignoring possible resolution problems, etc.) 

the state of the system cannot decrease to one of lessor severity. 

In terms of the risk analysis it is desired to replace all the zero's in the upper 

triangular portion of the matrix with non-zero values, otherwise a growing pit would 

have zero probability of entering certain states. Two options come to mind as to 

how to remove the zeros1 

This is an inference problem. It now remains to determine a method whereby 

an estimate of all the values in the upper triangular portion of the matrix can be 

estimated. Among obvious candidates for estimating the values are 

1. regression analysis, and 

2. probability distribution analysis. 

The regression analysis is problematic because of having to normalize the sum of the 

rows to 1.0. The probability distribution analysis has several advantages such as 

1. ease of implementation, 

2. several distributions can he used, such as 

'In reality the matrix is of such size that only the upper leftmost corner of the matrix has non 
zero elements. Clearly, for a system operating far from failure, significant extrapolation is necessary. 
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• exponential, 

• gamma, 

• Poisson, 

• log-normal, 

3. can be implemented with a minimal number of data points (a very important 

criterion, especially for higher seventies where not many pits are observed), 

4. rows are forced to sum to 1.0, and 

5. error bars are easily estimated assuming binomial probabilities of an element 

of the matrix having that particular value determined by the probability dis-

tribution. 

The only disadvantage of the probability distribution method is determining that 

distribution most appropriate for modelling a row of the matrix. 

The easiest distribution to fit to the data is the exponential. When the cutoff 

of the distribution occurs at 0 the parameter for the exponential distribution is the 

average, therefore the value used to determine the exponential for a given row is the 

average change in state number between the inspections. 
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7.3 Making a Continuous Markov Model from a Discrete 

Model: The Logarithm of a Matrix 

In this section two methods for determining the logarithm of a matrix will be 

reviewed2. 

What should the logarithm of the matrix look like? Based on the "data" matrix 

presented above one should see that transitions to higher states decrease as the higher 

state increases. As one examines a row of the logarithm of the matrix, one would 

expect to see decreasing values towards the right, except for possibly the rightmost 

element which is the sum from that state to oo . 

7.3.1 Logarithm of a Matrix: Infinite Series Approximation 

The formula for the logarithm of a number is 

S2 x3 

ln(1+x)=x---+-----+...,Ixj<1 

Since the logarithm of x is desired, it can be determined by simply writing s - 1 

instead of x in the formula, giving 

ln(1+(x-1)) =(x-1)— (_1)2 + (x)3 (x — i)  +...,IxI <1 

The matrix A can be substituted for x in the above formula, yielding the continuous 

transition matrix. The identity matrix replaces "1." 

2The methods reviewed here are not the only methods for determining the logarithm of a matrix. 
The presence of multiple eigenvalues significantly complicates the analysis. With time, as more of 
these methods become familiar to the author, a suitable method will be determined (or discov-
ered). The important aspect of this chapter is the relationship between the discrete and continuous 
representations of the decay of the system. 
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Consider an original matrix (after fitting with the exponential distribution) given 

7.181269 .148411 .670320\ 

0 .181269 .818731 

0 0 1  

After summing the first 10 elements of the series the estimate of the logarithm of 

the matrix is 
7-1.6653 0.70793 0.95737\ 

0 —1.6653 1.6653 

\ 0 0 0) 

After 30 elements of the series the logarithm of the matrix is 

7-1.70745 0.8167 0.89075\ 

0 —1.70745 1.70745 

\ 0 0 01 

After 100 elements of the series the logarithm of the matrix is 

7-1.70776 0.8172 0.88903\ 

0 —1.70776 1.70776 

\ 0 0 01 

7.3.2 An 8 x 8 Example Using the Infinite Series Approximation 

The calculation using the infinite series is fraught with roundoff errors and for large 

matrices the numerical instabilities quickly render the matrix unusable because many 

of the off-diagonal elements become negative. 
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A simulation was conducted. The original matrix used in the simulation was' 

(3.29676 - 1 2.20996 - 1 l.4813b - 1 9.92986 - 2 6.6566 - 2 4.46166 - 2 2.99076 - 2 6.08096 - 2 \ 

0.obo 5.50676 - I 1.4813b - 1 9.9298b - 2 6.6566 - 2 4.46166 - 2 2.9907b - 2 6.0809b - 2 

0.obo 0.obo 2.48526 - 1 1.8675b - 1 1.40346 - 1 1.05466 - 1 7.92556 - 2 2.39656 - 1 

0.060 0.060 0.060 2.21196 - 1 1.722Gb - 1 1.3416b - 1 1.0448b - 1 3.6787b - 1 

0.060 0.060 0.060 0.obo 1.99266 - 1 1.5955b - 1 1.27766 - 1 5.13416 - 1 

0.060 0.060 0.060 0.060 0.060 1.81266 - 1 1.4841b - 1 6.7031b - 1 

0.060 0.060 0.ObO O.Obo 0.060 0.060 1.81266 - 1 8.18736 - 1 

\ 0.obO 0.060 0.060 O.ObO 0.060 0.060 0.060 1.obo I 

All the rows were generated from exponential distributions. The first two rows were 

generated from the same exponential distribution to determine if the values in the 

logarithm of the matrix were the same. 

The computer algebra system MACSYMA [58] was used to multiply the matrices 

using "bigfioats,", thus the exponents are b's instead of e's. The floating point 

precision (fpprec) parameter was set to 30 and 40 digits of precision and no differences 

were discerned in the final matrix. 

After 30 elements of series the matrix was 

/ -1.109660 5.13016 - 1 3.9005b - 1 1.38156 - 1 5.57726 - 2 2.20116 - 2 6.79856 -3 -1.61776 - 2\ 

0.060 -5.96616 - 1 3.90056 - 1 1.3815b - 1 5.57726 - 2 2.20116 - 2 6.79856 - 3 -1.61776 - 2 

0.060 0.obo -1.392260 7.9581b - 1 3.05286 - 1 1.46026 - 1 7.8126b - 2 6.6954b - 2 

0.060 0.obo 0.060 -1.5086b0 8.19466 - 1 3.28446 - 1 1.6054b - 1 2.00176 - 1 

0.obo 0.060 0.060 0.060 -1.612960 8.37696 - 1 3.38036 - 1 4.37256 - 1 

0.obo 0.060 0.obo 0.060 0.060 -1.7074b0 8.1676 - 1 8.90746 - 1 

0.obo 0.060 0.obo 0.obo 0.060 0.060 -1.707460 1.707460 

0.obo 0.060 0.obo 0.060 0.060 0.060 0.060 0.060 / 

3This matrix is not the exponential fit to the "raw" data matrix presented on page 72. 
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After 70 elements of series the matrix was 

/ -1.109660 5.13016 - 1 3.90066 - 1 1.3805b - 1 5.6133b - 2 

0.060 -5.96616 - 1 3.90066 - 1 1.38056 - 1 5.61336 - 2 

0.060 0.Obo -1.392260 7.96086 - 1 3.0396 - 1 

0.060 0.obo 0.060 -1.508660 8.20176 - 1 

0.060 0.060 0.obo 0.060 -1.613160 

0.obo 0.obo 0.obo 0.060 0.060 

0.060 0.obO 0.obo 0.060 0.obo 

0.060 0.060 0.060 0.obO 0.060 

After 100 elements of the series the matrix was 
f-1.109660 5.1301b -1 3.9006b - 1 1.38056 - 1 5.61336-2 

0.obo -5.96616 - 1 3.90066 - 1 1.38056 - 1 5.6133b - 2 

0.060 0.obo -1.3922b0 7.96086 - 1 3.039b - 1 

0.obo 0.060 0.obo -1.508660 8.20176 - 1 

0.060 0.obO 0.obo 0.060 -1.6131b0 

0.060 0.obo 0.060 0.obo 0.060 

0.060 0.obo 0.060 0.obo 0.060 

0.060 0.060 0.obo 0.060 0.060 

2.16676 - 2 6.60466 - 3 

2.16676 - 2 6.60466 - 3 

1.4856 - 1 7.74666 -2 

3.2559b - 1 1.64076 - 1 

8.39226 - 1 3.33866 - 1 

-1.707760 8.18736 - 1 

0.obo -1.707760 

0.060 0.060 

2.16666 - 2 6.6062b - 3 

2.16666 - 2 6.60626 - 3 

1.485b - 1 7.74596 - 2 

3.2559b - 1 1.64086 - 1 

8.39226 - 1 3.33866 - 1 

-1.707760 8.18736 - 1 

0.060 -1.707760 

0.obo 0.060 

-1.59086 - 2\ 

-1.59086 - 2 

6.62536 - 2 

1.98836 - 1 

4.4003b - 1 

8.89046 - 1 

1.7077b0 

0.060 1 

-1.59096 - 2\ 

-1.59096 - 2 

6.625gb - 2 

1.98836 - 1 

4.40036 - 1 

8.89036 - 1 

1.7077b0 

0.060 / 

Notice the two small negative values in the upper right hand corner of the matrix. 

These values should be positive. For matrices larger than $ x 8 the number of 

negatives in the upper right hand corner grew rapidly, making these matrices all but 

useless. 

The final matrix is the logarithm of the discrete matrix. The discrete matrix is 

used in the matrix multiplication method of determining probabilities. The contin-

uous (logarithm) matrix is used in solving the problem using differential equations. 

The differential equations are shown in Figure 7.1. 

The output from the differential equation (continuous) code is shown in Figure 7.2. 

The comparison conducted above compared the discrete and continuous proba-

bilities on an equal time basis. When the discrete data are obtained over a different 

time basis (such as four time periods, for example), the discrete and continuous 
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probabilities are compared by thinking "one time increment in the continuous case 

is equal to the number of time increments between measurements in the discrete 

case." Thus, for a four time period span between the measurements a "1" in the 

time column for the continuous calculation represents four periods of growth. To 

integrate the continuous equations one year at a time the user would integrate 0.25 

time units at a time. 
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dydx[1] = -1.1096e0 * yEl]; 
dydx[2] = 5.1301e-1 * y[l] - 5.9661e-1 * yE2]; 
dydxE3] = 3.9006e-1 * yEl] + 3.9006e-1 * yE2] - 1.3922e0 * y[3]; 
dydxE4] = 1.3805e-1 * yCi] + 1.3805e-1 * yE2] + 7.9608e-1 * yE3] - 

1.5086e0 * yE4]; 
dydx[5] = 5.6133e-2 * yEl] + 5.6133e-2 * yE2] + 3.0390e-1 * y[3] + 

8.2017e-1 * y[4] - 1.6131e0 * yE5]; 
dydxE6] = 2.1666e-2 * yCi] + 2.1666e-2 * y[2] + 1.4850e-1 * yE3] + 

3.2559e-1 * y[4] + 8.3922e-1 * y[S] - 1.7077e0 * yE6]; 
dydx[7] = 6.6062e-3 * y[l] + 6.6062e-3 * y[2] + 7.7459e-2 * yC3] + 

1.6408e-1 * y[4] + 3.3386e-1 * y[S] + 8.1873e-1 * y[6] - 

1.7077e0 * yC7]; 
dydx[8] = -1.5909e-2 * y[l] - 1.5909e-2 * yC2] + 6.6259e-2 * yE3] + 

1.9883e-1 * yC4] + 4.4003e-1 * yES] + 8.8903e-1 * yC6] + 
1.7O7YeO * y[Y]; 

• Figure 7.1: The Continuous Time Differential Equations Determined From the Log-
arithm of the Discrete Transition Probability Matrix 
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time yE1] yE2] yC3] yE4] 
0.00000 1.00000 0.00000 0.00000 0.00000 

1.00000 0.32969 0.22099 0.14814 0.09930 

2.00000 0.10870 0.19455 0.11839 0.10432 

3.00000 0.03584 0.13116 0.07435 0.07530 

4.00000 0.01181 0.08014 0.04322 0.04713 

5.00000 0.00390 0.04674 0.02436 0.02763 

6.00000 0.00128 0.02660 0.01356 0.01569 

7.00000 0.00042 0.01493 0.00750 0.00877 

8.00000 0.00014 0.00832 0.00414 0.00487 

9.00000 0.00005 0.00461 0.00228 0.00269 

10.0000 0.00002 0.00255 0.00126 0.00148 

time yEl] 

0.00000 1.00000 

1.00000 0.32968 

2.00000 0.10869 

3.00000 0.03583 

4.00000 0.01181 

5.00000 0.00389 

6.00000 0.00128 

7.00000 4.233E-4 

8.00000 1.39553E-4 

9.00000 4. 60081E-5 

10.0000 1.51679E-5 

yES] yE6] yE7] yE8] 
0.00000 0.00000 0.00000 0.00000 

0.06656 0.04462 0.02991 0.06081 

0.08782 0.07223 0.05914 0.25489 

0.07227 0.06712 0.06201 0.48200 

0.04892 0.04909 0.04919 0.67054 

0.03005 0.03169 0.03356 0.80212 

0.01754 0.01908 0.02096 0.88535 

0.00996 0.01104 0.01242 0.93502 

0.00557 0.00624 0.00713 0.96365 

0.00309 0.00349 0.00402 0.97983 

0.00171 0.00193 0.00224 0.98887 

Differential Equation Solution 

yE2] yE3] yE4] yES] yE6] yE7] yE8] 

0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

0.22099 0.14814 0.09930 0.06656 0.04462 0.02991 0.06081 

0.19455 0.11839 0.10431 0.08781 0.07222 0.05913 0.25489 

0.13115 0.07434 0.07529 0.07227 0.06711 0.06201 0.48199 

0.08014 0.04321 0.04712 0.04892 0.04909 0.04919 0.67052 

0.04674 0.02436 0.02762 0.03005 0.03169 0.03355 0.80209 

0.02660 0.01356 0.01569 0.01754 0.01907 0.02095 0.88531 

0.01493 0.00750 0.00877 0.00996 0.01103 0.01242 0.93497 

0.00832 0.00414 0.00487 0.00557 0.00624 0.00713 0.96360 

0.00461 0.00228 0.00269 0.00309 0.00349 0.00402 0.97977 

0.00255 0.00126 0.00148 0.00171 0.00193 0.00224 0.98881 

Matrix Multiplication Solution 

Figure 7.2: Comparison of Probabilities as a Function of Time from the Differential 
Equation and Matrix Multiplication Solutions 
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7.3.3 Logarithm of a Matrix Using the Spectral Resolution of f(A) 

Lancaster and Tismenetsky [23] show how the spectral resolution of a function of 

a matrix can be used to determine the logarithm by solving a system of equations. 

This method is good for small matrices however the number of equations in the 

system varies as the cube of the size of the matrix. An 8 x 8 matrix would require 

512 equations; a 25 x 25 matrix would require over 15,000 equations. A review of 

this method is included here for completeness. 

The key of the calculation is that the function of a matrix can be written in the 

form 
3 

f(A) = fk,Zk, 
k=1 2=0 

where f is some polynomial and the Z's are matrices, linearly independent and 

capable of commuting with each other and the matrix A. The spectrum of the 

matrix is the set of eigenvalues .Ak. The multiplicity of each eigenvalue is denoted 

Mk. The total number of different eigenvalues is s. The minimal polynomial is 

fl(. - 

k 

A three by three example, with one repeated root, illustrates the technique well. 

Consider the following matrix 

/.181269 .148411 .670320\ 

0 .181269 .818731 

0 0 11 

The eigenvalues of this matrix are .181269, with m1 = 2, i.e. this root is repeated, 

and 1, with m2 = 1, 
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The minimal polynomial is 

m(J) = (X - 1)(\ - .181269)2. 

The functions fk, are linearly independent polynomials. In this case reasonable 

polynomials are -1, (X - .181269), and (.\ - .181269)2. The function is given by 

s Mk - 1 

f(A) = 

k=1 j=O 

f(1)Z10 + f(.181269)Z20 + f'(.181269)Z21 

The polynomials are substituted into the above equation and the Z's are determined 

from the resulting system of equations. 

The f) = 1 Equation 

The equation that results is 

I=;ZiO+Z20 +Z30 +Z40, 

where I is the identity matrix. 
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The f(A) - .181269) Equation 

The equation that results is 

A - .181269 = (.181269 - .181269)Z10 (= 0) 

+z11 

+ (.199263— .181269)Z20 

+ (.221199— .181269)Z30 

+ (1 - .181269)Z40, 

where A is the matrix of which the logarithm is desired. 

The f(.X) = - .181269)2 Equation 

The equation that results is 

A - .181269 (.181269 - .181269)2Z10 

+z11 

+ (.199263—.18126 9)2Z20 

+ (.221199 - .181269 )2Z30 

+ (1 - .181269)2Z40. 

0) 

The other matrices of higher powers are developed in the same manner. 

Each of the Z matrices contains a maximum of 25 elements. There are five 

separate Z matrices for a single A matrix. The number of elements to solve for is 

thus 53 = 125. The calculation becomes prohibitive very rapidly. 
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7.4 Summary: It is proposed to use the Discrete Tran-

sition Probability Matrix in Place of the Continuous 

Transition Probability Matrix 

It is proposed to use the discrete matrix in place of the continuous matrix because 

the calculations are simply too prohibitive. The value of this chapter is that the 

connection between the discrete matrix and the system of continuous differential 

equations has been demonstrated. 



Chapter 8 

Summary and Recommendations 

8.1 Why The Models Presented Herein Cannot be Used 

for the Problem Examined for this Project 

The Mine group methodology depends upon creating a function, called H or G, 

that has a single minimum on the range 0 < t ≤ oo. The functions are reasonably 

simple to calculate and, since the functions are sums of exponentials, differentiation 

and subsequent determination of the minimum are also easy. Parenthetically, the 

aesthetics of their models are most attractive. 

Unfortunately for the work proposed in Chapter 7, in the real world one is not 

guaranteed that the appropriate functions will have the properties ascribed to them 

that are necessary for the single minimum (of costs) to develop. For instance, the 

Mine group methodology depends upon the distributions being totally positive of 

order 2. Total positivity is a non-trivial aspect of distributions. Consider the func-

tions used in the analyses presented in Chapters 5 and 6. For each t the P1 (t) are 

totally positive of order 2 if 

Pim(t) P(t) 

Pjm (t) Pj(t) 
≥ 0 for j 

0<m<n<N. 
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For each i the P(t) are totally positive of order 2 if 

P1 (t) Pij  

Pik (t) Pik (U) 

0<k<N 
≥0for ≤j - 

0<t<u<co. 

For each t the Q(t) are totally positive of order 2 if 

Qim(t) Qj,,,(u) 

Qjm(t) Q(u) 
≥Ofor j-  

0<m<n<oo. 

For each t, F1(t) is non-decreasing in i. These four conditions are necessary for 

there to be a single minimum in the functions H and G. It can be shown that the 

derivative of the function changes sign only once, and if it changes sign the change 

is from negative to positive [40]. 

8.2 What about the Pliska Group? 

The Pliska group work is not applicable because of the false positives and negatives. 

As well, a medical problem has a well defined "end" even if it is an infinite horizon 

problem (as in having a point mass at infinity). The Pliska group work does not 

divide into a set of procedures specifying what to do if the system is observed in a 

given state—the system is either observed to be healthy or deteriorated. 

8.3 Recommendations and Future Plans 

It is frustrating that, with over 18 months of thinking and working on this project, 

an appropriate model has not been developed. The models created by the Mine 

and Pliska groups are wide ranging and have required much effort to program. To 
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understand the models that were not programmed required nearly as substantial an 

effort. In this last section of the thesis an outline of what is required to solve a 

problem on the approximate scale of the NOVA problem is presented. 

As an idea of what may not be possible, consider that the Mine group models 

are constrained in such a manner so as to force the single minimum in the H and 

G functions. The Mine group models depend on minimizing costs. It was thought 

to be a relatively simple matter to change the models slightly to maximize rewards 

instead of minimizing costs. This has, sadly, proved not to be possible because of the 

characteristics of the models. The benefit of the attempt to model rewards instead 

of costs was the discovery of what kinds of modifications to the models had to be 

made in order to use them in a situation such as that presented in Chapter 7. 

It should be realized that the general inspection problem that was examined in 

Chapter 7 can be solved if all that is desired is to determine the next inspection such 

that the probability of failure of the system is kept below some chosen value. Both 

the differential equation and matrix multiplication solutions can be implemented— 

the former for systems with less than about 8 states and the latter for systems with 

more states. This is similar to what was done in Chapter 3. 

In the case where it is desired to prepare an answer as to what to do if the system 

is observed in a given state, as in the Mine group models, a much more complicated 

set of model criteria is needed. These criteria are listed in the following subsections. 

8.3.1 A State-Dependent Decision 

What is desired is a more general state-dependent model in the same class as the 

Mine group models analyzed for this thesis. A state-dependent decision is the most 
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important criterion because this creates a truer infinite horizon model than the Pliska 

group models. An infinite number of repairs must be a possibility. In the Pliska group 

models only one repair is allowed. 

8.3.2 Lack of Total Positivity Criterion 

It would be more realistic if the total positivity criterion could be waived. Certainly 

the operators of a piece of equipment would try as hard as possible to minimize 

the deterioration rate of their system. Systems in the real world, where there is a 

large amount of operator interaction will not necessarily decay more rapidly with 

increasing level of deterioration. 

8.3.3 More General Decay Modes 

In Chapter 7 a realistic situation of what can be expected from real world measure-

ments of real world systems was presented. The system may decay from one state 

only to the next highest state, however, as analyzed by the owner of the system, over 

a discrete time period the system will appear to decay from one state to all states of 

greater decay. Transforming the data into a continuous-time Markov process does 

not automatically create a simple "one-state-at- a- time" decay chain. The simpler 

models require a simple decay chain. A model created for a real world system has 

to be more robust than the Mine group models in that general decay chains are 

possible. 

Another aspect of the Mine group models that can be criticized is the decay 

mode having the gradual and failure aspects (see Figure 5.1). While some criticism 

can be directed at that decay chain, it should be noted that the differentiation of 
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the decay rate into the a and fi portions (failure and gradual decay respectively), 

becomes important in the proofs of the characteristics of the systems they analyze 

in virtually all of their papers. 

8.3.4 More General Cost and Reward Structure 

The costs in the Ohnishi, Kawai and Mine algorithm rise with increasing decay. An 

attempt to replace the costs with a decreasing reward structure, and then placing a 

minus sign in front of the G formula presented in Chapter 6 in order to maximize 

rewards, did not prove fruitful. The objective was to create a model based on rewards 

because the relative magnitude difference between costs and rewards could change 

the decision to maintain immediately, inspect t years in the future, or to leave the 

system to fail (i.e. inspect oo years in the future). 

Including a more general cost and reward structure into th model is an interesting 

task for future work. 

8.3.5 Series Systems 

Many of the papers examined during the course of the literature search for this 

project examined parallel redundant and standby systems. Only one paper, by 

Kumar, Kapoor and Gupta [22] examined a series system. In this particular paper 

the series system could be maintained under expensive or inexpensive maintenance. 

For a large system such as a pipeline the system is obviously a series system with 

each single corrosion pit, weld section (each about 18 m long), or each kilometre of 

pipe forming a unique part of the system. A railroad or highway is another example 

of a series system, as examined by Hatoyama, Fukuoka and Suzuki [9], though in 
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this particular case the model depends on making decisions after a regular inspection 

is made, i.e. inspections are not planned in the sense of the Mine group optimized 

inspection time inspections. 

Interesting aspects of inspections such as these are the possibility of replacement 

or maintenance costs depending upon the number of elements replaced at any given 

time. A pipeline is an obvious candidate for this type of analysis as well. 
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8.4 Summary of the Method That Must Be Developed 

A method must be developed that can analyze optimized inspection times in the same 

flavour as the Mine group work but that does not depend upon the artificiality of 

the total positivity of the probability distributions. The desired method must yield a 

state-dependent decision for machine oriented problems over an infinite horizon—an 

infinite number of inspections must be possible. 

The method should he able to analyze the system in terms of both rewards and 

costs. 

The method should be applicable to a series system such as a pipeline, railroad, 

highway or other obvious series systems. Parallel system results already exist in the 

literature in the form of examination of redundant systems. 

The method developed should be easily implementable on modern computers in 

order to make it easy for researchers to analyze real world problems. 

Now to solve these new problems... 
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Appendix A 

Mine and Kawai MAC SYMA Code 

1* PROGRAM H.MAC, MINE AND KAWAI DYNAMIC PROGRAMMING PROGRAM *1 
kill (all)$ 

batchload('c : \\macsyma\\mk\\data . mac")$ 

batchload(" c : \\macsyma\\mk\\f_bar . macit) $ 
batchload("c :\\macsyma\\mk\\val_det .mac")$ 

load("c:\\macsyma\\share\\bisect.fas")$ 

load("c:\\macsyma\\share\\adaplot .fasht)$ 

1* write_tex_file("h.tex"), *1 

g: 1$ 

array(nu, 3) $ 
nu[2] : 0 $ 
nu[i] : 0 $ 
nu[O] : 0 $ 

1* ALTERNATIVE'S: 1: M, 2: I(inf), 3: 1(t) *1 
alternative-max: 3 $ 
array(alternative_start, 3) $ 
alternative-start[2] : 1 $ 
alternative_ start [1] : 1 $ 
alternative-start[0] : 1 $ 

1* initialize time 
array(time,3) $ 
time[2] : 0 $ 
time[1] : 0 $ 
time[0] : 7.06 $ 

cost-repair : 30 $ 
time-repair : 4 $ 
time-maintain : 2 $ 
cost-inspection : 1 $ 
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cost-maintain : 20 $ 1* 2, 5, 10 and 13 */ 

test-1 : alternative-start $ 
test-2 : -alternative-start $ 

1* trace(value_determinatjon)$ 
* trace(solve)$ 

* trace(f_bar)$ 

* trace(int_f_bar)$ 

* trace(p_ij_nu)$ 

output : value-determination( g, nu, num_states, test_i, lambda, 

beta, cost-maintain, time-maintain, cost_repair, 

time-repair, cost-inspection, time ); 

1* g : part(output,i,i,2); 

* nu[i] : part(output,1,2,2); 

* nu[2] : part(output,1,3,2); 
* 

* 

* 

* for i: 1 thru 2 do 

* print('nu[ij = nuCi]); 
* 

*1 

1* close_tex_file(true); *1 
1* END OF PROGRAM *1 
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1* DATA *1 

a.rray(1ainbda,3) 

lambda[O] : 10/100 $ 
lambda[1] : 15/100 $ 
lambda[2] : 20/100 $ 

array(beta,3) $ 
beta[0] : 5/100 $ 
beta[l] : 5/100 $ 
beta[2] : 0 $ 

num_states : 2 $ 

/* END OF DATA */ 
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1* VALUE DETERMINATION ROUTINE *1 

value-determination( g, nu, n, alternative, lambda, beta, 

cost-maintain, time-maintain, cost_repair, 

time-repair, cost-inspection, time ) := 
block( [test-g, v, w, i, j, f_b, _b-nu, mt_f_b, tau, eqn, 

g-out, flu_out, v_temp, w_temp, test-number, flu_temp, 

alternative-chosen, max-alt, solutions_this_time, 

t, h, x, k ], 

test-g: g, print("test_g ", test-g, 

/* initialize the v and w arrays 
for i:0 thru n do ( 

vii] : 0, 

w[i] : 0), 

for i:0 thru ii do 

remvalue ( vii], w[i] ), 

for i:0 thru n do nu[i] : 0, 

for i:0 thru n do remvalue(nu[i]), 

for i:0 thru n do display(nu[i]), 

119 = It , g) , 

for i : 0 thru n do ( 
if alternative [i] = 1 then ( /* M for maintain */ 

vii] : cost-maintain * time-maintain, 

w[i] : time-maintain 

) 
else if alternative [i] = 2 then ( 

1* 1(t) = inf for never inspect *1 
assume( x > 0 ), 
/* f_b and f_b_nu are zero because the exponentials 

* are all evaluated at infinity. 

f_b : 0, 

f_b_nu : 0, 

mt_f_b : int_f_bar(i, n, lambda, beta, x, 1, time), 

display( f_b, f_b_nu, mt_f_b ), 
vii] cost-repair * time-repair * (1 f_b) + 

cost-inspection * f_b + f_b_nu, 
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w[i] : mt_f_b + time-repair * (1 - f_b) 

) 
else if alternative [i] = 3 then ( 

1* 1(t) for inspect later */ 

f_b : f_bar(i, n, lambda, beta, time[i]), 

if i = n then 

answer : read("i = n, this is impossible, type C now") 

/* because max_alt at i = n is equal to 2 *1 
else if i = n - 1 then 

1* august 16, hard wiring *1 
f_b_nu : beta[n-1] * nu[n] * ( 

%e(lambda[n-1] * time[i]) / 
(lambda[n ] lambda[n-1]) + 

%e(-lambda[n :i * time[i]) / 
(lambda[n-1] - lambda[n ])) 

else 1* i <= n - 2 */ 
f_b_nu p_ij_nu(i, n, lambda, beta, nu, time[i]), 

int.f_b : int_f_bar(i, n, lambda, beta, x, 0, time[i]), 

), 

display( f_b, f_b_nu, mt_f_b ), 
vEiJ (cost-repair * time-repair * (1 - f_b) + 

cost-inspection * f_b + 

f_b_nu) / (1 - %e(-lambda[i] * time[i])), 

w[i] : (int_f_b+time_repair*(1 - f_b)) / 
(1 %e(-lambda[i] * time[i])) 

1* end of alternative = 3 */ 
display(v[i], w[i]) 

1* END OF v AND w PART OF EQUATION GENERATION LOOP */ 

1* remove the values of nu, solve for a new set of nu's *1 
1* build--up the equations *1 
for i:0 thru n do remvalue ( g, nu[1], nu[2] ), 
for i:0 thru n do ( 

if i = 0 then 

nu[O] : 0, 

eqn[i] : factor(expand(radcan(g * w[i] + nu[i] - v[i]))), 

print(" "), 

display( eqn[i] ) 
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algexact: true, solveradcan: true, globalsolve:true, 

solutions-this-time : solve( [eqn[O], eqn[1], eqn[2] 

[ g, nu Ell , nu[2] ] ), 
g : part(solutions_this_time,1,1,2), 

nu[1] : part(solutions_this_time,1,2,2), 

nu[2] : part(solutions_this_time,1,3,2), 

print("g = ", g, "test_g = " test_g, 

" nu [1] = " flu [1] , "flu [2] = " nu [2]), 

1* Evaluation of V_0A (g'A) 

test_v_a ( cost-repair * time-repair * 
(1 - f_bar(O, 2, lambda, beta., x) ) 
+ cost-inspection * f_bar(O, 2, lambda, beta, x) 

+ p_ij_nu(0, 2, lambda, beta, nu, x) ) 
/ (1 - %e(-lambda[0] * 

display (test_v_a), 

1* if test_g = g then 
* print(" bingo! The g's match and the optimum 

* solution has been found! ") 

* else 

* print(" looking for more optimization ") 

*1 

1* POLICY IMPROVEMENT PART OF THE ROUTINE *1 

for i : n step -1 thru 0 do ( 
if i = n then max-alt : 2 else max_alt : 3, 

1* max-alt : 3, */ 

for j : 1 thru max-alt do ( 
f = 1 then ( 1* M for maintain *1 

v_temp[j] : cost-maintain * time-maintain, 

w_temp[j] : time-maintain 

) 
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else if j = 2 then ( 
1* I(inf) = infinity for never inspect *1 
assume( x > 0 ), 
f_b 0, 

f_b_nu : 0, 

mt_f_b : int_f_bar(i, n, lambda, beta, x, 1, time), 

display( f_b, f_b_nu, mt_f_b ), 
v_temp[j] : cost-repair * time-repair * (1 - f_b) + 

cost-inspection * f_b + f_b_nu, 

w_temp[j] : mt_f_b + time_repair * (1 - f_b ) 
) 
else if j = 3 then C 

f_b : f_bar(i, n, lambda, beta, x), 

tex(h), 

/* 

if 

i will never equal n because max-alt = 2 if i = n */ 

i = n - 1 then 

/* august 16, hard wiring f_b_nu */ 
f_b_nu : beta[n-1] * nu[n] * ( 

%e(-lambda[n-1] * x) / 
(lambda[n ] - lambda[n-11) + 

%e -(-lambda[n ] * x) / 
(lambda[n-11 - lambda[n ])) 

else /* i <= n 2 */ 
f_b_nu : p_ij_nu(i, n, lambda, beta, nu, x), 

mt_f_b : int_f_bar(i,n,lambda, beta, x, 2, time), 

display( f_b, f_b_nu, mt_f_b ), 

h radcan( ( cost-repair * time-repair * (1 f_b) 

+ cost-inspection * f_b 

g * mt_f_b 

g * time-repair * (1 f_b) 

+ f_b_nu ) 
/ (1- 7.e(-lambda[i] * x)) ), 

display(h), 

xmax : 100, 

xmin : 0, 

ymin : limit(h,x,inf) - 1, 
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ymax : limit(h,x,inf) + 1, 

adaplot2(h, x, 0.1, 100, ymin, ymax), 

kill(xmax, xmin, ymin, ymax), 

if ± = n then ( 
1* limit(h,x,inf) should equal 

v_temp[2] - g * w_temp[2] *1 
print('n = ", n, "i = ", i), 

print("limit of h at infinity = 

print ("v_temp[2] - g * w_temp[2] = 

v_temp[2] - g * w_tempC2]), 

1* check to see that dH/dt <= 0 for 
h_derivative : radcan(diff(h,x)), 

display (h_derivative) 

adap10t2(h_derivative, x, 1, 100, -1, 

limit(h,x,inf)), 

t>= 0 if i = n *1 

+1) 

pr±nt("limit of h at infinity = ", limit(h,x,inf)), 

if i = n then print 

("you must select option 1 because i = n " ), 

print("YOUR OPTIONS AR: 

type 1 to only compare M and I(oo),"), 

print(" H has a minimum: type 2,"), 

answer : read("choose a selection"), 

prnt("you chose : ", answer), 

( if answer = 1 then 

1* want to compare M and I(oo), so make alt 3 fail *1 
v_temp[j] : v_temp Cj-1] + 1, 

w_temp[j] : w_temp[j-1] ) 
else if answer = 2 then ( 

h_derivative : radcan(diff(h,x)), 

display (h_derivative), 

adap1ot2(h_derivative, x, 1, 100, -1, +1), 

minimum-time root_by_bisection(h_derivative,x, 1,50), 

print("m±nimum_time = ", minimum-time), 

time [i] minimum-time, 

h_test : ev(h, x: minimum_time), 

v_temp[j] : h_test, 
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w_temp[j] 0, 

display(minimum_time, h_test) 

) 1* end of answer = 2, alternative 
), 1* end of alternative 3 *1 

display(v_temp[j], w_temp[j]) 

), 1* end of j loop *1 

= 3 */ 

for j : 1 thru max-alt do ( 
nu-temp[j] : v_tempCj] - g * w_temp[j], 

1* force test-number to equal nu-temp[l] *1 
if j = 1 then test-number nu_temp[1], 

if nu-temp[j] <= test-number then ( 
nu[i] nu_tempEj], 

alternative-chosen .: 

test-number nu-temp[j] ), 
print(" max-alt = ", max-alt, 

) 

II j = II j 

II 

11 nuE" , I,"] = It, flu [1] 

If a_chosen = ", alternative-chosen, 

11 test-no ", test-number ) 
1* bottom of alternative determination loop *1 

1* bottom of policy iteration routine, i loop */ 

print(" got to bottom of val_det.mac 

display(g, nu[0], nu[1J, nu[2J), 

test_v_b ( cost-repair * time-repair * 
(1 f..bar(O, 2, lambda, beta, x) ) 
+ cost-inspection * f_bar(0, 2, lambda, beta, x) 

+ p_ij_nu(0, 2, lambda, beta, nu, x) ) 
/ (1 %e(lambda[O] * 

display(test_v_b), 

plot(test_v_a, x, 0.01, 100), 

plot(test_v_b, x, 0.01, 100), 

(g, nuCO], nu[1], nu[2]) 

)$ 
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/* END OF VALUE-DETERMINATION 
* ANSWER OF OPTIMUM ALTERNATIVES FOR EACH STATE 

* SHOULD RESULT FROM THIS 
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/* f_bar 

f_bar(i, n, lambda, beta, time) ( 
block[ j, k, index, answer, beta_prod, exp_part, lambda_prod, 

exp_lambda_stuff], 

array(answer, 3), 

answer[O] : 0, 

answer[1] 0, 

answer[2] : 0, 

array(exp_lambda_stuff, 3), 

exp_lainbda_stuff[O] : 0, 

exp_lainbda_stuff[1] 0, 

exp_lambdà_stuff[2] 0, 

for j : i thru n do ( 
if j = i then 

answer[j] %e(-lambda[i] * time) 

else if j = i + 1 then 
answer[j] . beta[i] * ( 

7.e'(-lambda[i] * time) / 
(lambda[j] - lambda[i]) + 

°he(-lainbda[j] * time) / 
(lambda[i] - lambda[j]) ) 

else ifj>i+l then ( 

beta-prod : product (beta [k], k, i, j-1), 

/* LOOP OVER I TO .3 , LEAVING OUT K, 

THE CURRENT ELEMENT OF THE SERIES */ 
/* note the cool way the negative signs pop into this *1 
for index ± thru j do ( 

lambda-prod 1, 

exp_part : %e(-lambda[index] * time), 

for k : i thru j do ( 
if k # index then 

lambda-prod : lambda-prod * 

( lambda[k] - lambda[index] 

exp_lainbda_stuff [index] : exp_part / lambda-prod 
), 
answer[j] : beta-prod * 

)), 

sum(exp_lainbda_stuff [index], index, i, j) 
), 
display( answer[j] ) 
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), 
display(sum(answer[j], j, 1, n)), 

sum(answer[j], j, 1, n) 

) 
/* END OF f_bar *1 
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/* p_ij_nu 

* recall that j starts at i+1 

p_ij_nu(i, n, lambda, beta, flu, time) : ( 
block[k], 

array(answer, 3), 

answer[0] : 0, 

answer [l] : 0, 

answer[2] 0, 

1* only way to get here is if i = 0, n = 2 *1 
print("i = ", i, "n = ", n, "time = ", time), 

print("printout of the flu's supplied to p...ij_nu"), 
for k : 0 thru 2 do print("k = ", k, "nu[k] = ", nuCk]), 

beta[0J * nu[l] * 

(%e(-lambda[0] * time) / (lambda[l] - lambda[O]) + 

7.e(-lambda[1] * time) / (lambda[O] - lambda[1]) ) 
+ 

beta[0] * beta[l] * nu[2] * 

(%e(-lambda[OJ * time) / 
((lambda [1] -lambda [0]) * (lambda [2] -lainbda[0] ) )+ 
%e(-lainbda[l] * time) / 
((lambda[0]-lambda[l]) * (lambda[2]-lambda[1]))+ 

%e(-lainbda[2] * time) / 
((lambda[0]-lambda[2]) * (lambda Ci] -lambda [2]))) 

)$ 
/* END OF p_ij_nu *1 
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1* mt_f_bar 
* used in the integral of \bar{F}_i(time), 

* to calculate the time of the next expected transition 

int_f_bar(i, n, lambda, beta, time_x, it-flag, time) : ( 
block[ j, k, index, answer, beta-prod, exp_part, lambda_prod, 

temp, t, sex-1, exp_lambda_stuff], 

array(answer, 3), 

answer[O] : 0, 

answer[i] : 0, 

answer[2] : 0, 

array(exp_lambda_stuff, 3), 

exp_lambda_stuff[O] 0, 

exp_lambda_stuff[i] : 0, 

exp_lambda_stuff[2] : 0, 

for j : i thru n do ( 
if j = i then 

answer[j] %e(-lambda[i] * time-x) 

else if j = i + 1 then 

answer[j] : beta[i] * ( 
%e(-lambda[i] * time-x) / 
(lambda[j] - lambda[i]) + 

°he(-lambda[j] * time-x) / 
(lambda[i] - lambda[j]) ) 

else ifj>i+i then ( 

beta-prod : product(beta[k], k, i, j1), 

/* LOOP OVER I TO 3 , LEAVING OUT K, 
THE CURRENT ELEMENT OF THE SERIES */ 

/* note the cool way the negative signs pop into this */ 
for index : i thru j do C 

lambda-prod : 1, 

exp_part : %e-(-lambda[index] * time-x), 

for k : i thru j do ( 
if k # index then 

lambda-prod : lambda-prod * 

( lambda[k] lambda[index] )), 
exp_lainbda_stuff [index] : exp_part / lambda-prod 

), 
answer[j] : beta-prod * 

sum(exp_lambda_stuff[mndex], index, i, j) 
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), 
display( answer[j] ) 

temp sum(answer[j], j, 1, n), 

assume(x > 0, tau > 0), 

if it-flag = 0 then 1* integrate to time[i] */ 

integral : integrate(temp, time-x, 0, time[i]) 

else if it-flag = 1 then /* integrate to infinity *1 
integral : integrate(temp, time-x, 0, inf) 

else if it-flag = 2 then ( 
/* val of integral as a function of time (x) */ 
temp-tau : subst(tau, time-x, temp), 

integral : integrate(temp-tau, tau, 0, time-x) 

)' 

display(mntegral), 

integral 

)$ 
/* END OF mt_f_bar */ 



Appendix B 

Ohnishi, Kawai and Mine MACSYMA Code 

1* OKM.MAC, 0KM TOTAL AVERAGE COST DYNAMIC PROGRAMMING PROGRAM *1 

load("c:\\macsyma\\share\\bisect .fas")$ 

load('c: \\macsyma\\share\\adaplot .fas")$ 

write_tex_file("h.tex"), 

kill (all) $ 

batchload('c \\macsyma\\okm\\data .macu) $ 
batchload("c:\\macsyma\\okm\\int_fbar.mac')$ 

batchload("c:\\macsyma\\okm\\p_ij .mac")$ 

batchload("c : \\macsyma\\okm\\m .mac")$ 

batchload('c :\\macsyma\\okm\\int_a.mac")$ 

/* begin the main loop of the program here *1 
for count : 1 thru 20 do ( 

print( top of count loop results, g = "., g), 

for m : 0 thru 3 do ( 
print( " m = ", m, 

If alternative[",m,"] = ", alternative[m])), 

for ± : n step -1 thru 0 do ( /* state loop */ 

x_okm[i] : int_f_bar(i, n, lambda, beta, x,int_flag,time) + 

p_ij(i, n, lambda, beta, x, x_okm), 

y_okm[i] : m(i, n, lambda, beta, x, inspection_cost) + 

int_a(±, n, lambda, beta, x, mt_flag, time, 

operating-cost) + 

p_ij(i, n, lambda, beta, X. y_okm), 

g_okm[i] : (y_okm[i] - g * x....okm[i]) I 
(1-%e(-lambda[i] * x)), 

113 
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display(g_okm[i]), 

limit_inf limit(g_okmCi], x, inf), 

xmax : 100, 

xmin : 0, 

ymin : limit-it - 2, 

ymax :limit_inf + 2, 

ymin : limit-it - 0.1, 

ymax : limit-it + 0.1, 

ymin limit-it - 10, 

ymax limit-it + 10, 

plot(g...okmCi], x, 1, 100, ymin, ymax), 

print("limit of g_okm[i] 

print ("replacement cost 
print (H H , , Hj = II , 

at infinity = ", limit_inf), 

replacement_cost Ei3), 

print("YOUR OPTIONS ARE: type 1 to only compare c_i and I(oo),"), 

print(" type 2 if g...okm[i] has a minimum,"), 

answer : read("choose a selection"), 

print("you chose ", answer), 

if answer = 1 then ( 1* want to compare i(oo) and c_i *1 
it limit-it < replacement-cost[i] then ( 

alternative[i] : 1 /* choose i(oo) */ 

) 
else ( 

alternative[i] : 2 /* choose 

) 
) 
else if answer = 2 then ( 

/* want to compare min-Cg_okm[i]} and c_i */ 

g_derivative : radcan(dift(g_okm[i] ,x)), 



115 

display (g_derivat ive), 

xmax : 100, 

xmin 0, 

ymin : -5, 

ymax : 5, 

plot(g_derivative, x, 1, 100, ymin, ymax), 

minimum-time : root_by_bisection(g_derivative, x, 1, 100), 

print("minimum_time = 11 minimum-time), 

time[i] : minimum-time, 

g_test : ev(g_okm[i], x: minimum-time), 

if g_test < replacement-cost[i] then ( 
alternative[i] : 3 1* choose h *1 

) 
else ( 

alternative [i] : 2 1* choose c_i + v_C */ 
) 

) 

), 1* end of i (state) loop *1 

print("count = ", count), 

print( completed state loop " ), 

1* We need to know alternative [0] because we need to know 
* where to evaluate y_okm[0] and x_okm[0]. 

* alternative[0] = 1, then I(oo), so evaluate x and y at 00 

* alternative[O] = 2, then C_i, ratio is oo, so set to 1000 

* alternative[O] = 3, then 1(t), so evaluatex and y at t 

if alternative[0] = 2 then 

g : replacement-cost[O] 1* g should be infinite? *1 
else if alternative[0] = 1 then 

g : sfloat(ev(y_okm[0], x inf) I ev(x_okm[0], x: inf)) 

else if alternative[0] = 3 then 

g : sfloat(ev(y_okm[0], x minimum-time) I ev(x_okm[0], 
x: minimum-time)), 

print('alternative[",i,"] = ", alternative[i], "g = ", g), 
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print( bottom of count loop results  

for m : 0 thru 3 do ( 
print( m = ", m, 

alterna.tive[ 11 ,m,hh] = ", alternative[m])) 

);/* end of count loop *1 

1* END OF PROGRAM */ 
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1* DATA *1 

n :2$ 

it-flag : 2$ 

array(x_okm, 3)$ 

x_okm[0] : 1$ 

x_okm[1] : 1$ 

x_okm[2] : 1$ 

array(y_okin, 3)$ 

y_okm[0] : 1$ 

y_okm[1] 1$ 

y_okm[2] : 1$ 

array(g_okm, 3)$ 

g_okm[0] : 1$ 

g_okm[1] : 1$ 

g_okm[2] 1$ 

g : y_okm[0] / x_okm[0] $ 

array(operating_cost ,4) 

operating-cost[O] : 5 

operating-cost[l] : 10 

operating-cost[2] : 15 

operating-cost[3] : 20 

array(replacement_cost .4) 

replacement-cost[O] : 10 

replacement-cost[l] : 15 

replacement-cost[2] : 20 

replacement-cost[3] .: 30 

inspection-cost : 10 $ 
alpha : 1/10 $ 

array(laiubda , 3) $ 
lambda[0] : 10/100 $ 
lambda[l] : 15/100 $ 
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lambda[2] : 20/100 $ 

array(beta,3) $ 
beta[O] : 5/100 $ 
beta[l] 5/100 $ 
beta[2] : 0 $ 

num_states : 2 $ 

array(time,3) $ 
time[O] : 0 $ 
tirneEl] : 0 $ 
time[2] : 0 $ 

array(alternative, 4) $ 
alternative[0] : 0 $ 
alterna.tive[1] 0 $ 
alternative[2] : 0 $ 
alternative[3] : 0 $ 

/* END OF DATA */ 
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1* mt_f_bar 
* used in the integral of \bar{F}_i(time), 

* to calculate the time of the next expected transition 

int_f_bar(i, n, lambda, beta, time-x, it-flag, time) := ( 
block[ j, k, index, answer, beta-prod, exp_part, lambda_prod, 

temp, t, sex-1, exp_laxnbda_stuff], 

array(answer, 3), 

answer[O] : 0, 

answer[i] : 0, 

answer[2] 0, 

array(exp_lambda 

exp_lambda_stuff 

exp_lambda_stuff 

exp_lambda_stuff 

for j : ± thru n 
if j = i then 

answer[j] 

else if j = ± 
answer[j] 

else if j > i 

_stuff, 3), 

[0] : 0, 

[1] : 0, 

[2] : 0, 

do ( 

%e(-lambda[i] * time-x) 

+ 1 then 

beta[i] * ( 
%e(-lambda[iJ * time-x) / 
(lambda[j] - lambda[i]) + 

%e'(-1ambda[j] * time-x) / 
(lambda[i] - lambda[j]) ) 

+ 1 then ( 
beta-prod : product(beta[k], k, i, j-i), 
1* LOOP OVER I TO J , LEAVING OUT K, 

THE CURRENT ELEMENT OF THE SERIES */ 

/* note the cool way the negative signs pop into this */ 
for index : i thru j do ( 

lambda-prod 1, 

exp....part : %e -(-lambda[index] * time-x), 

for k : i thru j do ( 
if k # index then 

lambda-prod : lambda-prod * 

( lambda[k] lambda[index] )), 
exp_lainbda_stuff [index] exp_part / lambda-prod 

) 
answer[j] beta-prod * 
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sum(exp_lainbda.stuff [index], index, i, 

), 
display( answer[j] ) 

temp : sum(answer[j], j, 
a.ssume(x > 0), 

assume(tau > 0), 

if int.flag = 0 then /* 
integral : integrate(temp, time_x, 0, 

else if it-flag = 1 then 1* integrate 
integral : integrate(temp, time-x, 0, 

else if it-flag = 2 then ( 
/* val of integral as a function of time 
temp-tau subst(tau, time-x, temp), 

integral : integrate(temp_tau, tau, 0, time-x) 

display(integral), 

integral 

)$ 
/* END OF mt_f_bar */ 

n), 

integrate to 

time [i]) 
to infinity */ 
inf) 

time[i] */ 

j) 
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/* p_ij.mac */ 

p_ij(i, n, lambda, beta, time, cost-time) : ( 
block[ j, k, index, answer, beta_prod, exp_part, lambda-prod, 

exp_lambda_stuff], 

/* cost-time is an array that can be y_okm or x_okm */ 

array(answer, 3), 

answer[O] 0, 

answer[1] 0, 

answer[2] 0, 

array(exp_lambda_stuff, 3), 

exp_lambda_ stuff [0] : 0, 

exp_lambda_stuff[1] : 0, 

exp_lambda_stuff[2] 0, 

for j : i thru n do ( 
if j = i then 

answer[j] cost-time[j] * %e (̂-lambda[i] * time) 

else if j = i + 1 then 
answer[j] : beta[i] * cost-time[j] * ( 

°he(lambda[iJ * time) / 
(lambda[j] lambda[i]) + 

%e(-lambda[j] * time) / 
(lambda[i] - lambda[j]) ) 

else if j > i + 1 then ( 
beta-prod : product(beta[k], k, i, j-1), 

/* LOOP OVER I TO J , LEAVING OUT K, 

THE CURRENT ELEMENT OF THE SERIES */ 

1* note the cool way the negative signs pop into this */ 
for index : i thru j do ( 

lambda_prod : 1, 

exp_part : %e -(-lambda[index] * time), 

for k : i thru j do ( 
if k # index then 

lambda-prod : lambda-prod * 

( lambda[k] - lambda[index] )), 
exp_lambda_ stuff [index] : exp_part / lambda-prod 
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answer[j] : beta-prod * cost-time[j] * 

sum(exp_lambda_stuff[index], index, i, 

), 
display( answer[j] ) 

), 
sum(answer[j], j, i, n) 

)$ 
/* END OF p_ij */ 

j) 
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1* m.mac 

m(i, n, lambda, beta, time, inspection-cost) ( 
block[ j, k, index, answer, beta-prod, exp_part, lambda_prod, 

exp_lambda_stuff], 

array(answer, 3), 

answer[O] 0, 

answer[1] : 0, 

answer[2] : 0, 

array(exp_lainbda_ stuff, 3), 

exp_lambda_stuff[0] 0, 

exp_lambda_stuff[1] : 0, 

exp_lainbda_stuff[2] : 0, 

for j : i thru n do ( 
if j = i then 

answer[j] : %e (̂-lambda[i] * time) 

else if j = i + 1 then 
answer[j] beta[i] * ( 

7.e'(-lambda[iJ * time) / 
(lambda[j] - laxnbda[i]) + 

%e(-lambda[jJ * time) / 
(lambda[i] - lambda[j]) ) 

else ifj>i+l then ( 

beta-prod product(be-ta[k], k, i, j-i), 
/* LOOP OVER I TO J , LEAVING OUT K, 

THE CURRENT ELEMENT OF THE SERIES */ 

/* note the cool way the negative signs pop into this */ 
for index : ± thru j do ( 

lambda-prod 1, 

exp_part %e -(-lambda[index] * time), 

for k : i thru j do ( 
if k # index then 

lambda-prod lambda-prod * 

( lambda[k] - lambda[index] )), 
expj.ambda_ stuff [index] : exp_part / lambda-prod 

answer[j] : beta-prod * 

sum(exp_lambda_stuff[index], index, i J ) 
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display( answer[j] ) 
), 
/* display( sum(answer[j], j, 1, n) * Ye-(-alpha * time) * 

* inspection_cost), 

* suin(answer[j], j, i, n) * %e -(-alpha * time) * 

* inspection_cost 

sum(answer[j], j, 1, n) * inspection_cost 

)$ 
/* END OF inspect */ 
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/* mt_a 

* integral of cost of operating beginning in each state i 

* hard-wired for three states (0,1,2) 

int_a(i, n, lambda, beta, time_x, it-flag, time, 

operating-cost) : ( 
block[ j, k, index, answer, beta-prod, exp_part, lambda-prod, 

temp, t, sex-1, exp_lambda_stuffj, 

array(answer, 3), 

answer[0] 0, 

answer [l] : 0, 
answer[2] 0, 

array(exp_lambda_stuff, 3), 

exp_lambda_stuff [0] : 0, 

exp_lainbda_stuff[i] : 0, 

exp_lambda_stuff [2] 0, 

for  : i thru ndo ( 
if j = i then 

answer[j] : %e(-lambda[i] * time-x) 

else ifj=i+lthen 

answer[j] : beta[i] * ( 
%e'(-lambda[i] * time-x) / 
(lambda[j] - lambda[i1) + 

%e^(-lambdaCj] * time-x) / 
(lambda[i] - lambda[j]) ) 

else ifj>i+l then ( 

beta-prod : product(beta[k], k, i, j-1), 

/* LOOP OVER I TO J , LEAVING OUT K, 
THE CURRENT ELEMENT OF THE SERIES */ 

1* note the cool way the negative signs pop into this */ 
for index : i thru j do ( 

lambda-prod : 1, 

exp_part : %e -(-lambda[index] * time-x), 

for k : i thru j do ( 
if k # index then 

.lambda-prod : lambda-prod * 

( lambda[k] - lambda[index] )), 
exp_lambda_ stuff [index] : exp_part / lambda-prod 

), 
answer[j] : beta-prod * 
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sum(exp_lambda_stuff [index], index, i, 

assuiue(x > 0), 
assume(-tau > 0), 

j) 

1* put the integration here *1 
if it-flag 0 then /* integrate to time[i] *1 

answer[j] : integrate(answer[j], time-x, 0, time[i]) 

else if it-flag = 1 then /* integrate to infinity *1 
answer[j] : integrate(answer[j], time-x, 0, inf) 

else if it-flag = 2 then ( 
/* val of integral as a function of time (x) */ 
assume(x > 0), 

temp-tau : subst(ta.u, time-x, answer[j]), 

answer[j] : integrate(temp_tau, tau, 0, time-x) 

), 

display( answer[j] ) 

suiti(answer[j] * operating_cost[j], j, i, n) 
)$ 
/* END OF mt_a */ 


