Page1l

1.0 Introduction

The remote procedure call (RPC) and Linda paradigms are two different
approaches to distributed computing. Both attempt to provide the power of
distributed computation by using clean and simple methods. RPC uses
procedure call and return semantics familiar to most programmers. Linda, in
the original form, extends a programming language by adding three calls that
interact with a conceptually shared data space.

The creators of Linda (Carriero & Gelernter 86) claim that Linda could be
built on top of RPC, but that it would be inefficient. The results of this
implementation support the authors claim, and provide some insights into
shortcomings of RPC.

This paper will follow the development of R-Linda, starting with a
definition of the problem that R-Linda attempts to solve. Next is a general
description, first of RPC, and then Linda. Following this the environment
and the RPC tools used for the implementation are covered. The main part
of the paper discusses R-Linda itself, including a functional breakdown of the
system. Some comments on the performance of the system are given in the
concluding section. Lastly, there is an appendix containing performance
measurements, and how they were made. The source code is available on
request from the author.

Before continuing, it is necessary to define some terms that will be used in
the paper. They are not based on any paper or set of papers. It should be
noted that these definitions may conflict with those used in portions of the
literature.

The term parallel computing refers to a program that concurrently utilizes
more than one process and/or processor to arrive at a solution. It is not
required that the program control the allocation of processes and/or
processors. A node is a single processor. This may refer to a machine that
contains multiple processors, though in this paper it refers to a single
processor workstation on a heterogeneous network of computers. A
computation is distributed if it runs concurrently on more than one node. A
heterogeneous network is one that contains nodes of more than one machine
architecture.

Using these definitions, heterogeneous distributed processing (or
computing) refers to programs that concurrently use the processing power of
nodes with different architectures on a network to arrive at a solution. In this
case, processing and computing are interchangeable terms.

The local node is the resident node of an executing process. A remote
node is any other node in a possibly heterogeneous, network. A server is a



Page 2

process that performs processing (services) requested by possibly remote
programs. The program requesting the service is called a client. It is possible
for a server to be a client of other servers. If the other server is identical, it is
said to be a replicated server.

2.0 The Problem

The goal of this project is to produce a working implementation of the
Linda paradigm, which meets the following criteria :
1 - The system utilizes RPC for all Linda related interprocess
communication.
2 - The Linda call semantics conform to (Carriero & Gelernter 86).
3 - Data passed in RPC calls should be minimized.

The first criterion assures that any limitations or enhancements possible
with RPC will be used. For example some tasks, such as interprocess
communication on the same node, are faster when RPC is not used. This
prevents the use of RPC as a connection negotiator between two processes
(one could use NCS to negotiate a socket between two processes).

The next criterion serves two purposes. First it reflects the state of Linda at
the time of the authors claim regarding RPC. It also constrains the problem to
implementing three calls with well specified semantics.

The final criterion is due to the nature of RPC calls. Any data transferred
between client and server must be both copied and transmitted. Though
there are ways to save time, such as not copying data on a return from a call
that is specified as in data only, there is no guarantee that a particular RPC
package implements them. If the amount of data is minimized, it lessens the
dependance on the RPC implementation, and speeds up the call.

3.0 Remote Procedure Call (RPC)

The remote procedure call (RPC) paradigm is an extension of normal
procedure call semantics. In a traditional procedure call, the currently
executing routine makes a call to a procedure, and suspends (or blocks) until
the subroutine has completed (Figure 1- over). There may be a transference of
data involved in one or both directions.

call

>

Client return

Procedures

o .

interface



Page 3

Figure 1 : Traditional Call Flow

In a remote procedure call, one process, the client, makes a procedure call
to another process, the server (Birrell & Nelson 84). Unlike a regular call, the
client and server may be on different machines. As with regular procedure
calls, the client blocks until the call is complete. The difference is that the
client must locate a server, send the data to, and receive the data from, the
server. The server must process the data, and send it back to the client. An
RPC package provides tools and code to support these activities.

Since one objective of RPC is to be similar to normal procedure call
semantics, the client should not have to do anything special to make the
remote call. For this reason, RPC packages provide facilities to generate the
code that handles locating the server and converting the data to and from
transmissible form (this is called marshalling and unmarshalling). The code
to do this is called the client stub. There is also a server stub that provides the
same functions for the server. The communication is provided by a runtime
module that transmits the data. To the client program, the procedure call
appears to be a traditional one, though there is actually more work being done

(Figure 2).
Apparent Flo

F call : \
Client e e il R Manager
len feturn Procedures
<] - - -4+ -]
[ ]

call ! call
Yy return " return|

Client Stub Server Stub
call call \
return return|
RPC Runtime 2> RPC Runtime
Library network Library
- messages
Client Process Server Process

Figure 2 : Remote Procedure Call Flow



Page 4

It is also possible to communicate between differing architectures with
differing data representations such as ASCII and EBCDIC. Either the
generated stubs or the RPC runtime library will convert between the formats.
In order to do this, the types of data must be known in advance. This is done
by making an interface definition, which declarativly states what calls will be
made. This definition is used to create the stubs used by the client and server.

There must be some form of naming resolution, so that a client can find a
particular server. This is usually done by an RPC runtime facility. The server
registers with the RPC runtime library, and when a call is made by a client for
a service (or interface), the runtime package finds if and where that service is
offered. This is called binding to a server.

An important point to note is that the server does not know how to
contact the client. This is analogous to having no scope in a procedure call,
that is a procedure can not access variables known to the caller. Another
implication of this will be covered in the implementation section.

4.0 Linda

Linda is a language designed to support distributed processing and distributed
data structures (Carriero and Gelernter 86). At the heart of Linda is a
conceptually shared memory space through which all processes
communicate. The medium of communication is the tuple, a set of
arguments which may be actual or formal in nature. Thus the name for the
shared memory is tuple space (TS).

Linda provides four operations on tuples : out, in, read, and eval. These
are used respectively to post a tuple to TS (out), match tuples and delete them
from TS (in), match tuples without withdrawing (read), and cause a program
to start execution in TS (eval). The authors have admitted to limited success
with the eval primitive (Carriero and Gelernter 88).

Linda statement ( out("Name", afu_integer, 1‘1.5, 5)

string actuaAteger variable | floatactual integer actual

ssume an_integer = 80

Tuple in Tuple Space (<"N ame", 80, 4.5, 5>)

Figure 3 : Tuples




Page 5

Figure 3 gives an example of an out call and the resulting tuple. In this
case, there were no formal parameters given, however it is possible to do so.
Formals are mainly used with the in() and read() calls. Since the behavior of
the calls is important to R-Linda, they are described here.

On an out() call, the resulting tuple is immediately posted to TS and the
process continues execution. In other words, there is no blocking of the
process making the out() call.

An in() call is more involved. The tuple created by the in() call will
attempt to match with an already existing tuple in TS. If this is possible, the
in-tuple will combine with the matched tuple (thus instantiating the
in-tuple formal parameters), and will be returned to the calling process. This
will also delete the matched tuple from TS. If no matching tuple is present,
the calling process suspends until a match is found. Read() works the same
way as in(), except it does not delete the matched tuple.

The matching process is important since it is the method of information
exchange between Linda processes. The match must occur at three levels, the
number of arguments of the tuples, the argument types, and actual values.
This means that the value parameters in an in-tuple or read-tuple, must
match the value for the out-tuples, and the type of a formal must match the
type of a value. When a match occurs between a formal and a value, the
formal receives the value (Figure 4).



process 1

out("Name", 5, 4.3) ~|

1- Post an out tuple to tuple space

process 2

Page 6

Tuple Space
P <"Name" 54.3>

<"Name",7, 10.3>

in("Name", &an_integer, 4.3).

/* an_integer =222 */

<"Name",5,4.3>

?
" <"Name ",int: an_integer, 4.3>
?

2 - Post an in tuple and attempt to

process 2

match <"Name",7, 10.3>

Tuple Space

in("Name", &an_integer, 4.3)

/* an_integer =5 */

"Name",int: an_integer = 5, 4.3

3 - Match a tuple so instantiate in-tuple and return

<"Name",7, 10.3>

Figure 4 : Matching in Linda

It was mentioned that the tuple space provides a conceptually shared
memory. It is conceptual because TS does not necessarily reside on one

machine. In fact, it is recommended

that TS be distributed amongst many

machines, resulting in many local tuple spaces (TSl). The union of these TSI
is the global TS. Thus, the physical memory that comprises the tuple space
may not reside on the same machine as the processor that is accessing it.

For this project, the important points to note are as follows :

1 - The semantics of the out(), in(), and rd() calls :

out : posts a tuple to tuple
in : blocks until a tuple is
rd : blocks until a tuple is

space and does not block
matched, deletes the matching tuple
matched, does not delete tuple

2 - The matching process requires a match on all three levels
i) the number of arguments is identical
ii) the argument types are the same
iii) values match, and formal types match value types
3 - Tuple space may be distributed among many smaller local TS



Page 7

5.0 The Tools

R-Linda is built as a C library and a server routine which use the network
computing system (NCS). The major constraints for R-Linda are directly
attributable to the semantics and operation of NCS, so a description of it is
given.

The aim of NCS is to provide a “set of tools for heterogeneous distributed
computing” (Apollo 87). In terms of the description of RPC given above,
NCS consists of a runtime library and an interface definition compiler
(NIDL). The runtime library handles all binding and connections, as well as
the transmission of data between the client and the server. It also performs
any data translations that are needed

The NIDL compiler generates the client and server stubs from an interface
definition. This consists of an interface identifier that is unique across space
and time, type definitions, and procedure call declarations. The type of data
transmitted can be arbitrarily complex. However, if a structure contains
pointers, routines to convert the structures to and from transmissible forms
must be provided. The routines end up copying data and managing the
memory associated with both the transmittable and non-transmittable
structures. Thus if you wished to transmit a linked list, it would first have to
be converted into an array at the transmitting, and converted back into a
linked list at the receiving end.

NCS also provides a set of routines for generating unique identifier
numbers. The identifier consists of the current time, the node id, and a
reserved field. The identifiers are used by a client to locate a server. This is
done by another part of NCS called the location brokers. Their function is to
maintain a database of all active servers and their current addresses. There
are two types of locations brokers, local and global. The local broker (1lbd)
runs on every node that uses NCS. It maintains the database of servers
present on the local node and global brokers. The global location broker (glbd)
maintains a list of all llbd. Both types of brokers may contain information on
remote servers. Each time a call is made by a local client, the binding
information for the remote server is kept by the location broker that found
the binding. The brokers are accessed through the NCS runtime library.

The actual process of binding to a server can be done automatically by the
client stub, or manually by the client. The binding must be done manually if
the client accesses more than one replicated server. A bound handle gives the
client all the information needed to communicate with a server. The reverse
is not true. A server has no way of accessing the client through NCS calls. It
is possible for the client to send sufficient information for the server to
contact the client (a UNIX socket address), but this contact would not use any
of the NCS facilities.



Page 8

6.0 R-Linda : The Implementation

R-Linda has two parts, a library containing all the client code, and a server
that administers tuple space on a local node. A program which uses R-Linda
does not do any binding, it merely makes out(), in(), and rd() calls. The figure
on the next page illustrates the steps needed to post a tuple into tuple space
using R-Linda. It gives the operations at the R-Linda level and the
corresponding data.

Processing steps for data in the R-Linda system

1 N 3N s N 5 N
NC
Raw S
Data Encoding
Decoding
: | ' ; i ¥
1 1 1 | i
. . - IR EIE
1 1 ] I
1 1 i 1 types 71
i ( 1 I
I | ¥ I array of [o]
1 I arity 1 1 shorts
1 : long tuple [e][g]
¥ fypes array of 0l
Physical ot array of 7] {{ Network strings
out(1,7,"eg") ! lock
Memory 1] shorts \  Packets . 0
H integer
] N e 1| tuple ! -
Nuttsaannnannnnnness” array of [ [e]g] |i req id| o
strings H nes type
N Y H prev [\uiL
pointer
Corresponding type of data
P g typ next |\
pomter

=
-----------------

Figure 5 : Flow of Data in R-Linda

In designing R-Linda to run on NCS, two major constraints came to light.
Firstly, the data transmitted between the client and the server (step 4 above)
needed to be as simple as possible. This is due to the NIDL compiler, since for
any reasonably complex type, a lot of processing is involved (See Appendix
A). A further constraint was introduced by the nature of the Linda calls (step
2 above).




Page9

The number of arguments of a tuple (the arity) is not known in advance.
This requires using the C varargs library. Varargs lets you decode a variable
argument lists, but you must know the number of arguments and type of
each argument before decoding it. To do this, the first argument in the
varargs list is the arity of the tuple expressed as a C long integer. The
elements of the tuple are expressed as pairs of one short integer and the actual
tuple argument. The short integer identifies the type of the following
argument. An out() in R-Linda has the form :

out(arity, type_arg 1, arg_1, type_arg_2, arg_2, ..., type_arg_n, arg_n) ;

The other calls are similarly defined. In order to be consistent with C, a
formal is passed as a pointer (i.e. if x is an integer, it would be passed as &x).
The type argument is a number from 0 to 19, with all pointers having a type
number greater than 9.

The process of decoding a tuple (step 3 above) consists of looping for the
number of arguments and scanning the varargs list into an appropriate type.
There is no need to encode a tuple since the caller already knows the form.
The only requirement is to instantiate formal parameters, which consists of
assigning the matching value to the address of the formal.

The next decision is the format of the tuples used in the RPC calls (step 3
and 4 above). Three factors influenced this : the transmitted data should be
small, the number of arguments is variable, and both the type and value (or
address) of each argument is needed. Ignoring the first factor, the best
solution is a structure that contains the arity, a list of shorts for the types, and
a list of strings for the tuple. But, as noted, the lists would be inefficient. This
leads to the use of arrays instead of lists. In the actual procedure calls, a tuple
is represented by three parts, an arity, an array of shorts for the types, and an
array of strings for the arguments.

The disadvantage of using arrays is that an upper limit must be placed on
the length of tuples and the size of the arguments. Also, the whole array
must be copied. However, if lists were used, it would need to be copied into
an array, then the array would need to be transmitted to the receiver, and the
receiver would also need to copy the array back into a list. So the method
chosen does save time.

Figure 6 (over) gives an example of how R-Linda would look in a
network. There are *** parts in an R-Linda system. The user client program
uses the R-Linda facilities to run a Linda program. This user program
communicates using the R-Linda library (rlclient in the figure). This library
establishes contact with linda servers and provides the functionality needed
to make the Linda calls. The server part (rlserver) maintains tuple space. It
also performs matching. Both the client and the server may communicate



Page 10

with remote servers. This is done using NCS which makes remote procedure
calls both on the local node, and to remote nodes. Thus when the riclient
makes a call to rlserver, that all goes through NCS.

:Remote Node NCS ' y Remote Node
]
/ = > NCS lserver "\
’ /
y server p ‘
Y ’ '
/ ¢ / .
‘ ’ ' ;
¥
‘ / / :
LRy ey N, ’ ’
s 2
Physical Network 1
A A A A AL EEEESEESEEEEEEEFFFFFETEE PP
Local Node Communication NCS
with remote rlserver

runtime
library

riserver

local
tuple space

B
tuples

match
(in/rd)
tuples

linda routines

Communication

with rlserver
2
out(1,7,"eg") riclient library
user client |3 ; remote
program —— | procedure
‘8 calls

TIIITAAATAATATLAALLLATATLT L AR R LT R T RN
AR ARATTTAACTCTATAARAATAAECT A LR R R LT T A S TS ®® TS S

F TG EETTEEEET T TS TS TS TS,

Figure 6 : The Structure of R-Linda on a Network

The second major constraint imposed by NCS involves the semantics of
remote procedure calls. As noted above, the client binds to a server then
performs the procedure call. The server services the call and returns any
values to the client. The client blocks during the call, and the server can not
process other requests until it has completed the current one. There is no
provision for the server to bind to the client. Thus it can not suspend the
client call and continue service at a later time. The server must execute the
entire procedure before it can service another call. Though NCS provides



Page 11

facilities for concurrency in the server, they are minimal (a maximum of 10
simultaneous calls), and require very careful checking that the code is fully re-
entrant.

This does not pose problems for the out() call, since it is non-blocking, but
this is not true of the in() and rd() calls. If the server blocked until a match
occurred, it would not be able to process other client calls, which would
prevent it from receiving a matching tuple. The server would need to
suspend the current client call and queue it for later resumption which is not
possible using NCS or traditional RPC. Since the server can not queue
blocked clients, another method of blocking the client program is needed.
One possibility is to have the server fork off processes to deal with waiting
clients. This is not reasonable since common tasks in Linda cause a large
amount of traffic in tuple space (Carriero & Gelernter 88). Thus some other
method for blocking the client is needed.

In order to achieve this, one should realize that only the users client
process, the one making the in() or rd() call, needs to block. The actual library
process can simulate blocking semantics for the users process. This can not be
done with a single call, since this would block both the client library and the
server. Since a call to a server blocks until completion, the only alternative is
to busy wait for the matching tuple. That is, to check at regular time intervals
if the server has found a matching tuple.

It is clear that continual transmission of a tuple is inefficient, as is the
match checking that the server must perform. To circumvent this problem, a
scheme of request identifiers is used. An in() or rd() tuple that is not
immediately matched from the local tuple space is assigned a unique
identifier (using the facilities provided by NCS) which can be used by the busy
wait call to check if a match has been made. Thus there is less to transmit,
and only one element to search on.

The last decision involving the client is how to match tuples on remote
Linda servers. There are two main ways to do this, replicate the out tuples or
replicate the in/rd tuples. The literature for Linda recommends replicating
the in/rd tuples. This is due to the nature of the in call, which deletes the
matching out tuple. The fact that only one rd() can match an out tuple,
requires the ability to lock off the out tuple. If the out tuples are replicated,
this becomes complex, and requires confirmation from all servers before an
out tuple is matched.

If the out space is local, and the in/rd space is distributed, the match will
occur at the out tuples home server. This makes both the delete and match
protocols simple. When a match occurs, a local server needs to check if the
match is still needed on the home server of the in/rd tuple. Using this
scheme requires that all remote servers are informed when an in/rd tuple
needs to be matched, which is done only once. In the replicated out tuple



Page 12

scheme, a transmission is made to all servers at least twice, once to post the
out tuple, and once to confirm the delete.

It remains to decide whether the client or server will transmit the match
request. The client is used, since it will be doing less work than the server. If
one considers that a remote match is only checked for after local matches
have failed, it is clear the the client would be in a blocked state. That is, it
would be checking for a match at regular time intervals. This checking needs
processing by the server, which would be binding to, then sending match
requests, to all remote servers. It makes more sense for the client to send the
match requests since it is already in a block phase and would otherwise be
busy-waiting.

These constraints led to the client library having the following flow of
control for out(), in(), and rd() statements.

out ()
convert users client out to linda call structures
if not already bound to server
bind to server
post the tuple to the server

in()
convert users client in to linda call structures
if not already bound to server
bind to server
post the tuple to the server
if no match occurred
if not already go remote servers
get remote servers
for the number of remote servers
post match request on remote server n
while no match
wait for time interval
check for match
for the number of remote servers
deregister match request
instantiate users original in tuple

rd ()
(the same as in)

The server provides the actual tuple space and the matching of tuples.
The decision to make the out tuples local and the in/rd tuples replicated, lead
to two distinct tuple spaces. One, called the local tuple space (local_ts) is
composed strictly of out tuples. The other is composed strictly of in/rd tuples
and is called the match tuple space (match_ts) since the tuples resident in it
are attempting to match something. The match space contains tuples from
the local node and from remote nodes.



Page 13

The next problem is how to assure that a match works properly. That is, if
an in/rd tuple from a remote node matches a local out, other tuples must be
prevented from matching that out tuple until the remote in/rd tuple has had
a chance to confirm the match. This is especially important for in tuples,
since they delete the out tuple that they match. To accomplish this, a lock is
provided for an out in the local_ts data structure. Since there is no
concurrent programming involved, the lock is simply an integer flag.

More subtle than matching out tuples, is matching in/rd tuples. Since
match_ts is possibly replicated, it needs to be checked on every post of an out
tuple on a local node. If a match occurs, a lock on the in/rd and matched out
tuple is required until the remote node has queried if the match is still
needed.

Finally, when a match is made, the client program needs a way of claiming
the correct tuple. This is provided by a third tuple space, called found tuple
space (found_ts). Posting to this space can occur from remote Linda servers
since a match may be made on a remote host. This requires sending the tuple
data to the call that posts the match. Thus posting remotely to this space
requires a data copy, though searching it uses the request identifier.

The following are the names of the routines from the interface definition
file, along with pseudo-code for their actions.

linda_out
checks for a match in match ts
if found
get remote server
if still needed
post_found on remote
post local ts
post local ts

linda_in & linda_read
generate unique identifier /* unique id */
check for a match in local_ts /* returns matching tuple
if it exists */
if not found
post match _ts

linda_match in & linda match read :
check for a match in local_ts
if not found
post match ts
else
get remote server
if still needed
post match ts
else



Page 14

put matched out back into local_ts /* in only */



linda_check_found in & linda_check_found read :
check found ts for match on required id

return true if found else return false

linda get_in & linda get read :

get tuple from found ts based on required id

is needed

Page 15

“check match_ts for still required using required id

return result

linda found :

post tuple to found_ts

deregister tuple

remove in/rd tuple of required id from match_ts

The final decision involved matching. The section on Linda describes
matching as occurring on three levels, arity, argument types, and values. The
match is checked with all tuples in a tuple space. A tuple space consists of an
array (whose length is the maximum arity) of pointers to tuple structures. A
tuple structure (Figure 5) contains the array of types, the array of tuple strings,
the arity, a lock, a unique identifier, and a pointer to the next and previous
items. If it is an in/rd tuple there a flag for in or read, and an entry for the
home node of the tuple, where home is defined as the originating node of the

match request.

lock Integer. 1if alock is on
. An NCS generate unique
id .
identifier
types | Anarray of shorts
tuples | Anarray of strings
next Pointer to the next tuple in
ex the tuple space
. Pointer to the previous
prev tuple in the tuple space
home | The home node of this tuple
. A flag that is 1 for ard or
is_read .
0 for anin.

Figure 7 : A Tuple Space Data Structure




Page 16

Given the above structure, the match algorithm is as follows :

match (ts, t, m)
tuple space ts ; /* the tuple space to check */
tuple rec *t ; /* the tuple to find a match for */
tuple rec  **m ; /* a match if one is found */
{
if (tuples of arity t.arity in ts)
while (tuples of arity t.arity in ts)
for (t.arity)
if ~(t.typelarity] match ts.typelarity])
*m = NULL
return to caller
for (t.arity)
if ~(t.tuplelarity] match ts.typelarity])
*m = NULL
return to caller
/* found a match, check lock */
if (t.lock)
*m = NULL
return to caller
else
*m = current ts pointer
return to caller
else
*m = NULL
return to caller

}

This is not strictly how the calls are made, but the algorithm is the same.

This algorithm attempts to do the least amount of work to fail a match.
The first check, for tuples of the required arity in tuple space, is the first level
of matching between tuples, identical arity. The next stage checks for type
matching. This is implemented as a look up table accessed by the out and
in/rd type value. The final stage compares the actual strings if the particular
type is not a formal. It makes no sense to compare the tuple strings if one
type is a formal.

7.0 Conclusions

The R-Linda system currently runs on Apollo computers that support
NCS. In order to check the performance of the system in relation to the
original Linda, the ping/pong test was run (See Appendix A). The Linda
kernel achieves between 720-770 pairs per second in a simple in/out test. R-
Linda only achieves 3 pairs per second and a rate of 24 RPC calls per second.

This is very low compared to the kernel version, and one might attribute
it to inefficient code. In order to isolate for this, a skeleton version of the code



Page 17

that did no processing was used (See Appendix A). The pairs per second only
increased by 0.81, which means that the inefficiency is due to NCS. To
confirm this, the skeleton was used with no delay time for the busy wait,
resulting in 7.17 pairs per second (57 RPC calls per second).

It is clear that the pairs per second could be increased if the busy waiting
were eliminated. This requires an extension to RPC, namely the ability of the
server to obtain the information necessary to queue the client and service it at
a later time.

Two additions are required for this. Firstly, a method of obtaining a 'client
handle'. This handle would need to contain enough information for the RPC
runtime library to establish contact with the suspended client process on the
correct node.

The other addition is a method for the server to inform the RPC runtime
library that it has suspended processing of the current client call and is ready
to process other requests. Under the usual RPC scheme, a server responds to
a request, processes the request, and returns the result. The return contains
an implicit 'ready for next request' statement by the server. If client
suspension were added, there would need to be an explicit 'ready for next
request’ in addition to the implicit one.

As for the original goals of the project, they have been satisfied. The
system utilizes NCS (RPC) exclusively for all R-Linda related
communications. The semantic of the out(), in(), and rd() statements are
those given in (Carriero & Gelernter 86) using the busy wait methodology.
And an attempt was made to minimize transfer of data using the required
identifier scheme.

In reference to the prediction that Linda would not be efficient on top of
RPC, this has been confirmed by the findings of the project. Referring to
Appendix A, it was found the NCS (RPC) accounts for 77 % of time time to
process an in/out pair.

NCS implementation of Linda

- Logically sound
- Inefficient in 3 ways

1-Data copying
2 - Data processing for transmission
3 - Unsuitablity of RPC semantics




Page 18

R-Linda is logically sound. That is, the semantics of the Linda calls is
preserved, and the behavior is the same as Linda. However it is not usable
for heterogeneous distributed processing. In order to make R-Linda feasible,
NCS would need to change in three ways. Firstly, the amount of data copying
would need to be reduced. This is possible by using text compression and
prediction techniques. Such a method would increase problem 2. The
unsuitability has been discussed above, and involves adding two calls to NCS.
One to get a handle to a client, and the other to inform the NCS runtime
library that the server is ready to service more calls.

As a final word, I would like to suggest some possibilities for further work.
The first thing to try is using the domain distributed services (DDS) protocol
ports with the servers. Though this would not speed up operations to a
kernel level, it is faster than the IP protocol. Another idea would be to
implement Linda on top of message passing and compare the results with R-
Linda. It would also be useful to implement Linda on top of UDP, which
would require implementing a method for locating Linda servers. The
simplest way to do this would be using well know ports.

8.0 Bibliography

Apollo Computer Inc. (1987). Network Computing System (NCS) Reference.
System Documentation No. 010200, Revision 00.

Birrell, A.D. and Nelson, B.J. (1984). Implementing remote procedure calls.

ACM Transactions on Computer Systems, Vol. 2, No. 1, February. Pps
39-59.

Carriero, N. and Gelernter, D. (1986). The S/Net's Linda kernel. ACM
Transactions on Computer Systems, Vol. 4, No. 7, May. Pps 110-129.

Carriero, N. and Gelernter, D. (1988). Applications experience with Linda.
Proceedings of the ACM/SIGPLAN Parallel Programming : Experience
with Applications, Languages and Systems. New Haven, Connecticut,
July 19-21. Pps 173-187.



Appendix A Page 19

Appendix A : Testing R-Linda

To have a good comparison with the original Linda, a test given in the
(Carriero & Gelernter 86) paper was used. This consisted two programs which
used in/out pairs. They are reproduced from the paper below :

PING :
count = 0 ;
while (TRUE) {
in (npingn) ;
if (++count == LIMIT) break ;
out ("pong") ;
}

print elapsed time ;

PONG:
while (TRUE) {
out ("ping")
in ("pong") ;

}

These are used to test the number of in/out pairs per second that the
kernel can process. In the case of R-Linda, the same programs were used
(with the modified in/out formats) with a LIMIT of 500 calls. The test was
performed on a single node (DN 4500, 68030 processor) with the server using
the IP communications protocol. Each of the processes was run in a separate
window (ping, pong, rlserver). The three processes accounted for
approximately 99 % of the nodes total processing during the test runs.

Tests were made with a full implementation of R-Linda using various
delay times for the busy wait. Only one of these sets of figures is given below
(the fastest with a delay of 0.125 seconds). Measurements were also made
with an R-Linda skeleton for a 0.125 second delay and no delay. The skeleton
program is R-Linda with all the processing stripped from the client and
server sides. That is, the out/rd/in do no conversion, they just make the call.
In the case of in, it makes a linda_in, then only one linda_check_in, and
finally a linda_get_in (rd is the same). The server does not processing, it
merely returns a single function value if needed. The table below
summarizes the results :



Appendix A

Delay time (sec)

Trial # 125 125 (skeleton) | 0 (skeleton)
1 163 131 67
= 2 174 125 73
g 3 161 126 61
s 4 173 134 66
5 s 163 129 58
S 6 169 133 78
5 7 175 133 87
b 8 159 135 85
é 9 164 124 60
10 163 141 62
e —e
Avg. 166.4 131.1 69.7
pairs/sec 3 7.17 3.81
calls/sec 18 229 43

Page 20

Table 1 : Ping/Pong Testing Values

The other measurement taken was the time to do a null remote procedure
call. This was done to isolate for the time that R-Linda actually takes. In the
above table the calls/sec entry gives the approximate number of remote
procedure calls per second. It is estimated that 500 in/out pairs will take 3000
remote procedure calls on average (2000 best case, at least 4000 worst case).
This is based on the following breakdown :

500 ping/pong cycles best case (always matches) :
1000 linda_out calls
1000 linda_in calls

500 ping/pong cycles worst case (no matches) :
1000 linda_out calls
1000 linda_in calls
1000 linda_check_in calls
1000 linda_get_found_in calls

Since the processes are running concurrently, the actual sequence of calls is
non-deterministic. Tracing the sequence is not useful since it would both add
time, and change the sequence of processing. The 3000 figure reflects the fact
that check calls effectively take longer due to the busy waiting. The actual



Appendix A Page 21

check call time for the server is very short compared to the linda_out and
linda_in calls. The 3000 calls figure is conservative.

The test was performed under the same circumstances, except only two
processes were used (a client and a server). It was found that 3000 remote
procedure calls take 25.2 seconds, which is 119 calls per second.

Using these figures the time that R-Linda takes for processing (including
busy waits) and the time that NCS takes for data transmission can be
estimated :

R-Linda processing = R-Linda time - skeleton time
=166.4-131.1
= 35.3 seconds

Data transmission = skeleton time (no wait) — 3000 null call time
=69.7 -25.2
=445

With these figures we can now get a percentage breakdown of the time
taken per R-Linda ping/pong pair transaction :

Total processing time for a single pair = 166.4 / 500 = .33 seconds

R~Linda processing per pair = 35.3 / 500 = 0.07 seconds 21 %
Data transmission per pair = 44.5 / 500 = 0.089 seconds 27 %
NCS overhead per pair = .33 — 0.07 - 0.089 = 0.171 52 %

This means NCS is responsible for 77 % of the time taken to process one pair.
Of this, it is possible to work on the data transmission by using more efficient
representations.



