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Prolog

The Wonder of Science
Our best science tells us wonderful things. The cold and dark skies of our 
universe were not so long ago in their entirety in a state of unimaginably 
high energy and temperature. The detritus that exploded from it con-
gealed into stars, planets, and galaxies. These systems of celestial masses 
are in turn held together by a curvature of the geometry of space and time 
itself. On a most minute scale, the matter of these systems and the light 
they radiate consist of neither waves nor particles but a curious amal-
gam that is, at once, both and neither. The organisms that walk on one 
of these planets, complete with their intricate eyes and thinking brains, 
emerged incrementally from crude matter, in tiny steps over eons. They 
were shaped only by the fact that a small, random change in one organism 
might give it a slight advantage over its rivals. The design specification of 
these accumulated advantages is recorded and transmitted through the 
generations of the organisms by its encoding in hundreds of millions of 
base pairs of a chemical found in every cell of each organism.

These, and many more ideas of science like them, are extraordinary. 
Their contemplation must eventually overwhelm with wonder even the 
most curious and flexible of minds. Only the dullest of wit or the most 
soured of skeptics could resist their charms.

For me, there is a still greater wonder. These ideas are not the inven-
tions of writers of myth and fiction. They could not be so, for their content 
far outstrips our meager human imaginations. Rather they are the result 
of careful, painstaking, systematic investigations of nature, guided solely 
by inventive insight and cautious reasoning. They are discoveries. When 
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these efforts go past the early speculative stages and succeed, their prod-
ucts are distinguished by a special relation with what we experience of 
the world. These experiences provide the inductive support for successful 
science. They tell us that this is how the world is.

The explosive expansion of the universe is supported by the reddening 
of light from distant galaxies. That the curvature of the geometry of space 
and time keeps the planets in their orbits is supported by the most deli-
cate measurements of slight anomalies in planetary motions. The curious 
quantum nature of matter in the small is supported by how light from 
excited gases is concentrated into just a few quite specific frequencies. The 
evolution of humans from simpler organisms is supported by fossilized 
bones, whose chronology is recorded by their positions in layers of rock 
strata. The double spiral geometry of the molecules of deoxyribonucleic 
acid is supported by the patterns formed when X-rays diffract off material 
extracted from the nuclei of cells.

In all this, the essential relation is inductive support. It obtains be-
tween the general propositions of science and those particular ones that 
express the evidence on which science rests. It enables us to assign an au-
thority to the ideas of science that no other narrative can match. Without 
it, science becomes just another “way of knowing,” to use a popular oxy-
moron of the skeptics. Without this relation, we do not know anything of 
the world. We “know” but do not know. Without it, the ideas of science 
are no better than the fanciful creation stories of primitive mythologies.

Where the Philosophy of Science Literature Falls Short
If we are to understand how science succeeds where these other narratives 
fail, we must understand how this relation of inductive support works. 
This is a core task for philosophy of science. Its efforts reside in the expan-
sive literature on induction or inductive inference. The project of this book 
results from an enduring dissatisfaction with this literature.

There is no shortage of approaches in this literature. However, what 
is distinctive about these approaches is that they are fractured. There are 
many of them. They rise and fall with the generations and even with the 
particular philosopher consulted. Each approach has its successes and each 
has its failures. None, it seems to me, is by itself fully adequate to the task.
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Loosely speaking, there are two traditions.1 One is qualitative and a 
few examples illustrate its pervasive problems. Evidence supports hypoth-
eses that, in various senses, generalize the evidence, or deductively entail 
the evidence, or explain the evidence, or provide a severe test of the evi-
dence. Each case is troubled. There are so many ways one item of evidence 
can be generalized that most generalizations cannot be supported. Most 
applications of the simple scheme must fail. Similarly, there are very many 
hypotheses that entail one item of evidence. The same problem arises. 
Most applications of this scheme will fail. The problem of proliferation 
is ameliorated if the hypothesis must not just entail the evidence but ex-
plain it. The meagerness of the gain is revealed when we realize that we 
have no general account of explanation precise enough to support a theory 
of inductive inference. The account rests ultimately on dubious intuitive 
judgments of what explains what and how well it does so. Severe testing re-
quires a judgment that the evidence would likely not come about were the 
favored hypothesis false. To apply the scheme, we must know what is likely 
in the case of this falsity. Excepting contrived situations, like controlled 
studies, such judgments are at best speculative and at worst self-serving 
inventions.

The second tradition is quantitative. We assign a numerical measure 
to the support. The measure used almost universally is probability. The 
approach is appealing initially since we replace a vague “weakly supports” 
or “strongly supports” by precise numbers that must be combined by quite 
specific rules. Now we can calculate! My enthusiasm for this approach 
dampened when I found that its central theoretical tool, Bayes’ theorem, 
has a voracious appetite for prior probabilities and likelihoods. The trouble 
is that the value of these probabilities must be specified by considerations 
outside the calculation itself. Prudent or malicious choices of these values, 
more than the niceties of mathematical theorems, control the final result. 
Worse, as this Bayesian approach ascended to the dominance it presently 
enjoys in the philosophy of science, its analyses became more and more 
separated from real applications to inductive inference in the sciences. 
These analyses have drifted towards self-contained exercise in recreational 

1 This is a hasty dissection of an enormous literature. See Norton (2005) for a more 
careful dissection and categorization.
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probability theory. This separation is disguised by tendentious labeling 
of terms. A calculation best adapted to the accumulated results of many 
coin tosses is represented as giving some sort of understanding of how the 
accumulation of intricate and diverse evidence in science can support a 
univocal result.

The situation has not been improved by a rash decision to conceive 
of the prior probabilities of Bayes’ theorem subjectively—that is, as freely 
chosen opinions that can vary from person to person. For once one has 
let arbitrary opinion into the system, the probabilities cease to measure 
strengths of inductive support, but only some indissoluble amalgam of 
them with arbitrary opinion. These problems are not resolved but com-
pounded by dubious analogies. We are told a fable of a punter at a racetrack 
making monetary bets with bookies who are determined to take every 
advantage possible. This epistemic situation is supposed to be sufficiently 
close to that of scientists weighing evidence for Big Bang cosmology or a 
neural basis for cognition that all should conform to the same principles 
of rationality.

The Material Approach
The upshot of these accumulated woes is that philosophy of science as a 
discipline cannot now offer those outside it a univocal account of induct-
ive support. My goal in this book and in the larger program of research it 
embodies is to solve this problem. The clue to its solution is found in the 
observation that each of the accounts sketched above work somewhere. If 
we are investigating controlled trials, then ideas about severe testing are 
apt. If we are interested in matching DNA from blood samples with that 
of accused offenders, then we can use Bayesian methods. When Einstein 
found that his new general theory of relativity “explained” (as he put it) 
the anomalous motion of Mercury, he could claim a wonderful “confirm-
ation” (as he wrote) of his theory.

The clue in all this is that the application of the various approaches 
works when we add factual conditions that limit the domain in which they 
are to be applied. The stronger the factual restriction, the more successful 
the application. The material approach simply asks us to “take the limit.” 
That is, what warrants the successful application of a particular inference 
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is found entirely in the background factual conditions that delimit the do-
main of application.

This last assertion is the key idea of the material theory. It distinguish-
es the material theory from all other approaches, which use the standard 
literature in deductive inference as the model for analyzing inductive in-
ference. This provides them with a formal model. According to this model, 
the good inferences can be distinguished from the bad by checking wheth-
er the candidate inference fits in its form with some universal template or 
schema. For example, take the following inference:

All men are mortal.
Therefore, some men are mortal.

This is a valid, deductive inference since it is derived from the universally 
applicable schema that I will call all-some:

All As are B.
Therefore, some As are B.

We are allowed to make any substitution for A and B, and we are assured 
that what results will be a good inference in its form. The schema is uni-
versally applicable. Its use is not restricted, for example, to inferences 
about human mortality.

Since antiquity, philosophers have sought to recover similar schemas 
for inductive inference. The successes have always been partial. One of the 
earliest attempts was “enumerative induction”:

Some As are B.
Therefore, all As are B.

The trouble is all too clear. It will almost never work. With obvious substi-
tutions, we might be happy to infer that

Some men are mortal.
Therefore, all men are mortal.

But we would be unhappy with almost every other variant of it, such as
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Some men are Greeks.
Therefore, all men are Greeks.

All of the approaches sketched above lie within this formal tradition. If we 
just focus on simple examples like these, it becomes quite apparent that 
they fail to have universal scope.

The all-some schema does have universal scope since it is fully 
self-contained. Its cogency derives completely from the meanings of the 
words “all” and “some.” If someone doubts the cogency of the inferences it 
authorizes, we would gently inquire of them whether they understood the 
meaning of the words.

In contrast, enumerative induction is not self-contained. It can work, 
but only when we restrict the substitutions for A and B to terms hospitable 
to the induction. When A is “men,” successful substitutions for B include 
biological properties like “are mortal,” “are borne of a mother,” “have a 
blood circulation system,” and so on. That is, if we restrict the domain in 
which the schema is applied, it can warrant good inferences. However, 
its success is entirely dependent on the restriction. The facts comprising 
the restriction are the ultimate source of its warrant. They are biological 
facts about living beings. The inference is warranted, in the last analysis, 
because that is the way living beings are biologically. If some members of a 
species have a blood circulation system, then likely all do. The correspond-
ing regularity does not hold for national identification.

Further, the inference is a good inference only in so far as the war-
ranting facts are true. If science advances to the extent that we can create 
people entirely in a test tube from synthetic DNA without the need for a 
gestating mother, some of these facts would cease to be true, and one of 
the inferences would become an inductive fallacy.

It is easy to see how these conclusions about inductive inference gen-
eralize. All inductive inferences lead to conclusions that go beyond what is 
necessitated logically by their premises. It follows that they are only good 
so long as the inferences are carried out in domains that are factually hos-
pitable to the inferences. The facts that make the domain hospitable are 
the facts that warrant the inference. Here it is helpful to remember that 
a commonplace of deductive inference is that propositions can both state 
factual matters and also serve as warrants for deductive inference. The 
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proposition “If A then B” is both a factual proposition and also a warrant 
that authorizes a deductive inference from A to B. The material theory 
asserts that, ultimately, this dual role for factual propositions is the only 
way that inductive inferences are warranted.

This applies even to Bayesian analysis inasmuch as it has any ambi-
tions of providing an account of inductive inference. It is true that the ma-
nipulations of Bayes’ theorem itself are deductive inferences lying within 
the probability calculus. We deduce a value near unity for the probability 
of Newton’s universal law of gravitation, conditioned on the motion of the 
sun’s planets and their moons. An essential background fact is that these 
deductions are implemented in a domain in which distributions of induct-
ive support are properly represented by probabilities. In the second half of 
this book, we shall explore domains in which this presumption fails.

These last considerations constitute the core of the material approach 
to inductive inference. It provides a single, unified approach that incor-
porates all the different approaches in the present literature; or at least it 
incorporates them all in so far as they are sufficiently and precisely defined 
to be viable in some domain.

The core ideas of the material theory can be encapsulated in a few 
slogans. First, “All induction is local.” This slogan reminds us that any 
regularity we may find among inductive inferences is restricted to some 
domain and is dependent for its warrant on the particular facts that ob-
tain there. Second, “There are no universal rules for inductive inference.” 
It reflects the core posit that the warrant of an inductive inference is not 
traced back ultimately to some universal schema but to facts that obtain 
only locally.

If one were to encounter this last slogan in isolation, one might mis-
take it for a skeptical thesis akin to Feyerabend’s notorious “anything 
goes.” This is very far from its import. The slogan is merely a part of the 
relocating of the warrant of inductive inferences from rules to facts. The 
material theory does not seek to undermine inductive inference; it seeks to 
save it. For the formal approaches that dominate the literature have simply 
failed in their most important functions. None gives us a successful sys-
tem, applicable universally, for discerning the good from the bad induct-
ive inferences. None gives an account of why the inferences it does author-
ize are appropriate. This last failure stands in stark contrast to standard 
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examples of deductive inference. Inferences warranted by the deductive 
schema all-some are good inferences simply in virtue of the meaning of 
“all” and “some.” These final considerations pose two problems that the 
material theory solves.

First, inference schemas in the present literature cannot be used uni-
versally. While the writings of Bayesians are curiously silent on the ques-
tion, they will concede to me in conversation that their system does not 
apply everywhere. This invites key questions about where the limits are 
and how we identify them. The material theory answers: one must locate 
the facts that can warrant the schema, Bayesian or otherwise. The schemas 
can be applied only in domains where those facts obtain.

Second, merely stating an inference schema does not automatically 
make it a good one. In familiar deductive cases, we discern that they are 
good because of the meaning of the connectives. We cannot do the same 
for inductive schemas. Instead, the material theory tells us that certain 
inference schemas are good since they depend on factual matters in the 
domain of application. Biological predicates, like “is mortal” and “has a 
blood circulation system,” appear in living species in a regular manner, 
which authorizes the inferences sketched above.2 

Adopting the material approach to inductive inference leads one to 
approach problems in inductive inference differently. There is no default 
schema that can be applied mechanically and automatically. If one wants 
to employ some mode of inductive inference in some context, one must 
be able to supply positive reasons for why that mode is applicable in that 
circumstance. This applies also to probabilistic inference. One should not 
assume by default that this type of inference always applies. If it is to be 
used in some domain, we have a positive obligation to provide the founda-
tions for its applicability. Otherwise, it cannot be used.

While this book is largely unconcerned with beliefs (credences) as op-
posed to objective relations of inductive support, the moral carries over. 
There should not be a default presumption that credences are probabilities. 
If credences are to be represented as probabilities in some circumstance, 

2  Mortality is not assured. Symmetrically dividing bacteria and yeast cells can be 
rejuventated in the division such that they may persist indefinitely.
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then positive reasons must be given for why they are appropriate in that 
circumstance.

The Chapters
The book is divided into two parts. Chapters 1–9 are devoted to laying out 
the basic ideas of the material theory and applying it to what are identi-
fied above as the qualitative approaches to inductive inference. Chapters 
10–16 concern quantitative approaches, most notably the probabilistic ap-
proaches of Bayesianism.

Chapter 1 states the basic propositions of the material theory of in-
duction. These are developed with the help of Marie Curie’s inferences 
from the crystallographic properties of her sample of radium chloride to 
those of all possible samples. This is an instance of enumerative induction 
of breathtaking scope. It depends on the evidence of just a few specks of 
the only sample of radium chloride then known. This chapter also shows 
how the material theory can warrant successful inferences of this form, 
even inferences of breathtaking scope, by displaying the underlying facts 
that warrant them. In this case, the pertinent fact is Haüy’s principle. It 
lies at the core of extensive investigations into the properties of crystals in 
the nineteenth century and solves the vexing problem of discerning just 
which of the many properties of crystals are projectable—that is, suitable 
for enumerative inductions. 

Chapter 2 elaborates the argument stated briefly above that justifies 
the material theory of induction. The essential ideas of the justification 
are these. No extant formal schema of inductive inference has proven to 
be applicable universally. The successes of all these schemas can be ex-
plained by the material facts within the restricted domains in which they 
succeed. Most importantly, inductive inference is by its nature ampliative. 
This means that its conclusions are logically stronger than its premises. 
Hence, an inductive inference can only succeed in domains in which fur-
ther background facts are hospitable to it. This chapter also poses the in-
ductive puzzle “1, 3, 5, 7. What’s next?” The puzzle is, of course, insoluble 
non-trivially without some indication of the background facts that can 
serve to warrant an inductive inference that answers the question “What’s 
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next?” The chapter discusses the underappreciated and ingenious way 
Galileo solved this problem.

Chapters 3 to 9 address specific rules and schemas proposed in the 
literature for inductive inference. The goal of these chapters is to show that 
when these rules or schemas work, they do so because of identifiable back-
ground facts, and that they can only work in domains with such hospit-
able facts. We also find in each case that the apparent unity of application 
of the candidate rule survives only as long as we do not look too closely at 
the details of the examples. As we consider these details more thoroughly, 
we find the specific background facts taking on the primary burden of 
warranting the inferences. The original rule survives only as a superficial 
similarity among the examples.

In writing these chapters, I have tried as much as possible to use ex-
amples of inductive inference from real science. This literature can suffer 
when commonplace, non-scientific examples are used to guide our in-
ductive inferences in science. The material theory predicts the problem: 
since the background facts of ordinary life differ from those of abstruse 
scientific contexts, there is no basis for expecting the same inferential 
schemas to work in both contexts.

Chapter 3 looks at the idea of replication of experiment, which is rou-
tinely touted in the scientific literature as the “scientific gold standard.” 
We find this merely a useful but defeasible rule of thumb. It has not been 
given a precise enough formulation, comparable to those of the schemas 
of deductive logic, that would enable its mechanical application. Through 
a series of case studies, I show that the rule is defeasible and has been 
overruled in every possible combination. Successful replications (interces-
sionary prayer) and failures of replication (Miller experiment) have both 
been discarded as evidentially inert. However, on a case-by-case basis, 
warrants for the strong inferences associated with individual replications 
can be found in particular facts in their domains. A general principle of 
replication is superfluous.

Chapter 4 investigates analogy, a traditionally recognized argument 
form whose history extends back to Aristotle. However, a review of the 
recent literature shows that efforts to express the form precisely as a uni-
versal rule devolve into an explosion of divisions into special cases and 
further qualifying clauses. Each expansion produces new problems that 
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require further expansions and, paradoxically, carries us farther from 
any final formulation. This conception of analogy as an argument form 
is contrasted with how analogies are treated by scientists. For them, an-
alogies are facts. This fits with a material analysis, for it allows analogies 
to be both facts and warrants for inductive inferences. Among these war-
rants, there can be no universal, formal rules. Efforts to adapt a candidate 
analogical rule to real examples will force a proliferation of conditions, 
while the rules seek a unity not present in the details of the examples. 
Instead, the inferences we label analogical are warranted by the facts of 
analogy identified by the scientists. In the examples explored in the chap-
ter, Galileo infers analogically that there are mountains on the moon. His 
inferences are justified by the dark patches visible on the moon’s surface 
that are formed by the same processes that produce shadows on the earth. 
The same factual basis for inference is found in two further case studies: 
Reynolds analogy in transport phenomena in fluid engineering and the 
liquid drop model of the nucleus of an atom.

Chapter 5 takes an unflinching look at the now-fashionable talk of 
“epistemic values” or “epistemic virtues.” An early-twentieth-century 
quantum physicist who prefers the logically inconsistent old quantum 
theory does so, we are to suppose, because that physicist values simpli-
city over the competing virtue of logical consistency. The latter, however, 
is valued more highly by a classical physicist who then finds a different 
import for the same evidence. If the terms “virtue” and “value” have their 
usual meanings, they are ends in themselves and can be freely chosen by 
us. With this understanding, the physicists’ inferences cease to be object-
ive. The bearing of evidence merely reflects the physicists’ freely chosen 
biases and prejudices. This, I maintain, is not how notions of simplicity 
and logical consistency are used, when used properly. They are not values 
but criteria whose use is justified by their heuristic ability to lead us to the 
truth. They are defeasible and can be discarded when they cease to serve 
this end. Unless we wish to endorse an inductive skepticism by our use of 
tendentious language, we should stop using the misleading language of 
virtue and value. The term “criterion” serves better.

Chapter 6 examines the inductive criterion of simplicity in greater 
detail. There is no precise rule that tells us when to prefer simpler hypoth-
eses. The principle that “entities must not be multiplied beyond necessity,” 
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misattributed to William of Ockham, is vacuous by not specifying what 
counts as an entity and what counts as necessary. We are deceived into 
allowing the vacuity of the principle to pass, in part, because of the faux 
dignity of its expression in Latin. Instead, appeals to parsimony in real 
evidential situations are abbreviated appeals to specific background facts 
that tell us which are the simplest cases. In curve fitting, for example, 
straight lines are not necessarily the simplest starting point. If we are fit-
ting trajectories to the observed positions of comets, background facts tell 
us to start with parabolas, then ellipses, and then hyperbolas. For tidal 
data, we start with an elaborate set of sinusoidal curves whose periods are 
adapted to the physical parameters of the tidal processes.

Chapter 7 probes the Akaike Information Criterion, which has been 
offered as a vindication through statistical theory of a general principle 
of parsimony. Closer scrutiny reveals that the criterion neither employs 
a presumption of parsimony in its derivation nor does it entail any such 
general principle. Its celebrated formula merely adds a term that corrects 
for the overfitting of data in curve-fitting problems. We, not the statis-
tics, illicitly interpret this narrowly applicable term as a vindication of a 
broader principle of parsimony. The presence of the term itself depends 
upon strong background assumptions, most notably that the true curve 
lies within the model being tested. Assumptions like these are the material 
facts that warrant inferences that use the Akaike Information Criterion.

Chapter 8 addresses the popular argument form inference to the best 
explanation. The hope of its proponents is that there is some feature, pe-
culiar to explanation, that can power inductive inferences. Close analysis, 
however, proves unable to locate such a feature. Indeed, notions of explan-
ation are so varied that instances of inferences to the best explanation may 
bear only superficial similarity to one another. At this superficial level, 
these arguments share a rudimentary common form. Real examples in 
science commonly begin as comparative arguments. One hypothesis is 
favored over another because the first entails the evidence. The competing 
hypothesis fails the evidence. It is either refuted deductively by the evi-
dence or must take on a substantial evidential debt in the form of further 
unsupported assumptions if it is to remain compatible with the evidence. 
The success of the favored hypothesis does not rest on any peculiar ex-
planatory prowess, but merely on its adequacy to the evidence and, more 



13Prolog

importantly, the failure of the competitor. The more fraught subsequent 
step of the inference must show that the favored hypothesis prevails over 
not just this one explicit competitor, but against all. This is often left tacit 
in real cases in science.

Chapter 9 seeks to reverse a decline in the literature on inference to the 
best explanation. This literature began rich in real examples drawn from 
science. The most notable is Darwin’s self-conscious use of this argument 
form in his On the Origin of Species. Since then, proper study of scientif-
ic examples has been replaced gradually by imperfect mentions of them 
that often oversimplify and misinterpret them, and by prosaic illustrations 
drawn from everyday life. The entirety of Peter Lipton’s canonical mono-
graph, Inference to the Best Explanation, contains only one example from 
real science that is developed at length. It is Semmelweis’ identification of 
the cause of childbed fever (Lipton 2004, chap. 3). The example is poorly 
chosen since it is one of the few that happens to be treated more precisely 
by the simple thinking of Mill’s methods.

This literature has been increasingly dominated by superficial exam-
ples. The best explanation for footprints in the snow, for example, is that 
someone has walked there. This example is unlike those in science, for the 
human explanation of a person making distinctive marks has no serious 
competitors. Worse, it encourages explanation by intelligent intervention. 
This would be an unwelcome encouragement to Darwin. He sought to 
overthrow intelligent creation as an explanation for biological features. 
My contribution is to provide a somewhat more detailed exposition of 
eight cases in science to which the loose pattern of inference to the best ex-
planation can be fitted. I show in each case how some powerful, primitive 
notion of explanation plays no role. The examples illustrate and support 
the general claims made in Chapter 8 for the structure of inferences to the 
best explanation in real science.

With Chapters 10 to 16, the narrative takes a different turn. The 
Bayesian approach presently dominates thinking about inductive infer-
ence in the philosophy of science. According to this approach, relations 
of inductive support are recoverable in some manner from probabilistic 
relations among propositions. I have no quarrel with the use of these 
probabilistic methods in domains where the background facts specific-
ally authorize them. There are many such domains. Where I differ from 
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the Bayesians is over their ambitions of providing a universally applic-
able understanding of inductive relations. Contrary to the title of Edwin 
Jaynes’ Bayesian manifesto, it is not “The Logic of Science”; it is only the 
logic of certain special cases. My arguments against the ambitions of uni-
versality are laid out in these chapters.

Chapter 10 has the title “Why Not Bayes.” It is a statement, not a ques-
tion. I illustrate how background conditions can lead us to non-probabil-
istic representations of evidential relations using the extreme illustration 
of completely neutral evidence. For this case, application of simple invari-
ances leads to a highly non-additive representation of inductive support. 
It is quite contrary to the additivity of a probability measure. I argue that 
even the contrivances of the new literature in “imprecise probability” can 
sometimes fail to do justice to it.

Bayesian analysis is distinctive in that, laudably, it has taken seriously 
the burden of proving the uniqueness of its probabilistic representations. 
This chapter argues that all these efforts must fail since they all have the 
same structure. Whether they are Dutch book arguments or employ rep-
resentation theorems, they proceed from some set of assumptions and 
then deduce that the targeted beliefs or relations of inductive support must 
conform to the probability calculus. This last conclusion is a contingent 
proposition. It follows that it can only be deduced from assumptions that 
are at least as strong as it logically. Hence, necessarily, the assumption 
of probabilities must be hidden within the starting assumptions. The 
proofs are not demonstrations of the necessity of probabilities, but merely 
a restatement of a preference encoded in its premises. Once one realizes 
this, it becomes a mechanical exercise to identify and expose the hidden 
assumptions. I carry out the exercise for Dutch book arguments and rep-
resentation theorems and note that all similar arguments will fail in the 
same way.

Chapter 11 contains an extended example of this last exercise. The 
scoring rule or “accuracy-based” vindication of probabilism is based on a 
dominance theorem. If our credences are not probabilistic, then the theor-
em tells us that we can always improve the accuracy of our credences, no 
matter what the true situation may be, merely by shifting our credences to 
a probability. The chapter shows that the theorem is sensitively dependent 
on the particular scoring rule used to measure the inaccuracy of credences. 
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It develops a family of scoring rules such that any desired deviation from 
additivity in the credences can be secured simply by choosing the requi-
site rule from the family. Then, a variant theorem shows the dominance 
of credences with the specified deviation from additivity. The literature 
in accuracy-based vindications has sought to parry such possibilities by 
seeking further reasons for why only those rules that deliver probabilities 
are admissible. These efforts cannot succeed since they still seek to derive 
probabilities deductively from further assumptions. I continue the exer-
cise of showing how these further assumptions still have the presumption 
of probabilities hidden within them.

Chapter 12 addresses a more general problem facing all efforts to devise 
a mathematical calculus for strengths of inductive support. Applications 
of Bayes’ theorem require specification of prior probabilities, which make 
a difference to the resulting posterior probabilities. Since these prior 
probabilities must be determined by factors external to applications of 
Bayes’ theorem, it follows that this specific computation is not inductively 
self-contained. One might hope to eliminate this dependence on external 
considerations by a suitable expansion of the scope of the application of 
Bayes’ theorem. The prior probabilities would then be recovered as poster-
ior probabilities of antecedent applications of Bayes’ theorem. Continued 
expansion might, we hope, eventually eliminate the intrusion of external 
considerations. It is well known that such hopes fail. No matter how large 
the scope of the application, one is never freed from the need to use exter-
nal considerations to fix prior probabilities.

It turns out that the inductive incompleteness of the Bayesian system 
is not a failure unique to the Bayesian system. Rather, it is an instance 
of a broader incompleteness that afflicts all candidate calculi of inductive 
inference. That is, a theorem demonstrated elsewhere shows that this in-
completeness must arise in all such calculi that conform with weak and 
broadly acceptable conditions. This chapter does not develop the theorem 
in all its mathematical details but presents its core ideas and some illustra-
tions of it. The theorem gives a precise instantiation of the slogan “there 
are no universal rules of inductive inference.” It shows that there are no 
inductively complete calculi of inductive inference.

The remaining Chapters 13 to 16 present further situations in which 
the background facts warrant formal treatments of inductive support that 
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are not probabilistic. They illustrate the locality of inductive inference. In 
each case, we must first find the facts prevailing in some domain and then 
read from those facts the particular logic that would apply to the domain. 

Chapter 13 considers an infinite lottery machine that chooses without 
favor among a countable infinity of outcomes, labeled 1, 2, 3, 4, …. The 
condition that the lottery machine chooses without favor is expressed as 
an invariance, “label independence.” According to this independence, the 
support accrued to any individual outcome, or set of outcomes, remains 
the same no matter how we may permute the labels. This independence 
exercises a profound restriction on the formal behavior of strengths of 
support. For example, all infinite sets of outcomes whose complements are 
also infinite must accrue the same support. This sector of the logic is highly 
non-additive. A corollary is that the relative frequency of even-numbered 
outcomes does not stabilize towards one half in many, repeated drawings. 
Rather, all relative frequencies continue to accrue equal support. The fac-
tual conditions characteristic of the infinite lottery machine arise in a 
particular problem in recent inflationary cosmology. The infinite lottery 
machine logic is the applicable logic.

Chapter 14 undertakes the same exercise for an uncountably infinite 
outcome set, particularly the continuum-sized set of outcomes formed by 
the real numbers between zero and one. One might think that choosing 
without favor among outcomes in this set is easily achieved probabilistic-
ally by a uniform probability distribution. This is a misleading assumption 
since by foundational design such a probability distribution neglects to 
assign probabilities to many subsets of outcomes of the space. If we re-
quire a representation that covers all subsets, we arrive at a logic similar 
to that of the infinite lottery machine logic but with more sectors. The 
chapter then considers successive restrictions that would move the logic 
towards a probabilistic logic. With each restriction, we find a variant of 
the non-probabilistic inductive logic warranted. One application of these 
intermediate logics is the continuous creation of matter in the steady-state 
cosmology of Bondi, Gold, and Hoyle. The most interesting cases technic-
ally arise with paradoxical decompositions of measure spaces. These de-
compositions show the existence of outcome sets not measurable by addi-
tive measures, such as a probability measure. To make the character of 
these decompositions more concrete, the chapter develops nonmeasurable 
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sets derived from coin tosses. It turns out that a variant but weak inductive 
logic—an “ultrafilter logic”—applies to these sets.

Chapter 15 investigates the inductive logic warranted in two sorts 
of indeterministic physical systems. The first are those whose temporal 
behavior is indeterministic. They are quiescent for an arbitrary time and 
then, without any specific triggering event, spontaneously move. The 
chapter develops the especially simple example of the infinite domino 
cascade, which is new in the literature. The second type of indeterminis-
tic system is that in which specification of one part of the system fails to 
fix the remainder. Fixing the mass distribution in Newtonian cosmology 
fails to fix the gravitational potential. It is also shown that no probability 
measure can represent the indeterminacy. The infinite dimensionality of 
the space of Newtonian potentials presents especially intractable problems 
for additive measures. Instead, it is shown that the background facts of the 
systems realize the invariance that led to the completely neutral support 
elaborated in Chapter 10. This is the logic applicable to these indetermin-
istic systems.

The alternative inductive logics explored so far all tend to be simpler in 
their structures than the additive measures of probability theory. Chapter 
16 shows that this need not be so. The system considered is the spin of 
electrons in quantum theory. While probabilities arise in the process of 
quantum measurement, they do not turn out to be the structure repre-
senting inductive support that is warranted by the physical facts of quan-
tum theory. That structure, rather, is the density operator that also repre-
sents states in quantum theory. The chapter explains what these operators 
are, how they come about, and how they represent inductive support. The 
development is written at a level that presumes no special knowledge of 
quantum theory but assumes some comfort with abstract mathematics. 
We learn from the example that background facts in some domains can 
warrant an inductive logic of some complexity that is quite different in its 
structure from a probabilistic logic.

A Material Theory of Induction or The Material Theory of 
Induction?
Finally, a note on terminology. Is it a material theory of induction or the 
material theory of induction? I use both expressions. The first refers to 
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the general idea of finding the warrants for inductive inferences in back-
ground facts. There is no presumption in this usage of a particular way 
of proceeding beyond just the general idea. The second expression—the 
material theory of induction—refers to the particular instantiation of the 
general idea found in this book and my relevant papers.
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