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ABSTRACT

There are various types of data available for gravity field modeling, such as terrestrial or marine
mean gravity anomalies, airborne gravity disturbances and geoidal heights computed from
satellite altimetry. One common feature of these data types is that they have different resolutions
and accuracies. To combine these data, a multiresolution probiem has to be solved. The objective
of this dissertation is therefore the development of a framework for multiresolution
approximation in gravity field modeling. First, multiresolution approximation problems are
formulated, and four classes of multiresolution approximation problems are given to demonstrate
the necessity of introducing the idea of multiresolution approximation in gravity field modeling.
Next, a general methodology of combining different methods for solving multiresolution
approximation problems are presented. Both signal domain and measurement domain approaches
are considered. Two signal domain approaches, i.e. the fine-to-coarse estimation scheme and the
coarse-to-fine estimation scheme, are derived by combing a discrete wavelet transform and least-
squares collocation as two special tools. A measurement domain approach is also proposed by
using a multirate system and a multiple-input single-output system as two special tools.” A
detailed comparison between the proposed approach and stepwise least-squares collocation is
conducted. Finally, the application of the proposed framework to gravity field modeling is
demonstrated through numerical examples. The effect of using different wavelets is investigated.
A numerical comparison between the signal domain approach, combining a wavelet transform
and least-squares collocation, and the measurement domain approach, using a multirate system

and a multiple-input single-output system, is performed. The main advantage of the proposed

iii



framework is that it allows both estimation of signals at multiple scales and fusion of

measurements at different scales.
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CHAPTER 1

INTRODUCTION

1.1 BACKGROUND AND OBJECTIVES

Mapping of the earth’s gravity field is considered a primary goal in geodesy, geophysics
and geodynamics (Colombo, 1991). There are two conceptual approaches to the
approximation of the Earth’s gravity field, the model approach and the operational
approach (Moritz, 1980). The model approach essentially consists of formulating a
mathematical model in the form of a geodetic boundary value problem (BVP), employing
an analytical point of view, and applying it via a discretization process (Sanso, 1987). A
number of techniques for solving geodetic boundary problems have been developed, e.g.,
spherical harmonic expansion and integration techniques, such as Stokes’ formula and
Molodensky’s solution (Heiskanen and Moritz, 1967). The operational approach starts
from the real measurements, with as few modifications and corrections as possible, and
sets up a general estimation principle, which uses the smallest possible mathematical
information on the unknowns, but knowledge on their statistical behaviour (Sanso, 1987).
This approach leads to least-squares collocation, which is a technique for combining
observational data of different types for an optimal estimation of the gravity field signal
and other parameters. This method is not dependent on data distribution, although it is

numerically advantageous to create a regular data distribution.



In general, these two methods don’t consider multiresolution data. In practice, there are
various types of data available for gravity field modeling, such as terrestrial or marine
mean gravity anomalies, airborne gravity disturbances and geoidal heights computed
from satellite altimetry. One feature of these data types is that they have different
resolutions either because they represent different functionals of the gravity field or
because they have been sampled. Here resolution refers to the minimum wavelength
which can be resolved from the data. For example, resolution of data from airborne
gravimetry and satellite altimetry are different both in minimum wavelength resolution
and area coverage. The second feature of these data is that they are obtained at different
altitudes. For example, airborne gravimetric data are at flight height, while terrestrial
gravity data are on the ground. Due to the attenuation of the gravity field with increasing
altitude, these data correspond to different spectrums of the gravity field. The third
feature is that these data have different noise levels due to different measurement
procedures and different technologies. Finally, the gravity field signal to be estimated
from one or more of these data may be different from the gravity functionals observed.
To combine data of different observables with different resolutions, different altitudes
and different noise levels for estimation of gravity field signals at different resolutions,

the following multiresolution problem has to be solved:

Given measurements of various functionals of the anomalous gravity field at different
resolution levels and at different altitudes, estimate gravity field signals at multiple

resolutions.



The need for the formulation of a multiresolution problem in physical geodesy was
realized some time ago, aithough the term multiresolution was not used. For example,
Schwarz (1984) classified gravity field information in four categories: the low frequency
part, the medium frequency part, the high frequency part, and the very high frequency
part. In terms of resolution, the first part corresponds to low resolution, while the
combination of the first two, the first three and all four parts corresponds to medium
resolution, high resolution and very high resolution, respectively. This classification also
suggests the data type to be used for the resolution of each frequency part. Table 1.1
summarizes measurement types, signal attenuation due to altitude and gravity field

signals determined.

From Table 1.1, it can easily seen that measurements at different resolutions should be
combined to achieve better estimation of the gravity field signal at different resolution
scales. As is indicated in Table 1.1, there are at least three reasons why a multiresolution
approach is of interest in gravity field modeling. First, different functionals of the
anomalous potential are used which are sensitive to different bands of the anomalous
gravity spectrum. Second, data at different elevations are used - e.g. ground, aircraft
heights, satellite heights - which, due to the attenuation of the gravity with distance from
the disturbing masses, display a different spectral behaviour dependent on altitude.
Finally, as already mentioned, data sampling is also responsible for different resolution

levels.



Resolution Measurements at different Attenuation Gravity field signals
resolution due to altitude determined
Orbit perturbation strong Geoidal height
300 km Gravity anomaly
Low ~800km
( satellite
altitude)
Altimeter data no Geoidal height
Mean gravity anomalies no Gravity anomaly
Medium (1°x 1°) and (20 x 20) Deflection of vertical
Satellite gradiometer data strong Second derivatives
Satellite to satellite tracking strong of disturbing potential
(5 x 5') mean gravity no Gravity anomaly
anomalies Gravity disturbance
High Deflections of the vertical no Deflection of vertical
Airborne gravimetric data medium Second derivative
Airborne gradiometric data Strong of disturbing potential
Dense height data, at least no Gravity anomaly
Very high (1km x 1 km) Deflection of the vertical
Airborne gradiometric data Strong Second derivatives
of disturbing potential

Table 1.1 Resolutions of different measurements and different gravity field signals

Sanso (1987) was the first to make mention of the multiresolution problem in physical

geodesy when he investigated the relation between the discrete ( operational ) and the

continuous formulation (model) from a resolution point of view with the purpose of




providing the reciprocal consistency of the two approaches. In his paper, he wrote that
when describing a physical object, we may find an even radically different behaviour,
depending on the scale at which we look at it or more precisely from the resolution of our
description, i.e. from the dimensions of the smallest particular we want to be able to
distinguish in our object. Coming back to our example of a set of gravity measurements,
the question is should we treat it as a continuum or as a discrete set? The answer is: it

depends on the resolution with which we want to describe the field.”

The conventional method to deal with multiresolution data is least-squares collocation,
which combines all data with different resolutions simultaneously. The problem of using
least-squares collocation in this case is that it does not take the multiresolution data
structure into account. In other words, it only considers the spatial correlation not the
resolution correlation of multiresolution data. For example, when estimating a signal at
one resolution from measurements at another resolution, least-squares collocation only
considers the distance between two points at two different resolutions. Information
regarding resolution is not used. Therefore, from a theoretical point of view, it cannot be
directly used to deal with data of different resolutions. One way of avoiding this problem
is to upsample or downsample measurements at different resolution levels to the same
resolution level by using either a multirate system or a wavelet transform before applying

least-squares collocation.

A general way to solve the above problem is to use multirate digital signal processing



systems (multirate systems). A multirate system is a system which allows to change from
a sampling rate to another sampling rate within the system. Therefore it can be used to
link different resolution scales by using a decimation or an interpolation filter or a
multirate filter bank. It cannot solve, however, the problems of combining different

observables of the gravity field, different data attenuation and different noise levels.

A wavelet transform also provides a mathematical tool to investigate multiresolution
problems. It is closely related to the multirate system since a discrete wavelet transform
can be viewed as a special case of tree structured multirate filter banks. The fundamental
idea behind wavelets is to decompose data into different frequency components, and then
study each component with a resolution matched to its scale (Daubechies, 1992). Roughly
speaking, the aim of wavelets is to obtain base functions (called wavelets) as localized as
possible, both in time (or space) and frequency (spectral domain). These functions are
generated from a single “generating wavelet” or “mother wavelet” by translations and
dilations. The wavelet transform has a form similar to that of a windowed Fourier
transform. However, the basic function possesses windows of variable size, which make
adaptation to spatial phenomena at different scales possible (Daubechies, 1992).
Therefore wavelet transforms have advantages over Fourier transforms and windowed
Fourier transforms because they allow the analysis or processing of data at different
scales or resolutions. It is this feature that makes wavelets interesting and useful for

solving gravity field problems. However it cannot totally solve the multiresolution



problems in gravity field approximation for the same reason mentioned in the context of

multirate systems.

The objective of this dissertation is to introduce and develop a framework for
multiresolution approximation in gravity field modeling. Instead of combining all
available measurements at the same time, the gravity field signal at each resolution level
will be estimated by using the measurements from either a fine-to-coarse scale or a
coarse-to-fine scale one by one. A discrete wavelet transform or a multirate system is

used as a tool to link different resolution levels.

1.2 DISSERTATION OVERVIEW

1.2.1 Outline

The dissertation is organized as follows. Chapter 2 provides the background theory of the
approximation of the Earth’s gravity field and a new formulation of multiresolution
approximation problems in gravity field modeling. Four methods for modeling the'
Earth’s gravity field, i.e., the geopotential model approach, the integration approach, the
least-squares collocation approach, and the multiple-input single-output system approach,
are briefly reviewed from a multiresolution point of view. Multiresolution approximation
problems are formulated, and four classes of multiresolution approximation problems are
given to demonstrate the necessity of introducing the idea of multiresolution

approximation in gravity field modeling.



In Chapter 3, concepts of wavelet theory are introduced which are fundamental of the
development of the subsequent chapter. Also, a brief review of multirate systems is given
for the same purpose. Multiresolution analysis is formulated, the criteria for generating an
orthonormal wavelet, especially a compact support Daubachies’s wavelet, from a
multiresolution analysis are described and discrete wavelet transforms using orthonormal
wavelets are given. The choice of wavelets is discussed. The basic concepts of multirate
systems is also described including decimator and interpolator, decimation and
interpolation filter, polyphase decomposition, lowpass FIR filter design by the

windowing technique, and multirate fiiter banks.

The primary theoretical contribution of this dissertation is presented in Chapter 4, in
which a general methodology and specific algorithms for solving multiresolution
approximation problems are developed. Both signal domain and measurement domain
approaches are considered. Two signal domain approaches, i.e. the fine-to-coarse
estimation scheme and the coarse-to-fine estimation scheme, are derived by using a
discrete wavelet transform and least-squares collocation as two special tools for this
development. A measurement domain approach is also proposed by using a multirate
system and a multiple-input single-output system as two special tools. A comparison

between the proposed approaches and stepwise least-squares collocation is conducted.

In Chapter S, the procedure for generating multiresolution data is described first. Then,

numerical tests are presented to demonstrate the applicability of the proposed framework



to gravity field modeling. Two numerical tests are conducted by using the signal domain
approaches. First, geoidal height determination is done by using fine-scale airbome
gravity disturbance data and coarse-scale geoidal height data. Then, downward
continuation is studied by using a combination of fine-scale airbome gravity disturbance
data with coarse-scale terrestrial gravity disturbance data. The effect of using different
wavelet bases for the estimated gravity field signal is also studied. A numerical
comparison between the signal domain approach and the measurement domain approach

is performed to assess the performance of both methods.

Conclusions formed throughout this dissertation and recommendations for further

investigations are presented in Chapter 6.

1.2.2 Contributions

Specific contributions of this dissertation include:

e Formulation of gravity field approximation in terms of a multiresolution problem.
Although the problem of gravity field modeling has been studied extensively for years,
the existence of a multiresolution problem in this field has not received attention. In
Section !.1, the need for solving a multiresolution problem in gravity field modeling has
been stated. In Chapter 2, it will be shown that the classical approaches to gravity field

approximation cannot be used to solve this problem. In Section 2.6, a general
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mathematical formulation of the problem will be given and four classes of

multiresolution problems related to gravity field modeling will be introduced.

* Theoretical development of a framework for multiresolution approximation in gravity
field modeling. A general methodology for solving multiresolution approximation
problems is introduced in Section 4.1. Two signal domain approaches, a fine-to-coarse
estimation and a coarse-to-fine estimation, are presented using a discrete wavelet
transform and least-squares collocation as two specific tools in Section 4.2. In Section
4.3, a measurement domain approach using a multirate system and a multiple-input
single-output system as two specific tools is proposed as an alternative. A detailed
comparison of the first method with stepwise least-squares collocation is given in Section

44.

* Numerical investigation of the potential applications of the proposed framework to
gravity field modeling. In Chapter 5, the proposed framework is applied to the solution of
the multiresolution approximation problem in gravity field. In Section 5.3, two numerical
tests are performed to show the applicability of the proposed framework. The effect of
using different wavelets is investigated in Section 5.4. A numerical comparison between
the signal domain approach combining a wavelet transform and least-squares collocation
and the measurement domain approach using a multirate system and a multiple-input

single-output system is performed in Section S.5, where the estimation resuits of the two
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methods are analyzed in terms of dependence on the signal to be estimated, the resolution

difference between different scales and the choice of lowpass filters.
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CHAPTER 2
GRAVITY FIELD DETERMINATION

In this chapter, some basic definitions in the gravity field are given first, and four
methods of modeling the Earth’s gravity field, the geopotential model approach, the
integration approach, the least-squares collocation approach and multiple-input single-
output system solution, are then briefly reviewed from a multiresolution point of view.
Finally multiresolution approximation problems are formulated and four different classes

of problems are identified.

2.1 BASIC TERMINOLOGY IN THE GRAVITY FIELD

The gravity potential of the Earth W is equal to the sum of the gravity potential V,

produced by the attraction of the density distribution of the Earth, and the centrifugal

potential @, i.e.

W=V+®, (2.1)

The main objective of physical geodesy is to determine the physical Earth’s surface S and
the gravity potential W. The surface of the earth is usually approximated by an ellipsoid of
revolution which is an equipotential surface of a normal gravity field of the Earth as

defined in Heiskannen and Moritz (1967). The normal gravity potential is denoted by U
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and the normal gravity by y. The disturbing potential T is then defined as the difference

between the actual gravity potential W and the normal gravity potential U at the same

point P, i.e.
Tp=W,-U,, .2)
which satisfies Laplace equation outside the Earth’s surface, i.e.
AT = 3_21+2:21+2_21= 0 2.3)
x2  oy? o022

where (x y z) is a coordinate in an earth-fixed rectangular coordinate system.

The gravity anomaly Ag is defined as the difference between the measured gravity made
on the earth surface point P and the normal gravity ¥ on the ellipsoid point Q

corresponding to P, i.e.

Agp=8p—YQ- (2.4)

The gravity disturbance dg is defined as the difference between the measured and the

normal gravity Y at same point P, i.e.
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dgp=8p ~Yp- 2.5)

The geoidal height N is defined as the difference between the geoid, the equipotential

surface which best approximates mean sea level, and the ellipsoid.

The fundamental equations describing the relationship between the disturbing potential T

and the gravity anomaly Ag, the gravity disturbance dg and the geoidal height N are

aT, 2
__%9%p 2
&= TR =0
aT,
8gp=——a-;—, 2.7
T
Np=-—+2. (2.8)
Y

In planar approximation, (2.7) and (2.8) become

dT,

Agp=-—T, 2.9)
5 ITp (2.10)
Bp= oz ' -
2.2 GEOPOTENTIAL MODELS

The gravitational potential of the Earth can be expressed in an Earth-fixed and Earth-
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centered coordinate system by the well-known harmonic series:

v GM, . = 1 ra\lf= < . S
CoA)=—T1+3F I (—) Cim cosmA + Siy sinmA |- P (sind)],
r I=2m=0\T

2.11)

where r, ¢ and A are the geocentric coordinates of a point, GM is the product of the

gravitational constant G and the mass of the earth M, a is the equatorial radius of the

reference ellipsoid, Cim and Sy are a set of fully normalized harmonic coefficients, and

P1im are fully normalized Legendre functions.

A geopotential model for the anomalous potential T can then be written as follows:

n l —_ - -
T(r,¢,k)=9—M—[ 1+ mfx zl', (_a_) (SC;,,, cosmA + &Sim sinml)-P;m(simb)],
r

1=2 m=0\T

(2.12)

where 0y, is maximum degree of the geopotential model (integer), $Cm and §Sim are
the harmonic coefficients difference between the true gravity potential and the normal
gravity potential. Gravity anomalies, geoidal height, and other functionals of T can be

obtained by using formulas (2.6), (2.8), etc.
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The coefficients §Cim and 3Sim in formula (2.12) can be determined from the analysis
of satellite orbit perturbations with or without combination with surface gravity data.

R .. can be determined using the following the rule of thumb:

(2.13)

where d is the grid spacing , in degree, or resolution of the data used in the determination

of the geopotential coefficients.

On the other hand, the resolution of the gravity field r ., , which can be resolved from a

given geopotential model, can be calculated using the following formula:

max (2.14)

There are a number of geopotential models available. Table 2.1 lists n_,. and r, for

some geopotential models. For more detailed information regarding these geopotential
models, references are made to Lerch et al. (1979, 1981 and 1982), Rapp (1978, 1981),

Rapp et al.( 1991) and Reigber et al. (1983a and 1983b).
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Geopotential model s S Imoaer (deg)
GEM 9 22 8.12
GEM10 30 6

GEM10B 36 5
GEMIO0C 180 1
GEML-2 20 9
GEMT1 36 5
GEMT2 36 5
GRIM 3 Model 36 5
GRIM 3B Model 36 5
Rapp 1978 Model 180 1
Rapp 1981 Model 180 1
Rapp 1991A Model 360 0.5

Table 2.1 n_,, and r,, for some geopotential models.

From Table 2.1, it is easy to see that the maximum degree of the geopotential models is
between 20 and 360, corresponding to a resolution of the gravity field between 9°

and0.5°. This means that geopotential models contain the low and medium frequency
parts of the spectrum, but have very little information on high and very high frequencies
because the data types used do not contain this information. Therefore, it is necessary to

combine the model with other data types containing higher frequencies in order to obtain
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resolution of the gravity field better than 0.5°, especially in the determination of local
and regional gravity fields. It should also mentioned that the accuracy of the
geopotentional coefficients becomes poorer and poorer with increasing degree and order.
Thus, resolution to degree and order 360, or any degree and order, does not mean that the

model coefficients are perfect.

2.3 INTEGRAL FORMULAS

2.3.1 Stokes’ solution versus Molodensky’s solution

The integration approach is based on the geodetic boundary value problem (BVP), which

attempts to find the potential on and outside a boundary from measurements made on the

surface. Two most often used BVPs are Stokes’ BVP and Molodensky’s BVP.

Stokes” BVP can be described as follows: Given gravity everywhere on the geoid, the

geoid and the anomalous gravity potential is to be determined.

After applying a linearization procedure and assuming spherical approximation, the

above problem can be formulated as:

aT 2 (2.15)

AT =0, outside S
Ag=———-—T, onS
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where S is the sphere with mean Earth radius Rand r = \/xz +y2 +z2 .

The solution to Stokes’ BVP can be represented by integral formulas. Other gravity field

quantities such as the geoidal height N and the deflections of the vertical (§ 1), can also
be represented by integral formulas. The solution for N given by Stokes’ integral formula

is
R
N=—-[AgS(y)do, (2.16)
4y p

where 7y is the mean gravity of the Earth, S(y) is Stokes’ function, i.e.

-6sin¥+1—5cosw—3coswln(sin%+sin2% : @.17)

S(y)=
sin—
2

v is the spherical distance, Ag is the gravity anomaly, and ¢ is the unit sphere.

In the case of local or regional gravity field determination, Stokes’ formula may be

simplified by using a planar approximation:
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l [} ’ 1 ] L] L 4 | ]
N(x,y)=EEIAg(x Y JK(x-x,y—y )dx dy , (2.18)
T

where (x y) and x y') are the computation point and the moving point in a plane Z, and

K(x, y) is the planar Stokes’ function, i.e.

K(x, y)=———2——, (2.19)

Equation (2.19) is referred to as the planar Stokes’ formula.

The main limitation of Stokes’ BVP is that a gravity reduction is necessary in order to
reduce the measured gravity from the Earth’s surface to the geoid. This is the reason why

Molodensky’s BVP was introduced.

Molodensky’s BVP is the determination of the physical surface S and of the external

-

gravity field of the earth from the gravity potential W and the gravity vector g given

everywhere on S (Molodensky et al., 1962). It theoretically overcomes the problems of
gravity reduction and mass-shifting which are strictly due to the formulation of Stokes’
BVP. The solution to Molodensky’s BVP is given as a series for T with integral terms
involving gravity anomalies and topographic heights (Molodensky et al., 1962; Moritz,

1980). The lower order terms of the series provide sufficiently accurate resuits for
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<~

practical application (Moritz, 1980; Sideris 1987). Moreover, the first term of
Molodensky series for the geoid is nothing else but Stokes’ integral. The sum of the first
term and the second term, i.e. the gl term, is approximately equal to Stokes’ integration
with Faye gravity anomalies. On the other hand, what is obtained by Molodensky’s
solution is the height anomaly and not the geoidal height, which is one of the reasons why

Stokes’ integration is much more widely used in practical applications ( Li, 1993).

3.2.2 Modification of Stokes’ formula

Theoretically, the integration in Stokes’ and Molodensky’s formulas should be extended
over the whole earth and the gravity anomaly should be known at every point. Practically,
these conditions cannot be satisfied. Measurements are usually available only in a limited
area and are often given in the form of grids corresponding to mean gravity anomalies.
Therefore, modification of the integration is necessary to accommodate their practical
application. The basic idea of the modification is to remove a long wavelength reference
field from the gravity anomalies by using a geopotential model and then apply Stokes’ -
integral to compute the geoidal height from the reduced gravity anomalies; see Forsberg

and Tscherning (1981), Rauhut (1992) and Li (1993).

Stokes’ formula after this modification can be expressed as

N=NOM . NS (2.20)



where N OM s the geoidal height computed from 2 geopotential model, i.e.

n 1 - - -
N M =%¥. 5> G) (ac;,.. cosmA +8Sim sinmx)-mm(sinq;)],
=2 m=0

(2.21)

8Cim and 8Sim are the spherical harmonic coefficients for the differences of the Earth’s

gravity potential and the normal gravity potential. N S is the contribution of the reduced

gravity anomaly, Ag, =Ag—-Aggym. computed from Stokes’ integration from either

(2.16) or (2.18). AggMm can be calculated from a geopotential model, i.e.,

1 br _ _
ag™M =" _p s (3) (aclm cosmA +88m sinml)- Pl (sin)).
3 1=2 m=0\T

(2.22)

Since the gravity anomalies are usually given in the form of grids corresponding to mean

gravity anomalies, N S canbe replaced by the following summation

AxAy N-IM-1 e s . ,
NS(X’Y)=—21t‘Y—y §0 jEOAgr(Xi 9yJ' )K(x—xi 9Y"Yj ) (2.23)
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in the case of the planar approximation, where x and y are the grid spacing along the x-
axis and y-axis, respectively, N and M are the data numbers along each row and column,
respectively, and Ag, is the reduced gravity anomaly.

Equation (2.23 ) can also be expressed as a discrete convolution

NS(x,y)=Ag,*K;, (2.24)

where * is the convolution operator, and

K, (%, y)=”2"é" K(x,¥). (2.25)

As can be seen from equation (2.24), the maximum resolution of N S will be the same as
that of Ag,. This means that the maximum resolution of the gravity field depends on the

measurements Ag. On the other hand, if the measurements are only given in an area of
X° x X°, the minimum resolution of the gravity field which can be resolved from local

data is £°, corresponding to the minimum degree and order of the harmonic expansion

-IE(Z—- . Therefore, the lowest degree and order of the geopotential model have to be larger

-]

— . That means the minimum resolution in this solution is usually

than or equal to

provided by the geopotential model. From the above discussion, it can be concluded that
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equation (2.20) can be viewed as a direct fusion of different types of data with different
resolutions, i.e. a lower resolution geopotential model and a higher resolution gravity

anomaly, for geoidal height determination.

In this dissertation, new approaches for fusing different data types with different
resolutions will be developed based on wavelet theory or mulitirate systems theory. They
can not only handle the above situation but also other situations where integral

approaches are not available.

2.4 LEAST-SQUARES COLLOCATION

Integral formulas, such as Stokes’ and Molodensky’s formulas, use one type of data for
the approximation of other functions of the gravity field. Different types of data are
frequently available, containing useful information regarding the gravity field. Least-
square collocation is one method capable of using different types of data, homogeneous

or heterogeneous, to predict other gravity field quantities.

In the following, the basic principles of least-squares collocation are reviewed. Readers
are referred to Krarup (1969), Moritz (1980), Sanso and Tscherning (1980), and
Tscherning (1984) for a more detailed description regarding least-squares collocation

theory.



2.4.1 The Fundamental Equations of Least-Squares Collocation

Any measurement of the anomalous gravity field can be represented as a linear functional

of the disturbing potential T plus measurement noise, which can be written as follows:

li = LiT+ni ’ (2.26)
(i=1,2,..q)

or
=BT +n, (2.27)

wheré the vector |, the B and the vector n comprise q measurements 1; , q linear

functionals L;, and q measurement noises n;(i=1, 2, ..., q), respectively, i.e.

L=[1, lgseelg T,
- T
B =[L;, Ly,...,Lq1"%,

T
n =[ny, ny,...,nq1",

t =BT,
then

l =t+n. (2.28)
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In this way, the measurements can be explained as the synthesis of a “signal” t, which is a

function of T, and a “noise” n.

Equation (2.28) is the mathematical model for least-squares collocation without
considering systematic parameters. In this dissertation, all discussions on least-squares
collocation will be based on this model and multiresolution approximation will refer to
signals only. A more general mathematical model for least-squares collocation can be

found in, e.g., Moritz (1980) and Krakiwsky (1990).

It is assumed that the mathematical expectation of the measurement 1 and the

measurement noise n are zero, 1.e.

E(1)=0, E(n)=0. (2.29)

When two types of measurements with different resolution are used, equation (2.29) can

be split into two parts:

Iy =t +ny , (2.30a)

12 =ty +0ny, (2.30b)
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where 1; and 1, are the measurement vectors corresponding to the lower and higher
resolution, respectively, t; =B;Tand t, =B,T are the “signal” vectors, and n; and

n, are the measurement noise vectors in this case.

The fundamental solution of equation (2.29) is based on the following minimum

principle:

sTC_:slsT + nTC;,in =minimum, (3.3D)

which results in the following solution

A ~1
s=CuCy'1, (2.32)
with the error covariance matrix

En,=Cq +CgCyi'Cq T, (2. 33)

Ss

where C; =(Cy +Cypy,) is the sum of the covariance matrices of the signals and the

measurement noise, Cg is the cross-covariance matrix relating the quantities being

A
predicted to the observed quantities, s is vector of predicted quantities, and E .. is the
SS

A
error covariance matrix of s . The derivation of equations (2.32) and (2.33) can be found

in Moritz (1980).
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One aspect that makes collocation a desirable technique is the combination of various
functionals to improve estimates of the quantities desired. Another feature of least-

squares collocation is that it allows for an estimate of the inherent error covariance matrix

A
associated with the estimates s .

When applied to equation (2.30), equation (2.32) becomes

-1

eeley el ln)
where

Cy=Cgq, (2.35a)
C=Cyq,>s (2.35b)
C11=Cyy, +Coyny» (2.35¢)
C=C,t, +Chnsn,» (2.35d)
Cra=Cyp» (2.35¢)
Cy =C,, (2.35f)

One problem associated with equation (2.34) is that the cross-covariance matrix

C,,i, between two “signals™ t; and t; at two different resolutions cannot be handled by
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the conventional covariance function approach. The defination of the covariance function
takes only the spatial correlation into account, but does not address the resolution
problem. Therefore, from a theoretical point of view, it cannot be used to compute the
correlation between signals with different resolution. The approaches developed in this
dissertation will circumvent this problem by using wavelet transforms or multirate

systems as links between different resolution levels.

2.4.2 Stepwise Collocation

The main drawback of the least-squares collocation methods is that the inversion of a
large matrix is needed in order to estimate the predicted signals. The inversion of a large
matrix is a very time consuming process. To solve this problem, Moritz (1973) proposed

a stepwise procedure. The basic idea is to partition the matrices C; and Cg, into two

blocks corresponding to a partition of the measurements in two groups as was done for

the two types of data with different resolution above.

The fundamental equations of stepwise collocation are

A -1
S1 =C1C“ 11 9 (2363)

A A
s=s1+K(lp, -Al), (2.36b )

with error covariance matrixes



~1~T
l-:ss,l =Cg "Clclllcl ’

-1 T
Eg= Ess,l -C2C2C2,

where
-1

K=(C5 +C;C;;"'C»)Cx2.

-1
A=0Cy (g,
C23 = Cg9 —C4,CT{Cy3,

C2 = C;~C(C[{Cy3,

30

(2.37a)

(2.37b)

(2.38a)

(2.38b)

(2.38¢)

(2.38d)

If s(1) and s(2), the signal at two different resolutions, are to be estimated from

measurements at these two resolutions, Equation (3.6) can be written as follows, i.e.

N -1
SI(I)=C[(I)C11 11 ’

A -1
51(2)=C1(2)C[111 ’
" A
s() =S[(l)+KI(12 -Alll)’

A A
5(2)=512)+ K7 (1 —Aly) ,
where
-1
K =(C,()+C(Cy7'Cp)C

Ay =C (T}

(2.39a)

(2.39b)

(2.39¢)

(2.39d)

(2.40a)

(2.40b)
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-=1
Ky =(C(2)+C(2)Cy1 7 C1a) €2z - (2.40c)

The more detailed description of stepwise collocation can be found in Moritz (1980).

2.4.3 The Covariance Functions

It is easy to see from equations (2.32) and (2.34) that covariance matrices are essential to
least-squares collocation. Theoretically, all covariances in the anomalous gravitational
field may be derived from the basic covariance function K(P, Q) of the disturbing
potential T. Since all quantities in the anomalous gravitational field can be expressed as
linear functionals of T, all covariance functions required in equations (2.31) and (2.33)

can be derived by covariance propagation, i.e.

(Cq )i =LiL;K(®,Q), (2.41a)

(Cs);5=S;L;K(P,Q), (2.41b)

On the other hand, from a practical point of view, the covariance function C(P, Q) of the
gravity anomaly Ag, has 2 more fundamental character because gravity anomalies form
the main empirical material for the practical determination of the signal covariances
(Moritz, 1980). In this case, an analytical expression is usually used for determining K(P,

Q) from C(P, Q).
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In general, the covariance functions can be classified as either global or local, depending
on the dimension of the area of interest (Jordan, 1972). In the development of global
covariance functions, the usual techniques of spherical harmonic series expansion can be
used. Such a model was developed by Tscherning and Rapp using 1°X1° mean gravity
anomalies and the degree variances c3 to c;g, computed from a geopotential model
(Tscheming and Rapp, 1974). Local covariance functions are mainly computed by
subtracting from a global covariance function a number of low degree terms and fitting

the three essential parameters, i.e. the variance Cg, the correlation length & and the
gradient variance G, estimated from local data, to an analytical expression for the local

covariance function, which is used as an empirical covariance function.

One problem of using empirical covariance functions is that there is no common
empirical covariance function for the whole Earth. This means, empirical covariance
functions determined in different areas will vary from one sample to the next (Schwarz
and Lachapelle, 1980), and the ones derived have to be adapted to the local situations.
This makes least-square collocation unreliable, especially when estimating one functional
from another. Furthermore, even if the covariance function would be consistent from one
sample area to the next, it could not be used to deal with data at multiple resolution scales

if it is determined from the data at only one resolution.

If the data in the area of interest are available and evenly distributed, the above problems

may be overcome if covariance functions are estimated directly from the data instead of
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being derived from an analytical covariance function. Estimation of the empirical
covariance function directly from the data can be done from space domain or spectral

domain. The formula for estimating the empirical covariance from space domain is

1 1 M=l-kN-1-{
Ck,)=—— 3  ZfGLHfGE+kj+D), (2.42)
MN = j=0

where the discrete data f(i, j) are given in a rectangular area in grid format, M and N is the
data numbers along x and y directions, respectively. Since the covariance function and
the power spectral density are a pair of forward and inverse Fourier transform, Equation

(2.42) can also be computed from the spectral domain, i.e.

Cuy)= | [PCuv)e*™ ) dygy (2.43)

OO0 =00

where P(u, v) is the power spectral density of the data f(x, y). u and v are the circular

frequency along x and y directions

When multiresolution data are involved, covariance functions can be computed at each
resolution level using either Equation (2.42) or (2.43) as long as they are used at their

corresponding resolutions.
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References are made to Jordan (1972), Tscherning and Rapp (1974), Rapp (1976), Moritz

(1980) and Tscherning (1984) for detailed discussions regarding covariance functions.

2.5 MULTIPLE-INPUT SINGLE-OUTPUT (MISO) SYSTEM SOLUTION

MISO systems have been used in physical geodesy for a number of years (Vassiliou,

1986; Wu and Sideris, 1995; Sideris, 1996; Wu, 1996; Li, 1996). A MISO system in the

space domain can be illustrated by the diagram, shown in Figure 2.1.

Figure 2.1 A MISO system

Mathematically, the system can be written as

k
y=2Xx;*h; +n, (2.44)
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where x; (i=l, 2, .., k) is the input signal, y is the system output, n is the system noise,

h; is the impulse response, and * denotes the convolution operator.

Equation (2.44) can also be written in the frequency domain:
k
Y= .):1 X; (®)H, () +N(0), (2.45)
1=

where o is the circular frequency. X;(®) (i =1, 2, ..., k) are the Fourier transforms of
x; (i=1,2,..,k), Hi{®)(i=1,2, .. k) are the corresponding frequency responses of
h; (i=l1, 2, ..., k), Y(®) is the Fourier transform of y, and N(®) is the system noise

expressed in the frequency domain.

In order to implement such a system, the H;(®) (i =1, 2, ..., k) have to be determined.

The following minimum criterion
k
P (0)=Y()- _zlxi (0)H, (®)}* = minimum (2.46)
1=

is used for this purpose, where P, (®) is the power spectral density of the output noise.

Since MISO systems can be implemented using double-input single-output system

recursively ( Wu and Sideris, 1995), only the following formula for determining H; (@) (

i=1,2)is given ( Sideris, 1996):
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H, (@)= o ) . 247
e P (w) 1+Nu(°3) Py (@) + Ny (w)’ (2.472)
P, (@) N, (@)
P
H,(0)=-2 @ L (2.47b)

Pp@) |, Na@) P (@) +N, (@)’
P, (®) N, (@)
where P,,(w) and P,,(®) are power spectral densities of x; and x5 , Py1(®) is the
cross-spectral density of x; and Py2(w)is the cross spectral density x, and y, and
N, (@) and N,,(w) are the power spectral densities of the noise in x; and x, ,

respectively.
Therefore the estimate of the output signal in the frequency domain can be expressed as

A ~ A
Y(0)=X,(w)Hi(0) +X,(0)H2(®) (2.48)
with the following power spectral density of the system output noise

P, (@)=P,, (@) —1F (@)1 P,y () 281 (@)H, (@) Py, @) — 1Fi (@)1 Py (@).
(2.49)

It should be noted that the above solution can be used when the input signals have the
same sampling rates. In cases where the input signals have different sampling rates, it
cannot be applied directly. This is the case when the input signals are measurements at
multiple resolutions. In order to apply the MISO solution to this case, it is necessary to do
upsampling or downsampling. One way of doing this is to use a multirate system, which

will be discussed in Chapter 4.
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2.6 FORMULATION OF MULTIRESOLUTION APPROXIMATION

PROBLEMS FOR GRAVITY FIELD MODELING

The discussion of available methods for gravity field modeling in the proceeding has
shown that these methods are not suitable for estimating a gravity signal at multiple
resolution levels based on multiresolution measurements. Therefore, it is necessary to
develop a framework to solve such multiresolution approximation problems. To do this,
multiresolution approximation problems have to be formulated. There are at least three
situations in which such a formulation would be of advantage. First, it will allow for the
approximation of the Earth's gravity field by a combination of data at different altitudes.
Next, such a formulation will provide a way of combining different types of
measurements at different resolution levels for estimation of a gravity field signal at
multiple resolution. Finally, fusion of the same type of gravity field measurements at

different resolutions from different sources will be feasible through such a formulation.

Multiresolution approximation problems of the gravity field can be described as follows:

Given measurements of various functionals of the anomalous gravity field at different

resolution levels and at different altitudes, estimate gravity field signal at multiple

resolutions.

The mathematical model for this problem can be formulated as
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Ym=Lm(xm) + v , (2.50)

(m=0,1,..,M)

where ym are measurements from M+1 sensors or computed measurements at different
resolution levels m (m=0, 1, 2, ..M), e.g. y0 could be coarse-scale geoidal height
measurements derived from satellite altimetry and y} could be fine-scale airborne gravity
disturbance measurements. xm (m=0, 1,2,...,M) are the signals to be estimated at different

resolutions, e.g. geoidal heights at two different resolution. The scale M corresponds to
the highest resolution, while the scale 0 corresponds to the lowest resolution. For
example, scale 0 corresponds to a resolution of 8 km, and scale M=4 corresponds to a

resolution of 1 km. L is the linear functional which relates the measurements yn, to the
signal xm, e.g. the gravity anomaly measurement can be related to the geoidal height

signal through the following linear functional

L =2+
ror (2.51)

In Equation (2.50), vjm (m=0, 1,2,....M) is the measurement noise whose first and second

moments are assumed to be known, i.e.

E(vm)=0, (2.52a)

E(vypv Y )=C,y (m), (2.52b)



39

It is also assumed that the measurement noise at different scales is uncorrelated, i.e.

Iy = i
E(v‘vJ) 0, 1i#j]. (2.52¢)

Figure 2.2 illustrates this formulation of multiresolution approximation.

Scale 0: yo =Lo(x0 )+ vo
coarse X0

Xl(l,l)/x1(1,2)/ Scale 1: y1 =L1(x1 )+ v1
x1(2,1) /c1(2,2) /

v oL xa(1.2)4(1,3) Aa(1.4)”
fine a1 k03l
/5(3 I)Zz(B %(3 39/{2(3 4)/ Scale 2: y2 =L2(x2) + v2
) ke 43y sy

Figure 2.2 Formulation of multiresolution approximation problem

In the following, four classes of multiresolution approximation problems in gravity field

modeling are identified, and some practical examples are given to demonstrate the
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necessity of introducing the idea of multiresolution approximation in gravity field

modeling.

Class I: Multiresolution estimation of a gravity field signal using different types of

measurements at different resolutions
Example 2.1: Determination of geoidal heights in ocean area by using fine-scale
shipborne gravity disturbance data and coarse-scale geoidal height data

derived from satellite altimetry

This problem can be mathematically formulated as

5 =y B0
g shipbornel oz z=0 12 (2.533)
Naitimetero = No l,=0+Vo, (2.53b)

where 5gshipbomel and Naltimeter0 are the fine-scale shipborne gravity disturbance

measurements and the coarse-scale geoidal height measurements derived from satellite

altimetry, respectively. N1 and N are the geoidal height at fine-scale and coarse-scale to

be estimated.
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Class II: Multiresolution estimation of a gravity field signal using the same type of

measurement at different resolutions and at different altitudes

Example 2.2: Determination of the gravity disturbance on the Earth’s surface using fine-
scale airborne gravity disturbance data at flight height and coarse-scale

terrestrial gravity disturbance data.

This problem can be mathematically written as follows:

8 airbornel =L 1 (6g1) + Vi, (2.54a)

08 gorundro =08ql,=0+ Vs (2.54b)

where dgairbore1 and dgground0 are the fine-scale gravity disturbance measurements. at

flight level and ground. L; is the Poisson operator. In planar approximation, which is

defined as:

L, (8g1)=£K1(x—x',y—y' »0g (X', y' M}z = I 1 og (x',y' )dZ' ,

T(x-x")2 +(y-y")? 2
(2.55)

dg1 and OgQ are the fine-scale and coarse-scale terrestrial gravity disturbances,

respectively.
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Class I1I: Multiresolution estimation of a gravity field signal using different types of

measurements at different resolutions and different altitudes

Example 2.3: Determination of geoidal heights using fine-scale airborne gravity

disturbance data and coarse-scale geoidal height data from satellite

altimetry.

The problem can mathematically be formulated as follows:

38 4 =-Y- gﬁ-l +v
€ airbornel 3z z=H™ Vi (2.56a)
Naltimeterto =Nolz=0tVo, (2.56b)

where 8gairbornel and Naltimeterg are the fine-scale airborne gravity disturbance

measurements at flight height H and the coarse-scale geoidal height measurements on a

ocean area derived from satellite altimetry, respectively. N1 and N are the geoidal

heights at fine-scale and coarse-scale to be estimated.

Class I'V: Fusion of the same of measurement type at different resolutions

Example 2.4: Fusion of fine-scale and coarse-scale gravity disturbance data



This measurement fusion problem can be formulated as:

8‘a'sourcel

38 source0

where dgsourcel

=dg + V1,

=8gg + Vg,

43

(2.57a)

(2.57b)

and gsourceo are the fine-scale and coarse-scale airborne gravity

disturbances from two different sources, respectively. 8g; and 8gg are the estimates of

gravity disturbances at fine-scale and coarse-scale, respectively.

Table 2.2 summarizes the characteristics of these four classes of multiresolution

approximation problems.

Measurement type Altitude Signal to be estimated
Class at different resolutions at different resolutions
Class I Different Same Same or different
Class I Same Different Same or different
Class IIT Different Different Same or different
Class IV Same Same Same

Table 2.2 Characteristics of different classes of multiresolution approximation problems



After multiresolution approximation problems are formulated, the solutions to these
problems must be developed. To do this, the concepts of wavelets and multirate systems

are needed, which will be the topic of the next chapter.



45

CHAPTER 3

AN INTRODUCTION TO WAVELETS AND MULTIRATE SYSTEMS

In this chapter, some basic principles of wavelet theory and multirate systems will be
reviewed, which will provide the basis for the development in the next chapter. Readers
not familiar with the theories of wavelets and multirate systems are referred to Meyer
(1992), Daubechies (1992), Vaidyanathan (1993) and Fliege (1994) for a more detailed

description.

3.1 WAVELET TRANSFORMS VERSUS WINDOWED FOURIER

TRANSFORMS

Wavelet theory is a relatively recent development in applied mathematics; see, e.g.,
Mallat (1989a), Meyer (1992) and Daubechies (1992). The concepts can be viewed as a
synthesis of ideas originating during the last twenty or thirty years in pure mathematics
(study of Calderon-Zygmund operator), physics (coherent states, renormalization group),
and engineering (subband filtering ). Wavelets and wavelet transforms were first
proposed by Grossman and Morlet (1984) as an alternative way to Fourier transforms for
modeling seismic data. Later, Meyer (1990) recognized this work to be part of the field of
harmonic analysis, and came up with a family of wavelets. His work was further

developed specifically by Mallat (1989a, 1989b) and Daubechies (1988, 1992).
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In order to introduce wavelet transforms, let us look at windowed or short-time Fourier
transforms, which are often used in time-frequency analysis. The windowed Fourier

transforms take the following form:

Xwr®,7)= Te —jo w(t —T)x(t)dt, @G.D

-0

where w(-) is an appropriate window, for instance a Gaussian window. That is,

X wg(®, 1) is the Fourier transform of x(t) windowed with w(-) shifted by t.

The limitation of the windowed Fourier transform is that, because a single window is
used for all frequencies, the resolution is the same at all locations in the time-frequency
plane, as shown in Figure 3.1.

Frequency

' 3

* time

Figure 3.1 Time-frequency resolution of the windowed Fourier transforms
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Of course, an arbitrarily high resolution in both time and frequency cannot be obtained at
the same time. However, by varying the window used, one can trade resolution in time for
resolution in frequency. In order to isolate the discontinuities in signals, one would like to
have base functions which are very short, and to identify the slow changes in signals, one
would like to use base functions which are very long. An intuitive way to achieve this is
to have a short high-frequency basis, and a long low-frequency basis. That is exactly

what is achieved with the wavelet transform (Vetterli and Herley, 1992).

The wavelet transform is defined as

Xw(ab)= [h,p(Ox()dt, (3.2)

—cn

where the base functions h,;(t) are generated from a single prototype wavelet by

translation and dilation, i.e.

hap (9= =hE—). 33)

The variable b is the translation in time so that a varying b represents the “sliding” of the
wavelet over x(t). The variable a is the dilation/contraction factor that determines the
characteristic frequency so that a varying ‘a’ gives rise to a “spectrum”. Since ‘a’

corresponds to frequency but is not frequency itself, it is often referred to as resolution or
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scale. For a large “a’ , the base function becomes a stretched version of the wavelet,
corresponding to a low-frequency function, while for a small ‘a’, the base function
becomes a contracted version of the wavelet, corresponding to a short high-frequency
function. Therefore, for higher frequencies, the time resolution becomes better; for lower
frequencies, the spectral resolution becomes better, as illustrated in Figure 3.2.

Frequency

-

time

Figure 3.2 Time-Frequency resolution of the wavelet transforms

3.2 MULTIRESOLUTION ANALYSIS

In the following, only orthonormal wavelets are described since orthogonality ensures

that the coarse-scale approximation are the best approximations in a least-squares sense to

the finer function. Orthonormal wavelets have only been studied during the last few

years. It was difficult to construct an orthonormal wavelet base until a more systematic
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approach, i.e. multiresolution analysis, was found by Mallat (1989a, 1989b) and Meyer
(1990). Daubechies constructed compactly supported orthonormal wavelets based on this

approach.

3.2.1 One-Dimensional Multiresolution Analysis

Multiresolution analysis can be interpreted as a successive approximation procedure
(Vetterli and Herley, 1992). To understand what multiresolution analysis is, let us start

with the following simple but intuitive example: Call Vg the space of all band-limited

functions with frequencies in the interval (-r, t). Then the set of functions

sin(rt(x - k))
n(x~k)

o(x — k) =sinc(x - k)= keZ

(34)

forms an orthonormal basis for V(, where Z is the set of all integers. It is easy to see that
if f(x)€ Vo, then f(x-n)€ Vi n€ Z. Similarly, call V| the space of all band-limited -
functions with frequencies in the intgwal (-2r, 2n). Clearly, the set { ¢(2x-k), k€ Z } is
an orthonormal basis for Vi, and Yo < Vi_In particular, if f(x)€ Vg, then f(2x)€ V].
Now, call Wy the space of bandpass functions with frequencies in the interval (-2m, -
1) Y (n, 2n). Then

Vl =Vo @WO. (3.5)
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That is, Wy is the orthogonal complement in V| of Vy. In other words, Vj is equivalent to

Vo plus some added detail corresponding to Wy.

From the above, it is clear, by scaling, that if Vj is the space of band-limited functions

o (2'm,21

with frequencies in the interv ™) (i€ Z), the following relations hold:

Vi € Vs

Vi+1 =Vi @W.

The generalization of the above example leads to the following more general definition of

multiresloution analysis: A multiresolution analysis is a sequence of subspaces { Vj,i €

Z } of the square-integrable function space L2(R) which has the following properties:

DVi € Vis1,1€2Z;

2) N V; ={0}and UV; =L*(R);
ieZ ieZ

3) f(x) € Vi® f(2x) € Vi4l;

4) f(x) € Vo= f(x-n)€ Vg, n€Z;

5) 3¢ (x) € VQ such that {¢(x-n), n€Z]} is an orthonormal basis of V.



51

Since { ¢(x-n), nEZ } forms the basis of the space Vg, {2V/2¢(2! x-n), n€Z} forms the
basis of the space V. Therefore, any function in Vg € V; can be expressed in terms of

the base functions of V. In particular,

00)=+vZ Sh(a)W(2x—n)
n=—oo (3.6)

withh(n)= [¢(x)¢(2x —n)ixand STh2m)=1.

-—00 N==-co

Equation (3.6) is often referred to as the scaling function or the dilation function, which
forms the basic function for generating wavelets. The constant coefficients h(n) are called

low-pass filter coefficients since ¢(x) derives an approximation in V() of signals in V1.

The basic conclusion from multiresolution analysis is that whenever a collection of

closed subspaces satisfies the above five properties, then there exists an orthonormal
wavelet basis { Yin ., i, n€ Zlyjn X)= 2V2\y(2ix - n ) }of the orthogonal complement

Wj of Vjin Vi+1, i.e.

Vi =V, &W,. 3.7
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This implies V, . =W, ®W,_; ®W,_, ® - - -.'Moreover, the wavelet function y(x)

corresponding to the scale function ¢(x) can be constructed explicitly as follows:

Y =vZ TgmMEx-n),
n=—co 3.8)

where g(n):(-l)“'lh(-n+1). The constant coefficients g(n) are called highpass filter

coefficients since the orthonormal complement Wy to Vg is given by half-band highpass

signals in V.

Figure 3.3 shows some examples of scaling functions and wavelet functions

corresponding to different multiresolution analyses.

2
1 ﬂ |
i
1 l
0 ] 1
0] |
-1 "
-5 0 S 5 0 5
Scale function Wavelet function

(a) Meyer wavelet



1
f 1 H
0.5
0 H—V \ {\/W1
04
05 - -1
-5 0 -5 0 5
Scale function Wavelet function
(b) Battle-Lemarie wavelet
2 —~ 2——
1t 1t 4
0 0
-1t 1 -1t
-2 . 2L . -
-1 0 1 2 3 -1 o 1 2 3§
Scale function

Wavelet function

(c) Haar wavelet

Figure 3.3 Three examples of orthonormal wavelets (Daubechies, 1992)
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It can be shown that the Meyer wavelets are in C" , infinitely supported, symmetric, and

decay faster than any inverse polynomial, while the Battle-Lemarie wavelets which are

spline functions and can be chosen as CK ( N2 k+1, N is the degree of the B-spline) have

also infinite support and symmetry with exponential decay.

The above multiresolution analysis with an integer dilation factor 2 can be extended to
one with integer dilation factors larger than 2 ( Daubechies, 1992; Cohen and
Daubechies, 1993). A multiresolution analysis for an integer dilation factor n is defined in
exactly the same way as for dilation 2 except that Property 3) is replaced by f(x) € Vi<

f(nx) € Vj41. It is also possible to define a multiresolution with a non-integer dilation

factor. However, the dilation factor must be rational (Auscher, 1989) and construction of
such a multiresolution analysis is different from that with integer dilation (Daubechies,
1992). Since scaling functions and wavelet functions for multiresolution analysis with
integer dilation factor larger than 2 or non-integer dilation factor are not available, only
multiresolution analysis with dilation 2 will be in this dissertation. This is currently a
limitation of working with wavelets. However, non-dyadic multiresolution analysis could
be used as soon as scaling functions and wavelet functions for multiresolution analysis

with integer dilation factor larger than 2 or non-integer dilation factor are available.

3.2.2 Two-Dimensional Multiresolution Analysis

Multiresolution analysis in the 1D case can be readily extended to the 2D case. A two
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dimensional multiresolution analysis can be defined as a sequence of subspaces { Vi,i €

Z } of the 2D square-integrable function space L2(R2) which have the following

properties:

1) vl < Vi'('l ’ i€Z ’
2) N V; ={0}and UV; =L*(R);
ieZ ieZ

3) f(x, y) € Vi f(2x, 2y) € Vi4y;
4)f(x,y) € Vo= f(x-n,y-m)€ Vo, n,m € Z;

5) 3¢ (x, y) € Vg such that {¢(x-n, y-m), n, m€Z} is an orthonormal basis of V.

Only one method of constructing an orthonormal basis for L2R2) will be described here,
although there are other methods available( Daubechies 1992; Wickerhauser 1994). The
method consists of the tensor product of two one-dimensional multiresolution analyses.

Tensor product of two one-dimensional function spaces V and W is defined as follows:

V® W={F(x,y)=f(x)g(x)I f(x)eV, g(x) e W}. (3.9)

So the two-dimensional multiresolution analysis { V;, i € Z } using the tensor product

can be defined as

V.=V.®V.
t 1 1 . (3.10)
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Since { ¢(x-n), n€Z } forms the basis of the space Vo, the product functions set { ¢(x-n,
y-m) = ¢(x-n)¢(y-m), n, m€Z } forms an orthonormal basis for Vg = V()® Vo. As in the
one-dimensional case, for each i€Z, V;;| can be represented as the direct sum of Vj and
the orthogonal complement space Wi of V; in Vi, i.e. Visi= ViY Wi. On the other

hand, Vi+! can be written as:

Vi =Vig ® Vi, =(V, 8 W) ®(V, 8 W)
=(V; ®V,)O[(V, ®W,) B (W, ®V,) & (W, ®W,)]. G.11)
Therefore,
Wi=(V; ®W;)®(W; ®V;)®(W; ®W;). (3.12)

It follows that W; consists of three tensor products of one-dimensional function spaces,
ie. Wij=V,;®@W;, Wiz =W, ®V, and W;3 = W; ®W;,. This leads to the following

three wavelet functions corresponding to these three spaces:

V1 (X, Y)=0(x)y¥(y), (3.13a)
V2 (X, Y)=w(x)6(y), (3-13b)

V3 (X, y)=y(x)w(y). (3.13¢)
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3.3 COMPACTLY SUPPORTED ORTHONORMAL WAVELETS

The wavelet bases given in Figure 3.3 are infinitely supported functions except for the
Haar wavelet basis. Since data are often collected within a limited area, it might be useful
if the wavelet basis could be defined in a finite region in this case. To construct a
compactly supported wavelet basis, the scaling function must have a compact support, i.e.
will vanish outside a finite interval, say [0, N-1], here N is a positive integer. It can be
shown that it is sufficient to construct a scale function with only finitely many
coefficients h(n), n = 0, 1, ..., N-1, in equation (3.4) which satisfies the following three

conditions (Williams and Ameratunga, 1994):

(1) In order to uniquely define the scale function, the area under the scale function is

normalized, i.e.

[ o(x)dx=1,

(3.14)
which leads to the following condition on the filter coefficients:
N-1
Y h(n) =+/2.
n=0
(3.15)

(ii) For the scale function to be orthogonal to its integer translates, the filter coefficients

must satisfy the additional requirement that
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T 00)0(x +k)dx=80x ,

(3.16)
This yields the condition
N-1
2 h(n) h(n + Zk) =80,k s
n=0
(3.17)

where 8 y is the delta function, i.e.

s _[ b k=0
0k ™1 0, k%0

(iii) Equations (3.15) and (3.17) are insufficient to determine a unique set of filter
coefficients. In a N coefficient system, they yield a total of N/2 + 1 equations. Another
N/2 - 1 equations are therefore required for a unique solution. One way to achieve this is
to require the scale function to be able to represent polynomial of order up to, but not
greater than N/2. Enforcing this requirement leads to the compactly supported wavelets
developed by Daubechies (1988). This requirement means that for any polynomial f(x)

with order not greater than N/2, the following conditions must be met:

T f(x)y(x)dx=0,

-—00

(3.18)

which is equivalent to the following N/2 equations:
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[ yx)xXdx =0, k=0,1,...,N/2-1
-—00
(3.19)
Thus the first N/2 moments of the wavelet function must be zero. The constraints of

equation (3.19) on the filter coefficients are

N-1 K
Y (D"h()n* =0, k=0,l,...,N/2~1.
n=0
(3:20)

To demonstrate how the above requirements can be used to construct the filter
coefficients h(n), N is chosen as 4. From Equations (3.15), (3.17) and (3.20), one can

easily obtain the following equations:

h(0)+h(1)+h(2)+ h(3)=2,
h2(0)+h?(1)+h%QR)+h2(3)=2,
h(0)— h(1) +h(2)— h(3)=0,
—h(1)+2h(2) - 3h(3)=0.

(3:21)
The solution of Equation (3.21) is
h(0) =~ *4“6 =0.4829613,
h() = +4J§=0.8365163, -
hQ2) = 3 ‘4‘5=0.2241438, o
h(3) =1;4‘/§ =-0,1294095.



Table 3.1 gives the filter coefficients h(n) (FIR) for four compactly supported wavelets
with N =4, 6, 8 and 10 obtained in this way. Figure 3.4 shows the corresponding
compactly supported scaling functions and wavelet functions. The figure shows clearly

that they become more regular as N increases.

N
4

h{(n)
0.4829613
0.8365163
0.2241438
-0.1294095
0.3326705
0.8068915
0.4598775
-0.1350110
-0.0854412
0.0355226
0.2303778
0.7178465
0.6388076
-0.0279887
-0.1370348
0.0304413
0.0328380
-0.0105974
0.1601023
0.6038292
0.7243085
0.1384281
-0.2422948
-0.0322448
-0.0775714
-0.0062414
-0.0125807
0.0033357

10
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Table 3.1 Coefficients h(n) of the compactly supported wavelets for N =4, 6, 8, and 10
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2 — 2 -
1 ! ] 1t
O—Af 0—/\
-1t ] -1}
-2 . 22—
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scale function wavelet function
(c)N=8
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1t ] 1t ]
0 _,/\F, 0__\/\ d\,___
-1t ; -1t ]
2 2
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scale function wavelet function
(dN=10

Figure 3.4 Four examples of Daubechies wavelets (Daubechies, 1992)
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Figure 3.4 clearly shows that the Daubechies wavelets are compactly supported with
width N-1 and are asymmetric. Their smoothness increases with N, and they have N/2
vanishing moments. It is also worthwhile to mention that the Haar wavelet can be viewed
as the first order of the Daubechies wavelets. A more detailed discussion can be found in

Daubechies (1988 and 1992).

34 DISCRETE WAVELET TRANSFORMS USING ORTHONORMAL
WAVELETS

Based on multiresolution analysis, the fast discrete wavelet transform was proposed by
Mallat (1989b). It is a ‘tree algorithm’ or ‘pyramid algorithm’ that makes discrete wavelet
transforms fast and simple. It does for the discrete wavelet transform what the FFT does
for the discrete Fourier transform. The algorithm is fully recursive (Strange, 1989). It was

further improved by Beylkin et al. (1991).

3.4.1 One-Dimensional Discrete Wavelet Transform

Generally, a 1D discrete wavelet transform algorithm corresponding to a multiresolution
analysis can described as follows: For a given 1D sequence { fi+](n), n € Z }of a signal
f(t) at resolution level i+, the lower resolution signal sequence { fij(n), n € Z } can be
derived by low-pass filtering with a half band low-pass filter having impulse response
h(n) ( in this dissertation larger i corresponds to higher resolution or scale and smaller i

corresponds to lower resolution or scale ). At the same time, the added detail dj(n) , also



called wavelet coefficients, can be computed by using a high-pass filter with impulse

g(n), i.e.

f;(n) =X h(k - 2n)f;,; K) ,
k

(3.23a)
d;i(n) =Y gk - 2n)f;4; (k) ,
. (3.23b)
or
fi=Hfi+1, (3.242)
di=Gfi+]. (3.24b)

This process is referred to as the decomposition of the signal. The same decomposition
procedure can be applied to a lower resolution signal until the lowest resolution of

interest is reached.

Reversing this process, the synthesis form of the wavelet transform is obtained in which

finer and finer representation via a coarse -to -fine scale recursion is achieved, i.e.

fiy1 (0) = £ h(n - 2K)E; (k) + X gln — 2K)d; (K),
Kk k (3.25a)

or

fir1=H"f; +G™d; (3.25b)
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This process is also referred to as the reconstruction of the signal. Figures 3.5 illustrates

the decomposition and reconstruction process in a block diagram.

t}-+1

(a ) Decomposition

v firl

(b) Reconstruction

Figure 3.5 Decomposition and Reconstruction of 1D signal

To help understand the above decomposition and reconstruction procedure, let us
examine a simple example of decomposition and reconstruction with a sequence { xi, X2,
X3, X4 X5, X6, X7, Xg} using Haar filter coefficients h(0) = 0.7071, h(1) = 0.7071,
£(0)=0.7071, and g(1) =-0.7071. In this case, the low-pass filter and high-pass filter are

L : { x1, X2, X3, X4 X5, X6, X7, X8} > { a(x] + X2), a(x3 + x4), a(X5 + X6), a(x7 + Xg) }



and

66

G: { x1, X2, X3, X4 X5, X6, X7, Xg} -> { a(X1 - x2), a(x3 - X4), a(X5 - X¢), a(x7 - X3) },

respectively, here a =0.7071.

Using (3.24), the above operations can be written as

[x1 ]
%2
a a 0 00 0 0 Ofxj3
0 0 a a 00O Ofx4
0 00 0 a2 a 0 Ofxs
000O0GO0O0aajXe
X7
[ X8 ]
and
a—aOOOOOO'}
0 0 a -a0 0 0 O
0 0 0 0 a -a0 O
0 0 0 0 0 0 a -aj

It is also easy to verify that

a(x; +x5)
a(x3 +xg4)
- a(xs +Xg)
a(x7 +xg)
X1
X2
X3 a(x; —x3)
X4 _ a(x3 —x4)
X5 - a(xs—x5) )
X6 | |a(xy —xg)
X7
Xg

(3.26a)

(3.26b)
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[a 0 0 O] [a 0 0 O "x; ]
a 000 ) -a 0 0 O ) X5
0 a 0 Ofa(x;+x3) 0 a 0 O jfalx;+xq)| ix3
0 a 0 Ofa(x3+xy4) 0 —a 0 O fa(xz+xq)| |xg4
0 0 a 0ja(xs+xg) 0 0 a O ja(xs+xg) N X5
0 0 a Ofa(x7+xg)| [0 O -a O [a(x;+xg)| |*6
0 00 a 0 0 0 a X7

(0 0 0 a (0 0 0 -aj L X8 |

(3.27)
3.4.2 Two-Dimensional Discrete Wavelet Transforms
The 1D discrete wavelet transforms can be extended to 2D discrete wavelet transforms
using the tensor product concepts described in Section 3.3.2. In this case, the

decomposition and reconstruction of a 2D signal take the following form:

f; (n,m)= ¥ h(k - 2n)h( - 2m)f; ; (k,1),

k,l
(3.28a)
di,1(n,m)= 3 g(k - 2n)h(l - 2m)fj,; (k,1),
k1 (3.28b)
d; 2 (n,m)= 3 h(k -2n)g(l - 2m)f;,; (k,1),
k.1 (3.28¢c)
fi3(n,m)= Zlg( k-2n)g(1-2m)f;y, (k, 1),
k,
(3.28d)

or

f;=(H®H)fi,, (3.29a)
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di.l =(G®H) fi+1 ’ (3.29b)

d;» =(H®G)f;,, (3-29¢)

di.3 =(G®G) fi+[ ’ (3.294d)
and

fir1(@,m)= ¥ h(k —20)h(l - 2m)f; (k,1) +3 g(k - 2n)h(l - 2m)d;  (k, 1)

k,l k,l
+ ¥ h(k - 2n)g - 2m)d; 5 (k,1) + ¥ g(k — 2n)g - 2m)d; 3 (k, 1),
k,I k,! (3.30)

or

f =(H " ®H")f; +(G"®H )d;; HH ®G")d;, +(G" ®G")d; 3
(3.31)
where fj, di 1, di,2 and dj 3 represent vectors formed by stacking the rows of matrices

from 2D signals.

Figures 3.6 illustrates the 2D decomposition and reconstruction in a block diagram ( with

only two levels shown).

If the signal fj+] consists of an N x N array, then each of the arrays fj, dj 1, dj,2 and dj 3
consists of N/2 x N/2 elements. Therefore the 2D discrete wavelet transform are often
displayed graphically as in Figure 3.7. Figure 3.8 displays Lena image in the form of

Figure 3.7. before and after a discrete wavelet transform.
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(a) 2D decomposition
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(b) 2D reconstruction
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> fisl

Figure 3.6 Decomposition and Reconstruction of 2D signal

i-1,1

i-1,2

i-1,3
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i+1 —

1.2

d i3

Figure 3.7 The visualization of the 2D discrete wavelet transform



(a) Original Lena image

(b) Decomposition of Lena image

Figure 3.8 Lena image before and after a wavelet transform
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One of the attractive features of wavelet transforms for the analysis of signals is that they
cannot only be computed recursively in scale, from fine to coarse, but also be completely
reconstructed from coarse to fine scale. Therefore, different scales can be related to each
other. Such a feature is very useful for the development in this dissertation, since the
discrete wavelet transform provides a tool for effectively linking different resolution

levels.

3.5 CHOICE OF WAVELETS

From the previous discussion, it is clear that the application of wavelets for signal
analysis is influenced by the choice of wavelets. There is no universal criterion for
choosing a wavelet basis since the choice of wavelets depends on the objectives of each
application. For example, in signal coding applications, the objective is efficient
compression of a given signal such as sound or images. In this case, the optimal choice of
a wavelet basis from a library orthonormal bases such as orthogonal wavelet-packets is
given by the entropy criterion (Coifman and Wickerhauser, 1992; Mayer, 1993;
Wickerhauser, 1994). The idea is to choose an orthonormal wavelet basis relative to

which the given signal has the lowest information cost.

In gravity field applications, the objective is to link a signal at different resolutions. This
means that it should be able to obtain the signal at coarse resolution within a low
frequency band from the signal at fine resolution through a lowpass filter corresponding

to a scaling function. In other words, it should be able to extract the detailed information
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in a high frequency band of the fine-resolution signal using a highpass filter
corresponding to a wavelet function. Therefore, the criterion for an optimal choice is that
the wavelet function is as close as possible to that of the ideal half-band highpass filter.

The frequency response of the ideal half-band highpass filter is

T
0 otherwise

(3.32)

as shown in Figure 3.9.

0.8+
0.6}
04}

0.2}

freauencv

Figure 3.9 The ideal haif-band highpass response

In the following, the choice of an wavelet basis from a library of Daubechies compactly
supported wavelets will be discussed. To know which Daubechies wavelet should be
chosen, one should know which Daubechies wavelet function will be the closest to the
ideal half-band highpass filter, or equivalently, which Daubechies scale function will be

the closest to the ideal half-band lowpass filter,
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Since the first N/2 moments of the Daubechies wavelet function y(x) are zero for a given

N, as can be seen from Equation (3.19), the following equation can be obtained

v®0)=0,k =0, 1, ..., N/2-1,
(3.33)

where ¥ is Fourier transform of the wavelet function. Using the Taylor expansion and
Equation (3.33) leads to

N/2-
¥@)= 3 lI};‘I""’(O)mk +o(@"?) =o(@""?),
k=0 .

(3-34)
Equation (3.34) indicates that ¥(w) is close to zero within a certain frequency interval [0,
Sy] and &y will increase with the increase of N. Therefore the wavelet function will be
closer to the ideal half-band highpass filter with larger N. Figure 3.10 shows the

frequency responses of different FIR highpass filters corresponding to Daubechies

wavelets of different N.

0.8

0.6}

04r

02}

e

0 05 {1 15 2 25 3
frequency

(a) Daubechies wavelet N = 8
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(b) Daubechies wavelet N =16
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0.4;

0.2 I
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(c) Daubechies wavelet N = 32

Figure 3.10 Frequency response of different Daubechies wavelet FIR filters

From Figure 3.10, it is easy to see that the frequency response of Daubechies wavelets is
closer to the ideal half-band highpass filter with increasing N. Therefore, the higher the
order of Daubechies wavelets, the better the choice of the wavelet for gravity field

approximation.
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3.6 MULTIRATE SYSTEMS

As mentioned before, a current limitation of using discrete wavelet transforms based on
multiresolution analysis is that only a dyadic tree structure can be implemented. This
means that sampling rate conversion between two different resolution levels can only be
done by a factor of 2. For the non-dyadic cases, sampling rate conversion cannot be
realized by using the discrete wavelet transforms at this time. In this case, a multirate
system can be used to solve this problem. Multirate systems have been widely used e.g.
in communication, speech processing, image compression, antenna systems, adaptive
signal processing, and numerical solution of differential equations ( e.g. Khan, 1980;
Crochiere and Rabiner, 1981; Vaidynathan, 1990 and 1993; Liu, 1994; Fliege, 1994;
Ratzlaff, 1995). Multirate signal processing is a technique of using different sampling
rates within a system to achieve computational efficiencies that are impossible to obtain

with a system that operates on a single fixed sampling rate.

3.6.1 Fundamentals of Multirate Systems

The basic building blocks in a multirate digital signal processing system are decimators

and interpolators. Figure 3.11 shows a block diagram of these building blocks. The

decimator is characterized by the input-output relation

yp (1) =x(Mn), (3.35)
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X)) —{ | M e yo(n)

(a) M-fold decimator

x(n) ~ L b——ym

(b) L-fold interpolator

Figure 3.11 Multirate system building blocks

Equation (3.35) means that decimation by a factor of M is achieved by keeping every Mth
samples of an incoming signal. However, to avoid aliasing of frequencies above the
passband into the passband requires lowpass filtering ( decimation filter ) the incoming

signal prior to decimation, as shown in Figure 3.12a.

x(n) —={ H(z) ‘M = y(n)
(a) Decimation filter

x(n) —={ AL H@) ——y(n)
(b) Interpolation filter

Figure 3.12 Decimation and interpolation filters

The interpolator, on the other hand, is described by the following input-output relation



77

n . . .
y1 (@)= x(r) if n is a multiple of L (3.36)
0 otherwise

That is, the output is obtained by inserting L-1 zero values between adjacent samples of
x(n). However, to prevent amplitude and phase distortion in the frequency band above the
lowpass cutoff frequency, a second filter called interpolation filter is required on the final

output sequence, as illustrated in Figure 5.12b.

Decimation and interpolation filters can be described using the following input-output

relation in the time domain

Y@= 3 x(kh(nM - k), M - fold decimation filters (3.37a)
yw= ¥ x(k)h(n - kL), L — fold interpolation filters (3.37b)

or , in matrix form,

y =Hpx, M - fold decimation filters (3.38a)

y=H;x, L - fold interpolation filters (3.38b)

The above decimation and interpolation procedures only allow the change of sampling

rate by interger number. For sampling rate conversion by a nonintergral (rational) number
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M/L, these two procedures can be combined. This is done by first increasing the sampling
rate by L using an interpolation filter and then decreasing it by M using a decimation

filter, as shown in Figure 5.13. The input-output relation in this case can be written as

y@=_ S x(0h(aM - kL) (3.39)

x(n) —{ AL —-hh(z) b—bllio(z)—> WM = y(n)

(a) Cascade of an interpolation filter a and decimation filter

X(N) — AL >H (2) > {M > y(n)

(a) General structure

Figure 3.13 Sampling rate conversion by a rational number
3.6.2 Polyphase Structure

An efficient implementation of decimation and interpolation filters can be done using
polyphase decomposition. To introduce polyphase decomposition, one starts with the

following transfer function representing a digital filter:

H@z)= E h(n)z™™. (3.40)

n=-co
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Set
Eg@= X hCn)z™" (3.41a)
n=—co
E/(Z)= YhCn+Dz™", (3.41b)
n=-—co

Equation (3.40) can then be written as

H(z)=E((z?)+z7'E;(z?). (3.42)

Basically, Equation (3.42) regroups the impulse response h(n) into even numbered
samples h(2n) and odd numbered samples h(2n+1). Equation (3.42) is called Type 1

polyphase decomposition (M=2). Equation (3.42) can also be written in another form, i.e.

H(z):z“IRo (z2 )+Ry (22)_ (3.43)

where Rg(z)=E{(z) and R(z)=E((z). Equation (3.43) is called Type 2 polyphase

decomposition. Equations (3.42) and (3.43) can be easily extended to the case of M > 2.

With the help of polyphase decomposition, a decimation filter and an interpolation filter

can be implemented in a polyphase form, as shown in Figure 3.14.

x(n) ——=|{ | 2 Eo(z) +—

L |

) J

{2

E1(2) y(n)

(a) Decimation filter
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X(n) ——=| Rof2) te |

Ri@@) f—> 12 | v(n)

(b) Interpolation filter

Figure 3.14 Decimation and interpolation filter in a polyphase form

A discussion on the efficiency of using the polyphase form for decimation and

interpolation can be found in Vaidyanathan (1993).
3.6.3 Window Technique for the Design of a Multirate Lowpass FIR Filter

There are different methods available to design a multirate lowpass FIR filter (e.g.
Crochiere and Rabiner, 1981; Vaidyanathan, 1993; Fliege, 1994 ). One straightforward
approach used in this dissertation is the windowing technique, in which the filter design

h(n) can be obtained as

. tn
sin(—)
h(n) =—M— w(n), (3.44)
mn

where w(n) is a finite-duration sequence called the window function. One commonly
used type of windows is Kaiser window, which will be used to design a multirate lowpass

FIR filter in Section 5.5. The Kaiser window is given by (Vaidyanathan, 1993 )
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Io(b\/l ~(/0.5N)? )
Iy(b)

0 otherwise

N N
w(n)= -—<ns— 3.45
(n) 5 > (3.45)

where I (x) is the modified zeroth-order Bessel function. The parameter 8 can be found

using the following formula

0.1102(A —8.7) if Ag >50
b=140.5842(A —2D%* +0.07886(A —21) if21<A <50 , (3.46)
0 if Ag < 21

A is the minimum stopband attenuation. The filter order N is estimated from

Ag—195

= (3.47)
14.36Af

for given parameters Ag and Af ( Normalized transition bandwidth).

3.6.4 Two Dimensional Decimation and Interpolation Filters

The basic concepts of decimator and interpolator can be extended to the 2D case.
However, decimation and interpolation of a 2D signal are fundamentally more

complicated because there are many ways to choose the sampling geometry. The simplest
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method is rectangular sampling, which can be viewed as a direct extension from the 1D

case.

The decimator and interpolator using rectangular sampling is characterized by the

following input-output relations
¥p (HQ,DI)=X(M0110,MII11), (3.48a)

and

l'lo n1 R < 4. .
x(——,—) if ng and ny are multiplies of Ly and L, re tivel
YI(no,n1)=[ (LO ’Ll) 0 1 P 0 1» (ESpectively
0

otherwise

(3.48b)

Similar to the 1D case, a 2D decimation filter and an 2D interpolation filter should be
used to avoid aliasing, amplitude and phase distortion. For rectangular sampling, a

separable 2D filter coefficients h) (ng,n;)can be obtained from 1D filter coefficients

h(n) as follows:
h2 (no,n1)=h(n0)h(n1) (349)

In this case, 2D decimation and interpolation filters can described using the following
input-output relation in time domain

y(n,m)= c E x(k, Dh(nM -~ k)h(mM - 1), M - fold decimation filters  (3.50a)

’ = —00
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y@,m)= ¥ x(k,Dh(n—kL)h(m-1IL), L foldinterpolation filters (3.50b)

,__.“

or , in matrix form,

y=Hp ®Hp)x, M - fold decimation filters (3.51a)

y=(H; ®H,)x, L - fold interpolation filters (3.51b)
A detailed discussion on 2D filter design can be found in Vaidyanathan (1993).

3.6.5 Multirate Filter Banks

A filter bank decomposes the signal spectrum in a number of directly adjacent frequency
banks and reconstructs the signal spectrum by using lowpass, bandpass, and highpass
filters. Decomposition is performed by an analysis filter bank and reconstruction by a
synthesis filter bank. An analysis bank is a set of analysis filters which splits signals into
M subband signals, while a synthesis bank consists of M synthesis filters which combine
M signals ( usually an analysis filter bank ) into a reconstructed signal. Figure 3.15
shows a diagram of an analysis filter bank and a synthesis filter bank. If the analysis
filters is followed by decimators, the analysis filter bank is the decimated analysis filter
bank. To reconstruct the signal from the output of the decimated analysis filter bank,
interpolation is needed before using the synthesis filter bank. This type of filter banks is a

multirate fiiter bank. The basis structure of such a filter bank is illustrated in Figure 3.16.
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The reconstructed signal using the multirate filter bank may differ from the original
signal for three reasons: aliasing, amplitude distortion and phase distortion. To eliminate
some or all of these distortions, different types of multirate filter banks, e.g. maximally
decimated filter banks, paraunitary perfect reconstruction filter banks, and linear phase
perfect reconstruction quadrature mirror filter banks, etc., have been proposed. A detailed

discussions on these filter banks can be found in Vaidyanathan (1993).

H1(2) f—>Yy1(n) yi(N) ——{Fi(2)

Hz(z) —— y2(n) y2(n) > F2(2) — n
) | ———> X(n)

Hum(z) > ym(n) ym(n) >l Fu(Z) [

(a) Analysis filter bank (b) Synthesis filter bank

Figure 3.15. Analysis and synthesis filter bank

Hi(2) > { M|—— yi(n)

Hz(2) >y Mb—— y2(n)
x(n) ——a

Hwm(z > ¢ M |—— ym(n)

(a) Decimated analysis filter bank
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yi(n) >4 M > F1(2) T

y2(n) ——=i4 M F(2) A
— x(n)

wm(n) ——lf M Fu(z)

(b) Interpolated synthesis filter bank

Figure 3.16 Multirate filter bank

In the following, only dyadic tree structured filter banks will be briefly reviewed, and the

relationship between the filter bank and dyadic wavelets will be pointed out.

In a tree structure, a signal is split into two subbands, lowpass half-band and highpass
half-band. By successively splitting the low frequency output signal into two subbands, a
dyadic tree structured analysis filter bank is obtained. The cutoff frequencies are related
to each other by a factor of two and spaced in octaves, as shown in Figure 3.17. This is
called octave analysis filter bank. Figure 3.18(a) shows a diagram of such an analysis
filter for the two level trees. This octave analysis filter bank is equivalent to the filter
bank shown in Figure 3.18(b). This corresponds to a three channel with unequal

decimation rate.

H3a H2
w8 ™4 177 o

n

frequency

Figure 3.17 Frequency response of an octave analysis filter bank
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Ga(z—>{ ¥ 2 —=>¥1(n)
Q(n) Ga@y—>1¥ 2 F—=>y2(n)

Ha@)—>]y 2 xi(n)

Ha(2) V2 —ys(n)

(a) Tree-structured analysis filter bank

H1(2) >y 2 > y1(n)
(M) —— Ha(2) > ¥ 4 |——y2(n)
»{ H3(2) > ¥ 4 | ya(n)

(b) Analysis filter bank with unequal decimation rate

Figure 3.18 Octave analysis filter bank

Similarly, an octave synthesis filter bank can be obtained by successively recombining
the low frequency and high frequency output signals from the octave analysis filter at the
same level of the tree. Figure 3.19 shows a diagram of such a synthesis filter and its

equivalent system for the two level trees.

yi(n)—t 4 2 Gs(2)
y2(n) —s{ A 2 |={Gs(2) x(n)
—> x1(n) iyl Hs(z)

ya(n) —= 4 2 [>{Hs(2)

(a) tree-structured synthesis filter
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yin) —>14 2 [—>{Fi(2)

y2(n) 4 Fz(2)

—-y:x\(n)

ys(n) —|4 4 Fa(z)

(b) Synthesis filter bank with unequal interpolation

Figure 3.19 Octave synthesis filter bank

When going through an octave analysis filter bank and an octave synthesis filter bank, an
output signal is obtained. If the output signal is exactly the same as the input signal, the

octave filter bank is a perfectly reconstructed filter bank.

From the above introduction to the octave filter banks, it is easy to see that the wavelet
decomposition and reconstruction of a signal by using a dyadic multiresolution analysis
can be viewed as a special octave filter bank, which has the properties of perfect
reconstruction and orthogonality. Therefore a discrete wavelet transform can be
considered as a multirate filter bank. References are made to Vaidyanthan (1993) and
Fliege (1994) for detailed discussions on the relationship between multirate filter banks

and wavelet transforms.
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CHAPTER 4
SOLUTIONS TO THE MULTIRESOLUTION APPROXIMATION PROBLEM
FOR GRAVITY FIELD MODELING

In this chapter, solutions to the multiresolution approximation problem for gravity field
modeling formulated in Section 2.6 will be presented. More specifically, a general
methodology of combining different methods for solving the muitiresolution
approximation problem is presented. Both signal domain and measurement domain
approaches are considered. Two signal domain approaches, fine-to-coarse estimation and
coarse-to-fine estimation, is derived by the combination of wavelet transforms and least-
squares collocation. A measurement domain approach is also proposed using a multirate
systefn and a MISO system. The proposed signal domain algorithms is then compared to
stepwise least-squares collocation taﬁng into account mathematical models, assumptions,

optimality criteria and solutions.

4.1 A GENERAL METHODOLOGY

After introducing the multiresolution approximation problem in Section 2.6 , the next
step is to find solutions to solve the problem. First, the currently available approaches in
gravity field approximation will be examined. The purpose of this is to see if there is any
possibility to solve the problems using the methods available. The solution of the

problems must address the resolution problem ( due to different resolution of
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measurements and signals ), the observable problem ( due to different type of
observables), the attenuation problem ( due to the attenuation effect of signals at different
altitudes ), and the noise problem ( due to different characteristics of measurement noise
from different procedures and different technologies ). Three methods described in
Chapter 2, i.e. the integral approach, the least-squares collocation approach and the MISO

approach, will be examined here.

The integral method can be used to solve the observable problem and the attenuation
problem since the gravity field signal can be determined from measurements, the type and
the altitude of which can be different from that of the signal. However, it cannot solve the
resolution problem and the noise problem due to the fact that the integral method does not
allow the input of measurements at two or more different resolution scales and doesn’t
take measurement noise into account at all. The least-squares collocation method can
solve the observable problem, the attenuation problem, and the noise problem because it
allows not only inputs of measurements of different types and at different altitudes and
output of different signals but also considers the noise statistics of the measurements. It
cannot solve, however, the resolution problem. The reason, as mentioned before, is that
the correlation between resolution levels cannot be handled by least-squares collocation.
The MISO method is quite similar to least-squares collocation in the sense that it also
allows not only inputs of measurements of different types and at different altitudes and
output of different signals but also considers the noise statistics of the measurements. It,

therefore, can also be used to solve the observable problem, the attenuation problem, and
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the noise problem. However, it cannot solve the resolution problem because it requires
that all measurement inputs have the same sampling rate. This is not the case when

measurements are given at different resolution scales.

From the above discussion, one can see that none of the three methods can solve the
resolution problem. That means none of them can solve the multiresolution
approximation problem. Therefore other methods are needed. Two methods, which can
be used to solve the resolution problem, are multirate systems and wavelet transforms.
This is because different resolutions can be linked through either a multirate system or a
wavelet transform. They, however, cannot solve the observable problem, the attenuation
problem, and the noise problem. This is due to the fact that they can only handle signals
of same type and don’t consider noise characteristics. Therefore, a multirate system or a

wavelet transform cannot solve the multiresolution approximation problem alone.

The capabilities of the above methods for solving the multiresolution approximation

problem are summarized Table 4.1.

Table 4.1 clearly indicates that to solve the multiresolution approximation problem, the
combination of two different methods is necessary. Therefore, the following discussion
will emphasize a general methodology of combining different methods for solving the
muitiresolution approximation problem. Specific algorithms will then be proposed in the

next two sections.
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Method Resolution Observable Attenuation Noise
problem problem problem problem
Integral No Yes Yes No
formulas
LSC No Yes Yes Yes
MISO No Yes Yes Yes
Multirate Yes No No No
systems
Wavelet Yes No No No
transforms

Table 4.1 Capabilities of different methods for solving multiresolution problems

Possible solutions to the multiresolution approximation problem can be classified as

(i) Signal domain approaches

(ii) Measurement domain approaches

These two approaches will be discussed separately.

4.2.1 Signal Domain Approaches

In signal domain approaches, the transition from one resolution level to the next is done

in signal domain. That means that decomposition and reconstruction are performed on

signals. These approaches can be categorized as:
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(1) Fine-to-coarse estimation schemes: the estimation is done from the finest scale to the
coarsest scale, followed by sweeping from the coarsest scale to the finest scale.
(i1) Coarse-to-fine estimation schemes: the estimation is done from the coarsest scale to

the finest scale, followed by sweeping from the finest scale to the coarsest scale.

A fine-to-coarse estimation scheme starts with the estimation of a signal at finest scale
using the finest-scale measurements only. Possible estimation schemes at this stage are,
e.g. least-squares collocation and integral formulas. If least-squares collocation is used,
the minimum criterion will be the minimum principle (2.31) in Chapter 2. If an integral
formula is used, no minimum criterion will be available. Instead, an estimation error will
be computed by error propagation. The second step will be downsampling of the estimate
of the signal at finest scale. This can be done by using, e.g. a discrete wavelet transform
or a multirate analysis filter bank. The error of the estimated signal at coarse scale due to
the downsampling procedure will be calculated by error propagation. The third step will
then be to update this coarse-scale estimate using measurements at this resolution scale.
This can be done by using , e.g. least-squares collocations or the double-input single-
output system or the frequency-domain least-squares adjustment, in which the estimated
signal at coarse-scale is taken as measurement. If least-squares collocation is employed,
the minimum criterion will be of the same form as Equation (2.31). If a double-input
single-output system is used, the minimum criterion will be of the same form as Equation

(2.46). The minimum criterion for the frequency-domain least-squares adjustment can be
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found in Sideris (1996). The second and third steps will be repeated until the coarsest
scale has been reached. The final step is to obtain estimated signals at each scale by
sweeping from the coarsest scale to the finest scale. This step can be done by using, e.g.
the corresponding inverse discrete wavelet transform or a multirate synthesis filter bank.

The estimation errors are again computed by error propogation.

The procedure for a coarse-to-fine estimation scheme is very similar to that for the fine-
to-coarse estimation scheme except that the coarse-to-fine estimation scheme starts with

the coarsest scale.

The block diagrams in Figures 4.1 and 4.2 illustrate the fine-to-coarse and the coarse-to-

fine coarse estimation procedure described above.

The above two estimation procedures will be detailed in the next section where specific
algorithms based on discrete wavelet transforms and least-squares collocation are

discussed.

4.2.2 Measurement Domain Approaches

In measurement domain approaches, the transition from one resolution level to the next is
done in the measurement domain. This means that upsampling and downsampling are

performed at the measurement level.
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Estimation of a signal at the finest
scale using least-squares collocation
or an integral formula or other
method 7

Downsampling of estimated signal
at scale m-1 using a wavelet
transform or an analysis filter bank
or other method

|

Update of estimate at scale m-1 by
using least-squares collocation or a
MISO system or other method

No

The coarsest scale ?

lYes

Computation of signal estimate
from coarse to fine scale using the
inverse wavelet transform or the
synthesis filter bank or other

method

Figure 4.1 Block diagram for a fine-to-coarse estimation procedure
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Estimation of a signal at the coarsest
scale using least-squares collocation
oran integral formula or other

method

Upsampling of estimated signal
at scale m+1 using an inverse
wavelet transform or a synthesis

filter bank or other method

1

Update of estimate at scale m+1 by
using least-squares collocation or a
MISO system or other method

The finest scale ?

lYes

Computation of signal estimate
from fine to coarse scale using the
wavelet transform or the analysis
filter bank or other method

Output

Figure 4.2 Block diagram for a coarse-to-fine estimation procedure
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A measurement domain approach consists the following two major steps:

Step 1: Downsampling and upsampling of the measurements at different resolutions to a
given resolution.
Step 2: Estimation of the signal at the given resolution by combining all measurements at

this scale.

For a given resolution scale m, the measurements at resolution scales i > m will be
downsampled and the measurements at resolution scales i < m will be upsampled to the
resolution level m. This can be done by using, e.g., a discrete wavelet transform or a
multirate system. The errors of the downsampled and upsampled measurements will be

computed by error propagation.

Estimation at a specific scale uses the original measurements, the downsampled
measurements, and the upsampled measurements. The estimation of the signal at this
scale can be done by using , e.g. least-squares collocation or a multiple-input single-
output system or the frequency-domain least-squares adjustment. The minimum criterion
for this estimation will be of the same form as that in signal domain approaches whether
least-squares collocation or a multiple-input single-output system or the frequency-

domain least-squares adjustment is used.

The above two steps will be repeated for each resolution scale starting either from the
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finest scale or the coarsest scale.

A measurement domain approach procedure is shown in Figure 4.3.

[/

Decimation or interpolation of
—»| measurements at all resolutions
except scale m using a wavelet
transform or a multirate sysetm or
other methods

!

Estimation of the signal at scale m
using least-squares collocation or
a MISO system or other method

No

The coarsest scale ?

Yes

o/

Figure 4.3 Block diagram for a measurement domain approach

From the above discussion on both signal domain and measurement domain approaches,
it can be seen that both methods use the same information from measurements at multiple

resolution scales but different implementations. In signal domain approaches, different
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resolution levels are linked at the signal levels. However, they are linked at the
measurement level in measurement domain approaches. Measurement domain approaches
have the advantage that they are more flexible than signal domain approaches because
they allow to estimate different signals at different resolutions from multiresolution
measurements and signals domain approaches only allow to estimate same signals at
different resolutions. Also, if a signal is needed only at one resolution level between the
finest and the coarsest scales, the use of measurement domain approaches will be more
efficient since no sweep either from the finest to the coarsest scale or from the coarsest

to-the finest scale is needed.

Table 4.2 lists some possible approaches to solve the multiresolution approximation

problem by combining the different methods mentioned above.

Domain Method I Method I Method IIT Method IV
Least-squares AMISO Least-squares | A MISO system
Signal or collocation system plus collocation plus a wavelet |
measurement | plus a wavelet a multirate plus a multirate transform
transform system system

Table 4.2 Combination of different methods for solving the multiresolution problem



99

4.2 SIGNAL DOMAIN APPROACHES COMBINING WAVELET

TRANSFORMS AND LEAST-SQUARES COLLOCATION

In this section, two specific estimation schemes in the signal domain ( fine-to-coarse and
coarse-to-fine) will be discussed separately using a discrete wavelet transform and least-
squares collocation. All procedures will be given for the 2D case since the proposed

framework will be applied to gravity field modeling.

4.2.1 A Fine-to-Coarse Estimation Scheme

To begin, some notations will be defined. x(m) denotes the estimate of x at scale m based
on all measurements with resolution higher or equal to m. x(m+) denotes the estimate of
x at scale m based on all measurements with resolution higher than m. Similar notations

are used for other quantities. x{{m) denotes the fused estimate of x at scale m based on all

available measurements.

The fine-to-coarse estimation procedure starts with an upward or fine-to-coarse sweep,
which propagates the measurement information, level by level, from the fine scale to the
coarse scale, followed by a downward or coarse-to-fine sweep that propagates the
measurement information downward. The fine-to-coarse sweep consists of a

downsampling step from fine scale to coarse scale and a measurement update step, while
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the coarse-to-fine sweep consists of a fusion step from coarse scale to fine scale. The

upward and downward sweep steps are as follows:

Upward sweep or fine-to-coarse sweep

There are three essential steps to this procedure:

1) Estimation of x(M) and the corresponding error covariance matrix at the finest scale.
2) Estimation of x((m-1)+) from x(m).

3) Measurement update at scale m-1:

They will now be discussed one by one. The upward sweep starts with the estimation of
x(m) and the corresponding error covariance matrices at the finest scale M. The

mathematical model for estimating x(M) is

yM =LMGxM)) + vM=tM + VM, (4.14)

where yy is the measurement vector at the finest scale M, and Ly is the linear
functional relating the finest scale measurements to the signal x(M). The first and second

moments of which are assumed to be known, i.e.

E(x(M) =0, (4.15a)

E(x(M)xM)T)=C,, (M). (4.15b)
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VM is the measurements noise vector at the finest scale, the first and second moments of

which are assumed to be known, i.e.

E(vm) =0, (4.16a)

T \—
E(vyyvm)=Cyy M). (4.16b)

Equation (4.14) indicates that the measurements at the finest scale are involved in the

estimation of x(M) at this stage.

The estimation of x(M) can be done using least-squares collocation solution (2.32) based

on the minimum principle (2.31) in Chapter 2, i.e.

X(M) =C (MY Cy (M) +Cyy M) "Ly 4.17)

with error covariance

C_ (M) =C 15 (M) - C, (MY Cyt M) + C.y (M) "L Ce WD, (4.18)

where C,, (M), C, (M) and C,, (M) are the covariance matrix of t\f, vM and x(M),
respectively, Cy, (M) is the covariance matrix between x and t at the finest scale M , and
C: (M) is the error covariance of estimate x(M), Readers who are not familiar with the

theory of collocation are referred to Moritz (1980) and Krakiwsky (1990) for details.
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Since the objective of multiresolution approximation is to estimate a signal at multiple
scales, the next step will be the prediction of the next coarse-scale signal using the
information in Step 1). One way of doing this is to use a discrete wavelet transform
because it provides a tool for linking a signal at two different scales together. One
assumption made here is that a signal at different resolution can be represented using base
functions in a multiresolution analysis. In this dissertation, the discrete wavelet

transforms using orthonormal wavelets described in Section 3.4.2 will be used.

Suppose that x(m) and the corresponding error covariance matrixes Cg(m) have been

computed. The prediction x((m-1)+) can be done using the discrete wavelet transform

(3.29a) described in Chapter 3, i.e.

x((m-1H+) =(H® H) x(m) (4.19)

with error covariance
Ce((m-1)+)=(HOH)Co(m}HOH)T . (4.20)

Equation (4.19) can be written as

x((m-1)+) =P, x(m), @21
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where, P, =H®H is the orthogonal projection operator from Vyn to V.| in the

multiresolution analysis:

Pp:Vip = Vg - (4.22)

Therefore Equation (4.18) can be interpreted geometrically as an orthogonal projection of

x(m)e Vg onto Vi 1 by x((m ~1)+)=Pgy x(m).

At the same time, the details added can also be computed using formulas (3.29b)~(3.29d),

i.e.

di((m-1)}+) =(G® H) x(m), (4.23a)
d2((m-1)+) =(H® G) x(m), (4.23b)
d3((m-1}+) =(G® G) x(m). (4.23¢c)

with error covariance matrix
Cey, , =GO HCmGOH)T, (4.242)

Cey,, , =HOG)C(MHSG)T, (4.24b)

Cey, ; =GOG)CmNGBG)T, (4.24c)



104
where C, dp;’ Ce d,, M4 Ce d, s & the error covariance matrices of d,;, dy, > and

dq, 3 . respectively.

Equations (4.23) and (4.24) will be used in Step 2. Similarly, Equations (4.23a) to (4.23c)
can also be interpreted geometrically as orthogonal projections of x(m)e Vg, onto Wp,_

1,1 Wm-1.2 and W1 3, respectively, in the multiresolution analysis.

The x((m-1)+) from Step 2) can then be updated if the measurements at scale m-1 are

available. To this, the following mathematical models are used:

Y(m--1)+= X(m-1) + &m—1)+. (4.25a)

Ym-1 = Lm-1(x(m-1)) + vm.1 =tm-1 + V-1, (4.25b)

where, Y(m—1)+) = x((m-1)+1), €m-1)+ is the prediction error of x((m-1)+) from scale m
to m-1, Ym-1 is the measurement vector at the finest scale m-1, and Lm-1 is the linear

functional relating measurements at scale m-1 to the signal x(m-1). Vm-1 is the
measurements noise vector at scale m-1, the first and second moments of which are

assumed to be known, i.e.

E(vp.1) =0, (4.26a)

E(V_Vm)=Cyy(m—1). (4.26b)
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Equation (4.25a) means that x((m-1)+) will be used as measurement in the measurement

update step.

The following minimum principle is used for the estimation of x(m-1):

T -1
xm-DTC3 m - Dx(m-1) +| “m-1 [Ce((m—l) Cgv(m—l)] e

V-1 Cve(m-1) Cyy(m-1) Vool
=minimum.

4.27
Since the measurement noise between different scales is assumed to be uncorrelated, it is

easy to prove that &m.1)+ and vp.1 are also uncorrelated, i.e. Cey (m-1) = Cyg(m-1) = 0.

Therefore, the minimum principle (4.27) can be written as

x(m-1DTCF m - Dx(m-1) + v Cru(m—Dvy_y +&1 _ C'(m -1+ -

=minimum.

(4.28)
The following solution to Equation (4.25) can be derived based on the minimum criterion

(4.28):
x(m-1)=An 1 x((M-D+H)+Kpg 1 (Y1 — By x((m-14),

Cry =CxxM=D+D+Ce((m=D+1),

X
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Ap1=Cx((m-DHCL

Kmn1=Cny 6;1_1 ’

Cmi =Cxr((m=1D+)+Cy (m - 1)+)C;lm_1 CI[ (m - 1)+),

€ =Caltm—=1D4)+C,y (m)+ Cr(m—DHC  Cre((m - 1),

By =CL(m- DHCE -

Ce(m~D)=C_ (m-1+)~-C_((m-1DHCy_,C_(m-1+)+

- T
C"m—ltm-l C.tl ((m - 1)+) C"m-ltm-—l ’

p= -~ - -1
C"m-ltm-l - me-ltm-l me-lxm-l C"m-l me-ltm-l °

(4.29)
The derivation of (4.29) is the same as that of stepwise collocation in Moritz (1980)
except that the downsampled signal is used as measurement. For a detailed comparison
see Section 4.3. The above prediction and update procedures are repeated until the lowest
scale 0 is reached. Steps 2) and 3) provide the mechanism for combining data from two

different resolution levels for estimating the signal.
Downward sweep or coarse-to-fine sweep

At the coarsest scale 0, the estimate of the signal based on all multiresolution data is

obtained. However, it is necessary to reverse the procedure, i.e. to make a downward
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sweep, if the estimates of the signal at other scales based on all available information are
needed. The estimated signals at the coarsest scale provide the initialization of the

downward sweep, which proceeds recursively. Assume that the estimate xf(m) at a finer
scale has been computed with the initialization at the finest scale. The estimates xf(m+1)

can be calculated by using the inverse discrete wavelet transform (3.31) in Chapter 3, i.e.

xg(m+1)=(H " ®H")x,(m)+(G* @®H")dp
HH" ®G*)dy s +(G"®G )dpy 3

(m=0,1.2,.,M). (4.30)

with the error covariance matrix

Cep(m+1)=(H" ®H) Ce(m)H" ®H")T + (G*@H*)cedm(G*@H‘)T
* * * * T * * * * T
(H"®G*)Cey ,(H"®G")" +(G"®G")Cey (G OGT).
4.31)

The downward sweep provides the mechanism for obtaining estimates at each and can be

viewed as the synthesis of the signal at different scales in the multiresolution analysis.

4.3.2 A Coarse-to-Fine Estimation Scheme

In the following, a coarse-to-fine estimation scheme for the solution of the

multiresolution approximation problem will be described.
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In this scheme, x(m-) denotes the estimate of x at scale m based on all measurements with
resolution lower than m. Similar notations are used for other quantities. xf(m) denotes the
optimal estimate of x at scale m based on all available measurements. Mathematical
models and assumptions made will be the same as in the fine-to-coarse estimation

scheme.

The coarse-to-fine estimation procedure starts with a downward or coarse-to-fine sweep,
which propagates the measurement information, level by level, from the coarsest scale to
the finest scale, followed by an upward or fine-to-coarse sweep that propagates
measurement information upward. The coarse-to-fine sweep consists of a prediction or
interpolation from coarse-scale to fine-scale and a measurement update step, while the
fine-to-coarse sweep consists of a downsizing resolution step from the finest scale to the

coarsest. The downward and upward sweep steps are detailed as follows:

Downward sweep or coarse-to-fine sweep

There are three essential steps to this procedure:
1) Estimation of x(0) and the corresponding error covariance matrix at the coarsest scale.
2): Estimation of x((m+1)-) from x(m).

3) Measurement update at scale m+1.
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They will be now discussed in detail. The downward sweep starts with the estimation of
x(0) and the corresponding error covariance matrix at the coarsest scale. The estimation
of x(0) can be done using the least-squares collocation solution (2.32) based on the

minimum principle (2.31) in Chapter 2, i.e.

x(0) =C,(0)XCy (0)+Cy(0)yo (4.32a)

with error covariance

C (0)=Cy;(0)-C, (0 Cy (0) + Cyy(0))71C (0),
(4.32b)

where C,(0), C.y(0) and C,,(0)are the covariance matrix of tg, vQ and x(0),
respectively, C,;(0) is the covariance matrix between x and t at the coarsest scale O, and
C¢ (0) is the error covariance of estimate x(0), Similarly as before, the integral method

might also be employed if the type of measurements at the coarsest scale is the same, e.g.,

the geoidal height measurements derived from satellite altimetry.

Suppose that x(m) and the corresponding error covariance matrixes Cg(m) have been

computed, the updated estimates of the signal x(m) are then predicted down to the next

finer scale according to the inverse wavelet transform (3.31) described in Chapter 3, i.e.
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x(m+1)-)=(H" ®H") x(m) +(G* ®H" )d 5, ;

+HH ®G")dy o +(G*®G" )y 3 (4.332)
with the error covariance matrix

Ce(fm+1)-)=(H* ®H")T C,(m)H* ®H") + (G* ®H*)T C, 4, , (G ®H)

* * T * * * =, T * *
(H"®G")" C¢, (H ®G) + (G ®G™)" Cey (G"®G").
(4.33b)

where dp, 1, dy, 2and dy, 3 are set to O due to the fact that detailed information is not

available at this point. C , C and C are the error covariance matrices of
P sdm.! sdm.z 5d,,,_3

dm,1> dm2and dp, 3 , the elements of diagonals of which are set to be larger enough

since there is no any information regarding dp, ;, dp, 2and dp, 3 .

The x((m+1)-) from Step 2 can then be updated if the measurements at scale m+1 are

available. To this, the following mathematical models are used:

Y(m+1)-= X(m+1) + &m+1)-» (4.34a)

Ym+l = L+ 1(X(M+1)) + Vipe) =tmeg + Vs, (4.34b)

where, Y(m+1)-) = x((m+1)-), &(m+1)-) is the prediction error of x((m-1)+) from scale m to

m+1, Ym+! is the measurement vector at scale m+1, and Lm+1 is the linear functional
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relating measurements at scale m+1 to the signal x(m+1). Vm+1 is the measurements noise

vector at scale m+1, the first and second moments of which are assumed to be known, i.e.

E(vm-1) =0, (4.35a)
T,
E(v,_;VL)=Cy(m-1). 4.35b)

The following minimum principle for estimating x(m+1) is used:

x(m+DTC m+Dx(m +1) + v Coy(m+ Dy +ep  Col(m+D)e
=minimum.

(4.36)

The following solution to Equation (4.34) can be derived based on the minimum criterion

(4.26):

x(m+ 1) =Apgx((m+ 1))+ K1 (Ymse) — Bmerx((m +1)-)),

C =Cyx (M +1)-)+Ce((m+1)-),

Xm+1
Bms1 = Crx((m+D-)C,, 5
Km+l =Cms1 E:+l ’

Cpue1 =Cxe (M + 1))+ Cp ((m +1)-)C;L_ CE ((m +1)-),

Xm+l
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C ey =Cau(@+14)+Cpy (m) + CR (m+D-)CL | Co(m + 1)),

Apa =Cr(m+1DCL

Cg(m-&-1)==C,m((m-i-1)-)-Cm((tn-{—l)--)C'l C . (m+1))+

Xm+l

- -T
Cxm+itm+1 C.ll (m +1)-) Cxm+itm+1 *

C-l

me+ltm+l =me+llm+l -me+lxm+l xxm—lc"m+ltm+l -

(4.37)

The above update and prediction procedures are repeated until the finest scale M is

reached.

Upward sweep or fine-to-coarse sweep

At the finest scale, the estimate of the signal based on all multiresolution data is obtained.
However, it is necessary to reverse the procedure, i.e. do an upward sweep, if the
estimates of the signals at coarser scales based on all multiresolution data available are
needed. The estimated signals at the finest scale provide the initialization of the upward
sweep. This step also proceeds recursively. Assume that the estimate xg(m) at a finer scale
has been computed with the initialization at the finest scale. The estimates xg{m-1) can be

calculated using the wavelet transform (3.29a) in Chapter 3:
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x((m-1)+) =(H* ® H*) x(m) (4.382)

with the error covariance

Ceol(m-1)+)=(H* @ H*)T Ceo(m)(H* @ H™). (438b)

Equation (4.38) provide the formulas for estimating the signal and the corresponding

error covariance matrix at the coarse scales.

From the above derivations, it can be seen that both fine-to-coarse estimation and coarse-
to-fine estimation use the same information from data at multiple scales. The major
difference between them is the way they are implemented. When a signal is only required
at the coarsest scale, the use of the fine-to-coarse estimation scheme is more efficient
since there is no need to perform the coarse-to-fine sweep. On the other hand, if a signal
is only required at the finest scale, the use of the coarse-to-fine scheme is more efficient

since there is no need to perform the fine-to-coarse sweep.

The main advantage of these approaches is that they allow not only solutions of the
problem at multiple resolutions but also the fusion of measurements at multiple

resolutions, which will be demonstrated in Chapter 5.
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4.3 A MEASUREMENT DOMAIN APPROACH COMBINING A MULTIRATE
SYSTEM AND A MISO SYSTEM

In this section, a specific algorithm for measurement domain approach is proposed using

a multirate system and a MISO system.

To simplify the discussion, the derivation will be done for signals and measurements at
two different resolutions assuming that the sampling rate difference between them is 2. A
similar procedure can be applied to other cases. The assumption in this section is that
both the input signals and their errors are stochastic variables with known power spectral

densites.

The measurement domain approach combining a multirate system and a MISO system

consists of the following two steps:

1) Decimation ( or interpolation ) of measurements at fine scale ( or coarse scale ) by a

factor 2 using a multirate system.

2) Estimation of the signal at coarse scale ( or fine scale ) using the double-input single-
output systermn based on measurements at coarse scale ( or fine scale ) and decimated ( or

interpolated ) measurements
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These two steps will now be discussed in detail. The measurement domain approach

starts with decimation of the fine-scale measurements y; by using a decimation filter

(3.51a), i.e.
Yoo =Hp ¥y » (4.39a)

where Hp, is the 2D decimation filter coefficients matrix and yp, is the decimated output.
At the same time, the error covariance matrix after decimation can be computed by
standard error propagation procedures by assuming that the covariance matrices of noise

in y, is known, i.e.

C =HpC,, Hp",

vDOVDO (4.39b)

where C,,l‘,1 and CVDOVDO are the covariance matrices of noise in y; and ypo,

respectively. In the frequency domain, Equation (4.39) takes the following form

1 ® @ 0] @
Y =_ — = — . et ,
po (@) 2[HD(2)Y1(2) + HD(2 ) Yl(2 )] @40a)

and

P,

=nm,@)e = 9 o
@ =7 [Hy By () + IHp(S - OF By

O, 0
YDO ('2-)(°2- -1 ],

(4.40b)
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where ® = [u, v] is the 2D circular frequency. Hp(®) is the frequency response of the 2D
decimation filter. Y, is the Fourier transform of y;. Ypy is the frequency representation of
Yoo, Pvy (®) and P, (@) are the power spectral densities of noise in y, and ypo,
respectively. The derivation of Equation (4.40a) can be found in e.g. (Crochiere and
Rabiner, 1981). The second term in Equation (4.40a) is due to the aliasing effect. If the
decimation filter Hp(®) is close to the ideal half band lowpass filter, the second term in

Equation (4.40a) can be neglected. In this case, Equation (4.40) can be simplified, i.e.

1. o L0
Ypo(@)=—Hp () Yi(),
po(@)=7 NG @.41a)

and .

&,

1 o)
(@)=—=IHpy (=) P,  (—
4 P2 2 (4.41b)

P"Y DO "Y1

After finishing the above measurement decimation procedure, the next step will be the
estimation of the signal at coarse scale based on the coarse-scale measurements y, and the
decimated measurements ypo. This can be done by using the double-input single-output
system, in which the coarse-scale measurements y, and the decimated measurements ypg
are the two inputs and the signal to be estimated at coarse scale is the output. The

mathematical model to be used in this case is
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Xo(@)=H ()Y, (@)+H, (@)Yp, (@)+E,(®), (4.42)

where H,(®) and H, (@) are the frequency responses to be estimated, and E (@) is the

noise of the estimated signal at coarse scale expressed in frequency domain. To determine

H,(®) and H,(®), the following minimum criterion

(Peyg @1=IXo@) - Hy@)Yo (@) + Hy (@) Vpo (@) = minimum

is used, where P, X0 (w) is the power spectral density of the output noise. Therefore, the

following estimate of the signal x, at coarse scale in the frequency domain and the

corresponding error power spectral density can be obtained using Equations (2.48) and

(2.49) in Section 2.5, i.e.
Xo(0)=H, (@)Y, (@)+H, (@)Y (@), (4.443)
Pego = Pxo ~1HL(@)F Py — 2H] (@)H, (@)Pyg, g 1Ho (@) Pypyg (4.44b)

where

~ = Py @) 1
P, (@) . Pyyo (@) Py (@) +P

Pyo (@)

b

P
vypo ) (4.452)
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. P, (@) 1
H (m) - 0yDO ,
i Pipo @) | Puypy @) By @ +F,, (@)

Pypo (@) Puyo (@ 8.45b)

1+

where P, is the power spectral density of x. P,y is the cross-spectral density of x and y.

After 5{0 (o) and Pe,.(0 have been computed, the estimates of the signal and the

corresponding error covariance matrix at coarse scale can be obtained by using the

inverse FFT method.
Similarly, interpolated measurements at fine scale from the coarse-scale measurements y,
can be obtained by using an interpolation filter (3.51b) , i.e.

Yu=H;yo, (4.46a)

where Hj is the 2D interpolation filter coefficients matrix and yj is the interpolated
measurements. At the same time, the error covariance matrix due to interpolation can be

computed by the error propagation assuming the covariance matrices of noise in yp is

known, i.e.
C =HpCymvoHp ' »
viivip ~  PTvov0TD (4.46b)
where C,,,, and CVnVIl are the covariance matrices of noise in ygand yy.
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Equation (4.46) can also be written in the frequency domain (Crochiere and Rabiner,

1981), i.e.
Y, (@) =H,(0) Y,Qw), (4.47a)
and
_ 2
P"YII (0) =IH(0)! PVYO Qw), (4.47b)

where Hy(w) is the frequency response of the 2D interpolation filter. Yq(®) is the Fourier
transform of y,. Yy(w) is the frequency representation of yy_ P, (@) and P,,(®) are the

power spectral densities of the noise in y, and yy;, respectively.

After finishing the above measurement interpolation procedure, the next step is the
estimation of the signal at fine scale based on fine-scale measurements y; and the -
interpolated measurements yy,. This can also be done by using the double-input single-
output system, in which the fine-scale measurements y; and the interpolated
measurements yy, are the two inputs and the signal to be estimated at fine scale is the
output. The mathematical model and the minimum criterion used in this case is the same
as Equations (4.42) and (4.43), respectively, except that two inputs are y; and y;; not yy

and ypo. Therefore, formulas similar to Equations (4.44) and (4.45) can be obtained for
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estimating the signal x; at fine scale in frequency domain and the corresponding error

power spectral density, i.e.
X, (@) = H(0)Y,(0)+H, ()Y, @), (4.483)
~ 2 — -~ ~ 2
Py, = Py ~1H @) By ~ 28] (@)H, (@B, 1H,@)F By, 4.485)
where
- Py (@) 1
o= :
P, (@) N P, @) Py (@)+F, ()
P, P, ()]
n (@) e (4.492)
- P (@) 1
i, (@) = .
Pypo (@) I+ Poyp @ By @+P, (@)
Pn@ Py, @) (4.49b)

After ).(1 (o) and Peil have been computed, the estimates of the signal and the

corresponding error covariance matrix at fine scale can be obtained by using the inverse

FFT method.

44 COMPARISONS BETWEEN THE PROPOSED ALGORITHMS AND

STEPWISE LEAST-SQUARES COLLOCATION

In this section, the similarities and differences between the algorithms described in the

previous section and stepwise least-squares collocation (LSC) will be analyzed by
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examining the assumptions, the mathematical models, the minimum criteria and the
solutions of both methods. The advantages and disadvantages of the proposed method
when compared to stepwise LSC for solving multiresolution approximation problems will
then be addressed. This will similarly apply to structural similarities between proposed
algorithms and those of Kalman filtering, which for the purpose of this discussion can be

viewed as a form of stepwise least-squares collocation (Moritz, 1980).

To make the comparisons more clear, only measurements at two resolution levels and
estimates of a signal at these two scales will be used. Also, only the fine-to-coarse
estimation scheme will be compared to stepwise LSC. For analysis in other cases, the

same procedure can be followed.

Tabie 4.3 summarizes the assumptions, the mathematical models, the minimum criteria
and solutions in both methods. The second column lists all assumptions made in both
methods. Listed in the third column are the mathematical models used in both methods.
The fourth column shows the minimum criteria for both methods. The fifth column gives
the solution for each method. The similarities and differences of the two methods will

now be discussed column by column.

Assumptions

The assumptions for both methods are quite similar in the sense that both methods

assume that the first and second moments of both the signal and measurement noise at
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two different resolutions are known. It is assumed that there is no correlation between the
signal and measurement noise. The correlation between measurement noise at two
different resolution is also assumed to be known. In the proposed method, measurement
noise at two different resolution is assumed to be uncorrelated. This assumption is usually
valid since the measurements at two different resolutions are obtained from different

sources or different technologies.

In spite of these similarities, there is a fundamental difference in the assumptions. It is the
way in which the signal at two different resolutions is linked. In stepwise LSC, the signal
at two different resolution is linked through the correlation of the signals and
measurements at two different resolutions. Therefore the cross-covariance matrices
Cx(ojyl, Cx(1)yo and CyQy] have to be known. These matrices are usually calculated
by an analytical covariance function. Since this covariance function is only a function of
distance between two points, theoretically it cannot be used to compute the correlation
between signals with different resolution. In the proposed method, the signal at two
different resolution is treated in a different way. Instead of considering the correlation
between the signal at the different resolution, the signal at each resolution scale m is
assumed to be a function belonging to the function space Vi, in a multiresolution
analysis. This means that the signal at each resolution can be represented by using the
base functions corresponding to this multiresolution analysis. In this way, the signal at

two different resolutions can be related through the wavelet transform which corresponds
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to this multiresolution analysis. Therefore the computation of the cross-covariance

matrices Cx(0)y1, Cx(1)y0 and CyQy] is not necessary.

Mathematical Models

The mathematical model used in both methods is almost the same, except for the
difference in linking the estimates at two different scales. This is due to the assumptions

made in each case.

Minimum Criteria

The minimum criteria used in both method are also quite similar in structure, i.e. both

methods use the quadratic forms. However the meaning is different.

In stepwise LSC, only one quadratic form is used for the minimization through the whole
stepwise LSC procedure. The estimates of the signal at two different resolutions from
stepwise LSC are therefore optimal if the auto-covariance and cross-covariance matrices
of the signal and measurement noise in the quadratic form can be correctly computed.
This is usually not the case. Covariance models are derived from empirical data and are
simply estimates. In addition, the cross-covariance matrix of the signal at two different
resolutions cannot be correctly calculated. The optimality of the solution in this case is

not valid.
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In the proposed method, two quadratic forms are used. Each minimum criterion is only

valid at its resolution level. For example, the minimum principle

xMT CcZlmx@) +v{cl@)v,; =minimum

is only applicable to the fine-scale measurement. Therefore these two criteria can be
considered as local minimization criteria when compared to that of stepwise least-squares
collocation. In the fine-to-coarse estimation scheme, the improvement of the coarse
estimate is achieved by optimally combining the coarse-scale measurement and the
predicted estimate from the fine-scale, while the improvement on the fine-scale estimate
is obtained through the coarse-to-fine sweep procedure by using the inverse wavelet
transform. The improved estimate at the coarse-scale will contribute to improvement of

the fine-scale estimate in the low frequency part.

Solutions

Some formulas in both methods are either the same or very similar. For example, the
formula for estimating x(1) is the same in both methods since the least-squares

collocation solution is used for both cases. Also, the formula for estimating xf(0) is

similar in form.
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The major difference between the two solutions is the way in which they connect the
signal between resolutions. In stepwise LSC, the link between two resolutions is through
the cross-covariance matrices C12 , C1(0), C2(0), C1(1) and C2(1), as shown in the
formulas for estimating x(0), xf(0) and xf(1). However, in the proposed method, it is done

by using the wavelet transform, as indicated in the corresponding formulas for estimating

x(0) and x{(1).

As far as computation efficiency is concerned, the proposed method is more efficient than
stepwise LSC, as will be explained in the following. Assuming that the total number of

measurements y] and y2 is 2Nx2Nand NXxN, respectively, and the number of
estimates of the signal at fine scale and coarse scale is also 2Nx2Nand NxN,

respectively. Let’s compare the number of operations needed to compute x(1), x(0) ( or

x(0+) ), xf(1) and x£(0) in the stepwise LSC solution and the proposed solution one by

one.

The number of operations for the computation of x(1) for both methods is the same, as
can be seen from the formulas for computing x(1) in each solution. To calculate x(0)

using the stepwise LSC solution, the number of multiplication and addition operations

would be N2 x (2N)? and N%x (2N-1)? assuming (C,(1)+C,y(1)) "'y, has been

known after computing x(1). This is proportional to N 4 . However, the number of

multiplication and addition operations to compute x(0+) using a fast wavelet transform is



127

only proportional to (2N)2x (2N)? =4N? (Beylkin et al, 1991). The number of
operations for computing xf(0) using stepwise LSC will be much more than that using the
proposed approach since the operations on matrices of order 2N x2N are needed for the
former, while only the operations on matrices of order NxN are needs for the latter.
This can be seen by comparing (2.36) and (2.38) with (4.29). It is worthwhile to mention
that the computation of xf(0) in the proposed method can be done by FFT, as indicated in
the previous section. But it is impossible to use FFT in stepwise LSC because the
sampling rate of the measurements at two different resolution is different. Therefore, the
number of operations for computing xf(0) using stepwise LSC will be far more than that
using the proposed approach in this case. The number of operations for computing xf(1)
using stepwise LSC solution will also be much more than in the proposed method since

the computation of x£(1) in the proposed method is done by an inverse discrete transform,

in which the number of operations needed is only proportional to 2N x2N .

Therefore the proposed method is more efficient than stepwise LSC solution.
Furthermore, the efficiency of the proposed method will increase with the number of
resolution levels when compared to that of the stepwise LSC solution. Since the estimates
of the signal at multiple resolutions, say 4, are to be calculated from the measurements at
multiple resolutions, they have to be updated at each resolution level when using stepwise
LSC. This means that the estimate at each resolution level have to be updated four times
in this case. However, they are only needed to be estimated twice in the proposed method,

no matter how many resolution levels there are.
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From the above comparisons between both methods, it can be seen that the main
computational advantage of the proposed method over the stepwise LSC method is that it
avoids the computation of the cross-covariance matrices of the signals at different
resolution levels and provides a more efficient way for solving multiresolution
approximation problems. A disadvantage of the proposed methods is that the solution is
not globally optimal since it depends on the choice of wavelets. On the other hand, the
optimality of stepwise LSC cannot be achieved in practice because of the empirical

nature of the covariance function.
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CHAPTER §
NUMERICAL RESULTS AND ANALYSIS

In this chapter, the procedure for generating muitiresolution data is described and the
software developed for this research is briefly introduced. Two examples are then given
on how the general framework developed in Chapter 4 can be applied. The effect of using
different wavelets is investigated. A numerical comparison between the wavelet-based
signal domain method and the muitirate-based measurement domain method is also

performed.

5.1 TEST DATA AND SOFTWARE

5.1.1 Multiresolution Data

To demonstrate the correctness of the general method and algorithms developed in
Chapter 4, multiresolution data are needed. Due to the lack of actual airborne gravity
data, the multiresolution data used in the following tests were simulated by using Faye

gravity anomaly data with a resolution of 5°x 5" in the area of British Columbia. This

data was obtained from the Geodetic Survey of Canada. The extent of the area is

50° <" ¢ <60°,
250° < A < 260°.
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Figure 5.1 shows the 3D plot of the data.

100
]

50 -

S o-
=
504
-198- 260
% 50 250 8

Figure 5.1 3D plot of gravity anomalies

To cover a range of possible applications, data were simulated at two levels and for two
functionals of the disturbing gravity potential. Gravity disturbance were used at ground
level and at a flying altitude of 1 km above ground. In addition, geoidal heights were also
simulated. In the following, a procedure for simulating these data are described, in which

planar approximation is adopted:

First, 5’x 5’ grid geoidal height data are computed using the following discrete planar

Stokes’ formula:
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1

AxAy M N
N(x, y)=——2 3 5 Ag(x;, yj)r————————.
2RY i=lj=t Joxi =% + (75 -yY

G.1)

5'x 5’ gravity disturbances at flight level h are calculated by using the following

formula:

AxAy M N h
8%, y, ) ==— 3 3 4g(x;, y;) (5.2)

T i=lj=I [(x; —x)? +(y; - y)? +h2)32

These data together with the original 5"x 5” gravity anomaly data are used as the true

fine-scale data. The noise of airborne gravity disturbance caused by the INS and GPS

sensors can be represented by the following error power spectral density model:

Ses =Sepys + Ssgps ? (5.3)

where, Sgp, o is the INS error power spectral density and Ssgps 18 the GPS error power

spectral density.

The error power spectral density model for INS used in this dissertation has been taken

from Schwarz et al (1994), i.e.

2 2
S =—Pa__g2 1Q (5.4)
€ ezep: t Y
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where 0’% is the variance of vertical accelerometer noise, Q,is the PSD of the white

noise variance, and 8, is the correlation length.

The power spectral density of the error model for GPS has been proposed by Wei and

Schwarz (1994), i.e.
2B
4 2
SEGPS =® ;E-;gﬁ-%—(fc +Qw ’ (5.5)

where 0'(2: is the variance of the colored noise, B, is the correlation length of the noise,

and Q,, is the PSD of the white noise variance. The noise generated by the models (5.4)

and (5.5) is added to the simulated airborne gravity disturbance data to simulate the fine-

scale measurements.

Second, a wavelet transform is applied to the true fine-scale data, to generate the
10’ x 10 true coarse-scale data. White noise is added to the geoidal height and terrestrial
gravity disturbance to simulate the coarse-scale measurements. Although a white noise
error model oversimplifies the actual situation, empirical noise models are not readily

available for this case.
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Figures 5.2(a), 5.3(a), and 5.4(a) show the fine-scale airborne gravity disturbance at 1000
m flight height, coarse-scale geoidal height at ground level and coarse-scale terrestrial
gravity disturbance, respectively. Figures 5.2(b), 5.3(b) and 5.4(b) show the
corresponding measurements, respectively. Table 5.1 gives the statistics of the
measurement noise of the fine-scale airborne gravity disturbances, the coarse-scale

geoidal heights and the coarse-scale terrestrial gravity disturbances.

Measurement
noise

Max

Mean

Std

RMS

S/N
ratio

Fine-scale
airborne gravity

18.7

-18.0

0.0

5.0

50

3.2

disturbance
(mGal)
Coarse-scale
geoidal height 356 -38.8 0.0 99 9.9 13.7
(cm)
Coarse-scale
gravity 10.0 -10.3 0.0 3.0 3.0 5.0
disturbance
(mGal)

Table 5.1 Statistics of Measurement Noise

Listed in the six columns of Table 5.1 are the maxima, minima, means, standard
deviations (Std) and root mean squares (RMS) of the measurement noise, and the signal-
to-noise (S/N) ratio . Given in the row headings are airborne gravity disturbance
measurements at fine scale, coarse-scale geoidal height measurements and coarse-scale

terrestrial gravity disturbance measurements.
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(a) The true fine-scale airborne gravity disturbances

100 -
50 -
0+

=50

-100- 260
ga 55 2585
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(b) The fine-scale airborne gravity disturbance measurements

Figure 5.2 The fine-scale airborne gravity disturbance
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(a) The true coarse-scale geoidal height

&6 260
55 255
50 250

(b) The coarse-scale geoidal height measurements

Figure 5.3 The coarse-scale geoidal height
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(a) The true terrestrial coarse-scale gravity anomaly
100 -
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(b) The coarse-scale terrestrial gravity anomaly measurement

Figure 5.4 The coarse-scale terrestrial gravity anomaly



5.1.2 SOFTWARE OVERVIEW

Four main MATLAB programs were developed for this research. The first program is
used to generate multiresolution data from gravity anomaly data by using the procedure
described in Section 5.1.1. The second and the third programs are implemented to
perform the fine-to-coarse estimation and coarse-to-fine estimation schemes for gravity
field modeling, which is described in Section 4.2. The fourth program is used to
implement a measurement domain approach using a multirate system and a MISO system
described in Section 4.3. The output of the first program can be used as an input to the
rest of the programs. A simple menu is added to the software to make it user-friendly.

Figure 5.5 shows the basic structure of the programs

User Interface
Multiresolution da Fine-to-coarse | | Coarse-to-fine Multiple-input single-
generation Estimation estimation output & multirate systems
Geoid Gravity
determination Determination

Figure 5.5 Basic structure of the programs
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5.2 TWO EXAMPLES

The purpose of the first example is to demonstrate that the proposed framework can be
applied to the determination of geoidal heights based on the measurements at two scales,
i.e. fine-scale airborne gravity disturbances and coarse-scale geoidal heights. In the
second example, fusion of multiresolution measurements is presented using gravity
disturbances at two different scales, i.e. fine-scale airborne gravity disturbance and

terrestrial coarse-scale gravity disturbances.

Since the purpose of the following two examples is to demonstrate the effectiveness of
the proposed framework, only the Haar wavelet is used in the computations. Comparisons

using different wavelets will be given in Section 5.3.

5.2.1 Geoidal Height Determination from Fine-Scale Airborne Gravity Disturbance

Data and Coarse-Scale Geoidal Height Data

In the first example, measurements at fine scale are the airbome gravity disturbances with

a resolution 5"x5’ and a coverage 10°x10°. Measurement noise for the airbome gravity

disturbances is assumed to be colored noise, the statistics of which is shown in Table 5.1.

At coarse scale, the measurements are geoidal heights with a resolution 10° %10’ and the

same coverage as the airborne gravity disturbances. The measurement noise for the
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geoidal height is assumed to be white noise with the statistics shown in Table 5.1. The
estimates of geoidal heights are computed using the two estimation schemes from the

signal domain approach.

In order to evaluate the performance of the method, both internal and external errors
before and after data fusion are computed. Internal error covariances are obtained by error
propagation, while external error estimates are calculated by differencing the estimates
and the true values of the simulated data. The statistics of the external geoidal height and
the internal error covariances before and after data fusion are given in Table 5.2. Listed in
the six columns are the means, maximums, minimums, standard deviations and variances
of the external errors of the geoidal heights, variances of the internal errors of the geoidal
height. Given in the first-two rows are the errors of the geoidal height at fine scale and
coarse scale using fine-scale measurements only and coarse-scale measurements only, in
row three-six the errors of the geoidal height at fine scale and coarse scale using both

fine-scale and coarse-scale measurement and two estimation schemes.

To visualize the estimation errors, the external errors of the geoidal heights at fine scale
are also plotted. Figure 5.6a shows the external errors of the initial estimate of geoidal
height at the fine scale using the airbome gravity disturbance measurements only and
Figure 5.6b and 5.6c show the external errors of the geoidal height at fine-scale
combining both fine-scale and coarse-scale measurements and using the two estimation

schemes, respectively
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External Internal
Geoidal height Max Min Mean Sd Var Var
errors (cm) (cm) (cm) (cm) (cmz) (cmZ)
Error at fine scale 519 -49.0 0.0 14.0 196.0 192.2
(using &g only)
Error at coarse
scale 35.6 -38.8 0.0 99 97.0 97.0
(using N only)
Fused error at fine
scale 36.5 -374 0.0 99 97.0 95.6
( fine-to-coarse )
Fused error at
coarse scale 31.6 -31.1 0.0 9.7 94.1 92.6
( fine-to-coarse )
Fused error at fine
scale 40.8 -47.1 0.0 10.0 100.0 95.8
(coarse-to-fine)
Fused error at fine
scale 304 -31.6 0.0 9.7 94.1 924
(coarse-to-fine)

Table 5.2 Statistics of geoidal height estimation before and after data fusion

260

50 250

(a) Before data fusion
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260

50 250

(b) After data fusion ( the fine-to-coarse approach)

260

55 255
50 250

(c) After data fusion ( the coarse-to-fine approach)

Figure 5.6 The errors of geoidal height at fine-scale before and after data fusion
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From Table 5.2 and Figures 5.6, it is easy to see that better results have been achieved
after combining the two different measurement sets by the proposed methods. The
standard deviation of the error of the geoidal height at fine-scale is reduced by about 4.0
cm as compared to the estimate computed from the airborne data only. This can be seen
when the fourth number in the third row is compared to that either in the fifth or the
seventh row in Table 5.2. The reason is that highly accurate coarse-scale measurements
provide the fine-scale signal estimate with good low frequency information which allows
removal or reduction of the error in the low frequency part of the fine-scale estimate, as
shown in Figure 5.6a. On the other hand, the geoidal height are not significantly
improved. This can be seen by comparing the standard deviation in the sixth or the eighth
rows of Table 5.2 to that in the fourth row of Table 5.2. This is due to the fact that the
measurement noise of geoidal height at coarse scale is much smaller than the geoidal
height error downsampled from the estimate of the geoidal height from airborne
measurement at fine scale and the signal-to-noise ratio of the geoidal height at coarse
scale is large, 13.7 in this case, as shown in the seventh column of Table 5.1. Therefore,
when combining the geoidal height measurements and the downsampled geoidal heights,
the error in the geoidal height at coarse scale will be dominated by the error of the coarse

scale measurements.

When comparing the results from the fine-to-coarse estimation scheme and the coarse-to-
fine estimation scheme, both schemes give nearly the same results. This is due to the fact

that both schemes use the same information but different implementation procedures.



143

The standard deviation (std) of the external error of the fused geoidal height at fine scale
are close to that of the coarse scale geoidal height estimates in this example. This can be
explained by the fact that the determination of the geoidal height from the airborne
gravity disturbance can be viewed as a filtering process, in which the high frequency
noise in the airborne measurements will be reduced. Therefore the major error will be in
the low frequency part, as can be seen in Figure 5.6a. On the other hand, since very good
geoidal height measurements are available at the coarse scale, corresponding to the low
frequency part of the geoidal height, the error of the geoidal height estimate in the low

frequency part can be removed.

Form the sixth and seventh columns of Table 5.2, it can seen that both internal and
external error variances are very close. This indicates that the proposed approach gives

reliable estimations since the results are verified by independent checking.

The above analysis is done in the space domain, but the results can also be analyzed in the
spectral domain. To do this, the power spectral density of the external geoidal height errors

at fine scale before and after data fusion have been computed and plotted in Figure 5.7.

Figure 5.7 clearly indicates that the improvement of the geoidal height signal at fine scale
after data fusion is in the low frequency part. This can be explained by the fact that the

coarse scale measurements only contribute to the low frequency ( half-band in this case)
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information of the signal. Therefore high quality of the coarse scale measurements can

improve the geoidal height estimation in the low frequency part.

0.5+

frequency 00 frequency

(a) Before data fusion

frequency 00 frequency

(b) After data fusion ( the fine-to-coarse estimation )
Figure 5.7 Normalied power spectral density of the geoidal height errors

before and after data fusion
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5.2.2. Fusion of Fine-Scale Airborme Gravity Disturbances with Coarse-Scale

Terrestrial Gravity Disturbances

In the second example, measurements at fine scale are the airborne gravity disturbances,
and the coarse-scale measurements are the terrestrial gravity disturbances with resolution
5'x5’ and 10'x10", respectively. The coverage for both of them is 10°x10°.
Measurement noise for the fine-scale gravity disturbances is assumed to be the same
colored noise as in the first exampie. Measurement noise for the coarse-scale gravity
disturbances is assumed to be white noise with the statistics shown in Table 5.1. The
fusion of these two measurements is done using the two estimation schemes from the

signal domain approach.

Tables 5.3 summarizes the statistics of the external geoidal height and the internal error
covariances before and after data fusion. Listed in the six columns are the means,
maximums, minimums, standard deviations and variances of the external errors of the
terrestrial gravity disturbance, and the variances of the internal errors of the terrestrial
gravity disturbance. Given in the row headings are the errors of the terrestrial gravity
disturbance at fine scale and coarse scale using fine-scale measurements only and coarse-
scale measurements only ( rows 1 and 2 ), the errors of the terrestrial gravity disturbance
at fine scale and coarse scale using both fine-scale and coarse-scale measurement and two
estimation schemes ( rows 3 to 6 ). Figure 5.8 shows the errors of the terrestrial gravity

disturbance estimates at fine-scale before and after data fusion.
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External Internal
Gravity Max Min Mean Std Var Var
disturbance (mGal) | (mGal) | (mGal) | (mGaD) | (mGa?) | (mGai?)

Crrors

Error at fine scale

(using airborne dg 30.6 -32.7 0.0 8.1 65.6 63.9
only)

Error at coarse

scale 10.0 -10.3 0.0 3.0 9.0 9.0

(using terrestrial

dg only)

Fused error at fine
scale 19.2 -194 0.0 4.6 21.6 20.2

( fine-to-coarse )

Fused error at '
coarse scale 8.8 -8.7 0.0 28 7.8 75

( fine-to-coarse )

Fused error at fine
scale 20.9 -20.2 0.0 47 229 204

(coarse-to-fine)

Fused error at fine
scale 8.9 9.0 0.0 2.8 7.8 7.4

(coarse-to-fine)

Table 5.3 Statistics for the fusion of airborne gravity disturbances and terrestrial gravity

disturbance using the two estimation schemes
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(b) After data fusion ( the fine-to-coarse approach)
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100+

mGal

-128- 260
55 255
50 250
(c) After data fusion ( the coarse-to-fine approach)

Figure 5.8 Errors of the terrestrial gravity disturbance estimate at fine-scale

before and after data fusion

Similar conclusions as in Section 5.2.1 can be drawn from Table 5.3 and Figures 5.8. The
standard deviation of the error of the terrestrial gravity disturbances at fine-scale has been
reduced by about 3.5 mGal after fusing the two data sets by the proposed schemes, as
compared to the estimate computed from airbome data only. This can be seen by
comparing the fourth number in the third row with that in the fifth or seventh row in
Table 5.3. The accurate coarse-scale measurements improves the fine-scale estimate of
the terrestrial gravity disturbance in the low frequency part but not in the high frequency
part, as shown in Figure 6.8. The fused terrestrial gravity disturbance estimates at coarse

scale also improve. The percentage improvement is about 7 %, when comparing the
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standard deviation of the external error after data fusion ( in the sixth or eighth row in
Table 5.3) with the standard deviation of the external error before data fusion ( in the
fourth row of Table 5.3 ). Internal and external error variances are close indicating the
reliability of the terrestrial gravity disturbance estimations. Similar to Section 5.2.1, the

results from both schemes are nearly the same. The reason is the same as before.

Unlike the results in Section 5.2.1, the standard deviation of the error of the fused gravity
disturbance at fine scale are different from the fused terrestrial gravity disturbance at
coarse-scale, as can be seen from the fifth and sixth rows or the seventh and eight rows.
This can be considered by downward continuation effects. The determination of the
terrestrial gravity disturbance from the airborne gravity disturbance measurement is a
downward continuation process, in which the noise in the airborne measurements will be
amplified. This problem can be partially solved by filtering the airborne data by a low-
pass filter before downward continuation (Vassiliou, 1986). As mentioned before, good
measurements at coarse-scale can only improve the estimate in the low frequency part.
They will have no effect on the noise amplified in high frequency part. That is the reason

why the two statistics mentioned above are different.

The power spectral density of the external gravity disturbance errors at fine scale before
and after data fusion are plotted in Figure 5.9. From Figure 5.9(a), one can see that a
major error source of the terrestrial gravity disturbance before data fusion comes a high

frequency part due to the downward continuation process. The low frequency error is
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reduced by using high quality coarse-scale measurements, the high frequency error

remains, as indicated by Figure 5.9(b).

frequency 00 frequency

(a) Before data fusion

frequency 00 frequency

(b) After data fusion ( the fine-to-coarse estimation)
Figure 5.9 Normalized power spectral density of the gravity disturbance

before and after data fusion
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5.3 EFFECTS OF USING DIFFERENT WAVELETS

To see how different wavelets affect the final results, a numerical test was conducted
using four different wavelets, Haar wavelet and three different Daubechies wavelets
(N=4, 6 and 8). The measurements used in the test are fine-scale airborne gravity
disturbance and coarse-scale geoidal heights. The estimated signals are the geoidal
heights at both fine and coarse scales. The data is the same as that in Section 5.2.1 except
that the different wavelets are used. The true coarse-scale geoidal height was simulated in

this test by using the Daubechies wavelet N= 8.

Table 5.4 shows the statistics of the external error of the geoidal height estimation using
these four wavelets. Figure 5.10 illustrates the errors of the fine-scale geoidal height
estimate by combining fine-scale airborne gravity disturbances and coarse-scale geoidal

heights using the four different wavelets.

From Table 54 and Figure 5.10, it can be seen that different wavelets affect the
estimation of geoidal height. Both mean and the standard deviation are affected. The
maximum deviation of the mean at the fine scale is 1.7 cm, while that of the standard

deviation is 1.3 cm, respectively. The reason is that different wavelets define a different
multiresolution analysis, i.e. a different approximation of L2 (R). Therefore, if a signal at

specific scale cannot be exactly represented by a given wavelet, this will result in

representation error. To illustrate this numerically, the errors caused by the inaccuracy
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Geoidal height Scale Max Min Mean Std RMS
error (cm) (cm) (cm) (cm) (cm)
Haar wavelet Fine 59.4 457 1.7 11.4 11.5
Daubechies Fine 572 -45.5 1.2 10.7 10.8
wavelet N=4
Daubechies Fine 494 -344 03 10.2 10.2
wavelet N=6
Daubechies Fine 384 -374 0.0 10.1 10.1
wavelet N=8
Haar wavelet Coarse 314 -324 00 9.8 9.8
Daubechies Coarse 30.8 -31.7 0.0 9.7 97
wavelet N=4 ’
Daubechies Coarse 31.2 -30.9 00 9.7 9.7
wavelet N=6
Daubechies Coarse 304 -30.2 0.0 9.7 97
wavelet N=8

Table 5.4 Statistics of geoidal height error using different wavelets

when the geoidal height signal is transformed from fine scale to coarse scale and coarse to
fine scale using these four wavelets have been computed. The errors at coarse-scale are
obtained by computing the coarse-scale signal from the fine-scale true signal for a given
wavelet and then comparing it to the true value. The errors at fine-scale are obtained by
calculating the fine-scale signal from the coarse-scale true signal and the detailed signal
components along the horizontal, vertical, and diagonal for a given wavelet. They are

then compared to the true value. Table 5.5 summarizes the statistics of these errors.
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Geoidal height Scale Max Min Mean Std RMS
error (cm) (cm) (cm) (cm) (cm)
Haar wavelet Fine 159 -14.2 1.7 42 4.5
Daubechies wavelet
N=4 Fine 12.1 -8.6 1.2 29 3.2
Daubechies wavelet
N=6 Fine 4.5 -3.7 0.3 1.1 1.1
Daubechies wavelet
N=8 Fine 0.0 0.0 0.0 0.0 0.0
Haar wavelet Coarse 14.2 -11.6 1.5 4.0 43
Daubechies wavelet
N=4 Coarse 10.6 -8.1 1.1 2.6 2.8
Daubechies wavelet
N=6 Coarse 4.1 -3.3 0.2 1.0 1.0
Daubechies wavelet
N=§ Coarse 0.0 0.0 0.0 0.0 0.0

Table 5.5 Geoidal height error due to inaccurate representation using different wavelets

Table 5.5 clearly indicates that a distortion of the geoidal height signal has been
introduced due to the inaccurate representation of the signal at both scales when using
different wavelets. The maximum errors of the mean and standard deviation are 1.7 cm
and 4.2 cm at fine scale, respectively, and 1.5 cm and 4.0 cm at coarse scale, respectively.
When the fourth and fifth columns of Table 5.5 are compared to that of Table 5.4, one
can see that the estimates at coarse-scale are hardly affected by the error at coarse-scale
caused by the inaccurate representation of the geoidal height signal. This is because the
error caused by the inaccurate representation is corrected by the high quality coarse-scale

measurements when measurement update is performed at coarse scale.
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(c) Daubechies wavelet N=6

260

50 250

(d) Daubechies wavelet N=8

Figure 5.10 External geoidal height errors using different wavelets
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5.4 NUMERICAL COMPARISON BETWEEN A SIGNAL DOMAIN APPROACH

AND A MEASUREMENT DOMAIN APPROACH

To investigate how different methods affect the estimation of the gravity field signal, a
numerical comparison was conducted using a signal domain approach combining a
wavelet transform and least-squares collocation (Method I) and a measurement domain
approach combining a multirate system and a MISO system (Method II). The effect of
different gravity field signal spectra on both approaches will also be investigated. In
addition, the effect of resolution differences between the fine scale and the coarse scale

for both methods will also be analyzed for both methods.

The measurements used in the comparison are the same as used in Section 5.2 except that
a wavelet transform using a Daubechies wavelet (N =40) is applied to the true fine-scale
data to simulate coarse-scale data. The signals to be estimated are also the same as that in
| Section 5.2, i.e. geoidal heights and the terrestrial gravity disturbances at both fine and
coarse scales. Figure 5.11 shows the relative energy distribution of these two signals,
which is obtained in three steps. In the first step the power spectral densities of these two
signals are computed. In the next step the power spectral density from zero to the desired
frequency is integrated. Lastly, these integrated values are then normalized using the total

energy.

The reason of using a Daubechies wavelet N=40 is the following: As can be seen from

the relative energy distribution of the geoidal height and the gravity disturbance in
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Figure 5.11 Relative energy distribution of the geoidal height and the

terrestrial gravity disturbance
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Figure 5.11, most of the energy of the geoidal height and gravity disturbance signals is in
the lower frequency part. %99 of the energy of the geoidal height signal is within the
frequency band of about [0 0.2x] and %99 of the energy of the terrestrial gravity
disturbances is within the frequency band of about [0 0.3x]. In order to give a reasonabie
simulation of the coarse-scale signal of these gravity signals, the fine-scale signal in this
frequency band should be passed with as little distortion as possible. In other word, the
magnitude of the frequency response in this frequency band should be as close 1 as
possible when generating coarse-scale data. Figure 5.12 shows the magnitude of the
frequency response for the Daubechies (N=40) FIR lowpass filter ( the order of the filter

is N=40).
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Figure 5.12. Frequency responses of Daubechies lowpass filter ( N =40)

From Figure 5.12, the magnitude of the frequency response is very close to 1 within the

0.3® bandwidth. The maximum difference is 0.00006.

The wavelet used in Method I is a Daubechies wavelet (N=24). The frequency response
of the lowpass filter coefficients corresponding to the Daubechies wavelet N=24 is

plotted in Figure 5.13(a).

The multirate system used in Method II is a2 Kaiser multirate system which is obtained by
using a Kaiser window in the window design technique described in Section 3.6.3. The

frequency response of the lowpass FIR Kaiser filter (N = 24) are shown in Figure 5.13(b).
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Figure 5.13 Frequency response of lowpass FIR Daubechies and Kaiser filters (N=24)

Tables 5.6 summarizes the statistics of the external errors of the geoidal height
estimations based on the fine-scale and coarse-scale geoidal height measurements using

the two methods. Tables 5.7 summarizes the statistics of the external errors of the
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terrestrial gravity disturbance estimation based on the fine-scale airborne gravity
disturbance and coarse-scale terrestrial gravity disturbance measurements using the two
methods. Listed in the last four columns of both tables are the means and standard
deviations of the external errors of the geoidal heights ( or the terrestrial gravity
disturbance ) for both methods. Figures 5.14 and 5.15 show the extemnal errors of the

geoidal height and the gravity disturbance for the both methods, respectively.

Method Method I Method IT
Geoidal height Scale Mean Std Mean Std
erTors difference (cm) (cm) (cm) (cm)
Fine scale 1 00 10.1 0.0 102
Coarse scale 1 0.0 9.7 00 9.7

Table 5.6 The statistics of the geoidal height errors using both methods (I)

Method Method I Method II
Gravity disturbance Scale Mean Std Mean Std
€ITors difference | (mGal) (mGal) (mGal) (mGal)
Fine scale 1 0.0 438 0.1 49
Coarse scale 1 0.0 2.8 0.0 2.8

Table 5.7 The statistics of the terrestrial gravity disturbance errors using both methods (I)

From Tables 5.6 and 5.7 as well as Figures 5.14 and 5.15, it is easy to see that both
methods give essentially the same results. There are two reasons for this. First, since the

geoidal height and gravity anomaly signals are in the low frequency bandwidth within
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Figure 5.14 The geoidal height errors using both methods
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Figure 5.15 Terrestrial gravity disturbance error using both methods
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0.3r, the decimation and interpolation of these signals using either the Daubechies or the

Kaiser half-band FIR lowpass filter will not cause much distortion of the signals in this
part. This can be seen from the spectrum of the Daubechies and the Kaiser FIR filter in
Figure 5.13. Second, both methods use the same information, i.e. saine measurements at
fine and coarse scale; the major difference between them is the way of implementation.
The implementation of Method I is in the signal domain, i.e. the transition from one
resolution to another is done using a discrete wavelet transform in the signal domain. The
implementation of Method II is in the measurement domain i.e. the transition from one
resolution to another is done by using a Kaiser lowpass decimation and interpolation in

the measurement domain.

To see how the resolution difference at fine scale and coarse scale will affect the
estimates of both methods, the geoidal height and the terrestrial gravity disturbance are
estimated using measurements at both scales differing by a scale of 2. This means that the
sampling rate difference between the fine-scale measurements and the coarse-scale

measurements is 4. The estimation results are listed in Tables 5.8 and 5.9.

Method Method 1 Method I
Geoidal height Scale Mean Std Mean Std
errors difference (cm) (cm) (cm) (cm)
Fine scale 2 0.1 10.2 0.1 10.3
Coarse scale 2 0.0 9.7 0.0 9.7

Table 5.8 The statistics of the geoidal height errors using both methods (II)
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Method Method I Method I
Gravity disturbance Scale Mean Std Mean Std
erTors difference | (mGal) (mGal) (mGal) (mGal)
Fine scale 2 10 5.8 1.5 7.1
Coarse scale 2 0.0 2.8 0.0 29

Table 5.9 The statistics of the terrestrial gravity disturbance errors using both methods
an

When the third and the fourth column of Tables 5.8 are compared to the fifth and the
sixth columns in the same table, one sees that the mean and standard deviation of the
geoidal height errors are essentially the same. The reason is that decimation and
interpolation of the signal or the measurements at a sampling rate of 4 correspond to the

cutoff frequency m/4 of the lowpass filters. Therefore, the decimation or interpolation

using a wavelet transform will not cause much distortion since the cutoff frequency is
still beyond the frequency band of the geoidal height signal. Similarly, the effect of the
interpolation of the fine-scale geoidal height measurements from the coarse-scale geoidal
height measurement will be small for the same reason. However, the decimation of the
airborne measurements could affect the estimation of the geoidal height signal at coarse
scale. One should remember, however, that the measurements at coarse scale are of high
quality, which will eliminate the effect due to the decimation of measurements. This is

why both methods give essentially the same results in Table 5.8.
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Different results are obtained at fine scale for estimating the terrestrial gravity
disturbances using both methods. When comparing the third and the fourth number of the
third row in Table 5.9 to the fifth and sixth number of the third row in the same table, the
effect of the lowpass filters used for decimation and interpolation can be seen. The cutoff

frequency of the lowpass filters is /4 which is in the same range as that of the signal

spectrum. Therefore, the gravity disturbance signal is distorted by the aliasing effect due
to the non-ideal frequency response of the lowpass filters. In this test, the effect using the
Kaiser filter is larger than that using the Daubechies filter. The reason for this is that the
Daubechies filter allows the terrestrial signal in the low frequency band pass with less
distortion than the Kaiser filter. This can be seen when comparing the frequency
responses of two filters in Figure 5.13. This effect shows up in Table 5.10, where the
estimates have been obtained by first decimating or interpolating the true fine-scale or
coarse-scale signals using either the Daubechies filter (N=24) or the Kaiser filter (N=24),

and then comparing them to those of the Daubechies FIR filter (N=40).

Method Method I Method I
Gravity disturbance Scale Mean Std Mean Std
errors difference (mGal) (mGal) (mGal) (mGal)
Fine scale 2 1.0 2.6 1.5 4.2
Coarse scale 2 09 24 1.3 39

Table 5.10 The gravity disturbance errors due to lowpass filtering
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When comparing the coarse-scale results in Table 5.9 between both methods, one can see
that the statistics of the terrestrial gravity disturbance error at coarse scale is nearly the
same for both methods. This is initially unexpected because the lowpass filters also affect
the coarse-scale signal, as is clearly seen from Table 5.10. However, as mentioned before,

good measurements at coarse scale eliminate the error caused by lowpass filtering.

It should be mentioned that, although the result of the terrestrial gravity disturbance
estimation at fine scale using Method I is better than that using Method II in this test, it
does not mean that the wavelet-based approaches are better than multirate-based
approaches since estimation results depend on lowpass filters. Also, we could expect that
estimation results will also be different with increase of the resolution difference between
fine scale and coarse scale, or, equivalently, the sampling rate difference between fine
scale and coarse scale. This is because the cutoff frequency of the lowpass filters will be

within the range of the signals and the non-ideal lowpass filters will cause aliasing.

From the above comparisons, it can be seen that the results of gravity field signal
estimation depend on the signal spectrum, the resolution difference between
fneasurements at both scales, and the choice of the lowpass filter. If the energy of the
signals is concentrated in a narrow low frequency bandwidth and the difference of the
sampling rates of the measurements at two scales is small, e.g. 2, the results will be
essentially the same using either the Daubechies FIR filter or the Kaiser filter. However,
the results from both methods will be different when the sampling rate difference

between the two scales is increased. This is due to the aliasing effect of the lowpass
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filters. In this case, the proper choice of a lowpass filter for both methods is important. In
general, Method II is better than Method I when the filter problem is well handled. There
are three reasons for that. First, Method II is more flexible than Method I because it does
not depend on a dyadic structure. Secondly, Method II is more efficient than Method I if
an estimate of a signal is only required at an intermediate scale between the finest scale
and the coarsest scale. This is because no sweep either from the finest to the coarsest
scale or from the coarsest to the finest scale is needed. Finally, Method II allows
estimation of different signals at different resolutions from multiresolution
measurements, while Method I only allow to the estimate same signals at different

resolutions.
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CHAPTER 6
CONCLUSIONS AND RECOMMENDATIONS

The main contribution of this thesis is the development of a framework for multiresolution
approximation and the demonstration of its potential for solving muitiresolution problems in

gravity field approximation.

6.1 CONCLUSIONS

The following conclusions can be drawn from this dissertation:

(a) Different classes of multiresolution problems exist in gravity field modeling. They are due to
the use of different types of observables, different gravity field attenuation effects with altitude,
different sampling rates, and different measurement noise levels. Four classes have been

identified and formulated.

(b) The analysis of the existing gravity field approximation methods shows that they cannot solve

the multiresolution problems.

(c) A general methodology has been formulated which allows to combine different methods for
the solution of multiresolution approximation problems. Both signal domain and measurement
domain approaches can be used. Two signal domain approaches have been derived by combining

a discrete wavelet transform and least-squares collocation as two special tools. A measurement
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domain approach has been formulated as an alternative. It combines a multirate system and a
MISO system. The main advantage of the proposed framework is that it allows both estimation

of signals at multiple scales and fusion of measurements at different scales.

(d) A theoretical comparison between the proposed method and stepwise least-squares
collocation (LSC) shows that LSC does not solve the problem of computing the cross-covariance
matrices between different resolution levels. Wavelet transforms or multirate systems solve this
problem very efficiently, but have the disadvantage that the solution is not globally optimal since

it depends on the choice of wavelets or multirate systems.

(e) Numerical results show that the errors of the fused estimates at both fine scale and coarse
scale have been reduced compared to those using one-scale data only. The spectral analysis of the
results shows that coarse-scale measurements of high quality definitely improve the estimate in

the low frequency part.

(f) The numerical results indicate that the two signal domain estimation schemes give essentially
the same results for the two examples. However, the choice of different wavelets does affect the
estimation of the gravity field signals due to the fact the representation of signals changes with

the wavelet base chosen.

(g) The numerical comparison between the signal domain approach (Method I), combining a

wavelet transform and least-squares collocation, and the measurement domain approach (Method
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1), using a multirate system and a MISO system, shows that the results of the gravity filed signal
estimation depend on the signal spectrum, the resolution difference between measurements at
both scales, and the choice of the lowpass filter. If the energy of the signal is concentrated in a
narrow low frequency bandwidth and the difference of the sampling rates at two scales is small,
e.g. 2, the results will be essentially the same using either a Daubechies FIR filter or a Kaiser
filter. However, the results from both methods will be different when the sampling rates of the
measurements at two scales is increased. This is due to the aliasing effect of the chosen lowpass
filters. In this case, the properly choice of a lowpass filter for both methods is important
consideration. In general, Method II is better than Method I since Method II is more flexible and

moe efficient than Method L.
(h) The use of multirate systems either in signal domain approaches or measurement domain

approaches has the advantage that it is not dependent on dyadic structure. It is therefore

recommended for applications where the filter problems are well handled.

6.2 RECOMMENDATIONS

Although the framework of multiresolution approximation has been established, considerable

work remains to be done. The following recommendations for further research are made:

(a) Since the numerical examples in this dissertation are only used to demonstrate the correctness

of the proposed framework and of the algorithms developed, only two data types with two
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resolution scales have been used. Therefore, tests involving more sophisticated scenarios are

needed.

(b) Due to the lack of true multiresolution data, the proposed framework was tested using
simulated data generated from actual terrestrial gravity anomaly data. In order to investigate the
feasibility of the proposed framework to gravity field approximation in practice, computations

with real data should be done.

(c) The current limitation of using wavelet transforms is that only multiresolution analysis with
dilation 2 can be used due to the fact that scaling functions and wavelet functions for
multiresolution analysis with integer dilation factor larger than 2 or non-integer dilation factor
are not available. Therefore, tests are needed using a wavelet transform with integer dilation
factor larger than 2 or non-integer dilation factor when scaling functions and wavelet functions

for these cases are available.

(e) All numerical examples given in this dissertation are based on planar approximation. For
global gravity field modeling, spherical approximation must be used. In this case, the concept of
spherical wavelets should be studied. Therefore, multiresolution approximation on the sphere has

to be further investigated.

(f) Since the application of the proposed framework depends on the choice of lowpass filters,
optimal choice of a lowpass filter for gravity field modeling is an important topic for further

research.
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(g) The proposed framework can also be extended for solving other multiresolution problems in
geomatics engineering. The multiresolution modeling of a digital elevation model (DEM) from
fine-scale compact airborne spectrographic images (CASI) system data and coarse-scale satellite

images is an example of such an application. This needs to be investigated.
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