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Abstract

In this dissertation. a framework is developed to obtain the random field character-
istics of the elastic properties of materials. which are consistent with an assumed
microstructure. A detailed overview of existing micromechanical models is given.
The progressive failure of elastic-brittle materials, subject to axial stresses only, is
studied using stochastic parallel-bar models.

A stochastic homogenization theory of linear elastic microstructures is developed.
Based on existing research regarding deformation-based homogenization, a new tech-
nique, based on a strain energy equivalency and a constant stress assumption in the
material, is introduced. An improved modeling of the geometric boundary condi-
tions is suggested. Based on locally averaged random field theory, a novel approach
to modeling the variability of linear elastic materials. which is consistent with the
microstructure of the material, is developed. This results in micromechanically con-
sistent values for correlation lengths in the constitutive random fields as well as for
cross-correlations between the different material properties. This improved random
field material modeling can readily be used in a stochastic FE analysis.

Applications illustrate the significance of the more consistent random field mod-
eling for structural reliability applications. It is shown how isotropy of materials is
achieved in a mean sense only. An accurate estimation of the correlation between the
elastic properties has important ramifications on the variance of maximum stresses,
strains and deformations. Several examples illustrate this. The homogenization
framework is applied to a variety of microstructures and some guidelines regarding

the selection of an appropriate micromodel are provided.
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Chapter 1

Introduction

1.1 Motivation

Due to recent advances in the development of the Stochastic Finite Element Method
(SFEM) it has become possible to analyze the behavior of structures, in which
the material properties are modeled as time- or space-variant random fields. This
progress is reflected in the literature where a wide range of applications of the
SFEM can be found: linear-elastic analysis of beams [Vanmarcke and Grigoriu, 1983,
structures which include geometric [Liu and Der Kiureghian. 1991] or material non-
linearities [Zhang and Ellingwood, 1996] and structures with deteriorating material
properties [Orisamolu, 1998].

Most random field models used to be restricted to primarily one- or multi-
dimensional Gaussian fields [e.g. Shinozuka and Jan, 1972; Yamazaki and Shinozuka,
1990; Fenton and Vanmarcke, 1990; Shinozuka and Deodatis, 1991; Elishakoff et al.,
1994; Shinozuka and Deodatis, 1996; Lin et al., 1997]. However, significant progress
has also been made in the simulation of non-Gaussian random fields [Yamazaki and
Shinozuka, 1988] and in applications of the SFEM with multiple non-Gaussian fields
[Ghanem, 1999].

In most SFEM applications, the random field description of the material prop-
erties is assumed to be either known or given. The simplest option consists of a

straightforward randomization of deterministic constitutive models. In the case of a
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linear elastic analysis for instance. typically only Young’s modulus is assumed to be
random [Zhang and Ellingwood. 1995]. but examples where Poisson’s ratio is consid-
ered a random field are available [Shinozuka and Yamazaki, 1988]. Cross-correlated
random fields of Young’s modulus E and Poisson'’s ratio v are considered in Graham
and Deodatis (1996).

Deterministic constitutive models usually provide a description of the overalll, or
“average” macroscopic behavior. This is due to the fact that constitutive behavior
is generally based on a statistical regression between loading and response. Conse-
quently. a straightforward “randomization” of a given deterministic material model
for the purpose of stochastic structural analysis may not be justified. Moreover,
the material properties are usually measured in standardized tests, either directly
or indirectly on the basis of a deterministic model. Since typically only one mate-
rial property is determined per test, it is impossible to gain information regarding
the joint distribution of the material parameters from test results. There seems to
be no theoretical basis to infer the stochastic characteristics of the various material
properties on the basis of such experiments.

An estimation of the random field parameters, including the correlation lengths
and variances of the various material properties and the correlations between them,
directly from lab tests would probably require a prohibitively large amount of tests.
Accordingly, incomplete information needs to be supplemented by certain model as-
sumptions. For instance, experimental evidence can be fitted to an assumed isotropic
elastic model to result in the random field description, required for SFEM.

The correlation lengths of the random fields describing material properties can

be quite difficult to obtain from experiments. This is particularly the case when the



data are correlated over large distances. such as in soil characteristics [Fenton, 1999a;.
Two approaches can be taken to address this issue.

In one possible approach. safe upper bounds on the variability, which are in-
dependent of the auto-correlation of a random field. are calculated. In an SFEM
context this approach is developed in Deodatis and Shinozuka (1989) and Deodatis
(1990). Applications of this method to 2D plane stress and plane strain problems
are described in Wall and Deodatis (1994). The method has been extended by Gra-
ham and Deodatis (1998) to include plate bending elements. It should be mentioned
that, in its current formulation, these upper bounds depend on the amount of cor-
relation between the various random fields. An analysis of the dependence of the
upper bounds of the response variability on the correlation between F and v in a
plate bending problem is performed in Deodatis and Graham (1998).

A second approach, which is taken in this dissertation, is to develop a more consis-
tent framework where the random field characterization of elastic properties is based
on simple micro-mechanical models for the material. Any available MACToscopic test
data can then be used to validate and/or calibrate the overall framework. It will
be shown that the suggested approach results in improved and consistent models for
correlation lengths in the constitutive random fields as well as for cross-correlations

between the different material properties.

1.2 Blending Discrete and Continuum Models

Several civil engineering materials, such as concrete, soil, rock, wood and ice, are

assemblies of discrete constituents. In the case of concrete these constituents are



the granulates. sand and cement paste. Even though such materials are intrinsically
heterogeneous. they are quite often treated as continua for the purpose of structural
analysis. This is justifiable since the scale of the microstructure is much smaller than
the scale of the structure or the structural component. For instance, the granulates in
concrete are about 1 cm in diameter. which is much smaller than the size of a bridge
or a bridge girder. The assumption that a sufficiently large sample of randomly
distributed and oriented constituents resuits in a homogeneous material, provides a
justification for using a continuum theory [Lemaitre and Chaboche, 1985|.

When the microscopic variation of the material is of no practical interest, the
material can be homogenized as follows [Sab, 1992]: a sufficiently large volume of the
material is submitted to a stress or strain state that would produce a uniform stress
or strain in a homogeneous medium. The effective properties of the material, which
relate the volume-averaged stresses to the volume-averaged strains of the material,
are considered to be the same as for the homogeneous medium [Hill, 1963].

In the present context, the smallest volume element for which a material can
be considered macroscopically homogeneous is defined as the representative volume
element (RVE). The size of the RVE depends on the size of the inhomogeneities,
which varies for different types of material as illustrated in Table 1.1.

Depending on the application, a material, which consists of discrete constituents,

can be modeled using one of the following two approaches:

e the continuum approach: the material is treated as a homogeneous continuum,

irrespective of the microstructure of the material.

e the discrete approach: the material is modeled explicitly as an assembly of
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discrete constituents. The macroscale behavior of the material is obtained

from the mechanical interaction between the constituent particles.

The main advantage of the continuum approach is that structural analysis is much
faster than for the discrete approach. but it is easier to account for the heterogeneities
in the material when a discrete model is used. Which approach is most convenient,
depends on the application. The validity of the homogeneity assumption hinges on
the relative magnitude of the heterogeneities in the material with respect to the
structural scale. As long as the structural scale is larger than the RVE the material
can be considered macroscopically homogeneous. The continuum approach lies at
the basis of most structural analysis methods in civil engineering.

However, if the analysis requires a detailed study of local effects, a discrete or
a mixed continuum-discrete model may turn out to be more appropriate. A mixed
model combines the advantages of both approaches: the computational efficiency
of the continuum model is used wherever possible, but the detail of the discrete
modeling is implemented wherever necessary.

The inelastic behavior of materials is to a very large extent determined by micro-
mechanics, such as the presence of micro-defects, the movement of dislocations, and
the nucleation and growth of microcracks. The discrete nature of some of these ef-
fects indicates that a continuum theory can only provide an overalll description of
the material behavior on the macroscale. An example can be found in the fractur-
ing process in a material such as ice or concrete where strain localization plays an
important role in the damage accumulation process.

Often benefit can be gained from the modeling of materials on a smaller geomet-



Material Inhomogeneities Representative Volume Element
Metals and alloys Crystals lum — 0.1mm 0.5 x 0.5 x 0.5mm

Polymers Molecules 10um — 0.05mm 1 x1 x lmm

Soul Particles 10um — 1mm 5x 5 x 5mm

Wood Fibers 0.1mm — 1lmm I x1xlem

Concrete Granulates ~ lcm 10 x 10 x 10cm

Table 1.1: Orders of magnitude of Representative Volume Elements (based on
Lemaitre and Chaboche, 1985)

Scale  Volume Element Defect Model

Micro Hardened cement paste.  Atomic voids, Material science
xerogel, aggregate crystal defects models

Meso  unit cell containing Microcrack, Micromechanical
statistically homogeneous large pores models
sample of phases

Macro Concrete specimen Macrocrack Continuum theories,

fracture mechanics

Table 1.2: Hierarchy of structural scales defining the mechanical response of concrete
[Krajcinovic and Fanella, 1986]

Confinuum

<
Current Approach
* Falue Criteria Damoge-
Inclependent
* Unable to Predict Multiple-
Falue Modes
* Cannot Predict interactions

Among Damage Micto-
Mechanisms

Figure 1.1: The principle of mesomechanics [Haritos et al.. 1988]
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rical scale since new knowledge and insight can be gained about the macro-behavior
if the micro-behavior is properly understood [Cundall and Hart. 1992]. Table 1.2
gives an illustration of the different scales at which concrete can be modeled. The
study of the interaction of the granulates and the growth of the microcracks leads
to a better understanding of the macroscopic behavior of concrete. This field of re-
search is known as mesomechanics {Haritos et al., 1988] and Figure 1.1 summarizes
the main differences with the classical continuum approach.

Mesomechanics try to describe the macroscale behavior on the basis of the mi-
crostructure in the material. As such, the particle shape and orientation must be
included in the mesomechanical model. A second challenge is to link the changes in
this microstructure with the structural mechanics behavior on the macroscale. This
is intrinsically different from continuum mechanics failure theories, which are based
on a phenomenological description of local effects [Haritos et al., 1988].

Another factor is the apparent randomness of the structural behavior of materials
at the macroscale. Material modeling is often characterized by several uncertainties
such as: packing densities, distribution of initial defects in the material, inclusion of
other phases or particles, and strength and stiffness of the constituents. Each of these
factors may have important ramifications on the variability of the structural behavior
which suggests the framework of a probabilistic model [Breysse et al., 1994]. The
apparent randomness in the microstructure leads to variability in the failure loads

and may even lead to different failure modes.



1.3 General Approach and Objectives
The general approach guiding this research rests on the following ideas:

e To model the microstructure and micromechanical interactions in a structural
material. Both the geometrical and the mechanical characteristics of the dis-

crete constituents on the microscale are described probabilistically.

e To derive the macro-mechanical properties of an equivalent macro-continuum
model of the material from the mechanical interactions between the discrete

constituents on the microscale.

e To investigate the relationship between the geometrical and mechanical prob-
abilistic parameters on the microlevel and the stochastic properties of the ran-

dom field description of the equivalent macroscale continuum.

The main conjecture of this work is the belief that the variability of the macro-
scopic material characteristics, such as the strength and stiffness of a structural
component, results chiefly from the discrete character of the microstructure in the
material [Ostoja-Starzewski et al., 1994].

The objective of this research is to develop a stochastic framework for the homog-
enization of materials for which the material properties of the equivalent continuum
are consistent with the micro-structure. The modeling on the micro-scale is restricted
to interactions of mechanical nature only; electrochemical or thermal processes are
not considered. The random fields, developed for the equivalent continuum, can
subsequently be used in a SFEM for structural analysis. With this homogenization-

based procedure, a more consistent description of the variability of the macroscopic



structural behavior is achieved than when some or all of the material properties in

a deterministic constitutive model are modeled as independent random fields.

The original contribution of this research is:

1.

o

A new homogenization procedure. which is based on equivalence of strain en-
ergy under an assumed stress distribution along the boundary of homogeniza-
tion window in the continuum and the discrete micro-mechanical model. is
formulated. The method complements existing techniques for homogenization,

which are based on assumed strain states in the material.

Shortcomings of existing boundary condition models currently used in the
analysis of discrete micro-mechanical systems are identified and an improved
boundary modeling technique is introduced. Theoretical considerations, as well

as numerical examples, illustrate the superior performance of this modeling.

A pew random field modeling of linear elastic materials is proposed. The
model is consistent with the microstructure in the material and allows to es-
timate the auto- and cross-correlations of the elastic properties directly from

the microstructure.

1.4 Notations and Definitions

Some time needs to be spent on consistent notations and definitions, particularly

with respect to probabilistic concepts. In this work, we follow the definitions given

in Vanmarcke (1983) and Papoulis (1991). To avoid all confusion about their precise

meaning. the definitions and notations of some terms are listed in this section. Bold
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notation is used for vectors. Random variables are indicated by uppercase notation.

while lowercase notation is used for specific values of these random variables.

e Random Variable (RV): a random variable X is a rule for assigning a num-

ber to every outcome of an experiment.

e Cumulative distribution function (CDF): the CDF of the random variable

X is the function Fx(z) = Prob(X < z) and is defined for every z € (—ooc, 00)

e Probability density function (PDF): the PDF of a continuous RV is de-
fined as the derivative
dF X (.‘L' )

fx(z) = ——— (1.1)

e Expected value: the expected value of the continuous RV X is defined by

the integral:

EX) = [~ ofx(z)z (1.2)

e Covariance of two random variables X and Y: the covariance of two RVs

X and Y is by definition:

Covar [X.Y] = E[(X — E(X))(Y — E(Y))]
= E(X.Y) - E(X)E(Y) (1.3)

The value Covar [ X, X] is equal to the variance Var(X).

e Correlation coefficient: the correlation coefficient p, or pxy, of the RVs X
and Y is defined as the ratio:

Covar [X,Y]
p=

/Var (X) Var (Y) (14
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e Random Field (RF): a n-dimensional random field Z(x) is a rule for assign-
ing a function z(x), x = (z,y), to every outcome of an experiment. In the
two-dimensional case, a RF is a family, or ensemble, of functions depending on
the field parameters z and y. The second-order properties of random variables

can be extended to random fields using the following definitions:

e Expected value: the expected value, or mean, of the continuous two-dimensional

RF Z(z.y), defined over an area A, is defined as:

E(Z(z.y) = % [[ Z(z.y)dzdy (1.5)

e Autocovariance function: the (auto)covariance function Bz(x,x’) of the
continuous RF Z is defined as the covariance of the RVs Z(x) and Z(x') at

two locations x and x’:
Bz(x,x") = Covar [Z(x), Z(x'})] (1.6)

The value Bz(x,x) is equal to the variance Var(Z(x)). If the random field is
statistically homogeneous, the covariance function depends only on the distance
T = x — X1 Bz(x,x') = Bz(r). Only (statistically) homogeneous RFs are

considered in this dissertation.

e Crosscovariance function: the crosscovariance function Bxy of two homo-

geneous random fields X and Y is defined as:

Bxy(x,x’) = Covar [X (x), Y (x')] (1.7)
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e Correlation function: is here defined as the autocovariance of the normalized
random field Z(x)/\/Var (Z(x)):

Rix.x") = — S Z(). Z(X)]

_ 1.8
\/Var (Z(x)) Var (Z(x")) .

1.5 Outline

In Chapter 2, a general overview of micro-mechanical modeling is presented. The
advantages, shortcomings and drawbacks are clearly indicated. Practical guidelines
for the selection of appropriate micro-mechanical models are given.

A one-dimensional model for the progressive failure of materials, which are sub-
ject to normal stresses only, is presented in Chapter 3. The so-called parallel-bar
model clearly shows how complex macroscopic behavior can easily be modeled on the
basis of a simple micro-mechanical constitutive model. The additional insight into
the structural behavior of a material that can be gained from a micro-mechanical
analysis is demonstrated by means of examples. The micro-mechanical model re-
sults in a more accurate modeling of the uncertainty of the structural behavior of a
material.

It is explained how many of the shortcomings of the parallel-bar model are related
to the fact that the dimensions of the actual, physical microstructure are not repre-
sented in the model. For this reason, all micromodels, used in subsequent chapters,
reflect the actual microstructure.

A stochastic homogenization theory for linear elastic microstructures, subject
to 2D plane stress, is presented in Chapter 4. Based on existing research regard-

ing deformation-based homogenization. a new homogenization technique, based on
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a strain energy equivalency and a constant stress assumption in the FE analysis. is
introduced. Also. an improved modeling of the geometric boundary conditions is sug-
gested. Based on locally averaged random field theory. a novel approach to modeling
variability of linear elastic materials. which is consistent with the micro-structure
in the material, is developed. This improved random field material modeling can
readily be used in a FE analysis.

The examples in Chapter 5 illustrate the significance of the more consistent ran-
dom field modeling for structural reliability applications. It is shown how isotropy
of materials is achieved in a mean sense only. This has some important ramifications
on the variance of maximum stresses, strains and deformations. Several examples
illustrate this. Conclusions and recommendations for further research are presented

in Chapter 6.



Chapter 2

Micro-Mechanical Modeling of Materials

2.1 Introduction

In this chapter various micromechanical models are reviewed. Micromechanical mod-
els describe the material behavior at the mesoscale (Table 1.2) and form the corner-
stone of the mesomechanics approach: the macroscopic material behavior description
is obtained as the result of the deformations and interactions between the microme-
chanical constituents [Haritos et al., 1988]. From a structural analysis point of view,
the modeling of the variability of material behavior on a scale smaller than the
mesoscale (Table 1.2), holds no practical interest.

For these reasons, micromechanical models are the backbone of the uncertainty
modeling approach in this research: macroscale uncertainty of material behavior is
modeled as the result of the uncertainties associated with the micromechanical model
(Figure 2.1).

Every element or unit cell in a micromechanical model is described using classical
mechanical analogs, such as springs and dashpots. The behavior at the macroscale
can be derived from the mechanical interaction between these unit cells.

The emphasis of this overview is on the topology of the models and the interac-
tion mechanisms between the constitutive elements. Many of the discrete particle or
network models were originally developed by material scientists for the study of met-

als and (fiber) composite materials [Christensen, 1994]. Even though the geometrical

14



scale may be quite different, the topology of many heterogeneous civil engineering
materials can be described by one of these models.

The review starts with one-dimensional models. The study of the macroscopic
structural behavior of one-dimensional discrete models. such as parallel bar and
chain-of-bundles spring systems, is extremely useful from a theoretical point of view.
Subsequently, the topological characteristics of multi-dimensional models with reg-
ular and random microgeometries are presented and their impact on the macroscale
structural behavior is discussed. Some shortcomings of the homogeneous continuum
approach are highlighted. Different modifications to the continuum theory which
have been put forward in the literature are also discussed.

The analytical formulae, which describe the constitutive behavior of the one-
dimensional models, form a link between the multi-dimensional discrete and contin-

uum approaches using random fields and stochastic finite element models.

2.2 Constitutive Modeling

2.2.1 Effects of the Microstructure

In classical continuum mechanics the material is assumed to be homogeneous and
continuous. Continuum mechanics models are known as local models: because of
the homogeneity assumption, it makes sense to define stresses and strains at one
point, where this point is considered as a limiting case of a small elementary area
or volume. Because of the local approach a continnuum theory can use differential
calculus as its mathematical description tool.

As mentioned before, the homogeneity assumption is no longer valid for a volume
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element smaller than the RVE. The inelastic behavior of the material may be hard
to describe by a general continuum theory since the sources of inelasticity may stem
from a variety of deformation and damage mechanisms on the microscale [Haritos
et al.. 1988]. The relation between the microstructure and the material characteristics
is studied in the material sciences. However, the detail, required for many of these
models, is beyond the scope of this research. For practical reasons, only mechanical
interactions on the mesoscale (see Table 1.2) can be considered here.

The microstructure of a typical engineering material is not homogeneous but con-
sists of discrete grains or particles, with discontinuities such as microcracks, voids,
inclusions, dislocations, and grain boundaries (Figure 2.2). During elastic deforma-
tion no new microcracks nucleate and all existing defects follow the displacements of
the surrounding material without growing [Krajcinovic and Mastilovic, 1995].

Plasticity is characterized by an irreversible flow of material through the elastic
lattice via dislocations. Plastic deformation does not affect the material stiffness,
since the lattice structure remains elastic. In a descriptive theory, this means that
the stress-strain curve remains parallel to the initial elastic segment during unloading
or upon reloading (Figure 2.3a).

Damage on the other hand, is associated with the activation of the existing cracks
and the nucleation of new microcracks. It is caused by important local deformations
due to decohesion [Lemaitre and Chaboche, 1985]|. The material does not flow during
the damage accumulation process. Consequently, damage is also characterized by the
absence of irreversible macroscopic strains; upon unloading the material returns to
a zero strain state. However, since the material structure is damaged, its stiffness is

reduced (Figure 2.3b).



Figure 2.1: General approach for modeling of the uncertainty of the macroscopic
structural behavior of materials
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Figure 2.2: Possible microstructure of an RVE at a point in a macroscopic continuum
[Nemat-Masser and Hori, 1993]
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In a pioneering paper dated 1958. Kachanov introduces two sets of internal vari-

ables. each describing one of the two mechanisms:

e Plasticity is associated with the propagation of dislocations. The plastic strain,

or a function thereof. is an appropriate choice for the internal variable.

e Damage characterizes the evolution of micro-defects. The stiffness, or a func-

tion thereof, is an appropriate choice for the internal variable.

It has already been mentioned that the continuum approximation is no longer cor-
rect at the meso or micro scale. As a consequence, it is preferable to talk about forces

and displacements for heterogeneous materials. rather than stresses and strains.

2.2.2 Classification of Constitutive Models

Constitutive models can be classified in 3 groups [Krajcinovic and Silva, 1982}:

e “Macroscale models” which describe the macrostructural behavior from a purely
phenomenological point of view. These models are characterized by the use of
explicit stability-instability criteria, separate from the stress-strain response

[BaZant and Cedolin, 1991]. For every failure mode, a separate criterion is

required.

e Generalized “materials science models” seek to construct a general theory
which explains the macroscopic structural behavior based on a profound un-

derstanding of the atomic or molecular structure of the material [Christensen,

1994).
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e “Staristical models™ tryv ro explain the randomness or the variability in the ma-
rerial behavior as a resulr of rhe discrete nature of the mesostructure ‘Ostoja-
Starzewski and Wang. 1989]. Inelastic behavior is modeled at the mesoscale.

damage is assumed to take place at the grain-boundaries only [Ostoja-Starzewski.

1989

The materials science models try to explain the macroscale behavior based on
an atomic or molecular model. So far. their application has been successful in a few
special cases only [Christensen. 1994]. In addition. the computational cost of these
models is considered too high to be practically workable for structural applications.

Statistical models may therefore prove to be a valuable alternative to the classical
macrostructural methods. since theyv can inherently account for the material vari-
ability. These models are still based on descriptive theories. but since theyv include
the mesostructure of the material. they form a compromise between the classical
structural mechanics methods and rhe marerial science models. Since damage evo-
lution is included in the constitutive description of the material. there is no longer a
need for separate macroscale instability criteria.

In the following review the emphasis will be on a statistical description of the

material variability. The variability is a consequence of:

e ‘ariability in the microstructural geometry

e variability in the microscale strength and stiffness



2.3 One-Dimensional Models

2.3.1 Introduction

In this section. three one-dimensional models are discussed:
e the parallel bar or Daniels system
e the parallel-series model
e the chain-of-bundles or series-parallel model

Daniels (1945) originally formulated his parallel bar model to study the strength
of textiles. The parallel-series model was used by Iwan (1967) to study the hysteresis
of elasto-plastic members in cyclic loading. 2D and 3D models are the subject of the

next section.

2.3.2 Micro-Constitutive Models

Parallel Bar Model
The parallel bar model [Gasparini et al.. 1995] is the simplest constitutive model
for uniaxial loading of materials with stochastically distributed material parameters
(Figure 2.4a). The model was first known as the Daniels (1945) system. In one form
or another. this model has been applied to uniaxial tension of plain [e.g. Gasparini
et al.. 1996: Kandarpa et al., 1996; Krajcinovic and Silva, 1982] and fiber rein-
forced concrete [Fanella and Krajcinovic, 1985}, as well as bending of plain concrete
[Krajcinovic. 1979].

In its simplest form. every bar is perfectly elastic-brittle and is characterized

by a spring stiffness k and ultimate displacement 6,. corresponding to a ultimate
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Figure 2.3: Force-displacement diagrams for re-loading in the case of plasticity and
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force f, (Figure 2.4b). Some, or all, of these parameters (k, ., and f,) are now
considered random variables. Consequently, not all bars will fail simuitaneously. The
macroscopic behavior of the specimen is obtained from the mechanical interaction
between the different bar elements. Depending on the form of the probability density
function (PDF) of the material parameters, various shapes of the uniaxial force-
displacement curve can be obtained for the parallel bar system.

The mechanical interaction between the different bars is defined by the load
sharing rule. For the time being it is assumed that upon failure of one bar element
its load is redistributed evenly among all surviving bar elements. The effect of this
assumption on the system behavior will be discussed later.

Most “brittle” materials are not perfectly brittle but exhibit some level of ductil-
ity. This can easily be seen in a simple uniaxial test. In the case of a perfectly brittle
material, all deformation vanishes upon complete unloading (Figure 2.3b). If the
material is somewhat ductile, there will be a residual deformation after unloading
(Figure 2.3a).

Ductility can be included in the model by replacing the spring elements with
Jenkins elements, as shown in Figure 2.5 [Krajcinovic and Silva, 1982]. Each element
is attributed a random value of the yield force f, and the ultimate force f,. If no
hardening is considered, the element will either yield (fy < fu) or fracture (fy > fu)-
The brittleness index is defined as the fraction of brittle elements, and represents a
measure for the degree of brittleness (or lack of ductility).

The material now has three load stages. The first one is linear elastic since no
bar element has failed or yielded. Depending on whether the first bar fractures or
yields, the intermediate stage, where only one type of failure has occurred, will be
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elastic-brittle or ductile. In the last load stage, where both types of failure have
occurred, the material exhibits a mixed behavior. There is damage accumulation
due to the failure of some bar elements, and the system does not return to a zero

strain state upon unloading because of the yielding of some bars.

Parallel-Series Model

Fanella and Krajcinovic (1985) modified the original parallel bar model to describe
the uniaxial tensile behavior of fiber reinforced concrete (FRC). Each of the bars now
consists of a parallel system itself. This secondary system represents the material
matrix and the fibers (Figure 2.6). All constituents are linear elastic-brittle, but
have random strength. The matrix fails in tension only. The fibers have two failure
modes: tensile failure of the fibers and failure by pull-out, i.e. the fibers separate
from the matrix. The macroscopic behavior is qualitatively similar as for the original
parallel bar model.

Chain-of-Bundles Model

The chain-of-bundles or series-parallel system has attracted some research interest
as well. Here only a series of linear elastic-brittle parallel bar systems is considered
(Figure 2.7), but other constitutive behavior has been studied [Iwan, 1967]. As such
it is yet another ordered system used to simulate uniaxial material behavior. It will
be shown that its macroscale behavior is totally different from the above parallel bar
model.
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fiber reinforced concrete



2.3.3 Damage Variable

Consider the tensile bar in Figure 2.8a. In Kachanov’s original one-dimensional
formulation, the damage variable D is defined as the ratio of the area of the cracks
and voids in the material to the total cross-sectional area Ag. As such, the damage
variable represents the surface density of the discontinuities in the plane normal to
the loading axis.

A fictitious, undamaged tensile bar of the same material would behave macro-
scopically identically to the actual damaged specimen if it had a cross section equal
to the effective area (1 — D)Ap of the damaged specimen. Because of its smaller
cross section, the fictitious bar in Figure 2.8c will be less stiff than the undamaged
specimen in Figure 2.8a. As such, the damage measure D is related to the effective
stiffness. This reinforces the previously-stated belief that a proper choice for the
damage variable should be related to the stiffness of the material [Krajcinovic and
Mastilovic, 1995].

For the discrete parallel bar model (Figures 2.4 and 2.5), a damage variable can
be defined as the fraction of ruptured bar elements. Since the giobal stiffness of the
system is given as the sum of the individual element stiffnesses, the damage variable

is again related to the effective stiffness of the assembly.

2.3.4 Randomness

Parallel Bar Model
In the discrete model, the probability distribution of the material parameters in-
fluences the macro-scale structural behavior of the specimen. Krajcinovic and Silva

(1982) assume an identical stiffness k for all bar elements (Figure 2.4). The strengths



Figure 2.7: Chain-of-bundles, or series-parallel, system
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Figure 2.8: Damage of a bar under uniaxial tension [Murakami, 1988]
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fu of the individual bars are assumed to be independent, identically distributed ( IID)
random variables. This implies that the random field of bar strengths is homoge-
neous since the probability density function of the bar strengths is independent of
the location of the bar in the system [Adler, 1981].

Since not all bars will fail at the same load value, the damage variable, which
is defined as the fraction of ruptured bar elements, is probabilistic in nature and
given by a binomial distribution. For a very large number of bars, the system can
be regarded as a continuum. Depending on the probability distribution (PDF) and
the parameter values in the particular PDF adopted for the individual bar strength,
different damage evolution laws are obtained and different macroscale behavior is
observed. This is illustrated in Figure 2.9 where the macroscopic damage evolution is
compared for 3 different values of the shape parameter m in the Weibull distribution
of the inidvidual bar strength.

Because the random field of the bar strength is homogeneous, the expected value
of the damage function corresponding to an elongation 6 is equal to the failure
probability of one single bar for the same elongation 6. However, since all bars are
assumed independent, it follows that the variance of the system strength decreases
with the number of bars n. In the limit for n — oo, the variance of the system
strength goes to zero and the system damage becomes deterministic. Since the
variance of the system is affected by the number of bars in the system, this represents
an important limitation of Krajcinovic and Silva’s (1982) model.

Even though the model may represent the average behavior accurately, it is in-
capable of representing the variability in the response. Kandarpa et al. (1996) over-
come this limitation by modeling the spring strengths as a homogeneous random
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field with non-zero correlation. This modified model can account for the variability
of the force-displacement behavior at the macroscale of brittle materials.

Kandarpa et al. (1996) derive analytical expressions for the mean and standard
deviation of the force as a function of the imposed displacement. Using a lognormal
distribution and an exponential correlation function for the failure strength of an
individual bar, they obtain good comparison for the mean and variance of the force-
displacement curves with experimental evidence for normal and lightweight concrete.
They also prove that their model leads to the same deterministic result as obtained
by Krajcinovic and Silva (1982) for the damage accumulation law in the continuum
approximation if the individual bar strengths are uncorrelated.

Another approach is taken by Gasparini et al. (1996). Here, the failure of the
Daniels system is described as a Markov chain process [Papoulis, 1991]. The con-
tinuum approximation for a large number of bar elements then establishes a link
with the stochastic macroscopic models for damage accumulation, discussed by Bog-
danoff and Kozin (1985). If the element strengths are independent and identically
distributed (IID), the system strength of the continuum parallel bar model becomes
deterministic, in accordance with the results obtained by Krajcinovic and Silva (1982)

and Kandarpa et al. (1996).

Chain-of-Bundles Model

The strength of the chain of bundles system is that of its weakest bundle. A nu-
merical study of the behavior of random chain-of-bundles networks is presented in
Gasparini et al. (1996). All bars have the same deterministic stiffness k, and a

Weibull distribution is assumed for the bar strength f,. The simulations clearly



29

demonstrate the very brittle failure of these systems. This is easily explained. Upon
failure of one bar, the bundle stiffness decreases and this causes larger deformations
in the bundie. This leads to an increased probability of subsequent failures in the
same bundle, resulting in a sudden collapse. In some of the simulations no individual

bar failures are observed for loads up to 95% of the ultimate load.

2.3.5 Load Sharing Rules

In all the aforementioned models, it is assumed that after failure of one of the bars,
the load is redistributed evenly among the remaining bars. This is true only for very
stiff end plates and equal bar stiffnesses, which may not necessarily be a realistic
assumption. Alternative load sharing rules are studied by Hohenbichler and Rackwitz
(1983) and Phoenix and Smith (1983).

Hohenbichler and Rackwitz (1983) imposee uniform strain on all bar elements.
Since in their study the stiffnesses are not equal for all bars but randomly distributed,
the load sharing is not even but it is proportional to the relative stiffness of the
surviving bar elements.

Phoenix and Smith (1983) assume that upon failure of a bar element, half of
its load is transferred to each of the adjacent surviving neighbors. They assume
all bar strengths to be IID Weibull or power distributed random variables. Under
these assumptions they establish an asymptotic expression for the PDF of the bundle
strength. This work is an extension of a previous study [Smith and Phoenix, 1981]
where they determined the bundle strength under equal load sharing conditions.

Mabhesh et al. (1999) analyzed the strength of unidirectional fiber composites for
different load sharing rules where all fiber strengths are assumed IID Weibull. A local



30

load sharing (LLS) model, which is a realistic load transfer model in a composite
embedded in a matrix, is compared with the equal load sharing model (ELS), which
is an accurate representation of a loose bundle of fibres. While in the local load
sharing model a large part of the load carried by a breaking fiber is distributed
amongst its nearest neighbors, broken fibers transfer their load equally amongst all
surviving fibers in the ELS model. They observe that the stress-concentration driven
failure of the LLS model and the strength-driven failure of the ELS form apparent
upper and lower bounds on the bundle strength. Their Monte Carlo simulations
indicate that the shape parameter of the Weibull distribution determines where the
true failure load lies with respect to these upper and lower bounds.

2.3.6 Strength Probability Distribution of a Single Bar

Several choices have been adopted for the strength of a single bar: a normal [e.g.
Burt and Dougill, 1977; Hohenbichler and Rackwitz, 1983; Rossi and Richer, 1987;
Schlangen and Van Mier, 1992; Schlangen, 1993; Van Mier et al., 1996; Vervuurt
et al., 1996], a lognormal [e.g. Jirdsek and BaZant, 1994; Kandarpa et al., 1996], and
a Weibull distribution [e.g. Smith and Phoenix, 1981; Krajcinovic and Silva, 1982;
Phoenix and Smith, 1983; Rossi and Richer, 1987; Gasparini et al., 1996; Kandarpa
et al., 1996; Breysse, 1990] are some popular choices. But power law distributions
[e.g. Smith and Phoenix, 1981; Phoenix and Smith, 1983] and uniform distributions
[e-g- Krajcinovic, 1979; Krajcinovic and Silva, 1982; Fanella and Krajcinovic, 1985]
have also been used.

It seems that the selection of a strength distribution is somehow arbitrary, and

that it is usually made strictly on empirical grounds. The Weibull distribution is
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based on fitting of empirical data, and the theoretical appeal of the normal and
lognormal distributions is given by the central limit theorem: both the normal and
the lognormal distributions appear as a limiting distribution for the sum and product
respectively of an infinite series of independent and identically distributed (IID)
random variables.

Other attempts have been made to justify the choice of the PDF for the strength.
For most materials a monotonically increasing failure rate is observed at sufficiently
high load levels. The failure rate of a material subject to a load s is defined as the
conditional failure probability at this load s, given that failure has not occurred at
load levels less than s [Martz and Waller, 1982].

If the individual bar strengths in a weakest-link system are assumed independent,
Bizup and Singpurwalla (1996) show that the PDF of the individual bar strengths
is equal to the failure rate of the macroscale strength. Their result implies that
the system failure rate cannot be monotonically increasing if a unimodal PDF is
chosen for the individual bar strength. Since most commonly used PDFs, such as
the normal, the lognormal, or the Weibull distribution, are unimodal, the system
failure rate cannot be monotonically increasing if the individual bar strengths are
independent random variables.

In short, both unimodal individual bar strengths and monotonically increasing
system failure rates are supported by experimental evidence. It must then be con-
cluded that the independence assumption of individual bar strengths leads to an

incoherence.
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2.3.7 Conclusions

The following conclusions can be drawn from the review of one-dimensional systems:

e The choice of mesostructure for a given material has important consequences
for the macroscale structural behavior of the material. As an example, the

chain-of-bundles system is much more brittle than the parallel bar model.
e The local load sharing rules also affect the macro strength of the material.

e The form of the PDF for the strength of one bar element has a major influence

on the macroscopic behavior and it must be selected carefully.

e When the correlation between the strengths of the different elements in the mi-
cromodel is not accounted for, a deterministic constitutive behavior is obtained

for continua.

2.4 Multi-Dimensional Models with Regular Geometry

2.4.1 Introduction
Two classes of multi-dimensional systems are reviewed:
e network or lattice model

e discrete particle model

A lattice model (Figure 2.10a) consists of straight elements, or links, which are
connected to each other at the nodes. When all elements are pin-jointed at the nodes,

a truss system is obtained and the elements (trusses) are subject to axial loading
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only [Gasparini et al., 1995]. Frame networks have been studied as well and in that
case the links are modeled as beam elements [Schlangen, 1993].

In a discrete particle model (Figure 2.10b), both displacements and rotations of
the particles are allowed, as well as contact making and detachment of the individual
particles [Cundall and Hart, 1992]. The particles are also referred to as bodies or
elements. Although these models can be extended to three dimensions without major
difficulty, they are usually restricted to 2D applications for practical reasons such as
proper visualization of the results.

For lattice models the global deformation is applied incrementally and in ev-
ery load step the broken links are removed from the model and excluded from the
subsequent analysis steps [see Herrmann and Roux, 1990; Ostoja-Starzewski and
Lee, 1996]. An example of intermediate crack states in a lattice model is shown
in Figure 2.11. The damage is defined as the ratio of broken elements per volume
unit. In every analysis step the stiffness matrix must be recalculated [Schlangen and
Van Mier, 1992]. The removal of the failed elements has important oonséquencs
for non-proportional loading histories or stress reversals: “crack closure” cannot be
modeled. Consequently, this model is essentially limited to applications with mono-
tonically increasing loads.

This limitation is overcome when a particle model (Figure 2.10b) is used. Sim-
ilarly to the analysis of a lattice model, the stiffness matrix of the discrete particle
assembly is recomputed in every load step. The main difference with the network
models is that the contacts between all particles must be checked prior to the stiffness
matrix computation in every load step [Cundall and Strack, 1979). Force transfer

between two particles can happen only if they make contact. Consequently, crack



normalized force

Figure 2.9: Force-displacement curves for different values of the shape factor m in
the Weibull strength distribution
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Figure 2.10: Regular triangular lattice model and circular disk particle model, cor-
responding to a square lattice model
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closure can be simulated easily. This advantage comes at the expense of a longer

computation time.

2.4.2 Topological Characteristics

A topology defines which types of mechanical interactions are possible between the
different elements in the microstructure. A spring network has a different topology
than a frame network. The former accounts for axial deformations only, while the
latter can also take shear, bending and twisting effects into account.

The topology of a microstructure also describes the scale— and geometry-independent
characteristics of the particle shape with respect to the mechanical behavior. A
rounder particle tends to roll easier than a particle with just a few sides, for which
friction with other particles becomes a more important interaction mechanism than
rolling. For a triangular particle, for instance, friction will be more important than
for a octagonal particle, which will roll easier than the triangular one.

A discrete system can never be perfectly isotropic or homogeneous. However,
since a system whose size is larger than the RVE of the material can be assumed ho-
mogeneous, consistency between the deformation characteristics of a discrete system
and its continuum equivalent is required.

To be consistent with the homogeneity assumption, Jirdsek and BaZant (1995)
state that the elastic strain energy in the deformed lattice should equal the strain
energy stored in a continuum of the same size and shape. Hrennikoff (1941) was the
first to prove that this equality condition can be satisfied only for certain values of
the Poisson’s ratio of the continuum. Macroscopically isotropic planar truss models

have a “Poisson’s ratio” of 1/3, for 3D truss models this value is equal to 1/4. The
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value 1/3 is approximately correct for ice and metals, but is too high for concrete,
which usually has a Poisson’s ratio between 0.13 and 0.18. It can be shown that the
Poisson effect cannot be simulated properly because only axial deformation of the
elements is taken into account in this model.

The above is a fairly general result independent of the lattice geometry [Hrennikoff,
1941]. When only axial deformation of the elements is taken into account, all regular
mesh types (triangular, square, hexagonal) will result in the same Poisson’s ratio.
Consequently, lattice and discrete particle models can correctly model the Poisson
effect for other values only if the shear interaction and rotation of the constituent
bodies is accounted for. For the lattice models, the “apparent” Poisson’s ratio can
be adjusted if the links are modeled as beams with variable height (2D) or tubes
with variable thickness (3D) [Vervuurt et al., 1996].

A thorough study of the random nature of the elastic properties of triangular
networks is done by Ostoja-Starzewski and Wang (1989). They show that the spatial
randomness in tﬁe microstructure, i.e. deviations from the regular periodic geometry,
has more impact on the macroscale properties than the variability of the micro-level
strength and stiffness parameters has. The RVE of the continuum approximation
may be considered a square cell, cut out of the total microstructure (Figure 2.12).
The size of this cell must be large enough to allow for a homogenization, i.e. larger
than the RVE. The mechanical properties of the continuum approximation are then
local averages over this moving window and can as such be represented by a random
field. Because the correlation structure of regular networks is substantially different
from the one in random lattices, Ostoja-Starzewski and Wang (1989) suggest that
regular networks may have only a limited applicability in the characterization of
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Figure 2.11: Crack states corresponding to increasing deformation levels in a lat-
tice model simulation of a single edge notched (SEN) concrete specimen subject to
uniaxial tension [Schlangen, 1993]

Figure 2.12: RVE window cut out from a triangular lattice model and subjected to
a deformation [Ostoja-Starzewski and Wang, 1989]



actual materials.
In addition, Schlangen (1993) reports that the macroscale structural behavior of

concrete specimens subject to uniaxial tension or bending obtained by simulation
is too brittle compared with experimental evidence when regular triangular meshes
are used. He uses a linear elastic-brittle constitutive law with random link strength.
This could be one of the reasons why Jirisek and BaZant (1995) include softening

behavior in the microscale constitutive law.

2.4.3 Anisotropy

Anisotropy in a macroscopically homogeneous material is caused by the microstruc-
ture. In the case of carbon fibers this is explained in Figure 2.13a. The molecular
structure is planar hexagonal. The van der Waals forces, acting between the planes,
are much weaker than the covalent carbon bonds acting in the plane. The forces
may differ by several orders of magnitude and are the source of extreme anisotropy
in graphitic fibers [Christensen, 1994].

Ideal ordinary ice (1) also has a hexagonal structure (Figure 2.13b), and this
leads to the existence of preferred failure planes in the material across the hydrogen
bonds. However, because of the presence of numerous point (inclusions) and line
(dislocations) defects, this pattern is disturbed and a sufficiently large sample of
randomly oriented ice crystals may become macroscopically isotropic [Eranti and
Lee, 1986).

On the other hand, a lattice model with a regular geometry is “defect-free” and
strong mesh-induced directional bias seems to be inevitable. In their study of the

collision of a circular ice floe with a circular obstacle, Jirasek and BaZant (1995)
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observed strong asymmetry in the failure patterns depending on the approach angle,
i.e. the angle between the principal lattice axis and the impact direction. Moreover,
the bias persists even if the strength of the links is randomized. They used square
meshes in their analysis and suggest that the mesh-induced bias may be even higher
when triangular meshes are used.

Several authors report another problem associated with the existence of preferred
directions in models with regular geometry. Rossi and Richer (1987), Schlangen
(1993), and Rossi et al. (1996) report that the crack pattern of concrete specimens
tends to follow the principal axes of the mesh. As a result, this crack pattern will
mainly consist of straight lines when a regular mesh geometry is used. Consequently,
lattice or particle models with regular geometry may not be the most appropriate

for macroscopically isotropic materials with anisotropic microstructure.

2.4.4 Consistency of Discrete Models

Breysse et al. (1994) studied the effect of the micro-failure criterion on the macro-
scopic failure of networks with regular geometry and random Young’s modulus. The
micro-constitutive law was elastic-brittle and three micro-failure criteria were stud-
ied. The first one was stress based: a microstructural element fails if its stress
exceeds a specified level. The second and third failure criterion are strain-based and
energy-based.

Since the element stiffness is considered random in this study, a different element
will fail first for each of these three micro-failure criteria. In the case of a stress-based
microfailure criterion, the stiffer elements will fail first, which is different for a strain

based criterion. It follows that the non-linear response of the network is intrinsically
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Figure 2.13: Molecular structure in a carbon fiber [Christensen, 1994] and in ice
[Petrenko and Whitworth, 1994]

Model Type Slope
Parallel Bar 1/3
Series System -1/3

Triangular 1/3
Hexagonal -1/3
Square 0

Cubic (3D) 1/2

Table 2.1: Correlation between energy and Young’s modulus for various models
[Breysse et al., 1994]
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related to the failure criterion.
Breysse et al. (1994) also looked at the correlation between the deformation

energy and the average Young’s modulus in the lattice model. They plotted the
elastic energy stored in a link as a function of its Young’s modulus and observed an
almost linear relationship. The slope of this line depends on the lattice geometry
and it is given in Table 2.1. This relation becomes important when an energy-based
failure criterion is used. In a parallel bar model the stiffer elements will fail first,
while in the series system the more compliant elements will fail first. Most models
discussed so far use a stress or strain-based failure criterion, but an energy based

criterion was developed for concrete in Yip (1996).

2.4.5 Conclusions
This review of discrete models with regular geometry highlights some important
characteristics:

e Multiaxial loading conditions cannot be described adequately when only the

axial deformation of the elements is accounted for.

e Defects in the microstructure introduce randomness in the macroscopic behav-

ior which cannot be accounted for using regular geometry.

e When the material inhomogeneities are accounted for, stress and strain based

microlevel failure criteria are no longer equivalent.



2.5 Multi-Dimensional Models with Random Geometry

2.5.1 Introduction

Discrete element models can be used to describe the material as an assembly of mi-
croscale constituents. Such models can be applied to soil or concrete, which are often
treated as continuous even though they consist of discrete grains at a microscopic
level.

The bodies in a discrete element model (Figure 2.10b) are allowed to move and ro-
tate, as well as to make or break contact with each other. Cundall and Strack (1979)
initially modeled granular soil as a two-dimensional assembly of circular elements.
Since then, the discrete element methods have come a long way. Here, only a brief
overview is given, based on the three most important aspects of discrete elements:
representation of contacts, representation of solid constituents and the scheme used
to detect and revise the set of contacts [Cundall and Hart, 1992].

Subsequently, two different topological families will be presented. The first family
mainly applies to crystal aggregates while the second one provides a better descrip-
tion for granular materials. In the last section, lattice models with random geometry

are discussed.

2.5.2 Representation of the Contacts

In a discrete model the contacts between the constituents can open, close and slide.
They can be modeled as either soft or hard [Cundall and Hart, 1992]:

e Soft contacts model the surface deformation when two bodies make contact.

The axial stiffness may be assumed constant or dependent on the relative dis-
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placements of the particles in contact [e.g. Zubelewicz and BaZant, 1987; BaZant
et al., 1990; Dobry and Ng, 1992]. It is assumed that there is no actual physical
penetration of the particles: their relative displacement can be imagined as the
deformation of interface layers around the rigid particles, which themselves are
considered indeformable.

e When hard contacts are used no deformation of the particles is possible at all
They are mostly used in studies of sparse populations of bodies [Loset, 1994a],
usually moving around at fairly high speeds. Their collisions are very brief and
modeled by exchange of momentum.

As a general rule, physics should guide the choice of contact assumption. The
assumption of hard contacts may seem the only reasonable one at first, but an
interface layer may be physically present in a lot of materials. This is for instance
the case in normal strength concrete (NSC) where the rigid granulates are imbedded
in a softer matrix. Soft contact conditions also apply when crushing occurs in the
formation of ice rubble. The crushing of an ice floe broken by a boom is described
in Loset (1994b).

To model progressive failure adequately, sliding of contacts should be incorpo-
rated as well. Damage accumulation can occur under a variety of stress and strain
conditions and is not restricted to tensile conditions only. Damage growth in con-
crete for instance is a combination of tensile and shearing failure modes (Figure
2.14). Inclusion of shear interactions also leads to a more realistic description of the
Poisson effect and thus a wider range of possible Poisson’s ratio values [Zubelewicz

and BaZant, 1987].



2.5.3 Representation of the Solid Constituents

The discrete particles in the microstructure may be assumed rigid or deformable.
The assumption of deformable contacts and rigid particles is appropriate if most of
the deformation is accounted for by movement of discontinuities. This is the case for
NSC, and unconfined assemblies of rock or soil at low stress levels.

When the deformation of the constituent particles cannot be neglected, this de-
formability can be introduced directly by dividing every discrete particle into finite
or boundary elements [De Schutter and Taerwe, 1993]. Another method which may
be convenient for complex particle shapes is the expansion of their deformation in
terms of orthogonal deformation modes [Cundall and Hart, 1992]. These deforma-
tion modes are then combined using the superposition principle. This implies that
this method can only be used iteratively when material non-linearity is involved.

2.5.4 Detection and Revision of the Contacts

The straightforward approach is to check ev:ary particle against every other one to
determine whether contact has occurred or diappeared. This brute force approach
is unacceptable for a large number of particles (n), since the computation time is
proportional to n? [Cundall and Hart, 1992]. The cost can be reduced considerably
by efficient bookkeeping techniques. At the start one exhaustive n?-type search is
done, and for every particle a list of its “neighbors” and “friends” is set up. A
“neighbor” makes contact with the particle, and a “friend” is a particle in its nearby
vicinity. During the subsequent time or iteration steps, only the neighbors have to
be checked for contact-breaking, and the friends for possible contact-making. This

effectively reduces the order of computational complexity to n [van Baars, 1996).



2.5.5 Crystal Topology

General

The topology of crystalline microstructures depends on the conditions occurring
during the formation of the material. Consider, for instance, the formation of ice.
Crystals start to form at discrete points, referred to as nucleation sites, and then
grow in time. Depending on the nucleation conditions and growth rates, different
microstructures will emerge. Similarly, the topology of rock formations, metals and
minerals also depends on the nucleation and growth conditions.

In 2D applications, the formation process of solid materials can be described
mathematically using so-called area-generating processes. In these processes, the
crystals (areas in 2D) grow starting from discrete points. These discrete points are
referred to as nucleation sites and they must be generated first. The most widely
used type of point-process for the generation of the nucleation sites is a Poisson
process or a modiﬁcaticzn thereof [Getis and Boots, 1978].

Only space-exhaustive area-generating models are discussed here. In these models
voids cannot occur; every point in the area or volume considered belongs to a sub-area
or sub-volume, respectively. Spatial processes have applications in various fields such
as mineralogy, biological sciences and metallurgy. They can also be used to describe
the influence area of service facilities, such as Light Rail Transit stations or shopping
malls, in urban centres [Getis and Boots, 1978].

First, the nucleation conditions are discussed and two limiting two-dimensional
crystallization models are presented. Subsequently, modifications of these models
and some of the differences between 2D and 3D modeling are discussed.



Nucleation of New Crystals
Nucleation may occur homogeneously or heterogeneously. Under homogeneous con-
ditions, nucleation occurs at uniformly distributed random locations. Heterogenous
conditions apply when nucleation is restricted to some preferred locations only. These
preferred locations can be either point or line defects, such as inclusions, vacancies,
micro-cracks, or dislocations. Even though heterogeneous nucleation conditions will
usually prevail, the assumption of homogeneous nucleation may be a good approxi-
mation because the inclusions, vacancies or other defects themselves may be approx-
imately uniformly distributed. Here, only homogeneous conditions will be discussed.
The Poisson process is the basic process for the development of most point pattern
models and is characterized by the following assumptions [Getis and Boots, 1978]:

e points are placed in a region where every point location is equally likely to be

chosen

® the points are located independently of each other

Mathematically, the Poisson process is characterized by a single parameter: the
density A. The average number of points in an area A is then AA (see Table 2.2).

Cell Model

Upon nucleation, the crystals start to grow in the material. In this model, the areas,
which represent the crystals, are assumed to grow at the same rate in all directions,
and the growth rate is also assumed constant in time. It is furthermore assumed
that all nucleation occurs instantaneously before any of the crystals starts growing,

no new crystals appear once the growth process has started. Consequently, the areas
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will have a spherical shape as long as they do not make contact with any other
area. Under these assumptions, a so-called “Voronoi polygon” structure results after
saturation of the area (Figure 2.15). Under these assumptions the size of the polygons
depends only on the nucleation density A. The nucleation locations are referred to
as the nodes of the “Voronoi polygons”. The cell structure covering the area without
gaps or overlaps by congruent plane figures is also referred to as a “tessellation”
[Frost and Thompson, 1987).

Voronoi cells, also named Thiessen polygons, Wignes-Seitz cells, or Dirichlet re-
gions, have the following characteristics [Getis and Boots, 1978]:

e all edges are straight lines
e all cells are convex

e they have at least three edges

e very point in a Voronoi cell is closer to its own node than to any other node in

the area.

Some other characteristics are summarized in Table 2.2. Examples of this struc-
ture are found in the crystal structure of bronze and some stainless steels.

Johnson-Mehl Model

This is a generalization of the previous model which was originally developed in
relation to the growth of crystal aggregates [Johnson and Mehl, 1939]. The nucleation
is still homogeneous, but occurs no longer simultaneously at every node. It is also
assumed that nucleation cannot occur within the already formed crystals, i.e. within
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Figure 2.15: Voronoi polygon structure. [Gibson and Ashby, 1988]

Random Variable Ezpected Value Variance
Number of nodes in area A AA AA

Area of one cell At A2
Number of sides per Voronoi cell 6 ~ 1.76
Length of any edge 372; ~ 0.126/A
Distance of node to nearest neighbor (2\/1‘)_-1 =~ 0.075/A

Table 2.2: Some characteristics of the Voronoi-tessellation. A is the density of the
nodes [m~?]
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pre-existing areas. The nucleation rate may vary with time as well. As a result, the
contact line separating two crystals, which nucleated at different times, is no longer
straight. It can be proven [Frost and Thompson, 1987] that the contact line is now
a hyperbola, with its focus on the side of the last nucleated crystal (Figure 2.16).
This structure has been used to describe fractures in cooling rock [Smalley, 1966}
and can also be found in ice [Sinha, 1991]. The major characteristics of the topology
are [Getis and Boots, 1978]:

e both curvilinear and straight edges are possible

e cells not necessarily convex any more

e minimum number of edges is only two, which must be curved in that case

Comparison of the Cell and Johnson-Mehl Model

Depending on the values for the growth rate of the existing crystals and the nu-
cleation rate of new crystals, the generated microstructures may be quite different.
Frost and Thompson (1987) obtained the probability density functions (PDF) for
some important topological characteristics by simulation. A comparison of these
PDFs indicates some important differences between the cell and Johnson-Mehl mod-
els:

e Almost no triangles are obtained in the Voronoi tessellation, but quite a few
grains with only three edges exist in the Johnson-Mehl model.

e The Johnson-Mehl model produces far more grains with small area than the
cell model. The PDF for the grain area in the Johnson-Mehl model with a
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constant nucleation rate is similar to an exponential distribution. For the cell
model, a lognormal-like distribution is obtained.

e The average segment length in the Johnson-Mehl model is lower than for the
Voronoi polygons. This is mainly due to the wider distribution for the number
of sides per grain in the Johnson-Mehl model.

Eztensions
For some materials no nucleation is possible close to an existing crystal. This
nucleation-exclusion zone is called the depletion layer and surrounds the growing
grains. Since the location of new nucleation sites, in this extended model, is no longer
independent of the existing locations, the Poisson point process must be modified
in the simulation model. Depending on the width of this depletion layer and the
growth rate of the crystals, totally different micro-structures may be obtained. The
microstructure, resulting from this modified Johnson-Mehl model, resembles more
and more the structure of a cell model as the width of the depletion layer increases
[Frost and Thompson, 1987).

Mahin et al. (1980) performed 3D-simulations of the Johnson-Mehl process with
a constant nucleation rate. The area distribution for a planar section through the
3D model is similar to the 2D simulation result. For the cell model, however, a
distinctly different area distribution is obtained for the 2D model and the planar
section through a 3D model. In the 3D model, the area distribution has a sharp
peak near zero [Mahin et al., 1980] which is absent in the planar model [Frost and
Thompson, 1987].
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2.5.6 Granular and Other Topologies

Particle Shape

For some materials, such as soil or concrete, a granular model is a physically more
appropriate topology. For computational convenience, the circular disk or sphere is
the most common particle shape. A shortcoming of the circular particle shape is
that spherical grains tend to roll easier than grains of a more irregular shape. A
compromise between modeling accuracy and computational cost may be found in
ellipsoidal particle shapes. Studies have shown that elliptical grains fail at higher
loads than circular grains [Rothenburg and Bathurst, 1992]. The effects of restricting
the rotation of circular particles are studied in Ting et al. (1988).

Clay, along with some other cohesive soils, does not consist of circular or spherical
particles. Clay particles resemble small plates and the bending and sliding of these
platy elements represents an important deformation mechanism in the soil. This
bending could be simulated by an assembly of beam elements. However, the com-
plex, higher-order deformation pattern of beams leads to geometrical intractability.
Anandarajah and Lu (1991) developed a model where every “beam” particle is ac-
tually a chain of 4 truss elements. The rotations at the hinges between the different
truss elements then simulate the bending while the discrete elements themselves (the
trusses) remain straight. This approximation greatly simplifies the calculations. The
model has been applied to uniaxial compression of cohesive soil specimens where both
mechanical and physico-chemical forces are taken into account [Anandarajah, 1995].
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Meshing

For mesh generation different techniques can be used. It is important to understand
that a 2D-section of a 3D-structure will contain more small particles in the cross-
section than expected from the sieving grade curve of the material [Walraven, 1980].
This means that the stiffness will be overestimated because more “hard material” is
present in the 2D model. Possible “meshing” strategies include:

e Take and Place Method [BaZant et al., 1990
Starting with the largest grains in the distribution, generate a random position
(from a uniform distribution) for every particle and put it in place if it does not
intersect with specimen boundaries or other particles. Otherwise the particle
is rejected and a new random trial position is generated. The smaller particles
are put in place only once all the large particles have been placed. The method
is computationally workable only for simple particle geometries, such as circles
or ellipses. Since this rejection algorithm betomes increasingly more inefficient
as more particles are put in place, modifications to this basic algorithm must

be implemented. Two approaches are quite common:

— using a search algorithm, the particle is moved around until an open spot
is found

— the uniform distribution is modified as a function of the positions already

occupied

e Divide and Fill Method [De Schutter and Taerwe, 1993}

First, a set of points is distributed over the area following a Poisson point
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process and a Delaunay triangulation is used to divide the specimen into n
volumes (n is the number of particles in the model). The Delaunay triangu-
lation is the dual graph of the Vcronoi tessellation and connects the nodes of
adjacent Voronoi cells. In a second step, each of these volumes is replaced by a
particle, which must fit entirely within the cell boundaries. This particle could
be the inscribed sphere, but smaller particles are allowed to obtain a better
agreement with the sieving grade curve. Non-spherical particles can be used
as well.

A restriction of this method is that it cannot simulate high packing densities.
Since the inscribed circle covers about half the area of a triangle, packing den-
sities of near or over 50% cannot be achieved [De Schutter and Taerwe, 1993].

In all of these methods most particles are not in contact with each other, but
separated by an interface zone. This makes it possible to model interaction between
particles that are not in direot physical contact. All particles (radius r) are assumed
to be surrounded by an influence zone with radius Sr. When the influence zones
of two particles overlap, the particles are assumed to interact. Originally, a value
B = 1.2 [Zubelewicz and BaZant, 1987} has been suggested, but this was later revised
upwards to 3 = 1.65 [BaZant et al., 1990] and even 3 = 2 [Jirdsek and BaZant, 1995).
The method was applied to both concrete and ice.

Different algorithms can be used when denser packings, in which most of the
particles are making contact, have to be obtained (see Dobry and Ng (1992) for

further references).



2.5.7 Lattice Models with Random Geometry

For monotonic loading conditions, where (micro)crack closure is far less important
than for cyclic loading, a lattice model with random geometry may be very well suited
to analyze the progressive cracking in a structure. The use of random networks to
simulate the progressive failure of heterogeneous materials was first studied by Burt
and Dougill (1977).

In this model the material is modeled as a planar truss system (Figure 2.17) in
which n nodes are uniformly randomly distributed over the area. Out of the n(n—1)
possible truss members a random selection is made which satisfies requirements on
the maximum length of a member and the overall member demsity. The micro-
constitutive law is uniaxial elastic-brittle and, since the model is used to simulate
tension softening, compressive failure of the trusses is not considered. In the model,
both the member stiffnesses and strengths are IID variables, drawn from a normal
distribution truncated at zero. It is essential to understand that this model does not
attempt to represent the actual structure in the material, it is only a phenomeno-
logical description of the macroscopically observed behavior.

A typical stress-strain curve resulting from this model is given in Figure 2.17.
The scatter on these results is indicated as well. Repeated simulations indicate
only a very small difference between models with random and deterministic material
properties for the initial load stages, even though a slight increase in initial stiffness is
observed when all links have identical stiffnesses. It can also be concluded from Burt
and Dougill’s (1977) simulations that decreasing the heterogeneity of the material
mainly increases the peak stress and leads to a steeper descending branch of the



Figure 2.16: Johnson-Mehl structure for a slow (left) and fast growth rate (right)
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Figure 2.17: Typical random network and force-displacement curves
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force-displacement curve. The scatter is considerably higher in the post-peak region.
This seems logical: the more members that fail, the higher the scatter becomes.

In this model members seem to fail in local groupings. As such, strain localization
is simulated adequately. Because the heterogeneity of the material is modeled, size
effects are obtained automatically: smaller samples have a higher mean peak stress
and a higher standard deviation than larger samples.

The meshing technique used in this model seems rather ad hoc and actually

causes two major shortcomings in the model:

e the crossing of the truss members (Figure 2.17) makes visualization of the
fracturing process extremely difficult

e the model is anisotropic unless prohibitively large amounts of nodes and mem-

bers are generated

These drawbacks can be overcome when adequate meshing techniques are used.
One possibility is to make use of the so-called “Delaunay triangulation” [Gasparini
et al., 1996], which is the dual graph of the Voronoi tessellation [Ostoja-Starzewski
and Wang, 1989]. Its generation is very similar to the generation of a Voronoi cell
pattern. First, a field of nodes must be generated. Similarly to the Voronoi cell
pattern, a homogeneous Poisson point process is the most popular choice for this.
Subsequently, every node is connected with its three nearest neighbors.

An alternative simulation scheme, which does not start from a homogeneous
Poisson point process, is suggested by Moukarzel and Herrmann (1992) and is im-
plemented in Schlangen (1993), Van Mier et al. (1996), and Vervuurt et al. (1996).
It is conceptually similar to the depletion layer used in the cell model, discussed in
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Figure 2.18: Variation of randomness in the lattice by restricting the position of the
nodes to a sub-area of the original cells [Schlangen, 1993]

Figure 2.19: Projection of lattice on grain structure and definition of beam materials
[Schlangen, 1993]
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Section 2.5.5, in the sense that the nodes cannot be located in some areas. First, a
square mesh is defined in the material. In a second step one point is selected ran-
domly in every mesh cell and a triangulation is constructed by connecting the three
points which are closest to each other. The degree of randomness in this lattice can
be controlled in the second step by restricting the random selection of a node to a
sub-area of the cell rather than the entire cell area (see Figure 2.18). The ratio of
the size of this sub-area and the entire cell is a measure for the degree of random-
ness. In the limit case of zero randomness, a regular, square lattice will be obtained
[Schlangen, 1993].

Unlike the previous lattices, this model tries to represent the actual material
structure. For this purpose, the maximum member length must be at least three
times smaller than the smallest grain size [see Schlangen and Van Mier, 1992; Vervu-
urt et al., 1996]. The triangular lattice is now projected on top of the generated grain
structure (Figure 2.19) and different strengths and stiffnesses are assigned to the re-
spective elements. This is illustrated for concrete in Figure 2.19 where three material
zones are used. Details of an application to sandstone are reported in Vervuurt et al.
(1996). If randomized, the strength of the members is assumed to be normally IID
in this model.

One of the reasons for the high detail of the model is that it is used to simulate
crack face bridging. It is known that this is associated with rotation of the mate-
rial [Bascoul, 1996]. Since this rotation cannot be described accurately using axial
deformations only, beam elements are used instead of trusses.
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2.6 Modified Continuum Models

2.6.1 Introduction

In the introductory chapter, it was stated that a material can be modeled as either a
continuum or as a discrete system. Classical continuum mechanics methods fall short
whenever the heterogeneities in the material seriously affect the stress distribution
in the material. However, some classical methods can be modified successfully to
account for the effects of material heterogeneity and the resulting variability in the
structural response of the material. This is explained in the following.

2.6.2 Material Heterogeneity

A descriptive, macroscale continuum theory assumes the material to be homoge-
neous. If the structural scale is not “infinitely” larger than the size of the RVE,
but of comparable size, the stresses and strains resulting from a classical continuum
approach can still be interpreted as “average” values but they may be physically
meaningless because of the heterogeneity in the material. In other words, the influ-
ence the internal disorder in the material has on the stress gradients could be of at
least the same order as the influence of the external loading [Breysse et al., 1994].
So-called non-local methods, where the continuum stress in a point no longer
depends solely on the strain in that point, but on a strain distribution in the lo-
cal neighborhood, have proven a successful modification of the classical continuum
methods for the analysis of structures exhibiting strain softening behavior. In those
cases, the use of non-local techniques eliminates the mesh dependency of the re-
sults. Various local averaging schemes that have been proposed [Pijaudier-Cabot



and BaZant, 1987).

Another possible solution may be to calculate the macro stiffness directly from the
actual micro-structure. An example of this approach in a finite element context for
linear elastic analysis is given in Liao and Chang (1992). The element stiffness matrix
is calculated from the virtual work due to rotation at the contacts and displacement
of the circular particles within the element domain. The method significantly reduces
the number of degrees of freedom, but can only be used in the small strain range.
Damage growth can not be accounted for.

Breysse (1990) suggested a micro-macro probabilistic analysis method, which
can account for damage accumulation. The constitutive model for the elements,
which are used in the finite element mesh is given by the macroscopic response of
a parallel bar system. The micro-constitutive law is linear elastic-brittle and the
damage is obtained as the ratio of broken bars. The strengths of the individual bars
are assumed independent and identically Weibull distributed. As such the model
can be considered a finite element method where every finite element is in‘ i-tself a

probabilistic parallel bar model.

2.6.3 Response Variability

Material parameter variation is not necessarily a white-noise process, which means
that the value of a material parameter at one point is not totally independent from
its values in the neighborhood. The spatial correlation structure of material charac-
teristics must be accounted for properly in a random field description. This is clear
from a comparison of the results obtained in the parallel bar models by Krajcinovic
and Silva (1982) and Kandarpa et al. (1996). Assuming statistical independence
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of the bar strength leads to a deterministic result for the damage evolution in the
continuum approximation, while accounting for the correlation maintains (random)
variability in the model response.

In the stochastic finite element method, these random fields are discretized into
random variables. An optimal discretization affects the meshing [Zhang, 1994]. If
not done properly, the meshing may introduce substantial error in the finite element
calculations. Recently, a lot of progress has been made in the field of discretiza-
tion [Schuéller, 1997], but the selection of the underlying random field remains to a
large extent arbitrary. Quite often a Gaussian field is chosen simply because of its
computational convenience.

Another aspect associated with the arbitrariness in the selection of random fields
and the implications this choice has on the results obtained from stochastic finite
element models, is discussed by Ditlevsen and Tarp-Johansen (1996). In particular,
Ditlevsen and Tarp-Johansen (1996) discuss whether it is better to use a stiffness
field or its reciprocal field, the flexibility field, as the .'input of a stochastic finite
element model. This seems to be important, especially for non-Gaussian random
fields, because of the additional model error introduced by the discretization of the
random field.

A possible method to determine the characteristics of random fields is presented in
Ostoja-Starzewski and Wang (1989), Ostoja-Starzewski and Wang (1990), Mirfend-
ereski and Der Kiureghian (1994), Ostoja-Starzewski (1994a) and Ostoja-Starzewski
(1994b), and was already discussed in Section 2.4.2 in the case of a lattice model. The
method can also be applied to cellular microstructures and matrix-inclusion mod-

els, where inert phases are embedded in a homogeneous matrix (see Figure 2.20).
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Matrix-inclusion models are quite commonly used in the field of composite materials,
as a technique to account for the effects of material heterogeneity [Nemat-Nasser and
Hori, 1993]. In Ostoja-Starzewski’s (1994b) approach, the derivation of the random
field characteristics is based directly on the microstructure. An important conclusion
is that the random field characteristics may depend on the finite element mesh size.

However, the method is still under development.

2.7 Summary

In this chapter, some of the difficulties associated with constitutive modeling, ac-
counting for the material heterogeneities, are discussed. Both discrete and contin-
uum methods are reviewed. Tables 2.3 and 2.4 form the basis for a classification of
every discrete model. Important criteria for the design of a discrete model are:

e The choice of microstructure for a given material has important consequences
for the macroscale structural i)ehavior of the material. As an example, the
chain-of-bundles system is much more brittle than the parallel bar model.

e The local load sharing rules affect the macro strength of the material.

e The form of the PDF for the strength of one bar element has a major influence

on the macroscopic behavior and it must be selected carefully.

e When the correlation between the strengths of the different elements in the mi-
cromodel is not accounted for, a deterministic constitutive behavior is obtained

for continua.
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Figure 2.20: A window in the microstructure of a Voronoi tessellation and a ma-
trix-inclusion composite [Ostoja-Starzewski, 1994]

Criterion Sub-categories
Dimensions 2D 3D
Lattice Shape regular random
Member Type uniaxial . axial+shear axial+bending
Constitutive Law elastic-brittle softening included
Problem Type uniaxial tension shear bending
Table 2.3: Classification of lattice models
Criterion Sub-categories
Dimensions 2D 3D
Contact Law  Soft Hard
Solid Material Deformable Indeformable
Topology Crystalline Granular

Table 2.4: Classification of particle models
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Multiaxial loading conditions cannot be described adequately when only the

axial deformation of the elements is accounted for.

Defects in the microstructure introduce randomness in the macroscopic behav-

ior which cannot be accounted for using regular geometry.

When the material inhomogeneities are accounted for, stress and strain based

microlevel failure criteria are no longer equivalent.

The topological characteristics, such as the roundness of elements, of crystalline
topologies largely depend on the nucleation conditions.

Idealized modeling of granular material using circular or spherical elements

leads to an overestimation of the grain rotation.

The topology of a planar system may differ considerably from the topology in

a 2D section of a 3D microstructure.



Chapter 3

Parallel Bar Model for Linear Elastic-Brittle

Materials Subject to Uniaxial Loads

3.1 Introduction

In the previous chapter, the merits and shortcomings of models with regular geometry
were outlined. It was explained that, because of the existence of preferred directions
in a regular microstructure, models with regular geometry may not accurately reflect
the variability in the structural behavior of real materials. Nonetheless, a detailed
study of micro-mechanical models with simple geometries may provide additional
insight about the interactions between the constituents at the micro-level and the
impact they have on the macroscopic structural behavior.

In this chapter the progressive failure of parallel bar systems, which are sub-
ject to axial deformations only, will be studied. The parallel bar model has been
used by other authors [e.g. Daniels, 1945; Burt and Dougill, 1977; Krajcinovic and
Silva, 1982; Gasparini et al., 1995; Kandarpa et al., 1996] to analyze the force-
displacement behavior of brittle materials under compressive or tensile loading. In
this dissertation, the model is also extended to include the study of the moment-
curvature relationship of linear elastic brittle beams.

The goal of this chapter is to demonstrate how the macroscopic structural behav-

jor follows from the interactions between the constituents at the micro-level. The
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analysis will demonstrate the capabilities and limitations of 1D micro-mechanical

models.

3.2 Model Description

3.2.1 General

Uniaxial stress states can be modeled using a parallel bar model [Daniels, 1945]. The
individual bars or springs (see Figure 2.4) are considered to be representative of the
micro-properties of the material while the system as a whole describes the macro-
scopic behavior. By assuming simple force-displacement behavior for the individual
springs, complex macroscopic behavior can be described.

Consider the continuum model of the homogeneous beam of length £ with rect-
angular cross-section A in Figure 3.1a. The beam is subject to normal stresses only,
which are perpendicular to the cross-sectional plane and are caused either by an axial
load P or by a pure bending moment M. No shear stresses are acting on the beam.
The beam is divided into n equal horizontal layers. Since only axial forces act upon
each of these layers, they can be modeled as springs as shown in Figure 3.1b.

The following micro-mechanical constitutive law is adopted. A linear elastic-
brittle force displacement behavior is assumed for each of the springs. All spring
stiffnesses are assumed to have the same, deterministic stiffness k. Compressive
failure is excluded from the model. A spring ¢ will fail in tension when the strain in
the spring ¢; exceeds the failure strain &; m.x, Which is considered a random variable.
This failure strain &; max is generally not identical for all springs. The failure strains
can be modeled as either independent, identically distributed (ITD) random variables
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or as a random field. The ensemble of failure strains ¢; max,? = 1...n, defines a one-
dimensional discrete random field. In the limit for n — oo this discrete process
becomes a continuous 1D random field when A& remains constant, i.e. the spring
become infinitesimally close to each other.

The objective of the analysis is to identify the senmsitivity of the macroscopic
response to different assumptions for the material model at the microscale. Various
types of probability distributions and correlation functions will be considered for

ei.mn-

3.2.2 Damage Accumulation

In this model any micro-spring fails when the strain &; in this spring ¢ exceeds the
failure strain =; max Of this spring, which is considered random. The force F; in spring

i of the micro-mechanical model is:

kle,- if [ <&
F = s 3.1)
0 if €i > Eimax
where £; and €; max are the actual strain and the failure strain in spring ¢, respectively.
The damage D in the spring system is defined as the ratio of the number of failed

springs n* and the total number of springs n, which depends on the axial strain e:

D(e) = ¥& (32)

n

In a strain controlled experiment the damage accumulation can be monitored. Two
load cases will be analyzed and the quality of the spring model will be discussed.



3.3 Axial Loading

3.3.1 Relationship Between Micro and Macro Stiffness Properties

Experimental obeervation of the structural material behavior, such as the force-
displacement relationship of concrete subject to uniaxial compression for instance,
is generally limited to the macro scale. It is therefore necessary to establish the
relationship between the material properties used in a continuum mechanics model
and the material characteristics of the individual springs, i.e. the micro-scale. Since
only uniaxial stress states are considered and the transverse displacements are not
considered, only Young’s modulus E needs to be related to the individual spring
stiffnesses.

The elastic deformation of a homogeneous continuous member with length ¢,

subject to an axial load P is:
Pe
EA

where E denotes Young'’s modulus’and A is the cross-sectional area of the member.

5. = (3.3)

The deformation of the spring system, consisting of n identical springs in parallel,
each with stiffness k is:

ba = — (3.4)

In one-dimensional applications, a continuum is considered equivalent to a dis-
crete parallel-bar system if the deformations of the continuum (3.3) and the discrete
model (3.4) are identical. This relates the Young’s modulus F of the equivalent

continuum to the spring stiffness k:

(3.5)

kné
E=—7
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3.3.2 Load-Displacement Curve

Consider the parallel bar model in Figure 2.4. All n springs have an equal stiffness
k, but a random failure strain £; moy- The spring model is subject to a monotonically
increasing axial deformation and the force-displacement behavior is observed. This
represents a numerical simulation of a displacement-controlled tensile test.

If all springs have identical failure strain, sudden failure occurs when € = €; max
(solid line in Figure 3.2 for the case n = 4). When the failure strains are different for
each spring, the system failure occurs more gradually as each of the springs fails under
a different load (dashed line in Figure 3.2 for the case n = 4). In this model, when
a spring fails, the total load is redistributed evenly among all remaining springs.
Note that the material behavior remains elastic as no permanent deformation is
introduced; only the total stiffness of the spring system is affected by the damage
accumulation. Using (3.1), the total axial force P carried by the spring system can

be written as:
P(e) = g F,
= Kefn—n"(e)
= knfe (1 — D(g)] (3.6)
= FEAe[l — D(g)]

where ¢ is the length of the springs in the parallel bar model.

As the number of springs increases, the descending branch of the force displace-
ment curve becomes less jagged. The shape of the resulting force-displacement di-
agram depends on the distribution of the failure strain €;mqex. For illustration pur-
poses, the force-displacement diagram is simulated for systems with n = 10 springs,
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Figure 3.1: (a) Continuous and (b) micro-mechanical beam model
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Figure 3.2: Progressive failure of a parallel bar system for n = 4 spnngs
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where all failure strains &; mar, ¢ = 1...10 are IID random variables. When the
Zimax, t = 1...n are IID distributed, the damage D is a binomial random variable.
Analytical expressions for the mean and variance are derived in the next section.

The mean and standard deviation of the force-displacement diagram obtained
from 1000 Monte Carlo simulations are given in Figures 3.3 and 3.4, respectively,
for four different types of probability distributions for the micro-level failure strain
Eimax: 8 Dormal, a lognormal, a Weibull and a uniform PDF are assumed for ¢; nay-
In the Figures 3.3 and 3.4, the mean is identical for all PDFs and the coefficient of
variation (COV) is assumed equal to 20% for all probability distributions. It can be
concluded that from the simulations that:

1. The average force-displacement behavior is not very sensitive to the assumed
PDF for the micro-strain &; ma.. (see Figure 3.3). All PDFs are assumed to
have the same mean and standard deviation. The probability distribution
type has little impact on the strength of the system since the maximal force
is virtually identical for all assumed PDFs of the spring failure strain ¢; pay.
Additional simulations have shown that only for much larger COV’s of ¢; masx,
there is a notable difference between the average force-displacement behavior
for different micro-strain distribution types, particularly in the softening part
of the diagram.

2. The variability of the force-displacement spring system is somewhat dependent
on the probability distribution chosen for the micro-strength, especially in the
softening part of the diagram (see Figure 3.4). However, the variability of the

total system strength, i.e. the maximum load, is independent of the assumed
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Figure 3.3: Mean force-displacement behavior of parallel bar model for different
probability distributions of stiffness k& (n = 10 springs)
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Figure 3.4: Standard deviation of force-displacement behavior of parallel bar model
for different probability distributions of stiffness k (n = 10 springs)
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PDF type for €; max- This suggests that the uncertainty of the system strength is

accurately predicted by second-moment information of the failure strain alone.

. The system strength decreases with increasing COV(e; max). The expected
value curve flattens as the variability of &; max increases as shown in Figure
3.5 when &, mex is modeled by lognormal IID variables. Gasparini et al. (1996)
assume a Weibull distribution for the failure strain and observe a similar trend.
The tail of the average force-displacement curve increases with the COV of the
failure strain €; max. It is interesting that, due to the positive skewness of
the lognormal distribution, the total average deformation energy stored in the
spring system increases with the COV. Figure 3.6 shows that the standard
deviation of the softening branch of the force-displacement diagram is heavily
dependent on the COV of the assumed PDF for the microlevel failure strain.

. Simulations for different numbers of springs in the network indicate that the
COV of the force-displacement diagram decreases with increasing number” of
springs n. It can be shown [e.g. Daniels, 1945; Gasparini et al., 1996; Kandarpa
et al., 1996] that COV(P(c)) ox n~'/2 so that a deterministic force-displacement
is obtained for the parallel-bar system in the limit for n — oo, if the failure

strains €; max are modeled as IID random variables.
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Figure 3.5: Influence of the COV of lognormal micro-stiffness on the average macro-
scopic force-displacement curve (n = 10)

—=COV = 20%

0 0.5 1 1.5 2 2.5
t/E(tam)

Figure 3.6: Influence of the COV of lognormal micro-strength on standard deviation
of macroscopic force-deformation curve (n = 10)
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3.3.3 Damage Accumulation

As the strain ¢ in the spring system increases, more and more springs fail and the
damage D increases. In a discrete system the damage accumulation is given by:

1) 1S H(e - i) @3.7)

=1
where H is the Heaviside or step function: H = 1 if € > &; max, H = 0 otherwise.
When the failure strains €; ma, are IID variables, the damage variable D is equal to
the probability of exactly n* failures out of n, where each individual spring has an

D(e) =

equal failure probability, and is thus a binomial random variable.

If it is assumed that the failure strains ¢; m.. are either IID random variables
or form a discrete, homogeneous, random field, the probability distributions of the
failure strain ¢; ;.. are independent of i. In that case the marginal densities for the
failure strains are identical for all springs i. If f,__ (¢) and F,___(€) denote the PDF
and CDF of the failure strain £max respectively, the mean damage E (D(¢)) for a
given strain € can be expressed in terms of the applied strain ¢ as follows:

E(DE) = +3 EH(E - )

=1

= %zﬂ:/o@ Semas (Eismax)H (€ — €i max) dEi,max

i=1

= %é /: fgm (Ei,max)dei,m
= FEm (E) (3.8)

This result can also be obtained by making use of the binomial property of
the damage variable. Gasparini et al. (1996) and Kandarpa et al. (1996) derive
expressions for the expected value and standard deviation of the load P and damage

D as a function of the applied strain .
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From a microscopic point of view, damage accumulation occurs when new cracks
are induced by large strains. According to Lemaitre and Chaboche (1985) this dam-
age grows linearly with strain under monotonic loading. They suggest using the
following linear law, which is well in accord with experimental results for many

metallic materials:

D=Dp S50 (3.9
EvR — EvD

where ¢, is the effective strain at the damage threshold, below which no significant
damage exists and ¢,r is the effective strain at fracture at which point the damage
D reaches its critical value D.. Based on the micro-mechanical analysis, only the
assumption of a uniform strength distribution in (3.8) leads to a linear damage
accumulation law, such as (3.9). However, Figure 3.7 indicates that (3.9) may prove
a reasonable approximation for other distributions of the failure strain as well, as
long as the COV of the failure strain remains relatively small in as much as a bi-linear
ramp function approximates the lower part of the typical S-curve of a CDF.

3.3.4 Tensile Strength of Parallel Bar System

The expected value of the force-displacement curve is given by:
E(P(e)) = EAc [1 - E(D(9))] (3.10)

The strength Pp,, of the parallel-bar system is obtained by setting dP/de = 0
and solving for P. When the ultimate strain of each spring £; max i8 modeled by an
IID random variable, the resulting force-displacement behavior is deterministic in the
limit for n — oo [e.g. Daniels, 1945; Gasparini et al., 1996; Kandarpa et al., 1996).
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Figure 3.7: Expected value of damage accumulation during tensile test for different
choices of the PDF for egex (n = 10, COV(gmex) = 20%)

dard Deviation of Damage

Figure 3.8: Standard deviation of damage accumulation during tensile test for dif-
ferent choices of the PDF for £max (7 = 10, COV(Emax) = 20%)
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This means that in this case:

dP _ d(E(P(¢c)))
de = de

It should be noted that, when n # oo, the strain at which the strength Py, is
reached is random itself. The distribution of the critical strain £.~; where the system
strength Pp.. is achieved can then only be obtained through simulation. Analytical
expressions can only be obtained for the case of n — oo and IID conditions and the
discussion is restricted to this particular case.

Substitution of the damage equation (3.8) into the expression for the expected
load (3.10), gives, when the system strength P,,, is reached, the strain in the spring

system ¢ is given as the solution of:

.= 1-F () 1
il femas(€)  R(e)

where h(¢) is the so-called hazard rate. The hazard rate h(c) is defined as the

(3.11)

instantaneous failure rate of a spring, subject to a strain ¢, given that failure has not
yet occurred for smaller strains [Martz and Waller, 1982].

Substitution of the solution £ of (3.11) into (3.6) and (3.8) allows us to establish
the impact of the PDF assumed for the failure strain £,., on the system strength
Prux and the damage level at this failure load. The analysis is performed for two
types of non-negative PDFs for the failure strain £n. in Tables 3.1 and 3.2. It
can be concluded the damage level D(e;) at this critical strain is a monotonically
increasing function of the COV, and does not depend much on the PDF-type chosen
for €max. The system strength Pp. decreases with increasing COV (see also Figure
3.5). The critical strain level €4, at which the system strength is achieved, at
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first decreases with the COV, but then increases again for the selected PDFs. This
may seem somewhat counter-intuitive, but it should be kept in mind that the force
deflection curve is very flat for these very large COV’s: the load P does not change
much for strain-values in a fairly large neighborhood of £.. Also, this result was
obtained for a lognormal distribution of £, and may not hold true for other PDF

types.

3.3.5 Influence of Correlation between Failure Strains

When n — oo, a deterministic expression is obtained for the force-displacement and
the damage accumulation curve if the springs are assumed independent [Gasparini
et al., 1996]. Since this conflicts with experimental evidence it can be concluded
that, when a continuum model rather than a discrete spring system is used to model
the observed variability of actual test specimens, the failure strains of the springs
should not be assumed to be independent. A continuous random field model of €.y
should be used instead.

The amount of correlation between the failure strains of neighboring springs is
given by the autocorrelation function R of the random field gpax, defined in Section
1.4. For a homogeneous RF, this autocorrelation function R only depends on the
distance between the springs.

Kandarpa et al. (1996) use a RF model for the failure strain £n,, and derive
expressijons for the mean and variance of the accumulated damage and the force-
displacement curve. The expressions for the expected value of the damage D(¢)
(3.8) and the force P(c) (3.10) for a given applied strain &, obtained using IID en,,,

are still valid when a random field model is used for £npa. The variance, however,



COV(cmas) [%] E (D (crit)) (%] Ecrit/EE (Emax) Pumax/ (EAE (Emax))

0 0 1.00 1.00
5 2 0.90 0.88
10 5 0.85 0.80
20 14 0.79 0.68
40 31 0.76 0.53
60 4 0.79 0.44
80 53 0.83 0.39
100 60 0.87 0.35

Table 3.1: Impact of COV of failure strain on system strength, damage level and
critical strain for a lognormal distribution of the failure strain eme: (n = 10)

COV(Ermax) (%] E (D (ecrit)) (%] €crie/IE (Emax) Penax/ (EAE (Emax))

0 0 1.00 1.00

5 4 0.90 0.86
10 8 0.85 0.78
20 16 0.80 0.67
40 31 0.78 0.54
60 4 0.82 0.46
80 55 0.90 0.40
100 63 1.00 0.37

Table 3.2: Impact of COV of failure strain on system strength, damage level and
critical strain for a Weibull distribution of the failure strain £ma. (n = 10)
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depends on the correlation function R.

They use the parallel bar model to simulate the force-displacement behavior
of normal and lightweight concrete test specimens subject to axial tension. They
assume a homogeneous, lognormal random field for the ultimate strain £n. With an
exponential auto—correlation function. The random field is then characterized by 3
parameters: mean u and standard deviation o of €max, and the correlation length
l. in the autocovariance function B,_,_ of the random field £, (see definition in
Section 1.4):

B...(1) = o* exp(—7/l.)

where 7 is the positive distance between the two points. The corresponding auto-
correlation function (see definition in Section 1.4)

Re..(7) = exp(-7/L) (3-12)

is an important characteristic of the random field. The amount of correlation between
neighboring springs determines the relationship between the va.na.noe of the total
spring system compared with the variance of the individual spring behavior.

In Kandarpa et al.’s (1996) study, the mean and standard deviation of the ul-
timate strain field £,.« are obtained from a least squares fit of the expected value
of the force-displacement curve to the experimental data. They estimate the cor-
relation parameter l. through a least squares fit of the theoretical variance of the
force-displacement curve to the experimental evidence. They find that the corre-
lation length . is about 5 times smaller for lightweight concrete than for normal
concrete. They conclude that there is less variance in the force-displacement curve

for lightweight than for normal weight concrete.
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It should be noted that even though a good agreement is achieved between the
model and the experiments for the mean and mean square force-displacement be-
havior, the variance of the softening branch is far less accurately predicted by the

spring model (see Kandarpa et al. (1996)).

3.4 Pure Bending

3.4.1 Deterministic Continuum Model

When a brittle beam, such as a plain concrete beam, is subject to pure bending, the
neutral axis of the cross section will shift due to the progressive cracking of the beam
[Ghali and Favre, 1994]. The moment-curvature relationship for a continuum model

of a beam section is given by:

M=E'( —%z)w (3.13)

where M is bending moment, ¥ is the curvature, and / and B are the moment
of inertia and the first moment of the cross-section of area A with respect to an
arbitrarily chosen reference axis, respectively. Here, this reference axis is chosen
at the top of the cross section. For an uncracked, homogeneous and rectangular
cross-section of width b and depth h, equation (3.13) becomes:

M(¥) = Eblh—;:/z (3.14)

When the curvature increases, the beam cracks as soon as the tensile strain ¢
exceeds the ultimate strain £qmax. Compressive failure is not considered in this model.
In the cracked state (Figure 3.9), the bending moment is absorbed by the shaded

part of the cross-section only. Because, the cross-section is assumed to remain plane
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after deformation, the horizontal strain ¢ varies linearly along the y-axis, defined in

Figure 3.9:
e=gco+yy (3-15)

with ¢q is the strain at the reference axis at the top of the cross section, and y is the

distance measured downwards from the top of the beam. At the fiber y,, the strain

£ is equal to the failure strain emax:
Emax = €g + yuw (3.16)

Since the beam is homogeneous, the neutral axis is located at the middle of the shaded
section. Since the strain ¢ is zero at y = y,,/2, the following result is obtained for £q:

€0 = —3Yu¥ (3.17)

which leads to the following relationship between the failure strain €max and the
effective, uncracked depth of the beam y,:

Emax = 3Yu¥ (3.18)

Substitution of (3.18) into (3.13), combined with the uncracked state equation (3.14),

gives the following result for the moment-curvature relationship:
3 .

E%y if ¢ < 2o

IEbe,Y? iy > pes

M(y) = (3-19)

When the failure strain £, is considered a random variable, a first-order second-
moment (FOSM) expansion of the deterministic result (3.19) indicates that when
v > -25‘,‘:“:

Var(M) = (2EbE(emax)*¥2)” Var(emax) (3.20)
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or, after dividing the square root of (3.20) by the first-order approximation of the
expected value of the bending moment M in (3.19):

COV(M) = 3COV(Emax) (3.21)

3.4.2 Discrete Spring Model

The parallel bar model is used to analyze the progressive failure of a beam section
subject to bending. As the curvature of the beam increases, the springs gradually
start to fail. Even when a deterministic failure strain £m.x is used, the moment-
curvature diagram of the parallel bar model has a gradually descending branch be-
cause of the strain gradient over the different springs. Figure 3.10 compares the
moment-curvature diagram of a parallel bar model with 10 evenly spaced springs
and the continuum model, given by (3.19).

Based on the linear-elastic brittle force-displacement model (3.1), the moment-
curvature relationship is given by the following expression:

- - 2 _ cn ) +1 ¥i 2 me )41 Ui
M(¥) = vkt L_}(_;)Hy.’ s ] (3.22)

where the sums include only those springs, n —n* in total, which did not fail. Failure
of springs is determined by comparison of the failure strain &; . With the actual

strain ¢; in spring ¢:

&(¥) =19 ( ; — %%) (3-23)

In the next section it will be shown that, using the equivalence relation (3.5), (3.22)
is identical to (3.13) in the limit for n — oco.



Cross Section in
Cracked State Sirain Diagram

Figure 3.9: Analysis of continuous beam model, subject to pure bending

——Maded with 10 springs
0.2 { ----- Continuum model

Figure 3.10: Comparison of moment-curvature diagram for a discrete spring model
(n = 10) and for a continuum model using a deterministic failure strain €pga
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When the failure strain €; n.. is modeled as a discrete random process, closed form
solutions for the average moment-curvature relationship become mathematically in-
tractable because the individual springs are subject to different strains. Monte Carlo
simulations of spring systems, where all failure strains ; n,. are modeled as IID ran-
dom variables, show that the type of PDF assumed for &; nax has almost no influence

on the average moment-curvature diagram.

3.4.3 Relationship Between Micro and Macro Properties

Substitution of the relationship between the micro and the macro stiffness (3.5),
derived for uniform deformations, the moment-curvature relationship (3.22) becomes:

M) =vy— i (3-24)

i=n*(v)+1 n —n*(y)

EA [ z": - iens(9)+1 Y Li=ne(@)+1 yj]

Since the ratio A/n is equal to the area A; of layer i, we can write:

M(v) = vE [ z": PA; — 3 e (9)+1 ¥ 2jne(¥)+1 yJ'A'] (3.25)

i=n*(¥)+1 n —n*(¥)

or

= z:?——n‘(w)ﬂ % 2"'——1:'(&)4—1 Y5
M(y) =yFE 24, — J .26
) [c—‘—u%)ﬂ % A; [n — n*(¥)] ] (3.26)

In the limit for n — 00 , % e (g)41 ¥ Tgens (v)+1 Yidis Ttene () +1 ¥idis Ai [n — n*(¥)]
are equal to the moment of inertia /, the first moment B and the area A of the cracked
cross-section in Figure 3.9, respectively, and equation for the micromechanical (3.26)
becomes identical to (3.13). It can be concluded that the same relationship between
the micro and macro stiffness properties holds for both the pure bending and the

axial deformation load case.
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3.4.4 Damage Accumulation

The insensitivity of the macroscopic system response to the probability distribution
type selected to model the uncertainty at the micro-level is also reflected in the
average damage accumulation. The damage accumulation (3.2) is calculated from
(3.7), which becomes:

_1& L Zg=mewn WY
D)=~ §H (y.w = (9) e.,.,..,) (3.27)

Simulations indicate that the average damage accumulation E(D(y)) is virtually
independent of the assumed PDF type for the failure strain &; max of the discrete
springs. The average damage accumulation diagram, obtained from 1000 Monte
Carlo simulations, is shown in Figure 3.11. The same three PDF types and COV
value (20%) are used as in Figure 3.7, which allows a direct comparison of the
Figures 3.7 and 3.11. It can be concluded that the structural response mode governs
the damage accumulation, and that the assumed type of the PDF for the failure
strain has virtually no impact.

The impact of the COV on the average damage accumulation is shown in Figure
3.12, in the case of a lognormal PDF for the failure strain em.. It can be concluded
that the COV of the failure strain affects the damage accumulation in the parallel
bar system only at the onset of the progressive failure of the springs. The COV(emax)
has no impact on the damage accumulation for D > 35%. This implies that the tail
of the moment-curvature diagram (Figure 3.10) is not affected by COV(gmax)-

Figure 3.13 shows that the variability of the damage accumulation is independent

of the selected PDF for the micro-level failure strain as well. The standard deviation
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Figure 3.11: Average damage accumulation in spring system subject to bending
(n = 10 springs, COV(Emax )= 20%)
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Figure 3.12: Average damage accumulation in spring system subject to bending for
different values of COV(€max) (n = 10 springs, lognormal distribution for £max)
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of D is heavily dependent on the variability of the failure strain as shown in Figure
3.14. It can be concluded that second-moment information of £,,. is sufficient to
accurately predict the moment-curvature and damage accumulation diagrams and
their variability.

Comparison of the Figures 3.13 and 3.14 indicates that, when all failure strains
€imax are IID distributed, the standard deviation of the damage D decreases with
the number of springs n. It can be shown that, similar to the axial loading case,
the damage accumulation - and hence, the moment-curvature relationship - becomes

deterministic in the limit for n — oc when the failure strains &; m., are uncorrelated.

3.4.5 Bounds on Variability: Two Limiting Auto-Correlation Functions

The variability of the moment-curvature diagram cannot be described using a contin-
uum model when the failure strains are [ID. A random field model, which accounts
for the amount of correlation between the failure strains of neighboring springs, is
required for pax. -

When a non-negative autocorrelation function, such as (3.12), is assumed for the
random field £, two limiting cases can be identified: no correlation between the
ultimate strains of the individual springs, and perfect correlation. This corresponds
to a zero and infinite correlation length £., respectively.

If all ultimate strains €; n,,, are perfectly correlated (¢, = oc), all springs have the
same failure strain and the discrete random process €; ma, is reduced to one random
variable €qax. In this case there is no difference between the micro-mechanical model
(3.22) and the continuum model (3.19). If the correlation length €. = 0, the discrete

random Process &; max consists of n independent random variables.



Figure 3.13: Standard deviation of D in spring system subject to bending (n = 10
springs, COV (Emax) = 20%)

0.06 - .. —COV = 20%

Standard Deviation of Damage

Figure 3.14: Standard deviation of D in spring system subject to bending for different
values of the COV of the lognormal distribution for emax (7 = 100 springs)
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Figure 3.15: Impact of correlation length [, on average moment-curvature diagram
(n = 100 springs)
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Figure 3.16: Impact of correlation length . on COV of moment-curvature diagram
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The impact of the correlation length is assessed by means of an example. A
Gaussian random field is assumed for &; max, characterized by its mean E (€max) =1
and standard deviation StDev(€max) = 0.1. The model contains 100 springs and the
results are obtained using 1000 Monte Carlo simulations. Figure 3.15 suggests that
the average moment-curvature diagram is not much affected by the choice of the
correlation model (£. = 0 or £. = oc). Figure 3.16, however, clearly demonstrates
the effect the correlation length €. has on the COV in the post-peak region. When
the layers are perfectly correlated, COV(M) reaches a stable value of 30%, which
is readily derived from COV (€max) = 0.1 using equation (3.19), almost immediately
after some of the springs fail. When the layers are uncorrelated, this plateau is
reached only for much larger values of the curvature for finite n.

When the classical continuum mechanics result of (3.19) is used as the basis of
an uncertainty analysis, the failure strain £q,, is modeled as a random variable. In
this case, COV(M) is equal to 30%, estimated by FOSM. It is interesting to see how
this straightforward randomization of the classical continuum mechanics result is
identical to the result, obtained when an infinite correlation length is assumed in the
micromechanical model. When a reliability analysis is based on the randomization
of a deterministic continuum model, it should be kept in mind that the contin-
uum model tacitly assumes perfect correlation of all material characteristics, such as
stiffness and strength, throughout the material. Because the micromechanical model
does not make this assumption, it gives additional insight into the failure mechanism
and a more realistic description of the progressive failure can be obtained.

Figure 3.16 also indicates that the number of springs in the model has an effect

on the COV of the bending moment, in agreement with previous discussions.
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3.5 Summary

In this chapter the progressive failure of parallel bar systems, which are subject to
normal stresses only, is studied. A linear elastic-brittle micro-constitutive law is
used. The springs fail in tension only, and all springs have equal deterministic spring
stiffness k. The failure strains &; m.«, ¢ = 1...n, are modeled by random variables,
and £, becomes a continuous random field in the limit for n — oc. The model
indicates that complex macroscopic behavior can be realistically modeled on the
basis of a simple micro-constitutive law.

The damage growth in a specimen, subject to axial temsion only, is linked to
the probability distribution function of the microlevel failure-strain. The model also
suggests that the average moment-curvature diagram is not much dependent on type
of PDF, selected for £max-

However, there is no known relationship between the number of springs in the
model and the physical micro-structure and size of the specimen. This introduces
some severe limitations in the model. It is known that the variability in the structural
behavior of actual materials decreases with the specimen size. The parallel bar model
cannot simulate this. Also, the link stiffness k depends on the number of springs in
the model, which strips it from its physical meaning.

The analyses clearly demonstrate the impact of the auto-correlation of the failure
strain emax on the macroscopic variability of the structural response. However, there
is no theoretical basis to select the auto-correlation function of the random field for
€max- As such, a correlation model must be chosen somewhat arbitrarily.

It can be concluded that even though a parallel bar model provides insight in
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the mechanics of materials, its practical use is limited. The model parameters must
be determined for each configuration and cannot be generalized to, for instance,
other specimen sizes. These shortcomings disappear when a micro-mechanical model,
which is directly related to physical dimensions of the microstructure in a material,
is used. The homogenization of such micro-structural models is the subject of the

next chapter.



Chapter 4

Stochastic Homogenization

4.1 Introduction

In this chapter, a framework for the micromechanically-based estimation of the ran-
dom field characteristics of elastic properties is presented. A homogenization pro-
cedure is outlined, which allows computation of the macroscopic elastic material
properties of a “homogeneous” continuum on the basis of a micromechanical model.
This continuum is said to be equivalent to the assembled microstructure, and an
exact definition of this “equivalence” is given in Section 4.3.

Several existing homogenization techniques for microstructures with regular and
random geometry are reviewed. A new homogenization technique, which comple-
ments existing methods, is presented. The homogenization algorithm requires the
specification of boundary conditions. The shortcomings of existing boundary condi-
tion models are highlighted and an improved boundary condition model is suggested.

The elastic properties of the equivalent continuum are considered sample local
averages of the continuous random field of elastic properties. A Monte Carlo sim-
ulation of the microstructure allows the estimation of the stochastic characteristics
of the locally averaged random field of elastic properties. The proposed technique
allows to derive both the autocorrelation function of the random field and the cor-
relations between the different elastic properties directly from the micromechanical
model.
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4.2 Overview of Stochastic Homogenization
Stochastic homogenization consists of the following three steps:

1. Selection of an appropriate micromechanical model. An overview of microme-
chanical models was given in Chapter 2. The model should contain enough de-
tail (Table 1.2) to explain the variability of the macroscopic behavior. Only the
main deformation mechanisms need to be included in the micromodel [BaZant
et al., 1990)].

2. Selection of an appropriate homogenization technique. Various techniques are
discussed in Sections 4.3-4.5 and 4.7. The computation of sample equivalent

continua is based on a Monte Carlo simulation of the microstructure.

3. Estimation of the stochastic characteristics of the random fields representing
the elastic properties of the homogenized material. This is the subject of
Section 4.6. Practical applications are considered in Chapter 5.

4.3 Equivalence Between Continua and Discrete Models

The objective of homogenization is to replace a discrete microstructure with an
equivalent continuum and to derive the probabilistic material parameters of this
“equivalent” continuum from the micro-structural model. Figure 4.1 illustrates the

link between the micro-model and the macro-continuum.

e Figure 4.1a represents a series of random samples of a discrete microstructure.

There is a sample-to-sample geometric variability, as well as sample-to-sample
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variability due to the uncertainty associated with the constitutive parameters

in the micro-model.

e Figure 4.1b represents the corresponding idealization: a macroscopically ho-

mogeneous continuum.

Since Figure 4.1b must be structurally and statistically equivalent to Figure 4.1a,
it is clear that the mechanical properties of the continuum must form a random field
themselves. The continuum random field is assumed ergodic [Papoulis, 1991}: the
sample-to-sample variability at the heterogeneous micro-structural scale translates
into random spatial variations of the mechanical characteristics of the homogenized
continuous macro-structure. It is also assumed to be statistically homogeneous which
means that the random field properties do not depend on the location. The ho-
mogenization technique is applicable to both lattice-type micromodels and discrete
particle microstructures.

Consider a sample of the deformed micro-structural model of the material as
shown in Figure 4.2. Because the field is assumed to be homogeneous, we can,
without loss of generality, consider only a window, which is cut out from the entire
microstructure. This window should be large enough to allow for homogenization; it
must be of at least the same size as the representative volume element (RVE). Note
that the micro-scale model can be either a lattice or a particle model.

Generally speaking, a continuum can be considered equivalent to a micromechan-
ical model if the same deformations occur when both systems are subject to identical
load conditions. It was explained in Chapter 1 that all materials are to some extent

heterogeneous: they consist of discrete constituents. The effective properties of a



Figure 4.1: Sample discrete microstructures and equivalent homogenized random
continuum

Lattice Model

Figure 4.2: Deformed microstructures
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heterogenous material define the relations between average stresses and strains if the
spatial variation thereof is statistically homogeneous (SH) [Beran, 1968]. When the
microscopic variation of the material behavior is of no practical interest, we only
need to develop a statistical model for the effective material properties.

To this extent, we first need to produce a SH field in the microstructure by
applying appropriate boundary conditions. Two types of boundary conditions can
be distinguished for the homogenization window:

o essential boundary conditions: the displacements on the boundaries of the mi-

crostructure and the continuum are identical.

o natural boundary conditions: the stresses on the boundaries of the microstruc-

ture and the continuum are identical.

Hashin (1983) refers to these boundary conditions as “homogeneous” because
they 'introduoe an SH stress or strain field in the microstructure. Ostoja-Starzewski
(19!;3) calls them “uniform boundary conditions” because they lead to uniform stress
or strain fields in the equivalent homogeneous continuum. In this work, we will adopt
the term “uniform boundary conditions”.

An alternative definition of effective properties can be given in terms of energy
expressions. This is based on the theorem of virtual work, and, when applied to linear
elastic materials, states that the strain energy in the continuum must be identical
to that in the microstructure when both are subject to the same “uniform boundary
conditions”. The equivalence of the definition using average or effective properties
and the one based on strain energy was first pointed out by Hill (1963) and Hashin
(1964).



100

The assumption of uniform boundary conditions on the window boundary has

some important consequences:

e Since only the boundary displacements are prescribed and the total strain
energy in the homogenization window must be identical for equivalence, no
information is available regarding the deformation state inside the homoge-
nization window. This becomes important when non-linear material behavior
is considered. Localized phenomena, such as cracks, will be smeared out over
the homogenization window.

e No inference can be made regarding other deformation states. In a FE con-
text, this means that this type of homogenization is consistent with the use
of constant strain or constant stress elements only. Strictly speaking, when
other shape functions are used in the FE analysis, the boundary conditions
used for homogenization should be modified accordingly. Hashin (1983) argues
that this effect is minimal for most engineering problems.

Higher-order appoximations of the deformation or stress field are only necessary
when very high stress and strain gradients are present, such as near crack tips [Beran
and McCoy, 1970]. However, a detailed study of localized phenomena requires a
discretization at a scale smaller than the RVE. In that case, a mixed continuum-
discrete model should be used.
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4.4 Microstructures with Regular Geometry

4.4.1 Introduction
Many crystalline materials have regular micro-structures. Most of the variability in
their structural material properties can be attributed to random impurities, such as
inclusions of other materials or other phases, or to defects in the regular mesh, such
as voids. For those materials a model with regular microgeometry may prove useful
as a starting point since the actual microstructure can be modeled as a disturbed
regular lattice model.

The inclusions or defects can be modeled as either truly random in space or using
a randomly periodic micromodel. In the latter model, the pattern of the inclusions
is considered to be random within a window but is repeated all throughout the
microstructure. The periodicity of this type of micro-structure allows for an efficient
homogenization using periodic boundary conditions. Examples of random periodic
micromodels are given in Figure 4.3. Because of the geometric periodicity at the
window boundaries, the windows in Figure 4.3 connect to the adjoining windows in
the microstructu;e without overlap.

In this section, planar models with both a square and a triangular microstructure
are homogenized. The triangular microstructure can be regarded as a limiting case
where all distances between the micro-constituents are equal.

4.4.2 Homogenization of Regular Lattice Structures

Analytic expressions can be derived for the elastic properties of the equivalent con-
tinua, obtained after homogenization of discrete systems with a regular microgeom-
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etry. Consider the square particle model, represented in Figure 4.4a. When only
the axial interactions between the particles are considered, the particle model can be
replaced with the lattice model in Figure 4.4b. The window considered for homoge-
nization consists of 4 smaller “sub-cells” with alternating directions for the diagonal
links, and is indicated by the dashed line in Figure 4.4b. For now, it will also be
assumed that all link stiffnesses are deterministic and equal to k; for the horizontal
and vertical links of length &, and equal to k, for the diagonal links of length av/2.

For a deterministic linear elastic system with regular geometry, the use of ei-
ther essential or natural boundary conditions results in identical macro-continuum
properties after homogenization. The homogenization procedure is outlined using
essential boundary conditions only. A constant strain state {€} = { €z Ey Exy }T
is applied to both the discrete and continuous model and, according to the struc-
tural equivalence principle, the elastic strain energy stored in both systems should
be equal. For a continuum, the constitutive equation for 2D linear elastic behavior

is:
{o} =[C]{e} (4-1)
Oz Cu Crz2 Cis €z
oy (= Cn Cxn Ey
Ozy sym Cx | | &

where [C] is a symmetric matrix of elastic moduli, {} the vector of plane stress
components and {€} the vector of strain components. The elastic strain energy U

of a square element with dimension A = 2a x 2a, subject to constant strain state
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Figure 4.3: Examples of random periodic microstructures: periodic inclusion model
[Ostoja-Starzewski et al., 1994] and periodic cell model [Okabe et al., 1992]
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Figure 4.4: Square lattice microstructure and corresponding discrete particle model
(circular disks assumed for particle model)
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{€} is equal to:

ve = 4 [ {0} {e}dA
_ o2 Cnel + Cne? + Cxel, + 201266 + - .. 42)
eo o+ 20136262y + 20236yEny
Only half the strain energy associated in the 8 links along the window edge is included
in the calculation of the strain energy in the discrete system U® since those 8 links
are shared between 2 homogenization windows. If e; denotes the elongation of a link
i under the strain state {€}, the total strain energy U? stored in the discrete system
in Figure 4.4b is given by:
4

4 8
UO = kel +3 b + 33 e
=1 =1

=1

20 [(k + ) (& + ) + e + oy 43

Comparison of (4.2) and (4.3) leads to the conclusion that the strain energies of the
homogeneous continuum and a square lattice micro-mechanical model are identical
for an arbitrary strain state {¢}, if and only if the following conditions are satisfied:

,

Cu=k+%2
Co=%
] Cn=0 (4.4)
Cn=k+%2
Cn=0
[ca=%

The symmetric elasticity matrix [C] of an isotropic continuum in 2D plane stress
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elasticity is:
1 v 0
) E
Cl=1—2 1 0 (4.5)
sym 13

From (4.4) and (4.5) it follows that the equivalent homogenized continuum of a
square lattice model is an isotropic continuum if the spring stiffnesses k;, and k;

satisfy the following conditicns:
ki+ 3 =5
E(l—v
=By _ _E (4.6)

This can be achieved only if v = } and k; = k2 = 3E. Note that the lattice model
is isotropic only when deformations on the outside boundaries of the homogenization
window are considered. True isotropy inside the homogenization window can never be
achieved in a discrete microstructure with regular geometry. Directional dependence
of the material characteristics must exist to some extent and cannot be avoided in
discrete models with regular geometry. This is an illustration of the above mentioned
fact that the equivalence principle does not allow inference about the deformation
state inside the homogenization window.

Triangular stackings of circular disks are another example of a commonly observed
regular dense packing in the plane (Figure 4.5a). A regular equilateral triangular
truss system (Figure 4.5b) is the representation of axial interactions between the
particles in this model. All links are assumed to have an equal stiffness k. The same
homogenization procedure can be applied to the triangular lattice structure. The
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elastic energy stored in the isotropic continuum and the lattice model are equal only
if v =1 and k = V3E/2.

Hrennikoff (1941) analyzed several types of regular lattice models, and found the
value v = } returning for several planar truss systems. When spatial truss models
are considered, the value v = ¢ is obtained.

4.4.3 Modeling of Link Stiffness

Based on the equivalence of 1D continua and parallel bar models, the spring stiffness
of the discrete link is given by:
EA

k=—- (4.7)

Based on the requirement k; = k; for a regular square lattice for isotropy obtained
from (4.6), Schlangen (1993) concludes that the spring stiffness in the lattice model
should not only depend on the link length but also on the “cross-sectional area” A.
In a discrete particle model, with polygon-shaped cells, the interface area between
neighboring cells is readily a.v;ilable to compute the stiffness k [Zubelewicz and
Bazant, 1987).

When a lattice model is used, however, this area is not directly available in the
model. Gasparini et al. (1996) use a constant stiffness k, independent of the link
length £ and cross-section A to simulate the behavior of elastic brittle networks.
In this research, the linear elastic link behavior is governed by the following force-
displacement relationship:

Az

F=K - (4.8)

where F is the axial force in any truss member, K a stifiness parameter, Az is the
elongation of the link, which is calculated from the displacements at both end nodes,
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and £ is the link length. The force-displacement law (4.8) is in agreement with the
contact law used in studies by Bathurst and Rothenburg (1988), Ting et al. (1988)
and Jirasek and BaZant (1995).

4.4.4 Limitations of Regular Geometries

As outlined in Chapter 2, micromechanical models with regular geometry may have
limited applicability in simulations of the structural behavior of many materials.
Two reasons can be indicated:

1. The regular mesh geometry introduces directional bias of the material prop-
erties. This was observed by Jirdsek and BaZant (1995) in micro-mechanical
simulations of quasi-brittle fracture of ice sheets. They observed that the crack
pattern in the simulations heavily depends on the orientation of the links in the
lattice model with respect to the direction of the applied force. This directional
bias persists even when the strength and stiffness of the links is randomized.

2. Ostoja-Starzewski and Wang (1989) observed that the second-order charac-
teristics of the random fields, which describe the material properties of the
homogenized micromechanical models with regular geometry and random link
stiffness, are substantially different from the ones found in models with ran-
dom geometry. On this basis, Ostoja-Starzewski and Wang (1989) conclude
that regular networks cannot accurately reflect the variability of the structural
behavior of randomly disordered media.
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4.5 Homogenization of Random Micro-Structures

4.5.1 Introduction

The homogenization techniques described in this section can be applied to a specific
sample of the discrete microstructure (i.e. one “frame” in Figure 4.1a), and the
elasticity matrix [C] of the equivalent continuum can be determined for a given
microstructure and homogenization window size A.

Repeated application to a large random sample of micro-structures — which is the
basic principle of Monte Carlo simulation — enables one to estimate, statistically, the
probabilistic characteristics of the macro-structural properties. The most convenient
way of describing these continuum properties is by using random fields, which is the
subject of the Section 4.6.

It can be shown that, under some conditions, the equivalent continua obtained
from the equivalence principle using essential and natural boundary conditions cor-
respond to Voigt (upper) and Reuss (lower) bounds for the actual stiffness of the mi-
crostructure respectively [Kroner, 1980]. These bounding techniques are particularly
useful if the available information on the microstructure is incomplete [Mirfendereski
et al., 1996]. However, Sab (1992) proves that the properties of an elastic medium,
computed using either stress or strain boundary conditions, are identical when the
exact microstructure is known.

Homogenization using strain boundary conditions is developed in Ostoja-Starzewski
and Wang (1989) and Ostoja-Starzewski and Wang (1990). A stress-based technique
[Huyse and Maes, 1999a] is described in this dissertation.
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4.5.2 Displacement-Based Homogenization Techniques

Structural analysis can be performed using either a displacement or a force method.
For many practical applications, the Finite Element Method (FEM) is the preferred
analysis method. Since the FEM is a displacement method, it makes sense to ho-
mogenize the heterogeneous microstructure using essential boundary conditions.

For the linear elastic case, the structural equivalence principle requires that the
same amount of strain energy is accumulated in both the continuum and the dis-
crete model when subject to identical boundary deformations. The derivations are
presented for 2D in-plane linear elastic behavior only but can be extended to general
3D elasticity.

Consider the discrete micromodel and homogenization window in Figure 4.6. This
window is subjected to a uniform strain field {e} ={ €s Ey Exy }T. For a contin-
uum the constitutive equation for 2D linear elastic behavior is given in equation (4.1).
The average elastic energy density per unit area w, i8 then given as ([C] = [C]T):

we = 3 {o)7 {e} = 1 {}" [C] {e} (4.9)

The structural behavior of the discrete model, shown in Figure 4.6, is governed
by the following equation [Ghali and Neville, 1989):

(S] {u} = {F} (4.10)

where [S], {u}, and {F} are the stiffness matrix of the microstructure, the de-
formation, and external force vectors at the nodes of the micro-mechanical model,
respectively. The discrete micromechanical model is subject to the same deformation
as the continuum. This is achieved by prescribing the displacement at each of the
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Figure 4.5: Triangular lattice microstructure and corresponding particle model (cir-
cular disks assumed for particle model)

Figure 4.6: Discrete microstructure in homogenization window
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nodes on the exterior boundary of the window. Note that the area of the micromodel
is typically slightly larger than the homogenization window.

Since all externally applied forces act on the boundary nodes, i.e. the nodes
outside the averaging window indicated by the dotted line in Figure 4.6, the system
of equations (4.10) can be partitioned as:

Su S. ; o
ol I S g (4.11)

ST S w Fs
where the index i denotes interior nodes inside the window and boundary nodes are
indexed by the letter b. Eliminating {u;}, we obtain:

[Sus — S385"Su] {w} = {Fi} (412)

or

[S°] {us} = {Fs} (4.13)

The average energy density wy for the discrete micro-mechanical model in the

homogenization window of size A is equal to:
wy = 77 {w}" [S°] {ws} (4.14)

According to the equivalence principle, the energy deusities for the homogenized
continuum (4.9) and the discrete model (4.14) must be identical:

H{e}T[Cl {e} = & {w) T [S*]{w} (4.15)

However, no solution for the elastic stiffness [C] can be obtained from this equa-
tion unless an assumption is made regarding the deformed state of the material.



112

In continuum mechanics, uniaxial stresses and strains in a point are defined as

the force F per unit area A and deformation A¢ per unit length £.
= ym —_ (4.16)

The stress distribution over a given area A is assumed to become more and more
uniform as the area A decreases. Similarly for the strain so that, in the limit,
a constant strain ¢ is obtained for infinitesimally small £. In a micromechanical
approach, the constituents on the microscale have finite dimensions. Consequently,
stresses and strains can not be defined in the usual way since limits for infinitesimal
areas or lengths are undetermined, which renders (4.16) difficult to apply. However,
the assumption of a constant strain within the window still makes sense because
it is consistent with constant strain finite elements. In that case, the boundary
displacements {u,}={u,J,u,_,}T of node j with coordinates (z;, y;) can be written
as (the rigid body displacement of the window is irrelevant):

Ex
Ug i z; O i/2
vl ] vi/ . 4.17)
Uy, 0 y; z;/2
zy

or, in matrix notation for all n, boundary nodes together:

( 9 - 9

Uz, z 0 wn/2
Uy 1 0 v z/2 Es

{ 3= : Ey (4.18)
Uz, Zn, 0 ya,/2 Esy

[ Yyine L 0 ¥ Zn/2 4
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{u}zn.xl = [B]a-.xs {e}s (4.19)

Substitution of (4.18) in (4.14) and comparison with (4.9) allows us to derive the
equation for the elastic moduli C;; of the equivalent homogeneous continuum:

[C] = & [B]" [8"][B] (4.20)

where the strain-displacement matrix [B] is defined in (4.18).

The evaluation of the matrix [S*] in (4.20) requires the computation of the inverse
matrix [Si]”', whose dimension increases with the averaging window size A. Conse-
quently, the evaluation of equivalent continuum properties becomes computationally
more expensive as the window size increases; the computer time increases with A3.
For this reason, Ostoja-Starzewski and Wang (1990) introduced the so-called uni-
form strain appraximation, which avoids the inversion of {S;]. In this appraximation
the displacement is prescribed at both the internal and the boundary nodes of the
discrete model:

4 ) i

Ug 1 zi 0 3/2
uy.l 0 /1 21/ 2 €z
$ : $= : e, (4.21)
Uz .n za O yll/ 2 Exy
% B Ry
or
{u}as = [B],__, {€}snr (4.22)

With this approximation, the elasticity matrix [C] of the equivalent continuum
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follows directly from (4.15):
(€1 =% [B]"-Is1.[B] (4.23)

where [S] is the stiffness matrix of the unsupported microstructure.

Because the displacements are now prescribed for every node, it is to be expected
that this approximate method will lead to an overestimation of the stiffness properties
in the equivalent, homogenized continuum.

4.5.3 Force-Based Homogenization Techniques
The energy density of the 2D equivalent continuum can also be written in terms of
stresses:

w. = {0}  {e} = { {e}" [C]"" {0} (4.24)
The deformation of the discrete microstructure can also obtained using the force

method instead of the displacement method. Similarly to (4.11), the structural
response of the discrete microstructure is given by [Ghali and Neville, 1989]:

f: fo 0 _l = (4.25)
2 fu F, w

where [f] stands for the flexibility matrix of the discrete microstructure, and {F}
and {u} are the external force and displacement vectors at the nodes of the micro-
mechanical model respectively.

From (4.25), it follows that:

(fie] {Fs} = {us} (4.26)
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where [f] is the flexibility matrix of the discrete microstructure: the flexibility
coefficient f;; gives the displacement at boundary node i when a unit force is applied
at boundary node j. The elastic energy density for the window A is:

wq = 25 {Fo}" [fu] {Fi} (4.27)

No solution can be obtained for {C] through the equivalence of (4.24) and (4.27),
unless an assumption is made regarding the stress distribution on the boundary of
the homogenization window.

For reasons, similar to the ones described for the constant strain approximation
in the previous section, a constant stress state {o} is assumed in the continnum. The
forces applied on the boundary nodes can be related to the constant stress vector
using a two-step process. In the first step we apply a force at each of the outside
nodes whose magnitude is given by the horizontal or vertical distance between the
centers of the adjacent links along the window boundary (see Figure 4.7). For the
top edge, we have for node j:

Fi, = Tol;
F!

v
This ensures a force distribution which is as close as possible to the uniform stresses

(4.28)

= oy¢;

required. However, this system of forces i8 not in equilibrium when the nodes are
not evenly distributed along the window edge, which is the case for networks with
random geometry. Generally, application of (4.28) on all sides leads to imbalance
forces AF; and AF; and an imbalance moment AM.

In the second step, a set of corrector forces F; is introduced which will ensure

equilibrium is satisfied. To minimize their impact on the original stress distribution,
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a least-squares minimization of the relative corrector magnitudes is performed. The
deviation from the uniform stress modeling on the boundary is due to the irregu-
lar spacing of the nodes in the microstructure. The optimization problem can be

formulated as a quadratic programming problem:

ming = 53, (FL/Fh)" + (Fa/Fy)’

i1 Fe = —AF, (4.29)
subject to ;':l F;" = —AF;

) (F;',y - Fi'v‘) =-AM
The total force on a boundary node is given by the sum of the forces obtained in
(4.28) and (4.29):
F;=F+F} (4.30)

It should be noted that several alternative formulations to the computation of
F; (4.28) and F}' (4.29) are possible. The following alternative version ensures that
the total force on each side is equivalent to the assumed constant stress. However,
typically a few fairly large corrector forces F} are obtained with this reformulated
optimization. It should be noted that the larger the maximum difference between
the corrector forces along an edge is, the more the force system deviates from the
assumed constant stress distribution.

In this alternative formulation, the forces in the first step are given by (consider

again the top edge in Figure 4.7):
F, = 1,0; ;>
= e (4.31)
F,=o .il:..

where a is length of the window edge and €., is the horizontal distance (or vertical
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distance when the side edges are considered) along the edge between the two outer-
most nodes in the network. This set of equations ensures that force equilibrium is
exactly satisfied along each edge. AF; = AF, = 0 and only a moment imbalance
AM exists. In the second step the corrector forces are found from:
ming = =2, (F/F.)” + (F/F)’
roite F¥, =0 for iside =1...4
subject to { Y[t F =0 foriside=1...4
£ (FLy - Fie) = -AM
where n,_ represents the number of boundary nodes along edge iside.
The corrector forces F;. are a linear function of the assumed stresses, o, o, or
Try, Used in the first step (4.31). The relationship between the total external forces
(4.30) and the assumed uniform stresses can thus be written in matrix form:

{Fb}ﬁt.xl = [H]h.xs {’}le (4'33)

where the transformation matrix H only depends on the geometry of the microstruc-
ture and is computed using the two-step process described above. It should be noted
that the value of the goal function ¢ = 3%, (F;f',/F;f,)2 + (I",’;,/I;‘,",)2 is an error
measure for the deviation from the desired constant stress state. This relative error

(4.32)

becomes smaller as the averaging window size A increases.
Substitution of (4.33) in (4.27), together with the equivalence of (4.27) and (4.24)
leads to the following result for the elasticity matrix [C]:

[C] = (4 (H]™ (] (H]) ™ (4.34)

The matrix [fis) still needs to be determined. Formally, [fis] can be obtained
through an inversion of [S], since the same coordinate system of forces and displace-
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ments is used for the formation of the two matrices. However, the matrix [S] is the
stiffness matrix of the unsupported microstructure and is thus singular, which means
that a straightforward inversion of [S] is not possible [Ghali and Neville, 1989).

Since the microstructure is in equilibrium under the boundary forces {F,}, it
is straightforward to introduce a set of boundary conditions, which make the mi-
crostructure statically determinate. These boundary conditions only affect the rigid
body displacement and rotation, but do not alter the strain energy. With these
boundary conditions the matrix [S] becomes non-singular. Note that, depending on
which nodal displacements are prescribed, the flexibility matrix [fis] will vary accord-
ing to the particular boundary conditions, which are imposed, but the strain energy
(4.27) stored in the microstructure will remain the same.

The computational advantage of this technique over the displacement-based one
is that the calculation of [fis] requires only 2n, columns of [S] to be inverted. Com-
putation of [S°], however, requires inversion of 2n; columns of [S]. Since n, varies
linearly with the window dimensions, while n; increases quadratically, the force-based
technique becomes increasingly more interesting from a computational point of view
as the window size A increases. This advantage leads to considerable savings in
the context of Monte Carlo simulation. The force-based homogenization is typically
faster as soon as the network contains more than 15 to 25 nodes. The bandwidth of
[Ses) can easily be kept very low as well.
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4.6 Estimation of the Equivalent Macro-Random Fields

4.6.1 Introduction
Application of any of the homogenization procedures discussed in the previous section
results in a Monte Carlo data series for the elastic moduli, C;;, of the equivalent
continuum for different homogenization windows A. The objective of this section
is to indicate how a continuum random field description can be derived from the
statistics of these Monte Carlo data. This continuum random field model for [C]
allows the use of a Stochastic Finite Element Method (SFEM) for structural analysis.
In this section a brief overview of the required random field theory is given first.
Extensive use is made of the locally averaged random field theory. An excellent
reference on random field theory is Vanmarcke (1983). Applications of locally aver-
aged random fields to a structural analysis problem can be found in Vanmardke and
Grigoriu (1983) and Chakraborty and Dey (1996). Fitting experimental data to a
random field model is discussed in Vanmarcke (1994) and Fenton (1999b). A digital
simulation method, developed specifically for locally averaged random fields, is dis-
cussed by Fenton and Vanmarcke (1990) and compared with other existing methods
in Fenton (1994).

4.6.2 Locally Averaged Random Fields

Definitions

A two-dimensional random field describes the behavior of a stochastic variable Z —
such as Young’s modulus or the elastic modulus C}, in (4.1) — over a two-dimensional
surface with a coordinate system (z,y) or x. Mathematically, a random field Z(z, y)
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or Z(x) is defined by its marginal and all its higher-order finite-dimensional probabil-
ity density functions at all locations x [Lin, 1976]. In civil engineering applications,
however, the random field description is usually limited to the specification of the uni-
variate, or marginal, probability density function and the auto-correlation function.
The (auto-)correlation function R(x;,Xx;) is a measure for the relatedness between
the field variable Z at two locations x; and x2. A random field is homogeneous if
R(x,,x;) is invariant with respect to a shift in the origin. In this case, the mean
E(Z(z)), where E is the expected value operator, i8 location independent, and the
auto-correlation function R depends only on the distance 7 = x2 — x; between the
locations x; and x2: R(x;,x2) = R(T).

The moving local average field over a rectangular area A = £, ¢, is defined as the
random field Z4(z,y). The symbols are defined in Figure 4.8:

1 [e+/2

Zae) =5 [ [T 2(€ mdedn (4.39)

z—ls/2
This definition can be extende:i to an area A of arbitrary shape — wherz (s, y) is the

centroid of the area A:

Za(z,y) = % // Z(&,n)dA (4.36)
A

Variance Reduction Function

For a homogeneous random field, the mean is not affected by the averaging operation.
The averaging process does, however, reduce the variance in general. The variance
reduction function (VRF) 7 relates the variance of the moving average field Var(Z,)
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Figure 4.7: Computation of nodal forces, required for a force-based homogenization
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Figure 4.8: Local averaging of random field
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to the original point variance Var(Z):

Ya(z,y) = \‘{,:((ZZ‘((::)))) (4.37)

Since homogeneous random fields are invariant, statistically, to a shift in origin,
the VRF depends solely on the averaging area A. The location (z,y) becomes irrel-
evant and can thus be dropped from the notation. Thus, the parameters describing
the averaging area A are the only arguments for the VRF 7 of a homogeneous ran-
dom field Z. For rectangular areas A = £,£,, the following notation can then be
introduced:

Var (Za—e.e,) = 7 (e, ) Var (2) (4.38)

Correlation Function R(z,y) and VRF v

The VRF plays an important role in the theory of locally averaged random fields
[Vanmarcke, 1983]. It allows one to evaluate the covariance of local averages of a
homogeneous random field over two rectangular areas A and A’ — overlapping or not
— with sides parallel to the coordinate axes (see Figure 4.9a for a definition of the

symbols):
Var(Z2)
4AA

where ['(€1, £21) = (Enlar)*7(lrs, Cu1)-

For a homogeneous continuous random field the auto-correlation function R be-
tween two points of the random field Z depends only on the distance between those
points. Consequently, the auto-correlation function R4 of the locally averaged ran-
dom field Z, depends on both the distance between and the size of the averaging

Covar (ZA, ZA') =

3 3
S )T (. ta) (4.39)
=0 =0

areas. By choosing the intervals ¢,x and €2 as in Figure 4.9b, (4.39) generates an
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expression for the auto-correlation function R, of the two-dimensional field of local

averages Zy4:

r: +z,4,+y)+Irl:—z,4,+y)
1 +L(l:+z,6,—y)+T (L —z,6,—y)
466) | _or (6, +v) - 2t - )
| 2T (6 +2,6) — 2 (6~ 2,4) + 4T (z,y) |
In the limit for £, £, — 0, one obtains the relationship between the “generalized”
VRF v - there is no longer an averaging area — and the auto-correlation function
R(z,y) of a continuous homogeneous 2-dimensional random field, which depends on
the lag (z, y) only. In the limit for &, £, — 0, the finite difference expression (4.40) for
R, transforms into the following fourth-order partial derivative [Vanmarcke, 1983}

R(z,y) = %az?‘av,

Scale of Fluctuation and Auto-Correlation Function
For certain one-dimensional random fields, the VRF tends towards the following
asymptotic expression when the averaging domain 7 is sufficiently large:

RA (.’t, y) = (4.40)

(Zv*1(z.v) (4.41)

4
A(r) =2, for Ir] — oo (4.42)

where the constant 8 is defined as the scale of fluctuation. It can be shown that
the scale of fluctuation 6 is finite only if the “first moment” of the autocorrelation
function is finite [Vanmarcke, 1983}, which requires that:

rR(1t) =0, for |r] — 0o (4.43)
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In that case, the scale of fluctuation 8 can also be computed from the 1D auto-
correlation function R(7):

9= /: R(r)dr = 2 /o" R(r)dr (4.44)

Similarly as for 1D fields, for 2D locally averaged random fields the characteristic
area a is defined as:
™z,9) = . for al. Iyl = oo (4.45)
which yields a finite value for a only if the correlation R decays sufficiently rapidly in
all directions (4.43). For multidimensional random fields, a scale of fluctuation can
be defined in any direction using (4.42) where 7 is defined as the averaging domain
in this direction.
The correlation structure is said to be separable when the multidimensional VRF
can be expressed as a product of one-dimensional VRF's [Vanmarcke, 1983]. For the

2D case:

7=, y) = n(z) ) (4.46)

In this case the characteristic area a is defined as the product of the directional

scales of fluctuation 6, and 6,:
a=0,6, (4.47)

4.6.3 Application to Micromechanical Model

Using any of the homogenization approaches in Section 4.5, it i8 clear that if the
microgeometry is generated from a Poisson point process, the random fields for the
material properties of the equivalent homogeneous continuum will be homogeneous
as long as the link stiffnesses are IID.
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Repeated application of one of the homogenization techniques (4.20), (4.23) or
(4.34) to a large random sample of micro-structures generates the elastic moduli
C:; of the equivalent homogeneous continuum approximation in equation (4.1) as a
moving locally averaged random field. These values can be considered “structural”
averages of the individual stiffness of the discrete constituents in the heterogeneous
micro-structure [Ostoja-Starzewski, 1994b].

The one-dimensional probability densities for C;; are obtained from the his-
tograms, obtained using Monte Carlo simulations. When this procedure is now re-
peated for different averaging area sizes and shapes, the variance reduction function vy
can be estimated from the resulting data. The auto-correlation function R(z,y) can
then be derived from this VRF by of equation (4.41). The approach will be
illustrated for both a macroscopically isotropic and a orthotropic micro-mechanical
model in the next Chapter.

The homogenization procedure defines the equivalent continuous random fields
Cij(z,v), i,7 = 1...3, based on the discrete microstructure. The auto-corvelation
function R, obtained in this manner, must be interpreted carefully. It may
that R gives the correlation between the values for C;; in any 2 points. This is only
apparently so, since the assumptions underlying equation (4.41) are satisfied only
when sufficiently large averaging areas, i.e. larger than the RVE, are considered.
Otherwise, the discrete system can not be homogenized in a statistical sense and
the discrete micro-mechanical model itself should be used in a structural analysis.
The result for R in equation (4.41) as an auto-correlation function between 2 points
must therefore be interpreted as a limiting case and merely serves as a mathematical

tool to compute the covariances and cross-covariances for other than rectangular
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averaging areas, as needed for a FE analysis.

This distinction is of theoretical interest only as long as only the macroscopic
behavior is of interest, but becomes important when a detailed study of local effects,
such as crack propagation, is the goal of the structural analysis. The homogeniza-
tion procedure blends the discrete and continuum mechanics and allows for a smooth
transition between the study of global and local effects. This is the major difference
between this “meso-continuum” resulting from a stochastic homogenization proce-
dure and the “classical” continuum. It is a direct result of the discrete nature of the
micro-structure, which invalidates the use of limits such as equation (4.16).

The necessity to introduce an assumption about the strain or stress distribution
along the window boundaries has implications on the subsequent FE analysis. For the
structural analysis of the equivalent homogeneous continuum to be fully consistent
with the discrete micro-mechanical model, the assumed strain state and boundary
deformations - expressed through (B} in (4.20) for instance — must be compatible with
the shape functions of the finite elements [Ostoja-Stamewslﬁ', 1993]. Only triangular
constant strain elements are consistent with the assumptions made for the derivation

of the homogenization equations (4.20), (4.23) or (4.34).

4.7 Modeling Window Boundaries

The boundaries of the selected window A (Figure 4.6) require careful modeling before
the micro-structure is homogenized. Three solutions can be distinguished:

1. Periodic boundary conditions. They allow to select a unit cell from a periodic
macrostructure. Randomly periodic models are useful in the analysis of matrix-
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inclusion composite models or reticulate structures.

2. Those links, which intersect with the window boundary, are cut. The advantage
of this method is that it is easy to see how multiple small windows constitute
a larger area without overlap. This is particularly convenient when a random
field simulation technique based on local average subdivision is used [Fenton
and Vanmarcke, 1990].

3. The averaging window is adjusted to a polygon shaped area (see Figure 4.6)
in order to prevent the cutting of any links. This method has the advantage
that both the stresses and strains can be controlled at the window boundary,
which allows us to compare the different homogenization techniques.

When a randomly periodic model is used, the homogenization process connects
the material microstructure to an equivalent continuum through periodic boundary
conditions, which is shown in Figure 43 [Graham and Baxter, 1999]. However, this
geometric periodicity is not appropriate for materials with truly random microgeom-
etry such as concrete [Ostoja-Starzewski and Wang, 1990].

When the links are cut at the window boundaries, only displacement-based ho-
mogenization techniques can be used. Figure 4.10 compares the average elastic mod-
uli obtained through homogenization using the second and third approach. It can
be concluded that both approaches give very similar results for the average elastic
properties.

However, cutting the links at the window edges may introduce “stray” links,
shown in Figure 4.11. When a link is not connected to any other links, an arbitrary
small value for the network stiffness can be obtained in the homogenization process:



128

Y 124
—tn
' &y
S N S
| ] A )
t § i .-!d
- ‘!l é 7 'I =
AL ; &

Figure 4.9: Definition of distances needed to evaluate the covariance function
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the elastic material properties
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in the sample network in Figure 4.11, Cx, is almost equal to zero for homogenization
window 1 on the left. Stray links usually occur in the corners of the homogenization
window only as in window 2 in Figure 4.11. For small averaging windows, however,
they may make up the entire network, an example is window 3 in Figure 4.11, and
produce incorrect values for the equivalent stiffness.

The arbitrary stiffness values obtained for such windows increase the variance of
the elastic moduli in Monte Carlo simulations of the microstructure. Since this error
in the variance is larger for small homogenization windows than for large windows,
the variance reduction function will be biased.

This increased variance adversely affects the estimation of the autocorrelation
function. Locally averaged random field theory predicts that the product AVar (C;;)
becomes constant for large A, depending on the auto-correlation structure in the ran-
dom field. The detailed conditions are given in Vanmarcke (1983) and are discussed
in the next section. A comparison of AVar (C;,) as a function of the window size for
gounda.ry model types 2 and 3 is shown in Figure 4.12. The graph clearly indicates
the increased variance using boundary model 2 which is obtained for small averaging
windows. It then follows from locally averaged random field theory (4.41) that the
auto-correlation function for both boundary condition models must be different.

The boundary effect, which is caused by cutting the links, decreases as the win-
dow size A increases. Figure 4.12 shows that both boundary models converge for
large window areas. It can be concluded that cutting the links at the window bound-
aries should be avoided for small averaging areas because it significantly alters the

correlation structure of the random field [C].



AVar(Cy)

lmgth of edge of syeare hosmogenisation window

Figure 4.12: Impact of boundary modeling on correlation structure
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The third approach is used by Gasparini et al. (1996) to analyze the force-
displacement behavior of brittle Voronoi-Delaunay lattices, subject to axial load
only. The Delaunay network is obtained as follows [Okabe et al., 1992]. Given a set
of n distinct nodes in the plane, the area is subdivided into n cells. Each cell around
a node contains all points in the plane, which are closer to this particular node than
to any other node. This is illustrated in Figure 4.14 where the center of each of
the granulates in the actual microstructure is a generator point for the Voronoi dia-
gram. The lattice model, which connects all nodes with their neighbors is known as
the Delaunay triangulation. Efficient algorithms are described in Joe and Simpeon
(1986) and Field (1991) , FORTRAN routines are given in Joe (1991). Gasparini
et al. (1996) analyze Delaunay lattices, where the nodes are given by uniform Poisson
point process [Getis and Boots, 1978].

In Gasparini et al.’s (1996) study, only links which are fully inside the area are
included in the network. Displacements are prescribed for nodes within boundary
strips (see Figure 4.13) at the top and bottom of the square specimens. The width
of the boundary strips is equal to the mean spacing of the nodes. When the network
is based on a uniform Poisson point process with a point density of A nodes per unit
area, this boundary strip width is thus equal to 1/v/).

A drawback of this modeling is that the resulting network is not always stable.
Our simulations have shown that omitting the links which intersect the window
boundary may result in the formation of a network in which one or more triangles
are connected to the rest of the network by one node only. This results in a singular
stiffness matrix. To avoid this problem, the following improved technique is suggested
in this dissertation: the links which are part of triangles intersecting the window
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et al. (1996)

Voronoi Cell Model Delaunay Trionguiation

Figure 4.14: Micromechanical modeling of a material
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boundary are included in the homogenization process and the displacements are
prescribed for all nodes outside the window boundary. The final network is now no
longer obtained by omitting links, but by adding pairs of links, which form a new
triangle. This procedure guarantees that the stiffness matrix of the resulting truss
model is always positive definite.

Because of the randomness of the lattice model, the boundary nodes are not
evenly distributed along an edge. As a result, depending on the distribution of the
boundary nodes along the edge, prescribing the deformation of the nodes in such a
boundary strip might be a poor model of a constant displacement along that edge
when the boundary modeling technique of Gasparini et al. (1996) is used. This is
the case at the bottom of the sample network shown in Figure 4.13. Because the
nodes are concentrated near both ends, prescribing a zero displacement at the 5
nodes in the bottom strip is not an accurate modeling of a fixed bottom side of the
square panel. Consequently, the boundary modeling, which is used by Gasparini
et al. (1996) is not always an accurate reflection of the boundary.oonditions of the
continuum. Because the node spacing has a much lower probability of being large in
the newly suggested boundary model, this is no longer a problem when the improved
boundary model is used.

The shortcomings of Gasparini et al.’s (1996) boundary model become apparent
in simulations of rectangular or square specimens, which are subject to a vertical
strain while lateral extension is prevented. A sample network and its deformed state
are shown in Figure 4.15. The total horizontal reaction force, F;, along the vertical
side of the network and the total vertical reaction force, F,, along the bottom of the
network are calculated for 4000 Monte Carlo sample networks. Table 4.1 shows that
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New boundary model

p(ndﬂ'pi Fz) p(n“ﬂ'lv F’) p(ndﬂ'?, Fs) p(nl"'l'p’ Fj)

Boundary strip model

Specimen size (w x h)

0.01)

(density A

0.096
0.116

0.088

0.215

0.133
0.083
0.087
0.079

0.292
0.312

0.259

0.411

0.304
0.284
0.213

0.246

100 x 100
100 x 300
250 x 250
250 x 750

Table 4.1: Estimated correlations between the number of nodes in boundary strip

and the total reaction force along an edge (standard error less than 0.02)

m,s

0 \,.

Figure 4.15: Sample compression test used to assess the quality of the boundary

modeling
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et al. (1996) obtained from 4000 Monte Carlo simulations on square specimens
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Figure 4.17: Correlations between n,., and F, using suggested improved boundary

model obtained from 4000 Monte Carlo simulations on square specimens 250 x 250
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there is a significant correlation between the number of nodes in the boundary strip
and the total force along a side. This correlation becomes increasingly important
for smaller averaging windows. The smaller reaction forces obtained in the samples
which have less boundary strip nodes introduce severe bias in the overall probability
distribution of the network stiffness, which becomes negatively skewed (Figure 4.18).
The correlation would disappear if the boundary strip width is increased, but this, in
turn, affects the overall structural behavior of the network. In that case the stiffness
of the network would be overestimated since the displacements would be prescribed
for most of the nodes. This would bring us closer to effectively using (4.23) for
homogenization instead of the intended use of (4.20).

The previously suggested improved boundary modeling significantly reduces this
correlation as shown in Table 4.1. Comparison of Figure 4.16 and Figure 4.17 indi-
cates that this improvement can at least partially be attributed to a reduced variance
in the number of boundary nodes. Figure 4.18 shows that the variability of the re-
action forces is overestimated in the Gasparini-model becanse of the long lower tail.

Another advantage of the suggested boundary modeling technique is that the
displacements of the internal nodes are in no way affected by the boundary model-
ing because the new model does not require to prescribe the displacements on any
additional nodes. Note that the actual homogenization area is no longer equal to
A, but this is easily taken into account by calculating the exact area of the polygon

(Figure 4.6).
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4.8 Summary

A framework for homogenization of discrete, heterogeneous microstructures into ho-
mogeneous continua is presented in this Chapter. The discrete and continuum model
are said to be equivalent if the strain energy stored in the material under the same
uniform boundary conditions is identical for both models. Expressions for the ma-
terial properties of isotropic materials with a regular microgeometry are derived.

For a discrete microstructure with random geometry the elastic material prop-
erties of the equivalent continuum can be calculated on the basis of either strain or
stress-based boundary conditions. Existing strain-based techniques are reviewed and
a new, stress-based homogenization procedure is introduced.

The homogenization algorithm requires the specification of boundary conditions,
which require careful modeling. Several boundary model types are reviewed. It is
shown that cutting the links at the window boundaries increases the variance. The
effect is particularly pronounced for small homogenization windows. It is concluded
that the auto-correlation function of the random field cannot be estimated accurately
when the links are cut at the window boundaries.

The shortcomings of omitting the links which intersect the window boundary
are illustrated. The resulting network is not necessarily stable and the boundary
conditions may be poorly modeled in networks with high geometric randomness. It
is demonstrated how including the links which intersect the window boundary in
the network guarantees that the resulting network is stable. This technique also
significantly improves the boundary modeling.

The random field characteristics of the material properties of the equivalent con-
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tinuum can be estimated using locally averaged random field theory. Some important
features of the locally averaged random field theory are reviewed. The mean and
standard deviation of the elastic properties for any given window can be estimated
by means of a Monte Carlo simulation of the microstructure and subsequent homog-
enization thereof. The variance reduction function (VRF) can be estimated through
a repetition of the Monte Carlo simulation procedure for different window areas
and aspect ratios. The locally averaged random field theory gives the relationship
between the VRF and the auto-correlation function of the continuous random field.



139

0 10 2 0 0 S0 60

Figure 4.18: PDF of the horizontal reaction force F;, obtained using 4000 Monte
Carlo simulations (specimen size: 100 x 100)



Chapter 5

Consistent Macro Random Fields in Structural

Analysis

5.1 Introduction

In this chapter, the framework, which was presented in Chapter 4 to model the
random field characteristics of equivalent continuum elastic properties, is applied to
different microstructures. Some of the interesting features of the resulting macro ran-
dom fields are highlighted and the significance for structural reliability applications
is demonstrated by means of examples. The response statistics obtained from an
SFEM analysis based on micromechanically consistent random fields of the material
properties are compared with the results of an SFEM analysis where only Young’s
modulus is modeled as a random field.

The impact of the uncertainties associated with the stiffness of the linear elastic
micromechanical model on the statistics of the homogenized continuum are assessed.
The dependence of the random field material properties on the characteristics of
the discrete spatial random field, which defines the microgeometry, is illustrated.
The accuracy and computational efficiency of the three different homogenization
techniques, which were presented in Chapter 4, are compared with each other.

140
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5.2 Features of Consistent Macro Random Fields

5.2.1 Uniform Poisson-Delaunay Microstructure

Several important conclusions can be drawn regarding specific features of the con-
tinuous random field describing the macroscopic equivalent continuum. Consider
first the results for the expected value and standard deviation of [C]. It follows
directly from the micro-mechanical constitutive law (4.8) that EE([C]) varies with
E (K) /E (¢) (to first order). Since the mean link length E (¢) is v, E ([C]) depends
on E(K) V.

This is easily understood when visualizing the limiting case without any variabil-
ity and where the AA nodes are evenly distributed in space: the lattice network then
becomes a chain of parallel bar systems where all links have stiffness K/¢ and the to-
tal stiffness of such a network is K/{. The standard deviation of [C] increases slower
with A than IE ([C]) does, which implies that COV([C]) decreases as a function of
A for constant K. The dependence of E (C),) and StDev(C),) on the density of the
nodes A is shown in Figure 5.1.

Note that, in a practical application, the density A is determined from the mi-
crostructure through image analysis [Russ, 1995] and, consequently, it should not
be considered a variable parameter in the analysis. The parameter K is selected
such that the stiffness of the network model, obtained using the homogenization
procedure, corresponds with the experimental macroscopic stiffness data available.

Analysis of the sample elastic moduli C;;, obtained by homogenization of Monte
Carlo simulated microstructures, suggests that a multivariate joint normal distribu-
tion fits the 6 elastic moduli C;; quite well. The marginal normal probability plots
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Figure 5.1: Dependence of E (C1;1) and StDev(C1;) on the density of the nodes A for
constant stiffness K and window size 50 x 50
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Figure 5.2: Normal probability plots for C;; (window size 100 x 100, nodal density
A =0.01)
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for two different averaging window sizes are given in Figure 5.2 and Figure 5.3. It
can be concluded that the quality of the Gaussian distribution model deteriorates
as the homogenization window becomes smaller. This can be explained as follows.
When the size of the homogenization window decreases, the variance of C;; increases.
When the variance of C;; increases, negative values become possible when a Gaussian
distribution model is used. However, the elastic moduli C,,C)3,Ca2z and Css are all
non-negative. As a result, the average value for C), increases for small areas A (see
Figure 5.4), which indicates that [C] can no longer be considered a homogeneous
random field for small A. Note that Figure 5.3 indicates that the quality of the
Gaussian model is still quite good for Ci3 and Cas.

Appropriate truncation of the Gaussian distribution can, to some extent, solve
this problem. In this context, it is important to understand that the small ho-
mogenization windows have limited practical use. With the selected nodal density
A=0.01, a lO_x 10 window contains on average only 1 internal node and appraxi-
mately 10 links. This window is actually smaller than the RVE: insufficient microcon-
stituents are available for this medium to be statistically homogeneous [Hashin, 1983].
The non-normality problem rapidly vanishes as the window size increases. From the
simulation results it can be concluded that, for the selected nodal density A = 0.01,
the size of the RVE is appraoximately 30 x 30 for this type of microstructure. Only
windows of at least this size are large enough for the microstructure to be statisti-
cally homogeneous. Figure 5.4 indicates that the average i8 practically invariant for
window sizes larger than 30 x 30.

The normal distribution model appears for other microstructures as well. Based
on a homogenization using the Generalized Methods of Cells, Graham and Baxter
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Figure 5.3: Normal probability plots for C;; (window size 10 x 10, nodal density
A =0.01)
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Figure 5.4: Expected value of the elastic moduli C;; as a function of the homoge-
nization window size.
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(1999) observe that a Gaussian distribution models the Young’s modulus of fiber-
reinforced composite materials very well, as long as the homogenization area is not
too small.

In structural reliability applications, not only the variability around the mean
value but also the tail behavior is very important [Maes and Huyse, 1995]. The
Gumbel plot in Figure 5.5 of the Monte Carlo data for C;; and the fitted Gaussian
model illustrates that a good fit of the lower tail of the elastic modulus Cj, is ob-
tained. This ensures an adequate prediction of extreme responses, such as maximum
deformations, in structural analysis [Huyse and Maes, 1999b].

For a density A = 0.01, Figure 5.4 shows that IE([C]) rapidly becomes inde-
pendent of the size of the averaging window A. The results, obtained for a square
window A = 100 x 100 (scale § = VAA = 10) with K = 10 using 6,000 Monte Carlo

sainples, are given below:

1.033 0.385 0.000
E([C) = 1.035 0.000 (5.1)
sym 0.324

0.075 0.025 0.028
StDev ([C]) = 0.075 0.028 (5.2)

sym 0.020
The standard error on these estimates is less than 0.001 for EE ([C]) and 0.0001
for StDev([C]). The lattice-type microstructure in this example is expected to be
isotropic since the density of the node-generating Poisson point process is uniform.

For isotropic materials, the plane stress constitutive equation (4.1) in classical con-
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tinnum mechanics is a function of just two properties: Young's modulus E and
Poisson’s ratio v and the resulting elasticity matrix [C] is given in (4.5). Compar-
ison of (4.5) with the numerical result obtained in (5.1) indicates that the classical
result for the elasticity matrix [C] is a good approximation of the average behavior.

However, the results obtained in (5.2) indicate that a straightforward random-
ization of (4.5) would not be consistent with the micromechanical model. Indeed,
even if E and v are both considered random fields, C,3s and Cy; will still be zero (de-
terministically). This does not correspond to the second-moment information of C,s
and Ca3 given in (5.2), which indicates zero mean but a non-zero standard deviation.
Another interesting result is that the coefficients of variation for the shear (C\2 and
Cs3) and axial (C), and Cy;) stiffness are prgctically the same: approximately 7% in
this example.

For square averaging windows, the correlation between two elastic moduli C;;
and Cy, is practically independent of the scale §, for a window larger than the RVE:
6 > 3 or window size larger than 30 x 30. These constant correlation coefficients, as
obtained from 6,000 Monte Carlo simulations for a square homogenization window
with scale § = 10, are:
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PC,;Cu Cu Ci Cis Can Ca Caa
Cu 1 0470 0.001 -.002 -002 0.463
Ci2 1 -.002 0472 -005 0.765
Cis 1 -009 0661 -010 (5.3)
Cxn 1 0.002 0.428
Cx sym 1 -.015
Css 1

The standard error on these estimates is obtained using bootstrap resampling
(B = 1000 bootstrap samples are used) [Efron and Tibshirani, 1993] and i8 less
than 0.017 for all correlation coefficients. Interestingly, these correlations are also
quite different from those obtained using a straightforward randomization of equation
(4-5). More specifically:

1. The correlation between C;, and Cy, is practically zero in the mncromedmn:ml
model (5.3), whereas randomization of E and v in equation (4.5) would result
in perfect correlation between C,, and Cx;. It can be concluded that a lattice
with this type of random microstructure is isotropic in the mean only. For
finite averaging areas, the material is stochastically anisotropic. According
to (5.3), there is no correlation between the stiffnesses in different directions:
Pcucn = 0. This automatically follows from the uniform density of the nodes
over the window.

2. According to the micromechanically based homogenization technique, the cor-
relation between either C), or Cy3 and either C; or C22 should be in the range
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0.4-0.5, whereas use of (4.5) leads again to a perfect correlation coefficient of 1
if only FE is assumed to be a random field.

3. Only the correlations between C,3 or Czs and any of the other elastic moduli
C;; are basically zero for both approaches. A large correlation coefficient is
obtained between C)3 and Ca3. Both of these moduli are deterministically zero
when (4.5) is randomized.

4. A high correlation is observed between the shear moduli C); and Css in the
micromechanical model. Use of (4.5) implies a perfect correlation if only E is
modeled as a random field.

The VRF ~ expresses how the variance of the moving average field reduces with
respect to the original point variance as a function of the averaging window size.
The correlation function R is related to the VRF + through equation (4.41). Using
Monte Carlo simulations, the variances and covariances of the elastic moduli C;;
can be estimated for different rectangular areas 4 = £, ¢, a.nd.diﬁ'erentaspectratios
€:/€,. A VRF can be estimated for each of the variances and covariances of the
elastic moduli C;;.

In general, a very good agreement between the Monte Carlo data and the follow-
ing separable VRF-model is obtained:

oo @@ e

where 6,,0, are the scales of fluctuation in z and y-direction and m, n are constant
model parameters. When m, n are larger the product A~ approaches its asymptote,
i.e. the characteristic area 6.0,, faster for smaller values of £, and ¢, than when m
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and n are small. The quality of the fit of the VRF model to the Monte Carlo data
for the variance of C;; and the covariance between C), and C,; is given in Figure
5.6.

The VRFs for C,; and Cx, are direction dependent: 8, # 6,,m # n. Because
the geometry is statistically homogeneous and thus orientation-independent, the
VRF parameters are interchangeable between the equations: 0: c,, =6y .cn,0y.c:;, =
0:.Crp»MC,, = Ncm, 80 ng,, = Mc,,. Figure 5.8 shows that Var(C);) decreases
faster in y-direction than in z-direction, and vice versa for Var(Cy;). This can also
be derived from the contour plots of the autocorrelation function R in Figure 5.7.

The microstructure in this lattice model is based on a point process with uniform
density and the stiffness parameter K in (4.8) is constant. Consequently, the random
field is a so-called finite scale model [Fenton, 1999a), i.e. no significant correlation
exists over large distances. The scale of fluctuation 8 is of the same order of magni-
tude as the average link length £,y in the micromodel. This is illustrated in Figure
5.7: no significant correlation exists in the locally averaged field beyond neighboring
elements.

The auto-correlation and cross-correlation functiozs of the elastic moduli C;;
are computed from the fitted VRFs using (4.41). Figure 5.7 shows that the auto-
correlation structure of the axial moduli C;; and Cx; are quite direction-dependent.
The auto-correlations of the shear modes C;; and Css are almost direction-independent.

5.2.2 Orthotropic Poisson-Delaunay Microstructure

In this section, the features of the macro random fields are obtained for an orthotropic
material. Orthotropy is achieved by selecting the density of the nodes twice as
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Figure 5.5: Gumbel plot for Cy; /K and C;2/K (10,000 simulations, density A = 0.01)
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Figure 5.6: VRF of Var(C},) and Covar(C},, C}2) for square homogenization windows
(dots indicate simulation results)
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high in the z-direction as in the y-direction. Figure 5.9 compares a sample of the
orthotropic microstructure with an isotropic one. The summary statistics for the
mean, standard deviation and correlation, as obtained from 1000 simulations on

square homogenization windows 100 x 100, are given below:

0.373 0.319 0.000
E(C]) = 2.035 0.001 (5.5)
sym 0.263

0.033 0.021 0.017

StDev ([C]) = 0.116 0.032 (5-6)
sym 0.017
pc;culCu Ciz Ci3 C Cxn Cgp
Cun |1 0382 -038 -049 -.018 0.393
Cra 1 -069 0508 -.005 0634
Cia 1 -013 0545 -020 (5.7)
Cx 1 0018 0231
Can sym 1 0.013
Css 1

The standard error on these estimates is less than 0.004 for E ([C]), 0.0006 for
StDev([C]) and 0.033 for pc,,c,,- The following conclusions can be drawn from this

simulation:

1. Because the density of the nodes is higher in z-direction than in y-direction,
the links are primarily oriented along the y-axis. As a result, the stiffness in y-
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direction is higher than in z-direction. On average, the material is orthotropic:
E(Cz)=E(Cu)=0.

2. The results for the standard deviation in (5.6) indicate that the material is
stochastically non-orthotropic: the standard deviation of C\3 and Cy is of the

same magnitude as for C;;, C)2 and Cys.

3. Similar to the isotropic microstructure, the axial stiffnesses C), and Cy, are
practically uncorrelated.

4. The microtexture affects the correlations as well. Because of the clear orienta-
tion of the network, the correlations between the shear and the axial stiffness,
pc,,Cra a0 PeiCy, are Do longer identical. However, there are no drastic
changes in correlation between (5.7) and (5.3).

5.3 Significance for Structural Analysis

5.3.1 Objective and Definitions

The goal of this section is to demonstrate the importance of an accurate estimation
of the correlation between the individual elements of the elasticity matrix [C]. First,
the impact of the correlations pc,;c,, on the structural response of continuum models
is assessed. Two continuum models and one discrete model are defined:

e Model 1: A micromechanically besed continuum. The random field character-
istics are obtained using stochastic homogenization of the microstructure. The
second-moment information of C;; is given in (5.1) and (5.2). The correlations
between C;; and Cy, are given in (5.3).
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e Model 2: A “classical” random continuum, as given by (4.5) where only FE
is modeled as a random field. Since all elastic moduli C;; in Model 1 have
the same COV, the random field characteristics of E can be chosen such that
the marginal densities of the non-zero elements in (4.5) are identical in both

models:
Var(C) = Var(Cz) = Var (E/ (1 —1?)) (5.8)
Var(Cyz) = Var (Ev/ (1 —?)) (5.9)
Var(Css) = Var (E/2(1 +v)) (5.10)

e Model 3: A discrete micromechanical model. This is the basis for the homoge-
nized continuum of Model 1. The model geometry is obtained as the Delaunay
triangulation of a uniform Poisson point process with density A = 0.01 and
stiffness parameter K = 10.

In a second application, the structural response, obtained using the full discrete

micromechanical Model 3 is compared with both continuum models.

5.3.2 Element Subject To Constant Strain

The differences between the stochastic properties of the elasticity matrix [C] in Model
1 and Model 2 have important consequences for structural analysis. Consider a
rectangular element subject to a constant strain state ¢ = {0,¢,,0}”. The resulting
stresses in the element are:

o, Cir2

Oy = 022 &y (5.1 l)
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for Model 1, and

dg 174

Ee
oy §= e (5.12)
Oy 0

for Model 2. Because the COV of the marginal densities is practically the same for
all C;;j, both models will result in the same marginal densities for the stresses, except
for the shear stress o.,, which is always zero in Model 2.

The impact of the correlation pc,c, between C;; and Cy is clear when the

maximum shear stress 0., max is calculated:

P \/ (%)2 +a2, (5.13)

A SFE analysis indicates that the contribution of the shear stresses 0., in the
horizontal and vertical direction to the maximum shear stress 0,y mex) 8 minimal
in this application. If their contribution is ignored, an analytic expression for the
variance for the maximum shear stress 0., ma.,1 can be obtained by FOSM analysis:

Var (0rymax1) = E:’- [Var (Cy2) + Var (Cz2) — 2Covar (Cy3, Ca)) (5.14)

= 2 [Var (Cua) + Var (Caa) — 2y Ve (Crz) Ve (G
for Model 1, and equal to
Var (@aymaxa) = 2 (1 - )* Var (C) (5.15)

for Model 2.
For the microstructure, based on a uniform Poisson point process, the ratio of
the variances of 0y max predicted by Model 1 and 2 is equal to 3.82. When only E
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is modeled as a random field, which implies a perfect correlation between all C;;,
the uncertainty of the structural response of the material is underestimated. This
finding is also confirmed by the following example.

5.3.3 SFEM Analysis of Square Disk With Hole

In this application, a square disk (1000 x 1000) with a hole in the center (§ = 600) is
subject to a uniform horizontal displacement at the right edge (Figure 5.10). Even
though the model is, strictly speaking, not symmetric, identical statistics will be
obtained for all four quarters and thus only the upper-right quarter is modeled. A
three-way comparison is made for the horizontal reaction force F, and the vertical
displacement u, at the inside top of the plate.

The discrete micro-mechanical model, which consists of appraximately 2000 nodes,
is compared with the continuum Models 1 and 2. To ensure maximum consistency
with the assumptions used for homogenization, only constant strain triangular el-
ements are used in the Monte Carlo-based SFEM. The random fields for C;; or
E are discretized through local averaging over the finite elements [Vanmarcke and
Grigoriu, 1983]. A covariance decomposition method, which ensures that the second-
moment information of the random fields and the correlations between the elements
is represented exactly in each sample field, is used to generate sample fields for C;;
or E [Yamazaki and Shinozuka, 1990].

The variances and covariances of the random fields, locally averaged over the
triangular elements, are evaluated through approximation of the triangular area as
a sum of smaller rectangles (see Figure 5.11). The variance over each rectangle is
readily obtained from the VRF (5.4). The cross-covariance of the locally averaged
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Figure 5.12: Three-way comparison of response statistics of square disk
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Figure 5.13: Contour plots for the average vertical displacement u, and the standard
deviation of u,, obtained using Model 1 and 2.
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random fields X4 and Y3 is then:

Covar(X4,Ys) = C‘“”(x Covar(X,¥) ¢ 2222( —1)*'T (lw, tar) (5.16)

=1 j=1 k=0 1=0

where A4 and Ap denote the area of each element, I'(¢y, lu) = (Ciala)?v(Cw, la),
and the lengths £,s are defined in Figure 4.9a. The number of rectangles m and
n required for each element 8 determined such that the use of either horizontal or
vertical rectangular strips (see Figure 5.11) resuits in the same variance or covariance.

Figure 5.12 shows that the expected values of both the horizontal reaction force
F; and the vertical displacement u, at the inside top of the plate are practically
identical in all three models. A contour plot of the expected value of the vertical
displacement u, is given in Figure 5.13. The standard deviation of u,, obtained using
Models 1 and 2 is also shown in Figure 5.13. It can be seen that Model 2 grossly
underestimates the variance. The standard deviation of u,, obtained from Model 2,
is only 48% of the standard deviation, found with Model 1.

The variance obtained.by Model 1 is still somewhat smaller than for the micro-
mechanical model. This mmst be attributed to the use of a locally averaged dis-
cretization technique in the Monte Carlo SFEM, as explained by Der Kiureghian and
Ke (1988). Other discretization techniques are discussed in Li and Der Kiureghian
(1993), Fenton (1994), and Zhang and Ellingwood (1994).

5.4 Selection of Micro-Mechanical Model Parameters

5.4.1 Introduction

In trying to develop a continuum model that is stochastically consistent with an
assumed micromechanical model and assessing the sensitivity of macro-random field
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to the micromodel assumptions, it is necessary to examine the effects of some basic

choices, such as:

1. The type and degree of uncertainty associated with the elastic micro-mechanical
model links, see equation (4.8)

2. The characteristics of the discrete spatial random field which generates the
micro-geometry

5.4.2 Micro-Link Stiffness

All evidence [ Zubelewicz and BaZant, 1987; Ostoja-Starzewski, 1994b] indicates that
the first choice mentioned in Section 5.4.1. is not as critical as the second one since
any randomness associated with the link stiffness K tends to average out over the
random lattice of links. This is confirmed by our simulations where the stiffness
parameter K in (4.8) is modeled as a random variable.

In these simulations, a uniform, lognormal and Weibull distribution are assumed
for the stiffness parameter K. All these distributions have the same mean value K,
and simulations are repeated for COVs of 30% and 60%. Figure 5.14 compares the
mean value of C}; and Cj2 obtained for the lognormal assumption for K with the
result obtained for deterministic K. For a COV of 30%, a drop of the macroscopic
stiffness C;; of less than 5% is observed. When the COV is increased to 60%, the
stiffness drops about 15%. Similar results are obtained when a Weibull or a uniform
distribution is used for K.

The variance of C;; remains virtually unaffected by the uncertainty associated
with the microstifiness K. For a lognormally distributed K with COV of 60%,



162

0.14 - Ty 0%
- - - Lognormal K, COV=00%
012! . e Lognormal K, COV=
. \\\_
O
o .
> !
< i
¥oms! o
0.0¢ jx T s T
| e ————
i
0.02 i
0l
0o 12 ‘ ¢ 8 »®» 12 4 & 13

Figure 5.14: Effect of uncertainty associated with K on the average elastic modulus
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Var(C};,) increases by just 5%, compared with Var(C},), obtained on the basis of
a deterministic stiffness parameter K. It can be concluded that the uncertainty
associated with the microlevel stiffness parameter K has only a negligible effect
on the variability of the elasticity matrix [C]. Because the variances are virtually
unchanged for all window sizes, it follows from (4.41) that the correlation functions
Rc,c.(z,y) also remain unaffected by the type and degree of micro-link uncertainty.

5.4.3 Microgeometry

In all but one of the above models, the Delaunay lattice is based on a set of nodes
which is generated from a Poisson point process with a uniform density A per unit
area. Only the orthotropic micromodel in Section 5.2.2 is based on a non-uniform
Poisson point process. Loosely speaking, the nodes in the triangulation represent
the centers of the discrete constituents on the microscale. When a uniform Poisson
process is used to generate these nodes, it is possible for nodes to be extremely close
to each other, which is not a realistic modeling of the physical microstructure. The
impact of two alternatives to the uniform Poisson point process, which are suggested
in Chapter 2, on the random field characteristics of the elastic properties will be
assessed. The node-generating processes considered are:

1. randomly disturbed lattice process
2. censored Poisson process

Sample realizations of these geometries are contrasted with a uniform Poisson
process-based lattice in Figure 5.16. The disturbed lattice is based on a regular
grid of evenly spaced points, which is altered by moving each node randomly over a
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certain distance or within a certain area (see Figure 2.18). In this dissertation, the
discussion is restricted to disturbed lattices based on a regular square grid pattern,
where each vertex is moved randomly as explained in Schlangen and Van Mier (1992):
the rectangular homogenization window A is divided into n equal squares each of
size a2, which each contain exactly one vertex. The randomness is controlled by a
single parameter 0 < a < 1, where a is the ratio of the length of the square in which
the vertex must lay to the length a of one grid square.

The link lengths resulting from the three different spatial random processes have
distinct density functions (Figure 5.17), which indicates that the micro-geometric
model must be selected carefully, typically based on image analysis. It should be
noted that when a square grid is used as the basis for a disturbed lattice model, the
link length distribution becomes bimodal as the variability parameter a decreases. A
discrete distribution is obtained when a = 0: Prob(¢ = a) = %, Prob(£ =av2) =}.

For a = 1, each node is located randomly within its grid square of size a?. The
variance of the link length is less than half of the variance of the link length in the
lattice, based on a uniform Poisson point process. This reduced link length variance
results in a considerabie reduction of the variance of the elasticity matrix [C] of the
equivalent continuum as indicated in Table 5.1, obtained using the displacement-
based homogenization (4.20).

The disturbed lattice model is less random than the lattice based on a uniform
Poisson point process. As a result the expected value of [C] is increased for the
disturbed lattice model. For a = 0, no randomness is associated with the disturbed
lattice model and the deterministic result for [C] is obtained from equation (4.4):
Cit = Cx = 1.3536, C 3 = C33 = 0.3536, and Cj3 = Cz = 0.
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Figure 5.16: Sample microstructures obtained as Delaunay triangulations of three
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Figure 5.17: Comparison of the PDF of the link lengths resulting from the use of
three different spatial random processes (density A = 0.01)
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The correlations pc,,c,, between C;; and Cy; obtained with the disturbed lattice
model are given below and can be compared with the ones for a uniform Poisson
process model, given in equation (5.3). The standard error for these estimated

correlations is less than 0.025.

pcicu | Cuu Ch2 Cis Crn Cn Css
Cun 1 -0.020 0.003 -683 -033 -.090
Ci 1 -013 0.042 -041 0.616
Cis 1 0006 0.705 0.021 (5.17)
Cr 1 0028 0.001
Cn sym 1 0.001
Cs 1

It can be seen that, unlike the correlations resulting from a homogenized uniform

Poisson lattice, there is:
e A strong negative correlation between the axial moduli C;; and Cx

e An absence of correlation between the axial (C), or Cz) and the shear moduli
(Cm or C;a)

The strong negative correlation between C), and Cx; can be explained as follows.
Since the total number of nodes in the disturbed lattice model is fixed, a higher than
average C); value can only be obtained if the spatial distribution of the nodes is
such that the links which connect the nodes are more aligned in z-direction. Since
each grid cell of size a? contains exactly one node, it automatically follows that the
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links must be less aligned along the y-axis, which results in a lower than average
Coy-value.

The results of using a disturbed lattice process are also compared with those
from a censored Poisson process. Censoring is achieved by imposing a minimum
distance between nodes, which can be interpreted as the minimum physical size of
the constituents in the micro-mechanical model. The censoring is chosen such that
the variance for the link length in the lattice is equal to the variance of the disturbed
lattice model with a = 1. The resulting link distributions are shown in Figure 5.17.
For some C;;, the variance is quite sensitive to the choice of the point process (Table
5.1). The correlations pc,,c,,, obtained using the censored Poisson process (5.18),
are very similar to the ones for the lattices basedonalmifa'mP;Jinonpointptm,
given in (5.3). Because of the increased order in the microstructure (see Figure 5.16),
those correlations which are already significantly different from zero in (5.3) are now
even more pronounced: particularly pc,,c, has increased.

pcicu |Ciu Ciz Cis Cnn Cn Csx
Cu | 1 0462 -080 0.059 -.069 0.548
Cuz 1 -.023 0504 0.006 0.819
Cis 1 002 0754 -013 (5-18)
Cr 1 0057 0557
Cx sym 1 0012
Cxs 1

It is also interesting to assess the impact on the autocorrelation of the random
fields. Figure 5.18 shows how fast the product AVar(C,,) approaches its asymptotic
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Elastic Moduli | Uniform Poisson | Disturbed Lattice | Censored Poisson
Mean | St. Dev. | Mean | St. Dev. | Mean | St. Dev.

Cn 1033| 0075 |1.116| 0.043 | 1088 | 0.057

Crz 0385| 0025 |0386| 0.014 |0374| 0.017

Cis 0.000 | 0.028 | -.001 0024 |0001| 0.024

Cn 1035| 0075 |1.112] 0042 |1.088| 0.059

Cn 0.000 | 0.028 | -.001 0023 |0.000| 0.024

Cx 0324 002 |0356]| 0011 |0358)| 0.016

Table 5.1: Comparison of summary statistics of elastic moduli
(A =0.01, K = 10, A = 100 x 100)

AVII’(C")/G.O, .

Figure 5.18: Comparison of the correlation length of C), resulting from the use of
three different spatial random processes (nodal density A = 0.01)
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value 6,0,. The faster the characteristic area 6.0, is approached, the shorter the
correlation length is. When a censored Poisson process is used, the location of a node
is dependent on the location of the neighboring nodes in the network. Consequently,
correlations must exist in the random field of the homogeneous continuum over longer
distances than when the network is based on a uniform Poisson process. This is

confirmed in Figure 5.18.

5.5 Comparison of Homogenization Techniques

It is also useful to examine the effect of selecting any of the different homogenization
techniques: (4.20), (4.23) and (4.34). All results are obtained for lattice geometries,
based on a uniform Poisson point process with nodal density A = 0.01. Figure 5.19
shows that the uniform strain appraximation in (4.23) leads to an overestimation
of the expected values of C;;, as was previously reported by Ostoja-Starzewski and
Wang (1990). This is not surprising since prescribing a displacement at every node
of the lattice model overestimates the total stiffness. This overestimation depends
on the size of the lattice but it levels off for large window sizes: in this case the
overestimation stabilizes around 25% for C,; and 12% for C)2. It is also interesting
to note that when homogenization is performed based on (4.23) the elastic shear
moduli C)2 and Css are identical.

The force-based homogenization technique (4.34) results in an expected value of
[C] very close to the one obtained using (4.20). The estimated correlations ac,c,,
obtained using both homogenization techniques are also very similar.

However, the force-based method should not be used for small averaging windows
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(say § < 5) because the application of boundary forces at just a few nodes, randomly
located along this boundary, is a poor approximation of a uniform boundary stress.
As the averaging window size decreases, the number of boundary nodes goes down
as well and the corrector forces F” become relatively more important. The corrector
forces F in (4.29), required in the force-based homogenization, introduce spurious
variance, which distort the VRF. By virtue of (4.41), this, in turn, leads to incorrect
estimates of the auto-correlation functions. For illustration purposes, the product
AVar(Ch, /K) is plotted in Figure 5.20. It is clear that the variance becomes unstable
for small averaging areas A.

It can be concluded that the newly developed force-based technique (4.34) pro-
vides an efficient and accurate alternative to (4.20) for the estimation of the average
stiffness, particularly for large averaging window sizes. The simulations show that
its use results in the same VRF as obtained using the displacement-based homog-
enization (4.20). Because of the previously mentioned computational savings - see
Chapter 4 - associated with (4.23) and (4.34), the combined use of (4.34) and (4.23)
provides a computationally efficient alternative to (4.20).

5.6 Summary

In this chapter, the random field characteristics of the elastic properties, which are
consistent with the microstructure, are determined using the framework developed in
Chapter 4. The technique is applied to a variety of microstructures: both isotropic
and orthotropic microstructures are homogenized.

The stochastic characteristics of the resulting consistent random fields are quite
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different from the characteristics of a random field which is based on a straightforward
randomization of the deterministic elastic constitutive equations. It is shown how a
model where only E or where both E and v are considered random fields cannot be
consistent with the assumed micromechanical model. The micromechanically based
homogenization technique is able to model how isotropy is achieved in the mean only
and all materials are stochastically anisotropic.

It is shown that when only Young’s modulus E is modeled as a random field
the variability of the macroscopic behavior is underestimated because in that case
a perfect correlation is assumed between all elastic moduli C;;. This is illustrated
by means of examples, which indicate the importance of a correct estimation of
the correlations between the material properties. When the suggested stochastic
homogenization procedure is followed, the correlations automatically follow from the
homogenization of the microstructure.

The effects of uncertainties associated with the micromechanical model are as-
sessed. Based on simulations for various micromechanical models, it can be conclud;i
that uncertainty associated with the microlevel stiffness is of relatively minor impor-
tance for COV-levels up to 60%. The microgeometry needs to be modeled carefully.
This can be achieved through comparison of the statistics of a mathematical micro-
geometric model with the results of an image analysis of the actual microstructure
of the material. The simulations show that the estimation of the correlations be-
tween the elastic properties is fairly robust as long as the overall variability in the
microgeometry is modeled correctly.



Chapter 6

Conclusions and Recommendations

6.1 Summary

In this dissertation the random field modeling of elastic material properties is ad-
dressed. The main conjecture of this research is that the variability of the structural
behavior of materials on the macroscale is chiefly caused by randomness in their
microstructure. Using micromechanical models, the macroscopic structural behavior
automatically follows from the interaction between, and the deformation of, the dis-
crete constituents at the microscale, subject to a given loading. A homogenization of
the micro-structure provides a theoretical basis for a continnum model. By includ-
ing the microlevel variabilities in the homogenization procedure, the uncertainties
associated with the macroscopic material parameters can be estimated directly from
the micromechanical model.

An overview of existing micro-mechanical models is given in Chapter 2. Both
systems with regular and random geometry are discussed. The microscale should
be selected carefully and depends on the application. The level of detail required
for the micro-mechanical model is given by the minimum scale below which the
behavior of the material holds no practical interest. Guidelines for the selection of
a discrete model are given. The identification of the appropriate microgeometric
model is usually performed on the basis of image analysis and i8 beyond the scope
of this research. The characteristics of simulated microstructures are compared with

173
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the statistics of actual microstructures, which allows us to estimate the parameters
of the discrete random spatial process.

The exploratory analysis in Chapter 3, based on a one-dimensional parallel bar
model, indicates the importance of incorporating the physical microstructure of a ma-
terial in a probabilistic model of structural material behavior. The bending example
demonstrates that, depending on the correlation structure of the random field of the
material properties, the variability of the macroscopic behavior, which is predicted
by a straightforward randomization of a continuum model, can be very different from
the variability predicted by a micro-mechanical model.

Two approaches can be followed to estimate the correlation structure. In the
first one, a correlation model is assumed and the parameters of the auto- and cross-
correlation functions are estimated from experimental data. This option does require
a relatively large amount of test data in order to be accurate. The second approach,
which is taken in this dissertation, is to estimate the auto- and cross-correlations
directly from the microstructure. This approach can only be used if the selected
micromechanical model accurately reflects the microstructure.

In this case, the random field model of the material properties is obtained on the
basis of a stochastic homogenization of the microstructure. To this extent, a general-
purpose stochastic homogenization theory is presented in Chapter 4. The theory can,
in principle, be applied to both lattice and discrete particle micromechanical models.
A continuum is said to be equivalent with the discrete micromodel if its strain energy
is identical to that of the microstructure when they are both subject to the same
boundary conditions.

Existing homogenization techniques, which are based on essential boundary con-
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ditions, are complemented with a new, computationally more efficient, though ap-
proximate, force-based homogenization technique. The material properties, obtained
after homogenization of the microstructure over an area, are considered sample real-
izations of the local averages of the random material properties of the material. The
random field description of the material properties has a theoretical foundation in lo-
cal average random field theory. Monte Carlo simulation of sample microstructures,
followed by homogenization and subsequent estimation of the variance reduction
function, allows one to estimate the auto- and cross-correlations of the random fields
of the material properties directly from the microstructure.

The selection of boundary conditions for homogenization requires careful anal-
the estimation of the auto-correlation of the material properties is assessed. The
shortcomings, associated with existing boundary modeling techniques of discrete mi-
crostructures are identified and an improved modeling is introduced. The superiority
of the new boundary modeling is demonstrated.

The main advantage of determining the material parameter random fields through
homogenization is that a more consistent random field modeling is obtained. There
is no longer a need to make assumptions regarding the auto-correlation function
of the material parameters. The possible correlations between different material
parameters automatically follow from the procedure as well.

The significance of the new random field modeling for structural analysis is
demonstrated in Chapter 5. The method is applied to both isotropic and anisotropic
materials. Stochastic homogenization of a lattice-type microgeometry, based on a
uniform Poisson point process, shows that isotropy of materials is achieved in a
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mean sense only. The assumption of a perfect correlation between C, and Cp, in
traditional continuum models seems unjustified. Practical applications illustrate the
significance of a correct estimation of the correlations between the material proper-
ties.

The superior performance of the homogenization-based random field modeling
technique is demonstrated in a structural application. The micro-mechanical anal-
ysis is compared with two Monte Carlo SFEM, using two different random field
models of the material parameters. One random field model is based on a straight-
forward randomization of deterministic constitutive models and treats only Young’s
modulus E as a random field. The other random field model is obtained through
micromechanically-based stochastic homogenization. A direct three-way comparison
of the statistics of structural responses obtained {rom aii three models, demonstrates
the superior performance of the new random field modeling technique. A structural
analysis where only E is considered a random field will underestimate the variability
of the response.

The sensitivity of the random field properties to uncertainties associated with the
micro-structure is assessed as well. The analysis indicates that the characteristics
of the microgeometric model dictate the stochastic characteristics of the material
properties. Randomness associated with the micro-level stiffiness has only minor
impact on the variability of the macroscopic behavior. This means that a limited
number of macroscopic tests suffices to estimate the microlevel stiffness.

The main accomplishments of this research are:

1. A new homogenization procedure, which is based on equivalence of strain en-
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ergy under an assumed stress distribution along the boundary of homogeniza-
tion window in the continuum and the discrete micro-mechanical model, is
formulated. The method complements existing techniques for homogenization,
which are based on assumed strain states in the material.

2. Shortcomings of existing boundary condition models currently used in the
boundary modeling technique is introduced. Theoretical considerations, as well
as numerical examples, illustrate the superior performance of this modeling.

3. A new random field modeling of linear elastic materials is proposed. The model
is consistent with the microstructure in the material and allows to estimate
the auto- and cross-correlations of the elastic properties, directly from the
microstructure.

4. The relevance of this improved random field model for reliability-based design
is clearly demonstrated. It is shown how a straightforward randomization of
deterministic material models underestimates the variability of the structural

responses.

6.2 Recommendations for Future Research

The applications presented in this dissertation clearly show the superiority of de-
termining the random field characteristics of material properties on the basis of a
stochastic homogenization of the discrete microstructure. Since the usefulness of
the technique is now established, extensions of this technique to different fields of
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application are desirable. Also, more robust and efficient algorithms need to be
developed.

Extension to other stress and strain states

Even though the homogenization theory is applicable to all types of stress or strain
states, all applications are developed for plane stress situations only. Especially
for FE applications, an extension to out-of-plane behavior, such as plate bending
elements, would be useful. Particularly an extension to 3D stress and strain states
is desirable as it is anticipated that the variability resulting from a 3D model will be
larger than for a 2D model.

Extension to discrete particle models

As outlined in Chapter 2, lattice models are very attractive from a computational
point of view, but they have some limitations. In a spring model, the microlevel con-
stitutive law can only account for axial interaction, which results in a fixed Poisson’s
ratio. This limitation is overcome when a discrete particle model is used and the
friction between the microlevel constituents can be taken into account. This leads to
a much more accurate model description. These applications are now within reach
because of the increased computer power. Randomly distributed defects or inclusions
of other phases, such as in composite materials, could be added to the micromodel
as well.

Extension to “non-uniform” micromechanical models
In all applications considered, the discrete spatial process which defines the microge-
ometry is homogeneous and almost uniform over every domain larger than the RVE.
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As a result no long-range correlations exist in the random fields of the elastic prop-
erties and a finite-scale model is appropriate to estimate the characteristics of the
RF. Depending on the characteristics of the manufacturing or the natural formation
process of the material considered, the statistics of the spatial process may no longer
be independent of the location. The stochastic homogenization approach should be
extended to include these effects.

Extension to non-Gaussian random field modeling

Gaussian random fields need to be truncated if only non-negative values are possible.
This problem becomes increasingly important when large COV is associated with the
random fields. In our simulations it was observed that the elements of the compliance
matrix [C] ™' are very accurately modeled by the non-negative Gamma-distribution,
even for small averaging windows. Unfortunately, local averaging techniques are
not directly applicable to Gamma fields since the Gamma distribution is not closed
under averaging. A Nataf-type transformation, which preserves the correlation, to
Gaussian random fields might allow the use of local averages. The physical meaning
of the transformed compliances would be lost though. Further research is required
in this field.

Robust modeling techniques

The covariance-decomposition method used in the Monte Carlo SFEM application
leads to numerical difficulties for large meshes. Estimation errors are associated with
the covariances of the elements and propagate into the eigenvalues of the covariance
matrix. As the number of elements increases, the covariance matrix becomes nearly

singular. It is observed that the correlations between C;; and Cy are almost constant
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as long as the averaging area A is not too small and the aspect ratio of A not too
much different from 1. In this case, it might be possible to transform the correlated
Cij-fields into six independent random fields. This would substantially reduce the
size of the covariance matrix, but the physical meaning of the correlation length in
the new random fields would be lost. This warrants further research.

Extension to non-linear behavior

The examples in Chapter 3 illustrate how complex macroscopically non-linear ma-
terial behavior can realistically be modeled using micromechanics. Non-linearities,
such as failure or yielding of the links in a lattice model, are introduced at the mi-
crolevel and the macroscopic structural behavior is obtained from the interaction
between the microconstituents. The homogenization procedure can be extended to
include non-linear behavior. Since, at least for lattice-type microstructures, materials
are stochastically anisotropic, this may lead to interesting developments in stochastic
crack growth models. As the computer power keeps increasing, this application will
become computationally feasible in the future.
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