Introduction

In this paper we propose a systematic classification of the types of
relationships that can occur between any two relations in a relational data base
[9, 141.

Many types of relationships can occur in relational data bases [12, 13]. Never-
theless, although relationships are fundamental in data base theory [2, 4, 8], and
practice [20, 21, 27, 31, 32], there appears to have been no systematic attempt in
the literature to classify them. There are probably two explanations for this
neglect. First, the basic relational database manipulation languages, such as DSL
Alpha [12, 13], sqQL [10, 20, 21], QUEL [27, 28], and relational algebra [14, 15]
can be used with any relationship type without any requirement of distinction or
classification. A second explanation is that there is a significant body of
theoretical data base research devoted to elimination of the need for navigation
between relations, that is, of the need to specify relationships between relations
in any way in language expressions [19, 22, 23, 29]. This type of research is
based on the idea of manipulating a universal relation, formed from the underlying
relations of the data base by means of relational algebraic join operations [1, 3,
14, 18]. A possible motive for the universal relation approach is that it has
proven difficult to specify many important relationship types using the basic
relational languages and dialects [6, 31].

In the commercial world, where nowadays the files of non relational data bases
have become relational in structure, relationships between relations are used extensively
[5, 15, 30]. In addition, relationships are an integral part of the entity/relationship
approach [11]. Relationships are also.hecessary with natural quantifier relational
languages [6]. Consequently, there is reason to believe that relationships between
relations are important, so that there are good grounds for both research directed
towards a better understanding of them, and the development of techniques that

make complex relationships more amenable to use with database manipulation languages.

.

There exists a class of higher level relational data base languages that
make use of relationships in a manner that is far more concise than with conventional
data base languages. They do this by permitting the use of the wide range of natural
quantifiers of natural languages. An example of this type of langauge is SQL/NQ
(4, 6, 7], a research language that is upward compatible with SQL. Languages of
this type require that relationships be specified outside of language expressions,
either in the schema, in host programs, or interactively, and it is research into
such specifications that has led the author to the classification proposed in this

paper.

1.1 Notation
We use upper case letters for attributes or attribute concatenations, except
where otherwise - stated. Upper case bold is used for relation names. Relation
schemes are implied throughout, but are not named [28]. We use subscriped lower
case for attribute values within a tuple. Thus the relation scheme [T, U, V, W]
could give rise to a relation (instance) T(I, U, V, W), which may have a tuple
t(tl, ups vy, Wl)' The primary key attribute (or any canditdate key attribute) is
underscored, and for reader convenience will always have the same upper case letter
as the relation name.
1.2 The relationship concept with relational data bases
No formal definition of a relationship between relations appears to have
been proposed in the literature, although the term is used frequently. The following
definition is consistent with the largely intuitive use of the concept to date.
Definition 1
Consider a data base with a set of relations [A, B, C,].
There is a‘'relationship between any arbitrary pair of relations (A, B) of this
data base iff, by a process of relational algebraic operations, involving
only relations from in [A, B, C, ...], it is possible to generate a relation
R(A, B, ...), with A; B as minimal attributes, and where R is not necessarily

a relation of the database. R may be empty.-

We refer to R as a relationship relation, and essentially this paper
deals with a systematic classification of the kinds of R that can be generated

from relational data bases.

1.3 Overview of major classification components
The main classification is into primitive and composite (non primitive)
relationships. Briefly, a relationship between A and B is primitive iff it
as the direct result of a join on attributes of A and B alone. The major components
of the classification are thus:
Class 1 Primitive relationships
(a) Simple one-to-many, or simple 1:n relationships

(b) Co-relationships

Class 2 Composite relationships
(a) Composite one-to-many, or composite l:n relationships
(b) Simple matrix, or simple many-to-many relationships
(c) Composite matrix, or composite many-to-many relationships
Note that the list of primitive and composite relationships above is not
exahustive. Those listed are merely the more common. In addition, most of the
above association types can be further classified into cyclic and non cyclic versionsg
ag will be analysed in later sections. Thus it is legitimate, in this context,

to refer to a cyclic (or recursive) many-to-many relationship.

2. CLASS 1 - PRIMITIVE RELATIONSHIPS
Before looking at the different kinds of primitive relationship in detail,

we need more formal definitions of both primitive and composite relationships.

b

Suppose that we use the symbol 1 for algebraic projection, and the symbol
* for any arbitrary join operation, whether equality based or otherwise [1, 3,

14]. Consider any two relations A, B from a database.

Definition 2 Iff two relations A, B are such that ﬂA B(A * B) generates
b
a relation R(A,B), which may be empty, then the relationship described by

R is primitive.

The possibility that R may be empty is reasonable. Admittedly, with specific
relation instances; if R is empty, then it will not be possible to pair or
associate any tuples from those instances. This does not invalidate the generally
accepted notion of a relationship, however, for a relationship is generally
accepted to be a constant property of a pair of relations, and not just instances
of the relations. It cannot be that a simple update to a relation could also
eliminate a relationship. Suppose that we are using an equijoin on attributes F in
A and G in B. Suppose that with *# as an equijoin ﬂA,B(A * B) generates an non
empty R. Sometime later, following update of the two relations, it is possible
that G and F will be disjoint sets, so that (A * B) and consequently R will be
empty. If we do not admit that the relationship still exists when R is empty,

then we must accept that a simple update to the data base can eliminate, or create

a relationship. Our definition above does not permit this.
Definition 3 A relationship that is not primitive is composite.

Theorem 1 There will be a composite relationship between A and B iff

(A * * * * =
ﬂA,B(A C*D* ... *B) = T(A,B)

where T can be an empty relationship relation.

Proof Since T exists, even if empty, there is a relationship between
A and B, by Definition 1. Since T is not generated by a projection of a
join of A with B, by Definitions 2 and 3, T must describe a composite

relationship.

Corollary There is a composite relationship between relations A and B if

A and B are at either end of a chain of primitive relationships.

Broof Let X 6 X denote the equijoin of any relation X with X as the join

attribute.

* * * * =
ﬂA’B(A C*D=* ... M*B)

ﬂA B(A *COC*DBD* ,,.M8M*B) =

3

ﬂA,B[(ﬂA,C(A *C)) 6 (ﬂC’D(C *D)) ... 8 (ﬂMyB(M * B))]

which forms a chain of primitive relationships, by Definition 2.

Theorem 2 There is a primitive relationship between A and B, iff A

and B each have an attribute drawn on the same domain.

Proof If eac h of A and B has a common domain, then a join operation
is allowed. If we denote *G c as the join operation based on join attributes
$

G and C, then if G and C are the common domain attributes of A and B,

the computation 1, _(A * B) will yield a relation R(A, B).
A,B"A To.c

2.1 Simple one-to-many relationships
In the following, whenever we use the term attribute, it is to be assumed that
the term attribute concatenation could also apply.
Consider a pair of attributes from A, B drawn on a common domain.

Definition 4 If at least one of the common domain attributes in a primitive

relationship is a candiate key, that is, if one attribute has only unique

values, then the relationship is éimpleé oné-to=many (l:n).
This-means.that if A is one of the common domain attributes, and the other one is
some attribute G in B, then the relationship relation R(A,B) is equal to T, _(A

A,B

B), where * denotes an equijoin on the attributes A, G. Since G values are

x
A,G A,G

not unique in B, it follows from the mechanism of an equijoin that B values are

unique, so that given a B value in an R tuple, the A value is determined (but

not vice versa). Accordingly, R implies a function r:B P A.

The one-to-many relationship between A and B is displayed in Figure 1, using a
directed graph. A node shows a relation with its attributes, and the association
is depicted by an edge that is directed from the key attribute A to the other join
attribute G. This graphical depiction, and the arrow direction, is based more on
tradition than anything else [4, 5, 15, 28, 31].

The relationship can also be usfully depicted using a co-ordinate system,
and the relatiomship relation R(A,B). The B values are assumed laid out along the
x-axis (Figure 2) in ascending G value order, that is, the function implicit in
R(A,B) is assumed derived from “A,B(A *A,G BG), where BC is simply B with the
tuples sorted in ascending G value order.

A trivial case of one-to-many relationship occurs when G is also a (candidate)
key attribute, so that G values, as well as A values, are unique. In such a case
the function r:B > A implicit in R(A,B) is simply a trivial one-to-one function;
not included in the classification as a distinct relationship type.

2.2 Co-relationships

Another type of primitive relationship between any two relations A, B
occurs when neither of the two attribute in the pair with a common domain are
candidate key attributes.

Definition 5 A primitive relationship between any two relations A, B,

is a co-relationship, iff neither of the common domain attributes supporting

the relationship is a primary or candidate key.

In other words, the relationship is supported by a pair of attributes, each with
values are that are not unique. Thiis type of relationship has similarities with
the much investigated concept of a multivalued dependency.

Lemma 1 The relationship relation R for a co-relationship between

any two relations A; B is partitioned by the values of the attributes

supporting the relationship.

DL
A

¢/ .

R | T

B i ¢

Figure 1 ——t—t .
B
Figure 2
* ¢ % 9 o
NEGL
& 4 ¢ 9

Figure 3 ' o
g B

Figure 4

g

o ® s

P4

>
et
. s &
4 a o @
Pa—
<

— e

A

A

Figure 5

LR T T T T

Proof Suppose that F in A; and G in B are the attributes supporting the
relationship. Let [al, ay eee ai] be the set of A values in all those A
tuples with a F value 8 and similarly [bl’ b2’ . bj] is the set of B
values in all those B tuples with an equal G value 8-

If we now take T (A

* i . .
A,B F,G B), then in order to form the relationship

relation R(A, B), each of the set of A values [al .o ai] must be paired
with each of the set of B values [bl’ .es bj] to give us a relation
[(al’bl)’ (al,bz), .es (ai,bj)] that is a subset of R(A,B). No other
tuples of R can contain either [al, .e- ai] values or [bl’ . bj] values,
so that R must contain a subset of tuples for each value common to both

F and G, that is, for each member of the set ﬂFA ﬂGB . It follows

that each common F and G value gives rise to a block of R tuples, and

thus a partition of R.

Theorem 3 For a co-relationship between relations A and B,
within a block of the partition of R: Iff tuples (al, bl) and (az, bz)

exist, then tuples (al, bZ) and (az, bl) also exist.

Proof By Lemma 1, the attribute value supporting the relationship
.« .. between A and B tuples within a block of a partition of R is a constant

g, - Accordingly, there exists A tuples (al, - gk), (ag, «.. gk)

and B tuples (bl, een gk), (bZ‘ - gk). If we apply the operation for

)y

generating the relationship relation R to these tuples, namely “A B(A *F GB
b b

then we must get tuples (al, b2) and (az, bl) in R.

This is reminiscent of the condition for a multivalued dependency. In fact, if we
add the common F and G attribute to R, then this ternary relation will contain a
multivalued dependency, as proved in [7]. In otherwords, if we rename the F

attribute in A as G, and form the relation R.m from 1 (A *, B), where *

A,G,B° " G G

denotes a natural join on the G attribute, then it can be shown that for Rm

the following condition holds:

10.

b,)

"Iff tuples (al, 8> bl) and (az, 8> bZ) exist, then tuples (al, g by

and (az, 8> bl) also exist."
This is the well known condition for a multivalued dependency.

Returning to the relationship relation R for a co-relationship between
relations A and B, supported by non key attributes F and G, a graphical display,
as in Figure 3, is useful. Because of the defining condition for R(A, B), there
does not exist an implicit function r:A B or r:A > B. However, if we order the
tuples of R so that tuples of the same partition block are adjacent, and use a
coordinate system to display ﬂA(R) versus ﬂB(R), we get an interesting geometry of
rectangles (Figure 4). Each rectangle represents a block of the partition of R,
and a point within a rectangle represents a pair of related tuples.

Example Each tuple of A described a carrier based aircraft, identified
by A. The attribute F in A identifies the carrier on which the aircraft
is based. Each tuple of B 1identifies a crew member of a carrier, and

G in B identifies the carrier to which the crew member is assigned.

If crew-member b4 and aircraft a, are respectively assigned to and

based on the same carrier 8) s then they are related, as are the

tuples describing them. The relationship is clearly not as ''strong"

as that of a one-to-many relationship, but is clearly important nevertheless.

2.3 Equivalence relationship
An equivalence relationship is essentially an implicitly cyclic relationship
with no corresponding non cyclic version. A relationship is cyclic if is between
two identical relations. The relationship is non complex.
Definition 6 A primitive relationship between twoiidentical relations
is an equivalence relationship iff a common attribute in each of the
two relationé supports the relationship, and that attribute is

neither a primary nor candidate key.

/R

Theorem 4 The relationship relation R(A, A) for an equivalence relationship
of the relation A supported by the attribute G is an equivalence
relation,(in the mathematical sense of the term), such that there is a

block of a partition of the relation for each G value.

Proof We have R(A, A) = “A,A(A *. A)

Suppose that we have the set of A values [al, . ai] for a given G value
8- Then in forming R tuples, each of the set of A values [al, cen ai] is
paired with every member of the set, to give the relation:
[(al,al), (al, az), - (ai, ai)]
which is a subset of R(A; A). No other tuples can contain [al, cee ai]
values. It follows that each G value gives rise to a block of R tuples

‘and. thus a partition of R. It follows that R is an equivalence relation.

The equivalence relationship is really the special case of a co-reldtionship
between two identical relations (A, A) on a common attribute (G). Although it is
not usual to display an equivalence relation on a cordinate system, it is intructive
to do so in this case, as it gives a geometrical perspective on the difference
between co-relationships and equivalence relationships.

In Figure 5 we order the tuples of the equivalence relation R(A, A) so that
tuples with A values from A tuples with the same G value lie adjacent, and then
display A versus A on the cordinate system. We see that we get a system of squares,
with each square representing a block of the partition of R. A point within

a square represents a pair of tuples from A. The cyclic nature of the relationship
should also be apparent. If we take a given tuple within a block of the partition

(or point in a square of the co-ordinate display), such as (az,a), then we can

5
find another tuple (as, a3), and another (a3, ag), and so on in an undending sequence,

as illustrated in Figure 5. Note, however, that given the partition of R, the

sequence remains within a block of the partition.

2
2.4 Cyclic (or recursive) one-to-many relationships
Definition. Where B = A in a simple one-to-many relationship between A and B,
then the relationship is cyclic (or recursive) one-to-many.
In order to be able to distinguish the relations in a cyclic one-to-many relationship,
let us refer to the two related relations as A and AG’ where the relationship
is supported by the attribute A in A; and G in A_. The primary key attribute in AG

G

is then AG iin conformance with the convention we are using for primary keys.

The relationship relation R(A, AG) is then generated from

1 *
A, A (a A,A, Ag)

and this relationship relation contains the function r:AG -p A. Since there can be
many related AG tuples for a single A tuple, the relationship is clearly l:n in
nature.

The relationship can be displayed as a directed graph, as in Figure 6a,
where we draw two (identical apart from the name) versions of A, and in Figure
6b, where we use only one node (with two names A, and AG). It is also useful to
display the relationship relation using a cordinate system, as in Figure 7. Here
we assume that R was generated, using the expression above; from a version of Ac

where the tuples are arranged in ascending or descending G order.

If we take any A value a then, because of the l:n nature of therelationship,

k,

there will in general exist a set of R tuples [(ak, al), (ak, az), .o (ak, aj)],

indicating a number of related AG tuples for any given A tuple. But for any of

these A tuples, such as that identified by a

G 23 for example, if regarded as an A

tuple, then in turn it will be further related with a futther set of AG tuples,
and so on in cyclic fashion, as is also illustrated in Figure 7.
Note that if the relationshiprrelation R contains the tuples (al, a7) and (37,

), then the A tuple identified by a. will be related: to the

213 1

(b)

Figure 6

ic

AT

(212

(a)

T 75
A PI!Z DN
1.;: R

(b)

Figure 8

——— By ———— = = - e - - -

13,

N S

A 71
-+
-+
o0 0 @
>— ap o
/;\ -+ o © & o o
“r ¢ \
M
A
G
Figure 7

4; » A d s
a a a a a
! 6 S ~4

M———f\,w
1 3

|
{
'
{
{
|
{
i
{
H
7

Figure 9

<-— - - — —

it

A tuple identified by aj3- However this relationship is not primitive, since the
tuple (al, al3) is not a member of R(A, AG) generated from

*
A(AA

AG). This tuple can only be generated from:
G

1
A, ,G

R(A, AG) *A’AG R(A, AG)
confirming that the relationship involved (or sub or outer relationship) is non
primitive, that is, it is composite. This is an admitted flaw in our so far
"clean" classification of relationships into primitive and composite relationships.
However, it is. the only one, and is relatively minor. The difficulties resulting
from other classifications attempted by the author are far greater.
Example The classic example is where an A tuple describes an employee
in an organization, A gives the employee's identifying number and G
give the identifying number of the employee's immediate superior. An
employee is thus primitively (in a cyclic manner) related to
his immediate superior, as are the corresponding tuples, but is compositely
related to his immediate superior's superior, as are the corresponding
tuples.
2.5 Cyclic co-relationships
Definition 8 When B = A in any - co-relationship between A and
B, then the relationship is a cyclic ¢o-relatignship, provided the attributes
supporting the relationship are not the same.
It should thus be clear that we have a cyclic co-relationship between two identical
relations A, A when the relationship is supported by two non key attributes Z and
G drawn on the same domain. To distinguish the relations for analysis purposes we
refer to the relations as A, and A,. An A_ tuple is cyclic co-related to an A

Z G Z G

tuple if the Z value in the A_ tuple has the same value as the G value in the A

Z G

tuple. The relationship relation R is formed:

= *
R(AZ, As) ﬂAZ’AG(AZ 2,6 A,)

From lemma 1 it follows that R is also partitioned, with a block of R tuples

5.

for each common value of Z and G. From Theorem 3, within a block of the partition

of R, that is, for a single value z, of both Z and G, the following condition

k
holds:

"Iff tuples (azl’ agl) and (azz, agZ) exist, then so do tuples (a)

z1? agZ
and (azz, agl).”

And, despite the symmetry of the situation, if (azl’ agl) is in a block of a partition
of R, (agl’ azl) is not necessarily in R. The existence of (azl’ agl) means that

the Z value of the A tuple identified by a, equals the G value of the A tuple
identified by agl; however, there is no reason for the Z value of the tuple
identified by agl to be also equal to the G value of the tuple identified by a,|s
the condition for the existence of (ail’ agl) in R. This is best seen by the

example of A and R below, which will also be useful again later for illustrating

some further properties of this relation.

A Z G AZ AG
a, 3 1 ag a;
a, 1 6 ag a,
ag 9 1 as ag
ag 1 6 ag ag
ay 6 3 a; ay
a4 3 6 a, a,
&7 a3

A, AZ’ AG ay a,

R(A,, Ac)

It should be clearly understood that a tuple (aS, al) in R, for example, means
that the Z value of the ag tuple in A; equals the G value of the a; tuple in A.
In the example above, R has three partition blocks whose tuples all satisfy the

existence rule given above, which followed from Theorem 3.

The relationship is displayed graphically in Figure 8a, 8b. If the tuples

«.

of R are arranged so that all tuples belonging to the same block of the partition
are adjacent, as in the example above, then when we use a co-ordinate system to
display ﬂA (R), or AZ’ versus “A (R), or AG’ we once more get a system of

Z G
rectangles (Figure 9), each rectangle representing a block of the partition of R.

The cyclic nature of the relationship also displayed in Figure 9. Suppose
that in R we have a tuple (as, al), as in the example above, within a particular
block of the partition of R, or rectangle (Figure 9, beginning at line linking
points), then it is possible that there will exist a further tuple where the AZ
value is a), such as (al, a7) in the example above, and then a tuple (a7, aA), and
so on. This chain of related tuples will not in general remain within the original
block of the partition or rectangle, as shown in Figure 9, since Z and G values
within a single A tuple are not necessarily the same, and will indeed normally be
different. This leads to an interesting theorem.

Theorem 5 A chain of related R tuples in the relationship relation
R of a relation A participating in a cyclic co-relation,

may be finite iff the set difference ﬂZ(AZ) - ﬂG(AG) is non empty.

Proof Suppose that ﬂZ(AZ) - “G(AC) is empty. Suppose that we have

an arbitrary tuple (ap, aq) from R. There must therefore exist an A

tuple witha G value equal to the Z value of the tuple identified by

a . If this new A tuple is identified by a, then there exists an R

tuple (aq, ar). In a similar manner there must exist an R tuple (ar, as),
and so on, so that the chain is infinite.

Now suppose that ﬂZ(Az) - ﬂG(AG) is non empty, and that we have

an arbitrary tuple (ap, aq). This time we cannot guarantee that

there exists an A tuple with a G value equal to the Z value of the

tuple identified by aq, because, since the set of Z values in A

does not match the set of G values in A; the Z value of the A tuple

identified by aq may not exist in the set of G values. Accordingly, a
chain may be finite.
As an example, using the tuples of the instance of R given earlier, the
chain
(a3, al); (al, a7); (a7, a3); (a3, a6); (a6, ?)
is finite, since the A tuple identified by a, has a Z value (9) that does not
occur as a G value. Removal of this tuple from A would make the sets of Z and G
value equal, so that all chains would be infinite.
Cyclic co-relationships occur reasonably frequently in data bases, although
the relationships normally have a very low level of significance in practice.
Example A tuple of relation A describes a stolen car; A identifies
a car, Z gives the (U.S.) state in which the car was stolen, and G gives
the state of the dealership that originally dold the car. Thus a car
ag stolen in state 1 is related to a car ag originally sold in state
1. The relationship will often have a significance that is merely coincidental,
although in police or other kinds of investigations, the relationship may
occasionally have more significance.
2.6 Co-relationships and significance levels
Although the topic is largely beyond the scope of this paper, and is thoroughly
discussed elsewhere [7, 8, 9], , co-relationships may be further classified in
accordance with the level of semantic significance involved. The lowest level of
semantic significance is the coincidental level. Coincidental co-relationships
are by far the mosticommon. Informally, if two tuples are coincidentally co-related,
the relationship is pure coincidence, and has no further significance. In the
example given earlier about crew-members and aircraft assigned to carriers,
the co-relationship between the crew-member and aircraft relations (supported
by the carrier attribute G) would normally be coincidental. Thus:the fact that

a given grew-member and a given aircraft were assigned to the same carrier would

be mere coincidence, in the normal sense of the term. However, if it were the

/8.
case that for each carrier, all crew members could operate the message decoders
on all aircraft on the carrier, and only those aircraft, then the co-relationship
would have a greater (and very meaningful) level of significance. The different
levels of significance are defined in [7, 8].
It is shown elsewhere that a co-relationship can give rise to a connection
trap [7]. Essentially, a connection trap will occur whenever users assume either
a level of significance for the co-relationship that is too high, or a level of"
significance that is correct but is not supported by the data in the relations.
In addition, there is a fundamental theorem about co-relationships and polygonal join
dependencies, proved in [8]. Polygonal join dependencies are defined in [9]. This
theorem states that for a closed chain of existential ko-relatiomships, there
will be a connection trap for any user attempting to extract reliable information
from a complete join of the relations in.the chain, unless the join contains a
polygonal join dependency of order equal to the number of relations in the chain.
3 CLASS 2 - COMPOSITE RELATIONSHIPS
As stated by Theorem 2, a composite relationship between two relations
A and B will involve a chain of primitive relationships. Since we can have
different kinds of primitive relationships in the chain, different kinds of
composite relationships are possible.
3.1 Composite 1l:n relationships
Definition There is a composite 1l:n relationship between relations
A and B, with an implicit function r:B -) A, iff there exists a
non empty set of relations [Cl’ CZ’ .es Cn], with simple l:n-relationships:
between A and C,, with implicit function rlzcl -2 A,

1

between C_ and B, with implicit function r :B >C .
n n+l n
Composite l:n relationships are quite simple in concept, are very common, and
almost always meaningful. Readers can no doubt envisage many common examples. The

relationship relation R(A, B) will clearly be given by:

",
R(A, B) = ﬂA’B(A *Cp *Cy* ... *C * B)
with the attributes supporting the individual l:n relationships as join attributes.

The composite l:n relationship is a l:n relationship,since each of the
(primitive) l:n relationships are additive. The relationship can be depicted by a
directed graph, where any pair of connected nodes denotes a l:n relationship,
as in Figure 10.

3.2 Many-to-many or matrix relationships

Definition 10 There is a many-to-many relationship between A and B, when

there exists a relation M, such that there is either a simple l:n

or composite l:n relationship between:

(a) A and M, with implicit function r:M -~ A, and

(b) B and M, with implicit function s:M =) B.
Many-to-many relationships are well known, and are often called matrix er n:m
relationships. The Supplier-Parts matrix association due to Date [15].i¢ .almost
the classic example. The relationship is fundamentally n:m, since for a given A
tuple there must be many related M tuples and thus many related B tuples, and the
converse.

It is clear that we can distinguish between many-to-many relationships
where the relationships between A and M, and between B and M are merely simple
l:n, and the many types where one or both of these underlying relationships
is a composite l:n relationship. This is illustrated by the graps in Figures lla
and 1lb. When we use a cordinate system to display the relationship, the result is
a matrix, no matter how the ﬂA(R) , ﬂB(R) are ordered.

‘Unlike other relationships so far discussed, the relationship relation
for a many-to-many relationship is a ternary relation of the form R(A; M, B). A
relationship relation of the form R(A; B) 1is insufficient. The difficulty arises

as follows. Suppose that we have related A and B tuples, identified by a;

alor]e NEIRIEY [2fc]F] w]

l

5 — "
| i

c lalslMfs]T]

BIG|FIM (a)

Figure 10 l AID|P|Q ‘72 1 G l F! N J

l;TLM [N EE|
\%H/H/ |
E | L{M|S|T|

M

(b)

Figure 11

noeR

l\¢ ‘L L2 fo]e[e |
CEI |)

c]A° AN (M st
Figure 12

Figure 13

2.
and by. For the aj tuple there can be many l:n or composite related M tuples, for
example, those identified by my, My, My, and L Similarly, for the b1 tuple in B,
there can be many related M tuples, for example those identified by Moy My My,
mg and me . Consequently, since the intersection of these two sets of M tuples
are the tuples identified by My, My and m, s it follows that the ay tuple in A 1is
matrix related with the bl tuple in B in three distinct ways, via Mo s via My and
via m

4 Mo M3y and m, . Each of these tuple associations can be significantly different,

and will need to be identified, so that the relationship relation R must contain

the tuples:
(al, m, bl)
(a; my, by)
(a, my, by)

Example Suppose that an A tuple describes a supplier (of industrial part
types), that a B tuple describes an industrial part type, and that an M
tuple describes a shipment of a part by a supplier. Then supplier a; can ship
part type b1 in shipment my s and in shipment m, and in shipment ms. There
are thus three associations of supplier 2y with part type b1 and these are

physically distinct and significant, and must be distinguished.

Because there can be more than one association between a given pair of A and B
tuples, the term matrix relationship is something of a misnomer. In mathematics,
given a matrix Xnm’ there will be but one value of Xnm for given values of the n
and m matrix coordinates (corresponding to A and B values), whereas we can have
many associated M tuples, for given A and B tuples,

Obtaining the relationship relation R(A, B, B) is a simple matter when
there are only (primitive) simple l:n relationships between.A and M and between

B and M. Clearly, we must have:

R(A, M, B) = ﬂA’M’B (M)

In the case of composite l:n relationship between either A and M, or between B

22.

M, or both, the generation is more complex. The method requires a sequence of
joins, beginning with A and ending with B, followed by a projection on A ; M and
B, or:

R(A, M, B) = 1 M B(A * L

x ... % * M % * ..
AM, 1 Ln M Rm R

1 * B)

The extensive computing needed to generate the relationship relation for
cases like this has an important corrollary for language designers. Suppose that
we are dealing with a conventional SQL system, and have a retrieval expression
involving the relationship between A and B, where the relationship is a matrix
relationship involving composite l:n relationships in the relationship chain. The
entire chain will have to be specified in SQL, and where the chain takes the form
A, Ll’ LZ’ M, RZ’ Rl’ B, we could have a retrieval request that is easily specified
in English, such as:

Retrieve the A value for each A tuple with a D attribute value 4, and where

the majority of the (matrix) related B tuples have a P value of 10.

This would require the following-lengthy SQL expression:

SELECT A FROM A, XA

WHERE D = &

AND [SELECT COUNT(*) FROM B

WHERE P = 10 AND

B IN [SELECT B FROM Rl

WHERE R, IN [SELECT R, FROM R

1 1 2
WHERE R2 IN [SELECT R2 FROM M
WHERE L2 = [SELECT L2 FROM L2
WHERE Ll = [SELECT L1 FROM L1

WHERE A = XA.A]1111]
>
[SELECT COUNT(*) FROM B

WHERE P # 10 AND

B IN [SELECT B FROM Rl

23,
WHERE R; IN [SELECT Ry FROM Ry

, IN [SELECT R, FROM M

WHERE LZ = [SELECT L, FROM L,

WHERE L1 = [SELECT Ll FROM L1

WHERE A = XA.A]1111]

WHERE R

In addition, each time a query involving this type of relationship is submitted,

a computation needed for generating at least the equivalent of the relationship

relation R(A, D; M, P, B) must be carried out. Since we have:

R(A, D, M, P, B) =1 (A*L, *L, *M*R, * R, * B)

A,D,M,P,B 1 2 21

and since the above SQL expression is equivalent to:

the

has

the

17

the

SELECT A FROM R, XR
WHERE D = 4
AND [SELECT COUNT (*) FROM R
WHERE P = 10

AND A = XR.A]

[SELECT COUNT(*) FROM R
WHERE P # 10
AND A = XA.A]
computation will be lengthy. [It is here that the universal relation approach
something to offer [19, 23], since the required result is also obtained from
short SQL expression above with the universal relation formed by a join of A,
Ly, M, Ry, R and B substituted for R(A, D, M, P, B) in the SQL expression.]
An alternative is the SQL/N approach, with an expression close in syntax to
original English-language expression:
SELECT A FROM-[EACH] A [TUPLE]

WHERE D = 4

AND FOR MOST R RELATED B [TUPLES] (P = 10)

Here words surrounded by [] can be omitted, FOR MOST is a natural quantifier,

and

R 1is a schema specified name for the relationship relation - -~v

2%,
R(A, M, B) for the matrix relationship between A and B. Execution of this SQL/N

expression can be made very fast if R is stored in the storage schema. Otherwise
R will have to be computed, a lengthy process, using information in the schema
that specifies exactly what R is.
3.3 Cyclic composite 1l:n relationships
Definition 11 When B = A in a composite l:n association between A and B,
the relationship is a cyclic (or recursive) composite l:n relationship.
The relationship is very similar to the simple cyclic 1l:n relationship (Section
2.4). To be able to distinguish the two identical relations, we refer to them as A
and AG, where the relationship is supported by A in A and G in A,,. The primary

G

keys are then A in A and AG in AC.
The relationship relation R(A, AG) is then generated from:

® * * *
1 (A Ry R\, Ry * ... R R ,G AG)

where in relation Rp’ Rp is the primary key attribute, and G_ is an attribute
drawn on the same domain as the primary key attribute R

of Rp- . The relationship

p-1 1
has thus an implicit function r:AG 7 A. It is depicted as a directed graph in
Figure 12.

A given A tuple identified by a, will be related with many A (that is, AG)

k
tuples, and each of these in turn with many A tuples, exactly as with simple cyclic
l:n relationships.

Unfortunately, while of some interest theoretically, genuine cyclic composite
l:n relationships (not contrived) are rare indeed in practice, so the utility of
this type of relationship is marginal at best.
3.4 Cyclic matrix (or n:m) relationships

Definition 12 When B = A in a matrix relationship between A and B,

the relationship is cyclic (or recursive) matrix.(or n:m).

Cyclic matrix relationships, in contrast to cyclic composite l:n relationships, are
quite impertant in practice, but normally only in those cases where the relationships

between A and M are simple l:n. The author has found no useful examples of a cyclic

25.

matrix relationship involving simple 1l:n relationships between A and M.
. o i e
Using A~ and A' to distinguish two otherwise identical instances of A,
for the practical case where there are only (primitive) simple 1:n relationships

between A and M, the relationship relation R is given by:
, M, AY) =10 R (A° * M * A")

= 1,0 4l M(a%, M, X, ...)

A unique feature of this relationship is that it generates two different cascades

of related tuples, for any given A tuple. By convention, in the direction A° to

Ai, this cascade of related tuples is called an explosion, and in the opposite

direction an implosion.
An explosion is generated as follows., Given an A tuple, identified as

ai, it will be associated with many Ai tuples, identified by the set of keys

[ai, aé, . ai]. If we now consider each of these Ai tuples as a A° tuple, then

in turn each of these will be associated with many Ai tuples, and so on in a

cascade of related tuples. Conversely, if we considered that original A tuple as

an Ai tuple, identified by ai (so that a? and ai are identical), then there are

many A° tuples associated with this tuple, and, taking these A° tuples as Ai

tuples, there are many further A° tuples associated with them, and so on in a

cascade. This is the implosion. Figure 13 shows a direced graph of the relationship.
Example 1 Each tuple of A describes a part type, assembly type, subassembly
type, subsubassembly type, and so on. Each tuple of R shows how an A° (outer)
identified part type encloses or phusically contains an Ai (inner) identified
part type. An explosion of any part type gives the part types it contains,
and the part types those part types contain, and so on. Conversely, the

implosion of a part type gives the part types that contain it, the part

types containing those part types, and so on.

2¢
Example 2 Each tuple of A describes a joint stock company. Each tuple
of M shows how a A° identified (parent) company owns stock in an Ai identified
company (immediate subsidiary). For a given company, an explosion shows
the immediate subsidiaries, their immediate subsidiaries, and so on.
Conversely, an implosion for a given company gives the immediate parents,
their parents, and so on.

Cyclic matrix relationships are difficult to manipulate using conventional non
prqcegurg}_lgnguages, such as SQL. The major difficulty is the large number of
implicit sub-relationships involved. For example, in the case of the joint stock
companies, we can be interested in the association between a company and its
immediate subsidiaries, which is one type of subrelationship, or between a company
and the subsidiaries of its immediate subsidiaries, which is another type of
subrelationship, and so on. Conventional languages like SQL require that the user
fully specify, in terms of matching attribute specifications, any such subrelationship
within a language expression, which can be very difficult. A full account of
this matter is beyond the scope of this paper, which concentrates on the
classification of relationships, rather than their manipulation. A complete
analysis of these subrelationships has been carried out, and will be presented
tn a separate report.

3.5 Other composite relationships

Many different types of relationship chains between relations A and B
are possible, so that there are very many different possible types of composite
association. However, the author has found no others that are likely to be of any
use in practice. We are inclined to call all the remaining relationships obscure
associations. Neverthless, a few of these obscure relationships may be of theoretical
interest. For example,. it is possible to define composite co-relationships,
and even cyclic composite co-relationships. These relationships are being analysed
as part of the author's current research effort.

4 CONCLUSIONS

The number of different types of relationships that can occur between

29,
relations in a relational data base is surprizingly large, and attests to the
great flexibility of the relational approach. In the CODASYL approach [5], even
where the conceptual files are relations, only one type of relationship is allowed,
namely the equivalent of the simple primitive l:n relationship; however, it has to
be admitted that simple l:n relationships are by far the most common, and are the
building blocks of many of the other types defined in this paper.

The classification proposed in this paper is not exhaustive, However, we
believe that the present classification should be of use in practice to designers
of data base manipulation languages and systems. In addition, even those concentrating
on the universal relation approach could find the classification useful. The author
is currently using this calssification as the foundation for the development of
the natural quantifier language SQL/NQ, for manipulation of complex relationships

with a minimum of specification effort.

2%.
REFERENCES

1. Aho, A. V., Beeri, C., and Ullman, J.D. The theory of joins in relational
databases, ACM Trans. Database Syst., 4(3), 1979, 317-314.

2. Beeri, C., Kifer, M. An integrated approach to logical design of relational
data base schemes, ACM Trans. on Database Syst., 11(2), 1986, 134-158.

3. Bernstein, C.W., and Chiu, C.W. Using semijoins to solve relational queries,
J. ACM, 28(1), 1981, 25-40.

4. Bradley, J. An extended owner-coupled set data model and predicate calculus
for database management, ACM Trans. Database Syst., 3(&4), 1978, 385-416.

5. Bradley, J. Database Management in Business, 2nd Ed., Holt, Rinehart & Winston,
New York, 1987.

6. Bradley, J. SQL/N and attribute/relation associations implicit in functicnal
dependencies, Int. J. Computer & Information Science, 12(2), 1983

7. Bradley, J. Co-relationships, levels of significance, and the source of the
connection trap in relational data bases. Research Report No. 86/250/2¢4,
Univ. of Calgary, Calgary, Alberta, Canada, 22 pages.

8. Bradley, J. Polygonal Join dependencies, closed co-relationship chains, and
the connection trap in relational data bases. Research Report No. 87/256/04,
Univ. of Calgary, Calgary, Alberta, Canada, 1987, 18 pages.

9. Bradley, J. Join dependencies in relational data bases and the geometry of
spatial grids. Computer Journal, 29(4), 1986, 378-380.

10. Chamberlin, D.D., et al. SEQUEL 2: A unified approach to data definition,
manipulation and control, IBM J. Res. & Dev., 20(6), 1976, 560-575.

11. Chen, P.P., The entity-relationship model: Towards a unified view of data,
ACM Trans. Database Syst. 1(1), 1976, 9-36.

12. Codd, E.F. Further normalization of the database relational model, In
"Database Systems', Courant Computer Science Symposium, 6, R. Rustin,

Ed., Prentice- Hall , Englewood Cliffs, N.J., 1971, 33-74.

13. Codd, E.F. Relational completeness of database sub-languages, In ''Database

Systems', Computer Science Symposium 6, R. Rustin, Ed., Prentice-Hall, Englewood

24,
Cliffs, N.J., 1971, 65-98.

14, Codd, E.F. Relational database: A practical design for productivity, CACM,
25(2), 1982, 109-117.

15. Date, C.J. Introduction to database systems, 4th Ed., Addison-Wesley, Reading,

Mass., 1985.

16, Fagin, R, Multivalued dependencies and a new normal form for relational
databases, ACM Trans. Database Syst., 2(3), 1977, 262-278.

17. Fagin, R., Mendelzon, A.0., and Ullman, J.D. A simplified universal relation
assumption and its properties, ACM Trans. Database Syst., 7(3), 1982, 343-360.

18. Fagin, R. Horn clauses and database dependencies, J. ACM 29(4), 1982,952-985.

19. Forth, H. et al. System U: A database based on the universal relation assumption,
ACM Trans. Database Syst. 9(3), 1984, 331-347.

20. Kim, W. On optimizing an SQL-like nested query, ACM Trans. Database Syst.,
7(3), 1982, 443-469.

21. Kim, W., Gajski, D., Kuck, D.J. A parallel piplined relational query
processor, ACM Trans. Database Syst., 9(2), 214-242.

22. Maier, D. The Theory of Relational Databases, Computer Science Press, Potomac,
Md., 1983,

23, Maier, D., Ullman, J.D., Vardi, M.Y., On the foundations of the universal
relation model, ACM Trans. Database Syst. 9(2), 1984, 283-309.

24. Sadri, F, Ullman, J. D.. Templete dependencies: a large class of dependencies
in relational data bases and its complete axiomatization. J. ACM 29(2),
1982, 363-372.

25. Sagiv, Y., et al. An equivalence between relational database dependencies
and a fragment of propositional logic, J. ACM 28(3), 1981, 435-453.

26. Sagiv, Y. and Walecka, S.F. Subset dependencies and a completeness result
for a subclass of embedded multivalued dependencies, J. ACM 29(1), 1982,
363-372.

27. Stonebraker, M., Wong, E., Kreps, P., and Held, G. The design and implementation

28.

29.

30.

31.

32.

3o,

of INGRES, ACM Trans. Database Syst., 1(3), 1976, 189-222.

Ullman, J.D., Principles of Database Systems, Computer Science Press,
Rockville, MD, 1983.

Wald, J.A., and Sorenson, P.G. Resolving the query inference problem using
Steiner trees, ACM Trans. Database Syst. 9(3), 348-368.

Weiderhold, G. Database Design, McGraw-Hill, New York, 1983.

Welty, D. and Stemple, D.W. Human factors comparison of procedural and

non procedural query languages, ACM Trans. Database Syst., 6(4), 1981,
626-649.

Wilmot, R.B. Foreign keys decrease adaptibility of database designs,

CACM, 27(12), 1984, 1237.

