
THE UNIVERSITY OF CALGARY

A PROTOTYPE FRONT-END FOR A

DECLARATIVE OBJECT - RELATIONAL

DATABASE LANGUAGE EMPLOYING

NATURAL QUANTIFIERS AND GENITIVE

RELATIONS

BY

CARMEN-DANIELA RATA

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

CALGARY, ALBERTA

FEBRUARY, 1995

© CARMEN-DANIELA RATA 1995

THE UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of

Graduate Studies for acceptance, a thesis entitled: "A Prototype Front-end for a

Declarative Object - Relational Database Language employing Natural Quantifiers

and Genitive Relations" submitted by Carmen-Daniela Rata in partial fulfillment of

the requirements for the degree of Master of Science.

Dr.s Bradley, Supervisor
Chairman
Department of Computer Science

'

Dr. Graham Birtwistle
Deartie,t of Computer Science

D'r'. Anton W/ Colijn
Departmen,Vof Computer' cience

Dr.'J. A. Rodrigue Blais
Department of Geomaticsj ngi-
neering

Date /Y Fr-

Abstract

The Object Relational approach to OODBMS attempts to provide a sound math-

ematical foundation for the current trend in databases towards integrating object-

oriented programming language facilities with relational database management. Al-

most all database languages for the object-relational approach are extensions to

SQL, the standard relational declarative language. COOL is an SQL-like object-

relational declarative database language designed for an extended NF2 data model.

COOL introduces the concepts of the genitive relation and the natural quantifier.

It is relational because it is based on the Genitive Relational tuple calculus and

an Extended Relational Algebra (ERA). COOL is object-oriented primarily because

of the object-orientation of its data model, and secondarily because of the object-

orientation reflected in the language semantics and structure. This thesis describes

the first implementation of a language of this type. The focus of the thesis is on the

implementation of COOL as a prototype front end for a relational database system.

The thesis also covers the design of extensions to COOL; these extensions for COOL

are the data definition language and the inheritance mechanism. At the conceptual

level, the prototype front end implementation comprises a three-layer architecture

that maps COOL's object schema to SQL's relational schema. A two step transla-

tion of COOL declarative language expressions was chosen as the most promising

approach for portability and flexibility for future development. This successful imple-

mentation of a prototype front end for COOL demonstrates the practical feasibility

of the COOL approach to declarative languages.

111

Acknowledgements

I would like to thank my supervisor, Dr. James Bradley for his full involvement

and help over the course of this research. The long discussions we had were very

inspirational. Besides help with the thesis, he gave me good advice and helped

me adjust to Canadian life. I am also thankful for his editorial suggestions, which

substantially improved the quality of this dissertation.

I would like to express special thanks to Dr. Graham Birtwistle for his valuable

advice and support during the writing of my thesis.

I would also like to thank Dr. Anton Cohn and Dr. Jon B,okne for their contin-

uous support and concern.

I would like to express very special thanks to Robert Fridman for his unbounded

availability whenever I needed some help with Sybase and other system administra-

tion problems. Many thanks also to John Aycock for his help and to Darcy Grant

for his continuous support during my research.

I would also like to express many thanks to my colleague Fabian Gomes for his

help when needed, especially in solving apparently unsolvable Latex problems.

I would like to thank my good friend Ying Liu for her continuous support and

help.

I am deeply thankful to my parents for their intense support from far away, and

for their love and encouragement.

iv

Contents

Approval Page

Abstract

Acknowledgments iv

Contents iv

List of Tables ix

List of Figures ix

1 Introduction and Motivation 1

2 Evolution of data models a
2.1 The Hierarchical model 12
2.2 The Network model 13
2.3 The Relational model 14

2.3.1 Formalization of relations 15
2.3.2 Relational operators 18
2.3.3 Relational calculus 22

2.4 Semantic models 23
2.4.1 Semantic concepts 23
2.4.2 Mapping ER into the relational model 26
2.4.3 Type constructors 28

2.5 The Non [First] Normal Form models 29
2.6 Functional models 31
2.7 Object-Oriented Models 32
2.8 Comparative views of database models 35

2.8.1 Relational versus 00 models 35
2.8.2 Semantic versus 00 models 35

3 Object-Oriented Trends 37
3.1 The Evolutionary, Object-Relational Trend or Object Extensions of

the Relational Database Model 39
3.1.1 Concepts 39
3.1.2 Examples of models and implementations 44

V

4 Database Languages 52
4.1 Query Languages 53
4.2 Declarative database languages 53

4.2.1 A logic approach for OODBs Query Languages (QL) 55
4.2.2 Relational declarative query languages 56

4.3 Query languages in the 00 approach 57
4.3.1 Object-oriented extensions of relational languages 58

4.4 The future of SQL 59

5 COOL and Extended Relational Algebra 61
5.1 Overview of COOL 61
5.2 Data Model 65
5.3 COOL's Basic Concepts 66

5.3.1 Genitive relation 67
5.3.2 Natural Quantifiers 68
5.3.3 Genitive relation for 1:n, n:m, and composite 1:n relationships 69
5.3.4 Composite Objects 76
5.3.5 Functions 79

5.4 Extended Relational Algebra operations 80
5.4.1 Group-select operation 80
5.4.2 Possibility Join 83
5.4.3 Subgroup-select 85

6 Implementation 89
6.1 Overview and general issues 89
6.2 Comparison with other prototype implementations 90
6.3 Implementation Design of COOL's object model 91

6.3.1 Implementation levels 91
6.3.2 Mapping relationships into the relational model 99

6.4 Design and implementation of the Data Definition Language (DDL) 100
6.4.1 COOL's Object Catalog 104

6.5 Translation of COOL 107
6.5.1 First step. Translation of COOL expressions to ERA or/and

SQL 109
6.5.2 Reduction of COOL Queries to Extended Relational Algebra

(ERA) 109
6.5.3 Parent-to-Child Genitive Relations 110
6.5.4 Child-to-Parent Genitive Relations 118
6.5.5 The General Case - Hierarchical COOL expressions with n

levels of nested quantifier expressions 122

vi

6.5.6 The General Case - Network COOL expressions with n levels
of nested quantifier expressions 129

6.5.7 Recursive Queries 131
6.5.8 Translation of COOL DML expressions to SQL 132
6.5.9 Algorithms for translation of COOL queries to ERA 138
6.5.10 Second step: Translation of ERA operations to SQL 156
6.5.11 Implementation Restrictions and Conventions 169

7 System Verification and User View of the System 170
7.1 Introduction 170
7.2 System Verification 170

7.2.1 Methods of Verification 170
7.3 Sample Verification Queries and Results 171
7.4 User View of the System 183

7.4.1 Database Definition 185
7.4.2 Database Loading 185
7.4.3 Submission of COOL queries 188
7.4.4 Database update 188

8 Conclusions and Future Work 189
8.1 Future COOL design and implementation work 189

8.1.1 Second possible DDL 189
8.1.2 Inheritance in COOL 193
8.1.3 Single Inheritance and one level Superclass - Subclass Rela-

tionship 196
8.1.4 Single Inheritance and multiple level Superclass - Subclass re-

lationship 201
8.1.5 Composite or complex objects 202
8.1.6 Functions or Methods 204

8.2 Summary and Conclusions 205

Bibliography 209

A Implemented syntax of COOL 219

B The aircraft maintenance database schema 229

C Aircraft maintenance database definition 232
C.1 COOL definition of the example database 232
C.2 SQL definition of the example database 235

vii

D Testing the Aircraft Maintenance Database 238
D.1 Create and Load the database 238
D.2 Contents of test database 241
D.3 Example of use of the COOL insert command 247
D.4 Examples of COOL query executions 248
D.5 Example using the update statement 253
D.6 Example using the delete statement 254
D.7 Typical error messages 255
D.8 Command 'coo' 259

E OOPL Database Systems 260
E.1 Concepts 260
E.2 00 Database Systems that implement the approach 262

viii

List of Tables

2.1 Relational terminology

ix

17

List of Figures

2.1 Evolution of data models 10
2.2 Evolutionary oscillation of the prominent database models 11

5.1 Parks Database 1 62
5.2 Parks Database 2 70
5.3 Parks Database 3 78

6.1 The Entity Relationship diagram for the conceptual level of the air-
craft maintenance database, parti 94

6.2 The Entity Relationship diagram for the conceptual level of the air-
craft maintenance database, part2 95

6.3 The Object Relationship diagram for the object level of the aircraft
maintenance database 97

6.4 The relational diagram for the implementation level of the aircraft
maintenance database 98

6.5 A hierarchy of relations with N+1 levels and each node has n offsprings123

8.1 Composite Object 203

x

Chapter 1

Introduction and Motivation

To meet the requirements of new complex database applications, object-oriented

database management systems (OODBMS) are emerging as attractive candidates.

Database management systems based on the relational approach, which have dom-

inated for more than a decade, have shown serious weaknesses when used with sci-

entific and engineering applications. Complex objects, such as a document or an

engineering design, and very large data sets, such as multimedia data, including

video or sound, do not fit in the simple, tabular data structures of the relational

model. A new database technology was clearly needed. Its goal is to combine con-

ventional database features both with object-oriented concepts, and with the rich

data type systems present in the object-oriented programming languages (OOPL).

The new database technology, called object-oriented. (00), has two main ap-

proaches. One is an evolutionary approach, or extended relational approach, that is

based on the relational model extended to include 00 concepts. The other is a revo-

lutionary approach, or the OOPL approach, that extends OOPL with database func-

tions such as persistence, shareability, transaction management and limited query

facilities. It is well understood that from the application point of view, a declarative,

or non procedural, database language by itself is not sufficient, since certain parts

of an application are best coded in a procedural manner. The OOPL approach can

be characterized as an attempt to provide a programming language with database

query capabilities, that is, a unified programming and database language, in order

1

CHAPTER 1. INTRODUCTION AND MOTIVATION 2

to achieve efficiency in writing database applications. However, the OOPL approach

has some serious limitations:

• It does not have the strong theoretical foundation of the relational model.

• There is not a single 00 data model but rather a plethora of 00 models.

• It does not provide a powerful standard declarative query language, comparable

to SQL with relational databases, but rather a wide variety of query languages

with limited capabilities.

• It lacks many traditional database systems features available with relational

systems, such as automatic query optimization and processing, automatic con-

currency control, dynamic schema changes, so on.

By contrast, the extended relational approach is an attempt to provide a sound

mathematical foundation for an object-oriented approach to databases. It makes

it possible for object-oriented features to be available to users of databases and at

the same time preserves the major contributions of the relational model, such as

powerful non procedural, or declarative, query languages.

Declarative languages in relational databases are based on first-order logic, due

to the fact that the language needs to manipulate only individual elements of a

domain. In an object oriented database we deal with non atomic domains, where

an element can be a set, a relation or a list. As a result, a declarative language

for an object-oriented database needs to be based on higher order logic. Several

attempts have been made in this research area, but the problem of considering higher

order logic in developing an 00 declarative language is still open. However, in the

CHAPTER 1. INTRODUCTION AND MOTIVATION 3

practical world of applied declarative languages, there was a strong trend towards

extended versions of the conventional relational declarative query languages, such as

SQL and QUEL, as query languages for OODBMS. Declarative languages based on

the extended relational approach are sometimes called Object-Relational languages

[Sto]).

COOL (A Composite Object-Oriented Language) is an example of this type of

language [Bra92a], and it was designed as an extension of SQL. COOL is innova-

tive in the field of declarative languages by employing new concepts like genitive

relations, and natural quantifiers [Bra93b]. Although COOL has a SQL-like syntax,

its expressiveness is totally different. If in SQL we need to express queries in an

entire-relation manner, in COOL we use an object-oriented manner. For example,

with the relational approach, if one wants to know the names of the passengers of all

Delta Airline flights from Athens to Rome, one uses constructs that deal with all of

the Flight tuples (flightno, airline-code, aircraft-type, capacity) and all of the Pas-

senger tuples (flightno, passenger-record-no, passenger-name, citizenship). Thus,

one must think in terms of entire relations, that is, all of the tuples within all of the

relations involved in the retrieval.

Suppose now with an object approach that a database involves flight entities (ob-

ject class Flight {object-ID: integer, flightno: integer, airline-code: string, aircraft-

type: string, capacity: integer, Passenger-list: set of passengers}) and passenger

entities (object class Passenger {object-ID: integer, flightno: integer, passenger-

record-no: string, passenger-name: string, citizenship: string}). The data for a

specific flight forms a composite object instance, whose subobject instances form a

hierarchical structure. Users seem to prefer to work with composite object instances

CHAPTER 1. INTRODUCTION AND MOTIVATION 4

when dealing with such a data base. As an example: Retrieve all flights that have

transported more than 100 passengers where most (or majority of) passengers have

Canadian citizenship. With SQL we would have to code something like:

select airline-code, flightno from Flight

where capacity > 100

and (select count (*) from Passenger

where citizenship = Canadian

and Passenger.flightno = Flight.flightno)

>

(select count (*) from Passenger

where citizenship <> Canadian

and Passenger.flightno = Flight.flightno)

The natural quantifier here for most is involved in this retrieval and must be im-

plemented in SQL with the awkward count() construction above. When we think

in terms of objects, as we usually do, we would have to code something like:

Retrieve each flight,

with

(a) capacity > 100, and

(b) passengers

most of whom have Canadian citizenship.

The above query can now be expressed in COOL as:

select airline-code, flightno from Flight

CHAPTER 1. INTRODUCTION AND MOTIVATION 5

where capacity > 100

and for most Flight.Passenger-list*Passenger

(citizenship = Canadian)

or, using a natural language-like alias for the genitive relation Flight. Pass enger-

list *Passenger as Flight's Passengers:

select airline-code, flightno from Flight

where (capacity > 100

and for most Flight's Passengers (citizenship = Canadian))

No language of this type has ever been implemented before. My contribution and

the focus of my research is the implementation of COOL as a prototype front end

for a relational database system, as well as the design of extensions to COOL.

The implementation of COOL was done on top of Sybase DBMS. The extensions I

designed for COOL are the data definition language and the inheritance mechanism.

As an approach to COOL's translation, I have chosen to translate COOL expressions

in two steps: (1) reduction of COOL expressions to Extended Relational Algebra

(ERA) routines, and (2) translation of ERA routines into a set of SQL expressions.

The translation of COOL into ERA routines offers flexibility for future development

of a full OODBMS based on COOL, and the translation of ERA routines into SQL

expressions offers portability of the COOL prototype, since it can be executed on

any relational system that supports SQL. The translators were built using Lex and

Yacc Unix compiler tools, adding further to the flexibility of the system, by making

it easy to incorporate changes as COOL evolves in time.

The execution of COOL statements was validated by comparing the output of

CHAPTER 1. INTRODUCTION AND MOTIVATION 6

COOL queries to the output of SQL queries executed on the back end relational

engine. Not only did the comparison help to validate the COOL query processor,

but it also demonstrated the conciseness of COOL queries compared with equivalent

SQL expressions. Performance issues are not addressed in this work.

The implementation of COOL employs three levels of abstraction. Beginning

with the highest, we have:

1. Conceptual level. This level uses a structurally object-oriented or seman-

tic database model, such as the Entity Relationship model extended by ISA

relationships and complex attributes.

2. Extended relational or object-oriented level. This level uses an extension

of a non-first-normal-form relational model and is an equivalent representation

of the E/R concepts of the previous level.

3. Conventional relational or implementation level. This level is used as a

basis for the prototype implementation and is an equivalent representation of

the previous two levels using the conventional relational model.

In effect, COOL's implementation approach can be regarded as a translation of

COOL's object schema to the SQL's relational schema.

COOL can support inheritance and it has been demonstrated how this mecha-

nism can be built for COOL. However, inheritance has not been implemented yet.

Complex objects, methods and abstract data types for COOL are not yet fully in-

vestigated and their implementation needs further research.

I was strongly motivated to implement a language like COOL primarily because

the language is easy to use (compared with SQL), easily readable, and is along the

CHAPTER. 1. INTRODUCTION AND MOTIVATION 7

lines of a natural language. If one wants an oral communication facility for databases,

an inevitable future development, COOL provides a natural way to do that.

The remaining chapters of the thesis are organized as follows. In Chapter 2, I

discuss an evolution of data models in the database field, emphasizing the oscilla-

tion back and forth between instance-based and value-based models. In Chapter 3,

the two main approaches to object-oriented databases are presented, together with

the most important implementations of each kind. In Chapter 4 an overview of

database languages is given. In Chapter 5 an overview of the COOL language as an

object-relational declarative language that employs natural-like language features,

is presented. In Chapter 6, a detailed presentation of the implementation design is

given. In Chapter 7 we give a verification set of queries to proof the correctness of

the implementation and we explain how the system can be used. Finally Chapter 10

contains concluding remarks and discussion of ongoing work.

Chapter 2

Evolution of data models

The evolution of database models can be seen as a continuous effort to offload te-

dious and repetitive functions from the application programs to the database system.

This has made the task of the application programmers considerably easier but has

generated a lot of research to increase the performance of database systems. The

evolution of database models and systems can be compared with the evolution of

programming languages from machine languages to assembly languages, and then

to high level languages. The high level languages have certainly alleviated the task

of implementing increasingly complex applications, but have required increasingly

sophisticated compilers [Kim9O].

A first comprehensive definition of a 'data model' was given by Codd, the father of

the relational model [Cod8l]. The concept of a data model thus essentially appeared

together with the mathematical formalism of the relational model. As given by Date

[Dat9O], Codd's definition of a data model is a combination of three components:

1. A collection of data object types (essentially the entities that form the database

structures).

2. A collection of general integrity rules, which constrain the set of instances of

those object types that can legally appear in a database.

3. A collection of operators, which can be applied to such object instances for

retrieval and other purposes.

8

CHAPTER 2. EVOLUTION OF DATA MODELS 9

At a higher level of abstraction, we can distinguish hierarchical database struc-

tures and network database structures. At this level, database systems can be cate-

gorized according to the data structures permitted. The network data structure can

be handled by both CODASYL (presented later) and relational models. The hierar-

chical structure is a special case of a network, so CODASYL and relational models

can both handle it. The hierarchical model essentially permits only hierarchical data

structures.

According to the definitions in [Bra83] the hierarchical structure is the structure

in which every entity (a record or an instance) of an entity set (or type) has at

most one parent entity and for a parent entity there can be many child entities (a

one-to-many relationship). The network structure is the structure in which at least

one child entity has more than one parent entity (a many-to-many relationship).

These two database structure concepts have been central to the evolution of the

database models and systems for the past three decades.

Over this period of time, the data model evolution can be viewed in terms of

(increasing) power of operations or user commands versus the semantic complexity

inherent in the model, as shown in figure 2.1.

Alternatively, data model evolution can be viewed as an oscillation between the

hierarchical and network data structure orientation of the prominent database mod-

els, as shown in figure 2.2.

Ullman offers an object-identity point of view when discussing the development

of database systems [Ull88]. He calls object-oriented, those systems that support

object-identity and value-oriented or record-oriented those systems that do not.

In this sense the hierarchical and network-model systems are object oriented. All

CHAPTER 2. EVOLUTION OF DATA MODELS 10

Power of
Operations At

0
Files

Hierarchical
Model

Relational
Model

Object Relational
Model

Semantic
Network Model
Model

Semantic Complexity

Figure 2.1: Evolution of data models

systems based on the relational model are value oriented, as are systems based on

logic. However, one can simulate object-identity in a value-oriented system by use

of unique codes for the tuples of a relation.

According to [Dat9O], the relational model is the single most important devel-

opment in the entire history of the database field. Thus, the history of the database

field is divided into prerelational and postrelational eras. The most notable prerela-

tional database systems fall into three broad categories (after [Dat9O]):

1. Inverted list, such as the commercially available product CA-DATACOM/DB,

from Computer Associates International Inc., which handles both network and

hierarchical database structures,

2. Hierarchical, such as IMS(IBM) and System 2000(MRI), which handle only

CHAPTER 2. EVOLUTION OF DATA MODELS 11

Time

Nested Relations
(NF2)
Models

Hierarchical
Model

A

1990

1980

1970

1960

Extended Nested Relational
(Object—Oriented)

Models

Semantic
Model

Relational
Model

Network
Model

Hierarchical Network
data structure data structure

Figure 2.2: Evolutionary oscillation of the prominent database models

hierarchical database structure,

3. CODASYL, such as CA-IDMS/DB, IDS, and TOTAL, which can handle net-

work and hierarchical database structures.

Prerelational systems, often called 'record at a time' systems, accomplished the

sharing of an integrated database among many users within an application environ-

ment. However, they lack data independence (explained later) and were basically

programming systems that required a tedious programming or navigational access

to the database.

The data models for the prerelational database systems implementations, hierar-

CHAPTER. 2. EVOLUTION OF DATA MODELS 12

chical and network, were defined post facto, by a process of abstraction.

The relational model launched in 1970 by Codd arrived with many improvements

and became the most implemented and most successful model of all time. Besides

providing data independence, the relational model introduced for the first time the

notion of declarative language into the database field.

Postrelational models started to appear in the late 1970s. They brought with

them richer data types and operations necessary to meet the requirements of appli-

cations that were more demanding than the business data-processing applications for

which the previous models had been developed. Some of the postrelational models

were based on extensions of the relational model; others represented attempts at

doing something completely different [Dat90].

The most notable postrelational data models are: the semantic model, the non-

(first)-normal-form (NFNF or N1NF or NF2 or N2F) model and the object-oriented

model. Each of the three post relational models are rather a class of models than a

single model.

The major data models will be briefly described in the following pages.

2.1 The Hierarchical model

The hierarchical data model essentially handles only hierarchical database structures'

The most widely used hierarchical database system is IBM's IMS. The design of the

basic system dates from the late 1960s and is still in use today, it's replacement being

very expensive. In IMS we can identify a conceptual and a storage schema that are

'They can handle some limited network data structures in a complex ad hoc fashion.

CHAPTER 2. EVOLUTION OF DATA MODELS 13

specified together in a DBD (Data Base Description) [Bra87]. The conceptual schema

defines a hierarchy type. A hierarchy type consists of a number (sometime very

large) of hierarchy occurrences or data trees. A data tree represents a database

record and is a collection of file records or segments of different types. The segment

from the top of a tree is called the root segment. The number of trees in a hierarchy

type is equal to the number of root segments. We can easily identify a hierarchy

with a composite object class and a tree with a composite object instance. If we add

OlDs and the navigational access to data, we have an 00 model.

IMS's most important disadvantages are:

• Duplication of segments in different database records and inconsistency because

of that, and

. It does not offer data independence.

2.2 The Network model

If the hierarchical model is basically the abstraction of the IMS system of IBM, the

network model is the abstraction of the CODASYL system. Heavily influenced by

the COBOL programming language, CODASYL was developed by the Data Base

Task Group (DBTG) [Bra83]. Two notions were introduced in the network model:

records and sets. Records of the same type are grouped into distinct conceptual files

(e.g.: collection of warehouses, collection of warehouse employees, so on). Also an

additional grouping of records is done through the owner-coupled sets. An owner-

coupled set groups records embodying a 1:11 relationship. It contains a collection of

owner-coupled set occurrence, that each contains a parent record and a collection

CHAPTER 2. EVOLUTION OF DATA MODELS 14

of child records (e.g.: a warehouse with the employees who work in it). At the

storage level, the parent file record contains a pointer to the first child file record.

In the first child record there is a pointer to the next child file record and so on.

In CODASYL terminology a parent record is called an owner record and a child

record a member record.

The network model is object-oriented to the extent that it supports object-

identity. Records of the network model have an invisible key, which is in essence

the disk address of the record (currency indicator). More specifically, there is a

currency indicator for each file in the data base, for each owner-coupled set, and a

currency indicator for the whole database (current of run-unit - CRIJ indicator).

The currency indicators support navigation through the data records when a retrieval

is made.

In ljllman's opinion [Ull88] the CODASYL DBTG language and IMS's DL/1

language are object oriented database languages.

2.3 The Relational model

The fundamentals of the relational model were presented by Dr. E.F. Codd, a

mathematician by training, in a classic paper [Cod7O]. The mathematical formalism

underlying the relational model is based on set-theory.

The first major relational products began to appear in the early 1980s. Since

then the relational database systems (RDBMS) have dominated the marketplace

with almost 200 commercial products [Dat90] running on just about every kind of

hardware and software platform imaginable. Examples of such products include DB2,

CHAPTER 2. EVOLUTION OF DATA MODELS 15

SQL/DS, the 0S2/2 Extended Edition Database Manager, and the OS/400 Database

Manager(from IBM), Rdb/VMS from DEC, Oracle from Oracle Corporation, Ingres

from Ingres Corporation, and many others. The declarative relational database

language SQL became an industry standard. The success of RDBMS was due to the

simplicity of the relational data model. The SQL query language that came with it

made a significant productivity enhancement in application development. Relational

systems handle both network and hierarchical database structures.

The main concepts of the relational model will be presented in the following

sections.

2.3.1 Formalization of relations

There are two definitions associated with the concept of relation: (1) the set-of-lists

and (3) the set-of-mappings.

The set-of-lists definition of a relation is given by Oilman in [1J1188], as follows:

A relation is a subset of the cartesian product of a list of domains. Formally, a

domain is a set of values. For example, the set of integers is a domain and so are

the set of character strings, the real numbers, and the set {O,l}.

The cartesian product (or just product) of domains D1, D2,.. . , Dk, written

D1 x D2 x ... x Dk, is the set of all k-tuples (vi, v2,.. . , VA;) such that v1 is in D1, v2

is in D2, and so on. For example, if we have k - 2, D1 = {O, l}, and D2 = {a, b, c}

then D1 x D2 is {(O,a),(O,b),(O,c),(1,a),(1,b),(1,c)}.

A subset of the product D1 x D2, such as: {(O, a), (0, c), (1, b)}, is a relation. The

empty set is another example of a relation. A member of a relation is called tuple.

Each relation that is a subset of some product D1 x D2 x . . . Dk of k domains is

CHAPTER 2. EVOLUTION OF DATA MODELS 16

said to have arity k; another term for arity is degree. A tuple (vi, v2,. . . , vie) has k

components and is sometimes called a k-tuple.

A finite set of attribute names {A1, A2,. . . , A} for a relation, defines a relation

scheme. If we name a relation 'r' and a relation scheme R with the attributes

A,,— , . , A, we can write R - r(Ai, A2,. . . ,

The set-of-mappings definition of a relation is given in [Mai83], as follows.

A relation scheme R is a finite set of attribute names {A1, A2, . . . , A,}. Cor-

responding to each attribute name Ai is a set D, 1 ≤ i ≤ n, called the domain

of A. The domains are arbitrary, non-empty sets, finite or countably infinite. Let

D = D1 U D2 U U D. A relation r on relation scheme R is a finite set of mappings

{t1, t2,. . . , t,} from R to D with the restriction that for each mapping t E r, t(A)

must be in D, 1 < i < n. The mappings are called tuples. Thus it is possible to

view tuples as mappings from the attributes names of a relation scheme to values in

the domains of the attributes.

In the traditional view of a tuple as a list of values (ordered set), the tuples

(Calgary, Underhill, 3615) and (Underhill, 3615, Calgary) would not be the same.

In the set-of-mappings view, we attach attributes names to columns of a rela-

tion, and the order of the columns becomes unimportant. Ordering adds nothing to

the information content of a relation.

Since the relational database system allows the specification of columns of a rela-

tion in any order, the set-of-mappings definition of a relation is more appropriate.

However [U1188] there are situations such as when dealing with relational algebra,

where we need to use the set-of-lists definition of a relation (e.g.: theta join needs

the set-of-lists definition, semi join and natural join needs the set-of-mappings

CHAPTER 2. EVOLUTION OF DATA MODELS 17

viewpoint). There is a trivial way of converting between the 2 viewpoints. Given a

relation in the set-of-lists form, we can give attribute names to its columns, and it can

be viewed as a set-of-mappings. Conversely, given a relation in the set-of-mappings

form, we can fix an order for the attributes and convert it into a set of lists.

A relation can be viewed also as a table, where each row is a tuple and each

column (or component) is called an attribute. The most important terms used in

the relational model environment are summarized in table 2.1 [Dat9O].

Table 2.1: Relational terminoloy

Formal relational term Informal equivalents

relation table
tuple row or record
cardinality number of rows
attribute column or field
degree number of columns
primary key unique identifier
domain pool of legal values

The relational model is based on the mathematical set-theory, as we have seen,

but certain conditions are imposed on the concept of relation, as follows:

• In a relation duplicate tuples are not allowed and there is no order defined on

the tuple.

• Attributes have no order, are referenced by names and must be unique within

a relation.

• Attributes values are atomic.

CHAPTER 2. EVOLUTION OF DATA MODELS 18

These restrictions helped in defining a simple model for which a simple query

language could be developed.

The best improvements brought by the relational model in the database world

were:

• A declarative query language for building ad-hoc retrievals from the database,

and

• The data independence, which is the ability to change the database schema

(logical data independence) or the internal organization of data, such as indexes

or record layout (physical data independence), without having to change the

application programs.

2.3.2 Relational operators

There are two different kinds of notations for expressing operations on relations:

1. Algebraic notation, called relational algebra, where queries are expressed in

a procedural manner by applying specialized operations to relations, and

2. Logical notation, called relational calculus, where queries are expressed in

a declarative manner by writing logical formulas that the tuples in the answer

must satisfy.

The relational algebra consists of a collection of eight operations that can be

grouped in two categories [Dat9O]: (1) the basic operations on sets that apply to

relations: union, intersection, difference, and cartesian product, and (2) the special

relational operations: select, project, join, and division.

CHAPTER. 2. EVOLUTION OF DATA MODELS 19

The basic operations are:

1. Union. The union of relations R and S, denoted R U 5, is the set of tuples

that are in It or S or both. We may only apply the union operator to relations

of the same arity.

2. Intersection. The intersection of relations It and 5, denoted by Rfl S, is the

set of tuples that are in both R and S. We may only apply the intersection

operator to relations of the same arity.

3. Set difference. The difference of relations R and 5, denoted by It - 5, is the

set of tuples in It but not in S. We again require that R and S have the same

arity.

4. Cartesian Product. With the cartesian product operation we have a special

situation. In mathematics the cartesian product of two sets is the set of all

ordered pairs of elements, such that the first element in each pair belongs to

the first set and the second element belongs to the second set. The relational

algebra version of the cartesian product of two product-compatible relations

(they have no attributes in common) R and S of arity k1 and k2, respectively,

is the set of all possible (k1 + k2)-tuples whose first k1 components form a tuple

in It and whose last k2 components form a tuple in S.

The special relational operations are:

5. Selection. Select is a unary operator on relations. When applied to a relation

It, it results in another relation that is a subset of tuples of R with a certain

CHAPTER 2. EVOLUTION OF DATA MODELS 20

value on a specified attribute. For example, we wish to construct a new rela-

tion NEWFLIGHT, consisting of tuples from relation FLIGHT for which the

attribute Dest value is "San Jose". The algebraic statement can be written:

NEWFLIGHT = select (FLIGHT (Dest = "San Jose")). The relation FLIGHT

is the operand, select is the operator, and the relation NEWFLIGHT is the

result. In the parentheses following the operand, we may have any logical ex-

pression involving operands that are constants or attribute names, relational

operators <, , =, >, ≥, , and logical operators fl (AND), U (OR), and

(NOT).

6. Projection. Project is also a unary operator. Instead of choosing a subset

of the rows as select does, project chooses a subset of the columns. The du-

plicate tuples are also removed from the result. E.g.: Project the Destination

and arrival-time from relation FLIGHT. Result = project (FLIGHT (Dest,

Arrives))

7. Join. Join, also known as natural join is a binary operator for combining

two relations on some or all of their common attributes (or identically named

columns). The natural join term is mainly used to distinguish the definition

above from other join-like operations, such as: equi-join, theta-join, etc. The

common attributes are also called join attributes. The result of a natural join

operation between two relations r and s is a relation in which every tuple is a

combination of a tuple from r and a tuple from s with equal values for their

common attributes (the same with saying the intersection of their schemas).

The formal definition is given by Maier in [Mai83J: "The natural join of re-

CHAPTER 2. EVOLUTION OF DATA MODELS 21

lations r on scheme R or r(R), and the relation s on scheme S or s(S), (the

'set-of-mappings' is needed here), with R U S=T, is the relation q(T) of all tu-

ples t over T such that there are tuples 1,. from r and t3 from s with tr = t(R)

and t3 = t(S). Since RflS is a subset of both Ift and S as a consequence of the

definition t7(Rfl S) = t8(Rfl Sr. Thus every tuple in q is a combination of a

tuple from r and a tuple from s with equal (Rfl 5)-values.

Other join-like operators, are:

(a) Equi-Join. Equi-join extends the join operator to handle comparisons be-

tween columns with different attributes names but equal domains. Com-

parisons, as in natural join are based on equality.

The main difference between natural join and equijoin is that natural join

does not repeat connected columns.

(b) Theta-Join. Theta-join extends join to handle combinations of two re-

lations on the basis of comparisons other than equality, as well (E.g.: <,

≤, >, ≥). Thus, equi-join is a special case of theta-join.

(c) Semi-Join. The semi-join of relation R by relation S, is the projection

onto the attributes of Ft of the natural join of R and S.

8. Division. The divide operator has a rather complex definition, but it is quite

useful in some situation. The definition is as follows. Suppose a dividend rela-

tion D with the attributes a and b, a divisor relation R with the attribute b, and

a quotient relation Q with the attribute a. Then Q = D divide Ft such that for

each a-value, ai in Q, there exists in Ft a set of tuples (ad, b1), (ad, b2),.. . , (ad, b)

CHAPTER. 2. EVOLUTION OF DATA MODELS 22

such that the set b1, b2,. . . , b, equals R. We have not made use of this operation

in this thesis.

Authors like Warden have proposed new operators of an algebraic nature to be added

to the relational algebra set. Some of these are extend, summarize and generalized

divide [Dat9O]. This new operators mainly increase the computational capabilities

of the basic algebra.

Codd also extends algebra [Cod79] to deal with nulls, and with 'outer' versions

of union, intersection, difference, theta-join, and natural join. The 'outer' version of

the natural join is called outer join and proves to be a useful operation. Outer join

has been used in the implementation of COOL, the subject of the present work. As

an extension of the natural join, the outer join brings into the relation resulting from

the join, the tuples of one relation that have no counterpart in the other relation.

The tuples, that otherwise were ignored, appear with nulls in the matching attribute

positions. Some SQL systems (e.g.: Sybase SQL, standard SQL2) have implemented

outer join.

2.3.3 Relational calculus

The algebra provides a collection of explicit operations - join, union, projection,

etc. - that can actually be used to tell the system how to build desired relation

from the given relations in the database. On the other hand 'the calculus provides a

notation for defining the desired relation in terms of the given relations. Thus, if the

calculus simply states what the problem is, the algebra gives a procedure for solving

the problem.

Relational calculus is founded on a branch of mathematical logic called predicate

CHAPTER 2. EVOLUTION OF DATA MODELS 23

calculus and is the source of declarative languages.

A fundamental feature of the calculus is the notion of the tuple variable. A

tuple variable is a variable that ranges over some relation i.e., a variable whose only

permitted values are tuples of that relation. Because of its reliance on tuple variables

(and to distinguish it from the domain calculus), the original relational calculus was

known as the tuple calculus.

2.4 Semantic models

Semantic modeling research appeared in late 70s and early 80s with the desire of cap-

turing more of the meaning of data. Semantic modeling is used in conceptual schema

design, and thus prior to a translation into one of the traditional models for ultimate

implementation. Thus, semantic models have a higher level of abstraction compared

with the relational model for example. Some of the best known semantic models are:

Chen's Entity Relationship Model (ER) [Che76], the Functional Data Model (FDM)

[Shi81] and the Semantic Data Model (SMD) [HM81]. A comprehensive survey of

the semantic models can be found in [HR87].

2.4.1 Semantic concepts

I will present the basic concepts of semantic modeling using one of the most promi-

nent semantic models, the Entity-Relationship (ER) model. The mapping of an ER

model to any other model can be easily done, and one reason for this is the way in

which the semantic concepts describe the real world. Thus, an ER schema consists

of entity types and relationships interconnecting these types, along with attributes

CHAPTER 2. EVOLUTION OF DATA MODELS 24

of both the entity types and the relationships.

The basic semantic concepts are:

1. Entity. The world is made up of entities but is quite difficult to define with

precision what an entity is. A common definition for the entity is the one used

in database circles [Dat9O], that an entity is any distinguishable object that

is to be represented in a database (E.g.: Person, automobile, Purchase order,

Ship, Part, Department, Document).

The notion of distinguishability of entities is close to object identity and the ER

model, and semantic models in general, are regarded as object-oriented models

[Ull88]. Essentially, semantic models encapsulate the structural aspects of ob-

jects, whereas object-oriented models encapsulate the structural and behavioral

aspects of objects [Kin89].

2. An entity set (or type) is a group consisting of all similar entities (e.g.: all

ships, all department)

3. Relationship. Chen defines a relationship as 'an association among entities'.

A formal definition is given by Ullman [U1l88]: Relationship/ definition 1

- "A relationship among entity sets is an ordered list of entity sets. If there

is a relationship R among entity sets E1, E2,. . . , Ek, then the current instance

of R is a set of k-tuples. Such a set is called a relationship set. Each K-tuple

(el, 62,. . . , 6k) in relationship set R implies that entities 6 1, €2,. . . , 6 k, where e

is in set E1, 62 is in set E2, and so on, stand in relationship R to each other as

a group".

CHAPTER 2. EVOLUTION OF DATA MODELS 25

K or the number of entity sets participating in a relationship is called the

degree of the relationship. So, we can have a binary relationship (k=2), or a

ternary relationship (k=3). The most common case in practice is k=2.

Relationships are classified according to how many entities from one entity set

can be associated with how many entities from another entity set, into: One

to one, one to many and many to many.

4. Attributes and keys: Entities sets and relationships have properties, called

attributes. All entities in an entity set have the same attributes or proper-

ties. Each attribute takes values from a domain of values (e.g.: the domain

of real numbers or character strings). Properties can be: simple or composite

(the composite property 'position' might be made up of the simple properties

'latitude' and 'longitude'); key (an attribute or set of attributes whose values

uniquely identify each entity in an entity set); single or multivalued (associates

a set of entities to one entity, for example: the set of languages a person can

speak); or base or derived (the value can be derived from other attributes).

5. ISA relationship or Supertype/Subtype entities. The concept of ISA

relationship was not included in the original ER model [Che76] but was added

later. Any given entity can be of several types simultaneously. For example

some Aircraft are Helicopters and all Helicopters are Aircraft. Aircraft is a

supertype and Helicopter is a subtype or there is a ISA relationship between

Aircraft and Helicopter. We can also say that a Helicopter is a special kind

of Aircraft and can inherit the attributes of Aircraft, but also has specific

attributes such as number of rotors that do not make sense for other types of

CHAPTER 2. EVOLUTION OF DATA MODELS 26

Aircraft, such as fixed wing aircraft. We might find also that some Helicopters

are Cargo and other are Passenger. So an entity subtype is an entity type and

can have subtypes of its own, and the process can continue, generating a type

hierarchy.

Type hierarchies are known also, as: generalization hierarchies, special-

ization hierarchies or ISA hierarchies.

2.4.2 Mapping ER into the relational model

If we map ER model into a relational model, an entity set maps into a relation, an

entity maps into a tuple, and the key maps into the primary key of the base relation.

In the relational context relationships can be also mapped to relations. However,

according to the relationship/ definition 1 only the many to many relationship

qualifies for a true relationship, since it demands representation by means of a sepa-

rate table. One to one and one to many relationships can always be represented by

means of a foreign key in one of the participant tables.

A comprehensive presentation of different kinds of relationships and their repre-

sentations in different data models is given in [Cat9l].

Basically, the relational model and the object-oriented one are using the same

techniques to represent relationships, that is, by means of attributes. The attributes

could be simple (atomic values), or complex (reference, collections, or derived (func-

tions)). The differences are: 00 models use OlDs instead of using foreign key and

primary key, and the relationships are more meaningful to the user (through the

attributes used by the 00 model) and cannot be corrupted so easily. We say that

relationships cannot be easily corrupted when they are not associated with user-

CHAPTER 2. EVOLUTION OF DATA MODELS 27

visible values, such as the foreign keys; all the values in the referenced object may

be changed and the reference attribute still points to the same object. More details

about relationships in the 00 models will be given in Chapter 3.

Bradley [Bra92d] gives a thorough classification of relationships in relational

databases, and the following definition of a relationship: Relationship/ defini-

tion 2, for tables - "A relationship R(A,B) between an arbitrary pair of relations

(A,B) is defined by a relation r (a,b) containing the attributes a and b, the primary

keys of A and B."

Relation r is obtained by a sequence of relational algebraic joins A*J*K* . . .

followed by a projection on fields a and b, where J, K, ... are also relations. Since

there may be many possible sequences of joins between A and B, it follows that many

relationships between A and B may exist, each identified by a unique r(a,b).

In a relational database there can exist the following types of relationships: one

to many (l:n), many to many (n:m), one-to-one (1:1), recursive 1:n, recursive n:m,

and co-relationships.

A n:m relationship between two relations A and B can always be decomposed into

a 1:n relationship between A and a third relation C, and a l:n relationship between

B and C.

The l:n, n:m and the recursive relationships (either l:n or n:m) can also be

primitive (simple) or composite.

A relationship R(A,B) between two relations A and B is primitive if it is simply

based on a single join between A and B, that is

R(A,B) = project ((A join B)(a, b))

CHAPTER 2. EVOLUTION OF DATA MODELS 28

(see relationship/ definition 2). A relationship between A and B is composite

where there is no common join attribute in A and B, and the relationship is due to

a series of joins involving a chain of primitive relationships, that is, involving other

relations J, K, . . . so on.

A relationship between A and B is called recursive if and only if A=B [Bra87].

Common recursive relationships are either simple one-to-many or many-to-many.

Examples of recursive one-to-many are: (a) a relation whose tuples describe all the

employees in a hierarchical business organization, where each employee except the

president, reports to one other employee, and (b) a relation whose tuples describe

corporations, where a corporation can be an entirely owned subsidiary of another.

Common examples of recursive many-to-many relationship are: (a) the bill of mate-

rials where relations describe components and subcomponents for containment based

objects, and (b)a relationship resulting from a relation whose tuples describe corpo-

rations, where any corporation can own part or all of the shares of other corporations.

2.4.3 Type constructors

An important form of abstraction in a semantic model is the type constructor. Type

constructors are used for abstracting or building complex objects out of less ab-

stract atomic types. There are two prominent type constructors: aggregation and

grouping or association. From the set-theory point of view aggregation is fundamen-

tally a cartesian product of a list of domains. An informal definition of aggregation

is: grouping of different part types into a whole. There are two kinds of results

when aggregation is applied: (1) an entity or object type result, aggregated from

atomic attributes, the classical example being ADDRESS, which is an aggregation

CHAPTER 2. EVOLUTION OF DATA MODELS 29

of STREET, CITY and ZIP, (2) a composite object result, aggregated from objects of

different types, an example being a VEHICLE made of ENGINE, WHEELs, ELEC-

TRONIC-DEVICES, and MECHANICAL-DEVICES. In the ER model aggregation

is represented by a relationship.

Grouping or association is a constructed type, defined in [HR87] as a finitary

powerset, used to built sets of elements of an existing type, E.g.: Sets of Languages

or sets of Hobbies.

Some implementations of semantic models are worth mentioning, for example

GEM [TZ84], and TAXIS [NCL86], a project developed at the Univ. of Toronto,

are both implemented as front-ends to a relational system.

2.5 The Non [First] Normal Form models

At the end of the seventies, Makinouchi [Mak77] proposed that the first normal form

condition imposed by the relational model be abandoned, that is, the condition that

attributes in a relation must be atomic. This idea was triggered by the need to model

complex data objects with hierarchical structure, such as books, office documents,

etc. A plethora of models were simultaneously proposed, such as the nested relational

model [S586], the Fisher and Thomas model [FT83], the V-relational model [AB84].

The same idea arose naturally in the context of semantic database modeling [AH84,

HY84].

Non [First] Normal Form models are referred to with various names, such as

nested relational, NF squared, NF2, NFNF, N1NF. There are small differences be-

tween them depending on the data structures allowed to occur as attribute values

CHAPTER 2. EVOLUTION OF DATA MODELS 30

(records or sets, arrays, or lists).

The most famous NFNF model is the nested relational model [SS86] The idea of

the nested relational model is very simple. Relations are allowed in place of atomic

attributes. This hierarchical nesting of relations may be repeated for an arbitrary

but fixed number of levels [SS89, SS86].

From a semantic modeling point of view, the construct relation corresponds

to the application of one aggregation operation to construct tuples from atomic

domains, that is the tuple constructor, followed by one association operation to

construct a set of tuples, that is the set constructor. Complex objects have evolved

from relations in that they are constructed by repeated application of tuple and set

constructors.

Thus nested relations can be constructed by repeatedly applying the sequence

aggregation-association operations to a collection of primitive objects or to a collec-

tion of composite objects, obtained by previous applications of the rule.

The best way to describe the nested relation model is perhaps by using a pro-

gramming language (Pascal) like syntax [SS91].

type Department type Employee

= set of record = set of record

cno: integer, SIN: integer,

name:string, name: string,

budget: real, sal: integer,

staff: set of Employee, end;

CHAPTER 2. EVOLUTION OF DATA MODELS 31

end;

In the example above, the relation Department is a nested relation, where the value

of a 'staff' attribute is a set of Employee tuples.

Some systems based on NFNF models, are:

• Prototype implementations for an extended NF2 data model: AIM-P (Ad-

vanced Information Management Prototype) [PD89], AIM-TI [DKA86].

• The VERSO prototype, developed at INRIA, France [SAB89] which was im-

plemented in Pascal on Unix.

• The Darmstadt Database System (DASDBS) from The Technical University

of Darmstadt [SS89]. It is based on the idea that no single DBMS could cover

all the different needs of various new DBMS applications. Instead we can have

a kernel with several front-ends, that form a family of database systems. The

kernel integrates common features of a low level storage component, and allows

efficient front-ends tailored to specific application classes.

An important point about nested relations and complex objects is that they are

incapable of directly representing non-hierarchical or many-to-many relationships

and inheritance. These capabilities are added using extensions of the model.

2.6 Functional models

The functional data model (FDM) is a semantic model based on explicit representa-

tion of attributes as functional relationships. FDM has proved to be a very important

base for 00 modeling. It was first introduced by Kerschberg and Pacheco in 1976

CHAPTER 2. EVOLUTION OF DATA MODELS 32

[11R87] and made best known by Shipman [Shi81]. Shipman developed an informal

graph-based representation of FDM schemas and a data language DAPLEX, that is

considered the first database access language to give an important role to attributes

that are used as atomic types, or composite types (objects) built from atomic types.

Thus, the functional model shares ideas with the 00 approach, such as the naviga-

tional, or path-tracing, style of addressing objects that are functionally related to

each other, and is called an object-oriented semantic database model [HR87]. Date

[Dat9O] considers the functional approach and the 00 approach as being the same.

A well-known example of an OODBMS based on the functional approach is Iris

from Hewlett-Packard Labs [FBC87, Fis89, Bro91]. It is implemented on a rela-

tional system. The Iris data model is based on functional data models and languages,

such as DAPLEX [Shi8l] and GORDAS [EW81]. It has three constructs; namely

objects, types and functions, and it supports inheritance, integrity constraints, com-

plex objects, user-defined functions, and extensible data types. Objects maybe

referenced directly through their keys. The query language of Iris is called Object

SQL (OSQL).

2.7 Object-Oriented Models

Object-oriented data models are the result of the emergence of new database appli-

cations classes [Cat9l], such as:

• Computer-aided software engineering (CASE),

• Mechanical and electrical computer-aided design (CAD),

CHAPTER 2. EVOLUTION OF DATA MODELS 33

• Computer aided manufacturing (CAM),

• Office automation,

• Computer-aided publishing (CAP) and hypertext,

• Graphics,

• Scientific and medical applications,

• System services,

• Manufacturing and real-time control,

• Knowledge bases for AT and

• Business applications where traditional DBMSs have proven inadequate.

Although relational DBMSs have a firm theoretical foundation, these new appli-

cations have revealed many weaknesses in the relational model, and have focused

attention on the need for:

• support for much more complex entities, such as design and engineering objects,

and compound documents,

• abstract user-defined data types,

• the semantic concepts of generalization, aggregation, and association,

• temporal evolution of data, particularly the temporal dimension of data, and

multiple versions or versioning of data,

CHAPTER 2. EVOLUTION OF DATA MODELS 34

. multimedia data such as audio, and video data,

• new capabilities such as manipulating stored complex objects and rule process-

ing.

These needs, together with the need to reduce the cost of developing complex soft-

ware systems, have brought the object-oriented programming paradigm into database

technology.

The 00 paradigm embodies abstract data types, encapsulation and inheritance

which has made it easier to develop and upgrade applications. It should be re-

membered that ease of application development was the major driving force in the

original evolution of database management technology from file systems to relational

database systems.

00 database research, unlike other approaches to databases, started in a bottom-

up fashion with the implementation of a number of working systems, without formal-

ization of underlying concepts [Wie9l]. Implementation of OODMBS was very active

in the mid 1980's with projects such as Orion [KBC89, I{im90], 02 [fleu9l], and

Iris [FBC87]. A top-down movement started in 1989 when confusion about object

database concepts made the need for a number of simple and clear rules obvious.

As in the case of NFNF models, there is not a single 00 model, but rather

a plethora of 00 models. There is an attempt of standardization from the 0MG

group [Cat93] but the standard is not accepted by the vast majority of OODBMS

developers [Kim94].

Two major manifestoes that give a 'general' definition of an OODBMS were

written: [ABD89] and [SRL90]. These manifestoes define the two main trends in

CHAPTER 2. EVOLUTION OF DATA MODELS 35

00 technology, and they will be presented in Chapter 3.

2.8 Comparative views of database models

2.8.1 Relational versus 00 models

The relational data model is value-based, as opposed to CODASYL, which could be

called identity-based. The distinction arises from the mechanisms the data model

provides for relating objects, a fundamental part of the modeling capability of any

database system. A value-based model expresses the relationship between two ob-

jects by embedding the same value in the related objects. An identity based model

can relate two or more objects independently of their embedded values. The re-

lational systems are flexible and offer data independence by making a distinction

between three layers: conceptual, storage and external.

00 data models are identity-based like network models such as CODASYL. They

add a rich typing and extensibility. They add also encapsulation of data types and

inheritance.

2.8.2 Semantic versus 00 models

Some researchers refer to semantic models as being object-oriented, because they

provide mechanisms for structuring complex objects (aggregation, grouping, rela-

tionships as attributes: constructors used to build software objects). So the dis-

tinction between the two sorts of modeling is not always well defined. King [Kin89]

points out the differences between the semantic modeling and the object-oriented

models, as follows.

CHAPTER 2. EVOLUTION OF DATA MODELS 36

• While semantic models attempt to provide 'structural abstractions', 00 mod-

els provide 'behavioral abstractions'. Semantic models grew out of the same

some sorts of concerns that inspired researchers in AT and knowledge represen-

tation. In contrast 00 models were inspired by advances in programming lan-

guages. Semantic models are oriented toward the representation of data, while

00 languages are concerned with the manipulation of data. While seman-

tic models provide constructors for creating complex data types, 00 models

provide ways for embedding operations within data types.

• This distinction concerns the notion of inheritance. In a semantic model ag-

gregations and attributes/relationships are 'inherited' down type hierarchies,

that is, we have inheritance of structural components. In contrast, 00 models

focus on the inheritance of behavioral capabilities, in the form of the inher-

itance of operations embedded within types. Many of the 00 systems have

both structural and behavioral encapsulation facilities.

Chapter 3

Object-Oriented Trends

There appears to be a consensus among database researchers that next generation

DBMS will be based upon the object paradigm. However, there is no consensus on

a next generation 00 data model.

The 00 approach can be viewed as a combination of conventional database and

object-oriented programming language (OOPL) technology. As a result of empha-

sizing either the database or the OOPL side, two main trends on OODBMS have

emerged.

The first trend or the evolutionary approach, is to extend the relational

model with a set of fundamental 00 concepts (complex objects, abstract data

types(ADT), access methods, and the encapsulation of data with methods), found in

most object-oriented programming languages. The database language that embodies

the united object-relational paradigm should be an extension to SQL. The database

language should then be embedded in a wide variety of host programming languages.

Some of the OODBMS based on this approach are called object-relational (0-R)

A definition of an object-relational DBMS is given in [Sto]. In this definition, an 0-Ft

DBMS should add the following 00 concepts to a RDBMS: (1) unique identifiers,

(2) user defined types, (3) user defined operators, (4) user defined access methods,

(5) complex objects, (6) user defined functions, (7) overloading, (8) dynamic extend-

ability, (9) inheritance of both data and functions (methods), (10) arrays. These are

the 00 capabilities of the Illustra or Montage (the commercial version of POST-

37

CHAPTER 3. OBJECT-ORIENTED TRENDS 38

GRES) OODBMS. The same ideas of unifying relational and object-oriented data

models are implemented in the 1JniSQL O-R DBMS [Kim92].

This type of OODBMS integrates well with existing relational databases and

provides a smooth flow of data between engineering and business applications.

The second trend or the revolutionary approach is to extend object-oriented

programming languages (notably C++ and Smalitalk), by allowing programming

language objects to be persistent and sharable, that is, stored as a database, as well

as permitting other database functions, such as transaction management and limited

query facilities. The result is an object data model for which there exists no unique

formal proposal but a variety of system-dependent data models.

The advantage of this approach is a single language for both database access

and application programming. The disadvantages are (1) the lack of some essential

database concepts, such as: a standard optimized query language, and mechanisms

for concurrency control and reliability, and (2) the integration aspect of databases

across several applications written in different languages seems to be lost since there

are as many programming languages as 00 database systems.

A common goal of OODBMS from both trends is to integrate applications pro-

gramming and data management. The difficulty is that programming language en-

vironments and database systems ate built on different concepts for typing, and

computation. Typing systems in programming languages are rich, including: arrays,

lists, ADT, as well as atomic types (integers, strings, etc), while typing systems

in a database language typically include sets (relations) and atomic types. Com-

putational models in programming languages are rich in manipulation capabilities,

while computational models in a database language are more restricted but typically

CHAPTER 3. OBJECT-ORIENTED TRENDS 39

include search,insert, delete and update.

Basic 00 data model concepts and annotated bibliographies are presented in

many works, such as: [Kim9O], [US9O],[BM93], [Ban93], [Cat91], [Bro91], [U1188],

[ZM89a]. The two 00 trends are best described in the Atkinson and Bancilhon et

al., and in the Stonebraker et al. manifestoes that appeared in 89. Throughout the

thesis I will use also the name "object-relational approach" for the first trend and

"OOPL approach" for the second trend.

Since the system researched in this thesis belongs to the object-relational ap-

proach, we present the basic work in this field in the next section. In Appendix E,

we review other work in the field of 00DBMSs that we consider is helpful to an

overall grasp of the field, but is not very relevant to the topic of the thesis.

3.1 The Evolutionary, Object-Relational Trend or Object

Extensions of the Relational Database Model

3.1.1 Concepts

The Object Relational trend (O-R trend) is supported in the Third-Generation

Database System Manifesto [SRL9O] issued by the Committee for Advanced DBMS

Function, composed of Michael Stonebraker and other researchers from the field of

relational database technology. The O-R trend is also outlined by Kim in the pa-

per "On Unifying Relational and Object-Oriented Database System" {Kim92}. In the

Third-Generation (TG) manifesto the first generation database systems are the older

hierarchical and network database systems (CODASYL and IMS type systems or the

systems of the 70s) and the second generation database systems are the relational

CHAPTER 3. OBJECT-ORIENTED TRENDS 40

DBMS (the systems of the 80s).

The TG database manifesto is a set of basic tenets that should guide the de-

velopment of third generation systems. The following covers the essentials of these

tenets.

Tenet 1: Besides traditional data management services Third Generation DBMSs

will provide support for

1. A rich type system. A 'type' or a 'class' is a set of objects with similar

structure and behavior. From a design perspective, objects model the entities

used in the application domain. Each class has a name and a set of attributes

that hold state values of the object and a set of operations (procedures and

functions) that an object is subject to. Usually a 'type' and a 'class' are used

interchangeably. Note that in the object model of the 02 OODBMS [LRV89]

'type' and 'class' are used as distinct concepts. Further details about this

original idea are in Appendix E.

A rich type system includes an abstract data type system to construct new

base types, and type constructors (array, list, tuple, set) that can be recur-

sively applied to form complex objects. Prototype syntax for the above type

constructors is contained in Starburst [GLPS91]. The above type constructors

can be added to relational systems as natural enhancements. This approach

has already been applied to SQL3 draft for the support of Abstract Data Types

(ADT) and functions (more details will be given in Chapter 8).

•2. Single and multiple inheritance. Inheritance is usually understood to be

class inheritance, although inheritance can be also instance inheritance. Class

CHAPTER 3. OBJECT-ORIENTED TRENDS 41

inheritance is the most common form of inheritance and is often called an ISA

1:1 relationship. The idea is that if Y inherits from X, Y is an X with some extra

features. Class inheritance can be simple or single class inheritance, where the

ISA relationships form a hierarchy, or it can be multiple class inheritance when

ISA relationships form a network.

Single inheritance is essential but multiple inheritance is necessary to cover

all the situations that can occur, so that in general the inheritance relation-

ships form a directed graph. Multiple inheritance is optional in the [ABD89]

manifesto that supports the OOPL approach.

3. Functions (database procedures or methods) and encapsulation.

Encapsulation refers to coupling of specific methods (operators, functions or

procedures) to classes of objects. Thus, an object encapsulates both state

(value of the object) and behavior (set of methods). Through the implementa-

tion of methods encapsulation provides data independence, allowing the private

portion of an object to be changed without affecting applications that use the

object class.

Encapsulation has the advantage of encouraging modularity, but a total en-

capsulation can make some data elements inaccessible. For example the only

way to access the Employee class might be to execute a function call, e.g.

Hire(Employee). This is a restriction that ignores the needs of the query lan-

guage to have access to each element directly. The query language should have

access to the data elements inside data types. It is for this reason that some

OODBMSs drop the encapsulation restrictions of access to the private imple-

CHAPTER 3. OBJECT-ORIENTED TRENDS 42

mentation of an object when a query language is used, but keep it for access

to object classes from application programs. This is called partial hiding. Of

course, encapsulation can be avoided by defining methods for all the attributes

that have to be visible to the query language. Other techniques can be used

[Cat9l].

Functions should be written in a high level nonprocedural language (embedded

via a preprocessor in the query language) and have DBMS access through

queries. Thus, functions should execute query expressions and not perform

their own navigational programming using calls to some lower level DBMS

interface as in prerelational systems.

4. Unique Identifiers (OlDs). OlDs for records should be assigned by DBMS

only if user-defined primary keys are not available.

If a primary key exists and is known that will not change (SSN, student ID

number) we can keep it because it has a natural, human readable meaning.

In the opinion of the writer an extra hID is still necessary to assure the unique-

ness of an object instance. Many problems can arise with the primary keys

(or using descriptive data for identity), and they are discussed in [K089]. The

solution is support for a system-generated identifier for objects that is inde-

pendent of their external descriptive data, so that the system can preserve an

object's identity when object sharing and updating are performed, as well as

within complex objects, regardless of changes in data or structure.

Tenet 2: Third Generation DBMSs must subsume second generation DBMSs.

Thus they should keep the major contribution brought by the relational model, such

CHAPTER 3. OBJECT-ORIENTED TRENDS 43

as non-procedural access and data-independence, and support of updatable views.

In the Atkinson et al. [ABD+89] manifesto, the non procedural access, or the ad

hoc query facility, can be of any convenient form. By contrast, the TG manifesto

emphasizes that essentially all programmatic access to a database should be through

a non-procedural language.

The access by a query language will be either by adding query language constructs

to multiple persistent programming languages or by embedding a query language in

conventional programming languages (which is the current approach).

Tenet 3: Third Generation DBMSs must be open to other subsystems, and that

is:

1. They should be accessible from multiple programming languages by employ-

ing a closer match between the data type systems of the database and the

programming language, and allow that any variable in a user's program to be

optionally persistent.

2. Persistent programming languages supported on top of a common DBMS by

compiler extensions and a (more or less) complex run time system would be a

good idea.

3. The query language should be an extension of SQL, the uncontested standard.

Additional query languages might be developed, for specific applications.

In conclusion, the object-relational approach combines traditional database the-

ory concepts with programming languages concepts instead of attempting to incor-

porate database concepts into a programming language.

CHAPTER 3. OBJECT-ORIENTED TRENDS 44

3.1.2 Examples of models and implementations

The first extensions made to a relational data model were semantic extensions, and

were object-oriented in concept. The common goal of these extensions was to bring

the relational data model closer to the real world since unnormalized relations more

closely resemble the entities of the real world. Among the first semantically extended

relational models were:

• Extensions of NF2 data models. Scholl and Schek [SS91, SS9O] have de-

veloped an object model, called 'relational object model' by extending a NF2

model and using concepts from KL-ONE, a knowledge representation model

used in AT and relational database model (see also the NF2 data model from

Chapter 2). They have added an entity generalization/specialization facility

(inheritance) and network data structure support to the NF2 data model. The

network data structure support is achieved by functions as abstractions of both

attributes and relationships. These 'functions' map instances of a domain type

to either an instance or to a set of instances of another domain type. Thus,

a classic attribute can be viewed as a mapping in atomic domains. The func-

tions can play the role of (1) pointers from programming languages, (2) of

reference attributes [Cat91], (3) of OlDs from various object-oriented database

models, or (4) of the foreign key from the relational model. This technique of

using functions as attributes makes it possible to extend NF2 relations from a

hierarchy of relations to a network of relations.

The data model of IRIS system [Bee88] and OODAPLEX [Day89] (the 00

extension of the FDM) use the same kind of object-function-model.

CHAPTER 3. OBJECT-ORIENTED TRENDS 45

The example presented in Chapter 2, in the NF2 data models, now becomes:

type Company type Employee

= set of record = set of record

cno: integer, SSN: integer,

name:string, name: string,

budget: real, sal: integer,

president: Employee, works-for: Company,

staff: set of Employee owns: set of Vehicles

end; end;

The non atomic types : staff, works-for, owns, in the type definition are

expressed as functions.

For example, staff is a function that maps Company to a set of objects with

the type Employee. Also, the pair of functions (staff, worksfor) describes a

one-to-many relationship.

• The POSTGRES system. POSTGRES is the most powerful implemented

prototype of this trend [Cat91]. POSTGRES has been under construction since

1986 at the University of California at Berkeley [SK91, Sto87, MR86, Cat91]

and as the name shows is a follow-on to the INGRES RDBMS. POSTGRES

has a recent commercial version called Illustra. The data model of POSTGRES

[RM87] is an extension of the relational model with:

- user defined Abstract Data Types (ADT) and associated operators,

- the structured attributes type procedure and array, and

CHAPTER 3. OBJECT-ORIENTED TRENDS 46

- data and procedure inheritance.

POSTGRES extensions provide support for semantic and object-oriented con-

cepts such as: aggregation, generalization and association, and complex objects

with shared subobjects.

The class in POSTGRES, can be associated with a relation and is a collection

of instances of objects (or tuples). A class has attributes of fixed type that

can be atomic or structured. Each instance has a unique system generated

identifier (OlD), which is readable but not updatable by the user. Primary

keys for instances (or tuples) can be optionally defined

There are three kinds of classes: (1) real or base classes, whose instances are

stored in the database, (2) derived or view (or virtual) classes, whose instances

are not physically stored, (3) version of another class which is stored as a

differential relative to its parent class.

POSTGRES contains an extensive type system. Important types are:

- new base types built using ADT definitions, for example a definition of

an ADT that represents boxes:

define type box is

(Interna1Length16,

InputProc = CharToBox,

OutputProc = BoxToChar, Default="

)

C'

CHAPTER 3. OBJECT-ORIENTED TRENDS 47

A box is represented as a character string that contains two points that

represent the upper-left and lower-right corners of the box. CharToBox is

a function that takes a character string that represents a box and returns

a 16 byte representation (4 bytes per x- or y-coordinate value. BoxToChar

os the inverse of CharToBox.

- arrays of base types. For example if an employee receives a different

salary each month, we could use:

retrieve (EMP . name)

where EMP.sa1aryE4J = 1000.

- composite types that allow the construction of complex objects (aggre-

gation) with a hierarchical internal structure. There are two composite

types:

1. indicated by class name, and containing zero or more instances of

that class, for example, the class EMP contains instances of type

EMP for the type of the attribute 'manager'.

create EMP (

name = c12,

salary = float[12],

age = int,

manager= EMP

)

2. indicated by set, whose value is a collection of zero or more instances

from all classes, for example:

CHAPTER 3. OBJECT-ORIENTED TRENDS 48

add to EMP (hobbies = set)

The elements of a composite type are addressed by nested dot nota-

tion or path expressions, present also in IRIS, ORION, 02 and Gem,

such as:

retrieve (EMP . manager. age)

where EMP.name=' 'Joe"

EMP.manager.age gives the age of a manager from class EMP, and

EMP.name gives the attribute name of an instance from class EMP.

- type procedure. There are three kinds of procedures (or functions) in

POSTGRES:

1. C functions (whose arguments are base types or composite types and

are dynamically loaded when used in a query),

2. operators (functions of one or two operands which are base types; for

example: operator '!!', returns 'true' if two polygons overlap),

3. POSTQTJEL functions (any collection of commands in POSTQTJEL

- the query language of POSTGRES - can be defined as a function).

POSTGRES can be called from many different languages.

• The Starburst system. Starburst project is another major project illus-

trating this trend at the IBM Almaden Research Center, initiated in 1985.

Starburst is an extensible DBMS prototype based on the relational model and

on extensions of SQL [LLPS91, Cat91, LH9O]. It is a prototype that was not

built on the foundation of any earlier system. The extensions to relational

CHAPTER 3. OBJECT-ORIENTED TRENDS 49

technology are also different from those in POSTGRES, where the relational

model was extended. The extensions in Starburst are present at the DBMS

component level. We have (1) storage and access method extension, (2) query

analysis extensibility, (3) query optimizer extensions, (4) query language ex-

tensions, for example: recursive queries, table expressions and table functions;

(5) complex object support, and (6) type extension mechanisms.

The extensions developed for Starburst, incorporate the best features of many

existing data base technologies, such as:

- solid theoretical foundation and a declarative query language (an extended

form of SQL) that can be optimized,

- a richer type system, enhanced performance using system maintained

pointers to related objects, encapsulation of behavior with the data, ob-

ject identifiers for stored objects, large structured complex objects (an

application program interface has not yet been implemented for them)

and support of hierarchies of user defined types and functions (features

retained from the object-oriented world),

- user defined rules to respond to changes in the database (active database)

and, general recursion added to SQL.

Starburst has five kinds of functions:

1. Scalar functions. These have one or more scalar arguments and produce

a scalar, such as: trigonometric functions or the square root function,

CHAPTER 3. OBJECT-ORIENTED TRENDS 50

2. Aggregate functions. These operate on an entire column of a table and

produces a scalar output, for example, AVGQ in SQL,

3. Set predicate. This special case of an aggregate function returns a

boolean value,

4. Table functions. These are functions that produce a table as output.

They can have scalar inputs, or table inputs. Table functions are useful

for importing data from outside the database and presenting it as a view

or virtual table (e.g.: the Unix 'ls' command is implemented as a 'table

function' whose parameter is the directory to be searched).

Unfortunately user-defined functions must be linked with the rest of Starburst,

which is currently an inconvenience.

The type system for Starburst is still under design. Eventually Starburst will

support an extensible , hierarchical type system in which all user-defined types

can be encapsulated. Encapsulation is performed differently from the 00

paradigm. In order to access a type a user need to have privilege access to use

a function 'unwrap'.

.Single and multiple inheritance of data and functions will be also supported.

The set of quantifiers for Starburst query language will include the universal

quantifier ALL and MAJORITY.

Complex objects in Starburst are stored using two approaches:

1. The entire complex object can be stored in a 'long field' in which repre-

sentation of the object is entirely under user control. A selection predicate

CHAPTER 3. OBJECT-ORIENTED TRENDS 51

thus cannot be applied.

2. A complex object's atomic components can be stored as rows in tables,

and the object can be constructed by composing these rows using a new

kind of relational view, an extension to Starburst, called eXtended Normal

Form (XNF). This has not yet implemented.

• Unified relational and object-oriented data model. Kim is also in favor

of the approach that an 00 model can be viewed as an extended relational

model and has introduced an equivalent of this model called 'unified relational

and object-oriented data model' [Kim92, Kim]. Kim is also in favor of a declar-

ative query language that can be optimized. Kim's data model was used for

building a commercial database system, called UniSQL [Kim92].

Chapter 4

Database Languages

The core of a database system is its database language. A database system is in

essence software that implements all the functions supported in a database language.

A database language is an embodiment of a data model and a database model is the

foundation of any database system. From this perspective, a database language is a

very important component of a DBMS.

In principle, every database language has at least two component sublanguages:

1. Data Definition Language (DDL). This is a language that specifies the

conceptual scheme. It is rather a notation that describes the types of entities

and relationships among types of entities, in terms of a particular data model.

2. Data Manipulation Language(DML). This supports the manipulation or

processing of objects by operations performed on the database. DML it is also

called 'Query Language' (QL) but more correctly the query language performs

only retrievals and it is included in the DML. Besides retrievals (or queries) a

DML executes update, delete, so on.

Besides these two sublanguages, there can be a third sublanguage called a data

control language that allows the database administration.

Often the manipulation of the database is done by an application program. The

programs that manipulate databases are written in a so called host language, which

is a conventional programming languages such as: C, Pascal or COBOL.

52

CHAPTER 4. DATABASE LANGUAGES 53

4.1 Query Languages

The most common query languages are the relational ones. The relational model

offered us two types of QL: the procedural relational algebra and declarative or non-

procedural relational tuple or domain calculus. Procedural and declarative database

languages are equivalent in expressive power. Relational calculus is a straightforward

adaptation of the first order predicate calculus. Relational algebra can be viewed as a

functional language. It consists of a fixed collection of operations: union, difference,

product, selection, projection, join, intersection, as described earlier. We have no

predicates as we have in the calculus, and the relations are simply named constants.

4.2 Declarative database languages

"A declarative language is a language in which one can express what one wants,

without explaining exactly how the desired result is to be computed" [01188].

The relational model has been very successful to a large extent because of the

declarative languages, such as SQL and QIJEL, that it introduced.

Declarative languages bring with them ease of use, associative data access and

optimization. Essentially they have moved the optimization of access from the user

to the database system. Thus, other factors being equal, users prefer declarative

languages [Ull88].

The opposite of a declarative language is one in which we give the steps that lead

to the desired result. This kind of language is called procedural (e.g.: Fortran, Pascal

and C are procedural programming languages, and relational algebra is a procedural

database language).

CHAPTER 4. DATABASE LANGUAGES 54

However, although the emergence of the 00 approach to database systems has

increased data modeling capabilities, it has been accompanied by a move back to

procedural query languages. This has shifted the access optimization problem back

to the user.

The need for declarative languages is currently the subject of much debate in the

research community. The question "Do we really need declarative languages?" has

often been discussed. Unfortunately, declarative languages cannot support all data

processing needs. They are not computationally complete, so that they often need

to be embedded in host languages. This leads to many problems. One of them is

the annoying 'impedance mismatch' that occurs between the different data models

embodied in both the query language and the programming language. This is a major

source of confusion for application programmers, and it is why a stated primary

goal of some 00DB developers is to support an integrated application development

language rather than an ad-hoc query language [ABD89].

However, many applications involving business, and scientific databases need

declarative language support. Thus, the advocates of the 00 trend supported by

the Committee for Advanced DBMS Function [SRL9O] insist that "we should not

give up the benefits of declarative languages".

Overall, however, it is generally agreed in the 00 database community that

declarative languages are an integral part of the definition of a data model and that

they must co-exist in the same system with procedural languages.

CHAPTER 4. DATABASE LANGUAGES 55

4.2.1 A logic approach for OODBs Query Languages (QL)

Many features included in 00DB involve higher order logic concepts. Queries may

involve quantification over sets and relations. Functions are involved in inheritance

mechanisms, and, together with complex structures, are treated as data.

In [Bee9O], Beeri tries to provide a logic-oriented modeling for 00DB. Logicians

distinguish between first order and higher order logics. Individual elements of a

domain are considered first order. More complex constructs, such as sets, relations

and functions are higher order. First order allows one to 'manipulate' only individual

elements. Relations and functions are allowed as higher order constants in the first

order but higher order variables are disallowed.

Higher order logic allows manipulation of higher order constructs. For example,

second order predicate calculus allows quantification over relation-valued variables.

To summarize, in first order logic only individual elements of domains are con-

sidered as data, and functions and relations exist only as schema level elements; in

higher order logics, sets, functions, and relations may be data as well.

The reason why first order predicate calculus is usually used, rather than some

more expressive higher order variant, is that it has a sound and complete axioma-

tization, that is, the denotations of 'provable' and 'true' coincide, and problems are

algorithmically tractable. This justifies its use for expressing queries and integrity

constraints. This property fails for even second order logic. For instance in the sec-

ond order logic, quantifiers can range over all the second order values that can be

constructed from given atomic domains, and this leads to intractability. However, if

the quantifiers are restricted to range only over restricted sets of second order values,

CHAPTER 4. DATABASE LANGUAGES 56

the resulting calculus may be more tractable.

In the database world there is an interest in what is given in the database rather

than in what could potentially exist. Therefore it has been of interest to both

logicians and computer scientists to develop restricted higher order logics. The study

of restricted higher order logics is an important research area in the theory of 00DB

and is a prerequisite to the development of a formal 00 data model [Bee9O].

Several practical attempts have been made to incorporate restricted higher order

constructs into functional and logic programming, for example, HiLog [CKW92], and

F-logic [KL89]. Nevertheless, it is still unclear whether or not the use of restrictions

is a good solution to the problem of higher order programming in 00DB.

A less formal discussion of the features of the QL for OODBMS, in an attempt

to create a unique framework for analysis of QL is presented in [BNPS92].

4.2.2 Relational declarative query languages

Declarative languages in relational databases have their source in first order predicate

logic on which the relational model is based. Important relational query languages

are:

• DSL ALPHA, which is based on relational calculus. DSL ALPHA was de-

veloped by Codd at IBM. It is often used as retrieval standard against which

the retrieval power of other query languages may be compared. An arbitrary

relational query language L is said to be relationally complete if L expressions

may be used to specify any retrieval that may be specified by DSL ALPHA

expressions [Cod72].

CHAPTER 4. DATABASE LANGUAGES 57

• SQL (Structured Query Language) was developed as part of the SQL project

at IBM and was later incorporated into the System R prototype. The language

is relationally complete, that is, it may be used to specify any retrieval that

can be expressed by DSL ALPHA. From a user standpoint, SQL is probably

the most important relational retrieval language at this time.

• QUEL is the query language of INGRES, a relational DBMS developed at

Berkeley. QUEL most closely resembles relational calculus. It is not widely

used.

4.3 Query languages in the 00 approach

Several declarative languages for object models have been offered. Query languages

for 00 systems can be classified into five broad categories according to the ap-

proaches on which they are based.

1. Declarative query languages based on Higher order logic approaches.

Examples are F-logic [KL89], HILOG [CC89], and Noodle [MR93].

2. 00 extensions of functional languages.

Some examples of this type are: 02 query [Deu91], LIFOO a functional query

language for 02 [BLM91}, OODAPLEX [Day89].

3. Query languages as persistent object-oriented programming languages.

These languages either extend Smailtalk or C++. OPAL (GemStone) extends

Smailtalk. The query languages of ONTOS, ObjectStore, Objectivity, and

CHAPTER 4. DATABASE LANGUAGES 58

Versant OODBMSs, and the language ZQL[C++] [Bla93] are based on C++.

A survey of the database languages for new generation database systems is

available in [Las92].

4. Object-Oriented extensions of existing relational declarative and procedural

query languages. This is probably the most important category and we consider

it in some detail.

4.3.1 Object-oriented extensions of relational languages

These are extensions to tuple calculus languages, such as SQL, and to domain cal-

culus languages like QUEL.

. a) Extensions of SQL or SQL-like languages. Some examples are:

- COOL (Composite Object-Oriented Language). COOL is a declarative

database language designed for an extended NF2 data model [Bra93a].

Thus, COOL is based on the object-relational approach to object-oriented

declarative languages. It introduces the concepts of genitive relation and

natural quantifiers. A presentation of the language is given in Chapter 5.

The implementation of COOL, which is the main topic of this research,

is presented in Chapter 6.

- OSQL in IRIS OODBMS. The query language is Object SQL (OSQL)

[Bee88, WLH9O], which combines an SQL like syntax with a functional

and semantic style. The functional style is present in the definition of

attributes that are single argument functions. This style also shows in

the definition of relationships between object types by means of functions.

CHAPTER 4. DATABASE LANGUAGES 59

The query processor translates Iris queries and functions into an extended

relational algebra format that is optimized, and then executed by a storage

manager which is conventionally relational.

- SQL/X. This is the query language of the commercial object-relational

DBMS TJniSQL [Kim92]. SQL/X allows path queries (like in Gem and

POSTQUEL), queries against nested classes and hierarchies of classes,

queries that include methods as part of search conditions, and queries

that return nested objects. SQL/X is an upwardly compatible extension

of SQL.

- Starburst query language. The Starburst query language [LH9O] extends

relational algebra and supports user-defined extensions to query analysis,

optimization, execution, access methods, and storage methods [Cat9l].

- ORL. ORL [UhCLS94] is an object retrieval language and has been im-

plemented on top of ONTOS OODBMS.

• b) Extensions of QTJEL. The main example is P0 STQUEL [RM87]. P OSTQTJEL

is the set-oriented query language of POSTGRES and is based on QIJEL lan-

guage of INGRES DBMS. It supports user defined functions and operators,

arrays, path expressions, and inheritance.

4.4 The future of SQL

Since being adopted by both ANSI and ISO as a standard language for database

access in 1986, SQL has gone through several revisions. The last revision is SQL-92

CHAPTER 4. DATABASE LANGUAGES 60

which provides increased functionality [Kul93] by including additional data types and

explicit data type conversions, the concepts of information schema, domains, tem-

porary tables, additional join operations such as outer join, new cursor options, and

facilities to drop or alter schema objects. A new version, SQL3 upward compatible

with SQL-92, is expected to appear in 1995-1996.

Two major shortcomings of SQL-92 addressed by SQL3 are: the lack of a rich

type system required by complex applications, and the lack of computation com-

pleteness. To address the first shortcoming, SQL3 incorporates an extensible object-

oriented type system borrowed from object-oriented programming languages. The

SQL3 draft supports concepts such as: objects identity, ADT (abstract data types),

user-defined functions, encapsulation, single and multiple inheritance (subtypes-

supertypes), polymorphism, dynamic binding and rules [CMCG94]. The second

shortcoming is addressed by the addition of procedural language constructs.

SQL3 can be thought of as an object-oriented programming language with built-in

support for collection types (multisets or tables) and non-procedural query facilities.

Chapter 5

COOL and Extended Relational Algebra

5.1 Overview of COOL

COOL is an object-relational declarative database language.

COOL is relational because it is based on Genitive Relational tuple calculus

[Bra92a], and an Extended Relational Algebra (ERA) [Bra94]. The Genitive Rela-

tional tuple calculus is an extension of relational tuple calculus and has both relation

names and derived genitive relation names serving as implicit tuple variables. The

Extended Relational Algebra is an extension of the conventional relational algebra

with specific operations for reducing the natural quantifier expressions. ERA will be

presented later in the chapter. Thus, COOL is soundly based on the set-theory.

COOL is object-oriented primarily because of the object-orientation of the

model, which is an extension of the relational data model, and secondarily because

of the object-orientation reflected in the language semantics and structure.

A simple way to demonstrate COOL's object orientation is by comparing it to

SQL, a genuine relation-oriented language [Bra93b]. For example consider a database

about parks. A Park can contain Forests and a Forest can have Campgrounds. A

relational (Bachman) diagram of the database is shown in figure 5.1.

Take for example the retrieval from [Bra93a]: "Retrieve full data on each Cali-

fornia park where all of its forests exceed 10 square miles and have only campgrounds

with fireplaces".

61

CHAPTER 5. COOL AND EXTENDED RELATIONAL ALGEBRA 62

ØiME!
1r41

pname psurface province

Park

pcode fname fsurface location

Forest

fcode fireplace

The SQL expression is:

Campground

Figure 5.1: Parks Database 1

select * from Park

where location = California"

and pcode in (select pcode from Forest)

and pcode not in (select pcode from Forest

where f surface <= 10

or fcode in

(select fcode from Campground

where fireplace = 'no")

or fcode not in

(select fcode from Campground))

The COOL expression is:

CHAPTER 5. COOL AND EXTENDED RELATIONAL ALGEBRA 63

select * from Park

where location = "California"

and for all Park's Forest

(f surface > 10

and for all Forest's Campground

(fireplace = yes''))

The above example deals with a hierarchical database structure, that defines

composite objects (or aggregations).

The object orientation of COOL (see example above) is supported by the higher

level of abstraction implicit in the specification of the relationships between the enti-

ties (a park has many forests and a forest has many campgrounds). Thus, in COOL

we think in terms of objects only (a Park has Forests and Forests have Campgrounds).

By contrast the SQL query is expressed in terms of entire relations (all the Forest

tuples, all the parks tuples). Thus, in SQL we think in terms of entire relations

and need to make sure that we join the relations on the right fields. We also need

to correctly apply rules and logical operators, such as de Morgan rules, and double

negation for the universal quantifier; in addition the natural quantifiers cannot be

used. All these relation-oriented semantics for a language are error prone, require a

logical mind set and take quite a long time to learn to use.

In contrast, COOL is based on an object-oriented data model, and offers an

object-oriented approach to writing queries.

If in the example above, the quantifier for all is replaced by the quantifier for

most, the COOL expression would remain the same with the exception of the quan-

CHAPTER 5. COOL AND EXTENDED RELATIONAL ALGEBRA 64

tifler:

COOL:

select * from Park

where location = California"

and for most Park's Forest

(f surf ace > 10

and for most Forest's Campground

(fireplace =

However, the SQL expression needs to be changed to:

select * from Park

where location = 'California''

and (select count (*) from Forest

where Forest.pcode = Park.pcode

and f surf ace > 10

and (select count (*) from Campground

where Campground.fcode = Forest.f code

and fireplace = "yes")

>

(select count (*) from Campground

where Campground.fcode = Forest.f code

and not (fireplace = "yes"))

)

''yes''))

CHAPTER 5. COOL AND EXTENDED RELATIONAL ALGEBRA 65

(select count (*) from Forest

where Forest.pcode = Park.pcode

and not (f surface > 10)

or (select count (*) from Campground

where Campground.fcode = Forest.fcode

and fireplace = ''yes")

<=

(select count (*) from Campground

where Campground.f code = Forest.f code

and not (fireplace = ''yes''))

)

COOL proves to have also an easy to use natural language structure, in the sense

that natural quantifiers are used much as in a natural language. COOL is unique

in the field of declarative languages in employing the genitive relations and natural

quantifiers, two new concepts of great expressive power.

5.2 Data Model

As mentioned before, COOL's data model is an object-oriented extension of the

relational model, the extended Non-First-Normal-Form(NFNF) data model. Instead

of normalized relations with atomic-value attributes, as required by the relational

model, the NFNF data model allows attributes that contain collections, for example,

sets of tuples or relations.

COOL's object data model allows the following as attributes of a non-normal-

CHAPTER 5. COL AND EXTENDED RELATIONAL ALGEBRA 66

form relation:

• atomic attributes (e.g.: numbers or strings),

• sets or lists of atomic values (e.g.: list of keywords in a document, or a list of

object identifiers to support a relationship),

• structure attributes obtained through aggregation (such as: Address or Date),

and

• derived attributes (a function that generates an attribute value from stored

attributes' values).

Each object instance in the COOL data model has a unique OlD generated by the

system. Primary keys can also be used as a meaningful key for the user that does

not have access to the OlD.

The COOL data model supports the following types of relationships: one-to-

many, many-to-many [Bra93a], ISA (one-to-one or generalization or class inheri-

tance) ,and recursive many-to-many or one-to-many. It also supports composite ob-

jects (aggregation) [Bra93b], aggregation functions (such as: countQ, sumo, avgQ,

and so on), and can be extended with user-defined functions (or methods), user-

defined data types (or Abstract Data Types), and to perform encapsulation of data

with methods.

5.3 COOL's Basic Concepts

COOL introduces two new concepts to the query language world: genitive rela-

tion and natural quantifier. These concepts give COOL the two unique features

CHAPTER 5. COOL AND EXTENDED RELATIONAL ALGEBRA 67

mentioned above: the object-oriented approach to writing queries and a natural

language structure.

The 00 specification syntax of COOL better fits the majority of cases in which

queries deal with aggregation and association of objects. The way in which SQL

specifies queries is set-oriented and is best suited to situations where it is natural to

deal with whole relations. Unfortunately these situations are rare, for example from

Date's well-known query [Dat9O]: "retrieve the suppliers that supply all parts listed

in the database".

5.3.1 Genitive relation

The genitive relation is a fundamental concept to COOL [Bra94]. It corresponds

to the genitive case construct from natural languages. In a query language, this

specification technique makes it possible to unambiguously refer to a set of related

tuples in a l:n or n:m relationship.

In order to specify for a certain object, a quantity of related objects that complies

with a given condition, COOL uses the following construct:

<quantifier> <related_objects> <(condition)>

The quantifier symbol could denote any common natural language quantifier: for

at least 2%, for the majority, for all, so on. The <related_objects> construct is

the genitive relation and defines a precise relationship between two object classes,

since there could be more than one.

Consider the 1:n relationship between Airline and Aircraft object classes. The

reference attribute that defines the relationship, or the reference list, is a set of

CHAPTER 5. COOL AND EXTENDED RELATIONAL ALGEBRA 68

OlDs of the Aircraft instances that belong to each Airline instance, and is called

Aircraft _list.

COOL syntax for the genitive relation used to specify the related object instances

of a relationship is: Airline. Aircraft -list *Aircraft (1). Thus, the relationship is

unambiguously specified by giving the names of the object classes involved and the

name of the reference list. When there is only one relationship between two classes

the name of the reference list can be omitted. In this case a more natural English-like

syntax can be used for the genitive relation: Airline's Aircraft (2). The English-

like syntax can be used also when there are more than one relationships between

Airline and Aircraft so that (1) can be written Airline's Aircraft-list Aircraft

(3).

Using the relational theory, the syntax above denotes the set of related Aircraft

tuples for the Airline tuple. Thus it specifies a relation that can be looked at as the

join of the Aircraft-list (regarded as a one column relation) and the relation Aircraft,

using the object identifier as the join field.

Since a genitive relation is a relation, a genitive relation name can also serve as

an implicit range variable or tuple variable in COOL, in the same manner as relation

names serve as range variables in SQL.

The COOL language syntax and semantics are presented in [Bra93a, Bra93b].

5.3.2 Natural Quantifiers

The use of natural quantifiers in query languages has been given a special attention

in a limited number of works. The earliest is [Cha78], where natural quantification is

permitted in a limited way in a system called DEDUCE-2 and [Bra78] where natural

CHAPTER 5. COOL AND EXTENDED RELATIONAL ALGEBRA 69

quantifiers concepts were proposed for a predicate calculus, called EOS. More work

on the use of natural quantifiers was done in [Bra83], where a natural quantifier

extension of SQL for non-recursive relationships (called SQL/N or SQL/NQ) was

proposed, and [Bra88], which introduced a relational algebra operation, called group-

select, that used natural quantification of related groups of tuples. In [Bra92c],

natural quantifier set theoretic techniques in SQL/NQ are extended for recursive

relationships.

The conventional predicate calculus permits only the existential and universal

quantifiers. These basic quantifiers are necessary and sufficient in predicate calculus.

Although SQL has its roots in predicate calculus, it attempts to 'simplify' the use of

quantifiers by replacing the universal quantifier with an equivalent double negation

of the existential quantifier. In the writer's opinion, instead of simplifying SQL,

this has resulted in users having to deal with highly contrived expressions in which

complex structures involving de Morgan's rules need to be used for otherwise quite

simple requests. Such requests often involve any of the large number of natural

quantifiers, available to the user of natural language. This difficulty, is eliminated

by the use of natural quantifiers in a declarative database language.

5.3.3 Genitive relation for 1:n, n:m, and composite 1:n relationships

Consider the Parks database composed only of parks (Park) and forests (Forest) to

which we add a new entity, tree species (Tree-Species). Further, let's consider an

object-oriented definition of this database which can be graphically represented in

an Object-Relationship diagram [Bra92b] as in figure 5.2.

The relationships between the object classes are: a 1:n relationship between Park

CHAPTER 5. COOL AND EXTENDED RELATIONAL ALGEBRA 70

pcode pname psurface province

Park

iu1n1dI fcode pcode Iname fsurface location
////y/ /

Forest

Tree—Species

Figure 5.2: Parks Database 2

and Forest (a park contains many forests), and a n:m relationship between Forest

and Tree-Species (a forest can have many tree species, and a tree species can be

found in many forests).

We can define different kinds of genitive relations with this database.

• Genitive relation for a one-to-many (1:n) relationship.

Query

Get the park name for each park located in Alberta with at least 4 forests larger

than 10 square miles.

COOL:

CHAPTER 5. COOL AND EXTENDED RELATIONAL ALGEBRA 71

select pname from Park

where province = "Alberta"

and for at least 4 Park.forest_list*Forest (fsurface > 10)

or

select pname from Park

where province = "Alberta"

and for at least 4 Park's Forest (f surf ace > 10)

The genitive relation is Park.forcst_list*Forest and is specified using the list of

references: forest-list. Alternatively, we can use the alias Park's Forest for the

genitive relation. Forest-list gives the list of forests larger than 10 square miles

for the related parks.

• Genitive relation for a many to many (n:m) relationship.

Query

Get the forest name for each forest larger than 10 square miles containing a

majority of cedar trees.

COOL:

select fname from Forest

where f surface > 10

and for most Forest.species_list*Tree_Species

(spname = ''cedar'')

or

CHAPTER 5. COOL AND EXTENDED RELATIONAL ALGEBRA 72

select fname from Forest

where f surface > 10

and for most Forest's Tree-Species (spname = 1'cedar")

Many-to-many relationships are symmetrical and a corresponding query for

the relationship in the opposite sense is:

Query

Get the name of the tree species which are hardwoods and cannot be found in

any forest located in Banff.

COOL:

select spname from Tree-Species

where woodtype = Hardwood''

and for no Tree_Species.forest_splist*Forest

(location = Banff'')

or

select spname from Tree-Species

where woodtype = ''Hardwood ''

and for no Tree_Species's Forest (location = 'Banff'')

When considering the tree species of a forest we use the genitive relations

Forest. species-list *Tree_Species or Forest's Tree-Species, and when considering

the forests that contain a certain tree species, we use the genitive relations

Tree_Species.forest_splist 'Forest or Tree_Species's Forest. The n:m relationship

CHAPTER 5. COOL AND EXTENDED RELATIONAL ALGEBRA 73

used in the above query example is specified in two lists of references, one in

Forest called species-list and one in Tree-Species called forest_splist.

• Composite 1:n genitive relations

In natural language a composite l:n genitive relation corresponds to: "C ob-

jects of the B objects of the A objects". Between A and B and between B and

C there are 1:n relationships. Suppose Blist is the set of related B instances

for a given A instance and Clist is the set of related C instances for a given B

instance. (The general case of a composite l:n genitive relation may involve

'N' levels of l:n simple genitive relations, but we restrict it to the most likely

case of N = 2.)

There are two possible ways for the user to construct a COOL expression

corresponding to a natural language composite genitive case between the classes

A and C (A's Cs, where there is a composite 1:n relationship between A and

C):

- Possibility (1). Specify it in COOL as one composite genitive relation,

such as A.Blist*B. Clist or A's B's C, and

- Possibility (2). Specify it in COOL using two simple (non composite) l:n

genitive relations, such as A .Blist *B (B. Clist *C) or A's B (B's C).

The two possibilities are both correct only when certain quantifiers are used.

In the overall majority of cases, however, the second possibility will give wrong

results. To see this, consider the query:

Name each park in Alberta where all the tree species of the forests (or all the

CHAPTER 5. COOL AND EXTENDED RELATIONAL ALGEBRA 74

tree species of all the forests of the park) have the tree maximum height greater

than 30 meters.

In the above query the composite 1:n genitive* relation, the tree species of the

forests of the park used with the quantifier for all, can be expressed in the two

forms shown above, as follows.

The COOL expression for possibility (1) is:

select pname from Park

where province = "Alberta"

and for all Park's Forest's Tree-Species (maxheight > 30)

The genitive relation used in the possibility (1) query is a single composite

genitive relation construct, Park's Forest's Tree-Species.

The COOL expression for possibility (2) is:

select pname from Park

where province = "Alberta"

and for all Park's Forest

(for all Forest's Tree-Species (maxheight > 30))

In the possibility (2) query, the composite genitive relation is expressed as a

combination of two genitive relations, Park's Forest, and Forest's Tree-Species.

In this case both possibilities are correct.

But suppose now that instead of the quantifier for all the second quantifier

specifies a quantity that is neither all nor nonzero, such as for more than 10,

for example, as in the query:

CHAPTER 5. COOL AND EXTENDED RELATIONAL ALGEBRA 75

Name each park where more than 10 of the tree species in its forests have the

tree maximum height greater than 30 meters.

This has COOL expression for possibility (1):

select pname from Park

where for more than 10 Park's Forest's Tree-Species

(maxheight > 30)

And for possibility (2) we might construct:

select pnaine from Park

where for all Park's Forest

(for more than 10 Forest's Tree-Species

(maxheight > 30))

This expression for possibility (2) is clearly wrong. Furthermore, there is no

quantifier we can use to replace for all to make it correct. And we cannot

even do it in an equivalent natural language expression. Therefore, in this case

we must use the composite genitive relation and one quantifier, which is

nothing else but, possibility (1).

In the case of a composite genitive relation we are not interested in the quantity

of instances from the intermediate classes, that satisfy the condition of the

query, all we are interested in is that a join would be possible between the

relations involved, Park, Forest, and Tree-Species. Therefore, possibility (1)

gives a correct specification for a composite genitive relation for any type of

CHAPTER 5. COOL AND EXTENDED RELATIONAL ALGEBRA 76

quantifier it uses. It also follows that composite genitive relations in COOL, as

with composite genitive case constructs in a natural language, are a necessity.

Possibility (2) works only in the few cases where the quantifier that would be

used in the equivalent possibility (1) construt is either the universal quantifier,

for all, as we saw above, or the existential quantifier, for at least one.

5.3.4 Composite Objects

Human thinking is object oriented and a user would prefer to work with composite

object instances when dealing with an aggregation-hierarchy database and not with

abstract concepts like relations or sets.

The user would prefer to retrieve and store composite object instances, manip-

ulate them with a programming language, have them displayed in a hierarchical

format and from a declarative language point of view, and specify the retrieval and

update of a composite object instance in terms of the values in that instance.

Consider an aggregation-hierarchy (or composite object) type of database, where

the relationships between the entities are mostly one-to-many and involve physical

containment or attachment.

For example consider the Provincial parks database with the added object classes

Lake and Tree. A park(Park) can contain many forests (Forest) and lakes (Lake).

A Forest instance can contain many trees (Tree). Many trees (Tree) can have the

same species (Tree-Species), but a tree can belong to only one species. The Object-

Relationship diagram for this database is shown in figure 5.3.

The data for a specific park forms a composite object instance involving specific

Park data and its contained Forest and Lake instances, with in turn for each Forest

CHAPTER 5. COOL AND EXTENDED RELATIONAL ALGEBRA 77

instance, the contained Tree instances.

Let's consider the following composite object retrieval:

Give full details about Alberta's parks that have at least one forest with most of

it's trees spruce trees and with all of its lakes deeper than 4 meters.

The retrieval of the composite object instances is written in. COOL, as:

COOL:

select * from Park

where province = ccAlberta)

and for at least I Park's Forest

(for most Forest's Tree

(for its Tree's Tree-Species

(spname = 'spruce'')))

and for all Park's Lake (depth > 4)

* from forest-list

* from lakes-list

* from tree-list

CHAPTER 5. COL AND EXTENDED RELATIONAL ALGEBRA

Park

78

Figure 5.3: Parks Database 3

A composite object (CO) defined as in above can be made into a composite object

view, by means of a create composite object [view] command, that can also name

the CO. Also the CO can be concentrated (certain subobjects are omitted from a

composite object using supplementary conditions). The concentrated CO can be

put in a view as well. Language constructs for retrieving, concentrating and creating

views of composite objects are presented in [Bra93b].

CHAPTER 5. COOL AND EXTENDED RELATIONAL ALGEBRA 79

5.3.5 Functions

The functions in COOL can be used to compute non stored attributes from other

attributes specified in the database definition. An example would be the function

AreaQ, for use in calculating the area of a spherical object when the radius is a

stored attribute. Let's take the following xample: A Sphere object class is defined

as:

COOL:

create obj cis Sphere

(S# char(4),

x int,

y int,

z int,

r int

area() int function,

)

where x, y, z are the coordinates of the center and r is the radius. Area() and

Volume() functions can be defined as non stored attributes on stored attributes of

the Sphere. If the stored attributes are all private and only function attributes are

public, a partial encapsulation is accomplished.

COOL can use special purpose user-written functions defined as attributes as

well, such as the function OverlapQ. Overlap() can be defined for use with Sphere

objects. It would be true if a specified sphere physically overlaps the Sphere instance

for which a condition written in COOL, holds.

CHAPTER 5. COOL AND EXTENDED RELATIONAL ALGEBRA 80

COOL:

select s# from Sphere

where overlap(select s# from Sphere

where = 8 and = 10 and z = 15 and r = 20)

or

select s# from Sphere

where overlap(s2)

would retrieve those Sphere instances that overlapped the specific Sphere specified

in the COOL expression used as a function parameter.

5.4 Extended Relational Algebra operations

The reduction of natural quantifier expressions defined in COOL requires special re-

lational algebra operations. An Extended Relational Algebra (ERA) has been devel-

oped for COOL and was presented in. [Bra94]. It consists of conventional relational

algebra operations (select, project, join, intersection, union) and three unconven-

tional operations: group-select, subgroup-select and possibility join.

5.4.1 Group-select operation

This operation is found to be useful for efficiently reducing a natural quantifier

expression (i.e. an expression with a quantifier in it, e.g.: for at most 10 Park's

Forest). It adds counting facilities to conventional algebra. Group-select operation

was first introduced in [Bra88].

The group-select operation has the syntax:

CHAPTER 5. COOL AND EXTENDED RELATIONAL ALGEBRA 81

RR 'group-select(R (q S (c)))

The group-select of relation R with the foreign key called S is a relation RR that

contains all groups of tuples with the same attribute value of S from R, provided for

each of them a quantity q of tuples satisfies the condition c.

As an example of a query with the quantifier for all, on the database from

figure 5.3, consider:

Query

Get the name of each park with all of its forests having the area greater than 15

square miles.

COOL:

select pname from Park

where for all Park's Forest (f surface > 15)

ERA:

Ri = group-select (Forest (for all pcode (f surface > 15)))

R2 = Park(pcode) join R1(pcode)

Ft3 = project (R2 (pname))

Relation RI will contain all the groups of tuples from Forest such that, within each

group of Forest tuples with the same pcode value, all the tuples of the group satisfy

the condition that fsurface is greater than 15. In order to get the information we

need about parks, relation RI will be joined with relation Park, on the attribute

pcode, giving the result R2. Furthermore, the desired result will be obtained by

projecting R2 on the field pname.

CHAPTER 5. COOL AND EXTENDED RELATIONAL ALGEBRA 82

The general form of a retrieval that involves a group-select operation is:

Retrieve each RP tuple for which a RP condition (compound condition involv-

ing RP attributes: Pal,..., Pan) holds and for which a specific quantity of related

RCJ tuples obey the RCl-condition (a compound condition involving RC1 attributes:

Clal, ... ,Clan).

RP and RC1 belong to the following hierarchy of relations:

RP (P, Pal,.. .,Pan, RC1_list,..., RCn_list) (5.1)

RC1 (P, Cl, Clal Clan, RC11_list,.. .,RC1n_list) (5.2)

where there is a 1:n relationship between RP and RC1, supported by the reference

list R.ClJist.

The general COOL expression and ERA routine are:

COOL:

select * from RP

where (RP-condition)

and quantifier RP.RC1_list*RC1 (RC1_condition)

ERA:

RO = select (RP (RP_condition))

Ri = group-select (Rd (quantifier P (RC1...condition)))

R2 = RO(P) join R1(P)

R3 = project (R2 (*))

CHAPTER. 5. COOL AND EXTENDED RELATIONAL ALGEBRA 83

5.4.2 Possibility Join

As shown in the previous section group-select operation solves the problem of re-

duction of natural quantifier expressions with a single level of nesting. Quantifier

expressions with more than one level of nesting can be solved by the possibility join

operation combined with group select. A nested natural quantifier expression is an

expression with a natural quantifier, in which a further expression with a natural

quantifier is embedded. An example later will make this clear.

The possibility join (pjoin) operation applied to relations A and B, is written as:

RR = A(m) pjoin(p) B(m)

In the result relation RR there will be placed every tuple from A plus an additional

attribute p, called the join possibility attribute. The value of p in an RB. tuple

is true if there is a tuple in B with the same m value, otherwise it is false. Thus the

p attribute in an RR tuple indicates whether or not it is possible to join a A tuple

with a B tuple. The pjoin operation resembles the outerjoin operation. The only

difference is the supplementary field that is added to the result.

Consider a retrieval with 2 levels of natural quantifier expressions:

Find the parks located in British Columbia, where most forests are larger 15 square

miles and have all the trees planted before 1989.

COOL:

select pname from Park

where location = British Columbia"

and for most Park.forest_list*Forest (f surf ace > 15

and for all Forest.tree_list*Tree (planted < 01011989))

CHAPTER 5. COOL AND EXTENDED RELATIONAL ALGEBRA 84

ERA:

Ri = group-select (Tree (for all fcode (planted < 01011989)))

R2 = Forest (fcode) pjoin(p) Ri (fcode)

R3 = select (Park (location = "British Columbia"))

R4 = group-select (R2 (for most pcode (f surf ace > 5 and p)))

R5 = R3(pcode) join R4(pcode)

R6 = project (R5 (pname))

Ri will contain all the groups of tuples from Tree that have the value of attribute

fcode matched with the value of fcode from Forest, and within each group of Tree

tuples with the same fcode value, all the tuples satisfy the condition that the date

of plantation, planted is less than the Jan 1st 1989.

The pjoin operation has placed in R2 all the Forest tuples joined with the Ri

tuples on the field fcode, and has concatenated each of the resulting tuples with a

an attribute p. The value of p, corresponding to a Forest tuple, is true if there is

a tuple in Ri with the same fcode value, otherwise it is false. However, the only

case when p = false is taken into account is the case of for majority or for most

quantifier. R2 is further processed by a group-select operation that will select all

the groups of tuples from R2 that have the value of pcode matched with the value

of pcode from Park and within each group most of the tuples satisfy the condition

fsurface > 5 and have a true value for p, that is the tuples could be joined with

the tuples in Ri. The result of group-select, R4 is further joined with selected tuples

from Park, for which location = "British Columbia". The final result R6 is obtained

by projecting the result of the previous join on the field pname.

CHAPTER 5. COOL AND EXTENDED RELATIONAL ALGEBRA 85

In the general case of possibility join, we have added a third level to the hierarchy

in (5.1) and (5.2), such as:

RC11 (Cl, Cli, Cilal,. . ., Man, RC111\...list,.. ., RC11n_list) (5.3)

so that the general COOL expression for this three level hierarchy is:

select RP-attribute-list from RP

where (RP-condition)

and Ciquantifier RP.RC1_list*RCI (RC1-condition

and Cliquantifier RC1.RC11_list*RC11 (RC11-condition))

The expressive power of COOL becomes clearer when one reflects that the above

expression can involve nested quantifier expressions with many different types of

quantifiers. Writing the equivalent in SQL would involve a large set of quite complex

SQL expressions, often requiring the use of De Morgan rules with nested expressions.

The equivalent ERA routine is:

Ri = group-select (RC11 (Cliquantifier Cl (RC11-condition)))

R2 = RC1(Cl) pjoin(p) RI(CI)

R3 = group-select (R2 (Ciquantifier P (RC1-condition and p)))

R4 = select (RP (RP-condition))

RS = M(P) join R3(P)

Ft6 = project (R5 (RP_attributelist))

5.4.3 Subgroup-select

If in the group-select instead of the requirement that the quantity q of the tuples of R

with the same foreign key value A satisfy a condition c, we have the requirement that

CHAPTER 5. COOL AND EXTENDED RELATIONAL ALGEBRA 86

a quantity q of selected tuples of R with the same A value [that satisfy a condition

ci] also satisfy the condition c2, then a subgroup-select operation can be defined.

A subgroup-select operation is defined as follows:

RR = subgroup-select (R (q (A(ci)) (c2))),

This specifies that RR will contain the sets of tuples of R with the same value of

attribute A, such that: for each such set of R tuples, a subset of tuples for which ci

holds is considered, and if the quantity q of this subset satisfies c2, the original R

set is placed in RR, otherwise it is not.

For example, compare the two retrievals:

• Retrieval type A

Get the names of parks located in. Washington state where most of the lakes are

over 6 meters in depth and are larger than 5 square miles.

COOL:

select pnaine from Park

where location = "Washington"

and for most Park.lakes_list*Lake (depth > 6

and lsurf ace > 5)

• Retrieval type B

Get the names of the parks with most of the over-6-meter-deep lakes are larger

than 5 square miles.

COOL:

CHAPTER 5. COOL AND EXTENDED RELATIONAL ALGEBRA 87

select. pname from Park

where location = " Washington''

and for most Park.lakes_list*(Lake (depth > 6))

(lsurf ace > 5)

In example B we need a specific quantity, for most of not just the lakes of a park,

but for most of the lakes over 6 meters deep, that is, for most of a specific subset

of the lakes of the park.

The type of the quantifier is very important in retrievals of type B. With an

existential type of quantifiers, for example, at least 2, at least 4, etc., retrievals

of type A and B above are equivalent. The retrievals of type A and B become

fundamentally different when a universal type quantifier is involved. A universal

type quantifier, such as for all, for all but 2, for one and all, for most [of all],

refers to all of the tuples from the group being evaluated, and of course we do not

know in advance what constitutes this group. That is why we need to select a group

of tuples by applying condition ci first to R tuples with the same A value and then

narrow the selection by applying the condition c2 and the quantifier to the group of

tuples initially selected.

ERA routine for query B is:

Ri = select (Park (location = "Washington' '))

R2 = subgroup-select

(Lake (for most (pcode (depth > 6)) (lsurf ace > 5)))

R3 = Ri(pcode) join R2(pcode)

R4 = project (R3 (pnanie))

CHAPTER 5. COOL AND EXTENDED RELATIONAL ALGEBRA 88

A general retrieval of type B, is:

Retrieve each RP tuple for which RP-condition (compound condition involving

attributes Pall..., Pan) holds and for which a specific quantity of all of the related

RCJ tuples for which RUl-conditioni (condition involving RU1 's attributes) holds,

obeys the RC1-condition2 (condition involving attributes Clal,...,Clan).

The equivalent COOL expression is:

select * from RP

where RP-condition

and quantifier RP.RCI_l±st*(RCI (RCI(RCI-conditionl))

(RC1-condition2)

and reduces to: ERA:

Ri = select (RP (RP-condition))

R2 = subgroup-select

(Rd (quantifier (P (RC1-conditionl)) (RC1-condition2)))

R3 = R1(P) join R2(P)

BA = project (R3 (*))

Chapter 6

Implementation

6.1 Overview and general issues

For the prototype implementation of COOL there were essentially two choices:

1. Implementing a completely new database system based on the data model, and

2. Building a front-end system on top of an existing system.

Since building a completely new DBMS with all the necessary components is a

complex task that requires large time resources, the second option of a front-end to

an existing relational database system (e.g.: Sybase, Oracle), was adopted.

There are two basic methods of reducing COOL expressions:

1. The reduction of COOL directly to SQL, and

2. The reduction of COOL expressions to Extended Relational Algebra (ERA)

routines.

The first approach of translating COOL expressions directly into collections of

SQL expressions would result in a system which would not be useful at some later

time if a complete object-relational DBMS were to be built.

An approach that would offer portability and flexibility for future development

of a full DBMS is the second approach that requires the reduction of COOL ex-

pressions to ERA routines. The ERA routines could be converted into SQL or into

89

CHAPTER 6. IMPLEMENTATION 90

programming language routines (such as C or C++). But converting ERA routines

to C/C++ routines is equivalent to the building of a complete DBMS, an option

that we have already rejected. Thus, the best choice of the prototype implemen-

tation of a front-end system is the translation of COOL to ERA routines and then

to SQL expressions. Since SQL is a standard, the prototype front end can run on

any relational system. However, the current prototype version of COOL has been

implemented as a front end for the Sybase storage manager. It was also written in

C.

6.2 Comparison with other prototype implementations

Other developers have taken a similar approach to prototype implementations. An

example is OSCAR (Object management System Clausthal, Approach: Relational),

described in [HFWC91]. OSCAR's data model, called EXTREM (EXTended REla-

tional Model) is a semantic data model (a subset of IFO semantic model) equivalent

to an extended nested relational model whose algebra can be mapped to conven-

tional relational algebra. A prototype of OSCAR was implemented on top of IRIS

relational storage manager.

There are also developers who have reduced language expressions directly to SQL.

For example, in [KR9O] is described an object-oriented SQL front-end (OOSQL) for

the IBM DB2 relational database. The OOSQL commands are translated by the

OOSQL interpreter into DB2 SQL statements.

The prototype front-end for COOL was designed as a three-layered application.

1. The first layer is a shell interface that accepts the command statements for

CHAPTER 6. IMPLEMENTATION 91

COOL source file translation and outputs the results, or error messages, gen-

erated by the database system.

2. The second layer is responsible for the first step of COOL translation. COOL

statements (filename.cool) are reduced to Extended Relational Algebra routines

and data structures are prepared for the following layer.

3. The third layer handles the translation of ERA routines (filename.era). ERA

routines are translated to a set of SQL statements (filename.sql). Catalog

management is also performed in this layer.

6.3 Implementation Design of COOL's object model

The object-oriented data model of COOL follows the object-relational approach

[SRL9O], that is, it includes 00 extensions to the relational model.

6.3.1 Implementation levels

The implementation employs three levels of abstraction. Beginning with the highest,

we have:

1. Conceptual level. This level uses a structurally object-oriented or seman-

tic database model, such as the Entity Relationship model extended by ISA

relationships and complex attributes.

2. Extended relational or object-oriented level. This level uses an extension

of a non-first-normal-form relational model and is an equivalent representation

of the E/R concepts of the previous level.

CHAPTER 6. IMPLEMENTATION 92

3. Conventional relational or implementation level. This level is used as

a basis for the prototype implementation and is an equivalent representation

using the conventional relational model of the previous two levels.

A similar approach was used in [HFWC91] for the implementation of an object-

oriented database system with an object algebra based on a modified nested relational

algebra.

An aircraft maintenance database, was chosen to be used for example queries

throughout of this chapter. The schema of this database, which at the conceptual

level uses a data definition language proposed in [SS91, 0at91, Bra93a] for an object-

oriented data model obtained by extending the relational model, is shown in the

Appendix B.

The aircraft maintenance database has a network database structure containing

one-to-many (l:n), many-to-many (n:m), and recursive many-to-many relationships.

How COOL's 00 schema above can be mapped into the conventional relational

schema is shown by drawing the diagrams corresponding to the three levels of abstrac-

tion. These three levels are illustrated in figure 6.1 and in figure 6.2 (the conceptual

level), in figure 6.3 (the object-oriented level), and in figure 6.4 (the implementation

level).

At the conceptual level (figure 6.1 and figure 6.2) we distinguish between entity

sets or object types, relationship types and attribute values of these entity types

belonging to attribute types. Every entity type has underlying attribute types.

Every relationship type can also have underlying attribute types (e.g.: relationship

'owns' in figure 6.1 and in figure 6.2). Attribute types can be simple, such as strings

CHAPTER 6. IMPLEMENTATION 93

and integers (e.g.: description), or constructed via constructors such as set (e.g.:

Aircraftlistin figure 6.1). For each entity set we can define a set of keys consisting

of attribute or relationship type. As a special case, relationships can be restricted to

be 1:1 or l:n by these keys. In figure 6.1 and figure 6.2, rectangles represent entity

types. Empty ovals represent simple attributes. Bold ovals represent constructed

attributes. Diamonds represent relationships.

At the extended-relational level or the 00 level (figure 6.3), the conceptual level

is mapped into the NFNF relational level, as follows. Each object type describes a

set of object instances with identical structure. An object type maps into a NFNF

relation and implicitly each object instance maps into a NFNF tuple. For eah

object instance, a system generated unique object identifier (OlD), will be assigned.

Relationships are mapped into reference attributes (e.g.: Job-list is a set of Jobs).

The extended-relational level maps into the conventional relational level or the

implementation level (figure 6.4), as follows. Each NFNF relation maps into a con-

ventional relation and each NFNF tuple maps into a conventional tuple. For mapping

the reference attributes (sets or lists) that describe the relationships between the ob-

ject classes, we have different approaches. Some of them were discussed in Chapter

2.

CHAPTER 6. IMPLEMENTATION 94

Ownership_listA

Aircraft list
-

(AC#

fabricant

Cype

$ervice_listA

Service_listS).

(sv—

(escription

(scripti

(Job_listS

hqadd

Airline

flies

Aircraft

'is
given

Service

carries
out

Service—Project

performs

(descry I
C start) f

Cemp—nuDm

PartjistA

offers

executes

status)

\
----.----

LMamae_P0t I

— ._[Technician

Parts on Board I
L

Figure 6.1: The Entity Relationship diagram for the conceptual level of the aircraft
maintenance database, parti

CHAPTER 6. IMPLEMENTATION 95

LiAirline ii

(offers >
\ /
\/

/
/ \

<eecutes>
\ /

Job_listT

contains

location

Maintenance Depot

Technician

has
contained

parts

Parts—on—Board

employs

ner_parts

has
containing

parts

Construct

location

status

address

Ownership_lis

Service listM
_

Technician_
 Dst

arLlistM)

art_listP)

Ship-lists

Outer_parts

PartjistS

typename

Supplier

Ship_listS

supplies

Shipment_Data

Figure 6.2: The Entity Relationship diagram for the conceptual level of the aircraft
maintenance database, part2

CHAPTER 6. IMPLEMENTATION 96

With reference to figure 6.3 the following diagrammatic conventions are used:

• Bold rectangle -> object class.

• Normal rectangle -> reference attribute.

• Dashed rectangle -> foreign key reference attribute.

• Hatched rectangle -> primary key.

• Shaded square -> object identifier.

With reference to figure 6.4 the following diagrammatic conventions apply:

• Bold rectangle -> relation.

• Normal rectangle -> foreign key.

• Shaded rectangle -> primary key.

97 CHAPTER 6. IMPLEMENTATION

Ownelist_A

Airclist

Parti st_A

Airline

Aircraft

Servltst_A

SaM st_S

LCLI_1P# I
Service

Ownelist_M

Servlist_M

Service_Project

Partlist_P Shtptist_P

PartType_Inventory

Inner—parts Outer_parts

Part ist_M

Maintenance Depot

Techlist

Ly_1j# I
Job

PT—outer Li PT inner I

Shiptist_S

Supplier

 /
Parttist_S A

 ivri
Shipment_Datr

Figure 6.3: The Object Relationship diagram for the object level of the aircraft
maintenance database

CHAPTER 6. IMPLEMENTATION

AT

Aircraft
L:*p,

Service

Service—Project

Maintenance Depot

Depot Ownership PartType_Inventory

PT_outer

Technician I I

Job

I
AC# - FI'# - S#

Parts_on_Board

Construct

Supplier

Shipment—Data

98

Figure 6.4: The relational diagram for the implementation level of the aircraft main-
tenance database

CHAPTER 6. IMPLEMENTATION 99

6.3.2 Mapping relationships into the relational model

Basically the aircraft maintenance database can be regarded as a collection of rela-

tions that participate in 1:n relationships. Many-to-many and the recursive many-

to-many relationships in the database are supported using 1:n relationships.

The 1:11 relationship between object classes can be implemented in the relational

model either (1) as a relation or (2) using the classical concepts of primary key and

foreign key, where the foreign key is stored in the child relation of the l:n relationship.

For the second approach I had the choice of using either OlDs or the primary keys

of the related classes, as foreign keys.

In the current implementation I have combined the two approaches. If the

database has primary keys and foreign keys at the conceptual level, these keys should

be kept in the schema, because this is the way in which the user can define relation-

ships. At the internal level, though, an OlD could replace the primary key, and

implicitly the foreign key values.

However, when a new object instance is inserted into the database any matching

between instances of related object classes is accomplished by mean of the values of

primary and foreign keys, because the user does not have access to the OlD. For this

reason I decided to use primary key values and not OlDs as foreign keys.

A l:n relationship was also implemented as a table (relation) containing matching

OlDs of the parent object instances and of the children object instances. The 1:n

relationship tables are created dynamically and maintained by the system. The user

does not have access to them. Further details about these tables will be given in the

COOL object catalog section.

CHAPTER 6. IMPLEMENTATION 100

Thus, I use the foreign key concept because is closer to the user's view of the

database and I use the table to implement relationships because it makes it easier

to upgrade the system to support direct n:m relationships. A many-to-many (n:m)

relationship between relations A and B can usually be expressed as a join of two 1:n

relationships between each A and B and a third relation Z.

If the n:m relationship is implemented as two l:n relationships, such as A l:n Z

and B l:n Z, then the direct link A n:m B can be obtained by joining the tables

that implement the relationships A to Z and B to Z. Tables A and B must contain

the primary key or OlDs of Z. Thus, an n:m relationship can be implemented either

using two relationship tables, where each table implements a l:n relationship, or it

can be implemented as a single table.

For n:m relationships, the single table solution will require less computation time,

but will need more storage space; instead of a join between two tables to get the

related tuples of the n:m relationship, with a single table solution the join is already

there in the relationship table.

6.4 Design and implementation of the Data Definition Lan-

guage (DDL)

In relational databases, a DDL is used to specify the database schema. A concep-

tual database schema specifies a set of entity types. For each entity type, a set of

attributes with their domains, as well as integrity constraints on the domains, are

also specified. The DDL for COOL is specified in the same way.

The DDL for COOL contains a CREATE OBJECT CLASS statement. For the

CHAPTER 6. IMPLEMENTATION 101

CREATE statement syntax two implementation approaches were considered.

1. A class and its relationships must be declared in the same CREATE statement,

2. A class and its relationships must be declared separately.

In the current implementation the first approach was chosen, so that a class and

its relationships are specified in one CREATE statement. This option was chosen

because insert operation involving child instances needs information about the parent

of such children and this information is provided by the super key (super key has

the same meaning as foreign key). The second approach is analyzed in Chapter 8.

The syntax for the CREATE STATEMENT, in BNF format, is as follows:

<create_objectcls>

CREATE OBJEECT] CL[AS]S <objectcls>

('<objectcls_element_commalist>

<obj ectcls_element_commalist> =

<obj ectcls_element>

I <objectcls_element_conunalist> ',' <objectcls_element>

<objectcls_element>

<atribute_def>

I <obj ectcls_key_def>

<attribute_def> :

<attribute> <attribute_type>

<objectcls_key_def> :

CANDIDATE KEY '(' <attribute_commalist>

I PRIMARY KEY <attribute>

CHAPTER 6. IMPLEMENTATION 102

I SUPER KEY '(' <relationship_field_commalist>

<relationship_field_commalist> : : =

<relationship_field>

I <relationship_field_conunalist> ',' <relationship_field>

<relationship_field>

<attribute> '(' <parent_objectcls>

[': <reference_attribute> ')']

<attribute_commalist>

<attribute>

I <attribute_commalist> ',' <attribute>

The ISA relationship was not implemented. The relational algebra for imple-

menting an ISA relationship is discussed in Chapter 8.

The declaration of an 1:1 or ISA relationship can be done inside the CREATE

statement, in the < obj ectclsJey_def > definition, by adding:

SUPERCLASS KEY '(' <relationship_field_commalist> ')'

Some examples of CREATE statements for the aircraft database are:

create object class Airline

(AL# CHAR(2),

hqadd char(3O),

emp_num int,

primary key AL#

);

create obj cl Service

CHAPTER 6. IMPLEMENTATION 103

(S# char(4),

AC# char(4),

MD# char(4),

description char(80),

primary key S#,

super key (AC# (Aircraft), MD# (Maintenance-Depot))

create obj ci Construct

(code# char(4),

PT-outer char(4),

PT-inner char(4),

location cha.r(1O),

primary key code#,

super key (PT-outer (PartType_Inventory: containing_parts),

PT-inner (PartType_Inventory: contained_parts))

);

Candidate keys (see CANDIDATE KEY in the CREATE STATEMENT above)

are allowed for user convenience, but have no other system significance. Any unique

attribute that can serve as a primary key is a candidate key.

Reference attributes names are optional in the syntax definition (see the AC#

and MD# in the definition of the object class Service and also figure 6.3). If they

are not supplied by the user, the reference attribute names will be generated by the

system, as unique combinations between the names of the connected classes. When

CHAPTER 6. IMPLEMENTATION .104

there is more than one relationship defined by reference attributes between the same

two object classes (see PT-outer and PT-inner in the definition of class Construct

and also figure 6.3), it is better if the user gives meaningful names for the reference

attributes, instead of leaving this task to the system. The system uses a combination

of the names of the parent and child object classes to generate a reference attribute

name.

The attribute types implemented are integers and strings of characters. The

primary key is a single field primary key. The primary key gives the user useful

information. It can be replaced by the OlD, but then we gain efficiency (we eliminate

an attribute) to the detriment of information. A composite primary key would not

change the translation algorithm. However, an increase in complexity would appear

in the join operations on the primary key 'field' (in ERA expressions) that translate to

multiple SQL joins. Composite primary keys are avoided by defining a new attribute

as primary key. Another way to avoid composite keys is by declaring OlDs as primary

keys.

6.4.1 COOL's Object Catalog

The term COOL's Object Catalog is used to refer to all the Sybase tables that need

to be generated by the system, in order to built COOL's object-oriented constructs,

such as genitive relations and object identifiers.

COOL's Catalog tables are:

• A. The table cool-objects. This table is used for generating unique OlDs

for object instances, and contains the following information:

CHAPTER 6. IMPLEMENTATION 105

- class-name defines the object class name, and

- next_id# is the next value to be assigned to a new object instance in that

class.

SQL:

create table cool-objects

(class-name char(30),

next_id# mt

)

The OlD generated is unique in each class. If the class-name were not associ-

ated with the OlD, then the uniqness of an OlD for the whole database could

be achieved by appending a class code to the OlD. This is particularly useful

when defining complex objects. If instead, the system had been designed to

generate a unique object instance OlD for the whole database without keep-

ing track of the class an object instance belongs to, this would have been a

poor design because of the loss of the link between object instance and object

class. The algorithm for generation OlDs is the simplest possible to assure

uniqness for a code: just allocate a positive integer to the current OlD, and

then increment it by one.

• B. The table cool-keys. This table keeps track of the keys defined in a

CREATE statement , and contains the following information:

- class-name defines the object class name,

CHAPTER 6. IMPLEMENTATION 106

- key-name defines the name of the key, and

- key-type is a codification for the type of the key.

SQL:

create table cool-keys

(class-name char(30),

key_name char(30),

key-type char(20)

)

The table cool-keys is necessary because the keys defined.in a CREATE state-

ment have different meanings from the keys in Sybase.

In the field key-type are stored codes for primary keys, reference lists, candidate

keys and super keys. The code of a super key specifies also the name of the

reference list that corresponds to the superkey (e.g. class-name = "Aircraft",

key-name = "AL#", key-type = "5K Airclist_Air", where Airclist_Air is the

name of the reference-list that implements the l:n relationship between the

parent Airline and the child Aircraft.

Table cool-keys is updated every time a new object class is created or dropped

and table cool-objects is updated every time an object instance is inserted.

• C. Tables that implement 1:n relationships (or genitive relations). The

name of each relationship table is generated from the name of the parent class,

child class and the reference-attribute (i.e. the name of the relationship). The

CHAPTER 6. IMPLEMENTATION 107

relationship tables are created or updated whenever child instances are inserted

or deleted in the database.

A relationship table has two attributes:

1. The OlD of the parent object and

2. The OlD of the related children object.

The prototype system maintains the object catalog tables using the Sybase in-

terface DB/Library to the SQL manager [Syb91a].

6.5 Translation of COOL

The translation of COOL DML select expressions is carried out in two steps:

1. Translation of COOL to ERA, and

2. Translation of ERA to SQL.

Since COOL is a declarative database language, it has a DDL and a DML. Among

the statements of the DML, only the select statement is translated to ERA routines.

All the other manipulative statements (delete, update, and insert) and the create

statement are translated directly to SQL.

The implemented COOL's grammar is in Appendix A. In writing the translators

two compiler-construction tools (Unix packages) were used, namely lex and yacc

[MB9O]. Besides their help for automatic design of specific compiler components,

these tools make the future development of the language much easier (instead of

modifying a program, one needs to modify only a short specification). Basically a

CHAPTER 6. IMPLEMENTATION 108

compiler is a program that reads a text file that contains program code written in

a source language and translates it into an equivalent program written in a target

language [ASU86]. The basic phases of a compiler are (1) lexical analysis, (2) syntax

analysis or parsing and (3) code generation.

The first phase consists of a lexical analyzer whose job is to scan the source

file and match sequences of characters that identify tokens. Tokens are essentially

sequences of characters having a collective meaning. Lex reads a specification file

and generates a C routine that performs lexical analysis based on a finite automata.

The lex specification contains the regular expressions for pattern matching and the

actions associated with them. The actions in a lex specification consist of C language

statements that return the token number and value, if any.

In the second phase of a compiler, a parser reads tokens of the source program

and assembles them into grammatical phrases. Further on, the grammatical phrases

are used by the third phase of the compiler to synthesize the output. Yacc reads a

specification file that codifies the grammar of the source language and generates a C

parsing routine. The yacc specification contains the source language grammar rules

and the corresponding semantic actions.

When the parsing routine detects a sequence of tokens that corresponds to a

grammar rule, an associated action is executed. The actions in yacc are one or more

C statements that make use of the values of tokens either to generate output or to

pass the value to other routines in the program. Many programming languages have a

recursive structure that can be defined by context-free grammars. The most common

notation used to describe a context-free grammar is known as BNF (Backus-Naur

Form). The grammar rules in the yacc specification closely follows BNF. COOL's

CHAPTER 6. IMPLEMENTATION 109

grammar is also a context-free grammar [Sal73}.

6.5.1 First step. Translation of COOL expressions to ERA or/and SQL

This step was implemented as a separate compiler that reads a file of COOL ex-

pressions and translates it into a file of ERA routines in the case of COOL 'select'

expressions, or into a file of SQL expressions for other COOL expressions. The lex

file for this step will contain the regular expressions for COOL's tokens and the asso-

ciated actions, and the yacc file will contain the COOL's grammar production rules

and the corresponding actions for code generation in ERA or SQL.

6.5.2 Reduction of COOL Queries to Extended Relational Algebra (ERA)

In generating ERA routines, basic rules in query processing optimization have been

applied everywhere. Some of the rules are:

• perform selection and projection first,

• replace a join by a semijoin, and

• reorder operations to reduce intermediate relation size.

I have also applied my own rule: keep only what is needed for the next step.

A COOL query (or select statement) has an SQL-like structure, SELECT /

FROM / WHERE. In COOL, selection specified in the SELECT field is carried

out only on attributes belonging to the class specified in the FROM field. Only one

class is allowed in the FROM field. The WHERE expression is the most complex

one, because it specifies nested quantifier expressions involving the relationships (l:n,

n:n, recursive many-to-many) associated with desired class. The relationships are

CHAPTER 6. IMPLEMENTATION .110

embodied in COOL by the construct called the genitive-relation, which was intro-

duced earlier.

The translation process of the COOL queries was built using a top-down ap-

proach. Beginning with simple queries, basic translation rules were developed.

Queries are basically one level (simple) or multiple nested levels (complex). For

the nested queries with multiple levels an induction approach was used. This in-

volves generating the algebra routines for a one and two levels of nested queries, and

then generalizing the algorithm for n levels. The following translation rules were

applied: (1) translation starts with the where clause, if the where clause is not

empty and the query is one level query, (2) if the query has multiple nested levels,

the translation starts with the deepest level. Since a yacc grammar was used, the

derivation rules establish the order in which grammar rules are reduced.

In the following sections different types of genitive relations involved in nested

COOL query expressions will be analyzed in the context of reduction of these expres-

sions to ERA routines. The genitive relations analyzed are: simple parent-to-child,

composite parent-to-child, simple child-to-parent, composite child-to-parent. For

each of the genitive relation types above we analyze two cases: one level queries and

multiple levels (or nested) queries.

6.5.3 Parent-to-Child Genitive Relations

1. Simple Parent-Child genitive relation corresponding to a 1:n relation-

ship.

la) One level query.

When a parent and its children are involved in a query we will deal with only

CHAPTER 6. IMPLEMENTATION in

one level of quantifier expressions (or expressions that define a quantity of related

instances).

For example, suppose we take the retrieval:

Get full details of each Airline headquartered in NY that uses only Boeing aircraft.

The COOL expression is:

select * from Airline

where hqadd = ''NY''

and for all Airline's Aircraft (fabricant = "Boeing");

The above query has the following equivalent ERA routine:

RO = group-select

(Aircraft (for all AL# (fabricant = " Boeing ")))

Ri = select (Airline (hqadd = "NY"))

R2 = project (RI (AL#))

R3 = RO (AL#) join Airline (ALit)

R4 = project (R3 (AL#))

R5 = R4 intersect(AL#) R2

R6 = R5 (AL#) join Airline (AL#)

R7 = project (R6 (*))

If instead of and for all Airline's Aircraft we have had or for all... , R5 from the

ERA routine will become R5 = R4 union R2. Thus, as a general rule, in COOL

expression, ands will generate intersections and ors will generate unions in the

corresponding ERA routine.

CHAPTER 6. IMPLEMENTATION 112

Suppose now that we have one parent with two children involved in the query,

and consider the retrieval:

Give the airline codes for the airlines with headquarters in San Diego that fly

mostly MacDonald Douglas aircraft and own outright at least 2 maintenance depots.

The COOL expression and the corresponding algebra will be as follows:

COOL:

select AL# from Airline

where hqadd = 'San Diego''

and for most Airline's Aircraft (fabricant = 'MacDonald Douglas'')

and for at least 2 Airline's Depot-Ownership (share = 100);

ERA:

RO = group-select

(Aircraft (for most AL# (fabricant = "MacDonald Douglas")))

Ri = group-select

(Depot-Ownership (for at least 2 AL# (share = 100)))

R2 = RO intersect(AL#) Ri

R3 = select (Airline (hqadd = "San Diego"))

R4 = project (R3 (AL#))

R5 = R2 (AL#) join Airline (AL#)

R6 = project (R5 (AL#))

R7 = R6 intersect(AL#) R4

R8 = Wi (AL#) join Airline (AL#)

R9 = project (R8 (AL#))

CHAPTER 6. IMPLEMENTATION 113

In the general case, retrievals involving a parent with n children and one level of

nested quantified expressions can be formalized using an extended-relational model

as a 1:n hierarchy of relations as follows.

In general, suppose we have a parent relation RP with the children relations RC1,

RC2,..., RCn. Suppose the relation RP has the attributes: P (primary key), Pal,

Pa2, ... , Pan, RClJist, RC2iist, ... , RCkJist,. . ., RCnJist. RCkiist is a set of tuples

from relation child RC1C, describing the l:n relationship between RP and RC1C.

Suppose also that the child relations have the following description:

RC1 (P, Cl (primary key), Clal, Cla2,..., Clan, RClliist, RCl2Jist,

RCLniist);

RC2 (P, C2 (primary key), C2al, C2a2,..., C2an, RC2lJist, RC22Jist,

RC2...niist);

The general retrieval for one level of nested quantified expressions is:

Retrieve each RP tuple for which RP - condition (compound condition involving

fields: Pal, Pa2,..., Pan) holds and for which a specific quantity of related RC1 tu-

ples obey the RC1 - condition (compound condition involving Clal, Clan,..., Clan)

and a specific quantity of related RC2 tuples obey the RC2 - condition and so on for

'n' children.

The general COOL query for above is:

select * from RP

where (RP - condition)

and/or quantifierl RP's RC1 (Rd - condition)

and/or quantifier2 RP's RC2 (RC2 - condition)

CHAPTER 6. IMPLEMENTATION 114

and/or quantifierN RP's RCn (RCn - condition)

The ERA routine (referred to later in Section 6.5.5 as ERA-Geni) for the general

retrieval involving one level of nested quantified expressions will be:

Ri = group-select

(Rd (quantifieri foreignkey (Rd -

R2 = group-select

(FtC2 (quantifier2 foreignkey (RC2 -

condition)))

condition)))

Rn = group-select

(RCn (quantifierN foreignkey (RCn - condition)))

REn+1:I = Ri intersect/union R2 intersect/union

intersect/union Rn

R[n+2] = select (RP (RP - condition))

R [n+3] = project (R [n+21 (RPprimekey))

REn+4] = REn+1J (RPprimekey) join RP (priinekey)

R[n+5] = project (R[n+4] (RPprimekey))

R[n+6] = R[n+5J intersect/union R[n+3J

R[n+7] = R[n+6](RPprimekey) join RP (primekey)

R[n-4-8] = project (R[n+7] (*))

ib) Multiple Level Retrieval.

When a grandparent, parent and child are involved in a query we deal with two

levels of nested quantifier expressions. As an example, consider the query:

CHAPTER 6. IMPLEMENTATION 115

Get full details of an Airline with headquarters located in San Diego where most of

its aircraft have (a) Boeing as a manufacturer and (b) at least 1 scheduled 'computer

repair' service and (c) all their necessary parts installed on board the plane.

The equivalent COOL expression is:

select * from Airline

where hqadd = "San Diego''

and for most Airline's Aircraft (fabricant = "Boeing" LEVEL (1)

and for at least 1 Aircraft's Service LEVEL (2)

(description = "computer repair'')

and for all Aircraft's Parts-on-Board LEVEL (2)

(status =

The equivalent ERA routine is:

RO = group-select

(Service (for at least 1 AC# (description = "computer repair")))

Ri = group-select (Parts-on-Board (for all AC# (status = "ON")))

R2 = RO intersect(AC#) Ri

R3 = R2 (AC#) pjoin (p0) Aircraft (AC#)

R4 = group-select (R3 (for most AL# ((fabricant = "Boeing") AND p0)))

R5 = select (Airline (hqadd = "San Diego"))

R6 = project (R5 (AL#))

R7 = R4 (AL#) join Airline (AL#)

R8 = project (R7 (AL#))

R9 = R8 intersect(AL#) R6

CHAPTER 6. IMPLEMENTATION 116

RIO = R9 (AL#) join Airline (AL#)

Mi = project (RiO (*))

The general case of a multiple level retrieval is presented later on in this Chapter.

2. Composite Parent-to-Child Genitive Relations (Grandparent Par-

ent Child).

Here we assume that the parent does not have any condition on its attributes,

which is invariably the case.

2a) One level expression.

Consider the example:

Name the location of each airline with more than 3000 employees where all the

on board parts of all the aircraft of the airline have the status ON.

The equivalent COOL expression is:

select hqadd from Airline

where emp_num > 3000

and for all Airline's Aircraft's Parts-on-Board (status =

The composite parent-to-child genitive relation in the above example is Airline's

Aircraft's Parts-on-Board.

The corresponding ERA routine is:

RRO = project (Aircraft (AC#, AL#))

RI = RRO (AC#) join Parts-on-Board (AC#)

R2 = group-select (Ri (for all AL# (status =

R3 = select (Airline (emp_num > 3000))

CHAPTER 6. IMPLEMENTATION 117

R4 = project (R3 C AL#))

R5 = R2 (AL#) join Airline (AL#)

R6 = project (R5 (AL#))

R7 = R6 intersect(AL#) R4

R8 = R7 (AL#) join Airline (AL#)

R9 = project (R8 (hqadd))

An Aircraft can NOT have a condition in such a query. If it does, it is a query

of the type already covered.

2b) Multiple levels expression.

Consider the example:

Name the location of each airline with more than 8000 employees for which, on

all its aircraft, each of its (owned) maintenance-depot services (a) involves computer

repairs, and (b) is offered in Calgary.

The equivalent COOL expression is:

select hqadd from Airline

where emp_num > 3000

and for all Airline's Aircraft's Service

(description = "computer repair''

and for its Service's Maintenance-Depot

(address = "Calgary"));

The genitive relations in the example above are: (1) the composite parent-to-

child one Airline's Aircraft's Service, and (2) the simple child-to-parent one Service's

Maintenance-Depot.

CHAPTER 6. IMPLEMENTATION 118

The corresponding ERA routine is:

RO = select (Maintenance-Depot (address = "Calgary"))

RI. = project (Ro (MD#))

R2 = Ri (MD#) join Service (MD#)

R3 = project (R2 (SV#))

R4 = R3 (SV#) pjoin (p0) Service (SV#)

RR5 = project (Aircraft (AC#, AL#))

R6 = RRS (Ac#) join R4 (Ac#)

R7 = group-select

(R6 (for all AL# ((description = "computer repair") AND p0)))

R8 = select (Airline (emp_num > 3000))

R9 = project (R8 (AL#))

RIO = R7 (AL#) join Airline (AL#)

RII project (RIO (ALE)

R12 R11 intersect(AL#) R9

R13 = R12 (PiL#) join Airline (AL#)

R14 project (R13 (hqadd))

6.5.4 Child-to-Parent Genitive Relations

1. Simple child-parent genitive relation.

la) One level query.

Consider we take the retrieval:

Get the fabrican,t of the aircraft owned by British Airways.

The COOL expression is:

CHAPTER 6. IMPLEMENTATION 119

select fabricant from Aircraft

where for its Aircraft's Airline (AL# =

The simple child-to-parent genitive relation in the example above is Aircraft's

Airline.

The above COOL expression can be reduced to the following extended relational

algebra (ERA) routine:

RO = select (Airline (AL# = ItBAIl))

Ri = project (1W (AL#))

R2 = Ri (AL#) join Aircraft (ALE

R3 = project (R2 (AC#))

BA = R3 (AC#) join Aircraft (AC#)

R6 = project (R4 (fabricant))

ib) Multiple level expression.

Consider the example:

Get the description of each service performed for British Airways aircraft for

which the majority of parts on board are not mounted.

The equivalent COOL expression is:

select description from Service

where for its Service's Aircraft (AL# = "BA" and

for most Aircraft's Parts_on_Board (status = ''OFF"));

The genitive relations in the above example are: (1) the simple child-to-parent one

Service's Aircraft, and (2) the simple parent-to-child one Aircraft's Parts-on-Board.

The ERA routine is:

CHAPTER 6. IMPLEMENTATION 120

RO = group-select (Parts-on-Board (for most AC# (status = "OFF")))

Ri = select (Aircraft (AL# = "BA"))

R2 = project (RI (AC#))

R3 = R2 intersect(AC#) 1W

R4 = R3 (AC#) join Service (ACE

R5 = project (R4 (SV#))

R6 = R5 (SV#) join Service (SV#)

R7 = project (R6 (description))

2. Composite child-to-parent genitive relation (or Child Parent Grand-

parent).

2a) Single level expression.

Suppose we take the retrieval:

Get the description of each job in service projects that involve computer repair

services.

The COOL expression is:

select descr from Job

where for its Job's Service-Project's Service

(description = computer repair");

The composite child-to-parent genitive relation in the above example is Job's

Service-Project's Service.

The ERA routine for the above query will be:

RO = select (Service (description = "computer repair"))

CHAPTER 6. IMPLEMENTATION 121

Ri = project (RO (SV#))

R2 = Ri (SV#) join Service-Project (SV#)

R3 = project (R2 (SVP#))

R4 = R3 (SVP#) join Job (SVP#)

R5 = project (R4(J#))

R6 = R5 (J#) join Job (J#)

R7 = project (RG (descr))

2b) Multiple level expression.

Suppose we take the retrieval:

Get the description of each job in service projects that involve computer repair

services carried out on Alitalia aircraft.

The COOL expression is:

select descr from Job

where for its Job's Service-Project's Service

(description = ''computer repair''

and for its Service's Aircraft (AL# =1"AL''));

The genitive relations in the above query are: (1) the composite child-to-parent

one Job's Service-Project's Service, and (2) the simple child-to-parent one Service's

Aircraft.

The ERA routine for the above query will be:

RO = select (Aircraft (AL# = "AL"))

Ri = project (RO (AC#))

R2 = Ri (AC#) join Service (AC#)

CHAPTER 6. IMPLEMENTATION 122

R3 = project (Ft2 (SVE)

R4 = select (Service (description = "computer repair"))

R5 = project (BA (sV#))

R6 = R5 intersect(SV#) R3

R7 = R6 (sV#) join Service-Project (SV#)

R8 = project (Pt? (SVP#))

R9 = R8 (SVP#) join Job (SVP#)

RIO = project (R9 (J#))

R11 = RIO (J#) join Job (J#)

R12 = project (Ru (descr))

6.5.5 The General Case - Hierarchical COOL expressions with n levels

of nested quantifier expressions

The above queries can be generalized to n levels of nested quantifier expressions

by induction. Suppose we extend the hierarchy RP, relation parent and the child

relations RC1 and R02, presented in Section 6.5.3, as follows. The parent relation

RP has n children, the relations (RC1, RC2, ..., RCn). Relation RC1 has the

children (R011, R012,..., RUin), relation RC2 has the children (RC21, R022,...,

RC2n), so on, and finally relation ROn has the children (RCnl, RCn2, ..., RCnu),

and then each of these children can have their own n children e.g. R011 has children

RO111, R0112,..., ROlin, and so on.

Figure 6.5 shows a graphical representation of this hierarchy.

The general retrieval is:

Retrieve each RP tuple for which RP - condition (compound condition involving

CHAPTER 6. IMPLEMENTATION

RP

RC11 RC12

RC1...i

\a
RC1 ... 12

551

RCin

RC1 ..in

RCn

123

(level 0)

(level 1)

(level 2)

(level k)

(level N—i)

(level N)

Figure 6.: A hierarchy of relations with N+1 levels and each node has n offsprings

RP's fields) holds and for which a specific quantity of related RCJ tuples obey RC1

- condition (compound condition involving RCJ's fields) and so on for the RP's n

children. For the specific quantity of related RC1 tuples a specific quantity of related

RU11 tuples obey RU11 - condition and so on for RCJ 's n children. For the specific

quantity of related R011 tuples a specific quantity of related ROJ11 tuples obey R011]

- condition and so on.

The hierarchy grows in two dimensions (vertical and horizontal).

The general COOL query looks like:

select * from RP

where (RP - cond)

and/or qi RP's RC1

CHAPTER 6. IMPLEMENTATION 124

(RC1-cond

and/or qil Rd's RC11

(RC11-cond

and/or qill RC11's RC111

(RC111-cond

and/or ...)

and/or q112 RC11's RC112

(. .

...)

and/or q12 RC1's RC12 (..

and/or qin RC1's RC1n (...))

and/or q2 RP's RC2

(RC2-cond

and/or ...)

and/or qn RP's RCn

(RCn-cond

and/or qni. RCn's RCn1

(RCn1-cond

and/or qnll RCn1's RCn11

(RCn11-cond

and/or ...)

and/or qnl2 RCn1's RCn12

CHAPTER 6. IMPLEMENTATION 125

...)

and/or qn2 RC's RCn2

qi stands for quantifierl, q2 stands for quantifier2, and so on. The above query

can be broken up into the hierarchy for RC1, the hierarchy for RC2, and so on.

If Ri, R2,... are the result of evaluating each hierarchy, the corresponding general

ERA routine, for a query involving the data structure from figure 6.5, can fit into

the ERA routine referred to as ERA-Geni. in Section 6.5.3.

Ri =

R2 =

Rn

R[n+1] = RO intersect/union Ri intersect/union

intersect/union Rn

R[n+2] = select (RP (RP - condition))

R[n+3] = project (R[n+2J (RPprimekey))

R[n+4] = R[n+1] (RPprimekey) join RP (primekey)

R [n+5J = proj ect (R [n+4] (RPprimekey))

R[n+6] = R[n+6] intersect/union R[n+3]

R[n+7] = R[n+6](RPprimekey) join RP (primekey)

R[n+8J = project (R[n+7] (*))

The Ri, R2, ..., Rn ERA expressions have similar corresponding queries, such

CHAPTER 6. IMPLEMENTATION .126

as:

The general COOL expression for the child RC1 hierarchy:

select primary-key from RP

where qi RP's RC1

(RC1-cond

and/or qil FtC1's RC11

(RC11-cond

and/or qill RC11's RC111

(RC111 -cond

and/or

and/or RC1 ... l's RC1 ... l
n-i 0

(RCLJ -cond))
n

and/or q112 RC11's RC112(...)

and/or qlln RC11's RC11n(...))

and/or q12 RC1's RC12 (...)

and/or qin RC1's RC1n (...))

The general ERA routine for the child RC1 hierarchy is:

level N: R[N,1] = group-select

(RC1 ... l foreignkey (RCl ... l-cond)))

CHAPTER 6. IMPLEMENTATION 127

R[N,n] = group-select

(RCi ... in (qi...ln foreignkey (RC1 ... ln-cond)))

n-i n-i n-i

R[N,C1N-1] R[N,1] intersect/union R[N,2]

intersect/union R[N,n]

REN] =

R[N,C1N-1] (foreignkey) pjoin(p) RCj,(priinekey)

n-i

level N-1:R[N-1,1J = group-select

(R [NJ foreignkey (RcQ1-cond and/or p)))

We repeat the above sequence for the remaining children in level N-i: RCi2,

giving the results: R[N-i,2], ..., R[N-i,n]. Further on, level N-i will
n-2

give R[N-1] as final result, and the same algorithm will be repeated until level 0 will

be reached.

R[N-1,C1N-2] R[N-1,1J intersect/union R[N-1,2J

intersect/union R[N-1 ,n]

REN-11

R[N-1,C1N-2] (foreignkey) pjoin(p) RC(primekey)

level N-2:R[N-2,1] = group-select

(R[N-1] (q .. . i foreignkey (RQi-cond and/or p)))

R[k+1,C1k]= R[k+1,1] intersect/union R[k+1,2]

intersect/union R[k-i-1,n]

R[k+1] =

CHAPTER 6. IMPLEMENTATION 128

R[k+1,C1k] (foreignkey) pjoin(p) RC1 ... 1(primekey)

k
level k: R[k,1] = group-select

(R[k+1] (qj, foreignkey (RCj-cond and/or p)))

k k

R[2,CIIJ= R[2,1] intersect/union R[2,21

intersect/union R[2,n]

R2 = R[2,C11J(foreignkey) pjoin(p) RC1 (primekey)

level 1: R[1,1] = group-select

(R2 (qi foreignkey (RCI-cond and/or p)))

Repeat for all the children from level 1 and get R[1,21 ... R[1 ,n]

R[1,C0J RE1,1] intersect/union R[1,2]

intersect/union RE1,n

Ri = select (RP (RP-cond))

level 0: RO = R[1,C01 (foreignkey) join RP(primekey)

REO1] = RO intersect/union Ri

RR = project (RO1 (*))

R[N,ij is the result of evaluating a quantified genitive relation expression where

i1 to n specifies the children of a relation node. N is the level number of the

children.

R[k+1,C1k] is the result of evaluating the compound logical expression consisting

of quantified genitive relation expressions involving the children of node 1 from level

k (node indicated by Cik. In this case the level of the children is k+l,
n-i

CHAPTER 6. IMPLEMENTATION 129

and is the first subscript of R.

R[N] is the result of an outer join (or pjoin) between RC1 . .. 1 the first node
n-i

on level N-i, as a parent, and the relation that captures the relationships with its

children from level N, R[N,C1N-1].

6.5.6 The General Case - Network COOL expressions with n levels of

nested quantifier expressions

The routine above is the ERA routine corresponding to a general COOL query

involving a hierarchy. It requires only a few changes to make the above routine work

for a COOL retrieval involving a network. This means that instead of just parent-

to-child genitive relations (or i:n relationships) we can also have child-to-parent

genitive relations (or n:i relationships). The following are the possible changes that

can be applied to the hierarchy routine above, and for each of them we derive the

correspondent ERA in it.

(1) Child with condition. If a child involved in a parent-to-child genitive

relation has a condition (see), the operation 'group-select' from R[level,i], applied

to the child becomes 'subgroup-select'.

(2) Composite parent-to-child genitive relation. If instead of a parent-to-

child genitive relation we have a composite parent-to-child genitive relation, of the

form: Grandparent Parent Child, the corresponding R[level,i] will be changed to the

following sequence:

R[k+1,Clk]= R[k+1,1] intersect/union R[k+1,2]

intersect/union R[k+1,n]

CHAPTER 6. IMPLEMENTATION 130

R[k+1] =

R[k+1,C1k](Child_primekey) pjoin(p) Child (primekey)

level k: R[k0] = project(Parent(primekey, foreignkey))

R[k1] =

R[k+1] (Child-foreignkey) join R[k0] (Parent_primekey)

R[k,i] = group-select

(R[kl] (quantifier Grandparent primekey

(Child_cond and/or p)))

Relations R[kO] and R{klj are giving intermediate results.

(3) Child-to-parent genitive relation. If instead of a parent-to-child genitive

relation we have a simple child-to-parent genitive relation, of the form: Child's

Parent, the corresponding R[level,i] will be. changed to the following sequence:

R[k+1,C1k]= R[k+1,1] intersect/union R[k+1,2J

intersect/union R[k+1,n]

level k: R[k0] select (Parent (Parent_cond))

R[k1] = project (R [kO] (Parent_primekey))

R[k2] = R[k1] intersect/union R[k+1,C1k]

R[k3] = R[k2] (Parent_primekey) join Child (foreignkey)

R[k,i] = project (R[k3] (Child_priniekey))

Relations R[kO], ..., R[k3] are giving intermediate results.

(4) Composite child-to-parent genitive relation. If instead of a parent-to-

child genitive relation we have a composite child-to-parent genitive relation, of the

CHAPTER 6. IMPLEMENTATION 131

form: Child Parent Grandparent, the corresponding R[level,i] will be changed to the

following sequence:

R[k+1,C1k]= R[k+1,1J intersect/union R[k+1,2]

intersect/union R[k+1,n]

level k: R[k0] = select (Grandparent (Grandparent_cond))

R[k11 project (R [kO] (Grandparent.primekey))

R[k2J = R[klj intersect/union R[k+1,C1k]

R[k3] =

R[k2] (Grandparentprimekey) join Parent (foreignkey)

R[k4] = project (R[k3] (Parent_primekey))

R[k5] = R[k4] (Parent_primekey) join Child (foreignkey)

R[k,i] = project (R[k5] (Child_primekey))

Relations R[kO], ..., R[k5] are giving intermediate results.

6.5.7 Recursive Queries

Suppose we take the recursive query:

Get the quantity of parts directly containing at least 4 cogs that each have at least

2 P2 parts inside.

The COOL expression is:

select qty from PartType_Inventory

where for at least 4 PartType_Inventory's *inner_parts Construct

(for its Construct's PT-inner PartType_Inventory

CHAPTER 6. IMPLEMENTATION .132

(typenanie=" cog"

and for at least 2 PartType_Inventory's *inner_parts Construct

(PT_inner="P2")));

The ERA routine for the above query will be:

RO = group-select

(Construct (for at least 2 PT-outer (PT-inner = "P2")))

Ri = select (PartType_Inventory (typename = "cog"))

R2 = project (RI (PT#))

R3 = R2 intersect(PT#) 1W

R4 = R3 (PT#) join Construct (PT-inner)

R5 = project (R4 (c#))

R6 = R5 (C#) pjoin (p0) Construct (C#)

R7 = group-select (R6 (for at least 4 PT-outer (p0)))

R8 = R7 (PT#) join PartType_Inventory (PT#)

R9 = project (R8 (qty))

This query expression is quite intricate and appears complex even in COOL.

Nevertheless the corresponding SQL expression is much more complex.

6.5.8 Translation of COOL DML expressions to SQL

INSERT

The system performs only instance by instance insert.

The syntax is close to SQL, and looks like:

CHAPTER 6. IMPLEMENTATION 133

<insert_instance_statement>

INSERT OBJECT INSTANCE INTO <objectcls>

'(' <insert_value_conunalist>

<insert_value_commalist>

<insert_value>

I <insert_value_conunalist> ',' <insert_value>

<insert_value>

<attribute> ':' <alpha>

<attribute> ':' <numeric>

Example:

insert obj ins into Airline

(AL# : "RO", hqadd : "Bucharest", emp_nuin : 3000);

insert obj ins into Aircraft

(AC# : "AB41", AL# : "AF", fabricant : "Boeing", type :"B747");

For each 'insert instance' statement, the following operations will be executed:

* generate unique OlD within the mother class and update 'cool-objects'

for each attribute

if attribute is a superkey

then I/I create/update the correspondent ref list ///

for each read correspondent reference list from cool-keys

* get the name of the parent of the ref list

* get th•e OlD of the parent instance

if (parent_child_reflist exists)

CHAPTER 6. IMPLEMENTATION 134

then

*add a new record with the OlD of the parent and

OlD of the child

else

*create the relationship table

*add a new record with the OlD of the parent and

OlD of the child

endif

end for

endif

* write attribute in an SQL format

An 'insert' statement for many instances that can populate an empty object class

is a convenient additional feature, that requires no research to add. It is not vital

for the prototype. Also, to populate a class from a intermediate result table requires

access to each instance, one instance at a time, which means file processing and not

the table processing of a relational database. Two instances with the same primary

key can be inserted in the database, but they will be asigned different OlDs. An

error message will be generated if a child instance is going to be inserted but the

parent instance is not found in the database.

UPDATE

The update statement implemented is a multiple-instance update and the syntax

CHAPTER. 6. IMPLEMENTATION 135

is very close to SQL.

Here is the syntax:

<update_statement>

UPDATE <objectcls> WHERE <condition> SET <update_value_commalist>

<update_value_commalist>

<update_value>

I <update_value_commalist> ',' <update_value>

<update_value>

<attribute> ':' <scalar_expr>

I <attribute> ':' <alpha>

where <condition> is a boolean expression, <scalar_expr> is a relational expression

with numeric values and <alpha> is a STRING.

Example:

update Airline where AL# = "RO" set hqadd : "arad";

DELETE

Delete statement has 2 versions:

1. Delete all instances (unconditioned) of a class. It is performed only if there are

no children instances involved, and

2. Delete selected instances (or with condition). It is performed also only if there

are no descendants.

An error message will be generated if instances with descendants are attempted to

be deleted.

CHAPTER 6. IMPLEMENTATION 136

Syntax for unconditioned delete:

<delete_uncond_statement>

DELETE ALL FROM <objectcls>

Syntax for conditioned delete:

<delete_uncond_statement> :=

DELETE FROM <objectcls> WHERE <condition>

where <condition> is a boolean expression.

The implementation of a delete for composite objects (this includes deleting one

or more instances and deleting an entire hierarchy if the instances have children)

was not implemented because it does not raise any essential problems, and is only a

programming exercise. The algorithm with embedded Sybase commands for this is:

procedure: gen_del_compobj

input: class-name, condition

start

II check if there are any descendants II

* call sybase process to execute the query:

''select * from cool-keys

where class-name =

and key-type = 'RL' 11

if (query == SUCCEED)

* bind 'key-name' to the variable 'reflist_name'

while (there is a reflist)

CHAPTER. 6. IMPLEMENTATION 137

* get the name of the child class with key-type =1SK ref list'

* get the name of the relationship table

parent _child_ref list'

* execute "select * from class-name" and get one by

one the OlDs.

for each parent OlD

* get the children OlDs from the relationship table

* list children one by one

for each child OlD

* ask the user if he wants it deleted

endf or

endf or

endwhile

else

* print error message "error in cool-keys"

endif

if NO descendants for class-name

II delete the instances of the parent and its links

to its parent, from the table 'parent_child_reflist' II

* execute "delete from %s where %s", class-name, condition''

end.

CHAPTER 6. IMPLEMENTATION 138

6.5.9 Algorithms for translation of COOL queries to ERA

The algorithm for translation of a COOL query to ERA follows the parsing of the

query, that is, the derivation tree. The leaves of the derivation or parse tree, read

from left to right, form a string of characters that is nothing else but the input query.

When, in the process of parsing, the end of a grammar rule is reached, the rule is

reduced (right side of the rule is replaced by the left side) and, at the same time,

some actions are performed by the parser. The actions can be generation of ERA

routines or only saving of useful information for future reductions of grammar rules.

Consider a general select statement with n levels of nested quantified expressions.

The BNF form of the select statement is as follows.

<select_statement>

SELECT <selection> FROM <object...class> [WHERE <where_expression>]

<selection> ::

<attribute_commalist>

1*

<where_expression>

<condition> [<logical_xref_list>]

I <quantified_xreference> [<logical_xref_list>]

<logical_xref_list> :

<logical_xref>

I <logical_xref_list> <logical_xref>

<logical_xref> :

OR <quantified_xreference>

CHAPTER 6. IMPLEMENTATION 139

I AND <quantified_xreference>

<quantified_xreference>

<quantified_genitive_relation> (<where_expression>)

<quantified_genitive_relation> : : =

II Parent Child genitive relation where

(1) is the formal syntax, and II

<quantifier_pc> <parent> <reference_attribute>

* <formal_child>

II (2) is the natural language syntax II

I <quantifier_pc> <parent>'S

[* <reference_attribute>] <natural_child>

1/ Composite Parent Child genitive relation where

(1) is the formal syntax, and //

<quantifier_pc> <grandparent> . <reference_attribute>

* <parent> . <reference_attribute> * <child>

II (2) is the natural language syntax II

I <quantifier_pc> <grandparent>'S

[* <reference_attribute>] <parent> 'S

[* <reference_attribute>] <child>

Child Parent genitive relation where

(1) is the formal syntax, and II

I <quantifier_cp> <child> . <child_superkey> * <parent>

(2) is the natural language syntax II

I <quantifier_cp> <child>'S [<child_superkey>] <parent>

II

II

CHAPTER 6. IMPLEMENTATION 140

II Composite Child Parent genitive relation where

(1) is the formal syntax, and II

II (2)

<quantifier_cp> <child> . <child_superkey> * <parent>

<parent_superkey * <grandparent>

is the natural language syntax 1/

<quantifier_cp> <child> 'S [<child_superkey>] <parent> 'S

[<parent_superkey>] <grandparent>

<child>

<obj ect_class>

<parent>

<object_class>

<grandparent> ::

<obj ect_class>

<formal_child>

<obj ect_class>

I (<object_class> (<condition>))

<natural_child>

<obj ect_class>

I (<condition>) <object_class>

<quantifier_pc>

FOR ALL

I FOR MOST

I FOR NONE

I FOR ALL BUT INTNUM

CHAPTER 6. IMPLEMENTATION 141

<quantifier_cp>

FOR AT MOST INTNUM

FOR AT LEAST INTNUM

FOR MORE THAN INTNUM

FOR LESS THAN INTNUM

FOR EXACTLY INTNUM

FOR NOT INTNUM

FOR THE

I FOR ITS

I FOR HER

I FOR HIS

If we combine the rules for the nonterminals <where_expression>,

<logicaLxref_list>, and <logicaL.xref> from above, we obtain:

<where_expression> :=

[[<condition>] AND/OR] <quantified_xreference>

AND/OR <quantified_xreference>

where <condition> is a boolean expression.

If in the rule for the <quantifiedxreference> we replace

<quantifiedgenitive_relation> with <quantifier> <genitive_relation>,, we obtain:

<quantified_xreference>

<quantifier> <genitive_relation> [(<where_expression>)]

CHAPTER 6. IMPLEMENTATION 142

In this way we emphasize the <genitive..relation> nonterminal, that can have four

different types, such as simple parent-to-child or <pc_gen_rel>, composite parent-

to-child or <pc_composite_gen_rel>, simple child-to-parent or <cp_gen_rel>, and

composite child-to-parent or <cp_composite_gen_re1>, as it is shown in the rule bel-

low.

<genitive_relation> :=

<pc_gen_rel>

I <pc_composite_gen_rel>

I <cp_gen_rel>

I <cp_composite_gen_rel>

Each of the four types of the genitive relation has two syntactic expressions: a

formal one and a natural one. The natural one is close to the genitive case expression

from the English language.

For each of the genitive relations listed above we can have three cases of

<where..expression>.

(a) <where_expression> ::=

<condition>

(b) <where_expression> :

<condition> AND/OR <relation_result_qexpr>

/1 <relation_result_qexpr> is the relation result of a

quantified-expression and has only one column 11

(c) <where_expression> :

<relat ion_result_qexpr>

CHAPTER 6. IMPLEMENTATION 143

The algorithm for the code generation phase of the translation of the COOL

nested quantifier expressions to ERA routines, is given in the procedure 'quanti-

fiedxref'. This procedure has two input arguments: the quantified-genitive-relation

and the where-expression. The two arguments could take the values described above.

procedure quantified_xref (genitive-relation, where-expression)

{

II Parent to Child genitive-relation 1/

if (genitive-relation = 'Parent'S [reference-list] Child') then

II Case (a) II

if (where-expression = condition) then

if (reference-attribute is not null) then

if (Child has condition) then

*generate: R(i) = subgroup-select

(Child (quantifier-pc

(child_superkey child-condition) (condition)))

else

*generate: R(i) = group-select

(Child (quantifier-pc child_superkey

(condition)))

endif

else

if (Child has condition) then

CHAPTER 6. IMPLEMENTATION 144

*generate: R(i) = subgroup-select

(Child (quantifier-pc (parent_primekey child-condition)

(condition)))

else

*generate: R(i) = group-select

(Child (quantifier-pc parent_primekey (condition)))

endif

endif

link = parent

return ("R(i) link")

endif

II Case (b) II

if (where-expression = condition AND/OR quantified_xreference)

II R(p) is the relation result of the previous level of

quantified-expression, that is R(p)quantif_xreference(...) 1/

then

*execute quantified_xreferenceO: return R(p) link

*check if Child = link II semantic check II

*generate: R(i) =

R(p) (child_primekey) pjoin(p(j)) Child (child_primekey)

if (Child has condition) then

if (reference-attribute exists) then

*generate: R(i+1) = subgroup-select

CHAPTER 6. IMPLEMENTATION 145

(R(i) (quantifier-pc (child_superkey child_cond)

(condition AND/OR p(j))))

else

*generate: R(i+1) = subgroup-select

(R(i) (quantifier-pc (parent_primekey child_cond)

(condition AND/OR p(j))))

endif

else

if (reference-attribute exists) then

*generate: R(i+1) = group-select

(R(i) (quantifier-pc child_superkey

(condition AND/OR p(j))))

else

*generate: R(i+1) = group-select

(R(i) (quantifier-pc parent_primekey

(condition AND/OR p(j))))

endif

endif

link = parent

return (CCR(i+1) link'')

endif

// Case (c) II

if (where-expression = quantified_xreference)

CHAPTER 6. IMPLEMENTATION .146

II Ft(p) is the relation result of the previous level of

quantified-expression, that is R(p)quantif_xreference(...) II

then *follow the steps from case (b) with one exception: in the

(sub)group-select expressions, the field

'condition AND/OR p(j)' will be replaced by 'p(j)'

endif

II composite parent to child genitive-relation II

if (genitive-relation =

'Grandparent ' S [grandpar_reference_list] Parent 'S

[par-reference-li st] Child')

then

II Case (a) II

if (where-expression = condition) then

if (grandpar_reference_list is not null) then

par_f oreignkey = get_foreignkey

(parent, grandpar_reference_ list)

else

par_f oreignkey = grandpar_primekey

endif

*generate: RR(i) =

project (Parent (par_priniekey, par_f oreignkey))

if (par-reference-list is not null) then

CHAPTER 6. IMPLEMENTATION 147

child_foreignkey = get_f oreignkey

(child, par-reference-list)

else

child_f oreignkey = par_primekey

endif

*generate: R(i+1) =

RR(i) (par_primekey) join Child (child_f oreignkey)

*generate: R(i+2) =

group-select (R(i+1)

(quantifier-pc par_foreignkey (condition)))

link = grandparent

return (CR(i+2) link")

endif

II Case (b) II

if (where-expression = condition AND/OR quantified_xreference)

1/ R(p) is the relation result of the previous level of

quantified-expression, that is R(p) quantif_xreference(...)

then

*execute quantified_xreferenceO: return ('R(p) link'')

*check if Child = link II semantic check II

*generate: R(i) =

R(p) (child_primekey) pjoin (p(j)) Child (child_primekey)

if (grandpar_reference_list is not null) then

CHAPTER 6. IMPLEMENTATION 148

par_foreignkey = get_foreignkey

(parent, grandpar_reference_list)

else

par_f oreignkey = grandpar_primekey

endif

*generate: RFt(i+1) = project

(Parent (par_primekey, par_foreignkey))

if (par-reference-list is not null) then

child_foreignkey = get_foreignkey

(child, par-reference-list)

else

child_f oreignkey = par_primekey

endif

*generate: R(i+2) =

RR(i+1) (par_primekey) join R(i) (child_foreignkey)

*generate: R(i+3) = group-select

(R(i+2) (quantifier-pc par_foreignkey

(condition AND/OR p(j))))

link = grandparent

return ('R(+3) link'')

endif

II Case (c) II

if (where-expression = quantified_xreference)

CHAPTER 6. IMPLEMENTATION 149

II R(p) is the relation result of the previous level of

quantified-expression, that is R(p)quantif_xreference(...) /1

then *follow the steps from case (b) with one exception: in the

(sub)group-select expressions, the field

'condition AND/OR p(j)' will be replaced by 'p(j)'

endif

1/ Child to Parent genitive-relation II

if (genitive-relation = 'Child'S [child_superkey] Parent') then

1/ Case (a) II

if (where-expression = condition) then

*generate: R(i) = select (Parent (condition))

*generate: R(i+1) = project (R(i) (par_primekey))

if (child_superkey is null) then

child_superkey = par_primekey

*generate: R(i+2) =

R(i+1) (par_primekey) join Child (child_superkey)

*generate: R(i+3) = project (R(i+2) (child_primekey))

link = child

return ("R(i+3) link'')

endif

// Case (b) //

CHAPTER 6. IMPLEMENTATION 150

if (where-expression = condition AND/OR quantified_xreference)

// R(p) is the relation result of the previous level of

quantified-expression, that is R(p)quantif_xreference(...)

then

*execute quantified_xreferenceO: return R(p) link

*check if Parent = link II semantic check II

*generate: R(i) = select (Parent (condition))

*generate: R(i+1) = project (R(i) (par_primekey))

*generate: R(i+2) = R(i+1) intersect/union R(p)

if (child_superkey is null) then

child_superkey = par_primekey

*generate: R(i+3) =

R(i+2) (par_primekey) join Child (child_superkey)

*generate: R(i+4) = project (R(i+3) (child_primekey))

link = child

return (R(i+4) link'')

endif

1/ Case (c) 1/

if (where-expression = quantified_xreference) then

II R(p) is the relation result of the previous level of

quantified-expression, that is R(p)=quantif_xreference(..

*execute quantified_xreferenceO: return (''R(p) link'')

*check if Parent = link /1 semantic check 1/

CHAPTER 6. IMPLEMENTATION 151

if (child_superkey is null) then

child_superkey = par_primekey

*generate: R(i) =

R(p) (par_primekey) join Child (child_superkey)

*generate: R(i+1) = project (R(i) (child_priniekey))

link = child

return (R(i+1) link")

endif

endif

II composite Child to Parent genitive-relation II

if (genitive-relation = 'Child'S [child_superkey] Parent'S

[parent_superkey] Grandparent')

then

II Case (a) II

if (where-expression = condition) then

*generate: R(i) = select (Grandparent (condition))

*generate: R(i+1) = project (R(i) (grandpar_primekey))

if (parent_superkey is null) then

parent_superkey = grandpar_primekey

*generate: R(i+2) =

R(i+1) (grandpar_primekey) join Parent (parent_superkey)

*generate: R(i+3) = project (R(i+2) (par_primekey))

CHAPTER 6. IMPLEMENTATION 152

if (child_superkey is null) then

child_superkey = par_primekey

*generate: R(i+4) =

R(i+3) (par_primekey) join Child (child_superkey)

*generate: R(i+5) = project (R(i+4) (child_primekey))

link = child

return ('R(i+5) link")

endif

II' Case (b) II

if (where-expression = condition AND/OR quantified_xreference)

then

II R(p) is the relation result of the previous level of

uantified_expression, that is R(p)quantif_xreference(...) 1/

*execute quantified_xreferenceO: return (' 'R(p) link")

*check if Grandparent = link 1/ semantic check//

*generate: R(i) = select (Grandparent (condition))

*generate: R(i+1) = project (R(i) (grandpar_primekey))

*generate: R(i+2) = R(i+1) intersect/union R(p)

if (parent_superkey is null) then

parent _superkey grandpar_primekey

*generate: R(i+3) =

R(i+2) (grandpar_primekey) join Parent (parent_superkey)

*generate: R(i+4) = project (R(i+3) (par_primekey))

CHAPTER 6. IMPLEMENTATION 153

if (child_superkey is null) then

child_superkey = par_primekey

*generate: R(i+5) =

R(i+4) (par_primekey) join Child (child_superkey)

*generate: R(i+6) = project (R(i+5) (child_primekey))

link = child

return ('R(i+6) link")

endif

II Case (c) II

if (where-expression = quantified_xreference) then

II R(p) is the relation result of the previous level of

quantified-expression, that is R(p)quantif_xreference(...) II

*execute quantified_xreferenceO: return R(p) link

*check if Grandparent = link II semantic check II

*generate: R(i) =

R(p) (grandpar_primekey) join Grandparent (grandpar_primekey)

*generate: R(i+1) = project (R(i) (grandpar_primekey))

if (parent_superkey is null) then

parent_superkey = grandpar_primekey

*generate: R(i+2) =

R(i+1) (grandpar_primekey) join Parent (parent_superkey)

*generate: R(i+3) = project (R(i+2) (par_primekey))

if (child_superkey is null) then

CHAPTER 6. IMPLEMENTATION 154

child_superkey = par_priinekey

*generate: R(i+4) =

R(i+3) (par_primekey) join Child (child_superkey)

*generate: R(i+5) = project (R(i+4) (child_primekey))

link = child

return ("R(i+5) link'')

endif

endif

}

The algorithm above gives the code generation, that is, the ERA routine, when

the derivation rule of the nonterminal <quantifier_expression> is reduced.

The following rule, which will be reduced in the translation process, is the deriva-

tion rule of the nonterminal <where_expression>.

<where_expression>

[[<condition>] AND/OR] <quantifier_expression>

AND/OR <quantifier_expression>...

We deal with three distinct cases:

(a) where-expression = condition

(b) where-expression = condition AND/OR quantified_xreference

(c) where-expression = quantified_xreference

For each of the cases in which a <whereexpression> can appear, the following

code will be generated:

CHAPTER 6. IMPLEMENTATION 155

Case (a)

*generate: R(i) = select (object-class (condition))

Case(b)

*check if object-class = link II semantic check II

*generate: R(i) = select (object-class (condition))

*generate: R(i+1) = project (R(i) (primekey))

*generate: R(i+2) =

object-class (primekey) join R(p) (primekey)

*generate: R(i+3) = project (R(i+2) (primekey))

*generate: R(i+4) = R(i+3) intersect/union R(i+1)

*generate: R(i+5) =

R(i+4) (primekey) join object-class (primekey)

Case(c)

*check if object-class = link II semantic check II

*generate: R(i) = object-class (primekey) join R(p) (primekey)

The last step in the code generation for a <selectstatement> is the reduction of

the following rule:

<select_statement>

SELECT <selection> FROM <object_class> [WHERE <where_expression>]

Code generation in this case will be:

CHAPTER 6. IMPLEMENTATION 156

if (where-expression is null)

*generate: R(i) = project (object-class (Al, A2 An))

else

*generate: RU) = project (R(i-1) (Al, A2,.. .An))

where Al, A2,..., An are the attributes of the object-class.

6.5.10 Second step: Translation of ERA operations to SQL

This step was implemented as a separate compiler that reads an ERA file and trans-

lates it into SQL queries. The lex file for this step will contain the regular expressions

for ERA's tokens and the associated actions, and the yacc file will contain the ERA's

grammar production rules and the corresponding actions for code generation in SQL.

Each ERA statement is converted to a set of SQL expressions. We look at them one

by one.

1. Join statement. The statement refers to the natural join of conventional

relational algebra. In the majority of the situations, 'join' operation is per-

formed between a single-attribute relation, that contains the join attribute,

and a regular relation. Thus, the general case, translates as follows.

ERA:

R = Rl (attribute-1) join R2 (attribute-2)

Translates to:

SQL:

CHAPTER 6. IMPLEMENTATION 157

select R2.* into #R

from Ri, R2

where R1.attribute_1 = R2.attribute_2

In Sybase SQL [Syb9lb] the '#' sign before a relation name means that the

relation is temporary.

A special situation occurs with queries that contain composite parent-to-child

genitive relations. In these cases we need to perform a natural join , using SQL,

between a two-attribute relation and a regular relation, with join attributes

having the same name. Sybase Transact-SQL, unfortunately, will not allow

the result, with two columns of the same name, to be stored as a temporary

relation; and we need such a temporary relation for further SQL processing.

Sybase does this, because it has no natural join with SQL, only an equi-Join.

To solve this problem one solution would be to change the name of one of

the common attributes before performing the equi-join on it. Another solution

would be to specify the fields of each relation involved in the join in the SQL

'select' expression, with the exception of the one of the join-fields; avoiding in

this way, the presence of two fields with the same name in the result of the

equi-join. This second solution could introduce unnecessary complexity in the

implementation because at the moment of the translation the temporary tables

are not created in the database, and their attributes cannot be found in the

Sybase system tables. Thus, the first solution was chosen. This solution also

works with different design techniques, such as the same name for foreign and

primary key, and different names for them. In order to change the name of

CHAPTER 6. IMPLEMENTATION 158

the column of a Sybase table we need to created a new table with the same

attribute definitions as the source table and then to copy the source table into

the new table.

The operation of changing the name of a column is performed at the time when

the two-column table is created by a 'project' operation (see section 'Project

statement', later on).

We have named the newly created table as its join attribute, RRi, where i as

an order number. The translation for the special situation described above is:

ERA:

R = RM (RR1) join R2 (attribute-2)

Translates to:

SQL:

select RR1.*, Ft2.* into #R

from RR1, Ft2

where RR1.RR1 = R2.attribute_2

2. Select statement

ERA:

R = select (Ri (condition))

Condition is a boolean expression involving attributes of relation R.

CHAPTER 6. IMPLEMENTATION

Translates to:

SQL:

select * into #R

from Ri

where condition

159

3. Group-Select statement. The implementation of the group-select operation

does not exactly correspond to the definition given in Chapter 5. To obtain

an initial optimization of the ERA routine, the relation result of group-select

does not contain all the fields in the child relation, but instead contains only

the foreign key field. This simplification helps a lot in creating a connection

bridge (the foreign key) between the different levels of the quantifier expressions

(nested queries).

ERA:

R = group-select

(Child (quantifier-pc foreignkey (condition_expr)))

<condition...expr> :

<condition>

I <condition> AND/OR <variable>

I <variable>

<variable> :

CHAPTER. 6. IMPLEMENTATION .160

From the Child and the foreignkey we can obtain the corresponding reflist

(interrogating the table cool-keys). Knowing the reflist we can get the Parent.

Reference-list names are unique in the database.

The equivalent SQL for the group-select operation corresponding to the natural

quantifiers implemented are the following:

Quantifier-pc = "FOR ALL"

SQL:

select parent_primekey into #R

from Parent

where not exists

(select *

from Child

where Parent.parent_primekey = Child.foreignkey

and not (condition_expr))

Quantifier-pc = "FOR MOST"

SQL:

select parent_primekey into #R

from Parent

where (select count (*)

from Child

where Parent.parent_primekey = Child.foreignkey

CHAPTER 6. IMPLEMENTATION 161

and (condition_expr))

>

(select count (*)

from Child

where Parent.parent_primekey = Child.foreignkey

and not (condition_expr))

Quantifier-pc = "FOR ALL BUT int"

SQL:

select pa.rent_primekey into #R

from Parent

where (select count (*)

from Child

where Parent.parent_primekey = Child.foreignkey

and not (condition_expr)) = int

General SQL expression for a family of quantifiers

Quantifier-pc = 'FOR NONE", operation = ''=" int = 0

Quantifier-pc 'FOR AT MOST int'', operation =

Quantifier-pc = 'FOR AT LEAST int", operation =

Quantifier-pc = 'FOR MORE THAN int", operation =

Quantifier-pc = ' 'FOR LESS THAN int", operation = C

Quantifier-pc = ''FOR EXACTLY int", operation =

Quantifier-pc = "FOR NOT int", operation = CC<>,,

CHAPTER 6. IMPLEMENTATION 162

All the above quantifiers can be translated with the following SQL expression:

select parent_primekey into #R

from Parent

where (select count (*)

from Child

where Parent.parent_primekey = Child.foreignkey

and (condition_expr)) operation mt

Group-select operation always returns a one column table. The single attribute

is the primary-key of the Parent (equal to the foreign key of the child). Group-

select is always associated with a 1:n (or parent-child relationship).

4. Intersect statement

An intersection is always performed between two single-column relations RI.

and R2 and translates as follows.

ERA:

R = Ri intersect(join_attribute) R2

Translates to:

SQL:

select R1.* into #R

from Ri, R2

where R1.join_attribute = R2.join_attribute

CHAPTER 6. IMPLEMENTATION 163

5. Union statement

A union is always performed between two single-column relations RI and R2

and translates as follows.

ERA:

R = Ri union R2

Translates to:

SQL:

select * into #R from Ri

union

select * from R2

6. Subgroup-select statement

ERA:

B. = subgroup-select

(Child (quantifier-pc (foreignkey (child-condition))

(condition_expr)))

Subgroup-select operation can be easily decomposed into two ERA operations

(a select and a group-select), and this is how the implementation was done:

SR = select (Child (child_condition))

R = group-select (SR (quantifier-pc (foreignkey

(condition_expr)))

CHAPTER 6. IMPLEMENTATION 164

As it was pointed out in Chapter 5 the type of quantifier, that is, universal

type or existential type, makes a difference in the equivalent ERA routine.

To illustrate the difference consider two examples with the quantifier for all

(universal type):

Example 1: child with condition: "for all Boeing Aircraft"

Give the airline code and headquarters for each airline with more than 10.000

employees all of whose Boeing aircraft have at least two of the parts on board

of type P7 with status not ON.

COOL:

select AL#, hqadd from Airline

where emp_num > 10000

and for all Airline's (fabricant = "Boeing") Aircraft

(for at least 2 Aircraft's Parts_on_Board

(PT# = "P7" and status <> "ON"));

ERA:

RO = group-select (Parts_on_Board

(for at least 2 AC# (PT# = "P7" and status <> "ON")))

Ri = RO (AC#) pjoin (p0) Aircraft (AC#)

R2 = group-select

(RI (for all AL# ((fabricant = "Boeing") AND p0)))

R3 = select (Airline (emp_num > 10000))

CHAPTER 6. IMPLEMENTATION, 165

R4 = project (R3 (AL#))

R5 = R2 (AL#) join Airline (AL#)

R6 = project (R5 (AL#))

R7 = R6 intersect(AL#) R4

R8 = R7 (AL#) join Airline (AL#)

R9 = project (Ft8 (AL#,hqadd))

Example 2: child without condition: "for all aircraft that are of type

Boeing and . .

Give the airline code and headquarters for each airline with more than 10.000

employees all of whose aircraft are (a) of make Boeing and (b) have at least

two of their parts-on-board of type P7 with status not 0N

COOL:

select AL#, hqadd from Airline

where emp_num > 10000

and for all Airline's Aircraft (fabricant = "Boeing" and

for at least 2 Aircraft's Parts-on-Board

(PT# = "PT" and status <> "ON"));

ERA:

RO = group-select (Parts-on-Board

(for at least 2 AC# (PT# = "PT" and status <> "ON")))

Ri = RO (AC#) pjoin (p0) Aircraft (ACE

CHAPTER 6. IMPLEMENTATION 166

R2 = group-select

(Ri (for all AL# ((fabricant = "Boeing") AND p0)))

R3 = select (Airline (emp_num > 10000))

R4 = project (R3 (AL#))

R5 = R2 (AL#) join Airline (AL#)

R6 = project (R5 (AL#))

R7 = R6 intersect(AL#) R4

R8 = R7 (AL#) join Airline (AL#)

R9 = project (R8 (AL#,hqadd))

The result is different as it was expected. The universal type quantifiers require

that all of a group of tuples must be taken into consideration, so the result of

the evaluation depends on the whole set (which is unknown). If, instead of for

all, we had used an existential-type quantifier (e.g.: for more than 10), the two

cases would be the same and the corresponding COOL expressions will give

identical results.

7. Projection statement

In general the project statement translates as follows.

ERA:

R = project (RI (selection))

SQL:

select selection into #R

CHAPTER 6. IMPLEMENTATION 167

from Ri

where selection is a set of attributes of the relation R.

As discussed in the subsection on the ERA join statement at the beginning of

section 6.5.10, in the case of a query with composite parent-to-child genitive

relations, the relation resulting from a 'project statement' needs a name change

for the column name that is a join attribute in a subsequent join statement.

For this special case the 'project statement' translates as follows.

ERA:

R = project (RI (attribute-1, attribute_2))

SQL:

create table #RR

(RR type,

attribute-2 type

)

insert #RR select attribute-1, attribute-2 from RI

The type of the attribute_i and attribute-2 can be read from the Sybase system

tables because the attributes belong always to tables from the created database.

8. Pjoin (Possibility Join) statement. To implement pjoin I have used the

outer join operation, since this is very close to pjoin. Outer Join it is imple-

mented in Sybase Transact-SQL and SQL 2.

CHAPTER 6. IMPLEMENTATION 168

In a natural join only the rows with matching values in the columns specified

in the join condition are included in the results. Sometimes, as in the case of

pjoin, it is desirable to retain the non-matching rows as well in the result of

a join. Sybase SQL [Syb9lb] supports the outer join by providing the specific

join operators:

• (a) *= This means include in the result all the rows from the first table,

not just the ones where the join columns match. In the result the non

matching rows will have a NULL in the columns belonging to the second

table.

• (b) This means include in the result all the rows from the second

table, not just the ones where the join columns match. In the result the

non matching rows will have a NULL in the columns belonging to the first

table.

ERA:

= Ri (attribute) pjoin (variable) R2 (attribute)

SQL:

create table #variable

(var char(length)/int null)

insert #variable select * from Ri

CHAPTER 6. IMPLEMENTATION 169

select * into #R

from R2, #variable

where R2.attribute *= #variable.variable

The table #variable has only one column with the name of the pjoin variable

and the type of the join field in the pjoin expression. Creation of a new relation

is necessary because of the Sybase SQL implementation. When making the

outer join (or any join) between relation Ri and R2 with two identical join

field names, the result must include duplicate columns with the same join field

name, that is, an equi-join is performed. But, as we discussed earlier, if we

want to capture the resulting relation in a temporary relation, we get an error

from the Sybase SQL server stating that "Column names in each table must

be unique" (which makes sense for a relation). So to avoid this, we copy the

join field of relation Ri into the relation #variable, but using a different full

name.

To select fields that are (or are not) NULL you put the condition "where

column-name is [not] NULL". In order to be able to do that and not get an

error message, the column should be defined NULL in the CREATE TABLE

statement [Syb9lb] as has shown above.

6.5.11 Implementation Restrictions and Conventions

The OlD is always the first column in the object class table. The primary key is the

second column, and the foreign keys are following the primary key. Reflist names

are unique for the database.

Chapter 7

System Verification and User View of the System

7.1 Introduction

This chapter deals with two topics: verification that the system works correctly, and

a description of how the system is to be used by a novice user.

7.2 System Verification

In general system verification is an important part in a system's development. Ver-

ification first needs to be thoroughly performed by the system developer. Further

verification then needs to be carried out by independent analysts. The test examples

must verify all critical situations implemented by the application.

7.2.1 Methods of Verification

The COOL language examples included in the thesis have equivalent ERA routines

and SQL expressions generated by the system itself. The results of these COOL

queries have been checked using three methods. One method was logical testing,

where both the logic of ERA routines and the equivalent SQL set of expressions were

checked for correctness. The second method involved using sample data loaded in an

example database and executing the COOL queries against it, as well as checking the

result for correctness. The third method involved constructing an equivalent SQL

expression for the tested query, executing it, and checking that it retrieved the same

170

CHAPTER 7. SYSTEM VERIFICATION AND USER VIEW OF THE SYSTEM1 71

data as the COOL expression.

In addition, for a final verification of the system three sample queries, chosen

spontaneous by Prof. J. Bradley, were used.

7.3 Sample Verification Queries and Results

For each query there will be shown the equivalent expressions in COOL, ERA and

SQL. In the Appendix D.4 it is shown the script file with the executions of the three

queries using a set of test data for the 'aircraft maintenance database'.

Query 1 is testing a two level nested quantifier expression and a 'child with

condition' involved in a parent-child (or l:n relationship) genitive relation. Natural

quantifiers 'for most' and 'for all' are also tested.

Query 1

List airline code and headquarters location for airlines where most aircraft of type

Boeing have all parts on board with status OK.

COOL:

select AL#, hqadd from Airline

where for most Airline's (fabricant = "Boeing") Aircraft

(for all Aircraft's Parts-on-Board (status =

ERA:

RO = group-select (Parts_on_Board (for all AC# (status =

Ri = RO (AC#) pjoin (p0) Aircraft (AC#)

R2 = subgroup-select

CHAPTER 7. SYSTEM VERIFICATION AND USER VIEW OF THE SYSTEM1 72

(RI (for most (AL# (fabricant = " Boeing ")) (p0)))

R3 = R2 (AL#) join Airline (ALE

R4 = project (R3 (AL#,hqadd))

SQL:

select AC# into #RO

from Aircraft

where not exists (select *

from Parts-on-Board

wher6 Aircra.ft.AC# = Parts_on_Board.AC#

and not (status = "ok"))

create table #pO

(p0 char(4) null)

insert #pO select * from #RO

select * into #R1

from Aircraft, #pO

where Aircraft.AC# *= #pO.pO

select * into #SR1

from #R1

where fabricant = "Boeing"

CHAPTER 7. SYSTEM VERIFICATION AND USER VIEW OF THE SYSTEM1 73

select AL# into #R2

from Airline

where (select count (*)

from #SR1

where Airline.AL# = #SR.1.AL#

and p0 is not null)

>

(select count (*)

from #SR1

where Airline.AL# = #SR1.AL#

and not (p0 is not null))

select Airline.* into #R3

from #R2, Airline

where #R2.AL# = Airline.AL#

select AL#,hqadd into #R4

from #R3

select distinct * from #R4

go

CHAPTER 7. SYSTEM VERIFICATION AND USER VIEW OF THE SYSTEM1 74

Using sample data for the Aircraft Maintenance database (see Appendix D.2) the

expected result for query 1 was AL# = "AL" and hqadd = "Rome". This result is

confirmed by the output of Sybase isqi (see Appendix]J.4).

Manual SQL

select AL#, hqadd from Airline

where (select count (*)

from Aircraft

where fabricant = "Boeing"

and Aircra.ft.AL# = Airline.AL#

and AC# not in (select AC# from Pa.rts_on.Board

where status <> "ok")

)

>

(select count (*)

from Aircraft

where fabricant = "Boeing"

and Aircraft.AL# = A±rline.AL#

and AC# in (select AC# from Parts-on-Board

where status <> "ok")

)

This retrieval gives the same result as the SQL set of expressions generated by the

COOL system, that is, AL# = "AL" and hqadd = "Rome", when it is executed with

the same data. This result is confirmed by the output of Sybase isql (see Appendix

CHAPTER 7. SYSTEM VERIFICATION AND USER VIEW OF THE SYSTEM1 75

D.4).

Query 2 is testing a n:m relationship, specified and implemented as a composite

parent-child and child-parent genitive relation. Natural quantifiers 'for at least 2',

'for at least 1' and 'for its' are also tested.

Query 2.

Give the PT# and quantity for each type of part in inventory that has (a) at least

2 shipments from suppliers in Los Angeles, and (b) has status 'defect' on at least one

aircraft on which it is used.

COOL:

select PT#, qty from PartType_Inventory

where for at least 2 PartType_Inventory's Shipment-Data

(for its Shipment-Data's Supplier (address = "Los Angeles"))

and for at least 1 PartType_Inventory's Parts-on-Board

(status = "de");

ERA:

RO = select (Supplier (address = "Los Angeles"))

RI = project (RO (SE)

R2 = Ri (S#) join Shipment-Data (S#)

R3 = project (R2 (SH#))

R4 = R3 (SHE pjoin (p0) Shipment-Data (SH#)

R5 = group-select (R4 (for at least 2 PT# (p0)))

R6 = group-select

(Parts-on-Board (for at least 1 PT# (status = "de")))

CHAPTER 7. SYSTEM VERIFICATION AND USER. VIEW OF THE SYSTEM1 76

R7 = R5 intersect(PT#) R6

R8 = R7 (PT#) join PartType_Inventory (PT#)

R9 = project (R8 (PT#,qty))

SQL:

select * into #RO

from Supplier

where address = "Los Angeles"

select S# into #RI

from #RO

select Shipment_Data.* into #R2

from #R1, Shipment-Data

where #R1.S# = Shipment_Data.S#

select SH# into #R3

from #R2

create table #pO

(p0 char(4) null)

insert #pO select * from #R3

CHAPTER 7. SYSTEM VERIFICATION AND USER VIEW OF THE SYSTEM177

select * into #R4

from Shipment-Data, #pO

where Shipment_Data.SH# *= #pO.pO

select PT# into #R5

from PartType_Inventory

where (select count (*)

from #R4

where PartType_Inventory,PT# = #R4.PT#

and p0 is not null) >= 2

select PT# into #R6

from PartType_Inventory

where (select count (*)

from Parts-on-Board

where PartType_Inventory. PT# = Partson_Board . PT#

and status = "de") >

select #RS.* into #R7

from #R5, #R6

where #R5.PT# = #R6.PT#

select PartType_Inventory.* into #R8

from #R7, PartType_Inventory

CHAPTER 7. SYSTEM VERIFICATION AND USER VIEW OF THE SYSTEM178

where #R7.PT# = PartType_Inventory.PT#

select PT#,qty into #R9

from #R8

select distinct * from #R9

go

Using sample data for the Aircraft Maintenance database the expected result for

query 2 was PT# = "P11" and qty = 1000. This result is confirmed by the output

of Sybase isqi (see Appendix D.4).

Manual SQL

select PT#, qty from PartType_Inventory

where (select count (*)

from Shipment-Data

where PartType_Inventory .PT# = Shipment_Data. PT#

and S# in (select S# from Supplier

where address = "Los Angeles"))>=2

and (select count (*)

from Parts-on-Board

where PartType_Inventory . PT# = Parts_on_Board. PT#

and status =

CHAPTER 7. SYSTEM VERIFICATION AND USER VIEW OF THE SYSTEM1 79

This retrieval gives the same result as the SQL set of expressions generated by the

COOL system, that is, PT# = "P11" and qty = 1000, when it is executed with the

same data. This result is confirmed by the output of Sybase isqi (see Appendix D.4).

Query 3 is testing a composite parent-child (or 1:n) genitive relation.

Query 3.

Which maintenance depot in Montreal has carried out at least two service projects

in each of which all jobs involved part type 'PIY.

COOL:

select MD# from Maintenance-Depot

where address = "Montreal"

and for at least 2 Maintenance-Depot's Service's Service-Project

(for all Service-Project's Job (PT# = "P4"));

ERA:

RO = group-select (Job (for all SVP# (PT# = "P6")))

Ri = RO (SVP#) pjoin (p0) Service_Project (SVP#)

RR2 = project (Service (SV#, MD#))

R3 = RR2 (SV#) join Ri (SV#)

R4 = group-select (R3 (for at least 2 MD# (p0)))

R5 = select (Maintenance-Depot (address = "Montreal"))

R6 = project (R5 (MD#))

R7 = R4 (MD#) join Maintenance-Depot (MD#)

R8 = project (R7 (MD#))

CHAPTER 7. SYSTEM VERIFICATIONAND USER VIEW OF THE SYSTEM18O

R9 = R8 intersect(MD#) R6

RIO = R9 (MD#) join Maintenance-Depot (MD#)

R11 project (RIO (MD#))

SQL:

select SVP# into #RO

from Service-Project

where not exists (select *

from Job

where Service_Project.SVP# = Job.SVP#

and not (PT# = "P6"))

create table #pO

(p0 char(4) null)

insert #pO select * from #RO

select * into #Ri

from Service-Project, #pO

where Service_Project.SVP# *= #pO.pO

create table #RR2

(RR2 char(4),

MD# char(4))

CHAPTER 7. SYSTEM VERIFICATION AND USER VIEW OF THE SYSTEM181

insert #RR2 select SV#, MD# from Service

select #RR2.*, #R1.* into #R3

from #RR2, #R1

where #RR2.RR2 = #R1.SV#

select MD# into #R4

from Maintenance-Depot

where (select count (*)

from #R3

where Maintenance_Depot .MD# = #R3.MD#

and po is not null) >= 2

select * into #R5

from Maintenance-Depot

where address = "Montreal's

select MD# into #R6

from #R5

select Maintenance_Depot.* into #R7

from #R4, Maintenance-Depot

where #R4.MD# = Maintenance_Depot .MD#

CHAPTER. 7. SYSTEM VERIFICATION AND USER VIEW OF THE SYSTEM182

select MD# into #R8

from #R7

select #R8.* into #R9

from #R8, #R6

where #R8.MD# = #R6.MD#

select Maintenance_Depot.* into #R1O

from #R9, Maintenance-Depot

where #R9.MD# = Maintenance_Depot .MD#

select MD# into #R11.

from #R1O

select distinct * from #R11

go

Using sample data for the Aircraft Maintenance database the expected result for

query 3 was MD# = "Ml" . This result is confirmed by the output of Sybase isql

(see Appendix D.4).

Manual SQL

select MD# from Maintenance-Depot

CHAPTER 7. SYSTEM VERIFICATION AND USER. VIEW OF THE SYSTEM183

where address ="Montreal"

and (select count (*)

from Service, Service-Project

where Service.MD# = Maintenance_Depot.MD#

and Service.SV# = Service_Project.SV#

and SVP# not in (select SVP# from Job

where PT# <> "P4"))>=2

This retrieval gives the same result as the SQL set of expressions generated by the

COOL system, that is, MD# = "Ml", when it is executed with the same data. This

result is confirmed by the output of Sybase isql (see Appendix D.4).

7.4 User View of the System

In general, a user of the prototype implementation of COOL has to define the object

schema of the database he is working with, to load it, query it, and update it.

Prior to any work with the database, any user that wants to use the prototype

front-end has to have set in the '.login' file, the Sybase environment as follows:

setenv DSQUERY sybase_f sb

setenv SYBASE /usr/local/sybase

and include in the 'set path' command, Sybase path '/usr/local/sybase/bin'.

Every command to the COOL system is given in a text file with the extension

'.cool'. The user command for executing the COOL source file is:

coo filename.cool

CHAPTER 7. SYSTEM VERIFICATION AND USER VIEW OF THE SYSTEM184

Any execution of a 'coo' command will generate a translation of the COOL state-

ments to an Extended Relational Algebra routine, in the file 'filename.era' and a

translation in SQL for Sybase, in the file 'filename.sql'. If the COOL commands rep-

resent a create object class, or any of insert, update or delete instance of an object

class, the output file of the 'coo' command will be only the SQL file. The other file

will be empty. If the COOL commands represent a query, there will be two output

files, the '.era' file and the '.sql' file as well.

Basically a coo filename.cool command will do the following:

. Will delete 'filename.era' and 'filename.sql' files from previous executions.

. Will execute the command 'cool filename. cool' that will translate COOL into

ERA and generate the output into 'filename.era'.

• Will execute the command 'cool filename.era' that will translate COOL into

ERA and generate the output into 'filename.sql'.

• Will send the file 'filename.sql' to the Sybase interface 'isql' for the SQL exe-

cution.

After giving a coo filename. cool command, its result will come out as Sybase interface

'isql' gives it. In the Appendix D of the thesis we will show some script files of

executions with the prototype front-end.

In the coo command the extension '.cool' is optional, but the COOL source

file has to have the extension '.cool'.

Any COOL statement ends in ';'.

CHAPTER 7. SYSTEM VERIFICATION AND USER VIEW OF THE SYSTEM185

7.4.1 Database Definition

Suppose we use the Aircraft Maintenance database as an example.

We define every object class in the database using the 'create object class' state-

ment (see 'CREATE statement' in Chapter 6), as we do in the following example for

the class 'Airline':

create object class Airline

(AL# CHAR(2),

hqadd char(30),

emp_num int,

primary key AL#);

The COOL definition for the entire Aircraft Maintenance database from figure 6.4

is included in the Appendix C.I. The 'create' statements for all the classes in the

database can be included in a single file with the extension '.cool' , for example

'create.cool'.

7.4.2 Database Loading

To insert data into the object classes we can do it only instance by instance in COOL

(see 'INSERT statement' in Chapter 6). When we have parent child relationships

between the entities of the database we need to load first the parent instances and

then the child instances. If we do not do it this way, the system will prevent us by

inserting the 'orphan' child instances with the error message:

Class 'Parent-name' has no instance with primary key = 'value'.

You try to insert a child without a parent.

CHAPTER 7. SYSTEM VERIFICATION AND USER VIEW OF THE SYSTEM186

For this reason it is desirable to load first the parents and then the children. We

can have all the insert statements for all the database in the same '.cool' file or we

can have an insert file for each class in the database. For example the insert file,

'insertAirline. cool' for the class Airline is as follows.

insert obj ins into Airline

(AL# : "RO", hqadd : "Bucharest", emp_num : 3000);

insert obj ins into Airline

(AL# : "AL", hqadd : "Rome", emp_num 6000);

insert obj ins into Airline

(AL# : "AF", hqadd : "Paris", emp_num : 7000);

insert obj ins into Airline

(AL# "BA", hqadd : "London", emp_num : 10000);

The 'create.cool' file and the the insert files, insertAirline.cool, insertAircraft.cool,

and so on are created with a text editor and then executed together with a shell

script file. The shell script file 'loadAMD' that will create and load the example

database, will contain the following statements:

#! /bin/sh

statements for cleaning and initializing COOL system tables

isqi -Urata -Pcarmen < clean.sql

isqi -Urata -Pcarmen < init.sql

create the database

coo create.cool

echo The database was created

CHAPTER 7. SYSTEM VERIFICATION AND USER VIEW OF THE SYSTEM187

load the database

coo ins ertAirline . cool

coo insertAirline . cool

echo Airline class loaded

coo insertMD.cool

echo Maintenance-Depot class loaded

coo insertPTl.cool

echo PartType_Inventory class loaded

coo insertSup. cool

echo Supplier class loaded

coo insertAircraft . cool

echo Aircraft class loaded

coo insertT.cool

echo Technician class loaded

coo insertServ.cool

echo Service class loaded

coo insertServP. cool

echo Service-Project class loaded

coo insertJob.cool

echo Job class loaded

coo insertShipD.cool

echo Shipment-Data class loaded

coo insertPB.cool

echo Parts-on-Board class loaded

CHAPTER 7. SYSTEM VERIFICATION AND USER VIEW OF THE SYSTEM188

echo The database was created and loaded successfully!

Creating and loading the Aircraft Maintenance database will be executed in Ap-

pendix D.1.

7.4.3 Submission of COOL queries

After the database is created and loaded the user can submit queries. A query is

written in a file with the extension '.cool' and then submitted to the database with

the command:

coo query.cool

The output will come out in a Sybase isqi format. The contents of the script file

'coo' is given in Appendix D.8.

7.4.4 Database update

We can submit 'update' and 'delete instance' statements in the same way in which

we submit queries to the COOL front-end. In a '.cool' file we can input an update

instance statement, such as:

update Airline where AL# = "RO" set hqadd : "Arad";

In the same way in a '.cool' file we can input a delete instance statement, such as:

delete from Airline where AL# = "BA";

Shell script files with examples of insert, update and delete statements are included

in Appendix D.3, D.5 and D.6. A shell script file with typical error messages is also

included in Appendix D.7.

Chapter 8

Conclusions and Future Work

8.1 Future COOL design and implementation work

Future work on COOL could include the following:

• An optimizer for ERA routines.

• Second possible DDL.

• Implementation of inheritance.

• Design and implementation of Complex Objects: including the definition of,

storage of, and update of Complex Objects, and interface of Complex Objects

with programming languages.

• Design and implementation of functions, including the definition and inheri-

tance of functions.

Some of these issues have been partially investigated, as discussed below.

8.1.1 Second possible DDL

A second approach to the CREATE command would be to declare the object classes

without the relationships and declare the relationships separately. This approach

embodies a higher level of abstraction. It implements the structural object orien-

tation of the semantic data models, such as the Entity Relationship model, in the

189

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 190

data definition language. In this way, when designing the database schema we do not

need to map the conceptual level described by a semantic data model to an extended

nested relational model in order to write the data definition. Thus, we eliminate an

intermediate step in the conceptual design of a database.

The syntax in this case would be:

1* create a object class *1

<create_objectcls>

CREATE OBJ[ECTI CLEASJS <objectcls>

('<objectcls_element_commalist>

<objectcls_element_commalist>

<obj ectcls_element>

I <objectcls_element_conimalist> ',' <objectcls_element>

<objectcls_element>

<attribute_def>

I E <objectcls_key_def>]

<attribute_def>

<attribute> <attribute_type>

<objectcls_key_def> :

CANDIDATE KEY '(' <attribute_commalist>

I PRIMARY KEY <attribute>

/* create a relationship */

<create_rel> :

CREATE REL itoM 'C' <relationship_field_commalist> ')'

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 191

I CREATE REL MtoM '(' <relationship_f ield_commalist> ')'

I CREATE REL ISA '(' <relationship_field_conunalist_inh>

<relationship_f ield_commalist>

<relationship_field>

I <relationship_f ield_commalist> ',' <relationship_field>

<relationship_field>

<objectcls_1> [:

C:

<reference_attribute_i>] <obj ectcls_2>

<ref erence_attribute_2>]

<relationship_field_conuualist_inh> : : =

<relationship_f ield_inh>

I <relationship_f ield_commalist>

<relat ionship_field_inh>

<relationship_field_inh> ::

<subclass> C: <attribute>] INHERITS FROM <superclass>

C: <attribute>]

The meanings of the identifiers <objectcls_1>, <reference_attributej>,

<objectc1s2>, <reference...attribute...2> for 1:n relationships, that is, for the com-

mand CREATE REL itoM, and for n:m relationships, that is, CREATE REL MtoM,

are as follows:

itoM MtoM

objectcls_1 parent objectclsX

objectcls_2 child objectclsY

reference_attribute_i ref list reflist_Y

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 192

ref erence_attribute_2 superkey reflist_X

Identifiers <referenc&attributed> and <reference_attribute_2> are optional.

When they are omitted only one relationship is assumed between <objectcls_1> and

<objectc1s2> and the name of the relationship (described by the reference list) is

generated by the system.

Some examples with the second approach to Create are:

create object class Airline

(AL# CHAR(2),

hqadd char(30),

emp_num int,

primary key AL#

);

create obj ci Aircraft

(AC# char(4),

fabricant char(20),

type char(4),

primary key AC#

);

create rel itoM (Airline Aircraft);

In the example above, the reference attributes are generated by the system. Ref-

erenc&attribute_1 will be Airclist_Air and reference.attribut_2 will be AL#.

An example of two distinct 1:n relationships between the related classes Construct

and Part-Type-Inventory is the following:

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 193

create rel itoM (PartType_Inventory: inner_parts Construct: PT_outer,

PartType_Inventory:outer_parts Construct:PT_inner);

The <reference_attribute_i> and <reference_attribute_2> for the first relation-

ship are: inner-parts, which is a set of OlDs of the PartType_Inventory related

instances in the object-class Construct, and PT-outer, which is the OlD of the

Construct related parent instance in the object-class PartType_Inventory. The ref-

erence-attributes for the second relationship are: outer-parts and PT-inner. The

two distinct reference attributes of the second example with 'create rel' need to be

specified by the user in order to have helpful, suggestive names.

The advantage of this second data definition for COOL is the higher level of ab-

straction, which is similar to the conceptual level defined by the the semantic models,

such as the Entity Relationship model. Using this higher level of abstraction the user

does not have to be concerned about using foreign keys to define relationships. From

the definition of relationships, the 'create rel' statements, the system will make all

the necessary links required by a relationship implementation. Thus, this true con-

ceptual database definition takes lower level detail from users' tasks and transfers it

to the DBMS.

8.1.2 Inheritance in COOL

Inheritance in COOL is essentially about how to handle IS-A 1:1 relationships.

Alternatively, inheritance is a reusability mechanism that makes possible for a

class called subclass to be defined on the basis of the definition of an ISA 1:1 related

class called a superclass.

Consider the following ISA class hierarchy: Aircraft, Helicopter, FW_Aircraft,

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 194

where aircraft are either helicopters or fixed wing. We include in the hierarchy a

class Company that is in 1:n relationship with class Aif craft, that is, a company has

many aircraft. We also include an object class Service, where an aircraft requires

many services. The COOL data definition of the class hierarchy is given below:

Company: create obj class Company

(co# char(4),

hqadd char(30),

emp_num int,

primary key co#

)

Aircraft: create obj class Aircraft

(ac# char(4),

co# char(4),

manufacturer char(20),

type char(4),

primary key ac#,

super key (c# (Company:airclist))

)

Helicopter: create obj class Helicopter

(h# char(4),

ac# char(4),

rotor# int,

primary key h#,

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 195

super key (ac# (Aircraft))

inherits (ac# (Aircraft)

)

Fixed-Wing-Aircraft: create obj class FW_Aircraft

(fw# char(4),

ac# char(4),

engine-type char(1O),

engine# int,

primary key fw#,

super key (ac# (Aircraft))

inherits (ac# (Aircraft)

)

Service: create obj class Service

(s# char(4),

ac# char(4),

description char(80),

primary key s#,

super key (ac# (Aircraft))

)

The classes Aircraft and Helicopter or FW.Aircraft above involve single inheritance

and one level superclass - subclass 1:1 relationship.

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 196

8.1.3 Single Inheritance and one level Superclass - Subclass Relationship

The ISA relationship defined above gives rise to 6 distinct situations with respect to

genitive relations:

1. Parent to child with inheritance genitive relation, for example:

Company's Helicopters

2. Child with inheritance to parent genitive relation, for example:

Helicopter's Company

3. Parent with inheritance to child genitive relation, for example:

FW_Aircraft 's Service

4. Child to parent with inheritance genitive relation, for example:

Service's FW_Aircraft

5. Parent with inheritance to child with inheritance genitive relation, for

example: Special-Service's FW_Aircraft

6. Child with inheritance to parent with inheritance, genitive relation, for

example: FW_Aircraft 'S Special-Service,

For each of the situations above I will give query examples and I will show how

COOL expressions can be reduced to an ERA routine.

1. Query example involving the parent - child with inheritance genitive rela-

tion.

Query: Get the address of a maintenance company that services only helicopters

with 4 rotors.

CHAPTER 8. CONCLUSIONS AND FUTURE WORK

COOL:

select HQ from Company

where for all Company's Helicopters (rotor# = 4)

ERA:

197

RO = project (Aircraft (primekey, superkey))

Ri = RO (Aircraft-primekey) join Helicopter (superkey)

R2 = group-select (RI (for all Aircraft-superkey (rotor# = 4)))

R3 = Company (primekey) join R2 (Aircraft-superkey)

R4 = project (R3 (HQ))

2. Query example involving the child with inheritance - parent genitive rela-

tion.

Query: Get all the details of each helicopter maintained by companies located

in Los Angeles.

COOL:

select * from Helicopter

where for its Helicopter's Company (HQ = 'LA')

ERA:

RO = project (Aircraft (primekey, superkey))

Ri = RO (Aircraft-primekey) join Helicopter (superkey)

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 198

R2 = select (Company (HQ = 'LA'))

R3 = Ri (Aircraft_superkey) join R2 (Company_primekey)

R4 = project (R3 (Helicopter_primekey))

R5 = M(Helicopter_primekey) join Helicopter (primekey)

R6 = project (R5 (*))

3. Query example involving the parent with inheritance - child genitive rela-

tion.

Query: Get the number of engines on each fixed wing aircraft for which the

majority of performed maintenance services were computer repair.

COOL:

select engines# from FW_Aircraft

where for most FW.A±rcraft's Service

(description =

ERA:

'computer repair");

RO = group-select (Service (for most Aircraft_primekey

description = 'computer repair')))

Ri = FW_Aircraft (superkey) join RO (Aircraft_primekey)

R2 = project (Ri (engines#))

4. Query example involving the child - parent with inheritance genitive rela-

tion.

CHAPTER 8. CONCLUSIONS AND FUTURE WORK ,. 199

Query: Give the description of each service performed on fixed wing aircraft

for which the engine type is turbine.

COOL:

select description from Service

where for all Services's FW_Aircraft (enginetype = 'turbine')

ERA:

RO = project (Aircraft (primekey, superkey))

RI = RO (Aircraft...primekey) join FW_Aircra.ft (superkey)

R2 = select (Ri (enginetype = 'turbine'))

R3 = Service (superkey) join R2 (Aircra.ft_primekey)

R4 = select (R3 (description))

5. Query example involving the child with inheritance - parent with inher-

itance genitive relation.

Now suppose additionally that Services also have an ISA 1:1 relationship with

Regular Services and Special Services.

Query: Give the description of Special Services for aircraft with two engines.

COOL:

select sp_description from Special-Service

where for its Special-Service's FW_Aircraft (engines#=2);

ERA:

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 200

RO = project (Aircraft (primekey))

Ri = RO (Aircraft-primekey) join FW_Aircraft (superkey)

R2 = select (RI (engines# = 2))

R3 = project (R2 (Aircraft-primekey))

R4 = project (Services (primekey, superkey))

R5 = R4 (Services-primekey) join Special-Services (superkey)

R6 = R3 (Aircraft_primekey) join R5 (Services-superkey)

R7 = project (R6 (sp_description))

6. Query example involving the parent with inheritance - child with inher-

itance genitive relation.

Query: Get the number of engines on fixed wing aircraft that all need computer

repair.

COOL:

select engines# from FW_Aircraft

where for all FW_Aircraft's Special-Service

(description = ' 'computer repair'');

ERA:

RO = project (Services (primekey, superkey))

Ri = RO (Services-primekey) join Special-Services (superkey)

R2 = group-select (Ri (for all Services-superkey

(description = ''computer repair")))

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 201

R3 = project (Aircraft (Aircraft_primekey))

R4 = R3 (Aircraft_primekey) join FW_Aircraft (superkey)

R5 = R4 (Aircraft_primekey) join R2 (Services-superkey)

R6 = project (R5 (engines#))

8.1.4 Single Inheritance and multiple level Superclass - Subclass rela-

tionship

For the case of single inheritance and multiple level superclass - subclass relationship,

we have the same cases as above. Now suppose a Helicopter can be either a Transport

(Transport_Hely) or a Passenger Helicopter (Passenger_Hely). For the first category

of Cool Query 'parent- child with inheritance genitive relation', the equivalent COOL

expression and ERA routine, are:

Query: Get the address of each company that uses transport helicopters with

maximum loading of 50 tons.

COOL:

select hqadd from Company

where for all Company's Transport_Hely (maxload = 50)

ERA:

RO = project (Aircraft (primekey, superkey))

Ri = RO (Aircraft_primekey) join Helicopter (superkey)

R2 = project (Ri (Helicopter_primekey, Aircraft_primekey))

R3 = Transport_Hely (superkey) join R2 (Helicopter_primekey)

R4 = group-select (R3 (for all Aircraft-superkey (maxload = 50)))

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 202

R5 = Company (primekey) join R4 (Aircraft_superkey)

Ft6 = project (R5 (hqadd))

8.1.5 Composite or complex objects

A composite object can be defined as an aggregation of objects [Cat9i] (e.g.: elec-

tronic components can be grouped together to form a computer, chapters may be

grouped together to form a document). Composite objects have also a hierarchical

structure (e.g.: paragraphs are parts of sections, sections are parts of chapters and

chapters are parts of documents).

The research described in this thesis has not included composite object handling

in COOL. Investigation of composite objects, models, languages and implementation

systems would require a lengthy research project. The goal of a database system that

allows composite objects has given rise to many proposals for models, beginning with

the nested relations model.

To give the reader a general idea of what is involved, suppose we have an object

type hierarchical database structure: object class S is parent of object classes A, B

and C; object class A is parent of object classes X, Y, Z and object class B is the

parent of object classes Ti, V, W.

Considering Si, S2,... instances of object class S; Al, A2,... instances of object

class A and so on, the hierarchical structure of a composite object can be laid out

as in figure 8.1 [Bra93b].

As it was shown in Chapter 5, language constructs for complex objects are avail-

able in COOL. This involves COOL expressions for retrieval, concentration and

creation (complex object views) of composite objects. Methods for reduction of such

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 203

Si

Al A2 BI
B2 Ci

Xl X2 X3 Yl Xl XS Y10 U2 U4 U6 Wil

Figure 8.1.: Composite Object

composite object COOL expressions have still to be investigated.

A possible way of implementing composite objects is by using relations. In this

approach the objects used for constructing composite objects would be stored in a

relational database as relations. COOL could then generate a composite object of

the type shown in figure 8.1 from the underlying relations.

The composite object could be stored in a relation as a set of all the pairs (par-

ent-instance OlD, child-instance OlD). The root of the composite object hierarchy

could be a tuple with the parent NULL. A leaf in the three could be a tuple with

the child NULL.

A host-program with embedded COOL commands would be needed to retrieve

a composite object from the database in order to transfer the composite object

instances one by one to a host program structure variable.

A major problem is updating a composite object.

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 204

8.1.6 Functions or Methods

The novel concept that is central to 00 approach is undoubtingly the function

(called also procedure or method). With functions a new layer has been added to

the already well known structural 00, namely behavioral 00.

Functions add to database languages an important missing feature. This feature

is the computational completeness that we find in programming languages.

A variety of approaches has been taken to support functions in 00 database

systems. But a precise framework for functions in COOL has not yet been designed.

As a consequence functions were not implemented in the system described in this

thesis. The present section merely establishes a framework for future functions and

ADT design in COOL, since COOL can be extended to use user-defined functions

(methods, ADT or Abstract Data Types) and to perform encapsulation of data with

methods.

Functions could be written either in COOL (a COOL function), if it is possible

or in a host programming language (an external function). This idea for creating

functions was used in the draft SQL3 standard [CMCG94] and can be applied to

COOL as well.

COOL functions present more advantages than external host programming lan-

guage functions because they can be optimized, because the switching to a host-

language context can be avoided, and because user-defined types can be passed as

arguments.

We could also improve the ease of writing COOL functions by allowing COOL to

be used in a procedural manner. Some commercial database products permit users

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 205

to invoke stored procedures written in a language native to the database product.

Sybase has a language of this kind called "Control-of-Flow". This language provides

special statements like: if. . .else, while, begin. . .end, goto label, return, and so on

and permits a procedural execution of the SQL statements. Incorporating such pro-

cedural language constructs into COOL would facilitate the writing of user-defined

functions.

In the SQL3 draft standard [CMCG94], the programming language type has

not been implemented yet. This means that external functions written in a host

programming language (e.g.: C) need an interface to translate the ADT instances

passed as arguments to the function into host language types. ADTs can be passed

to external functions in the form of language-type instances.

8.2 Summary and Conclusions

In this thesis, we first presented an evolution of the database models, starting with

the prerelational models, then the relational model, the milestone in the develop-

ment of databases, and finishing with the object-oriented models. Further on we

presented the concepts of the major trends in the OODBMS development, and the

basics of the query languages. In the second part of the thesis, we comprehensively

presented a novel declarative object-relational language, COOL, the Extended Rela-

tional Algebra (ERA) for COOL, and the first implementation of COOL. The thesis

concluded with a user view of the system, system verification and future work.

Almost all of the database products developed over the past 10 years are based

on the relational technology. The simplicity of the relational is beneficial, because it

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 206

results model is a benefit in ease of use and mathematical tractability, but it is also a

limitation. There is widespread agreement that conventional normalized relations are

cumbersome at best when it comes to dealing with certain nontraditional database

applications, such as CAD/CAM, text processing, forms management, and picture

and voice processing. From the large variety of systems that were proposed to meet

the new database applications demanding we can see clearly two main trends in

solving the problem:

1. Extend the relational model appropriately,

2. Replace the relational model entirely by a new model.

Object-oriented systems represent an example of the second solution but the lack of

a solid theoretical basis is a major criticism of the object-oriented approach. The

first solution can be characterized as an attempt to provide a sound mathematical

foundation for the object-oriented approach by extending the relational model to

incorporate object-oriented concepts.

Several researchers have suggested that one way to increase the functionality

of the relational model is to drop the requirement that relations be normalized.

The non-first-normal-form (NFNF or NF2) relation and the concepts of semantic

modeling are the basis for the development of the extended relational models that

represent the foundation of the Object-Relational Database Systems. Another big

advantage of the extended relational approach to OODBMS is the non procedural

or declarative query language. The aim of this thesis was the implementation of a

declarative query language, objeét-relational, called COOL (A Composite Object-

Oriented Language), which was designed as an extension of SQL for use with an

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 207

• NF2 extended relational database. COOL is relational because is based on the set-

theory and is object-oriented because of its underlying object-oriented model and the

object-orientation reflected in the language constructs (e.g.: the genitive relation).

In COOL we think in terms of objects only, by contrast to SQL where we think in

terms of entire relations. COOL proves to be easy to use (easier than SQL) and has

a natural language structure given both by the genitive relation (genitive case in the

English language), and the natural quantifiers which are used much as in a natural

language. COOL is unique in the field of declarative languages, which makes the

implementation of COOL the first of its kind.

This thesis described an approach to implementing a declarative object-relational

database language. The prototype implementation of COOL followed the option of

a front-end to an existing relational database system rather than implementing a

full OODBMS, which would have been a much more complex and far more time-

consuming task.

For the translation of COOL, a two step translation was chosen: (1) reduction of

COOL expressions to Extended Relational Algebra (ERA) routines, and (2) trans-

lation of ERA routines into a set of SQL expressions. The translation of COOL

into ERA routines offers flexibility for future development of a full OODBMS, and

the translation of ERA routines into SQL expressions gives us portability of the

prototype, which can be executed on any relational system that supports SQL. In

generating ERA routines I aimed for optimum code, as far as possible, following the

basic rules of query processing optimization. Building a query optimizer for ERA

routines is a future research task. The prototype was built on top of Sybase DBMS.

I have designed and implemented also the data definition language for COOL, and

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 208

I have designed but not implemented the inheritance mechanism based on genitive

relations for ISA relationships.

Even if this prototype version does not have all the features of the designed

COOL, like complex objects and inheritance, it proves that a language like COOL

has valuable properties, such as:

• Powerful (more powerful than SQL): concise expressions,

• Easy to use: ease of construction of expressions,

• Reliable: errors in expressions less likely than with SQL,

• Flexible: many different ways of constructing an expression, and

• Natural: expression structures like those of natural language.

COOL could be useful for a large variety of applications, especially scientific

applications that deal with very complex entities. The COOL approach to declarative

database languages also seems ideal for future oral interrogation of databases. This

thesis has demonstrated the practical feasibility of the COOL approach.

Bibliography

[AB84] S. Abiteboul and N. Bidoit. Non First Normal Form Relations to Repre-
sent Hierarchically Organized Data. In Proc. of the third ACM SIGACT-
SIGMOD Symposium on Principles of Database Systems, pages 191-200,
1984.

[ABD89] M. Atkinson, F. Bancilhon, D. DeWitt, K. Dittrich, D. Maier, and
S. Zdonik. The Object-Oriented Database System Manifesto. In Proc.
1st Int'l. Conf. on Deductive and Object-oriented Databases, pages 40-
57,1989.

[AH84] S. Abiteboul and R. Hull. IFO: a Formal Semantic Database Model. In
Proc. of ACM-SIGMOD Conference on Principles of Database Systems,
1984.

[A51386] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers, Principles, Techniques
and Tools. Addison-Wesley, 1986.

[Ban93] F. Bancilhon. Object Database Systems: Functional Architecture. In
Object Technologies for Advanced Software. First JSSST International
Symposium. Proceedings, pages 163-75, 1993.

[]3BB88] F. Bancilhon, G. Barbedette, V. Benzaken, C. Delobel, S. Gamerman,
C. Lecluse, P. Pfeffer, P. Richard, and F. Velez. The Design and
Implementation of 02, an Object-Oriented Database System. In Ad-
vances in Object-Oriented Database Systems. 2nd Intl. Workshop on
Object-Oriented Database Systems. Proceedings. LNCS 334, pages 1-22.
Springer-Verlag, 1988.

[BCG87] J. Banerjee, H.T. Chou, J. Garza, W. Kim, D. Woelk, N. Ballou, and
H.J. Kim. Data Model Issues for Object-Oriented Applications. ACM
TOIS, 5(1):3-26, 1987.

[Bee88] D. Beech. A Foundation for Evolution from Relational to Object
Databases. In Advances in Database Technology - EDBT '88. Intl. Con-
ference on Extending Database technology. Proceedings. LNCS 803, pages
251-271. Springer-Verlag, 1988.

[Bee90] C. Been. A Formal Approach to Object-Oriented Databases. Data &
Knowledge Engineering, 5(4) :353-382, October 1990.

209

CHAPTER 8. BIBLIOGRAPHY 210

[B1a93] J.A. Blakeley. ZQL[C++]: Integrating the C++ language and an ob-
ject query capability. In Proceedings of the Workshop on Combining
Declarative and Object-Oriented Databases, pages 138-144, May 1993.

[BLM91] 0. Boucelma and J. Le Maitre. An extensible functional Query Lan-
guage for an Object Oriented Database System. In Proc. of the Second
Int'l Conf. on Deductive and Object-Oriented Databases, pages 567-581,
December 1991.

[BM93] E. Bertino and L. Martino. Object-Oriented Database Systems. Addison-
Wesley, 1993.

[BMO89] R. Bretl, D. Maier, A. Otis, J. Penney, B. Schuchardt, J. Stein, E.H.
Williams, and M. Williams. The GemStone Data Management System.
In Object-Oriented Concepts, Databases, and Applications, chapter 12,
pages 283-308. Addison-Wesley, 1989.

[BNPS92] E. Bertino, M. Negri, G. Pelagatti, and L. Sbattella. Object-oriented
query languages: the notion and the issues. IEEE Transactions on
Knowledge and Data Engineering, 4(3):223-37, June 1992.

[BOS91] P. Butterworth, A. Otis, and J. Stein. The GemStone Object Database
Management System. Communications of the ACM, 34(10):64-77, Oc-
tober 1991.

[Bra78] J. Bradley. An extended owner-coupled set data model and predicate
calculus for data base management. ACM Transactions on Data Base
Systems, 3(4):385-415, 1978.

[Bra83] J. Bradley. SQL/N and attribute/relation associations implicit in
functional dependencies. Intl. J. Computer & Information Science,
12(20):65-86, 1983.

[Bra87] J. Bradley. Introduction to Data Base Management in Business. HRW
The Dryden Press, 1987.

[Bra88] J. Bradley. A group-select operation for relational algebra and implica-
tions for data base machines. IEEE Transactions on Software Systems,
14(l):126-29, 1988.

[Bra92a] J. Bradley. A Genitive Relational Tuple Calculus for an N 2 F Object-
Oriented Relational Data Model. Technical report, Department of Com-
puter Science, The University of Calgary, September 1992. 92/488/26.

CHAPTER 8. BIBLIOGRAPHY 211

[Bra92b] J. Bradley. An Object-Relationship Diagrammatic Technique for
Object-Oriented Database Definitions. Journal of Database Adminis-
tration, 3(2):1-11, 1992.

[Bra92c] J.. Bradley. Genitive Relations and the Composite Object-Oriented Lan-
guage COOL for Object Support in N2F Relational Data Bases. Techni-
cal report, Department of Computer Science, The University of Calgary,
Aug 1992. 92/482/20.

[Bra92d] J. Bradley. Recursive Relationships and Natural Quantifier Set Theo-
retic Expression Techniques. Computer Journal, 35(4):A343-8, August
1992.

[Bra93a] J. Bradley. COOL: A Composite Object Oriented Language for N2F
Object-Oriented Relational Data Bases. Technical report, Depart-
ment of Computer Science, The University of Calgary, March 1993.
93/512/17.

[Bra93b] J. Bradley. COOL Concepts and Semantics for Definition, Concetration
and Manipulation of Composite Objects in an N2F Relational data base.
Technical report, Department of Computer Science, The University of
Calgary, March 1993. 93/513/18.

[Bra94] J. Bradley. Extended Relational Algebra for Reduction of Natural Quan-
tifier COOL Expressions. Technical report, Department of Computer
Science, The University of Calgary, May 1994. 94/540/09.

[Bro91] A.W. Brown. Object-Oriented Databases and their Applications in Soft-
ware Engineering. McGraw-Hill, 1991.

[Cat91] R.G.G. Cattell. Object Data Management: Object-Oriented and Ex-
tended Relational Database Systems. Addison-Wesley, 1991.

[Cat93] R.G.G. Cattell, editor. The Object Database Standard: ODMG-93. Mor-
gan Kaufmann, 1993.

[CC89] Q. Chen and W. Chu. A high-order logic programming language
(HILOG) for non-1NF databases. In Proc. of the First International
Conference on Deductive and Object-Oriented Databases, pages 396-418,
December 1989.

[CDG89] M.J. Carey, D.J. DeWitt, G. Graefe, D.M. Haight, J.E. Richardson, D.T.
Schuh, E.J. Shekit, and S.L. Vandenberg. The EXODUS Extensible

CHAPTER 8. BIBLIOGRAPHY 212

DBMS Project: An Overview. In Readings in Object-Oriented Database
Systems, pages 474-499. Morgan-Kaufmann, 1989.

[CDKK8S] H. Chou, D. DeWitt, R. Katz, and A. King. Design an Implementation
of the Wisconsin Storage System. Software Practice and Experience,
15(10), October 1985.

[Cha78] C.L. Chang. DEDUCE-2: Further investigations of deduction in rela-
tional data bases. In Logic and Databases. Plenum Press, 1978.

[Che76] P.P. Chen. The Entity-Relational Model- Toward a unified view of data.
ACM Transactions on Database Systems, 1(1):9-36, March 1976.

[CKW92] W. Chen, M. Kifer, and D.S. Warren. HiLog: A foundation for higher
order logic programming. Journal of Logic Programming, 1992.

[CMCG94] J. M. Cheng, N. M. Mattos, D. D. Chamberlin, and DeMichiel L. G.
Extending Relational Database Technology for New Applications. IBM
Systems Journal, 33(2):264-279, 1994.

[Cod70] E.F. Codd. A relational model for large shared data banks. Communi-
cations of ACM, 13(6):377-387, June 1970.

[Cod72] E.F. Codd. Relational Completeness of the Data Base Sublanguages.
In Data Base Systems, Courant Computer Science Symposia Series 6.
Prentice Hall, 1972.

[Cod79] E.F. Codd. Extending the Database Relational Model to Capture More
Meaning. ACM TODS, 4(4), December 1979.

[Cod81] E.F. Codd. Data Models in Database Management. ACM SIGMOD
Record, 11(2), February 1981.

[Dat90] C.J. Date. An Introduction to Database Systems. Addison-Wesley, 1990.

[Day89] U. Dayal. Queries and views in an object-oriented data model. In 2nd In-
t'l Workshop on Database Programming Languages, pages 80-102, June
1989.

[Deu91] 0. et al. Deux. The 02 System. Communications of the ACM,
34(10):35-48, October 1991.

CHAPTER 8. BIBLIOGRAPHY 213

[DKA+86] P. Dadam, K. Kuespert, F. Andersen, H. Blanken, R. Erbe, J. Guenauer,
V. Lum, P. Pistor, and G. Waich. A DBMS Prototype to Support Ex-
tended NF2 Relations: An Integrated View on Flat Tables and Hierar-
chies. In Proceedings of the ACM SIGMOD Conference, pages 356-367,
May 1986.

[EW81] R. Elmasri and G. Wiederhold. GORDAS: A formal high-level query
language for the entity-relationship model. In Entity-Relationship Ap-
proach to Information Modeling and Analysis. Ed. Elsevier, 1981.

[FBC+87] D.H. Fishman, D. Beech, H.P. Cate, E.C. Chow, T. Connors, J.W.
Davis, N. Derrett, C.G. Hoch, W. Kent, P. Lyngbaek, B. Mahbod, M.A.
Neimat, T.A. Ryan, and M.C. Shan. Iris: An Object-Oriented Database
Management System. ACM TOIS, 5(1):48-69, 1987.

[Fis89] D.H. et al. Fishman. Overview of the Iris DBMS. In Object-Oriented
Concepts, Databases, and Applications, chapter 10, pages 219-250.
Addison-Wesley, 1989.

[FT83] P.C. Fisher and S.J. Thomas. Operators for Non-First-Normal-Form
Relations. In Proc. of the 7th International Computer Software Appli-
cations Conference, 1983.

[GLPS91] M. Guy, B. Lindsay, H. Pirahesh, and K.B. Schiefer. Extensions to
STARBTJRST: Objects, Types, Functions, and Rules. Communications
of the ACM, 34(10):94-109, 1991.

[GR83] A. Goldberg and D. Robson. Smalltalk-80: The Language and Its Im-
plementation. Addison-Wesley, 1983.

[HFWC91] A. Heuer, J. Fuchs, U. Wiebking, and T.U. Clausthal. OSCAR: An
Object-Oriented Database System with a Nested Relational Kernel. In
Entity-Relationship Approach: The Core of Conceptual Modeling. Pro-
ceedings of the Ninth International Conference, pages 103-18, 1991.

[HM81] M. Hammer and D. McLeod. Database description with SDM: A Seman-
tic Database Model. ACM Transactions on Database Systems, 6(3):351-
386, September 1981.

[11R87] R. Hull and King R. Semantic Database Modeling: Survey, Applica-
tions, and Research Issues. ACM Computing Surveys, 19(3):140-173,
September 1987.

CHAPTER 8. BIBLIOGRAPHY 214

[HY84] R. Hull and C. Yap. The Format Model: A Theory of Database Organi-
zation. Journal of the Association for Computing Machinery, 31(3):518-
537, July 1984.

[HZ87] M. Hornick and S.B. Zdonik. A Shared, Segmented Memory System for
an Object-Oriented Database. ACM Transactions on Office Information
Systems, 5(1), January 1987.

[KBC89] W. Kim, N. Ballou, H.-T. Chou, J.F. Garza, and D. Woelk. Features of
the ORION Object-Oriented Database System. In Object-Oriented Con-
cepts, Databases, and Applications, chapter 11, pages 251-282. Addison-
Wesley, 1989.

[KC89] S.N. Khoshaflan and G.P. Copeland. Object Identity. In Readings
in Object-Oriented Database Systems, pages 37-46. Morgan-Kaufmann,
1989.

[Kim] W. Kim. On Object-Oriented Database Technology. UniSQL, Inc.,
white paper.

[Kim90] W. Kim. Introduction to Object-Oriented Databases. The MIT Press,
1990.

[Kim92] W. Kim. On unifying relational and object-oriented database systems.
In ECOOP '9. European Conference on Object-Oriented Programming.
Proceedings, pages 1-18, 1992.

[Kim94] W. Kim. Observations on the ODMG-93 proposal for an object-oriented
database language. SIGMOD Record, 23(1):4-9, March 1994.

[Kin89] R. King. My Cat is Object-Oriented. In Object-Oriented Concepts,
Databases, and Applications, chapter 2, pages 23-30. Addison-Wesley,
1989.

[KL89] M. Kifer and G. Lausen. F-Logic: A Higher-Order Language for Rea-
soiling about Objects, Inheritance, and Scheme. In Proceedings of the
ACM-SIGMOD Intl. Conference on Management of Data, pages 134-
146, June 1989.

[KR9O] W. M. Kisworo and P. Rajagopalan. Implementation of an Object-
Oriented Front-End to a Relational Database System. In IEEE TEN-
CON '90: 1990 IEEE Region 10 Conference on Computer and Commu-
nication Systems, volume 2, pages 811-15, September 1990.

CHAPTER 8. BIBLIOGRAPHY 215

[Ku193] K.G. Kulkarni. Object-orientation and the SQL standard. Computer
Standards & Interfaces, 15(2-3):287-300, July 1993.

[Las92] A.V. Lashmanov. Trends in development of database languages (rela-
tional and object-oriented languages and systems. Automatic Documen-
tation and Mathematical Linguistics, 26(4):41-58, 1992.

[LH9O] B. Lindsay and L. Haas. Extensibility in the Starburst Experimental
Database System. In Database Systems of the 90s. Intl Symposium
Proceedings, pages 217-248, 1990.

[LLOW91] C. Lamb, G. Landis, J. Orenstein, and D. Weinreb. The ObjectStore
Database System. Communications of the ACM, 34(10):51-63, October
1991.

[LLPS91] G.M. Lohman, B. Lindsay, H. Pirahesh, and K.B. Schiefer. Extensions to
STARBTJRST: Objects, Types, Functions, and Rules. Communications
of the ACM, 34(10):95-109, October 1991.

[LRV89] C. Lecluse, P. Richard, and F. Velez. 02, an Object-Oriented Data
Model. In Readings in Object-Oriented Database Systems, pages 227-
236. Morgan-Kaufmann, 1989.

[Mai83] D. Maier. The Theory of Relational Databases. Computer Science Press,
1983.

[Mal-,77] A. Makinouchi. A consideration on normal form of not-necessarily-
normalized relations in the relational data model. In Proceedings of the
3rd International Conference on Very Large Databases, pages 447-453,
October 1977.

[MB9O] T. Mason and D. Brown. lex & yacc. O'Reilly & Associates, Inc., 1990.

[Mos90] J.E.B. Moss. Design of the Mneme Persistent Object Store. Transac-
tions on Office Information Systems, 8(2), April 1990.

[MR86] Stonebraker M. and L. Rowe. The Design of Postgres. In Proceedings of
the ACM SIGMOD Conference, pages 340-355, May 1986.

[MR93] I.S. Mumick and K.A. Ross. Noodle: A Language for Declarative Query-
ing in an Object-Oriented Database. In Third Intl. Conference, DOOD
'93. Proceedings, pages 360-78, 1993.

CHAPTER 8. BIBLIOGRAPHY 216

[NCL86] B. Nixon, L. Chung, D. Lauzon, A. Borgida, J. Mylopoulos, and M. Stan-
ley. Implementation of a compiler for a semantic data model: experience
with TAXIS. SIGMOD Record, 16(3):118-131, 1986.

[PBRV9O] W. Premerlani, M. Blaha, J. Rumbaugh, and T. Varwig. An Object-
Oriented Relational Database. Communications of the ACM, 33(11):99-
108, Nov 1990.

[PD89] P. Pistor and P. Dadam. The Advanced Information Management Pro-
totype. In Nested Relations and Complex Objects in Databases. LNCS
361, pages 3-26. Springer-Verlag, 1989.

[RM87] L. Rowe and Stonebraker M. The Postgres Data Model. In Proc. of the
XIII International Conference on Very Large Databases, pages 289-300,
1987.

[SAB89] M. Scholl, S. Abiteboul, F. Bancilhon, N. Bidoit, S. Gamerman,
D. Plateau, P. Richard, and A. Verroust. VERSO: A Database Ma-
chine Based On Nested Relations. In Nested Relations and Complex
Objects in Databases. LNCS 861, pages 27-49. Springer-Verlag, 1989.

[Sal73] A. Salomaa. Formal Languages. Academic Press, 1973.

[Shi81] D. Shipman. The Functional Data Model and the Data Language
DAPLEX. ACM Transactions on Database Systems, 6(1):140-173,
March 1981.

[SK91] M. Stonebraker and G. Kemnitz. The POSTGRES Next-Generation
Database Management System. Communications of the ACM,
34(10):79-92, October 1991.

[SRJJ'90] M. Stonebraker, L. Rowe, B. Lindsay, J. Gray, M. Carey, M. Brodie,
P. Bernstein, and D. Beech. Third-Generation Data Base System Man-
ifesto. ACM SIGMOD Record, 19(3):31-44, Sep 1990.

[SS86] H.-J. Schek and H.M. Scholl. The Relational Model with Relation-
Valued Attributes. Information Systems, 11(2):137-147, 1986.

[SS89] H.-J. Schek and M.H. Scholl. The Two Roles of Nested Relations in
the DASDBS Project. In Nested Relations and Complex Objects in
Databases. LNCS 361, pages 50-68. Springer-Verlag, 1989.

CHAPTER 8. BIBLIOGRAPHY 217

[SS9O] M. H. Scholl and H.-J. Schek. A Relational Object Model. In INRIA.
ICDT '90. Third International Conference on Database Theory. Proceed-
ings, pages 89-105, 1990.

[SS91] H.-J. Schek and M. H. Scholl. From Relations and Nested Relations to
Object Models. In Database systems of the 90s. International Sympo-
sium Proceedings, pages 202-225, 1991.

[Sto] M. Stonebraker. Object-Relational Database Systems. Montage Soft-
ware, Inc., white paper.

[Sto87] M. Stonebraker. The design of the POSTGRES storage system. In
Proceedings of the Thirteenth International Conference on Very Large
Data Bases, pages 289-300, September 1987.

[Str86] B. Stroustrup. The C++ Programming Language. Addison-Wesley,
1986.

[Syb91a] Sybase, Inc., Emeryville, CA. Open Client DB-Library/C Reference
Manual, 1991.

[Syb9lb] Sybase, Inc., Emeryville, CA. Transact-SQL User's Guide, 1991.

[TZ84] S. Tsur and C. Zaniolo. An implementation of GEM-Supporting a se-
mantic data model on a relational back-end. In Proceedings of the ACM
SIGMOD International Conference on the Management of Data, pages
286-295, 1984.

[UhCLS94] S.D. Urban, Chiung hsun Chen Lai, and S. Saxena. The Design and
Translation of ORL: An Object Retrieval Language. Journal of Systems
and Software, 24(2):187-206, February 1994.

[Ull88] J.D. Ullman. Principles of Database and Knowledge-Base Systems, vol-
ume 1. Computer Science Press, 1988.

[US9O] R. Unland and G. Schlageter. Object-Oriented Database Systems: Con-
cepts and Perspectives. In Database systems of the 90s. International
Symposium Proceedings, pages 154-97, 1990.

[WBC9O] G. Wiederhold, T. Barasalou, and S. Chaudhuri. Managing Objects in
a Relational Framework. Technical report, Computer Science Depart-
ment, Stanford University, 1990.

CHAPTER 8. BIBLIOGRAPHY 218

[Wie91] R.J. Wieringa. A formalization of objects using equational dynamic
logic. In Second International Conference on Deductive and Object-
Oriented Databases. Proceedings. LNCS 566, pages 431-452, December
1991.

[WLH9O] K. Wilkinson, P. Lyngbael, and W. Hasan. The Iris architecture and im-
plementation. ACM Transactions on Knowledge and Data Engineering,
2(l):63-75, March 1990.

[ZM89a] S. Zdonik and D. Maier. Fundamentals of Object-Oriented Databases.
In Readings in Object-Oriented Database Systems, pages 1-32. Morgan-
Kaufmann, 1989.

[ZM89b] S.B. Zdonik and D. Maier. Readings in Object-Oriented Database Sys-
tems. Morgan-Kaufmann, 1989.

Appendix A

Implemented syntax of COOL

The BNF Grammar for the COOL parser is:

<cool_list>

<cool>

<schema>

<schema_element_list>

<schema_element>

<obj ectcls_def>

<cool>

I <cool_list> <cool>

<schema>

I <manipulative_statement>

1* empty *1
I <schema_element_list>

<schema_element>

I <schema_element_list> <schema_element>

<obj ectcls_def>

CREATE OBJ[ECTI CL[AS]S <objectcls>

(<objectcls_element_commalist>)

<objectcls_element_commalist> :

<obj ectcls_element>

I <objectcls_element_commalist>
<obj ectcls_element>

<objectcls_element> :

219

APPENDIX A. IMPLEMENTED SYNTAX OF COOL 220

<attribute_def>

I <obj ectcls_key_def>

<attribute_def>

<attribute> <attribute_type>

<obj ectcls_key_def>

CANDIDATE KEY (<attribute_commalist>)
I PRIMARY KEY <attribute>
I SUPER KEY (<relationship_field_conunalist>)

<relationship_field_conunalist>

<relationship_field>

I <relationship_field_commalist>
<relationship_field>

<relationship_field> ::=

<attribute> (<parent_objectcls>)
I <attribute>
(<parent_obj ectcl s> : <reference_attribute>)

<attribute_commalist>

<attribute>

I <attribute_commalist> , <attribute>

1* data manipulation statements *1

<manipulative_statement>

<select_statement>

<delete_statement>

<insert_instance_statement>

<insert_manyobj ects_statement>

<update_statement>

<drop_class_statement>

<dump_database_statement>

<insert_instance_statement> :

INSERT OBJ[ECT] INS [TANCE] INTO <objectcls>

(<insert_value_coimnalist>)

APPENDIX A. IMPLEMENTED SYNTAX OF COOL 221

<insert_value_conunalist>

<insert_value>

I <insert_value_commalist> , <insert_value>

<insert_value>

<attribute> : <alpha>

I <attribute> : <numeric>

<insert_manyobjects_statement>

INSERT INTO <objectcls> <select_statement>

<delete_statement>

<delete_uncond_st atement>

I <delete_withcond_statement>

<delete_uncond_statement>

DELETE ALL <from_clause>

<delete_withcond_sta.tement>

DELETE <from_clause> WHERE <condition>

<update_statement>

UPDATE <objectcls> WHERE <condition>

SET <update_value_comnialist>

<update_value_commalist>

<update_value>

I <update_value_coinmalist> , <update_value>

<update_value>

<attribute> : <scalar_expr>

I <attribute> <alpha>

<drop_class_statement> :

DROP <objectcls>

<dump_database_statement>

DUMP DATABASE

<select_statement>

APPENDIX A. IMPLEMENTED SYNTAX OF COOL 222

SELECT <selection> FROM <object_class>

[WHERE <where_express ion>]

<selection>

<attribut e_conuualist>

1*

<where_expression>

<condition> [<logical_xref_list>]

I <quantified_xreference> [<logical_xref_list>]

<logical_xref_list>

<logical_xref>

I <logical_xref_list> <logical_xref>

<logical_xref>

OR <quantiied_xreference>

I AND <quantified_xreference>

<condition>

<relat ional_expr>

I <condition> AND <condition>
I <condition> OR <condition>
I (<condition>)

<relat ional_expr>

<left_expr>

<right_expr>

<scalar_expr>

<left_expr> COMPARISON <right_expr>

<attribute>

<scalar_expr>

I <alpha>

<scalar_expr> + <scalar_expr>

I <scalar_expr> <scalar_expr>

I <scalar_expr> * <scalar_expr>

APPENDIX A. IMPLEMENTED SYNTAX OF COOL 223

I <scalar_expr> / <scalar_expr>
I (<scalar_expr>)
I <numeric>

<quantified_xreference>

<genitive_relation> (<where_expression>)

<genitive_relation>

1* Parent Child genitive relation where (1) is the formal syntax *1
<quantifier_pc> <parent> . <reference_attribute> *

<formal_child>

1* and (2) is the natural language syntax *1
I <quantifier_pc> <parent>'S

[* <reference_attribute>] <natural_child>

1* Composite Parent Child genitive relation where
(1) is the formal syntax *1

I <quantifier_pc> <grandparent>
<reference_attribute> * <parent>

<reference_attribute> '*' <child>

1* and (2) is the natural language syntax *1
I <quantifier_pc> <grandparent>'S

[* <reference_attribute>] <parent> 'S

[* <reference_attribute>] <child>

1* Child Parent genitive relation where (1) is the formal syntax *1
I <quantifier_cp> <child> . <child_superkey> * <parent>

1* and (2) is the natural language syntax *1
I <quantifier_cp> <child>'S [<child_superkey>] <parent>

1* Composite Child Parent genitive relation where
(1) is the

1* and (2) is

formal syntax *1
<quantifier_cp> <child> . <child_superkey> *

<parent> '.' <parent_superkey '*' <grandparent>

the natural language syntax *1
<quantifier_cp> <child> 'S

[<child_superkey>] <parent> 'S

[<parent_superkey>] <grandparent>

APPENDIX A. IMPLEMENTED SYNTAX OF COOL 224

<child>

<parent>

<grandparent>

<formal_child>

<natural_child>

<quantifier_pc>

<quantifier_cp>

<reference_attribute>

<alpha>

<obj ect_class>

<obj ect_class>

<obj ect_class>

<obj ect_class>

I (<object_class> (<condition>))

<obj ect_class>

I (<condition>) <object_class>

FOR ALL

FOR MOST

FOR NONE

FOR ALL BUT INTNUM

FOR AT MOST INTNUM

FOR AT LEAST INTNUM

FOR MORE THAN INTNUM

FOR LESS THAN INTNUM

FOR EXACTLY INTNUM

FOR NOT INTNUM

FOR THE

I FOR ITS
I FOR HER
I FOR HIS

NAME

APPENDIX A. IMPLEMENTED SYNTAX OF COOL 225

STRING

<numeric>

INTNUM

I APPROXNUM

1* data types *1

<attribute_type>

CHARACTER

I CHARACTER (INTNUM)
I INTEGER

<obj ect_class>

<attribute>

<child_superkey>

NAME

NAME

NAME

1* COMPARISON: = <> < > <= > */

The BNF Grammar for ERA parser is:

<era_list>

<era_expr>

NL <era_expr>

I <era_list> NL <era_expr>

1* empty *1
<join_statement>

<select_statement>

<group_select_statement>

<intersect_statement>

<union_statement>

<subgroup_select_statement>

APPENDIX A. IMPLEMENTED SYNTAX OF COOL 226

I <proj ection_ statement>
I <pj oin_statement>

<join_statement> : <relation_name > = <relation_name>

(<attribute>) JOIN <relat ion_name>
<attribute>)

<pjoin_statement>

<relation_name> = <relation_name>

(<attribute>) PJOIN (<variable_name>)
<relation_name> (<attribute>)

<select_statement>

<relation_name> = SELECT

(<relation_name> (<condition>))

<projection_statement>

<relation_name> = PROJECT

(<relation_name> (<selection>))

<group_select_statement>

<relation_name> = GROUP-SELECT (<relation_name>
(<quantifier_pc> <foreign_key>

(<condition_expr>)))

<subgroup_select_statement>

<relation_name> = SUBGROUP-SELECT

(<relation_name> (<quantifier_pc>
(<foreign_key> (<condition>))

(<condition_expr>)))

<condit ion_expr>

<condition>

I <condition> AND <variable_name>
I <condition> OR <variable_name>
I <variable_name>

<union_statement> :

<relation_name> = <relation_name> UNION <relation_name>

APPENDIX A. IMPLEMENTED SYNTAX OF COOL 227

<intersect_statement>

<relation_name> = <relation_name> INTERSECT

(<join_field>) <relation_name>

<selection>

<attribute_commalist>

<condition>

<relat ional_expr>

<let t_expr>

<right_expr>

<scalar_expr>

<quantifier_pc>

<attribute_commalist>

*

<attribute>

I <attribute_conuualist> , <attribute>

<relat ional_expr>

I <condition> AND <condition>
I <condition> OR <condition>
I (<condition>)

<left_expr> COMPARISON <right_expr>

<attribute>

<s cal ar_ expr>

I <alpha>

<scalar_expr> + <scalar_expr>

<scalar_expr> <scalar_expr>

<scalar_expr> * <scalar_expr>

<scalar_expr> / <scalar_expr>
(<scalar_expr>)
<numeric>

FOR ALL

I FOR MOST

APPENDIX A. IMPLEMENTED SYNTAX OF COOL 228

FOR NONE

FOR ALL BUT INTNUM

FOR AT MOST INTNUM

FOR AT LEAST INTNUM

FOR MORE THAN INTNUM

FOR LESS THAN INTNUM

FOR EXACTLY INTNUM

FOR NOT INTNUM

<alpha>

STRING

<numeric>
INTNUM

I APPROXNUM

<relation_name>

<variable_name>

<foreign_key>

<join_field>

<attribute>

NAME

VAR

NAME

NAME

NAME

Appendix B

The aircraft maintenance database schema

Class Airline

Properties:

AL#

hqadd

emp_num

Airclist

string,

string,

int,

set of Aircraft, AL#

Class Aircraft

Properties:

AC#

type

fabricant

string,

string,

string,

Airline,

Ownelist_A set of Ownerships. Partlist_A set of Parts-on-Board,

Class Depot-Ownership

Properties:

O# string,

share int,

MD# Maintenance-Depot,

AL# Airline.

Servlist set of Sevices.

Class Maintenance-Depot

Properties:

MD# string,

address string,

Ownelist_M

Servlist_M

Techlist

set of Services,

set of Services,

set of Technicians,

Partlist_M set of PartType_Inventory.

Class Service Class Service-Project

Properties: Properties:

229

APPENDIX B. THE AIRCRAFT MAINTENANCE DATABASE SCHEMA 230

SV# string, SVP# string,

description string, description string,

Servlist_S set of Service-Project, Joblist_S set of Jobs,

AC# Aircraft, SV# Service.

MD# Maintenance-Depot.

Class Parts-on-Board Class Job

Properties: Properties:

PB# string, J# string,

part# string, descr string,

status string, start date,

AC# Aircraft, finish date,

PT# PartType_Inventory, status string,

S# Supplier. SVP# Service-Project,

T# Technician.

Class Technician Class PartType_Inventory

Properties: Properties:

T# string, PT# string,

name string, typename string,

title string, qty int,

Joblist_T set of Jobs, Partlist_P set of Parts-on-Board,

MD# Maintenance-Depot Shiplist_P set of Shipment-Data,

Inner-Parts set of Constructs,

APPENDIX B. THE AIRCRAFT MAINTENANCE DATABASE SCHEMA 231

Outer-Parts set of Constructs,

MD# Maintenance-Depot.

Class Supplier Class Shipment-Data

Properties: Properties:

string, SH# string,

address string, price int,

Partlist_S set of Parts-on-Board, qty int,

Shiplist_S set of Shipment-Data. S# Supplier,

PT# PartType_Inventory.

Class Construct

Properties:

C# string,

location string,

PT-outer PartType_Inventory,

PT-inner PartType_ Inventory.

Appendix C

Aircraft maintenance database definition

C.1 COOL definition of the example database

create object class Airline

(AL# CHAR(2),
hqadd char(20),

emp_num int,

primary key AL#);

create obj ci Aircraft

(AC# char(4),

AL# char(2),

fabricant char(20),

type char(4),

primary key AC#,

super key (AL# (Airline)));

create obj ci Depot-Ownership

(O# char(4),

AL# char(2),

MD# char(4),

share int,

primary key O#,

super key (MD# (Maintenance_Depot), AL# (Airline)));

create obj ci Service

(SV# char(4),

AC# char(4),

MD# char(4),

description char(20),

primary key SV#,

super key (AC# (Aircraft), MD# (Maintenance-Depot)));

232

APPENDIX C. AIRCRAFT MAINTENANCE DATABASE DEFINITION 233

create object class Service-Project

(SVP# char(4),

SV# char(4),

description char(20),

primary key SVP#,

super key (sV# (Service)));

create obj ci Maintenance-Depot

(MD# char(4),

address char(20),

primary key MD#);

create obj ci Parts-on-Board

(PB# char(4),

AC# char(4),

PT# char(4),

S# char(4),

part# char(4),

status char(2),

primary key PB#,

super key (AC# (Aircraft), PT# (PartType_Inventory),

S# (Supplier)));

create obj ci .Job

(J# char(4),

T# char(4),

SVP# char(4),

descr char(10),

start char (10),

finish char(10),

status char(3),

PT# char(4),

part# char(4),

primary key J#,

super key (SVP# (Service-Project), T# (Technician)));

create obj ci Technician

(T# char(4),

MD# char(4),

APPENDIX C. AIRCRAFT MAINTENANCE DATABASE DEFINITION 234

name char(20),

title char (15),

primary key T#,

super key (MD# (Maintenance-Depot)));

create obj ci PartType_Inventory

(PT# char(4),

MD# char(4),

typename char(20),

qty int,

primary key PT#,

super key (MD# (Maintenance-Depot)));

create obj ci Supplier

(S# char(4),

address char(20),

primary key S#);

create obj ci Shipment-Data

(SH# char(4),

PT# char(4),

S# char(4),

price int,

qty int,

primary key SH#,

super key (PT# (PartType_Inventory), S# (Supplier)));

create obj ci Construct

(C# char(4),

PT-outer char(4),

PT_inner char(4),

location char(1O),

primary key C#,

super key (PT-outer (PartType_Inventory: inner_parts),

PT-inner (PartType_Inventory:outer_parts)));

APPENDIX C. AIRCRAFT MAINTENANCE DATABASE DEFINITION 235

C.2 SQL definition of the example database

create table Airline (
OlD int,

AL# char (2),

hqadd char (20),

emp_num int,

)
create table Aircraft (
DID int,

AC# char (4),

AL# char (2),

fabricant char (20),

type char (4),

)
create table Depot-Ownership (
DID int,

D# char (4),

AL# char (2),

MD# char (4),

share int,

)
create table Service (
DID int,

SV# char (4),

AC# char (4),

MD# char (4),

description char (20),

)
create table Service_Project (
DID int,

SVP# char (4),

SV# char (4),

description char (20),

)
create table Maintenance-Depot

DID int,

MD# char (4),

(

APPENDIX C. AIRCRAFT MAINTENANCE DATABASE DEFINITION 236

address char (20),

)
create table Parts-on-Board (
DID int,

PB# char (4),

AC# char (4),

PT# char (4),

S# char (4),

part# char (4),

status char (2),

)
create table Job (
DID int,

J# char (4),

T# char (4),

SVP# char (4),

descr char (10),

start char (10),

finish char (10),

status char (3),

PT# char (4),

part# char (4),

)
create table Technician (
DID int,

T# char (4),

MD# char (4),

name char (20),

title char (15),

)
create table PartType_Inventory

DID int,

PT# char (4),

MD# char (4),

typename char (20),

qty int,

)
create table Supplier (
DID int,

S# char (4),

(

APPENDIX C. AIRCRAFT MAINTENANCE DATABASE DEFINITION 237

address char (20),

)
create table Shipment-Data

OlD int,

SH# char (4),

PT# char (4),

S# char (4),

price int,

qty int,

)
create table Construct (
OlD int,

C# char (4),

PT-outer char (4),

PT-inner char (4),

location char (10),

)

(

Appendix D

Testing the Aircraft Maintenance Database

D.1 Create and Load the database

The Aircraft Maintenance Database can be created and loaded using the procedure

loadAMD, as follows:

*** Script initiated by Carmen Rata on Fri Jan 20 20:13:37 1995

[cool] >>?

[cool] >>?

/bin/sh
cat loadAMD

isql -Urata -Pcarmen < clean.sql

isql -Urata -Pcarmen < init.sql

coo create.cool

echo The database was created

coo insertAirline cool

echo Airline class loaded

coo insertMD.cool

echo Maintenance-Depot class loaded

coo ins ertPTI cool

echo PartType_Inventory class loaded

coo insertSup.cool

echo Supplier class loaded

coo insertAircraft cool

echo Aircraft class loaded

coo insertT.cool

echo Technician class loaded

coo ins ertServ. cool

echo Service class loaded

coo insertServP cool

echo Service-Project class loaded

238

APPENDIX D. TESTING THE AIRCRAFT MAINTENANCE DATABASE 239

coo insertJob.cool

echo Job class loaded

coo insertShipD. cool

echo Shipment-Data class loaded

coo insertPB.cool

echo Parts-on-Board class loaded

echo The database was created and loaded successfully!

[cool] >>? loadAMD

The database was created

(1 row affected)

(1 row affected)

(1 row affected)

(1 row affected)

Airline class loaded

(1 row affected)

(1 row affected)

(1 row affected)

(1 row affected)

(1 row affected)

Maintenance-Depot class loaded

(1 row affected)

(1 row affected)

(1 row affected)

(1 row affected)

(1 row affected)

(1 row affected)

(1 row affected)

(1 row affected)

(1 row affected)

PartType_Inventory class loaded

(1 row affected)

(1 row affected)

(1 row affected)

(1 row affected)

Supplier class loaded

(1 row affected)

(1 row affected)

APPENDIX D. TESTING THE AIRCRAFT MAINTENANCE DATABASE 240

(1 row affected)

(1 row affected)

(1 row affected)

(1 row affected)

(1 row affected)

Aircraft class loaded

(1 row affected)

(1 row affected)

(1 row affected)

(1 row affected)

(1 row affected)

(1 row affected)

Technician class loaded

(1 row affected)

(1 row affected)

(1 row affected)

(1 row affected)

Service class loaded

(1 row affected)

(1 row affected)

(1 row affected)

(1 row affected)

(1 row affected)

(1 row affected)

(1 row affected)

(1 row affected)

(1 row affected)

Service-Project class loaded

(1 row affected)

(1 row affected)

(1 row affected)

(1 row affected)

(1 row affected)

(1 row affected)

(1 row affected)

(1 row affected)

(1 row affected)

(1 row affected)

Job class loaded

(1 row affected)

APPENDIX D. TESTING THE AIRCRAFT MAINTENANCE DATABASE 241

(1 row affected)

(1 row affected)

(1 row affected)

(1 row affected)

(1 row affected)

(1 row affected)

Shipment-Data class loaded

row affected)

row affected)

row affected)

row affected)

row affected)

row affected)

row affected)

row affected)

row affected)

row affected)

row affected)

row affected)

row affected)

row affected)

row affected)

Parts-on-Board class loaded

The database was created and loaded successfully!

[cool] >>? exit

exit

*** Script completed on Fri Jan 20 20:15:46 1995

*** Script session length is 135 lines

19434D540CBD35A1B 11DEA453 1C9BCEF24989D943C997E543EA2AB54F13D66BA8

D.2 Contents of test database

*** Script initiated by Carmen Rata on Fri Jan 20 20:10:03 1995

[cool] >>?

[cool] >>? cat dbcontents.sql

print "Airline"

APPENDIX D. TESTING THE AIRCRAFT MAINTENANCE DATABASE 242

print lilt

select * from Airline
print lilt

print "Maintenance-Depot"
print lilt

select * from Maintenance-Depot

print fill

print "PartType_Inventory"
print fill

select * from PartType_Inventory
print fill

print "Supplier"
print fill

select * from Supplier

print fill

print "Aircraft"
print lilt

select * from Aircraft

print fill

print "Technician"

print It

select * from Technician

print

print "Service"

print fill

select * from Service
print fill

print "Service-Project"
print liti

select * from Service-Project

print lilt

print "Job"
print lilt

select * from Job
print fill

print "Shipment-Data"

print it

select * from Shipment-Data

print

print "Parts-on-Board"

APPENDIX D. TESTING THE AIRCRAFT MAINTENANCE DATABASE 243

print fill

select * from Parts-on-Board

[cool] >>?

[cool] >>? isqi

Password:

1> :r dbcontents.sql

45> go

Airline

OlD AL# hqadd emp_num

1 RO Bucharest 3000

2 AL Rome 6000

3 AF Paris 7000

4 BA London 10000

(4 rows affected)

Maintenance-Depot

DID MD# address

1 Mi. Montreal

2 M2 Boston

3 M3 Calgary

4 M4 San Jose

5 M5 San Diego

(5 rows affected)

PartType_ Inventory

DID PT# MD# typename qty

1P1 Ml dial 2

2 P4 Ml bolt 2000

3 P6 M2 valve 40

4 P9 M3 nut 600

5 P44 M2 turbine 4

6 P7 Ml pipe 4000

APPENDIX D. TESTING THE AIRCRAFT MAINTENANCE DATABASE 244

7 P11 Ml fastener 1000

8 P19 M4 lever 3

9 P10 M4 seat 400

(9 rows affected)

Supplier

DID S# address

1 Si Seattle

2 S2 Los Angeles

3 S3 Vancouver

4 S4 San Francisco

(4 rows affected)

Aircraft

OlD AC# AL# fabricant type

1 AB41 AF Airbus A320

2 IRlO AF McDonald-Douglas DC10

3 BC01 AL Boeing B737

4 BC11 AL Boeing B727

5 BC18 AL Boeing B727

6 ABSO BA Airbus B320

7 AB1O BA Airbus A320

(7 rows affected)

Technician

OlD T# MD# name title

1 ti Ml Smith engineer

2 t2 M2 Brown technician

3 t3 M3 Victor analyst

4 t4 Ml Green mechanic

5 t5 Ml Taylor electrician

APPENDIX D. TESTING THE AIRCRAFT MAINTENANCE DATABASE 245

6 t6 M3 Jones engineer

(6 rows affected)

Service

DID SV# AC# MD# description

1 SV2 BC18 Ml computer repair

2 SV1 BCO1 Ml autopilot checking

3 SV3 BC11 M2 engine overhaul

4 SV4 BCO1 M3 metal fatigue

(4 rows affected)

Service-Project

OlD SVP# SV# description

1 SVP1 SV1 checki

2 SVP2 SV1 check2

3 SVP3 SV1 check3

4 SVP4 SV3 engine 1

5 SVP5 SV3 engine2

6 SVP6 SV2 printer

7 SVP7 SV2 disk drive

8 SVP8 SV4 wing

9 SVP9 SV4 tail

(9 rows affected)

Job

OlD J# T# SVP# descr start finish status PT# part#

1 32 ti SVPI task a 11/10/94 14/10/94 ok P4 12

2 31 t2 SVP2 task b 10/1/95 30/1/95 ver P4 167

3 33 t6 SVP2 task f 3/1/95 4/1/95 ok P4 543

4 34 t5 SVP3 task c 1/9/94 14/10/94 ok P6 122

5 35 t6 SVP3 task g 11/9/94 12/9/94 ok P1 127

6 36 ti SVP3 task e 12/9/94 14/9/94 ok P6 521

7 37 t4 SVP4 task 12 1/2/95 1/3/95 de P44 12

APPENDIX D. TESTING THE AIRCRAFT MAINTENANCE DATABASE 246

8 38 t4 SVPS task 3 1/12/94 10/1/95 de P44 45
9 39 t2 SVP6 task z 14/12/94 15/12/94 ok P4 732

10 310 t4 SVP8 task s 1/8/94 14/19/94 ok P9 768

(10 rows affected)

Shipment-Data

OlD SH# PT# S# price qty

1 SI-li P4 S2 45 300

2 SI-I2 P4 S2 100 1000

3 SH3 P11 S2 38 200

4 SI-U P11 S2 38 2000

5 SH4 P1 Si 20 1000

6 SHS P6 Si 6800 2

7 SH6 PlO S3 700 3

(7 rows affected)

Parts-on-Board

DID PB# AC# PT# S# part# status

I X21 BCO1 P1 Si 123 ok

2 X51 BCO1 P4 S4 723 ok

3 X44 BC0i P6 Si 163 ok

4 X34 BCOi P9 51 873 ok

5 A21 BC11 P44 Si 23 ok

6 A45 BC11 P7 51 923 ok

7 A71 BC11 P11 S3 33 de

8 k61 BC18 P19 S4 122 ok

9 k55 BC18 P1 Si 234 ok

10 k89 BC18 P10 S2 56 ok

ii G46 AB1O P11 Si 456 ok

12 G47 AB1O P44 S2 156 de

13 T49 ABSO PlO S3 556 ok

14 T62 ABSO P7 S4 567 de

15 T34 AB5O P19 Si 96 ok

(15 rows affected)

APPENDIX D. TESTING THE AIRCRAFT MAINTENANCE DATABASE 247

1> exit

[cool] >> exit

exit

*** Script completed on Fri Jan 20 20:10:57 1995

*** Script session length is 214 lines

108F98CF795BDA8AD46B03383 16EB24B83A9B065C446848 11F6 1EF2E9O9DSFEC5A

D.3 Example of use of the COOL insert command

In the following example we insert a new instance in the object class Airline.

*** Script initiated by Carmen Rata on Fri Jan 20 20:26:21 1995

[cool] >>? isqi

Password:
1> select * from Airline

2> go

DID AL# hqadd emp_num

1 RD Bucharest 3000

2 AL Rome 6000

3 AF Paris 7000

4 BA London 10000

(4 rows affected)

1> exit

[cool] >>? cat insert_ex.cool

insert obj ins into Airline

(AL# : "AA", hqadd : "Dallas", emp_num : 10000);
[cool] >>?

[cool] >>? coo insert_ex.cool

(1 row affected)

[cool] >>?

[cool] >>? isql

Password:

1> select * from Airline

2> go

APPENDIX D. TESTING THE AIRCRAFT MAINTENANCE DATABASE 248

DID AL# hqadd emp_num

1 RD Bucharest 3000

2 AL Rome 6000

3 AF Paris 7000

4 BA London 10000

6 AA Dallas 10000

(5 rows affected)

1> exit

[cool] >>? exit

exit

*** Script completed on Fri Jan 20 20:28:14 1995

*** Script session length is 40 lines

3E4CE9 100669680757AC4E9FBF297A847D7FAE3A0BCC723D6FADDF44CD45F3FF5

D.4 Examples of COOL query executions

*** Script initiated by Carmen Rata on Fri Jan 20 20:34:40 1995

[cool] >>?

[cool] >>? cat tl.cool

List airline code and headquarters location for airlines where

-_ most aircraft of type Boeing have all parts on board with

status OK.

select AL#, hqadd from Airline

where for most Airline's (fabricant = "Boeing") Aircraft

(for all Aircraft's Parts-on-Board (status =

[cool] >>?

[cool] >> coo tl.cool

(4 rows affected)

(4 rows affected)

(7 rows affected)

(3 rows affected)

(1 row affected)

(1 row affected)

APPENDIX D. TESTING THE AIRCRAFT MAINTENANCE DATABASE 249

(1 row affected)

AL# hqadd

AL Rome

(1 row affected)

[cool] >>?

[cool] >>? cat t2.cool

Give the PT# and quantity for each type of part in inventory that

has (a) at least 2 shipments from supplier in Los Angeles , and

(b) has status 'defect' on at least one aircraft on which it is

used.

select PT#, qty from PartType_Inventory

where for at least 2 PartType_Inventory's Shipment-Data

(for its Shipment-Data's Supplier (address = "Los Angeles"))

and for at least I PartType_Inventory's Parts-on-Board

(status =

[cool] >>?

[cool] >>? coo t2.cool

(1 row affected)

(1 row affected)

(4 rows affected)

(4 rows affected)

(4 rows affected)

(7 rows affected)

(2 rows affected)

(3 rows affected)

(1 row affected)

(1 row affected)

(1 row affected)

PT# qty

P11 1000

(1 row affected)

[cool] >>?

[cool] >>? cat t3.cool

APPENDIX D. TESTING THE AIRCRAFT MAINTENANCE DATABASE 250

What maintenance depot in Montreal has carried out at least two

-- sevice projects in each of which all jobs involved part type 'P4'.

select MD# from Maintenance-Depot

where address = "Montreal"

and for at least 2 Maintenance-Depot's Service's Service-Project

(for all Service-Project's Job (PT# = "P4"));

[cool] >>?

[cool] >>? coo t3.cool

(5 rows affected)

(5 rows affected)

(9 rows affected)

(4 rows affected)
(9 rows affected)
(1 row affected)
(1 row affected)
(1 row affected)
(1 row affected)
(1 row affected)
(1 row affected)
(1 row affected)
(1 row affected)
MD#

Ml

(1 row affected)

[cool] >>? exit

exit

*** Script completed on Fri Jan 20 20:37:11 1995

*** Script session length is 88 lines

144BFEB9F3F91924E222FC39FD7CCF27D37A8D48FBA35DCE30F9842A656309CE5

The equivalent SQL queries for the three COOL test queries will give the following

results when executed against the same database.

APPENDIX D. TESTING THE AIRCRAFT MAINTENANCE DATABASE 251

*** Script initiated by Carmen Rata on Tue Jan 24 00:06:24 1995

[cool] >>?

[cool] >>? cat ttl.sql

select AL#, hqadd from Airline

where (select count (*)

from Aircraft

where fabricant = "Boeing"

and Aircraft.AL# = Airline.AL#

and AC# not in (select AC# from Parts-on-Board

where status <> "ok")

)
>

(select count (*)

from Aircraft

where fabricant = "Boeing"

and Aircraft.AL# = Airline.AL#

and AC# in (select AC# from Parts-on-Board

where status <> "ok")

)
[cool] >>?

[cool] >>? isqi

Password:

1> :r ttl.sql

36> go

AL# hqadd

AL Rome

(1 row affected)

1>

2> exit

[cool] >>? cat tt2.sql

select PT#, qty from PartType_Inventory

where (select count (*)

from Shipment-Data

where PartType_Inventory.PT# = Shipment_Data.PT#

and S# in (select S# from Supplier

where address = "Los Angeles")) >=2
and (select count (*)

from Parts-on-Board

APPENDIX D. TESTING THE AIRCRAFT MAINTENANCE DATABASE 252

where PartType_Inventory. PT# = Parts_on_Board .PT#
and status = ItdeII)>=l

[cool] >>?

[cool] >>? isqi

Password:

1> :r tt2.sql

12> go

PT# qty

P11 1000

(1 row affected)

1> exit

[cool] >>?

[cool] >>? cat tt3.sql

select MD# from Maintenance-Depot

where address ="Montreal"

and (select count (*)

from Service, Service-Project

where Service.MD# = Maintenance_Depot.MDt

and Service.SV# = Service_Project.SV#

and SVP# not in (select SVP# from Job

where PT# <> "P4")) >=2

[cool] >>? id'[Ksql

Password:

1> :r tt3.sql

12> go

MD#

Ml

(1 row affected)

1> exit

[cool] >> 2 exit

exit

*** Script completed on Tue Jan 24 00:08:28 1995

*** Script session length is 99 lines

APPENDIX D. TESTING THE AIRCRAFT MAINTENANCE DATABASE 253

COB1D4D74D7Al2TC27B191CACCBO 13F4B6FAD27617354DC68ED0 1661AE4EB6F6B

D.5 Example using the update statement

In the following example, we update an attribute of an Airline instance.

*** Script initiated by Carmen Rata on Thu Jan 19 14:18:04 1995

[cool] >>?

[cool] >>? cat update.cool

update Airline where AL# = 11RO 11 set hqadd : "Arad";

[cool] >>?

[cool] >>? coo update.cool

DID AL# hqad.d. emp_num

1 RD Bucharest 3000

(1 row affected)

(1 row affected)

[cool] >>?

[cool] >>? isql

Password:
1> select * from Airline

2> go

OlD AL# hqadd emp_num

2 AL Rome 6000

3 AF Paris 7000

4 BA London 10000

5 AA Dallas 10000

1 RD Arad 3000

(5 rows affected)

1> exit

[cool] >>? exit

exit

APPENDIX D. TESTING THE AIRCRAFT MAINTENANCE DATABASE 254

*** Script completed on Thu Jan 19 14:19:27 1995

*** Script session length is 33 lines

36D4B3604D1922 173DA36DCC855CC4AD2CO55C2E525EBB8D7OF887D23FBA8BF3Bo6

D.6 Example using the delete statement

The "delete with condition" statement will be executed only for an instance without

any descendents. In the following example we try to delete an instance of the class

Shipment-Data.

*** Script initiated by Carmen Rata on Thu Jan 19 15:37:34 1995

[cool] >>?

[cool] >>? isql
Password:
1> select * from Shipment-Data
2> go
DID SH# PT# S# price qty

I SH1 P4 S2 45 300

2 SH2 P4 S2 100 1000

3 SH3 P11 S2 38 200

4 SH7 P11 S2 38 2000

5 SH4 P1 Si 20 1000

6 SHS P6 Si 6800 2

9 SH6 PlO S3 700 3

(7 rows affected)

1> exit

[cool] >>?

[cool] >>? cat deleteShip.cool

delete from Shipment-Data where SH# =

[cool] >>?

[cool] >> coo deleteShip.cool

(1 row affected)

[cool] >>?

APPENDIX D. TESTING THE AIRCRAFT MAINTENANCE DATABASE 255

[cool] >>? isqi

Password:

1> select * from Shipment-Data

2> go

DID SH# PT# 5* price qty

1 SH1 P4 S2 45 300

2 5H2 P4 S2 100 1000

3 SH3 P11 S2 38 200

4 5H7 P11 S2 38 2000

5 SH4 P1 51 20 1000

6 SHS P6 Si 6800 2

(6 rows affected)

1> exit

[cool] >>? exit

exit

*** Script completed on Thu Jan 19 15:38:53 1995
*** Script session length is 46 lines

DF8F75826F637AA5DA0B 11AF39E1FC52D3D1D7CC044890E5648FCC2224D5B271FBD3

D.7 Typical error messages

* An error message will be generated if a child instance is going to be inserted but

the parent instance is not found in the database.

*** Script initiated by Carmen Rata on Thu Jan 19 19:53:42 1995

[cool] >>?

[cool] >>? isqi
Password:
1> select * from Maintenance-Depot

2> go

OlD MD# address

1 Mi Montreal

APPENDIX D. TESTING THE AIRCRAFT MAINTENANCE DATABASE 256

2 M2 Boston

3 M3 Calgary

4 M4 San Jose

5 Ml San Diego

(5 rows affected)

1> exit

[cool] >>?

[cool] >>? cat insertTech.cool

insert obj ins into Technician

(T# : "tlO", MD# : "Mb" name : "Dreste", title : "musician");

[cool] >>?

cool] >>? coo insertTech.cool

Class Maintenance-Depot has no instance with primary key = "Mb"

You try to insert a child without a parent H

[cool] >>?

[cool] >>? isql

Password:

1> select * from Maintenance-Depot

2> go

OlD MD# address

1 Ml Montreal

2 M2 Boston

3 M3 Calgary

4 M4 San Jose

5 Ml San Diego

(5 rows affected)

1>

2> exit

[cool] >> exit

exit

*** Script completed on Thu Jan 19 19:55:27 1995

*** Script session length is 46 lines

214F1A588753DA79C95F7322C150 1B0D553EED47436C776423BA2D780D125F313

APPENDIX D. TESTING THE AIRCRAFT MAINTENANCE DATABASE 257

* An error message will be generated if instances with descendents are attempted

to be deleted.

*** Script initiated by Carmen Rata on Thu Jan 19 20:22:46 1995

[cool] >>? isqi

Password:

1> select * from Airline

2> go

DID AL# hqadd emp_num

2 AL Rome 6000

3 AF Paris 7000

4 BA London 10000

5 AA Dallas 10000

1 RD Arad 3000

(5 rows affected)

1> exit

[cool] >>?

[cool] >>? cat delete.cool

delete from Airline where AL# =

[cool] >>?

[cool] >>? coo delete.cool

"BA";

DELETE from Airline CAN NOT be performed!!!

There are descendents out there

[cool] >>?

[cool] >>? isql

Password:

1> select * from Airline

2> go

DID AL# hqadd emp_num

2 AL Rome 6000

3 AF Paris 7000

4 BA London 10000

5 AA Dallas 10000

APPENDIX D. TESTING THE AIRCRAFT MAINTENANCE DATABASE 258

1 RD Arad 3000

(5 rows affected)

1> exit

[cool] >>? exit

exit

*** Script completed on Thu Jan 19 20:23:59 1995

*** Script session length is 45 lines

2F0E74EF57DE9260F3D6877929C936FECCCE0F45DBAB1E7C9 1FSFD6AS281AA8BF3

* An error message will be generated when a multiple level quantifier expression

has not matched genitive relations.

*** Script initiated by Carmen Rata on Thu Jan 19 20:36:01 1995

[cool] >>? cat q23.cool

-_ Get full details of an Airline with headquaters located in

San Diego where most of its aircraft have (a) Boeing as a

manufacturer and (b) at least 1 scheduled 'computer repair'

service-project.

select * from Airline

where IIQlocation = "San Diego"

and for most Airline's Aircraft (fabricant = "Boeing"
and for at least 1 Service's Service-Project

(description = "computer repair"));
[cool] >>?

[cool] >>? coo q23.cool
Unmatched nested quantified expression

(0 rows affected)

SV#

(0 rows affected)

[cool] >>? exit
exit

APPENDIX D. TESTING THE AIRCRAFT MAINTENANCE DATABASE 259

*** Script completed on Thu Jan 19 20:37:09 1995

*** Script session length is 23 lines

226E26DA12FC94FB4611AE1AA4F9E7D6EF68BB76C89919AE9A6C49DC54913DS1F

D.8 Command 'coo'

The contents of the script file 'coo' that performs the translation and the execution

of COOL expressions is as follows:

*** Script initiated by Carmen Rata on Sat Jan 21 23:31:10 1995

[cool] >>?

[cool] >>? cat coo

/bin/sh

naiueecho $1 I sed 's/\. .*//"
rm. -f ${naiue}.era ${naiue}.sql
cool ${nanie}.cool

if [-s ${name}.era]; then
era ${name} era

Ti

isql -Urata -Pcarmen < ${name}.sql
[cool] >>? exit
exit

*** Script completed on Sat Jan 21 23:31:27 1995
*** Script session length is 20 lines
D44D224F0359 6BB17S896D9BBF1TF8CAD 1E890651BF74AB642F28AC1A89DD2A8ED

Appendix E

OOPL Database Systems

This approach has 00 programming languages as a starting point.

E.1 Concepts

The concepts that describe the OOPL approach to 00 data models are best formal-

ized in the Object-Oriented Database System Manifesto [ABD89] and in [Ban93].

These concepts are distinct from those of the other approaches:

• The notion of encapsulation becomes mandatory. The original definition of

encapsulation provided by the 00 paradigm is that procedures are public,

whereas data is private. However, this concept is often too restrictive for

OODBMSs [0at91], and there are as many different variations of encapsulation

between the OODBMSs as there are between programming languages. The

different kinds of encapsulation vary by the degree in which either data or

methods may be in the public and private portions of an object class.

• The concept of polymorphism is associated with overriding, overloading and

late binding. The "is a" nature of inheritance is tightly coupled with the

idea of polymorphism (the ability to take more than one form),In an OOPL, a

polymorphic reference is one that can, over time, refer to instances of more than

one class. In the OODBMS world there is a classic example of a polymorphic

method: the function 'display', that receives an object as an input and performs

260

APPENDIX E. OOPL DATABASE SYSTEMS 261

the display of the object on the screen [BM93]. A user might want to apply

uniformly the function display to a variety of objects: text, graphic, map, value.

The operation has a single name and can be defined in a more general class.

However, the implementation of display is redefined for each of the subclasses.

The redefinition is called overriding. The use of a single name for different

programs is called overloading. Also, the system cannot bind the names of

the class to the corresponding method at compile-time, but must do so during

run-time. This translation is called late binding.

• The computational completeness of the query language is mandatory. Rela-

tional query languages alone are not computationally complete and relational

query language expressions need to be embedded in host programming lan-

guages in order to achieve computational completeness.

• An ad hoc query facility must be provided but is not necessarily in the form

of a query language, for example a graphical browser could be sufficient.

The 00 data model maps directly onto the data types used by 00 programming

languages, most commonly those of C++ [Str86] and Smalltalk [GR83].

At the time of writing, as at the time when the first manifesto was written

[ABD89], the OOPL approach to database systems still has neither a common

data model, nor a formal foundation. However, a wide variety of systems have been

built. However, their commercial use remains minor compared with that of relational

systems.

APPENDIX E. OOPL DATABASE SYSTEMS 262

E.2 00 Database Systems that implement the approach

The OODBMS that implement the OOPL approach are built as extensions of an

object-oriented programming language. The implemented systems of "00 Database

programming languages", as Cattell calls them in [Cat91], vary in their choice of the

programming language base and the query language. We have the following main

groups:

1. OODBMS based on C++. The main examples are: ONTOS (Ontologic),

0bj ectStore (Object Design) [LLOW91], Objectivity/DB (Objectivity), VER-

SANT (Versant).

2. The 02 OODBMS. 02 is a system based on a derivative of C++, called CO2.

The 02 OODBMS [BBB88, Cat91, Deu9l] was developed by the Altair re-

search group in France, in late 1986. It was implemented in C on top of an

enhanced version of the Wisconsin Storage Manager (WISS), which serves as

disc manager. The originality of 02 data model [LRV89] is the distinctive use

of the concepts type and class. Value is an instance of a type and object is an

instance of a class. An object is a pair (identifier, value). A value can be either

an atom or basic type, such as, integer, float, string or boolean, or a value

can be a structure, such as tuple, set, or list. Constructed types are inferred

from basic types by means of recursive application of constructors tuple and

set. Types are organized in an inheritance (or subtype) hierarchy enabling ob-

jects to share common structures and methods. A class is defined by its name,

by the type of its instances and by the methods applicable to them. 02 has

been integrated with many programming languages, including C++, Lisp, and

APPENDIX E. OOPL DATABASE SYSTEMS 263

Basic.

3. OODBMS based on a 00 version of Common Lisp. The main example

is ORION built at MCC in Austin, Texas. It has a commercial version ITASCA

[BCG87, KBC89, Cat9l]. ORION is intended to support 00 applications

in CAD/CAM, Al and OIS domains.

ORION has been implemented in COMMOM LISP in order to be closely

coupled to Al/Knowledge Base System applications, usually implemented in

COMMON LISP. The application interface to ORION is an 00 extension to

LISP.

4. OODBMS based on Smalitalk. The main example is GemStone from

Servio Logic [BMO89, BOS9l]. It uses Smalltalk as a data model. OPAL

is the 00 database language used for data definition and data manipulation

and it is, as expected, an extension of Smailtalk. It allows path expressions,

such as: anEmp.name.first. The query language is more like a limited calculus

sublanguage in which queries are viewed as procedural OPAL code. GemStone

is also integrated with C++.

Other systems that provide object data management but do not fit the major

classification described in this thesis are:

• Database system generators. They are ODMS tailored to particular needs,

typically with a custom data model and database language. The best known

database system generators are EXODUS [CDG89, Cat91], which provides a

versatile storage manager for developing application specific database systems,

APPENDIX E. OOPL DATABASE SYSTEMS 264

and GENESIS [ZM89b, Cat9l], which focuses more on automatic generation

of DBMS modules from high-level architecture descriptions supplied by the

database implementor.

• Object Managers. They are systems that basically provide a minimal per-

sistent object store with concurrency control, and generally without a query

and programming language. Some examples of object-manager approaches

are the systems: Mneme, from the University of Massachusetts [Mos9O], Ob-

Server, at Brown University [HZ87], and WiSS, from the University of Wiscon-

sin [CDKK85].

• Object Front-End on top of an existing RDBMS. PENGUIN [WBC9O],

which is an 00 layer on top of a RDBMS through sophisticated multirelation

views, is an example. In [PBRV9O] there is a description of a technique for

constructing an object-oriented DBMS (00-DBMS) from a RDBMS, an OOPL

and an object-oriented modeling technique; the programmer sees an object-

oriented language with certain predefined operations that allows objects to be

retrieved from and stored in a relational database.

