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Abstract 

The Object Relational approach to OODBMS attempts to provide a sound math-

ematical foundation for the current trend in databases towards integrating object-

oriented programming language facilities with relational database management. Al-

most all database languages for the object-relational approach are extensions to 

SQL, the standard relational declarative language. COOL is an SQL-like object-

relational declarative database language designed for an extended NF2 data model. 

COOL introduces the concepts of the genitive relation and the natural quantifier. 

It is relational because it is based on the Genitive Relational tuple calculus and 

an Extended Relational Algebra (ERA). COOL is object-oriented primarily because 

of the object-orientation of its data model, and secondarily because of the object-

orientation reflected in the language semantics and structure. This thesis describes 

the first implementation of a language of this type. The focus of the thesis is on the 

implementation of COOL as a prototype front end for a relational database system. 

The thesis also covers the design of extensions to COOL; these extensions for COOL 

are the data definition language and the inheritance mechanism. At the conceptual 

level, the prototype front end implementation comprises a three-layer architecture 

that maps COOL's object schema to SQL's relational schema. A two step transla-

tion of COOL declarative language expressions was chosen as the most promising 

approach for portability and flexibility for future development. This successful imple-

mentation of a prototype front end for COOL demonstrates the practical feasibility 

of the COOL approach to declarative languages. 
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Chapter 1 

Introduction and Motivation 

To meet the requirements of new complex database applications, object-oriented 

database management systems (OODBMS) are emerging as attractive candidates. 

Database management systems based on the relational approach, which have dom-

inated for more than a decade, have shown serious weaknesses when used with sci-

entific and engineering applications. Complex objects, such as a document or an 

engineering design, and very large data sets, such as multimedia data, including 

video or sound, do not fit in the simple, tabular data structures of the relational 

model. A new database technology was clearly needed. Its goal is to combine con-

ventional database features both with object-oriented concepts, and with the rich 

data type systems present in the object-oriented programming languages (OOPL). 

The new database technology, called object-oriented. (00), has two main ap-

proaches. One is an evolutionary approach, or extended relational approach, that is 

based on the relational model extended to include 00 concepts. The other is a revo-

lutionary approach, or the OOPL approach, that extends OOPL with database func-

tions such as persistence, shareability, transaction management and limited query 

facilities. It is well understood that from the application point of view, a declarative, 

or non procedural, database language by itself is not sufficient, since certain parts 

of an application are best coded in a procedural manner. The OOPL approach can 

be characterized as an attempt to provide a programming language with database 

query capabilities, that is, a unified programming and database language, in order 

1 



CHAPTER 1. INTRODUCTION AND MOTIVATION 2 

to achieve efficiency in writing database applications. However, the OOPL approach 

has some serious limitations: 

• It does not have the strong theoretical foundation of the relational model. 

• There is not a single 00 data model but rather a plethora of 00 models. 

• It does not provide a powerful standard declarative query language, comparable 

to SQL with relational databases, but rather a wide variety of query languages 

with limited capabilities. 

• It lacks many traditional database systems features available with relational 

systems, such as automatic query optimization and processing, automatic con-

currency control, dynamic schema changes, so on. 

By contrast, the extended relational approach is an attempt to provide a sound 

mathematical foundation for an object-oriented approach to databases. It makes 

it possible for object-oriented features to be available to users of databases and at 

the same time preserves the major contributions of the relational model, such as 

powerful non procedural, or declarative, query languages. 

Declarative languages in relational databases are based on first-order logic, due 

to the fact that the language needs to manipulate only individual elements of a 

domain. In an object oriented database we deal with non atomic domains, where 

an element can be a set, a relation or a list. As a result, a declarative language 

for an object-oriented database needs to be based on higher order logic. Several 

attempts have been made in this research area, but the problem of considering higher 

order logic in developing an 00 declarative language is still open. However, in the 
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practical world of applied declarative languages, there was a strong trend towards 

extended versions of the conventional relational declarative query languages, such as 

SQL and QUEL, as query languages for OODBMS. Declarative languages based on 

the extended relational approach are sometimes called Object-Relational languages 

[Sto]). 

COOL (A Composite Object-Oriented Language) is an example of this type of 

language [Bra92a], and it was designed as an extension of SQL. COOL is innova-

tive in the field of declarative languages by employing new concepts like genitive 

relations, and natural quantifiers [Bra93b]. Although COOL has a SQL-like syntax, 

its expressiveness is totally different. If in SQL we need to express queries in an 

entire-relation manner, in COOL we use an object-oriented manner. For example, 

with the relational approach, if one wants to know the names of the passengers of all 

Delta Airline flights from Athens to Rome, one uses constructs that deal with all of 

the Flight tuples (flightno, airline-code, aircraft-type, capacity) and all of the Pas-

senger tuples (flightno, passenger-record-no, passenger-name, citizenship). Thus, 

one must think in terms of entire relations, that is, all of the tuples within all of the 

relations involved in the retrieval. 

Suppose now with an object approach that a database involves flight entities (ob-

ject class Flight {object-ID: integer, flightno: integer, airline-code: string, aircraft-

type: string, capacity: integer, Passenger-list: set of passengers}) and passenger 

entities (object class Passenger {object-ID: integer, flightno: integer, passenger-

record-no: string, passenger-name: string, citizenship: string}). The data for a 

specific flight forms a composite object instance, whose subobject instances form a 

hierarchical structure. Users seem to prefer to work with composite object instances 
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when dealing with such a data base. As an example: Retrieve all flights that have 

transported more than 100 passengers where most (or majority of) passengers have 

Canadian citizenship. With SQL we would have to code something like: 

select airline-code, flightno from Flight 

where capacity > 100 

and (select count (*) from Passenger 

where citizenship = Canadian 

and Passenger.flightno = Flight.flightno) 

> 

(select count (*) from Passenger 

where citizenship <> Canadian 

and Passenger.flightno = Flight.flightno) 

The natural quantifier here for most is involved in this retrieval and must be im-

plemented in SQL with the awkward count( ) construction above. When we think 

in terms of objects, as we usually do, we would have to code something like: 

Retrieve each flight, 

with 

(a) capacity > 100, and 

(b) passengers 

most of whom have Canadian citizenship. 

The above query can now be expressed in COOL as: 

select airline-code, flightno from Flight 
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where capacity > 100 

and for most Flight.Passenger-list*Passenger 

(citizenship = Canadian) 

or, using a natural language-like alias for the genitive relation Flight. Pass enger-

list *Passenger as Flight's Passengers: 

select airline-code, flightno from Flight 

where (capacity > 100 

and for most Flight's Passengers (citizenship = Canadian)) 

No language of this type has ever been implemented before. My contribution and 

the focus of my research is the implementation of COOL as a prototype front end 

for a relational database system, as well as the design of extensions to COOL. 

The implementation of COOL was done on top of Sybase DBMS. The extensions I 

designed for COOL are the data definition language and the inheritance mechanism. 

As an approach to COOL's translation, I have chosen to translate COOL expressions 

in two steps: (1) reduction of COOL expressions to Extended Relational Algebra 

(ERA) routines, and (2) translation of ERA routines into a set of SQL expressions. 

The translation of COOL into ERA routines offers flexibility for future development 

of a full OODBMS based on COOL, and the translation of ERA routines into SQL 

expressions offers portability of the COOL prototype, since it can be executed on 

any relational system that supports SQL. The translators were built using Lex and 

Yacc Unix compiler tools, adding further to the flexibility of the system, by making 

it easy to incorporate changes as COOL evolves in time. 

The execution of COOL statements was validated by comparing the output of 
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COOL queries to the output of SQL queries executed on the back end relational 

engine. Not only did the comparison help to validate the COOL query processor, 

but it also demonstrated the conciseness of COOL queries compared with equivalent 

SQL expressions. Performance issues are not addressed in this work. 

The implementation of COOL employs three levels of abstraction. Beginning 

with the highest, we have: 

1. Conceptual level. This level uses a structurally object-oriented or seman-

tic database model, such as the Entity Relationship model extended by ISA 

relationships and complex attributes. 

2. Extended relational or object-oriented level. This level uses an extension 

of a non-first-normal-form relational model and is an equivalent representation 

of the E/R concepts of the previous level. 

3. Conventional relational or implementation level. This level is used as a 

basis for the prototype implementation and is an equivalent representation of 

the previous two levels using the conventional relational model. 

In effect, COOL's implementation approach can be regarded as a translation of 

COOL's object schema to the SQL's relational schema. 

COOL can support inheritance and it has been demonstrated how this mecha-

nism can be built for COOL. However, inheritance has not been implemented yet. 

Complex objects, methods and abstract data types for COOL are not yet fully in-

vestigated and their implementation needs further research. 

I was strongly motivated to implement a language like COOL primarily because 

the language is easy to use (compared with SQL), easily readable, and is along the 
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lines of a natural language. If one wants an oral communication facility for databases, 

an inevitable future development, COOL provides a natural way to do that. 

The remaining chapters of the thesis are organized as follows. In Chapter 2, I 

discuss an evolution of data models in the database field, emphasizing the oscilla-

tion back and forth between instance-based and value-based models. In Chapter 3, 

the two main approaches to object-oriented databases are presented, together with 

the most important implementations of each kind. In Chapter 4 an overview of 

database languages is given. In Chapter 5 an overview of the COOL language as an 

object-relational declarative language that employs natural-like language features, 

is presented. In Chapter 6, a detailed presentation of the implementation design is 

given. In Chapter 7 we give a verification set of queries to proof the correctness of 

the implementation and we explain how the system can be used. Finally Chapter 10 

contains concluding remarks and discussion of ongoing work. 



Chapter 2 

Evolution of data models 

The evolution of database models can be seen as a continuous effort to offload te-

dious and repetitive functions from the application programs to the database system. 

This has made the task of the application programmers considerably easier but has 

generated a lot of research to increase the performance of database systems. The 

evolution of database models and systems can be compared with the evolution of 

programming languages from machine languages to assembly languages, and then 

to high level languages. The high level languages have certainly alleviated the task 

of implementing increasingly complex applications, but have required increasingly 

sophisticated compilers [Kim9O]. 

A first comprehensive definition of a 'data model' was given by Codd, the father of 

the relational model [Cod8l]. The concept of a data model thus essentially appeared 

together with the mathematical formalism of the relational model. As given by Date 

[Dat9O], Codd's definition of a data model is a combination of three components: 

1. A collection of data object types (essentially the entities that form the database 

structures). 

2. A collection of general integrity rules, which constrain the set of instances of 

those object types that can legally appear in a database. 

3. A collection of operators, which can be applied to such object instances for 

retrieval and other purposes. 

8 
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At a higher level of abstraction, we can distinguish hierarchical database struc-

tures and network database structures. At this level, database systems can be cate-

gorized according to the data structures permitted. The network data structure can 

be handled by both CODASYL (presented later) and relational models. The hierar-

chical structure is a special case of a network, so CODASYL and relational models 

can both handle it. The hierarchical model essentially permits only hierarchical data 

structures. 

According to the definitions in [Bra83] the hierarchical structure is the structure 

in which every entity (a record or an instance) of an entity set (or type) has at 

most one parent entity and for a parent entity there can be many child entities (a 

one-to-many relationship). The network structure is the structure in which at least 

one child entity has more than one parent entity (a many-to-many relationship). 

These two database structure concepts have been central to the evolution of the 

database models and systems for the past three decades. 

Over this period of time, the data model evolution can be viewed in terms of 

(increasing) power of operations or user commands versus the semantic complexity 

inherent in the model, as shown in figure 2.1. 

Alternatively, data model evolution can be viewed as an oscillation between the 

hierarchical and network data structure orientation of the prominent database mod-

els, as shown in figure 2.2. 

Ullman offers an object-identity point of view when discussing the development 

of database systems [Ull88]. He calls object-oriented, those systems that support 

object-identity and value-oriented or record-oriented those systems that do not. 

In this sense the hierarchical and network-model systems are object oriented. All 
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Figure 2.1: Evolution of data models 

systems based on the relational model are value oriented, as are systems based on 

logic. However, one can simulate object-identity in a value-oriented system by use 

of unique codes for the tuples of a relation. 

According to [Dat9O], the relational model is the single most important devel-

opment in the entire history of the database field. Thus, the history of the database 

field is divided into prerelational and postrelational eras. The most notable prerela-

tional database systems fall into three broad categories (after [Dat9O]): 

1. Inverted list, such as the commercially available product CA-DATACOM/DB, 

from Computer Associates International Inc., which handles both network and 

hierarchical database structures, 

2. Hierarchical, such as IMS(IBM) and System 2000(MRI), which handle only 
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Figure 2.2: Evolutionary oscillation of the prominent database models 

hierarchical database structure, 

3. CODASYL, such as CA-IDMS/DB, IDS, and TOTAL, which can handle net-

work and hierarchical database structures. 

Prerelational systems, often called 'record at a time' systems, accomplished the 

sharing of an integrated database among many users within an application environ-

ment. However, they lack data independence (explained later) and were basically 

programming systems that required a tedious programming or navigational access 

to the database. 

The data models for the prerelational database systems implementations, hierar-
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chical and network, were defined post facto, by a process of abstraction. 

The relational model launched in 1970 by Codd arrived with many improvements 

and became the most implemented and most successful model of all time. Besides 

providing data independence, the relational model introduced for the first time the 

notion of declarative language into the database field. 

Postrelational models started to appear in the late 1970s. They brought with 

them richer data types and operations necessary to meet the requirements of appli-

cations that were more demanding than the business data-processing applications for 

which the previous models had been developed. Some of the postrelational models 

were based on extensions of the relational model; others represented attempts at 

doing something completely different [Dat90]. 

The most notable postrelational data models are: the semantic model, the non-

(first)-normal-form (NFNF or N1NF or NF2 or N2F) model and the object-oriented 

model. Each of the three post relational models are rather a class of models than a 

single model. 

The major data models will be briefly described in the following pages. 

2.1 The Hierarchical model 

The hierarchical data model essentially handles only hierarchical database structures' 

The most widely used hierarchical database system is IBM's IMS. The design of the 

basic system dates from the late 1960s and is still in use today, it's replacement being 

very expensive. In IMS we can identify a conceptual and a storage schema that are 

'They can handle some limited network data structures in a complex ad hoc fashion. 
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specified together in a DBD (Data Base Description) [Bra87]. The conceptual schema 

defines a hierarchy type. A hierarchy type consists of a number (sometime very 

large) of hierarchy occurrences or data trees. A data tree represents a database 

record and is a collection of file records or segments of different types. The segment 

from the top of a tree is called the root segment. The number of trees in a hierarchy 

type is equal to the number of root segments. We can easily identify a hierarchy 

with a composite object class and a tree with a composite object instance. If we add 

OlDs and the navigational access to data, we have an 00 model. 

IMS's most important disadvantages are: 

• Duplication of segments in different database records and inconsistency because 

of that, and 

. It does not offer data independence. 

2.2 The Network model 

If the hierarchical model is basically the abstraction of the IMS system of IBM, the 

network model is the abstraction of the CODASYL system. Heavily influenced by 

the COBOL programming language, CODASYL was developed by the Data Base 

Task Group (DBTG) [Bra83]. Two notions were introduced in the network model: 

records and sets. Records of the same type are grouped into distinct conceptual files 

(e.g.: collection of warehouses, collection of warehouse employees, so on). Also an 

additional grouping of records is done through the owner-coupled sets. An owner-

coupled set groups records embodying a 1:11 relationship. It contains a collection of 

owner-coupled set occurrence, that each contains a parent record and a collection 
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of child records (e.g.: a warehouse with the employees who work in it). At the 

storage level, the parent file record contains a pointer to the first child file record. 

In the first child record there is a pointer to the next child file record and so on. 

In CODASYL terminology a parent record is called an owner record and a child 

record a member record. 

The network model is object-oriented to the extent that it supports object-

identity. Records of the network model have an invisible key, which is in essence 

the disk address of the record (currency indicator). More specifically, there is a 

currency indicator for each file in the data base, for each owner-coupled set, and a 

currency indicator for the whole database (current of run-unit - CRIJ indicator). 

The currency indicators support navigation through the data records when a retrieval 

is made. 

In ljllman's opinion [Ull88] the CODASYL DBTG language and IMS's DL/1 

language are object oriented database languages. 

2.3 The Relational model 

The fundamentals of the relational model were presented by Dr. E.F. Codd, a 

mathematician by training, in a classic paper [Cod7O]. The mathematical formalism 

underlying the relational model is based on set-theory. 

The first major relational products began to appear in the early 1980s. Since 

then the relational database systems (RDBMS) have dominated the marketplace 

with almost 200 commercial products [Dat90] running on just about every kind of 

hardware and software platform imaginable. Examples of such products include DB2, 
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SQL/DS, the 0S2/2 Extended Edition Database Manager, and the OS/400 Database 

Manager( from IBM), Rdb/VMS from DEC, Oracle from Oracle Corporation, Ingres 

from Ingres Corporation, and many others. The declarative relational database 

language SQL became an industry standard. The success of RDBMS was due to the 

simplicity of the relational data model. The SQL query language that came with it 

made a significant productivity enhancement in application development. Relational 

systems handle both network and hierarchical database structures. 

The main concepts of the relational model will be presented in the following 

sections. 

2.3.1 Formalization of relations 

There are two definitions associated with the concept of relation: (1) the set-of-lists 

and (3) the set-of-mappings. 

The set-of-lists definition of a relation is given by Oilman in [1J1188], as follows: 

A relation is a subset of the cartesian product of a list of domains. Formally, a 

domain is a set of values. For example, the set of integers is a domain and so are 

the set of character strings, the real numbers, and the set {O,l}. 

The cartesian product (or just product) of domains D1, D2,.. . , Dk, written 

D1 x D2 x ... x Dk, is the set of all k-tuples (vi, v2,.. . , VA;) such that v1 is in D1, v2 

is in D2, and so on. For example, if we have k - 2, D1 = {O, l}, and D2 = {a, b, c} 

then D1 x D2 is {(O,a),(O,b),(O,c),(1,a),(1,b),(1,c)}. 

A subset of the product D1 x D2, such as: {(O, a), (0, c), (1, b)}, is a relation. The 

empty set is another example of a relation. A member of a relation is called tuple. 

Each relation that is a subset of some product D1 x D2 x . . . Dk of k domains is 
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said to have arity k; another term for arity is degree. A tuple (vi, v2,. . . , vie) has k 

components and is sometimes called a k-tuple. 

A finite set of attribute names {A1, A2,. . . , A} for a relation, defines a relation 

scheme. If we name a relation 'r' and a relation scheme R with the attributes 

A,,— , . , A, we can write R - r(Ai, A2,. . . , 

The set-of-mappings definition of a relation is given in [Mai83], as follows. 

A relation scheme R is a finite set of attribute names {A1, A2, . . . , A,}. Cor-

responding to each attribute name Ai is a set D, 1 ≤ i ≤ n, called the domain 

of A. The domains are arbitrary, non-empty sets, finite or countably infinite. Let 

D = D1 U D2 U U D. A relation r on relation scheme R is a finite set of mappings 

{t1, t2,. . . , t,} from R to D with the restriction that for each mapping t E r, t(A) 

must be in D, 1 < i < n. The mappings are called tuples. Thus it is possible to 

view tuples as mappings from the attributes names of a relation scheme to values in 

the domains of the attributes. 

In the traditional view of a tuple as a list of values (ordered set), the tuples 

(Calgary, Underhill, 3615) and (Underhill, 3615, Calgary) would not be the same. 

In the set-of-mappings view, we attach attributes names to columns of a rela-

tion, and the order of the columns becomes unimportant. Ordering adds nothing to 

the information content of a relation. 

Since the relational database system allows the specification of columns of a rela-

tion in any order, the set-of-mappings definition of a relation is more appropriate. 

However [U1188] there are situations such as when dealing with relational algebra, 

where we need to use the set-of-lists definition of a relation (e.g.: theta join needs 

the set-of-lists definition, semi join and natural join needs the set-of-mappings 
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viewpoint). There is a trivial way of converting between the 2 viewpoints. Given a 

relation in the set-of-lists form, we can give attribute names to its columns, and it can 

be viewed as a set-of-mappings. Conversely, given a relation in the set-of-mappings 

form, we can fix an order for the attributes and convert it into a set of lists. 

A relation can be viewed also as a table, where each row is a tuple and each 

column (or component) is called an attribute. The most important terms used in 

the relational model environment are summarized in table 2.1 [Dat9O]. 

Table 2.1: Relational terminoloy 

Formal relational term Informal equivalents 

relation table 
tuple row or record 
cardinality number of rows 
attribute column or field 
degree number of columns 
primary key unique identifier 
domain pool of legal values 

The relational model is based on the mathematical set-theory, as we have seen, 

but certain conditions are imposed on the concept of relation, as follows: 

• In a relation duplicate tuples are not allowed and there is no order defined on 

the tuple. 

• Attributes have no order, are referenced by names and must be unique within 

a relation. 

• Attributes values are atomic. 
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These restrictions helped in defining a simple model for which a simple query 

language could be developed. 

The best improvements brought by the relational model in the database world 

were: 

• A declarative query language for building ad-hoc retrievals from the database, 

and 

• The data independence, which is the ability to change the database schema 

(logical data independence) or the internal organization of data, such as indexes 

or record layout (physical data independence), without having to change the 

application programs. 

2.3.2 Relational operators 

There are two different kinds of notations for expressing operations on relations: 

1. Algebraic notation, called relational algebra, where queries are expressed in 

a procedural manner by applying specialized operations to relations, and 

2. Logical notation, called relational calculus, where queries are expressed in 

a declarative manner by writing logical formulas that the tuples in the answer 

must satisfy. 

The relational algebra consists of a collection of eight operations that can be 

grouped in two categories [Dat9O]: (1) the basic operations on sets that apply to 

relations: union, intersection, difference, and cartesian product, and (2) the special 

relational operations: select, project, join, and division. 
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The basic operations are: 

1. Union. The union of relations R and S, denoted R U 5, is the set of tuples 

that are in It or S or both. We may only apply the union operator to relations 

of the same arity. 

2. Intersection. The intersection of relations It and 5, denoted by Rfl S, is the 

set of tuples that are in both R and S. We may only apply the intersection 

operator to relations of the same arity. 

3. Set difference. The difference of relations R and 5, denoted by It - 5, is the 

set of tuples in It but not in S. We again require that R and S have the same 

arity. 

4. Cartesian Product. With the cartesian product operation we have a special 

situation. In mathematics the cartesian product of two sets is the set of all 

ordered pairs of elements, such that the first element in each pair belongs to 

the first set and the second element belongs to the second set. The relational 

algebra version of the cartesian product of two product-compatible relations 

(they have no attributes in common) R and S of arity k1 and k2, respectively, 

is the set of all possible (k1 + k2)-tuples whose first k1 components form a tuple 

in It and whose last k2 components form a tuple in S. 

The special relational operations are: 

5. Selection. Select is a unary operator on relations. When applied to a relation 

It, it results in another relation that is a subset of tuples of R with a certain 
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value on a specified attribute. For example, we wish to construct a new rela-

tion NEWFLIGHT, consisting of tuples from relation FLIGHT for which the 

attribute Dest value is "San Jose". The algebraic statement can be written: 

NEWFLIGHT = select (FLIGHT (Dest = "San Jose")). The relation FLIGHT 

is the operand, select is the operator, and the relation NEWFLIGHT is the 

result. In the parentheses following the operand, we may have any logical ex-

pression involving operands that are constants or attribute names, relational 

operators <, , =, >, ≥, , and logical operators fl (AND), U (OR), and 

(NOT). 

6. Projection. Project is also a unary operator. Instead of choosing a subset 

of the rows as select does, project chooses a subset of the columns. The du-

plicate tuples are also removed from the result. E.g.: Project the Destination 

and arrival-time from relation FLIGHT. Result = project (FLIGHT (Dest, 

Arrives)) 

7. Join. Join, also known as natural join is a binary operator for combining 

two relations on some or all of their common attributes (or identically named 

columns). The natural join term is mainly used to distinguish the definition 

above from other join-like operations, such as: equi-join, theta-join, etc. The 

common attributes are also called join attributes. The result of a natural join 

operation between two relations r and s is a relation in which every tuple is a 

combination of a tuple from r and a tuple from s with equal values for their 

common attributes (the same with saying the intersection of their schemas). 

The formal definition is given by Maier in [Mai83J: "The natural join of re-
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lations r on scheme R or r(R), and the relation s on scheme S or s(S), (the 

'set-of-mappings' is needed here), with R U S=T, is the relation q(T) of all tu-

ples t over T such that there are tuples 1,. from r and t3 from s with tr = t(R) 

and t3 = t(S). Since RflS is a subset of both Ift and S as a consequence of the 

definition t7(Rfl S) = t8(Rfl Sr. Thus every tuple in q is a combination of a 

tuple from r and a tuple from s with equal (Rfl 5)-values. 

Other join-like operators, are: 

(a) Equi-Join. Equi-join extends the join operator to handle comparisons be-

tween columns with different attributes names but equal domains. Com-

parisons, as in natural join are based on equality. 

The main difference between natural join and equijoin is that natural join 

does not repeat connected columns. 

(b) Theta-Join. Theta-join extends join to handle combinations of two re-

lations on the basis of comparisons other than equality, as well (E.g.: <, 

≤, >, ≥). Thus, equi-join is a special case of theta-join. 

(c) Semi-Join. The semi-join of relation R by relation S, is the projection 

onto the attributes of Ft of the natural join of R and S. 

8. Division. The divide operator has a rather complex definition, but it is quite 

useful in some situation. The definition is as follows. Suppose a dividend rela-

tion D with the attributes a and b, a divisor relation R with the attribute b, and 

a quotient relation Q with the attribute a. Then Q = D divide Ft such that for 

each a-value, ai in Q, there exists in Ft a set of tuples (ad, b1), (ad, b2),.. . , (ad, b) 
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such that the set b1, b2,. . . , b, equals R. We have not made use of this operation 

in this thesis. 

Authors like Warden have proposed new operators of an algebraic nature to be added 

to the relational algebra set. Some of these are extend, summarize and generalized 

divide [Dat9O]. This new operators mainly increase the computational capabilities 

of the basic algebra. 

Codd also extends algebra [Cod79] to deal with nulls, and with 'outer' versions 

of union, intersection, difference, theta-join, and natural join. The 'outer' version of 

the natural join is called outer join and proves to be a useful operation. Outer join 

has been used in the implementation of COOL, the subject of the present work. As 

an extension of the natural join, the outer join brings into the relation resulting from 

the join, the tuples of one relation that have no counterpart in the other relation. 

The tuples, that otherwise were ignored, appear with nulls in the matching attribute 

positions. Some SQL systems (e.g.: Sybase SQL, standard SQL2) have implemented 

outer join. 

2.3.3 Relational calculus 

The algebra provides a collection of explicit operations - join, union, projection, 

etc. - that can actually be used to tell the system how to build desired relation 

from the given relations in the database. On the other hand 'the calculus provides a 

notation for defining the desired relation in terms of the given relations. Thus, if the 

calculus simply states what the problem is, the algebra gives a procedure for solving 

the problem. 

Relational calculus is founded on a branch of mathematical logic called predicate 
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calculus and is the source of declarative languages. 

A fundamental feature of the calculus is the notion of the tuple variable. A 

tuple variable is a variable that ranges over some relation i.e., a variable whose only 

permitted values are tuples of that relation. Because of its reliance on tuple variables 

(and to distinguish it from the domain calculus), the original relational calculus was 

known as the tuple calculus. 

2.4 Semantic models 

Semantic modeling research appeared in late 70s and early 80s with the desire of cap-

turing more of the meaning of data. Semantic modeling is used in conceptual schema 

design, and thus prior to a translation into one of the traditional models for ultimate 

implementation. Thus, semantic models have a higher level of abstraction compared 

with the relational model for example. Some of the best known semantic models are: 

Chen's Entity Relationship Model (ER) [Che76], the Functional Data Model (FDM) 

[Shi81] and the Semantic Data Model (SMD) [HM81]. A comprehensive survey of 

the semantic models can be found in [HR87]. 

2.4.1 Semantic concepts 

I will present the basic concepts of semantic modeling using one of the most promi-

nent semantic models, the Entity-Relationship (ER) model. The mapping of an ER 

model to any other model can be easily done, and one reason for this is the way in 

which the semantic concepts describe the real world. Thus, an ER schema consists 

of entity types and relationships interconnecting these types, along with attributes 
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of both the entity types and the relationships. 

The basic semantic concepts are: 

1. Entity. The world is made up of entities but is quite difficult to define with 

precision what an entity is. A common definition for the entity is the one used 

in database circles [Dat9O], that an entity is any distinguishable object that 

is to be represented in a database (E.g.: Person, automobile, Purchase order, 

Ship, Part, Department, Document). 

The notion of distinguishability of entities is close to object identity and the ER 

model, and semantic models in general, are regarded as object-oriented models 

[Ull88]. Essentially, semantic models encapsulate the structural aspects of ob-

jects, whereas object-oriented models encapsulate the structural and behavioral 

aspects of objects [Kin89]. 

2. An entity set (or type) is a group consisting of all similar entities (e.g.: all 

ships, all department) 

3. Relationship. Chen defines a relationship as 'an association among entities'. 

A formal definition is given by Ullman [U1l88]: Relationship/ definition 1 

- "A relationship among entity sets is an ordered list of entity sets. If there 

is a relationship R among entity sets E1, E2,. . . , Ek, then the current instance 

of R is a set of k-tuples. Such a set is called a relationship set. Each K-tuple 

(el, 62,. . . , 6k) in relationship set R implies that entities 6 1, €2,. . . , 6 k, where e 

is in set E1, 62 is in set E2, and so on, stand in relationship R to each other as 

a group". 
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K or the number of entity sets participating in a relationship is called the 

degree of the relationship. So, we can have a binary relationship (k=2), or a 

ternary relationship (k=3). The most common case in practice is k=2. 

Relationships are classified according to how many entities from one entity set 

can be associated with how many entities from another entity set, into: One 

to one, one to many and many to many. 

4. Attributes and keys: Entities sets and relationships have properties, called 

attributes. All entities in an entity set have the same attributes or proper-

ties. Each attribute takes values from a domain of values (e.g.: the domain 

of real numbers or character strings). Properties can be: simple or composite 

(the composite property 'position' might be made up of the simple properties 

'latitude' and 'longitude'); key (an attribute or set of attributes whose values 

uniquely identify each entity in an entity set); single or multivalued (associates 

a set of entities to one entity, for example: the set of languages a person can 

speak); or base or derived (the value can be derived from other attributes). 

5. ISA relationship or Supertype/Subtype entities. The concept of ISA 

relationship was not included in the original ER model [Che76] but was added 

later. Any given entity can be of several types simultaneously. For example 

some Aircraft are Helicopters and all Helicopters are Aircraft. Aircraft is a 

supertype and Helicopter is a subtype or there is a ISA relationship between 

Aircraft and Helicopter. We can also say that a Helicopter is a special kind 

of Aircraft and can inherit the attributes of Aircraft, but also has specific 

attributes such as number of rotors that do not make sense for other types of 
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Aircraft, such as fixed wing aircraft. We might find also that some Helicopters 

are Cargo and other are Passenger. So an entity subtype is an entity type and 

can have subtypes of its own, and the process can continue, generating a type 

hierarchy. 

Type hierarchies are known also, as: generalization hierarchies, special-

ization hierarchies or ISA hierarchies. 

2.4.2 Mapping ER into the relational model 

If we map ER model into a relational model, an entity set maps into a relation, an 

entity maps into a tuple, and the key maps into the primary key of the base relation. 

In the relational context relationships can be also mapped to relations. However, 

according to the relationship/ definition 1 only the many to many relationship 

qualifies for a true relationship, since it demands representation by means of a sepa-

rate table. One to one and one to many relationships can always be represented by 

means of a foreign key in one of the participant tables. 

A comprehensive presentation of different kinds of relationships and their repre-

sentations in different data models is given in [Cat9l]. 

Basically, the relational model and the object-oriented one are using the same 

techniques to represent relationships, that is, by means of attributes. The attributes 

could be simple (atomic values), or complex (reference, collections, or derived (func-

tions)). The differences are: 00 models use OlDs instead of using foreign key and 

primary key, and the relationships are more meaningful to the user (through the 

attributes used by the 00 model) and cannot be corrupted so easily. We say that 

relationships cannot be easily corrupted when they are not associated with user-
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visible values, such as the foreign keys; all the values in the referenced object may 

be changed and the reference attribute still points to the same object. More details 

about relationships in the 00 models will be given in Chapter 3. 

Bradley [Bra92d] gives a thorough classification of relationships in relational 

databases, and the following definition of a relationship: Relationship/ defini-

tion 2, for tables - "A relationship R(A,B) between an arbitrary pair of relations 

(A,B) is defined by a relation r (a,b) containing the attributes a and b, the primary 

keys of A and B." 

Relation r is obtained by a sequence of relational algebraic joins A*J*K* . . . 

followed by a projection on fields a and b, where J, K, ... are also relations. Since 

there may be many possible sequences of joins between A and B, it follows that many 

relationships between A and B may exist, each identified by a unique r(a,b). 

In a relational database there can exist the following types of relationships: one 

to many (l:n), many to many (n:m), one-to-one (1:1), recursive 1:n, recursive n:m, 

and co-relationships. 

A n:m relationship between two relations A and B can always be decomposed into 

a 1:n relationship between A and a third relation C, and a l:n relationship between 

B and C. 

The l:n, n:m and the recursive relationships (either l:n or n:m) can also be 

primitive (simple) or composite. 

A relationship R(A,B) between two relations A and B is primitive if it is simply 

based on a single join between A and B, that is 

R(A,B) = project ((A join B)(a, b)) 
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(see relationship/ definition 2). A relationship between A and B is composite 

where there is no common join attribute in A and B, and the relationship is due to 

a series of joins involving a chain of primitive relationships, that is, involving other 

relations J, K, . . . so on. 

A relationship between A and B is called recursive if and only if A=B [Bra87]. 

Common recursive relationships are either simple one-to-many or many-to-many. 

Examples of recursive one-to-many are: (a) a relation whose tuples describe all the 

employees in a hierarchical business organization, where each employee except the 

president, reports to one other employee, and (b) a relation whose tuples describe 

corporations, where a corporation can be an entirely owned subsidiary of another. 

Common examples of recursive many-to-many relationship are: (a) the bill of mate-

rials where relations describe components and subcomponents for containment based 

objects, and (b)a relationship resulting from a relation whose tuples describe corpo-

rations, where any corporation can own part or all of the shares of other corporations. 

2.4.3 Type constructors 

An important form of abstraction in a semantic model is the type constructor. Type 

constructors are used for abstracting or building complex objects out of less ab-

stract atomic types. There are two prominent type constructors: aggregation and 

grouping or association. From the set-theory point of view aggregation is fundamen-

tally a cartesian product of a list of domains. An informal definition of aggregation 

is: grouping of different part types into a whole. There are two kinds of results 

when aggregation is applied: (1) an entity or object type result, aggregated from 

atomic attributes, the classical example being ADDRESS, which is an aggregation 
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of STREET, CITY and ZIP, (2) a composite object result, aggregated from objects of 

different types, an example being a VEHICLE made of ENGINE, WHEELs, ELEC-

TRONIC-DEVICES, and MECHANICAL-DEVICES. In the ER model aggregation 

is represented by a relationship. 

Grouping or association is a constructed type, defined in [HR87] as a finitary 

powerset, used to built sets of elements of an existing type, E.g.: Sets of Languages 

or sets of Hobbies. 

Some implementations of semantic models are worth mentioning, for example 

GEM [TZ84], and TAXIS [NCL86], a project developed at the Univ. of Toronto, 

are both implemented as front-ends to a relational system. 

2.5 The Non [First] Normal Form models 

At the end of the seventies, Makinouchi [Mak77] proposed that the first normal form 

condition imposed by the relational model be abandoned, that is, the condition that 

attributes in a relation must be atomic. This idea was triggered by the need to model 

complex data objects with hierarchical structure, such as books, office documents, 

etc. A plethora of models were simultaneously proposed, such as the nested relational 

model [S586], the Fisher and Thomas model [FT83], the V-relational model [AB84]. 

The same idea arose naturally in the context of semantic database modeling [AH84, 

HY84]. 

Non [First] Normal Form models are referred to with various names, such as 

nested relational, NF squared, NF2, NFNF, N1NF. There are small differences be-

tween them depending on the data structures allowed to occur as attribute values 
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(records or sets, arrays, or lists). 

The most famous NFNF model is the nested relational model [SS86] The idea of 

the nested relational model is very simple. Relations are allowed in place of atomic 

attributes. This hierarchical nesting of relations may be repeated for an arbitrary 

but fixed number of levels [SS89, SS86]. 

From a semantic modeling point of view, the construct relation corresponds 

to the application of one aggregation operation to construct tuples from atomic 

domains, that is the tuple constructor, followed by one association operation to 

construct a set of tuples, that is the set constructor. Complex objects have evolved 

from relations in that they are constructed by repeated application of tuple and set 

constructors. 

Thus nested relations can be constructed by repeatedly applying the sequence 

aggregation-association operations to a collection of primitive objects or to a collec-

tion of composite objects, obtained by previous applications of the rule. 

The best way to describe the nested relation model is perhaps by using a pro-

gramming language (Pascal) like syntax [SS91]. 

type Department type Employee 

= set of record = set of record 

cno: integer, SIN: integer, 

name:string, name: string, 

budget: real, sal: integer, 

staff: set of Employee, end; 
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end; 

In the example above, the relation Department is a nested relation, where the value 

of a 'staff' attribute is a set of Employee tuples. 

Some systems based on NFNF models, are: 

• Prototype implementations for an extended NF2 data model: AIM-P (Ad-

vanced Information Management Prototype) [PD89], AIM-TI [DKA86]. 

• The VERSO prototype, developed at INRIA, France [SAB89] which was im-

plemented in Pascal on Unix. 

• The Darmstadt Database System (DASDBS) from The Technical University 

of Darmstadt [SS89]. It is based on the idea that no single DBMS could cover 

all the different needs of various new DBMS applications. Instead we can have 

a kernel with several front-ends, that form a family of database systems. The 

kernel integrates common features of a low level storage component, and allows 

efficient front-ends tailored to specific application classes. 

An important point about nested relations and complex objects is that they are 

incapable of directly representing non-hierarchical or many-to-many relationships 

and inheritance. These capabilities are added using extensions of the model. 

2.6 Functional models 

The functional data model (FDM) is a semantic model based on explicit representa-

tion of attributes as functional relationships. FDM has proved to be a very important 

base for 00 modeling. It was first introduced by Kerschberg and Pacheco in 1976 
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[11R87] and made best known by Shipman [Shi81]. Shipman developed an informal 

graph-based representation of FDM schemas and a data language DAPLEX, that is 

considered the first database access language to give an important role to attributes 

that are used as atomic types, or composite types (objects) built from atomic types. 

Thus, the functional model shares ideas with the 00 approach, such as the naviga-

tional, or path-tracing, style of addressing objects that are functionally related to 

each other, and is called an object-oriented semantic database model [HR87]. Date 

[Dat9O] considers the functional approach and the 00 approach as being the same. 

A well-known example of an OODBMS based on the functional approach is Iris 

from Hewlett-Packard Labs [FBC87, Fis89, Bro91]. It is implemented on a rela-

tional system. The Iris data model is based on functional data models and languages, 

such as DAPLEX [Shi8l] and GORDAS [EW81]. It has three constructs; namely 

objects, types and functions, and it supports inheritance, integrity constraints, com-

plex objects, user-defined functions, and extensible data types. Objects maybe 

referenced directly through their keys. The query language of Iris is called Object 

SQL (OSQL). 

2.7 Object-Oriented Models 

Object-oriented data models are the result of the emergence of new database appli-

cations classes [Cat9l], such as: 

• Computer-aided software engineering (CASE), 

• Mechanical and electrical computer-aided design (CAD), 
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• Computer aided manufacturing (CAM), 

• Office automation, 

• Computer-aided publishing (CAP) and hypertext, 

• Graphics, 

• Scientific and medical applications, 

• System services, 

• Manufacturing and real-time control, 

• Knowledge bases for AT and 

• Business applications where traditional DBMSs have proven inadequate. 

Although relational DBMSs have a firm theoretical foundation, these new appli-

cations have revealed many weaknesses in the relational model, and have focused 

attention on the need for: 

• support for much more complex entities, such as design and engineering objects, 

and compound documents, 

• abstract user-defined data types, 

• the semantic concepts of generalization, aggregation, and association, 

• temporal evolution of data, particularly the temporal dimension of data, and 

multiple versions or versioning of data, 
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. multimedia data such as audio, and video data, 

• new capabilities such as manipulating stored complex objects and rule process-

ing. 

These needs, together with the need to reduce the cost of developing complex soft-

ware systems, have brought the object-oriented programming paradigm into database 

technology. 

The 00 paradigm embodies abstract data types, encapsulation and inheritance 

which has made it easier to develop and upgrade applications. It should be re-

membered that ease of application development was the major driving force in the 

original evolution of database management technology from file systems to relational 

database systems. 

00 database research, unlike other approaches to databases, started in a bottom-

up fashion with the implementation of a number of working systems, without formal-

ization of underlying concepts [Wie9l]. Implementation of OODMBS was very active 

in the mid 1980's with projects such as Orion [KBC89, I{im90], 02 [fleu9l], and 

Iris [FBC87]. A top-down movement started in 1989 when confusion about object 

database concepts made the need for a number of simple and clear rules obvious. 

As in the case of NFNF models, there is not a single 00 model, but rather 

a plethora of 00 models. There is an attempt of standardization from the 0MG 

group [Cat93] but the standard is not accepted by the vast majority of OODBMS 

developers [Kim94]. 

Two major manifestoes that give a 'general' definition of an OODBMS were 

written: [ABD89] and [SRL90]. These manifestoes define the two main trends in 
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00 technology, and they will be presented in Chapter 3. 

2.8 Comparative views of database models 

2.8.1 Relational versus 00 models 

The relational data model is value-based, as opposed to CODASYL, which could be 

called identity-based. The distinction arises from the mechanisms the data model 

provides for relating objects, a fundamental part of the modeling capability of any 

database system. A value-based model expresses the relationship between two ob-

jects by embedding the same value in the related objects. An identity based model 

can relate two or more objects independently of their embedded values. The re-

lational systems are flexible and offer data independence by making a distinction 

between three layers: conceptual, storage and external. 

00 data models are identity-based like network models such as CODASYL. They 

add a rich typing and extensibility. They add also encapsulation of data types and 

inheritance. 

2.8.2 Semantic versus 00 models 

Some researchers refer to semantic models as being object-oriented, because they 

provide mechanisms for structuring complex objects (aggregation, grouping, rela-

tionships as attributes: constructors used to build software objects). So the dis-

tinction between the two sorts of modeling is not always well defined. King [Kin89] 

points out the differences between the semantic modeling and the object-oriented 

models, as follows. 
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• While semantic models attempt to provide 'structural abstractions', 00 mod-

els provide 'behavioral abstractions'. Semantic models grew out of the same 

some sorts of concerns that inspired researchers in AT and knowledge represen-

tation. In contrast 00 models were inspired by advances in programming lan-

guages. Semantic models are oriented toward the representation of data, while 

00 languages are concerned with the manipulation of data. While seman-

tic models provide constructors for creating complex data types, 00 models 

provide ways for embedding operations within data types. 

• This distinction concerns the notion of inheritance. In a semantic model ag-

gregations and attributes/relationships are 'inherited' down type hierarchies, 

that is, we have inheritance of structural components. In contrast, 00 models 

focus on the inheritance of behavioral capabilities, in the form of the inher-

itance of operations embedded within types. Many of the 00 systems have 

both structural and behavioral encapsulation facilities. 



Chapter 3 

Object-Oriented Trends 

There appears to be a consensus among database researchers that next generation 

DBMS will be based upon the object paradigm. However, there is no consensus on 

a next generation 00 data model. 

The 00 approach can be viewed as a combination of conventional database and 

object-oriented programming language (OOPL) technology. As a result of empha-

sizing either the database or the OOPL side, two main trends on OODBMS have 

emerged. 

The first trend or the evolutionary approach, is to extend the relational 

model with a set of fundamental 00 concepts (complex objects, abstract data 

types(ADT), access methods, and the encapsulation of data with methods), found in 

most object-oriented programming languages. The database language that embodies 

the united object-relational paradigm should be an extension to SQL. The database 

language should then be embedded in a wide variety of host programming languages. 

Some of the OODBMS based on this approach are called object-relational (0-R) 

A definition of an object-relational DBMS is given in [Sto]. In this definition, an 0-Ft 

DBMS should add the following 00 concepts to a RDBMS: (1) unique identifiers, 

(2) user defined types, (3) user defined operators, (4) user defined access methods, 

(5) complex objects, (6) user defined functions, (7) overloading, (8) dynamic extend-

ability, (9) inheritance of both data and functions (methods), (10) arrays. These are 

the 00 capabilities of the Illustra or Montage (the commercial version of POST-

37 
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GRES) OODBMS. The same ideas of unifying relational and object-oriented data 

models are implemented in the 1JniSQL O-R DBMS [Kim92]. 

This type of OODBMS integrates well with existing relational databases and 

provides a smooth flow of data between engineering and business applications. 

The second trend or the revolutionary approach is to extend object-oriented 

programming languages (notably C++ and Smalitalk), by allowing programming 

language objects to be persistent and sharable, that is, stored as a database, as well 

as permitting other database functions, such as transaction management and limited 

query facilities. The result is an object data model for which there exists no unique 

formal proposal but a variety of system-dependent data models. 

The advantage of this approach is a single language for both database access 

and application programming. The disadvantages are (1) the lack of some essential 

database concepts, such as: a standard optimized query language, and mechanisms 

for concurrency control and reliability, and (2) the integration aspect of databases 

across several applications written in different languages seems to be lost since there 

are as many programming languages as 00 database systems. 

A common goal of OODBMS from both trends is to integrate applications pro-

gramming and data management. The difficulty is that programming language en-

vironments and database systems ate built on different concepts for typing, and 

computation. Typing systems in programming languages are rich, including: arrays, 

lists, ADT, as well as atomic types (integers, strings, etc), while typing systems 

in a database language typically include sets (relations) and atomic types. Com-

putational models in programming languages are rich in manipulation capabilities, 

while computational models in a database language are more restricted but typically 
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include search,insert, delete and update. 

Basic 00 data model concepts and annotated bibliographies are presented in 

many works, such as: [Kim9O], [US9O],[BM93], [Ban93], [Cat91], [Bro91], [U1188], 

[ZM89a]. The two 00 trends are best described in the Atkinson and Bancilhon et 

al., and in the Stonebraker et al. manifestoes that appeared in 89. Throughout the 

thesis I will use also the name "object-relational approach" for the first trend and 

"OOPL approach" for the second trend. 

Since the system researched in this thesis belongs to the object-relational ap-

proach, we present the basic work in this field in the next section. In Appendix E, 

we review other work in the field of 00DBMSs that we consider is helpful to an 

overall grasp of the field, but is not very relevant to the topic of the thesis. 

3.1 The Evolutionary, Object-Relational Trend or Object 

Extensions of the Relational Database Model 

3.1.1 Concepts 

The Object Relational trend (O-R trend) is supported in the Third-Generation 

Database System Manifesto [SRL9O] issued by the Committee for Advanced DBMS 

Function, composed of Michael Stonebraker and other researchers from the field of 

relational database technology. The O-R trend is also outlined by Kim in the pa-

per "On Unifying Relational and Object-Oriented Database System" {Kim92}. In the 

Third-Generation (TG) manifesto the first generation database systems are the older 

hierarchical and network database systems (CODASYL and IMS type systems or the 

systems of the 70s) and the second generation database systems are the relational 
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DBMS (the systems of the 80s). 

The TG database manifesto is a set of basic tenets that should guide the de-

velopment of third generation systems. The following covers the essentials of these 

tenets. 

Tenet 1: Besides traditional data management services Third Generation DBMSs 

will provide support for 

1. A rich type system. A 'type' or a 'class' is a set of objects with similar 

structure and behavior. From a design perspective, objects model the entities 

used in the application domain. Each class has a name and a set of attributes 

that hold state values of the object and a set of operations (procedures and 

functions) that an object is subject to. Usually a 'type' and a 'class' are used 

interchangeably. Note that in the object model of the 02 OODBMS [LRV89] 

'type' and 'class' are used as distinct concepts. Further details about this 

original idea are in Appendix E. 

A rich type system includes an abstract data type system to construct new 

base types, and type constructors (array, list, tuple, set) that can be recur-

sively applied to form complex objects. Prototype syntax for the above type 

constructors is contained in Starburst [GLPS91]. The above type constructors 

can be added to relational systems as natural enhancements. This approach 

has already been applied to SQL3 draft for the support of Abstract Data Types 

(ADT) and functions (more details will be given in Chapter 8). 

•2. Single and multiple inheritance. Inheritance is usually understood to be 

class inheritance, although inheritance can be also instance inheritance. Class 
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inheritance is the most common form of inheritance and is often called an ISA 

1:1 relationship. The idea is that if Y inherits from X, Y is an X with some extra 

features. Class inheritance can be simple or single class inheritance, where the 

ISA relationships form a hierarchy, or it can be multiple class inheritance when 

ISA relationships form a network. 

Single inheritance is essential but multiple inheritance is necessary to cover 

all the situations that can occur, so that in general the inheritance relation-

ships form a directed graph. Multiple inheritance is optional in the [ABD89] 

manifesto that supports the OOPL approach. 

3. Functions (database procedures or methods) and encapsulation. 

Encapsulation refers to coupling of specific methods (operators, functions or 

procedures) to classes of objects. Thus, an object encapsulates both state 

(value of the object) and behavior (set of methods). Through the implementa-

tion of methods encapsulation provides data independence, allowing the private 

portion of an object to be changed without affecting applications that use the 

object class. 

Encapsulation has the advantage of encouraging modularity, but a total en-

capsulation can make some data elements inaccessible. For example the only 

way to access the Employee class might be to execute a function call, e.g. 

Hire(Employee). This is a restriction that ignores the needs of the query lan-

guage to have access to each element directly. The query language should have 

access to the data elements inside data types. It is for this reason that some 

OODBMSs drop the encapsulation restrictions of access to the private imple-
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mentation of an object when a query language is used, but keep it for access 

to object classes from application programs. This is called partial hiding. Of 

course, encapsulation can be avoided by defining methods for all the attributes 

that have to be visible to the query language. Other techniques can be used 

[Cat9l]. 

Functions should be written in a high level nonprocedural language (embedded 

via a preprocessor in the query language) and have DBMS access through 

queries. Thus, functions should execute query expressions and not perform 

their own navigational programming using calls to some lower level DBMS 

interface as in prerelational systems. 

4. Unique Identifiers (OlDs). OlDs for records should be assigned by DBMS 

only if user-defined primary keys are not available. 

If a primary key exists and is known that will not change (SSN, student ID 

number) we can keep it because it has a natural, human readable meaning. 

In the opinion of the writer an extra hID is still necessary to assure the unique-

ness of an object instance. Many problems can arise with the primary keys 

(or using descriptive data for identity), and they are discussed in [K089]. The 

solution is support for a system-generated identifier for objects that is inde-

pendent of their external descriptive data, so that the system can preserve an 

object's identity when object sharing and updating are performed, as well as 

within complex objects, regardless of changes in data or structure. 

Tenet 2: Third Generation DBMSs must subsume second generation DBMSs. 

Thus they should keep the major contribution brought by the relational model, such 
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as non-procedural access and data-independence, and support of updatable views. 

In the Atkinson et al. [ABD+89] manifesto, the non procedural access, or the ad 

hoc query facility, can be of any convenient form. By contrast, the TG manifesto 

emphasizes that essentially all programmatic access to a database should be through 

a non-procedural language. 

The access by a query language will be either by adding query language constructs 

to multiple persistent programming languages or by embedding a query language in 

conventional programming languages (which is the current approach). 

Tenet 3: Third Generation DBMSs must be open to other subsystems, and that 

is: 

1. They should be accessible from multiple programming languages by employ-

ing a closer match between the data type systems of the database and the 

programming language, and allow that any variable in a user's program to be 

optionally persistent. 

2. Persistent programming languages supported on top of a common DBMS by 

compiler extensions and a (more or less) complex run time system would be a 

good idea. 

3. The query language should be an extension of SQL, the uncontested standard. 

Additional query languages might be developed, for specific applications. 

In conclusion, the object-relational approach combines traditional database the-

ory concepts with programming languages concepts instead of attempting to incor-

porate database concepts into a programming language. 
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3.1.2 Examples of models and implementations 

The first extensions made to a relational data model were semantic extensions, and 

were object-oriented in concept. The common goal of these extensions was to bring 

the relational data model closer to the real world since unnormalized relations more 

closely resemble the entities of the real world. Among the first semantically extended 

relational models were: 

• Extensions of NF2 data models. Scholl and Schek [SS91, SS9O] have de-

veloped an object model, called 'relational object model' by extending a NF2 

model and using concepts from KL-ONE, a knowledge representation model 

used in AT and relational database model (see also the NF2 data model from 

Chapter 2). They have added an entity generalization/specialization facility 

(inheritance) and network data structure support to the NF2 data model. The 

network data structure support is achieved by functions as abstractions of both 

attributes and relationships. These 'functions' map instances of a domain type 

to either an instance or to a set of instances of another domain type. Thus, 

a classic attribute can be viewed as a mapping in atomic domains. The func-

tions can play the role of (1) pointers from programming languages, (2) of 

reference attributes [Cat91], (3) of OlDs from various object-oriented database 

models, or (4) of the foreign key from the relational model. This technique of 

using functions as attributes makes it possible to extend NF2 relations from a 

hierarchy of relations to a network of relations. 

The data model of IRIS system [Bee88] and OODAPLEX [Day89] (the 00 

extension of the FDM) use the same kind of object-function-model. 
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The example presented in Chapter 2, in the NF2 data models, now becomes: 

type Company type Employee 

= set of record = set of record 

cno: integer, SSN: integer, 

name:string, name: string, 

budget: real, sal: integer, 

president: Employee, works-for: Company, 

staff: set of Employee owns: set of Vehicles 

end; end; 

The non atomic types : staff, works-for, owns, in the type definition are 

expressed as functions. 

For example, staff is a function that maps Company to a set of objects with 

the type Employee. Also, the pair of functions (staff, worksfor) describes a 

one-to-many relationship. 

• The POSTGRES system. POSTGRES is the most powerful implemented 

prototype of this trend [Cat91]. POSTGRES has been under construction since 

1986 at the University of California at Berkeley [SK91, Sto87, MR86, Cat91] 

and as the name shows is a follow-on to the INGRES RDBMS. POSTGRES 

has a recent commercial version called Illustra. The data model of POSTGRES 

[RM87] is an extension of the relational model with: 

- user defined Abstract Data Types (ADT) and associated operators, 

- the structured attributes type procedure and array, and 
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- data and procedure inheritance. 

POSTGRES extensions provide support for semantic and object-oriented con-

cepts such as: aggregation, generalization and association, and complex objects 

with shared subobjects. 

The class in POSTGRES, can be associated with a relation and is a collection 

of instances of objects (or tuples). A class has attributes of fixed type that 

can be atomic or structured. Each instance has a unique system generated 

identifier (OlD), which is readable but not updatable by the user. Primary 

keys for instances (or tuples) can be optionally defined 

There are three kinds of classes: (1) real or base classes, whose instances are 

stored in the database, (2) derived or view (or virtual) classes, whose instances 

are not physically stored, (3) version of another class which is stored as a 

differential relative to its parent class. 

POSTGRES contains an extensive type system. Important types are: 

- new base types built using ADT definitions, for example a definition of 

an ADT that represents boxes: 

define type box is 

(Interna1Length16, 

InputProc = CharToBox, 

OutputProc = BoxToChar, Default=" 

) 

C' 
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A box is represented as a character string that contains two points that 

represent the upper-left and lower-right corners of the box. CharToBox is 

a function that takes a character string that represents a box and returns 

a 16 byte representation (4 bytes per x- or y-coordinate value. BoxToChar 

os the inverse of CharToBox. 

- arrays of base types. For example if an employee receives a different 

salary each month, we could use: 

retrieve (EMP . name) 

where EMP.sa1aryE4J = 1000. 

- composite types that allow the construction of complex objects (aggre-

gation) with a hierarchical internal structure. There are two composite 

types: 

1. indicated by class name, and containing zero or more instances of 

that class, for example, the class EMP contains instances of type 

EMP for the type of the attribute 'manager'. 

create EMP ( 

name = c12, 

salary = float[12], 

age = int, 

manager= EMP 

) 

2. indicated by set, whose value is a collection of zero or more instances 

from all classes, for example: 
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add to EMP (hobbies = set) 

The elements of a composite type are addressed by nested dot nota-

tion or path expressions, present also in IRIS, ORION, 02 and Gem, 

such as: 

retrieve (EMP . manager. age) 

where EMP.name=' 'Joe" 

EMP.manager.age gives the age of a manager from class EMP, and 

EMP.name gives the attribute name of an instance from class EMP. 

- type procedure. There are three kinds of procedures (or functions) in 

POSTGRES: 

1. C functions (whose arguments are base types or composite types and 

are dynamically loaded when used in a query), 

2. operators (functions of one or two operands which are base types; for 

example: operator '!!', returns 'true' if two polygons overlap), 

3. POSTQTJEL functions (any collection of commands in POSTQTJEL 

- the query language of POSTGRES - can be defined as a function). 

POSTGRES can be called from many different languages. 

• The Starburst system. Starburst project is another major project illus-

trating this trend at the IBM Almaden Research Center, initiated in 1985. 

Starburst is an extensible DBMS prototype based on the relational model and 

on extensions of SQL [LLPS91, Cat91, LH9O]. It is a prototype that was not 

built on the foundation of any earlier system. The extensions to relational 
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technology are also different from those in POSTGRES, where the relational 

model was extended. The extensions in Starburst are present at the DBMS 

component level. We have (1) storage and access method extension, (2) query 

analysis extensibility, (3) query optimizer extensions, (4) query language ex-

tensions, for example: recursive queries, table expressions and table functions; 

(5) complex object support, and (6) type extension mechanisms. 

The extensions developed for Starburst, incorporate the best features of many 

existing data base technologies, such as: 

- solid theoretical foundation and a declarative query language (an extended 

form of SQL) that can be optimized, 

- a richer type system, enhanced performance using system maintained 

pointers to related objects, encapsulation of behavior with the data, ob-

ject identifiers for stored objects, large structured complex objects (an 

application program interface has not yet been implemented for them) 

and support of hierarchies of user defined types and functions (features 

retained from the object-oriented world), 

- user defined rules to respond to changes in the database (active database) 

and, general recursion added to SQL. 

Starburst has five kinds of functions: 

1. Scalar functions. These have one or more scalar arguments and produce 

a scalar, such as: trigonometric functions or the square root function, 
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2. Aggregate functions. These operate on an entire column of a table and 

produces a scalar output, for example, AVGQ in SQL, 

3. Set predicate. This special case of an aggregate function returns a 

boolean value, 

4. Table functions. These are functions that produce a table as output. 

They can have scalar inputs, or table inputs. Table functions are useful 

for importing data from outside the database and presenting it as a view 

or virtual table (e.g.: the Unix 'ls' command is implemented as a 'table 

function' whose parameter is the directory to be searched). 

Unfortunately user-defined functions must be linked with the rest of Starburst, 

which is currently an inconvenience. 

The type system for Starburst is still under design. Eventually Starburst will 

support an extensible , hierarchical type system in which all user-defined types 

can be encapsulated. Encapsulation is performed differently from the 00 

paradigm. In order to access a type a user need to have privilege access to use 

a function 'unwrap'. 

.Single and multiple inheritance of data and functions will be also supported. 

The set of quantifiers for Starburst query language will include the universal 

quantifier ALL and MAJORITY. 

Complex objects in Starburst are stored using two approaches: 

1. The entire complex object can be stored in a 'long field' in which repre-

sentation of the object is entirely under user control. A selection predicate 
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thus cannot be applied. 

2. A complex object's atomic components can be stored as rows in tables, 

and the object can be constructed by composing these rows using a new 

kind of relational view, an extension to Starburst, called eXtended Normal 

Form (XNF). This has not yet implemented. 

• Unified relational and object-oriented data model. Kim is also in favor 

of the approach that an 00 model can be viewed as an extended relational 

model and has introduced an equivalent of this model called 'unified relational 

and object-oriented data model' [Kim92, Kim]. Kim is also in favor of a declar-

ative query language that can be optimized. Kim's data model was used for 

building a commercial database system, called UniSQL [Kim92]. 



Chapter 4 

Database Languages 

The core of a database system is its database language. A database system is in 

essence software that implements all the functions supported in a database language. 

A database language is an embodiment of a data model and a database model is the 

foundation of any database system. From this perspective, a database language is a 

very important component of a DBMS. 

In principle, every database language has at least two component sublanguages: 

1. Data Definition Language (DDL). This is a language that specifies the 

conceptual scheme. It is rather a notation that describes the types of entities 

and relationships among types of entities, in terms of a particular data model. 

2. Data Manipulation Language(DML). This supports the manipulation or 

processing of objects by operations performed on the database. DML it is also 

called 'Query Language' (QL) but more correctly the query language performs 

only retrievals and it is included in the DML. Besides retrievals (or queries) a 

DML executes update, delete, so on. 

Besides these two sublanguages, there can be a third sublanguage called a data 

control language that allows the database administration. 

Often the manipulation of the database is done by an application program. The 

programs that manipulate databases are written in a so called host language, which 

is a conventional programming languages such as: C, Pascal or COBOL. 

52 
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4.1 Query Languages 

The most common query languages are the relational ones. The relational model 

offered us two types of QL: the procedural relational algebra and declarative or non-

procedural relational tuple or domain calculus. Procedural and declarative database 

languages are equivalent in expressive power. Relational calculus is a straightforward 

adaptation of the first order predicate calculus. Relational algebra can be viewed as a 

functional language. It consists of a fixed collection of operations: union, difference, 

product, selection, projection, join, intersection, as described earlier. We have no 

predicates as we have in the calculus, and the relations are simply named constants. 

4.2 Declarative database languages 

"A declarative language is a language in which one can express what one wants, 

without explaining exactly how the desired result is to be computed" [01188]. 

The relational model has been very successful to a large extent because of the 

declarative languages, such as SQL and QIJEL, that it introduced. 

Declarative languages bring with them ease of use, associative data access and 

optimization. Essentially they have moved the optimization of access from the user 

to the database system. Thus, other factors being equal, users prefer declarative 

languages [Ull88]. 

The opposite of a declarative language is one in which we give the steps that lead 

to the desired result. This kind of language is called procedural (e.g.: Fortran, Pascal 

and C are procedural programming languages, and relational algebra is a procedural 

database language). 
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However, although the emergence of the 00 approach to database systems has 

increased data modeling capabilities, it has been accompanied by a move back to 

procedural query languages. This has shifted the access optimization problem back 

to the user. 

The need for declarative languages is currently the subject of much debate in the 

research community. The question "Do we really need declarative languages?" has 

often been discussed. Unfortunately, declarative languages cannot support all data 

processing needs. They are not computationally complete, so that they often need 

to be embedded in host languages. This leads to many problems. One of them is 

the annoying 'impedance mismatch' that occurs between the different data models 

embodied in both the query language and the programming language. This is a major 

source of confusion for application programmers, and it is why a stated primary 

goal of some 00DB developers is to support an integrated application development 

language rather than an ad-hoc query language [ABD89]. 

However, many applications involving business, and scientific databases need 

declarative language support. Thus, the advocates of the 00 trend supported by 

the Committee for Advanced DBMS Function [SRL9O] insist that "we should not 

give up the benefits of declarative languages". 

Overall, however, it is generally agreed in the 00 database community that 

declarative languages are an integral part of the definition of a data model and that 

they must co-exist in the same system with procedural languages. 
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4.2.1 A logic approach for OODBs Query Languages (QL) 

Many features included in 00DB involve higher order logic concepts. Queries may 

involve quantification over sets and relations. Functions are involved in inheritance 

mechanisms, and, together with complex structures, are treated as data. 

In [Bee9O], Beeri tries to provide a logic-oriented modeling for 00DB. Logicians 

distinguish between first order and higher order logics. Individual elements of a 

domain are considered first order. More complex constructs, such as sets, relations 

and functions are higher order. First order allows one to 'manipulate' only individual 

elements. Relations and functions are allowed as higher order constants in the first 

order but higher order variables are disallowed. 

Higher order logic allows manipulation of higher order constructs. For example, 

second order predicate calculus allows quantification over relation-valued variables. 

To summarize, in first order logic only individual elements of domains are con-

sidered as data, and functions and relations exist only as schema level elements; in 

higher order logics, sets, functions, and relations may be data as well. 

The reason why first order predicate calculus is usually used, rather than some 

more expressive higher order variant, is that it has a sound and complete axioma-

tization, that is, the denotations of 'provable' and 'true' coincide, and problems are 

algorithmically tractable. This justifies its use for expressing queries and integrity 

constraints. This property fails for even second order logic. For instance in the sec-

ond order logic, quantifiers can range over all the second order values that can be 

constructed from given atomic domains, and this leads to intractability. However, if 

the quantifiers are restricted to range only over restricted sets of second order values, 
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the resulting calculus may be more tractable. 

In the database world there is an interest in what is given in the database rather 

than in what could potentially exist. Therefore it has been of interest to both 

logicians and computer scientists to develop restricted higher order logics. The study 

of restricted higher order logics is an important research area in the theory of 00DB 

and is a prerequisite to the development of a formal 00 data model [Bee9O]. 

Several practical attempts have been made to incorporate restricted higher order 

constructs into functional and logic programming, for example, HiLog [CKW92], and 

F-logic [KL89]. Nevertheless, it is still unclear whether or not the use of restrictions 

is a good solution to the problem of higher order programming in 00DB. 

A less formal discussion of the features of the QL for OODBMS, in an attempt 

to create a unique framework for analysis of QL is presented in [BNPS92]. 

4.2.2 Relational declarative query languages 

Declarative languages in relational databases have their source in first order predicate 

logic on which the relational model is based. Important relational query languages 

are: 

• DSL ALPHA, which is based on relational calculus. DSL ALPHA was de-

veloped by Codd at IBM. It is often used as retrieval standard against which 

the retrieval power of other query languages may be compared. An arbitrary 

relational query language L is said to be relationally complete if L expressions 

may be used to specify any retrieval that may be specified by DSL ALPHA 

expressions [Cod72]. 
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• SQL (Structured Query Language) was developed as part of the SQL project 

at IBM and was later incorporated into the System R prototype. The language 

is relationally complete, that is, it may be used to specify any retrieval that 

can be expressed by DSL ALPHA. From a user standpoint, SQL is probably 

the most important relational retrieval language at this time. 

• QUEL is the query language of INGRES, a relational DBMS developed at 

Berkeley. QUEL most closely resembles relational calculus. It is not widely 

used. 

4.3 Query languages in the 00 approach 

Several declarative languages for object models have been offered. Query languages 

for 00 systems can be classified into five broad categories according to the ap-

proaches on which they are based. 

1. Declarative query languages based on Higher order logic approaches. 

Examples are F-logic [KL89], HILOG [CC89], and Noodle [MR93]. 

2. 00 extensions of functional languages. 

Some examples of this type are: 02 query [Deu91], LIFOO a functional query 

language for 02 [BLM91}, OODAPLEX [Day89]. 

3. Query languages as persistent object-oriented programming languages. 

These languages either extend Smailtalk or C++. OPAL (GemStone) extends 

Smailtalk. The query languages of ONTOS, ObjectStore, Objectivity, and 
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Versant OODBMSs, and the language ZQL[C++] [Bla93] are based on C++. 

A survey of the database languages for new generation database systems is 

available in [Las92]. 

4. Object-Oriented extensions of existing relational declarative and procedural 

query languages. This is probably the most important category and we consider 

it in some detail. 

4.3.1 Object-oriented extensions of relational languages 

These are extensions to tuple calculus languages, such as SQL, and to domain cal-

culus languages like QUEL. 

. a) Extensions of SQL or SQL-like languages. Some examples are: 

- COOL (Composite Object-Oriented Language). COOL is a declarative 

database language designed for an extended NF2 data model [Bra93a]. 

Thus, COOL is based on the object-relational approach to object-oriented 

declarative languages. It introduces the concepts of genitive relation and 

natural quantifiers. A presentation of the language is given in Chapter 5. 

The implementation of COOL, which is the main topic of this research, 

is presented in Chapter 6. 

- OSQL in IRIS OODBMS. The query language is Object SQL (OSQL) 

[Bee88, WLH9O], which combines an SQL like syntax with a functional 

and semantic style. The functional style is present in the definition of 

attributes that are single argument functions. This style also shows in 

the definition of relationships between object types by means of functions. 
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The query processor translates Iris queries and functions into an extended 

relational algebra format that is optimized, and then executed by a storage 

manager which is conventionally relational. 

- SQL/X. This is the query language of the commercial object-relational 

DBMS TJniSQL [Kim92]. SQL/X allows path queries (like in Gem and 

POSTQUEL), queries against nested classes and hierarchies of classes, 

queries that include methods as part of search conditions, and queries 

that return nested objects. SQL/X is an upwardly compatible extension 

of SQL. 

- Starburst query language. The Starburst query language [LH9O] extends 

relational algebra and supports user-defined extensions to query analysis, 

optimization, execution, access methods, and storage methods [Cat9l]. 

- ORL. ORL [UhCLS94] is an object retrieval language and has been im-

plemented on top of ONTOS OODBMS. 

• b) Extensions of QTJEL. The main example is P0 STQUEL [RM87]. P OSTQTJEL 

is the set-oriented query language of POSTGRES and is based on QIJEL lan-

guage of INGRES DBMS. It supports user defined functions and operators, 

arrays, path expressions, and inheritance. 

4.4 The future of SQL 

Since being adopted by both ANSI and ISO as a standard language for database 

access in 1986, SQL has gone through several revisions. The last revision is SQL-92 
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which provides increased functionality [Kul93] by including additional data types and 

explicit data type conversions, the concepts of information schema, domains, tem-

porary tables, additional join operations such as outer join, new cursor options, and 

facilities to drop or alter schema objects. A new version, SQL3 upward compatible 

with SQL-92, is expected to appear in 1995-1996. 

Two major shortcomings of SQL-92 addressed by SQL3 are: the lack of a rich 

type system required by complex applications, and the lack of computation com-

pleteness. To address the first shortcoming, SQL3 incorporates an extensible object-

oriented type system borrowed from object-oriented programming languages. The 

SQL3 draft supports concepts such as: objects identity, ADT (abstract data types), 

user-defined functions, encapsulation, single and multiple inheritance (subtypes-

supertypes), polymorphism, dynamic binding and rules [CMCG94]. The second 

shortcoming is addressed by the addition of procedural language constructs. 

SQL3 can be thought of as an object-oriented programming language with built-in 

support for collection types (multisets or tables) and non-procedural query facilities. 



Chapter 5 

COOL and Extended Relational Algebra 

5.1 Overview of COOL 

COOL is an object-relational declarative database language. 

COOL is relational because it is based on Genitive Relational tuple calculus 

[Bra92a], and an Extended Relational Algebra (ERA) [Bra94]. The Genitive Rela-

tional tuple calculus is an extension of relational tuple calculus and has both relation 

names and derived genitive relation names serving as implicit tuple variables. The 

Extended Relational Algebra is an extension of the conventional relational algebra 

with specific operations for reducing the natural quantifier expressions. ERA will be 

presented later in the chapter. Thus, COOL is soundly based on the set-theory. 

COOL is object-oriented primarily because of the object-orientation of the 

model, which is an extension of the relational data model, and secondarily because 

of the object-orientation reflected in the language semantics and structure. 

A simple way to demonstrate COOL's object orientation is by comparing it to 

SQL, a genuine relation-oriented language [Bra93b]. For example consider a database 

about parks. A Park can contain Forests and a Forest can have Campgrounds. A 

relational (Bachman) diagram of the database is shown in figure 5.1. 

Take for example the retrieval from [Bra93a]: "Retrieve full data on each Cali-

fornia park where all of its forests exceed 10 square miles and have only campgrounds 

with fireplaces". 

61 
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ØiME! 
1r41  

pname psurface province 

Park 

pcode fname fsurface location 

Forest 

fcode fireplace 

The SQL expression is: 

Campground 

Figure 5.1: Parks Database 1 

select * from Park 

where location = California" 

and pcode in (select pcode from Forest) 

and pcode not in (select pcode from Forest 

where f surface <= 10 

or fcode in 

(select fcode from Campground 

where fireplace = 'no") 

or fcode not in 

(select fcode from Campground)) 

The COOL expression is: 
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select * from Park 

where location = "California" 

and for all Park's Forest 

(f surface > 10 

and for all Forest's Campground 

(fireplace = yes'')) 

The above example deals with a hierarchical database structure, that defines 

composite objects (or aggregations). 

The object orientation of COOL (see example above) is supported by the higher 

level of abstraction implicit in the specification of the relationships between the enti-

ties (a park has many forests and a forest has many campgrounds). Thus, in COOL 

we think in terms of objects only (a Park has Forests and Forests have Campgrounds). 

By contrast the SQL query is expressed in terms of entire relations (all the Forest 

tuples, all the parks tuples). Thus, in SQL we think in terms of entire relations 

and need to make sure that we join the relations on the right fields. We also need 

to correctly apply rules and logical operators, such as de Morgan rules, and double 

negation for the universal quantifier; in addition the natural quantifiers cannot be 

used. All these relation-oriented semantics for a language are error prone, require a 

logical mind set and take quite a long time to learn to use. 

In contrast, COOL is based on an object-oriented data model, and offers an 

object-oriented approach to writing queries. 

If in the example above, the quantifier for all is replaced by the quantifier for 

most, the COOL expression would remain the same with the exception of the quan-
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tifler: 

COOL: 

select * from Park 

where location = California" 

and for most Park's Forest 

(f surf ace > 10 

and for most Forest's Campground 

(fireplace = 

However, the SQL expression needs to be changed to: 

select * from Park 

where location = 'California'' 

and (select count (*) from Forest 

where Forest.pcode = Park.pcode 

and f surf ace > 10 

and (select count (*) from Campground 

where Campground.fcode = Forest.f code 

and fireplace = "yes") 

> 

(select count (*) from Campground 

where Campground.fcode = Forest.f code 

and not (fireplace = "yes")) 

) 

''yes'')) 
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(select count (*) from Forest 

where Forest.pcode = Park.pcode 

and not (f surface > 10) 

or (select count (*) from Campground 

where Campground.fcode = Forest.fcode 

and fireplace = ''yes") 

<= 

(select count (*) from Campground 

where Campground.f code = Forest.f code 

and not (fireplace = ''yes'')) 

) 

COOL proves to have also an easy to use natural language structure, in the sense 

that natural quantifiers are used much as in a natural language. COOL is unique 

in the field of declarative languages in employing the genitive relations and natural 

quantifiers, two new concepts of great expressive power. 

5.2 Data Model 

As mentioned before, COOL's data model is an object-oriented extension of the 

relational model, the extended Non-First-Normal-Form(NFNF) data model. Instead 

of normalized relations with atomic-value attributes, as required by the relational 

model, the NFNF data model allows attributes that contain collections, for example, 

sets of tuples or relations. 

COOL's object data model allows the following as attributes of a non-normal-
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form relation: 

• atomic attributes (e.g.: numbers or strings), 

• sets or lists of atomic values (e.g.: list of keywords in a document, or a list of 

object identifiers to support a relationship), 

• structure attributes obtained through aggregation (such as: Address or Date), 

and 

• derived attributes (a function that generates an attribute value from stored 

attributes' values). 

Each object instance in the COOL data model has a unique OlD generated by the 

system. Primary keys can also be used as a meaningful key for the user that does 

not have access to the OlD. 

The COOL data model supports the following types of relationships: one-to-

many, many-to-many [Bra93a], ISA (one-to-one or generalization or class inheri-

tance) ,and recursive many-to-many or one-to-many. It also supports composite ob-

jects (aggregation) [Bra93b], aggregation functions (such as: countQ, sumo, avgQ, 

and so on), and can be extended with user-defined functions (or methods), user-

defined data types (or Abstract Data Types), and to perform encapsulation of data 

with methods. 

5.3 COOL's Basic Concepts 

COOL introduces two new concepts to the query language world: genitive rela-

tion and natural quantifier. These concepts give COOL the two unique features 
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mentioned above: the object-oriented approach to writing queries and a natural 

language structure. 

The 00 specification syntax of COOL better fits the majority of cases in which 

queries deal with aggregation and association of objects. The way in which SQL 

specifies queries is set-oriented and is best suited to situations where it is natural to 

deal with whole relations. Unfortunately these situations are rare, for example from 

Date's well-known query [Dat9O]: "retrieve the suppliers that supply all parts listed 

in the database". 

5.3.1 Genitive relation 

The genitive relation is a fundamental concept to COOL [Bra94]. It corresponds 

to the genitive case construct from natural languages. In a query language, this 

specification technique makes it possible to unambiguously refer to a set of related 

tuples in a l:n or n:m relationship. 

In order to specify for a certain object, a quantity of related objects that complies 

with a given condition, COOL uses the following construct: 

<quantifier> <related_objects> <(condition)> 

The quantifier symbol could denote any common natural language quantifier: for 

at least 2%, for the majority, for all, so on. The <related_objects> construct is 

the genitive relation and defines a precise relationship between two object classes, 

since there could be more than one. 

Consider the 1:n relationship between Airline and Aircraft object classes. The 

reference attribute that defines the relationship, or the reference list, is a set of 
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OlDs of the Aircraft instances that belong to each Airline instance, and is called 

Aircraft _list. 

COOL syntax for the genitive relation used to specify the related object instances 

of a relationship is: Airline. Aircraft -list *Aircraft (1). Thus, the relationship is 

unambiguously specified by giving the names of the object classes involved and the 

name of the reference list. When there is only one relationship between two classes 

the name of the reference list can be omitted. In this case a more natural English-like 

syntax can be used for the genitive relation: Airline's Aircraft (2). The English-

like syntax can be used also when there are more than one relationships between 

Airline and Aircraft so that (1) can be written Airline's Aircraft-list Aircraft 

(3). 

Using the relational theory, the syntax above denotes the set of related Aircraft 

tuples for the Airline tuple. Thus it specifies a relation that can be looked at as the 

join of the Aircraft-list (regarded as a one column relation) and the relation Aircraft, 

using the object identifier as the join field. 

Since a genitive relation is a relation, a genitive relation name can also serve as 

an implicit range variable or tuple variable in COOL, in the same manner as relation 

names serve as range variables in SQL. 

The COOL language syntax and semantics are presented in [Bra93a, Bra93b]. 

5.3.2 Natural Quantifiers 

The use of natural quantifiers in query languages has been given a special attention 

in a limited number of works. The earliest is [Cha78], where natural quantification is 

permitted in a limited way in a system called DEDUCE-2 and [Bra78] where natural 
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quantifiers concepts were proposed for a predicate calculus, called EOS. More work 

on the use of natural quantifiers was done in [Bra83], where a natural quantifier 

extension of SQL for non-recursive relationships (called SQL/N or SQL/NQ) was 

proposed, and [Bra88], which introduced a relational algebra operation, called group-

select, that used natural quantification of related groups of tuples. In [Bra92c], 

natural quantifier set theoretic techniques in SQL/NQ are extended for recursive 

relationships. 

The conventional predicate calculus permits only the existential and universal 

quantifiers. These basic quantifiers are necessary and sufficient in predicate calculus. 

Although SQL has its roots in predicate calculus, it attempts to 'simplify' the use of 

quantifiers by replacing the universal quantifier with an equivalent double negation 

of the existential quantifier. In the writer's opinion, instead of simplifying SQL, 

this has resulted in users having to deal with highly contrived expressions in which 

complex structures involving de Morgan's rules need to be used for otherwise quite 

simple requests. Such requests often involve any of the large number of natural 

quantifiers, available to the user of natural language. This difficulty, is eliminated 

by the use of natural quantifiers in a declarative database language. 

5.3.3 Genitive relation for 1:n, n:m, and composite 1:n relationships 

Consider the Parks database composed only of parks (Park) and forests (Forest) to 

which we add a new entity, tree species (Tree-Species). Further, let's consider an 

object-oriented definition of this database which can be graphically represented in 

an Object-Relationship diagram [Bra92b] as in figure 5.2. 

The relationships between the object classes are: a 1:n relationship between Park 
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pcode pname psurface province 

Park 

iu1n1dI  fcode pcode Iname fsurface location 
////y/ / 

Forest 

Tree—Species 

Figure 5.2: Parks Database 2 

and Forest (a park contains many forests), and a n:m relationship between Forest 

and Tree-Species (a forest can have many tree species, and a tree species can be 

found in many forests). 

We can define different kinds of genitive relations with this database. 

• Genitive relation for a one-to-many (1:n) relationship. 

Query 

Get the park name for each park located in Alberta with at least 4 forests larger 

than 10 square miles. 

COOL: 



CHAPTER 5. COOL AND EXTENDED RELATIONAL ALGEBRA 71 

select pname from Park 

where province = "Alberta" 

and for at least 4 Park.forest_list*Forest (fsurface > 10) 

or 

select pname from Park 

where province = "Alberta" 

and for at least 4 Park's Forest (f surf ace > 10) 

The genitive relation is Park.forcst_list*Forest and is specified using the list of 

references: forest-list. Alternatively, we can use the alias Park's Forest for the 

genitive relation. Forest-list gives the list of forests larger than 10 square miles 

for the related parks. 

• Genitive relation for a many to many (n:m) relationship. 

Query 

Get the forest name for each forest larger than 10 square miles containing a 

majority of cedar trees. 

COOL: 

select fname from Forest 

where f surface > 10 

and for most Forest.species_list*Tree_Species 

(spname = ''cedar'') 

or 
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select fname from Forest 

where f surface > 10 

and for most Forest's Tree-Species (spname = 1'cedar") 

Many-to-many relationships are symmetrical and a corresponding query for 

the relationship in the opposite sense is: 

Query 

Get the name of the tree species which are hardwoods and cannot be found in 

any forest located in Banff. 

COOL: 

select spname from Tree-Species 

where woodtype = Hardwood'' 

and for no Tree_Species.forest_splist*Forest 

(location = Banff'') 

or 

select spname from Tree-Species 

where woodtype = ''Hardwood '' 

and for no Tree_Species's Forest (location = 'Banff'') 

When considering the tree species of a forest we use the genitive relations 

Forest. species-list *Tree_Species or Forest's Tree-Species, and when considering 

the forests that contain a certain tree species, we use the genitive relations 

Tree_Species.forest_splist 'Forest or Tree_Species's Forest. The n:m relationship 
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used in the above query example is specified in two lists of references, one in 

Forest called species-list and one in Tree-Species called forest_splist. 

• Composite 1:n genitive relations 

In natural language a composite l:n genitive relation corresponds to: "C ob-

jects of the B objects of the A objects". Between A and B and between B and 

C there are 1:n relationships. Suppose Blist is the set of related B instances 

for a given A instance and Clist is the set of related C instances for a given B 

instance. (The general case of a composite l:n genitive relation may involve 

'N' levels of l:n simple genitive relations, but we restrict it to the most likely 

case of N = 2.) 

There are two possible ways for the user to construct a COOL expression 

corresponding to a natural language composite genitive case between the classes 

A and C (A's Cs, where there is a composite 1:n relationship between A and 

C): 

- Possibility (1). Specify it in COOL as one composite genitive relation, 

such as A.Blist*B. Clist or A's B's C, and 

- Possibility (2). Specify it in COOL using two simple (non composite) l:n 

genitive relations, such as A .Blist *B (B. Clist *C) or A's B (B's C). 

The two possibilities are both correct only when certain quantifiers are used. 

In the overall majority of cases, however, the second possibility will give wrong 

results. To see this, consider the query: 

Name each park in Alberta where all the tree species of the forests (or all the 
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tree species of all the forests of the park) have the tree maximum height greater 

than 30 meters. 

In the above query the composite 1:n genitive* relation, the tree species of the 

forests of the park used with the quantifier for all, can be expressed in the two 

forms shown above, as follows. 

The COOL expression for possibility (1) is: 

select pname from Park 

where province = "Alberta" 

and for all Park's Forest's Tree-Species (maxheight > 30) 

The genitive relation used in the possibility (1) query is a single composite 

genitive relation construct, Park's Forest's Tree-Species. 

The COOL expression for possibility (2) is: 

select pname from Park 

where province = "Alberta" 

and for all Park's Forest 

(for all Forest's Tree-Species (maxheight > 30)) 

In the possibility (2) query, the composite genitive relation is expressed as a 

combination of two genitive relations, Park's Forest, and Forest's Tree-Species. 

In this case both possibilities are correct. 

But suppose now that instead of the quantifier for all the second quantifier 

specifies a quantity that is neither all nor nonzero, such as for more than 10, 

for example, as in the query: 
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Name each park where more than 10 of the tree species in its forests have the 

tree maximum height greater than 30 meters. 

This has COOL expression for possibility (1): 

select pname from Park 

where for more than 10 Park's Forest's Tree-Species 

(maxheight > 30) 

And for possibility (2) we might construct: 

select pnaine from Park 

where for all Park's Forest 

(for more than 10 Forest's Tree-Species 

(maxheight > 30)) 

This expression for possibility (2) is clearly wrong. Furthermore, there is no 

quantifier we can use to replace for all to make it correct. And we cannot 

even do it in an equivalent natural language expression. Therefore, in this case 

we must use the composite genitive relation and one quantifier, which is 

nothing else but, possibility (1). 

In the case of a composite genitive relation we are not interested in the quantity 

of instances from the intermediate classes, that satisfy the condition of the 

query, all we are interested in is that a join would be possible between the 

relations involved, Park, Forest, and Tree-Species. Therefore, possibility (1) 

gives a correct specification for a composite genitive relation for any type of 
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quantifier it uses. It also follows that composite genitive relations in COOL, as 

with composite genitive case constructs in a natural language, are a necessity. 

Possibility (2) works only in the few cases where the quantifier that would be 

used in the equivalent possibility (1) construt is either the universal quantifier, 

for all, as we saw above, or the existential quantifier, for at least one. 

5.3.4 Composite Objects 

Human thinking is object oriented and a user would prefer to work with composite 

object instances when dealing with an aggregation-hierarchy database and not with 

abstract concepts like relations or sets. 

The user would prefer to retrieve and store composite object instances, manip-

ulate them with a programming language, have them displayed in a hierarchical 

format and from a declarative language point of view, and specify the retrieval and 

update of a composite object instance in terms of the values in that instance. 

Consider an aggregation-hierarchy (or composite object) type of database, where 

the relationships between the entities are mostly one-to-many and involve physical 

containment or attachment. 

For example consider the Provincial parks database with the added object classes 

Lake and Tree. A park(Park) can contain many forests (Forest) and lakes (Lake). 

A Forest instance can contain many trees (Tree). Many trees (Tree) can have the 

same species (Tree-Species), but a tree can belong to only one species. The Object-

Relationship diagram for this database is shown in figure 5.3. 

The data for a specific park forms a composite object instance involving specific 

Park data and its contained Forest and Lake instances, with in turn for each Forest 
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instance, the contained Tree instances. 

Let's consider the following composite object retrieval: 

Give full details about Alberta's parks that have at least one forest with most of 

it's trees spruce trees and with all of its lakes deeper than 4 meters. 

The retrieval of the composite object instances is written in. COOL, as: 

COOL: 

select * from Park 

where province = ccAlberta) 

and for at least I Park's Forest 

(for most Forest's Tree 

(for its Tree's Tree-Species 

(spname = 'spruce''))) 

and for all Park's Lake (depth > 4) 

* from forest-list 

* from lakes-list 

* from tree-list 
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Park 

78 

Figure 5.3: Parks Database 3 

A composite object (CO) defined as in above can be made into a composite object 

view, by means of a create composite object [view] command, that can also name 

the CO. Also the CO can be concentrated (certain subobjects are omitted from a 

composite object using supplementary conditions). The concentrated CO can be 

put in a view as well. Language constructs for retrieving, concentrating and creating 

views of composite objects are presented in [Bra93b]. 
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5.3.5 Functions 

The functions in COOL can be used to compute non stored attributes from other 

attributes specified in the database definition. An example would be the function 

AreaQ, for use in calculating the area of a spherical object when the radius is a 

stored attribute. Let's take the following xample: A Sphere object class is defined 

as: 

COOL: 

create obj cis Sphere 

( S# char(4), 

x int, 

y int, 

z int, 

r int 

area() int function, 

) 

where x, y, z are the coordinates of the center and r is the radius. Area() and 

Volume() functions can be defined as non stored attributes on stored attributes of 

the Sphere. If the stored attributes are all private and only function attributes are 

public, a partial encapsulation is accomplished. 

COOL can use special purpose user-written functions defined as attributes as 

well, such as the function OverlapQ. Overlap() can be defined for use with Sphere 

objects. It would be true if a specified sphere physically overlaps the Sphere instance 

for which a condition written in COOL, holds. 
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COOL: 

select s# from Sphere 

where overlap(select s# from Sphere 

where  = 8 and  = 10 and z = 15 and r = 20) 

or 

select s# from Sphere 

where overlap(s2) 

would retrieve those Sphere instances that overlapped the specific Sphere specified 

in the COOL expression used as a function parameter. 

5.4 Extended Relational Algebra operations 

The reduction of natural quantifier expressions defined in COOL requires special re-

lational algebra operations. An Extended Relational Algebra (ERA) has been devel-

oped for COOL and was presented in. [Bra94]. It consists of conventional relational 

algebra operations (select, project, join, intersection, union) and three unconven-

tional operations: group-select, subgroup-select and possibility join. 

5.4.1 Group-select operation 

This operation is found to be useful for efficiently reducing a natural quantifier 

expression (i.e. an expression with a quantifier in it, e.g.: for at most 10 Park's 

Forest). It adds counting facilities to conventional algebra. Group-select operation 

was first introduced in [Bra88]. 

The group-select operation has the syntax: 
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RR 'group-select( R (q S (c))) 

The group-select of relation R with the foreign key called S is a relation RR that 

contains all groups of tuples with the same attribute value of S from R, provided for 

each of them a quantity q of tuples satisfies the condition c. 

As an example of a query with the quantifier for all, on the database from 

figure 5.3, consider: 

Query 

Get the name of each park with all of its forests having the area greater than 15 

square miles. 

COOL: 

select pname from Park 

where for all Park's Forest (f surface > 15) 

ERA: 

Ri = group-select (Forest (for all pcode (f surface > 15))) 

R2 = Park(pcode) join R1(pcode) 

Ft3 = project (R2 (pname)) 

Relation RI will contain all the groups of tuples from Forest such that, within each 

group of Forest tuples with the same pcode value, all the tuples of the group satisfy 

the condition that fsurface is greater than 15. In order to get the information we 

need about parks, relation RI will be joined with relation Park, on the attribute 

pcode, giving the result R2. Furthermore, the desired result will be obtained by 

projecting R2 on the field pname. 
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The general form of a retrieval that involves a group-select operation is: 

Retrieve each RP tuple for which a RP condition (compound condition involv-

ing RP attributes: Pal,..., Pan) holds and for which a specific quantity of related 

RCJ tuples obey the RCl-condition (a compound condition involving RC1 attributes: 

Clal, ... ,Clan). 

RP and RC1 belong to the following hierarchy of relations: 

RP (P, Pal,.. .,Pan, RC1_list,..., RCn_list) (5.1) 

RC1 (P, Cl, Clal .. .. Clan, RC11_list,.. .,RC1n_list) (5.2) 

where there is a 1:n relationship between RP and RC1, supported by the reference 

list R.ClJist. 

The general COOL expression and ERA routine are: 

COOL: 

select * from RP 

where (RP-condition) 

and quantifier RP.RC1_list*RC1 (RC1_condition) 

ERA: 

RO = select (RP (RP_condition)) 

Ri = group-select (Rd (quantifier P (RC1...condition))) 

R2 = RO(P) join R1(P) 

R3 = project (R2 (*)) 
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5.4.2 Possibility Join 

As shown in the previous section group-select operation solves the problem of re-

duction of natural quantifier expressions with a single level of nesting. Quantifier 

expressions with more than one level of nesting can be solved by the possibility join 

operation combined with group select. A nested natural quantifier expression is an 

expression with a natural quantifier, in which a further expression with a natural 

quantifier is embedded. An example later will make this clear. 

The possibility join (pjoin) operation applied to relations A and B, is written as: 

RR = A(m) pjoin(p) B(m) 

In the result relation RR there will be placed every tuple from A plus an additional 

attribute p, called the join possibility attribute. The value of p in an RB. tuple 

is true if there is a tuple in B with the same m value, otherwise it is false. Thus the 

p attribute in an RR tuple indicates whether or not it is possible to join a A tuple 

with a B tuple. The pjoin operation resembles the outerjoin operation. The only 

difference is the supplementary field that is added to the result. 

Consider a retrieval with 2 levels of natural quantifier expressions: 

Find the parks located in British Columbia, where most forests are larger 15 square 

miles and have all the trees planted before 1989. 

COOL: 

select pname from Park 

where location = British Columbia" 

and for most Park.forest_list*Forest (f surf ace > 15 

and for all Forest.tree_list*Tree (planted < 01011989)) 
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ERA: 

Ri = group-select (Tree (for all fcode (planted < 01011989))) 

R2 = Forest (fcode) pjoin(p) Ri (fcode) 

R3 = select (Park (location = "British Columbia")) 

R4 = group-select (R2 (for most pcode (f surf ace > 5 and p))) 

R5 = R3(pcode) join R4(pcode) 

R6 = project (R5 (pname)) 

Ri will contain all the groups of tuples from Tree that have the value of attribute 

fcode matched with the value of fcode from Forest, and within each group of Tree 

tuples with the same fcode value, all the tuples satisfy the condition that the date 

of plantation, planted is less than the Jan 1st 1989. 

The pjoin operation has placed in R2 all the Forest tuples joined with the Ri 

tuples on the field fcode, and has concatenated each of the resulting tuples with a 

an attribute p. The value of p, corresponding to a Forest tuple, is true if there is 

a tuple in Ri with the same fcode value, otherwise it is false. However, the only 

case when p = false is taken into account is the case of for majority or for most 

quantifier. R2 is further processed by a group-select operation that will select all 

the groups of tuples from R2 that have the value of pcode matched with the value 

of pcode from Park and within each group most of the tuples satisfy the condition 

fsurface > 5 and have a true value for p, that is the tuples could be joined with 

the tuples in Ri. The result of group-select, R4 is further joined with selected tuples 

from Park, for which location = "British Columbia". The final result R6 is obtained 

by projecting the result of the previous join on the field pname. 



CHAPTER 5. COOL AND EXTENDED RELATIONAL ALGEBRA 85 

In the general case of possibility join, we have added a third level to the hierarchy 

in (5.1) and (5.2), such as: 

RC11 (Cl, Cli, Cilal,. . ., Man, RC111\...list,.. ., RC11n\_list) (5.3) 

so that the general COOL expression for this three level hierarchy is: 

select RP-attribute-list from RP 

where (RP-condition) 

and Ciquantifier RP.RC1_list*RCI (RC1-condition 

and Cliquantifier RC1.RC11_list*RC11 (RC11-condition)) 

The expressive power of COOL becomes clearer when one reflects that the above 

expression can involve nested quantifier expressions with many different types of 

quantifiers. Writing the equivalent in SQL would involve a large set of quite complex 

SQL expressions, often requiring the use of De Morgan rules with nested expressions. 

The equivalent ERA routine is: 

Ri = group-select (RC11 (Cliquantifier Cl (RC11-condition))) 

R2 = RC1(Cl) pjoin(p) RI(CI) 

R3 = group-select (R2 (Ciquantifier P (RC1-condition and p))) 

R4 = select (RP (RP-condition)) 

RS = M(P) join R3(P) 

Ft6 = project (R5 (RP_attributelist)) 

5.4.3 Subgroup-select 

If in the group-select instead of the requirement that the quantity q of the tuples of R 

with the same foreign key value A satisfy a condition c, we have the requirement that 
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a quantity q of selected tuples of R with the same A value [that satisfy a condition 

ci] also satisfy the condition c2, then a subgroup-select operation can be defined. 

A subgroup-select operation is defined as follows: 

RR = subgroup-select (R (q (A(ci)) (c2))), 

This specifies that RR will contain the sets of tuples of R with the same value of 

attribute A, such that: for each such set of R tuples, a subset of tuples for which ci 

holds is considered, and if the quantity q of this subset satisfies c2, the original R 

set is placed in RR, otherwise it is not. 

For example, compare the two retrievals: 

• Retrieval type A 

Get the names of parks located in. Washington state where most of the lakes are 

over 6 meters in depth and are larger than 5 square miles. 

COOL: 

select pnaine from Park 

where location = "Washington" 

and for most Park.lakes_list*Lake (depth > 6 

and lsurf ace > 5) 

• Retrieval type B 

Get the names of the parks with most of the over-6-meter-deep lakes are larger 

than 5 square miles. 

COOL: 
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select. pname from Park 

where location = " Washington'' 

and for most Park.lakes_list*(Lake (depth > 6)) 

(lsurf ace > 5) 

In example B we need a specific quantity, for most of not just the lakes of a park, 

but for most of the lakes over 6 meters deep, that is, for most of a specific subset 

of the lakes of the park. 

The type of the quantifier is very important in retrievals of type B. With an 

existential type of quantifiers, for example, at least 2, at least 4, etc., retrievals 

of type A and B above are equivalent. The retrievals of type A and B become 

fundamentally different when a universal type quantifier is involved. A universal 

type quantifier, such as for all, for all but 2, for one and all, for most [of all], 

refers to all of the tuples from the group being evaluated, and of course we do not 

know in advance what constitutes this group. That is why we need to select a group 

of tuples by applying condition ci first to R tuples with the same A value and then 

narrow the selection by applying the condition c2 and the quantifier to the group of 

tuples initially selected. 

ERA routine for query B is: 

Ri = select (Park (location = "Washington' ')) 

R2 = subgroup-select 

(Lake (for most (pcode (depth > 6)) (lsurf ace > 5))) 

R3 = Ri(pcode) join R2(pcode) 

R4 = project (R3 (pnanie)) 
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A general retrieval of type B, is: 

Retrieve each RP tuple for which RP-condition (compound condition involving 

attributes Pall..., Pan) holds and for which a specific quantity of all of the related 

RCJ tuples for which RUl-conditioni (condition involving RU1 's attributes) holds, 

obeys the RC1-condition2 (condition involving attributes Clal,...,Clan). 

The equivalent COOL expression is: 

select * from RP 

where RP-condition 

and quantifier RP.RCI_l±st*(RCI (RCI(RCI-conditionl)) 

(RC1-condition2) 

and reduces to: ERA: 

Ri = select (RP (RP-condition)) 

R2 = subgroup-select 

(Rd (quantifier (P (RC1-conditionl)) (RC1-condition2))) 

R3 = R1(P) join R2(P) 

BA = project (R3 (*)) 



Chapter 6 

Implementation 

6.1 Overview and general issues 

For the prototype implementation of COOL there were essentially two choices: 

1. Implementing a completely new database system based on the data model, and 

2. Building a front-end system on top of an existing system. 

Since building a completely new DBMS with all the necessary components is a 

complex task that requires large time resources, the second option of a front-end to 

an existing relational database system (e.g.: Sybase, Oracle), was adopted. 

There are two basic methods of reducing COOL expressions: 

1. The reduction of COOL directly to SQL, and 

2. The reduction of COOL expressions to Extended Relational Algebra (ERA) 

routines. 

The first approach of translating COOL expressions directly into collections of 

SQL expressions would result in a system which would not be useful at some later 

time if a complete object-relational DBMS were to be built. 

An approach that would offer portability and flexibility for future development 

of a full DBMS is the second approach that requires the reduction of COOL ex-

pressions to ERA routines. The ERA routines could be converted into SQL or into 

89 
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programming language routines (such as C or C++). But converting ERA routines 

to C/C++ routines is equivalent to the building of a complete DBMS, an option 

that we have already rejected. Thus, the best choice of the prototype implemen-

tation of a front-end system is the translation of COOL to ERA routines and then 

to SQL expressions. Since SQL is a standard, the prototype front end can run on 

any relational system. However, the current prototype version of COOL has been 

implemented as a front end for the Sybase storage manager. It was also written in 

C. 

6.2 Comparison with other prototype implementations 

Other developers have taken a similar approach to prototype implementations. An 

example is OSCAR (Object management System Clausthal, Approach: Relational), 

described in [HFWC91]. OSCAR's data model, called EXTREM (EXTended REla-

tional Model) is a semantic data model (a subset of IFO semantic model) equivalent 

to an extended nested relational model whose algebra can be mapped to conven-

tional relational algebra. A prototype of OSCAR was implemented on top of IRIS 

relational storage manager. 

There are also developers who have reduced language expressions directly to SQL. 

For example, in [KR9O] is described an object-oriented SQL front-end (OOSQL) for 

the IBM DB2 relational database. The OOSQL commands are translated by the 

OOSQL interpreter into DB2 SQL statements. 

The prototype front-end for COOL was designed as a three-layered application. 

1. The first layer is a shell interface that accepts the command statements for 
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COOL source file translation and outputs the results, or error messages, gen-

erated by the database system. 

2. The second layer is responsible for the first step of COOL translation. COOL 

statements (filename.cool) are reduced to Extended Relational Algebra routines 

and data structures are prepared for the following layer. 

3. The third layer handles the translation of ERA routines (filename.era). ERA 

routines are translated to a set of SQL statements (filename.sql). Catalog 

management is also performed in this layer. 

6.3 Implementation Design of COOL's object model 

The object-oriented data model of COOL follows the object-relational approach 

[SRL9O], that is, it includes 00 extensions to the relational model. 

6.3.1 Implementation levels 

The implementation employs three levels of abstraction. Beginning with the highest, 

we have: 

1. Conceptual level. This level uses a structurally object-oriented or seman-

tic database model, such as the Entity Relationship model extended by ISA 

relationships and complex attributes. 

2. Extended relational or object-oriented level. This level uses an extension 

of a non-first-normal-form relational model and is an equivalent representation 

of the E/R concepts of the previous level. 
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3. Conventional relational or implementation level. This level is used as 

a basis for the prototype implementation and is an equivalent representation 

using the conventional relational model of the previous two levels. 

A similar approach was used in [HFWC91] for the implementation of an object-

oriented database system with an object algebra based on a modified nested relational 

algebra. 

An aircraft maintenance database, was chosen to be used for example queries 

throughout of this chapter. The schema of this database, which at the conceptual 

level uses a data definition language proposed in [SS91, 0at91, Bra93a] for an object-

oriented data model obtained by extending the relational model, is shown in the 

Appendix B. 

The aircraft maintenance database has a network database structure containing 

one-to-many (l:n), many-to-many (n:m), and recursive many-to-many relationships. 

How COOL's 00 schema above can be mapped into the conventional relational 

schema is shown by drawing the diagrams corresponding to the three levels of abstrac-

tion. These three levels are illustrated in figure 6.1 and in figure 6.2 (the conceptual 

level), in figure 6.3 (the object-oriented level), and in figure 6.4 (the implementation 

level). 

At the conceptual level (figure 6.1 and figure 6.2) we distinguish between entity 

sets or object types, relationship types and attribute values of these entity types 

belonging to attribute types. Every entity type has underlying attribute types. 

Every relationship type can also have underlying attribute types (e.g.: relationship 

'owns' in figure 6.1 and in figure 6.2). Attribute types can be simple, such as strings 
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and integers (e.g.: description), or constructed via constructors such as set (e.g.: 

Aircraftlistin figure 6.1). For each entity set we can define a set of keys consisting 

of attribute or relationship type. As a special case, relationships can be restricted to 

be 1:1 or l:n by these keys. In figure 6.1 and figure 6.2, rectangles represent entity 

types. Empty ovals represent simple attributes. Bold ovals represent constructed 

attributes. Diamonds represent relationships. 

At the extended-relational level or the 00 level (figure 6.3), the conceptual level 

is mapped into the NFNF relational level, as follows. Each object type describes a 

set of object instances with identical structure. An object type maps into a NFNF 

relation and implicitly each object instance maps into a NFNF tuple. For eah 

object instance, a system generated unique object identifier (OlD), will be assigned. 

Relationships are mapped into reference attributes (e.g.: Job-list is a set of Jobs). 

The extended-relational level maps into the conventional relational level or the 

implementation level (figure 6.4), as follows. Each NFNF relation maps into a con-

ventional relation and each NFNF tuple maps into a conventional tuple. For mapping 

the reference attributes (sets or lists) that describe the relationships between the ob-

ject classes, we have different approaches. Some of them were discussed in Chapter 

2. 
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With reference to figure 6.3 the following diagrammatic conventions are used: 

• Bold rectangle -> object class. 

• Normal rectangle -> reference attribute. 

• Dashed rectangle -> foreign key reference attribute. 

• Hatched rectangle -> primary key. 

• Shaded square -> object identifier. 

With reference to figure 6.4 the following diagrammatic conventions apply: 

• Bold rectangle -> relation. 

• Normal rectangle -> foreign key. 

• Shaded rectangle -> primary key. 
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6.3.2 Mapping relationships into the relational model 

Basically the aircraft maintenance database can be regarded as a collection of rela-

tions that participate in 1:n relationships. Many-to-many and the recursive many-

to-many relationships in the database are supported using 1:n relationships. 

The 1:11 relationship between object classes can be implemented in the relational 

model either (1) as a relation or (2) using the classical concepts of primary key and 

foreign key, where the foreign key is stored in the child relation of the l:n relationship. 

For the second approach I had the choice of using either OlDs or the primary keys 

of the related classes, as foreign keys. 

In the current implementation I have combined the two approaches. If the 

database has primary keys and foreign keys at the conceptual level, these keys should 

be kept in the schema, because this is the way in which the user can define relation-

ships. At the internal level, though, an OlD could replace the primary key, and 

implicitly the foreign key values. 

However, when a new object instance is inserted into the database any matching 

between instances of related object classes is accomplished by mean of the values of 

primary and foreign keys, because the user does not have access to the OlD. For this 

reason I decided to use primary key values and not OlDs as foreign keys. 

A l:n relationship was also implemented as a table (relation) containing matching 

OlDs of the parent object instances and of the children object instances. The 1:n 

relationship tables are created dynamically and maintained by the system. The user 

does not have access to them. Further details about these tables will be given in the 

COOL object catalog section. 
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Thus, I use the foreign key concept because is closer to the user's view of the 

database and I use the table to implement relationships because it makes it easier 

to upgrade the system to support direct n:m relationships. A many-to-many (n:m) 

relationship between relations A and B can usually be expressed as a join of two 1:n 

relationships between each A and B and a third relation Z. 

If the n:m relationship is implemented as two l:n relationships, such as A l:n Z 

and B l:n Z, then the direct link A n:m B can be obtained by joining the tables 

that implement the relationships A to Z and B to Z. Tables A and B must contain 

the primary key or OlDs of Z. Thus, an n:m relationship can be implemented either 

using two relationship tables, where each table implements a l:n relationship, or it 

can be implemented as a single table. 

For n:m relationships, the single table solution will require less computation time, 

but will need more storage space; instead of a join between two tables to get the 

related tuples of the n:m relationship, with a single table solution the join is already 

there in the relationship table. 

6.4 Design and implementation of the Data Definition Lan-

guage (DDL) 

In relational databases, a DDL is used to specify the database schema. A concep-

tual database schema specifies a set of entity types. For each entity type, a set of 

attributes with their domains, as well as integrity constraints on the domains, are 

also specified. The DDL for COOL is specified in the same way. 

The DDL for COOL contains a CREATE OBJECT CLASS statement. For the 
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CREATE statement syntax two implementation approaches were considered. 

1. A class and its relationships must be declared in the same CREATE statement, 

2. A class and its relationships must be declared separately. 

In the current implementation the first approach was chosen, so that a class and 

its relationships are specified in one CREATE statement. This option was chosen 

because insert operation involving child instances needs information about the parent 

of such children and this information is provided by the super key (super key has 

the same meaning as foreign key). The second approach is analyzed in Chapter 8. 

The syntax for the CREATE STATEMENT, in BNF format, is as follows: 

<create_objectcls> 

CREATE OBJEECT] CL[AS]S <objectcls> 

('<objectcls_element_commalist>  

<obj ectcls_element_commalist> = 

<obj ectcls_element> 

I <objectcls_element_conunalist> ',' <objectcls_element> 

<objectcls_element> 

<atribute_def> 

I <obj ectcls_key_def> 

<attribute_def> : 

<attribute> <attribute_type> 

<objectcls_key_def> : 

CANDIDATE KEY '(' <attribute_commalist>  

I PRIMARY KEY <attribute> 
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I SUPER KEY '(' <relationship_field_commalist>  

<relationship_field_commalist> : : = 

<relationship_field> 

I <relationship_field_conunalist> ',' <relationship_field> 

<relationship_field> 

<attribute> '(' <parent_objectcls>  

[': <reference_attribute> ')'] 

<attribute_commalist> 

<attribute> 

I <attribute_commalist> ',' <attribute> 

The ISA relationship was not implemented. The relational algebra for imple-

menting an ISA relationship is discussed in Chapter 8. 

The declaration of an 1:1 or ISA relationship can be done inside the CREATE 

statement, in the < obj ectclsJey_def > definition, by adding: 

SUPERCLASS KEY '(' <relationship_field_commalist> ')' 

Some examples of CREATE statements for the aircraft database are: 

create object class Airline 

( AL# CHAR(2), 

hqadd char(3O), 

emp_num int, 

primary key AL# 

); 

create obj cl Service 
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(S# char(4), 

AC# char(4), 

MD# char(4), 

description char(80), 

primary key S#, 

super key (AC# (Aircraft), MD# (Maintenance-Depot)) 

create obj ci Construct 

(code# char(4), 

PT-outer char(4), 

PT-inner char(4), 

location cha.r(1O), 

primary key code#, 

super key (PT-outer (PartType_Inventory: containing_parts), 

PT-inner (PartType_Inventory: contained_parts)) 

); 

Candidate keys (see CANDIDATE KEY in the CREATE STATEMENT above) 

are allowed for user convenience, but have no other system significance. Any unique 

attribute that can serve as a primary key is a candidate key. 

Reference attributes names are optional in the syntax definition (see the AC# 

and MD# in the definition of the object class Service and also figure 6.3). If they 

are not supplied by the user, the reference attribute names will be generated by the 

system, as unique combinations between the names of the connected classes. When 
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there is more than one relationship defined by reference attributes between the same 

two object classes (see PT-outer and PT-inner in the definition of class Construct 

and also figure 6.3), it is better if the user gives meaningful names for the reference 

attributes, instead of leaving this task to the system. The system uses a combination 

of the names of the parent and child object classes to generate a reference attribute 

name. 

The attribute types implemented are integers and strings of characters. The 

primary key is a single field primary key. The primary key gives the user useful 

information. It can be replaced by the OlD, but then we gain efficiency (we eliminate 

an attribute) to the detriment of information. A composite primary key would not 

change the translation algorithm. However, an increase in complexity would appear 

in the join operations on the primary key 'field' (in ERA expressions) that translate to 

multiple SQL joins. Composite primary keys are avoided by defining a new attribute 

as primary key. Another way to avoid composite keys is by declaring OlDs as primary 

keys. 

6.4.1 COOL's Object Catalog 

The term COOL's Object Catalog is used to refer to all the Sybase tables that need 

to be generated by the system, in order to built COOL's object-oriented constructs, 

such as genitive relations and object identifiers. 

COOL's Catalog tables are: 

• A. The table cool-objects. This table is used for generating unique OlDs 

for object instances, and contains the following information: 
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- class-name defines the object class name, and 

- next_id# is the next value to be assigned to a new object instance in that 

class. 

SQL: 

create table cool-objects 

(class-name char(30), 

next_id# mt 

) 

The OlD generated is unique in each class. If the class-name were not associ-

ated with the OlD, then the uniqness of an OlD for the whole database could 

be achieved by appending a class code to the OlD. This is particularly useful 

when defining complex objects. If instead, the system had been designed to 

generate a unique object instance OlD for the whole database without keep-

ing track of the class an object instance belongs to, this would have been a 

poor design because of the loss of the link between object instance and object 

class. The algorithm for generation OlDs is the simplest possible to assure 

uniqness for a code: just allocate a positive integer to the current OlD, and 

then increment it by one. 

• B. The table cool-keys. This table keeps track of the keys defined in a 

CREATE statement , and contains the following information: 

- class-name defines the object class name, 
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- key-name defines the name of the key, and 

- key-type is a codification for the type of the key. 

SQL: 

create table cool-keys 

(class-name char(30), 

key_name char(30), 

key-type char(20) 

) 

The table cool-keys is necessary because the keys defined.in a CREATE state-

ment have different meanings from the keys in Sybase. 

In the field key-type are stored codes for primary keys, reference lists, candidate 

keys and super keys. The code of a super key specifies also the name of the 

reference list that corresponds to the superkey (e.g. class-name = "Aircraft", 

key-name = "AL#", key-type = "5K Airclist_Air", where Airclist_Air is the 

name of the reference-list that implements the l:n relationship between the 

parent Airline and the child Aircraft. 

Table cool-keys is updated every time a new object class is created or dropped 

and table cool-objects is updated every time an object instance is inserted. 

• C. Tables that implement 1:n relationships (or genitive relations). The 

name of each relationship table is generated from the name of the parent class, 

child class and the reference-attribute (i.e. the name of the relationship). The 
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relationship tables are created or updated whenever child instances are inserted 

or deleted in the database. 

A relationship table has two attributes: 

1. The OlD of the parent object and 

2. The OlD of the related children object. 

The prototype system maintains the object catalog tables using the Sybase in-

terface DB/Library to the SQL manager [Syb91a]. 

6.5 Translation of COOL 

The translation of COOL DML select expressions is carried out in two steps: 

1. Translation of COOL to ERA, and 

2. Translation of ERA to SQL. 

Since COOL is a declarative database language, it has a DDL and a DML. Among 

the statements of the DML, only the select statement is translated to ERA routines. 

All the other manipulative statements (delete, update, and insert) and the create 

statement are translated directly to SQL. 

The implemented COOL's grammar is in Appendix A. In writing the translators 

two compiler-construction tools (Unix packages) were used, namely lex and yacc 

[MB9O]. Besides their help for automatic design of specific compiler components, 

these tools make the future development of the language much easier (instead of 

modifying a program, one needs to modify only a short specification). Basically a 
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compiler is a program that reads a text file that contains program code written in 

a source language and translates it into an equivalent program written in a target 

language [ASU86]. The basic phases of a compiler are (1) lexical analysis, (2) syntax 

analysis or parsing and (3) code generation. 

The first phase consists of a lexical analyzer whose job is to scan the source 

file and match sequences of characters that identify tokens. Tokens are essentially 

sequences of characters having a collective meaning. Lex reads a specification file 

and generates a C routine that performs lexical analysis based on a finite automata. 

The lex specification contains the regular expressions for pattern matching and the 

actions associated with them. The actions in a lex specification consist of C language 

statements that return the token number and value, if any. 

In the second phase of a compiler, a parser reads tokens of the source program 

and assembles them into grammatical phrases. Further on, the grammatical phrases 

are used by the third phase of the compiler to synthesize the output. Yacc reads a 

specification file that codifies the grammar of the source language and generates a C 

parsing routine. The yacc specification contains the source language grammar rules 

and the corresponding semantic actions. 

When the parsing routine detects a sequence of tokens that corresponds to a 

grammar rule, an associated action is executed. The actions in yacc are one or more 

C statements that make use of the values of tokens either to generate output or to 

pass the value to other routines in the program. Many programming languages have a 

recursive structure that can be defined by context-free grammars. The most common 

notation used to describe a context-free grammar is known as BNF (Backus-Naur 

Form). The grammar rules in the yacc specification closely follows BNF. COOL's 
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grammar is also a context-free grammar [Sal73}. 

6.5.1 First step. Translation of COOL expressions to ERA or/and SQL 

This step was implemented as a separate compiler that reads a file of COOL ex-

pressions and translates it into a file of ERA routines in the case of COOL 'select' 

expressions, or into a file of SQL expressions for other COOL expressions. The lex 

file for this step will contain the regular expressions for COOL's tokens and the asso-

ciated actions, and the yacc file will contain the COOL's grammar production rules 

and the corresponding actions for code generation in ERA or SQL. 

6.5.2 Reduction of COOL Queries to Extended Relational Algebra (ERA) 

In generating ERA routines, basic rules in query processing optimization have been 

applied everywhere. Some of the rules are: 

• perform selection and projection first, 

• replace a join by a semijoin, and 

• reorder operations to reduce intermediate relation size. 

I have also applied my own rule: keep only what is needed for the next step. 

A COOL query (or select statement) has an SQL-like structure, SELECT / 

FROM / WHERE. In COOL, selection specified in the SELECT field is carried 

out only on attributes belonging to the class specified in the FROM field. Only one 

class is allowed in the FROM field. The WHERE expression is the most complex 

one, because it specifies nested quantifier expressions involving the relationships (l:n, 

n:n, recursive many-to-many) associated with desired class. The relationships are 
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embodied in COOL by the construct called the genitive-relation, which was intro-

duced earlier. 

The translation process of the COOL queries was built using a top-down ap-

proach. Beginning with simple queries, basic translation rules were developed. 

Queries are basically one level (simple) or multiple nested levels (complex). For 

the nested queries with multiple levels an induction approach was used. This in-

volves generating the algebra routines for a one and two levels of nested queries, and 

then generalizing the algorithm for n levels. The following translation rules were 

applied: (1) translation starts with the where clause, if the where clause is not 

empty and the query is one level query, (2) if the query has multiple nested levels, 

the translation starts with the deepest level. Since a yacc grammar was used, the 

derivation rules establish the order in which grammar rules are reduced. 

In the following sections different types of genitive relations involved in nested 

COOL query expressions will be analyzed in the context of reduction of these expres-

sions to ERA routines. The genitive relations analyzed are: simple parent-to-child, 

composite parent-to-child, simple child-to-parent, composite child-to-parent. For 

each of the genitive relation types above we analyze two cases: one level queries and 

multiple levels (or nested) queries. 

6.5.3 Parent-to-Child Genitive Relations 

1. Simple Parent-Child genitive relation corresponding to a 1:n relation-

ship. 

la) One level query. 

When a parent and its children are involved in a query we will deal with only 
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one level of quantifier expressions (or expressions that define a quantity of related 

instances). 

For example, suppose we take the retrieval: 

Get full details of each Airline headquartered in NY that uses only Boeing aircraft. 

The COOL expression is: 

select * from Airline 

where hqadd = ''NY'' 

and for all Airline's Aircraft (fabricant = "Boeing"); 

The above query has the following equivalent ERA routine: 

RO = group-select 

(Aircraft (for all AL# (fabricant = " Boeing " ))) 

Ri = select ( Airline ( hqadd = "NY")) 

R2 = project ( RI ( AL#)) 

R3 = RO (AL#) join Airline (ALit) 

R4 = project ( R3 ( AL#)) 

R5 = R4 intersect(AL#) R2 

R6 = R5 (AL#) join Airline (AL#) 

R7 = project ( R6 (*)) 

If instead of and for all Airline's Aircraft we have had or for all... , R5 from the 

ERA routine will become R5 = R4 union R2. Thus, as a general rule, in COOL 

expression, ands will generate intersections and ors will generate unions in the 

corresponding ERA routine. 
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Suppose now that we have one parent with two children involved in the query, 

and consider the retrieval: 

Give the airline codes for the airlines with headquarters in San Diego that fly 

mostly MacDonald Douglas aircraft and own outright at least 2 maintenance depots. 

The COOL expression and the corresponding algebra will be as follows: 

COOL: 

select AL# from Airline 

where hqadd = 'San Diego'' 

and for most Airline's Aircraft (fabricant = 'MacDonald Douglas'') 

and for at least 2 Airline's Depot-Ownership (share = 100); 

ERA: 

RO = group-select 

(Aircraft (for most AL# (fabricant = "MacDonald Douglas"))) 

Ri = group-select 

(Depot-Ownership (for at least 2 AL# (share = 100))) 

R2 = RO intersect(AL#) Ri 

R3 = select ( Airline ( hqadd = "San Diego")) 

R4 = project ( R3 ( AL#)) 

R5 = R2 (AL#) join Airline (AL#) 

R6 = project ( R5 ( AL#)) 

R7 = R6 intersect(AL#) R4 

R8 = Wi (AL#) join Airline (AL#) 

R9 = project ( R8 (AL#)) 
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In the general case, retrievals involving a parent with n children and one level of 

nested quantified expressions can be formalized using an extended-relational model 

as a 1:n hierarchy of relations as follows. 

In general, suppose we have a parent relation RP with the children relations RC1, 

RC2,..., RCn. Suppose the relation RP has the attributes: P (primary key), Pal, 

Pa2, ... , Pan, RClJist, RC2iist, ... , RCkJist,. . ., RCnJist. RCkiist is a set of tuples 

from relation child RC1C, describing the l:n relationship between RP and RC1C. 

Suppose also that the child relations have the following description: 

RC1 (P, Cl (primary key), Clal, Cla2,..., Clan, RClliist, RCl2Jist, 

RCLniist); 

RC2 (P, C2 (primary key), C2al, C2a2,..., C2an, RC2lJist, RC22Jist, 

RC2...niist); 

The general retrieval for one level of nested quantified expressions is: 

Retrieve each RP tuple for which RP - condition (compound condition involving 

fields: Pal, Pa2,..., Pan) holds and for which a specific quantity of related RC1 tu-

ples obey the RC1 - condition (compound condition involving Clal, Clan,..., Clan) 

and a specific quantity of related RC2 tuples obey the RC2 - condition and so on for 

'n' children. 

The general COOL query for above is: 

select * from RP 

where (RP - condition) 

and/or quantifierl RP's RC1 (Rd - condition) 

and/or quantifier2 RP's RC2 (RC2 - condition) 
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and/or quantifierN RP's RCn (RCn - condition) 

The ERA routine (referred to later in Section 6.5.5 as ERA-Geni) for the general 

retrieval involving one level of nested quantified expressions will be: 

Ri = group-select 

(Rd (quantifieri foreignkey (Rd - 

R2 = group-select 

(FtC2 (quantifier2 foreignkey (RC2 - 

condition))) 

condition))) 

Rn = group-select 

(RCn (quantifierN foreignkey (RCn - condition))) 

REn+1:I = Ri intersect/union R2 intersect/union 

intersect/union Rn 

R[n+2] = select (RP (RP - condition)) 

R [n+3] = project (R [n+21 (RPprimekey)) 

REn+4] = REn+1J (RPprimekey) join RP (priinekey) 

R[n+5] = project (R[n+4] (RPprimekey)) 

R[n+6] = R[n+5J intersect/union R[n+3J 

R[n+7] = R[n+6](RPprimekey) join RP (primekey) 

R[n-4-8] = project (R[n+7] (*)) 

ib) Multiple Level Retrieval. 

When a grandparent, parent and child are involved in a query we deal with two 

levels of nested quantifier expressions. As an example, consider the query: 
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Get full details of an Airline with headquarters located in San Diego where most of 

its aircraft have (a) Boeing as a manufacturer and (b) at least 1 scheduled 'computer 

repair' service and (c) all their necessary parts installed on board the plane. 

The equivalent COOL expression is: 

select * from Airline 

where hqadd = "San Diego'' 

and for most Airline's Aircraft ( fabricant = "Boeing" LEVEL (1) 

and for at least 1 Aircraft's Service LEVEL (2) 

( description = "computer repair'') 

and for all Aircraft's Parts-on-Board LEVEL (2) 

(status = 

The equivalent ERA routine is: 

RO = group-select 

(Service (for at least 1 AC# (description = "computer repair"))) 

Ri = group-select (Parts-on-Board (for all AC# (status = "ON"))) 

R2 = RO intersect(AC#) Ri 

R3 = R2 (AC#) pjoin (p0) Aircraft (AC#) 

R4 = group-select (R3 (for most AL# ((fabricant = "Boeing") AND p0))) 

R5 = select ( Airline ( hqadd = "San Diego")) 

R6 = project ( R5 ( AL#)) 

R7 = R4 (AL#) join Airline (AL#) 

R8 = project ( R7 ( AL#)) 

R9 = R8 intersect(AL#) R6 
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RIO = R9 (AL#) join Airline (AL#) 

Mi = project ( RiO (*)) 

The general case of a multiple level retrieval is presented later on in this Chapter. 

2. Composite Parent-to-Child Genitive Relations (Grandparent Par-

ent Child). 

Here we assume that the parent does not have any condition on its attributes, 

which is invariably the case. 

2a) One level expression. 

Consider the example: 

Name the location of each airline with more than 3000 employees where all the 

on board parts of all the aircraft of the airline have the status ON. 

The equivalent COOL expression is: 

select hqadd from Airline 

where emp_num > 3000 

and for all Airline's Aircraft's Parts-on-Board (status = 

The composite parent-to-child genitive relation in the above example is Airline's 

Aircraft's Parts-on-Board. 

The corresponding ERA routine is: 

RRO = project (Aircraft (AC#, AL#)) 

RI = RRO (AC#) join Parts-on-Board (AC#) 

R2 = group-select (Ri (for all AL# (status = 

R3 = select ( Airline ( emp_num > 3000)) 
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R4 = project ( R3 C AL#)) 

R5 = R2 (AL#) join Airline (AL#) 

R6 = project ( R5 ( AL#)) 

R7 = R6 intersect(AL#) R4 

R8 = R7 (AL#) join Airline (AL#) 

R9 = project ( R8 (hqadd)) 

An Aircraft can NOT have a condition in such a query. If it does, it is a query 

of the type already covered. 

2b) Multiple levels expression. 

Consider the example: 

Name the location of each airline with more than 8000 employees for which, on 

all its aircraft, each of its (owned) maintenance-depot services (a) involves computer 

repairs, and (b) is offered in Calgary. 

The equivalent COOL expression is: 

select hqadd from Airline 

where emp_num > 3000 

and for all Airline's Aircraft's Service 

(description = "computer repair'' 

and for its Service's Maintenance-Depot 

(address = "Calgary")); 

The genitive relations in the example above are: (1) the composite parent-to-

child one Airline's Aircraft's Service, and (2) the simple child-to-parent one Service's 

Maintenance-Depot. 



CHAPTER 6. IMPLEMENTATION 118 

The corresponding ERA routine is: 

RO = select (Maintenance-Depot (address = "Calgary")) 

RI. = project (Ro (MD#)) 

R2 = Ri (MD#) join Service (MD#) 

R3 = project (R2 (SV#)) 

R4 = R3 (SV#) pjoin (p0) Service (SV#) 

RR5 = project (Aircraft (AC#, AL#)) 

R6 = RRS (Ac#) join R4 (Ac#) 

R7 = group-select 

(R6 (for all AL# ((description = "computer repair") AND p0))) 

R8 = select ( Airline ( emp_num > 3000)) 

R9 = project ( R8 ( AL#)) 

RIO = R7 (AL#) join Airline (AL#) 

RII project ( RIO ( ALE) 

R12 R11 intersect(AL#) R9 

R13 = R12 (PiL#) join Airline (AL#) 

R14 project ( R13 (hqadd)) 

6.5.4 Child-to-Parent Genitive Relations 

1. Simple child-parent genitive relation. 

la) One level query. 

Consider we take the retrieval: 

Get the fabrican,t of the aircraft owned by British Airways. 

The COOL expression is: 
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select fabricant from Aircraft 

where for its Aircraft's Airline ( AL# = 

The simple child-to-parent genitive relation in the example above is Aircraft's 

Airline. 

The above COOL expression can be reduced to the following extended relational 

algebra (ERA) routine: 

RO = select (Airline (AL# = ItBAIl)) 

Ri = project (1W (AL#)) 

R2 = Ri (AL#) join Aircraft (ALE 

R3 = project (R2 (AC#)) 

BA = R3 (AC#) join Aircraft (AC#) 

R6 = project ( R4 (fabricant)) 

ib) Multiple level expression. 

Consider the example: 

Get the description of each service performed for British Airways aircraft for 

which the majority of parts on board are not mounted. 

The equivalent COOL expression is: 

select description from Service 

where for its Service's Aircraft ( AL# = "BA" and 

for most Aircraft's Parts_on_Board (status = ''OFF")); 

The genitive relations in the above example are: (1) the simple child-to-parent one 

Service's Aircraft, and (2) the simple parent-to-child one Aircraft's Parts-on-Board. 

The ERA routine is: 
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RO = group-select (Parts-on-Board (for most AC# (status = "OFF"))) 

Ri = select (Aircraft (AL# = "BA")) 

R2 = project (RI (AC#)) 

R3 = R2 intersect(AC#) 1W 

R4 = R3 (AC#) join Service (ACE 

R5 = project (R4 (SV#)) 

R6 = R5 (SV#) join Service (SV#) 

R7 = project ( R6 (description)) 

2. Composite child-to-parent genitive relation (or Child Parent Grand-

parent). 

2a) Single level expression. 

Suppose we take the retrieval: 

Get the description of each job in service projects that involve computer repair 

services. 

The COOL expression is: 

select descr from Job 

where for its Job's Service-Project's Service 

( description = computer repair"); 

The composite child-to-parent genitive relation in the above example is Job's 

Service-Project's Service. 

The ERA routine for the above query will be: 

RO = select (Service (description = "computer repair")) 
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Ri = project (RO (SV#)) 

R2 = Ri (SV#) join Service-Project (SV#) 

R3 = project (R2 (SVP#)) 

R4 = R3 (SVP#) join Job (SVP#) 

R5 = project (R4(J#)) 

R6 = R5 (J#) join Job (J#) 

R7 = project ( RG (descr)) 

2b) Multiple level expression. 

Suppose we take the retrieval: 

Get the description of each job in service projects that involve computer repair 

services carried out on Alitalia aircraft. 

The COOL expression is: 

select descr from Job 

where for its Job's Service-Project's Service 

( description = ''computer repair'' 

and for its Service's Aircraft (AL# =1"AL'')); 

The genitive relations in the above query are: (1) the composite child-to-parent 

one Job's Service-Project's Service, and (2) the simple child-to-parent one Service's 

Aircraft. 

The ERA routine for the above query will be: 

RO = select (Aircraft (AL# = "AL")) 

Ri = project (RO (AC#)) 

R2 = Ri (AC#) join Service (AC#) 
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R3 = project (Ft2 (SVE) 

R4 = select (Service (description = "computer repair")) 

R5 = project (BA (sV#)) 

R6 = R5 intersect(SV#) R3 

R7 = R6 (sV#) join Service-Project (SV#) 

R8 = project (Pt? (SVP#)) 

R9 = R8 (SVP#) join Job (SVP#) 

RIO = project (R9 (J#)) 

R11 = RIO (J#) join Job (J#) 

R12 = project ( Ru (descr)) 

6.5.5 The General Case - Hierarchical COOL expressions with n levels 

of nested quantifier expressions 

The above queries can be generalized to n levels of nested quantifier expressions 

by induction. Suppose we extend the hierarchy RP, relation parent and the child 

relations RC1 and R02, presented in Section 6.5.3, as follows. The parent relation 

RP has n children, the relations (RC1, RC2, ..., RCn). Relation RC1 has the 

children (R011, R012,..., RUin), relation RC2 has the children (RC21, R022,..., 

RC2n), so on, and finally relation ROn has the children (RCnl, RCn2, ..., RCnu), 

and then each of these children can have their own n children e.g. R011 has children 

RO111, R0112,..., ROlin, and so on. 

Figure 6.5 shows a graphical representation of this hierarchy. 

The general retrieval is: 

Retrieve each RP tuple for which RP - condition (compound condition involving 
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Figure 6.: A hierarchy of relations with N+1 levels and each node has n offsprings 

RP's fields) holds and for which a specific quantity of related RCJ tuples obey RC1 

- condition (compound condition involving RCJ's fields) and so on for the RP's n 

children. For the specific quantity of related RC1 tuples a specific quantity of related 

RU11 tuples obey RU11 - condition and so on for RCJ 's n children. For the specific 

quantity of related R011 tuples a specific quantity of related ROJ11 tuples obey R011] 

- condition and so on. 

The hierarchy grows in two dimensions (vertical and horizontal). 

The general COOL query looks like: 

select * from RP 

where (RP - cond) 

and/or qi RP's RC1 
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(RC1-cond 

and/or qil Rd's RC11 

(RC11-cond 

and/or qill RC11's RC111 

(RC111-cond 

and/or ...) 

and/or q112 RC11's RC112 

(. . 

...) 

and/or q12 RC1's RC12 (.. 

and/or qin RC1's RC1n (...)) 

and/or q2 RP's RC2 

(RC2-cond 

and/or ...) 

and/or qn RP's RCn 

(RCn-cond 

and/or qni. RCn's RCn1 

(RCn1-cond 

and/or qnll RCn1's RCn11 

(RCn11-cond 

and/or ...) 

and/or qnl2 RCn1's RCn12 
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...) 

and/or qn2 RC's RCn2 

qi stands for quantifierl, q2 stands for quantifier2, and so on. The above query 

can be broken up into the hierarchy for RC1, the hierarchy for RC2, and so on. 

If Ri, R2,... are the result of evaluating each hierarchy, the corresponding general 

ERA routine, for a query involving the data structure from figure 6.5, can fit into 

the ERA routine referred to as ERA-Geni. in Section 6.5.3. 

Ri = 

R2 = 

Rn 

R[n+1] = RO intersect/union Ri intersect/union 

intersect/union Rn 

R[n+2] = select (RP (RP - condition)) 

R[n+3] = project (R[n+2J (RPprimekey)) 

R[n+4] = R[n+1] (RPprimekey) join RP (primekey) 

R [n+5J = proj ect (R [n+4] (RPprimekey)) 

R[n+6] = R[n+6] intersect/union R[n+3] 

R[n+7] = R[n+6](RPprimekey) join RP (primekey) 

R[n+8J = project (R[n+7] (*)) 

The Ri, R2, ..., Rn ERA expressions have similar corresponding queries, such 



CHAPTER 6. IMPLEMENTATION .126 

as: 

The general COOL expression for the child RC1 hierarchy: 

select primary-key from RP 

where qi RP's RC1 

(RC1-cond 

and/or qil FtC1's RC11 

(RC11-cond 

and/or qill RC11's RC111 

(RC111 -cond 

and/or 

and/or RC1 ... l's RC1 ... l 
n-i 0 

(RCLJ -cond)) 
n 

and/or q112 RC11's RC112(...) 

and/or qlln RC11's RC11n(...)) 

and/or q12 RC1's RC12 ( ...) 

and/or qin RC1's RC1n ( ... )) 

The general ERA routine for the child RC1 hierarchy is: 

level N: R[N,1] = group-select 

(RC1 ... l foreignkey (RCl ... l-cond))) 
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R[N,n] = group-select 

(RCi ... in (qi...ln foreignkey (RC1 ... ln-cond))) 

n-i n-i n-i 

R[N,C1N-1] R[N,1] intersect/union R[N,2] 

intersect/union R[N,n] 

REN] = 

R[N,C1N-1] (foreignkey) pjoin(p) RCj,(priinekey) 

n-i 

level N-1:R[N-1,1J = group-select 

(R [NJ foreignkey (RcQ1-cond and/or p))) 

We repeat the above sequence for the remaining children in level N-i: RCi2, 

giving the results: R[N-i,2], ..., R[N-i,n]. Further on, level N-i will 
n-2 

give R[N-1] as final result, and the same algorithm will be repeated until level 0 will 

be reached. 

R[N-1,C1N-2] R[N-1,1J intersect/union R[N-1,2J 

intersect/union R[N-1 ,n] 

REN-11 

R[N-1,C1N-2] (foreignkey) pjoin(p) RC(primekey) 

level N-2:R[N-2,1] = group-select 

(R[N-1] (q  .. . i foreignkey (RQi-cond and/or p))) 

R[k+1,C1k]= R[k+1,1] intersect/union R[k+1,2] 

intersect/union R[k-i-1,n] 

R[k+1] = 
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R[k+1,C1k] (foreignkey) pjoin(p) RC1 ... 1(primekey) 

k 
level k: R[k,1] = group-select 

(R[k+1] (qj, foreignkey (RCj-cond and/or p))) 

k k 

R[2,CIIJ= R[2,1] intersect/union R[2,21 

intersect/union R[2,n] 

R2 = R[2,C11J(foreignkey) pjoin(p) RC1 (primekey) 

level 1: R[1,1] = group-select 

(R2 (qi foreignkey (RCI-cond and/or p))) 

Repeat for all the children from level 1 and get R[1,21 ... R[1 ,n] 

R[1,C0J RE1,1] intersect/union R[1,2] 

intersect/union RE1,n 

Ri = select (RP (RP-cond)) 

level 0: RO = R[1,C01 (foreignkey) join RP(primekey) 

REO1] = RO intersect/union Ri 

RR = project (RO1 (*)) 

R[N,ij is the result of evaluating a quantified genitive relation expression where 

i1 to n specifies the children of a relation node. N is the level number of the 

children. 

R[k+1,C1k] is the result of evaluating the compound logical expression consisting 

of quantified genitive relation expressions involving the children of node 1 from level 

k (node indicated by Cik. In this case the level of the children is k+l, 
n-i 
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and is the first subscript of R. 

R[N] is the result of an outer join (or pjoin) between RC1 . .. 1 the first node 
n-i 

on level N-i, as a parent, and the relation that captures the relationships with its 

children from level N, R[N,C1N-1]. 

6.5.6 The General Case - Network COOL expressions with n levels of 

nested quantifier expressions 

The routine above is the ERA routine corresponding to a general COOL query 

involving a hierarchy. It requires only a few changes to make the above routine work 

for a COOL retrieval involving a network. This means that instead of just parent-

to-child genitive relations (or i:n relationships) we can also have child-to-parent 

genitive relations (or n:i relationships). The following are the possible changes that 

can be applied to the hierarchy routine above, and for each of them we derive the 

correspondent ERA in it. 

(1) Child with condition. If a child involved in a parent-to-child genitive 

relation has a condition (see ), the operation 'group-select' from R[level,i], applied 

to the child becomes 'subgroup-select'. 

(2) Composite parent-to-child genitive relation. If instead of a parent-to-

child genitive relation we have a composite parent-to-child genitive relation, of the 

form: Grandparent Parent Child, the corresponding R[level,i] will be changed to the 

following sequence: 

R[k+1,Clk]= R[k+1,1] intersect/union R[k+1,2] 

intersect/union R[k+1,n] 
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R[k+1] = 

R[k+1,C1k](Child_primekey) pjoin(p) Child (primekey) 

level k: R[k0] = project(Parent(primekey, foreignkey)) 

R[k1] = 

R[k+1] (Child-foreignkey) join R[k0] (Parent_primekey) 

R[k,i] = group-select 

(R[kl] (quantifier Grandparent primekey 

(Child_cond and/or p))) 

Relations R[kO] and R{klj are giving intermediate results. 

(3) Child-to-parent genitive relation. If instead of a parent-to-child genitive 

relation we have a simple child-to-parent genitive relation, of the form: Child's 

Parent, the corresponding R[level,i] will be. changed to the following sequence: 

R[k+1,C1k]= R[k+1,1] intersect/union R[k+1,2J 

intersect/union R[k+1,n] 

level k: R[k0] select (Parent (Parent_cond)) 

R[k1] = project (R [kO] (Parent_primekey)) 

R[k2] = R[k1] intersect/union R[k+1,C1k] 

R[k3] = R[k2] (Parent_primekey) join Child (foreignkey) 

R[k,i] = project (R[k3] (Child_priniekey)) 

Relations R[kO], ..., R[k3] are giving intermediate results. 

(4) Composite child-to-parent genitive relation. If instead of a parent-to-

child genitive relation we have a composite child-to-parent genitive relation, of the 



CHAPTER 6. IMPLEMENTATION 131 

form: Child Parent Grandparent, the corresponding R[level,i] will be changed to the 

following sequence: 

R[k+1,C1k]= R[k+1,1J intersect/union R[k+1,2] 

intersect/union R[k+1,n] 

level k: R[k0] = select (Grandparent (Grandparent_cond)) 

R[k11 project (R [kO] (Grandparent.primekey)) 

R[k2J = R[klj intersect/union R[k+1,C1k] 

R[k3] = 

R[k2] (Grandparentprimekey) join Parent (foreignkey) 

R[k4] = project (R[k3] (Parent_primekey)) 

R[k5] = R[k4] (Parent_primekey) join Child (foreignkey) 

R[k,i] = project (R[k5] (Child_primekey)) 

Relations R[kO], ..., R[k5] are giving intermediate results. 

6.5.7 Recursive Queries 

Suppose we take the recursive query: 

Get the quantity of parts directly containing at least 4 cogs that each have at least 

2 P2 parts inside. 

The COOL expression is: 

select qty from PartType_Inventory 

where for at least 4 PartType_Inventory's *inner_parts Construct 

(for its Construct's PT-inner PartType_Inventory 
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(typenanie=" cog" 

and for at least 2 PartType_Inventory's *inner_parts Construct 

(PT_inner="P2"))); 

The ERA routine for the above query will be: 

RO = group-select 

(Construct (for at least 2 PT-outer (PT-inner = "P2"))) 

Ri = select (PartType_Inventory (typename = "cog")) 

R2 = project (RI (PT#)) 

R3 = R2 intersect(PT#) 1W 

R4 = R3 (PT#) join Construct (PT-inner) 

R5 = project (R4 (c#)) 

R6 = R5 (C#) pjoin (p0) Construct (C#) 

R7 = group-select (R6 (for at least 4 PT-outer (p0))) 

R8 = R7 (PT#) join PartType_Inventory (PT#) 

R9 = project ( R8 (qty)) 

This query expression is quite intricate and appears complex even in COOL. 

Nevertheless the corresponding SQL expression is much more complex. 

6.5.8 Translation of COOL DML expressions to SQL 

INSERT 

The system performs only instance by instance insert. 

The syntax is close to SQL, and looks like: 
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<insert_instance_statement> 

INSERT OBJECT INSTANCE INTO <objectcls> 

'(' <insert_value_conunalist>  

<insert_value_commalist> 

<insert_value> 

I <insert_value_conunalist> ',' <insert_value> 

<insert_value> 

<attribute> ':' <alpha> 

<attribute> ':' <numeric> 

Example: 

insert obj ins into Airline 

( AL# : "RO", hqadd : "Bucharest", emp_nuin : 3000); 

insert obj ins into Aircraft 

( AC# : "AB41", AL# : "AF", fabricant : "Boeing", type :"B747"); 

For each 'insert instance' statement, the following operations will be executed: 

* generate unique OlD within the mother class and update 'cool-objects' 

for each attribute 

if attribute is a superkey 

then I/I create/update the correspondent ref list /// 

for each read correspondent reference list from cool-keys 

* get the name of the parent of the ref list 

* get th•e OlD of the parent instance 

if (parent_child_reflist exists) 
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then 

*add a new record with the OlD of the parent and 

OlD of the child 

else 

*create the relationship table 

*add a new record with the OlD of the parent and 

OlD of the child 

endif 

end for 

endif 

* write attribute in an SQL format 

An 'insert' statement for many instances that can populate an empty object class 

is a convenient additional feature, that requires no research to add. It is not vital 

for the prototype. Also, to populate a class from a intermediate result table requires 

access to each instance, one instance at a time, which means file processing and not 

the table processing of a relational database. Two instances with the same primary 

key can be inserted in the database, but they will be asigned different OlDs. An 

error message will be generated if a child instance is going to be inserted but the 

parent instance is not found in the database. 

UPDATE 

The update statement implemented is a multiple-instance update and the syntax 
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is very close to SQL. 

Here is the syntax: 

<update_statement> 

UPDATE <objectcls> WHERE <condition> SET <update_value_commalist> 

<update_value_commalist> 

<update_value> 

I <update_value_commalist> ',' <update_value> 

<update_value> 

<attribute> ':' <scalar_expr> 

I <attribute> ':' <alpha> 

where <condition> is a boolean expression, <scalar_expr> is a relational expression 

with numeric values and <alpha> is a STRING. 

Example: 

update Airline where AL# = "RO" set hqadd : "arad"; 

DELETE 

Delete statement has 2 versions: 

1. Delete all instances (unconditioned) of a class. It is performed only if there are 

no children instances involved, and 

2. Delete selected instances (or with condition). It is performed also only if there 

are no descendants. 

An error message will be generated if instances with descendants are attempted to 

be deleted. 
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Syntax for unconditioned delete: 

<delete_uncond_statement> 

DELETE ALL FROM <objectcls> 

Syntax for conditioned delete: 

<delete_uncond_statement> := 

DELETE FROM <objectcls> WHERE <condition> 

where <condition> is a boolean expression. 

The implementation of a delete for composite objects (this includes deleting one 

or more instances and deleting an entire hierarchy if the instances have children) 

was not implemented because it does not raise any essential problems, and is only a 

programming exercise. The algorithm with embedded Sybase commands for this is: 

procedure: gen_del_compobj 

input: class-name, condition 

start 

II check if there are any descendants II 

* call sybase process to execute the query: 

''select * from cool-keys 

where class-name = 

and key-type = 'RL' 11 

if (query == SUCCEED) 

* bind 'key-name' to the variable 'reflist_name' 

while ( there is a reflist ) 
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* get the name of the child class with key-type =1SK ref list' 

* get the name of the relationship table 

parent _child_ref list' 

* execute "select * from class-name" and get one by 

one the OlDs. 

for each parent OlD 

* get the children OlDs from the relationship table 

* list children one by one 

for each child OlD 

* ask the user if he wants it deleted 

endf or 

endf or 

endwhile 

else 

* print error message "error in cool-keys" 

endif 

if NO descendants for class-name 

II delete the instances of the parent and its links 

to its parent, from the table 'parent_child_reflist' II 

* execute "delete from %s where %s", class-name, condition'' 

end. 
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6.5.9 Algorithms for translation of COOL queries to ERA 

The algorithm for translation of a COOL query to ERA follows the parsing of the 

query, that is, the derivation tree. The leaves of the derivation or parse tree, read 

from left to right, form a string of characters that is nothing else but the input query. 

When, in the process of parsing, the end of a grammar rule is reached, the rule is 

reduced (right side of the rule is replaced by the left side) and, at the same time, 

some actions are performed by the parser. The actions can be generation of ERA 

routines or only saving of useful information for future reductions of grammar rules. 

Consider a general select statement with n levels of nested quantified expressions. 

The BNF form of the select statement is as follows. 

<select_statement> 

SELECT <selection> FROM <object...class> [WHERE <where_expression>] 

<selection> :: 

<attribute_commalist> 

1* 

<where_expression> 

<condition> [<logical_xref_list>] 

I <quantified_xreference> [<logical_xref_list>] 

<logical_xref_list> : 

<logical_xref> 

I <logical_xref_list> <logical_xref> 

<logical_xref> : 

OR <quantified_xreference> 
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I AND <quantified_xreference> 

<quantified_xreference> 

<quantified_genitive_relation> ( <where_expression> ) 

<quantified_genitive_relation> : : = 

II Parent Child genitive relation where 

(1) is the formal syntax, and II 

<quantifier_pc> <parent> <reference_attribute> 

* <formal_child> 

II (2) is the natural language syntax II 

I <quantifier_pc> <parent>'S 

[* <reference_attribute>] <natural_child> 

1/ Composite Parent Child genitive relation where 

(1) is the formal syntax, and // 

<quantifier_pc> <grandparent> . <reference_attribute> 

* <parent> . <reference_attribute> * <child> 

II (2) is the natural language syntax II 

I <quantifier_pc> <grandparent>'S 

[* <reference_attribute>] <parent> 'S 

[* <reference_attribute>] <child> 

Child Parent genitive relation where 

(1) is the formal syntax, and II 

I <quantifier_cp> <child> . <child_superkey> * <parent> 

(2) is the natural language syntax II 

I <quantifier_cp> <child>'S [<child_superkey>] <parent> 

II 

II 
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II Composite Child Parent genitive relation where 

(1) is the formal syntax, and II 

II (2) 

<quantifier_cp> <child> . <child_superkey> * <parent> 

<parent_superkey * <grandparent> 

is the natural language syntax 1/ 

<quantifier_cp> <child> 'S [<child_superkey>] <parent> 'S 

[<parent_superkey>] <grandparent> 

<child> 

<obj ect_class> 

<parent> 

<object_class> 

<grandparent> :: 

<obj ect_class> 

<formal_child> 

<obj ect_class> 

I ( <object_class> ( <condition> ) ) 

<natural_child> 

<obj ect_class> 

I ( <condition> ) <object_class> 

<quantifier_pc> 

FOR ALL 

I FOR MOST 

I FOR NONE 

I FOR ALL BUT INTNUM 
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<quantifier_cp> 

FOR AT MOST INTNUM 

FOR AT LEAST INTNUM 

FOR MORE THAN INTNUM 

FOR LESS THAN INTNUM 

FOR EXACTLY INTNUM 

FOR NOT INTNUM 

FOR THE 

I FOR ITS 

I FOR HER 

I FOR HIS 

If we combine the rules for the nonterminals <where_expression>, 

<logicaLxref_list>, and <logicaL.xref> from above, we obtain: 

<where_expression> := 

[[<condition>] AND/OR] <quantified_xreference> 

AND/OR <quantified_xreference> 

where <condition> is a boolean expression. 

If in the rule for the <quantifiedxreference> we replace 

<quantifiedgenitive_relation> with <quantifier> <genitive_relation>,, we obtain: 

<quantified_xreference> 

<quantifier> <genitive_relation> [(<where_expression>)] 
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In this way we emphasize the <genitive..relation> nonterminal, that can have four 

different types, such as simple parent-to-child or <pc_gen_rel>, composite parent-

to-child or <pc_composite_gen_rel>, simple child-to-parent or <cp_gen_rel>, and 

composite child-to-parent or <cp_composite_gen_re1>, as it is shown in the rule bel-

low. 

<genitive_relation> := 

<pc_gen_rel> 

I <pc_composite_gen_rel> 

I <cp_gen_rel> 

I <cp_composite_gen_rel> 

Each of the four types of the genitive relation has two syntactic expressions: a 

formal one and a natural one. The natural one is close to the genitive case expression 

from the English language. 

For each of the genitive relations listed above we can have three cases of 

<where..expression>. 

(a) <where_expression> ::= 

<condition> 

(b) <where_expression> : 

<condition> AND/OR <relation_result_qexpr> 

/1 <relation_result_qexpr> is the relation result of a 

quantified-expression and has only one column 11 

(c) <where_expression> : 

<relat ion_result_qexpr> 
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The algorithm for the code generation phase of the translation of the COOL 

nested quantifier expressions to ERA routines, is given in the procedure 'quanti-

fiedxref'. This procedure has two input arguments: the quantified-genitive-relation 

and the where-expression. The two arguments could take the values described above. 

procedure quantified_xref (genitive-relation, where-expression) 

{ 

II Parent to Child genitive-relation 1/ 

if (genitive-relation = 'Parent'S [reference-list] Child') then 

II Case (a) II 

if (where-expression = condition) then 

if (reference-attribute is not null) then 

if (Child has condition) then 

*generate: R(i) = subgroup-select 

(Child (quantifier-pc 

(child_superkey child-condition) (condition))) 

else 

*generate: R(i) = group-select 

(Child (quantifier-pc child_superkey 

(condition))) 

endif 

else 

if (Child has condition) then 
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*generate: R(i) = subgroup-select 

(Child (quantifier-pc (parent_primekey child-condition) 

(condition))) 

else 

*generate: R(i) = group-select 

(Child (quantifier-pc parent_primekey (condition))) 

endif 

endif 

link = parent 

return ("R(i) link") 

endif 

II Case (b) II 

if (where-expression = condition AND/OR quantified_xreference) 

II R(p) is the relation result of the previous level of 

quantified-expression, that is R(p)quantif_xreference(...) 1/ 

then 

*execute quantified_xreferenceO: return R(p) link 

*check if Child = link II semantic check II 

*generate: R(i) = 

R(p) (child_primekey) pjoin(p(j)) Child (child_primekey) 

if (Child has condition) then 

if (reference-attribute exists) then 

*generate: R(i+1) = subgroup-select 
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(R(i) (quantifier-pc (child_superkey child_cond) 

(condition AND/OR p(j)))) 

else 

*generate: R(i+1) = subgroup-select 

(R(i) (quantifier-pc (parent_primekey child_cond) 

(condition AND/OR p(j)))) 

endif 

else 

if (reference-attribute exists) then 

*generate: R(i+1) = group-select 

(R(i) (quantifier-pc child_superkey 

(condition AND/OR p(j)))) 

else 

*generate: R(i+1) = group-select 

(R(i) (quantifier-pc parent_primekey 

(condition AND/OR p(j)))) 

endif 

endif 

link = parent 

return (CCR(i+1) link'') 

endif 

// Case (c) II 

if (where-expression = quantified_xreference) 
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II Ft(p) is the relation result of the previous level of 

quantified-expression, that is R(p)quantif_xreference(...) II 

then *follow the steps from case (b) with one exception: in the 

(sub)group-select expressions, the field 

'condition AND/OR p(j)' will be replaced by 'p(j)' 

endif 

II composite parent to child genitive-relation II 

if (genitive-relation = 

'Grandparent ' S [grandpar_reference_list] Parent 'S 

[par-reference-li st] Child') 

then 

II Case (a) II 

if (where-expression = condition) then 

if (grandpar_reference_list is not null) then 

par_f oreignkey = get_foreignkey 

(parent, grandpar_reference_ list) 

else 

par_f oreignkey = grandpar_primekey 

endif 

*generate: RR(i) = 

project (Parent (par_priniekey, par_f oreignkey)) 

if (par-reference-list is not null) then 
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child_foreignkey = get_f oreignkey 

(child, par-reference-list) 

else 

child_f oreignkey = par_primekey 

endif 

*generate: R(i+1) = 

RR(i) (par_primekey) join Child (child_f oreignkey) 

*generate: R(i+2) = 

group-select (R(i+1) 

(quantifier-pc par_foreignkey (condition))) 

link = grandparent 

return (CR(i+2) link") 

endif 

II Case (b) II 

if (where-expression = condition AND/OR quantified_xreference) 

1/ R(p) is the relation result of the previous level of 

quantified-expression, that is R(p) quantif_xreference(...)  

then 

*execute quantified_xreferenceO: return ('R(p) link'') 

*check if Child = link II semantic check II 

*generate: R(i) = 

R(p) (child_primekey) pjoin (p(j)) Child (child_primekey) 

if (grandpar_reference_list is not null) then 
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par_foreignkey = get_foreignkey 

(parent, grandpar_reference_list) 

else 

par_f oreignkey = grandpar_primekey 

endif 

*generate: RFt(i+1) = project 

(Parent (par_primekey, par_foreignkey)) 

if (par-reference-list is not null) then 

child_foreignkey = get_foreignkey 

(child, par-reference-list) 

else 

child_f oreignkey = par_primekey 

endif 

*generate: R(i+2) = 

RR(i+1) (par_primekey) join R(i) (child_foreignkey) 

*generate: R(i+3) = group-select 

(R(i+2) (quantifier-pc par_foreignkey 

(condition AND/OR p(j)))) 

link = grandparent 

return ('R(+3) link'') 

endif 

II Case (c) II 

if (where-expression = quantified_xreference) 
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II R(p) is the relation result of the previous level of 

quantified-expression, that is R(p)quantif_xreference(...) /1 

then *follow the steps from case (b) with one exception: in the 

(sub)group-select expressions, the field 

'condition AND/OR p(j)' will be replaced by 'p(j)' 

endif 

1/ Child to Parent genitive-relation II 

if (genitive-relation = 'Child'S [child_superkey] Parent') then 

1/ Case (a) II 

if (where-expression = condition) then 

*generate: R(i) = select (Parent (condition)) 

*generate: R(i+1) = project (R(i) (par_primekey)) 

if (child_superkey is null) then 

child_superkey = par_primekey 

*generate: R(i+2) = 

R(i+1) (par_primekey) join Child (child_superkey) 

*generate: R(i+3) = project (R(i+2) (child_primekey)) 

link = child 

return ("R(i+3) link'') 

endif 

// Case (b) // 
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if (where-expression = condition AND/OR quantified_xreference) 

// R(p) is the relation result of the previous level of 

quantified-expression, that is R(p)quantif_xreference(...)  

then 

*execute quantified_xreferenceO: return R(p) link 

*check if Parent = link II semantic check II 

*generate: R(i) = select (Parent (condition)) 

*generate: R(i+1) = project (R(i) (par_primekey)) 

*generate: R(i+2) = R(i+1) intersect/union R(p) 

if (child_superkey is null) then 

child_superkey = par_primekey 

*generate: R(i+3) = 

R(i+2) (par_primekey) join Child (child_superkey) 

*generate: R(i+4) = project (R(i+3) (child_primekey)) 

link = child 

return (R(i+4) link'') 

endif 

1/ Case (c) 1/ 

if (where-expression = quantified_xreference) then 

II R(p) is the relation result of the previous level of 

quantified-expression, that is R(p)=quantif_xreference(.. 

*execute quantified_xreferenceO: return (''R(p) link'') 

*check if Parent = link /1 semantic check 1/ 
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if (child_superkey is null) then 

child_superkey = par_primekey 

*generate: R(i) = 

R(p) (par_primekey) join Child (child_superkey) 

*generate: R(i+1) = project (R(i) (child_priniekey)) 

link = child 

return (R(i+1) link") 

endif 

endif 

II composite Child to Parent genitive-relation II 

if (genitive-relation = 'Child'S [child_superkey] Parent'S 

[parent_superkey] Grandparent') 

then 

II Case (a) II 

if (where-expression = condition) then 

*generate: R(i) = select (Grandparent (condition)) 

*generate: R(i+1) = project (R(i) (grandpar_primekey)) 

if (parent_superkey is null) then 

parent_superkey = grandpar_primekey 

*generate: R(i+2) = 

R(i+1) (grandpar_primekey) join Parent (parent_superkey) 

*generate: R(i+3) = project (R(i+2) (par_primekey)) 
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if (child_superkey is null) then 

child_superkey = par_primekey 

*generate: R(i+4) = 

R(i+3) (par_primekey) join Child (child_superkey) 

*generate: R(i+5) = project (R(i+4) (child_primekey)) 

link = child 

return ('R(i+5) link") 

endif 

II' Case (b) II 

if (where-expression = condition AND/OR quantified_xreference) 

then 

II R(p) is the relation result of the previous level of 

uantified_expression, that is R(p)quantif_xreference(...) 1/ 

*execute quantified_xreferenceO: return ( ' 'R(p) link") 

*check if Grandparent = link 1/ semantic check// 

*generate: R(i) = select (Grandparent (condition)) 

*generate: R(i+1) = project (R(i) (grandpar_primekey)) 

*generate: R(i+2) = R(i+1) intersect/union R(p) 

if (parent_superkey is null) then 

parent _superkey grandpar_primekey 

*generate: R(i+3) = 

R(i+2) (grandpar_primekey) join Parent (parent_superkey) 

*generate: R(i+4) = project (R(i+3) (par_primekey)) 
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if (child_superkey is null) then 

child_superkey = par_primekey 

*generate: R(i+5) = 

R(i+4) (par_primekey) join Child (child_superkey) 

*generate: R(i+6) = project (R(i+5) (child_primekey)) 

link = child 

return ('R(i+6) link") 

endif 

II Case (c) II 

if (where-expression = quantified_xreference) then 

II R(p) is the relation result of the previous level of 

quantified-expression, that is R(p)quantif_xreference(...) II 

*execute quantified_xreferenceO: return R(p) link 

*check if Grandparent = link II semantic check II 

*generate: R(i) = 

R(p) (grandpar_primekey) join Grandparent (grandpar_primekey) 

*generate: R(i+1) = project (R(i) (grandpar_primekey)) 

if (parent_superkey is null) then 

parent_superkey = grandpar_primekey 

*generate: R(i+2) = 

R(i+1) (grandpar_primekey) join Parent (parent_superkey) 

*generate: R(i+3) = project (R(i+2) (par_primekey)) 

if (child_superkey is null) then 
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child_superkey = par_priinekey 

*generate: R(i+4) = 

R(i+3) (par_primekey) join Child (child_superkey) 

*generate: R(i+5) = project (R(i+4) (child_primekey)) 

link = child 

return ("R(i+5) link'') 

endif 

endif 

} 

The algorithm above gives the code generation, that is, the ERA routine, when 

the derivation rule of the nonterminal <quantifier_expression> is reduced. 

The following rule, which will be reduced in the translation process, is the deriva-

tion rule of the nonterminal <where_expression>. 

<where_expression> 

[[<condition>] AND/OR] <quantifier_expression> 

AND/OR <quantifier_expression>... 

We deal with three distinct cases: 

(a) where-expression = condition 

(b) where-expression = condition AND/OR quantified_xreference 

(c) where-expression = quantified_xreference 

For each of the cases in which a <whereexpression> can appear, the following 

code will be generated: 
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Case (a) 

*generate: R(i) = select ( object-class ( condition)) 

Case(b) 

*check if object-class = link II semantic check II 

*generate: R(i) = select ( object-class ( condition)) 

*generate: R(i+1) = project ( R(i) ( primekey)) 

*generate: R(i+2) = 

object-class (primekey) join R(p) (primekey) 

*generate: R(i+3) = project ( R(i+2) ( primekey)) 

*generate: R(i+4) = R(i+3) intersect/union R(i+1) 

*generate: R(i+5) = 

R(i+4) (primekey) join object-class (primekey) 

Case(c) 

*check if object-class = link II semantic check II 

*generate: R(i) = object-class (primekey) join R(p) (primekey) 

The last step in the code generation for a <selectstatement> is the reduction of 

the following rule: 

<select_statement> 

SELECT <selection> FROM <object_class> [WHERE <where_expression>] 

Code generation in this case will be: 
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if (where-expression is null) 

*generate: R(i) = project ( object-class (Al, A2 .. . . An)) 

else 

*generate: RU) = project ( R(i-1) (Al, A2,.. .An)) 

where Al, A2,..., An are the attributes of the object-class. 

6.5.10 Second step: Translation of ERA operations to SQL 

This step was implemented as a separate compiler that reads an ERA file and trans-

lates it into SQL queries. The lex file for this step will contain the regular expressions 

for ERA's tokens and the associated actions, and the yacc file will contain the ERA's 

grammar production rules and the corresponding actions for code generation in SQL. 

Each ERA statement is converted to a set of SQL expressions. We look at them one 

by one. 

1. Join statement. The statement refers to the natural join of conventional 

relational algebra. In the majority of the situations, 'join' operation is per-

formed between a single-attribute relation, that contains the join attribute, 

and a regular relation. Thus, the general case, translates as follows. 

ERA: 

R = Rl (attribute-1) join R2 (attribute-2) 

Translates to: 

SQL: 
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select R2.* into #R 

from Ri, R2 

where R1.attribute_1 = R2.attribute_2 

In Sybase SQL [Syb9lb] the '#' sign before a relation name means that the 

relation is temporary. 

A special situation occurs with queries that contain composite parent-to-child 

genitive relations. In these cases we need to perform a natural join , using SQL, 

between a two-attribute relation and a regular relation, with join attributes 

having the same name. Sybase Transact-SQL, unfortunately, will not allow 

the result, with two columns of the same name, to be stored as a temporary 

relation; and we need such a temporary relation for further SQL processing. 

Sybase does this, because it has no natural join with SQL, only an equi-Join. 

To solve this problem one solution would be to change the name of one of 

the common attributes before performing the equi-join on it. Another solution 

would be to specify the fields of each relation involved in the join in the SQL 

'select' expression, with the exception of the one of the join-fields; avoiding in 

this way, the presence of two fields with the same name in the result of the 

equi-join. This second solution could introduce unnecessary complexity in the 

implementation because at the moment of the translation the temporary tables 

are not created in the database, and their attributes cannot be found in the 

Sybase system tables. Thus, the first solution was chosen. This solution also 

works with different design techniques, such as the same name for foreign and 

primary key, and different names for them. In order to change the name of 
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the column of a Sybase table we need to created a new table with the same 

attribute definitions as the source table and then to copy the source table into 

the new table. 

The operation of changing the name of a column is performed at the time when 

the two-column table is created by a 'project' operation (see section 'Project 

statement', later on). 

We have named the newly created table as its join attribute, RRi, where i as 

an order number. The translation for the special situation described above is: 

ERA: 

R = RM (RR1) join R2 (attribute-2) 

Translates to: 

SQL: 

select RR1.*, Ft2.* into #R 

from RR1, Ft2 

where RR1.RR1 = R2.attribute_2 

2. Select statement 

ERA: 

R = select (Ri (condition)) 

Condition is a boolean expression involving attributes of relation R. 
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Translates to: 

SQL: 

select * into #R 

from Ri 

where condition 

159 

3. Group-Select statement. The implementation of the group-select operation 

does not exactly correspond to the definition given in Chapter 5. To obtain 

an initial optimization of the ERA routine, the relation result of group-select 

does not contain all the fields in the child relation, but instead contains only 

the foreign key field. This simplification helps a lot in creating a connection 

bridge (the foreign key) between the different levels of the quantifier expressions 

(nested queries). 

ERA: 

R = group-select 

(Child (quantifier-pc foreignkey (condition_expr))) 

<condition...expr> : 

<condition> 

I <condition> AND/OR <variable> 

I <variable> 

<variable> : 
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From the Child and the foreignkey we can obtain the corresponding reflist 

(interrogating the table cool-keys). Knowing the reflist we can get the Parent. 

Reference-list names are unique in the database. 

The equivalent SQL for the group-select operation corresponding to the natural 

quantifiers implemented are the following: 

Quantifier-pc = "FOR ALL" 

SQL: 

select parent_primekey into #R 

from Parent 

where not exists 

(select * 

from Child 

where Parent.parent_primekey = Child.foreignkey 

and not (condition_expr) ) 

Quantifier-pc = "FOR MOST" 

SQL: 

select parent_primekey into #R 

from Parent 

where (select count (*) 

from Child 

where Parent.parent_primekey = Child.foreignkey 
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and (condition_expr) ) 

> 

(select count (*) 

from Child 

where Parent.parent_primekey = Child.foreignkey 

and not (condition_expr) ) 

Quantifier-pc = "FOR ALL BUT int" 

SQL: 

select pa.rent_primekey into #R 

from Parent 

where (select count (*) 

from Child 

where Parent.parent_primekey = Child.foreignkey 

and not (condition_expr) ) = int 

General SQL expression for a family of quantifiers 

Quantifier-pc = 'FOR NONE", operation = ''=" int = 0 

Quantifier-pc 'FOR AT MOST int'', operation = 

Quantifier-pc = 'FOR AT LEAST int", operation = 

Quantifier-pc = 'FOR MORE THAN int", operation = 

Quantifier-pc = ' 'FOR LESS THAN int", operation = C 

Quantifier-pc = ''FOR EXACTLY int", operation = 

Quantifier-pc = "FOR NOT int", operation = CC<>,, 
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All the above quantifiers can be translated with the following SQL expression: 

select parent_primekey into #R 

from Parent 

where (select count (*) 

from Child 

where Parent.parent_primekey = Child.foreignkey 

and (condition_expr) ) operation mt 

Group-select operation always returns a one column table. The single attribute 

is the primary-key of the Parent (equal to the foreign key of the child). Group-

select is always associated with a 1:n (or parent-child relationship). 

4. Intersect statement 

An intersection is always performed between two single-column relations RI. 

and R2 and translates as follows. 

ERA: 

R = Ri intersect(join_attribute) R2 

Translates to: 

SQL: 

select R1.* into #R 

from Ri, R2 

where R1.join_attribute = R2.join_attribute 
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5. Union statement 

A union is always performed between two single-column relations RI and R2 

and translates as follows. 

ERA: 

R = Ri union R2 

Translates to: 

SQL: 

select * into #R from Ri 

union 

select * from R2 

6. Subgroup-select statement 

ERA: 

B. = subgroup-select 

(Child (quantifier-pc (foreignkey (child-condition)) 

(condition_expr))) 

Subgroup-select operation can be easily decomposed into two ERA operations 

(a select and a group-select), and this is how the implementation was done: 

SR = select (Child (child_condition)) 

R = group-select (SR (quantifier-pc (foreignkey 

(condition_expr))) 
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As it was pointed out in Chapter 5 the type of quantifier, that is, universal 

type or existential type, makes a difference in the equivalent ERA routine. 

To illustrate the difference consider two examples with the quantifier for all 

(universal type): 

Example 1: child with condition: "for all Boeing Aircraft" 

Give the airline code and headquarters for each airline with more than 10.000 

employees all of whose Boeing aircraft have at least two of the parts on board 

of type P7 with status not ON. 

COOL: 

select AL#, hqadd from Airline 

where emp_num > 10000 

and for all Airline's (fabricant = "Boeing") Aircraft 

(for at least 2 Aircraft's Parts_on_Board 

(PT# = "P7" and status <> "ON")); 

ERA: 

RO = group-select (Parts_on_Board 

(for at least 2 AC# (PT# = "P7" and status <> "ON"))) 

Ri = RO (AC#) pjoin (p0) Aircraft (AC#) 

R2 = group-select 

(RI (for all AL# ((fabricant = "Boeing") AND p0))) 

R3 = select ( Airline ( emp_num > 10000)) 
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R4 = project ( R3 ( AL#)) 

R5 = R2 (AL#) join Airline (AL#) 

R6 = project ( R5 ( AL#)) 

R7 = R6 intersect(AL#) R4 

R8 = R7 (AL#) join Airline (AL#) 

R9 = project ( Ft8 (AL#,hqadd)) 

Example 2: child without condition: "for all aircraft that are of type 

Boeing and . . 

Give the airline code and headquarters for each airline with more than 10.000 

employees all of whose aircraft are (a) of make Boeing and (b) have at least 

two of their parts-on-board of type P7 with status not 0N 

COOL: 

select AL#, hqadd from Airline 

where emp_num > 10000 

and for all Airline's Aircraft (fabricant = "Boeing" and 

for at least 2 Aircraft's Parts-on-Board 

(PT# = "PT" and status <> "ON")); 

ERA: 

RO = group-select (Parts-on-Board 

(for at least 2 AC# (PT# = "PT" and status <> "ON"))) 

Ri = RO (AC#) pjoin (p0) Aircraft (ACE 
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R2 = group-select 

(Ri (for all AL# ((fabricant = "Boeing") AND p0))) 

R3 = select ( Airline ( emp_num > 10000)) 

R4 = project ( R3 ( AL#)) 

R5 = R2 (AL#) join Airline (AL#) 

R6 = project ( R5 ( AL#)) 

R7 = R6 intersect(AL#) R4 

R8 = R7 (AL#) join Airline (AL#) 

R9 = project ( R8 (AL#,hqadd)) 

The result is different as it was expected. The universal type quantifiers require 

that all of a group of tuples must be taken into consideration, so the result of 

the evaluation depends on the whole set (which is unknown). If, instead of for 

all, we had used an existential-type quantifier (e.g.: for more than 10), the two 

cases would be the same and the corresponding COOL expressions will give 

identical results. 

7. Projection statement 

In general the project statement translates as follows. 

ERA: 

R = project (RI (selection)) 

SQL: 

select selection into #R 
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from Ri 

where selection is a set of attributes of the relation R. 

As discussed in the subsection on the ERA join statement at the beginning of 

section 6.5.10, in the case of a query with composite parent-to-child genitive 

relations, the relation resulting from a 'project statement' needs a name change 

for the column name that is a join attribute in a subsequent join statement. 

For this special case the 'project statement' translates as follows. 

ERA: 

R = project (RI (attribute-1, attribute_2)) 

SQL: 

create table #RR 

( RR type, 

attribute-2 type 

) 

insert #RR select attribute-1, attribute-2 from RI 

The type of the attribute_i and attribute-2 can be read from the Sybase system 

tables because the attributes belong always to tables from the created database. 

8. Pjoin (Possibility Join) statement. To implement pjoin I have used the 

outer join operation, since this is very close to pjoin. Outer Join it is imple-

mented in Sybase Transact-SQL and SQL 2. 
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In a natural join only the rows with matching values in the columns specified 

in the join condition are included in the results. Sometimes, as in the case of 

pjoin, it is desirable to retain the non-matching rows as well in the result of 

a join. Sybase SQL [Syb9lb] supports the outer join by providing the specific 

join operators: 

• (a) *= This means include in the result all the rows from the first table, 

not just the ones where the join columns match. In the result the non 

matching rows will have a NULL in the columns belonging to the second 

table. 

• (b) This means include in the result all the rows from the second 

table, not just the ones where the join columns match. In the result the 

non matching rows will have a NULL in the columns belonging to the first 

table. 

ERA: 

= Ri (attribute) pjoin (variable) R2 (attribute) 

SQL: 

create table #variable 

(var char(length)/int null) 

insert #variable select * from Ri 
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select * into #R 

from R2, #variable 

where R2.attribute *= #variable.variable 

The table #variable has only one column with the name of the pjoin variable 

and the type of the join field in the pjoin expression. Creation of a new relation 

is necessary because of the Sybase SQL implementation. When making the 

outer join (or any join) between relation Ri and R2 with two identical join 

field names, the result must include duplicate columns with the same join field 

name, that is, an equi-join is performed. But, as we discussed earlier, if we 

want to capture the resulting relation in a temporary relation, we get an error 

from the Sybase SQL server stating that "Column names in each table must 

be unique" (which makes sense for a relation). So to avoid this, we copy the 

join field of relation Ri into the relation #variable, but using a different full 

name. 

To select fields that are (or are not) NULL you put the condition "where 

column-name is [not] NULL". In order to be able to do that and not get an 

error message, the column should be defined NULL in the CREATE TABLE 

statement [Syb9lb] as has shown above. 

6.5.11 Implementation Restrictions and Conventions 

The OlD is always the first column in the object class table. The primary key is the 

second column, and the foreign keys are following the primary key. Reflist names 

are unique for the database. 



Chapter 7 

System Verification and User View of the System 

7.1 Introduction 

This chapter deals with two topics: verification that the system works correctly, and 

a description of how the system is to be used by a novice user. 

7.2 System Verification 

In general system verification is an important part in a system's development. Ver-

ification first needs to be thoroughly performed by the system developer. Further 

verification then needs to be carried out by independent analysts. The test examples 

must verify all critical situations implemented by the application. 

7.2.1 Methods of Verification 

The COOL language examples included in the thesis have equivalent ERA routines 

and SQL expressions generated by the system itself. The results of these COOL 

queries have been checked using three methods. One method was logical testing, 

where both the logic of ERA routines and the equivalent SQL set of expressions were 

checked for correctness. The second method involved using sample data loaded in an 

example database and executing the COOL queries against it, as well as checking the 

result for correctness. The third method involved constructing an equivalent SQL 

expression for the tested query, executing it, and checking that it retrieved the same 

170 
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data as the COOL expression. 

In addition, for a final verification of the system three sample queries, chosen 

spontaneous by Prof. J. Bradley, were used. 

7.3 Sample Verification Queries and Results 

For each query there will be shown the equivalent expressions in COOL, ERA and 

SQL. In the Appendix D.4 it is shown the script file with the executions of the three 

queries using a set of test data for the 'aircraft maintenance database'. 

Query 1 is testing a two level nested quantifier expression and a 'child with 

condition' involved in a parent-child (or l:n relationship) genitive relation. Natural 

quantifiers 'for most' and 'for all' are also tested. 

Query 1 

List airline code and headquarters location for airlines where most aircraft of type 

Boeing have all parts on board with status OK. 

COOL: 

select AL#, hqadd from Airline 

where for most Airline's (fabricant = "Boeing") Aircraft 

(for all Aircraft's Parts-on-Board (status = 

ERA: 

RO = group-select (Parts_on_Board (for all AC# (status = 

Ri = RO (AC#) pjoin (p0) Aircraft (AC#) 

R2 = subgroup-select 
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(RI (for most (AL# (fabricant = " Boeing " )) (p0))) 

R3 = R2 (AL#) join Airline (ALE 

R4 = project ( R3 (AL#,hqadd)) 

SQL: 

select AC# into #RO 

from Aircraft 

where not exists ( select * 

from Parts-on-Board 

wher6 Aircra.ft.AC# = Parts_on_Board.AC# 

and not (status = "ok") ) 

create table #pO 

( p0 char(4) null ) 

insert #pO select * from #RO 

select * into #R1 

from Aircraft, #pO 

where Aircraft.AC# *= #pO.pO 

select * into #SR1 

from #R1 

where fabricant = "Boeing" 
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select AL# into #R2 

from Airline 

where ( select count (*) 

from #SR1 

where Airline.AL# = #SR.1.AL# 

and p0 is not null ) 

> 

( select count (*) 

from #SR1 

where Airline.AL# = #SR1.AL# 

and not (p0 is not null)) 

select Airline.* into #R3 

from #R2, Airline 

where #R2.AL# = Airline.AL# 

select AL#,hqadd into #R4 

from #R3 

select distinct * from #R4 

go 
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Using sample data for the Aircraft Maintenance database (see Appendix D.2) the 

expected result for query 1 was AL# = "AL" and hqadd = "Rome". This result is 

confirmed by the output of Sybase isqi (see Appendix ]J.4). 

Manual SQL 

select AL#, hqadd from Airline 

where (select count (*) 

from Aircraft 

where fabricant = "Boeing" 

and Aircra.ft.AL# = Airline.AL# 

and AC# not in (select AC# from Pa.rts_on.Board 

where status <> "ok") 

) 

> 

(select count (*) 

from Aircraft 

where fabricant = "Boeing" 

and Aircraft.AL# = A±rline.AL# 

and AC# in (select AC# from Parts-on-Board 

where status <> "ok") 

) 

This retrieval gives the same result as the SQL set of expressions generated by the 

COOL system, that is, AL# = "AL" and hqadd = "Rome", when it is executed with 

the same data. This result is confirmed by the output of Sybase isql (see Appendix 
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D.4). 

Query 2 is testing a n:m relationship, specified and implemented as a composite 

parent-child and child-parent genitive relation. Natural quantifiers 'for at least 2', 

'for at least 1' and 'for its' are also tested. 

Query 2. 

Give the PT# and quantity for each type of part in inventory that has (a) at least 

2 shipments from suppliers in Los Angeles, and (b) has status 'defect' on at least one 

aircraft on which it is used. 

COOL: 

select PT#, qty from PartType_Inventory 

where for at least 2 PartType_Inventory's Shipment-Data 

(for its Shipment-Data's Supplier (address = "Los Angeles")) 

and for at least 1 PartType_Inventory's Parts-on-Board 

(status = "de"); 

ERA: 

RO = select (Supplier (address = "Los Angeles")) 

RI = project (RO (SE) 

R2 = Ri (S#) join Shipment-Data (S#) 

R3 = project (R2 (SH#)) 

R4 = R3 (SHE pjoin (p0) Shipment-Data (SH#) 

R5 = group-select (R4 (for at least 2 PT# (p0))) 

R6 = group-select 

(Parts-on-Board (for at least 1 PT# (status = "de"))) 
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R7 = R5 intersect(PT#) R6 

R8 = R7 (PT#) join PartType_Inventory (PT#) 

R9 = project ( R8 (PT#,qty)) 

SQL: 

select * into #RO 

from Supplier 

where address = "Los Angeles" 

select S# into #RI 

from #RO 

select Shipment_Data.* into #R2 

from #R1, Shipment-Data 

where #R1.S# = Shipment_Data.S# 

select SH# into #R3 

from #R2 

create table #pO 

( p0 char(4) null ) 

insert #pO select * from #R3 
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select * into #R4 

from Shipment-Data, #pO 

where Shipment_Data.SH# *= #pO.pO 

select PT# into #R5 

from PartType_Inventory 

where ( select count (*) 

from #R4 

where PartType_Inventory,PT# = #R4.PT# 

and p0 is not null ) >= 2 

select PT# into #R6 

from PartType_Inventory 

where ( select count (*) 

from Parts-on-Board 

where PartType_Inventory. PT# = Partson_Board . PT# 

and status = "de" ) > 

select #RS.* into #R7 

from #R5, #R6 

where #R5.PT# = #R6.PT# 

select PartType_Inventory.* into #R8 

from #R7, PartType_Inventory 
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where #R7.PT# = PartType_Inventory.PT# 

select PT#,qty into #R9 

from #R8 

select distinct * from #R9 

go 

Using sample data for the Aircraft Maintenance database the expected result for 

query 2 was PT# = "P11" and qty = 1000. This result is confirmed by the output 

of Sybase isqi (see Appendix D.4). 

Manual SQL 

select PT#, qty from PartType_Inventory 

where (select count (*) 

from Shipment-Data 

where PartType_Inventory .PT# = Shipment_Data. PT# 

and S# in (select S# from Supplier 

where address = "Los Angeles"))>=2 

and (select count (*) 

from Parts-on-Board 

where PartType_Inventory . PT# = Parts_on_Board. PT# 

and status = 
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This retrieval gives the same result as the SQL set of expressions generated by the 

COOL system, that is, PT# = "P11" and qty = 1000, when it is executed with the 

same data. This result is confirmed by the output of Sybase isqi (see Appendix D.4). 

Query 3 is testing a composite parent-child (or 1:n) genitive relation. 

Query 3. 

Which maintenance depot in Montreal has carried out at least two service projects 

in each of which all jobs involved part type 'PIY. 

COOL: 

select MD# from Maintenance-Depot 

where address = "Montreal" 

and for at least 2 Maintenance-Depot's Service's Service-Project 

(for all Service-Project's Job (PT# = "P4")); 

ERA: 

RO = group-select (Job (for all SVP# (PT# = "P6"))) 

Ri = RO (SVP#) pjoin (p0) Service_Project (SVP#) 

RR2 = project (Service (SV#, MD#)) 

R3 = RR2 (SV#) join Ri (SV#) 

R4 = group-select (R3 (for at least 2 MD# (p0))) 

R5 = select ( Maintenance-Depot ( address = "Montreal")) 

R6 = project ( R5 ( MD#)) 

R7 = R4 (MD#) join Maintenance-Depot (MD#) 

R8 = project ( R7 ( MD#)) 
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R9 = R8 intersect(MD#) R6 

RIO = R9 (MD#) join Maintenance-Depot (MD#) 

R11 project ( RIO (MD#)) 

SQL: 

select SVP# into #RO 

from Service-Project 

where not exists ( select * 

from Job 

where Service_Project.SVP# = Job.SVP# 

and not (PT# = "P6") ) 

create table #pO 

( p0 char(4) null ) 

insert #pO select * from #RO 

select * into #Ri 

from Service-Project, #pO 

where Service_Project.SVP# *= #pO.pO 

create table #RR2 

( RR2 char(4), 

MD# char(4)) 
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insert #RR2 select SV#, MD# from Service 

select #RR2.*, #R1.* into #R3 

from #RR2, #R1 

where #RR2.RR2 = #R1.SV# 

select MD# into #R4 

from Maintenance-Depot 

where ( select count (*) 

from #R3 

where Maintenance_Depot .MD# = #R3.MD# 

and po is not null ) >= 2 

select * into #R5 

from Maintenance-Depot 

where address = "Montreal's 

select MD# into #R6 

from #R5 

select Maintenance_Depot.* into #R7 

from #R4, Maintenance-Depot 

where #R4.MD# = Maintenance_Depot .MD# 
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select MD# into #R8 

from #R7 

select #R8.* into #R9 

from #R8, #R6 

where #R8.MD# = #R6.MD# 

select Maintenance_Depot.* into #R1O 

from #R9, Maintenance-Depot 

where #R9.MD# = Maintenance_Depot .MD# 

select MD# into #R11. 

from #R1O 

select distinct * from #R11 

go 

Using sample data for the Aircraft Maintenance database the expected result for 

query 3 was MD# = "Ml" . This result is confirmed by the output of Sybase isql 

(see Appendix D.4). 

Manual SQL 

select MD# from Maintenance-Depot 
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where address ="Montreal" 

and (select count (*) 

from Service, Service-Project 

where Service.MD# = Maintenance_Depot.MD# 

and Service.SV# = Service_Project.SV# 

and SVP# not in (select SVP# from Job 

where PT# <> "P4"))>=2 

This retrieval gives the same result as the SQL set of expressions generated by the 

COOL system, that is, MD# = "Ml", when it is executed with the same data. This 

result is confirmed by the output of Sybase isql (see Appendix D.4). 

7.4 User View of the System 

In general, a user of the prototype implementation of COOL has to define the object 

schema of the database he is working with, to load it, query it, and update it. 

Prior to any work with the database, any user that wants to use the prototype 

front-end has to have set in the '.login' file, the Sybase environment as follows: 

setenv DSQUERY sybase_f sb 

setenv SYBASE /usr/local/sybase 

and include in the 'set path' command, Sybase path '/usr/local/sybase/bin'. 

Every command to the COOL system is given in a text file with the extension 

'.cool'. The user command for executing the COOL source file is: 

coo filename.cool 
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Any execution of a 'coo' command will generate a translation of the COOL state-

ments to an Extended Relational Algebra routine, in the file 'filename.era' and a 

translation in SQL for Sybase, in the file 'filename.sql'. If the COOL commands rep-

resent a create object class, or any of insert, update or delete instance of an object 

class, the output file of the 'coo' command will be only the SQL file. The other file 

will be empty. If the COOL commands represent a query, there will be two output 

files, the '.era' file and the '.sql' file as well. 

Basically a coo filename.cool command will do the following: 

. Will delete 'filename.era' and 'filename.sql' files from previous executions. 

. Will execute the command 'cool filename. cool' that will translate COOL into 

ERA and generate the output into 'filename.era'. 

• Will execute the command 'cool filename.era' that will translate COOL into 

ERA and generate the output into 'filename.sql'. 

• Will send the file 'filename.sql' to the Sybase interface 'isql' for the SQL exe-

cution. 

After giving a coo filename. cool command, its result will come out as Sybase interface 

'isql' gives it. In the Appendix D of the thesis we will show some script files of 

executions with the prototype front-end. 

In the coo command the extension '.cool' is optional, but the COOL source 

file has to have the extension '.cool'. 

Any COOL statement ends in ';'. 
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7.4.1 Database Definition 

Suppose we use the Aircraft Maintenance database as an example. 

We define every object class in the database using the 'create object class' state-

ment (see 'CREATE statement' in Chapter 6), as we do in the following example for 

the class 'Airline': 

create object class Airline 

( AL# CHAR(2), 

hqadd char(30), 

emp_num int, 

primary key AL#); 

The COOL definition for the entire Aircraft Maintenance database from figure 6.4 

is included in the Appendix C.I. The 'create' statements for all the classes in the 

database can be included in a single file with the extension '.cool' , for example 

'create.cool'. 

7.4.2 Database Loading 

To insert data into the object classes we can do it only instance by instance in COOL 

(see 'INSERT statement' in Chapter 6). When we have parent child relationships 

between the entities of the database we need to load first the parent instances and 

then the child instances. If we do not do it this way, the system will prevent us by 

inserting the 'orphan' child instances with the error message: 

Class 'Parent-name' has no instance with primary key = 'value'. 

You try to insert a child without a parent. 
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For this reason it is desirable to load first the parents and then the children. We 

can have all the insert statements for all the database in the same '.cool' file or we 

can have an insert file for each class in the database. For example the insert file, 

'insertAirline. cool' for the class Airline is as follows. 

insert obj ins into Airline 

( AL# : "RO", hqadd : "Bucharest", emp_num : 3000); 

insert obj ins into Airline 

( AL# : "AL", hqadd : "Rome", emp_num 6000); 

insert obj ins into Airline 

( AL# : "AF", hqadd : "Paris", emp_num : 7000); 

insert obj ins into Airline 

( AL# "BA", hqadd : "London", emp_num : 10000); 

The 'create.cool' file and the the insert files, insertAirline.cool, insertAircraft.cool, 

and so on are created with a text editor and then executed together with a shell 

script file. The shell script file 'loadAMD' that will create and load the example 

database, will contain the following statements: 

#! /bin/sh 

# statements for cleaning and initializing COOL system tables 

isqi -Urata -Pcarmen < clean.sql 

isqi -Urata -Pcarmen < init.sql 

# create the database 

coo create.cool 

echo The database was created 



CHAPTER 7. SYSTEM VERIFICATION AND USER VIEW OF THE SYSTEM187 

# load the database 

coo ins ertAirline . cool 

coo insertAirline . cool 

echo Airline class loaded 

coo insertMD.cool 

echo Maintenance-Depot class loaded 

coo insertPTl.cool 

echo PartType_Inventory class loaded 

coo insertSup. cool 

echo Supplier class loaded 

coo insertAircraft . cool 

echo Aircraft class loaded 

coo insertT.cool 

echo Technician class loaded 

coo insertServ.cool 

echo Service class loaded 

coo insertServP. cool 

echo Service-Project class loaded 

coo insertJob.cool 

echo Job class loaded 

coo insertShipD.cool 

echo Shipment-Data class loaded 

coo insertPB.cool 

echo Parts-on-Board class loaded 
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echo The database was created and loaded successfully! 

Creating and loading the Aircraft Maintenance database will be executed in Ap-

pendix D.1. 

7.4.3 Submission of COOL queries 

After the database is created and loaded the user can submit queries. A query is 

written in a file with the extension '.cool' and then submitted to the database with 

the command: 

coo query.cool 

The output will come out in a Sybase isqi format. The contents of the script file 

'coo' is given in Appendix D.8. 

7.4.4 Database update 

We can submit 'update' and 'delete instance' statements in the same way in which 

we submit queries to the COOL front-end. In a '.cool' file we can input an update 

instance statement, such as: 

update Airline where AL# = "RO" set hqadd : "Arad"; 

In the same way in a '.cool' file we can input a delete instance statement, such as: 

delete from Airline where AL# = "BA"; 

Shell script files with examples of insert, update and delete statements are included 

in Appendix D.3, D.5 and D.6. A shell script file with typical error messages is also 

included in Appendix D.7. 



Chapter 8 

Conclusions and Future Work 

8.1 Future COOL design and implementation work 

Future work on COOL could include the following: 

• An optimizer for ERA routines. 

• Second possible DDL. 

• Implementation of inheritance. 

• Design and implementation of Complex Objects: including the definition of, 

storage of, and update of Complex Objects, and interface of Complex Objects 

with programming languages. 

• Design and implementation of functions, including the definition and inheri-

tance of functions. 

Some of these issues have been partially investigated, as discussed below. 

8.1.1 Second possible DDL 

A second approach to the CREATE command would be to declare the object classes 

without the relationships and declare the relationships separately. This approach 

embodies a higher level of abstraction. It implements the structural object orien-

tation of the semantic data models, such as the Entity Relationship model, in the 

189 
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data definition language. In this way, when designing the database schema we do not 

need to map the conceptual level described by a semantic data model to an extended 

nested relational model in order to write the data definition. Thus, we eliminate an 

intermediate step in the conceptual design of a database. 

The syntax in this case would be: 

1* create a object class *1 

<create_objectcls> 

CREATE OBJ[ECTI CLEASJS <objectcls> 

('<objectcls_element_commalist>  

<objectcls_element_commalist> 

<obj ectcls_element> 

I <objectcls_element_conimalist> ',' <objectcls_element> 

<objectcls_element> 

<attribute_def> 

I E <objectcls_key_def> ] 

<attribute_def> 

<attribute> <attribute_type> 

<objectcls_key_def> : 

CANDIDATE KEY '(' <attribute_commalist> 

I PRIMARY KEY <attribute> 

/* create a relationship */ 

<create_rel> : 

CREATE REL itoM 'C' <relationship_field_commalist> ')' 
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I CREATE REL MtoM '(' <relationship_f ield_commalist> ')' 

I CREATE REL ISA '(' <relationship_field_conunalist_inh>  

<relationship_f ield_commalist> 

<relationship_field> 

I <relationship_f ield_commalist> ',' <relationship_field> 

<relationship_field> 

<objectcls_1> [: 

C: 

<reference_attribute_i>] <obj ectcls_2> 

<ref erence_attribute_2>] 

<relationship_field_conuualist_inh> : : = 

<relationship_f ield_inh> 

I <relationship_f ield_commalist> 

<relat ionship_field_inh> 

<relationship_field_inh> :: 

<subclass> C: <attribute>] INHERITS FROM <superclass> 

C: <attribute>] 

The meanings of the identifiers <objectcls_1>, <reference_attributej>, 

<objectc1s2>, <reference...attribute...2> for 1:n relationships, that is, for the com-

mand CREATE REL itoM, and for n:m relationships, that is, CREATE REL MtoM, 

are as follows: 

itoM MtoM 

objectcls_1 parent objectclsX 

objectcls_2 child objectclsY 

reference_attribute_i ref list reflist_Y 
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ref erence_attribute_2 superkey reflist_X 

Identifiers <referenc&attributed> and <reference_attribute_2> are optional. 

When they are omitted only one relationship is assumed between <objectcls_1> and 

<objectc1s2> and the name of the relationship (described by the reference list) is 

generated by the system. 

Some examples with the second approach to Create are: 

create object class Airline 

( AL# CHAR(2), 

hqadd char(30), 

emp_num int, 

primary key AL# 

); 

create obj ci Aircraft 

(AC# char(4), 

fabricant char(20), 

type char(4), 

primary key AC# 

); 

create rel itoM ( Airline Aircraft ); 

In the example above, the reference attributes are generated by the system. Ref-

erenc&attribute_1 will be Airclist_Air and reference.attribut_2 will be AL#. 

An example of two distinct 1:n relationships between the related classes Construct 

and Part-Type-Inventory is the following: 
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create rel itoM (PartType_Inventory: inner_parts Construct: PT_outer, 

PartType_Inventory:outer_parts Construct:PT_inner); 

The <reference_attribute_i> and <reference_attribute_2> for the first relation-

ship are: inner-parts, which is a set of OlDs of the PartType_Inventory related 

instances in the object-class Construct, and PT-outer, which is the OlD of the 

Construct related parent instance in the object-class PartType_Inventory. The ref-

erence-attributes for the second relationship are: outer-parts and PT-inner. The 

two distinct reference attributes of the second example with 'create rel' need to be 

specified by the user in order to have helpful, suggestive names. 

The advantage of this second data definition for COOL is the higher level of ab-

straction, which is similar to the conceptual level defined by the the semantic models, 

such as the Entity Relationship model. Using this higher level of abstraction the user 

does not have to be concerned about using foreign keys to define relationships. From 

the definition of relationships, the 'create rel' statements, the system will make all 

the necessary links required by a relationship implementation. Thus, this true con-

ceptual database definition takes lower level detail from users' tasks and transfers it 

to the DBMS. 

8.1.2 Inheritance in COOL 

Inheritance in COOL is essentially about how to handle IS-A 1:1 relationships. 

Alternatively, inheritance is a reusability mechanism that makes possible for a 

class called subclass to be defined on the basis of the definition of an ISA 1:1 related 

class called a superclass. 

Consider the following ISA class hierarchy: Aircraft, Helicopter, FW_Aircraft, 
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where aircraft are either helicopters or fixed wing. We include in the hierarchy a 

class Company that is in 1:n relationship with class Aif craft, that is, a company has 

many aircraft. We also include an object class Service, where an aircraft requires 

many services. The COOL data definition of the class hierarchy is given below: 

Company: create obj class Company 

( co# char(4), 

hqadd char(30), 

emp_num int, 

primary key co# 

) 

Aircraft: create obj class Aircraft 

( ac# char(4), 

co# char(4), 

manufacturer char(20), 

type char(4), 

primary key ac#, 

super key (c# (Company:airclist)) 

) 

Helicopter: create obj class Helicopter 

( h# char(4), 

ac# char(4), 

rotor# int, 

primary key h#, 
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super key (ac# (Aircraft)) 

inherits (ac# (Aircraft) 

) 

Fixed-Wing-Aircraft: create obj class FW_Aircraft 

( fw# char(4), 

ac# char(4), 

engine-type char(1O), 

engine# int, 

primary key fw#, 

super key (ac# (Aircraft)) 

inherits (ac# (Aircraft) 

) 

Service: create obj class Service 

( s# char(4), 

ac# char(4), 

description char(80), 

primary key s#, 

super key (ac# (Aircraft)) 

) 

The classes Aircraft and Helicopter or FW.Aircraft above involve single inheritance 

and one level superclass - subclass 1:1 relationship. 
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8.1.3 Single Inheritance and one level Superclass - Subclass Relationship 

The ISA relationship defined above gives rise to 6 distinct situations with respect to 

genitive relations: 

1. Parent to child with inheritance genitive relation, for example: 

Company's Helicopters 

2. Child with inheritance to parent genitive relation, for example: 

Helicopter's Company 

3. Parent with inheritance to child genitive relation, for example: 

FW_Aircraft 's Service 

4. Child to parent with inheritance genitive relation, for example: 

Service's FW_Aircraft 

5. Parent with inheritance to child with inheritance genitive relation, for 

example: Special-Service's FW_Aircraft 

6. Child with inheritance to parent with inheritance, genitive relation, for 

example: FW_Aircraft 'S Special-Service, 

For each of the situations above I will give query examples and I will show how 

COOL expressions can be reduced to an ERA routine. 

1. Query example involving the parent - child with inheritance genitive rela-

tion. 

Query: Get the address of a maintenance company that services only helicopters 

with 4 rotors. 
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COOL: 

select HQ from Company 

where for all Company's Helicopters (rotor# = 4) 

ERA: 

197 

RO = project (Aircraft (primekey, superkey)) 

Ri = RO (Aircraft-primekey) join Helicopter (superkey) 

R2 = group-select (RI (for all Aircraft-superkey (rotor# = 4))) 

R3 = Company (primekey) join R2 (Aircraft-superkey) 

R4 = project (R3 (HQ)) 

2. Query example involving the child with inheritance - parent genitive rela-

tion. 

Query: Get all the details of each helicopter maintained by companies located 

in Los Angeles. 

COOL: 

select * from Helicopter 

where for its Helicopter's Company ( HQ = 'LA') 

ERA: 

RO = project (Aircraft (primekey, superkey)) 

Ri = RO (Aircraft-primekey) join Helicopter (superkey) 
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R2 = select (Company (HQ = 'LA')) 

R3 = Ri (Aircraft_superkey) join R2 (Company_primekey) 

R4 = project (R3 (Helicopter_primekey)) 

R5 = M(Helicopter_primekey) join Helicopter (primekey) 

R6 = project (R5 (*)) 

3. Query example involving the parent with inheritance - child genitive rela-

tion. 

Query: Get the number of engines on each fixed wing aircraft for which the 

majority of performed maintenance services were computer repair. 

COOL: 

select engines# from FW_Aircraft 

where for most FW.A±rcraft's Service 

(description = 

ERA: 

'computer repair"); 

RO = group-select (Service (for most Aircraft_primekey 

description = 'computer repair'))) 

Ri = FW_Aircraft (superkey) join RO (Aircraft_primekey) 

R2 = project (Ri (engines#)) 

4. Query example involving the child - parent with inheritance genitive rela-

tion. 
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Query: Give the description of each service performed on fixed wing aircraft 

for which the engine type is turbine. 

COOL: 

select description from Service 

where for all Services's FW_Aircraft (enginetype = 'turbine') 

ERA: 

RO = project (Aircraft (primekey, superkey)) 

RI = RO (Aircraft...primekey) join FW_Aircra.ft (superkey) 

R2 = select ( Ri (enginetype = 'turbine')) 

R3 = Service (superkey) join R2 (Aircra.ft_primekey) 

R4 = select (R3 (description)) 

5. Query example involving the child with inheritance - parent with inher-

itance genitive relation. 

Now suppose additionally that Services also have an ISA 1:1 relationship with 

Regular Services and Special Services. 

Query: Give the description of Special Services for aircraft with two engines. 

COOL: 

select sp_description from Special-Service 

where for its Special-Service's FW_Aircraft (engines#=2); 

ERA: 
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RO = project (Aircraft (primekey)) 

Ri = RO (Aircraft-primekey) join FW_Aircraft (superkey) 

R2 = select (RI (engines# = 2)) 

R3 = project (R2 (Aircraft-primekey)) 

R4 = project (Services (primekey, superkey)) 

R5 = R4 (Services-primekey) join Special-Services (superkey) 

R6 = R3 (Aircraft_primekey) join R5 (Services-superkey) 

R7 = project (R6 (sp_description)) 

6. Query example involving the parent with inheritance - child with inher-

itance genitive relation. 

Query: Get the number of engines on fixed wing aircraft that all need computer 

repair. 

COOL: 

select engines# from FW_Aircraft 

where for all FW_Aircraft's Special-Service 

(description = ' 'computer repair''); 

ERA: 

RO = project (Services (primekey, superkey)) 

Ri = RO (Services-primekey) join Special-Services (superkey) 

R2 = group-select (Ri (for all Services-superkey 

(description = ''computer repair"))) 
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R3 = project (Aircraft (Aircraft_primekey)) 

R4 = R3 (Aircraft_primekey) join FW_Aircraft (superkey) 

R5 = R4 (Aircraft_primekey) join R2 (Services-superkey) 

R6 = project (R5 (engines#)) 

8.1.4 Single Inheritance and multiple level Superclass - Subclass rela-

tionship 

For the case of single inheritance and multiple level superclass - subclass relationship, 

we have the same cases as above. Now suppose a Helicopter can be either a Transport 

(Transport_Hely) or a Passenger Helicopter (Passenger_Hely). For the first category 

of Cool Query 'parent- child with inheritance genitive relation', the equivalent COOL 

expression and ERA routine, are: 

Query: Get the address of each company that uses transport helicopters with 

maximum loading of 50 tons. 

COOL: 

select hqadd from Company 

where for all Company's Transport_Hely (maxload = 50) 

ERA: 

RO = project (Aircraft (primekey, superkey)) 

Ri = RO (Aircraft_primekey) join Helicopter (superkey) 

R2 = project (Ri (Helicopter_primekey, Aircraft_primekey)) 

R3 = Transport_Hely (superkey) join R2 (Helicopter_primekey) 

R4 = group-select (R3 (for all Aircraft-superkey (maxload = 50))) 
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R5 = Company (primekey) join R4 (Aircraft_superkey) 

Ft6 = project (R5 (hqadd)) 

8.1.5 Composite or complex objects 

A composite object can be defined as an aggregation of objects [Cat9i] (e.g.: elec-

tronic components can be grouped together to form a computer, chapters may be 

grouped together to form a document). Composite objects have also a hierarchical 

structure (e.g.: paragraphs are parts of sections, sections are parts of chapters and 

chapters are parts of documents). 

The research described in this thesis has not included composite object handling 

in COOL. Investigation of composite objects, models, languages and implementation 

systems would require a lengthy research project. The goal of a database system that 

allows composite objects has given rise to many proposals for models, beginning with 

the nested relations model. 

To give the reader a general idea of what is involved, suppose we have an object 

type hierarchical database structure: object class S is parent of object classes A, B 

and C; object class A is parent of object classes X, Y, Z and object class B is the 

parent of object classes Ti, V, W. 

Considering Si, S2,... instances of object class S; Al, A2,... instances of object 

class A and so on, the hierarchical structure of a composite object can be laid out 

as in figure 8.1 [Bra93b]. 

As it was shown in Chapter 5, language constructs for complex objects are avail-

able in COOL. This involves COOL expressions for retrieval, concentration and 

creation (complex object views) of composite objects. Methods for reduction of such 
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Si 

Al A2 BI 
B2 Ci 

Xl X2 X3 Yl Xl XS Y10 U2 U4 U6 Wil 

Figure 8.1.: Composite Object 

composite object COOL expressions have still to be investigated. 

A possible way of implementing composite objects is by using relations. In this 

approach the objects used for constructing composite objects would be stored in a 

relational database as relations. COOL could then generate a composite object of 

the type shown in figure 8.1 from the underlying relations. 

The composite object could be stored in a relation as a set of all the pairs (par-

ent-instance OlD, child-instance OlD). The root of the composite object hierarchy 

could be a tuple with the parent NULL. A leaf in the three could be a tuple with 

the child NULL. 

A host-program with embedded COOL commands would be needed to retrieve 

a composite object from the database in order to transfer the composite object 

instances one by one to a host program structure variable. 

A major problem is updating a composite object. 
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8.1.6 Functions or Methods 

The novel concept that is central to 00 approach is undoubtingly the function 

(called also procedure or method). With functions a new layer has been added to 

the already well known structural 00, namely behavioral 00. 

Functions add to database languages an important missing feature. This feature 

is the computational completeness that we find in programming languages. 

A variety of approaches has been taken to support functions in 00 database 

systems. But a precise framework for functions in COOL has not yet been designed. 

As a consequence functions were not implemented in the system described in this 

thesis. The present section merely establishes a framework for future functions and 

ADT design in COOL, since COOL can be extended to use user-defined functions 

(methods, ADT or Abstract Data Types) and to perform encapsulation of data with 

methods. 

Functions could be written either in COOL (a COOL function), if it is possible 

or in a host programming language (an external function). This idea for creating 

functions was used in the draft SQL3 standard [CMCG94] and can be applied to 

COOL as well. 

COOL functions present more advantages than external host programming lan-

guage functions because they can be optimized, because the switching to a host-

language context can be avoided, and because user-defined types can be passed as 

arguments. 

We could also improve the ease of writing COOL functions by allowing COOL to 

be used in a procedural manner. Some commercial database products permit users 
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to invoke stored procedures written in a language native to the database product. 

Sybase has a language of this kind called "Control-of-Flow". This language provides 

special statements like: if. . .else, while, begin. . .end, goto label, return, and so on 

and permits a procedural execution of the SQL statements. Incorporating such pro-

cedural language constructs into COOL would facilitate the writing of user-defined 

functions. 

In the SQL3 draft standard [CMCG94], the programming language type has 

not been implemented yet. This means that external functions written in a host 

programming language (e.g.: C) need an interface to translate the ADT instances 

passed as arguments to the function into host language types. ADTs can be passed 

to external functions in the form of language-type instances. 

8.2 Summary and Conclusions 

In this thesis, we first presented an evolution of the database models, starting with 

the prerelational models, then the relational model, the milestone in the develop-

ment of databases, and finishing with the object-oriented models. Further on we 

presented the concepts of the major trends in the OODBMS development, and the 

basics of the query languages. In the second part of the thesis, we comprehensively 

presented a novel declarative object-relational language, COOL, the Extended Rela-

tional Algebra (ERA) for COOL, and the first implementation of COOL. The thesis 

concluded with a user view of the system, system verification and future work. 

Almost all of the database products developed over the past 10 years are based 

on the relational technology. The simplicity of the relational is beneficial, because it 
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results model is a benefit in ease of use and mathematical tractability, but it is also a 

limitation. There is widespread agreement that conventional normalized relations are 

cumbersome at best when it comes to dealing with certain nontraditional database 

applications, such as CAD/CAM, text processing, forms management, and picture 

and voice processing. From the large variety of systems that were proposed to meet 

the new database applications demanding we can see clearly two main trends in 

solving the problem: 

1. Extend the relational model appropriately, 

2. Replace the relational model entirely by a new model. 

Object-oriented systems represent an example of the second solution but the lack of 

a solid theoretical basis is a major criticism of the object-oriented approach. The 

first solution can be characterized as an attempt to provide a sound mathematical 

foundation for the object-oriented approach by extending the relational model to 

incorporate object-oriented concepts. 

Several researchers have suggested that one way to increase the functionality 

of the relational model is to drop the requirement that relations be normalized. 

The non-first-normal-form (NFNF or NF2) relation and the concepts of semantic 

modeling are the basis for the development of the extended relational models that 

represent the foundation of the Object-Relational Database Systems. Another big 

advantage of the extended relational approach to OODBMS is the non procedural 

or declarative query language. The aim of this thesis was the implementation of a 

declarative query language, objeét-relational, called COOL (A Composite Object-

Oriented Language), which was designed as an extension of SQL for use with an 
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• NF2 extended relational database. COOL is relational because is based on the set-

theory and is object-oriented because of its underlying object-oriented model and the 

object-orientation reflected in the language constructs (e.g.: the genitive relation). 

In COOL we think in terms of objects only, by contrast to SQL where we think in 

terms of entire relations. COOL proves to be easy to use (easier than SQL) and has 

a natural language structure given both by the genitive relation (genitive case in the 

English language), and the natural quantifiers which are used much as in a natural 

language. COOL is unique in the field of declarative languages, which makes the 

implementation of COOL the first of its kind. 

This thesis described an approach to implementing a declarative object-relational 

database language. The prototype implementation of COOL followed the option of 

a front-end to an existing relational database system rather than implementing a 

full OODBMS, which would have been a much more complex and far more time-

consuming task. 

For the translation of COOL, a two step translation was chosen: (1) reduction of 

COOL expressions to Extended Relational Algebra (ERA) routines, and (2) trans-

lation of ERA routines into a set of SQL expressions. The translation of COOL 

into ERA routines offers flexibility for future development of a full OODBMS, and 

the translation of ERA routines into SQL expressions gives us portability of the 

prototype, which can be executed on any relational system that supports SQL. In 

generating ERA routines I aimed for optimum code, as far as possible, following the 

basic rules of query processing optimization. Building a query optimizer for ERA 

routines is a future research task. The prototype was built on top of Sybase DBMS. 

I have designed and implemented also the data definition language for COOL, and 
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I have designed but not implemented the inheritance mechanism based on genitive 

relations for ISA relationships. 

Even if this prototype version does not have all the features of the designed 

COOL, like complex objects and inheritance, it proves that a language like COOL 

has valuable properties, such as: 

• Powerful (more powerful than SQL): concise expressions, 

• Easy to use: ease of construction of expressions, 

• Reliable: errors in expressions less likely than with SQL, 

• Flexible: many different ways of constructing an expression, and 

• Natural: expression structures like those of natural language. 

COOL could be useful for a large variety of applications, especially scientific 

applications that deal with very complex entities. The COOL approach to declarative 

database languages also seems ideal for future oral interrogation of databases. This 

thesis has demonstrated the practical feasibility of the COOL approach. 
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Appendix A 

Implemented syntax of COOL 

The BNF Grammar for the COOL parser is: 

<cool_list> 

<cool> 

<schema> 

<schema_element_list> 

<schema_element> 

<obj ectcls_def> 

<cool> 

I <cool_list> <cool> 

<schema> 

I <manipulative_statement> 

1* empty *1 
I <schema_element_list> 

<schema_element> 

I <schema_element_list> <schema_element> 

<obj ectcls_def> 

CREATE OBJ[ECTI CL[AS]S <objectcls> 

( <objectcls_element_commalist> ) 

<objectcls_element_commalist> : 

<obj ectcls_element> 

I <objectcls_element_commalist> 
<obj ectcls_element> 

<objectcls_element> : 

219 
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<attribute_def> 

I <obj ectcls_key_def> 

<attribute_def> 

<attribute> <attribute_type> 

<obj ectcls_key_def> 

CANDIDATE KEY ( <attribute_commalist> ) 
I PRIMARY KEY <attribute> 
I SUPER KEY ( <relationship_field_conunalist> ) 

<relationship_field_conunalist> 

<relationship_field> 

I <relationship_field_commalist> 
<relationship_field> 

<relationship_field> ::= 

<attribute> ( <parent_objectcls> ) 
I <attribute> 
( <parent_obj ectcl s> : <reference_attribute> ) 

<attribute_commalist> 

<attribute> 

I <attribute_commalist> , <attribute> 

1* data manipulation statements *1 

<manipulative_statement> 

<select_statement> 

<delete_statement> 

<insert_instance_statement> 

<insert_manyobj ects_statement> 

<update_statement> 

<drop_class_statement> 

<dump_database_statement> 

<insert_instance_statement> : 

INSERT OBJ[ECT] INS [TANCE] INTO <objectcls> 

( <insert_value_coimnalist> ) 
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<insert_value_conunalist> 

<insert_value> 

I <insert_value_commalist> , <insert_value> 

<insert_value> 

<attribute> : <alpha> 

I <attribute> : <numeric> 

<insert_manyobjects_statement> 

INSERT INTO <objectcls> <select_statement> 

<delete_statement> 

<delete_uncond_st atement> 

I <delete_withcond_statement> 

<delete_uncond_statement> 

DELETE ALL <from_clause> 

<delete_withcond_sta.tement> 

DELETE <from_clause> WHERE <condition> 

<update_statement> 

UPDATE <objectcls> WHERE <condition> 

SET <update_value_comnialist> 

<update_value_commalist> 

<update_value> 

I <update_value_coinmalist> , <update_value> 

<update_value> 

<attribute> : <scalar_expr> 

I <attribute> <alpha> 

<drop_class_statement> : 

DROP <objectcls> 

<dump_database_statement> 

DUMP DATABASE 

<select_statement> 
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SELECT <selection> FROM <object_class> 

[WHERE <where_express ion>] 

<selection> 

<attribut e_conuualist> 

1* 

<where_expression> 

<condition> [<logical_xref_list>] 

I <quantified_xreference> [<logical_xref_list>] 

<logical_xref_list> 

<logical_xref> 

I <logical_xref_list> <logical_xref> 

<logical_xref> 

OR <quantiied_xreference> 

I AND <quantified_xreference> 

<condition> 

<relat ional_expr> 

I <condition> AND <condition> 
I <condition> OR <condition> 
I ( <condition> ) 

<relat ional_expr> 

<left_expr> 

<right_expr> 

<scalar_expr> 

<left_expr> COMPARISON <right_expr> 

<attribute> 

<scalar_expr> 

I <alpha> 

<scalar_expr> + <scalar_expr> 

I <scalar_expr> <scalar_expr> 

I <scalar_expr> * <scalar_expr> 
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I <scalar_expr> / <scalar_expr> 
I ( <scalar_expr> ) 
I <numeric> 

<quantified_xreference> 

<genitive_relation> ( <where_expression> ) 

<genitive_relation> 

1* Parent Child genitive relation where (1) is the formal syntax *1 
<quantifier_pc> <parent> . <reference_attribute> * 

<formal_child> 

1* and (2) is the natural language syntax *1 
I <quantifier_pc> <parent>'S 

[* <reference_attribute>] <natural_child> 

1* Composite Parent Child genitive relation where 
(1) is the formal syntax *1 

I <quantifier_pc> <grandparent> 
<reference_attribute> * <parent> 

<reference_attribute> '*' <child> 

1* and (2) is the natural language syntax *1 
I <quantifier_pc> <grandparent>'S 

[* <reference_attribute>] <parent> 'S 

[* <reference_attribute>] <child> 

1* Child Parent genitive relation where (1) is the formal syntax *1 
I <quantifier_cp> <child> . <child_superkey> * <parent> 

1* and (2) is the natural language syntax *1 
I <quantifier_cp> <child>'S [<child_superkey>] <parent> 

1* Composite Child Parent genitive relation where 
(1) is the 

1* and (2) is 

formal syntax *1 
<quantifier_cp> <child> . <child_superkey> * 

<parent> '.' <parent_superkey '*' <grandparent> 

the natural language syntax *1 
<quantifier_cp> <child> 'S 

[<child_superkey>] <parent> 'S 

[<parent_superkey>] <grandparent> 
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<child> 

<parent> 

<grandparent> 

<formal_child> 

<natural_child> 

<quantifier_pc> 

<quantifier_cp> 

<reference_attribute> 

<alpha> 

<obj ect_class> 

<obj ect_class> 

<obj ect_class> 

<obj ect_class> 

I ( <object_class> ( <condition> ) ) 

<obj ect_class> 

I ( <condition>) <object_class> 

FOR ALL 

FOR MOST 

FOR NONE 

FOR ALL BUT INTNUM 

FOR AT MOST INTNUM 

FOR AT LEAST INTNUM 

FOR MORE THAN INTNUM 

FOR LESS THAN INTNUM 

FOR EXACTLY INTNUM 

FOR NOT INTNUM 

FOR THE 

I FOR ITS 
I FOR HER 
I FOR HIS 

NAME 
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STRING 

<numeric> 

INTNUM 

I APPROXNUM 

1* data types *1 

<attribute_type> 

CHARACTER 

I CHARACTER ( INTNUM ) 
I INTEGER 

<obj ect_class> 

<attribute> 

<child_superkey> 

NAME 

NAME 

NAME 

1* COMPARISON: = <> < > <= > */ 

The BNF Grammar for ERA parser is: 

<era_list> 

<era_expr> 

NL <era_expr> 

I <era_list> NL <era_expr> 

1* empty *1 
<join_statement> 

<select_statement> 

<group_select_statement> 

<intersect_statement> 

<union_statement> 

<subgroup_select_statement> 
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I <proj ection_ statement> 
I <pj oin_statement> 

<join_statement> : <relation_name > = <relation_name> 

( <attribute> ) JOIN <relat ion_name> 
<attribute> ) 

<pjoin_statement> 

<relation_name> = <relation_name> 

( <attribute> ) PJOIN ( <variable_name> ) 
<relation_name> ( <attribute> ) 

<select_statement> 

<relation_name> = SELECT 

( <relation_name> ( <condition> ) ) 

<projection_statement> 

<relation_name> = PROJECT 

( <relation_name> ( <selection> ) ) 

<group_select_statement> 

<relation_name> = GROUP-SELECT ( <relation_name> 
( <quantifier_pc> <foreign_key> 

( <condition_expr> ) ) ) 

<subgroup_select_statement> 

<relation_name> = SUBGROUP-SELECT 

( <relation_name> ( <quantifier_pc> 
( <foreign_key> ( <condition> ) ) 

( <condition_expr> ) ) ) 

<condit ion_expr> 

<condition> 

I <condition> AND <variable_name> 
I <condition> OR <variable_name> 
I <variable_name> 

<union_statement> : 

<relation_name> = <relation_name> UNION <relation_name> 
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<intersect_statement> 

<relation_name> = <relation_name> INTERSECT 

( <join_field> ) <relation_name> 

<selection> 

<attribute_commalist> 

<condition> 

<relat ional_expr> 

<let t_expr> 

<right_expr> 

<scalar_expr> 

<quantifier_pc> 

<attribute_commalist> 

* 

<attribute> 

I <attribute_conuualist> , <attribute> 

<relat ional_expr> 

I <condition> AND <condition> 
I <condition> OR <condition> 
I ( <condition> ) 

<left_expr> COMPARISON <right_expr> 

<attribute> 

<s cal ar_ expr> 

I <alpha> 

<scalar_expr> + <scalar_expr> 

<scalar_expr> <scalar_expr> 

<scalar_expr> * <scalar_expr> 

<scalar_expr> / <scalar_expr> 
( <scalar_expr> ) 
<numeric> 

FOR ALL 

I FOR MOST 
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FOR NONE 

FOR ALL BUT INTNUM 

FOR AT MOST INTNUM 

FOR AT LEAST INTNUM 

FOR MORE THAN INTNUM 

FOR LESS THAN INTNUM 

FOR EXACTLY INTNUM 

FOR NOT INTNUM 

<alpha> 

STRING 

<numeric> 
INTNUM 

I APPROXNUM 

<relation_name> 

<variable_name> 

<foreign_key> 

<join_field> 

<attribute> 

NAME 

VAR 

NAME 

NAME 

NAME 
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The aircraft maintenance database schema 

Class Airline 

Properties: 

AL# 

hqadd 

emp_num 

Airclist 

string, 

string, 

int, 

set of Aircraft, AL# 

Class Aircraft 

Properties: 

AC# 

type 

fabricant 

string, 

string, 

string, 

Airline, 

Ownelist_A set of Ownerships. Partlist_A set of Parts-on-Board, 

Class Depot-Ownership 

Properties: 

O# string, 

share int, 

MD# Maintenance-Depot, 

AL# Airline. 

Servlist set of Sevices. 

Class Maintenance-Depot 

Properties: 

MD# string, 

address string, 

Ownelist_M 

Servlist_M 

Techlist 

set of Services, 

set of Services, 

set of Technicians, 

Partlist_M set of PartType_Inventory. 

Class Service Class Service-Project 

Properties: Properties: 

229 
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SV# string, SVP# string, 

description string, description string, 

Servlist_S set of Service-Project, Joblist_S set of Jobs, 

AC# Aircraft, SV# Service. 

MD# Maintenance-Depot. 

Class Parts-on-Board Class Job 

Properties: Properties: 

PB# string, J# string, 

part# string, descr string, 

status string, start date, 

AC# Aircraft, finish date, 

PT# PartType_Inventory, status string, 

S# Supplier. SVP# Service-Project, 

T# Technician. 

Class Technician Class PartType_Inventory 

Properties: Properties: 

T# string, PT# string, 

name string, typename string, 

title string, qty int, 

Joblist_T set of Jobs, Partlist_P set of Parts-on-Board, 

MD# Maintenance-Depot Shiplist_P set of Shipment-Data, 

Inner-Parts set of Constructs, 
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Outer-Parts set of Constructs, 

MD# Maintenance-Depot. 

Class Supplier Class Shipment-Data 

Properties: Properties: 

string, SH# string, 

address string, price int, 

Partlist_S set of Parts-on-Board, qty int, 

Shiplist_S set of Shipment-Data. S# Supplier, 

PT# PartType_Inventory. 

Class Construct 

Properties: 

C# string, 

location string, 

PT-outer PartType_Inventory, 

PT-inner PartType_ Inventory. 



Appendix C 

Aircraft maintenance database definition 

C.1 COOL definition of the example database 

create object class Airline 

( AL# CHAR(2), 
hqadd char(20), 

emp_num int, 

primary key AL#); 

create obj ci Aircraft 

(AC# char(4), 

AL# char(2), 

fabricant char(20), 

type char(4), 

primary key AC#, 

super key (AL# (Airline))); 

create obj ci Depot-Ownership 

(O# char(4), 

AL# char(2), 

MD# char(4), 

share int, 

primary key O#, 

super key (MD# (Maintenance_Depot), AL# (Airline))); 

create obj ci Service 

(SV# char(4), 

AC# char(4), 

MD# char(4), 

description char(20), 

primary key SV#, 

super key (AC# (Aircraft), MD# (Maintenance-Depot))); 
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create object class Service-Project 

( SVP# char(4), 

SV# char(4), 

description char(20), 

primary key SVP#, 

super key (sV# (Service))); 

create obj ci Maintenance-Depot 

(MD# char(4), 

address char(20), 

primary key MD#); 

create obj ci Parts-on-Board 

(PB# char(4), 

AC# char(4), 

PT# char(4), 

S# char(4), 

part# char(4), 

status char(2), 

primary key PB#, 

super key (AC# (Aircraft), PT# (PartType_Inventory), 

S# (Supplier))); 

create obj ci .Job 

(J# char(4), 

T# char(4), 

SVP# char(4), 

descr char(10), 

start char (10), 

finish char(10), 

status char(3), 

PT# char(4), 

part# char(4), 

primary key J#, 

super key (SVP# (Service-Project), T# (Technician))); 

create obj ci Technician 

(T# char(4), 

MD# char(4), 
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name char(20), 

title char (15), 

primary key T#, 

super key (MD# (Maintenance-Depot))); 

create obj ci PartType_Inventory 

(PT# char(4), 

MD# char(4), 

typename char(20), 

qty int, 

primary key PT#, 

super key (MD# (Maintenance-Depot))); 

create obj ci Supplier 

(S# char(4), 

address char(20), 

primary key S#); 

create obj ci Shipment-Data 

(SH# char(4), 

PT# char(4), 

S# char(4), 

price int, 

qty int, 

primary key SH#, 

super key (PT# (PartType_Inventory), S# (Supplier))); 

create obj ci Construct 

(C# char(4), 

PT-outer char(4), 

PT_inner char(4), 

location char(1O), 

primary key C#, 

super key (PT-outer (PartType_Inventory: inner_parts), 

PT-inner (PartType_Inventory:outer_parts))); 
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C.2 SQL definition of the example database 

create table Airline ( 
OlD int, 

AL# char (2), 

hqadd char (20), 

emp_num int, 

) 
create table Aircraft ( 
DID int, 

AC# char (4), 

AL# char (2), 

fabricant char (20), 

type char (4), 

) 
create table Depot-Ownership ( 
DID int, 

D# char (4), 

AL# char (2), 

MD# char (4), 

share int, 

) 
create table Service ( 
DID int, 

SV# char (4), 

AC# char (4), 

MD# char (4), 

description char (20), 

) 
create table Service_Project ( 
DID int, 

SVP# char (4), 

SV# char (4), 

description char (20), 

) 
create table Maintenance-Depot 

DID int, 

MD# char (4), 

( 
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address char (20), 

) 
create table Parts-on-Board ( 
DID int, 

PB# char (4), 

AC# char (4), 

PT# char (4), 

S# char (4), 

part# char (4), 

status char (2), 

) 
create table Job ( 
DID int, 

J# char (4), 

T# char (4), 

SVP# char (4), 

descr char (10), 

start char (10), 

finish char (10), 

status char (3), 

PT# char (4), 

part# char (4), 

) 
create table Technician ( 
DID int, 

T# char (4), 

MD# char (4), 

name char (20), 

title char (15), 

) 
create table PartType_Inventory 

DID int, 

PT# char (4), 

MD# char (4), 

typename char (20), 

qty int, 

) 
create table Supplier ( 
DID int, 

S# char (4), 

( 
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address char (20), 

) 
create table Shipment-Data 

OlD int, 

SH# char (4), 

PT# char (4), 

S# char (4), 

price int, 

qty int, 

) 
create table Construct ( 
OlD int, 

C# char (4), 

PT-outer char (4), 

PT-inner char (4), 

location char (10), 

) 

( 



Appendix D 

Testing the Aircraft Maintenance Database 

D.1 Create and Load the database 

The Aircraft Maintenance Database can be created and loaded using the procedure 

loadAMD, as follows: 

*** Script initiated by Carmen Rata on Fri Jan 20 20:13:37 1995 

[cool] >>? 

[cool] >>? 

/bin/sh 
cat loadAMD 

isql -Urata -Pcarmen < clean.sql 

isql -Urata -Pcarmen < init.sql 

coo create.cool 

echo The database was created 

coo insertAirline cool 

echo Airline class loaded 

coo insertMD.cool 

echo Maintenance-Depot class loaded 

coo ins ertPTI cool 

echo PartType_Inventory class loaded 

coo insertSup.cool 

echo Supplier class loaded 

coo insertAircraft cool 

echo Aircraft class loaded 

coo insertT.cool 

echo Technician class loaded 

coo ins ertServ. cool 

echo Service class loaded 

coo insertServP cool 

echo Service-Project class loaded 

238 



APPENDIX D. TESTING THE AIRCRAFT MAINTENANCE DATABASE 239 

coo insertJob.cool 

echo Job class loaded 

coo insertShipD. cool 

echo Shipment-Data class loaded 

coo insertPB.cool 

echo Parts-on-Board class loaded 

echo The database was created and loaded successfully! 

[cool] >>? loadAMD 

The database was created 

(1 row affected) 

(1 row affected) 

(1 row affected) 

(1 row affected) 

Airline class loaded 

(1 row affected) 

(1 row affected) 

(1 row affected) 

(1 row affected) 

(1 row affected) 

Maintenance-Depot class loaded 

(1 row affected) 

(1 row affected) 

(1 row affected) 

(1 row affected) 

(1 row affected) 

(1 row affected) 

(1 row affected) 

(1 row affected) 

(1 row affected) 

PartType_Inventory class loaded 

(1 row affected) 

(1 row affected) 

(1 row affected) 

(1 row affected) 

Supplier class loaded 

(1 row affected) 

(1 row affected) 
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(1 row affected) 

(1 row affected) 

(1 row affected) 

(1 row affected) 

(1 row affected) 

Aircraft class loaded 

(1 row affected) 

(1 row affected) 

(1 row affected) 

(1 row affected) 

(1 row affected) 

(1 row affected) 

Technician class loaded 

(1 row affected) 

(1 row affected) 

(1 row affected) 

(1 row affected) 

Service class loaded 

(1 row affected) 

(1 row affected) 

(1 row affected) 

(1 row affected) 

(1 row affected) 

(1 row affected) 

(1 row affected) 

(1 row affected) 

(1 row affected) 

Service-Project class loaded 

(1 row affected) 

(1 row affected) 

(1 row affected) 

(1 row affected) 

(1 row affected) 

(1 row affected) 

(1 row affected) 

(1 row affected) 

(1 row affected) 

(1 row affected) 

Job class loaded 

(1 row affected) 
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(1 row affected) 

(1 row affected) 

(1 row affected) 

(1 row affected) 

(1 row affected) 

(1 row affected) 

Shipment-Data class loaded 

row affected) 

row affected) 

row affected) 

row affected) 

row affected) 

row affected) 

row affected) 

row affected) 

row affected) 

row affected) 

row affected) 

row affected) 

row affected) 

row affected) 

row affected) 

Parts-on-Board class loaded 

The database was created and loaded successfully! 

[cool] >>? exit 

exit 

*** Script completed on Fri Jan 20 20:15:46 1995 

*** Script session length is 135 lines 

19434D540CBD35A1B 11DEA453 1C9BCEF24989D943C997E543EA2AB54F13D66BA8 

D.2 Contents of test database 

*** Script initiated by Carmen Rata on Fri Jan 20 20:10:03 1995 

[cool] >>? 

[cool] >>? cat dbcontents.sql 

print "Airline" 
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print lilt 

select * from Airline 
print lilt 

print "Maintenance-Depot" 
print lilt 

select * from Maintenance-Depot 

print fill 

print "PartType_Inventory" 
print fill 

select * from PartType_Inventory 
print fill 

print "Supplier" 
print fill 

select * from Supplier 

print fill 

print "Aircraft" 
print lilt 

select * from Aircraft 

print fill 

print "Technician" 

print It 

select * from Technician 

print 

print "Service" 

print fill 

select * from Service 
print fill 

print "Service-Project" 
print liti 

select * from Service-Project 

print lilt 

print "Job" 
print lilt 

select * from Job 
print fill 

print "Shipment-Data" 

print it 

select * from Shipment-Data 

print 

print "Parts-on-Board" 
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print fill 

select * from Parts-on-Board 

[cool] >>? 

[cool] >>? isqi 

Password: 

1> :r dbcontents.sql 

45> go 

Airline 

OlD AL# hqadd emp_num 

1 RO Bucharest 3000 

2 AL Rome 6000 

3 AF Paris 7000 

4 BA London 10000 

(4 rows affected) 

Maintenance-Depot 

DID MD# address 

1 Mi. Montreal 

2 M2 Boston 

3 M3 Calgary 

4 M4 San Jose 

5 M5 San Diego 

(5 rows affected) 

PartType_ Inventory 

DID PT# MD# typename qty 

1P1 Ml dial 2 

2 P4 Ml bolt 2000 

3 P6 M2 valve 40 

4 P9 M3 nut 600 

5 P44 M2 turbine 4 

6 P7 Ml pipe 4000 
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7 P11 Ml fastener 1000 

8 P19 M4 lever 3 

9 P10 M4 seat 400 

(9 rows affected) 

Supplier 

DID S# address 

1 Si Seattle 

2 S2 Los Angeles 

3 S3 Vancouver 

4 S4 San Francisco 

(4 rows affected) 

Aircraft 

OlD AC# AL# fabricant type 

1 AB41 AF Airbus A320 

2 IRlO AF McDonald-Douglas DC10 

3 BC01 AL Boeing B737 

4 BC11 AL Boeing B727 

5 BC18 AL Boeing B727 

6 ABSO BA Airbus B320 

7 AB1O BA Airbus A320 

(7 rows affected) 

Technician 

OlD T# MD# name title 

1 ti Ml Smith engineer 

2 t2 M2 Brown technician 

3 t3 M3 Victor analyst 

4 t4 Ml Green mechanic 

5 t5 Ml Taylor electrician 
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6 t6 M3 Jones engineer 

(6 rows affected) 

Service 

DID SV# AC# MD# description 

1 SV2 BC18 Ml computer repair 

2 SV1 BCO1 Ml autopilot checking 

3 SV3 BC11 M2 engine overhaul 

4 SV4 BCO1 M3 metal fatigue 

(4 rows affected) 

Service-Project 

OlD SVP# SV# description 

1 SVP1 SV1 checki 

2 SVP2 SV1 check2 

3 SVP3 SV1 check3 

4 SVP4 SV3 engine 1 

5 SVP5 SV3 engine2 

6 SVP6 SV2 printer 

7 SVP7 SV2 disk drive 

8 SVP8 SV4 wing 

9 SVP9 SV4 tail 

(9 rows affected) 

Job 

OlD J# T# SVP# descr start finish status PT# part# 

1 32 ti SVPI task a 11/10/94 14/10/94 ok P4 12 

2 31 t2 SVP2 task b 10/1/95 30/1/95 ver P4 167 

3 33 t6 SVP2 task f 3/1/95 4/1/95 ok P4 543 

4 34 t5 SVP3 task c 1/9/94 14/10/94 ok P6 122 

5 35 t6 SVP3 task g 11/9/94 12/9/94 ok P1 127 

6 36 ti SVP3 task e 12/9/94 14/9/94 ok P6 521 

7 37 t4 SVP4 task 12 1/2/95 1/3/95 de P44 12 
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8 38 t4 SVPS task 3 1/12/94 10/1/95 de P44 45 
9 39 t2 SVP6 task z 14/12/94 15/12/94 ok P4 732 

10 310 t4 SVP8 task s 1/8/94 14/19/94 ok P9 768 

(10 rows affected) 

Shipment-Data 

OlD SH# PT# S# price qty 

1 SI-li P4 S2 45 300 

2 SI-I2 P4 S2 100 1000 

3 SH3 P11 S2 38 200 

4 SI-U P11 S2 38 2000 

5 SH4 P1 Si 20 1000 

6 SHS P6 Si 6800 2 

7 SH6 PlO S3 700 3 

(7 rows affected) 

Parts-on-Board 

DID PB# AC# PT# S# part# status 

I X21 BCO1 P1 Si 123 ok 

2 X51 BCO1 P4 S4 723 ok 

3 X44 BC0i P6 Si 163 ok 

4 X34 BCOi P9 51 873 ok 

5 A21 BC11 P44 Si 23 ok 

6 A45 BC11 P7 51 923 ok 

7 A71 BC11 P11 S3 33 de 

8 k61 BC18 P19 S4 122 ok 

9 k55 BC18 P1 Si 234 ok 

10 k89 BC18 P10 S2 56 ok 

ii G46 AB1O P11 Si 456 ok 

12 G47 AB1O P44 S2 156 de 

13 T49 ABSO PlO S3 556 ok 

14 T62 ABSO P7 S4 567 de 

15 T34 AB5O P19 Si 96 ok 

(15 rows affected) 
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1> exit 

[cool] >> exit 

exit 

*** Script completed on Fri Jan 20 20:10:57 1995 

*** Script session length is 214 lines 

108F98CF795BDA8AD46B03383 16EB24B83A9B065C446848 11F6 1EF2E9O9DSFEC5A 

D.3 Example of use of the COOL insert command 

In the following example we insert a new instance in the object class Airline. 

*** Script initiated by Carmen Rata on Fri Jan 20 20:26:21 1995 

[cool] >>? isqi 

Password: 
1> select * from Airline 

2> go 

DID AL# hqadd emp_num 

1 RD Bucharest 3000 

2 AL Rome 6000 

3 AF Paris 7000 

4 BA London 10000 

(4 rows affected) 

1> exit 

[cool] >>? cat insert_ex.cool 

insert obj ins into Airline 

( AL# : "AA", hqadd : "Dallas", emp_num : 10000); 
[cool] >>? 

[cool] >>? coo insert_ex.cool 

(1 row affected) 

[cool] >>? 

[cool] >>? isql 

Password: 

1> select * from Airline 

2> go 
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DID AL# hqadd emp_num 

1 RD Bucharest 3000 

2 AL Rome 6000 

3 AF Paris 7000 

4 BA London 10000 

6 AA Dallas 10000 

(5 rows affected) 

1> exit 

[cool] >>? exit 

exit 

*** Script completed on Fri Jan 20 20:28:14 1995 

*** Script session length is 40 lines 

3E4CE9 100669680757AC4E9FBF297A847D7FAE3A0BCC723D6FADDF44CD45F3FF5 

D.4 Examples of COOL query executions 

*** Script initiated by Carmen Rata on Fri Jan 20 20:34:40 1995 

[cool] >>? 

[cool] >>? cat tl.cool 

List airline code and headquarters location for airlines where 

-_ most aircraft of type Boeing have all parts on board with 

status OK. 

select AL#, hqadd from Airline 

where for most Airline's (fabricant = "Boeing") Aircraft 

(for all Aircraft's Parts-on-Board (status = 

[cool] >>? 

[cool] >> coo tl.cool 

(4 rows affected) 

(4 rows affected) 

(7 rows affected) 

(3 rows affected) 

(1 row affected) 

(1 row affected) 
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(1 row affected) 

AL# hqadd 

AL Rome 

(1 row affected) 

[cool] >>? 

[cool] >>? cat t2.cool 

Give the PT# and quantity for each type of part in inventory that 

has (a) at least 2 shipments from supplier in Los Angeles , and 

(b) has status 'defect' on at least one aircraft on which it is 

used. 

select PT#, qty from PartType_Inventory 

where for at least 2 PartType_Inventory's Shipment-Data 

(for its Shipment-Data's Supplier (address = "Los Angeles")) 

and for at least I PartType_Inventory's Parts-on-Board 

(status = 

[cool] >>? 

[cool] >>? coo t2.cool 

(1 row affected) 

(1 row affected) 

(4 rows affected) 

(4 rows affected) 

(4 rows affected) 

(7 rows affected) 

(2 rows affected) 

(3 rows affected) 

(1 row affected) 

(1 row affected) 

(1 row affected) 

PT# qty 

P11 1000 

(1 row affected) 

[cool] >>? 

[cool] >>? cat t3.cool 
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What maintenance depot in Montreal has carried out at least two 

-- sevice projects in each of which all jobs involved part type 'P4'. 

select MD# from Maintenance-Depot 

where address = "Montreal" 

and for at least 2 Maintenance-Depot's Service's Service-Project 

(for all Service-Project's Job (PT# = "P4")); 

[cool] >>? 

[cool] >>? coo t3.cool 

(5 rows affected) 

(5 rows affected) 

(9 rows affected) 

(4 rows affected) 
(9 rows affected) 
(1 row affected) 
(1 row affected) 
(1 row affected) 
(1 row affected) 
(1 row affected) 
(1 row affected) 
(1 row affected) 
(1 row affected) 
MD# 

Ml 

(1 row affected) 

[cool] >>? exit 

exit 

*** Script completed on Fri Jan 20 20:37:11 1995 

*** Script session length is 88 lines 

144BFEB9F3F91924E222FC39FD7CCF27D37A8D48FBA35DCE30F9842A656309CE5 

The equivalent SQL queries for the three COOL test queries will give the following 

results when executed against the same database. 



APPENDIX D. TESTING THE AIRCRAFT MAINTENANCE DATABASE 251 

*** Script initiated by Carmen Rata on Tue Jan 24 00:06:24 1995 

[cool] >>? 

[cool] >>? cat ttl.sql 

select AL#, hqadd from Airline 

where (select count (*) 

from Aircraft 

where fabricant = "Boeing" 

and Aircraft.AL# = Airline.AL# 

and AC# not in (select AC# from Parts-on-Board 

where status <> "ok") 

) 
> 

(select count (*) 

from Aircraft 

where fabricant = "Boeing" 

and Aircraft.AL# = Airline.AL# 

and AC# in (select AC# from Parts-on-Board 

where status <> "ok") 

) 
[cool] >>? 

[cool] >>? isqi 

Password: 

1> :r ttl.sql 

36> go 

AL# hqadd 

AL Rome 

(1 row affected) 

1> 

2> exit 

[cool] >>? cat tt2.sql 

select PT#, qty from PartType_Inventory 

where (select count (*) 

from Shipment-Data 

where PartType_Inventory.PT# = Shipment_Data.PT# 

and S# in (select S# from Supplier 

where address = "Los Angeles") ) >=2 
and (select count (*) 

from Parts-on-Board 
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where PartType_Inventory. PT# = Parts_on_Board .PT# 
and status = ItdeII)>=l 

[cool] >>? 

[cool] >>? isqi 

Password: 

1> :r tt2.sql 

12> go 

PT# qty 

P11 1000 

(1 row affected) 

1> exit 

[cool] >>? 

[cool] >>? cat tt3.sql 

select MD# from Maintenance-Depot 

where address ="Montreal" 

and (select count (*) 

from Service, Service-Project 

where Service.MD# = Maintenance_Depot.MDt 

and Service.SV# = Service_Project.SV# 

and SVP# not in (select SVP# from Job 

where PT# <> "P4")) >=2 

[cool] >>? id'[Ksql 

Password: 

1> :r tt3.sql 

12> go 

MD# 

Ml 

(1 row affected) 

1> exit 

[cool] >> 2 exit 

exit 

*** Script completed on Tue Jan 24 00:08:28 1995 

*** Script session length is 99 lines 
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COB1D4D74D7Al2TC27B191CACCBO 13F4B6FAD27617354DC68ED0 1661AE4EB6F6B 

D.5 Example using the update statement 

In the following example, we update an attribute of an Airline instance. 

*** Script initiated by Carmen Rata on Thu Jan 19 14:18:04 1995 

[cool] >>? 

[cool] >>? cat update.cool 

update Airline where AL# = 11RO 11 set hqadd : "Arad"; 

[cool] >>? 

[cool] >>? coo update.cool 

DID AL# hqad.d. emp_num 

1 RD Bucharest 3000 

(1 row affected) 

(1 row affected) 

[cool] >>? 

[cool] >>? isql 

Password: 
1> select * from Airline 

2> go 

OlD AL# hqadd emp_num 

2 AL Rome 6000 

3 AF Paris 7000 

4 BA London 10000 

5 AA Dallas 10000 

1 RD Arad 3000 

(5 rows affected) 

1> exit 

[cool] >>? exit 

exit 
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*** Script completed on Thu Jan 19 14:19:27 1995 

*** Script session length is 33 lines 

36D4B3604D1922 173DA36DCC855CC4AD2CO55C2E525EBB8D7OF887D23FBA8BF3Bo6 

D.6 Example using the delete statement 

The "delete with condition" statement will be executed only for an instance without 

any descendents. In the following example we try to delete an instance of the class 

Shipment-Data. 

*** Script initiated by Carmen Rata on Thu Jan 19 15:37:34 1995 

[cool] >>? 

[cool] >>? isql 
Password: 
1> select * from Shipment-Data 
2> go 
DID SH# PT# S# price qty 

I SH1 P4 S2 45 300 

2 SH2 P4 S2 100 1000 

3 SH3 P11 S2 38 200 

4 SH7 P11 S2 38 2000 

5 SH4 P1 Si 20 1000 

6 SHS P6 Si 6800 2 

9 SH6 PlO S3 700 3 

(7 rows affected) 

1> exit 

[cool] >>? 

[cool] >>? cat deleteShip.cool 

delete from Shipment-Data where SH# = 

[cool] >>? 

[cool] >> coo deleteShip.cool 

(1 row affected) 

[cool] >>? 
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[cool] >>? isqi 

Password: 

1> select * from Shipment-Data 

2> go 

DID SH# PT# 5* price qty 

1 SH1 P4 S2 45 300 

2 5H2 P4 S2 100 1000 

3 SH3 P11 S2 38 200 

4 5H7 P11 S2 38 2000 

5 SH4 P1 51 20 1000 

6 SHS P6 Si 6800 2 

(6 rows affected) 

1> exit 

[cool] >>? exit 

exit 

*** Script completed on Thu Jan 19 15:38:53 1995 
*** Script session length is 46 lines 

DF8F75826F637AA5DA0B 11AF39E1FC52D3D1D7CC044890E5648FCC2224D5B271FBD3 

D.7 Typical error messages 

* An error message will be generated if a child instance is going to be inserted but 

the parent instance is not found in the database. 

*** Script initiated by Carmen Rata on Thu Jan 19 19:53:42 1995 

[cool] >>? 

[cool] >>? isqi 
Password: 
1> select * from Maintenance-Depot 

2> go 

OlD MD# address 

1 Mi Montreal 
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2 M2 Boston 

3 M3 Calgary 

4 M4 San Jose 

5 Ml San Diego 

(5 rows affected) 

1> exit 

[cool] >>? 

[cool] >>? cat insertTech.cool 

insert obj ins into Technician 

( T# : "tlO", MD# : "Mb" name : "Dreste", title : "musician"); 

[cool] >>? 

cool] >>? coo insertTech.cool 

Class Maintenance-Depot has no instance with primary key = "Mb" 

You try to insert a child without a parent H 

[cool] >>? 

[cool] >>? isql 

Password: 

1> select * from Maintenance-Depot 

2> go 

OlD MD# address 

1 Ml Montreal 

2 M2 Boston 

3 M3 Calgary 

4 M4 San Jose 

5 Ml San Diego 

(5 rows affected) 

1> 

2> exit 

[cool] >> exit 

exit 

*** Script completed on Thu Jan 19 19:55:27 1995 

*** Script session length is 46 lines 

214F1A588753DA79C95F7322C150 1B0D553EED47436C776423BA2D780D125F313 
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* An error message will be generated if instances with descendents are attempted 

to be deleted. 

*** Script initiated by Carmen Rata on Thu Jan 19 20:22:46 1995 

[cool] >>? isqi 

Password: 

1> select * from Airline 

2> go 

DID AL# hqadd emp_num 

2 AL Rome 6000 

3 AF Paris 7000 

4 BA London 10000 

5 AA Dallas 10000 

1 RD Arad 3000 

(5 rows affected) 

1> exit 

[cool] >>? 

[cool] >>? cat delete.cool 

delete from Airline where AL# = 

[cool] >>? 

[cool] >>? coo delete.cool 

"BA"; 

DELETE from Airline CAN NOT be performed!!! 

There are descendents out there 

[cool] >>? 

[cool] >>? isql 

Password: 

1> select * from Airline 

2> go 

DID AL# hqadd emp_num 

2 AL Rome 6000 

3 AF Paris 7000 

4 BA London 10000 

5 AA Dallas 10000 
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1 RD Arad 3000 

(5 rows affected) 

1> exit 

[cool] >>? exit 

exit 

*** Script completed on Thu Jan 19 20:23:59 1995 

*** Script session length is 45 lines 

2F0E74EF57DE9260F3D6877929C936FECCCE0F45DBAB1E7C9 1FSFD6AS281AA8BF3 

* An error message will be generated when a multiple level quantifier expression 

has not matched genitive relations. 

*** Script initiated by Carmen Rata on Thu Jan 19 20:36:01 1995 

[cool] >>? cat q23.cool 

-_ Get full details of an Airline with headquaters located in 

San Diego where most of its aircraft have (a) Boeing as a 

manufacturer and (b) at least 1 scheduled 'computer repair' 

service-project. 

select * from Airline 

where IIQlocation = "San Diego" 

and for most Airline's Aircraft ( fabricant = "Boeing" 
and for at least 1 Service's Service-Project 

( description = "computer repair")); 
[cool] >>? 

[cool] >>? coo q23.cool 
Unmatched nested quantified expression 

(0 rows affected) 

SV# 

(0 rows affected) 

[cool] >>? exit 
exit 
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*** Script completed on Thu Jan 19 20:37:09 1995 

*** Script session length is 23 lines 

226E26DA12FC94FB4611AE1AA4F9E7D6EF68BB76C89919AE9A6C49DC54913DS1F 

D.8 Command 'coo' 

The contents of the script file 'coo' that performs the translation and the execution 

of COOL expressions is as follows: 

*** Script initiated by Carmen Rata on Sat Jan 21 23:31:10 1995 

[cool] >>? 

[cool] >>? cat coo 

/bin/sh 

naiueecho $1 I sed 's/\. .*//" 
rm. -f ${naiue}.era ${naiue}.sql 
cool ${nanie}.cool 

if [ -s ${name}.era ]; then 
era ${name} era 

Ti 

isql -Urata -Pcarmen < ${name}.sql 
[cool] >>? exit 
exit 

*** Script completed on Sat Jan 21 23:31:27 1995 
*** Script session length is 20 lines 
D44D224F0359 6BB17S896D9BBF1TF8CAD 1E890651BF74AB642F28AC1A89DD2A8ED 



Appendix E 

OOPL Database Systems 

This approach has 00 programming languages as a starting point. 

E.1 Concepts 

The concepts that describe the OOPL approach to 00 data models are best formal-

ized in the Object-Oriented Database System Manifesto [ABD89] and in [Ban93]. 

These concepts are distinct from those of the other approaches: 

• The notion of encapsulation becomes mandatory. The original definition of 

encapsulation provided by the 00 paradigm is that procedures are public, 

whereas data is private. However, this concept is often too restrictive for 

OODBMSs [0at91], and there are as many different variations of encapsulation 

between the OODBMSs as there are between programming languages. The 

different kinds of encapsulation vary by the degree in which either data or 

methods may be in the public and private portions of an object class. 

• The concept of polymorphism is associated with overriding, overloading and 

late binding. The "is a" nature of inheritance is tightly coupled with the 

idea of polymorphism (the ability to take more than one form),In an OOPL, a 

polymorphic reference is one that can, over time, refer to instances of more than 

one class. In the OODBMS world there is a classic example of a polymorphic 

method: the function 'display', that receives an object as an input and performs 

260 



APPENDIX E. OOPL DATABASE SYSTEMS 261 

the display of the object on the screen [BM93]. A user might want to apply 

uniformly the function display to a variety of objects: text, graphic, map, value. 

The operation has a single name and can be defined in a more general class. 

However, the implementation of display is redefined for each of the subclasses. 

The redefinition is called overriding. The use of a single name for different 

programs is called overloading. Also, the system cannot bind the names of 

the class to the corresponding method at compile-time, but must do so during 

run-time. This translation is called late binding. 

• The computational completeness of the query language is mandatory. Rela-

tional query languages alone are not computationally complete and relational 

query language expressions need to be embedded in host programming lan-

guages in order to achieve computational completeness. 

• An ad hoc query facility must be provided but is not necessarily in the form 

of a query language, for example a graphical browser could be sufficient. 

The 00 data model maps directly onto the data types used by 00 programming 

languages, most commonly those of C++ [Str86] and Smalltalk [GR83]. 

At the time of writing, as at the time when the first manifesto was written 

[ABD89], the OOPL approach to database systems still has neither a common 

data model, nor a formal foundation. However, a wide variety of systems have been 

built. However, their commercial use remains minor compared with that of relational 

systems. 
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E.2 00 Database Systems that implement the approach 

The OODBMS that implement the OOPL approach are built as extensions of an 

object-oriented programming language. The implemented systems of "00 Database 

programming languages", as Cattell calls them in [Cat91], vary in their choice of the 

programming language base and the query language. We have the following main 

groups: 

1. OODBMS based on C++. The main examples are: ONTOS (Ontologic), 

0bj ectStore (Object Design) [LLOW91], Objectivity/DB (Objectivity), VER-

SANT (Versant). 

2. The 02 OODBMS. 02 is a system based on a derivative of C++, called CO2. 

The 02 OODBMS [BBB88, Cat91, Deu9l] was developed by the Altair re-

search group in France, in late 1986. It was implemented in C on top of an 

enhanced version of the Wisconsin Storage Manager (WISS), which serves as 

disc manager. The originality of 02 data model [LRV89] is the distinctive use 

of the concepts type and class. Value is an instance of a type and object is an 

instance of a class. An object is a pair (identifier, value). A value can be either 

an atom or basic type, such as, integer, float, string or boolean, or a value 

can be a structure, such as tuple, set, or list. Constructed types are inferred 

from basic types by means of recursive application of constructors tuple and 

set. Types are organized in an inheritance (or subtype) hierarchy enabling ob-

jects to share common structures and methods. A class is defined by its name, 

by the type of its instances and by the methods applicable to them. 02 has 

been integrated with many programming languages, including C++, Lisp, and 
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Basic. 

3. OODBMS based on a 00 version of Common Lisp. The main example 

is ORION built at MCC in Austin, Texas. It has a commercial version ITASCA 

[BCG87, KBC89, Cat9l]. ORION is intended to support 00 applications 

in CAD/CAM, Al and OIS domains. 

ORION has been implemented in COMMOM LISP in order to be closely 

coupled to Al/Knowledge Base System applications, usually implemented in 

COMMON LISP. The application interface to ORION is an 00 extension to 

LISP. 

4. OODBMS based on Smalitalk. The main example is GemStone from 

Servio Logic [BMO89, BOS9l]. It uses Smalltalk as a data model. OPAL 

is the 00 database language used for data definition and data manipulation 

and it is, as expected, an extension of Smailtalk. It allows path expressions, 

such as: anEmp.name.first. The query language is more like a limited calculus 

sublanguage in which queries are viewed as procedural OPAL code. GemStone 

is also integrated with C++. 

Other systems that provide object data management but do not fit the major 

classification described in this thesis are: 

• Database system generators. They are ODMS tailored to particular needs, 

typically with a custom data model and database language. The best known 

database system generators are EXODUS [CDG89, Cat91], which provides a 

versatile storage manager for developing application specific database systems, 
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and GENESIS [ZM89b, Cat9l], which focuses more on automatic generation 

of DBMS modules from high-level architecture descriptions supplied by the 

database implementor. 

• Object Managers. They are systems that basically provide a minimal per-

sistent object store with concurrency control, and generally without a query 

and programming language. Some examples of object-manager approaches 

are the systems: Mneme, from the University of Massachusetts [Mos9O], Ob-

Server, at Brown University [HZ87], and WiSS, from the University of Wiscon-

sin [CDKK85]. 

• Object Front-End on top of an existing RDBMS. PENGUIN [WBC9O], 

which is an 00 layer on top of a RDBMS through sophisticated multirelation 

views, is an example. In [PBRV9O] there is a description of a technique for 

constructing an object-oriented DBMS (00-DBMS) from a RDBMS, an OOPL 

and an object-oriented modeling technique; the programmer sees an object-

oriented language with certain predefined operations that allows objects to be 

retrieved from and stored in a relational database. 


