
University of Calgary

PRISM Repository https://prism.ucalgary.ca

The Vault Open Theses and Dissertations

2021-08-24

Exploring Convolutional Neural

Networks and Transfer Learning for Oil

Sands Drill Core Image Analysis

Anzum, Fahim

Anzum, F. (2021). Exploring Convolutional Neural Networks and Transfer Learning for Oil

Sands Drill Core Image Analysis (Master's thesis, University of Calgary, Calgary, Canada).

Retrieved from https://prism.ucalgary.ca.

http://hdl.handle.net/1880/113786

Downloaded from PRISM Repository, University of Calgary

UNIVERSITY OF CALGARY

Exploring Convolutional Neural Networks and Transfer Learning for Oil Sands Drill Core

Image Analysis

by

Fahim Anzum

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

GRADUATE PROGRAM IN COMPUTER SCIENCE

CALGARY, ALBERTA

AUGUST, 2021

© Fahim Anzum 2021

Abstract

An accurate permeability estimate is crucial for effectively characterizing the McMurray

oil sands for in situ recovery. Such an estimate is critical to inform the best locations

for placing wells and pads and accurately forecast future oil production rates. This fact

is becoming significantly important as in situ development moves to areas of increasingly

complex geology. The traditional methods of estimating permeability largely do not work well

in oil sands because of the core disturbance or the fact that the core is filled with immobile

bitumen. Moreover, it is expensive to get physical samples from many different depths at

many wells, and the experiments carried out in the labs to measure permeability sometimes

are not representative. However, permeability can be estimated from different parameters

such as mean grain size (MGS), median grain size, and particle size distribution (PSD).

This thesis investigates how convolutional neural networks (CNNs) and transfer learning

perform when estimating MGS from the oil sands drill core photos. Three preliminary

approaches are explored for classifying core photos based on the facies, including (1) the

application of transfer learning on the pre-trained VGG-16 CNN model, (2) fine-tuning

a few top layers of VGG-16, and (3) the combination of VGG-16 and traditional machine

learning (ML) algorithms. Experimental results achieved by these classification models reveal

opportunities to extend these approaches for predicting MGS from core photos. Therefore,

the three approaches are then investigated using a library of core photographs with known

MGS calculated from PSD to see which one works best. Experimental results exhibit good

performance in estimating MGS from core photos using the explored approaches. Overall,

the investigation supports that the application of CNNs, and transfer learning is feasible in

different oil sands drill core image analysis workflows and more advanced research outcomes

can be achieved by further exploration of these techniques in the oil sands research domain.

ii

Acknowledgements

The journey of my graduate studies is supported and guided by my supervisors Dr. Mario

Costa Sousa and Dr. Usman Alim. I want to express my immense gratitude to them

for spending countless hours discussing and formulating the ideas, improving scholarship

applications, and writing recommendation letters for me. Their insightful opinions have

helped me to think critically about the research. I am deeply grateful to my supervisors for

the mentorship they have provided throughout my M.Sc. study.

I am thankful to Mitacs-Accelerate Graduate Research Internship Program for their

financial support, which kept me dedicated to the research. Through this program, I got the

opportunity to work closely with an amazing research team at Suncor Energy, the industrial

partner of my research project. I am very grateful to Suncor Energy for guiding me and

providing me with all the necessary resources to conduct the research. I am also very

thankful to Dr. Hamidreza Hamdi for showing me the right research directions, helping

me to generate research ideas, providing me helpful resources, and reviewing my research

progress throughout my graduate study.

My parents inspired me to stay motivated toward my target. Their encouragement

boosted me up to surpass myself and set a new target. I want to thank my parents for

upbringing me so that I can complete this milestone with excellence. Finally, I want to

thank my beloved wife for supporting me throughout my graduate study. Without her

inspiration and emotional support, I could have never been this successful in my graduate

studies, and she is the reason for what I have accomplished today.

iii

Last but not least, I would like to share my appreciation for the rest of the examination

committee for their insightful and valuable feedback.

iv

— To my lovely wife —

v

Table of Contents

Abstract ii

Acknowledgements iii

Dedication v

Table of Contents vi

List of Figures and Illustrations viii

List of Tables xi

List of Symbols, Abbreviations and Nomenclature xii

1 Introduction 1
1.1 Context and Motivation . 2
1.2 Objectives . 6
1.3 Challenges . 6
1.4 Contributions . 8
1.5 Thesis Outline . 9

2 Literature Review 11
2.1 Machine Learning and Deep Learning in Geoscience 11
2.2 Transfer Learning in Other Application Domains 16
2.3 Chapter Summary . 18

3 Preliminaries 20
3.1 Oil and Gas Operating Cycle and Activities 20
3.2 Machine Learning Overview . 23

3.2.1 Types of Machine Learning . 24
3.3 Introduction to Deep Learning . 26

3.3.1 Types of Deep Learning Architectures 32
3.3.2 Transfer Learning . 37

3.4 Chapter Summary . 39

vi

4 Machine Learning and Computer Vision for Facies Classification 40
4.1 Background . 40
4.2 Methodology . 42

4.2.1 Data Preparation . 44
4.2.2 Model Selection . 46
4.2.3 Training the Models . 55

4.3 Experimental Results . 56
4.3.1 Evaluation Metrics . 57
4.3.2 Model Comparison . 60

4.4 Summary . 67

5 Estimating Mean Grain Size From Core Photos 72
5.1 Particle Size Distribution . 73

5.1.1 Method 1: Sieve Analysis . 73
5.1.2 Method 2: Laser Diffraction System 75

5.2 Data Preprocessing . 77
5.3 Training the Models . 81

5.3.1 Visualizing the Intermediate Activations of VGG-16 84
5.4 Experimental Results . 89

5.4.1 Regression Loss Functions and Model Evaluation Metrics 90
5.4.2 Model Comparison . 91

5.5 Discussion and Summary . 93
5.5.1 Discussion . 93
5.5.2 Chapter Summary . 95

6 Conclusion 96
6.1 Summary . 96
6.2 Limitations and Future Work . 98

Bibliography 101

vii

List of Figures and Illustrations

1.1 Hydrocarbon reservoir [11]. 3
1.2 Linear correlations between permeability and mean grain size [141]. 4
1.3 Example of core photos collected by Suncor Energy. 5

3.1 The oil and gas operating cycle and activities (Treccani-Petroleum Ency-
clopaedia) (Adapted from [8]). 21

3.2 Seismic survey
(Britannica, The Editors of Encyclopaedia. “Seismic survey”. [accessed 2021
July 26]. https://www.britannica.com/science/seismic-survey.). 22

3.3 Biological neuron model
(Wikipedia contributors. (2021, May 26). Biological neuron model. [accessed
2021 July 27]. https://en.wikipedia.org/w/index.php?title=Biological neuron model&oldid=1025272997). 26

3.4 Perceptron model. 27
3.5 Activation functions commonly applied to neural networks: a) rectified linear

unit (ReLU), b) sigmoid, and c) hyperbolic tangent (tanh)
(Yamashita, R., Nishio, M., Do, R. K. G., Togashi, K. Convolutional neural
networks: an overview and application in radiology. Insights Imaging 9 (4),
611–629 (2018).). 28

3.6 Neural network with three neurons and associated weights. 31
3.7 Conventional architecture of a deep learning neural network

(Miralles-Pechuán, L., Rosso, D., Jiménez, F., Garćıa, J. M. (2017). A
methodology based on Deep Learning for advert value calculation in CPM,
CPC and CPA networks. Soft Computing, 21(3), 651-665.). 33

3.8 Conventional architecture of a convolutional neural network [21]. 34
3.9 Examples of max pooling, min pooling and average pooling operation on 4 x

4 matrix using 2 x 2 kernel with a stride size of 2. 36
3.10 Three ways in which transfer might improve learning

(Torrey, L. and Shavlik, J., 2010. Transfer learning. In Handbook of research
on machine learning applications and trends: algorithms, methods, and tech-
niques (pp. 242-264). IGI global). 38

4.1 Experimental workflow of the facies classification task. 43
4.2 Photo of a collection of core samples collected by Suncor Energy. 44
4.3 Example of the cropped photos of core sample. 45
4.4 Core samples labeled with different facies provided by Suncor Energy. 47

viii

https://en.wikipedia.org/w/index.php?title=Biological_neuron_model&oldid=1025272997

4.5 Architecture of VGG-16
(Ferguson, M., Ak, R., Lee, Y. T. T., Law, K. H. (2017, December). Auto-
matic localization of casting defects with convolutional neural networks. In
2017 IEEE international conference on big data (big data) (pp. 1726-1735).
IEEE). 48

4.6 Block diagram of the fine-tuned VGG-16 model. 52
4.7 Block diagram of the approach based on the combination of VGG-16 and a

traditional machine learning classification model. 53
4.8 Implementation of random forest classifier on a dataset that has four features

(X1, X2, X3, and X4) and two classes (Y = 1 and 2). Random forest classifier
is an ensemble method that trains several decision trees in parallel with boot-
strapping followed by aggregation. Each tree is trained on different subsets of
training samples and features (adapted from [53]). 54

4.9 ROC curve and AUC score for the explored VGG-16 models. 61
4.10 ROC curve and AUC score for the combination of VGG-16 and the traditional

machine learning models. 62
4.11 Average learning curves of transfer learning on VGG-16 with 10-fold cross

validation. 67
4.12 Average learning curves of fine-tuned VGG-16 with 10-fold cross validation. . 71

5.1 Sieve shaker equipment and wire cloth sieves
(Sieve analysis. n.d. [accessed: 2021 July 10].
https://pharmahub.org/app/site/collections/excipients/testmethods/Sieve Anal-
ysis.pdf). 74

5.2 The basic optical system of a laser diffraction particle size analyzer
(Laser diffraction. n.d. [accessed: 2021 July 10]. https://www.sympatec.com/en/particle-
measurement/sensors/laser-diffraction/). 76

5.3 Implementation of CLAHE on core photos. 79
5.4 Block diagram of the explored fine-tuned VGG-16 regression model for es-

timating MGS from core photos. The last convolutional layer block of the
VGG-16 model is trained along with the top layers associated with the pre-
diction task. Rest of the convolutional layer blocks are kept frozen so that the
pre-trained weights remain non-trainable. 80

5.5 Block diagram of the combination of VGG-16 and random forest regression
model for estimating MGS from core photos. A random forest regression
model is trained with the features extracted from the last convolutional layer
block of VGG-16. 81

5.6 Block diagram of training a random forest regression model using the ex-
tracted core image features. 82

5.7 A sample input image . 84
5.8 Activation of the first convolutional layer block of VGG-16. 86
5.9 Activation of the last convolutional layer block of VGG-16. 88
5.10 Distribution of the mean grain size in the available dataset. 89
5.11 Model prediction performance of the the combination of VGG-16 and random

forest regression model. 93

ix

https://pharmahub.org/app/site/collections/excipients/testmethods/Sieve Analysis.pdf
https://pharmahub.org/app/site/collections/excipients/testmethods/Sieve Analysis.pdf
https://www.sympatec.com/en/particle-measurement/sensors/laser-diffraction/
https://www.sympatec.com/en/particle-measurement/sensors/laser-diffraction/

5.12 Example of broken samples. 94

x

List of Tables

4.1 Classification of facies based on visual mud index. 46
4.2 Summary of the VGG-16 architecture after introducing new layers. 51
4.3 Confusion Matrix. 57
4.4 Summary of classification performance of the explored methods on oil sands

drill core dataset. 60
4.5 Confusion matrix of the explored approaches for core image classification. . . 63

5.1 Summary of modifications between the classification models and the regression
models. 83

5.2 Summary of the performances of the explored methods on oil sands drill core
dataset to estimate mean grain size. 92

xi

List of Symbols, Abbreviations and
Nomenclature

Symbol or abbreviation Definition
MGS Mean Grain Size
PSD Particle Size Distribution
CNN Convolutional Neural Network
ML Machine Learning
DL Deep Learning
CK Carman-Kozeny
MAE Mean Absolute Error
MSE Mean Squared Error
RMSE Root Mean Squared Error
CBIR Content Based Image Retrieval
EOR Enhanced Oil Recovery
GPUs Graphics Processing Units
HSI Hue, Saturation, Intensity
HSV Hue, Saturation, value
GLCM Gray Level Co-occurrence Matrix
CCM Color Co-occurrence Matrix
AD Alzheimer’s Disease
FC Fully Connected
ONE Online Nearest-neighbor Estimation
PCA Principal Component Analysis
PQ Product Quantization
AI Artificial Intelligence
KNNs K-Nearest Neighbors
SVM Support Vector Machine
RL Reinforcement Learning
ANN Artificial Neural Network
tanh Hyperbolic Tangent
ReLU Rectified Linear Unit
DLNN Deep Learning Neural Network
RNN Recurrent Neural Network
RGB Red, Green, Blue
ELU Exponential Linear Unit

xii

SELU Scaled Exponential Linear Unit
VMI Visual Mud Index
IHS Inclined heterolithic stratification

ILSVRC
ImageNet Large Scale Visual Recognition
Challenge

ROC Receiver Operating Characteristic
AUC Area Under Curve
TP True Positive
TN True Negative
FP False Positive
FN False Negative
TPR True Positive Rate
LDS Laser Diffraction system
HE Histogram Equalization
AHE Adaptive Histogram Equalization

CLAHE
Contrast Limited Adaptive Histogram
Equalization

xiii

Chapter 1

Introduction

Grain size is one of the most fundamental properties of sediment particles that help geolo-

gists to understand crucial geological aspects such as permeability, particle size distribution

(PSD), and among others. Grain size analysis of drill core, therefore, provides important

clues to the depositional settings, sediment provenance, transport history, and geomorphic

significance of fluid dynamics in the natural environment ([1], [2], and [3]). The Athabasca

oil sands deposit in northeastern Alberta, Canada, is one of the world’s largest petroleum

reservoirs. Oil sands, also known as “tar sands”, are sediments or sedimentary rocks com-

posed of sand, clay minerals, water, and bitumen. The oil is in the form of bitumen, a very

heavy liquid or sticky black solid with a low melting temperature. Due to having such large

deposits of oil sands, a lot of core drilling is performed. As a result, the cores are also readily

available and accessible for geologists to conduct grain size analysis and determine PSD. As

the cores are drilled, information related to the cores is recorded, including the core photos.

Therefore, as there are plenty of methods to quantify grain size distribution with the avail-

ability of grain size data, the photos of the drilled cores paired with the grain size data can

be leveraged to determine various crucial geological properties since the laboratory methods

of determining these properties are not always representative. With the advancement of con-

volutional neural networks (CNNs), important information can be obtained using images.

1

CNN is a sub-field of deep learning (DL) that enables computers or systems to derive mean-

ingful information from digital images, videos, and other visual inputs, and take actions or

make recommendations based on that information.

This thesis explores different variations of a CNN-based technique called transfer learning

to analyze oil sands drill core photos. These techniques are employed to investigate how they

work to classify the core photos based on different facies or rock types and predict mean

grain size (MGS) from the core photos. While prior work has analyzed grain size from drill

core photos using different machine learning (ML) and DL for conventional drill cores, to

the best of our knowledge, there is no published work on predicting facies and MGS from oil

sands drill core photos using transfer learning and ML approaches where most textures and

grains are rarely visible because of the black bitumen.

1.1 Context and Motivation

Most of today’s energy needs are met by fossil fuels like coal, oil, and gas. These unique

high-energy fuels are non-renewable resources that took millions of years to form. About 2

billion years ago, marine organisms like algae and microscopic animals and plants died and

settled on the ocean floor. In the absence of oxygen, these fossils changed into a substance

called kerogen [4]. Under heat and pressure, kerogen gradually changes into oil or gas. The

whole process usually takes at least a million years. At a molecular level, oil and gas are

hydrocarbons made up of hydrogen and carbon atoms. The constant pressure and movement

of the earth’s crust squeeze oil and gas through the pores or spaces between rocks. Some oil

and gas reach the earth’s surface. Often it is trapped beneath the surface by impermeable

layers or rock structures. Within the crust, oil or gas deposits build up and form reservoirs [5].

Conventional reservoirs [19] consist of source rock, reservoir rock, and caprock, as shown

in Figure 1.1. While the source rock holds the oil and gas’s kerogen, the reservoir rock is

the porous and permeable rock layers that hold the oil and gas. It is the cap rock that traps

2

Figure 1.1: Hydrocarbon reservoir [11].

the hydrocarbon in the reservoir. To perform proper well drilling, reservoir rock needs to be

porous and permeable. Permeability is a factor that quantifies how hard or how easy it is

for the fluid to flow through the reservoir to the oil-producing well. It measures the ability

of fluids to flow through rock or other porous media. An accurate permeability estimate is

one of the most important parameters to characterize the McMurray oil sands for in-situ

recovery. Prior research proposed different correlations to estimate permeability. Although

permeability can be calculated using porosity, the results are not reliable as the parameters

are uncertain due to the constraint conditions of unconsolidated and homogeneous porous

media [100].

The traditional method of estimating permeability in oil sands is a critical task as the core

is filled with immobile bitumen [9]. Although lab experiments for estimating permeability

are expensive, there is another way to estimate permeability based on the particle size

distribution (PSD) index, indicating what sizes of particles are present in what proportions

in the sample particle group to be measured [83]. In PSD measurement, the relative particle

amount is expressed as a percentage where the total amount of particles is 100%. PSD of

a material is an important parameter to determine certain physical and chemical properties

of a material. There are several methods of determining the PSD, such as sieve analysis,

laser diffraction system, image particle analysis, and particle counting in a Coulter counter

[110], [111] and [112]. A brief working principle of sieve analysis and laser diffraction system

3

Figure 1.2: Linear correlations between permeability and mean grain size [141].

is presented in Chapter 5. PSD identifies how the porous spaces or particles are close to

each other. According to Carman-Kozeny (CK) equation ([24], [25]), permeability can be

estimated with the known distribution of pore sizes or particle sizes [28]. Research also shows

that the correlation between permeability and MGS is quite high as well [141]. Moreover,

it is also a convenient parameter to derive from the PSD. Figure 1.2 shows a nearly linear

relationship between permeability and sediment grain size, where the permeability in each

case is measured at the in situ stress state. Therefore, we can state that permeability can

be also determined if the MGS of the distribution is known.

PSD has been successfully estimated in the mining industry using photographs for a

number of years (e.g., [29] [30]). The approach has been used for estimating the PSD of

piles of blasted rock or material on conveyor belts. The advantage of this type of material

is that the edges of grains can be easily imaged. However, the drill core is more challenging

4

Figure 1.3: Example of core photos collected by Suncor Energy.

because the edges of grains cannot be easily seen on the drill core. Only the part of a grain

that is exposed at the surface of the cut core can be imaged. Like an iceberg, the true size

of the grain is hidden. Drill core from the Alberta oil sands is particularly challenging since

the drill core is also covered in bitumen which interferes with the imaging because parts of

the grains are not readily visible. Besides, it is also expensive to get physical samples from

many different depths at many wells. For this Thesis, our industry partner and collaborator,

Suncor Energy, provided the core photos from the previous cored wells along with the PSD

data. An example of some oil sands drill core photos is shown in Figure 1.3.

5

1.2 Objectives

Different ML and DL techniques have been successfully applied with considerable success

in the Geoscience domain for almost two decades. Some examples of the application of

ML in the Geoscience research community include seismic-facies classification [84] - [90],

CNNs for geological image classification [91], volcanic ash classification using CNNs [92] [93].

However, though DL, CNN, and transfer learning techniques have gained popularity and

become established as robust and powerful tools in other scientific fields, these tools are still

novel concerning the application within the Geoscience community.

This thesis aims to explore how CNNs, transfer learning, and image-based ML techniques

can be utilized for oil sands drill core image analysis. For different experiments, the available

data includes a library of raw oil sands drill core photos where each sample is labeled with

the MGS calculated from the whole PSD [47]. In order to gain insight about the opportunity

to implement the aforementioned techniques to estimate the MGS from core photos, first we

aim to investigate the performances of these techniques in core image classification based on

the facies or rock types. Relying on the experimental results achieved from this investigation,

our goal is to extend the experimental scope for estimating MGS from the core photos. Since

extracting useful information from the available oil sands drill core photos are very critical

due to their unique characteristics, our objective is not to produce an optimal solution using

the explored methods. Rather, our aim is to explore how CNNs, transfer learning, and ML

techniques perform with such kinds of data, identify potential challenges, and open doors

for extensive future research opportunities in this domain.

1.3 Challenges

Traditional ML applications rely on a set of attributes or features selected or designed by

a domain expert. Features are specific characteristics of an object that can be used to

distinguish one object from another. For image data, several features can be considered,

6

such as texture, orientation, and edges. To reduce the dependencies on handcrafted features

by the domain expert, DL can be utilized. In computer vision problems, rather than relying

on hand-engineered features, CNN models can automatically extract different features from

the image data. However, existing DL methods train deep architectures from scratch, which

have a few limitations [31] [32]. Training a DL network requires:

• huge amount of annotated training data,

• huge computational resources,

• careful and tedious tuning of many parameters and hyper-parameters, sub-optimal

tuning of which can result in overfitting/underfitting and in turn, result in poor per-

formance.

The primary challenge in our work is that the amount of annotated data is not sufficient.

Due to having less data than a typical DL model requires, the performance of the DL models

is also affected. However, an attractive alternative to training a DL network from scratch

is fine-tuning a deep network through transfer learning [33]. In transfer learning, the idea

is that a neural network can take the knowledge learned from one task and apply that

knowledge to a separate task. For example, if a CNN model has the knowledge to recognize

the images of cats and dogs, the same knowledge or a part of that knowledge can be used

for a medical image classification task. In transfer learning, the knowledge from a neural

network pre-trained on a vast data library is leveraged and applied to another problem with

a smaller dataset. In Chapter 3, the concept of transfer learning is briefly explained.

Therefore, to overcome the aforementioned challenge and reduce the dependency on a

large dataset, transfer learning is employed along with traditional ML and conventional DL

approaches. We show that we can implement the concept of transfer learning combined with

the traditional ML approach for the facies classification and for predicting MGS from core

photos. We also show that the explored approaches exhibit reasonable classification and

prediction results despite having a small dataset.

7

1.4 Contributions

The main contribution of the thesis lies in exploring CNNs and transfer learning techniques

in oil sands drill core image analysis. The overall contribution of this thesis can be outlined

as follows:

1. We explore the application of transfer learning on the pre-trained VGG-16 CNN model,

fine-tuning a set of layers of the VGG-16 model, and the combination of VGG-16 and

traditional ML models (random forest, decision tree) for the classification of oil sands

drill core images labeled with facies. Among these three explored approaches, we

achieve the highest accuracy of 98.87% for drill core facies classification using the com-

bination of VGG-16 and random forest classifier. In this approach, we train a random

forest classifier using the image features extracted by the last convolutional layer block

of the VGG-16 pre-trained CNN model. The trained classification model is tested

with core photos that it has never seen before. Therefore, the model can perform the

facies classification with 98.87% accuracy on newly taken core photos.Therefore, with

this accuracy, the geologists can also use the model for the oil sands drill core facies

classification tasks. Although the best accuracy is achieved by combining VGG-16 and

random forest classifier, experimental results obtained by all the explored approaches

demonstrate good classification performances. Overall, this investigation provides an

insight into the further implementation of these approaches for more challenging prob-

lems such as estimating MGS from oil sands drill photos. We describe the implementa-

tion of these explored approaches for facies classification and present the experimental

results in Chapter 4.

2. After getting insights from the core image classification task, the aforementioned ap-

proaches are explored to see how they perform to predict the MGS from the core

photos. A traditional ML regression model (random forest regressor) is also applied

with these three approaches. To train the random forest model, the original pixel

8

values of the images, Gabor filter responses, and Sobel filters are used to extract the

features from the core photos. However, similar to the core image classification, the

combination of VGG-16 and random forest regression model for estimating MGS from

core photos demonstrate the best prediction result. Experimental results show that,

this explored method estimates the MGS from oil sands drill core photos with a mean

absolute error (MAE) of 11.59, which is acceptable based on the overall distribution

(mean = 153.99, standard deviation = 56.05) of the available dataset. We describe

the explored approaches along with their prediction performance in Chapter 5. The

explored approach might be useful for the geologists since it would provide them with

a new technique to estimate MGS from core photos. Moreover, determining MGS from

core photos can also be helpful to get important information about permeability and

PSD.

Overall, to the best of our knowledge, this thesis explores different approaches based on

CNN, transfer learning, and ML for the first time to analyze the oil sands drill core images.

Therefore, despite the primary objectives, the overall outcome of this thesis will benefit

future researchers by providing a benchmark and opening the scopes for conducting more

extensive research in this domain.

1.5 Thesis Outline

The rest of the thesis is organized in the following manner. In Chapter 2, the applications of

ML and DL techniques in the Geoscience domain are briefly discussed followed by different

applications in content-based image retrieval (CBIR) and rock image classifications problems.

Moreover, we discuss how a CNN model pre-trained on a huge library of natural images

can be utilized to a problem that is associated with a completely different domain such as

medical imaging and CBIR. In Chapter 3, we briefly describe the oil and gas exploration

and production life cycle, followed by an extensive review of ML, DL, CNN, and transfer

9

learning. In Chapter 4, we present the three explored approaches based on transfer learning

and traditional ML to perform the classification of drill core images based on facies types.

Chapter 5 extends the experiments conducted in Chapter 4 to investigate how these explored

approaches can be accumulated to predict the MGS from the core photos. Finally, Chapter

6 concludes the thesis by presenting the summary of the contribution and discussing the

limitations, followed by describing possible future research directions.

10

Chapter 2

Literature Review

Applications of CNN and ML have demonstrated notable success in a wide variety of research

domains, including computer vision [101], text recognition [102], speech recognition [103],

object detection [104], medical image analysis [107], biometric technology [105], online social

media [106], among others. Although traditional ML and DL approaches are gaining popu-

larity in Geoscience research and reservoir engineering, the application of CNN and transfer

learning is yet to be explored in these areas. At the beginning of this chapter, the application

of ML and DL techniques in additional research related to the Geoscience and petroleum

industries is presented. Moreover, we review some previous works on the application of

transfer learning in other application domains such as medical imaging and content-based

image retrieval (CBIR). We review these works to demonstrate how the concept of transfer

learning effectively works for different applications, although the models are pre-trained on

the data that are different from the target application. The limitations of the prior works

are also discussed while reviewing them.

2.1 Machine Learning and Deep Learning in Geoscience

De Lima et al. explored the application of transfer learning to facilitate the analysis of

uninterpreted images of fossils, slabbed cores, or petrographic thin sections [91]. The pre-

11

trained MobileNetV2 [94] and InceptionV3 [95] were successfully employed to perform the

classification of microfossils, petrographic photomicrographs, and rock and mineral hand

sample images. For the microfossil image classification tasks, only the pre-trained models’

classification layers were trained on a dataset of 1850 qualified images belonging to seven

different fusulinids (index fossils for the Late Paleozoic). After training the models, accuracy

for the test data (10% of the dataset) of 100% was obtained for both models. The experi-

mental results strongly support that, even though the dataset’s volume is significantly small,

state-of-the-art performance can be achieved by employing transfer learning. The researchers

utilized these pre-trained CNN models to classify 1521 images of six different rock types in

the same work. For this experiment as well, both the CNN models exhibited significantly

good classification performances. The accuracy scores for the pretrained MobileNetV2 and

InceptionV3 were 98% and 97%, respectively. For core image classification, several hundred

feet of labeled cores from Mississippian limestone in Oklahoma (data from [97] and [98]) is

used, and a small sample of only 285 images was selected for the classification. For this

experiment, an accuracy of 100% was achieved using MobileNetV2 and an accuracy of 97%

using the pretrained InceptionV3.

Zhou et al. introduced a CNN regression model for predicting permeability using the data

collected from the Jacksonburg-Stringtown oil field, West Virginia, a potential carbon storage

site and enhanced oil recovery (EOR) operations field [99]. In this work, geological feature

images were produced by converting five parameters from the geophysical well logs. These

five parameters were gamma rays, bulk density, the slope of the gamma rays and bulk density,

and shale content. Each of the feature images was labeled with permeability. Therefore,

the designed CNN model considered the feature images as inputs and the permeability

as the target output. To improve the prediction performance and to reduce overfitting,

the initial weights and biases of the proposed CNN model were searched using a genetic

algorithm [35] and particle swarm optimization [36]. To evaluate the performance of the

proposed model, several metrics were considered, such as root mean error, average absolute

12

error, and maximum absolute error. Root mean error determines the overall performance

of the model, whereas the average and maximum absolute errors are used to determine the

error range of the predicted result. After evaluating the overall performance of the model,

the root mean error was valued at 114.78 for the training data and 125.31 for the testing

data. While the maximum absolute error was 69.73 for both the training and testing process,

the average absolute error for the training process was 5.21 and 12.17 for testing data. Since

the errors between true and predicted permeability follow a normal distribution, the mean

and standard deviation are taken from a Gaussian model. In this work, to compare the

results more concisely, the permeability is plotted on a logarithmic scale. A comparison

between the core permeability and the permeability predicted by the CNN regression model

shows a mean of 6.6101 with a standard deviation of 24.3534. Overall the experimental

results demonstrated that the proposed CNN model performed very well in constructing the

relationship between the well log data and the permeability.

Panda et al. proposed a model by modifying the CK model to estimate permeability

using both the bulk physical properties (porosity and tortuosity) and the statistics of the

PSD of an unconsolidated permeable medium [10]. In this paper, the authors mentioned this

aspect; although many models were proposed to estimate permeability, limited attention was

given to the impact of the PSD on the permeability estimate. As the CK model was not

applicable for a media consisting of mixed particle sizes, many modifications over the CK

model were proposed to improve the estimation of permeability. However, the key limitation

of these modified models was that these models required independent determination of vari-

ous parameters. Therefore, estimating these parameters in actual permeable media became

cumbersome and frequently empirical. The model proposed in [10] used detailed informa-

tion of the permeable medium, such as PSD statistics, where the variation in PSD statistics

predicted the variation in permeability estimate. The statistical parameters could be esti-

mated from core samples, outcrops, drill cuttings, or thin sections of cores. By validating

the proposed model against experimental data, the authors used it to investigate the nature

13

of permeability-porosity relationships. They also determined the parameters that influenced

the permeability estimate the most. However, the proposed method failed to work when the

permeability is below 1 µm2. In such cases, the model over-predicted permeability.

Mauricio et al. developed a state-of-the-art DL algorithm to directly predict perme-

ability from 2D images by leveraging the computational power of graphics processing units

(GPUs) [45]. In this work, the authors built two different neural network architectures to

estimate the permeability from 2D images where the first network is composed of seven

convolutional layers followed by two dense layers, and the second network is inspired by the

U-Net architecture [96]. According to the authors, to the best of their knowledge, this is the

first work where laboratory-measured permeability data for 135 different rock samples from

11 reservoirs were used as labels. Also, this is the first time the input to the DL systems is a

high-resolution image rather than a segmented image that allows the DL system to deduce

the relevant features by itself. The preliminary results showed that the proposed approach

was a viable means for efficiently determining permeability. After training the DL models,

they demonstrated superior performances by accurately predicting the desired properties

within a fraction of seconds, speeding up the simulation workflows. The average error of the

predictions was only 11.69% for permeability, where the predictions were produced instanta-

neously. Therefore, all the related field-development workflows that depend on permeability

estimation were expedited. In another research, Eric et al. demonstrated and tested a DL

workflow for the automated extraction of bioturbation data from a core photo dataset [46].

The authors proposed a method for extracting image tiles from core photos along a grid and

referencing each tile with collected sedimentary data that allowed users to quickly generate

thousands of labeled training images for a machine learning (ML) model. The trained deep

learning model could automatically predict whether a core photo contained bioturbation or

not with up to 88% accuracy.

Lepisto et al. introduced the classification problem of the rock textures from rock sample

images where two types of features were considered in the process of rock texture classifi-

14

cation [12]. These were the textural features and the spectral features. For spectral feature

extraction, the HSI model was considered where hue (H) describes a pure color, saturation

(S) gives the measure of the degree to which a pure color is diluted by white light, and inten-

sity (I) is decoupled from the image’s color information. In this work, the authors used only

hue and intensity information for spectral features extraction. On the other hand, texture

features were calculated from the gray-level co-occurrence matrix as several texture features

such as contrast and entropy can be calculated from this matrix. For testing purposes, 118

rock images were acquired, where the size of the rock sample was 300 x 300 mm and the

image size was 1430 x 1430 pixels. The rock samples represented two typical rock texture

types. In type I, there were 54 samples of relatively homogeneous rock texture with small

color variations. These samples were divided into four classes where all the samples had sim-

ilar textures but different colors. In type II, 64 samples of non-homogeneous rock textures

had strong differences in texture and color. The difference could also be significantly noticed

within the samples of this type. These samples were divided into three classes employing

these features. The classification of the texture samples was based on the k-nearest neighbor

method and the value of k was experimentally selected to be 3. Results showed that, in the

case of homogeneous textures classification, spectral features (mean hue and mean inten-

sity) gave the best results whereas, in non-homogeneous textures classification, the texture

features obtained the best results (contrast and entropy). In this work, a new approach to

the classification and analysis of non-homogeneous rock textures was presented. The non-

homogeneous textures were divided into blocks so that different areas could be considered

separately. Therefore, the co-occurrence matrix gave better classification results.

For classification and retrieval of natural rock images, the use of texture granularity was

considered in a study presented by Lepisto et al. [13]. The main purpose of this work was

to find images with grains (phenocrysts) of a particular size and color from a rock image

database. Color analysis tools were used combined with morphological operators for the

recognition of the texture grains. The experimental results showed that the images with grain

15

could be distinguished from the other rock images using the proposed model. In another

paper, Kong combined both the color and texture features for image retrieval [14]. The color

features were extracted using HSV (Hue, Saturation, Value) color space, and the work of

texture feature extraction was obtained by using gray-level co-occurrence matrix (GLCM)

or color co-occurrence matrix (CCM). A satisfactory result was achieved by conducting

experiments on the actual images and verifying the integrated feature’s superiority over the

single feature.

Overall, we reviewed some of the prior works on the applications of transfer learning,

CNN, and traditional ML in the Geoscience research domains. We also reviewed the ap-

plication of transfer learning for core image classification and the application of CNN for

estimating permeability from log data. However, these approaches were implemented to

build classification, or regression-based models for the data originated from the conventional

cores, where the feature extraction workflow from the data is not critical. Unlike the con-

ventional cores, for the oil sands drill core of Athabasca oil sands, the core images are very

critical to handle due to the unique geological characteristics. Therefore, although the ap-

plications of transfer learning, CNNs, and traditional ML are not new for the conventional

cores, there are still rooms for extensive research to explore the opportunity to employ these

concepts in the challenging oil sands drill core image analysis domain.

2.2 Transfer Learning in Other Application Domains

While traditional DL techniques require a huge library of training data to train the models,

extremely powerful computational resources, and optimal parameter and hyperparameter

tuning to avoid overfitting/underfitting, instead of training a DL from scratch, Lisa et al.

introduced transfer learning as the improvement of learning in a new task by the transferring

knowledge from a related task that has already been learned [34]. Transfer learning allows

the reuse of existing DL models to novel classification and regression problems with limited

16

data. While traditional ML and DL algorithms address the isolated task, transfer learning

attempts to change this by developing methods to transfer knowledge learned in one or more

source tasks and use it to improve learning in a related target task. It has been shown

that CNNs are excellent feature learners [38] and can generalize image features given a large

training set. Qayyum et al. showed that transfer learning could even achieve comparable

or better results than training a CNN model with randomly initialized parameters [107].

In this section, we review some prior works that show that CNN models pre-trained on

over 14 million natural images belonging to 1000 classes have been successfully employed in

completely different domains - medical image classification, and CBIR tasks to name a few.

Khan et al. investigated the use of layer-wise transfer learning technique on a state-of-

the-art CNN architecture named VGG-19 [16] that has been pre-trained on natural images,

to classify medical images for improved diagnosis of Alzheimer’s Disease (AD) [39]. The

network was fine-tuned with layer-wise transfer learning where only a pre-defined group of

layers were trained on MRI images. To reduce the dependency on large training data, the

authors employed an intelligent filtering approach that chose the most useful images by

calculating the image entropy. They also provided class activation maps to demonstrate how

the proposed model focused on discriminative image regions that were neuropathologically

relevant and could help the healthcare practitioner in interpreting the model’s decision-

making process. Khan et al. observed that, instead of training all the layers of the pre-trained

model, the best possible result was achieved by re-training only a few top layers. However,

the proposed approach did not consider noisy training images. In real-life cases, data could

be messy that might result in difficulties in determining important feature information from

the data.

Alex et al. trained a large deep CNN named as AlexNet that could classify 1.2 million

high-resolution images of 1000 different categories [15]. AlexNet has 60 million parameters

and 650,000 neurons. It consists of five convolutional layers, where some are followed by

max-pooling layers and three fully connected (FC) layers with a final 1000-way softmax.

17

Overfitting in the FC layers is reduced by employing the “dropout” regularization method.

Experiments demonstrated promising performance on a highly challenging dataset using

purely supervised learning. The paper reporting AlexNet is considered one of the most

influential ones published in computer vision; it has spurred many more papers published

employing CNNs and GPUs to accelerate deep learning [40]. In another study, Simonyan

et al. investigated the effect of the convolutional network depth on its accuracy in the

large-scale image recognition setting [16].

Wan et al. explored a DL framework, CNN to learn feature representations from images

and their similarity measures towards CBIR tasks [18]. CBIR is a well-studied computer

vision technique to search for relevant images from large databases. In CIBR, the search is

based on different image features like color, texture, shape, or any other features derived from

the image itself. In another work, Xie et al. showed that image classification and retrieval are

not different since both tasks could be tackled by measuring the similarity between images

[20]. In this work, a new algorithm named Online Nearest-neighbor Estimation (ONE) was

proposed to utilize Principal Component Analysis (PCA) and Product Quantization (PQ)

approximation, GPU parallelization to scale the proposed algorithm up to large-scale image

search.

2.3 Chapter Summary

The analysis of previous research on ML and DL techniques for enhanced image analysis and

image classification problems in diverse research domains is the focal point of this chapter. In

this chapter, the research gaps are identified. In summary, the earlier works primarily focused

on rock image classification based on texture, color, and spectral features. Also, many

different image classification and retrieval techniques were proposed using traditional image-

based ML and DL approaches in various research domains such as improving disease diagnosis

by medical image analysis, analyzing different critical geological properties, etc. A few prior

18

pieces of research on the application of CNN and transfer learning in the geoscience and

petroleum industries are also discussed in this chapter. We briefly discussed the application

of transfer learning on the pre-trained CNN model and the implementation of the CNN

model for core image classification and permeability prediction. However, as mentioned

earlier, these applications were primarily focused on the dataset where the feature extraction

workflow is not critical compared to the oil sands drill core images. Since the CNN and

transfer learning techniques can automatically extract useful features from images, we aim

to investigate if we can leverage this for our oil sands drill core image data. To the best of our

knowledge, the application of transfer learning, CNN, and traditional ML techniques have

not been explored yet to estimate MGS from oil sands drill core photos where the textures

and grains are rarely visible because of the black bitumen. Therefore, to fill the research gaps,

in the subsequent chapters, we explore these approaches for the core image classification and

to estimate MGS from core photos, compare the performances of the explored approaches

and propose the best model, identify potential challenges to manipulate the dataset, and

propose possible future research directions.

19

Chapter 3

Preliminaries

This chapter presents the oil and gas operating cycles and different activities associated

with each phase. Then we provide a brief overview of different ML and DL techniques. We

also present the conventional architectures of traditional DL and CNN models and describe

different components and terminologies of each layer of a CNN model. Moreover, in this

chapter, we describe different activation functions used to train a traditional DL model.

Finally, we end this chapter by presenting a brief overview of the transfer learning concept.

3.1 Oil and Gas Operating Cycle and Activities

In oil and gas industries, exploration and production companies find hydrocarbon reservoirs,

drill oil and gas wells, extract these raw materials, and sell them to be refined by other

companies into products such as gasoline [6]. Typically, the life cycle of extracting and

processing hydrocarbons from a typical oil and gas reservoir include four stages: Exploration,

Development, Production, and Abandonment, as shown in Figure 3.1.

Exploration is a method used by petroleum geologists and geophysicists for searching for

oil and gas resources in subsurface earth by reviewing existing geological and geophysical

data to learn about the potential reservoir. The exploration process consists of locating

oil and gas reserves using seismic surveys and drilling wells. Seismic survey or seismology

20

Figure 3.1: The oil and gas operating cycle and activities (Treccani-Petroleum
Encyclopaedia) (Adapted from [8]).

are performed by creating and recording substantial vibration on the earth’s surface via

explosives or machinery [82]. As shown in Figure 3.2, As shown in Figure 3.2, the seismic

waves travel down the surface, and the reflected waves are analyzed at the surface to identify

layers of rock that trap oil and natural gas reservoirs. The result of a seismic survey is

essentially a picture of the various rock layers used to identify geological structures that

may contain oil and natural gas resources [7]. Exploration is an expensive, risky, and time-

consuming process. The expenditures associated with this process are usually valued at

millions of dollars and the oil and gas discovery process may take substantial time even

though sometimes the explorers may find nothing at all after the exploration process.

If the seismic data analysis shows a geological structure that could contain oil and gas

resources, an exploration well is drilled to confirm the presence of oil and gas resources.

A well-logging tool is lowered into the well to acquire geological data and understand the

presence of reservoir, reservoir fluid characteristics, among other properties. Core analysis is

performed at this stage from the core samples to obtain detailed petrophysical data. After

the successful exploration drilling, appraisal drilling is performed to reduce the uncertainty

or possibility of losses about the size of the oil and gas field and its properties. In this phase,

more wells, in addition to the exploration wells are drilled to collect more information and

samples from the reservoir. Another seismic survey with higher resolution is repeated to get

a better image of the reservoir. Data from the seismic survey and wells assist the geologists

21

Figure 3.2: Seismic survey
(Britannica, The Editors of Encyclopaedia. “Seismic survey”. [accessed 2021 July 26].
https://www.britannica.com/science/seismic-survey.).

and reservoir engineers in understanding the reservoir better and comprehending specific

characteristics about the reservoirs, such as how much oil and gas might be in the reservoir

and how fast oil or gas would move through the reservoir.

After the successful appraisal phase and identifying potentially viable fields, the develop-

ment stage is initiated before the full-scale production. The engineers determine the number

of wells needed to meet production requirements and the method of extraction of the liquid

hydrocarbons. At the beginning of the development stage, the geologists, geophysicists, and

reservoir engineers create a development plan and identify the number of wells that need to

be drilled to produce the oil or gas. The drilling engineers decide on the best design for the

production wells and the project engineers assist in building the planned facilities such as,

deciding what production facilities are required to process the oil or gas before it is sent to

the refinery or customer. Finally, the logistic engineers decide the best route to export the

oil and gas. The development phase also may cost hundreds of billion dollars and it typically

22

may last for 5 to 10 years to develop an oil or a gas field. This fact may vary based on the

location, size of the facilities, and the number of required wells.

In the production stage, liquid hydrocarbons extracted from the well are separated from

the non-saleable components such as water and solid residuals. Natural gas is often processed

on-site while oil is piped to a refinery before being offered for sale. Finally, once all of the

accessible oil and natural gas reserves in a field have been produced, the project can be

decommissioned, meaning that wells are plugged by setting mechanical or cement plugs in

the wellbore (i.e., drill hole including the open hole or uncased portion of the well) at specific

intervals to prevent fluid flow. The plugged wells are then abandoned, the infrastructure

removed, and the site cleared to remove any debris.

3.2 Machine Learning Overview

ML is a sub-field of artificial intelligence (AI) that imitates human intelligence by learning

from the surrounding environment. In this era of big data, ML provides the tools and technol-

ogy that can be utilized to extract meaningful insights from the data. Although ML is a field

within the Computer Science domain, it differs from traditional computational approaches.

Unlike traditional computational algorithms, instead of being explicitly programmed, ML

algorithms are trained on data inputs and use statistical analysis to output values that fall

within a specific range. Because of this, ML facilitates computers in building models from

sample data to automate decision-making processes based on data inputs. There is much

data today generated not only by people but also by computers, smartphones, and other

sensors or devices. This reality will only continue to grow in the years to come. Tradi-

tionally, humans have analyzed data and adapted systems to the changes in data patterns.

However, as the volume of data grows, it surpasses the ability for humans to make sense of it

and manually write those rules. Therefore, we will turn increasingly to automated systems

that can learn from the data and, importantly, the changes in data to adapt to a shifting

23

landscape. Techniques based on ML have been applied successfully in diverse fields ranging

from pattern recognition, computer vision, computational biology to medical applications.

In ML, we use data to answer questions. Here “using data” refers to “training” the system

and “answering questions” means “making predictions”. Therefore, to connect these two

concepts, we use data to train an ML model and make it increasingly better and more pow-

erful in predictions. Later on, this predictive model can be deployed to predict data that

has never been seen before.

Arthur Samuel, a pioneer in the field of computer gaming and AI, coined the term

“Machine Learning” and defined it as a “field of study that gives computers the ability to

learn without being explicitly programmed” [56]. A more modern definition of ML, given

by Tom Mitchell is “A computer program is said to learn from experience E with respect

to some class of tasks T and performance measure P, if its performance at tasks in T, as

measured by P, improves with experience E” [57]. For instance, we assume that we want to

create an ML model that can distinguish between the images of cats and dogs. The examples

that the model uses to learn are collected in a “training set”. In this example, the training

set is a library of images of cats and dogs. In a training set, each training example is called

a training instance or sample. Comparing this example with Tom Mitchell’s definition, the

task T is to perform classification between cat and dog for an unknown image, the experience

E is the training data, and the performance measure P needs to be defined; for example,

the ratio of correctly classified images.

3.2.1 Types of Machine Learning

Based on whether or not the ML systems are trained with human supervision, they are

of three types: supervised learning, unsupervised learning, and reinforcement learning [37].

In supervised learning, the training data contains the desired solutions called “labels” [59].

Therefore, each sample in the training set has a label. A typical supervised learning task is

classification. The above-mentioned example that can identify cats and dogs from images is

24

an example of supervised learning. Here, the model is trained with many example images

along with their class (“Cat” or “Dog”), and it must learn how to classify a new image.

Another typical task is to predict a target numeric value, such as the price of a house, given

a set of features (number of rooms, size in square feet, geographic location, year built, etc.).

This type of task is called regression. Training this system would require many examples

of houses, including both the features and their labels i.e., their prices. Some of the most

widely used supervised learning algorithms are k-Nearest Neighbors (KNN) [60], Support

Vector Machine (SVM) [65], Linear Regression [61], Logistic Regression [62], Decision Trees

and Random Forests [64], and Neural networks [63].

Unlike supervised learning, in unsupervised learning, training data is unlabeled [59].

Here, the system needs to find patterns in the data from the training examples. Detecting

unusual credit card transactions for fraud prevention is an example of unsupervised learning.

Here the system is trained with typical credit card transactions. When the system sees a

new transaction, it tries to identify whether or not this instance is an anomaly. Some

unsupervised learning algorithms are k-Means clustering [66], and Principal Component

Analysis (PCA) [67].

Reinforcement learning (RL) [41] is a type of ML technique where an “agent” explores

an “environment”. Based on the “environment”, the “agent” takes a certain action, and

based on that action, it receives “reward” or “penalties”. It must then learn by itself what

is the best strategy, called a “policy”, to get the most reward over time. For example, RL is

implemented to train an obstacle detection and avoidance robot [42]. Given the environment

with and without different types of obstacles, if the robot hits the obstacle it gives itself

negative rewards. Over time the robot learns from its experience and will be able to identify

which actions lead to the best rewards. In a paper, Balaji et al. demonstrated how the AWS

DeepRacer learns to drive by itself using RL [58]. It is to note that, neural network can be

unsupervised learning and reinforcement learning as well (see [127] and [128]).

25

3.3 Introduction to Deep Learning

DL is a sub-filed of ML concerned with algorithms inspired by the structure and function

of the brain called artificial neural network (ANN). Like how human beings learn from ex-

perience, a DL algorithm repeatedly performs a task, each time tweaking it a little to improve

the outcome. DL is the key technology behind driverless cars, enabling them to recognize

a stop sign or distinguish a pedestrian from a lamppost. In DL, a computer model learns

to perform classification tasks directly from images, text, or sound. Deep learning models

can achieve state-of-the-art accuracy, sometimes exceeding human-level performance [43].

A variety of complex tasks can be achieved using these models, such as classification and

regression using ANN and different computer vision tasks by CNN.

DL architecture is the mechanism of representation of a pattern in a hierarchical manner

[68]. The hierarchy starts from the input layer and ends with the decision layer. In a neural

network, there can be one or more hidden layers. A neural network with only one hidden

layer is called a shallow network. A deeper neural network contains more than one hidden

layer. Biological neurons or simply neurons are the fundamental units of the brain and

nervous system, the cells responsible for receiving sensory input from the external world via

dendrites, process it, and give the output through axons as shown in Figure 3.3. Figure 3.4

represents the general model of ANN which is inspired by a biological neuron, also called

Figure 3.3: Biological neuron model
(Wikipedia contributors. (2021, May 26). Biological neuron model. [accessed 2021 July 27].
https://en.wikipedia.org/w/index.php?title=Biological neuron model&oldid=1025272997).

26

https://en.wikipedia.org/w/index.php?title=Biological_neuron_model&oldid=1025272997

Figure 3.4: Perceptron model.

perceptron. If the input to a perceptron is x, the result of the perceptron z is defined by:

z = w ∗ x+ b (3.1)

Here, w is the weight of the perceptron and b is the bias [69]. Similarly, if a neuron receives

multiple input values represented as x0, x1, x2, . . . , xn, each of these inputs is multiplied by

a connection weight represented as w0, w1, w2, . . . , wn followed by summing the products as

follows:

x0 ∗ w0 + x1 ∗ w1 + x2 ∗ w2 . . . xn ∗ wn =
n∑

i=0

xi ∗ wi (3.2)

Equation 3.1 performs linear transformation of the inputs. In order to introduce non-

linearity, a non-linear activation function as follows is applied to the result of the perceptron

obtained by Equation 3.1 [69].

F = g(z) (3.3)

Although activation functions can be both linear and non-linear, in DL architecture linear

activation functions are rarely applied because the combination of linear activation is also a

linear function and a linear activation can not model non-linear data. On the other hand,

non-linear activation functions with the linear transformation in the perceptron of the hidden

layer can approximate a function to describe the data [70].

In Equation 3.3, g can be sigmoid, hyperbolic tangent (tanh), Rectified Linear Unit

(ReLU), and other non-linear activation functions. Sigmoid, tanh and ReLU activation

functions are defined in Equations 3.4, 3.5, and 3.6 respectively [69], [70]. Moreover, Figure

27

3.5 depicts the behavior of sigmoid, tanh and ReLU activation functions.

sigmoid(x) =
1

1 + e−x
(3.4)

tanh(x) =
sinh(x)

cosh(x)
=
ex − e−x

ex + e−x
(3.5)

ReLU(x) = max(0, x) (3.6)

The sigmoid activation function plays an important role in the context of logistic re-

gression. Logistic regression is a technique to predict an outcome of binary classification

problems. The sigmoid activation function takes the weighted sum of the input features

as input and outputs the probability value of the outcome. According to Equation 3.4, for

any value of x, the sigmoid(x) function will output a value within the range from 0 to 1.

On the other hand, the tanh(x) activation function output is from -1 to 1. Therefore, the

mean of the activated results of tanh(x) function would always be more centered to zero

when compared to sigmoid(x). Moreover, the benefit of the hyperbolic tangent activation

is that the gradient of the hyperbolic tangent is larger than the gradient of the sigmoid

activation function. Thus, the hyperbolic tangent is almost always preferable to the sigmoid

activation function [72]. ReLU(x) activation function outputs the activated value within the

range from 0 to ∞. Negative values are clipped to zero in the ReLU(x) activation function.

Figure 3.5: Activation functions commonly applied to neural networks: a) rectified linear
unit (ReLU), b) sigmoid, and c) hyperbolic tangent (tanh)
(Yamashita, R., Nishio, M., Do, R. K. G., Togashi, K. Convolutional neural networks: an
overview and application in radiology. Insights Imaging 9 (4), 611–629 (2018).).

28

ReLU(x) activation function is faster to compute than sigmoid(x) and tanh(x) because of

its low computational complexity.

In a shallow network, many perceptrons are present in a hidden layer where multiple

hidden layers are stacked one after another to form a deeper network. Nodes of the input

layer are connected to all the nodes in the hidden layer in a deep neural network. If all the

nodes in a hidden layer are connected to all the nodes in the next hidden layer or output

layer, this hidden layer is called a fully connected (FC) layer.

Several methods can be applied to initialize the weights of the nodes in the hidden

layers, including: normal distribution, Xavier weight initialization method [108], and He

weight initialization method [109] to name a few. The initialized weights are updated after

each epoch using the backpropagation technique [73]. An epoch indicates the number of

passes of the entire training dataset the ML or DL algorithm has completed. Considering a

supervised classification task, each of the sample inputs is assigned a class label also called

ground truth. Thus, the result of the decision layer after the activation is compared with

the ground truth.

Initially, as the model weights are initialized, in the beginning, the model can not distin-

guish between right and wrong predictions. This stage is where the learning comes in. The

idea is that the model needs to ‘understand’ when the computational prediction is wrong,

which is calculated by some form of ‘loss’. This loss depends on the problem, but it typically

involves minimizing the difference between the predicted output and the ground truth value.

In a classification task, the cross-entropy loss function is widely used. It is also called log-

arithmic loss or log loss. In this loss function, each predicted class probability is compared

to the actual class desired output (0 or 1), and a loss/score is calculated that penalizes the

probability based on how far it is from the ground truth value. Cross-entropy is used to

adjust the model weights while training, and it is defined by:

LCE = −
n∑

i=1

ti · log(pi) (3.7)

29

where n is the number of classes, ti is the ground truth label, and pi is the predicted

probability for the i-th class.

For binary classification task, we use binary cross-entropy defined as:

LBCE = −
2∑

i=1

ti · log(pi) = −[t · log(p) + (1− t) · log(1− p)] (3.8)

where ti is the ground truth label taking a value 0 or 1, and pi is the predicted probability

for the i-th class. The overall loss of a model is calculated as the average of differences

between all predictions and ground truth observations. This calculation is called the cost

function. Loss function mainly applies for a single training set compared to the cost function,

which deals with a penalty for several training sets or the complete batch. Therefore, the

loss is calculated numerous times for a single training cycle, but the cost function is only

calculated once. Based on the loss function shown in Equation 3.8, binary cross-entropy is

often calculated as the average cross-entropy across all the data examples defined by

J(W) = − 1

N

N∑
i=1

[(ti · log(pi) + (1− ti) · log(1− pi))] (3.9)

for N data points, where ti is the ground truth label taking a value 0 or 1, and pi is the

predicted probability for the i-th class, and J(W) is the function that calculates the overall

loss for the whole training example. In J(W), W is the set of model weights.

Unlike a classification problem, if the model needs to predict a continuous value as output,

the appropriate loss would be the mean squared error that tries to minimize the squared

difference between the actual value and a predicted value. We define this loss function in

Chapter 5. To classify drill core photos based on facies, we use binary cross-entropy as a loss

function. On the other hand, mean squared error is used for the prediction of MGS from

core photos.

After defining the loss function, loss optimization and model training need to be em-

ployed. The loss optimization attempts to find a set of weights W, that minimizes the

30

Figure 3.6: Neural network with three neurons and associated weights.

calculated loss. If there is only one weight component, it is possible to plot the weight

and the loss on a 2-dimensional graph and then choose the weight that minimizes the loss.

However, for most deep neural networks with multiple weight components, visualizing an

n-dimensional graph is critical. Instead, the gradient is calculated based on the loss function

as follows:

Gradient =
∂J(W)

∂W
(3.10)

Here J(W) is the loss function, and W is the model weight. The gradient is a commonly

used term used in optimization and ML that measures the change in all weights regarding

the change in errors. A gradient can be considered as the slope of a function. The higher

the gradient, the steeper the slope, and the faster a model can learn. However, if the slope

is zero, the model stops learning. In mathematical terms, a gradient is a partial derivative

with respect to its inputs. Weights of each layer are updated based on the gradients of the

loss function. The goal is to minimize the loss function so that the difference between the

decision layer output and the ground truth label is as low as possible to produce optimal

prediction results. The weights are updated until a certain number of epochs or the target

loss is achieved or the update of the weights does not change the loss for a certain number

of epochs. The process of calculating this derivative is known as backpropagation that is

calculated based on the chain rule of calculus [17]. Considering a neural network shown in

Figure 3.6, the derivative or the gradient explains how a small change in the first set of

31

weights (w1) affects the final loss (J(W)).

∂J(W)

∂w1

=
∂J(W)

∂y
· ∂y
∂z
· ∂z
∂w1

(3.11)

The effect of the change in weights w2 on the overall loss can also be determined similarly.

Finally, the new weights are calculated as follows:

Wnew = Wcurrent − η
∂J(Wcurrent)

∂Wcurrent

(3.12)

Here, η denotes the learning rate of the model. Learning rate is an important factor to

consider when training a deep neural network. As the model travels to find an optimal set of

weights, it needs to update its weights by some factor. If the learning rate is too small, the

model can either run for an exponentially long period or get trapped somewhere known as

the global minimum. If the factor is too large, then the model might miss the target point

and then diverge. However, an adaptive learning rate can be used to reduce the chances of

such problems. Here, the factor changes based on the current gradient, the current weights’

size, and other factors that can affect where the model should go next to find the optimal

weights. Overall, this is a typical way to train a DL model.

3.3.1 Types of Deep Learning Architectures

There are several DL architectures focused on the paradigm of supervised ML. Deep Learning

Neural Network (DLNN), Recurrent Neural Network (RNN), and CNN are commonly used

for supervised ML. The conventional architecture of a DLNN is shown in Figure 3.7

FC layers with a different configuration of nodes are stacked one after another in between

the input layer and the decision layer in a DLNN architecture. The input layer usually takes

raw data as inputs. It also takes handcrafted features extracted from the original data as

input as well. A DLNN designed for binary classification contains a decision layer with only

one node. For a multi-class classification problem, the number of nodes in a decision layer

32

Figure 3.7: Conventional architecture of a deep learning neural network
(Miralles-Pechuán, L., Rosso, D., Jiménez, F., Garćıa, J. M. (2017). A methodology based
on Deep Learning for advert value calculation in CPM, CPC and CPA networks. Soft
Computing, 21(3), 651-665.).

is equal to the number of class labels. Similar to binary classification, a DLNN contains

only one node in the decision layer designed for a regression task. The sigmoid function is

applied as an activation function in the decision layer for binary classification. Whereas,

for multi-class classification tasks, Softmax activation is used to determine the prediction

probabilities of each of the class labels [81]. Moreover, for a regression problem, the linear

activation function is often used in the decision layer.

CNN is a DL architecture that can take images as inputs, assign weights or importance

to various aspects in the image, and differentiate one from the other [21]. CNNs typically

consist of several pairs of convolutional and pooling layers, followed by a number of FC

layers, and finally a ‘softmax’ layer, or regression layer, to generate the output labels. The

conventional architecture of a CNN including different layers is shown in Figure 3.8.

• Input Layer: An image that the CNN takes as an input is nothing but an n-dimensional

array of pixel values. An n-dimensional array of values is called a tensor. A tensor

can be a vector (1-dimensional array of values) or a matrix (2-dimensional array of

values) that represents all data types. All values in a tensor hold identical data types

33

Figure 3.8: Conventional architecture of a convolutional neural network [21].

with a known (or partially known) shape. The input layer of a CNN has no learnable

parameters since this layer has nothing to learn. In CNN, the input image has an

arbitrary number of channels. For a gray-scale image, it has only one channel. Whereas

for an RGB image, each input has three color channels indicating Red (R), Green (G),

and Blue (B) and the values of each pixel can range from 0 to 255.

• Convolutional Layer: Convolutional layers also known as Conv layers consist of a

number of filters which can be visualized as 2-D matrices of numbers. This layer can

use an input image and a filter to produce an output image by convolving the filter with

the input image. The objective of this convolution operation is to extract different types

of features from the input image. CNNs need not be limited to only one convolutional

layer. Conventionally, the first convolutional layer captures low-level features such as

edges, color, and gradient orientation. With added layers, the architecture adapts

to the high-level features, giving us a network that has a wholesome understanding

of images in the dataset, similar to how we would. Features from the input tensors

are extracted using the convolution operation defined by the convolutional kernel, the

number of filters, and the stride size. Stride is the number of pixels shifting over the

input matrix. If the stride is 1, the filter is moved 1 pixel at a time. When the stride

is 2, we move the filters to 2 pixels at a time. Stride controls how the filter convolves

34

around the input. When the stride is 1, the filter convolves around the input volume

by shifting one unit at a time. The amount by which the filter shifts is the stride. If

the input tensor is a 2D matrix (I), the convolutional kernel is usually a 2D kernel

(K). A 2D convolution on the index (i, j) can be defined as follows:

F [i, j] = (I ∗K)[i, j] =
∑
m

∑
n

K[m,n]I[i−m, j − n] (3.13)

Here the symbol (*) denotes the convolution operation [68]. After a valid convolution

operation, the dimension of the feature map is reduced. However, if the dimension of

the feature map and the input matrix are identical after the convolution, a padding

operation is performed to add rows and columns evenly in the input matrix. Stride size

is another hyperparameter of the convolutional layer. Usually, the convolutional kernel

is shifted by one step by setting the stride size to 1. However, if the stride size is set

to larger than 1, the convolution kernel is shifted accordingly to perform convolution

operation and down-sampling simultaneously.

To introduce non-linearity to the feature map, the ReLU activation function is com-

monly used in CNN architecture due to less computational complexity and better

optimization than sigmoid and tanh activation functions. Several other activation

functions were also proposed to replace ReLU, such as Leaky ReLU [76], Parametric

ReLU [77], Exponential Linear Unit (ELU) [78], and Scaled Exponential Linear Unit

(SELU) [79]. However, due to the instability in different CNN architectures, these

activation functions are not widely adopted by the research community.

As CNN learns in the convolutional layer, certainly there are weight matrices. Learn-

able parameters can be calculated by multiplying the shape of width m, height n and

account for all filters k. Therefore, several parameters in a convolutional layer would

be ((m*n)+1)*k); added 1 because of the bias term for each filter.

• Pooling Layer: The pooling layer is responsible for reducing the dimension of the

35

Figure 3.9: Examples of max pooling, min pooling and average pooling operation on 4 x 4
matrix using 2 x 2 kernel with a stride size of 2.

convolved feature. It is useful for extracting dominant features which are rotational

and positional invariant, thus maintaining the process of effectively training the model.

There are three types of pooling: max pooling, min pooling, and average pooling. Max

Pooling and Min pooling return the maximum and minimum values respectively from

the image portion covered by the filter. On the other hand, average pooling returns

the average of all the values from the image portion covered by the filter. An example

of a pooling operation is illustrated in Figure 3.9. The pooling layer also does not have

any learnable parameters.

• FC Layer: FC layers have every node connected to every output from the previous

layer. Conv layers and pool layers break the input images into features. FC layer takes

the convolution/pooling process results and uses them to classify the image into a label

in a simple classification example.

• Softmax Layer: Other than these four layers, there is another layer called the softmax

36

layer for multi-class classification problems. To complete the CNN, it needs to be able

to make predictions. The softmax layer is an FC layer that uses the softmax activation

function to make the prediction tasks. The softmax activation function turns arbitrary

real values into probabilities.

DLNN and CNN models are trained and optimized using the optimization method us-

ing backpropagation algorithms [74], where unknown weights for each layer are iteratively

updated to minimize a specific cost function. Typically, the weights are initialized with a

random set of values. However, the large number of weights typically associated with a CNN

requires a large number of training samples so that the iterative backpropagation algorithm

can converge properly. Having a limited number of training samples can result in the al-

gorithm being stuck at a local minimum [75], which will result in sub-optimal classification

performance. An alternative to randomized weight initialization is transfer learning or fine-

tuning, where the weights of the CNN are copied from a network that has already been

trained on a larger dataset.

3.3.2 Transfer Learning

In computer vision, transfer learning is a popular method since it allows to build an accurate

model in a time-saving way. Instead of learning from scratch, transfer learning allows us to

take a network trained on a different domain for a different source task and adapt it for our

domain and our target task. Transfer learning is usually expressed through the use of pre-

trained models. A comprehensive review of pre-trained models’ performance on computer

vision problems using data from the ImageNet (Deng et al. 2009) [15] challenge is presented

by Canziani et al. [80].

Transfer learning aims to improve learning in the target task by leveraging knowledge

from the source task. Researchers noted that the parameters learned by the layers in many

CNN models trained on images exhibit a common behavior - layers closer to the input data

tend to learn general features, such as edge detecting/enhancing filters or color blobs. Going

37

Figure 3.10: Three ways in which transfer might improve learning
(Torrey, L. and Shavlik, J., 2010. Transfer learning. In Handbook of research on machine
learning applications and trends: algorithms, methods, and techniques (pp. 242-264). IGI
global).

deeper into the network model, the extracted features from the previous layers are utilized

to construct more data-specific features such as faces, feathers, or object parts [33] [113].

These general-specific CNN layer properties are important factors to be considered for the

implementation of transfer learning [114].

There are three common measures by which transfer might improve learning. First is

the initial performance achievable in the target task using only the transferred knowledge,

before any further learning is done, compared to the initial performance of an ignorant agent.

Second is the time it takes to thoroughly learn the target task given the transferred knowledge

compared to learning it from scratch. The third is the final performance level achievable in

the target task compared to the final level without transfer. Figure 3.10 illustrates these

three measures.

If a transfer method decreases performance, then a negative transfer has occurred. One of

the major challenges in developing transfer methods is to produce positive transfer between

appropriately related tasks while avoiding negative transfer between less related tasks.

38

3.4 Chapter Summary

Presenting a brief overview of different types of ML and DL models is the primary objective

of this chapter. In this chapter, we determined how the architecture and functionality of

biological neurons are related to the conventional architecture and training process of a

traditional DL and CNN model. Along with discussing how a neural network model learns,

we described the pros and cons of different optimization techniques and determined the most

superior one to use in a certain type of problem. In the following chapters, we discuss how we

explore different CNN, transfer learning, and traditional ML approaches to answer questions

associated with this thesis.

39

Chapter 4

Machine Learning and Computer

Vision for Facies Classification

Core facies analysis is fundamental as it allows us to understand the depositional theory,

provides the understanding of petroleum systems and allows us to understand how to op-

timize resource extraction. However, core facies analysis is a highly specialized and time-

consuming process mainly done by geoscientists; it requires a significant amount of resources.

This chapter explores different approaches based on CNNs, transfer learning, and traditional

ML to automate the facies analysis process that would save geologists’ time by generating

consistent facies classification. Moreover, the experimental results provide insight and mo-

tivation for implementing the explored techniques for further analysis of oil sands drill core

photos and predicting the MGS from the core photos, as presented in Chapter 5.

4.1 Background

Just as the type of vegetation indicates the type of climate in a region, similarly, geological

facies represent rock types that indicate the depositional setting. Facies analysis indicates the

depositional setting, which improves the understanding of petroleum systems leading to more

optimal resource extraction decisions. In geology, facies represent the overall characteristics

40

of a rock unit that reflect its origin and differentiate the unit from others around it. In terms

of different physical characteristics such as sedimentary structure, and grain size, facies can

be of different types such as sedimentary facies, lithofacies, and seismic facies. The physical

and organic characteristics found in these rock units usually provide insights into different

processes and systems that may have occurred in the region. Combining several facies with

physical models and other geological data can help provide informative low-dimensional

models of the geologic region, leading to better insights regarding the geology of the region.

An accurate estimate of facies is essential for a better understanding of geological varia-

tion in a reservoir. The interpretation of facies may rely on the geological context described

by geologically interpretive features and petrophysical rules. A facies is primarily defined

based on the texture, mineralogy, grain size, visual mud index (VMI), among other at-

tributes. Ideal sources for facies classification are core samples of rocks extracted from wells.

However, obtaining the core samples from different depths at many wells is a costly and time-

consuming process. However, core samples can be collected from the previously cored wells

and each sample can be labeled based on a petrophysical rule. Since the conventional pro-

cess of manually assigning facies by human interpreters is very tedious and time-consuming,

several alternative approaches have been proposed to address facies classification. Several

works can be found where different ML and DL techniques have been implemented for facies

classification based on wire-line logging measurements [115–118]. Through the logging tech-

nique, a detailed description of rock formations at different depth levels is possible to obtain

by measuring a wide variety of rock properties. For every well, a set of seven scalar at-

tributes are available to consider in a logging technique [116] [117] [119] [120]. The available

attributes are as follows:

• Gamma ray measures natural formation radioactivity;

• Resistivity measures the subsurface ability to impede the flow of electric current;

• Photoelectric effect measures electrons emission of a facies illuminated by light rays;

41

• Neutron-density porosity difference and average neutron-density porosity are measure-

ments correlated to facies density ;

• Nonmarine/marine indicator is a binary flag attributed by experts to distinguish be-

tween marine and nonmarine facies upon data inspection;

• Relative position is the integer index of each layer’s depth starting from 1 for the top

layer and increasing with depth.

In an ML workflow for facies classification using well log data, the seven attributes above

are concatenated to produce the feature vector and passed through the ML classification

algorithm. In this chapter, a few approaches based on CNN, transfer learning, and ML

are explored to perform the classification of facies on the drill core image data. These

approaches are explored to get an insight into whether or not they can be implemented for

oil sands drill core image analysis workflow to estimate the MGS, PSD, or permeability.

Experimental workflow for estimating facies from core photos is shown in Figure 4.1. In this

workflow, first, we prepare the data for the classification task. The data preparation phase

includes cropping the core photos from the core slabs 1 and labeling the core photos with

facies for classification. In the next phase, we select different classification models followed

by training the models with the data prepared in the previous phase. Finally, we evaluate

the performance of the explored models based on different performance evaluation metrics

and present a comparison among the explored models. In the following section, we briefly

describe the phases shown in Figure 4.1.

4.2 Methodology

For the classification of facies using the core photos, three methods are explored. To inves-

tigate whether or not the concept of transfer learning can be implemented to analyze the oil

1Collected by Suncor Energy, the industry partner on this research.

42

Figure 4.1: Experimental workflow of the facies classification task.

sands drill core images, in the beginning, a traditional transfer learning technique using the

VGG-16 pre-trained CNN is used. In this approach, all layers associated with the feature

extraction from data are kept frozen, meaning that these layers are not retrained on the

target data. Only the layers associated with the prediction or the classification tasks are re-

trained with the available training data. As the second approach, the pre-trained VGG-16 is

fine-tuned. Here, instead of keeping all the feature extraction layers frozen or non-trainable,

one or more convolution layer blocks are re-trained on the available training data. Finally,

as the third approach for the facies classification task, a combination of transfer learning

with the pre-trained VGG-16 CNN model and the traditional ML model is used. Here, the

VGG-16 is used to extract features from the drill core dataset, and a few traditional ML

models such as random forest, and decision tree are used for the classification task. In the

end, the experimental results achieved from these three approaches are compared.

43

Figure 4.2: Photo of a collection of core samples collected by Suncor Energy.

4.2.1 Data Preparation

Coring is an essnetial process in oil and gas exploration. It refers to the collection of samples

from deep inside the earth’s crust to determine the existence of oil or natural gas. A rock

formation suspected of containing oil and gas is drilled using a special core bit. The coring bit

is hollow, allowing it to collect a cylindrical formation sample, called a core. The core is then

removed from the borehole and checked for signs of oil and natural gas. Then the drillers

store the core samples in the core boxes and log the time and date of drilling, including the

depth, core recovery, and possible losses.

Suncor Energy [121], a Canadian integrated energy company based in Calgary, Alberta,

that specializes in the production of synthetic crude from oil sands, performed well drilling

44

(a) Core sample from DS132 to DS133. (b) Core sample from DS134 to DS135.

(c) Core sample from DS136 to DS137. (d) Core sample from DS138 to DS139.

Figure 4.3: Example of the cropped photos of core sample.

and collected the core samples from the Athabasca oil sands. Athabasca oil sands are large

deposits of bitumen or extremely heavy crude oil located in northeastern Alberta, Canada

near Fort McMurray (56.7267° N, 111.3790° W). The Athabasca deposit is the largest known

reservoir of crude bitumen globally and the largest oil sand deposit in Alberta [122]. After

storing the core samples in the boxes, they are taken to the laboratories, and the photos

of the core slabs collection are captured (Figure 4.2). As mentioned earlier, information

about the drilled well, possible depth, core ID, among others, are also recorded at this stage.

Since the photos contain a collection of core slabs, each core sample is cropped based on

the interval points annotated in the core slab photos, as shown in Figure 4.2. For example,

starting from DS132 to DS133 indicates one core sample in the collection of core sample

photos. The interval starting and ending points have been set to indicate a core sample the

PSD is calculated from, which is discussed in Chapter 5. Figure 4.3 shows the photos of four

core samples cropped from the photo containing the collection of core slabs shown in Figure

4.2.

As all the core photos are cropped, these are labeled with facies by a domain expert in

Suncor Energy. The facies is defined by visual mud index (VMI). Here, the VMI indicates

the proportion of mud present in the sample. Based on the different percentages of VMI,

different types of facies can be obtained. If the VMI is less than 5%, the facies is classified

as F1 also known as sandstone. Similarly, if the VMI is within the range of 5% - 15%, the

facies is F2 or Sandy Inclined Heterolithic Stratification (IHS), for 15% - 30% VMI the facies

45

Facies Rock Type VMI

F1 Sandstone 0-5%
F2 Sandy IHS 5-15%
F3 IHS 15-30%
F4 Muddy IHS 30-70%
F5 Mudstone 70-100%
F10 Breccia Variable VMI

Table 4.1: Classification of facies based on visual mud index.

is F3 or IHS, and so forth up to 100% VMI. Table 4.1 represents the correlation between

different facies types and VMI. In addition, Figure 4.4 shows some core samples labeled with

different facies types provided by Suncor Energy.

Geologists always want to identify the existence of good quality rock vs poor quality rock

so that the wells can be sited in places where the presence of good quality rock is proven.

F1 is considered a good quality rock as these have lots of sands and bitumen whereas the

other facies such as F3 to F10 contain lots of interbedded sands and muds that make the

production critical.

The available data contains the core images labeled with F1, F3, and F4 for the facies

classification. Since F1 is a good quality rock and F3 and F4 are the poor quality rock types,

F3 and F4 images are concatenated as a single class labeled as “not F1”. Therefore, the

explored classification models predict if a core sample image is either an F1 or “not F1”.

Suncor Energy provided a total of 225 core photos labeled as F1, and after concatenating

F3 and F4, we have 220 photos labeled as “not F1”. In the next section, we briefly present

different explored classification models along with the experimental results.

4.2.2 Model Selection

In this section, we present different classification models we explored to classify core photos

belonging to either F1 or not F1 category. We briefly describe the model architectures,

motivations behinds employing these models in our facies classification exploration workflow,

and how we use these models for our core image classification tasks.

46

Figure 4.4: Core samples labeled with different facies provided by Suncor Energy.

Approach 1: Transfer Learning on VGG-16

VGG is a CNN with a specific architecture that was proposed by Simonyan et al. [16].

The VGG group participated in the ImageNet Large Scale Visual Recognition Challenge

(ILSVRC) and submitted the VGG model for competing in object localization and image

classification tasks. ImageNet is a dataset of over 15 million labeled high-resolution images

belonging to about 22,000 categories. VGG-16 model was trained on over 14 million Ima-

geNet data belonging to 1000 categories. It outperformed other models with 92.7% top-5

test accuracy 2. This VGG-16 model was trained for weeks and used NVIDIA Titan Black

GPUs. The reason behind following the VGG architecture is not only the high-accuracy but

2VGG-16 model won first and second place in the 2014 ILSVC

47

Figure 4.5: Architecture of VGG-16
(Ferguson, M., Ak, R., Lee, Y. T. T., Law, K. H. (2017, December). Automatic localization
of casting defects with convolutional neural networks. In 2017 IEEE international conference
on big data (big data) (pp. 1726-1735). IEEE).

also the efficiency, and more importantly, adaptability to other image classification problems

than ImageNet [39]. VGG architecture has been implemented to address problems in differ-

ent research domains and demonstrated success compared to many other pre-trained models.

Furthermore, despite having some drawbacks, the VGG model is very good at extracting

features from the data due to having many convolutional layers.

VGG has two different architectures: VGG-16 and VGG-19 with 16 and 19 layers, re-

spectively. We employ the VGG-16 architecture for the core image classification stage. Its

network starts with two convolutional layers, followed by a max-pooling one. The collection

of convolutional layers and the max-pooling layer is called a convolutional layer block. For

the first two convolutional layer blocks, it follows the same combination. Unlike the first

and second convolutional layer blocks, where they have the combination of two convolu-

48

tional layers followed by a max-pooling layer, the rest of the model architecture contains

the combinations of three convolutional layers followed by a max-pooling layer. Overall,

the VGG-16 model is designed with five convolutional layer blocks. Finally, after the five

convolutional layer blocks, at the top of the model, it contains three FC layers where the

last FC layer produces the model’s output. Figure 4.5 shows the architecture of the VGG-16

model. Its weights are available on different platforms (e.g. Keras) and can be used for

further analysis [50].

The key idea behind the architecture is to increase the depth of the network by adding

more convolutional layers while keeping other network parameters fixed. The number of

trainable parameters is managed by keeping the convolution filter size very small (e.g., 3 X

3) throughout all layers. The width of the layers (i.e. number of channels) increases as we

progress through the network to later layers. The increase in the number of channels in later

layers is significant since they capture more complex features, for which a larger receptive

field is required [33]. The convolution stride is fixed to one pixel due to the filters’ small

size (i.e., 3 X 3). All the hidden layers utilize the Rectified Linear Units (ReLU) activation

function. During training, the input to the VGG-16 is a fixed-size (224 X 224 X 3) image,

where (224 X 224) represents the width and height of the input image and 3 represents the

three color channels: R = Red, G = Green, B = Blue.

To employ transfer learning on VGG-16, first, we pick which layer of VGG-16 to use for

feature extraction. Since the VGG-16 is pre-trained on images belonging to 1000 categories,

the very last classification layer (‘fc8’ in Figure 4.5) is not very useful. Instead, we depend

on the last convolutional layer block (‘conv5’ in Figure 4.5) as the features extracted in

this layer retain more generality compared to the final layer. Therefore, the VGG-16 model

preloaded with weights trained on ImageNet is instantiated, not including the FC or top

layers (‘fc6’, ‘fc7’, and ‘fc8’ in Figure 4.5). As the model is instantiated, we freeze all

the convolution blocks. Freezing prevents the weights in a given layer from being updated

during training. After that, the layers associated with the classification tasks are defined

49

to generate predictions from the block of features. Firstly, the extracted features from the

last feature extraction layer are flattened so that the pooled feature map is converted into a

1-dimensional vector passed to the FC layer. Since the model predicts whether the input core

image belongs to either F1 or “not F1” facies type, a sigmoid activation function is used for

this binary classification in the last classification layer. Table 4.2 shows the overall summary

of the VGG-16 model, the output shape of each layer, and the number of parameters. In

this table, all the layers (i.e., from the first to the last convolutional layer block) are utilized

as the pre-trained layers of the VGG-16 model. Based on the features extracted from these

layers, only the top layers are associated with the classification of core photos. Note that the

symbol (*) denotes the layers we introduce to the original model architecture for the core

image classification task. In this model, the number of trainable parameters is 262,401 and

the number of non-trainable parameters is 14,714,688, where the total number of parameters

in VGG-16 is 14,977,089.

After creating the model, to compile it we use binary cross-entropy as the loss function.

The equation of binary cross-entropy is given in Chapter 3, Equation 3.7. Another parameter

required to compile the model is the optimizer. Here, we use Adam for the model optimizer.

Adaptive Momentum Estimation also called Adam is an optimization algorithm that can be

used to update network weights iteratively based on training data [123]. Adam is a popular

algorithm in the field of DL as it achieves good results fast since it combines the properties

of RMSProp and Stochastic Gradient Descent with Momentum (SGDM) [123]. The third

parameter required to complete the model compilation is the evaluation metric. In this

approach, we evaluate the performance of the model based on the overall accuracy. Later in

this chapter, we elaborate more on the evaluation metrics used to monitor the performance

of the classification model.

50

Layer (Type) Output Shape Number of Parameters

input 1 (InputLayer) [(None, 64, 64, 3)] 0
block1 conv1 (Conv2D) (None, 64, 64, 64) 1792
block1 conv2 (Conv2D) (None, 64, 64, 64) 36928

block1 pool (MaxPooling2D) (None, 32, 32, 64) 0
block2 conv1 (Conv2D) (None, 32, 32, 128) 73856
block2 conv2 (Conv2D) (None, 32, 32, 128) 147584

block2 pool (MaxPooling2D) (None, 16, 16, 128) 0
block3 conv1 (Conv2D) (None, 16, 16, 256) 295168
block3 conv2 (Conv2D) (None, 16, 16, 256) 590080
block3 conv3 (Conv2D) (None, 16, 16, 256) 590080

block3 pool (MaxPooling2D) (None, 16, 16, 256) 0
block4 conv1 (Conv2D) (None, 8, 8, 512) 1180160
block4 conv2 (Conv2D) (None, 8, 8, 512) 2359808
block4 conv3 (Conv2D) (None, 8, 8, 512) 2359808

block4 pool (MaxPooling2D) (None, 4, 4, 512) 0
block5 conv1 (Conv2D) (None, 4, 4, 512) 2359808
block5 conv2 (Conv2D) (None, 4, 4, 512) 2359808
block5 conv3 (Conv2D) (None, 4, 4, 512) 2359808

block5 pool (MaxPooling2D) (None, 2, 2, 512) 0
flatten (Flatten)* (None, 2048) 0
dense (Dense)* (None, 128) 262272

dense 1 (Dense)* (None, 1) 129

Table 4.2: Summary of the VGG-16 architecture after introducing new layers.

Approach 2: Fine-Tuning VGG-16

In the first approach, we only train a few layers on top of the VGG-16 base model. The

weights of the pre-trained network are not updated during training. However, in the second

approach, we train or fine-tune the weights of the last convolutional layer block of the pre-

trained VGG-16 model along with training the top layers associated with the classification

task. Here, the training process forces the weights to be tuned from generic feature maps

to features explicitly associated with the dataset. In this approach, instead of fine-tuning

the whole pre-trained model weights, only one or a small number of top layers should be

trained. In most CNN models, the higher up a layer is, the more specialized it is. The first

few layers learn the generic features such as vertical lines, horizontal lines, orientation, etc.

that generalize to almost all types of images. As we go higher up the layers, the features

51

Figure 4.6: Block diagram of the fine-tuned VGG-16 model.

are increasingly more specific to the dataset on which the model is trained. Therefore, fine-

tuning aims to adapt these specialized features to work with the new dataset rather than

overwrite the generic learning. In this approach, we un-freeze the last convolution block

of the VGG-16 model. Therefore, unlike the first approach, instead of only training the

classification layers, we train the fifth convolution block as well. In this fine-tuned VGG-16

model, the number of trainable parameters is 7,341,825 and the number of non-trainable

parameters is 7,635,264. Finally, for compiling the model, the same parameter setting is

used as the first approach. Figure 4.6 shows the block diagram of the fine-tuned VGG-16

model explored in this approach.

Approach 3: Combination of VGG-16 and Traditional Machine Learning Model

In this approach, first, we employ transfer learning on VGG-16 to extract features from the

core photos. Features are obtained from the last convolution block of VGG-16 (See Figure

4.7). We train different ML classification models to classify the core photos based on the

facies types using the extracted features. As the traditional ML approaches, we explore the

52

Figure 4.7: Block diagram of the approach based on the combination of VGG-16 and a
traditional machine learning classification model.

random forest and decision tree classifiers. Random forest is one of the most used supervised

ML algorithms because of its simplicity, diversity, and flexibility as it can be used for both

classification and regression. Most of the time, random forest produces reasonably good

results even without any hyper-parameter tuning [145]. One of the biggest problems in ML

is over-fitting. However, even if the random forest model is trained with many decision tree

models that may have low bias and high variance, after averaging the results obtained by

the decision tree models based on the majority votes, the random forest shows low bias and

low variance, meaning that the model does not overfit [143] [144]. Moreover, random forest

is faster than most of the traditional ML algorithms since each of the decision tree in the

random forest are trained in parallel with subsets of data and features.

Decision trees are the building blocks of a random forest model as shown in Figure

4.8. The decision tree is a decision support tool that uses a tree-like model of decisions

and their possible consequences. Decision tree creates a flowchart structure where each

internal node represents a ‘test’ applied to an attribute, with each branch representing the

outcome of the test and each leaf node representing a class label or the decision taken after

computing all attributes [124]. The paths from the root to the leaf represent classification

rules. A classification problem dealing with data not linearly separable means that a single

53

Figure 4.8: Implementation of random forest classifier on a dataset that has four features
(X1, X2, X3, and X4) and two classes (Y = 1 and 2). Random forest classifier is an
ensemble method that trains several decision trees in parallel with bootstrapping followed
by aggregation. Each tree is trained on different subsets of training samples and features
(adapted from [53]).

line cannot be drawn through the data to classify the points. Decision tree approximates a

non-linear boundary by drawing several axis-aligned boundaries through the data to separate

the data points. Random forest, on the other hand, is a model made up of many decision

trees. Instead of just simply averaging the prediction of trees, a random forest model does

the random sampling of training data when building trees, and considers random subsets of

features when splitting nodes. Random forest combines hundreds or thousands of decision

trees, trains each one on a slightly different set of observations, splitting nodes in each tree

considering a limited number of the features. The final predictions of the random forest are

made by averaging the predictions of each tree. Random forest adds additional randomness to

54

the model while growing the trees. Instead of searching for the most important feature while

splitting a node, it searches for the best feature among a random subset of features. This

results in a wide diversity that generally results in a better model and reduces over-fitting.

On the other hand, as a decision tree algorithm grows deep, it suffers from over-fitting.

However, random forest prevents over-fitting by creating random subsets of the features and

building smaller trees using those subsets. Afterward, it combines the sub-trees.

Due to being superior to other traditional ML classification models, the better perfor-

mance of random forest classifier compared to the decision tree in core image classification

is also reflected by the obtained experimental results. We present the experimental results

achieved by all the aforementioned explored approaches in Section 4.3 of this chapter.

4.2.3 Training the Models

The pixel values in the image data must be scaled before providing the images as input to

a deep neural network model during the training or evaluation of the model. Therefore, we

re-scale the pixel values from 0-255 to the range 0-1 preferred for neural network models.

Scaling data to the range of 0-1 is traditionally referred to as normalization. As we have all

the images and corresponding labels, we split the data into a training and a testing set before

training the models. Testing set is used to evaluate how the trained model performs on the

data that the model has never seen before. We further split our training set into K number

of subsets called folds. We iteratively fit the models K times, training the data on K-1 of the

folds and evaluating the K-th fold (called the validation data). This procedure is called K-

fold cross-validation. This method generally results in a less biased model compared to other

methods since it ensures that every observation from the original dataset has the chance of

appearing in training and validation. For our core image classification, we implement 10-fold

cross-validation (K = 10), meaning that the available dataset is divided into ten equal parts,

and the following process runs ten times, each time with a different validation set. The

process has four main steps:

55

1. Take the group as a validation dataset.

2. Take the remaining groups as a training dataset.

3. Fit the model on the training set and evaluate it on the validation set.

4. Retain the evaluation score and discard the model

In this process, at the very end of the training, we average the performance on each of the

folds to come up with final validation metrics for the model.

As we have the dataset and the models, we train the models for an upward bound of 20

epochs in 64 batches, meaning that the data is passed through the network 20 times. Batch

size refers to the number of training examples utilized in one iteration. Along with training

the models, we use model checkpoint to save the models and the weights in a checkpoint file

so that the models or weights can be loaded to continue the training from the state saved.

In terms of computing resources, the experiments were performed using a 9th Generation

Intel Core i7 - 9750H, with six-core processors @ 2.6 GHz, 16 GB RAM running on Windows

10 Operating System and NVIDIA GeForce RTX 2060 GPU. For programming, we used

Python 3.8.5 and we utilize Scikit-learn, TensorFlow 2.3.1 platform and Keras 2.4.3 libraries

for ML and neural network workflow. We also use python’s scientific computing package

NumPy, pandas for data analysis and manipulation, and Matplotlib for data visualization.

4.3 Experimental Results

The performances of the approaches as mentioned above were evaluated in terms of accuracy,

ROC curve (i.e., Receiver Operating Characteristic), AUC score (i.e., Area Under the ROC

Curve), and confusion matrix. We also analyze each model’s precision, recall, and f1-scores,

although these metrics are generally considered while evaluating an imbalanced classification.

The recall, precision, and f1-score metrics are reported by determining the macro-average

for each class. The precision, recall, and f1-score metrics are determined for each class to

56

Actual Class: F1 Actual Class: not F1

Predicted Class: F1 True Positive (TP) False Positive (FP)
Predicted Class: not F1 False Negative (FN) True Negative (TN)

Table 4.3: Confusion Matrix.

calculate the macro-average, and the corresponding unweighted average is measured. In

this section, we describe different evaluation metrics that we investigated to evaluate the

performance of the explored approaches. Moreover, we present the model comparisons based

on the experimental results.

4.3.1 Evaluation Metrics

In classification problems, a confusion matrix is a table that summarizes the number of

correct and incorrect predictions with count values and is broken down by each class. A

confusion matrix provides an insight into the errors being made by a classifier and, more

importantly, the types of errors that are being made. A confusion matrix overcomes the

limitation of using a classification accuracy alone, where classification accuracy only shows

the ratio of correct predictions to total predictions made, which can be sometimes misleading

as it hides the detail we need to understand the performance of a classification model better.

Especially, classification accuracy is not an ideal evaluation metric when dealing with an

imbalanced dataset. However, a confusion matrix can provide a better understanding of the

classifier’s overall performance, as a few other evaluation metrics can be derived from this

as well.

The confusion matrix for the classification of core photos based on facies where the class

labels are F1 and not F1 is shown in Table 4.3. The top row represents the actual class

whereas the left column represents the labels predicted by the classifier. Here we assume

that the class F1 is positive, and the class “not F1” is negative. Therefore, for a sample

data point, if both the actual class and the predicted class are F1, it is called true positive

(TP), meaning that a positive instance (F1) has been correctly predicted as positive (F1).

57

If the actual class is F1 (i.e., positive) but the classifier predicted that instance as “not

F1” (i.e., negative), it is a false negative (FN). Similarly, if both the actual class and the

predicted class are “not F1” (i.e., negative), then it is called a true negative (TN), meaning

that a negative instance (i.e., not F1) has been correctly predicted as negative (i.e., not

F1). On the other hand, a negative (i.e., not F1) instance predicted as positive (i.e., F1) by

the classifier is marked as false positive (FP). In the confusion matrix, TP and TN are the

correct predictions whereas, FP and FN are the wrong predictions by the classifier. FP and

FN are also called Type-I and Type-II errors, respectively. Any classification model aims

to reduce Type-I and Type-II errors. Since our dataset is balanced, we only focus on the

classification accuracy defined by [44]:

Accuracy =
TP + TN

TP + FP + FN + TN
(4.1)

where the proportion of the total number of correct predictions to all predictions.

When building a classification model with a balanced dataset, the model does not get bi-

ased based on the different categories we have in the binary classification problem. However,

to have a more detailed classification model performance, three other evaluation scores can

be obtained from a confusion matrix: recall, precision, and f1-score. These three evaluation

metrics are very important to consider while dealing with imbalanced datasets. Out of the

total positive (F1) actual values, the metric recall determines how many values the model

correctly predicted as positive (F1). On the other hand, precision determines, out of total

predicted positive (F1) results, how many results were positive (F1). The metric recall is

sometimes also called true positive rate (TPR), or sensitivity, and Precision is also called

Positive Predictive Value. Recall and precision are defined as follows [44]:

Recall =
TP

TP + FN
(4.2)

Precision =
TP

TP + FP
(4.3)

58

For a problem statement, if the Type-I error or the FP value needs to be reduced, precision

must be used for the evaluation metric, whereas if the Type-II error or the FN value needs

to be reduced, recall must be used. For a problem statement, if both FP and FN are equally

important and both the Type-I and Type-II values need to be reduced, then f1-score has to

be considered to achieve the most accurate prediction, which is defined by [44]:

f1 − score = 2× Recall × Precision
Recall + Precision

(4.4)

ROC curve and AUC score are two important metrics for binary classification problems.

There are two ways to solve a classification problem statement: the first one is based on class

labels, and the second one is based on probabilities. For a binary classification problem,

where there are two output values or class labels (e.g., 0 and 1), by default, the threshold

value is 0.5, meaning that if the prediction of the classification model is greater than or

equal to 0.5, the predicted output label would be 1 and 0 otherwise. For the drill core image

classification task, we represent the class F1 as 1 and class not F1 as 0. Therefore, if the

classifier’s prediction is greater than or equal to the threshold value, the predicted class is

F1, and if the prediction is less than the threshold value, the predicted class is “not F1”.

However, in the case of probabilities, we find the suitable class label by selecting the optimal

threshold value instead of the default threshold value of 0.5. The accuracy might not be the

highest with the optimal threshold value, but it balances between the TPR and FPR. This

optimal threshold value can be determined using the ROC curve, which is a probability curve

that plots the TPR against FPR at various thresholds. The AUC measures the ability of a

classifier to distinguish between classes and is used as a summary of the ROC curve. The

higher the AUC, the better the performance of the model at distinguishing between the two

classes. When AUC equals 1, the classifier correctly distinguishes between all the positive

and negative class points. If, however, the AUC equals 0, the classifier predicts all positive

classes as negative and vice versa. To construct the confusion matrix for the core image

59

Model Accuracy Recall Precision F1-score

Transfer Learning on VGG-16 93.15 94.00 94.00 94.00
Fine-tuning VGG-16 96.30 98.00 98.00 98.00

VGG-16 and Random Forest Classifier 98.87 99.00 99.00 99.00
VGG-16 and Decision Tree 94.52 96.38 93.52 94.84

Table 4.4: Summary of classification performance of the explored methods on oil sands drill
core dataset.

classification, we first determine the optimal threshold value based on the ROC curve and

AUC score and then observe the number of correct and incorrect predictions of the explored

classification models using the confusion matrix. Moreover, to observe whether or not the

VGG-16 models are over-fitting, we also observe the learning rate curves.

4.3.2 Model Comparison

Table 4.4 summarizes the overall classification performances of the three explored methods

based on the accuracy, recall, precision, and f1-score. The first explored approach, where

transfer learning on the pre-trained VGG-16 model is employed, shows 93.15% and 94.00%

accuracy for the recall, precision, and f1-score. Better classification performance is demon-

strated by the second explored method where the last convolution block along with the

classification layers of the pre-trained VGG-16 model is trained on the drill core dataset.

This method shows 96.30% and 98% accuracy for recall, precision, and F1 score. In terms

of training a traditional ML classification model with the features extracted from the last

convolutional layer block of VGG-16, the best performance is achieved by the random for-

est classification model that also outperforms the other explored methods. This method

shows the classification accuracy of 98.87% and the recall, precision, and f1-score of 99.00%.

However, the performance of the decision tree is not as good as random forest which is under-

standable due to the reasons stated while comparing the characteristics of random forest and

decision tree before in this chapter. In every explored approach, the accuracy is calculated

by averaging the accuracies achieved at the end of every training in cross-validation.

60

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate (FPR)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

 (T
PR

)

TPR = FPR
ROC curve (area = 0.9867)

(a) ROC curve and AUC score for transfer learn-
ing on VGG-16.

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate (FPR)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

 (T
PR

)

TPR = FPR
ROC curve (area = 0.9968)

(b) ROC curve and AUC score for the fine-tuned
VGG-16.

Figure 4.9: ROC curve and AUC score for the explored VGG-16 models.

Figure 4.9 shows the ROC curves and AUC scores for the explored VGG-16 methods.

The probability measurement in the TPR vs FPR shows the separability among classes.

The more area under the ROC curve is the more the capability of the classifier to show

the sensitivity to separate the classes correctly. For the first explored approach, the AUC of

ROC is 0.9867 and 0.9968 for the second approach, where the fine-tuning is done on VGG-16.

Figure 4.10 shows the ROC curves and AUC scores for the combination of transfer learning

on VGG-16 and the explored traditional ML models (random forest and decision tree). It

shows the ROC curves for each fold and the mean ROC is plotted along with them. For

random forest, we see that the AUC score ranges from 0.94 to 1.00, and for decision tree the

score ranges from 0.86 to 0.93. Therefore, the mean AUC for the random forest is around

0.98 and for the decision tree, the score is 0.90. These scores also prove that the random

forest is performing better than the decision tree model for core image classification.

Table 4.5 shows the confusion matrices for the explored approaches. The confusion matrix

in 4.5a shows that the transfer learning on VGG-16 correctly predicts 47 F1 labeled data

among the total of 48 actual F1 labeled test data. On the other hand, it correctly predicts

38 “not F1” labeled data among the total number of 40 test data labeled as “not F1”.

Therefore, from the total of 88 test data, the transfer learning on VGG-16 wrongly predicts

61

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC fold 0 (AUC = 0.99)
ROC fold 1 (AUC = 1.00)
ROC fold 2 (AUC = 1.00)
ROC fold 3 (AUC = 1.00)
ROC fold 4 (AUC = 1.00)
ROC fold 5 (AUC = 0.94)
ROC fold 6 (AUC = 0.95)
ROC fold 7 (AUC = 1.00)
ROC fold 8 (AUC = 0.99)
ROC fold 9 (AUC = 0.99)
Chance
Mean ROC (AUC = 0.98 ± 0.02)
± 1 std. dev.

(a) ROC curve and AUC score for the combination of VGG-16 and random forest.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC fold 0 (AUC = 0.89)
ROC fold 1 (AUC = 0.93)
ROC fold 2 (AUC = 0.91)
ROC fold 3 (AUC = 0.95)
ROC fold 4 (AUC = 0.91)
ROC fold 5 (AUC = 0.86)
ROC fold 6 (AUC = 0.86)
ROC fold 7 (AUC = 0.93)
ROC fold 8 (AUC = 0.93)
ROC fold 9 (AUC = 0.86)
Chance
Mean ROC (AUC = 0.90 ± 0.03)
± 1 std. dev.

(b) ROC curve and AUC score for the combination of VGG-16 and decision tree.

Figure 4.10: ROC curve and AUC score for the combination of VGG-16 and the traditional
machine learning models.

62

Actual: F1 Actual: not F1

Predicted: F1 47 1
Predicted: not F1 2 38

(a) Confusion Matrix for transfer learning on
VGG-16.

Actual: F1 Actual: not F1

Predicted: F1 47 1
Predicted: not F1 1 39

(b) Confusion Matrix for fine-tuned VGG-16.

Actual: F1 Actual: not F1

Predicted: F1 47 1
Predicted: not F1 0 40

(c) Confusion Matrix for the combination of
VGG-16 and random forest.

Table 4.5: Confusion matrix of the explored approaches for core image classification.

three test images. However, the second and third explored methods do slightly better than

the first method in reducing the number of wrong predictions. Tables 4.5b and 4.5c show

that using the fine-tuned VGG-16 model, the number of wrong classification is two, and

the combination of VGG-16 and random forest classifier wrongly predicts only one test data

among 88 test data. For all the explored methods, it is observed that one of the F1 labeled

data is misclassified as “not F1” by all the explored methods. However, although the first

and second approaches wrongly predict only two and one “not F1” labeled data as F1, the

third approach can correctly predict all the not F1 labeled images. Confusion matrices here

show the prediction performance of the explored models based on the test dataset that the

models have never seen before.

Figure 4.11 and Figure 4.12 demonstrate the average learning curves of the transfer

learning on VGG-16 pre-trained CNN and the fine-tuned VGG-16 model respectively with

10-fold cross-validation on our oil sands drill core image dataset. For each value of K, the

training and validation accuracy and loss over epochs demonstrate whether the model is

generalizing or memorizing. If the training and validation loss gradually decreases and the

training and validation accuracy gradually increase over epochs, a generalized pattern is

63

(a) Average training and validation accuracy in
K-fold cross validation (fold 1).

(b) Average training and validation loss in K-fold
cross validation (fold 1).

(c) Average training and validation accuracy in
K-fold cross validation (fold 2).

(d) Average training and validation loss in K-fold
cross validation (fold 2).

(e) Average training and validation accuracy in
K-fold cross validation (fold 3).

(f) Average training and validation loss in K-fold
cross validation (fold 3).

64

(g) Average training and validation accuracy in
K-fold cross validation (fold 4).

(h) Average training and validation loss in K-fold
cross validation (fold 4).

(i) Average training and validation accuracy in
K-fold cross validation (fold 5).

(j) Average training and validation loss in K-fold
cross validation (fold 5).

(k) Average training and validation accuracy in
K-fold cross validation (fold 6).

(l) Average training and validation loss in K-fold
cross validation (fold 6).

65

(m) Average training and validation accuracy in
K-fold cross validation (fold 7).

(n) Average training and validation loss in K-fold
cross validation (fold 7).

(o) Average training and validation accuracy in
K-fold cross validation (fold 8).

(p) Average training and validation loss in K-fold
cross validation (fold 8).

(q) Average training and validation accuracy in
K-fold cross validation (fold 9).

(r) Average training and validation loss in K-fold
cross validation (fold 9).

66

(s) Average training and validation accuracy in
K-fold cross validation (fold 10).

(t) Average training and validation loss in K-fold
cross validation (fold 10).

Figure 4.11: Average learning curves of transfer learning on VGG-16 with 10-fold cross
validation.

learned by the model. Thus, the model over-fitting can be identified from the learning curve.

Observing the learning curves for both the explored approaches, it can be seen that the

direction of the validation loss for both the models is downward over epochs. Moreover, for

both the models, the difference between the validation and training accuracy/loss is small

for each value of K. Therefore, it also determines that the models have not suffered from

overfitting. Since every observation from the original dataset has the chance of appearing

in both training and validation due to employing 10-fold cross-validation, the experimental

results also reflect the reliability of the explored models.

4.4 Summary

In this chapter, the primary objective is to explore how CNN, transfer learning, and the

combination of transfer learning and ML can be used to analyze the oil sands drill core

images and how they fit in this domain. We investigated three approaches based on transfer

learning on VGG-16 pre-trained CNN model, fine-tuning the VGG-16 model, and a combi-

nation of transfer learning on VGG-16 model and traditional ML models (random forest and

decision tree) for the classification of drill core image data based on two types of facies. To

67

(a) Average training and validation accuracy in
K-fold cross validation (fold 1).

(b) Average training and validation loss in K-fold
cross validation (fold 1).

(c) Average training and validation accuracy in
K-fold cross validation (fold 2).

(d) Average training and validation loss in K-fold
cross validation (fold 2).

(e) Average training and validation accuracy in
K-fold cross validation (fold 3).

(f) Average training and validation loss in K-fold
cross validation (fold 3).

68

(g) Average training and validation accuracy in
K-fold cross validation (fold 4).

(h) Average training and validation loss in K-fold
cross validation (fold 4).

(i) Average training and validation accuracy in
K-fold cross validation (fold 5).

(j) Average training and validation loss in K-fold
cross validation (fold 5).

(k) Average training and validation accuracy in
K-fold cross validation (fold 6).

(l) Average training and validation loss in K-fold
cross validation (fold 6).

69

(m) Average training and validation accuracy in
K-fold cross validation (fold 7).

(n) Average training and validation loss in K-fold
cross validation (fold 7).

(o) Average training and validation accuracy in
K-fold cross validation (fold 8).

(p) Average training and validation loss in K-fold
cross validation (fold 8).

(q) Average training and validation accuracy in
K-fold cross validation (fold 9).

(r) Average training and validation loss in K-fold
cross validation (fold 9).

70

(s) Average training and validation accuracy in
K-fold cross validation (fold 10).

(t) Average training and validation loss in K-fold
cross validation (fold 10).

Figure 4.12: Average learning curves of fine-tuned VGG-16 with 10-fold cross validation.

evaluate the performance of these different models, we described different types of classifica-

tion model evaluation metrics such as accuracy, recall, precision, f1-score, ROC curve, AUC

score, confusion matrix, and average model learning curve. Based on these evaluation met-

rics, we analyzed how the explored methods perform for the drill core image classification.

The experimental results support that the explored methods are convenient for implement-

ing drill core image analysis tasks. Based on the outcome, we achieve clear insights and

motivations to explore further these approaches for estimating the MGS from oil sands drill

core photos. Though transfer learning, ML, and DL approaches have been implemented

for core image analysis in the previous research [91], to the best of our knowledge, transfer

learning on VGG-16 and the combination of transfer learning and traditional ML approaches

have never been explored before for the classification and to predict MGS, permeability, or

PSD for the images that are collected from the oil sands drill core where most of the grains

are obscured by the black bitumen. In the following chapter, we describe how the explored

methods described in this chapter can be employed for the MGS estimation and we describe

the overall performance of the models by observing different performance metrics.

71

Chapter 5

Estimating Mean Grain Size From

Core Photos

In Chapter 4, we investigated how different forms of transfer learning on pre-trained CNN

models and traditional ML algorithms work in drill core image analysis such as classifying

core photos based on facies. In this chapter, we investigate how the approaches explored in

Chapter 4 work in estimating MGS for core photos. MGS provides important information

about the permeability and PSD of a core sample. As PSD is an essential parameter in

reservoir characterization, and permeability can also be predicted by determining PSD, suc-

cessfully estimating MGS using ML and DL techniques would be useful for geologists. In the

following sections of this chapter, we first describe how PSD can be calculated using different

laboratory-oriented methods, followed by how the MGS is derived from PSD to train the

explored ML and CNN models. Then the experimental results after training the explored

models on the drill core dataset are described and analyzed based on performance evaluation

metrics. Finally, at the end of this chapter, we discuss the challenges and potential research

opportunities of image-based ML and DL methods in the Geoscience domain.

72

5.1 Particle Size Distribution

As discussed in Chapter 4 (Subsection 4.2.1), Suncor Energy (our industry partner in this

research) collected the core samples and recorded different information about the samples

based on experimental laboratory results. Moreover, the photos of the core samples associ-

ated with the lab tests were also taken. Among different experiments, one of these was to

calculate the PSD from core samples. The PSD of geomaterials is correlated and interrelated

with various physical properties and mechanical behavior. It is used in the estimation of

hydraulic properties [131], evaluation of the degree of crushing [132], estimation of water

retention curves [133], soil classification [134], and determination of desertification poten-

tial [135], among others. In a given sample, there exist various sizes of particles. Some

particles are of very small size, and some particles have a large size. Using the PSD, we can

quantify and understand the percentage of various particles present in the whole sample.

There are different ways of determining the PSD or the percentage of particles present in a

sample. In the following sections, we describe two laboratory-oriented methods of grain size

analysis.

5.1.1 Method 1: Sieve Analysis

Sieve analysis is a technique used to determine the PSD [49]. In grain size analysis workflows,

sieve analysis is used for coarse material of particle size greater than 75 µm. Different sizes of

sieves are used in sieve analysis for determining the PSD. Here each sieve has square-shaped

openings of a specific size. The sieve separates the larger particles from the smaller ones,

distributing the soil sample in two quantities. The grains with diameters larger than the size

of the openings are retained by the sieve, while smaller diameter grains pass through the

sieve. As shown in Figure 5.1, a sieve shaker is used to vibrate the sieve stack for a specific

period of time. Vibration allows irregularly shaped particles to reorient as they fall through

the sieves. Additionally, agitation of the sieves serves to break apart weak agglomerates,

73

Figure 5.1: Sieve shaker equipment and wire cloth sieves
(Sieve analysis. n.d. [accessed: 2021 July 10].
https://pharmahub.org/app/site/collections/excipients/testmethods/Sieve Analysis.pdf).

allowing for a more reliable measurement of the PSD. The PSD serves as an indication of

flowability. Samples with a broad size distribution tend to be poorer flowing than those with

a narrow size distribution. In sieve analysis, results are reported as the differential weight

percent retained on each sieve as well as the cumulative weight percent less than the sieve

size. Following are the procedure and example results obtained by sieve analysis.

Procedure

1. Record the mass of the sample to be used.

2. Stack sieves from smallest to largest, starting at the bottom, with the pan below the

smallest sieve.

3. Add the sample to the top sieve.

74

https://pharmahub.org/app/site/collections/excipients/testmethods/Sieve Analysis.pdf

4. Tighten the equipment to ensure that the sieve stack is held firmly in the shaker

assembly.

5. Set the sieve shaker to vibrate for 15 minutes.

Results

1. Carefully weigh the mass retained on each sieve and in the pan.

2. Organize the results in a table that provides columns for the retained sieve number,

size, and mass fraction. Here the mass fraction is defined as the mass retained on a

particular sieve divided by the initial sample mass.

5.1.2 Method 2: Laser Diffraction System

Laser diffraction system (LDS) utilizes the diffraction patterns of a laser beam that pass

through any object having a size ranging from nanometers to millimeters and measure geo-

metrical dimensions of a particle [136]. It captures PSD information by measuring scattering

intensity as a function of the scattering angle, wavelength, and polarization of light based

on application scattering models. LDS does not require any calibration and it offers several

advantages over the traditional methods of grain size analysis that include ease of use, fast

operation, broad dynamic size range. Therefore, over the past two decades, LDS has replaced

conventional methods, such as sieving and sedimentation to size particles smaller than a few

millimeters.

The process of measuring the PSD using LDS begins with generating a monochromatic

beam by a light source that passes through a series of optical components that results in

converting the raw beam into an expanded, collimated beam that illuminates particles in the

scattering volume. The particles scatter light generates unique angular scattering patterns

that are transformed into a spatial intensity pattern. A photodetector array then detects

this intensity pattern. A photocurrent is subsequently processed and digitized, followed by

75

Figure 5.2: The basic optical system of a laser diffraction particle size analyzer
(Laser diffraction. n.d. [accessed: 2021 July 10]. https://www.sympatec.com/en/particle-
measurement/sensors/laser-diffraction/).

creating an intensity flux pattern that is then converted in a PSD. The basic optical system

of a laser diffraction particle size analyzer is shown in Figure 5.2.

After comparing the results achieved by both LDS and sieve analysis, it is found that

LDS makes fast calculations that are easier to recreate after a one-time analysis and it does

not require a large sample size. Furthermore, LDS results in having better precision than

sieve analysis and any other methods for particle measurement.

After determining the PSD using the sieve analysis or LDS, MGS can be calculated from

PSD sample as follows:

x̄a =

∑
fmm

100
(5.1)

where for a PSD sample, x̄a is the MGS for each sample, f is the frequency in per cent, and

m is the mid-point of each class interval in metric (mm) [47].

The oil sands drill core PSD data collected by Suncor Energy contains the PSD deter-

mined using the sieve analysis and LDS for each core sample. Each sample has a well ID

indicating the wells the samples are collected from, the length of the sample, and the inter-

val points of the core samples. For each core slab photo, the sample interval points are also

marked. Therefore, to prepare the images for the use of ML and CNN models, the original

images are cropped based on the sample interval points, and for each cropped core sample

76

https://www.sympatec.com/en/particle-measurement/sensors/laser-diffraction/
https://www.sympatec.com/en/particle-measurement/sensors/laser-diffraction/

image, we then have the PSD. To calculate the MGS from PSD, the cumulative probability

distribution for each sample is first calculated. A cumulative distribution derived from sieve

analysis and LDS data consists of plotting the cumulative mass percentage finer against the

midpoint of each size interval. The cumulative mass percentage finer is the sum of all mass

percentages in size ranges smaller than and including the current size range. As the cumu-

lative distribution is obtained, we derive the probability distribution from it, then calculate

the MGS for the sample using Equation 5.1. Therefore, instead of having the whole PSD,

we now have the MGS for each sample along with the sample photo. Furthermore, we train

the explored models with this dataset so that the models estimate the MGS using the core

photos.

5.2 Data Preprocessing

Data preprocessing is a fundamental step in any ML and DL pipeline. The quality of the

data and the useful information derived from the data directly affect the learning ability of a

model, and it can manipulate the overall performance of a model. Therefore, it is essential to

preprocess the data before feeding it into the model. Since we are dealing with image-based

ML and computer vision techniques, the data are images. Before training an ML or CNN

model with images, different types of image pre-processing can enhance the performance of

the models. In the following, a few image-preprocessing techniques that are implemented

before training the models for estimating MGS from core photos are described.

One important constraint in some ML algorithms, such as CNN, is the need to resize the

images in the dataset to a unified dimension. It implies that the images must be prepro-

cessed and scaled to have identical widths and heights before passing them to the learning

algorithm. Conventionally the VGG-16 pre-trained models are trained on images that have

the dimension of 224 X 224 X 3. Therefore, to perform classification or prediction using the

pre-trained VGG-16, input image data has to be resized to the VGG-16 specified dimension.

77

However, different image dimensions can also be used to utilize a pre-trained network for

transfer learning or fine-tuning some layers of the pre-trained model. There are two common

reasons to use different image dimensions. One of the reasons is that if the target problem

image dimensions are considerably smaller than what the CNN was trained on, increasing

the size introduces too many artifacts and dramatically hurts the loss or the accuracy of the

model. Another reason is when the target problem images are high resolution and contain

small objects that are hard to detect. Therefore, resizing to the original input dimensions

of the CNN may reduce the accuracy. Finally, keeping the image dimensions small reduces

the number of parameters in a CNN model resulting in faster training and reduced memory

consumption. Considering different scenarios, therefore, updating the shape of the input

data before performing transfer learning results in superior model performance.

One of the most important and commonly used image preprocessing techniques is his-

togram equalization (HE) to improve contrast in images. A histogram is a graphical rep-

resentation of the intensity of distribution of an image. It represents the number of pixels

for each intensity value considered. HE is a way of stretching the histogram to include all

ranges in the image histogram. HE increases the global contrast of many images, especially

when close contrast values represent the usable data of the image. Through this adjustment,

the intensities can be better distributed on the histogram, thus allowing for areas of lower

local contrast to gain a higher contrast. HE accomplishes this by effectively spreading out

the most frequent intensity values. The method is useful in images with backgrounds and

foregrounds that are both bright or dark. A color histogram of an image represents the

number of pixels in each type of color component. HE cannot be applied separately to the

Red, Green, and Blue components of the image as it leads to dramatic changes in the image’s

color balance. However, if the image is first converted to HSI color space, then the algorithm

can be applied to the luminance or value channel without resulting in changes to the hue

and saturation of the image.

As in HE, it increases the global contrast that results in creating the image either too

78

(a) Core sample 1 before implementing
CLAHE.

(b) Core sample 1 after implementing
CLAHE.

(c) Core sample 2 before implementing
CLAHE.

(d) Core sample 2 after implementing
CLAHE.

Figure 5.3: Implementation of CLAHE on core photos.

79

Figure 5.4: Block diagram of the explored fine-tuned VGG-16 regression model for estimating
MGS from core photos. The last convolutional layer block of the VGG-16 model is trained
along with the top layers associated with the prediction task. Rest of the convolutional layer
blocks are kept frozen so that the pre-trained weights remain non-trainable.

dark or too bright. Contrast limited adaptive histogram equalization (CLAHE) solves this

limitation of HE by operating on small regions in the image rather than the entire image [130].

CLAHE is a variant of adaptive histogram equalization (AHE). In AHE, it divides the

image into small regions called tiles. Within each tile, the histogram is then equalized. The

limitation here is that, if the image has a lot of noise, it gets amplified during this process.

However, CLAHE prevents this by limiting the amplification. As the CLAHE operates on

each tile, the neighboring tiles are combined using linear interpolation to remove any artificial

boundaries. Unlike HE, CLAHE can also be applied to color images. Since CLAHE performs

adaptive histogram equalization by limiting contrast and it enhances the definitions of edges

in each region of an image, we utilize this technique for the drill core image equalization

where the grains are rarely visible because of the dark bitumen. An example of core photos

before and after implementing the CLAHE technique is shown in Figure 5.3. Note that,

80

Figure 5.5: Block diagram of the combination of VGG-16 and random forest regression model
for estimating MGS from core photos. A random forest regression model is trained with the
features extracted from the last convolutional layer block of VGG-16.

after implementing the CLAHE technique, the image quality is improved, and both the dark

and light segments of the images are balanced.

5.3 Training the Models

In Chapter 4, we described three approaches explored for the core image classification where

we achieved good classification performances by the models. Therefore, we explore the same

models to predict the MGS from the core photos. Figure 5.4 shows the block diagram of

the explored fine-tuned VGG-16 model for estimating MGS from core photos. Moreover, the

block diagram of the combination of VGG-16 and random forest regression model is shown

in Figure 5.5.

Along with the previously described three approaches, we also explore the traditional ML-

based technique for MGS prediction from core photos. Unlike DL, traditional ML models

require hand-engineered features to be extracted from the data which is generally done by the

domain experts. Based on the hand-engineered features, the ML models are trained according

to the specific task. However, we explore the implementation of the traditional ML approach

81

Figure 5.6: Block diagram of training a random forest regression model using the extracted
core image features.

for core image analysis by extracting the features without the supervision of a domain expert.

Here, we train a random forest regression model with different features extracted from the

core photos considering the pixel values, Gabor filters, and Sobel filters. For the first type of

feature, we use the original pixel values of the images. The second type of feature used in this

workflow is the responses from the Gabor filters. Gabor filters are orientation-sensitive filters,

used for texture analysis [137]. Frequency and orientation representations of the Gabor filter

are similar to those of the human visual system. Different Gabor features are generated

by manipulating different parameters in the Gabor filter function [138]. Finally, another

feature that we use along with the pixel values and Gabor filter responses is the Sobel filter.

The Sobel operator or Sobel filter is used in image processing, particularly within the edge

detection algorithms that create images emphasizing edges [139]. Overall, in this explored

method, a total of 5,435,392 features are extracted from the training dataset that is then used

to train the random forest regression model. The block diagram of training a random forest

regression model with the features extracted using the techniques mentioned above is shown

in Figure 5.6. For both the traditional ML approach and for the combination of VGG-16

and random forest approach, the parameters and hyper-parameters for the random forest

regression model are selected using Randomized Search CV [125] that performs a randomized

search on hyperparameters. Randomized Search CV is very useful when there are many

82

Criteria Classification Models Regression Models

Evaluation metric Accuracy Mean absolute error
Activation Sigmoid Linear

Loss Binary cross-entropy Mean squared error
Model output Core facies (‘F1’ or ‘not F1’) Mean grain size

Table 5.1: Summary of modifications between the classification models and the regression
models.

parameters to try and the training time is very long. In contrast to Grid Search CV [126],

not all parameter values are tried out, rather a fixed number of parameter settings is sampled

from the specified distributions. Randomized Search CV selects the best hyperparameters

for any classification or regression model and it is computationally faster than Grid Search

CV. Overall, to estimate the MGS from core photos, we explore four methods and compare

the results to see how each of them performs.

Unlike a classification task, in regression-based ML and DL models, the activation func-

tions and model evaluation metrics are different. For the MGS estimation task, we utilize

linear activation, mean squared error (MSE) to compute model loss, and for the evaluation

metric, we use mean absolute error (MAE). Modifications between the explored classification

models described in Chapter 4 and the regression models are presented in Table 5.1. In the

following section, we discuss MSE and MAE. Before passing the images to train the models,

like the classification task, we re-scale the pixel values of the images into a unified range.

Therefore, the previous pixel values ranging from 0 to 255 are converted into values ranging

from 0 to 1 which is preferred for any ML and CNN model.

After that, as we have all the images and corresponding MGS, we split the entire data

into ten equal folds for 10-fold cross-validation as described in Chapter 4. We also reserve

20% from the available data only to test the explored models. These reserved data are

not used for training the model. Testing the models with unseen data provides a better

understanding of the overall performance of the models. Then we train the models for an

upward bound of 100 epochs with 64 batch size, meaning that the data is passed through

83

the network 100 times. In terms of computing resources, we utilize the same configuration

described in Chapter 4 (Subsection 4.2.3).

5.3.1 Visualizing the Intermediate Activations of VGG-16

Intermediate activations are helpful to understand how the convolutional layers transform

the input. The visualization of intermediate activations depicts the output feature maps

computed after various convolution and pooling layers in a network. For input, the output

of a layer is often called its activation or the output of the activation function. This workflow

gives a view into how the input is decomposed into different filters learned by the network.

Each (R,G, B) channel encodes relatively independent features, so the proper way to visualize

these feature maps is by independently plotting the contents of every channel as a 2D image.

Our VGG-16 model has 13 convolutional layers. In every convolutional layer block, the

model has a max-pooling layer. The initial convolutional layers generally capture everything

from the image. However, as we go deeper into the network, the model tries to concentrate

on more abstract features from the images that are crucial for the prediction. Figure 5.8

shows the activations of the first convolutional layer block of VGG-16 on an input core image

shown in Figure 5.7. Figure 5.7 shows a sample image of oil sand drill core, where the black

regions indicate the sands. Sands have enough porosity to be saturated with the bitumen

which make them black. On the other hand, the brown regions contain mud or clay.

Figure 5.9 shows the activations of the last convolutional layer block of VGG-16 on the

same input image. According to the model architecture of VGG-16 (see Table 4.2), the first

and second convolutional layers have output shapes of 64 X 64 X 64, meaning that these

Figure 5.7: A sample input image

84

(a) Activations of the first convolutional layer of the first convolutional layer block.

(b) Activations of the second convolutional layer of the first convolutional layer block.

85

(c) Activations of the max-pooling layer of the first convolutional layer block.

Figure 5.8: Activation of the first convolutional layer block of VGG-16.

layers have 64 filters that are applied on each channel of the input image with the dimension

of 64 X 64. The max-pooling layer of the first convolutional layer block has an output shape

of 32 X 32 X 64, meaning that 64 filters are applied on the output of the previous layer and

an output with a reduced dimension is produced.

Note, the first convolutional layers do not skip any information from the image; some of

the filters are capturing the vertical edges, while other filters are capturing horizontal edges;

some filters are distinguishing between the dark regions (sands) and the lighter (e.g., mud,

clay) regions from the core photo. Note that, in the first convolutional layer block, all the

filters are activated and are not left blank. However, as we go deeper into the network,

there are several filters that are not activated and are left blank (see Figure 5.9), meaning

that, these filters do not have any new data to learn new information. Therefore, some

filters there are not activating at all as there is nothing more to learn at that point. For

these cases the outputs of the activation are shown in dark violet color. Further, it is not

straightforward to visually interpret the last layer activations as they become increasingly

abstract. They encode higher-level concepts that carry increasingly less information about

86

(a) Activations of the the the the the the the the first convolutional layer of the the the the the the
the last convolutional layer block.

(b) Activations of the the the the the the second convolutional layer of the the the the the last
convolutional layer block.

87

(c) Activations of the the the the third convolutional layer of the the the last convolutional layer
block.

(d) Activations of the the max-pooling layer of the last convolutional layer block.

Figure 5.9: Activation of the last convolutional layer block of VGG-16.

88

Figure 5.10: Distribution of the mean grain size in the available dataset.

the visual contents of the image and more information related to the prediction of the image.

5.4 Experimental Results

To estimate the MGS from core photos, the inputs of the models are the cropped images

of core samples and the outputs are the MGS derived from the PSD. Here the number of

available data is 1659. We reserve 332 core images to test the trained models. The rest of

1327 data are used for the 10-fold cross-validation. The mean and standard deviation of

the available MGS values are 153.99 and 56.05 respectively. The minimum MGS value in

the dataset is 113.61 and the maximum MGS is 299.47 where 75% of the values are below

188.28, 50% of the values are below 150.48, and 25% of the values are below 113.61. Figure

5.10 depicts the overall distribution of the MGS in the available dataset.

89

5.4.1 Regression Loss Functions and Model Evaluation Metrics

The most commonly used metrics to evaluate the performance of a classification model are

accuracy, recall, precision, and f-score, as described in Chapter 4 (Subsection 4.3). However,

to evaluate the performance of a regression model, different metrics are used. Some of the

most frequently used metrics are mean square error (MSE), root mean square error (RMSE)

and mean absolute error (MAE). These evaluation metrics are also used as loss functions.

In a typical regression-based ML model, the model produces continuous values as its

predicted outputs where the primary objective is to keep these predicted values closer to the

actual values or the ground truth. If the actual values are denoted as y and the predicted

values are denoted as ŷ, the error is computed as follows:

Error = y − ŷ (5.2)

This error is also called residual error. The ideal condition is that the residual error is zero,

meaning that the model predicts all values correctly which is rarely possible for a regression

model. Residual errors are then used to calculate different types of errors mentioned above.

Mean Absolute Error (MAE)

MAE is the sum of absolute/positive errors of all values. While computing MAE, the direc-

tion of the errors is not taken into consideration. Even if the difference between the actual

value and the predicted value is negative, MAE only considers the positive values of all er-

rors. After taking the sum of all absolute errors, the mean or average is calculated. MAE is

calculated as follows:

MAE =

∑n
i=0 |yi − ŷi|

n
(5.3)

where yi is the actual value for a sample i, and ŷi is the predicted value for that sample.

90

Mean Square Error (MSE)

MSE is the most commonly used regression loss function that computes the average squared

distance between the actual and predicted values. Another variant of MSE is RMSE which

is obtained by computing the square root of MSE. MSE and RMSE are defined by:

MSE =

∑n
i=0 (yi − ŷi)2

n
(5.4)

RMSE =

√∑n
i=0 (yi − ŷi)2

n
(5.5)

Comparing MAE with MSE, MAE is more robust to outliers whereas, MSE is sensitive

to outliers. Since MSE squares the error, the value of the error increases a lot if it is greater

than 1. If there is an outlier in the data, the value of the error becomes high, and the squared

error becomes much higher. As a result, large errors have a relatively greater impact than

the smaller errors on the total square error, meaning that the total square error grows as

the total error is concentrated within a decreasing number of increasingly large individual

errors [129]. Therefore, the model with MSE as a loss function gives more weight to outliers

than a model with MAE as the loss function. A model with MSE as a loss function adjusts

to minimize any case with outliers at the expense of other common examples, which reduces

the model’s overall performance. On the contrary, MAE is less biased for higher values and

does not necessarily penalize large errors.

5.4.2 Model Comparison

For predicting MGS from core photos, we use MSE as the loss function. Along with that, as

the regression-based models’ performance evaluation metric, we observe the MAE at the end

of each epoch as MAE determines how big of an error can be expected from the prediction

on average. Since MSE is significantly larger than MAE, to make it on the same scale as

MAE, RMSE is also determined.

91

Model RMSE MAE Percentage Error

Transfer Learning on VGG-16 46.33 36.25 23.54
Fine-tuning VGG-16 49.29 38.28 24.86

VGG-16 and Random Forest Regressor 16.89 11.59 7.53
Traditional Machine Learning with Random Forest 51.60 40.14 26.06

Table 5.2: Summary of the performances of the explored methods on oil sands drill core
dataset to estimate mean grain size.

Table 5.2 shows the overall performance of the explored models in terms of RMSE, MAE,

and percentage errors. Experimental results show that similar to the facies classification re-

sults presented in Chapter 4, the combination of the pre-trained VGG-16 and the random

forest regression model exhibits the best prediction performances compared to the other

explored models. In this method, the MAE is 11.59 meaning that, on average the model pre-

diction is approximately 7.53% off from the actual value. On the contrary, the performance

achieved by implementing the traditional ML approach is the worst among the explored

approaches where the MAE is 40.14 and the RMSE is 51.60, which is understandable as this

model is trained on hand-engineered features only. Transfer learning on the VGG-16 pre-

trained CNN model and fine-tuning the VGG-16 model show similar prediction performance

as shown in Table 5.2. Figure 5.11 shows a scatter plot demonstrating the overall prediction

results achieved by the combination of the VGG-16 pre-trained model and the random forest

regression model. In this plot, the actual MGS values are given on the X-axis, and the Y-axis

represents the predicted MGS by the model. The straight line represents the ideal line for

the model. The scatter plot shows that the correlation between the model predicted MGS

and the actual MGS is nearly linear. This aspect also supports that the explored model

demonstrates reasonable prediction performance in estimating MGS from core photos.

According to the scatter plot, being the points close to the ideal line means a good

prediction. As the distance between the points and the ideal line increases, the prediction

has a larger error than the one that is closer to the ideal line. We can note from the scatter

plot that the distance between the points and the ideal line is large for the MGS values

92

50 100 150 200 250 300
Actual Mean Grain Size

50

100

150

200

250

300
Pr

ed
ict

ed
 M

ea
n

Gr
ai

n
Si

ze

Figure 5.11: Model prediction performance of the the combination of VGG-16 and random
forest regression model.

ranging from around 200 to 299. The poor prediction performance by the model for this

range is understandable since we do not have a large volume of data within this range (also

shown in Figure 5.10). However, the model demonstrates better performance for the rest of

the data since we have a decent amount of training data there.

5.5 Discussion and Summary

In this section, we first describe the primary challenges and present some possible future

directions to overcome them. Finally, we present the summary of this chapter.

5.5.1 Discussion

The primary objective of this chapter is to explore the opportunity to employ image-based

ML and CNN models to estimate the MGS of oil sands drill core images. After implementing

several approaches to address this problem, we obtain some valuable insights that can be

utilized for further investigation in different aspects of the Geoscience domain based on the

93

Figure 5.12: Example of broken samples.

experimental results. Research shows that MGS is one of the most critical factors determining

PSD and permeability [140]. Therefore, the proposed approach based on the combination of

transfer learning and random forest can assist the geologists in calculating MGS using the

photos of the previously cored wells which can also provide significant information about

the PSD and permeability and save hours of laboratory experiments. After analyzing the

experimental results it can be understood that, although the volume of the available labeled

dataset is not significantly large that a CNN or ML model requires, the overall performances

of the models are well acceptable. A few challenges that were encountered in the conducted

experiments are discussed here. Furthermore, we present some reasonable suggestions that

can be considered in the future extension of this work.

The primary challenge in this work is associated with data availability. In an ML or

DL workflow, data play a vital role since they contain the most important information

about the overall problem that is utilized to train the model. However, in oil sands drill

core images, significant portions of the grains are not visible as the layer of black bitumen

hides them. Therefore, even after performing the image pre-processing steps, learning the

discriminating features from the data was critical for the models. Moreover, the size of the

collected core samples is not of the same size. Therefore, every core sample image has a

different dimension which is challenging to handle while preparing the image to train the

ML or CNN models. Furthermore, in some cases, when the images were captured in the

laboratory, some unnecessary contents were added to them. For example, we have some

data that contain written texts on the images that hide the primary contents of the data.

There are also some data where the PSD was calculated for a broken sample, as shown in

Figure 5.12. In these cases, the image contains a large proportion of core slabs in between

94

the rock samples. We attempted to address some of these critical issues by conducting

image processing. For some issues, we discarded some data from the dataset. Therefore, the

total number of data got reduced as well. However, with the superior ability of the CNN

model to extract valuable information from the data and with the robust prediction by the

random forest model, we achieved insightful results to analyze the drill core images. Since

analyzing the oil sands drill core images is critical, and to the best of our knowledge, no prior

research is found to implement the proposed method to address this problem, geoscientists

can benefit from it. Moreover, the experimental result obtained by our proposed method

can be considered as a benchmark for future research. As the further extensions of this

work, researchers can explore different model architectures, the different combinations of

hyperparameters and compare the performances of the explored methods with our proposed

approach. Moreover, visualization of different activations would provide insights to future

researchers about fine-tuning the deeper layers of the CNN model. Furthermore, it would

also provide information about understanding the best layer to extract features from and

train the random forest model with these extracted features.

5.5.2 Chapter Summary

In summary, in this chapter, we investigated the opportunity to adapt the explored methods

presented in Chapter 4 with the MGS estimation task. Similar to the classification task, we

observed that the combination of VGG-16 and the random forest model outperformed the

other explored approaches. Based on the overall investigation, we gained valuable insights

suggesting the extensive scope of further research in this domain using the explored method-

ologies. We discussed some challenges encountered in the workflow and presented some

explored solutions attempted to handle them. In the next chapter, we present a further

elaborated discussion about more possible future extensions of this research.

95

Chapter 6

Conclusion

In this chapter, first, we present a summary of the contributions of the thesis. Then we

conclude the thesis by describing a few limitations of this thesis, followed by discussing

several possible future extensions and research scopes with this work.

6.1 Summary

This thesis investigates how CNN, transfer learning, and ML techniques perform in the oil

sands drill core image analysis. We explored the traditional ML approach (random forest),

transfer learning on pre-trained CNN model (VGG-16), the combination of random forest

and VGG-16 in both the classification and regression-based tasks. Manual feature extraction

techniques were implemented to apply and test traditional ML techniques. On the other

hand, using transfer learning, features are automatically extracted based on the pre-trained

weights. Overall, the summary of the contributions of this thesis is as follows.

1. We investigated three approaches based on transfer learning on the pre-trained VGG-

16, fine-tuning a set of layers in VGG-16, and training traditional ML models (random

forest, decision tree) with the features extracted from the last convolution layer block

of pre-trained VGG-16 model to predict the VMI facies from the drill core photos. In

96

this task, the drill core photos are labeled as two facies types based on the VMI values.

The core photos are labeled as either F1 or not F1. Therefore, the facies prediction

task is a binary classification problem. Classification performances are evaluated based

on several evaluation metrics, such as accuracy, recall, precision, f-score, ROC curve,

and AUC score. Experimental results showed that the combination of VGG-16 and

random forest classifier outperformed the other investigated approaches. With this

approach, an accuracy of 98.87% was achieved. The recall, precision, and f-score

achieved using this approach were 99.0% for all. Fine-tuning the transfer learning on

VGG-16 demonstrated very similar classification performance compared to the VGG-16

and random forest. Here, the explored model showed the accuracy, recall, precision, and

f-score of 97.73%, 98.0%, 98.0%, and 98.0% respectively. However, transfer learning on

the pre-trained VGG-16 demonstrated slightly less than 97% accuracy, recall of 96%,

and 97% for both precision and f-score. By exploring different ML and transfer learning

techniques, we learned that these techniques can also be explored in comparatively

complicated tasks such as estimating MGS, PSD, or the permeability of drill core

photos.

2. Since we achieved good classification accuracy with the models predicting facies from

drill core photos, we implemented the same techniques on the extended dataset to

investigate how they perform to predict the MGS from the core photos. Here the output

is MGS which is a numeric value. Therefore, the explored models are regression-based

models. Along with the approaches explored in the classification task, we implemented

a traditional ML technique (random forest). Since manual feature extraction needs to

be performed before training a traditional ML model, we used original pixel values,

responses from different combinations of Gabor filters for each image pixel, and the

Sobel filters to extract the features from the core photos. Before training the random

forest model, the hyper-parameters were chosen based on the Randomized Search CV

to obtain the best hyper-parameters. This approach allows the model to be configured

97

with the optimal algorithmic settings. Before training the models, we performed image

preprocessing using CLAHE. Experimental results showed that the combination of

VGG-16 and the random forest method outperformed the other explored techniques

with the MAE value of 11.59. We also found that only the random forest model did

not perform well as the features were extracted using the manual feature extraction

techniques without the supervision of any domain experts. However, the other explored

methods provided reasonable prediction performance for the dataset used.

6.2 Limitations and Future Work

In this thesis, we conducted two types of experiments: performing classification of core pho-

tos based on facies and the regression-based task for predicting MGS from the core photos.

In both cases, we explored different models that achieved acceptable performance. Since, to

the best of our knowledge, there is no published work where transfer learning, the combina-

tion of transfer learning and traditional ML have been employed in the oil sands drill core

image analysis, this thesis provides important insights and motivation for future researchers

to further explore these techniques in the Geoscience research domain. In this thesis, our

aim was not to produce the best solution for the facies classification or predicting the MGS

from core photos. Instead, our primary objective was to explore different image-based ML

and transfer learning techniques to understand whether or not these techniques are suitable

to implement in the oil sands drill core image analysis. In the oil sands drill core samples,

most of the grains remain hidden by the black bitumen. Therefore, it is critical for an ML

or DL model to predict based on these types of core photos as the discriminating features

are rarely determinable. However, by applying some image processing techniques, the ex-

plored approaches exhibited acceptable prediction performances. Therefore, our explored

experimental setting can be considered as a baseline setting for future research.

98

However, there are a few limitations in the work presented in this thesis, where we only

employed transfer learning on the pre-trained VGG-16 model. Although this pre-trained

model is very simple in architecture and performs very well to extract features from different

types of datasets other than the ones the model was trained on, VGG-16 contains a large

number of parameters. Although most of these parameters do not need to be trained in

transfer learning, the VGG-16 model is computationally slow and takes a large amount of

disk space. Another limitation is that we considered the raw images as model input data in

this thesis and performed very little pre-processing.

Although we aimed to understand how the models perform with the raw core images

captured during the sample collection phase in the laboratories, different types of data pre-

processing stages need to be performed to improve the prediction performance of the models.

Moreover, the laboratory collected raw images are not high-quality images, and the images

contain plenty of unnecessary information that adversely affects the feature learning from

the images during the model training process.

There are several future research scopes where the different ML and DL techniques can be

utilized to analyze drill core photos. Research shows that permeability has a close correlation

with the grain size [141]. Therefore, as the following future extension of this thesis, different

ML and DL models can be trained with different parameter settings to predict grain size using

the core photos to estimate the permeability of the drill core. However, a larger database

needs to be accumulated before reliable fit parameters and variability can be predicted [142].

Moreover, the explored approaches for facies classification can be extended to solve multi-

class classification as well. The explored DL and ML models can be re-trained with drill

core images belonging to more than two facies by setting the activation function as Softmax

instead of Sigmoid in the classification layer and changing the number of neurons as the

number of output classes instead of using a layer with a single neuron used for binary

classification. Other than facies classification, these techniques can be used to classify drill

core photos based on grain size too, such as coarse grain, fine grain, and so on.

99

Moreover, extensive care should be taken while collecting core images. Since data con-

tains the most critical information in the ML workflow, capturing unnecessary information

and photos should be avoided for better model performances. Training models with high-

resolution images can also enhance the model performance. Therefore, to utilize the effec-

tiveness of DL models, an extensive library of high resolution and accurately labeled image

datasets can be obtained from the already cored wells. Since laboratories have the access to

the already drilled core slabs, re-capturing the core photos carefully and training the models

can result in better model performances. However, acquiring high-resolution images may

not be feasible due to the expense and time restriction. In this scenario, if the low-quality

images are the only feasible option, extensive image processing has to be performed so that

the models can effectively learn from the data. Different CNN models can be explored after

extending the library of images to estimate both the MGS and PSD standard deviation from

the core photos.

Although MGS is the most important parameter for the PSD, accumulating standard

deviation with MGS can make the determination of PSD simpler and more accurate. As

the volume of the database increases, along with employing the transfer learning technique,

different CNN models can be built from scratch. Here, the CNN models can be trained

entirely on the core photos to learn the core images’ features efficiently. Although pre-

trained models are trained on millions of images and are very good at recognizing important

features, training a CNN from scratch with lots of core photos can also produce accurate

prediction performances.

In a nutshell, this thesis paves new ways for doing research and implementing image-based

ML, transfer learning, and CNN techniques to address different challenging problems in the

oil and gas industries. With more extensive research and exploration, oil and gas industries

can leverage the ML and DL techniques, save a lot of time and money, and produce state-

of-the-art performance from them.

100

Bibliography

[1] Folk, R. L., Ward, W. C. (1957). Brazos River bar [Texas]; a study in the significance

of grain size parameters. Journal of sedimentary research, 27(1), 3-26.

[2] Friedman, G. M. (1979). Differences in size distributions of populations of particles among

sands of various origins: addendum to IAS Presidential Address. Sedimentology, 26(6),

859-862.

[3] Bui, E. N., Mazzullo, J. M., Wilding, L. P. (1989). Using quartz grain size and shape

analysis to distinguish between aeolian and fluvial deposits in the Dallol Bosso of Niger

(West Africa). Earth Surface Processes and Landforms, 14(2), 157-166.

[4] M. Vandenbroucke and C. Largeau, “Kerogen origin, evolution and structure,” Organic

Geochemistry, vol. 38, no. 5, pp. 719–833, 2007.

[5] J. R. Fanchi, Principles of applied reservoir simulation. Elsevier, 2018.

[6] Chen, A., 2020. Exploration production (EP). [Online]. Available:

https://www.investopedia.com/terms/e/exploration-production-company.asp. [Ac-

cessed: August 24, 2021].

[7] Atlantic Canada’s Offshore Oil and Gas Industries. Offshore oil and natural gas life cy-

cle. n.d., [Online]. Available: http://atlanticcanadaoffshore.ca/offshore-oil-gas-lifecycle/.

[Accessed: August 24, 2021].

101

https://www.investopedia.com/terms/e/exploration-production-company.asp
http://atlanticcanadaoffshore.ca/offshore-oil-gas-lifecycle/

[8] The oil and gas operating cycle and activities – (treccani – petroleum ency-

clopaedia). n.d., [Online]. Available: http://www.oil-gasportal.com/upstream/basic-

concept/?print=print. [Accessed: August 24, 2021].

[9] Alberta Energy Regulator. n.d., Oil Sands [Online]. Available:

https://www.aer.ca/providing-information/by-topic/oil-sands. [Accessed: August

24, 2021].

[10] M. N. Panda and L. W. Lake, “Estimation of single-phase permeability from parameters

of particle-size distribution,” AAPG bulletin, vol. 78, no. 7, pp. 1028–1039, 1994.

[11] J.M.K.C. Donev et al. (2019). Energy Education - Oil and gas reservoir [Online]. Avail-

able: https://energyeducation.ca/encyclopedia/Oil and gas reservoir. [Accessed: July

26, 2021].

[12] L. Lepisto,¨ I. Kunttu, J. Autio, and A. Visa, “Rock image classification using non-

homogenous textures and spectral imaging,” 2003.

[13] Lepistö, L., Kunttu, I., Autio, J. and Visa, A., 2004, April. Rock image retrieval and

classification based on granularity. In Proceedings of 5th International Workshop on

Image Analysis for Multimedia Interactive Services.

[14] F.-H. Kong, “Image retrieval using both color and texture features,” in 2009 Inter-

national Conference on Machine Learning and Cybernetics, vol. 4. IEEE, 2009, pp.

2228–2232.

[15] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convo-

lutional neural networks,” in Advances in neural infor-mation processing systems, 2012,

pp. 1097–1105.

[16] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image

recognition,” arXiv preprint arXiv:1409.1556, 2014.

102

http://www.oil-gasportal.com/upstream/basic-concept/?print=print
http://www.oil-gasportal.com/upstream/basic-concept/?print=print
https://www.aer.ca/providing-information/by-topic/oil-sands
https://energyeducation.ca/encyclopedia/Oil_and_gas_reservoir

[17] Wikipedia contributors. (2021, July 14). Chain rule. In Wikipedia,

The Free Encyclopedia. Retrieved 09:52, July 20, 2021, from

https://en.wikipedia.org/w/index.php?title=Chainruleoldid = 1033509971

[18] J. Wan, D. Wang, S. C. H. Hoi, P. Wu, J. Zhu, Y. Zhang, and J. Li, “Deep learning

for content-based image retrieval: A comprehensive study,” in Proceedings of the 22nd

ACM international conference on Multimedia. ACM, 2014, pp. 157–166.

[19] J.M.K.C. Donev et al. (2019). Energy Education - Con-

ventional vs unconventional resource [Online]. Available:

https://energyeducation.ca/encyclopedia/Conventional vs unconventional resource.

[Accessed: August 24, 2021].

[20] L. Xie, R. Hong, B. Zhang, and Q. Tian, “Image classification and retrieval are one,” in

Proceedings of the 5th ACM on International Conference on Multimedia Retrieval. Acm,

2015, pp. 3–10.

[21] S. Saha. (2018). A comprehensive guide to convolutional neural networks - the ELI5

way [Online]. Available: https://towardsdatascience.com/a-comprehensive-guide-to-

convolutional-neural-networks-the-eli5-way-3bd2b1164a53. [Accessed: August 24, 2021].

[22] J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural networks,

vol. 61, pp. 85–117, 2015.

[23] A. Canziani, A. Paszke, and E. Culurciello, “An analysis of deep neural network models

for practical applications,” arXiv preprint arXiv:1605.07678, 2016.

[24] P.C. Carman, “Fluid flow through granular beds.” Transactions, Institution of Chemical

Engineers, London, 15: 150-166, 1937.

[25] P.C. Carman, “Flow of gases through porous media.” Butterworths, London, 1956.

[26] Wikipedia contributors, ”Facies — Wikipedia, the free encyclopedia,” 2019, [Online].

103

https://en.wikipedia.org/w/index.php?title=Chain_rule&oldid=1033509971
https://energyeducation.ca/encyclopedia/Conventional_vs_unconventional_resource
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://en.wikipedia.org/w/index.php?title=Facies&oldid=931020432

[27] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpa-

thy, A. Khosla, M. Bernstein et al., “Imagenet large scale visual recognition challenge,”

International journal of computer vision, vol. 115, no. 3, pp. 211–252, 2015.

[28] Alpak, F.O., Lake, L.W. and Embid, S.M., 1999, January. Validation of a modified

Carman-Kozeny equation to model two-phase relative permeabilities. In SPE Annual

Technical Conference and Exhibition. Society of Petroleum Engineers.

[29] Andersson, T., Thurley, M. J., Carlson, J. E. (2012). A machine vision system for

estimation of size distributions by weight of limestone particles. Minerals Engineering,

25(1), 38-46.

[30] Wipware (2018), Fragmentation and analysis software, www.wipware.com

[31] D. Erhan, P.-A. Manzagol, Y. Bengio, S. Bengio, and P. Vincent, “The difficulty of

training deep architectures and the effect of unsupervised pretraining,” in Artificial In-

telligence and Statistics. USA: JMLR, 2009, pp. 153–160.

[32] N. Tajbakhsh, J. Y. Shin, S. R. Gurudu, R. T. Hurst, C. B. Kendall, M. B. Gotway,

and J. Liang, “Convolutional neural networks for medical image analysis: Full training

or fine tuning?” IEEE Trans. Med. Imag., vol. 35, no. 5, pp. 1299–1312, May 2016.

[33] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are features in deep

neural networks?” in Proc. Adv. Neural Inf. Process. Syst., 2014, pp. 3320–3328.

[34] Torrey, L. and Shavlik, J., 2010. Transfer learning. In Handbook of research on machine

learning applications and trends: algorithms, methods, and techniques (pp. 242-264). IGI

global.

[35] Whitley, D. (1994). A genetic algorithm tutorial. Statistics and computing, 4(2), 65-85.

[36] Bai, Q. (2010). Analysis of particle swarm optimization algorithm. Computer and in-

formation science, 3(1), 180.

104

[37] Aurlien Gron. 2017. Hands-On Machine Learning with Scikit-Learn and TensorFlow:

Concepts, Tools, and Techniques to Build Intelligent Systems (1st. ed.). O’Reilly Media,

Inc.

[38] Long, M., Cao, Y., Wang, J., Jordan, M. (2015, June). Learning transferable features

with deep adaptation networks. In International conference on machine learning (pp.

97-105). PMLR.

[39] Khan, N.M., Abraham, N. and Hon, M., 2019. Transfer learning with intelligent training

data selection for prediction of Alzheimer’s disease. IEEE Access, 7, pp.72726-72735.

[40] Adit, D., 2019. The 9 Deep Learning Papers You Need To Know About

(Understanding CNNs Part 3). Engineering at Forward. [Online]. Available:

https://adeshpande3.github.io/adeshpande3.github.io/The-9-Deep-Learning-Papers-

You-Need-To-Know-About.html

[41] Sutton, R. S., Barto, A. G. (2018). Reinforcement learning: An introduction. MIT

press.

[42] Duguleana, M., Mogan, G. (2016). Neural networks based reinforcement learning for

mobile robots obstacle avoidance. Expert Systems with Applications, 62, 104-115.

[43] Dodge, S., Karam, L. (2017, July). A study and comparison of human and deep learning

recognition performance under visual distortions. In 2017 26th international conference

on computer communication and networks (ICCCN) (pp. 1-7). IEEE.

[44] Hossin, M., Sulaiman, M. N. (2015). A review on evaluation metrics for data classifica-

tion evaluations. International journal of data mining knowledge management process,

5(2), 1.

105

 https://adeshpande3.github.io/adeshpande3.github.io/The-9-Deep-Learning-Papers-You-Need-To-Know-About.html
 https://adeshpande3.github.io/adeshpande3.github.io/The-9-Deep-Learning-Papers-You-Need-To-Know-About.html

[45] Araya-Polo, M., Alpak, F.O., Hunter, S., Hofmann, R. and Saxena, N., 2019. Deep

learning–driven permeability estimation from 2D images. Computational Geosciences,

pp.1-10.

[46] Timmer, E., Knudson, C. and Gingras, M., 2020. Applying Deep Learning for Identify-

ing Bioturbation from Core Photos. AAPG Bulletin, (20,200,828).

[47] Blott, S.J. and Pye, K., 2001. GRADISTAT: a grain size distribution and statistics pack-

age for the analysis of unconsolidated sediments. Earth surface processes and Landforms,

26(11), pp.1237-1248.

[48] Suncor Energy n.d., accessed 10 July 2021, https://www.suncor.com/en-ca/

[49] Sieve analysis n.d., accessed 10 July 2021, [Online]. Available:

https://pharmahub.org/app/site/collections/excipients/testmethods/Sieve Analysis.pdf

[50] Keras applications n.d., accessed 10 July 2021, https://keras.io/api/applications/

[51] Mohammad Masum. A Poor Example of Transfer Learning: Applying VGG Pre-trained

model with Keras.

[52] Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J. and Wojna, Z., 2016. Rethinking the

inception architecture for computer vision. In Proceedings of the IEEE conference on

computer vision and pattern recognition (pp. 2818-2826).

[53] Misra, S., Li, H., He, J. (2020). Noninvasive fracture characterization based on the clas-

sification of sonic wave travel times. In Machine Learning for Subsurface Characterization

(pp. 243-287). Gulf Professional Publishing.

[54] Kurama, V., A Review of Popular Deep Learning Architectures: ResNet, InceptionV3,

and SqueezeNet. (2020). [Online]. Available: https://blog.paperspace.com/popular-deep-

learning-architectures-resnet-inceptionv3-squeezenet/. [Accessed: August 24, 2021].

106

https://www.suncor.com/en-ca/
https://pharmahub.org/app/site/collections/excipients/testmethods/Sieve Analysis.pdf
https://keras.io/api/applications/
https://towardsdatascience.com/a-demonstration-of-transfer-learning-of-vgg-convolutional-neural-network-pre-trained-model-with-c9f5b8b1ab0a
https://towardsdatascience.com/a-demonstration-of-transfer-learning-of-vgg-convolutional-neural-network-pre-trained-model-with-c9f5b8b1ab0a
https://blog.paperspace.com/popular-deep-learning-architectures-resnet-inceptionv3-squeezenet/
https://blog.paperspace.com/popular-deep-learning-architectures-resnet-inceptionv3-squeezenet/

[55] Sik-Ho Tsang. Review: Inception-v3 — 1st Runner Up (Image Classification) in

ILSVRC 2015.

[56] Samuel, A. (1959). Some Studies in Machine Learning Using the Game of Checkers.

IBM J. Res. Dev., 3, 210-229.

[57] Mitchell, T. M. (1997). Machine learning.

[58] Balaji, B., Mallya, S., Genc, S., Gupta, S., Dirac, L., Khare, V., ... Karuppasamy, D.

(2020, May). Deepracer: Autonomous racing platform for experimentation with sim2real

reinforcement learning. In 2020 IEEE International Conference on Robotics and Automa-

tion (ICRA) (pp. 2746-2754). IEEE.

[59] Ayodele, T. O. (2010). Machine learning overview. New Advances in Machine Learning,

9-19.

[60] Medjahed, S. A., Saadi, T. A., Benyettou, A. (2013). Breast cancer diagnosis by using

k-nearest neighbor with different distances and classification rules. International Journal

of Computer Applications, 62(1).

[61] Rustam, F., Reshi, A. A., Mehmood, A., Ullah, S., On, B. W., Aslam, W., Choi, G.

S. (2020). COVID-19 future forecasting using supervised machine learning models. IEEE

access, 8, 101489-101499.

[62] Choudhary, R., Gianey, H. K. (2017, December). Comprehensive review on supervised

machine learning algorithms. In 2017 International Conference on Machine Learning and

Data Science (MLDS) (pp. 37-43). IEEE.

[63] Dreiseitl, S., Ohno-Machado, L. (2002). Logistic regression and artificial neural network

classification models: a methodology review. Journal of biomedical informatics, 35(5-6),

352-359.

107

https://sh-tsang.medium.com/review-inception-v3-1st-runner-up-image-classification-in-ilsvrc-2015-17915421f77c

[64] Ali, J., Khan, R., Ahmad, N., Maqsood, I. (2012). Random forests and decision trees.

International Journal of Computer Science Issues (IJCSI), 9(5), 272.

[65] Noble, W. S. (2006). What is a support vector machine?. Nature biotechnology, 24(12),

1565-1567.

[66] Ahmad, A., Dey, L. (2007). A k-mean clustering algorithm for mixed numeric and

categorical data. Data Knowledge Engineering, 63(2), 503-527.

[67] Ding, C., He, X. (2004, July). K-means clustering via principal component analysis. In

Proceedings of the twenty-first international conference on Machine learning (p. 29).

[68] Bengio, Y., Courville, A., Vincent, P. (2013). Representation learning: A review and

new perspectives. IEEE transactions on pattern analysis and machine intelligence, 35(8),

1798-1828.

[69] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning. MIT Press Cam-

bridge, 2016.

[70] P. Baldi and K. Hornik, “Neural networks and principal component analysis: Learning

from examples without local minima,” Neural Networks, vol. 2, no. 1, pp. 53–58, 1989.

[71] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann ma-

chines,” in Proceedings of the 27th International Conference on Machine Learning, 2010,

pp. 807–814.

[72] Bari, A. S. M. (2020). Kinect-based Gait Recognition Using Deep Learning (Master’s

thesis, Science).

[73] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by

backpropagating errors,” Nature, vol. 323, no. 6088, pp. 533–536, 1986.

[74] J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural networks,

vol. 61, pp. 85–117, 2015.

108

[75] Atakulreka, Akarachai, and Daricha Sutivong. “Avoiding local minima in feedforward

neural networks by simultaneous learning.” In Australasian Joint Conference on Artificial

Intelligence. Springer, Berlin, Heidelberg, 2007.

[76] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities improve neural

network acoustic models,” in International Conference on Machine Learning, 2013.

[77] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing human-

level performance on ImageNet classification,” in Proceedings of the IEEE International

Conference on Computer Vision, 2015, pp. 1026–1034.

[78] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accurate deep network

learning by exponential linear units (elus),” arXiv:1511.07289, 2015.

[79] G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochreiter, “Self-normalizing neural

networks,” in Advances in Neural Information Processing Systems, 2017, pp. 971–980.

[80] A. Canziani, A. Paszke, and E. Culurciello, “An analysis of deep neural network models

for practical applications,” arXiv preprint arXiv:1605.07678, 2016.

[81] Dunne, R. A., Campbell, N. A. (1997, June). On the pairing of the softmax activation

and cross-entropy penalty functions and the derivation of the softmax activation function.

In Proc. 8th Aust. Conf. on the Neural Networks, Melbourne (Vol. 181, p. 185). Citeseer.

[82] Britannica, The Editors of Encyclopaedia. “Seismic survey”. Encyclopedia Britannica, 7

Nov. 2017, https://www.britannica.com/science/seismic-survey. Accessed 13 June 2021.

[83] Global Analytical and Measuring Instruments. “Particle Size Distribution

Dependent on Principle of Measurement”. SHIMADZU Excellence on Sci-

ence, https://www.shimadzu.com/an/service-support/technical-support/analysis-

basics/lesson02.html. Accessed 13 June 2021.

109

https://www.britannica.com/science/seismic-survey
https://www.shimadzu.com/an/service-support/technical-support/analysis-basics/lesson02.html
https://www.shimadzu.com/an/service-support/technical-support/analysis-basics/lesson02.html

[84] Meldahl, Paul, et al. “The chimney cube, an example of semi-automated detection of

seismic objects by directive attributes and neural networks: Part I; methodology.” SEG

Technical Program Expanded Abstracts 1999. Society of Exploration Geophysicists, 1999.

931-934.

[85] West, B. P., May, S. R., Eastwood, J. E., Rossen, C. (2002). Interactive seismic facies

classification using textural attributes and neural networks. The Leading Edge, 21(10),

1042-1049.

[86] de Matos, M. C., Yenugu, M., Angelo, S. M., Marfurt, K. J. (2011). Integrated seis-

mic texture segmentation and cluster analysis applied to channel delineation and chert

reservoir characterization. Geophysics, 76(5), P11-P21.

[87] Roy, A., Romero-Peláez, A. S., Kwiatkowski, T. J., Marfurt, K. J. (2014). Generative

topographic mapping for seismic facies estimation of a carbonate wash, Veracruz Basin,

southern Mexico. Interpretation, 2(1), SA31-SA47.

[88] Qi, J., Lin, T., Zhao, T., Li, F., Marfurt, K. (2016). Semisupervised multiattribute

seismic facies analysis. Interpretation, 4(1), SB91-SB106.

[89] Hu, S., Zhao, W., Xu, Z., Zeng, H., Fu, Q., Jiang, L., ... Liu, W. (2017). Applying

principal component analysis to seismic attributes for interpretation of evaporite facies:

Lower Triassic Jialingjiang Formation, Sichuan Basin, China. Interpretation, 5(4), T461-

T475.

[90] Zhao, T., Li, F., Marfurt, K. J. (2017). Constraining self-organizing map facies analysis

with stratigraphy: An approach to increase the credibility in automatic seismic facies

classification. Interpretation, 5(2), T163-T171.

[91] De Lima, R. P., Bonar, A., Coronado, D. D., Marfurt, K., Nicholson, C. (2019). Deep

convolutional neural networks as a geological image classification tool. Sediment. Rec,

17, 4-9.

110

[92] Shoji, D., Noguchi, R., Otsuki, S., Hino, H. (2018). Classification of volcanic ash

particles using a convolutional neural network and probability. Scientific reports, 8(1),

1-12.

[93] Civitarese, D., Szwarcman, D., Brazil, E. V. (2019, June). Stratigraphic Segmentation

Using Convolutional Neural Networks. In 81st EAGE Conference and Exhibition 2019

Workshop Programme (Vol. 2019, No. 1, pp. 1-5). European Association of Geoscientists

Engineers.

[94] Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L. C. (2018). Mobilenetv2:

Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on

computer vision and pattern recognition (pp. 4510-4520).

[95] Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z. (2016). Rethinking the

inception architecture for computer vision. In Proceedings of the IEEE conference on

computer vision and pattern recognition (pp. 2818-2826).

[96] Ronneberger, O., Fischer, P., Brox, T. (2015, October). U-net: Convolutional net-

works for biomedical image segmentation. In International Conference on Medical image

computing and computer-assisted intervention (pp. 234-241). Springer, Cham.

[97] Suriamin, F., Pranter, M. J. (2018). Stratigraphic and lithofacies control on pore

characteristics of Mississippian limestone and chert reservoirs of north-central Oklahoma.

Interpretation, 6(4), T1001-T1022.

[98] Pires de Lima, R., Suriamin, F., Marfurt, K. J., Pranter, M. J. (2019). Convolutional

neural networks as aid in core lithofacies classification. Interpretation, 7(3), SF27-SF40.

[99] Zhong, Z., Carr, T. R., Wu, X., Wang, G. (2019). Application of a convolutional neural

network in permeability prediction: A case study in the Jacksonburg-Stringtown oil field,

West Virginia, USA. Geophysics, 84(6), B363-B373.

111

[100] Mauran, S., Rigaud, L., Coudevylle, O. (2001). Application of the Carman–Kozeny

correlation to a high-porosity and anisotropic consolidated medium: the compressed

expanded natural graphite. Transport in porous media, 43(2), 355-376.

[101] Voulodimos, A., Doulamis, N., Doulamis, A., Protopapadakis, E. (2018). Deep learn-

ing for computer vision: A brief review. Computational intelligence and neuroscience,

2018.

[102] Ikonomakis, M., Kotsiantis, S., Tampakas, V. (2005). Text classification using machine

learning techniques. WSEAS transactions on computers, 4(8), 966-974.

[103] Nassif, A. B., Shahin, I., Attili, I., Azzeh, M., Shaalan, K. (2019). Speech recognition

using deep neural networks: A systematic review. IEEE access, 7, 19143-19165.

[104] Pathak, A. R., Pandey, M., Rautaray, S. (2018). Application of deep learning for

object detection. Procedia computer science, 132, 1706-1717.

[105] Everson, L., Biswas, D., Panwar, M., Rodopoulos, D., Acharyya, A., Kim, C. H., ...

Van Helleputte, N. (2018, May). BiometricNet: Deep learning based biometric identifi-

cation using wrist-worn PPG. In 2018 IEEE International Symposium on Circuits and

Systems (ISCAS) (pp. 1-5). IEEE.

[106] Guimaraes, R. G., Rosa, R. L., De Gaetano, D., Rodriguez, D. Z., Bressan, G. (2017).

Age groups classification in social network using deep learning. IEEE Access, 5, 10805-

10816.

[107] Qayyum, A., Anwar, S. M., Awais, M., Majid, M. (2017). Medical image retrieval

using deep convolutional neural network. Neurocomputing, 266, 8-20.

[108] Glorot, X., Bengio, Y. (2010, March). Understanding the difficulty of training deep

feedforward neural networks. In Proceedings of the thirteenth international conference

112

on artificial intelligence and statistics (pp. 249-256). JMLR Workshop and Conference

Proceedings.

[109] He, K., Zhang, X., Ren, S., Sun, J. (2015). Delving deep into rectifiers: Surpassing

human-level performance on imagenet classification. In Proceedings of the IEEE inter-

national conference on computer vision (pp. 1026-1034).

[110] Hareland, G. A. (1994). Evaluation of flour particle size distribution by laser diffraction,

sieve analysis and near-infrared reflectance spectroscopy. Journal of Cereal Science, 20(2),

183-190.

[111] Kumara, G. H. A. J. J., Hayano, K., Ogiwara, K. (2012). Image analysis techniques

on evaluation of particle size distribution of gravel. Int. J. Geomate, 3(1), 290-297.

[112] Eisma, D., Bernard, P., Cadee, G. C., Ittekkot, V., Kalf, J., Laane, R. W. P. M.,

... Schuhmacher, T. (1991). Suspended-matter particle size in some West-European

estuaries; Part I: Particle-size distribution. Netherlands journal of sea research, 28(3),

193-214.

[113] Yin, X., Chen, W., Wu, X., Yue, H. (2017, June). Fine-tuning and visualization of

convolutional neural networks. In 2017 12th IEEE Conference on Industrial Electronics

and Applications (ICIEA) (pp. 1310-1315). IEEE.

[114] Caruana, R. (1995). Learning many related tasks at the same time with backpropaga-

tion. In Advances in neural information processing systems (pp. 657-664).

[115] Halotel, J., Demyanov, V., Gardiner, A. (2020). Value of geologically derived features

in machine learning facies classification. Mathematical Geosciences, 52(1), 5-29.

[116] Bestagini, P., Lipari, V., Tubaro, S. (2017). A machine learning approach to facies

classification using well logs. In Seg technical program expanded abstracts 2017 (pp. 2137-

2142). Society of Exploration Geophysicists.

113

[117] Hall, B. (2016). Facies classification using machine learning. The Leading Edge, 35(10),

906-909.

[118] Mandal, P. P., Rezaee, R. (2019). Facies classification with different machine learning

algorithm–An efficient artificial intelligence technique for improved classification. ASEG

Extended Abstracts, 2019(1), 1-6.

[119] Bohling, G. C., Dubois, M. K. (2003). An integrated application of neural network and

Markov chain techniques to the prediction of lithofacies from well logs: Kansas Geological

Survey Open-File Report 2003-50, 6 p. Group.

[120] Dubois, M. K., Bohling, G. C., Chakrabarti, S. (2007). Comparison of four approaches

to a rock facies classification problem. Computers Geosciences, 33(5), 599-617.

[121] Wikipedia contributors. (2021, March 2). Suncor Energy. In

Wikipedia, The Free Encyclopedia. Retrieved 21:20, June 27, 2021, from

https://en.wikipedia.org/w/index.php?title=Suncor Energyoldid=1009743501

[122] Wikipedia contributors. (2021, June 10). Athabasca oil sands. In

Wikipedia, The Free Encyclopedia. Retrieved 21:21, June 27, 2021, from

https://en.wikipedia.org/w/index.php?title=Athabasca oil sandsoldid=1027812817

[123] Kingma, D. P., Ba, J. (2014). Adam: A method for stochastic optimization. arXiv

preprint arXiv:1412.6980.

[124] Wikipedia contributors. (2021, March 20). Decision tree. In Wikipedia,

The Free Encyclopedia. Retrieved 02:31, June 30, 2021, from

https://en.wikipedia.org/w/index.php?title=Decision treeoldid=1013198756

[125] Bisong, E. (2019). More supervised machine learning techniques with scikit-learn. In

Building Machine Learning and Deep Learning Models on Google Cloud Platform (pp.

287-308). Apress, Berkeley, CA.

114

https://en.wikipedia.org/w/index.php?title=Suncor_Energy&oldid=1009743501
https://en.wikipedia.org/w/index.php?title=Athabasca_oil_sands&oldid=1027812817
https://en.wikipedia.org/w/index.php?title=Decision_tree&oldid=1013198756

[126] Brownlee, J. (2016). How to grid search hyperparameters for deep learning models in

python with keras. ĺınea]. [Online]. Available: https://machinelearningmastery.com/grid-

search-hyperparameters-deep-learning-models-python-keras/. [Accessed: August 24,

2021].

[127] Dike, H. U., Zhou, Y., Deveerasetty, K. K., Wu, Q. (2018, October). Unsupervised

learning based on artificial neural network: A review. In 2018 IEEE International Con-

ference on Cyborg and Bionic Systems (CBS) (pp. 322-327). IEEE.

[128] Baker, B., Gupta, O., Naik, N., Raskar, R. (2016). Designing neural network archi-

tectures using reinforcement learning. arXiv preprint arXiv:1611.02167.

[129] Willmott, C. J., Matsuura, K. (2005). Advantages of the mean absolute error (MAE)

over the root mean square error (RMSE) in assessing average model performance. Climate

research, 30(1), 79-82.

[130] Reza, A. M. (2004). Realization of the contrast limited adaptive histogram equalization

(CLAHE) for real-time image enhancement. Journal of VLSI signal processing systems

for signal, image and video technology, 38(1), 35-44.

[131] Jabro, J. D. (1992). Estimation of saturated hydraulic conductivity of soils from par-

ticle size distribution and bulk density data. Transactions of the ASAE, 35(2), 557-560.

[132] Lee, K. L., Farhoomand, I. (1967). Compressibility and crushing of granular soil in

anisotropic triaxial compression. Canadian geotechnical journal, 4(1), 68-86.

[133] Wang, J. P., Hu, N., François, B., Lambert, P. (2017). Estimating water retention

curves and strength properties of unsaturated sandy soils from basic soil gradation pa-

rameters. Water Resources Research, 53(7), 6069-6088.

[134] ASTM, D. (2011). 2487. Standard practice for classification of soils for engineering

purposes. In American Society for Testing of Materials.

115

https://machinelearningmastery.com/grid-search-hyperparameters-deep-learning-models-python-keras/
https://machinelearningmastery.com/grid-search-hyperparameters-deep-learning-models-python-keras/

[135] Su, Y. Z., Zhao, H. L., Zhao, W. Z., Zhang, T. H. (2004). Fractal features of soil

particle size distribution and the implication for indicating desertification. Geoderma,

122(1), 43-49.

[136] Wikipedia contributors. (2021, May 17). Laser diffraction analysis. In

Wikipedia, The Free Encyclopedia. Retrieved 10:04, July 9, 2021, from

https://en.wikipedia.org/w/index.php?title=Laserdiffractionanalysisoldid =

1023569489

[137] Lee, C. J., Wang, S. D. (1999). Fingerprint feature extraction using Gabor filters.

Electronics Letters, 35(4), 288-290.

[138] Li, W., Mao, K., Zhang, H., Chai, T. (2010, September). Selection of gabor filters for

improved texture feature extraction. In 2010 IEEE International Conference on Image

Processing (pp. 361-364). IEEE.

[139] Vincent, O. R., Folorunso, O. (2009, June). A descriptive algorithm for sobel image

edge detection. In Proceedings of informing science IT education conference (InSITE)

(Vol. 40, pp. 97-107).

[140] Detmer, D. M. (1995). Permeability, porosity, and grain-size distribution of selected

Pliocene and Quaternary sediments in the Albuquerque Basin. New Mexico Geology,

17(4), 79-87.

[141] Yoneda, J., Oshima, M., Kida, M., Kato, A., Konno, Y., Jin, Y., ... Tenma, N.

(2019). Permeability variation and anisotropy of gas hydrate-bearing pressure-core sedi-

ments recovered from the Krishna–Godavari Basin, offshore India. Marine and Petroleum

Geology, 108, 524-536.

[142] Wilson, A. M., Huettel, M., Klein, S. (2008). Grain size and depositional environ-

ment as predictors of permeability in coastal marine sands. Estuarine, Coastal and Shelf

Science, 80(1), 193-199.

116

https://en.wikipedia.org/w/index.php?title=Laser_diffraction_analysis&oldid=1023569489
https://en.wikipedia.org/w/index.php?title=Laser_diffraction_analysis&oldid=1023569489

[143] Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32.

[144] Oshiro, T. M., Perez, P. S., Baranauskas, J. A. (2012, July). How many trees in

a random forest?. In International workshop on machine learning and data mining in

pattern recognition (pp. 154-168). Springer, Berlin, Heidelberg.

[145] Probst, P., Wright, M. N., Boulesteix, A. L. (2019). Hyperparameters and tuning

strategies for random forest. Wiley Interdisciplinary Reviews: Data Mining and Knowl-

edge Discovery, 9(3), e1301.

117

