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There are various types of data available for gravity field modeiing, such as terrestrial or marine 

mean gravity anomalies, airborne a%vity disnubances and geoidal heights computed fiom 

satellite altimetry. One common feature of these data types is that they have different resolutions 

and accuracies. To combine these data, a multiresolution problem has to be solved. The objective 

of this dissertation is therefore the development of a framework for multiresolution 

approximation in gravity field modeling. Fit, multiresolution approximation problems are 

formulated, and four classes of mulriresolution approximation problems are given to demonstrate 

the necessity of introducing the idea of multiresolution approximation in gravity field modeling. 

Next, a generai methodology of combuiing different methods for solving multiresoiution 

approximation problems are presented. Both signal domain and measurement domain approaches 

are considered. Two signal domain approaches, Le. the fine-to-coarse estimation scheme and the 

corne-to-fine estimation scheme, are derived by combing a discrete wavelet transfomi and least- 

squares coilocation as wo special tools. A measurement domain approach is aiso proposed by 

using a multirate system and a multiple-input single-output system as two speciai tools: A 

detailed comparison between the proposed approach and stepwise Ieast-squares collocation is 

conducted. Finally, the application of the proposed framework to gravity field modeling is 

demonstrated through numencal examples. The effect of using d i f fen t  wavelets is investigated. 

A numencal comparison between the signal domain approach, combining a wavelet transform 

and least-squares collocatiou, and the measurement domain approach, using a multirate system 

and a multiple-input single-output system, is performed. The main advantage of the proposed 

iii 



framework is that it allows both estimation of signds at multiple scales and fusion of 

measuements at differenc scaies. 
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CHAPTER 1 

INTRODUCTION 

1.1 BACKGROUND AND OB JECTLVES 

Mapping of the earth's gravity field is considered a primary goal in geodesy, geophys ics 

and geodynamics (Colombo, 1991). There are two conceptual approaches to the 

approximation of the Earth's gravity field, the model approach and the operational 

approach (Morit~, 1980). The model approach essentially consists of formuiating a 

mathematical model in the form of a geodetic boundary value problem (BVP), employing 

an analytical point of view, and applying it via a discretkation process (Sanso, 1987). A 

number of techniques for solving geodetic boundary problems have been developed, e.g., 

sphericai harmonic expansion and integration techniques, such as Stokes' formula and 

Molodensky's solution (Heiskanen and Moritz, 1967). The operational approach starts 

from the real measurements, with as few modifications and corrections as possible, and 

sets up a general estimation principle, which uses the smaliest possible mathematical 

information on the unknowns, but knowledge on their statisticai behaviour (Sanso, 1987). 

This approach leads to least-squares collocation, which is a technique for combining 

observational data of different types for an optimal estimation of the gravity field signal 

and other parameters. This method is not dependent on data distribution, although it is 

numericaily advantageous to mate a regular data distribution. 



In general, these two methods don't consider multiresolution data In practice, the= an 

various types of data available for gravity field modeling, such as terrestrial or marine 

mean gravity anomalies, airborne gravity disturbances and geoidal heights computed 

from satellite altimetry. One feature of these data types is that they bave Merent 

resolutions either because they represent different functionals of the gravity field or 

because they have been sampled. Here resolution refers to the minimum wavelength 

which cm be resolved fiom the data For example, resolution of data from airborne 

gravimetry and satellite altimetry are different both in minimum wavelength resolution 

and area coverage. The second feanire of these data is that they are obtained at different 

altitudes. For example, airborne gravimehic data are at fiight height, while terrestrial 

gravity data are on the ground Due to the attenuation of the gravity field with increasing 

altitude, these data correspond to different spectrums of the gravity field. The third 

feature is that these data have different noise levels due to different measurement 

procedures and different technologies. Finally, the p v i t y  field signal to be estimated 

from one or more of these data may be different from the gravity hnctionds observed. 

To combine &ta of different observables with different resolutions, different altitudes 

and different noise levels for estimation of gravity field signals at different resolutions, 

the following multiresolution problem bas to be solved: 

Given measurements of various functionals of the anomalous gravity field ut different 

resolution levels und a? dtrerent altitudes, estirnate gravie fieId signals at multiple 

resolutions. 



The need for the formulation of a multiresolution problem in physical geodesy was 

reaiized some t h e  ago, although the tenn muitiresolution was not used. For example, 

Schwarz (1984) classified gravity field information in four categones: the low frequency 

part, the medium frequency part, the high fkquency part, and the very high frequency 

part. In tenns of resolution, the first part corresponds to low resolution, while the 

combination of the fmt two, the fmt three and all four parts corresponds to medium 

resolution, high resolution and very high resoIution, respectively. This classification also 

suggests the data type to be used for the resolution of each fkequency part. Table 1.1 

summarizes measurement types. signal attenuation due to altitude and gravity field 

signais determined. 

From Table 1.1, it cm easily seen that measurements at different resolutions should be 

combined to achieve better estimation of the gravity field signal at different resolution 

scales. As is indicated in Table 1.1, there are at Ieast tbree rasons why a multiresolution 

approach is of interest in gravity field modeling. Fht ,  differemt functionais of the 

anomalous potential are used which are sensitive to different bands of the anomalous 

gravity spectrum. Second, data at different elevations are used - e.g. ground, aircraft 

heights, satellite heights - which, due to the attenuation of the gravity with distance from 

the disnubing masses, display a different spectrai behaviour dependent on altitude. 

Finally, as already mentioned, data sampling is also responsible for different resolution 

IeveIs. 



Resoiution 

Low 

Medium 

High 

Very high n 

Measurements at different 

resolution 

Orbit perturbation 

Altimeter data 

Mean gravity anomalies 

(1' x 1') and (20' x 20')  

Sateilite bofadiometer data 

Sateilite to satellite tracking 

anomalies 

Deflections of the vertical 

Airborne pvimetric data 

Airborne gradiornetric data 

Dense height data, at Ieast 

(1 k m x  1 km) 

Airbome gradiomeaic data 

Attenuation 

due to altitude 

strong 

300 km 

-800km 

( satellite 

altitude) 

no 

no 

s trong 

strong 

no 

no 

medium 

Strong 

no 

Strong 

- - - -  

Gravity field signal~ 

detetmined 

Geoidal height 

Gravity anomaly 

Geoidal height 

Gravity anomaly 

Deflection of vertical 

Second derivatives 

of disturbing potential 

Gravity anomaly 

Gravity disturbance 

Deflection of vertical 

Second derivative 

of disturbing potential 

Gravity anomaly 

Defiection of the vertical 

Second derivatives 

of disturbing potentiai 

Table 1.1 Resolutions of different measurements and different gravity field signals 

Sanso (1987) was the first to make mention of the muitiresolution problem in physical 

geodesy when he investigated the relation between the discrete ( operational ) and the 

continuous fodat ion (model) fmm a resolution point of view with the purpose of 



providing the reciprocal consistency of the two approaches. In his paper, he wrote that " 

when describing a physical object, we may find an even radically dflerent behaviour, 

depending on the scale at which we look at it or more precisely fiom the resolution of Our 

description, Le. from the dimensions of the srnailest particuiar we want to be able to 

distinguish in our object Coming back to ou .  example of a set of gravity measurements, 

the question is should we ma t  it as a continuum or as a discrete set? The answer is: it 

depends on the resolution with which we want to describe the field." 

The conventional method to deal with multiresolution data is Ieast-squares collocation, 

which combines al1 data with different resolutions simuitaneously. The problem of using 

least-squares collocation in this case is that it does not take the multiresolution data 

structure into account. In other words, it only considers the spatial correlation not the 

resolution correlation of multiresolution data. For example, when estimating a signai at 

one resolution from meanirements at another resolution, least-squares collocation only 

considers the distance between two points at two different resolutions. Mormation 

regarding resolution is not used. Therefore, fiom a theoretical point of view, it cannot be 

directly used to deal with data of different resolutions. One way of avoiding this problem 

is to upsample or downsample measurements at different resolution levels to the same 

resolution level by using either a mulbte  system or a wavelet transfonn before applying 

least-squares collocation. 

A general way to solve the above problern is to use multirate digital signal processing 



systems (multirate systems). A multirate system is a system wbich dows to change ftom 

a sampling rate to another sampling rate within the system. Therefore it can be used to 

link different resolution sales by using a decimation or an interpolation fdter or a 

multirate fdter bank. It cannot solve, however, the problems of combining different 

observables of the gravity field, different data attenuation and dtfferent noise levels. 

A wavelet transform dso provides a mathematical tool to investigate multkesolution 

problems. It is closely related to the multirate system since a discrete wavelet transfomi 

can be viewed as a special case of tree structwd multirate filter banks. The fundamentai 

idea behind wavelets is to decornpose data into different frequency components, and then 

study each component with a resolution matched to its scale (Daubechies, 1992). Roughly 

speaking, the aim of wavelets is to obtain base functions (called wavelets) as localized as 

possible, both in time (or space) and frequency (spectral domain). These fuoctions are 

generated from a single "generating wavelet" or "mother wavelet" by translations and 

dilations. The wavelet transform has a form similar to that of a windowed Fourier 

transfomi. However, the basic function possesses windows of variable sue, which make 

adaptation to spatial phenomena at different scales possible (Daubechies, 1992). 

Therefore wavelet transfonns have advantages over Fourier transfomis and windowed 

Fourier transfomis because they aIiow the andysis or processing of data at diEerent 

scales or resolutions. It is this feature that makes wavelets interesthg and useful for 

solving gravity field problems. However it cannot totally solve the multiresolution 



problems in gravity field approximation for the same m o n  mentioued in the context of 

muitirate systems. 

The objective of this dissertation is to intrduce and develop a Eramework for 

multiresolution approximation in gravity field modeling. instead of combining ail 

avaiiable measurements at the same time, the gravity field signal at each resolution level 

will be estimated by using the measurements from either a fine-to-coarse scaie or a 

coarse-to-fine scale one by one. A discrete wavelet transform or a multirate system is 

used as a tool to link different resolution levels. 

1.2 DISSERTATION OVERVIEW 

1.2.1 Outliae 

The disseflation is organïzed as foliows. Chapter 2 provides the background theory of the 

approximation of the Earth's gravity field and a new formulation of multiresolution 

approximation problems in gravity field modeling. Four methods for modeling the 

Earth's gravity field, i.e., the geopotential mode1 approach, the integration approach, the 

least-squares collocation approach, and the multiple-input single-output system approach, 

are briefly reviewed from a multiresolution point of view. Multiresolution approximation 

problems are formulated, and four classes of multiresolution approximation problems are 

given to demonstrate the necessity of introducing the idea of multiresolution 

approximation in gravity field modeling. 



In Chapter 3, concepts of wavelet theory are introduced which are fundamentai of the 

development of the subsequent chapter. Also, a brief review of multirate systems is given 

for the same purpose. MuituesoIution andysis is fornulateci, the critena for generating an 

orthononnai wavelet, especidy a compact support Daubachies's wavelet, fkom a 

multiresolution analysis are descri'bed and discrete wavelet transfomis using orthonormai 

wavelets are given. The choice of wavelets is discussed. The basic concepts of mdtirate 

systems is also dexribed including decimator and interpolator, decimation and 

interpolation filter, polyphase decomposition, lowpass FIR hlter design by the 

windowing technique, and multirate filter banks. 

The primary theoretical contribution of this dissertation is presented in Chapter 4, in 

which a general methodology and specific algorithms for solving multiresolution 

approximation problerns are developed Both signal domain and measurement domain 

approaches are considered. Two signal domain approaches, i.e. the fine-to-coarse 

estimation scheme and the coarse-to-fine estimation scheme, are derived by using a 

discrete wavelet transform and least-squares collocation as two special tools for this 

development. A measurement domain approach is also proposed by using a multirate 

system and a multiple-input single-output system as two special tools. A cornparison 

beîween the proposed approaches and stepwise lest-squares collocation is conducted. 

In Chapter 5, the procedure for generating multiresolution data is described first Then, 

numerical tests are presented to demonstrate the applicability of the proposed framework 



to gravity field modeling. Two numerical tests are conducted by using the signal domain 

approaches. First, geoidai height determination is done by using fine-scale airborne 

gravity disturbance data and coarse-scde geoidal height data. Then, downward 

continuation is studied by using a combination of finescale airbome gravity disturbance 

data with coarse-scale terrestrial gravity disrUrbance data The effect of using different 

wavelet bases for the estimated gravity field signal is dso saidid A numerical 

cornparison between the signal domain approach and the measurement domain approach 

is performed to assess the performance of both methods. 

Conclusioas fomed throughout this dissertation and ~commendations for M e r  

investigations are presented in Chapter 6. 

1.2.2 Contributions 

Specific contributions of this dissertation include: 

Fonnularion of gruvity jkld approximation in tenns of a multiresolurion problem. 

Although the problem of gravity field modeiing has been studied extensively for years, 

the existence of a multiresolution problem in this field has not received attention. In 

Section 1.1, the need for solving a multiresolution problem in gravity field modeiing has 

been stated. In Chapter 2, it will be shown that the classical approaches to gravity field 

approximation cannot be used to solve this problem. In Section 2.6, a general 



mathematical formulation of the problem will be @en and four classes of 

multiresolution problems related to gravity field modehg wiil be introduced. 

Theoretical development of a jkamework for multiresolution approximation in graviq 

j 2 d  modeling. A general methodology for solving multiresolution approximation 

problems is introduced in Section 4.1. Two signal domain approaches, a fine-to-coarse 

estimation and a coarse-to-fine estimation, are presented using a discrete wavelet 

transform and least-squares collocation as two specific tools in Section 4.2. In Section 

4.3, a measurement domain approach using a multirate system and a multiple-input 

single-output system as two specific tools is proposed as an aitemative. A detailed 

comparison of the fmt method with stepwise least-squares collocation is given in Section 

4.4. 

Numerical investigation of the potentiul applications of the proposed frnmework to 

gravityfieid modeling. In Chapter 5,  the proposed framework is applied to the solution of 

the multiresolution approximation problem in gravity field. In Section 5.3, two numerical 

tests are perfomed to show the applicability of the proposed framework. The effect of 

using different wavelets is investigated in Section 5.4. A numencal comparison between 

the signal domain approach combining a wavelet transfonn and least-squares collocation 

and the measurement domain approach using a multirate system and a multiple-input 

single-output system is perfonned in Section 5.5, where the estimation resuits of the two 



methods are analyzed in terms of dependence on the signal to be estimated, the resolution 

ciifference betweem different scales and the choice of lowpass füten. 



CHAPTER2 

GRAVITY FIELD DETERMINATION 

In this chapter, some basic definitions in the gravity field are given fmt, and four 

methods of modeling the Earth's gravity fielci, the geopotential mode1 approach, the 

integration approach, the least-squares coiïocation appmach and multiple-input single- 

output system solution, are theu bnefly reviewed From a multiresoIution point of view. 

Finally multiresolution approximation problems are fomuIa!ed and four different classes 

of problems are identified. 

2.1 BASIC TERMINOLOGY IN TIfE GRAVIT'Y FIELD 

The gravity potential of the Earth W is equal to the sum of the gravity potentiai V, 

produced by the attraction of the density distribution of the Earth, and the centrifuga1 

potential a, Le. 

The main objective of physicd geodesy is to determine the physical Earth's surface S and 

die gravity potential W. The surface of the earth is usually approximated by an ellipsoid of 

revolution which is an equipotential surface of a normal gravity field of the Earth as 

defined in Heiskannen and Moritz (1967). The normal gravity potential is denoted by U 



and the normai gravity by y. The disnirbing potentid T is then defïned as the difference 

between the actual gravity potential W and the normal gravity potential U at the same 

point P, i.e. 

which satisfies Laplace equation outside the Eaab's surface, i-e. 

where (x y z) is a coordinate in an earth-fixed rectangular coordinate system. 

The gravity anomaly Ag is defmed as the difference between the rneasured gravity made 

on the earth surface point P and the nomial gravity y on the ellipsoid point Q 

correspondhg to P, i.e. 

The gravity disturbance 6g is defined as the ciifference between the rneasured and the 

nomal gravity y at same point P, i.e. 



The geoidal height N is defined as the ciifference between the geoiü, the equipotential 

surface which best approximates mean sea level, and the ellipsoid. 

The fundamental equations describùig the relationship between the disturbing potential T 

and the gravity anomaly Ag, the gravity disturbance 6g and the geoidal height N are 

In planar approximation, (2.7) and (2.8) become 

2.2 GEOPOTENTIAL MODELS 

The gravitational potential of the Earth can be expressed in an Earth-fixed and Earth- 



centered coordinate system by the weii-known harmonic series: 

(2.1 1) 

where r, 9 and A are the geocentric coordinates of a point, GM is the product of the 

gravitational constant G and the mass of the earth M, a is the equatorial radius of the 

reference eilipsoid, Eh and Sh are a set of M y  normaiized harmonic coefficients, and 

Pi, are fuiiy normaüzed Legendre functions. 

A geopotential model for the anomaious potential T can then be written as foliows: 

where O, is maximum degree of the geopotential model (integer), 6 ci, and 6 S im are 

the hamionic coefficients ciifference between the true gravity potentiai and the normal 

gravity potential. Giavity anomalies, geoidal height, and other functionals of T can be 

obtdned by using formulas (2.6), (2.8), etc. 



The coefficients 6 ci, and 6 Sim in formula (2.12) can be determined from the anaiysis 

of satelIite orbit perturbations with or without combination with surface gravity data. 

n,, can be determined using the following the d e  of thumb: 

ivhere d is the grid spacing . in degree. or resolution of the data used in the determination 

of the geopotentid coefficients. 

On the other hand, the resolution of the gravity field r,, , which can be resolved from a 

given geopotential model, c m  be calcdated using the following formulê 

There are a number of geopotential models available. Table 2.1 Lists n ,, and rmode, for 

some geopotential models. For more detailed information regarding these geopotentiai 

models, references are made to Lerch et al. (1979, 1981 and 1982), Rapp (1978, 1981). 

Rapp et al.( 1991) and Reigber et al. (1983a and 1983b). 



Geopotential mode1 

GEM 9 

b w  

GEMlOB 

GEMlûC 

GEM L-2 

GEMT1 

Table 2.1 n, and rmDdcl for some geopotential models. 
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GRIM 3B Mode1 

Rapp 1978 Mode1 

Rapp 198 1 Mode1 

Rapp 1991A Mode1 

From Table 2.1, it is easy to see that the maximum degree of the geopotential models is 

between 20 and 360, comsponding to a resolution of the gravity field between 9" 

and 0.5". This means that geopotential models contain the low and medium kquency 

parts of the spectrum, but have very Little information on high and very high fiequencies 

because the data types used do not contain this information. Therefore, it is necessary to 

combine the mode1 with other data types containing higher Frequencies in order to obtain 
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resolution of the gravity field better than 0.5'. especidiy in t&e determination of local 

and regionai gravity fields. It should also mentioned that the accuracy of the 

geopotentional coefficients becornes poorer and p r e r  with increasing degree and order. 

Thus, resolution to degree and order 360, or any d e p  and order, does not mean that the 

mode1 coefficients are perfect. 

2.3.1 Stokes' solution versus Mo1odens~'s soIution 

The integration approach is based on the geodetic boundary value problem (BVP), which 

attempts to find the potential on and outside a boundary from measurements made on the 

surface. Two most often used BVPs are Stokes' BVP and Molodensky's BVP. 

Stokes' BVP c m  be described as follows: Given gravi0 everywhere on the geoid, the 

geoid and the anomaious gravity potential is to be detemihed 

After applying a linearization procedure and assuming sphericai approximation, the 

above problem can be formuiated as: 

(AT = O, outside S 



~~ where S is the sphere with mean Eaah radius R and r = x +y + z . 

The solution to Stokes' BVP can be represented by integral formulas. Other gravity field 

quantities such as the geoidal height N and the deflections of the vertical (6 q), can also 

be represented by integrai formulas. The solution for N given by Stokes' integral formula 

is 

where y is the mean gravity of the Earth, S(y) is Stokes' hinction, Le. 

1 
S(W) =-- W W 6sh-+ 1-5~0s~-3cosV1n(sin-+sin2 y), 

\CI sin - 2 2 2 
2 

y is the sphericd distance, Ag is the gravity anomaly, and a is the unit sphere. 

In the case of local or regional gravity field determination, Stokes' formula may be 

simplified by using a plana. approximation: 



where (x y) and (xt y' ) are die computation point and the moving point in a plane L, and 

K(x y) is the plana. Stokes' function, ic. 

Equation (2.19) is referred to as the plaaar Stokes' formula 

The main limitation of Stokes' BVP is that a gravity reduction is necessary in order to 

reduce the measured gravity from the Earth's surface to the geoid. This is the reason why 

Molodensky ' s BVP was introduced. 

Molodensiq's BVP is the detefmination of the physical surface S and of the extemal 

+ 
gravity field of the earth from the gravity potential W and the gravity vector g given 

everywhere on S (Molodensky et al., 1962). It theoretically overcomes the problems of 

gravity reduction and mas-shifting which are strictly due to the formulation of Stokes' 

BW. The solution to Molodensky's BVP is given as a senes for T with integral tenns 

involving gravity anomalies and topographic heights (Molodensky et al., 1962; Moritz, 

1980). The lower order tems of the series provide suficientiy accurate results for 



practical application (Moritz. 1980; Sideris 1987). Moreover, the fmt term of 

Molodensky senes for the geoid is nothing else but Stokes' integrai. The sum of the f i t  

term and the second tem, Le. the gl tenn, is approximately equal to Stokes' integration 

with Faye gravity anomalies. ûn the other han& what is obtained by Molodensky's 

solution is the height anomaly and not the geoidal height, which is one of the reasons why 

Stokes' integration is much more widely used in practicai applications ( Li, 1993). 

3.2.2 Modification of Stokes9 formula 

Theoretically, the integration in Stokes' and Molodensky's formulas should be extended 

over the whole earth and the gravity anomaiy should be known at every point. Practically, 

these conditions cannot be satisfied Measurements are usually available ody in a Iimited 

area and are often given in the form of grids comsponding to mean gravity anomalies. 

Therefore, modification of the integration is necessary to accommodate their practical 

application. The basic idea of the mocMcation is to remove a long wavelength reference 

field from the gravity anomalies by using a geopotential mode1 and then apply Stokes' 

integral to compute the geoidal height fiorn the reduced gravity anomalies; see Forsberg 

and Tscheming (198 1). Rauhut (1992) and Li (1 993). 

Stokes' f o d a  after this modification can be expressed as 



w here N GM is the geoidal height computed fiom a geopotential model, Le. 

6 and 6 lm are the spherical harmonic coefficients for the differences of the E h ' s  

gavity potential and the normal gravity potential. N is the contribution of the reduced 

gravity anomdy, Ag, = Ag - AgGM, computed fiom Stokes' integration from either 

(2.1 6) or (2.18). AgGM can be calculated from a geopotentiai rnodel, i.e., 

Since the gravity anomalies are usually given in the fom of grids corresponding to mean 

pravity anomalies, N can be replaced by the iollowing summation 



in the case of the planar approximation, where x and y are the grid spacing dong the x- 

axis and y-axis, respectively, N and M are the data numbers dong each row and column, 

respectively, and Agg, is the reduced gravity anomaiy . 

Equation (2.23 ) can also be expressed as a discrete convolution 

where * is the convolution operator, and 

As cm be seen h m  equation (2.24), the maximum resolution of N will be the same as 

that of Agr. This means that the maximum resolution of the gravity field depends on the 

measurements Ag- On the other hand, if the measurements are only given in an area of 

L0 x L", the minimum resolution of the gravity field which can be resolved ftom local 

data is La, corresponding to the minimum degree and order of the harmonic expansion 

180" - . Therefore, the lowest degree and order of the geopotential 
t0 

180" 
than or equal to - 

- 0  
. That rneans the minimum resolution in 

model have to be larger 

this solution is usually 

provided by the geopotential model. From the above discussion, it can be concluded that 



equation (2.20) can k viewed as a direct fusion of dflerent types of data with different 

resolutions, Le. a lower resolution geopotential made1 and a higher resolution gravity 

anomaly, for geoidal height determination. 

In this dissertation, new approaches for fushg different data types with different 

resolutions wiil be deveioped based on wavelet theory or muhirate systems theory. They 

can not only handle the above situation but also other situations where integral 

approaches are aot available. 

2.4 LEASTSQUARES COLLOCATION 

Integral formulas, such as Stokes' and Molodensky's formulas, use one type of data for 

the approximation of other hinctions of the gravity field. DEerent types of data are 

fiequendy available, containing useful information regarding the gravity field. Least- 

square collocation is one method capable of using different types of data, homogeneous 

or heterogeneous, to predict other gravity field quantities. 

In the following, the basic pnnciples of least-squares collocation are reviewed. Readen 

are referred to Krarup (1969), Moritz (1980), Sanso and Tscherning (1980), and 

Tscherning (1984) for a more detailed description regarding least-squares collocation 

theory . 



2.4.1 The Fundamental Equaîions of Least-Squares Coliocation 

Any meastuement of the anomaious gravity field can be represented as a hear functional 

of the disturbing potentid T plus measurement noise, which c m  be written as follows: 

wherë the vector 1, the B and the vector n cornprise q measurements li , q linear 

functionaIs Li, and q measurement noises ni ( i = 1,2, ..., q ), respectively, Le. 

Let 

t = B T ,  
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In this way, the measurements c m  be explaiaed as the synthesis of a "signal" t, which is a 

function of T, and a "noise" n, 

Equation (2.28) is the mathematicai mode1 for least-squares coiIocation without 

considering systematic parameters. in this dissertation, aIi discussions on least-squares 

collocation will be based on this model and multuesolution approximation wiU refer to 

signals only. A more general mathematical model for least-squares collocation can be 

found in, e-g., Moritz (1980) and Krakiwsky (1990). 

It is assumed that the mathematical expectation of the measurement 1 and the 

measurement noise n are zero, i.e. 

When two types of measurements with different resolution are used, equation (2.29) can 

be split into two parts: 



where l1 and l2 are the measurement vectors corresponding to the lower and higher 

resolution, respectively, t l  =BIT and t2 =B2T are the "signai" vectors, and nl and 

nz are the measurement noise vectors in this case. 

The fundamental solution of equation (2.29) is based on the foLlowing minimum 

principle: 

which resdts in the following solution 

with the error covariance rnatrix 

where CI1 =(Ca +Cm) is the sum of the covariance matrices of the signals and the 

measurement noise, C, is the crosscovariance matrix relating the quantities being 

A 

predicted to the observed quantities, s is vector of predicted quantities, and E ,, is the 
s s 

A 

error covariance matrix of s . The derivation of equations (2.32) and (2.33) c m  be found 

in Moritz (1980). 



One aspect that makes coilocation a desirable technique is the combination of various 

functionals to Unprove estimates of the quantities desind Another fe-e of least- 

squares coUocatiou is tbat it aiiows for an estimate of the inherent error covariance ma& 

A 

associated with the estimates s . 

When applied to equation (2.30), equation (2.32) becornes 

where 

ci ==stl 9 

c2 9 

Cl 1 =Ctltl +Cnlq 9 

c22 =Ct2t2 +Cn2n2 ' 

Cl2 =Cgq  9 

T 
c21 =c2, ' 

(2.35d) 

(2.3 Se) 

(2.3 5f) 

One problem associated with equation (2.34) is that the cross-covariance matrix 

C,,,, between two "signais" t 1 and t 2 at two cliffereut resolutions cannot be handled by 



the conventional covariance function approach. The defination of the covariance function 

takes only the spatial correlation uito account, but does not address the resolution 

problem. Therefore, from a theoretical point of view, it cannot be used to compute the 

correlation between signas with differeat resoIution. The approaches developed in this 

dissertation will circumvent this problem by using wavelet transfonns or muitirate 

systems as links between ciiffernt resolution levels. 

The main drawback of the least-squares collocation methods is that the inversion of a 

Iarge ma& is needed in order to estimate the predicted signals. The inversion of a large 

matrix is a very time consuming process. To solve this problem, Moritz (1973) proposed 

a stepwise procedure. The basic idea is to partition the matrices Cu and C, into two 

blocks comsponding to a partition of the measurrments in two groups as was done for 

the two types of data with different resolution above. 

The fundamental equations of stepwise coilocation are 

with error covariance matrixes 



w here 

If s(I) and s(2), the signal at okro different resolutions, are to be estimated from 

measurements at these two resolutions, Equation (3.6) can be -en as foliows, ie. 

w here 



The more detailed description of stepwise collocation cm be found in Moritz (1980). 

2.43 The Covariance Fmctions 

It is easy to see from equations (2.32) and (2.34) that covariance matrices are essential to 

least-squares collocation. Theoreticaliy, all covariances in the anomalous gravitationai 

field may be derived from the basic covariance function K(P, Q) of the disturbing 

potential T. Since aU quantities in the anomalous gravitational field can be expressed as 

linear functionals of T, dl covariance functions required in equations (2.3 1) and (2.33) 

can be derived by covariance propagation, i.e. 

On the other hand, nom a practical point of view, the covariance function C(P, Q) of the 

&ravity anomaly Ag, has a more fundamental character because gravity anomalies fonn 

the main empirical material for the practical determination of the signal covariances 

(Moritz, 1980). In this case, an analyticd expression is usuaily used for determining K(P, 

Q) from CP, QI. 



In general, the covariance huictions c m  be classified as either global or local, depending 

on the dimension of the area of interest (Jordan, 1972). In the development of global 

covariance functions, the usuai techniques of sphericd hannonic series expansion can be 

used. Such a model was developed by Tscheming and Rapp using Io x l0 mean gravity 

anomalies and the degree variances c3 to c20, computed fiom a geopotential model 

(Tschemhg and Rapp, 1974). Local covariance functions are mainly computed by 

subtracting nom a global covariance fwiction a number of low degree ternis and fitting 

the three essential parameters, i r .  the variance Co , the correlation kngth 5 and the 

gradient variance G o ,  estimated from local data, to an andytical expression for the local 

covariance function, which is used as an empuicd covariance function. 

One problem of using empincal covariance functions is that there is no cornmon 

empirical covariance function for the whole Earth. This means, empirical covariance 

functions determined in different areas will Vary from one sample to the next (Schwarz 

and Lachapelie, 1980), and the ones derived have to be adapted to the local situations. 

This makes least-square collocation undiable, especially when estimating one functional 

from another. Furthemore, even if the covariance function would be consistent fiom one 

sample area to the next, it could not be used to deal with data at multiple resolution scaies 

if it is detennùied from the data at only one resolution. 

If the data in the area of interest are available and evenly distributed, the above problems 

may be overcorne if covariance functions are estimated directiy from the data instead of 



being derived fiom an analytical covariance bct ion.  Estimation of the empincal 

covariance function directly fkom the data can be doue fkom space domain or spectral 

domain. The formula for estimating the empirical covariance h m  space domain is 

where the discrete data f(i, j) are given in a rectangular area in grid format, M and N is the 

data numben dong x and y directions, respectively. Since the covariance function and 

the power spectral density are a pair of ionvard and inverse Fourier transform, Equation 

(2.42) can also be computed fÏom the spectral domain, Le. 

where P(u, v) is the power spectral density of the data f(x, y). u and v are the circular 

frequency dong x and y directions 

When multiresolution data are involved, covariance functions can be computed at each 

resoiution level using either Equation (2.42) or (2.43) as long as they are used at their 

corresponding resolutions. 



References are made to Jordan (1972), Tscherning and Rapp (1974). Rapp (1976). Moritz 

(1 980) and Tscheming (1 984) for detailed discussions regardhg covariance functions. 

2 5  MULTIPLE-INPUT SINGLE-OUTPWT (MISO) SYSTEM SOLUTION 

MISO systems have k e n  used in physical geodesy for a number of years (Vassiliou, 

1986; W u  and Sideris, 1995; Sideris, 1996; Wu, 1996; Li, 1996). A MISO system in the 

space domain can be ïllustrated by the diagram, shown in Figure 2.1. 

m . . . . .  

4-J" 
Figure 2.1 A MIS0 system 

Mathematically, the system c m  be written as 



where xi ( i =l, 2, ..., k) is the input signal, y is the system output, n is the system noise, 

hi is the impulse response, and * denotes the convolution operator. 

Equation (2.44) can ais0 be written in the frequency domain: 

where o is the circuiar frequency. Xi (a) ( i = 1, 2, .-., k ) are the Fourier transforms of 

xi ( i =1 , 2, -.., k)? Hi (O) ( i = 1 , 2, ..-, k ) are the comsponding Frequency responses of 

h i  ( i =1, 2, ..., k), Y(@ is the Fourier trmsform of y, and N(o) is the system noise 

expressed in the fkquency domain. 

In order to implement such a system, the Hi (CD) ( i = 1, 2, ..., k ) have to be determined. 

The following minimum cnterion 

is used for this purpose, where Pm (a) is the power spectral density of the output noise. 

Since MIS0 systems can be irnplemented using double-input single-output system 

recursively ( Wu and Sideris, 1995), only the following formula for determinkg Hi (a) ( 

i = 1,2  ) is given ( Sideris, 1996): 



where P,,(o) and P,(o) are pwer spectral densities of x i  and x2 , PYl(o) is the 

cross-spectral density of x i  and Pyz(o)is the cross spectral density xz and y, and 

NI,(@) and N,(o) are the power spectral densities of the noise in x l  and xz . 

Therefore the estirnate of the output signal in the frequency domain can be expressed as 

with the following power spectral density of the system output noise 

A 

P,(o)=P,(a) -IHI(CD)I~ P,,(co) - 2 s ;  (O)H~(")P~~(~) - l & ( ~ ) l ~  pz(@. 

(2.49) 

It should be noted that the above solution can be used when the input signals have the 

same sampling rates. In cases where the input sipals have different sampling rates, it 

cannot be applied directly. This is the case when the input signals are measurements at 

multiple resolutions. in order to apply the MIS0 solution to this case, it is necessary to do 

upsampling or downsampling. One way of doing this is to use a multirate system which 

will be discussed in Chapter 4. 



2.6 FORMULATION OF MULTIRESOLUTION APPROXIMATION 

PROBLEMS FOR GRAVITY FIELD MODELING 

The discussion of avaiiable methods for gravity field modehg in the proceeding has 

shown that these methods are not suitable for estirnating a &ravity signal at multiple 

resolution levels based on multiresolution measurements. Therefore, it is necessary to 

develop a framework to solve such multiresolution approximation problems. To do this, 

multiresolution approximation problems have to be farmdated. Then are at least three 

situations in which such a formulation would be of advantage. Fit, it will allow for the 

approximation of the Earth's gravity field by a combination of data at different altitudes. 

Next, such a formulation will provide a way of combining different types of 

measurements at different resolution Levels for estimation of a gravity field signal at 

multiple resolution. Fmally, hision of the same type of gravity field measurements at 

different resolutions fiom different sources wiIl be feasible through such a formulation. 

Multiresolution approximation problems of the gravity field can be described as follows: 

Given measurements of various functionals of the unomalous graviiy fieid ut different 

resolution levels and ut dgerent altitudes, estimate gruvity field signul ut multiple 

resolutions. 

The mathematical model for this problem c m  be formulated as 



where ym are measurements fiom M+l sensors or computed measurements at Merent 

resolution levels rn ( m a ,  1. 2, ..Ar), e-g. y0 could be coarse-scale geoidal height 

measurements derived fiom satellite altimetry and y1 could be fine-=ale airborne gravity 

disturbance measurements. xm (m=û, 1,2, ...,M) are the signals to be estimated at different 

resolutions, e.g. geoidal heights at two different resolution. The scale M conesponds to 

the highest resolution, while the scde O corresponds to the Iowest resolution. For 

example, scale O corresponds to a resolution of 8 km, and scale M=4 corresponds to a 

resolution of 1 km. Lm is the hear functional which relates the measurements y, to the 

signal xm, e.g. the gravity anomaly measurement can be related to the geoidal height 

signal through the following linear functional 

In Equation (2.50), vm (ma, 1.2, ...,M) is the measurement noise whose fmt and second 

moments are assumed to be known, i.e. 



It is aiso assumed that the measurement noise at different scales is uncorrelated, i.e. 

Figure 2.2 illustrates this formulation of multiresolution approximation. 

fine 

Scale 2: y2 =L2(~2) + v2 

Figure 2.2 Formulation of multiresolution approximation problem 

In the foilowing, four classes of multiresolution approximation problems in gravity field 

modeling are identified. and some practical examples are given to demonstrate the 



necessity of introducing the idea of muitiresoIution approximation in gravity field 

modeling. 

Class 1: Muitiresolution estimation of a gravity field signal using Merent types of 

measurements at diflerent resolutions 

Example 2.1: Determination of geoidal heights in mean area by using fine-scde 

shipbome gravity disturbance data and coarse-scale geoidai height data 

denved Born satellite altimetry 

This problem can be mathematically fomulated as 

where 8gsbpbomel and N a l b t e d  are the fine-scalc shipborne gravity disturbance 

measurements and the coarse-scale geoidal height measurements derived fiom satellite 

altimetry, respectively. NI and No are the geoidal height at fine-scale and coarse-scde to 

be estimated. 



C l v s  II: Muitiresolution estimation of a gravity field signal using the same type of 

measmement at diSemnt resoIutions and at different altitudes 

Example 2.2: Determination of the gravity disturbance on the Eaah's surface using fine- 

scale airborne gravity disturbance data at flight height and coarse-scale 

terrestrial gravity disturbance dam 

This problem can be mathematicdy written as foIlows: 

where Gg&brnel and 6 g g r o d  are the fine-scale gravity disturbance measurements. at 

flight level and ground. Li is the Poisson operator- In planar approximation, which is 

defined as: 

6g1 and 6g0 are the fine-scale and coarse-scale terrestrial gravity disturbances, 

respectively . 



Class III: Multiresolution estimation of a gravity field signai using different types of 

measurements at different resolutions and dinerent altitudes 

Example 23: Determination of geoidal heights using fme-scaie airborne gravity 

disnirbance data and coane-scale geoidal height data nom satellite 

aitimetry. 

The problem can mathematicdy be fomulated as follows: 

w here 6gairbonie 1 and Naltimetero are the fine-scale airbome gravity disturbance 

measurements at flight height H and the coarse-scale geoidal height measwements on a 

ocean area derived from satellite altimetry, respectively. NI and No are the geoidal 

heights at fme-scale and couse-scale to be estimated. 

Class IV: Fusion of the same of measunment type at dinerent resolutions 

Example 2.4: Fusion of fine-scale and corne-scaie gtavity disturbance data 



This measurement fusion problem cm be formulateci as: 

where 6~~~~ and 6gsomceo are the fme-scale and coane-scale airbome gravity 

disturbances fkom two different sources, respectively. 6gi and 6g0 are the estimates of 

gravity diswbances at fine-scaie and coarse-scale, respectively. 

Table 2.2 summarizes the characteristics of these four classes of multiresolution 

approximation problems. 

Class 1 

CIass II l-- 
1 Class IV 

Measwernent type 

at different resolutions 

Different 

Same 

Table 2.2 Characteristics of different classes of multiresolution approximation problems 

Altitude 

Different 

Same 

Signal to be estimated 

at different resolutions 

Same 

Different 

Same or different 

Same or different 

Different 

Same 

Same or different 

Same 



After multiresolution approximation problems are fomulated, the solutions to these 

problems must be developed. To do this, the concepts of wavelets and muitirate systems 

are needed, which WU be the topic of the next chapter. 



CaAPTER 3 

AN INTRODUCTION TO WAVELETS AND MULTTRATE SYSTEMS 

In this chapter, some basic principles of wavelet theory and multirate systems WU be 

reviewed which will provide the basis for the development in the next chapter. Readen 

not familiar with the theories of wavelets and multirate systems are nferred to Meyer 

(1992), Daubechies (1992), Vaidyanathan (1993) and Fliege (1994) for a more detailed 

description. 

3.1 WAVELET TRANSFORMS VERSUS WiMlOWED FOURIER 

TRANSFORMS 

Waveiet theory is a relatively recent development in applied mathematics; see, e.g., 

MaUat (1989a), Meyer (1992) and Daubechies (1992). The concepts can be viewed as a 

synthesis of ideas originating during the last twenty or thkty yean in pure mathematics 

(sfiudy of Calderon-Zygmund operator), physics (coherent states. renormaiization group), 

and engineering (subband filtering ). Wavelets and wavelet transforms were fmt 

proposed by Grossman and Morlet (1984) as an aitemative way to Fourier transfomis for 

modeling seismic data. Later, Meyer (1990) recognized this work to be part of the field of 

harmonic analysis, and came up with a family of wavelets. His work was further 

developed specificaily by M d a t  (1 989a, 1989b) and Daubechies (1988.1992). 



In order to introduce wavelet ûansfoc1ps, let us look at windowed or short-time Fourier 

transforms, which are often us& in tirne-fkquency analysis. The windowed Fourier 

transforms take the foilowing form: 

where w(-) is an appropriate window. for instance a Gaussian window. That is, 

X wF(o, r )  is the Fourier tmnsfonn of x(t) windowed with w( ) shifted by s. 

The limitation of the windowed Fourier transform is that, because a single window is 

used for al1 frequencies, the resolution is the same at al l  locations in the time-fkequency 

plane, as shown in Figure 3.1. 

Frequenc y 
4 

time 

Figure 3.1 Time-frequency nsolution of the windowed Fourier transfom 



Of course, an arbiaarily high resolution in both thne and fkquency cannot be obtained at 

the same time. However, by varying the window useci, one can trade resolution in time for 

resolution in fiequency. In order to isolate the discontùiuities in signals, one would like to 

have base functions which are very short, and to identify the slow changes in signds, one 

would like to use base functions which art very long. An intuitive way to achieve this is 

to have a short hi@-fkquency basis, and a long low-fkequency basis. That is exactiy 

what is achieved with the wavelet transfomi (Vetterii and Herley, 1992). 

The wavelet transform is defmed as 

where the base functions ha,b(t) are generated from a single prototype wavelet by 

translation and dilation, i.e. 

1 t - b  
haTb (t)=~ah(-) - 

The variable b is the translation in time so that a varying b represents the "sliding" of the 

wavelet over x(t). The variable a is the cüiation/contraction factor that determines the 

characteristic fRquency so that a varying 'a' gives rise to a "spectrumY'. Since 'a' 

corresponds to frequency but is not frequency itself, it is often referred to as resolution or 



scale. For a large 'a' , the base fuaction becomes a stretched version of the wavelet, 

corresponding to a low-frequency function, while for a s m d  'a', the base function 

becomes a contracteci version of the wavelet, corresponding to a short high-frequency 

function. Therefore, for higher kqueacies, the time resolution becomes better, for lower 

frequencies, the spectral resolution becomes better, as iilustrated in Figure 3.2. 

Frequency 

t 

Figure 3.2 Time-Frequency nsolution of the wavelet transfomis 

3.2 MUCTIRESOLUTION ANALYSE 

In the following, only orthonormal wavelets are described since orthogonality ensures 

that the coarse-scale approximation are the best approximations in a Ieast-squares sense to 

the finer function. Orthonormal wavelets have only been studied during the last few 

years. It was difficult to constnict an orthonormal wavelet base until a more systematic 



approach, i.e. multiresolution analysis, was found by Mallat (1989a, 1989b) and Meyer 

(1990). Daubechies constructed compactly supported orthonod wavelets based on this 

approac h. 

Multiresolution analysis can be interpreted as a successive approximation procedure 

(Vetterli and Herley, 1992). To understand wbat multiresolution analysis is, let us start 

with the following simple but intuitive example: Cail Vo the space of dl band-iimited 

hnctions with frequencies in the interval (-n, x). Then the set of functions 

$(x - k) =sinc(x - k)= ~ ( K ( X  - k)) 
k d  

K(X - k) 

forms an orthonormal basis for Vo, where Z is the set of al1 integea. It is easy to see that 

if f(x)E VO, then f(x-n)É VI, n é  2. Similarly, c d  V1 the space of al1 band-limited * 

functions with fiequencies in the interval (-2n, 2n). Clearly, the set { @(2x-k), ké Z } is 

an orthonormal basis for VI, and Vo V~ - In particdar, if f(x) E Vo, then f(2x) E VI. 

Now, cal1 Wo the space of bandpass fwictions with fiequencies in the interval (-2r, - 

X) U (11,2n). Then 



That is, Wo is the orthogonal complement in VI of Vo. In other words, VI is equivaient to 

VO plus some added detaü corresponding to WO. 

From the above, it is clear, by scaling, that if Vi is the space of band-limited functions 

with kquencies in the interval (-2'R'2' ( iq Z), the fdlowing relations hold: 

The generalization of the above example leads to the folIowing more general definition of 

multiresloution analysis: A multuesolution analysis is a sequence of subspaces ( Vi , i E 

Z ) of the square-integrable function space L*@) which has the following properties: 

5 )  2 @ (x) E VO such that ($(x-n), nez} is an orthonormal bais  of Vo. 



Since { @(x-n), n a 2  } fonns the basis of the space Vo, (2U2$(2i x-n), nez} foms the 

bais  of the space Vi- Therefore, any function in Vo c VI can be expressed in ternis of 

the base hnctions of VI. In particuiar, 

Equation (3.6) is often refemd to as the scaling function or the dilation function, which 

forms the basic function for generating wavelets. The constant coefficients h(n) are called 

Iow-pass filter coefficients since @(x) derives an approximation in Vo of signals in VI. 

The basic conclusion from multiresolution analysis is that whenever a collection of 

closed subspaces satisfies the above five properties, then there exists an orthonormal 

wavelet bais  { vi,n , i, n e  Z I vi,n (x)= 2i/2y(2ix - n ) )of the orthogonal cornpiement 

Wi of Vi in Vi+l, i.e. 



This implies V,+I = W, @ Wn-l 8 Wn-2 63 - - . Moreover, the wavelet function y(x) 

corresponding to the scale hinction $(x) can be constructed expiicitly as follows: 

where g(n)=(-I)n-lh(-n+l). The constant coefficients g(n) are cailed highpass filter 

coefficients since the orthonormal complement Wo to Vo is given by half-band highpass 

signals in V 1. 

Figure 3.3 shows some exarnples of scaling functions and wavelet functions 

corresponding to different muItiresoIution analyses. 

Scale function 

(a) Meyer wavelet 

WaveIet function 



Scale function 

(b) Battie-Lemarie waveiet 

Wavelet function 

- 1 0 1 2 3  

Scale function 

(c) Haar wavelet 

WaveIet function 

Figure 3.3 Three examples of orthonormal waveleu (Daubechies, 1992) 



It can be shown that the Meyer wavelets are in Cœ , infïnitely suppoaed, symmetric, and 

decay faster thm any inverse polynomial, whiie the Battle-Lemarie wavelets which are 

spline fuDctions and can be chosen as ~k ( NB k+l, N is the de- of the B-spline) have 

also infinite support and symmetry with exponential decay. 

The above multiresolution analysis with an integer dilatioo factor 2 can be extended to 

one with integer dilation factors larger than 2 ( Daubechies, 1992; Cohen and 

Daubechies, 1993). A multiresolution analysis for an integer dation factor n is defined in 

exactly the same way as for dilation 2 except that Property 3) is replaced by f(x) E Vi * 

f(nx) E Vif 1. It is also possible to define a multiresolution with a non-integer dilation 

factor. However, the diIation factor must be rational (Auscher, 1989) and construction of 

such a multiresolution analysis is different from that with integer dilation (Daubechies, 

1992). Since scaling functions and wavelet functions for multiresolution analysis with 

integer dilation factor larger than 2 or non-integer dilation factor are not available, only 

multiresolution analysis with dilation 2 will be in this dissertation. This is currently a 

limitation of working with wavelets. However. non-dyadic multiresolution anaiysis could 

be used as soon as scaling hinctions and wavelet functions for multiresolution analysis 

with integer dilation factor larger than 2 or non-integer dilation factor are available. 

3.2.2 Two-Dimensionai Multiresolution Analysis 

Multiresolution analysis in the 1D case can be readily extended to the 2D case. A two 



dimensional multiresoIution analysis can be defined as a sequence of subspaces { Vi , i E 

Z } of the 2D square-integrable function space ~2(R2) which have the foiiowing 

propertîes: 

5)  341 (x, y) E VO such that ($(x-n, y-m), n, meZ} is an orthonormal basis of Vo. 

Only one method of constructing an onhonomai basis for L2m2) will be described here, 

although there are other methods available( Daubechies 1992; Wickerhauser 1994). The 

method consists of the tensor product of two one-dimensional multiresolution analyses. 

Tensor product of two one-dimensional function spaces V and W is defmed as foilows: 

So the two-dimensional multiresolution anaiysis { Vi , i E Z ) usinp the tensor product 

can be defined as 



Since { Nx-n), nEZ ) f o m  the b a i s  of the space Vo, the product functions set { @(x-n, 

y-m) = @(x-n)@(y-m), n, mEZ ) forms an orthonormal basis for Vo = Vo* As in the 

one-dimensional case, for each i t Z ,  Vi+l c m  be represented as the direct surn of Vi and 

the orthogonal complement space Wi of Vi in Vi+l, Le. VÎ+~= Vj" Wi. 0, the o&er 

hanci, Vi+i can be written as: 

Therefore, 

It follows that Wi consists of three tensor products of one-dimensional function spaces, 

i.e. W ~ J  = Vi 8 Wi , Wi.2 = Wi O Vi and w.3 = Wi B Wi . This lads tO the foilowing 

three wavelet functions conesponding to these three spaces: 



3 3  COMPAC'rLY SUPPORTED ORTEONORMAL WAVELETS 

The wavelet bases given in Figure 3.3 are infitely supported fùnctions except for the 

Haar wavelet basis. Since data are o h  collecteci wîthin a limiteci area, it might be useful 

if the wavelet basis could be defineci in a f ~ t e  region in this case. To consauct a 

compactly supported wavelet basis, the scaling function must have a compact support, i.e. 

will vanish outside a hite intervai, say 10, N-11, here N is a positive integer. It c m  be 

shown that it is sufficient to consmict a SC& fhction with only finitely many 

coefficients h(n), n = 0, 1, ..., N-1, in equation (3.4) which satisfies the foliowing three 

conditions (Williams and Arneratunga, 1994): 

(i) In order to uniquely define the scale function, the area under the scaie function is 

normalized, i.e. 

which leads to the following condition on the fdter coefficients: 

(3.15) 

(ii) For the scale function to be orthogonal to its integer translates, the filter coefficients 

must satisQ the additional requirement bat 



This yields the condition 

where 60 k is the delta function, i.e. 

( 5 )  Equations (3.15) and (3.17) are insuffïcient to determine a unique set of filter 

coefficients. In a N coefficient system, they yield a total of NI2 + 1 equations. Another 

N/2 - 1 equations are therefore required for a unique solution. One way to achieve this is 

to require the scale funchon to be able to represent polynomial of order up to, but not 

greater than N12. Enforcing this requirement leads to the compady supported waveIets 

developed by Daubechies (1988). This requinment means that for any polynomial f(x) 

with order not greater than NB, the foiiowing conditions must be met: 

which is equivaient to the following NI2 equations: 



Thus the fmt N/2 moments of the wavelet fiuiction must be zero. The constraints of 

equation (3.19) on the hlter coefficients are 

To demonstrate how the above requirements can be used to constnict the Nter 

coefficients h(n), N is chosen as 4. From Equatioas (3 AS), (3.17) and (3.20), one c m  

easil y obtain the foliowing equations: 

The solution of Equation (3.21) is 



Table 3.1 gives the filter coefficients h(n) (FIR) for four c o m p d y  supported wavelets 

with N 4, 6, 8 and 10 obtained in this way. Figure 3.4 shows the corresponding 

compactly supported scaiing hctions and wavelet functions. The figure shows clearly 

that they become more regular as N increases. 

Table 3.1 Coefficients h(n) of the compactly supported wavelets for N = 4,6,8, and 10 



scale function waveIet function 

(a) N = 4 

scale function wavelet hinction 



- - 

O 5 1 O 

scale function wavelet fuaction 

scale function 

(d) N = 10 

wavelet function 

Figure 3.4 Four examples of Daubechies wavelets (Daubechies, 1992) 



Figure 3.4 clearly shows that the Daubechies wavelets are compactly supported with 

width N-1 and are asymmetric. Their smwthness increases with N, and they have NI2 

vanishiag moments. It is also worthwhile to mention that the Haar wavelet cm be viewed 

as the fmt order of the Daubechies wavelets. A more detailed discussion can be found in 

Daubechies (1988 and 1992). 

3.4 DISCRETE: WAVELET TRANSFORMS USING ORTHONORMAL 
WAVELETS 

Based on multksoiution anaiysis, the fast discrete wavelet transfom was proposed by 

M d a t  (1989b). It is a 'tree algorithm' or 'pyramid algorithm' that makes discrete wavelet 

transforms fast and simple. It d a s  for the discrete wavelet transfonn what the FFT does 

for the discrete Fourier transform. The algorithm is fully recunive (Strange, 1989). It was 

M e r  improved by B e y h  et al. (1991). 

3.4.1 One-Dimensionai Discrete Waveiet Transform 

Generally, a 1D discrete wavelet transform algorithm corresponding to a multiresoiution 

analysis can described as follows: For a given ID sequence { ficl (n), n E Z }of a signal 

f(t) at resolution level i+l, the lower resolution signal sequence ( fj(n), n E Z 1 can be 

derived by low-pass fiitering with a half band low-pass filter having impulse response 

h(n) ( in this dissertation larger i corresponds to higher resolution or scale and smaller i 

corresponds to tower resolution or scale ). At the same time, the added detail di(n) , also 



cded wavelet coefficients, can be computed by using a high-pass fdter with impulse 

g(n), Le. 

This process is referred to as the decomposition of the signai. The same decomposition 

procedure can be applied to a lower resolution signal until the lowest resolution of 

interest is reached, 

Reversing this process, the synthesis form of the wavelet transform is obtained in which 

finer and finer representah via a coarse -to bne scale recursion is achieved, Le. 



This process is also referred to as the reconstruction of the signal. Figures 3.5 illustrates 

the decomposition and reconstruction process in a block diagram. 

(a ) Decomposition 

(b) Reconstruction 

Figure 3.5 Decomposition and Reconstruction of 1D signal 

To help understand the above decomposition and reconstruction procedure, let us 

examine a simple example of decomposition and reconstruction with a sequence { xl, x2, 

x3, ~q xg, xg, x7, xg } using Haw Nter coefficients h(0) = 0.7071, h(1) = 0.7071, 

g(0)=0.7071, and g(1) = -0.707 1. In th is  case, the Iow-pass filter and hi@-pass filter are 

L : I xi, x2, x3, xq x5. x6, x7, x d  -> ( a(xi + x2), a(x3 + q). a(xg + xg), a(x7 + xg) } 



Using (3.24), the above operations can be written as 

and 

It is also easy to ver@ that 



- a 0 0 0  

a 0 0 0  

O a O O  

O a O O  

O O a  O 

O O a O  

O O O a  

O O O a  

' a 0 0 0  

- a 0 0 0  

O a O O  

O - a 0  O 

O O a O  

0 0 - a 0  

O O O a  

0 0 0 - a  

3.4.2 Two-Dimensional Discrete Wavelet Transforms 

The 1D discrete wavelet transforms can be extended to 2D discrete wavelet transforms 

using the tensor product concepts described in Section 3.3.2. In this case, the 

decomposition and reconstruction of a 2D signal take the following form: 



and 

+ Z hOc - 2n)g(l- W d i J  (k, 1) + Z g(k - 2n)gu - 2m)di3 (k, l), 
k, 1 kTl (3.30) 

fi+, =(H* O H*) fi + (G* @ EI*)diVl +(H* O G*) dipz + (G* @ e*)di3 

(3.3 1) 

where f i ,   di^, di,2 and di,3 represent vectors formed by stacking the rows of matrices 

from 2D signals. 

Figures 3.6 iilustrates the 2D decomposition and reconstruction in a block diagram ( with 

oniy two levels shown). 

If the signal fi+l consists of an N x N array, then each of the arrays f i ,  di, 1, di,2 and di,3 

consists of N/2 x NI2 elements. Theréfore the 2D discrete wavelet transform are often 

displayed graphically as in Figure 3.7. Figure 3.8 displays Lena image in the form of 

Figure 3.7. before and afker a discrete wavelet transfom. 



(a ) 2D decomposition 

di. 

(b) 2D reconstruction 

Figure 3.6 Decomposition and Reconstruction of 2D signal 

Figure 3.7 The visualization of the 2D discrete wavelet transfomi 



(a) ûriginal Lena image 

(b) Decomposition of Lena image 

Figure 3.8 Lena image before and after a wavelet transform 



One of the attractive features of wavelet trarisfonas for the anaiysis of signais is that they 

cannot only be computed nninively in scale, from fine to coarse, but also be completely 

reconstructed from coarse to f i e  scaie. Therefore, different scales c m  be related to each 

other. Such a feahire is very useful for the development in this dissenation, since the 

discrete wavelet transform provides a twl for effectiveiy Linking different resolution 

ievels. 

3.5 CEOICE OF WAVELETS 

From the previous discussion, it is clear that the application of wavelets for signai 

analysis is Uinuenced by the choice of wavelets. There is no universal critenon for 

choosing a wavelet basis since the choice of wavelets depends on the objectives of each 

application. For exampte, in signal coding applications, the objective is efficient 

compression of a given signai such as sound or images. In this case. the optimal choice of 

a wavelet bais from a library orthonormai bases such as orthogonal wavelet-packets is 

oiven by the entropy criterion (Coifinan and Wickerhauser, 1992; Mayer, 1993; b 

Wickerhauser, 1994). The idea is to chmse an orthonormal wavelet basis relative to 

which the given signal has the lowest information cost. 

In gravity field applications, the objective is to link a signal at different resolutions. This 

means that it should be able to obtain the signal at coarse resolution within a low 

fiequency band from the signai at fme resolution through a lowpass filter corresponding 

to a scding function. In other words, it should be able to extract the detailed information 



in a high frequency band of the fme-resolution signai using a highpass fdter 

corresponding to a wavelet function. Thenfore, the criterion for an optimal choice is that 

the wavelet function is as close as possible to that of the ideai haif-band highpass fdter. 

The frequency response of the ideal half-band highpass mter is 

lt 

H(a) = I lob- 
2 * 

O otherwise 

as shown in Figure 3.9. 

Figure 3.9 The ideal half-band highpass response 

In the following, the choice of an wavelet bais from a Library of Daubechies compactly 

suppoaed wavelets will be discussed. To know which Daubechies wavelet should be 

chosen, one shouid know which Daubechies wavelet function wiil be the ciosest to the 

ideal half-band highpass filter, or equivalently, which Daubechies scale function will be 

the closest to the ideal half-band lowpass fdter, 



Since the fmt N12 moments of the Daubechies wavelet fùnction iy(x) are zen, for a aven 

N, as can be seen from Equation (3.19), the foilowing qation can be obtained 

where Y is Fourier transform of the wavelet function. Using the Taylor expansion and 

Equation (3.33) leads to 

Equation (3.34) indicates that Y@) is close to zen, within a certain fnquency interval [O, 

&] and & will increase with the incrwe of N. Therefore the wavelet function will be 

closer to the ideal half-band highpass fiIter with larger N. Figure 3.10 shows the 

frequency responses of Merent F R  highpass fdters corresponding to Daubechies 

wavelets of different N. 

freaueflcv 

(a) Daubechies wavelet N = 8 



fnauencv 

(b) Daubecbies wavelet N =16 

(c) Daubechies wavelet N = 32 

Figure 3.10 Frequency response of different Daubechies wavele t FIR N ters 

From Figure 3-10, it is easy to see that the frequeacy response of Daubechies wavelets is 

closer to the ideal half-band highpass filter with increasing N. Therefore, the higher the 

order of Daubechies waveiets, the better the choice of the wavelet for graviy field 

approximation. 



3.6 lMULTIRATE SYSTEMS 

As mentioned before, a cumnt limitation of using d i s a t e  wavelet aansfonns based on 

multiresolution analysis is that oniy a dyadic tree structure can be implemented. This 

means diat sampling rate conversion between Wo different resolution levels c m  only be 

done by a factor of 2. For the non-ciyadic cases, sampiing rate conversion cannot be 

realized by using the discrete wavelet transforms at this t he .  In this case, a multirate 

system can be used to solve this problem. Mdtùate systems have been widely used e.g. 

in communication, speech processing, image compression, antenna systems, adaptive 

signal processing, and numerical solution of differential equations ( e-g. Khan, 1980; 

Crochiere and Rabiner, 198 1; Vaidynathan, 1990 and 1993; Liu, 1994; Fiïege, 1994; 

RatzIaff, 1995). Multirate signal processing is a technique of using different sampiing 

rates within a system to achieve computational efficiencies that are impossible to obtain 

with a system that operates on a single hxed sampling ratc. 

3.6.1 Fundamentais of Muitirate Systems 

The basic building blocks in a multirate digital signal processing system are decimators 

and interpolators. Figure 3.11 shows a block diagram of these building blocks. The 

decimator is characterized by the input-output relation 



(a) M-fold decimator 

(b) L-fold interpolator 

Figure 3.1 1 Multirate system building blocks 

Equation (3.35) means that decimation by a factor of M is achieved by keeping every Mth 

samptes of an incoming signal. However, to avoid aliasing of frequencies above the 

passband into the passband mquires lowpass fdtering ( decimation fdter ) the incoming 

signal prior to decimation, as shown in Figure 3.12a 

(a) Decimation filter 

(b) Interpolation fdter 

Figure 3.12 Decimation and interpolation filten 

The interpolator, on the other hanci, is described by the following input-output relation 



That is, the output is obtaïned by inserthg L-1 zero values between adjacent sarnples of 

x(n). However, to prevent amplitude and phase distortion in the hquency band above the 

Iowpass cutoff fiequency, a second filter caiied interpolation fdter is required on the final 

output sequence, as illustrated in Figure 5.12b. 

Decimation and interpolation fdters can be described using the following input-output 

relation in the time domain 

M - fold decimation fdters (3.37a) 

or, in matrix form, 

M - fold decimation filters 

L - fold interpolation fdters 

The above decimation and interpolation procedures oniy allow the change of sarnpling 

rate by interger number. For sampling rate conversion by a nonintergral (rational) number 



Mn, these two procedures can be combined This is done by first increasing the sampling 

rate by L using an interpolation filter and then decreasing it by M using a decimation 

fdter, as shown in Figure 5.13. The input-output relation in this case can be written as 

(a) Cascade of an interpolation fdter a and decimation Nter 

(a) General structure 

Figure 3.13 Sarnpling rate conversion by a rational number 

3.6.2 Polyphase Structure 

An efficient implementation of decimation and interpolation fdten can be done using 

polyphase decomposition. To introduce polyphase decomposition, one starts with the 

following tramfer function representing a digital fiter: 



Set 

Eo (z) = h(2n)Yn 
n=-m 

Equation (3.40) can then be Wntten as 

(3.4 la) 

(3.41b) 

Basicaily, Equation (3.42) regroups the impulse response h(n) into even numbered 

samples h(2n) and odd numbered sarnples h(2n+l). Equation (3.42) is called Type 1 

polyphase decomposition (M=2). Equation (3.42) cm aiso be written in another form, Le. 

H ( Z ) = Z - ~ R ~ ( Z ~ )  +R* (z2)- (3 -43) 

where RO (z)= El (2) and Ri (2) = Eo (2). Equation (3.43) is cailed Type 2 polyphase 

decomposition. Equations (3.42) and (3.43) can be easiiy extended to the case of M > 2. 

With the help of polyphase decomposition, a decimation filter and an interpolation filter 

can be implemented in a polyphase form, as shown in Figure 3.14. 

(a) Decimation fiIter 



(b) Interpolation Wter 

Figure 3.14 Decimation and interpolation Nier in a polyphase form 

A discussion on the eficiency of using the polyphase form for decimation and 

interpolation can be found in Vaidyanathan (1993). 

3.6.3 Wiadow Technique for the Design of a Muitirate Lowpass FIR FWr 

There are different methods available to design a multirate Iowpass FIR fdter (e.g. 

Crochiece and Rabiner, 1981; Vaidyanathan, 1993; Fliege, 1994 ). One snaightfonvard 

approach used in this dissertation is the windowing technique, in which the fdter design 

h(n) can be obtained as 

where w(n) is a finite-duration sequence called the window function. One commonly 

used type of windows is Kaiser window, which will be used to design a multirate lowpass 

FIR filter in Section 5.5. The Kaiser window is given by (Vaidyanathan, 1993 ) 



where Io (x) is the modified zerothsrder Bessel function The parameter can be found 

using the following f o d a  

As is the minimum stopband attenuation. nie Nter order N is estimated from 

for given parameten As and Af ( Normalized transition bandwidth). 

3.6.4 Two DimensionPl Decimation and InterpoIation Filters 

The basic concepts of decimator and interpolator can be extended to the 2D case. 

However, decimation and interpolation of a 2D signal are fundarnentdy more 

complicated because there are many ways to choose the sampling geometry. The simplest 



method is rectanguiar sampling, which can be viewed as a direct extension fiom the ID 

case- 

The decimator and interpolator using rectangular sampling is characterized by the 

following input-output relations 

and 

no n~ if 110 and n are multiplies of Lo and L l ,  respectively 

O otherwise 

Sirnilar to the 1D case. a 2D decimation filter and an 2D interpolation füter should be 

used to avoid aliasing, amplitude and phase distortion. For rectangular sampliag, a 

separable 2D Nter coefficients h2 (no, ni ) can be obtained fiom ID fflter coefficients 

h(n) as foilows: 

in this case, 2D decimation and interpolation fiters can described using the foiiowing 

input-output relation in time domain 

w 

y (n, m) = Z ~(k, I)b(nM - k)h(mM - l), M - fold decimation filten (3.50a) 
k, I=-- 



OQ 

y(n, m) = Z x(k, I)h(n - kL)h(m - IL), L - fold intefpolation nIters (350b) 
k, l=- 

M - fold decimation fdters 

L - fold interpolation filters 

A detailed discussion on 2D filter design can be found in Vaidyanathan (1993). 

3.6.5 Multiiate Fiter Banks 

A fdter bank decomposes the signal spectrum in a number of directly adjacent fiequency 

banks and reconstructs the signal specmun by using lowpass, bandpass, and highpass 

filters. Decomposition is performed by an analysis filter bank and reconstruction by a 

synthesis fdter bank An analysis bank is a set of analysis fdters which splits signals into 

M subband signals, while a synthesis bank consists of M synthesis fdters which combine 

M signals ( usually an anaiysis filter bank ) into a reconstructed signal. Figure 3.15 

shows a diagram of an anaiysis Nter bank and a synthesis filter bank. If the analysis 

filters is foilowed by decimators, the analysis filter bank is the decimated analysis fdter 

bank. To reconstmct the signal fiom the output of the decimated analysis filter bank, 

interpolation is needed before using the synthesis fdter bank- This type of filter banks is a 

multirate Nter bank. The basis structure of such a filter bank is ihstrated in Figure 3.16. 



The reconstructed signal using the muithte fdter bank may differ h.om the original 

signai for three reasons: aliasing. amplitude distortion and phase distortion. To eliminate 

some or ai l  of these distortions, different types of muitirate fdter banks, e-g. maximaily 

decimated fdter banks, paraunitary perfect reconstruction filter banks, and iinear phase 

perfect reconstruction quadrature rnirror fiiter banks, etc.. have been proposed. A detailed 

discussions on these fdter banks can be found in Vaidyanathan (1993). 

(a) Analysis filter bank @) Synthesis fdter bank 

Figure 3.15. Analysis and synthesis fdter bank 

(a) Decimated analysis Nter bank 



(b) Interpolated synthesis fdter bank 

Figure 3.16 Multirate filter bank 

In the following, only dyadic tree structured fdter banks will be bnefly reviewed, and the 

relationship between the filter bank and dyadic wavelets will be pointed out. 

In a tree stnicture, a signal is split into two subbands, lowpass half-band and highpass 

haIf-band. By successively splitting the low frequency output signal into two subbands, a 

dyadic tree structured analysis Nter bank is obtained. The cutoff frequencies are related 

to each other by a factor of two and spaced in octaves, as shown in Figure 3.17. This is 

calIed octave analysis fdter bank. Figure 3.18(a) shows a diagram of such an analysis 

filter for the two level trees. This octave analysis filter bank is equivalent to the filter 

bank show in Figure 3.18(b). This corresponds to a three channel with unequai 

decimation rate. 

Figure 3.17 Frequency response of an octave analysis filter bank 



(a) Tree-strucairrd aoalysis mter bank 

@) Analysis fiiter bank with unequal decimation rate 

Figure 3.18 Octave anaiysis Wter bank 

Similarly, an octave synthesis füter bank c m  be obtained by successively recombinuig 

the low frequency and high fiequency output signals fiom the octave andysis fiter at the 

same level of the me. Figure 3.19 shows a diagram of such a synthesis füter and its 

equivalent system for the two level trees. 

(a) tree-structured synthesis filter 



(b) Synthesis fdter bank with unequal interpolation 

Figure 3.19 Octave synthesis filter bank 

When going through an octave analysis filter bank and an octave synthesis fdter bank, an 

output signai is obtained. If the output signal is exactly the same as the input signal, the 

octave filter bank is a perfêctly reconsmicted fdter bank. 

From the above introduction to the octave fdter banks, it is easy to see that the wavelet 

decomposition and reconstruction of a signal by using a dyadic mdtiresolution analysis 

can be viewed as a special octave filter bank, which has the properties of perfect 

reconstruction and orthogonality. Therefore a discrete wavelet transform can be 

considered as a multirate filter bank. References are made to Vaidyanthan (1993) and 

niege (1994) for detailed discussions on the relationship between multirate filter banks 

and wavelet transforms. 



CsAPTER 4 

SOLUTIONS TO THE MUCTlRESOLUTION APPROXIMATION PROBLEM 

FOR GRAV][TY FIELD MODELING 

In this chapter, solutions to the multiresolution approximation probiem for gravity field 

modeling formulated in Section 2.6 will be presented. More specüicdy, a general 

methodology of cornbining different methods for solving the multiresolution 

approximation problem is presented. Both signal domain and measurement domain 

approaches are considend. Two signal domain approaches, fine-to-coarse estimation and 

coarse-to-fine estimation, is derived by the combination of wavelet transforms and least- 

squares collocation. A measurement domain approach is also proposed using a rnultirate 

system and a MIS0 system. The proposed signal domain algorithm is then compared to 

stepwise Least-squares coliocation taking uito account mathematical models, assumptions, 

optimality criteria and solutions. 

4.L A GENERAL METHODOLOGY 

After uitroducing the multiresolution approximation probiem in Section 2.6 . the next 

step is to find solutions to solve the problem. Fit, the currently available approaches in 

gravity field approximation will be examined. The pupose of this is to see if there is any 

possibility to solve the problems using the methods available. The solution of the 

problems must addnss the resolution problem ( due to different resolution of 



measurements and signals ), the observable problem ( due to different type of 

observables), the attenuation problem ( due to the attenuation effect of signals at different 

altitudes ), and the noise problem ( due to different characeristics of measunment noise 

fiom different procedures and different technologies ). Three methods describecl in 

Chapter 2, ic. the integral approach, the least-squares collocation approach and the MIS0 

approach, will be examined here. 

The integral method can be used to solve the observable problem and the attenuation 

problem since the gravity field signal can be detennined from rneasurements, the type and 

the altitude of which can be different from that of the signal. However, it cannot solve the 

resolution problem and the noise problem due to the fact that the integral method does not 

allow the input of measurements at two or more different resolution scdes and doesn't 

take measurement noise into account at all. The least-squares collocation method can 

solve the observable problem, the attenuation problem, and the noise problem because it 

allows not only inputs of rneasurements of dHerent types and at different altitudes and 

output of different signals but also considers the noise statistics of the measurements. It 

cannot solve, however, the resolution problem. The reason, as mentioned before, is that 

the correlation beniveen resolution levels cannot be handled by least-squares collocation. 

The MIS0 method is quite similar to least-squares collocation in the sense that it also 

allows not only inputs of measurements of different types and at different altitudes and 

output of different signals but also considea the noise statistics of the measurements. It, 

therefore, can also be used to solve the observable problem. the attenuation problem, and 



the noise problem. However, it cannot solve the resolution problem because it requires 

that ail measurement inputs have the same sampling rate. This is not the case when 

measurements are given at different resolution scales. 

From the above discussion, one can see that none of the three methods c m  solve the 

resolution problem. That means none of them can solve the multiresolution 

approximation problem. Therefore other methods are needed. Two methods, which c m  

be used to solve the resoIution problem, are muitirate systems and wavelet transforms. 

This is because different resolutions can be Liaked through either a multirate system or a 

wavelet transform. They, however, cannot solve the observable problem, the attenuation 

problem, and the noise problem. This is due to the fact that they cm only handle signals 

of sarne type and don? consider noise characteristics. Therefore, a multirate system or a 

wavelet transform cannot solve the muitùesolution approximation problem aione. 

The capabilities of the above methods for solving the multiresolution approximation 

problem are summarized Table 4.1. 

Table 4.1 clearly indicates that to solve the multiresolution approximation problem, the 

combination of two different methods is necessary. Therefore, the following discussion 

will emphasize a general methodology of combining ciifferent methods for solving the 

multiresolution approximation problem. Specific algorithms will then be proposed in the 

next two sections. 



Table 4.1 Capabilities of different methods for solving multiresolution problems 

Method 

1 

Integral 

formulas 

LSC 

MIS0 

Multirate 

sy stems 

Wavelet 

transforms 

Possible solutions to the multiresolution approximation problem can be dassified as 

(i) Signal domain approaches 

(ii) Measurement domain approaches 

Resolution 

problem 

No 

No 

No 

Yes 

Yes 

These two approaches will be discussed separately. 

4.2.1 Signal Domain Approaches 

Observable 

problem 
a 

Yes 

Yes 

Yes 

No 

No 

2 

In signai domain approaches, the transition from one resolution level to the next is done 

in signal domain. That meam that decomposition and reconstruction are performed on 

signals. These approaches can be categorized as: 

Attenuation 

problem 

Yes 

Yes 

Yes 

No 

No 

Noise 

problem 

No 

Yes 

Yes 

No 

No 



(i) Fine-to-coarse estimation schemes: the estimation is done from the fmest scale to the 

coarsest scde, foIiowed by sweeping fiom the coarsest scale to the fmest scale. 

(ii) Coarse-to-fine estirnation schemes: the estimation is done fkom the coarsest scde to 

the finest scde, folIowed by sweeping from the finest scde to the coarsest scale. 

A fine-tocoarse estimation scheme starts with the estimation of a signal at finwt scale 

using the fmest-scaie measurements only. Possible estunation schemes at this stage are, 

e.g. least-squares coliocation and integral formulas. If least-squares collocation is used, 

the minimum critenon will be the minimum principie (2.3 1) in Chapter 2. If an integral 

formula is used, no minimum criterion wifl be avaiiable. Instead, an estimation error wiU 

be computed by error propagation. The second step will be downsampling of the estimate 

of the signal at finest scde. This can be done by using, e.g. a discrete wavelet transfomi 

or a multirate analysis filter bank. The error of the estimated signal at coarse scale due to 

the downsampling procedure wiil be calculated by error propagation. The third step will 

then be to update this coarse-scale estimate using measurements at this resoiution scale. 

This cm be done by using , e.g. least-squares coilocations or the double-input single- 

output systern or the frequency-domain least-squares adjustrnent, in which the estimated 

signal at couse-scale is taken as measurement. If least-squares coilocation is employed, 

the minimum critenon will be of the same form as Equation (2.31). If a double-input 

single-output system is used, the minimum criterion wiU be of the same form as Equation 

(2.46). The minimum mitenon for the fiequency-domain least-squares adjustrnent can be 



found in Sidens (1996). The second and third steps will be repeated until the coarsest 

sale  has been reached. The fmal step is to obtain estirnateci signais at each scale by 

sweeping from the coarsest scale to the £inest scale. This step can be done by using, e.g. 

the comsponding inverse discrete wavelet transfonn or a muitirate syntfiesis Nter bank. 

The estimation errors are again computed by error propogation. 

The procedure for a coarse-to-fine estimation scheme is very similar to that for the fine- 

to-coarse estimation scheme except that the coarse-to-fine estimation scheme starts with 

the coarsest scale. 

The block diagrams in Figures 4.1 and 4.2 illustrate the fine-to-coarse and the coane-to- 

fine coarse estimation procedure descnbed above. 

The above two estimation procedures wiU be detailed in the next section where specifc 

algorithms based on discrete wavelet transfomis and least-squares collocation are 

discussed. 

In measurement domain approaches, the transition from one resolution level to the next is 

done in the measurement domain. This means that upsampling and downsarnpling are 

performed at the measurement level. 



- - - - - - - - - - -- - - - - - - - - - - - 

Estimation of a signal at the Finest 
scaie using least-squares coilocation 
or an integral formula or other 
method 

( Downsampling of estimated signal 
at scale mol using a waveiet 

- 

transform or an anaiysis filter bank 
or other method - 
Update of estimate at scale m-1 by 
using least-squares collocation or a 
MIS0 system or other method 

- - - - -  

Computation of signal estimate 
fiom coarse to fme scale using the 
inverse wavelet transform or the 
synthesis fdter baak or other 
method 

output 2 7  
Figure 4.1 Block diagram for a fine-tocoarse estimation procedure 



Estimation of a signal at the coarsest 
smle ushg least-squares coilocation 
or an integrai formula or other 
methoci 

v 
- -  

Upsampling of estimated signal 
at sale m+l usmg an inverse 
wavelet transfonu or a synthesis 
filter bank or other method - 

- -  

Update of estimate at sale m+l by 
using least-squares coilocation or a 
MIS0 systern or other method 

Compation of signal estimate 
fiom fme to coarse scale using the 
wavelet tmsform or the analysis 
filter bank or other method 

Output 2 7  
Figure 4.2 Block diagram for a coarse-to-fine estimation procedure 



A measurement domain approach consists the foilowing two major steps: 

Step 1: Downsampting and upsampling of the measurements at different resolutions to a 

given resolution. 

Step 2: Estimation of the signal at the given resolution by combining ail measurements at 

this scde, 

For a given resolution scde m, the measurements at resolution scales i > m will be 

downsampled and the measurements at resolution scales i < m will be upsampled to the 

resolution level m. This can be doue by using, e-g., a discrete wavelet transforrn or a 

multirate system. The errors of the dowasampled and upsampled measurements will be 

computed by error propagation. 

Estimation at a specific scale uses the original measunments, the downsampled 

measurements, and the upsampled measurements. The estimation of the signal at this 

scale can be done by using , e-g. least-squares collocation or a multiple-input single- 

output system or the frequency-domain least-squares adjustment. The minimum criterion 

for this estimation will be of the same form as that in signal domain approaches whether 

least-squares collocation or a multiple-input single-output system or the frequency- 

domain least-squares adjustment is used. 

The above two steps will be repeated for each resolution scale starting either fiom the 



Finest scde or the coarsest scaIe, 

A measurement domain approach procedure is shown in Figure 4.3. 

Iuput 4 
Decimation or interpolation of 
measurements at dl resolutions 
except scaie m using a wavelet 
transform or a multirate sysetm or 
other methods 

Estimation of the signal at s a l e  rn 
using lest-squares collocation or 
a MIS0 system or other method 

Figure 4.3 Block diagram for a measurement domain approach 

From the above discussion on both signal domain and measurement domain approaches, 

it c m  be seen that both methods use the same information fiom measurements at multiple 

resolution scales but different implementations. In signai domain approaches, different 



resolution levds are hked  at the signal levels. However, they are Linked at the 

measurement levei in measurement domain approaches. Measurement domab approaches 

have the advantage that they are more flexible than signal domain approaches because 

they allow to estimate different signds at different resolutions fiom multiresolution 

measurements and signal5 domain approaches only allow to estimate same signals at 

different resolutiom. AIso, if a signal is needed only at one resolution level between the 

finest and the coarsest scdes, the use of meamment domain approaches WU be more 

efficient since no sweep either fiom the finest to the coarsest scale or fiom the coarsest 

to-the finest scale is needed. 

Table 4.2 Iists some possible approaches to solve the mu1 tiresolution approximation 

problem by cornbining the different methods mentioned above. 

Signal or 

measurement 

Method 1 

coilocation 

plus a wavelet 

transfonn 

Method II 

system plus 

system 

Method III 

Leas t-squares 

collocation 

plus a mulhte  

system 

Method N 

A MIS0 system 

plus a wavelet 

transfonn 

Table 4.2 Combination of different methods for solving the multiresolution problem 



4.2 SIGNAL DOMAIN APPROACHIB COMBINING WAVELET 

TRANSFORMS AND LEAST-SQUARES COLLOCATION 

In this section, two specifc estimation schemes in the signal domain ( fme-to-coarse and 

coarse-to-fine) will be discussed separate1y using a discrete wavelet iransform and least- 

squares collocation. Ail procedures will be given for the 2D case since the proposed 

framework will be appiied to gravity field modehg. 

4.2.1 A Fine-to-Coarse EMmation Scheme 

To begin, some notations will be defmed x(m) denotes the esthate of x at scale m based 

on al1 measurements with resolution higher or equal to m. x(m+) denotes the estimate of 

x at scaie m based on al1 rneasurements with resolution higher than m. Similar notations 

are used for other quantities. xdm) denotes the fused estimate of x at scaie m based on aii 

avaiIable measurements. 

The fine-to-coarse estimation procedure starts with an upward or fine-to-coarse sweep, 

which propagates the measurement information, level by level, from the fine scaie to the 

coarse scale, followed by a downward or corne-to-fine sweep that propagates the 

measurement information downward. The fine-to-coarse sweep consists of a 

downsarnpling step from fine scaie to coarse scale and a measurement update step, while 



the coarse-to-fine sweep consists of a hision step fkom coarse scale to fme scaie. The 

upward and downward sweep steps are as foiIows: 

Upward sweep or 5e-to-coame sweep 

There are three essential steps to this procedure: 

1) Estimation of x o  and the comsponding error covariance matrix at the finest scaie. 

2) Estimation of x((m-l)+) fiom x(m)- 

3) Measurement update at scde rn-1 : 

They will now be discussed one by one. The upward sweep starts with the estimation of 

x(m) and the corresponding error covariance matrices at the finest scale M. The 

mathematical mode1 for estirnahg x(M) is 

where y~ is the measurement vector at the finest scale M, and LM is the linear 

functional relating the finest scale measurements to the signai x(M). The f i t  and second 

moments of which are assumed to be known, Le. 



VM is the measurements noise vector at the fmest scaie, the fmt and second moments of 

which are assumed to be known, i.e. 

Equation (4.14) indicates that the measurements at the fmest scaie are involved in the 

estimation of x(M) at this stage. 

The estimation of x(M) can be doue using least-squares coliocation solution (2.32) based 

on the minimum principle (2.3 1) in Chapter 2, Le. 

with error covariance 

where C, (M) , C, (M) and C, (M) are the covariance matrix of t ~ ,  VM and x(M), 

respectively, C,(M) is the covariance matrix between x and t at the finest scale M . and 
CE (M) is the error covariance of estimate x(M). Readers who are not familiar with the 

theory of collocation are referred to Moritz (1980) and Krakiwsky (1990) for details. 



Since the objective of multiresolution approximation is to estimate a signal at multiple 

scaies, the next step wiîi be the prediction of the next coarse-scale signal using the 

information in Step 1). One way of doing this is to use a discrete wavelet traosform 

because it provides a tool for W n g  a signal at two different scales together- One 

assumption made here is that a signal at different molution can be represented using base 

functions in a multiresolution analysis. In this dissertation. the discrete wavelet 

transfomis using orthonormal wavelets described in Section 3.4.2 wiU be used. 

Suppose that x(m) and the comsponding error covariance matrixes CE(m) have been 

computed. The prediction x((m-l)+) cm be doue using the discrete wavelet transform 

(3.29a) described in Chapter 3, i.e. 

with error covariance 

C,((m - 1)+) = IH B H)c,(~)(H a~ HI=. 

Equation (4- 19) can be written as 



where, Pm = H B H  is the orthogonal projection operator fiom V, to Vm1 in the 

muitiresolution analysis: 

Therefore Equation (4.18) c m  be interpreted geometricdy as an orthogonal projection of 

x(m) E V, onto Vm.l by x((m - l)+) = Pm x(m) . 

At the same the, the details added can aiso be computed using formulas (3.29b)-(3.29d), 

Le.. 

dl((m-1)+) =(G@H) x(m), 

d2((m - 1 )+) = (H 63 G )  x(m) , 

d3((m - I)+) = ( G 8  G) x(m). 

with error covariance matrix 



where C Ednrl . C&d",J and C are the emr covariance matrices of d d ,2 and 

dm,3 . respectively- 

Equations (4.23) and (4.24) wiIi be used in Step 2. Similarly, Equations (4.23a) to (4.23~) 

can also be interpreted geometrically as orthogonal projections of x ( m ) ~  V, ont0 W,- 

1.1 Wm- 1.2 and Wm-lg. respectively, in the multiresolution andysis. 

The x((m-l)+) fkom Step 2) can then be updated if the measurements at scale m-1 are 

available. To this, the foff owing mathematicai models are used: 

where, Y(m-i )+) = x((m- l)+l), e(m-i)c is the pndiction error of x((m-l)+) from scale m 

to m- 1, Ym-i is the measurement vector at the fiest scale m-1, and Lm-i is the iinear 

functionai relating measurements at scde m-1 to the signal x(m-1). vm-i is the 

measurements noise vector at scde m-1, the fmt and second moments of which are 

assumed to be known, i.e. 



Equation (4.25a) means that x((m-l)+) wiii be used as measurement in the measurement 

update step. 

The following minimum principle is used for the estimation of x(m-1): 

= min h u m .  

(4.27) 

Since the measurement noise between different scdes is assumed to be uncorrelated it is 

easy to prove that qm-l>e and v,-1 are also uncorrelated, i.e. C, (m- 1) = C=(m- 1) = 0. 

Thereforr, the minimum p ~ c i p l e  (4.27) can be wrïtten as 

(4.28) 

The following solution to Equation (4.25) can be denved based on the minimum criterion 

(4.28): 

x(m - 1) = Amlx((m - 1)+) + Knl (Y ,l - B,p((m - Il+)), 



- - 
Cxm-ltm-l - xm.ltm-L - c xm-lxm-l cxm-ltm-l 

(4.29) 

The derivation of (4.29) is the same as that of stepwise collocation in Moritz (1980) 

except that the downsampled signal is used as measurement. For a detailed cornparison 

see Section 4.3. The above prediction and update procedures are repeated until the lowest 

scale O is reached Steps 2) and 3) provide the mechanism for combining data fiom two 

different resolution levels for estimatkg the signal. 

Downward sweep or coarse-to-fine sweep 

At the coarsest scde O, the estimate of the signal based on al1 muitiresolution data is 

obtained. However, it is necessary to reverse the procedure, Le. to make a downward 



sweep, if the estimates of the signal ai other scales based on al1 available infornation are 

needed. The estimated signas at the coarsest scale provide the initialization of the 

downwanl sweep, which proceeds recursively. Assume that the estimate xKm) at a finer 

scale has been computed with the initiaikation at the Gnest scale. The estimates xf(m+l) 

can be calcuiated by using the inverse discrete wavelet transform (3.3 1) in Chapter 3, Le. 

with the error covariance matrix 

The downward sweep provides the rnechanisrn for obtaining estimates at each and can be 

viewed as the synthesis of the signai at Merent scales in the multiresolution anaiysis. 

43.2 A C m t o l F i n e  Estimation Scheme 

In the following, a coarse-to-fine estimation scheme for the soIution of the 

multiresolution approximation problem wili be described. 



In this scheme, x(m) denotes the estimate of x at scde m based on ail meaçurements with 

resolution lower than m. Similar notations are used for other quantities. xXm) denotes the 

optimal estimate of x at scale m based on ail available measurrments. Mathematical 

models and assumptions made wîil be the same as in the fine-to-coarse estimation 

scheme. 

The coarse-to-fine estimation pmcedure starts with a downward or coarse-to-fine sweep, 

which propagates the measurernent information, level by level, ftom the coarsest scale to 

the fmest scaie, followed by an upward or fme-to-coarse swap that propagates 

measurement information upward. The coarse-to-fine sweep consists of a prediction or 

interpolation from coarse-scale to fie-scale and a measurement update step, while the 

fine-to-corne sweep consists of a downsîzing resolution step from the finest scale to the 

coarsest. The downward and upward sweep steps are detailed as follows: 

Downward sweep or c o ~ r s e - t h e  sweep 

There are three essentiai steps to this procedure: 

1) Estimation of x(0) and the corresponding error covariance ma& at the coarsest scale. 

2): Estimation of x((m+l )-) fiom x(m). 

3) Measurement update at scale m+ 1. 



They will be now discussed in detail. The downward sweep starts with the estimation of 

x(0) and the corresponding error covariance rnatrix at the coarsest scale. The estimation 

of x(0) c m  be done using the least-squares collocation solution (2.32) based on the 

minimum principle (2.3 1) in Chapter 2, i.e. 

with error covariance 

where C, (O) , C ,  (O) and C, (O) are the covariance matrïx of y), vo and x(O), 

respectively, C, (O) is the covariance ma& between x and t at the coanest scale 0 , and 

C, (O) is the error covariance of estimate ~ ( 0 ) .  Similady as before, the integral method 

rnight dso be employed if the type of rneasurements at the coarsest scale is the same, e.g., 

the geoidal height rneasurements derived from satellite altimetry. 

Suppose that x(m) and the comsponding enor covariance matrixes Ce(m) have been 

cornputeci, the updated estimates of the signal x(m) are then predicted down to the next 

finer scaie according to the inverse wavelet transform (3.3 1) described in Chapter 3, i.e. 



with the error covariance maûix 

where dql. dm2 and dm3 are set to O due to the fact that detailed information is not 

available at this point. C d l  c Edm2 and are the error covariance matrices of 
Edm3 

d , ~  , dm2 and dQ3 . the elements of diagonals of which are set to be larger enough 

since there is no any information regarding d, d , and d , . 

The x((m+l )-) from Step 2 can then be updated if the measurements at scale m+l are 

available. To this, the following mathematicai models are used: 

where, Y(m+i)-) = x((m+l)-), E( (~+I ) - )  is the prediction error of x((m-l)+) from scde m to 

m+l, Ym+i is the measurement vector at scaie m+l, and Lm+i is the iinear functional 



relating measurements at scaie m+i to the signal x(m+l). vmti is the measurements noise 

vector at scale m+l, the first and second moments of which are asswned to be known, Le. 

The following minimum principle for estimating x(m+ 1) is used: 

= minimum . 
(4.36) 

The following solution to Equation (4.34) can be derived based on the minimum criterion 

(4.26): 



The above update and prediction procedures are repeated until the finest scale M is 

reac hed 

Upward sweep or 6ne-to-coarse sweep 

At the finest scaie, the estimate of the signal based on al1 multiresolution data is obtained. 

However, it is necessary to reverse the procedure, i.e. do an upward sweep, if the 

estimates of the signais at corner scales based on ail multiresolution data available are 

needed. The estimated signals at the fmest scale provide the initialization of the upward 

sweep. This step also proceeds recursively. Assume that the estimate xdm) at a finer scale 

has been computed with the initialization at the finest scale. The estimates xdm-1) c m  be 

calculated using the wavelet trmsforrn (3.29a) in Chapter 3: 



with the error covariance 

Equation (4.38) provide the formulas for estimating the signai and the comsponding 

emor covariance mat* at the coarse scales. 

From the above derivations, it c m  be seen that both fine-to-coarse estimation and coarse- 

to-fine estimation use the same information fiom data at multiple scales. The major 

difference between them is the way they are implemented. When a signai is oniy required 

at the coarsest scale, the use of the fine-to-coarse estimation scheme is more efficient 

since there is no need to perfom the coarse-to-fine sweep. On the other hanci, if a signai 

is only required at the finest scafe, the use of the coarse-to-fine scheme is more efficient 

since there is no need to perfonn the fine-to-coarse sweep. 

The main advantage of these approaches is that they d o w  not only solutions of the 

problem at multiple resolutions but also the fusion of measurements at multiple 

resolutions, which will be demonstrated in Chapter 5. 



4.3 A MEMUREMENT D O W  APPROACH COMBINING A MULTIRATE 

SYSTEM AND A MISO SYSTEM 

in this section, a specific algorithm for measurement domain approach is proposed using 

a multirate system and a MISO system. 

To simplly the discussion, the derivation will be done for signals and measurements at 

two different resolutions assuming that the sampiing rate ciifference between them is 2. A 

similar procedure can be applied to d e r  cases. The assumption in this section is that 

both the input signals and their erron are stochastic variables with known power spectral 

densities. 

The measurement domain approach combining a multirate system and a MISO system 

consists of the foilowing two steps: 

1) Decimation ( or interpolation ) of measurements at fme scale ( or coarse scde ) by a 

factor 2 using a multirate system. 

2) Estimation of the signal at coarse scaie ( or f i e  scale ) using the double-input single- 

output system based on measurements at coarse scde ( or fine scale ) and decimated ( or 

interpolated ) measurements 



These two steps WU now be discussed in deraii. The meanirement domain approach 

starts with decimation of the fine-scaie measurements y1 by using a decimation filter 

(3.5 1 a) , i.e. 

where HD is the 2D decimation filter coefficients ma& and ym is the decimated output. 

At the same tirne, the error covariance matrix after decimation can be computed by 

standard error propagation procedures by assuming that the covariance matrices of noise 

in y, is known, i-e. 

where Cyy and C are the covariance matrices of noise in yl and yw, 
VDOVDO 

respectively. In the frequency domain, Equatim (4.39) takes the following fom 

and 



where O = [u, VI is the 2D circular frequency. HD(o) is the hequency response of the 2D 

decimation Nter. YI is the Fourier transform of yl. Ym is the fiequency representation of 

yw. P,, (0) and PW(o) are the power spectral densities of noise in y1 and ym, 

respectively. The derivation of Equation (4.40a) can be found in e.g. (Cmchiere and 

Rabiner, 1981). The second term in Equation (4.40a) is due to the aliasing effect If the 

decimation Nter HD(@) is close to the ideal half band lowpass fdter, the second term in 

Equation (4.40a) can be neglected. In this case, Equation ( 4 4 )  can be simpMed, Le. 

and - 

(4.4 la) 

After finishing the above rneasurement decimation procedure, the next step wïU be the 

estimation of the signal at coarse scale based on the coarse-scaie measurements y, and the 

decimated measurements ym. This can be done by using the double-input single-output 

system, in which the coarse-scale measurements y* and the decirnated measurements yw 

are the two inputs and the signal to be estimated at coarse scale is the output The 

mathematical mode1 to be used in this case is 



where H, (a) and &(a) are the frequency responses to be estunated, and E, (a) is the 

noise of the estimated signal at coane scale expressed in fkquency domain. To determine 

N, (O) and H, (a), the foilowing minimum criterion 

is use& where P (a) is the power spectrai density of the output noise. Therefore, the 
=*O 

following estimate of the signal xo at coarse scale in the frequency domain and the 

corresponding error power spectrai densiq can be obtained using Equations (2.48) and 

(2.49) in Section 2.5, i.e. 

where 



where P, is the power spectral density of x. P, is the cross-spectral density of x and y. 

Mer X,(o) and Pezo have been cornputeci, the estimates of the signal and the 

conesponding error covariance matrix at coarse scaie can be obtained by using the 

inverse FFT method- 

Similarly, intepolated measurements at fine scde fiom the coarse-scale measurements y, 

can be obtained by using an interpolation nlter (3.5 1 b) , i.e. 

where HI is the 2D interpolation filter coefficients matrix and y10 is the interpolated 

measurements. At the same time, the emr covariance maai< due to interpolation can be 

computed by the emr propagation assuming the covariance matrices of noise in y0 is 

known, Le. 

where CVovo 
CvIivI1 

are the covariance matrices of noise in y,, and yIl. 



Equation (4-46) can also be written in the fnquency domain (Crodiiere and Rabiner, 

and 

where HI@) is the frequency response of the 2D interpolation Nter. Y&) is the Fourier 

transform of yo. Yri(o) is the frequency representation of yl,- P, (a) and P , , ( o )  are the 

power spectral densities of the noise in y0 and yli, respectively. 

After finishing the above measurement interpolation procedure, the next step is the 

estimation of the signal at fine scale based on fine-scale measurements y, and the - 

interpolated measurements YI,. This can aiso be done by using the double-input single- 

output system, in which the fine-scaie measurements yl and the interpolated 

measurements yIl are the two inputs and the signal to be estimated at fme scale is the 

output- The mathematical mode1 and the minimum criterion used in this case is the sarne 

as Equations (4.42) and (4.43), respectively, except that two inputs are y, and y,, not y0 

and y ~ o -  Therefore, formulas similar to Equations (4.44) and (4.45) can be obtained for 



estimating the signal xl at fine scale in fkquency domain and the corresponding error 

power spectrai density, i.e. 

w here 

After %,(a) and Pexl have been computed, the eshates of the signal and the 

corresponding error covariance rnatrix at fine scale c m  be obtained by using the inverse 

FFT method- 

4.4 COMPARISONS BETWEEN THE PROPOSED ALGORITHMS AND 

STEPWSE LEAST-SQUARES COLLOCATION 

In this section, the similarities and ditferences between the aigorithms described in the 

previous section and stepwise least-squares collocation (LSC) wiil be analyzed by 



exarnining the assumptions, the mathematicai models, the minimum criteria and the 

solutions of both rnethods. The advantages and disadvantages of the proposed method 

when compared to stepwise LSC for solving multiresolution approximation problems wiIi 

then be addressed. This will similady apply to stnicturai similarities between proposed 

algorithms and those of Kalman flltering, which for the purpose of this discussion can be 

viewed as a forrn of stepwise least-squares collocation (Moritz* 1980). 

To make the cornparisons more clear, ody measurements at two resolution levels and 

estimates of a signal at these two scales wiîi be used. Also, ody the fine-to-coarse 

estimation scheme will be compared to stepwise LSC. For analysis in other cases, the 

same procedure can be foilowed. 

Table 4.3 summarizes the assumptions, the mathematical models, the minimum criteria 

and solutions in both methods. The second column lists ail assumptions made in both 

methods. Listed in the third column are the mathematicd models used in both methods. 

The fourth column shows the minimum criteria for both methods. The fifth column gives 

the solution for each method. The similarities and differences of the two methods will 

now be discussed column by column. 

The assumptions for both methods are quite similar in the sense that both methods 

assume that the fust and second moments of both the signal and measurement noise at 



a a o  



two different resolutions are kaown. It is assumed that there is no correlation between the 

signal and measuiement noise. The correlation between measurement noise at two 

different resolution is also assumeci to be knom. In the proposed method, measurement 

noise at two different resolution is assumed to be uncorrelated. This assumption is usually 

valid since the measurements at two different resolutions are obtained fiom different 

sources or different technologies. 

ln spite of these similatities, there is a fundamental diffe~nce in the assumptions. It is the 

way in which the signal at two different resolutions is Iùiked In stepwise LSC, the signal 

at two different resolution is finked through the correlation of the signais and 

measurements at two different resolutions. Therefore the cross-covariance matrices 

c ~ ( ~ ) ~ ~ ,  Cx(l)y~ and Cyoyl have to be known. These matrices are usually cdculated 

by an anaiytical covariance function. Since this covariance hinction is only a function of 

distance between two points, theoreticdly it cannot be used to compute the correlation 

between signals with different resolution. In the proposed method, the signal at two 

different resolution is treated in a different way. Instead of considering the correlation 

between the signal at the different resolution, the signal at each resolution scale m is 

assurned to be a function belonging to the function space Vm in a multiresolutioa 

analysis. This means that the signal at each resolution can be represented by using the 

base functions corresponding to this multiresolution analysis. In this way, the signal at 

two different resolutions can be related through the wavelet transfomi which corresponds 



to this multïresolution analysis. Therefore the computation of the cross-covariance 

matrices Cx(oly 1, Cx( 1 and Cyw 1 is not necessary. 

Mathematicai Modeis 

The mathematical mode1 used in both methods is almost the same, except for the 

difference in linking the estirnates at two Werent scales. This is due to the asnimptions 

made in each case. 

Minimum Criteria 

The minimum criteria used in both method are also quite similar in stnicture, i.e. both 

methods use the quadratic forms. However the meaning is diflerent. 

In stepwise LSC, only one quadratic form is used for the minimization through the whole 

stepwise LSC procedure. The estimates of the signal at two different resolutions from 

stepwise LSC are therefore optimal if the auto-covariance and cross-covariance matrices 

of the signai and measurement noise in the quadratic form can be correctly computed. 

This is usually not the case. Covariance models an denved from empirical data and are 

simply estimates. Ln addition, the cross-covariance manix of the signal at two different 

resolutions cannot Se correctly calculatecl. The optimaiity of the solution in this case is 

not valid. 



In the proposed method two quadratic forms are used. Each minimum criterion is only 

valid at its resolution level. For exampie. the minimum principle 

is only applicable to the fine-scaie meanirement Therefore these two critena can be 

considered as local mhhization criteria when compared to that of stepwise least-squares 

coilocation. In the fine-tocoarse estimation scheme, the improvement of the coarse 

estirnate is achieved by optimdy combining the coarse-scale measurement and the 

predicted estimate fkom the fine-scaie, while the improvernent on the fie-scale estimate 

is obtained through the coarse-to-fine sweep procedure by using the inverse wavelet 

transfom. The improved estirnate at the coarse-scale wül contribute to improvement of 

the fine-sale estimate in the Iow fkequency part. 

Solutions 

Some formulas in both methods are either the same or very similar. For example, the 

formula for estimating x(1) is the same in both methods since the least-squares 

collocation solution is used for both cases. Also, the formula for estimating xfl) is 

similar in form. 



The major ciifference between the two solutions is the way in which they connect the 

signal between resolutions. In stepwise LSC, the lïnk between two resolutions is through 

the cross-covariance matrices C l2  . C1(0), C2(0), Cl(1) and C2(1), as shown in the 

f o d a s  for estimating x(0). xf(0) and xf( 1). However, in the proposed method, it is done 

by using the wavelet transform, as indicated in the comsponding f o d a s  for estimating 

x(0) and xf(1). 

As far as computation efficiency is concerned, the proposed method is more efficient than 

stepwise LSC, as will be explained in the fouowing. Assuming that the total number of 

measurements y1 and y2 is ZN x ZN and N x N , respectively, and the number of 

estimates of the signal at fine scale and coarse scale is also 2N x2N and N x N , 

respectively. Let's compare the number of operatioas needed to compute x(I), x(0) ( or 

x ( M )  ), xF(1) and xf(0) in the stepwise LSC soiution and the proposed solution one by 

one. 

The nurnber of operations for the computation of x(1) for both methods is the same, as 

can be seen fiom the formulas for computing x(1) in each solution. To calculate x(0) 

using the stepwise LSC solution, the number of multipiication and addition operations 

would be IV2x (2m2 and hI2x  (2N-112 assurning (C,(l)+C,(L))-lyl has been 

known after cornputing x(1). This is proportional to N~ . However, the number of 

multiplication and addition operations to compute x(W) using a fast wavelet traasform is 



only proportionai to (2m2 x (2m2 = 41V2 (Bcyikin et al, 199 1). The nurnber of 

operations for C O ~ P U M ~  xf(0) using stepwise LSC wili be much more than that using the 

proposed approach since the operations on matrices of order 2Nx2N are needed for the 

former, while only the operations on matrices of order N x  N are needs for the latter. 

This can be seen by comparing (2.36) and (2.38) with (4.29)). It is worthwhile to mention 

that the computation of xm) in the proposed method can be done by FFï, as indicated in 

the previous section. But it is impossible to use FFT in stepwise LSC because the 

sampling rate of the measurements at two different resolution is different. Therefore, the 

number of operations for computing xf(O) using stepwise LSC will be far more than that 

using the proposed approach in this case. The number of operations for computing xA1) 

using stepwise LSC solution will also be much more than in the proposed method since 

the computation of xf(1) in the proposed method is done by an inverse discrete aansform, 

in which the number of operations needed is only proportional to 2N x 2N . 

Therefore the proposed method is more efficient than stepwise LSC solution. 

Furthemore, the efficiency of the proposed method will increase with the number of 

resolution levels when compared to that of the stepwise LSC solution. Since the estimates 

of the signal at multiple resolutions. Say 4, are to be calculated from the measurements at 

multiple resolutions, they have to be updated at each resolution level when using stepwise 

LSC. This means that the estimate at each resolution level bave to be updated four Urnes 

in this case. However, they are oniy needed to be estimated twice in the proposed method, 

no matter how many resolution leveis there are. 



From the above cornparisons beiween both methods, it can be seen that the main 

computational advantage of the proposed methoci over the stepwise LSC rnethod is that it 

avoiâs the computation of the cross-covariance matrr-ces of the signals at different 

resolution levels and provides a more efficient way for solving multiresolution 

approximation problems. A disadvantage of the proposed methods is that the solution is 

not globdy optimal since it depends on the choice of wavelets. On the other hand, the 

ophality of stepwise LSC cannot be achieved in practice because of the empirical 

nature of the covariance function. 



CHAPTER 5 

NUMERICAL RESULTS AND ANALYSIS 

In this chapter, the procedure for generaiing multiresolution data is described and the 

software developed for this research is briefly inwduced. Two examples are then given 

on how the general framework developed in Chapter 4 can be applied. The effect of using 

ciifferent wavelets is investigated. A numerical cornparison between the wavelet-based 

signal domain rnethod and the multirate-based measurement domain method is also 

performed. 

5.1 TEST DATA AND SOFTWARE 

5-1-1 Multiresolution Data 

TO demonstrate the correcmess of the generai method and algorithm developed in 

Chapter 4, muitiresolution data are needed. Due to the lack of actual airborne gravity 

data, the multiresolution data used in the following tests were simulated by using Faye 

gravity anomaly data with a resolution of 5'x 5' in the area of British Columbia This 

data was obtained from the Geodetic Survey of Canada. The extent of the area is 



Figure 5.1 shows the 3D plot of the data 

Figure 5.1 3D plot of gram anomalies 

To cover a range of possible applications, data were simulated at two Ievels and for two 

functionals of the disturbiag gravity potential. Gravity disturbance were used at ground 

levei and at a flying altitude of 1 km &mve ground In addition, geoidal heights were aiso 

simulated. In the following, a procedure for simulating these data are descnbed, in which 

planar approximation is adopted: 

First, 5'x 5' grid geoidal height data are computed using the following discrete planar 

Stokes ' formuf a: 



5'x 5' gravity disturbances at flight level h are calculated by using the following 

formula: 

These data together with the original 5'x 5' gravity anomaly data are used as the tme 

fine-scale data The noise of airborne gravity disturbance caused by the INS and GPS 

sensors can be represented by the foilowing error power spectral density model: 

where, SEms is the INS enor power spectral density and SsGps is the GPS error power 

spectral density- 

The error power spectral density model for INS used in this dissertation has been taken 

from Schwarz et al (1994), i.e. 



where a: is the variance of vertical accelerometer noise, Q, is the PSD of the white 

noise variance, and Ba is the comlation length. 

The power specîrai density of the error mode1 for GPS has been proposed by Wei and 

Schwarz (1994), i.e- 

where a: is the variance of the colored noise, $, is the correlation Iength of the noise, 

and Qw is the PSD of the white noise variance. The noise generated by the models (5.4) 

and (5.5) is added to the simulated airborne gravity disturbance data to simulate the fine- 

scaie measurements. 

Second, a wavelet transform is appiîed to the true fme-scale data, to generate the 

10'x 10' true couse-scale data. White noise is added to the geoidal height and terrestrial 

gravity dishubance to simulate the coarse-scde measurements. Although a white noise 

emr mode1 oversirnpMies the actual situation, empirical noise models are not readily 

available for this case. 



Figures 5.2(a), 5.3(a), and 5-4(a) show the fme-scale airbome gravity disturbance at lûûû 

m flight height, coarse-scde geoidd height at ground level and coarse-scale terrestrial 

gravity disturbance. respectively. Figures 5.2(b). 5.3(b) and 5.4@) show the 

corresponding meanuements, respectively. Table 5.1 gives the statistics of the 

measurement noise of the fine-scale airbome gravity disturùances, the coarse-scde 

geoidd heights and the coarse-scale temestriai gravity disturbances. 

Table 5.1 Statistics of Measurement Noise 

Measurement 
noise 

I 

Fine-sale 
airbome gravity 

disturbance 
(mGal) 

Coarse-scale 
geoidai height 

(cm) 
Coarse-scale 

aravity 
disturbance 

(mGa 

Listed in the six columns of Table 5.1 are the maxima, minima, means, standard 

deviations (Std) and root mean squares (RMS) of the measurement noise. and the signal- 

to-noise (Sm ratio . Given in the row headings are airbome gravity disturbance 

measurements at fine scale, corne-scale geoidai height measurements and coarse-scaie 

terrestrial gravity disturbance measurements. 

Max 

18.7 

35.6 

10-0 

- 

Min 

- 1 8-0 

-38.8 

- 10.3 

Mean 

0.0 

0.0 

0.0 

Std 

5.0 

9.9 

3 .O 

UMS 

5.0 

9.9 

3 .O 

S/N 
ratio 

3.2 

13.7 

5.0 



(a) The true fine-scale airbome gravity disturbances 

(b) The fine-scale airborne gravity disturbance measurements 

Figure 5.2 The fme-scale airbome gravity disturbance 



5 0  250 

(a) The true coarse-scale geoidal height 

50 250 

(b) The coarse-scale geoidal height measurements 

Figure 5.3 The coarse-scale geoidal height 



(a) The tme temstriai coarse-scale gravity anomaly 

@) The coarse-scaie terrestrial gravity anomaly measurement 

Figure 5.4 The coarse-scale terrestrial gravity anomaly 



Four main MATLAB programs were developed for this research. The fmt program is 

used to generate multVesolution data h m  gravity anomaly data by using the procedure 

described in Section 5.1.1. The second and the third prograrns are implemented to 

perform the fine-toîoane estimation and coarse-to-fine estimation schemes for gravity 

field modeling, which is described in Section 4.2. The fourtù program is used to 

implement a measurement domain approach using a multirate system and a MIS0 system 

described in Section 4.3. The output of the first program cm be used as an input to the 

rest of the programs. A simple menu is added to the software to make it user-fnendly. 

Figure 5.5 shows the basic structure of the programs 

User Interface 

I 

1 Geoid 1 1 determination 1 Determination 

Figure 5.5 Basic structure of the programs 



The purpose of the fint example is to demonstrate that the proposed h e w o r k  can be 

applied to the determination of geoidai heights based on the measurements at m o  scales, 

i-e. fme-scde airborne gravity disturbances and coarse-scale geoidal heights. ki the 

second example, fusion of multiresoIution rneasurements is presented using gravity 

distubances at two different scdes, Le. fine-scale airborne gravity disturbance and 

terresaial coarse-scale gravity disturbances. 

Since the purpose of the following two examples is to demonstrate the effectiveness of 

the proposed framework, ody the Haar wavelet is used in the computations. Cornparisons 

using different waveiets will be given in Section 5.3. 

52.1 Geoidal Height Determination b m  Fie-Scale Airborne Gravity Disturbance 

Data and Coarse-Sde Geoidal Height Data 

In the fmt example, measurements at fine scale are the airborne gravity disturbances with 

a resolution S'x5' and a coverage 10" x 10'. Measurement noise for the airborne gravity 

disturbances is assumed to be colored noise, the statistics of which is shown in Table 5.1. 

At coarse scaie, the measurements are geoidal heights with a resolution 10' x 10' and the 

same coverage as the airborne gravity disturbances. The measurement noise for the 



geoidal height is asnimed to be white noise with the statistics show in Table 5.1. The 

estimates of geoidai heights are computed using the two estimation schemes from the 

signal domain approach. 

In order to evaluate the performance of the method, both intemal and external erron 

before and after data fusion are computed Internai e m r  covariances are obtained by error 

propagation, while extemal error estimates are caicuiated by differencing the estimates 

and the mie values of the simulated data The statistics of the extemai geoidal height and 

the interna1 error covariances before and after data fusion are given in Table 5.2. Listed in 

the six columns are the means, maximums, minimums, standard deviations and variances 

of the extemal errors of the geoidal heights, variances of the internai enors of the geoidal 

height. Given in the fmt-two rows are the errors of the geoidal height at fme scaie and 

coarse scale using fie-scale measurements ody and coarse-scale measurements only, in 

row three-six the errors of the geoidai height at fine scale and coane scaie using both 

fine-scale and coarse-scale measurement and two estimation schemes. 

To visualize the estimation emrs. the extemd mors of the geoidal heights at fine scale 

are also plotted. Figure 5.6a shows the extemai errors of the initial estimate of geoidal 

height at the fine scale using the airbone gravity disturbance measurements oniy and 

Figure 5.6b and 5 . 6 ~  show the extemal enors of the geoidai height at fine-scaie 

combining both fine-scale and coarse-scale measurements and using the two estimation 

schemes, respec tivel y 



Std 1 Var 

Error at fine scale 

1 Error atcoarse 
scde 

(usina N only) 
Fused enor at fine 

sale 
( fie-to-coarse ) 

Fused error at 
coarse scale 

( fine-to-coarse 1 
Fused emr at fine 

scale 
(coarse-to-fme) 

Fused error at fine 
scale 

(corne-to-fine) 

Table 5.2 Statistics of geoidal height estimation before and after data fusion 

(a) Before data fusion 



50 -250 

(b) After data fusion ( the fine-tocoarse approach) 

(c) After data fusion ( the coarse-to-fme approach) 

Figure 5.6 The e m  of geoidal height at fme-scale before and after data fusion 



From Table 5.2 and Figures 5.6, it is easy to see that better nsults have been achieved 

after combining the two different rneasufernent sets by the proposed xnethods. The 

standard deviation of the enor of the geoidal height at fine-scale is reduced by about 4.0 

cm as compared to the estimate computed from the airborne data only. This can be seen 

when the fourth number in the third row is compared to that either in the fifth or the 

seventh row in Table 5.2. The reason is that bighly accurate corne-scale measurements 

provide the fine-scale signal estimate with good low frequency information which d o w s  

removal or reduction of the error in the low frequency pan of the fine-scale estimate, as 

shown in Figure 5.6a. On the other hand, the geoidal height are not simcantly 

improved. This can be seen by comparing the standard deviation in the sixth or the eighth 

rows of Table 5.2 to that in the fourth row of Table 5.2. This is due to the fact that the 

measurement noise of geoidal height at coane scale is much smaller than the geoidal 

height enor downsampled from the estimate of the geoidal height from airborne 

measurement at fine scde and the signal-to-noise ratio of the geoidal height at coarse 

scale is large, 13.7 in this case, as shown in the seventh column of Table 5.1. Therefore, 

when combining the geoidal height measwments and the downsampled geoidal heights, 

the error in the geoidal height at coarse scale wilI be dominated by the error of the coane 

scale measurements. 

When cornparing the results from the fine-to-coarse estimation scheme and the coarse-to- 

fine estimation scheme, both schemes give nearly the same results. This is due to the fact 

that both schemes use the sarne information but different implementation procedures. 



The standard deviation (std) of the external error of the fused geoidal height at fme scale 

are close to that of the coarse s a l e  geoidal height estimates in this example. This can be 

explained by the fact that the determination of the geoidal height from the airborne 

gravity disturbance can be viewed as a filtering process, in which the high frequency 

noise in the airborne measurements will be reduced. Therefore the major enor wiIl be in 

the low fiequency part, as can be seen in Figure 5.6a On the other hanà, since very good 

geoidal height measurements are available at the coarse scale, corresponding to the Iow 

frequency part of the geoidal height, the emor of the geoidal heigbt estimate in the low 

frequency part can be removed. 

Form the sixth and seventh columns of Table 5.2, it can seen that both intemal and 

extemal error variances are very close. This indicates that the propsed approach gives 

reliable estimations since the results are verified by independent checking. 

The above analysis is done in the space domain, but the results can also be analyzed in the 

spectral domain. To do this, the power spectrai density of the extemai geoidal height errors 

at fine scale before and after data fusion have been computed and plotted in Figure 5.7. 

Figure 5.7 clearly indicates that the improvement of the geoidal height signal at fine scale 

after data fusion is in the low f'requency part. This can be explained by the fact that the 

coarse scale measurements only contribute to the low frequency ( half-band in this case) 



information of the signal. Therefore high quality of the coarse scale measurements can 

improve the geoidal height estimation in the Iow frrquency part. 

frequency O O frequency 

(a) Before data fiision 

fiequency 0- ‘O frequency 

@) After data hision ( the fine-to-coarse estimation ) 

Figure 5.7 NormaIied power spectrai density of the geoidal height erron 

before and after data fusion 



5.22. Fusion of FieScaïe Airborne Gravity Disturbmœs with Coars&Uile 

Terrestrial Gravity Disturbances 

In the second example, rneasurements at fine scale are the airborne gravity disturbances, 

and the coarse-scale rneasurements are the terrestrial gravity disturbances with resolution 

5 . ~ 5 '  and 10' x 10' , nspectively. The coverage for both of thern is 10°xlOO. 

Measurernent noise for the fine-scaie gravity disturbances is assumed to be the same 

colored noise as in the fmt example. Meamment noise for the coarse-scaie gravity 

disturbances is assumed to be white noise with the statistics shown in Table 5.1. The 

fusion of these two measurements is done using the two estimation schernes fiom the 

signal domain approach. 

Tables 5.3 summarizes the statistics of the extemal geoidal height and the internai error 

covariances before and after data hision. Listed in the six columns are the rneans, 

maximums, minimums, standard deviations and variances of the extemal errors of the 

terrestrial gravity disturbance, and the variances of the intemal errors of the terrestrial 

gravity disturbance. Given in the row headings are the errors of the terrestrial gravity 

disturbance at fme scale and coarse scaie using fine-scde rneasurements only and coarse- 

scde rneasurements oniy ( rows 1 and 2 ), the errors of the terrestrial gravity disturbance 

at fine scale and coarse scale using both fine-scale and coarse-scale measurement and two 

estimation schemes ( rows 3 to 6 ). Figure 5.8 shows the errors of the temstrial gravity 

disturbance estimates at fine-scale before and after data fusion. 
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(mGd2 
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(mGd2 

&or at f&e scaie 

(using airborne 6g 

O ~ Y )  

Error at coarse 

scaie 

(using terrestrial 

Sg O ~ Y )  

Fused error at fine 

scale 

( fine-to-coarse ) 

Fused error at 

coarse scale 

( fine-to-coarse ) 

Fused error at fine 

scale 

(coarse-to-fine) 

Fused emr at fine 

scale 

(coarse-to-fine) 

Table 5.3 Statistics for the fusion of airborne gravity disturbances and temestrial gravity 

disturbance using the two estimation schemes 



(a) Before &ta fusion 

@) Mer data fusion ( the fme-to-coarse approach) 



(c) Mer data fusion ( the coarse-to-fine approach) 

Figure 5.8 Errors of the terresaial gravity disturbance estimate at fuie-scale 

before and after data fusion 

Similar conclusions as in Section 5.2- 1 can be drawn f?om Table 5.3 and Figures 5.8. The 

standard deviation of the emr of the terrestrial gravity disturbances at fine-scale has been 

reduced by about 3.5 mGd after fusing the two data sets by the proposed schemes, as 

compared to the estimate computed nom airborne data only. This can be seen by 

comparing the fouah number in the third row with that in the Mh or seventh row in 

Table 5.3. The accurate corne-scale measurements improves the fine-scale estimate of 

the terrestriai gravïty disturbance in the low frequency part but not in the high fiequency 

part, as shown in Figure 6.8. The b e d  terrestriai gravity disturbance estimates at coarse 

scaie also improve. The percentage improvement is about 7 %, when comparing the 



standard deviation of the extemal error after data fusion ( in the sixth or eighth row in 

Table 5-3) with the standard deviation of the extemai error before data fusion ( in the 

fourth row of Table 5.3 ). Internal and extemal emor variances are close indicating the 

reiiability of the terreseriai gravity disturbance estimations. Similar to Section 5.2.1, the 

results fiom both schemes are nearly the same. The reason is the same as before. 

Unlike the results in Section 5.2.1, the standard deviation of the error of the fûsed gravity 

disturbance at fine scale are different from the fnsed terrestrial gravity disturbance at 

coarse-scaie, as can be seen from the fifth and surth rows or the seventh and eight rows. 

This can be considered by downward continuation effects. The detemination of the 

tenestria1 gravity disturbance from the airborne gravity dis~bance measurement is a 

downward continuation process, in which the noise in the airborne measurements will be 

amplified. This problem cm be partially solved by filtering the airborne data by a low- 

pass filter before downward continuation (Vassiliou, 1986). As mentioned before, p o d  

measurements at coane-scale can only improve the estimate in the low frequency part. 

They will have no effect on the noise amplifieci in high fbquency part. That is the reason 

why the two statistics mentioned above are Merent. 

The power spectral density of the extemal gravity disturbance errors at fine scale before 

and after data fusion are plotted in Figure 5.9. From Figure 5.9(a), one can see that a 

major error source of the terrestrial gravity disturbance before data fusion cornes a high 

frequency part due to the downward continuation process. The low frequency error is 



reduced by using high quaüty coane-scale measurernents, the high frequency error 

remains, as indicated by Figure 5.9(b). 

fiequency O O fiequency 

(a) Before data fusion 

fiequency O -0 frequency 

(b) After &ta fusion ( the fine-to-coarse estimation) 

Figure 5.9 Nomalized power spectral density of the gravity disturbance 

before and after data fusion 



53 EFFECl'S OF USING DE'FERENT WAVELETS 

To see how different wavelets affect the final resuits, a numerical test was conducted 

using four different wavelets, Haar wavelet and three different Daubechies wavelets 

(N=4, 6 and 8). The measurements used in the test are fine-scale airborne gravity 

disturbance and coarse-scaie geoidal heights. The estimated signals are the geoidal 

heights at both fiw and coarse scales. The data is the same as that in Section 5.2.1 except 

that the different wavelets are used. The true coarse-scale geoidai height was simulated in 

this test by using the Daubechies wavelet N= 8. 

Table 5.4 shows the statistics of the externai emor of the geoidai height estimation using 

these four wavelets. Figure 5.10 illustrates the errors of the fue-scale geoidd height 

estimate by combinuig fine-scale airborne gravity disturbances and corne-scaie geoidal 

heights using the four different wavelets. 

From Table 5.4 and Figure 5.10, it can be seen that dif5erent wavelets affect the 

estimation of geoidal height Both mean and the standard deviation are affected. The 

maximum deviation of the mean at the fme scde is 1.7 cm, whiie that of the standard 

deviation is 1.3 cm, respectively. The reason is that different wavelets define a different 

multiresolution analysis, i.e. a different approximation of L~ (R) . Therefore, if a signal at 

specific scale cannot be exactiy represented by a given wavelet, this will result in 

representation error. To illusnate this numericaily, the errors caused by the inaccuracy 



RMS 
O 

Max 
O 

Std 

Haar wavelet t-7 
I Daubechies 

wavelet N=4 1 Fie 

Daubechies 
wavelet N=6 

Dau bec hies 
wavelet N=8 

Fine IO. 1 

Haar wavelet I Coarse 

Daubechies 
wavelet N=4 

Daubechies 
wavelet N=6 

Daubechies 
wavelet N=8 

Coarse 

Coarse 

Coarse 

Table 5.4 Statistics of geoidal height error using different wavelets 

when the gwidai heigbt signal is transformed fkom fine scaie to coarse scale and coarse to 

fme scale using these four wavelets have been computed The errors at coarse-scale are 

obtained by computing the coarse-scale signai from the fine-scde tme signal for a given 

wavelet and then comparing it to the tme value. The errors at fine-scaie are obtained by 

calculating the fine-scale signal f'rom the coarse-scale mie signal and the detailed signal 

components dong the horizontal, vertical, and diagonal for a given wavelet They are 

then compared to the mie value. Table 5.5 summarizes the statistics of these errors. 



Geoidd height Scale Max Min 

error (-1 (cm) 

Haar wavelet Fie 15.9 -14.2 

1 Daubechies wavelet 1 1 1 
N=4 Fine 12.1 -8 -6 

Daubechies wavelet 

1 Daubechies wavelet 1 1 1 
N=8 Fine 0-0 0.0 

Haar wavelet Coarse 14.2 -1 1.6 

1 Daubechies wavelet 1 1 1 
N=4 Coarse 10.6 -8. 1 

Daubechies wavelet 
1 N=6 1 Coarse 1 4.1 1 -3.3 

Daubechies wavelet 
N=8 Coarse 0.0 0.0 

Table 5.5 Geoidai height error due to inaccurate representation using different wavelets 

Table 5.5 clearly indicates that a distortion of the geoidal height signal has k e n  

introduced due to the inaccurate representation of the signai at both scales when using 

different wavelets. The maximum errors of the mean and standard deviation are 1.7 cm 

and 4.2 cm at fine scale, respectively, and 1.5 cm and 4.0 cm at coarse scaie, respectively. 

When the fouah and f~ columns of Table 5-5 are compareci to that of Table 5.4, one 

can see that the estimates at corne-scaie are hardly affected by the error at coarse-scale 

caused by the inaccurate representation of the geoidal height signal. This is because the 

error caused by the inaccurate representation is corrected by the high quality coarse-scale 

measurements when measurement update is performed at coarse scale. 



50 - 250 

(a) Haar wavelet 

50 250 

(b) Daubechies wavelet N 4  



(c) Daubechies wavelet N=6 

(d) Daubechies wavelet N=8 

Figure 5.10 Extemal geoidal height errors using different wavelets 



5.4 NUMERICAL COMPARISON BETWEEN A SIGNAL DOMAIN APPROACH 

AND A MEMUREMENT DOMAIN APPROACH 

To investigate how different meihods affect the estimation of the gravity field signal, a 

numerical comparison was conducted using a signal domain approach combining a 

wavelet transform and Ieast-squares collocation (Method 1) and a measurement domain 

approach combining a multirate system and a MIS0 system (Method II). The effect of 

different gravity field signal spectra on both approaches wüi also be investigated In 

addition, the effect of resolution clifferences between the fine scaie and the coarse scaie 

for both methods wiIl also be analyzed for both methods. 

The measurements used in the comparison are the same as used in Section 5.2 except that 

a wavelet transform using a Daubechies wavelet (N 40) is applied to the true fine-scale 

data to simulate corne-scaie data. The signals to be estimated are also the same as that in 

Section 5.2, i.e. geoidal heights and the terrestriai gravity disturbances at both fine and 

coarse scales. Figure 5.1 1 shows the dative energy distribution of these two signals, 

which is obtained in three steps. In the fmt step the power spectral densities of these two 

signals are computed. In the next step the power spectrai density fkom zero to the desired 

frequency is integrated. Lastly, these integrated values are then norrnalized using the total 

energy. 

The reason of using a Daubechies wavelet Na is the followiag: As can be seen from 

the relative energy distribution of the geoidal height and the gravity dishubance in 



freauecv 

(a) Geoidai height 

Figure 5.1 1 Relative ewrgy distribution of the geoidal height and the 

terrestriai gravity disturbance 



Figure 5.1 1, most of the energy of the geoidai height and gravity disturbance signals is in 

the lower frequency part. Z99 of the energy of the geoidal height signal is within the 

frequency band of about [O 0.2~1 and %99 of the energy of the terrestrial gravity 

disturbances is within the fkequency band of about [O 0.31~1. In order to give a reasonable 

simulation of the coarse-seale signal of these gravity signals, the fme-scale signal in this 

frequency band should be passed with as little distortion as possible. In other word the 

magnitude of the frequency response in this frequency band should be as close 1 as 

possible when generating coarse-scale dam Figure 5.12 shows the magnitude of the 

frequency response for the Daubechies (Nd) FIR lowpass filter ( the order of the filter 

is N=40). 



Figure 5.12. Frequency responses of Daubechies lowpass filter ( N =40) 

From Figure 5.12, the magnitude of the frequency response is very close to 1 within the 

0 . 3 ~  bandwidth. The maximum ciifference is 0.00006. 

The wavelet used in Method 1 is a Daubechies wavelet (N=24). The frequency response 

of the lowpass filter coefficients corresponding to the Daubechies wavelet N=24 is 

plotted in Figure S.l3(a). 

The multirate system used in Method II is a Kaiser multirate system which is obtained by 

using a Kaiser window in the window design technique described in Section 3.6.3. The 

frequency response of the lowpass FIR Kaiser fdter (N = 24) are shown in Figure 5.13@). 



fieauencv 

(a) Daubchies 

fiauenw 

(b) Kaiser 

Figure 5.13 Frequency response of lowpass F R  Daubechies and Kaiser filters (N=24) 

Tables 5.6 sumrnarizes the statistics of the extemal errors of the geoidai height 

estimations based on the fine-scale and couse-scale geoidai height measurements using 

the two methods. Tables 5.7 summarizes the statistics of the extemai errors of the 



terrestrial gravity disnubance estimation based on the f~ne-scale airborne gravity 

disturbance and couse-scde terrestrial gravity disturbance measurements using the two 

methods. Listed in the last four colwnns of both tables are the means and standard 

deviations of the extemal errors of the geoidal heights ( or the terrestrial gravity 

disturbance ) for both methods. Figures 5-14 and 5.15 show the extemal errors of the 

geoidal height and the gravity disturbance for the both methods, respectively. 

Table 5.7 The statistics of the terrestrial gravity disturbance errors using both methods O 

Method 

Geoidal height 

CKOTS 

Fine scale 

Coarse scale 

From Tables 5.6 and 5.7 as well as Figures 5.14 and 5.15, it is easy to see that both 

methods give essentially the same results. There are two misons for this. First, since the 

geoidal height and gravity anomaly signds are in the low frequency bandwidth within 

Scale 

ciifference 

1 

1 

Method 1 

Mean 

(cm) 

0.0 

0.0 

Method II 

Std 

(cm> 

10.1 

9.7 

Mean 

(cm) 

0.0 

0.0 

I 

Std 

(cm) 

10.2 

9.7 



(a) Geoidal height error (Method I) 

(b) Geoidal height error (Method II) 

Figure 5-14 The geoidal height erron using both methods 



(a) Terrestrial gravity disturbance exror ( Method 1 ) 

(b) Terrestrial gravity disturbance emr ( Method Il ) 

Figure 5.15 Terrestrial gravity disturbance error using both methods 



0.3n, the decimation and interpolation of these signais using either the Daubechies or the 

Kaiser ha-band FIR lowpass Nter will not cause much distortion of the signals in this 

part. This can be seen fiom the spectnim of the Daubechies and the Kaiser FIR Nter in 

Figure 5.13. Second, both methods use the same information, Le. same measurements at 

fme and coarse scale; the major difference between them is the way of implementation. 

The implementation of Method 1 is in the signal domain, i.e. the transition from one 

resolution to another is done using a discrete wavelet transfonn in the signal doma. .  The 

implementation of Method II is in the measurement domain i.e. the transition from one 

resolution to another is done by using a Kaiser lowpass decimation and interpolation in 

the measurement domain. 

To see how the resolution ciifference at fine scale and coarse scale wifl a e c t  the 

estimates of both methods, the geoidal height and the terrestrial gravity disturbance are 

estimated using measurements at both scales ciBering by a scale of 2. This means that the 

sampling rate difference between the fine-scale measurements and the coarse-scale 

measurements is 4. The estimation results are listed in Tables 5.8 and 5.9. 

Table 5.8 The statistics of the geoidal height errors using both methods (II) 

Method 

Geoidal height 

errors 

Fine scale 

Coarse scale 

Scale 

Merence 

2 

2 

Method 1 

Mean 

(cm) 

O. 1 

0.0 

Method JI 

Std 

(cm) 

10.2 

9.7 

Mean 

(cm) 

O. I 

0.0 

Std 

(cm) 

10.3 

9.7 



TabIe 5.9 The statistics of the terrestrial gravity disturbance errors using both methods 

O 

Method 

Gravity disturbance 

emrs  

Fine scale 

Coarse scale 

When the third and the fourth column of Tables 5.8 are compared to the f~ and the 

sixth columns in the same table, one sees that the mean and standard deviation of the 

poidal height errors are essentidy the same. The reason is that decimation and 

interpolation of the signal or 

cutoff frequency x/4 of the 

the measurernents at a sampling rate of 4 correspond to the 

lowpass filten. Therefo~, the decimation or interpolation 

Scale 

difference 

2 

2 

using a wavelet transfomi will not cause rnuch distortion since the cutoff frequency is 

still beyond the frequency band of the geoidal height signal. Similarly, the effect of the 

interpolation of the fine-scale geoidal height measurements fkom the coarse-scale geoiâd 

height measurement wiii be small for the same reason. However, the decimation of the 

airbome measurements could afftect the estimation of the geoidal height signal at coarse 

scale. One should remember, however, that the measurements at coarse scale are of high 

quality, which wiil eluninate the effect due to the decimation of measurements. This is 

why both methods give essentially the same resuits in Table 5.8. 

- 

Method II Metbod I 

Mean 

(mGai) 

1.5 

0.0 

Mean 

(mGal) 

1 -0 

0.0 

Std 

(a) 
7.1 

2.9 

Std 

(mGai) 

5.8 

2-8 



Different resuits are obtained at fine scaie for estimating the terrestrial gravity 

disturbances using both methods. When comparing the third and the fouah number of the 

third row in Table 5.9 to the fifth and sixth oumber of the third row in the same table, the 

effect of the lowpass filters used for decimation and interpolation can be seen. The cutoff 

fiequency of the lowpass Nten is lr14 which is in the same range as that of the signal 

spectrum. Therefore, the gravity disturbance signal is distorted by the aüasing effect due 

to the non-ideai frequency response of the lowpass Nters. In this test, the eEect using the 

Kaiser filter is Iarger than that using the Daubechies filter. The reason for this is that the 

Daubechies Nter ailows the terrestriai signal in the low frequency band pass with less 

distortion than the Kaiser filter. This can be seen when comparing the frequency 

responses of two fdters in Figure 5.13. This effect shows up in Table 5.10, where the 

estimates have been obtained by first decimating or interpolaring the mie fine-scaie or 

coarse-scale signals using either the Daubechies Nter (N=24) or the Kaiser filter (N=24), 

and then comparing hem to those of the Daubechies FIR £ilter (N=40). 

Table 5.10 The gravity disturbance errors due to lowpass Ntering 

Method 

Gravity disturbance 

emrs 

Fine scale 

Coarse scale 

Scale 

ciifference 

2 

2 

Method 1 

Mean 

(mGal) 

1 .O 

0.9 

Method II 

Std 

(mGal) 

2-6 

2.4 

Mean 

(mGal) 

I .5 

1.3 

S td 

(mGal) 

4.2 

3.9 



m e n  comparing the coarse-scde results in Table 5.9 between both methods. one c m  see 

that the statistics of the terrestrial gravity disturbance e m r  at coarse scale is u a l y  the 

same for both methods. This is initially unexpected because the lowpass filters also affect 

the coarse-scale signal, as is clearly seen from Table 5.10. However, as mentioned before, 

good measurements at coarse scale eliminate the error caused by lowpass f i l t e~g .  

It should be mentioned that, although the result of the temstrial gravity disturbance 

estimation at fine scde using Method 1 is better than that using Method II in this test, it 

does not mean that the wavelet-based approaches are better than muhirate-based 

approaches since estimation results depend on lowpass Nters. Also, we could expect that 

estimation results wiil also be different with increase of the resolution difference between 

fine scaie and coarse scale, or, equivalently, the sampling rate difference between fine 

scale and coarse scale. This is because the cutoff fkequency of the lowpass filters will be 

within the range of the signais and the non-ideal lowpass filters will cause aliasing. 

From the above comparïsons, it can be seen that the results of gravity field signai 

estimation depend on the signal spectmm, the resolution difference between 

measurements at both scales, and the choice of the lowpass fiter. If the energy of the 

signals is concentrated in a narrow low fkequency bandwidth and the difference of the 

sampling rates of the memurements at two scales is small, e.g. 2, the results will be 

essentially the same using either the Daubechies FlR fdter or the Kaiser filter. However, 

the results from both methods will be different when the sampling rate difference 

between the two scales is increased. This is due to the aliasing effect of the lowpass 



filters- In this case, the proper choice of a lowpass filter for both methods is important. In 

general, Method II is better than Methad I when the Nter problem is weii handled. There 

are three reasons for bat. First, Method II is more flexible than Method 1 because it does 

not depend on a dyadic  structure^ Secondly, Method II is more efficient than Method 1 if 

an estimate of a signal is only nquired at an intermediate sale between the fmest scale 

and the coanest scale. This is because no sweep either from the finest to the coarsest 

scale or from the coarsest to the fmest scale is needed. Fiially, Method II allows 

estimation of different signals at different resolutions from multiresolution 

measurements, while Method I ody allow to the estimate same signais at different 

resolutions . 



CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

The main contribution of this thesis is the development of a framework for multkesolution 

approximation and the demonstration of its potential for solving rnultiresolution problems in 

-ravity fieid approximation. 

6.1 CONCLUSIONS 

The following conclusions can be drawn from this dissertation: 

(a) Different classes of rnultiresolution problems exist in gravity field modeling. They are due to 

the use of different types of observables, ditferent gravity field attenuation effects with altitude, 

different sampling rates, and different measuernent noise levels. Four classes have been 

identified and formuiated. 

(b) The analysis of the existing &ravity field approximation methods shows that they cannot solve 

the multiresolution problems. 

(c) A general methodology has been fomulated which allows to combine different methods for 

the solution of multuwolution approximation problems. Both signal domain and measurement 

domain approaches can be used. Two signal domain approaches have been denved by combining 

a discrete wavelet transfonn and least-squares collocation as two special tools. A measurement 



domain approach has been formulated as an alternative. It combines a multirate system and a 

MIS0 system. The main advantage of the proposed ftamework is that it allows both estimation 

of signals at multiple scales and fusion of measurements at Merent scales. 

(d) A theoretical cornparison between the proposed method and stepwise least-squares 

collocation (LX) shows that LSC does not solve the problem of computing the cross-covariance 

matrices between different resolutiou levels. Wavelet transfoms or multirate systems solve this 

problem very efficiently, but have the disadvantage that the solution is not globally optimal since 

it depends on the choice of wavelets or multirate systems. 

(e) Numerical results show that the errors of the fused estimates at both fine scale and coarse 

scale have been reduced compared to those using one-scale data only. The spectral analysis of the 

results shows that coarse-scale measurements of high quality definitely improve the estimate in 

the low fiequency part. 

(0 The numerical results indicate that the two signal domain estimation schemes give essentially 

the sarne resulu for the two examples. However, the choice of different wavelets does affect the 

estimation of the gravity field signals due to the fact the representation of signals changes with 

the wavelet base chosen. 

(g) The numerical cornparison between the signal domain approach (Method I), combining a 

wavelet transform and least-squares collocation, and the measurement domain approach (Method 



Il), using a muhirate system and a MIS0 system, shows that the result. of the gravity fùed signal 

estimation depend on the signal spectmm, the resolution difference between measurements at 

both scdes, and the choice of the lowpass fiter. If the energy of the signal is coacentrated in a 

narrow low fiequency bandwidth and the difference of the samphg rates at two scales is small, 

e-g. 2, the results wilI be essentially the same using either a Daubechies FIR frlter or a Kaiser 

filter. However, the results fkom both rnethods will be different when the sampling rates of the 

measurements at two scales is increased, This is due to the aliasing effect of the chosen lowpass 

filters. In this case, the properly choice of a lowpass filter for both rnethods is important 

consideration. In generd, Methd II is better than Method 1 since Method II is more flexible and 

moe efficient than Method 1. 

(h) The use of rnultirare systems either in signal domain approaches or measurement domain 

approaches has the advantage that it is not dependent on dyadic structure. It is therefore 

recommended for applications where the fdter problems are well handled. 

Although the framework of multiresolution approximation has been established, considerable 

work remains to be done. The foliowing recommendations for funher research are made: 

(a) Since the numerical examples in this dissertation are only used to demonstrate the correctness 

of the proposed framework and of the algorithms developed, ody two data types with two 



resolution scales have k e n  used. Therefore, tests involving more sophisticated scenarios are 

needed. 

(b) Due to the Iack of mie mdtiresolution data, the proposed framework was tested using 

simulated data generated fiom actual terrestrial gravity anornaiy data In order to investigate the 

feasibility of the proposed framework to gravity field approximation in pracùce, computations 

with real data should be done. 

(c) The current limitation of using wavelet transforms is that only multiresolution analysis with 

dilation 2 can be used due to the fact that scaling functions and wavelet hinctions for 

multiresolution analysis with integer dilation factor larger than 2 or non-integer diiation factor 

are not available. Therefore, tests are needed using a wavelet transform with integer dilation 

factor larger than 2 or non-integer dilation factor when scaling functions and wavelet functions 

for these cases are available. 

(e) AU numericai examples given in this dissertation are based on planar approximation. For 

global gravit- field modeling, sphencal approximation must be used. In this case, the concept of 

spherical wavelets shouid be studied. Therefore, multiresolution approximation on the sphere has 

to be further investigated. 

(f) Since the application of the proposed framework depends on the choice of lowpass filters, 

optimal choice of a lowpass filter for gravity field modeling is an important topic for further 

research. 



(g) The proposed framework can also be extended for solving other multiresolution problems in 

geomatics engineering. The multiresolution modeling of a digital elevation mode1 (DEM) from 

fine-scale compact airborne spectrographie images (CASI) system data and corne-scale satellite 

images is an example of such an application. This needs to be investigated. 
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