
SYNLETT 

pthesis of the Racemic C15'C23 Segment of the Venturicidins 
Woo, B.A. Keay* 

gartment of Chemistry, University of Calgary, Calgary, Alberta, Canada, T2N 1N4 

u 1-403-284-1372; E-mail: keay@acs.ucalgary.ca 
'ceived 18 October 1995 

kract The (*)-CIS-C2, portion of the venturicidins is 
mhesized stereoselectively in 17 steps from 2-furaldehyde in an 
lmll yield of 7 % . 

Venturicidin A (1) and B (2) have been isolated from soil 
ninomycetes (1961)' and Streptomyces aureofaciens (1968).~ 
rpectively, while recently the aglycone, venturicidin X (3) was 
wd in an unidentified Streptomyces species in 1994 (Scheme I).' 
II three compounds are active against a variety of phytopathogenic 
mgi, including barley, cucumber, and apple mildew, apple scab, 
d grey mould,'-' and inhibit the ATP synthetase system of 
~hachondria.~ Only one synthesis of the aglycone 3 has been 
rpaned todate by Akita et al. in 1990;' however, syntheses of both 
U C ~ - C ~ :  and c15-c2; segments of the venturicidins have been 
rpnted recently. We herein report a racemic synthesis of the C,,- 
:n fragment of the venturicidins. 

We have been investigating the intramolecular Diels-Alder 
d o n  with furan dieness and the SN2' ring opening of the resultant 
I*icyclo adducts as a combined strategy for controlling relative 
&~chemistry.~ Thus, our strategy towards the CIS-C2, segment 8 
&me 2) involved a thermodynamically controlled diastereo- 
ldretrve intramolecular Diels-Alder reaction with a furan diene 
MAR to establish the relative stereochemistry between C,,, C19, 
d& ( 9 6 ,  Scheme 2)." The CZ2 methyl group was introduced 
man SN2' ring opening of the oxatricyclo system after conversion 
dh ketone into a double bond ( 6 + ~ . ~  After some functional 
p p  interconversions, the resultant bicyclo system was cleaved at 
kcl,-C2, and C,4-C,9 bonds to provide 8 containing the correct 
&h stereochemistry for the CIS-C,, fragment of the 
micidins. 
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hqmb: a)EtCHO, NaOHM20, 10 rnin, r.t.; b) Na.Hg, EtOH, 5.5 h, r.t.; c)TsCI, DMAP. EbN, CH2CI2 14 h, r.t.; d) Nal, acetone, 16 h, reflux; 

1L2q t4uLi. E$O, -78O~, 5 min; then crotonaldehyde; f) Ag2C0&elite, benzene. 16 h, reflux; g) MeAICI? CH2CI2 -7€1°c, 5 h; h) PkPCHgr, mBuli. 

&pmin),r.t. ( X )  min), add Ba, 2.5 h, r.t.; i) 30 eq. Men, DME, 24 h, r.t.; j) H2(1 ah ) .  Pt02 EtOWbenzene. 2 h, r.t.; k) KH. THF. OOC to r.t.. 2h; then CS2. 

thhnlel, 12 h; I)lTMSS, AIBN. Toluene, m0c, 2h; rn) RuO2.H20/NaIO4 added to 14 in 9:l acetone:H20 and w k e d  up immediately; n) NaBH4, 

UBOHCHfl, -7€i0c, 2 h; o) TBDPSCI, DMAP, CH2CI2, 12 h, r.t.; p) MCPBA, NaHC03, CH2CI2 76 h, r.t.; q) LAH. Et20, Ih, r.t. C 3 
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To this end, the IMDAF precursor 5 was prepared as follows. 
An aldol condensationi0 between 2-furaldehyde (4) and propanal 
produd aldehyde 9 (90%. Scheme 3). Both the double bond and 
carbonyl in 9 were reduced with sodium amalgam in ethanol to 
provide alcohol (*)-I0 (65%)." which was converted in two steps to 
the iodide 11 (95% from Halogen-metal exchange of 11 at 
-78OC with t-butyllithium in ether, followed by a uench of the anion 
with crotonaldehydeu and Fetiwn's oxidationa of the resulting 
allylic alcohol, provided 5 (65 % from 11). 

The IMDAF reaction of 5 proceeded smoothly to give an 8.6: 1 
ratio of diastereomers 6a" and 6b in 92% combined yield when 5 
was treated with 10 mol% MeAIClz in CH2C12 at -78°C for 5h. The 
diastereomers were easily separated and found to be epimeric at C,, 
(venturicidin numbering). Since the IMDAF reaction was under 
thermodynamic c o n t r o ~ , ~  the minor isomer 6b was recycled in 
subsequent IMDAF reactions, thereby increasing the overall 
stereoselectivity of the IMDAF reaction. Wittig reactionI4 of 6a 
provided adduct I2 (95%), which when treated with excess 
methyllithium in D M E ~  provided the ring opened product 7a (68%) 
and the unexpected ethyl containing compound 7b (11%).15 A 
highly chemoselective catalytic hydrogenationI6 of the exocyclic 
double bond in 7a (Hz, Pt02) gave a 27:l mixture of compounds 
(13" (88%)) which were epimeric at c~&" A ~ h a t ~ i l i a l o ~ l u ' ~  
modified  arto on^' deoxygenation of the hydroxyl group in 13 
provided 14 in 73% yield. 

With 14 in hand, our attention turned to examining various 
methods for cleaving the CI4-Cz3 and CI4'Cl9 bonds in 14. Cleavage 
of the CI C2, bond was more difficult than expected; reductive 
ownolysi.f' resulted in complex mixtures, while NalO, with 
catalytic amounts of 0 s 0 ~ . ~ ~  or K M ~ O ~ / ( E ~ ) ~ B ~ N + C I  / C H ~ C I ~ ~ '  
provided only starting material. Oxidative cleavage of the double 
bond was achieved with Ru04 generated in situ by adding catalytic 
Ru0iH20 and two equivalents of Na10,;~~ however, the yield of 
compound 15 varied from run to run. Consistent yields of aldehyde 
15~' (77%) were obtained when a stoichiometric amount of RuO, in 
CC1, was added to 14 in acet~ne.~?ince compound 15 was quite 
unstable, it was decided to reduce and protect the aldehyde in 15 so 
that conditions could be found that would cleave the Ci4-CI9 bond. 
Thus, the aldehyde in 15 was selectively reduced to an alcohol2' and 
subsequently protected as a TBDPS ether2* to provide 16 (96% from 
15). A Baeyer-Villiger reaction2' on 16 provided lactone 17 (63%, 
92% based on recovered 16). with retention of stereochemistry at 
C19, which was reduced with LiAIH, in ether to provide (*)-g30 
(90%)). 

\\"' 1) M e $ W  Nal, CYCN 

z)w.C% Mel R 
HO 
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19 R=H (Cg axis) 

Scheme 6 

We have shown that compound (f)-8 can be prepared with 
high stereoselectivity in 17 steps from 2-furaldehyde (4) in 7% 
overall yield. Compound 8 contains the correct relative 
stereochemistry found in the CIS-CZ3 segment of the venturicidins 
and illustrates that a combined IMDAF-SN2' ring opening strategy is 
useful for controlling the relative stereochemistry between 4-5 
centres. Work is continuing to prepare compound 8 
asymmetricallyk and to finish the synthesis of venturicidin X (3). 
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