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Abstract 

Identifying and categorizing network traffic by application type is challenging be-

cause of the continued evolution of applications, especially of those with a desire 

to be undetectable. The diminished effectiveness of port-based identification and 

the overheads of deep packet inspection approaches motivate us to classify traffic by 

exploiting distinctive flow characteristics of applications when they communicate on 

a network. 

This thesis proposes a new machine learning approach for the classification of 

network flows using only flow statistics. Specifically, a semi-supervised classification 

method that allows classifiers to be designed from training data consisting of only a 

few labelled and many unlabelled flows. This thesis considers pragmatic classifica-

tion issues such as longevity of classifiers and the need for retraining of classifiers. 

At the network core, only unidirectional flow records are available due to routing 

asymmetries. This thesis develops and validates an algorithm that can estimate the 

missing statistics from a unidirectional packet trace. The offline and realtime clas-

sifiers developed can achieve high flow and byte classification accuracy (i.e., greater 

than 90%). 
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Chapter 1 

Introduction 

The demand for bandwidth management tools that optimize network performance 

and provide quality-of-service (QoS) guarantees has increased substantially in recent 

years, in part, due to the phenomenal growth of bandwidth-hungry Peer-to-Peer 

(P2P) applications. Going by recent measurement studies in the literature and 

estimates by industry pundits, P2P now accounts for 50 - 70% of the Internet traf-

fic [9,68]. It is, therefore, not surprising that many network operators are interested 

in tools to manage traffic, such that traffic critical to business or traffic with realtime 

constraints is given higher priority service on their network. Critical for the success 

of any such tool is its ability to accurately, and in realtime, identify and categorize 

network flow by the application responsible for the flow. This task of mapping flows 

to the network applications that generate the traffic is called traffic classification. 

1.1 Motivation 

Identifying network traffic using port numbers was the norm in the recent past. This 

approach was successful because many traditional applications use port numbers as-

signed by or registered with the Internet Assigned Numbers Authority. The accuracy 

of this approach, however, has been seriously dented because of the evolution of ap-

plications that do not communicate on standardized ports [9,41, 67]. Many current 

generation P2P applications use ephemeral ports, and in some cases, use ports of 

well-known services such as Web and FTP to make them indistinguishable to the 

port-based classifier. For example, KaZaA is known to use port 80 which is reserved 

for Web traffic. 

1 



INTRODUCTION 2 

Techniques that rely on inspection of packet contents [12, 35, 42, 49, 52, 67, 78] 

have been proposed to address the diminished effectiveness of port-based classifi-

cation. These approaches attempt to determine whether or not a flow contains a 

characteristic signature of a known application. Studies show that these approaches 

work very well for today's Internet traffic, including P2P flows [35, 67]. In fact, 

some commercial bandwidth management tools use application signature matching 

to enhance robustness of classification [9,58]. 

Nevertheless, packet inspection approaches pose several limitations. First, these 

techniques only identify traffic for which signatures are available. Maintaining an 

up-to-date list of signatures is a daunting task. Recent work on automatic detec-

tion of application signatures partially addresses this concern [35,49]. Second, these 

techniques typically employ "deep" packet inspection because solutions such as cap-

turing only a few payload bytes are insufficient or easily defeated (See Section 3.6 

for empirical evidence of this.). Deep packet inspection places significant processing 

and/or memory constraints on the bandwidth management tool. On our network, 

for example, we have observed that during peak hours, effective bandwidth is often 

limited by the ability of the deployed commercial packet shaping tool to process 

network flows. Finally, packet inspection techniques fail if the application uses en-

cryption. Many BitTorrent clients such as Azureus, ptorrent, and BitComet allow 

use of encryption. 

The diminished effectiveness of the port-based and payload-based techniques mo-

tivates use of flow statistics for traffic classification [41,51,53,65,75]. These classi-

fication techniques rely on the fact that different applications typically have dis-

tinct behaviour patterns when communicating on a network. For instance, a large 

file transfer using FTP would have a smaller interarrival time between packets and 

larger average packet size than an instant messaging client sending short occasional 

messages to other clients. Similarly, some P2P applications such as BitTorrent [8] 
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can be distinguished from FTP data transfers because these P2P connections typ-

ically are persistent and send data bidirectionally; FTP data transfer connections 

are non-persistent and send data only unidirectionally. Although obfuscation of 

flow statistics is also possible, they are generally much harder to implement. There 

has been much work on scalable techniques for flow sampling and estimation (e.g., 

see [24, 25, 32,43]), and furthermore, the logistics for collecting flow statistics is al-

ready available in many commercial routers (e.g., Cisco's NetFlow [13] solution). 

1.2 Thesis Objectives 

The three primary objectives of this thesis are: 

• To propose a methodology that classifies network flows by application using 

only flow statistics. 

• To apply this methodology to both offline and realtime classification, and eval-

uate the effectiveness of these classification approaches. 

• To facilitate "rich" traffic classification at the network edge and at ingress/egress 

points of the network core and enable support for QoS provisioning of applica-

tion speêific guarantees. 

The specific contributions of this thesis [27,29-31] are elaborated upon in the 

following section. 

1.3 Thesis Contributions 

This thesis proposes a methodology that classifies (or equivalently, identifies) net-

work flows by application using only flow statistics. Based on machine learning 
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principles, this methodology consists of two key components: a learner and a classi-

fier. The goal of the learner is to discern a mapping between flows and applications 

from a training data set. Subsequently, this learned mapping is used to obtain a 

classifier. Traditionally, learning is accomplished using a fully labelled training data 

set, as has been previously considered in the traffic classification context [53, 65]. 

Obtaining a large, representative, training data set that is fully labelled is difficult, 

time consuming, and expensive. On the contrary, obtaining unlabelled training flows 

is inexpensive. 

In this thesis, we develop a technique that enables us to build a traffic classifier us-

ing flow statistics from both labelled and unlabelled flows. This semi-supervised [10] 

approach to learning a network traffic classifier is one key contribution of this the-

sis. To the best of our knowledge, this is the first work to propose and explore 

semi-supervised classification for the network traffic classification problem. There 

are three main advantages to the proposed semi-supervised approach: 

• Fast and accurate classifiers can be obtained by training with a small number 

of labelled flows mixed with a large number of unlabelled flows. 

• This approach is robust and can handle both previously unseen applications 

and changed behaviour of existing applications. Furthermore, this approach 

allows iterative development of the classifier by allowing network operators the 

flexibility of adding unlabelled flows to enhance the classifier's performance. 

• This approach can be integrated with solutions that collect flow statistics, 

such as Cisco's NetFlow [13] and Bro [59] (as done in this work). Furthermore, 

this approach can leverage recent work on techniques for flow sampling and 

estimation (e.g., [25,32,43]). 

As a proof of concept, an implementation of prototype offiine and realtime classifi-

cation systems was done. A distinguishing aspect of this thesis is the implementation 
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of a realtime classifier in the Bro [59] Intrusion Detection System (IDS). Note that 

determining the application type while a flow is in progress is harder than offline iden-

tification because only partial information is available. This problem is addressed by 

designing a layered classifier that classifies flows at specific packet milestones using 

flow statistics that are available then. 

Recent traffic classification efforts, including those that leverage flow statistics, 

are developed and evaluated assuming that the point-of-observation is the network 

edge where packet transmissions along both directions of a flow can possibly be 

observed. At egress/ingress points of a network core, observing both directions of a 

flow may not be possible because of routing asymmetries. This poses two challenges. 

First, statistics necessary for the satisfactory classification of a flow may not be 

available. Second, classification can only use per-flow information and cannot rely 

on additional information such as communication patterns between hosts. 

To address these challenges, we study the influence directionality has on the pre-

dictive capability of different unidirectional flow statistics (e.g., packets originating 

only from the client, server, and combinations of both). Our observations lead us 

to develop and verify an algorithm capable of estimating the flow statistics for the 

unseen portion of a flow such as the number of bytes, and the number of packets. 

We also consider the longevity of classifiers (i.e., how long they remain accurate in 

an operational network). To facilitate retraining, we present a heuristic for detecting 

retraining points. We expect this retraining detection heuristic to be used with 

the realtime classifier such that once retraining is deemed necessary, collection of 

additional flows for use as training data can be automatically initiated. 
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1.4 Overview of Results 

Our evaluation of the classification accuracy of our approach is facilitated by recent 

full-payload packet traces from the University of Calgary's Internet link. We col-

lected approximately one terabyte of traces during a 6-month period. Using a multi-

pronged, semi-automated approach that consisted of payload-based identification, 

heuristics, and manual classification, the applications corresponding to individual 

flows were identified. These pre-classified traces were used as base truth to evaluate 

the accuracy of the classifier. 

Using our offline and realtime classification systems, we find that flow statistics 

can indeed be leveraged to identify, with high accuracy, a variety of different appli-

cations, including Web, P2P file sharing, email, and FTP. In our evaluations, flow 

accuracies as high as 98% and byte accuracies as high as 93% were achieved. 

We find that larger training data sets consistently achieve higher classification 

accuracies. While larger training data sets may appear to make the task of labelling 

the training data set time-consuming and difficult, we find that, in practice, a priori 

labelling of only a fraction of the training data is sufficient. 

Our experiments with long-term Internet packet traces suggest that classifiers 

are generally applicable over reasonably long periods of time (e.g., on the order of 

weeks) with retraining necessary when there are significant changes in the network 

usage patterns including introduction of new applications. 

In our evaluation of the influence of directionality of flow statistics in classifying 

traffic, we find that flow statistics along the server-to-client path of TCP connections 

achieve, on average, significantly higher byte accuracies compared to flow statistics 

along the client-to-server path; directionality appears to not have any significant 

impact on flow accuracy, with both directionalities attaining high flow accuracy. 

Based on our results, we hypothesize that statistics along the server-to-client path 
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have a greater ability to discriminate between flows than statistics along the client-

to-server path. We believe this to be the case because for many common network 

applications the flow of application payload data is greater in the server-to-client 

path. 

1.5 Thesis Organization 

The remainder of this thesis is organized as follows. Chapter 2 provides background 

on the Internet's TCP/IP architecture. It also reviews prior work on Internet traffic 

classification problem that is most relevant to this work. Chapter 3 describes the 

data sets used in this work. Chapter 4 presents the proposed semi-supervised classi-

fication framework, Chapter 5 describes and analyzes different clustering algorithms 

that could be used in this framework. Chapter 6 discusses our offline and realtime 

classification results. In addition, it discusses the history of the traffic classification 

problem, longevity, and retraining point detection. Chapter 7 provides our classifi-

cation results for unidirectional statistics. It describes our flow statistics estimation 

algorithm, its validation, and the classification results obtained with estimated sta-

tistics. Chapter 8 presents conclusions and directions for future work. 



Chapter 2 

Background and Related Work 

This chapter provides background on the Internet protocol suite and describes dif-

ferent traffic classification techniques in the literature. Section 2.1 describes the 

TCP/IP architecture, which is the protocol suite used to transfer data on the Inter-

net. Sections 2.2-2.5 describe different approaches to traffic classification. Section 

2.6 presents other related research of interest to this thesis. Section 2.7 contrasts 

previous traffic classification approaches to the classification approach proposed in 

this thesis. 

2.1 TCP/IP Architecture 

The TCP/IP Architecture of the Internet is explained in this section to give the 

reader an understanding of how network traffic is transmitted across the Internet. 

This understanding is fundamental to the work in this thesis because most prior 

classification approaches including the approach advocated in this thesis rely on 

information obtained from the protocols that are used to transmit the messages for 

the user's applications. 

The Internet is based upon the concept of packet switching [45]. Instead of 

transmitting a message between two hosts as a single large message, the message 

is broken up into smaller pieces called packets. These packets are then separately 

delivered to the other host. This allows the message to be transmitted and not require 

all the communication links along the sender-to-receiver path to be reserved during 

message transmission. The use of packet switching has several advantages including: 

increasing the throughput of the communication links, increasing the robustness of 

8 
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Application Layer 

Transport Layer 

Network Layer 

Data Link Layer 

Physical Layer 

Figure 2,1: TCP/IP Layered Network Model 

the communication, and reducing the latency. 

Protocols can be defined as a set of rules that govern the transfer of data be-

tween two hosts. The protocols used in the Internet form a "protocol suite". In 

this protocol suite, the two most important protocols are the Transmission Control 

Protocol (TOP) and the Internet Protocol (IF). These two protocols together ensure 

that when data is transfered it is delivered to the correct end host reliably and in the 

order it was sent. This is to overcome the fact that the communication links that the 

data is traveling over are unreliable due to losses, delays, and communication errors 

that occur. 

The protocols used for the Internet are organized into a layered network model. 

The lower layers of the network model provide services to the higher layers. This 

abstraction allows the individual layers to be developed concurrently and reduces 

the complexity of transferring data. The TCP/IP Architecture can be divided into 

five logical layers as presented in Figure 2.1 [45]. 

The bottom two layers of the protocol stack, the physical layer and the data 

link layer, deal with preparing the packet and transmitting the actual bits across 

the physical medium to between two hosts. Most relevant to the work in this thesis 



BACKGROUND AND RELATED WORK 10 

are the top three layers of the network protocol stack, namely, the network layer, 

the transport layer, and the application layer. These layers determine how packets 

are routed through the network, how data can be transferred reliably, and how 

applications or protocols transfer data. 

These will be explained in more detail in the following subsections. 

2.1.1 Network Layer 

The network layer is responsible for sending individual packets between hosts. The 

protocol that is responsible for this is called the Internet Protocol (IP). In IF, each 

packet is independent, and thus, requires full addressing information to be included 

in each packet header. IF provides a "best effort" delivery service, which means that 

it does not guarantee that a packet reaches its end destination. 

One main service that IF provides is 32-bit addressing in IP version 4 [62]. This 

will be upgraded to 128-bit addressing when IF version 6 [20] is fully deployed. When 

a packet is sent using IF, the addressing in the packet header is used by intermediate 

routers to determine which path to send the packet. All IF packets are assigned a 

"Time-To-Live" value. If a packet does not get delivered and circles through too 

many routers it is eventually dropped when its Time-To-Live expires. This ensures 

that undelivered packets do not travel the network indefinitely. Other services that 

IF provides are fragmentation, type of service, and optional fields [45]. 

2.1.2 Transport Layer 

As the network layer handles each packet individually, the logical communication 

between two end hosts is provided by the transport layer to the application layer. 

This transparency can include ensuring all data is delivered, providing error recovery, 

flow control, and congestion control. 

The most common transport layer protocol used is the Transmission Control 
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Protocol (TOP) [63]. This protocol provides reliable transfer of data for applications. 

Another transport layer protocol is the User Datagram Protocol (UDP) [61], which 

provides more limited services. 

In the following subsections, the multiplexing/demultiplexing of flows provided 

by the transport layer will be discussed. In addition, the functionality of TOP and 

UDP will be further elaborated upon. 

Multiplexing and Demultiplexing Flows 

The transport layer allows hosts to have multiple simultaneous data transfers to 

other hosts (or even the same host). This is facilitated by the transport layer using 

special fields called port numbers. In TOP and UDP, there is a source port number 

field and a destination port number field that tracks the port numbers used by each 

host for a flow. The port numbers are used at the host to determine which flow an 

arriving packet should be assigned to. Flows can be uniquely identified using the 

5-tuple of source and destination IF addresses, source and destination port numbers, 

and the transport layer protocol. 

The port number fields in TOP and UDP are 16 bits, which allows the port 

numbers to range from 0 to 65535. The port numbers from 0 to 1023 are typically 

reserved for well-known applications or protocols. These well-known port numbers 

are generally used by the host to receive incoming connections from other hosts. For 

example, a Web server normally uses port 80 for incoming HTTP connections. 

The ephemeral port numbers range from 1024 to 65535. Generally, these are 

dynamically assigned. Ephemeral port numbers are used when the host does not care 

what the assigned port number is such as when the host is establishing a connection 

to a remote service. In continuing with the above example, a host (the client) would 

use an ephemeral port number such as 1024 to establish a HTTP connection to the 

Web server running on port 80. 
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The well-known port numbers used by a server have in the past been a strong 

indicator of the application type of a flow; however, recently they are increasingly 

becoming ineffective. We discuss port-based classification further in Section 2.2. 

Overview of TOP 

The TOP is connection-oriented and provides reliable transparent transfer of data 

to the application layer [45,63]. In addition, TOP is full-duplex, which means that 

both end hosts can send data. The reliable data transfer TOP provides ensures 

that data is delivered to the application in-order, that data has minimal errors; that 

duplicate data is discarded, and that lost/discarded packets are resent. TOP includes 

congestion control mechanisms that modulate a sender's transmission rate such that 

network resources along the path from the sender to the receiver are shared fairly 

with other competing flows. 

TOP header data is attached to each packet to provide these services. Unlike 

IF, the TOP header data is not used by any of the intermediate routers along the 

network path and is instead only used by the end hosts running TOP. The TOP 

header is depicted in Figure 2.2 [45]. 

The congestion window field in the TOP header is used to specify the maximum 

receive buffer size of a host. This is used to provide flow control so that a host's 

receive buffer is not overwhelmed by arriving data. 

There are special bit flags in the TOP header that can be set to signal infor-

mation to the other host. For example, the SYN flag is used for the establishment 

of connections, the FIN and RST flags are used for the termination of connections, 

and the ACK flag is used to provide reliability. These are further described in the 

following paragraphs. The TOP header also has URG and PSH flags but these are 

seldom used. 

The TOP connection is established using a three-way handshake. This is a special 
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Op ions 

Data 

Figure 2.2: TOP Header 

sequence of packets that are sent to ensure both hosts have established the connec-

tion. The host establishing the connection first sends a packet with the SYN flag set. 

The other host responds with a packet with the SYN and ACK flags set. Concluding 

when the original host acknowledges that it received the SYN/ACK packet sent by 

sending a packet with the ACK flag set. To terminate a connection, packets with 

FIN or RST flags set are used. We used these flags (e.g., SYN, FIN, ACK) to help 

differentiate the start and end of flows when the 5-tuple (source address, source port, 

destination address, destination port, transport protocol) is identical between flows. 

Reliable transfer functionality in TOP is provided most importantly by using 

the sequence and acknowledgment number fields in the TOP header. The sequence 

numbers allow the payload data in the TOP packets to be reassembled in-order. 

The assigned sequence number of a packet corresponds to the Nth byte of the data 

stream and not the packet number. The acknowledgment numbers are used to cumu-

latively acknowledge that up to the Nth byte has been successfully received. Packets 
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acknowledging received data have the AOK flag set as well. If an acknowledgment 

is not received for a packet within a set period of time (e.g., a timeout occurs) or 

if multiple duplicate AOK's are received, then it is assumed that a packet has been 

lost and the packet assumed to be lost is resent by the sender. 

The sequence and acknowledgment numbers in TOP are extensively used in Chap-

ter 7 to develop our algorithm to estimate flow statistics from unidirectional flows at 

the network core. Different variants of TOP exist like TOP Reno, TOP New Reno, 

and TOP Vegas, and have varying acknowledgment policies such as for when to sent 

acknowledgment packets and how many unacknowledged packets can be outstanding. 

These policies allow TOP to have functionality like fast recovery of packet losses. We 

further elaborate on these differences in Chapter 7 when discussing our estimation 

algorithm. 

Overview of UDP 

UDP [61] is an alternative to the aforementioned TOP protocol. Compared to TOP, 

UDP provides limited services for messages that are exchanged using it [45]. 
UDP is a connectionless protocol that provides "best effort" delivery much like 

IF. UDP is lightweight compared to TOP because it does not have any connection 

setup (e.g., three way handshake) or tear down costs, and does not incorporate any 

mechanisms for reliable data delivery. This is advantageous to applications that are 

more sensitive to the timely delivery of data than reliability or to applications wishing 

to send small messages where the overhead of TOP would be significant. Examples 

of applications that typically use UDP are streaming media and DNS, respectively. 

UDP does provide pot numbers for the multiplexing and demultiplexing of mul-

tiple user requests. In addition, UDP provides basic error detection through an 

optional checksum that can be used. 

For applications that require some reliability and error-correction, these features 
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may be built into the application layer of the applications using UDP. 

In this thesis, UDP is not considered in the evaluation of our classification tech-

nique for three reasons. First, due to the stateless nature of UDP, clear identifica-

tion of flows is not possible as is with TCP. Second, UDP accounts for a negligible 

amount of traffic in the traces used in this work. Third, there is a low-level of di-

versity amongst applications using UDP in our traces making classification in some 

cases trivial. However, while each UDP packet is independent, many UDP-based 

applications conceptually behave much like flows. For example, streaming media 

applications sent a continual flow of UDP datagrams between hosts. In another 

example, query-based applications send requests and receive responses in several 

datagrams in short succession. We further elaborate in Section 3.3 on how the mes-

sage exchanges of these applications could be identified as flows and we discuss how 

the classification technique in this thesis could be applied to these UDP "flows". 

2.1.3 Application Layer 

The application layer allows the user's applications to communicate on the network. 

Many common applications communicate on the Internet with standard protocols 

that are used to provide compatibility amongst all applications of that type. For 

example, web browsers all communicate with an application-layer protocol called 

HTTP. 

In the early days of the Internet, only a few applications were prevalent. These 

included electronic mail and simple file transfers. However, as the Internet has 

continued to evolve, the number of applications prevalent has grown substantially. 

Table 2.1 non-exhaustively lists some of the major application types available and 

the common application-layer protocols associated with them. The identification 

of these applications and application-layer protocols communicating on a particular 

flow is the main focus and goal of the approach proposed in this thesis. 
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Table 2.1: Internet Applications 
Application Types Application-Layer Protocols 

Web 
Bulk File Transfer 

Chat 
Email 

Remote Computing 
Peer-to-Peer (P2P) 

HTTP, HTTPS 
FTP 

MSN Messenger, AOL, IRC 
SMTP, POP3, IMAP 

Telnet, SSH 
BitTorrent, KaZaA, Gnutella, eDonkey 

In the following sections, different approaches to identify the applications or their 

application-layer protocols will be discussed. These include approaches that use port 

numbers of well-known applications in Section 2.2, approaches that look for payload 

signatures inside packets in Section 2.3, and finally, approaches that are behavourial 

and machine learning based in Sections 2.4 and 2.5, respectively. 

2.2 Port-based Classification 

Historically, traffic classification techniques used well-known port numbers to iden-

tify Internet traffic. This was successful because many traditional applications use 

fixed port numbers assigned by or registered with the Internet Assigned Numbers 

Authority (lANA) [38]. Table 2.2 shows a partial list of the lANA port assignments 

for some selected applications and protocols. For example, email applications com-

monly use the Simple Mail Transfer Protocol (SMTP) on port 25 to send email and 

the Post Office Protocol version 3 (POP3) on port 110 to receive email. 

Port-based classification has been shown to be ineffective because many recently 

developed applications do not communicate on standardized ports [9,41, 67]. The 

current generation of P2P applications, many of which intentionally try to obfuscate 

their traffic, use ephemeral ports or use the port numbers of well-known applications 

to make the traffic indistinguishable to port-based classification and filtering. For 
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Table 2.2: lANA Assigned Port Numbers for Selected Applications and Protocols 
Application Port Numbers 

FTP Data Channel 
FTP Control Channel 

SSH 
Telnet 
SMTP 
DNS 
HTTP 
POP3 
IRC 
NNTP 
SOCKS 

20 
21 
22 
23 
25 
53 
80 
110 
113 
119 
1080 

example, Madhukar et al. conducted a longitudinal study over a 2-year period on the 

effectiveness of port-based classification using empirical Internet traces taken from 

the University of Calgary [50]. The authors compared port-based classification with 

a classification technique that relies on a set of transport layer heuristics (discussed 

in Section 2.4). Their trace only had SYN, FIN, and RST packets due to the longi-

tudinal nature of their trace, and thus, validation of their classification results using 

payload-based techniques (discussed in Section 2.3), for example, was not feasible. 

They found that 30% to 70% of the traffic is classified as unknown with port-based 

analysis. In addition, they found that the amount of unknown traffic was typically 

from 10% to 30% in the September 2003 to April 2004 portion of their trace. It 

has since increased from 30% to 70% by the Spring of 2005. They provide strong 

circumstantial evidence that this increase in unknown traffic is highly correlated to 

the increase in P2P traffic found with their transport-layer heuristic. 

The ineffectiveness of port-based classification has spurred researchers and com-

mercial vendors to find more effective methods of identifying network traffic. We 

discuss these approaches in the following sections. 
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2.3 Payload-based Classification 

Another approach to Internet traffic classification that avoids port-based identifi-

cation is analysis of packet payloads and is sometimes referred to as "Deep Packet 

Inspection". In this approach, the packet payloads are analyzed to see whether or not 

they contain characteristic signatures of known applications. These approaches have 

been shown to work very well for Internet traffic including P2P traffic [35, 52, 67]. 

However, these techniques also have drawbacks. First, these techniques typically 

require increased processing and storage capacity. Second, these approaches are un-

able to cope with encrypted transmissions. Finally, these techniques only identify 

traffic for which signatures are available, and are unable to classify previously un-

known traffic. The payload-based approach has been well researched and the' work 

presented here represents the current state-of-the-art for commercial traffic classifi-

cation products. 

One example of a study integrating payload-based analysis into a classification 

approach is the work by Moore et al. [52]. They describe a content-based method-

ology to classify network traffic. The first step of their classification methodology 

uses lANA assigned port numbers to create an initial classification. Then, using 

an iterative procedure, they use increasingly more information at later steps. This 

approach allows the traffic to be classified with increased confidence. The last step 

concludes the process by relying on manual analysis of the traffic for any remaining 

unclassified traffic. 

Moore et al. compared the effectiveness of port-based classification to this content-

based approach [52]. To facilitate, this comparison the authors collected a 24-hour 

trace of the traffic generated from approximatley 1,000 users. This comparison found 

that approximately 30% of the bytes in the trace are either misclassified or unclassi-

fied when using just the lANA port assignments. However, with the content-based 
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approach 99.9% of the traffic was identified confidently. 

In the remainder of this section, the research identifying payload signatures will 

be described. As well, some research conducted to address the aforementioned con-

cerns such as the automatic detection of signatures and decreasing the processing 

requirements of deep packet inspection will also be outlined. 

2.3.1 Identifying Payload Signatures 

In [67], Sen et al. develop an approach to accurately identify P2P applications. Their 

approach is based on application-level payload signatures. The focus of their research 

is to identify signatures that are highly accurate, that are scalable for analysis of large 

volumes of traffic, and that are robust to variable network dynamics such as packet 

loss, asymmetric routing, and packets arriving out of order. Their work focused on 

the five most predominant P2P applications: Gnutella, eDonkey, Direct Connect, 

BitTorrent, and KaZaA. 

The authors [67] implemented their signatures and found that signatures with a 

fixed-offset are trivial to implement and have a low computational overhead; while, 

variable-offset signatures are much more computationally expensive'. The method is 

validated on two full packet traces both collected in November 2003 that contain 120 

Gigabytes and 1.8 Terabytes of data, respectively. They found that by examining a 

few packets in each flow over 99% of the P2P traffic could be identified. The authors 

also analyzed port-based identification and found that 30% to 70% of the traffic for 

KaZaA and Gnutella use non-standard port numbers whereas only 1% to 4% of the 

traffic for BitTorrent and eDonkey use a non-standard port. 

Karagiannis et al. [41] uses a similar payload-based methodology to Sen et at. [67] 

for identiflng P2P applications. Karagiannis et at. [41] later extends these signatures 

'Examples of both fixed-offset and variable-offset signatures are given in Chapter 3 when we 
discuss our payload-based approach used to obtain "base truth". 
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to encompass all application types [42]. In both [41] and [42], Karagiannis et at. 

use the payload analysis to provide "base truth" to compare new behavioural-based 

traffic classification methods that they propose. These behavioural-based methods 

are further discussed in Section 2.4. 

In earlier work, Dewes et at. look at the network traffic dynamics of Internet Chat 

Systems [22]. The authors focus on IRC and web-based chat systems. Their paper 

describes a port and payload-based methodology for identifying the chat flows and 

filtering out non-chat traffic. Their approach uses well-known port numbers to filter 

out traffic that is most likely non-chat such as Gnutella traffic on port 6346. After 

this filtering has taken place they use payload signatures to separate the web-based 

chat flows from the regular non-chat traffic. 

2.3.2 Automated Detection of Payload Signatures 

One of the concerns of payload-based analysis of network traffic is the identification 

of characteristic signatures for use in deep packet inspection. Haffner et at. address 

this problem by attempting to automatically learn the application signatures using 

three machine learning algorithms [35]. The algorithms studied include Naive Bayes, 

AdaBoost, and Regularized Maximum Entropy. The approach uses a binary feature 

vector to train the algorithms, which is obtained from the first n-bytes of a flow's 

payload. The flow's payload is encoded into binary vectors so that for each of the 

n bytes of payload, the binary vector has 256 elements corresponding to this byte. 

Each of these elements is initialized to 0 first and then the element whose number 

corresponds to the value contained in this byte is set to 1. 

The authors validate their approach using training and test data  collected in 

2004 and 2005 [35]. These algorithms are tested upon FTP, SMTP, .POP3, IMAP, 

21n supervised machine learning training data is used to learn a function that can be used to 
predict the class labels of test data. This is discussed in more detail in Chapter 4. 
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HTTPS, HTTP, and SSH applications. The "base truth" for these applications is 

obtained using port-based analysis. Overall, the algorithms are shown to have a high 

accuracy identifying specific applications in the case where only the first 64 to 256 

bytes of the payload are used in constructing the feature vectors. However, none of 

these applications identified contain signatures that have variable-length offsets such 

as the Gnutella P2P application. 

Haffner et al. relied on training the classifiers with each specific application it 

wanted the classifiers to identify [35]. Recently, Ma et al. extend this work by 

proposing an unsupervised approach to the detection of application signatures [49]. 

This allows similar flows (most likely from the same protocol) to be grouped together. 

These groups (clusters) are then labelled in a later step to create a classification of the 

current and future flows placed into that group. The authors achieve this by using 

a generic classification framework and compare the use of three different methods: 

product distributions of byte offsets, Markov models of byte transitions, and common 

substring graphs. The authors evaluate methods to determine if flows from the same 

protocols are grouped together and that a new protocol is placed into a separate 

group when it is introduced. The misclassification rate varied between 2% to 10% 

with their various methods. 

2.3.3 Speeding up Deep Packet Inspection 

Sen et al. [67] found that payload analysis is much more computationally expensive 

when the payload signatures use a variable-length offset instead of a signature based 

on a fixed-length offset. Kumar et al. address this problem by proposing algorithms 

to increase the speed of deep packet inspection of regular expressions [44]. The 

authors propose a new method of representing regular expressions that condenses 

the transition state space and reduces the previously large memory requirements 

for regular expression matching. The method is evaluated using regular expressions 



BACKGROUND AND RELATED WORK 22 

obtained from several popular Intrusion Detection Systems such as Snort [64] and Bro 

[59]. The evaluations show that, with a careful implementation, regular expression 

matching of full-packet payloads can be successfully achieved at Gbps link speeds. 

2.4 Behavioural-based Classification 

Karagiannis et al. in [40,41] classify P2P traffic and report on trends in the usage 

of P2P file sharing. The authors analyze data from a tier 1 ISP; however, they are 

limited by having only 16 bytes of payload data available and only 4 bytes in some 

of their older traces. This would limit the effectiveness of an analysis and evaluation 

using only payload-based classification. Instead, the authors develop a non-payload 

based method, specifically two transport layer heuristics to classify P2P. 

One of the heuristics looks for IF addresses that are concurrently using both TOP 

and UDP. This heuristic works on the basis that most P2P applications typically send 

control information by UDP and transfer data by TOP. Flows using port numbers 

of well-known UDP applications such as DNS on port 53 are excluded to reduce 

false positives. The second heuristic looks at the ratio of the number of unique IF 

addresses to unique port numbers to which a host is connected. If this ratio is roughly 

equal then the flows from this host are classified as P2P. A higher ratio would tend to 

indicate a non-P2P type of flow such as HTTP because multiple concurrent flows are 

generally spawned from a web server to decrease the response times when a web page 

with multiple objects is requested. Karagiannis et al, validate these heuristics by 

creating a "base truth" using well-known port numbers of P2P applications, payload 

signatures, and a heuristic where if a IF address and port number pair had previously 

been used for a P2P flow in the last five minutes then future unlabelled IP/port pairs 

would also be classified as P2P. The transport layer heuristics were shown to be able 

to identify 90% of the total P2P bytes and 99% of the P2P flows. In addition, 
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the transport layer heuristics were able to identify P2P traffic that was previously 

unidentified with the payload analysis method used to establish the "base truth". 

Karagiannis et al. more recently have developed a classification approach based 

on the analysis of communication patterns of hosts [42]. This system leverages 

information obtained from the social, the functional, and the application layers to 

identify the application classes of particular flows from a host. The social level 

information is information such as the popularity of a host and the communities 

with which the host communicates. The functional level attempts to determine if 

the host's communication paradigm is client/server or collaborative (e.g., P2P). The 

application layer uses the communication patterns of application protocols referred 

to by the authors as "graphlets" to identify the applications. Constantinou et al, 

propose a similar technique that looks at the connection graph of hosts [15]. 

Concurrent to [42], Xu et al. [74] developed a methodology, based on data mining 

and information-theoretic techniques, to discover functional and application behav-

ioural patterns of hosts and the services used by the hosts. They subsequently use 

these patterns to build general traffic profiles, for example, "servers or services", 

"heavy hitter hosts", and "scans or exploits". 

2.5 Machine Learning based Approaches 

Another promising approach to traffic classification is the use of machine learning. 

This approach relies on the premise that a set of features for objects would be similar 

when objects are of the same class. In general, a feature can be any attribute that 

is relevant to the prediction of the target set of classes. In the case of traffic classifi-

cation, the objects dealt with are flows and the classes are the different applications 

or traffic types the flow is attempted to be classified as. 

Generally, in machine learning there are two stages when developing a classifier. 
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The first stage "learns" a mapping between the objects and the desired classes. This 

mapping is done using a labelled training data set. Subsequently, in the second stage 

this learned mapping is used by the classifier to label new objects. This framework 

is elaborated upon in Chapter 4. 

In the following subsections, Section 2.5.1 presents related research that ana-

lyze different candidate features for use in network traffic classification and evaluate 

their ability to separate flows into distinct groups. Section 2.5.2 describes different 

approaches that build a machine learning based classifier for network traffic classifi-

cation. 

2.5.1 Analysis and Selection of Features 

Obtaining a set of relevant features is a difficult problem in machine learning [46]. 

As such, the focus of much of the prior work using machine learning techniques has 

been on demonstrating the ability of algorithms to group together flows according 

to application type and not on classifying traffic (e.g., [27,37, 51,65,75,76]). These 

techniques generally use only features obtained from a single flow such as packet 

sizes, interarrival times, or aggregate statistics. These approaches do not consider 

the application labels of the flows when forming the groups. In the machine learning 

literature, this can be characterized as "unsupervised" learning because the labels 

are not used [23,39]. 

Clustering algorithms' [23,39] are the most common type of unsupervised ma-

chine learning algorithms used in this research topic. Many of the following studies 

use clustering algorithms. 

Hernandez-Campos et al. study, using an abstract model, how to represent ap-

plication level communications [37]. Their abstract model represents the communi-

cation patterns of a flow in "epochs" that store the amount of data traveling to both 

'Clustering algorithms are further discussed in Chapter 5. 
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the sender and receiver, and the idle time between exchanges. The feature vectors 

for a flow are extracted from these epochs. Hernandez-Campos et al. then use hier-

archical clustering [23,39] to group the flows based on similarity. They found when 

5,000 flows were clustered that many of the clusters corresponded roughly to a sin-

gle application. For example, one of their clusters contained web flows and another 

contained flows from mail protocols. 

Roughan et al. [65] classified flows into four predetermined traffic classes (inter-

active, bulk data transfer, streaming, and transactional) using the Nearest Neighbor 

and the Linear Discriminate Analysis classification techniques. Roughan et al, show 

that it is possible to successfully separate the flows of different traffic classes using 

only flow statistics and give explanations to why their chosen flow statistics (aver-

age packet size, and flow duration) would work for the different traffic classes they 

studied. 

McGregor et al. analyzed packet sizes and interarrival times of different applica-

tion types to determine whether different applications exhibit different packet size 

and interarrival characteristics [51]. In analyzing plots of packet sizes and interarrival 

times, they found that while there were some distinguishing characteristics between 

applications it would be difficult to do rich traffic classification. McGregor et al. then 

proposed a methodology to use Expectation Maximization (EM) clustering that will 

group flows using flow statistics including byte counts, connection durations, and 

packet size statistics. The authors conducted a preliminary analysis using cluster 

visualization to examine the clusters and find that many of the clusters correspond 

to a single type of traffic class such as bulk data transfers and DNS traffic. 

Zander et al. [75, 76] extend the aforementioned work. Specifically, they look 

at maximizing intra-cluster homogeneity (or cluster purity) by investigating which 

set of features separate the flows from different applications with greatest accuracy. 

The traces used in this analysis are from a publicly available archive of traces and 
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port-based analysis was used to establish the "base truth". The authors have con-

tinued this work and recently used the C4.5 supervised machine learning algorithm 

to estimate the traffic trends in archival traces [77]. 

In our own research, we have investigated the ability of clustering algorithms 

to group together flows by application type using flow statistics as features [27]. 

We considered three different clustering algorithms (K-Means, DBSCAN, and Auto-

Class), and showed that these algorithms can form clusters where each cluster largely 

consists of applications of a single type. Our investigations are presented in Chapter 

5. 

We conclude this discussion by noting that two distinct types of features have 

been used for traffic classification. The first type of features use "aggregate" flow 

statistics such as mean packet sizes, and flow durations. The second type of features 

use the "individual" packet sizes and interarrival times. In the following subsection, 

we discuss classification approaches based on each of these distinct feature types. 

Note, we provide a discussion of the advantages and disadvantages between these 

types of features in Section 2.7. 

2.5.2 Classification Approaches 

In this section, we discuss the classification approaches that use machine learning 

to build a classifier. These classifiers predict the application labels of new flows 

to accomplish the traffic classification. As previously mentioned, these approaches 

consist of two stages: a learning stage and a classification stage. In the learning 

stage, labelled training data is used to create the flow to application mappings. This 

can generally be considered as "supervised" learning because the training flows must 

be labelled before the learning occurs [23,39]. The approach taken in this thesis is 

semi-supervised because we only require a small portion of the flows in the training 

data to ever be labelled. This is explained in Chapter 4. 
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We first describe classification approaches that use aggregate flow statistics as 

their features. The semi-supervised classification technique proposed in this thesis 

also utilizes aggregate flow statistics. 

Moore et al. extensively study the suitability of a Naïve Bayes classifier for 

Internet traffic classification [53,79]. A similar use of Naïve Bayes was first proposed 

in [1]. The Naïve Bayes algorithm is one of the simpler supervised machine learning 

algorithms available. The algorithm is built on the assumption that features are 

independent and identically distributed, The Naïve Bayes method estimates the 

Gaussian distribution of the features for each class based on labelled training data. A 

new flow is classified based on the conditional probability of the connection belonging 

to a class given its attribute values. The probability of belonging to the diass is 

calculated for each attribute using the Bayes rule: 

PAB P(BIA)P(A)  
(I)- P(B) 

where A is a given class and B is a fixed attribute value. These conditional proba-

bilities are multiplied together to obtain the probability of an object belonging to a 

given class A. 

Moore et al. [53] use a large hand classified trace to evaluate this approach. 

In addition, they outline an exhaustive list of 248 flow features [54] and find that 

their classifier's performance suffers when redundant or irrelevant flow features are 

used. To overcome this problem, feature reduction is used to reduce this list to 

the 12 most frequently used features. In the evaluation, the feature reduction and 

refinements made to the Naïve Bayes algorithm allow the classification accuracy of 

flows to increase from 65% to over 95%. This work is further continued in [47] with 

the goal of adapting this approach to realtime traffic classification. 

Our semi-supervised classification methodology complements prior efforts of Moore 

et al. [47,53,79]. Our approach is amenable to introduction of new applications and 
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behavioural changes of existing applications. We presented a preliminary comparison 

of our approach to Naïve Bayes in [28]. 

Recently, Williams et al. [72] compared five supervised learning algorithms and 

four different methods of feature reduction. Unfortunately, this study has some 

drawbacks. First, the evaluations relied on older data sets from 2000 and 2001 and 

used port-based analysis to obtain the "base truth". Second, the traffic classes tested 

did not include P2P which is much more elusive and important to classify. We believe 

that the results from this preliminary comparison are inconclusive and do not show 

any significant advantages of using a more complex supervised machine learning 

algorithms over the simpler Naïve Bayes algorithm used in prior work [47,53]. 

Nguyen et al. continue the work of Williams et al. in [56, 57]. They study 

using "sub-flows" for traffic classification. In this work, the sub-flows are a window 

of packets from which flow statistics are calculated from. Nguyen et al. test their 

approach by attempting to identify from an online game called Wolfenstein Enemy 

Territory with a test data set containing interfering traffic. They find that a sub-

flow as small as 25 packets allows for accurate detection of the Wolfenstein Enemy 

Territory online game traffic. 

The classification approaches we describe in the sequel use per-packet statistics 

such as packet sizes of individual packets, and a sequence of packet inter-arrival 

times. 

Dedinski et al. investigate a technique to identify P2P traffic on a network [19]. 

The authors collect traces from an isolated network where a P2P application (eDon-

key) and a FTP application are downloading a 600 MB file. The packet size distribu-

tions and interarrival times are analyzed for each type of flow using wavelet analysis. 

Overall, the author's preliminary results found that it was possible to distinguish 

between FTP and eDonkey. However, no qualitative results were given. 

Bernaille et al. [5,6] further explore traffic classification using the sizes of the first 
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P packets of a TCP session. The classifier proposed by Bernaille et al. is the closest 

work to our own classification approach presented in Chapter 4. Their proposed 

classifier similarly uses the K-Means algorithm and a minimum distance measure to 

assign a flow to an application label. Their empirical study shows that flow accuracy 

up to 98% can be achieved for some applications. However, they were unsuccessful 

in classifying application types with variable-length packets such as Gnutella. 

Bernaille et al. further test their classification approach on encrypted traffic [4]. 

A test data set for their experiments is created by replaying unencrypted flows that 

had previously been labelled by payload signatures over a SSH tunnel. The new 

trace now contains only encrypted traffic. When the classifier is trained with a 

training data set of 500 unencrypted flows for several application types, and tested 

on the encrypted trace the flow accuracy is 85%. However, neither of these studies 

by Bernaille et al. [4,6] assess byte accuracy, which makes direct comparison to our 

work difficult. 

In [17,18], Crotti et al. present an approach to traffic classification that is similar 

to Bernaille et al. [6]. This approach uses packet sizes, interarrival times, and arrival 

order of the first N packets as features for their classifier. The authors construct 

protocol fingerprints, which are histograms of the observed variables for a flow. The 

author's approach, which is noted to be susceptible to noise, incorporates a Gaussian 

filter into the anomaly score used to determine the likelihood of a flow belonging to 

a traffic class of the protocol fingerprint. The results that have been presented with 

this approach are preliminary and focus on only HTTP, POP3, and SMTP. This 

precludes direct comparisons to our work, which is more holistic in its evaluation of 

all the issues surrounding traffic classification. 
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2.6 Other Classification Approaches 

While not directly related to traffic classification the following research provides some 

insight into the work done in this thesis. 

Saddi et al. propose an approach to estimate the amount of mice (short flows) 

and elephants (long flows) in a trace [66]. The authors present the idea that larger 

packets tend to indicate elephant flows. This is an interesting finding as it indicates 

aggregate packet size as a relevant discriminator for application type as elephant and 

mice flows are generally associated with different types of applications. We confirm 

this in Section 6.1.3 when we find that packet size is good feature to use in our 

classification approach. 

In [70], Sun et al. use statistical information to identify encrypted web browsing 

traffic. A similarity-based Nearest Neighbour algorithm is used. The features used 

include the size of the web page and the sizes of the objects the a web page that 

are inferred from the TCP connection's packet exchanges. The authors explore 

countermeasures such as padding, mimicking, and morphing, and their associated 

cost. These counter measures are the same that could be used to disguise a flow in 

the traffic classification problem. 

2.7 Discussion 

This section discusses our proposed semi-supervised classification technique in com-

parison to the aforementioned traffic classification approaches in the literature. We 

believe the approach presented in this thesis offers some distinct advantages that 

overcome some of the drawbacks of previous approaches. 

The traditional classification techniques such as those based on well-known port 

numbers or payload analysis are either no longer effective for all types of network 

traffic or otherwise have several drawbacks such as the inability to classify encrypted 
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traffic and increased processing overhead. Our proposed classification technique, 

as well as the behavioural and machine learning based approaches, overcome these 

issues by avoiding the use of port numbers and packet payload information in the 

classification process. 

The behaviour-based approaches proposed by Karagiannis et al. [42] to classify 

network traffic have some limitations and drawbacks. At the heart of their approach 

is the use of graphiets to identify the connection patterns of the different traffic types. 

However, to add a new graphiet that can uniquely distinguish itself from all other 

graphiets would be a difficult task. Another limitation of the graphiets is that some 

of the most predominant traffic classes require heuristics (tunable parameters) to 

distinguish themselves from each other. The optimum settings for these heuristics, 

for instance, to successfully discriminate between HTTP and P2P seem to be network 

and application dependent; P2P users can change their application settings and 

possibly evade detection. Another drawback is the need to store information across 

multiple flows. As Roughan et al. discuss "multi-flow features are more complex and 

computationally more expensive to capture than flow or connection data alone" [65]. 

In contrast, our work relies upon and advocates using aggregate flow statistics that 

can easily be computed from a single flow that do not require per-packet information 

to be stored, and achieve comparable or better accuracies when classifying traffic, 

including traffic originating from P2P applications. 

We believe that our semi-supervised approach offers some distinct advantages 

over supervised machine learning approaches. One of the main benefits of our semi-

supervised approach over supervised machine learning is that new applications can 

be identified by examining the flows that are grouped to form new clusters. The 

supervised approach cannot discover new applications and can only classify traffic 

for which it has labelled training data. 

Another advantage occurs when the flows are being labelled. The labelling of the 
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entire data set that is representative of all applications for the supervised approaches 

is difficult, time consuming, and expensive. Our semi-supervised approach is accurate 

with a training data set that has only a few labelled flows mixed with many easily 

obtainable unlabelled flows. 

One main difference between the work of Bernaille et al. [5, 6] and Crotti et 

al. [17,18] and the work in this thesis is the choice of features. Bernaille et al. 

explore the potential of classifying traffic using the size of the first P packets of a 

TCP session. Conceptually, their approach is similar to payload-based approaches 

that look for characteristic signatures during protocol handshakes to identify the 

application and is unsuccessful in classifying application types with variable-length 

packets in their protocol handshakes such as Gnutella. As noted by Bernaille et 

al., "the main challenge to traffic classification techniques in general is evasion. For 

instance, an 'attacker' could easily evade our method by padding packet payloads in 

order to modify sizes" [6]. Our approach is much more robust to this type of attack 

and as we discuss in Section 6.3.1 would require a crippling amount of overhead for 

an attacker to defeat it. 

Neither of these studies [5,6,17,18] assesses the byte accuracy of their approaches 

which makes direct comparison to our work difficult. Our evaluation suggests that 

achieving a high flow accuracy is relatively easy. The more difficult problem is 

obtaining a high byte accuracy as well. Our work concentrates on achieving both 

high flow and byte accuracy. 

Some prior studies focused on traces with a limited number of application: 10 

in [6] and only 3 in [17]. In this thesis, we use traces that span several months, and 

furthermore, we try to classify all traffic in our traces because we find that some 

applications with only a few flows can still contribute substantially to the amount 

of bytes transferred in the network. In addition, we address many of the challenges 

outlined in their research including selection of training data sets, classifier longevity, 
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automatic detection of retraining points, an ability to leverage unlabelled training 

data. We have found that realtime classification using a hierarchy of classifiers 

substantially improved the classification accuracy. 

2.8 Summary 

In this chapter, we presented an overview of the TCP/IP protocol suite. In addition, 

we described different approaches to network traffic classification. The historical ap-

proach of traffic classification using port-based analysis is ineffective. Payload-based 

approaches using characteristic signatures currently provide accurate classifications; 

however, they have many challenges including the inability to identify encrypted 

traffic. Recent research has focused on overcoming the challenges of traffic classifica-

tion through approaches that are based either on the behaviour of hosts or through 

approaches that use machine learning. 

The next chapter describes the methodology we used to collect our network traces, 

how base truth was established, and presents an overview of the data sets to provide 

empirical motivations for our work, 



Chapter 3 

Methodology 

This chapter describes the data sets used in this thesis. Section 3.1 outlines our 

trace collection methodology. Section 3.2 presents high-level summary statistics of 

the collected traces. Section 3.3 describes the extraction of flow statistics from the 

traces. Section 3.4 describes the method used to establish the base truth of the flow 

to application mappings for collected traces. An overview of the data sets is pro-

vided in Section 3.5. Section 3.6 provides some empirical observations as additional 

motivation for our work. 

3.1 ]aces and Collection Methodology 

To facilitate our work, we collected traces from the Internet link at the University 

of Calgary. Depending on the specific subnets traced, the collected traces are cate-

gorized as Campus, Residential, and Wireless LAN (WLAN). 

Although our classification approach uses only flow statistics, application-layer in-

formation is helpful for training the classifiers and required for validating the results. 

Thus, we needed packet traces that contain relevant application-layer information. 

In addition, this work needed traffic traces that span an extended period of time to 

facilitate assessment of the longevity of the classifiers. These requirements introduce 

several challenges. First, to capture application-layer information necessary for es-

tablishing a base truth of the flow to application mapping, packet traces should have 

the relevant application-layer headers. The application-layer header lengths differ 

from one application to another. Thus, for simplicity of trace capture, we obtained 

full payload traces. Second, full payload packet traces require a substantial amount 

34 
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of storage space. Two additional issues we had to consider were the limited storage 

space on our network monitor, and that we cannot move a trace off of our monitor 

quickly enough to sustain continuous full packet tracing. 

We have a network monitor deployed on our campus Internet link. Our monitor 

is configured with two 1.4 GHz Intel Pentium III processors, 2 GB of memory, and 70 

GB of disk space for traces. Traffic from the campus Internet connection (a 100Mb/s 

full-duplex Ethernet link) is forwarded via port mirroring to our monitor over a 1 

Gb/s half-duplex Ethernet link. 

Initially, we planned to use tcpdump to collect the traces, but during testing we 

found that it dropped many packets (typically more than 1.5%). We instead used a 

tool called lindump, which we found dropped far fewer packets [48]. 

To address the trace issues identified above while still meeting the requirements 

of this research, we collected forty-eight 1-hour traces, over a span of six months, 

of traffic from the campus to outside the campus network, and vice versa only (i.e., 

traffic to and from the public Internet is captured). Specifically, we collected eight 

1-hour traces each week, for five consecutive weeks in the spring of 2006 (April 6 

to May 7) and also an additional week in the fall of 2006 (September 28). The 

traces were collected Thursdays, Fridays, Saturdays, and Sundays from 9-10 am and 

9-10 pm on each of these days. Our reasoning for this collection scheme is as follows. 

First, we expected there to be noticeable differences in usage between the morning 

and evening hours. Second, we expected there to be noticeable differences in usage 

between work days and non-work days. Third, the collection period spanned several 

important transitions in the academic year: the busy final week of the semester 

(April 6-9), a break before final examinations (April 11-16), the final examination 

period (April 17-28), the start of summer break for students (April 29-May 7), and 

a week in the fall semester (September 28-October 1). 

Based on these observations, we expected that these traces would capture any 
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substantial changes that occurred in the traffic during the collection period, while 

substantially reducing the volume of data we needed to collect. We call this set of 

forty-eight traces the Campus traces; these contain traffic to and from all academic 

units on Campus. The network infrastructure uses a signature-based bandwidth 

management tool to actively limit all identifiable P2P traffic. In addition, user 

accounts are actively policed for the presence of non-academic content. 

The Residential trace was collected on October 20, 2006 from midnight to 10 am 

from a specific set of subnets corresponding to the student residence network of the 

university. The student residence network is of interest because it is not actively 

policed. Instead, there is a "soft" limit on the bandwidth available to each user, and 

in addition, the total bandwidth usage of this network is limited during work hours. 

The Wireless Local Area Network (WLAN) trace is a 1-hour trace, collected from 

the campus WLAN from 9 am to 10 am on September 28, 2006. The WLAN covers 

many of the buildings on campus, and is open to faculty, staff, and students. 

In addition to the above trace, we used data from two other empirical packet 

traces to analyze the clustering algorithms discussed. One is a publicly available 

packet trace called Auckland IV' that contains the traffic going through the Univer-

sity of Auckland's link to the Internet. We used a subset of the Auckland IV trace 

from March 16, 2001 at 06:00:00 to March 19, 2001 at 05:59:59. The other trace 

is an additional full packet trace that we collected from the campus portion of the 

university's Internet link. 

3.2 High-level Statistics of the Traces 

Figure 3.1 provides some high-level statistics of the Campus traces. Figures 3.1(a) 

and (b) reveal some expected trends. First, both the number of packets and volume 

'Available at: http://www.wand.net.nz/wand/wits/auck/ 
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of data transferred are higher during the morning than in the evening on work days. 

Second, the number of packets and the volume of data are higher in the evening than 

in the morning on non-work days. Third, the level of network activity decreased as 

classes ended and exams began, and decreased further still as the semester ended 

and students left for the summer. 

In total, 1.39 billion IF packets containing 909.2 GB of data were collected. Of 

this, 89.0% of the packets and 95.1% of the bytes were transferred using TCP and 

10.2% of the packets and 4.7% of the bytes were transferred using UDP. Figure 3.1 

(c) and (d) show the number of flows and the percentage of bytes in each trace that 

correspond to Tap packets, respectively. 

Figure 3.1. (e) provides the packet loss statistics lindump reported for each trace. 

The reported packet loss was typically below 0.50% with many of the traces being 

zero. However, the worst packet loss experienced was 1.11% for the 9-lOam trace on 

Thursday April 13. 

The 10-hour Residential trace contains 97.5 million IF packets and 58.3 GB of 

data. Of this, 85.1% of the packets and 83.2% of the bytes are TCP and 14.5% of the 

packets and 16.6% of the bytes are UDP. The WLAN trace contains 18.4 million IF 

packets and 11.6 GB of data. Of this, 95.7% of the packets and 98.3% of the bytes 

are TCP and 1.8% of the packets and 3.6% of the bytes are UDP. 

3.3 Flow Characteristics 

In this thesis, we focus exclusively on classifying TOP traffic. As discussed above, 

our traces also had non-TOP traffic (e.g., UDP and laMP). There are two main 

reasons for our focus on TOP flows. First, TOP traffic accounts for a significant 

fraction of the overall traffic. Classifying this traffic accurately allows determination 

of the robustness of our approach. Second, if flow characteristics from other protocols 



METHODOLOGY 39 

were collected, it would likely be advantageous to have a separate classifier for the 

non-TCP traffic. Classification of UDP traffic is a fruitful avenue for future work. 

To collect the statistical characteristics necessary for our classification system, 

the flows must be identified within the traces. Bro [59], an open source Network 

Intrusion Detection System, was used for extracting the flow statistics. 

The start of a TCP flow is determined by SYN/SYNACK packets being sent. 

Flows are (typically) terminated when either the FIN or RST packets are received. 

In addition, we specified in Bro that a flow be considered terminated if it is idle for 

more than 900 seconds. After determining the flows in the traces, we are able to 

calculate the required flow statistics. For flows in progress when we started our trace 

collection we also calculated flow statistics based on the packets we observed in the 

traces. 

3.4 Establishing Base Truth 

We established base truth for the traces using an automated process that consists 

of payload-based signature matching, heuristics, and HTTPS identification. The 

details of this process are discussed next. 

The payload-based classification step uses Bro [59], which has a signature match-

ing engine that generates a match event when the packet payload matches a regular 

expression specified for a particular rule. We used many of the same methods and 

signatures described by Sen et al. [67] and Karagiannis et al. [41], but augmented 

some of their P2P signatures to account for protocol changes and some new P2P 

applications. 

For the BitTorrent P2P protocol, Sen et. al [67] propose using the signature: 

19BitTorrent protocol 

We found that this signature by itself identified the majority of BitTorrent traffic in 
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signature bittorrent_id { 
payload I. * (BT_CHOKE I BT_UNCHOKE I BT_UNINTERESTED I BT_INTERESTED 
I BT_HAVE I BT_BITFIELD I BT_REQUEST BT_PIECE I BT_CANCEL 
I BT_KEEP_ALIVE I AZ_PEER_EXCHANGE I AZ_HANDSHAKE 
I AZTORRENT_ (SYN I ACK I SESSION_SYN I SESSION_ACK) ) / 
event "BitTorrent" 

} 

Figure 3.2: BitTorrent Payload Signature 

our traces. However, we augmented this signature to find some additional BitTorrent 

traffic in our trace which we were missing with the signature used by Sen et al.. Figure 

3.2 shows the extra payload signatures we used to identify BitTorrent traffic. The 

additional signatures for BitTorrent come from the ten primary types of packets that 

are shared between peers [7]. These packets contain a specific term used to represent 

the command sent between the peers. These commands are preceded by BT... In 

addition, the BitTorrent client Azureus has some of its own specific commands with 

the AZ.. prefix. 

Details about the payload-based signatures for all applications we identified can 

be found in Appendix A. 

For our payload-based classification, if a packet in a flow matches the regular 

expression pattern specified for a particular application then the entire flow is labelled 

as being this application. This leaves a possibility for more than one label to be given 

to a flow in the case where more than one signature was matched. In analyzing 

the cases where this did occur we found that this typically only happened with 

flows labelled as HTTP. This occurred with HTTP because some applications such 

as Gnutella-based P2P applications also use the HTTP protocol. To handle these 

possible misclassifications, if a flow had already been labelled as HTTP but another 

signature was matched such as one for Gnutella, then the flow was reclassified as 
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Onutella. However, for application labels other than HTTP, once a flow was classified 

it was not reclassified even if more than one rule was matched. 

Some P2P applications are now using encryption. For example, BitTorrent 

is using a technique called Message Stream Encryption and Protocol Encryption 

(MSE/PE). The MSE/PE technique uses a Diffie-Hellman exchange that is com-

bined with the infohash of the torrent to establish the key for the connection [8]. 

After this exchange has occurred, the clients use RC4 to encrypt the data packets. 

Some popular BitTorrent clients such as Atorrent and Azureus allow the users to op-

tionally fall back to plaintext if a client does not support or is not using encryption. 

To identify some of this encrypted P2P traffic, we used a heuristic. Specifically, we 

maintain a lookup table of (IP address, port number) tuples from flows that have 

recently (i.e., within 1-hour) been identified as using P2P. If a flow is unlabelled and 

there is a match in our P2P lookup table, we label it as possible P2P. This mechanism 

works on the basis that some P2P clients use both encryption and plaintext. 

We also analyzed unlabelled traffic on port 443, to establish whether or not this 

traffic is indeed HTTPS. This verification was done using an experimental version of 

Bro that has this detection capability. In addition, automated random checks were 

performed to determine whether or not flows labelled as HTTPS involved at least 

one host that was a Web server. 

The publicly available Auckland IV traces are anonymized, and thus include no 

payload information. Thus, to determine the flow's "base truth", port numbers are 

used. While port-based identification is becoming increasingly ineffective we feel 

this should still provide accurate results for the Auckland IV traces used in this 

thesis. This is because the emergence of dynamic port numbers in P2P traffic did 

not happen until late 2002 [14]; the Auckland traces were collected in 2001. 
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Table 3.1: Application Breakdown (Campus Traces) 
Class Flows % Flows Bytes % Bytes 
HTTP 9,213,424 39.5% 334.4 GB 38.7% 
P2P 620,692 2.7% 310.9 GB 36.0% 
EMAIL 1,123,987 4.8% 42.5 GB 4.9% 
FTP 23,571 0.1% 20.3 GB 2.3% 
P2P Possible 35,620 0.2% 12.3 GB 1.4% 
STREAMING 3,396 0.0% 7.4 GB 0.9% 
DATABASE 3,057,362 13.1% 3.0 GB 0.3% 
CHAT 26,869 0.1% 1.0 GB 0.1% 
OTHER 51,298 0.2% 32.1 GB 3.7% 
UNKNOWN 990,492 4.2% 70.1 GB 8.1% 
UNKNOWN (443) 1,409,707 6.0% 29.7 GB 3.4% 
UNKNOWN (NP) 6,765,214 29.0% 1.0 GB 0.1% 
Total 23,321,632 100.0% 864.6 GB 100.0% 

3.5 Overview of the Data Sets 

Table 3.1 summarizes the applications found in the forty-eight 1-hour Campus traces. 

Application breakdowns for the 10-hour Residential trace, the 1-hour WLAN trace 

and the Auckland IV trace are shown in Table 3.2, Table 3.3, and Table 3.4, respec-

tively. 

Over 29 different applications were identified. These applications include: BB, 

BitTorrent, DirectConnect, eDonkey, FTP, Gnutella-based P2P programs (e.g., Lime-

Wire, BearShare, Gnucleus, Morpheus, FreeWire), GoToMyPO, HTTP, ICQ, IDENT, 

IMAP, IMAP SSL, JetDirect, KaZaA, MySQL, MSSQL, MSN Messenger, MSN Web 

Cam, NNTP, POP3, POP3 SSL, RTSP, Samba, SIP, SMTP, SOAP, SpamAssassin, 

SSH, SSL, VNC, and Z3950 Client. To simplify the presentation, we group the appli-

cations by category. For example, the P2P category includes all identified P2P traffic 

from protocols including BitTorrent, Gnutella, and KaZaA. P2P flows identified us-

ing heuristics are labelled P2P Possible. The OTHER category constitutes various 

applications that were identified but did not belong to a larger group and did not 
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Table 3.2: Application Breakdown (Residential Trace) 
Class Flows % Flows Bytes % Bytes 
P2P 297,781 17.6% 38.52 GB 79.3% 
HTTP 118,485 7.0% 3.37 GB 6.9% 
P2P Possible 39,943 2.4% 0.34 GB 0.7% 
EMAIL 1,159 0.1% 0.12 GB 0.2% 
STREAMING 29 0.0% 0.07 GB 0.1% 
CHAT 1,207 0.1% 0.05 GB 0.1% 
OTHER 190 0.0% 0.03 GB 0.1% 
UNKNOWN 91,275 5.4% 5.88 GB 12.1% 
UNKNOWN (443) 4,833 0.3% 0.06 GB 0.1% 
UNKNOWN (NP) 1,135,242 67.2% 0.13 GB 0.3% 
Total 1,690,144 100.0% 48.56 GB 100.0% 

Table 3.3: Application Breakdown (WLAN Trace) 
Class Flows % Flows Bytes % Bytes 
P2P 61,603 15.9% 6.90 GB 60.3% 
HTTP 145,177 37.5% 2,94 GB 25.7% 
P2P Possible 7,842 2.0% 0.13 GB 1.2% 
CHAT 2,928 0.8% 0.05 GB 0.5% 
EMAIL 695 0.2% 0.02 GB 0.1% 
FTP 157 0.0% 0.00 GB 0.0% 
STREAMING 13 0.0% 0.00 GB 0.0% 
OTHER 374 0.1% 0.01 GB 0.1% 
UNKNOWN 16,100 4.2% 1.16 GB 10.1% 
UNKNOWN (443) 8,581 2.2% 0.22 GB 2.0% 
UNKNOWN (NP) 143,631 37.1% 0.02 GB 0.1% 
Total 387,101 100.0% 11.4 GB 100.0% 
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Table 3.4: Application Breakdown (Auckland IV Trace) 
Class Flows % Flows Bytes % Bytes 
HTTP 3,092,009 81.2% 36.24 GB 68.6% 
DNS 75,513 2.0% 0.07 GB 0.1% 
SOCKS 69,161 1.8% 0.24 GB 0.4% 
IRC 53,446 1.4% 0.01 GB 0.0% 
FTP (control) 50,474 1.3% 0.03 GB 0.1% 
POP3 37,091 1.0% 0.22 GB 0.4% 
Gnutella 10,784 0.3% 0.51 GB 1.0% 
NNTP 9,442 0.2% 1.25 GB 2.4% 
FTP (data) 5,018 0.1% 2.13 GB 4.0% 
UNKNOWN 404,501 10.6% 12.14 GB 23.0% 
Total 3,807,439 100.0% 52.83 GB  100.0% 

account for a significant proportion of flows. The tables also list three categories of 

UNKNOWN flows. There are UNKNOWN (NP) flows that have no payloads. Most 

of these are failed TCP connections, while some are port scans, The UNKNOWNS 

(443) are flows on port 443; these are likely to be HTTPS traffic. The third cate-

gory is simply labelled as UNKNOWN to reflect the fact that we have not identified 

the applications that generated this traffic. The unknown flows are not used in our 

analysis. General observations from these data sets follow. 

Figure 3.3 shows the breakdown of the traffic for different applications in the 

Campus traces. For clarity, this figure reports HTTP, P2P, OTHERS, and UN-

KNOWN, wherein the OTHERS category includes all classified traffic that is not 

HTTP or P2P. Also we have excluded flows that do not have any payloads. In this 

figure the diurnal patterns of the traffic can be seen. During the weekdays there is 

more traffic than the weekends and during the mornings there is more traffic than 

at night (note April 14 was a holiday). The large increase of UNKNOWNS on May 

4 at 9 am is due to a port scan. One IP address made 621,429 connections to one of 

the University of Calgary's subnets scanning every port from 1 to 1024. These were 

single packets sent of only 60 bytes and so there is not a similar spike in the bytes 



METHODOLOGY 

"1 

LL 

1800 

1600 

1400 

1200 

1000 

800 

600 

400 

200 

0 

45 

40 

35 

30 

25 

20 

15 

10 

5 

0 

MEMEMEME 
6 7 59 
April 

MEMEMEME MEMEMEME MEMEMEME MEMEMEME 
28 29 30 1 
Sept Oct 

MEMEMEME 
13 14 15 16 2021 2223 27 28 29 30 4 56 7 

May 

MEMEMEME 
6789 
April 

MEMEMEME MEMEMEME MEMEMEME MEMEMEME MEMEMEME 
13 14 15 16 20 21 22 23 27 28 29 30 4 5 6 7 28 29 30 1 

May Sept Oct 

45 

Figure 3.3: Application Class Breakdown of Campus Trace (M: Morning; E: Evening) 

graph for the same trace. 

On the campus network (Table 3.1), HTTP, DATABASE, and EMAIL traffic 

contribute a significant portion of the total flows. On this network, P2P contributes 

only 2.7% of the flows. However, P2P still accounts for a considerable portion, 

approximately 36%, of the bytes. In contrast, the traffic from the residential network 

(Table 3.2) exhibits comparatively less diversity in the usage of applications, with 

HTTP and P2P being the dominant applications. In the 10-hour Residential trace, 

P2P has a significant presence, both in terms of number of flows and number of 

bytes. We attribute this difference, somewhat speculatively, to the network use 

policies in place and the profile of the network users. As mentioned earlier, the 

campus network is used by faculty, staff, and students, and is actively regulated for 

non-academic content. Furthermore, the network infrastructure uses signature-based 
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Table 3.5: P2P Breakdown (Residential Trace) 
Application Flows % Flows Bytes % Bytes 
BitTorrent 286,794 96.3% 22,00 GB 57.1% 
Gnutella-based 10,066 3.4% 16.47 GB 42.7% 
eDonkey 921 0.3% 0.05 GB 1.4% 
Other 161 0.1% 0.01 GB 0.4% 
Total 297,942 100.0% 38.5 GB 100.0% 

Table 3.6: P2P Port Usage (Residential Trace) 
Application Non-Standard Port 

(% Flows) 
Non-Standard Port 

(% Bytes) 
BitTorrent 91.7% 84.0% 
Gnutella-based 82.1% 99.1% 
eDonkey/eMule 89.1% 99.0% 

identification to severely throttle P2P traffic. In contrast, the residential network is 

used exclusively by students, is not actively policed, and only applies a soft limit on 

the bandwidth available to each user. 

Table 3.5 shows that BitTorrent and Gnutella-based P2P applications such as 

BearShare, LimeWire, Morpheus, and Gnucleus are prevalent on the residential net-

work. KaZaA was hardly seen in the traces. 

3.6 Empirical Motivation for this Research 

We supplement our trace data analysis with three empirical observations that further 

motivate our traffic classification work. These observations concern port numbers, 

amount of variable-length offset bytes, and encryption. 

Table 3.6 shows that use of non-standard ports is prevalent2. Approximately 

92% of the BitTorrent flows used non-standard ports. This contrasts starkly with the 

study by Sen et al. [67] in 2004 where they found only 1% of the BitTorrent flows used 

2Defau1t port numbers used were BitTorrent (6881-6889,32459), Onutella-based (6346), eDon-
key/eMule (4661,4662,4711,4712). 
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non-standard ports. This provides further evidence on the declining effectiveness of 

port-based classification. 

Figure 3.4 shows the empirical distribution of variable-length offsets in Gnutella 

before the characteristic payload signature is found. We found that signature match-

ing using only the initial 64 bytes of the payload bytes will allow approximately only 

25% of the Gnutella flows to be identified. Over 400 payload bytes of each packet 

would need to be captured to increase the number identified to 90%. Furthermore, 

an application could easily make the length greater than 400 bytes if it helped avoid 

detection. 

Finally, our base truth establishment process indicates the presence of encrypted 

traffic, most of which is likely to be from P2P applications. We have labelled these 

as P2P Possible in Tables 3.1-3.3. We believe that as P2P applications evolve, 

encryption will become the norm, and in that case, packet inspection techniques will 

likely fail. 
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This chapter discussed the data sets used in this thesis. The majority of the traces 

used in this study were collected from the Internet link at the University of Calgary. 

These University of Calgary traces were collected over a 6-month time period. In 

total, over 1 terabyte of data was collected and we identified flows based on their 

5-tuple. We established a "base truth" classification for our traces using a payload-

based approach. We present a breakdown of the traffic based on the application types 

we identified. In addition, we confirm that port-based classification is ineffective and 

provide additional empirical motivation for our proposed approach. 

The next chapter presents our semi-supervised classification approach. 



Chapter 4 

Semi-Supervised Classification Framework 

Many of today's network monitoring solutions operate on the notion of network 

flows. A flow is defined as a series of packet exchanges between two hosts, identifiable 

by the 5-tuple (source address, source port, destination address, destination port, 

transport protocol), with flow termination determined by an assumed timeout or 

by distinct flow termination semantics. For each flow, network monitors can record 

statistics such as duration, bytes transferred, mean packet interarrival time, and 

mean packet size. This chapter outlines our classification method that can map 

flows (characterised by a vector of flow statistics) to applications (or traffic classes), 

with high accuracy and in realtime. 

4.1 Terminology 

We now introduce notations and terminology to describe the problem formally. Let 

X = {X1,... , XN} be a set of flows. A flow instance Xi is characterised by a vector 

of attribute values, Xi = Xjj  < j ≤ m}, where m is the number of attributes, and 

Xjj is the value of the j" attribute of the i1h flow. In the traffic classification context, 

examples of attributes include flow statistics such as duration, bytes transferred, and 

total number of packets. The terms attributes and features are used interchangeably 

in the machine learning literature, and often X1 is referred to as a feature vector. 

Also, let Y = {Y1,... , Yq} be the set of traffic classes, where q is the number of 

classes of interest, The ''s can be classes such as "HTTP", "Streaming", and "Peer-

to-Peer". Our goal, therefore, is to learn a mapping from a rn-dimensional variable 

X to Y. This mapping forms the basis for classification models, also referred to as 

49 
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classifiers in the machine learning literature. 

Traditional learning methods of classifiers use a training data set that consists of 

N tuples (X1, Y1) and learn a mapping f(X) - p Y. The goal is to find a mapping 

that (correctly) generalizes to previously unseen examples. Such learning methods 

are referred to as supervised learning methods [23]. Supervised machine learning 

techniques have previously been applied for classifying network flows. Roughan 

et al. [65] classified flows into four predetermined traffic classes (interactive, bulk 

data transfer, streaming, and transactional) using the Nearest Neighbor and the 

Linear Discriminate Analysis classification techniques. Moore et al. [53] evaluated 

the suitability of a Naïve Bayes classifier for the Internet traffic classification problem. 

Recently, Williams et al. [72] presented a preliminary comparison of five supervised 

learning algorithms. 

In designing our classification method, we are interested in overcoming two main 

challenges faced by supervised techniques: 

1. Labelled examples are scarce and difficult to obtain. With few labelled exam-

ples, traditional supervised learning methods often produce classifiers that do 

not generalize well to previously unseen flows. 

2. Not all types of applications generating flows are known a priori, and new ones 

may appear over time. Supervised methods force a mapping of each flow into 

one of q known classes, without the ability to detect new types of flows. 

To address these challenges, we designed a method that combines unsupervised 

and supervised methods. Our classification method consists of two steps. We first 

employ a machine learning approach called clustering [23] to partition a training data 

set that consists of scarce labelled flows combined with abundant unlabelled flows. 

Clustering partitions the training data set into disjoint groups ("clusters") such that 

flows within a group are similar to each other whereas flows in different groups 
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are as different as possible. Second, we use the available labelled flows to obtain 

a mapping from the clusters to the different known q classes (Y). This step also 

allows some clusters to remain unmapped, accounting for possible flows that have 

no known labels. The result of the learning is a set of clusters, some mapped to the 

different flow types. This method, referred to as semi-supervised learning [3, 10, 16], 

has received considerable attention, recently, in the machine learning community. 

We note that our application of semi-supervised learning is novel in that we leave 

some of the clusters unlabelled. This is different from the traditional application of 

semi-supervised learning; in the traditional application of this approach, all classes 

are known a priori, and unlabelled flows are used to improve precision of the classi-

fier. In the traffic classification problem, however, not all classes are known a priori, 

and thus, we use the unlabelled clusters to represent new or unknown applications. 

In effect, unlabelled flows are used to improve precision and handle unknown ap-

plications. The remainder of this chapter discusses the details of the classification 

method. 

4.2 Model Building: Clustering 

The first step in training our classifier is to leverage all available training flows and 

group them into clusters. In the machine learning paradigm, clustering is an example 

of an unsupervised learning algorithm [23] because the partitioning of the flows in 

the training data is guided only by the similarity between the flows and not by any 

predetermined labelling of the flows. A key benefit of the unsupervised learning 

approach is the ability to identify hidden patterns. For example, new applications 

as well as changed behaviour of existing applications can be identified by examining 

flows that form a new cluster. 

Clustering algorithms use a measure d(x1, x) of similarity between feature vectors 
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xi and x, and find a partition that attempts to place similar examples in the same 

cluster, and dissimilar examples in different clusters. There are various similarity 

metrics that can be used. Without loss of generality, in this thesis we use the 

Euclidean distance as the similarity measure: 

d(x1,x) = [ (4.1) 

There are many different clustering algorithms in the machine learning litera-

ture. Although the proposed classification approach is not specific to any particular 

clustering algorithm, our offline and realtime implementations use the K-Means al-

gorithm [23]. In Chapter 5, we analyze three different clustering algorithms namely, 

K-Means, DBSCAN, and AutoClass; this analysis provides insight into the mod-

els produced by these clustering algorithms and the type of clusters formed, and 

furthermore, provides rationale for our choice of using the K-Means algorithm. 

4.3 Classifier: Mapping Clusters to Applications 

The output of the K-Means clustering algorithm is a set of clusters, represented by 

their centroids, -y. Given a flow feature vector x, we assign it to one of the clusters 

by finding the nearest centroid to x, using: 

Ck = arg min d(x, -yk), (4.2) 

where d(.,.) is the distance metric chosen in the clustering step. For K-Means with 

Euclidean distance, this step amounts to the maximum likelihood cluster assignment 

solution. In the machine learning literature, this form of classification is known as a 

"distance-based" classifier [26]. 

However, knowing to which cluster a flow feature vector most likely belongs does 

not provide the actual classification to one of the application types. Therefore, we 
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need a mechanism to map the clusters found by the clustering algorithm to the 

different application types. 

We use a probabilistic assignment to find the mapping from clusters to la-

bels: P(Y = yjlCk), where j = I, -, q (q being number of application types) and 

k = 1, ..., K (K being the number of clusters). To estimate these probabilities, we 

use the set of flows in our training data that are labelled to different applications 

(x1, y), i = 1, ..., L, where L is the total number of different labelled applications. 

P(Y = yjlCk) is then estimated by the maximum likelihood estimate, where Ttjk nk 

is the number of flows that were assigned to cluster k with label j, and nk is the 

total number of (labelled) flows that were assigned to cluster k. To complete the 

mapping, clusters that do not have any labelled examples assigned to them are de-

fined as "Unknown" application types, thus allowing the representation of previously 

unidentified application types. 

Finally, the decision function for classifying a flow feature vector x is the maxi-

mum a posterior decision function: 

y = arg max (P(ylCk)), (4.3) 
Y1, ... ,Vq - 

where Ck is the nearest cluster to x, as obtained from Eq. 4.2. Our approach uses 

hard clustering. However, labelling using soft clusters can easily be accommodated 

into our framework. For instance, the confidence of a flow's label could be based 

on P(yjlCk) and labels below a certain threshold could be considered "Unknown". 

Exploration of soft clustering and its potential benefits is left for future work. 

4.4 Summary 

In this chapter, we formally described the proposed semi-supervised classification 

framework. The classification framework contains two primary steps: model build-
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ing and classification. This framework forms the basis of our offline and realtime 

classification systems discussed in Chapter 6. 

The next chapter presents a description and analysis of clustering algorithms that 

can be used in the aforementioned classification framework. 



Chapter 5 

Clustering Analysis 

This chapter describes and analyzes the potential of clustering algorithms for use 

in our semi-supervised approach to traffic classification. This analysis provides in-

sight into the clustering models used by the semi-supervised classification framework 

presented in the preceding chapter. Section 5.1 describes the three clustering algo-

rithms considered. Section 5.2 presents analysis where the algorithms are compared 

based on their ability to generate clusters that consist primarily of a single applica-

tion type. In Section 5.3, we describe how a classifier for each clustering algorithm 

can be developed for our framework and why K-Means is selected as the clustering 

algorithm used to build our offline and realtime classifiers. 

5.1 Clustering Algorithms 

We restrict our attention to three popular clustering algorithms, namely K-Means [39], 

DBSCAN [33], and AutoClass [11]. Each of these algorithms is based on a different 

clustering principle: K-Means is partition-based, DBSCAN algorithm is density-

based, and AutoClass is probabilistic model-based. The data mining literature con-

tains many well-understood clustering algorithms developed during the past three 

decades [23, 39,73]. A possible future work direction is to consider other clustering 

algorithms. 

5.1.1 K-Means 

There are a variety of partition-based clustering algorithms available [23,39]. The K-

Means algorithm [23] , shown on page 56, is selected because it is one of the quickest 
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Algorithm 1 The K-Means Algorithm 
Input : Training Data Set D = {x1,... , x} and number of clusters K. 
Output: Clusters , C< such that D = U 1C and c,  C = 0, vi j. 
for each k do 

let -yk be a randomly chosen object from D; 
end 
repeat 

for each object x, i € {1,... , n} do 
k = arg mini d(x, 'y) assign xi to cluster Ck 

end 
for each cluster Ck do 

compute new cluster centroid 'Yk 
end 

until convergence criterion satisfied 

and simplest. The K-Means algorithm partitions the feature vectors in the training 

data set into a fixed number of spherical-shaped clusters by minimizing the total 

mean square error between feature vectors and the cluster centroids. Starting with 

an initial partition (random or other), the algorithm iteratively assigns each vector 

to the cluster whose centroid is nearest, and recalculates the centroids based on the 

new assignments. This process continues until membership within clusters stabilizes. 

The complexity of the algorithm is O(lKn) where 1 is the number of iterations [23]. 

For the data sets used in this thesis, the algorithm converges within a few iterations. 

5.1.2 DBSCAN Clustering 

Density-based algorithms regard clusters as dense areas of objects that are separated 

by less dense areas [2,33]. Unlike algorithms such as K-Means, these algorithms are 

not limited to finding spherical shaped clusters but can find clusters of arbitrary 

shapes. We choose the Density Based Spatial Clustering of Applications with Noise 

(DBSCAN) algorithm as a representative of density-based algorithms [33]. The 

DBSCAN results are obtained from the implementation available in the WEKA 

software suite [73]. 
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The DBSCAN algorithm takes two inputs: epsilon (eps) and minimum number of 

points (minPts). The algorithm uses these input parameters to define the concepts of 

eps-neighbourhood, core object, density-reachability, and density-connectivity. The 

eps-neighbourhood of an object p is defined as the set of all objects that are within 

eps distance of p. An object q is described as a core object if the number of objects 

within its eps-neighbourhood is at least minPts. An object p is said to be density-

reachable from a core object q provided there exists a finite sequence of core objects 

between p and q, with each of these core objects being in the eps-neighbourhood of 

its immediate predecessor. Finally, objects p and q are said to be density-connected 

if an object o exists from which both p and q are density-reachable. 

The DBSCAN algorithm defines a cluster as the set of objects in a data set that 

are density-connected to a particular core object. Any object that is not part of a 

cluster is categorized as noise. This is in contrast to the K-Means and AutoClass 

algorithms which give every object a cluster assignment. 

The DBSCAN algorithm works as follows. Initially, all objects in the data set are 

assumed to be unassigned. The DBSCAN algorithm chooses an arbitrary unassigned 

object p from the data set. If DBSCAN finds p is a core object, it finds all the density-

connected objects based on eps and minPts. It assigns all these objects as being from 

a new cluster. If DBSCAN finds p to be not a core object, then p is considered to 

be noise and the DBSCAN algorithm moves onto the next unassigned object in the 

data set. Once every object is assigned, the algorithm stops. 

5.1.3 AutoClass 

Probabilistic model-based clustering is another powerful clustering technique. We 

use an implementation of a probabilistic model-based clustering technique called 

AutoClass [11]. This algorithm allows for the automatic selection of the number of 

clusters and the soft clustering of the data. Soft clusters allow the data objects to 



CLUSTERING ANALYSIS 58 

be fractionally assigned to more than one cluster. In the analysis in Section 5.2, we 

use the most probable assignment as the object's assignment. 

To build the probabilistic model, the clustering algorithm must determine the 

number of clusters and the parameters that govern the distinct probability distri-

butions of each cluster. To accomplish this task, AutoClass uses the Expectation 

Maximization (EM) algorithm [21]. 

The EM algorithm has two steps: an expectation step and a maximization step. 

The initial expectation step guesses what the parameters are using pseudo-random 

numbers. Then in the maximization step, the mean and variance are used to re-

estimate the parameters continually until they converge to a local maximum. These 

local maxima are recorded and the EM process is repeated. This process continues 

until enough samples of the parameters have been found (we use 200 cycles in our 

experimental results). 

AutoClass uses a Bayesian information criterion (BIC) to determine the best 

set of parameters to use for the probabilistic model. BIC is based on intra-cluster 

similarity and inter-cluster dissimilarity. Also, BIC penalizes the score of models 

with more clusters to minimize potential over-fitting. 

5.2 Clustering Evaluation 

In this section, the overall effectiveness of each clustering algorithm is evaluated. 

The algorithms are compared based on their ability to generate clusters that have a 

high predictive power of a single application type. We believe that in order to build 

an accurate classifier, a good classification model must be used. 

The clustering analysis is done using two empirical packet traces: the Auckland 

IV trace (discussed in Section 3.1) and a campus trace collected on March 10, 2006 

from 1 to 2pm. We refer to this particular campus trace as the Calgary trace for the 
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remainder of this chapter. 

The majority of flows in both traces carry HTTP traffic. This unequal traffic 

sample does not allow for the fair testing of different traffic classes (i.e.) HTTP 

would dominate the data set such that producing a single cluster containing all 

flows would still give a high cluster purity). To address this problem, the Auckland 

data sets used for this test consist of 1000 random samples of each of the following 

traffic classes: DNS, FTP (control), FTP (data), HTTP, IRC, Gnutella, NNTP, 

POP3, and SOCKS. The Calgary data sets used 2000 random samples of each of the 

following traffic classes: HTTP, P2P, SMTP, and POP3. The size of the data sets 

were limited to 8000 flows because this was the upper bound that the AutoClass 

algorithm could cluster within a reasonable amount of time (4-10 hours). To achieve 

greater confidence in our results, we repeated our tests using 10 different data sets 

generated from each trace. We report the minimum, maximum, and average results 

from the data sets of each trace. 

The flow statistics considered in this test include: total number of packets, mean 

packet size, mean payload size excluding headers, number of bytes transfered (in each 

direction and combined), and mean inter-arrival time of packets. Our decision to use 

these features is based primarily on the previous work done by Zander et al. [75]. 

Due to the heavy-tailed distribution of many of the features and our use of Euclid-

ean distance as our similarity metric, we found that the logarithms of the features 

gives much better results for all the clustering algorithms [60,73]. We undertake an 

extensive feature selection process later in Section 6.1.3 when evaluating the design 

of our offline classifier. 

5.2.1 Algorithm Effectiveness 

The clustering algorithms are evaluated using a metric called cluster purity. This 

cluster purity, measurement determines how well the clustering algorithm is able to 
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create clusters that contain only a single traffic class. Note that for these experiments 

the traffic class a flow belongs to is known. We are interested in determining whether 

flows of the same type form distinct clusters. 

The traffic class that makes up the majority of the flows in a cluster is used to 

label the cluster. When the flow label matches with its corresponding cluster label, 

we have a True Positive (TP); otherwise, a False Positive (FP) occurs. Any flow 

that has not been assigned to a cluster is labelled as noise. The cluster purity is 

calculated as: 

cluster purity = E TP for all clusters  (5.1) 
total number of flows 

In the following subsections, the effectiveness of the K-Means, DBSCAN, and Auto-

Class algorithms are presented. 

5.2.2 K-Means Clustering 

The K-Means algorithm has an input parameter of K. This input parameter as men-

tioned in Section 5.1.1, is the number of disjoint partitions generated by K-Means. 

In our data sets, we would expect there would be at least one cluster for each traffic 

class. In addition, due to the diversity of the traffic in some classes such as HTTP 

(e.g., browsing, bulk download, streaming) we would expect even more clusters to 

be formed. Therefore, based on this, the K-Means algorithm was evaluated with 

K initially being 10 and K being incremented by 10 for each subsequent clustering. 

The minimum, maximum, and average results for the K-Means clustering algorithm 

are shown in Figure 5.1. 

Initially, when the number of clusters is small the cluster purity of K-Means is 

approximately 49% for the Auckland IV data sets and 67% for the Calgary data 

sets. The cluster purity steadily improves as the number of clusters increases. This 

continues until K is around 100 with the cluster purity being 79% and 84% on 

average, for the Auckland IV and Calgary data sets, respectively. At this point, 
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Figure 5,2: Accuracy using DBSCAN Figure 5.3: Parametrization of DBSCAN 

the improvement is much more gradual with the cluster purity only improving by 

an additional 1.0% when K is 150 in both data sets. When K is greater than 150, 

the improvement is further diminished with the cluster purity improving to the high 

80% range when K is 500. However, large values of K increase the likelihood of 

over-fitting. 
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5.2.3 DBSCAN Clustering 

The purity results for the DBSCAN algorithm are presented in Figure 5.2. Recall 

that DBSCAN has two input parameters (minPts, eps). We varied these parameters, 

and in Figure 5.2 report results for the combination that produces the best clustering 

results. The values used for minPts were tested between 3 and 24. The eps distance 

was tested from 0.005 to 0.040. Figure 5.3 presents results for different combinations 

of (minPts, eps) values for the Calgary data sets. As may be expected, when the 

minPts was 3 better results were produced than when the minPts was 24 because 

smaller clusters are formed. The additional clusters found using three minPts were 

typically small clusters containing only 3 to 5 flows. 

When using minPts equal to 3 while varying the eps distance between 0.005 and 

0.020 (see Figure 5.2), the DBSCAN algorithm improved its cluster purity from 59.5% 

to 75.6% for the Auckland IV data sets. For the Calgary data sets, the DBSCAN 

algorithm improved its cluster purity from 32.0% to 72.0% as the eps distance was 

varied with these same values. The cluster purity for eps distances greater than 

0.020 decreased significantly as the distance increased. Our analysis indicates that 

this large decrease occurs because the clusters of different traffic classes merge into 

a single large cluster. We found that this larger cluster was for flows with few 

packets, few bytes transfered, and short durations. This cluster contained typically 

equal amounts of P2P, POP3, and SMTP flows. Many of the SMTP flows were for 

emails with rejected recipient addresses and connections immediately closed after 

connecting to the SMTP server. For POP3, many of the flows contained instances 

where no email was in the users mailbox. Gnutella clients attempting to connect to a 

remote node and having its "GNUTELLA CONNECT" packets rejected accounted 

for most of the P2P flows. 
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Table 5.1: Purity using AutoClass 
Data Set Average Minimum Maximum 

Auckland IV 92.4% 91.5% 93.5% 
Calgary 88.7% 86.6% 90.0% 

5.2.4 AutoClass Clustering 

The results for the AutoClass algorithm are shown in Table 5.1. For this algorithm, 

the number of clusters and the cluster parameters are automatically determined. 

Overall, the AutoClass algorithm has the highest purity. On average, AutoClass 

is 92.4% and 88.7% pure in the Auckland IV and Calgary data sets, respectively. 

AutoClass produces an average of 167 clusters for the Auckland IV data sets, and 

247 clusters for the Calgary data sets. 

5.2.5 Discussion 

For the traffic classification problem, the number of clusters produced by a clustering 

algorithm is also an important consideration as more clusters increase the compu-

tational processing of the classifier. The reason being that once the clustering is 

complete, each of the clusters must be labelled. Minimizing the number of clusters 

is also cost effective during the classification stage. 

One way of reducing the number of clusters to label is by evaluating the clusters 

with many flows in them. For example, if a clustering algorithm with high accuracy 

places the majority of the flows in a small subset of the clusters, then by analyzing 

only this subset a majority of the flows can be identified. Figure 5.4 shows the 

percentage of flows represented as the percentage of clusters increases, using the 

Auckland IV data sets. In this evaluation, the K-Means algorithm had 100 for K. 

For the DBSCAN and AutoClass algorithms, the number of clusters cannot be set. 

DBSCAN uses 0.02 for eps, 3 for minPts, and has, on average, 190 clusters. We 

selected this point because it gave the best cluster purity for DBSCAN. AutoClass 
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has, on average, 167 clusters. 

As seen in Figure 5.4, both K-Means and AutoClass have more evenly distributed 

clusters than DBSCAN. The 15 largest clusters produced by K-Means contain only 

50% of the flows. In contrast, for the DBSCAN algorithm the five largest clusters 

contain over 50% of the flows in the data sets. These five clusters identified 75.4% of 

the NNTP, POP3, SOCKS, DNS, and IRC flows with a 97.6% cluster purity. These 

results are unexpected when considering that by only looking at five of the 190 clus-

ters, one can identify a significant portion of traffic. (Qualitatively similar results 

were obtained for the Calgary data sets.) However, the DBSCAN algorithm is the 

only algorithm considered that can create non-spherical shaped clusters. This allows 

these larger clusters to form. The K-Means and AutoClass algorithms can approxi-

mate these same areas using multiple clusters which explains why more clusters are 

needed with K-Means to represent 50% of the flows. 

Another noteworthy difference among the clustering algorithms is the time re-

quired to build the models. On average, to build the models, the K-Means algorithm 

took less than 1 minute, the DBSCAN algorithm took 3 minutes, and the AutoClass 
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algorithm took 4.5 hours. Clearly, the model building phase of AutoClass is time 

consuming. We believe this may deter system developers from using this algorithm 

even if the frequency of retraining for the model is low. 

5.3 Designing an Efficient and Effective Classifier 

The semi-supervised classification framework proposed in this thesis uses the K-

Means algorithm for its offline and realtime implementations. One reason for this 

choice is that the more complex clustering algorithms required significantly longer 

learning time than K-Means (e.g., hours versus minutes). We find that with K-

Means, large data sets can be leveraged to provide many benefits such as improving 

classifier precision and allowing the classifier to handle unknown applications. That 

notwithstanding, it is possible to design classifiers for the DBSCAN and AutoClass 

algorithms as described below, During the course of this research work, we did in 

fact build each of these classifiers. 

A classifier for the DBSCAN algorithm can be developed using an approach 

similar to the distance-based approach used for K-Means (discussed in Section 4.3). 

However, the non-spherical shapes that the DBSCAN clusters can form cannot be 

adequately represented by only calculating a single centroid of the cluster, thus 

necessitating additional points to represent the cluster. To classify a new flow, the 

distance between each of the points representing a cluster and the candidate flow is 

calculated. A flow is assigned to the cluster that has the lowest distance measurement 

overall to any of the cluster's points. This DBSCAN classifier would be much slower 

than K-Means because of these additional calculations per cluster. 

AutoClass predicts the cluster to which a new flow belongs using the probabilistic 

model developed during clustering. The probability of the new flow belonging to each 

cluster is calculated. The cluster assignment can then be made using the most likely 
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cluster. Note, that using a probabilistic assignment like this could be one method of 

incorporating soft clustering into our framework mentioned in Section 4.2. 

In addition to the fast clustering possible using K-Means, the simplicity and ease 

of implementation of this algorithm prompted its use in the offline/realtime systems 

developed in this work. The K-Means classifier has the least amount of compu-

tational overhead because the data structures representing the clusters allow fast 

computations of distance (i.e., d(x1, x) in Section 4.2). For example, we found the 

DBSCAN algorithm would have required upto 10 times as many points to represent 

its clusters as K-Means. Also, K-Means can generate clusters that largely consist of 

a single application type. The other clustering algorithms investigated in some cases 

provided more pure clusters, however, once converted into classifiers the difference 

in classification accuracy was negligible. In the case of DBSCAN, we found in some 

preliminary tests that the flows discarded as noise significantly impacted the accu-

racy of the classifier. Finally, the K-Means algorithm converges to a well-understood 

probabilistic model: the Gauss Mixture Model [23]. Exploration of other clustering 

algorithms for use with the semi-supervised method is left for future work. 

5.4 Summary 

In this chapter, we described and analyzed several clustering algorithms for potential 

use in the semi-supervised framework proposed in this thesis. We found that the 

clustering algorithms largely produce clusters that have a high predictive power of a 

single traffic class. The results showed AutoClass produced the most pure clusters. 

However, we also found that the K-Means algorithm is a more suitable choice for us 

to use as a classifier; K-Means clusters are only marginally less pure, but K-Means 

is much faster at clustering flows. This allows substantially larger training data sets 

to be leveraged in the rest of our work. 
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In the next chapter, we present classification results using the offline and realtime 

classifiers developed based on the K-Means algorithm. 



Chapter 6 

Offline and Realtime Classification 

This chapter presents the offline and realtime classification systems. Section 6.1 eval-

uates the design alternatives for offline classification, and Section 6.2 introduces and 

evaluates the realtime classifier. The history of the traffic classification problem, the 

longevity of the classifier, and the detection of when the classifier requires retraining 

are discussed in Section 6.3. 

6.1 Offline Classification 

We implemented a prototype offline classification system, incorporating both steps 

of the classification methodology, in approximately 3,000 lines of C++ code. In 

this section, we discuss the design considerations that affect the performance of the 

classifier. The design considerations are: 

• Composition of the training data set: There are two related considerations, the 

fraction of the training flows that are labelled, and the methodology used to se-

lect flows for the training; these issues are discussed in Sections 6.1.1 and 6.1.2, 

respectively. Unless stated otherwise, we assume that all training flows are la-

belled. 

• The features used to characterise the flows: Feature selection is discussed in 

Section 6.1.3. 

• The number of clusters K generated in the clustering step of the classification 

method: This parameter can be used to tune our classifier to achieve better ac-

curacy, however, at the cost of additional computation for the classifier. Unless 
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stated otherwise, we assume K = 400. We explore this factor in Section 6.1.4. 

Our primary performance metrics are flow and byte accuracy. Flow accuracy is 

the number of correctly classified flows to the total number of flows in a trace. Byte 

accuracy is the number of correctly classified bytes to the total number of bytes in 

the trace. In our results, we report for a given test data set the average results and 

the 95% confidence interval from 10 runs each with a different training set of feature 

vectors. Unless stated otherwise, the training data set of 8,000 samples is selected 

from the test data set used for evaluation. In all our experiments the test data set 

is a factor of 10 to 100 larger than the training data set. 

6.1.1 Semi-Supervised Learning 

Labelling of training feature vectors is one of the most time-consuming steps of any 

machine-learning classification process, especially because many Internet applica-

tions purposefully try to circumvent detection. We expect a vendor to achieve la-

belling of flows using a variety of orthogonal approaches, including payload analysis, 

port-based analysis, experimentation, expert knowledge, or a combination thereof. 

Clearly, it is an advantage if high classification accuracy is achieved by labelling only 

a small number of flows. 

Recall that our approach allows clustering to use both labelled and unlabelled 

training flows, and then relies on only the labelled flows to map clusters to applica-

tions. This semi-supervised approach to training the classifier leverages the fact that 

clustering attempts to form disjoint groups, wherein each group consists of objects 

that bear a strong similarity to each other. Thus, the hypothesis is that if a few 

flows are labelled in each cluster, we have a reasonable basis for creating the cluster 

to application type mapping. 

To test the aforementioned hypothesis, we conducted a number of experiments. 

The first experiment considers the possibility of the entire training data set being 
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Figure 6.1: Impact of Selective Labelling of Flows after Clustering 

unlabelled. In this case, we can selectively label a few flows from each cluster and use 

these labelled flows as the basis for mapping clusters to applications. The hypothesis 

here is that the clustering step produces "pure" (in the sense of application types) 

clusters; in Chapter 5, we provided empirical evidence of this hypothesis. Figure 6.1 

presents results from this experiment. We assume that we are provided with 64,000 

unlabelled flows. Once these flows are clustered we randomly label a fixed number of 

flows in each cluster. Interestingly, the results show that with as few as two labelled 

flows per cluster and K = 400, we can attain 94% flow accuracy. The increase in 

classification accuracy is marginal once five or more flows are labelled per cluster. 

For the second set of experiments, results of which are shown in Figure 6.2, we 

utilized 80, 800, and 8,000 labelled flows, and mixed these labelled flows with varying 

numbers of unlabelled flows to generate the training data set. Both labelled and 

unlabelled flows were randomly chosen from the April 6, 9 am Campus trace. These 

training flows were used to learn the flow to application mapping, with K = 400 in 

the clustering step, and we tested the resulting classifier on the same Campus trace. 

Note that there are 966,000 flows in this trace. 
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Figure 6.2: Impact of Training with a Mix of Labelled and Unlabelled Flows 

Figure 6.2 reports the precision of the classifier. Precision is calculated as the 

number of correctly labelled flows to the total number of labelled flows, with those 

labelled "unknown" excluded from the calculation. We observe that for a fixed 

number of labelled training flows, increasing the number of unlabelled training flows 

increases our precision. This is an important empirical result because unlabelled 

flows are relatively inexpensive to obtain and the penalty for incorrect labelling 

of a flow might be high (e.g., assigning lower priority to business critical traffic). 

Thus, by simply using a large sample of unlabelled flows, the precision rate can be 

substantially increased. This experiment further demonstrates the potential of the 

semi-supervised learning method. 

The semi-supervised classifier makes it possible to start with a few labelled flows, 

and over time incrementally label more training flows so as to improve the classi-

fication performance. The results in Figure 6.2 show that even when a very small 

fraction of flows are labelled, the precision of the classifier remains high. As addi-

tional labels are added, the precision remains high, albeit decreasing slightly, but has 

the accompanying effect of significantly reducing the amount classified as unknown. 

Further reductions in unknown classifications can be hastened by "cherry picking" 
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which flows to label; specifically, obtaining a few labels corresponding to highly used 

clusters can substantially reduce the number of unknowns. 

6.1.2 The Dichotomy of Elephant and Mice Flows 

The presence of elephant and mice flows in Internet traffic is well documented (see [55] 

and the references therein). Without proper representation of both types of flows in 

the training data set, we run the risk of producing a classifier that may, for example, 

have a high flow accuracy but a low byte accuracy. In this section, we investigate 

how sampling methodology influences the selection of both elephant and mice flows 

in the training data set. 

We conside±ed both sequential and random sampling techniques. For sequential 

sampling, we generated each of the ten training data sets needed for the experiments 

by randomly picking a point to begin sequential selection of flows. Along with 

simple random sampling, we also considered weighted random sampling techniques 

that bias selection of samples according to the transfer size of a flow or according to 

the duration of a flow. Our weighted sampling policy takes 50% of the flows from 

below and 50% of the flows from above the 9511 percentile of the flow transfer sizes 

or of the flow durations for the weighted bytes and duration policies, respectively. 

We believe this weighted scheme allows additional clusters to be formed to better 

represent elephaht flows. 

Figure 6.3 shows classification results from three single Campus traces (April 13, 

9 am Campus trace is our largest), the Residential trace, and the WLAN trace. We 

observe very high flow accuracies, in excess of 95% with the Campus traces and 

around 90% with the Residential and WLAN traces, irrespective of the sampling 

technique. However, the corresponding byte accuracies are lower and they vary across 

the traces and with the sampling strategy. Depending on the sampling strategy, byte 

accuracies between 50% and 85% are attained with the Campus traces, whereas byte 
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accuracies between 80% and 93% and between 60% and 85% are obtained for the 

Residential and WLAN traces, respectively. 

Our experiments and the results in Figure 6.3 also show that sequential sam-

pling for selecting training flows performs poorly in comparison to the random and 

weighted random sampling techniques. For example, in the WLAN trace, on average, 

byte accuracy of 61% is achieved with sequential sampling whereas byte accuracy of 

86% is achieved with weighted byte sampling. The weighted byte sampling technique 

results in a 41% improvement of the byte accuracy compared to that with sequential 

sampling. Similar improvements in byte accuracies are observed in experiments with 

the remaining Campus traces. The byte accuracies with the Residential trace are 

generally higher; yet, a modest improvement of 13% can be achieved by switching 

from sequential to weighted byte sampling. In general, the weighted bytes sampling 

technique achieves the best byte accuracies when classifying traffic. We attribute 

this improved classification performance to the increased probability of forming more 

representative clusters for infrequently occurring elephant flows. Finally, it is worth 

noting that the large improvement in byte accuracy is possible with only a marginal 

reduction in flow accuracy. 

We conclude this section with a discussion of classification accuracy by application 

type. Figure 6.4 shows the classification accuracies for applications that contribute 

at least 0.5% of the flows or bytes in the traces. The results are from the weighted 

byte sampling experiments shown in Figures 6.3. Overall, our approach is able to 

classify any type of traffic, including P2P traffic, provided there are enough samples 

in the training data set from which the mapping between flows and applications 

may be learned. For the Campus trace considered (Figure 6.4(a)), we find that the 

classification accuracy for P2P traffic is lower than that for other traffic because 

P2P flows account for only a small percentage, typically less than 3% of the total 

flows, and therefore, our sampling techniques are unable to capture enough of the 
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P2P dynamics to learn the flow to application mapping. It is the misclassification of 

P2P flows that results in the overall lower byte accuracy seen in Figure 6.3(a). As 

can be seen in Table 3.1, P2P accounts for a small fraction of the flows but a large 

fraction of the total bytes. When P2P is prominent (Figures 6.4(b) and (c)), as in 

the WLAN and the Residential traces, we achieve flow and byte accuracies near 90% 

for this type of traffic. 
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6.1.3 Feature Selection 

Another important design choice in training our classifiers is the set of features used 

in the classifier. Many flow statistics (or features) can be calculated from a flow; 

however, not all features provide good discrimination between the classes. Using such 

features can decrease the accuracy of the classifier. We started with 25 candidate 

features. To find a subset of discriminating features we employ a feature selection 

method. In general, the feature selection task is exponentially hard; however, efficient 

methods for feature selection are widely used [34]. 

We use a backward greedy feature selection method [34]. The method works as 

follows. Given n features, we train a classifier with all features and compute its 

accuracy. We then find the single feature to remove such that the classifier with 

m - 1 features has the highest accuracy. This process is continued until we find the 

maximum number of features to remove such that the resultant classifier has the 

best accuracy. 

To choose a subset of features to use in all of our experiments, we perform the 

backward greedy search with the various data sets. We then find which subset of 

the features were chosen most often in the different experiments. The eleven flow 

features that were chosen are: total number of packets, average packet size, total 

bytes, total header (transport plus network layer) bytes, number of caller to callee 

packets, total caller to callee bytes, total caller to callee payload bytes, total caller to 

callee header bytes, number of callee to caller packets, total callee to caller payload 

bytes, and total callee to caller header bytes. In the rest of this Chapter we use this 

set of features as a basis for our classifiers'. 

Interestingly, we found that flow features that have a time component such as 

is the host that initiates a flow (e.g., the host that sends the SYN packet during TOP 
connection establishment); callee is the host that reacts to the initiation request (e.g., the host that 
responds with a SYNACK packet during TOP connection establishment). 
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duration, interarrival time, and flow throughput were found not to be useful by the 

feature selection algorithm. In general, selection of time-oriented features should be 

avoided as they are less likely to be invariant across different networks. 

Internet flow features, in general, exhibit a high degree of skewness [60]. We found 

it necessary to transform the flow features to obtain higher classification accuracies. 

Experimentation with several commonly used transforms indicated that logarithmic 

transformations yield the best results. In general, transformation of features is often 

necessary in most machine learning applications. 

6.1.4 Tuning the Classifier 

The number of clusters (K) impacts the quality of clustering (and thus the quality 

of classification), the time complexity of building the classifier, and the runtime 

performance of the classifier. To determine a suitable K, we varied both the number 

of clusters and the number of labelled training flows. Figure 6.5 shows the results 

from experiments where we varied K from 50 to 1,000, and varied the number of 

vectors in the training data sets from 500 to 32,000 flows. The training flows were 

selected using a simple random sampling (See Section 6.1.3.). 

Several observations can be made from the flow accuracy results in Figure 6.5(a). 

First, flow accuracies in excess of 95% are achieved when using training data sets with 

2,000 or more labelled flows. Second, although having more flows in the training data 

set improves flow accuracy, the percentage improvement shows diminishing returns. 

Third, as K increases, we observe that the flow accuracy also increases. For example, 

for training data sets with 8,000 or more flows, a large K (≥ 4, 000) can facilitate flow 

accuracies around 97.5%. However, having such large values for K is not practical 

as this increases the time complexity of the classification step. 

Figure 6.5(b) shows the byte accuracy results. The byte accuracies, on average, 

ranged from 52% to 62%. We did not find any clear relationship between number of 
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Figure 6.5: Parameterizing the Classification System (April 6, 9 am Campus Trace) 

1000 

flows in the training data set and the corresponding byte accuracy. Byte accuracy 

is very sensitive to a few large elephant flows in network traffic. In general, a simple 

random selection of training flows from the traces is unlikely to capture enough 

elephant flows in the training data sets, especially because the training data sets 

consist only of a few thousand flows. For example, there are 58 FTP data transfers 

that account for 6.5% of the bytes in the April 6, 9 am Campus trace, and these 

are rarely captured in the (randomly chosen) training data set. Thus, these large 

FTP flows are typically misclassified. Increasing the number of clusters K typically 
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improves byte accuracy, albeit marginally, because the likelihood of forming clusters 

for the elephant flows when they are selected in the training data set increases. 

The use of more sophisticated sampling techniques such as weighted bytes policy 

(discussed in Section 6.1.2) can substantially improve the byte accuracies. Another 

solution we found for classifying "rare" applications of interest is to specifically add 

flows of this type to the training data set. This makes it possible for the classifier to 

have clusters representing this application as well. 

Figure 6.5(c) shows cluster compactness [36]. Cluster compactness measures the 

degree of homogeneity within the clusters formed; a low compactness measure in-

dicates more homogeneity among flows in the clusters. Clearly, if each flow in the 

training set is assigned its own independent cluster, then cluster compactness will 

reach zero. We see this trend in the graph wherein the larger K becomes, the lower 

compactness becomes, However, we also see a plateau effect for K ≥ 400, wherein 

compactness decreases slowly with increases in K. 

Choosing parameter values for the clustering step presents a tradeoff between 

accuracy and classification overhead. Our results show that a larger training data 

set improves the flow accuracy, and a larger K improves flow accuracy, byte accuracy, 

and cluster compactness. A large value for K, however, increases the classification 

overhead and some caution must be emphasized when choosing K. Because our semi-

supervised learning does not require all flows to be labelled, we advocate using a large 

training data set with as many labelled flows as possible, and a K value that achieves 

the desired tradeoff between accuracy and computation overhead. Essentially, the 

size of the training data set and the value for K are tuning parameters that can be 

adjusted depending upon the application. 
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6.2 Realtime Classification 

In this section we discuss the design, implementation, and performance of a prototype 

realtime classification system we developed using our classification framework. 

6.2.1 Design Considerations 

A fundamental challenge in the design of the realtime classification system is to 

classify a flow as soon as possible. Unlike offline classification where all discriminating 

flow statistics are available a priori, in the realtime context we only have partial 

information on the flow statistics. 

We address this challenge by designing a layered classification system. Our layers 

are based upon the idea of packet milestones. A packet milestone is reached when 

the count of the total number of packets a flow has sent or received reaches a specific 

value. We include the SYN/SYNACK packets in the count. Each layer is an inde-

pendent model that classifies ongoing flows into one of the many class types using 

the flow statistics available at the chosen milestone. Each milestone's classification 

model is trained using flows that have reached each specific packet milestone. 

To classify flows in realtime we track the flow statistics of each ongoing flow. 

When a flow reaches the first packet milestone, it is classified using the first layer's 

classification model. When the flow reaches further packet milestones it is then 

reclassified using the appropriate layer's model. When a flow is reclassified, any 

previously assigned labels are disregarded. 

This layered approach allows us to revise and potentially improve the classifica-

tion of flows. The memory overhead of our approach is linear with respect to the 

number of flows because we use the same feature set at all layers. 

An alternative approach would be to classify at points that are significant in the 

transport-layer protocol. For example, the first layer could classify with just the 
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transport protocol and port number when the very first packet is seen. For TCP 

connections, the next layer could be when the first data packet is seen (i.e., following 

the connection establishment phase). We defer this approach for future work. 

The prototype was built using an existing IDS system called Bro [59]. Bro is an 

ideal candidate for our prototyping effort because by design it performs the realtime 

analysis of network traffic. We added two scripts to Bro 0.9a (unmodified) to enable 

our realtime classifier. The first script tracks the flow feature set. When a flow 

reaches a specific packet milestone, the script calls a classification function in our 

second Bro script. The second Bro script contains a classification function for each 

specific milestone at which we reclassify our flows. This second Bro script was 

generated by a C++ program that reads in the training flows and generates the 

mapping from flows to applications. We use the same features as in Section 6.1 with 

one obvious exception; we do not use total number of packets. 

6.2.2 Classification Results 

For these experiments, we trained the classifier using flows from the April 6, 9 am 

trace with 966,000 flows. For each of N layers we created models using 8,000 training 

flows, using K = 400. In our implementation, we use thirteen layers and separate our 

packet milestones exponentially (8, 16, 32,• -). For layers eleven and higher (packet 
milestones greater than 4,096), fewer than 5% of flows in the trace reached these 

milestones. Therefore, for these layers we trained with all available flows in the trace 

(always more than 500). We do not test our model on the same trace from which we 

generated the training data to avoid biasing our results. 

We calculated realtime byte accuracy as follows. When a packet arrives for a given 

flow we use the current label assigned by our classifier to determine if the bytes for 

this packet have been correctly classified. Byte accuracy in a given time interval 

is simply the fraction of bytes that were assigned the correct labels. Note that the 
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Figure 6.6: Performance of Realtime Classifier 

system may reclassify a flow several times and could therefore assign multiple labels 

to the flow during its lifetime. Thus, we report only byte accuracy in a moving time 

window and do not report flow accuracy. 

Figure 6.6 presents example results by using the April 7, 9 pm and April 13, 

9 am campus traces (April 13, 9 am is our largest 1-hour campus trace). We see that 

the classifier performs well with byte accuracies typically in the 70% to 90% range. 

Quantitatively similar results were obtained when tested on the other traces. 

Another aspect we considered was the effect of adding additional layers to our 
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Table 6.1: Real-Time Byte Accuracy with Number of Layers Varied 
Layer Packet Milestone Byte Accuracy 
1 8 40.0% 
2 16 45.8% 
3 32 48.9% 
5 128 49.5 % 
10 4096 49.7 % 
13 16384 77.5 % 

classification system. For the April 13, 9 am trace shown in Table 6.1, 78% of the 

flows had correct labels after classification at the first layer (8 packets). If this 

were the only layer used in our system, this would result in 40% of the bytes being 

correctly classified. This low value occurs because many of the elephant flows are 

incorrectly classified at the early stages. Using five layers improves the byte accuracy 

to 50%. Finally, with thirteen layers, byte accuracy reaches 78% as we are correctly 

classifying the elephant flows. We also note that the last label given to a flow is 

correct 82% of the time. 

Some of the intermediate layers appear to provide little or no improvement in byte 

accuracy. These additional layers can be removed and still allow our classification 

system to achieve similar byte accuracies while reducing overhead. 

6.3 Discussion 

In this section we discuss three topics: the arms race occurring between network 

operators and users/application developers, the longevity of our classifier, and the 

ability of our methodology to determine when retraining is required. 

6.3.1 The Classification Arms Race 

To fully comprehend the traffic classification problem, one needs to understand its 

history. For many years, traffic classification was trivial, as applications tended to 
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abide by well-known port numbers. Application developers had little motivation to 

deviate from this. Over time though, things changed; network bandwidths increased, 

new applications emerged, and the Internet became available to a much larger audi-

ence. In the late 1990's, the exchange of high fidelity music (and later video) became 

feasible and accessible to a large audience. The increased bandwidth consumption 

contributed to the creation of the traffic classification problem. 

What ensued can best be described as an arms race involving at least four parties 

- content owners, ISPs, users, and application developers. The race started slowly. 

Initially ISPs could identify these file sharing applications using well known ports. 

The ISPs could then control or block the offending applications. In September 

2002 KaZaA escalated the race by introducing dynamic ports, effectively bypassing 

blocked ports. Since that time, the two sides have gone back and forth numerous 

times. 

One important observation is that file sharing users have little loyalty to the 

applications. If an application is blocked or impeded by an ISP, users will quickly 

migrate to an application that can provide them with access to the content they want. 

It is, therefore, important for a traffic classifier to overcome current countermeasures, 

and also be able to function with the countermeasures that may come in the future. 

For example, encryption is currently not widely used by file sharing applications, 

even though some of these applications already support it. If required, users could 

easily start encrypting their traffic. This would immediately prevent content-based 

classifiers from properly identifying file-sharing traffic. 

We believe our classifier based on flow statistics will be difficult to circumvent. 

This is because it is very hard for applications to disguise their behaviour with-

out adding large amounts of overhead. Consider the average packet size feature. 

To disguise this feature, an application would need to modify flows so the average 

packet size across all its flows appear random. This would involve adding significant 
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overhead because sometimes either padding would need to be added to packets to 

increase the packet size or full packets broken up into several smaller packets when 

sent to decrease packet size. Similarly, changing the ratio of data sent between hosts 

could also require substantial amounts of extra data transfer. Ultimately, to defeat 

the classifier the overhead required would be crippling. Nevertheless, if new applica-

tions originate or old applications change behaviour, we would like the classification 

system to adapt accordingly. 

In light of the above discussion, we can identify (at least, to first order) two 

important considerations. One, a classification system should be robust and be 

able to maintain high classification accuracy in the presence of transient changes 

in network/application usage patterns; our hope would be that classifiers have a 

reasonably long shelf life. Two, when there are substantial changes, for example, 

owing to introduction of new applications, or owing to behavioural changes of existing 

applications, the classifier should automatically detect the need for retraining; our 

intent in this case is to keep up with the arms race. These two issues are further 

discussed in Sections 6.3.2 and 6.3.3, respectively. 

6.3.2 Longevity 

To experimentally evaluate the long-term predictive value of classifiers, we tested 

the classifiers that were built by sampling from the April 6, 9 am Campus trace 

(see Section 6.1.2) across the forty-eight Campus traces. Figure 6.7 presents sample 

results from our experiments. 

Figure 6.7 (a) shows the classification accuracy as a function of time. The results 

shown are for classifiers trained using labelled flows sampled by the weighted bytes 

technique. Qualitatively similar results were obtained for other sampling techniques 

(we do not show them on the graph to avoid line "crowding"). Our results show that 

the classifier retained a high flow accuracy throughout the 6-month period. Flow 
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Figure 6.7: Longevity of Classifier 

accuracies close to 95% are consistently achieved in the traces we tested, including 

major transitions such as end of winter semester, summer break, and beginning of 

fall semester. For example, the student population substantially dwindles during the 

summer months. Also, during the summer months, the number of Database flows 

(MSSQL) substantially increased from the 5% originally seen in the training data 

sets to over 25% during during this period. However, our classifier is still able to 

classify the new database traffic correctly. There is no substantial loss in classification 

accuracy. 

In Figure 6.7 (b), we present the byte classification accuracies for the 9 am Cam-

pus traces. The results for the 9 pm Campus traces are qualitatively similar. The 

byte accuracy trend is similar to the flow accuracy trend but shows more variability. 

We also find that the weighted bytes approach for selecting training flows consistently 

achieves higher accuracies than the random and sequential selection techniques be-

cause more P2P traffic is successfully classified by the former. We further investigated 

why the byte accuracy drops significantly on April 15 and April 23. The drop in 

byte accuracy was due to misclassification of FTP flows as either P2P or HTTP. 
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In general, FTP is not capliured well by any of the sampling techniques because it 

accounts for only a small fraction (<0.01%) of the flows, and thus, is unlikely to be 

captured in a small-sized training data set. Typically, FTP accounts for less than 

5% of the bytes but on those days it accounted for 21.6% and 26.6% of the bytes, 

respectively. 

6.3.3 Retraining 

The results above show that our classifiers remained fairly robust over time and for 

different traces. While encouraging, a mechanism for updating the classifiers is still 

required. An update of the classifier can be in the form of re-clustering, re-labelling 

of clusters, or both. The ideal way to determine if an update is required is to 

track and measure the classification accuracy as new flows are classified. However, 

measuring the accuracy is not possible, as the flow labels are not known. There 

are, however, two indirect measures for measuring reliability of the classifiers. The 

first is to build classifiers using a mix of labelled and unlabelled flows, as discussed in 

Section 6.1.1. Then, we can track the number of flows that are not assigned any label. 

If this number increases, it indicates the need for labelling some of those unknown 

flows so that their corresponding clusters are also labelled. The semi-supervised 

approach makes it possible over time that this type of an update would capture 

under-represented flow types and allow the accuracy of the classifier to improve. 

Alternatively, a statistical measure could be used to detect changes in the quality 

of the clustering model. We propose using the average distance of new flows to their 

nearest cluster mean; a significant increase in the average distance indicates the need 

for an update. Formally, this measure corresponds to the likelihood function of the 

clustering model in representing the new flows. The measure is easy to compute and 

track, as it does not require knowledge of the flow labels. While an indirect measure 

of accuracy, the clustering likelihood measure is correlated to the accuracy of the 
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Figure 6.8: Correlation between Average Distance and Flow Accuracy 

classifier. Recall from Section 4.3 that new flows are mapped to clusters using the 

distance metric as a measure of similarity. Thus, it is expected that average distance 

between flows and cluster centres is negatively correlated with accuracy. 

Figure 6.8 shows a scatter plot of flow accuracy and average distance for all 

forty-eight Campus traces for one of the classifiers used in Figure 6.7. These sample 

results show that when the average distance to the cluster centres is higher, the 

flow accuracies are typically lower, and vice versa. We repeated the above test 

for the 9 remaining weighted bytes classifiers we built by sampling from the April 

6, 9 am Campus trace and found similar results. The correlation between average 

distance and accuracy ranged from -0.57 to -0.75 in the models we tested; the average 

correlation was -0.69. 

In practice, the clustering likelihood can be easily used as an indicator of when 

our classification models need to be retrained. As previously demonstrated, the 

classification model is fairly robust and would not need to be retrained frequently. 

The average distance could be recorded for large intervals such as on an hourly or a 

daily basis. The average distance obtained during the interval just after retraining 
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could be used as a baseline as this most likely is when the model is most accurate. 

If the hourly or daily average distance increases, and stays generally above a certain 

threshold (e.g., 50% above the baseline), then this may be treated as an indicator 

for retraining. The detection threshold can be adjusted to accommodate different 

amounts of variation in flow accuracy. 

Once the need for retraining is detected there are various approaches to retraining 

that can be employed to update the classification model besides the simple and 

extreme one of retraining the models completely from "scratch" using new labelled 

and unlabelled flows. While we do not evaluate these approaches, we note some 

approaches to retraining that do not require completely rebuilding the model. One 

approach is to create new clusters using new flows that were far from their means. 

This would be followed by selectively querying the labels of flows from these uncertain 

clusters. In the machine learning literature, this is known as active learning [71]. 

Another approach is to sample new flows and randomly replace only a fraction of 

the existing flows in the training data set and then rebuild the classifier. 

6.4 Summary 

In this chapter, we evaluated the proposed semi-supervised classification framework 

using offline and realtime prototypes. We found that both high flow and byte ac-

curacy can be achieved in both cases and we can successfully classify a variety of 

applications such as P2P, HTTP, FTP, and email. The classifiers are robust to 

transient changes in the network. The detection of non-transient changes such as 

introduction of new applications or behavioural changes to existing applications can 

be facilitated using the proposed detection of retraining points. 

In the next chapter, we address the problem of applying our framework at the 

network core where only unidirectional traces are available. 



Chapter 7 

Classification at the Network Core 

This chapter considers the problem of traffic classification at the network core. 

Specifically, the offline classification framework developed in Chapter 6 is extended 

and applied for classifying network traffic as may be observed at egress/ingress points 

of the network core. At egress/ingress points at the network core, observing both 

directions of a flow may not be possible because of routing asymmetries. This poses 

two challenges. First, important statistics for the satisfactory classification of a flow 

may not be available. Second, classification can only use per-flow information and 

cannot rely on additional information such as communication patterns between hosts. 

In light of the above, we study in Section 7.1 the influence of "directionality" of 

flow statistics in classifying traffic. Our results show that flow statistics for the server-

to-client direction of TCP flows achieve better classification accuracies. Server-to-

client statistics of a flow may not always be available at the network core, thus, we 

develop a flow statistics estimation algorithm in Section 7.2. 

7.1 Classification Results using Unidirectional Flows 

The empirical traces at our disposal have both directions of a flow. Our goal is to 

study how the directionality (i.e., client-to-server or server-to-client) of a flow impacts 

classification results. We generated from each empirical trace a "server-to-client" 

data set and a "client-to-server" data set that for each flow in the trace records only 

the packets seen in the server-to-client direction or the client-to-server direction, 

respectively. To represent the typical case of traffic seen at the network core, we 

selected for each flow in an empirical trace either the client-to-server direction packets 

90 
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or the server-to-client direction packets. We refer to this third category of data sets 

as "random directionality" in this chapter. We restrict our attention to the first 

week of the campus traces for this study. 

7.1.1 Configuring the Classifier 

We have found in our experimentation that increasing the sample size of our training 

data set between 2000 and 128,000 does improve our classification results, albeit, 

with diminishing returns when increasing the training data set sizes. This finding is 

expected and corresponds well with the results in Section 6.1.4. From each data set, 

we generated training data sets, each of which were generated by selecting 64,000 

random flows using random sampling. As we advocated using a large training data set 

in Section 6.1.4, a sample size of 64,000 was chosen because we wanted to maximize 

the ability of the models to represent different applications and their dynamics within 

the limits of computational requirements of building the model. Furthermore, for the 

purpose of evaluation we assumed that all training flows are labelled. Much smaller 

training data sets or data sets with labelled and unlabelled flows could also be used 

for these experiments. However, as similar types of cases were already evaluated in 

the previous chapter, we do not explore them again and strictly focus on the impact 

that the directionality of the unidirectional flows has at the network core. 

The selection of features plays an important role in machine learning. Although 

many statistics can be obtained from a flow as discussed in Section 6.1.3, in the case 

of unidirectional flows the number of available features is reduced. We experimented 

with feature selection algorithms and settled on the following features: total num-

ber of packets, mean packet size, mean payload size excluding headers, number of 

bytes transferred, flow duration, and mean inter-arrival time of packets. Due to the 

aforementioned skewed distribution of many of these features, we found that using 

logarithmic transformations yields the best results. In these experiments we have 
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restricted our focus to only unidirectional features of a single direction of a flow. 

Recall that the K-Means algorithm takes the number of clusters K as input. In 

general, and as discussed in Section 6.1.4, K can be considered a tuning knob that 

can be adjusted based on the needs of the classifier. The evaluations in this chapter 

used K equal to 400 as this represented the best tradeoff between accuracy and 

computational overhead. 

7.1.2 Experimental Methodology 

From each data set, we generate 10 different training data sets. After the clustering 

was complete, we used each of these models in our classifier for classification of 

the entire respective trace. We report the average results and the 95% confidence 

intervals for the 10 models. The number of flows in a test data set typically ranges 

between 500,000 to 1,000,000. 

7.1.3 Results 

Figure 7.1 shows the classification accuracy results for data sets derived from each of 

the selected traces. Overall, we found that the server-to-client data sets consistently 

give the best classification accuracy achieving, on average, 95% and 79% in terms 

of flows and bytes, respectively. With the random data sets, the average flow and 

byte accuracy was 91% and 67%, respectively. The client-to-server data sets were 

able to correctly classify, on average, 94% of the flows with an average byte accuracy 

of 57%. In general, use of the client-to-server data sets resulted in the worst byte 

accuracies in all traces, except for the April 9, 9 pm trace. 

Figure 7.2 shows the flow and byte accuracies achieved for the four most sig-

nificant applications (in terms of number of flows). We found that all three types 

of data sets have a high flow accuracy for Database, Email, and Web traffic, with 

both client-to-server and server-to-client data sets achieving, on average, accuracies 
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Table 7.1: Confusion Matrix with Server-to-Client Data Sets (April 6, 9 am Campus 
Trace) 

Actual Class 
Classification 

Web Email P2P DB OTHER 
Web 511375 5214 7284 520 1084 
Email 6620 64732 3066 88 631 
P2P 6886 3620 47716 199 254 
DB 1262 420 872 41262 166 

OTHER 1904 232 1018 103 5336 

in excess of 90%. The application type that proved the most difficult to classify was 

P2P. The server-to-client data sets achieved a 77% flow accuracy; this is 20% greater 

than the accuracies with client-to-server and random data sets. 

Table 7.1 shows the confusion matrix [73] with the classifier using a server-to-

client data set to help further illustrate the accuracy of the classification by appli-

cation. In this m x im matrix the data point cj,j. indicates the number of flows from 

class i that were classified as class j. Obviously, we want values along the diagonal 

to be much larger than the others which is what we do find. By looking across the 

row of the confusion matrix at a given class i we can calculate the recall for that 

class. Likewise, by looking down a column at a given class j we can calculate the 

precision of that class. 

The per-application byte accuracy for Database and Web is high with all three 

types of data sets. However, for Email and P2P flows the accuracies vary considerably 

between the different data sets. For Email flows, the client-to-server data sets provide 

86% accuracy, but the random and server-to-client data sets have extremely low 

accuracies of 7% and 23%, respectively. 

While it is difficult for us to make a generalization to encompass every model 

and trace, in the models where we did extensive analysis of the results, the reason 

why the client-to-server data sets classified Email so well was that SMTP flows were 
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being correctly classified. In the client-to-server models, SMTP flows were put into a 

few large clusters that classified most of the SMTP traffic, with one of these clusters 

normally capturing most of the large (in terms of bytes) SMTP flows. However, in 

the server-to-client models the SMTP clusters were more fragmented and generally 

formed many small clusters. The smaller clusters were generally for SMTP flows with 

few bytes transferred (less than 2000 bytes). The larger SMTP flows that accounted 

for most of the Email bytes generally did not form a cluster and were included in 

clusters labelled either as P2P or Web. The confusion matrix in Table 7.1 further 

confirms that these misclassifications with the server-to-client models are P2P and 

Web. In the random models, SMTP did not form many clusters, which resulted in 

SMTP being misclassified most of the time. 

The server-to-client data sets are better able to classify the P2P flows than the 

other data sets. With the server-to-client data sets, byte accuracy of approximately 

83% is achieved, which represents a 30% increase over client-to-server and random 

data sets. This higher classification accuracy is because 20% more P2P flows are 

correctly classified using the server-to-client data sets. This marked difference from 

the other data sets is one of the main reasons why server-to-client data sets achieve 

the best flow and byte accuracies in Figure 7.1. 

If we were to employ this type of traffic classification system at the network core 

and, for example, tried to give a lower priority to P2P traffic or higher priority to 

Web traffic, we think we would be quite successful. Overall, in all our models Web 

has precision and recall values of 97%. P2P flows have a precision of 82% and a recall 

of 77%. In the case of lowering the priority of P2P traffic, these results indicate that 

77% of the P2P would be correctly given a lower priority and at the same time 

less than 3% of the Web flows would be mistakenly given a lower priority. Such a 

system if deployed in real-time could greatly reduce the strain that P2P puts on 

many networks. 
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While we have advocated the discrimination of P2P and Web traffic in the above 

example we are, however, not limited to just these two types of applications. If 

reducing P2P was not the concern and instead prioritizing mission-critical business 

traffic was the focus then our classification system could be used just as successfully. 

Business-critical traffic from a Database achieves a high accuracy as well. The con-

fusion matrix provides further evidence of this fact with a precision of almost 98% 

and a recall of 94% when classifying Database flows. 

We investigated why the Database flows achieved high accuracies with all the 

statistics. The confusion matrix provides further evidence of the Database flows 

being accurately classified and the classifier having a precision of almost 98% when 

classifying Database flows, We found that in the client-to-server direction the Data-

base flows generally sent 5 packets with 76 bytes of total payload data, and in the 

server-to-client direction the Database flows sent 4 packets with 63 total bytes of 

payload data. This very regular pattern exhibited by the Database flows allowed for 

highly accurate clusters to be formed in our models even though these clusters are 

at spatially different places in the client-to-sever and the server-to-client models. In 

models with the random flows, we found clusters were forming at both places which 

accounts for its high accuracy as well. 

7.2 Classification Results using Flow Estimation 

In this section we introduce and use our flow statistic estimation algorithm. This 

algorithm uses the packets of an unidirectional flow to estimate the flow statistics of 

the other direction of the flow it does not see in the trace. The estimation algorithm is 

based on the syntax and semantics of the TOP protocol and thus, would not work for 

other transport protocols such as UDP. The algorithm is introduced in Section 7.2.1. 

Section 7.2.2 discusses some of the assumptions made by the algorithm. Section 
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7.2.3 outlines exceptions that may influence the accuracy of the algorithm. In Section 

7.2.4, we empirically verify the estimation algorithm's predictions. Finally, in Section 

7.2.5, we test the classification accuracy using the estimated statistics. 

7.2.1 Algorithm 

The statistics of interest to us can be divided into three general categories: duration, 

number of bytes, and number of packets. After we obtain the data for these three 

general categories we can calculate other statistics such as average throughput, mean 

packet interarrival time, and packet average size, 

The duration of a flow is the amount of time from when the first packet of a flow 

is sent until the last packet of the flow is sent. This statistic is fairly easy to calculate; 

we can use the first and last packet sent in the direction we observe of the flow as 

a good estimate of the duration. This works because typically in a well-behaving 

TCP connection every packet that is sent receives a corresponding acknowledgment 

from the other host. The packet exchanges typically occurring at the beginning and 

at the end of a flow have the SYN and FIN packets, respectively. In cases where we 

did not see the SYN and/or FIN exchange, such as when the traffic monitor drops 

packets, we calculate the duration with the first or last exchange of data packet and 

acknowledgment packets which may result in a less accurate estimate of the flow 

duration. 

The second category of statistics is concerned with the number of bytes trans-

mitted. Our approach for calculating the number of missing bytes is similar to the 

technique developed by Smith et al. [69]. In the TCP protocol, the host responds to 

reception of TOP segments (packets) by sending acknowledgments (ACKs) with the 

sequence number field (SEQ) in the TOP header set to indicate the next expected 

in-order byte. By using these ACK numbers we can estimate the amount of data that 

has been received by calculating the offset between the highest ACK number and the 
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lowest ACK number seen. This works fairly well for all TCP connections. We did, 

however, find one exception that caused our calculations to go astray. This occurred 

for connections that were closed using TCP resets (RST). For TCP RST packets, the 

ACK number may not correspond to the in-order byte sequence received. Instead, 

some TCP implementations let the field be a randomly assigned value. To combat 

this problem we exclude the ACK numbers from RST packets when we calculate the 

highest and lowest ACK numbers. 

The last category of statistics, the number of packets sent, is the most difficult 

to estimate. We derive a set of heuristics that estimate, for each TCP flow, the 

number of packets that could potentially be received in the other direction between 

transmission of two successive packets. We assume that if a SYN packet is seen, 

then we are seeing the client-to-server packets of a flow. Otherwise, we assume we 

are seeing the server-to-client packets. Algorithm 2 shows the rules that we defined. 

We track the last sequence (PrevSeq) and acknowledgment numbers (PrevAck) seen 

in the flow; before a flow starts these values are set to zero. We also calculate the 

change in the sequence (SeqChg) and acknowledgment (AckChg) number between 

the packets that we see. In the event that we do not receive a SYN or a SYNACK 

packet at the beginning (or at all), our algorithm processes the first data packet with 

either our first (line 5) or second rule (line 7), and then works correctly afterward. 

We explain the remainder of this algorithm using examples. Let us assume that 

we are seeing the client-to-server packets and the last packet (for the flow of interest) 

had a sequence number of 100 and an acknowledgment number of 200, and the next' 

packet has a sequence number of 1560 and an acknowledgment number of 200. The 

increase in sequence number indicates that the most recent packet carried some 

payload data. However, since the acknowledgment number has not increased we 

infer that the missing server-to-client packets for this interval had no payload data 

and would most likely be ACKs corresponding to the payload in the last packets 
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Algorithm 2 Packet Estimation Algorithm 
Input: Set of Unidirectional Flows 
Output: Set of Estimated Flow Statistics 

1 foreach TCP flow f do 
2 PrevSeq = 0, PrevAck = 0, MissedAcks = 0, MissedData = 0 
3 foreach Packet p do 
4 Calculate (SeqChg, AckChg) 
5 if SeqChg> 0 and AckChg = 0 and PrevSeq = 0 then 
6 continue; > SYN packet sent and nothing is missed 

else if SeqChg > 0 and AckChg> 0 and PrevAck = 0 then 
8 MissedAcks = MissedAcks + 1; > SYNACK or SYN missed 

else if SeqChg> 0 and AckChg = 0 then 
10 MissedAcks = MissedAcks + [SeqChange/MSS; 
ii else if SeqChg = 0 and AckChg> 0 then 
12 MissedData = MissedData + AckChange/MSS1; 
13 else if SeqChg > 0 and AckChg> 0 then 
14 MissedData = MissedData + fAckChange/MSS]; 
15 else if SeqChg ≤ 0 or AckChg ≤ 0 then 
16 continue; Nothing has been missed from last packet seen 
17 end 
18 end 
19 end 
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sent. This case would be caught by our third rule (line 9) where we check to see if 

the sequence number has increased and the acknowledgment number has not. We 

calculate the number of ACKs missed as the sequence number change divided by the 

expected maximum segment size (MSS). Conversely, if the sequence number does not 

increase but the acknowledgment number does increase we infer that in this interval 

packets that were sent in the other direction contained a total payload size directly 

proportional to the change in the acknowledgment numbers. To calculate the number 

of data packets that should have been received we divide the acknowledgment number 

change by the MSS. This case is handled by our fourth rule (line 11). The fifth rule 

(line 13) handles cases where data is being sent simultaneously in both directions 

and the sixth rule (line 15) handles retransmissions and packets that are received 

out of order. 

7.2.2 Assumptions 

In our rules we make three general assumptions, the first pertaining to the expected 

MSS of packets, the second pertaining to the ACK-ing policy of the TCP stacks, and 

the last in regards to retransmissions and packet loss. 

We use MSS in our calculations for the number of packets sent. The MSS can be 

estimated from the options field in the SYN/SYNACK packets of a connection. A 

MSS announcement is made by each host at the beginning of a TCP connection with 

the lowest value typically being used. In a unidirectional trace it would be possible 

on a per-flow basis to estimate MSS based on any announcements seen. However, to 

be more computationally efficient to determine the expected MSS, we analyzed the 

empirical distribution of MSS in our traces. Our analysis showed that 95% of the 

connections had a MSS of 1460 bytes. Approximately 5% had a MSS of 1380 and 

some other minor groupings at 512 and 1260. Therefore, we used 1460 bytes as the 

expected MSS in our verification and results. 
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How TCP acknowledges segments depends on the TCP stacks of both the client 

and the server. In some cases, an ACK is sent for every packet, while in other cases an 

ACK is sent for every other packet. Our heuristics assume a simple acknowledgment 

strategy of an ACK (with 40 bytes of header data and no payload) for every data 

packet in the flow. We realize that this may overestimate the number of ACKs. 

We also assume there are no packet losses, and therefore, our statistics do not take 

into account any retransmissions. We make this assumption because retransmissions 

have more to do with the transmission media and congestion than application specific 

behaviour of the flows we want to classify. However, this does make our estimations 

lower than what the actual numbers should be but this has the positive effect of 

balancing the overestimation of the number of ACKs. 

7.2.3 Sources of Errors 

The largest source of error we found was not from faults in our algorithm, but 

were a byproduct of problems encountered in the flow collection and separation. 

The most significant errors we found in our results occurred when SYN packets (or 

other random packets) of different flows were wrongly put into the same flow. This 

affected our estimator because having a SEQ number or ACK number range much 

larger than it should be causes the estimated number of bytes to be very wrong (e.g., 

1 GB instead of a few couple hundred bytes). We caught these errors by having a 

sanity check that determines if the average packet size was larger than 1500 bytes. 

Another error we found was when there were large jumps in the ACK/SEQ 

numbers. The main cause of this anomaly was flow merging (i.e., the end of one 

flow merged into the start of the next flow). To handle these, when we saw a jump 

in the ACK/SEQ numbers greater than 100 packets worth of data we assumed flow 

merging had occurred. We closed the original flow and started a new one starting 

with the new sequence number. When we split the flow, however, if the new flow 



CLASSIFICATION AT THE NETWORK CORE 102 

did not receive any more packets we assumed these jumps must have been errors 

and remove these single packet flows. These jumps in ACK/SEQ numbers typically 

occurred in approximately 750 out of every 1 million flows. The value of 100 packets 

was chosen so that it would be larger than the largest typical bursty loss of packets. 

Originally, we had set this value at 10 but found a few large flows were being split 

because they had consecutive packet losses of 10 to 15 packets. Thus, we increased 

the number to 100 and found that this was large enough to handle almost all the 

bursty packet losses and flows were not inadvertently split. 

7.2.4 Validation 

Estimating flow duration is easy, and overall the error in the duration estimation 

is low. The average flow duration was 27.5 seconds, with an error of 7.3%. In our 

estimation results shown in Figure 7.3, we found that normally 90% of the flows had 

duration errors less than 1 msec. In most cases where there was a high error in the 

duration, we found that the error was caused by a RST or FIN packet being sent 

well after the rest of the flow's packets were sent. 

Figure 7.4 shows a scatter plot of the actual number of bytes versus the estimated 

number of bytes for the random data set generated from the April 6, 9 am trace. 

The scatter plot shows strong agreement between the actual and estimated amount 

of bytes. For our traces, the algorithm was always within 0.4% and 1.4% of the 

actual number of bytes. 

Figure 7.5 shows a scatter plot of the actual number of packets versus the esti-

mated number of packets for the random data set generated from the April 6, 9 am 

trace. As seen in the scatter plot, the estimated number of packets closely follows the 

actual number of packets; the estimate accuracy appears to be somewhat lower when 

there are more packets transferred along the missing direction of the flow. Experi-

ments with the remaining traces showed that the packet estimate was, on average, 
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Figure 7.6: CDF of the Per-Flow Percentage Error. 

within -5.3% and 1.6% of the actual number of packets. 

On a per flow basis, Figure 7.6 shows the distribution of the per-flow percentage 

error for both packet and byte estimation. It shows that our estimate is within 30% 

of the actual number of packets for 80% of the flows, and within 20% of the actual 

number of bytes, for 90% of the flows. 

Looking solely at the percentage error is somewhat misleading, since the high 

error cases often correspond to flows with few packet transmissions (fewer than 10). 

The main sources of inaccuracy are flows that after the TCP handshake had occurred 

saw a single reject or RST packet from the server. The clients in such cases attempts 

to send the initial data packet several times. This typically occurred in P2P connec-

tions that were refused. If our algorithm sees the server side of such flows it estimates 

it missed either 0 or 1 packets because we ignore RST packets. Otherwise, if it sees 

the client side of the flow it thinks it missed several ACKs because we assume all 

packets are acknowledged. In both cases, the algorithm is off by a few packets but 

the percentage error is large. We found that the overall average error per flow is 2.4 

packets, and that 87% of flows are within 5 packets of the actual number. In terms 
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of bytes, the overall average error is 120 bytes, and 92% of the flows are within 500 

bytes of the actual number. 

7.2.5 Classification Using Estimated Statistics 

We examine the accuracy of our classifier if we use the estimation algorithm described 

in the previous section to estimate server-to-client statistics for our traces when only 

the client-to-server or random flows are seen. 

Figure 7.7 shows the classification accuracy. These experiments are similar to 

those reported in Figure 7.1, except that both model building and the subsequent 

classifier use the estimated statistics when necessary. As seen in this figure, we find 

that when we use the estimation algorithm to estimate the server-to-client statistics 

the flow accuracy and byte accuracy achieved using the client-to-server and random 

flows is very close to the actual accuracy we achieved when using the actual server-

to-client statistics obtained from the empirical traces. 

Interestingly, our classification accuracies are largely unaffected by the potential 
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errors in our estimated flow statistics. We think this robustness is due to the fact 

that we use the logarithm of the flow statistics (as mentioned in Section 7.1). The 

magnitude of difference of the flow statistics has a much greater impact in the classi-

fication than the small errors in the estimations. This makes us believe it is possible 

to use our estimation technique to calculate the different statistics which allows for 

the best classification even though only partial information is available. 

7.3 Summary 

This chapter considered the problem of classifying network traffic when only one 

direction of network flows are observed, as may be the case in the network core. We 

found that, in general, rich traffic classification using only unidirectional statistics is 

feasible, with our experiments showing accuracies of 95% in terms of flows and 80% in 

terms of bytes. We also found that better classification performance is achieved when 

statistics for the server-to-client direction are used than when statistics for the client-

to-server direction are used. Because collection of the server-to-client statistics may 

not always be feasible, we developed and validated an algorithm that can estimate 

the missing statistics from a unidirectional packet trace. 

The next chapter concludes this thesis and presents avenues for future work. 



Chapter 8 

Summary and Conclusions 

This chapter summarizes the work done in this thesis. An overview of the thesis and 

its contributions are presented in Section 8.1 and Section 8.2, respectively. Section 

8.3 discusses the conclusions we have drawn from our work. Finally, related open 

research problems are discussed in Section 8.4. 

8.1 Thesis Summary 

This thesis proposed a semi-supervised traffic classification framework that relies on 

using only flow statistics to classify traffic. We designed this approach to overcome 

the limitations and drawbacks of port-based and payload-based classification tech-

niques. We provide an extensive evaluation of our proposed classification framework 

and of our design decisions; we believe these will be useful to future researchers and 

practitioners when applying machine learning techniques to this and other classifi-

cation problems. 

Chapter 1 presented the goals of the thesis. 

Chapter 2 presented background and relevant prior work. Specifically, we dis-

cussed the TCP/IP protocol suite and the different traffic classification techniques 

in the literature. Historically, port [38] and payload [35, 52, 67] based approaches 

have been used for traffic classification in the literature and by commercial vendors. 

However, these approaches have several drawbacks such as being either increasingly 

ineffective or incurring high overhead, hampering their deployment. While these 

drawbacks have received some attention [35,44,49], they have spurred new traffic clas-

sification techniques to be developed based on using the behaviours of hosts [41,42,74] 
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and using machine learning [6,17,53,72]. 

Chapter 3 described our data sets and our methodology of collecting traces. This 

research was facilitated by over 1 terabyte of full-payload packet traces collected 

over a 6-month time period from the University of Calgary. We described the es-

tablishment of a "base truth" classification of the flows in our data sets using a 

payload-based approach. We presented a breakdown of the application types we 

found predominantly in our base truth classification results of our traffic traces. We 

provided empirical evidence that re-affirmed the unreliability of port-based classifi-

cation to classify traffic accurately. 

The contributions of this work were presented in Chapters 4 - 7, and are summa-

rized in the next section. 

8.2 Contributions Summary 

Chapter 4 formally described the semi-supervised classification framework proposed 

in this thesis. One of the specific contributions made is that we designed a flex-

ible mathematical framework that leverages unlabelled flows and is not restricted 

to a specific clustering algorithm. This semi-supervised framework recognizes that 

obtaining labelled flows is hard and that not all applications are known a priori. 

Chapter 5 investigated the potential of several clustering algorithms for use in the 

proposed semi-supervised framework. We showed that all the clustering algorithms 

considered can produce "pure" clusters and we described how a classifier for each 

algorithm can be designed. Furthermore, we discussed our decision to use K-Means 

in our classifier. 

Chapter 6 evaluated the offline and realtime classifiers developed. Our results 

show that: 

1. Both high flow and byte accuracy can be achieved; 
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2. A variety of applications, including P2P, HTTP, FTP, and email can be suc-

cessfully classified; and, 

3. Robust classifiers can be built that are immune to transient changes in network 

conditions. 

Furthermore, to facilitate automatic detection of non-transient changes such as 

introduction of new applications or behavioural changes to existing applications, we 

proposed a retraining point detection mechanism. A salient feature of our work is 

the development of working prototypes. 

Chapter 7 considered the problem of classifying network traffic when only one 

direction of network flows are observed, as may be the case when the point-of-

observation is the network core. To address this problem, we applied our semi-

supervised classification framework for classifying network traffic to only use unidi-

rectional flow statistics. 

The results show that, in general, rich traffic classification using only unidirec-

tional statistics is feasible, with our experiments showing accuracies of 95% in terms 

of flows and 80% in terms of bytes. We also found better classification performance 

is achieved when statistics for the server-to-client direction are used than when sta-

tistics for the client-to-server direction are used. Because collection of the server-to-

client statistics may not always be feasible, we developed and validated an algorithm 

that can estimate the missing statistics from a unidirectional packet trace. 

8.3 Conclusions 

This thesis-proposed and evaluated a semi-supervised framework for classifying net-

work traffic using only flow statistics. A key advantage of the semi-supervised ap-

proach is the ability to accommodate both known and unknown flows during devel-

opment of the classifier. We show that our technique can achieve high classification 
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accuracy by using only a few labelled examples in combination with many unlabelled 

examples. 

We concentrate on achieving both high flow accuracy and high byte accuracy, 

unlike many of the other proposed traffic classification approaches in the literature 

(e.g., [6, 17, 19, 72]). As we discussed, byte accuracy is specific to the problem of 

traffic classification wherein a minority of the flows (e.g., the "elephants") have a 

much greater impact on the network, and therefore, is an important aspect that 

cannot be disregarded. We found that achieving high flow accuracy is relatively 

easy. The more difficult problem is obtaining a high byte accuracy as well, 

Our evaluations show that generic classifiers based on flow statistics can be de-

veloped. A vendor may train the classifier using a mix of labelled and unlabelled 

flows, where labelled flows may be obtained from operational or test networks. Our 

retraining point detection enables the possibility of discovery of network specific un-

knowns; these may be, at the discretion of the operator, delivered to the vendor for 

labelling. As and when required, vendors may distribute new classifiers along with 

a set of labelled flow feature vectors. 

One challenge to our proposed approach is the selection of relevant features. This 

problem is not specific to our proposed classification framework; it is applicable to 

all machine learning problems in general. It is not possible to prove that a particular 

set of features is optimum. Some features might prove to be better discriminators 

for some application types than others; thus, depending upon the mixture of the 

traffic in the data sets it is possible for a different combination of features to provide 

better accuracy. However, as we have demonstrated, with appropriate selection 

of features, highly accurate classification using only flow statistics is possible. If 

application behaviours change or if the mix of applications on a network is different 

the optimum set of features may change. This is an open problem, but is nevertheless 

still manageable, because there exists a rich set of tools and methods in the machine 
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learning literature for feature selection [23,46]. 

8.4 Future Work 

Many opportunities exist for future work, several of which have already been men-

tioned earlier in the thesis. These opportunities are further elaborated upon in this 

section. 

Performance Comparisons 

One potential area for future work is comparing the performance of our classifica-

tion framework against existing classification techniques. In general, an extensive 

comparison between the existing approaches in the literature is missing and would 

be an interesting avenue to pursue. A study of this nature would be non-trivial for 

several reasons. First, publicly available data sets with a reliable "base truth" (i.e., 

not from port-based analysis) are not available due to privacy issues. This makes the 

reproduction of results impossible. Second, many of the current proposed approaches 

only attempt to classify a small subset of applications and this subset differs between 

studies. Third, the performance metrics used to evaluate techniques varies widely. 

For example, byte accuracy is ignored in the results of several studies [6, 17, 19,72]. 

Finally, many of the techniques have different tuning parameters (e.g., [41,42, 74]) 

and use different features (e.g., [6,17,53,72]). 

Exploring Different Design Choices 

The development and evaluation of our semi-supervised classification framework fo-

cused on the use of K-Means to build our offline and realtime classifiers. Many 

clustering algorithms are available from the rich and diverse machine learning liter-

ature. For example, we built a classifier based on "hard" clustering where a flow is 
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always assigned to a most probable cluster; soft clustering techniques allow a flow 

to be probabilistically assigned to multiple clusters. In information theory, soft deci-

sions have been shown to increase accuracy in certain situations. Another extension 

could be to evaluate different layering schemes for the realtime classifier. 

Realtime Classification Performance 

In our evaluation of our offline and realtime prototype classifiers we did not consider 

classification speed. Classification speed is most relevant to the problem of realtime 

classification as the timeliness of classification can affect the network's performance. 

This is not as applicable to offline classification because the flow has already ended. 

Our realtime classifier in terms of performance was slow and took approximately 

three hours to process a one hour trace. This aspect was not discussed in our results 

because we did not attempt to optimize the prototypes for performance. In fact, we 

added significant additional overhead to the realtime classifier as we measured its 

accuracy against the payload-based "base truth" and recorded its incremental clas-

sifications at each layer. By simply removing these measurements we could greatly 

increase the processing speed of the classifier. 

We believe there exists several other opportunities to increase the speed of the 

classifier. First, collecting flow statistics in Bro accounted for the majority of the 

overhead in the classifier. Commercial products (e.g., Cisco's NetFlow [13]) op-

timized for collecting flow statistics could be integrated to reduce this overhead. 

Second, the hardware used in our evaluations was an IBM x335 series server with 

an Xeon 2.4GHz CPU and 1GB of RAM. This is not the most up-to-date hardware 

available and we think that Bro was constrained by the amount of RAM available 

on the machines. Finally, in our realtime prototype classifier our classification rules 

were generated in a Bro script that was interpreted by Bro as it ran. However, if 

we moved our classification rules into C code that is then compiled into Bro, then 
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we believe this could greatly improve the performance. In addition, the classifica-

tion rules could be hierarchically structured to reduce the number of comparisons 

required. 

Classifying UDP Traffic 

The evaluation of our classification framework focused on TCP traffic. The frame-

work can be extended, as discussed in Section 3.3, to classify UDP traffic. Flow 

statistics for UDP flows could be collected and a classifier built to handle this new 

type of flow. In addition, new features might need to be chosen to effectively dis-

criminate between UDP-based applications. 

Developing Generic Classifiers 

Currently, we are investigating the applicability of classifiers developed using training 

data from one environment in successfully classifying traffic from another environ-

ment. Preliminary experiments with classifying the Campus traces using classifiers 

developed from the WLAN trace are encouraging. We are now trying to obtain 

traces from other environments to further validate our preliminary observations. 
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Appendix A 

Payload Signatures 

These are the payload-based signatures we used in Bro to create our classification 

base truth. Note \x signifies a hex character. 

signature bb-id { 

dst-port = 1984 

payload /(serverlacklpage)/ 

event "BB" 

} 

signature bittorrent...ld { 

payload / . * (BitTorrent I BT_CHOKE I BT..UNCHOKE BT.UNINTERESTED I BT...HAVEI BT...BITFIELD BTJ.EQUEST 

I BT_PIECE I BT_CANCEL I BT_HAVE I BT...KEEP...ALIVE I AZ_PEER_EXCHANGE)/ 

event "BitTorrent" 

signature directconnect_id { 

payload /\$(SendlGetlDirlConnectTlSupportsl}{el].olMylNFOlSearchlMyNlcklQuitlKeylaevConnlVersion 

I Lock I HubNane) / 

event "DirectConnect" 

} 

signature edonekyid { 

ip-proto = tcp 

payload / (\xe3 I \xc5) / 

event "eDonkey" 

} 

signature ftp_id { 

ip-proto = tcp 

dat-port = 21 

payload /.*(FTP)/ 

event "FTP" 

} 
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signature ftp2_id { 

dst-port = 21 

payload /.*(pASSItJSERICWDIpASVIpORTI25O 0K1220)/ 

event "FTP" 

} 

signature gnutella_id { 

payload /GNUTELLA CONNECT/ 

event "Gnutella" 

} 

signature gotomypc...id { 

payload /GET \/jedi\?reques/ 

event "GoToMyPC" 

signature http_id { 

ip-proto == tcp 

payload /.*GiTTPIGET.\/IP0ST HEAD IHTTP\/1IGET )/ 

event "HTTP" 

} 

signature kazaa_id { 

payload / *KazaaClient/ 

event "Kazaa" 

} 

signature icq_id { 

dst-port = 5190 

payload /.*ICQ/ 

event "ICQ" 

} 

signature ident_id { 

dst-port = 113 

payload /[O-9]*, .*25/ 

event "IDENT" 

} 
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signature imapid { 

dst-port = 143 

payload I. * (CAPABILITY I LOGIN I login) / 

event "IMAP" 

} 

signature jetdirect_id { 

dst-port = 9100 

payload /.*(PJL.SET.PAGEPROTECTOFFIPJL.JOB)/ 

event "jetDirectProtocol" 

} 

signature msnlnessenger...id { 

dst-port = 1863 

payload /.*(CALIJOIIXFRIRINGINGIUSRIANSIVERIMSGIQRYICHLINLNIILNICHGILSTIINF)/ 

event "MSN" 

} 

signature msnwebcaxn_id{ 

payload /recipientid [0-9] *&sessionid= [0-9] */ 

event "MSNWEBCAM" 

} 

signature mssql_id { 

dst-port 1433 

payload I. * (\OS\OE\OR\OV\OE\0R I \OS\OQ\OL) / 

event "MSSQL" 

} 

signature mysqi_id { 

payload /.*\x03(SELECTIselectIINSERTIinsertISI1OWIshowIUPDATEIupdate)/ 

event "MySQL" 

} 
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signature nntp..id { 

dst-port = 119 

payload /.*(rnode. streamlMODE.STREAMICHECK <ITAKETHIS <Icheck <ltakethis <ILISGROUPIAFtTICLE I\xod\xoa=ybegin 

mode .readerlMODE.READER)/ 

event "NNTP" 

} 



PAYLOAD SIGNATURES 126 

signature otherp2p_id { 

payload /.*(LimeWirelBearSharelGnucleuslMorpheuslXoloXlgtk-gnutellalMutellalMywapsterlQtellalAquaLime 

I NapShare I Comback I PHEX I SwapNut I FreeWire I Openext I Toadnode I GnucDNA I m0rph500 I m0rph460 I Shareaza) I 

event "P2P" 

} 

signature otherp2p2_id { 

payload /.*(CDNNECT BACK)/ 

event "P2P"' 

} 

signature otherp2p3_id { 

payload /.*GIV.*(mp3lavilmpglziplisolimglrarlfile)/ 

event "P2P-other" 

} 

signature p0p3_id { 

dstport = 110 

payload I. *(PoP3lMaillmaill\+oKlokloklsenderlrecipientlacPr TOIINBOXIDONEI\* OKIUSERIPASSIAPOP 

IAUTHICAPAISTAT)/ 

event "POP3" 

signature real-id { 

dat-port = 3077 

payload /.*GET/ 

event "GETSon3077" 

} 

signature rtsp_id { 

dst-port = 554 

payload /.*(rtsp)/ 

event "RTSP" 

signature samba-id { 

dst-port = 573 

payload / *RSYNCD/ 

event "Samba" 

} 
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signature sip-id { 

payload /.*(REGISTERIINVITE).*SIp/ 

event "SIP" 

} 

signature sintp_id { 

ip-proto = tcp 

payload / * (SMTP I ESMTP) / 

event "SMTP" 

} 

signature smtp2_id { 

dst-port = 25 

ip-proto = tcp 

payload /.*(ELH0IelhoIHEL0IELH0IEHL0lehlo)/ 

event "SMTP" 

} 

signature spanassassin_id { 

dst-port 2703 

payload /.*(cnrazor1a(clg)\x261 -nsl)/ 

event "SpainAssassin" 

} 

signature ssh.1d { 

dst-port = 22 

payload /.*SSH/ 

event "SSH" 

signature vnc_id { 

dst-port = 5900 

payload /.*RFB/ 

event "VNC" 

} 

signature z3950-id { 

payload /. *(Mike TayloriNet: :Z3950.pmllletaStar Search SDKlBookwhere)/ 

event "Z3950Client" 


