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Abstract 

A composite deterministic-statistical approach is used to study the relationships 

between the coefficients of variation and skewness of simulated random peak flows 

and the characteristics of watershed and rainfll. Random rainfall events are gener-

ated from their assumed probability distributions using the Monte Carlo technique. 

Each random rainfall event is simulated over a watershed of known characteristics. 

A finite difference explicit scheme is used to numerically solve the equations of 

flow for the peak flow. The watersheds range from singlerunoff planes to networks 

of stream-plane combinations. The runoff planes may be pervious and the rain-

fall events may have correlated intensities and durations. The resulting series of 

random peak flows are analysed for their statistical characteristics. 

The results indicate that the coefficients of variation and skewness of the ran-

dom peak flows lie within mathematically definable regions on a coefficient of 

variation-coefficient of skewness plot for given probability distributions of rainfall 

intensity. The coefficients of variation and skewness are at their maximum values 

for watersheds which have a relatively high degree of flow attenuation. Such wa-

tersheds include those with large drainage areas as well as the smaller watersheds 

under low intensity, short duration rainfall events. Stream-plane networks with 

relatively lower basin orders, smaller stream-length ratios, and longer flow paths 

generate random peak flows having their coefficients of variation and skewness 

close to the theoretical maximums. The coefficients of variation and skewness from 

watersheds with relatively lower attenuation rates are more sensitive to the tem-

poral and spatial distribution of the rainfall intensities. Compared to temporally 
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uniform rainfall intensity, non-uniform temporal distribution of rainfall intensities 

tend to shift the coefficients towards their maximums. For " large" watersheds, 

the duration of the rainfall events is more critical than the spatial and temporal 

distribution of the rainfall intensity. When the rainfall durations and intensities 

are related according to an inverse power function, the coefficients of variation and 

skewness become independent of the characteristics of the watershed and depend 

only on the exponent in the power function. This result holds both for single runoff 

planes and stream-planes networks. For correlated rainfall inputs the coordinates 

of the coefficients of variation and skewness lie on a line joining the theoretical max-

imums to those of the rainfall intensity probability distribution. This line forms the 

outer limit of the region within which the coefficients of variation and skewness lie. 

For constant duration rainfalls, inclusion of infiltration increases the coefficients of 

variation and skewness of the random peak flows. The regions within which they 

lie can still be determined by using the probability distributions of the effective 

rainfall intensity. For correlated rainfall events, the behaviour of the coefficients of 

variation and skewness of random peak flows generated from pervious watersheds 

become very complex and no definite pattern is immediately apparent. 

iv 



Acknowledgements 

The author thanks Dr. I. Muzik for supervising the progress of this work. 
The financial support from the University of Calgary is gratefully acknowl-

edged. 

V 



Contents 

Abstract iii 

Acknowledgements v 

1 INTRODUCTION 1 

1.1 General   1 
1.2 Deterministic and Statistical Approaches to Flood Prediction . . . 1 
1.3 Composite Deterministic-Statistical Approach   3 
1.4 Objective and Scope of Study   4 

2 LITERATURE REVIEW 6 
2.1 Physically-based Stochastic Hydrology   6 
2.2 Hydrodynamical Approach   7 

2.2.1 Stochastic Kinematic Wave Model   7 
2.2,2 Comments on the Hydrodynamical Approach   15 

2.3 Geomorphoclimatic lUll Approach   17. 
2.3.1 Geomorphologic lUll  U 17 

2.3.2 Geomorphoclimatic lUll   22 
2.3.3 Stochastic GcIUH  U 23 

2.3.4 Probabilities of Peak Flows using the GcIUH   25 
2.3.5 Comments on the GcIUH Approach   26 

2.4 Summary   27 

3 STATISTICAL CHARACTERISTICS OF RANDOM PEAK FLOWS 
FROM SINGLE PLANES 29 
3.1 Introduction  29 
3.2 The Rainfall-Runoff Process on a Single Plane   31 

U 3.2.1 Characterization of Rainfall, Infiltration, and Runoff Plane   31 
3.2.2 Modelling of Surface Flow over a Single Plane  35 

3.3 Intrinsic Nature of a Probabilistic Rainfall-Peak Flow Process for a 

Single Plane  45 
3.3.1 Random Rainfall Rates of Constant Duration on an Imper-

vious Plane   47 
3.3.2 Random Uniform Rainfall with Correlated Intensities and 

Durations on an Impervious Plane   68 

3.3.3 Random Rainfall Events on a Pervious Plane   78 
3.4 Effects of Non-uniform Random Inputs on Peak Flow Probabilities   87 

vi 



3.4.1 Triangular Distribution of Rainfall Intensity on an Impervi-
ous Plane   91 

3.4.2 Triangular Distribution of Rainfall Intensity on a Pervious 
Plane   97 

3.4.3 Correlated Non-Uniform Rainfall Inputs on a Pervious Plane 100 
3.5 Summary  100 

4 STATISTICAL CHARACTERISTICS OF RANDOM FLOOD EVENTS 
ALONG A STREAM 105 

4.1 Introduction   105 
4.2 Random Flood Events alonga Stream with Upstream Point Inflow 107 

4.2.1 Characterization of Upstream Flood Hydrograph   108 
4.2.2 Rate of Flood Level Subsidence with Distance  110 
4.2.3 Rate of Flood Peak Subsidence with Distance   114 
4.2.4 Effects of Flood and Stream Parameters on the Statistical 

Characteristics of Random Peak Depths   116 
4.2.5 Statistical Characteristics of Random Peak Flows  123 

4.3 Random Flood Events along a Stream with Lateral Inflow   125 
4.3.1 Numerical Simulation of Flow in a Stream-Plane Configura-

tion   127 

4.3.2 Method for obtaining Statistical Parameters of Random Peak 
Flows   127 

4.3.3 Uniform Rainfall Intensity on an Impervious Plane   128 
4.3.4 Uniform Rainfall Intensities on Planes with Non-uniform Char-

acteristics   137 
4.3.5 Spatially Non-uniform Rainfall Intensity   141 

4.3.6 Temporally Non-uniform Rainfall Intensity   143 
4.3.7 Non-uniform Rainfall Intensities, Non-uniform Plane Char-

acteristics, and Constant Infiltration Rate   145 

4.4 Summary  150 

5 STATISTICAL CHARACTERISTICS OF RANDOM PEAK PLOWS 
FROM A NETWORK OF STREAMS 153 

5.1 Introduction   153 
5.2 Numerical Simulation of Peak Flows from Stream Networks   155 

5.2.1 Numerical Simulation   155 
5.2.2 Evaluation of the Numerical Procedure   157 

5.3 Statistical Characteristics of Random Peak Flows from Constant 

Duration Rainfalls   162 
5.3.1 Topological Description of a Network of Streams   163 

vii 



5.3.2 Effect of Basin Order   164 
5.3.3 Influence of Stream Length Ratio on Statistical Characteris-

tics of Peak Flows   170 

5.3.4 Spatially Non-uniform Runoff Contributing Areas   173 

5.3.5 Triangular Temporal Distribution of Rainfall Intensity . . .   177 
5.3.6 Spatially Non-uniform Distribution of Rainfall Intensity . .   179 
5.3.7 Spatially and Temporally Non-uniform Rainfall Intensity on 

Spatially Non-uniform Runoff Contributing Areas   179 

5.4 Statistical Characteristics of Peak Flows from Correlated Rainfall 
Inputs   181 
5.4.1 Spatially and Temporally Uniform Rainfall Intensity   183 
5.4.2 Non-uniform Runoff Contributing Areas   187 
5.4.3 Temporally Non-uniform Rainfall Intensity   189 
5.4.4 Spatially Non-uniform Rainfall Intensity   192 
5.4.5 Combined Effect of Spatially and Temporally Non-uniform 

Rainfall Intensity   192 

5.4.6 Uniform Rainfall Intensity and Constant Infiltration Rate .   195 
5.4.7 Non-uniform Rainfall and Runoff Area Parameters and Con-

stant Infiltration Rate   198 
5.5 Discussion of Results From Single Planes, Single Streams, and Net-

works of Streams   199 

6 CONCLUSIONS AND RECOMMENDATIONS 206 
6.1 Scope of Study   206 
6.2 Conclusions   207 
6.3 Recommendations   211 

Bibliography 213 

A STATISTICAL CHARACTERISTICS OF POWER FUNCTIONS 

OF A GAMMA VARIABLE 217 



List of Figures 

2.1 Schematic of a first-order watershed (Eagleson, 1971).. ..  9 
2.2 A third-order basin and its trapping state (Rodriguez-Iturbe 

and Valdes, 1979).   18 

3.1 Typical plot of rainfall hyetograph and infiltration curve.. 34 
3.2 Definition sketch of flow over a sloping plane.   36 

3.3 Representation of overland flow by a series of reaches with 
uniform depths of flow (Muzik, 1974)  40 

3.4 Dimensionless curves for the Kinematic and Diffusion mod-

els.   42 
3.5 Cs-Cv relationships for the Normal, Gamma, and Log-

normal distributions  48 
3.6 Probability distribution curves of peak flows for mean rain-

fall intensities equal to 50 and 200 mm/hr  50 
3.7 Probability distribution curves of peak flows for rainfall 

durations equal to 600 and 1300 seconds  51 

3.8 Probability distribution curves of peak flows for slopes of 

planes equal to 0.01 and 0.08.   52 
3.9 Probability distribution curves of peak flows for roughness 

of planes equal to 0.02 and 0.007 . 53 
3.10 Probability distribution curves of peak flows for lengths of 

planes equal to 500 and 175 metres.  54 
3.11 Cs(qp) - Cv(qp) relationships for a plane with f(i) : Normal. 56 
3.12 Rainfall intensity-peak flow curve for given plane and rain-

fall characteristics.   58 

3.13 Geometrical transformation of a Normal 1(i) into g(qp) for 

3 i - qp shapes  59 
3.14 Cs(qp) - Cv(qp) relationships for a plane with f(i) Gamma. 60 
3.15 Effect of model used to obtain peak runoff on the relation-

ship between the statistical parameters of the peak runoff 

series  62 
3.16 Comparing exact probability distribution curve of peak runoff 

with Pearson Type III fit when f(i) is Normal.   69 
3.17 Comparing exact probability distribution curve of peak runoff 

with Pearson Type III fit when f(i) is Gamma  . . . 70 
3.18 Peak flow and Intensity-Duration-Frequency curves  73 

ix 



3.19 Comparing Cs - Cv relations of peak flows from constant 
duration rainfall inputs with those from correlated rainfall 
inputs when 1(i) is Gamma   79 

3.20 Cs - Cv relationships of peak flows from pervious planes 
with f(i) : Normal and h(f) Uniform   81 

3.21 Cs - Cv relationships of peak flows from pervious planes 
with f(i) : Gamma and h(f) : Uniform  83 

3.22 Cs - Cv relationships for maximum peak flows and for the 

corresponding effective rainfall intensities when rainfall in-
puts are correlated and include infiltration   85 

3.23 Return periods of peak flows and corresponding rainfall 
intensities from pervious planes under correlated. rainfall 
inputs   86 

3.24 Effect of constant infiltration rate on the return periods of 

peak flows from correlated and spatially uniform rainfall. 88 
3.25 Non-uniform rainfall and infiltration rates  90 
3.26 C—Cv relationships of peak runoff from triangular temporal 

distributions of rainfall intensity when 1(i) is Normal.  92 
3.27 Cs - Cv relationships of peak runoff from triangular tem-

poral distributions of rainfall intensity when f(i) is Gamma. 93 
3.28 Rainfall intensity-peak flow curves for temporally non-uniform 

rainfall intensity    95 
3.29 Infiltration curves for 3 soil types.   98 
3.30 Cs—Cv relationships of peak flows from non-uniform tempo-

ràl distribution of rainfall intensities and infiltration rates 

for f() : Gamma  99 
3.31 Effect of non-uniform temporal distribution of rainfall in-

tensity and constant infiltration rate on the return periods 
of maximum peak flows and the corresponding rainfall in-

tensities when the rainfall inputs are correlated.   101 

4.1 Gamma-type input flood hydrographs.   109 

4.2 Crest profile of a flood wave (Henderson, 1966).  111 
4.3 Stage-discharge curves for two shapes of flood hydrographs. 117 
4.4 Cs - Cv relationships of peak depth along the length of a 

stream for three types of time-to-peak-depth to peak-depth 
relationships  119 

4.5 Relationships between upstream and downstream peak flow 
depths along a stream for two types of time to peak depth-
peak depth relationships.   121 

X 



4.6 Cs - Cv curves of peak flows along a stream for two types 
of time to peak-peak depth relationships  124 

4.7 Schematic of a stream-plane configuration  126 
4.8 Change in Cs and Cv of peak flow pdf along the length of 

a stream for 1(i) : Normal    130 
4.9 Change in Cs and Cv of peak flow pdf along the length of 

a stream for f(i) Gamma 131 
4.10 C.s—Cv curves of peak flows at three sections along a stream 

for a range of mean spatially uniform rainfall intensities 

with 1(i) : Gamma . 135 
4.11 Limiting region within which the coefficients of skewness 

and variation of the peak flow pdf can be expected to be 
found when 1(i) is Gamma with Cv(i) = 0.3  138 

4.12 Cs - Cv curves of peak flow pdfs from planes with non-
uniform widths, slopes, and roughnesses when f(i) : Gamma. 

140 
4.13 Cs - Cv curves of peak flow pdfs for spatially non-uniform 

rainfall intensity when 1(i) Gamma and Cv(i) = 0.3.   142 

4.14 Cs—Cv curves of peak flow pdfs for temporally non-uniform 
rainfall intensity when f(i) : Gamma.   144 

4.15 Cs - Cv curves of peak flow pdfs along a stream for non-
uniform rainfall and plane characteristics.   148 

5.1 Schematic of flow at a confluence of streams.   156 

5.2 Schematic of river system used in testing the explicit nu-
merical scheme against the 1-D hydrodynamic model  160 

5.3 Comparison of hyrographs from the explicit numerical scheme 

with that from the 1-D hydrodynamic model  161 
5.4 Synthetic networks of order 2, 3, and 4 with each having a 

stream length ratio 1.5  166 
5.5 - Cs—Cv relationships of peak runoff from synthetic networks 

of order 2, 3, and 4.  168 
5.6 Cs - Cv relationships of peak flows from networks of differ-

ent stream-length ratios.   172 

5.7 Cs - Cv relationships of peak flows from two networks with 
non-uniform runoff contributing areas.   176 

5.8 Cs - Cv relationships of peak flows from networks under 
temporally non-uniform rainfall intensity  178 

5.9 Cs—Cv relationships of peak flows from two networks under 
spatially non-uniform rainfall intensity.   180 

Xi 



5.10 C.s—Cv relationships of peak flows from networks with non-
uniform distribution of runoff-contributing areas and non-
uniform distribution of rainfall intensities.   182 

5.11 Return periods of maximum peak flows and corresponding 
rainfall intensities from two networks under uniform and 
correlated rainfall intensities.   185 

5.12 Return periods of maximum peak flows and correspond-
ing rainfall intensities from two networks with non-uniform 

distribution of runoff areas and under uniform correlated 
rainfall intensities.   188 

5.13 Return periods of maximum peak flows and correspond-
ing rainfall intensities from two networks under temporally 
non-uniform and correalated rainfall intensities with p = 
3/10.   190 

5.14 Return periods of maximum peak flows and correspond-
ing rainfall intensities from two networks under temporally 

non-uniform and correlated rainfall intensities with p = 
7/10.  .  191 

5.15 Return periods of maximum peak flows and corresponding 
rainfall intensities from two networks under spatially non-
uniform and correlated rainfall intensities.   193 

5.16 Return periods of maximum peak flows and corresponding 

rainfall intensities from two networks under spatially and 
temporally non-uniform and correlated rainfall intensities. 194 

5.17 Return periods of maximum peak flows and correspond-
ing rainfall intensities from network (1) under uniform and 
correlated rainfall intensities and constant infiltration rate. 196 

5.18 Return periods of maximum peak flows and correspond-
ing rainfall intensities from network (2) under uniform and 

correlated rainfall intensities and constant infiltration rate. 197 
5.19 Return periods of maximum peak flows and correspond-

ing rainfall intensities from network (1) under non-uniform 
distribution of runoff areas and non-uniform distribution of 
correlated rainfall intensities.   200 

5.20 Return periods of maximum peak flows and correspond-
ing rainfall intensities from network (2) under non-uniform 
distribution of runoff areas and non-uniform distribution of 
correlated rainfall intensities.   201 

xii 



List of Tables 

4.1 Characteristics of stream-plane configuration   139 
4.2 Non-uniform rainfall and plane characteristics along length of stream 146 

5.1 Characteristics of networks illustrated in Figure 5.4.   167 
5.2 Characteristics of 6 synthetic networks with different stream length 

ratios   171 

5.3 Cs - Cv values for the nine networks listed in Tables 5.1 and 5.2 
under mean rainfall intensities of 50 and 80 mm/hr.   174 



Chapter 1 

INTRODUCTION 

1.1 General 

During the past decades there has been a consistent increase in the use of areas close 

to rivers for agxicultural, industrial, and recreational purposes. It is expected that 

this trend will continue, together with an expected increase in aggravation caused 

by floodings. Because of their engineering, economic, and social implications, it is 

important that these floods be made predictable both for short and long terms. 

1.2 Deterministic and Statistical Approaches to Flood Pre-

diction 

A physically-based deterministic approach to the problem of flood prediction is 

based to some extent on Newtonian mechanics, that, given the initial state of a 

system and the forces acting on it, the state of the system for any future period can 

be accurately determined. The transformation of climatic and physiographic data 

into a discharge record at the desired location in a watershed can in principle be 

derived from the solution of the equations of motion, continuity, energy balance, 

etc. , with the appropriate boundary conditions. For simple boundary conditions 

the solution is already a matter of difficulty, while the solution for complex het-

erogeneous watersheds is not yet in sight. Furthermore, it is impossible to forecast 
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the hydrometeorological factors acting on a watershed for a long time ahead, for 

instance for the service life of hydraulic structures (say, 50 to 100 years). A purely 

deterministic approach, therefore, has a limited forecast range. Its advantage lies 

in the possibility of assessing the consequences of various input parameters and 

flood mitigating structures during the planning and design stages of a project. 

A watershed has very many variables whose exact states along the time axis 

cannot be precisely determined, only their most probable states and possible fluc-

tuations about the latter can be postulated. This alternative viewpoint forms the 

basis of the statistical approach to the analysis of floods. There are two steps to 

this method: 

1. Estimation of the statistical parameters of the random peak flow series. 

2. Selection of a probability distribution curve. 

The main problem in this approach is associated with the special importance of 

low-frequency floods in engineering design. It is in this zone that the commonly 

used distributions such as the Normal, Gamma, Extreme-value, and Pearson III 

distributions exhibit large divergencies from one another. The selection of a dis-

tribution is sensitive to the amount of data available. When the peak flow records 

are short, as very often is the case, errors in the estimation of the statistical pa-

rameters and in the choice of the " proper" distribution can lead to serious under-

or over-estimation of design floods. 
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1.3 Composite Deterministic- Statistical Approach 

The deterministic and statistical approaches to flood prediction appear to be con-

tradictory, but the difference is only conceptual. The presence of an element of 

uncertainty, as is the case in the statistical approach, does not deny the existence 

of cause-effect relationships in the physical processes generating the floods. A ran-

dom effect is just as causally determined as a certain event, but differs from it in 

the character of its causes (Lebedev,1958). It is the hypothesis of this dissertation 

that the prediction of floods (or any other hydrological variable) must involve both 

deterministic and statistical methods. Yevjevich (1972) states that 

Future progress of hydrology may depend to a large extent on how 
these two approaches are combined for discovering, understanding, and 

generalizing hydrologic regularities of nature. 

An approach based on the genetic relationships between runoff and its causative 

factors and on the probable combination and occurence of these factors can signif-

icantly increase the amount of information on the nature of floods. The essence 

of this composite technique is to seek the statistical properties of the peak flows 

from the statistical properties of the inputs and the deterministic transformation 

of inputs into peak runoffs. 

The relative degree of importance of the two approaches in the composite tech-

nique is determined by the forecast range required (Kalinin, 1971). For forecasts' 

confined to some initial period of time during which the influence of the initial 

conditions is adequately strong and the meteorological factors are predictable with 

the required degree of accuracy, the deterministic part of the composite technique 

plays the major role. The statistical part takes account of observational errors and 
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evaluates the deviations from predicted values. The forecast range in this instance 

rarely exceeds a year. A fundamental principle in hydrology is the attenuating 

effects of time on the importance of initial conditions, i. e. , the longer the time 

from the start, the smaller is the effect of the initial state. The attenuation rate 

is relatively more rapid for the " smaller" watersheds. For forecasts for a period of 

time during which the initial conditions have lost their influence and meteorological 

factors are no longer predictable, statistical methods play the leading role. The 

role of the deterministic methods is 

1. to provide a physical basis for the probability distribution curves of the ran-
dom peak flow series. 

2. to incorporate the effects of changes (man-made or otherwise) on the water-
shed. 

The forecast range in this instance is practically unlimited but usually lies between 

2 and 200 years. This thesis will deal solely with the latter type of forecast. 

1.4 Objective and Scope of Study 

The objective of this study is to determine the effects of climatic and physiographic 

characteristics of a watershed on the statistical parameters, especially th coeffi-

cients of variation and skewness, of the probability distribution of the peak flows 

from the watershed. These two coefficients are very important in the estimation 

of low-frequency peak flows. The study is limited to conceptual watersheds. A 

watershed is conceptualised as a network of streams, every stream having a runoff 

plane on each side. The streams are assumed to have rectangular cross-sections 

and to be prismatic. The runoff planes can be either impervious or pervious. In-
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filtration rates may be constant for all rainfall events or be random variables. The 

climate is characterised by the intensity and duration of the rainfall. The proba-

bility distribution of the rainfall intensity is assumed known. The duration of the 

rainfall may be constant for all events or may be correlated with rainfall intensity. 

Monte Carlo technique is used to generate random series of rainfall intensity and 

infiltration values. The flow through the network is simulated for each event by 

a numerical solution of the equations of continuity and momentum at each time 

step. The numerical method employs an explicit finite difference scheme. The cor-

responding random series of peak flows are then obtained and analysed for their 

statistical parameters. 

Two current methods of establishing a physical theory for the stochastic proper-

ties of peak flows are reviewed in Chapter 2. In Chapter 3, a composite deterministic-

statistical approach is used to investigate the statistical properties of random peak 

flows from single runoff planes. The runoff plane is, in a hydraulic sense, the most 

basic component of a'wat'ershed. The objective in Chapter 4 is to determine the 

change that a combination of a single stream with one runoff plane, on each side 

makes to the statistical parameters of the peak flows. In Chapter 5, the water-

shed in its most general form, i.e., a network of streams and planes, is considered. 

The overall objective is to determine if statistical patterns detected at the single 

plane level persist when the more complex watersheds are considered. The analysis 

should also ' provide some information on the extent of the effect of non-uniform 

rainfall and watershed characteristics. The conclusions reached are of course perti-

nent to conceptual watersheds and their extrapolations to natural watersheds are 

discussed. 



Chapter 2 

LITERATURE REVIEW 

2.1 Physically-based Stochastic Hydrology 

Yevjevich ( 1972) states that 

a simultaneous use of both deterministic and stochastic (statistical) 

methods of analysis and description of hydrologic processes in nature 
is necessary for producing the best scientific and practical information 
for hydrology 

Klemes ( 1978) puts this idea into focus by defining a physically based stochastic 

theory of the hydrological cycle as one which seeks 'to deduce the stochastic prop-

erties of a hydrologic phenomenon from their physical causes rather than only to 

describe them and manipulate their characteristics. The simplicity and rationale 

of this concept, however, hide the difficulty of its application to the rainfall-runoff 

process. The difficulty stems mainly from the complexities of the two primary 

processes, precipitation and its transformation into runoff. A review of the litera-

ture reveals two conceptually different approaches to the formulation of a physical 

theory for the stochastic properties of peak flows from watersheds. They are the hy-

drodynamical and the geomorphoclimatic instantaneous unit hydrograph (GcIUH) 

approaches. In the hydrodynamical method, proposed by Eagleson ( 1971,1972), 

the flow in the watershed is described explicitly in terms of an approximate form 

of the fundamental equations of water flow, i.e., the equations of continuity and 

momentum. The rainfall and watershed are characterized by the probability distri-

6 
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butions of their respective parameters. After some assumptions and simplifications, 

Eagleson obtains an analytical solution for the probability density function (pdf) 

of peak flows. In the GcIUH method, advocated by Rodriguez- Iturb e and Valdes 

(1979), the instantaneous unit hydrograph (TUB) is interpreted as the pdf of the 

travel time that a drop of water, landing anywhere in the watershed, takes to reach 

the outlet, assuming that the time of travel in streams of a given order obeys the 

exponential distribution. The resulting GcIUH, characterized by its peak value and 

the time to the peak value, is a function of the velocity of flow at peak discharge 

from a 111 order watershed and some parameters of the watershed. The effective 

rainfall is treated as a stochastic variable and convoluted with the GcIUH to obtain 

an analytical solution for the pdf of peak, flows. The difference between the hydro-

dynamical and GcIUH methods lies in the characterization of the transformation 

mechanism of rainfall into runoff. There is a direct link between rainfall and runoff 

in the hydrodynamical method, while, in the GcIUH approach the rainfall is re-

lated to the runoff through a probabilistic form of a response function. Once the 

transformation mechanism is formulated, finding the pdf of peak flows follows the 

same procedure in each case. In the next sections, these two methods are described 

in more detail and their outcomes discussed. 

2.2 Hydrodynamical Approach 

2.2.1 Stochastic Kinematic Wave Model 

Eagleson (1971,1972) used an approximate form of the equations of continuity and 

momentum, the Kinematic Wave equations, on a conceptual watershed consisting 
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of one runoff plane on each side of a stream to study the effects of random variations 

'in rainfall and watershed parameters on the pdf of peak flows. A schematic of 

the watershed is shown in Figure 2.1. The rainfall, watershed, and runoff were 

characterized as follows. 

Rainfall Characteristics 

The rainfall events were described in terms of their depths, durations and correla-

tion between the two parameters. Stochasticity was introduced by describing the 

rainfall parameters in terms of their probability distributions. Eagleson expressed 

the marginal pdf of point rainfall duration, tr, as 

f(tr) = Aexp(—Atr), tr ≥ 0 (2.1) 

The marginal pdf of the point rainfall depth, d, was expressed as 

(2.2) 

The conditional pdf of point rainfall depth given the storm duration was written 

as 

f(d I tr) = -exp(---), tr ≥ 0, d ≥ 0 (2.3) 
tr tr 

For 546 storms (hourly rainfall) at Boston, Massachussets, Eagleson found that the 

above distributions gave good fits. The parameters A, k, and 0 were computed to 

be 0.13, 0.10, and 30 respectively, for tr .in hours and d in inches. The pdf of the 

time average point rainfall intensity, i0, was defined as 

f(io) = SF(io) (2.4) 
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Figure 2.1: Schematic of a first-order watershed' (Eagleson, 1971). 
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where 

and 

00 iotr 
F(io) = fo dtr fo f(d,tr)dd 

f(d,tr) = f(d I tr) .f(tr) 

(2.5) 

(2.6) 

The point rainfall intensity was converted to an areal intensity by using the fol-

lowing correction factor 

dA = 1 - exp(-1.1t 25) + exp(-1.1t'25 - 0.O1A) 
d 

(2.7) 

where A is area in square miles and dA is the areal average rainfall depth. 

Assuming that dA and tr are independent of each other and approximating tr 

by its average value, , Eagleson arrived at the following equation for the areal 

average intensity, to, 

where 

- Pio -  

f(io) = exp(---j—), o ≥ 0 

k = 1 - exp(—AT0.21) + exp(—A °25 - 0.01A) 

(2.8) 

(2.9) 

and Ac is the area of the catchment in square miles. For a given catchment it was 

assumed that infiltration, interception, and evaporation could be lumped into a 

single constant " loss" rate, qf. The areal average rainfall excess, se, was then given 

by 

?o çb, cb<?o (2.10) 

For equal to a constant value, the pdf of te was 

13ie 
f(e) = e ≥ 0 (2.11) 
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The areal and temporal variability in the rainfall intensity was taken into ac-

-count by defining a rainfall excess, ie, as 

ie = e + I(x,t) (2.12) 

where I(X,t) is the fluctuating term in ie representing the random temporal and 

areal variability and xc is a coordinate of distance in the direction of overland flow. 

The fluctuating term I(Xt) has a zero mean. 

Watershed Characteristics 

The only watershed characteristic considered by Eagleson was the area producing 

direct runoff. A probabilistic description of the direct runoff area, Ar, should be 

jointly expressed in terms of the geomorphological characteristics of the watershed, 

storm size, and antecedent moisture conditions accompanying a given storm. The 

form of such an equation is not known and Eagleson assumed a marginal triangular 

distribution 'for Ar which reflected a bias towards small fractibns of the catchment 

area, A (Betson, 1964) 

f(Ar)(1 j  Ar ),O<Ar ≤Ac (2.13) 

Rainfall-Runoff Transformation 

The maximum discharge, Qm, from the watershed was the only runoff parame-

ters investigated. Eagleson identified two flow regimes for which Qm had to be 

evaluated separately. Those were 

1. Qm when tre ≥ t* 

2. Qm when tre < t* 
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where tre is the duration of the areally averaged rainfall excess and t* is the 

time of concentration of the combined overland-stream direct runoff area. To 

find the desired composite cumulative pdf of Qm, F(Qrn), Eagleson weighted the 

cumulative pdf of each flow regime with its cumulative pdf of occurence. 

F(Qm) = F1(Qm)F(tre ≥ t) + F2(Qm)F(tre < t) (2.14) 

The time of concentration of the combined overland-stream area t* can be ex-

pressed as 

= t + t (2.15) 

or, 

t* ts 
—=1+— 
tc tc 

(2.16) 

where, tc is the time of concentration of overland direct runoff and t3 is the time 

of concentration of the stream segment within the direct runoff area. Eagleson 

approximated -- to 1 quoting Wooding (1966) who reported to be less than tc 

0.5 for catchments of areas between 0.84 and 3383 sq. miles. Eagleson further 

assumed tc to be smaller than tre so that 

F(tre < t) = 0 

Hence 

and equation 2.14 becomes 

F(tre ≥ t) = :1. 

(2.17) 

(2.18) 

F(Qm) = F1(Qm) (2.19) 
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Therefore Qm for tre ≥ t* only need to be calculated. The derivation was as 

follows. 

Eagleson used the Kinematic Wave equations to derive the relationship between 

peak flow and rainfall parameters, however, the condition tre ≥ t* requires that 

the overland peak flow is equal to the rainfall intensity to satisfy the equation of 

continuity. Therefore the maximum overland flow per unit width was 

q-n Re (I +  -; )ie, tre ≥ tc (2.20) 

where Re is a dimension (perpendicular to the stream) of the area producing direct 

runoff and t(t) is the fluctuating term, I(z,t), averaged over t, assuming the 

temporal fluctuations to be independent of location. 

Denoting R3 as a dimension (along the stream) of the area producing runoff and 

assuming the watershed to be symmetrical about the stream, Qm was expressed 

as 
Rs 

QM = 2 fo qm dxs, tre ≥ t* 

(c)  Assuming that << 1, Eagleson obtained the following equation 
se 

or, 

(2.21) 

Qm = 2RsRcie, tre ≥ t* (2.22) 

Qm = Are, tre ≥ t* (2.23) 

where Ar is the area producing direct runoff. When e is in inches per hour and 

Ar in square miles, Qm is given by 

Qm  = 645Are, tre ≥ t* (2.24) 
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Eagleson assumed the variability of Ar to be independent of time and dependent 

primarily on geomorphology. He then averaged Qm over the population of runoff 

areas for a given catchment size 

A 
mf r Qmf(Ar)dAr 

Hence, 

(2.25) 

Qin = 645Arig, tre ≥ t* (2.26) 

where, Ar = 4g. from equation 2.13. 

Probability Distribution of Peak Flows 

Combining equations 2.11 and 2.26, Eagleson obtained the following equation for 

- 

F(Qm) = ezp( 645kAr 

Eagleson then converted equation 2.27 to include base flow and the resulting equa-

tiOn was expressed in terms of the return period of the peak flow. 

- 215kA 
Qp = 1n(cblq29TE) + 0.074(1 - c2)c1PAc 

where, 

1. Qp = peak flow from watershed 

2. Ac = watershed area (square miles) 

3. çl i = fraction of rainfall occuring as runoff 

4. c'2 = fraction of runoff occuring as direct runoff 

5. k = fraction of point rainfall occuring as areal rainfall 

6. P = average annual rainfall (inches) 

(2.27) 

(2.28) 
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7. 8 = parameter of conditional distribution of rainstorm depth given duration 
(hours/inch) 

8. 0 = average annual number of independent rainfall events 

9. TE = recurrence interval of 2p - 

The equation given by equation 2.28 was then tested on two Connecticut catch-

ments. The fit was best for TE in the range 1 < TE < 10. At higher TES, equation 

2.28 underestimated the peak flows by a considerable amount. 

2.2.2 Comments on the Hydrodynamical Approach 

The analysis, as descrbed above shows both the possibility of deriving the pdf of 

a hydrologic variable from the pdfs of its causative factors and also the difficul-

ties involved in trying to obtain an analytical solution. It illustrates the fact that 

when one starts from such a fundamental level, then, a lot of assumptions and ap-

proximations are necessary to maintain mathematical tractability. In particular, 

Eagleson assumed statistical independence among varial'les which are known to 

be strongly interdependent, he approximated several random quantities by their 

averages and some distribution models were chosen on the basis of their easy inte-

grability. He attributed the inaccuracy of the model at high return periods to the 

assumed distribution of Ar. He pointed out that the Kinematic Wave equations 

may not be appropriate in all cases. Klemes (1978) went even further by arguing 

that the relationship derived was prohibitively complex and superfluous in view of 

the uncertainties inherent in the parameters included in the analysis. He pointed 

out that a reduction in the average value of Ar from 1/2 to 1/3 of the catchment 

area resulted in an increase of the return period of a given peak flow from 10 years 
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to about 100 years. Wood (1976) replaced the constant " loss"' rate 0 with a random 

"loss" rate having a Uniform, Gamma, or Exponential distribution and reported 

that in a typical case, such a change affected the return period significantly. 

While all the criticisms of Eagleson's approach may have some validity, they 

,are levelled against the approximations made rather than the concept. And the 

approximations are necessary for an analytical solution. The necessity for analyti-

cal pdf transformations can be removed by working' with the moments of the pdfs 

rather than their functional forms. Although a random variable is fully character-

ized by its pdf, the first few (e.g. three) moments of the pdf can in many cases 

provide just as much information on the random variable. The calculation of the 

moments can proceed through a Monte Carlo simulation of all the random variables 

involved. The only constraint is the computational time required for generating 

a sufficient number of the random variables and obtaining the peak flow for each 

input. With the high-speed computers available today (1988), the problem is not 

insurmountable. Furthermore, this approach allows the detailed study of the ef-

fects of each variable. This composite deterministic-statistical approach is adopted 

for the purposes of this dissertation because the physics of the hydrological process 

is explicitly included in the analysis and the numerical (Monte Carlo) procedure 

provides the flexibility to study the rainfall-runoff phenomenon from very simple 

runoff planes to complex river systems. 
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2.3 Geomorphoclimatic IUH Approach 

Rodriguez-Iturbe and Valdes ( 1979) and Rodriguez-Iturbe and Gonzalez- San abrio 

(1982) have used the concept of the instantaneous unit hydrograph (IUH) to link 

the hydrologic response of a basin with its geomorphological parameters. The lUll 

which is equivalent to the unit impulse response function of the basin has been 

re-interpreted as the frequency distribution of the times of arrival at the outlet 

of the basin of water particles, given an instantaneous application of unit volume 

of rainfall excess uniformly spread over the basin at zero time. The influence of 

climatic factors is incorporated in the geomorphologic lUll (GIUH) by including 

the rainfall intensity ir and the rainfall duration tr. The peak and time to peak, 

qp and tp respectively, of a now geomorphoclimatic lUll (GcIUH) become ran-

dom variables whose distributions depend on the geomorphology of the basin and 

climate specified through the pdfs of ir and tr. The GcIUH is convoluted with 

random rainfall parameters to obtain the pdf of peak discharges. Cordova and 

Rodriguez-Iturbe (1983) have used with some success this GcIUH concept for the 

estimation of extreme flow probabilities on some basins in Venezuela. 

2.3.1 Geomorphologic IUH 

Figure 2.2 illustrates a 3Td order basin (Strahler's ordering system) and its trapping 

state which is an imaginary 4th order stream represented by a bucket collecting the 

output from the basin. The imaginary stream must be distinct from the highest 

stream order and therefore has an order one unit higher than that of the basin. 

Assume that a unit volume of rainfall excess uniformly distributed over the basin 
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J-  Trapping state 

Figure 2.2: A third-order basin and its trapping state (Rodriguez-Iturbe 

and Valdes, 1979). 
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is instantaneously imposed upon it. The IUH at the outlet is the time 'derivative of 

'the observed cumulative volume of water in the bucket. A probabilistic approach 

to the same system looks for the probability that a rainfall drop chosen at random 

from the input has reached the bucket at time t. For the 3rd order basin shown in 

Figure 2.2, this probability is given by 

04 (t) = 01(0).cb14 (t) + 02(0).cf 24 (t) + O3(0).q 34(t) (2.29) 

The terms in the equation 2.29 are defined as follows 

1. O(t) = piobability that the drop is in a stream of order i at time t (the 

bucket is of order 4) 

2. O(0) = probability that the diop is in a stream of order i at time t = 0 

(04 (0) = 0) 

3. 1j(t) = probability that the drop goes from a stream of order i to one of 

order j in a time interval t 

The geomorphological structure of the basin plays an explicit role in the evaluation 

of these probabilities. 

For a uniformly distributed rainfall over the whole basin area, 

A 
O(o) = __L 

AT 
(2.30) 

where A (i = 1,2,3) represents the total area of order i draining directly in a 

stream of order i and AT is the total area of the basin. From Horton's laws of 

stream numbers, stream lengths, and stream area the following expressions are 

derived 
* 2 

1 AT R2 
(2.31) 
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3 2 

02 (0) - = (2.32) 
AT RA R(2RB - 1) 

0 - A RB ±. RB[R - 3RB + 2] 
3A - 2 ) (2.33)- 

'A RA BILB 

where RB is the stream bifurcation ratio and RA is the area ratio. These param-

eters are defined and explained in section 5.3.1. 

The probability Oij(t) depends on ( 1) i-, the mean waiting time in a stream of 
order i and (2) pj, the probability that the drop makes a transition from a stream 

of order i to one of order j. The random holding time Ti that a drop spends in 

state i is assumed to be independent of its next destination and to be exponentially 

distributed. The waiting time density is then given by 

w1(r) = A1exp(—A1r) (2.34) 

By defining an average streamfiow velocity for the whole basin as ii, A1 can be 

evaluated from 

LI 
A1 = (2.35) 

where L1 is the mean length of streams of order 1. Similarly, for streams of order 

I (I > 1), 

A1 
  i>i (2.36) 

where RL is the stream length ratio. v introduces a dynamic parameter in the 

formulation of the lUll. The reciprocal values of A can be collected in a matrix A. 

the probability that a drop moves from state 1 to state i, is defined in 

terms of the structure of the drainage network as 

Pli - no. of streams of order 1 draining into streams of order i (2.37) 

- total no. of streams of order i 
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The probabilities P12 and P13 can be written in terms of Horton's geomorphological 

parameters as 

R+2RB -2 
P12= 2 

2R — RB 

R -3RB+ 2 
P13= 2 

2RB - RB 

The pij values can be collected in a transition probability matrix P. 

By defining a transition rate matrix as 

A=A(P—I) (2.40) 

where I is the identity matrix, the interval transition probability matrix becomes 

(t) = exp(At) (2.41) 

(2.38) 

(2.39) 

Since the lUll is the time derivative of the volume of water in the bucket, therefore, 

the lUll for the 3,d order basin depicted in Figure 2.2 is 

IUH(t) d04 (t) = O(b)4(t) +02(0)- d024 W  + 03(0)- 03(0)•t) (2.42) 
dt 

The solution of equation 2.42 gives IUH(t), the pdf of the time of arrival of a 

randomly chosen raindrop to the trapping state, in terms of the geomorpho logical 

characteristics of the basin shown in Figure 2.2. The main characteristics of the 

GIUI are its peak and the time to peak. Using regression analysis on the outcomes 

from simulating a range of basin parameters, Rodriguez-Iturbe and Valdes (1979) 

generalize their results to 

1.31 RO.43 
qp = 

0.44L RB 0.55  
tP =  R9 38 

(2.43) 

(2.44) 
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•where 11 is the order of the basin and ii is an assumed average stream velocity 

{or the whole basin. The GIUH as defined by equations 2.43 and 2.44 was tested 

against lUll obtained from direct rainfall-runoff simulations and were found to be 

reasonably accurate. 

2.3.2 Geomorphoclimatic IUH 

Introduction of the rainfall parameters through the velocity parameter v transforms 

the GIUH into the Ceomorphodlimatic lUll (GcIUH). The velocity parameter v 

at a given time during a spatially uniform storm over a basin has been found to 

be reasonably constant (Pilgrim, 1977). v can then be expressed analytically as a 

function of ir, the intensity of the effective rainfall, tr, the duration of the rainfall, 

and the geomorphological characteristics of the first order basin. Rodriguez-Iturbe 

and Valdes (1979) then assumed that the duration of the rainfall tr exceeds the 

time of concentration tc of the first order basin. This means that V is now the 

peak velocity from a first order basin and is calculated as follows 

ii = (2.45) 

where 

k = 1/ms A(ms - 1)/ms (2.46) 

a1 = (2.47) 

m5 = (2.48) 

= (ms - 1)/ms (2.49) 

The subscript 1 refers to the first order basin, S is the slope of the corresponding 

stream and n its roughness coefficient. 
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The parameters of the first order basin are related to those of the highest order 

(1) basin according to the following: 

After approximating 
R 

A 

Iturbe and Valdes (1979) expressed the characteristics of the GcIUH as 

a1 aç1(Rf - 1)ms - 1 (2.50) 

Al = A- R (2.51) 

to 0.80 and some algebraic manipulations Rodriguez-

0.871 
qp = 119.4 

tp = 0.585fl 9.4 

where qp and tp are in 1/hr. and hours. ITi is defined as 

(2.52) 

(2.53) 

L25 
fl. (2.54) 

ieAIRLaj5 

where L11 is the length of the stream of the highest order (km), Aç is the area of 

order 12 in kin2, ie is the effective rainfall intensity (cm hr. — '), RL is the stream 

length ratio, and an is the kinematic wave parameter for the stream of highest 

order defined by 

a12—  2/3 
n11bç1 

b is the width of the stream. 

(2.55) 

2.3.3 Stochastic GcIUH 

When ir and tr are, as in nature, random variables whose pdfs represent the 

influence of climate, the GcIUH then becomes the stochastic unit impulse response 
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function of the basin. The pdfs of qp and tp, each defined by equations 2.43 and 

2.44 respectively, were obtained as follows. The intensity and duration of effective 

rainfall were assumed to be independent random variables with an exponential 

distribution, a description which has been found to be satisfactory by Eagleson, 

(1970, 1982). The distribution of the depth of rainfall, h(ir.tr), is given by Eagleson 

(1982) as 

f(h) = 4/36Ko //3Sh (2.56) 

where K0 is a modified Bessel function. For the case tr > te the pdf of the flow 

velocity 1-' is 

f(ii) = - r[()"I (2.57) 

After some algebraic manipulations and simplifications the following pdfs for qp 

and tp were obtained: 

where 

f(qp) = 3.53411q q 5exp(-1.412H 5) 

f(tp) = exp(  0.65611 —0.26211 

tp 

11= Lj5/(?rAflRLc 5) 

(2.58) 

(2.59) 

(2.60) 

The only parameter controlling both distributions is 11 which is a function of both 

the climate and the geornorphology of the basin. The statistical characteristics of 

f(qp) and f(tp) are 

E(qp) = 0.774/110.4 (2.61) 

cr(qp) = 0.327/110.4 (2.62) 

Cv(qp) = 0.423 (2.63) 
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E(t) = 0.858110.4 

a(tp) = 0.915110.4 

Cv(tp) = 1.066 

(2.64) 

(2.66) 

It is noticed that the coefficient of variation (Cv) is a constant in both distibutions, 

independent of climate and geomorphology. 

2.3.4 Probabilities of Peak Flows using the GcIUH 

The GcIUH allows the estimation of the unit impulse response function for a given 

particular input of effective rainfall. Rodriguez-Iturbe et al. (1982) assumed the 

GcIUH to be of a triangular shape with height qp and time base tp. Convoluting 

the triangular GcIUH with an effective rainfall intensity ie and duration t, the 

following equation for peak discharge was obtained: 

Qp = 2.42( 
ieAste )( O.218te  
119.4 ITQ.4 i ) (2.67) 

where te is in hours, Qp in m3s', and As is the site area in km2. Ili has been 

defined in equation 2.54. Equation 2.67 is valid for te less than or equal to the 

time of concentration of the whole basin given by - 

te = = 2.3119.4 
qp 

(2.68) 

Through a combination of the 11, soil, and rainfall parameters, equation 2.67 

was used by Cordova and Rodriguez-Iturbe (1983) to estimate the return periods 

of peak flows from a basin in Venezuela. The results from a GcIUH approach 
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was compared with historical records (26 years of data) and found to be reason-

able as long as the " correct" CN (U.S. Soil Conservation Service Curve Number), 

(U.S.B.R. , 1965) value for the soil characteristics was used. 

2.3.5 Comments on the GcIUH Approach 

The GcIUH approach has been explored by other investigators such as Gupta et 

al. (1980), Wang and Gupta (1981), Kirshen and Bras (1983), and Diaz-Grandos 

et al. ( 1984). The basic approach by all of them is not very different from the 

GcIUH, the essence of which is to develop a rainfall-runoff response function and 

convolute the latter with stochastic rainfall parameters to analytically obtain the 

pdfs for peak flows. The analyses indicate that this approach gives reasonable re-

suits when compared to historical records of peak flows. However, the " goodness 

of fit" depends very much on the selection of the proper values for such param-

eters as the Curve Number, average values for slopes and roughness coefficients, 

topological characteristics of river network, etc.. This is not unexpected because 

these parameters determine the most important charactersistic of a pdf, i.e. its 

mean value. The determination of the mean peak runoff cannot be expected to 

be accurate if it is determined by a lumped approach, which is the case with a 

probabilistic lUll. The assumption of a constant velocity throughout the basin for 

a given discharge may be valid on an " average" basis but is certainly not correct 

for every form and shape of a watershed. Furthermore, there is no physical basis 

for the choice of an exponential pdf for the probability distribution of the velocity. 

These deficiencies make the approach difficult to use to investigate the detailed 

effects of non-uniform rainfall parameters, the changes in the pdfs along the river 
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network, andthe effects of artificial changes to the streams. 

As pointed out in section 2.2.2, the necessity for an analytical solution of the 

peak flow pdf is not very important. Very slight changes to the shape of a pdf 

can drastically change the equation form of the pdf. The moments of a pdf are 

more robust descriptors of the random variations in a variable. Changes in the 

magnitudes of the moments are more easy to interpret than changes in the equa-

tions of pdfs. This is especially important when investigating the changes in flood 

probabilities along a river system. 

2.4 Summary 

Two methods of establishing a physical basis for the stochastic properties of peak 

flows have been reviewed. The hydrodynamic approach, proposed by Eagleson 

(1971,1972) uses the Kinematic Wave equations to deterministically relate rainfall 

intensity to peak flow from an impervious stream-plane catchment. Then, assuming 

an exponential pdf for both rainfall depth and rainfall duration, Eagleson derives 

an equation for the pdf of peak flow. The resulting equation performs well only for 

return periods less than 10 years when tested on two Connecticut, USA catchments. 

The " lack of fit" is attributed to the assumptions and simplications in the search 

for an analytical solution. 

The second method, proposed by Rodrigues-Iturbe and Valdes ( 1979), is less 

direct than the hydrodynamic approach. A geomorphoclimatic lUll is derived 

based on a probabilistic interpretation of the motion of water " particles" through 

the network of streams of a river system. The GcIUH is then convoluted with 
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random effective rainfall intensities and rainfall durations to determine the return 

period of peak flows. The accuracy of this method depends on a " correct" selection 

of the CN value for the soil characteristics. 

The main advantage of the hydrodynamic approach lies in the possibility of 

assessing the effects of individual parameters involved in the rainfall-runoff pro-

cess. However, mathematical difficulties prevent an expansion of the method in 

its present form to more complicated watersheds. The GcIUH approach is better 

suited to deal with real-scale watersheds, but the generalisation necessary to derive 

a probabilistic lUll limits its use in the study of the effects of individual parameters 

in the rainfall-runoff process. 



Chapter 3 

STATISTICAL CHARACTERISTICS OF 

RANDOM PEAK FLOWS FROM SINGLE 

PLANES 

3.1 Introduction 

A necessary step in the design of regulatory and service structures across streams is 

the identification and description of statistical patterns in random peak flow series. 

When " sufficient" data on peak flows are available at the desired location, standard 

frequency analysis may be adequate. This situation is more the exception than the 

rule. As yet, sufficiently rigorous methods for a theoretical determination of the 

probability density function (pdf) of the peak runoffs are not available. It is the 

hypothesis of this dissertation that a composite deterministic-statistical approach 

to the rainfall-runoff transformation process can suggest the presence of certain 

regularities in the statistical characteristics of peak flows and hence become an 

important source of supplementary information on peak runoff frequencies. This 

approach is based on the genetic relationships between runoff and the probable 

combination of its causative factors. The rainfall-runoff transformation process is 

governed by the deterministic equations of flow and the external hydrometeorolog-

ical factors are formulated in terms of their pdfs. The physiographic structure of 

the watershed is explicitly incorporated within the transformation process. Under 

29 
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some simplifying assumptions an analytical solution of the peak flow pdf is possi-

ble. In the majority of cases Monte Carlo simulation of the hydrometeorological 

factors and numerical solution of the governing equations of flow are used to obtain 

random peak runoff series. The latter can then be analysed for inherent patterns 

using standard statistical techniques. 

In general, the pdf of peak runoffs can take an infinite variety of forms depend-

ing upon the physical and probabilistic structures of each and every component in 

the rainfall-runoff process. A study of the statistical nature of random peak runoff 

series at an elemental level is then necessary to evaluate the intrinsic form of the 

peak runoff probability curve. In a hydraulic sense, the sloping terrain along the 

sides of a stream forms the basic unit in the physiographic description of a water-

shed. These units are interconnected in a tree-like pattern to form a river system. 

The runoff from any one basic unit is dependent only upon the terrain and rainfall 

characteristics and is not affected by the other units and streams. The sloping 

terrain is then a convenient starting place to study the statistical characteristics 

of random peak flow series. It is conceptualized as a single rectangular plane of 

constant slope and roughness. The flow on the plane is assumed to be " sheet" flow 

and is analysed using the equations of continuity and momentum. In this chapter', 

the effects of storm, infiltration, and plane characteristics on the statistical param-

eters of random peak runoff series are investigated. The effects of streams and the 

connectivity patterns are described in the next chapters. 
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3.2 The Rainfall-Runoff Process on a Single Plane 

A comprehensive study of the climatic and physiographic effects on the statistical 

relationships between rainfall and peak runoff would have to consider a physical 

system comprising the entire watershed, all its inputs and outputs, and all the laws 

governing their interactions. The mathematical difficulties involved in the solution 

of such a system are enormous. It therefore becomes necessary to use simplified 

mathematical formulations and to include only those components of the system 

which are essential to the specific objectives of the study. At the elemental level, 

the characteristics of the rainfall and plane are important factors in the formation 

of runoff. The specific output of interest is the instantaneous peak discharge at 

the end of the plane. Surface runoff is assumed to be the primary mode of water 

transport to the edge of the plane. 

3.2.1 Characterization of Rainfall, Infiltration, and Runoff Plane 

The key hydrometeorological variables in the genesis of peak flows are the rain-

fall intensity, rainfall duration, and infiltration rate. Each has to be described in 

terms of both its intrinsic physical and probabilistic structures. The latter is nec-

essary because of present day impossibility of forecasting rainfall and antecedent 

soil moisture conditions for long periods into the future. 

Recent research (Amorocho and Wu, 1977 and Lloyd et al., 1979) into the 

physical structure of rainstorms reveals complex precipitation fields generated by 

random and deterministic processes interacting in very intricate ways. For practical 

purposes, however, the degree of representational faithfulness of such a structure 
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need not be high because of the natural dampening effects of real watersheds. Thus, 

for some " large" watersheds, the banded structures of cyclonic rainstorms may be 

grossly equivalent in the production of runoff to areally uniform rains with the same 

mean intensities. On " smaller" watersheds, as on a single plane, similar rainstorms 

would be perceived as sequences of spatially and temporally non-uniform rainfalls. 

For the purposes of this study, the shape of the rainfall hyetograph will be either 

rectangular (temporally uniform intensity) or triangular (temporally non-uniform 

intensity). For triangular hyetographs, the peak intensity can occur at specified 

times along the duration axis. Although the peak intensities occur at random 

times for natural rainstorms, they will be assumed to be constant and known for 

every series of simulated rainstorms. Spatially non-uniform rainfall is simulated by 

assigning different mean intensities to various locations in the precipitation field. 

Infiltration is defined as the movement of water through the soil surface into 

the ground. The rate of infiltration is very difficult to evaluate because it depends 

on many factors and varies both temporally and spatially. G,eneral observations 

on infiltration rates indicate that they are highest at the beginning of the rainfall. 

The rate decreases rapidly at first because of changes in the surface soil structure 

and increases in the surface soil moisture content, and then gradually approaches 

a somewhat stable minimum,, Overland flow is generated during the periods that 

the rainfall rate is higher than the infiltration rate. The extreme complexity of the 

infiltration process has hindered exact solutions. Of the semi-empirical equations, 

Horton's equation is one of the simpler and better known. It is given by 

f=fc +(fo _fe)e_t (3.1) 
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where f is the infiltration rate (mni/hr) at time t (s), fo is its value at t = 0, fc 

is the infiltration capacity at infinite t, and fk is a decay constant. fo depends on 

the initial soil moisture conditions and Ic and fk are dependent on the soil types 

and to a smaller extent on the rainfall rate. Figure 3.1 shows a typical plot of the 

infiltration rate superimposed on the rainfall hyetograph. It is assumed that at t 

less than tof all the rainfall is lost to infiltration and overland flow begins at t01. 

In Figure 3.1 the value of fo is taken as that of f at t = t01. The volume of the 

surface runoff is given by the shaded area. A simple way of representing infiltration 

curve would be to assume a constant rate (fc) over the duration of the rainfall. 

The probabilistic structures of the rainfall and infiltration parameters can take 

many forms reflecting the great diversity in meteorological and soil conditions. 

Physically-based probability distributions for these parameters are still lacking. 

Uncertainty about their probabilistic structures necessitates some empirical as-

sumptions about their pdfs. As far as rainfall parameters are concerned, their 

distribution curves can be empirically obtained from a frequency analysis of their 

respective records, since such records are usually more plentiful and more accurate 

than runoff records. Also, since they have not been affected by the more com-

plex processes operating on a watershed, they may be assumed to have simpler 

probabilistic structures than those of peak runoffs. In this study, the pdf of the 

rainfall intensity will be either the Normal, Gamma or Gumbel distributions. Since 

a random variable with a Normal distribution can be negative, therefore the co-

efficient of variation of a Normal pdf of rainfall intensity is chosen such that the 

probability of a negative rainfall intensity is negligible. The upper limit of the co-

efficient of variation for this case is 0.3. A special case of the Gamma distribution, 
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Figure 3.1: Typical plot of rainfall hyetograph and infiltration curve. 
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the Exponential distribution, has been extensively used by several investigators 

'for describing the pdf of rainfall intensity. The pdfs of the infiltration parameters 

(fo, fc) are arbitrarily assumed to be independent of the rainfall pdfs and to have 

the Uniform distributions. The decay parameter fk is assumed to be a known 

constant for a given soil type. In some instances, it is assumed that the infiltration 

rate is a constant for all rainfall events. 

The transformation mechanism in the genesis of peak flows from rainfall is a 

direct function of the physical characteristics of the watershed. For a plane these 

characteristics are its runoff length, slope, and roughness. The slope and roughness 

will be assumed to be constant during all simulated rainfall events. 

3.2.2 Modelling of Surface Flow over a Single Plane 

In its simplest form, the basic watershed is represented by a single impervious 

sloping plane and the surface runoff is then a thin sheet of flow called overland 

flow. A schematic of the system is shown in Figure 3.2. After neglecting minor 

contributions such as the momentum of the raindrops and the effect of the vertical 

distribution of the flow velocity at a section, and approximating the surface slope 

So sinO tanO, (Raudkivi, 1979), the x-component of the equation of motion 

becomes 

16u uöu by --= So—Sf Tt 

and the continuity equation becomes 

by Sq 
- + - =i 
St Sx 

(3.2) 

(3.3) 
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where i is the rainfall intensity, y is the flow depth normal to the plane, q (= uy) 

is the outflow per unit width of the plane, u is the average flow velocity in the 

x-direction, S0 is the slope of the plane, and Sf is the friction slope. The St. 

Venant equations as equations 3.2 and 3.3 are commonly known as, can only be 

solved numerically for a general case. 

Kinematic Wave Model 

Experience with the St. Venant equations has shown that for certain situations 

some terms in equation 3.2 can become insignificant relative to the others. For 

example, Overton (1970) has shown that for planes with long runoff lengths, steep 

slopes, and high rainfall intensities all the terms on the left hand side of equation 

3.2 are negligible compared to the terms on the right hand side such that 

So Sf (3.4) 

Equation 3.4 implies that the discharge is now a function of flow depth only and 

in general is given by 

For laminar flow, 

qaym 

gSo 3 
q = 

3v 

in which v is the kinematic viscosity. For turbulent flow, 

q =  

(3.5) 

(3.6) 

(3.7) 

in which ii is the Manning's coefficient of roughness. Equations 3.3 and 3.5 are the 

so-called Kinematic Wave equations of flow and have been treated by Lighthill and 
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Whitham ( 1955). For flow over a single plane due to a constant rainfall intensity 

the solution of the Kinematic Wave equations gives the peak flow per unit width 

qpas 

and 

qp = a (ito)m , to < t 

qp=Li, to≥t.s 

where to is the duration of the rainfall, L is the length of the runoff plane in the 

direction of flow, and ts is the time taken to reach steady state of flow. t8 is given 

by 

ts = ( L )1/m (3.10) 
aj(m_ 1) 

Equations 3.8 and 3.9 give a deterministic relationship between rainfall intensity 

I and peak flow qp when the Kinematic Wave model is assumed to represent the 

surface runoff process. 

Diffusion Wave Model 

For the Kinematic Wave model, all the terms on the left hand side of equation 3.2 

are neglected. According to Henderson (1966), the next most significant term is 

the water surface slope Inclusion of this term gives the Diffusion Wave model 

of flow, and the momentum equation becomes 

Sç=So— 5y— 
J bX 

(3.11) 

Together with equation 3.3 representing conservation of mass, equation 3.11 de-

scribes the surface flow. In this system of equations, in contrast to the Kinematic 

Wave equations, the flow is dependent upon the backwater effects and hence takes 
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account of the past history of the flow build-up. Such a model has been used by 

Muzik ( 1974, 1976) to model the flow over a sloping impervious plane. The Diffu-

sion Wave equations were solved numerically and the results were found to closely 

approximate experimental data. 

The numerical procedure is an explicit finite difference scheme and is as follows. 

The unsteady spatially varied flow due to rain falling on a sloping impervious plane 

is computed by dividing the plane into a number of reaches as shown in Figure 

3.3. The flow in each reach is assumed to be of uniform depth so that the water 

surface in each reach is always parallel to the plane's surface. The friction slope 

serves as a bond of interaction between reaches. Assuming slowly varying flow 

and a sufficiently short distance increment Ax, the friction slope at the beginning 

of each time step may be approximated by 

Yj - 1 - lJ + 1  
Sf,j=So+ 2x 

The flow from one reá.ch into another is expressed for laminar flow as 

and for turbulent flow as 

cv 3 
qj = °f,jYj 

- v/Sf,j 5/3 
q—  y. 
J n, .:i 

(3.12) 

(3.13) 

(3.14) 

The roughness coefficient ri is assumed to be constant both spatially and tempo-

rally. The continuity equation for the jthreach written in finite difference form 

is 

q - 1 - q  
LYj = (i + )At Lx  (3.15) 
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Figure 3.3: Representation of overland flow by a series of reaches with 
uniform depths of flow (Muzik, 1974). 
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in which Ay is the change in the flow depth during the time interval At, ij is the 

'rainfall intensity on the 1th reach, q - 1 and are the inflow and outflow per unit 

width of the reach respectively, and Ax is the length of the reach. The downstream 

boundary condition is specified through Manning's uniform flow equation (equation 

3.7). Given the initial and boundary conditions of the system, the outflow from 

the last reach can be calculated for every time increment and hence the peak flow 

for any rainfall of given intensity and duration can be obtained. The Courant 

condition for stability of the scheme is given by 

(3.16) 

Semi-empirical Solution to the Diffusion Wave Equations 

In the general case, the Diffusion Wave equations can only be solved numerically 

and a complete simulation over the duration of the runoff is necessary to obtain 

the peak runoff. For the special case of a system with uniform rainfall intensity 

(spatially and temporally) of a constant duration over an impervious rectangular 

plane of constant slope and roughness a semi-empirical"equation relating peak flow 

to the system characteristics has been obtained. For planes of various lengths (L), 

slopes (Se), roughnesses (n), and rainfall of various intensities (1), and durations 

(t0), the resulting peak flows (qp) were obtained by numerically solving the Dif-

fusion Wave equations assuming turbulent flow conditions. When is plotted 

against io.4t0( nL v'o)o.6 a dimensionless curve, relatively unchangeable over a wide, 

range of plane and rainfall characteristics, is obtained and is shown in Figure 3.4. 

The curve corresponding to a semi-empirical equation approximating the numer-

ical solution is also shown in Figure 3.4, together with the analytical solution to 
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the Kinematic Wave equations. The semi-empirical equation is deduced from a 

'consideration of the time to steady state, i.e., the time taken for a " particle" of 

water to travel the length of the runoff plane. 

For the Kinematic model, the time to steady state assuming turbulent flow is 

given by 

ts Ln  3/5  1  
= P215 (3.17) 

VISO An approximate time to equilibrium for the Diffusion model is obtained as follows. 

At steady state the flow at a distance x from upstream is 

q(x) = ix (3.18) 

Manning's formula for normal flow at a distance x from upstream is 

q(x) = 
n 

(3.19) 

where y(x) is the depth at x. Upon eliminating q(x) from equations 3.18 and 3.19, 

the depth profile at steady state is 

The velocity of flow at x is 

?2 

.y(x) = 

V (x) = \/ y(x)2/3 

(3.20) 

(3.21) 

Substituting y(z) from equation 3.20 into equation 3.21 gives the velocity of flow 

at x as 

V (z) = (V')3/5j2/52/5 

The time te taken by a " particle" to reach (x = L) from (x = 0) is 

(3.22) 
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te f5t—f'  öx  
- 0 v(x) 

1  — 2/5 i215x 

te = ( n   )3/5 1 
\/So 

5 rtL  )3/5  1  

i2/5 
(3.23) 

Comparing equations 3.17 and 3.23 the following expression between te and t8 is 

obtained 

te = 1.667t3 (3.24) 

Figure 3.4 indicates that Le is approximately equal to 1.6. ts 

The semi-empirical equation fitting the Diffusion model curve is 

1=1—exp[  k  1.3 
1.6—k ], k< 1.6 

where 

= k IO.4t(V'\3/5 
nL 

For k ≥ 1.6, 

(3.25) 

(3.26) 

(3.27) 

The numbers 1.6 and 1.3 are the only empirically fitted parameters. The number 

1.6 has been shown to be close to an approximate analytical solution ( 1.667). It 

will be shown in the next section that the number 1.3 is also close to an approx-

imate analytical solution. For the Kinematic model, the corresponding analytical 

equations for the curve are 

qp = k5I3, k<1 (3.28) 
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and 

qp 
=1, k≥1 

i 
(3.29) 

• Figure 3.4 shows that while the Kinematic curve has a continuously increas-

ing gradient until steady state is reached, each of the Diffusion curves (numerical 

and semi-empirical) possesses a point of inflexion and reaches steady state val-

ues gradually. The latter properties are charactersitics of " real" flow conditions. 

The curves coincide with one another at low values of 10.4t0(  80)0.6, i.e., for 
nL 

cases with low rainfall intenstities, short rainfall durations, shallow slopes, long 

runoff lengths and low values for surface roughness. The curves, however, show 

some divergencies close to steady state, conditions. The Diffusion models predict 

longer times to steady state than the Kinematic model does. The accuiacy of the 

semi-empirical diffusion equations and the Kinematic Wave equations relative to 

the numerical solution of the Diffusion Wave equations as far as the statistical 

parameters of peak flows are concerned are discussed in section 3.3.1. 

For a simple system consisting of uniform rainfall intensity over a plane with 

constant length, slope, and roughness equations 3.25, 3.26, and 3.27 can be used to 

obtain the peak flow directly without a numerical solution of the Diffusion Wave 

equations. 

33 Intrinsic Nature of a Probabilistic Rainfall-Peak Flow 

Process for a Single Plane 

For a real watershed the statistical relationships between rainfall and peak flow 

can take an infinite variety of forms depending upon the physical and probabilistic 
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structures of each contributing factor. To evaluate the intrinsic nature of that rela-

tionship it is necessary to reduce the number of contributing factors to a minimum 

while still retaining the essential character of a rainfall-runoff process. Uniform 

rainfall intensities (spatially and temporally) of a constant duration with or with-

out uniform infiltration rates on a rectangular plane of constant slope and rough-

ness is an example of a hydrologic system with a minimum number of variables. 

This deterministic system is made probabilistic by assuming that the magnitude 

of each rainfall intensity (and infiltration rate) is a random variable. If the pdf of 

the rainfall intensity i is f(i) and there is a one to one and deterministic relation-

ship between i and peak flow qp then the pdf of the peak runoff g(qp) is given by 

(Sveshnikov, 1968) 

g(qp) = di 
(hqp 

When an analytical solution of the peak flow pdf is not feasible the random rainfall 

intensities are generated using the Monte Carlo simulation method. These inten-

sities are then converted to peak flows by a numerical simulation of the Diffusion 

Wave equations. The random series of peak flows so generated can then be analysed 

for their statistical characteristics. A useful way of investigating the relationships 

between the statistical characteristics of the rainfall intensity and those of the peak 

runoff is through a plot of the coefficients of variation (Cv) and skewness (Cs) of 

the two variables (Frind, 1969). For certain theoretical distributions the Cs - Cv 

relationships are known, e.g., for a Normal distribution, 

(3.30) 

Cs =0 (3.31) 
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for a two-parameter Gamma distribution, 

Cs = 2Cv (3.32) 

and for a Log-normal distribution, 

Cs = 3Cv + Cv3 (3.33) 

When these curves are plotted, (see Figure 3.5), they represent the loci of all 

co-ordinates (Cs, Cv) corresponding to the respective distributions. 

Using equation 3.30 or the Cs—Cv approach, the intrinsic nature of a probabilis-

tic rainfall-runoff process on a single plane is examined under various assumptions 

in the next sections. 

3.3.1 Random Rainfall Rates of Constant Duration on an Impervious 

Plane 

For a system with uniform rainfall rates on an impervious plane, the relation 

between rainfall intensity and peak flow, assuming the Diffusion model of flow, 

is given by the semi-empirical equations 3.34 and 3.35 (equations 3.25 and 3.27 

rearranged). 

where 

qp = i(1 - exp[ k  \1.3]), k < 1.6 
"1.6—k 1 

(3.34) 

qp = i, k ≥ 1.6 (3.35) 

k — i - 0.4t0(—) 0.6 
nL 

(3.36) 

An element of randomness is introduced in these equations by assuming that the 

magnitude of the rainfall intensity i is a random variable from a given probability 
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distribution f(i) with known parameters. It is of interest to determine the char-

acteristics of the resulting probability distribution g(qp) of the peak runoff. Using 

equation 3.30, g(qp) is given by 

g(qp) = f(i) 7ii' -k< 1.6 (3.37) 

where 

ki = 1 - exp(—( 
1.6— k)1.3) (1  0.832 1.6 - k 
k - k k )_2.3) (3.38) 

and 

g(qp) = f(i), k≥ 1.6 (3.39) 

For a specified f(i), g(qp) can be analysed for changes in every parameter in equa-

tions 3.37 and 3.39. 

f(i) : Normal 

Assume that f(i) is the Normal distribution (equation 3.40) with mean 1m and 

standard deviation is. The Normal distribution is symmetrical about the mean, 

has a coefficient of skewness equal to zero, and is given by the equation 

f(i)  1  ecp(-0.5(  zm )2) (3.40) 
\/27ri is 

Figures 3.6 to 3.10 illustrate the transformation of 1(i) to g(qp) for various specified 

values of im , to, L, So, and n. The mean of g(qp) is always less than or equal to 

the mean of f(i) by virtue of the fact that peak flow is always less than or equal to 

the corresponding rainfall rate. The shape of g(qp) can be either positively skewed, 

negatively skewed, or symmetrical. Figures 3.6 to 3.10 indicate that relatively 

smaller im , to, and So and relatively higher n and L produce g(qp) with a relatively 
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higher skewness. Conversely, higher 1m, to, and 8o and smaller n and L produce 

g(qp) with a skewness equal to or less than that of f(i). In fact, if a parameter km 

is defined as 

.0.4 0.6 
km --  m t0( L (3.41) 

then, it can be generally stated that when comparing different basic hydrologic 

systems a relatively lower km would indicate a more skewed g(qp) and a relatively 

higher km a lesser skewed g(qp). A study of the relationship between the statistical 

parameters of f(i) and g(qp) and km is therefore necessary. 

Statistical Relationships between f(i) and g(qp) 

The coefficients of variation (Cv) and skewness (Cs) of f(i) and g(qp) were deter-

mined using the Monte Carlo simulation method. 6000 random values of i were 

generated from f(i). These values were then converted into corresponding peak 

flow values using equations 3.34 and 3.35 and their statistical parameters deter-

mined. Figure 3.11 shows the Cs - Cv relationships between f(i) and g(qp) for 

Cv(i) equal to 0.1, 0.2, and 0.3. Also, loci of all (C.s(qp), Cv(qp)) correspond-

ing to certain constant values of km have -been drawn. For a particular Cv(i), 

(Cs(qp), Cv(qp)) starts at a maximum, decreases with increasing km until Cs(qp) 

reaches a minimum (negative values for the cases shown), and then tends towards 

(Cv(i),0). This behaviour can be explained by examining the i - qp transforma-

tion process characterized by equations 3.34 and 3.35. Any variable other than i 

could have been chosen because (Cs(qp), Cv (qp)) depends on km rather than the 

individual variables on their own. ' The i - qp relationship is however intuitively 

more understandable. Figure 3.12 shows the variation of qp with i for to = 1000 
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S, So = 0.01, ii = 0.02, and L = 500 m. The i - qp relationship is typical of a 

"real" i - qp curve with a concave rising part, an inflexion point, and a convex part 

gradually tending towards the steady state line. On the same curve, the ranges of 

i within two standard deviations of im  producing positively skewed, symmetrical, 

and negatively skewed g(qp) are shown. It is apparent that the shape of i - qp has 

an important influence on the skewness of the peak runoff pdf. Figure 3.13 gives a 

geometrical interpretation of how the three shape components of the i - qp curve 

transforms f(i) into g(qp). The effects of the shape of the i - qp curve can be 

generalised by stating that when d2 z is greater that, less than, or equal to zero, 
dqp 

then the skewness of g(qp) is greater than, less than, or equal to the skewness of 

f(i) (assuming that most random i are contained within one shape). 

f(i) : Gamma 

Figure 3.14 shows the Cs - Cv relationships between f(i) and g(qp) when 1(i) is 

the Gamma distribution with parameters A and 

i 1exp(—Ai), i, A, 77 >0 (3.42) 

The mean, variance, coefficient of variation, and coefficient of skewness of f(i) 

respectively are 

(3.43) 

(3.44) 

(3.45) 

(3.46) 
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The Gamma distribution is positively skewed. The shape of the Cs - Cv curves 

for peak flows are similar to those obtained for Normal f(i). (Cs (qp), Cv (qp)) 

starts from a maximum, decreases to a minimum C.s(qp), and then tends towards 

(Cs(i),Cv(i)). 

Comparison of Statistical Results from the Kinematic, Diffusion, and 

Semi-empirical Diffusion Models 

In the previous section it was assumed that the peak runoffs can be obtained from 

the semi-empirical equations 3.34, 3.35 and 3.36 which approximate the numerical 

solutions of the,Diffusion Wave equations 3.3 and 3.11. The equations relating peak 

runoff to rainfall intensity when the Kinematic Wave Model is used are equations 

3.26, 3.28, and 3.29. The effect of these methods of obtaining peak runoffs on 

the ds(qp) - Cv(qp) curve for Cv(i) = 0.3 and f(i) Normal is shown in Figure 

3.15. The Cs(qp) - Cv(qp) curve corresponding to the Kinematic Wave model 

is obtained by the method outlined for the semi-empirical diffusion equations in 

the previous section. The Cs(qp) - Cv(qp) curve corresponding to a numerical 

solution of the Diffusion Wave equations is obtained as follows. The peak flows 

(qp) were obtained for rainfall intensities (i) ranging from 1 to 200 mm/hr in steps 

of 1 mm/hr. The rainfall duration and the plane's characteristics were kept at 

constant values. 6000 random values of i were then generated from 1(i). The 

corresponding 6000 random values of qp were obtained by interpolation of the 

numerically obtained peak flows. Standard statistical methods were then used to 

determine their statistical parameters. - 

Figure 3.15 shows that the three curves have their maximum (Cs(qp),Cv(qp)) 
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close to one another. The greatest discrepancy between the curves occur at the 

point of minimum skevness. These observations can be explained with reference to 

Figure 3.4. The latter indicates that all three methods of obtaining the peak runoffs 

are indistinguishable for low km values and diverge from one another when flows 

conditions are close to steady state. The discrepancies are reflected in the Cs(qp) - 

Cv(qp) curves since the lower concave parts of the curves in ' Figure 3.4 produce 

concave-shaped i - qp curves and therefore give rise to the highest coefficient of 

,skewness, while, the upper convex parts produce convex and linear-shaped i - qp 

curves and therefore give rise to minimum skewness (see Figure 3.13). Figure 

3.15 indicates that the semi-empirical diffusion equations closely approximate the 

numerical solutions as far as the statistical parameters of the random peak flow 

series are concerned. Hence, the results of the previous section which were based 

on the semi-empirical equations are close to what would have been obtained had 

the Diffusion Wave equations been solved numerically to obtain the statistical 

parameters. 

Further Remarks on the Cs - Cv Relationship of g(qp) 

Figures 3.11 and 3.14 show that when km (equation 3.41) is less than a certain value 

(depending on the specification of f(i)) (Cs(qp), Cv(qp)) remains at a constant 

maximum value for a given Cv(i). And the maximums from different Cv(i)'s seem 

to fall on the same curve. For example, when f(i) is Normal (see Figure 3.12) 

Cs(qp) 1.21Cv(qp) (3.47) 

This relationship is empirical. Under some assumptions, a similar. relationship 

between Cs(qp) and Cv(qp) when f(i) is Gamma is analytically possible. Such 
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a relationship is useful because it gives the limiting values of the coefficients of 

skewness and variation. Equation 3.34 stating the relationship between peak flow 

and rainfall intensity is reproduced below 

qpi(1—exp(  k  
1.6—k'•3' k<1.6 (3.48) 

k is defined by equation 3.36. When (Cs(qp), Cv(qp)) is a maximum, km is much 

smaller than 1.6. So, for each individual i, equation 3.48 can be approximated by 

qp i(1 - exp(_() 13 )) 
1.6 

Equation 3.49 can be written in expanded form as 

(3.49) 

qp i(1 1 + (k/1.6) 1.3 + o.s(k/1.6) 2.6 +..) (3.50) 

For small k's, equation 3.50 is approximated by taking only the first two terms of 

the expansion in the denominator 

i + (k/1.6) 13 - 1 

qpz( 1+(k/1.6)'•3 

qp 1 + (k/1.6)l.3 

Assuming that for small k's, (k/1.6) 13 << 1, then 

qpi- j 1.3 
1.6 

Equation 3.53 can be written as 

or, 

- z. 0•4 1.3 
qp - (----to n,L 

qp — - ( ) 1.3 1.52 
1.6nL 

(3.52) 

(3.53) 

(3.54) 

(3.55) 
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or, 

qp - ai l.52 (3.56) 

where a is a constant for given rainfall duration and plane characteristics. It is 

interesting to note that the exponent on i (1.52) is less than but close to 1.667, the 

exponent on i for the Kinematic Wave model, i.e., for small k values the Diffusion 

and Kinematic models give almost the same results. The value of 1.3 used in the 

semi-empirical equations for the Diffusion model of flow is therefore not totally a 

fitting parameter. Using equation 3.30 and assuming that equation 3.56 relates qp 

to i and that f(i) is Gamma, the pdf of g(qp) is given by 

g(qp) = f((.) 1/1.52q /lS2).....L.( l)1/1.52 - 1 

or, 

(3.57) 

- .A'7 1 ( qp (1)77/152 3.58)( - 1.52)/1.52 1)1/152 1/1.52) 
g(qp) - r(77) 1.52 a qp ezp(—A 

The mean, variance, coefficient of variation, and coefficient of skewness of g(qp) 

are derived in Appendix A. The equations for Cv(qp) and Cs(qp) are 

- (F(77)T(3.04 + 17) - F2(152 + 77))1/2 
(3.59) Cv(qp) - r(1.52 + 17) 

= r2(77)r(4.56 + ) -  3r(77)r(3.04 + 77 )r(1.52 + r3 ) + (1.52 + )  
C.s(qp) 

(r(77)r(3.04 + 17) - r2(1.52 + ))3 

(3.60) 

The relationship between Cs(qp) and Cv(qp) is given by 

C.s(qp)Cv3(qp) = r2(77)r(4.56 + ) - 3r(77)r(3.04 + 77)r(1.52 I- ) + 2r2(1.52 + )  
r3(i.52+77) 

(3.61) 
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where 77 = 1 from equation 3.45. Equations 3.59 and 3.60 indicate that 
CV(z) 

for small k's, Cv(qp) and C.s(qp) are independent of the plane characteristics and 

rainfall duration and are only functions of the coefficient of variation Cv(i) of f(i). 

For an Exponential f(i), a distribution which has often been used to fit rainfall 

intensities, 

and therefore. 

and 

CV(i) = 1 

Cv(qp) = 1.57 

C.s(qp) = 3.89 

(3.62) 

(3.63) 

(3.64) 

These values are the theoretical maximums for an Exponential f(i). Figure 3.14 

shows a plot of equation 3.61 and it can be observed that this curve is valid only 

for km less than or equal to 0.5. 

For increasing km, (Cs(qp), Cv(qp)) curves indicate a very flexible relationship 

between C.s(qp) and Cv(qp). Since g(qp) may not be theoretically derivable for 

all f(i), an attempt was made to find a distribution which may only approximate 

the exact g(qp), yet reflects the main features of the latter, the most important of 

which is that it must exhibit a variable relationship between its Cv and Cs. 

The Pearson Type III Distribution as an Approximation to g(qp) 

The Pearson Type III distribution is essentially a three-parameter Gamma distri-

bution. It is expressed as 

f(X : n,.a,b) = 
1  X—mb ( ) exp(—(X - m)/a) (3.65) 

al'(b+1) a 
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m is a location parameter. The mean, coefficient of variation, and coefficient of 

skewness of the Pearson III distribution are respectively 

= m + a(b + 1) 

Cv= aVb+1  
m + a(b + 1) 

Cs= 2  

(3.66) 

(3.67) 

(3.68) 

The log form of the Pearson III distribution is recommended by the Water Re-

sources Council ( 1967) as the distribution to use to fit flood peaks. The Pearson 

III distribution has a flexible relationship between its coefficient of variation and 

coefficient of skewness, the latter can be positive or negative, and under special 

conditions it can degenerate into the Normal 'and Gamma distributions. The mag-

nitude of peak flows for various return periods given that the theoretical underly-

ing distribution is the Pearson III is determined by using Chow's frequency factors 

method (Chow, 1964). If q T is the peak flow having a return period T, then 

p,T = qp, rn (1 + Cv(qp)KT) (3.69) 

where KT is a frequency factor. KT is a function of the skewness of the distribution 

and the return period. It has been tabulated by the Water Resources Council 

(1967) for C.s(qp) ranging from — 3.0 to +3.0 and for various T's ranging from 

1.0101 to 200 years. If annual peaks are being analysed, then T is expressed in 

years. If all peaks above a certain level are being analysed, then T is the inverse 

of the " percent of time" a particular value of qp has been exceeded. For T greater 

than 10 years or equivalently for " exceedance less than 10% of the time" the two 

systems become indistinguishable. 
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To test the adequacy of the Pearson III distribution as an approximate but close 

representation of g(qp) as given by equations 3.37 and 3.39, the latter equations 

were numerically integrated. The values of qp corresjDonding to various return pe-

nods T (or equivalently " probability of exceedance") were plotted on probability 

paper. The statistical parameters of g(qp) were determined by Monte Carlo simu-

lation. Knowing the mean qp (qp, m), Cv(qp), and C.s(qp) and using equation 3.69, 

q, T was determined for various T's assuming that the underlying distribution is 

the Pearson III. These values were plotted on the same graph as the theoretically 

determined co-ordinates. The procedure was done for km equal to 0.5 and 1.0. 

Figure 3.16 and 3.17 show the results when f(i) is assumed to be Normal and 

Gamma respectively. It is observed that for a single plane under uniform rainfall 

intensity of constant duration, the Pearson Type III distribution is a good approx-

imation to the theoretical g(qp) for km = 0.5. For km > 1 the fit is not good, 

especially when T> 100 years. The Pearson Type III distribution may therefore 

approximate the actual pdf of the peak flows for conditions where flows close to 

the steady state are unlikely to occur. 

3.3.2 Random Uniform Rainfall with Correlated Intensities and Dura-

tions on an Impervious Plane 

The previous section dealt only with rainfall of random intensities and constant 

durations. Rainfall records indicate that there is a physical correlation between 

rainfall intensity and duration, i.e., rainfall of high intensities tend to be of short 

durations, typical of thunderstorms, and rainfall of low intensities tend to be of 

long durations, typical of convective storms. The probabilistic structure of such 
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Figure 3.16: Comparing exact probability distribution curve of peak 

runoff with Pearson Type III fit when f(i) is Normal. 
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rainfall events is, in practice, expressed as Intensity-Duration-Frequency (IDF) 

•curves. Such curves are shown as solid lines in Figure 3.18. For example, the 

rainfall event with intensity '2 and duration t2 has an exceedance probability of 

0.02 ( a return period of 50 years). These curves are synthetic curves constructed 

from rainfall records. For given to, the rainfall intensities are in practice fitted by 

the Gumbel distribution, an Extreme Value distribution. In the discussion that 

follows it will be assumed that the pdf of i for given to is Gamma. It will also be 

assumed that Cv(i) is constant for all t0's. The relationship between the mean of 

f(i), 1m, and to is taken to be of the form 

a 
a,b,t0 >0 (3.70) 

where a and b are regionally determined constants. Equation 3.70 is a generalised 

form of one proposed by Steel (1960). Since to can theoretically range between 0 

and infinity, therefore a probability distribution for peak flows where all durations 

are considered is not very useful. And different ranges of to will result in different 

g(qp)'s. For a given return period of i, the different combinations of rainfall in-

tensities and durations will result in a range of qs. For design purposes, only the 

extreme of these values of qp and its corresponding return periods are of impor-

tance. Figure 3.18 shows the IDF curves and the corresponding peak flow curves 

(dotted lines) for to between 30 and 1800 seconds. The semi-empirical diffusion 

equations of flow were used to determine the peak flows. The rainfall intensity was 

uniformly distributed over the runoff plane. The characteristics of the plane were 

S0 = 0.01, n. = 0.02, and L = 500 m. f(i) was Gamma with Cv(i) = 0.3. a and 

b in equation 3.70 were 456.2 and 0.62 respectively with m in mm/hr and to in 
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minutes. These values of a and b were obtained by correlating mean rainfall in-

tensities of various return periods with their correspbnding durations. The rainfall 

data were extracted from the Hydrological Atlas of Canada ( 1978). The peak flow 

for a given return period first increases with increasing rainfall duration until a 

maximum is reached. Further increase in the rainfall duration decreases the peak 

flow. The duration of rainfall that gives the maximum peak flow varies with the 

return period under consideration. 

The maximum peak flows are joined by a dashed line AB. When for each T, the 

maximum peak flow is divided by the corresponding rainfall intensity of the same 

return period (shown as a solid line with crosses : A'B'), a constant coefficient C 

is obtained, i.e., 

= (3.71) 

where (M) T denotes the extreme of the peak flows of a return period T. Equa-

tion .3.71 is analogous to the Rational formula used for design purposes. The 

Rational formula assumes that the time of concentration is always equal to the 

duration of the rainfall and consequently C = 1 for an impervious plane. However, 

C in equation 3.71 varies with coefficient b in equation 3.70. C is independent of 

a in equation 3.70. For b between 0.52 and 0.72, C varies between 0.95 and 0.89 

with C = 0.93 at b = 0.62. This is the case .because in the Diffusion model steady 

state is reached asymptotically and hence peak flows in Figure 3.18 depend on the 

rate at which T is decreasing, i.e. on b. 
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Figure 3.18: Peak flow and Intensity-Duration-Frequency curves. 
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Analytical Proof that C is a Constant for a Given b 

The peak flow qp from a uniformly distributed rainfall of intensity i and duration 

to on an impervious plane of slope 5o, runoff length L, and roughness n is given 

by the semi-empirical equation 3.25 in expanded form 

iO.4to(V'_S_O )0.6 

qp — - zi —exp  ) \1.3 
16—iO4t 1.,iSo06 

O rzL / 

For correlated inputs, the rainfall intensity i is related to the rainfall duration to 

by synthetic IDF curves. For a given and constant to, i is assumed to have a 

probability distribution f(i). It is further assumed that the mean rainfall intensity 

im of f(i) for all to is related to to by the empirical equation 

a 

= _10 
(3.73) 

where a and b are regionally determined constants. For a given to, the rainfall 

intensity of any return period T can be determined by the use of frequency factors 

KT if they are available for f(i). T is given by 

= im(1 + CV(i)KT) (3.74) 

where Cv(i) is the coefficient of variation of f(i) and is assumed to be constant for 

all durations to. The equation for any IDF curve is then 

or, 

a 
= --( i + Cv(i)KT) 
to 

aT 

to 

(3.75) 

(3.76) 
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where aT is a constant for a particular return period T. For a particular rainfall 

event of duration t and return period T the rainfall intensity is therefore given by 

aT 
T,t tb 

The peak flow corresponding to 1T, t is then 

Si0.4 T,tt  1.3 
q,T,t = ZT,t(1—CXP[ 1.6—si944t ' 

(3.77) 

(3.78) 

where s ( rtL ) p,T,t will vary with t for a given return period of z. 

The maximum q, 2', t qM, p, 2', t is obtained by determining t which will make 

Tt  
dt equal to 0. Let tm be the duration for which maximum peak flow occurs. 

After differentiating q ', t and some algebraic manipulation, at tm  the following 

relation holds 

k  1 3 1.3 k 0 3  - 0.4b)k (1 - 0.4b)k2 
1 = exp[( ' 16 - k J(1 + b 1.6 - k ' (1 1.6—k + (1.6— k)2 (3.79) 

where k =   6. The left hand-side of the equation is a constant, 

therefore, if b is a regional constant for the IDF curves, then k must be a constant 

for all 2's. If k is a constant, equation 3.78 implies that the ratios  M, p, T, tm  
,tm 

and C are constants. This proves that the maximum peak flow from correlated 

uniform inputs on an impervious plane is linearly related to the rainfall intensity 

of the same return period. 
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Relation between the Maximum Peak Flows and Rainfall Intensities of 

a Constant Duration 

Comparing equations 3.71 and 3.34, for C constant, i0.4to(< 0)0.6 is a constant 

for all maximum peak flows. Along the crossed line A'B' in Figure 3.18 then 

k = j0.4t(V)0.6 
mL 

(3.80) 

where i and to are the rainfall intensity and duration corresponding to the max-

imum peak flows for ' all return periods. Since C is a constant, it suffices to find 

the probability distribution of i, h(i), along the crossed line A'B' to determine 

The latter will bea linear transformation of h(i). 

Assume that for a rainfall duration, to = tj,, the rainfall pdf is f(i). Let i = 

Ij for a given return period T1 and duration t1. Refer to Figure 3.18. For T1, 

the corresponding rainfall intensity generating the maximum peak flow with return 

period T1 is 12 with duration t2. Along curve CD in Figure 3.18 for any I and t 

I= -i.. 
tb 

(3.81) 

where a1 is the coefficient for T = T1. Using equation 3.81, Il and '2 are related 

as 

12 - t], b 

1 t2 

Along A'B' equation 3.80 requires that 

0.4 _nL_\0.6 
12 t2 = 

Eliminating t2 from equations 3.82 and 3.83 results in 

= [1(V" )06]b/(1 - 0.4b) tb/(1 - 0.4b) 11/(1 - 0.4b) 
k nL 1 

(3.82) 

(3.83) 

(3.84) 
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where k is obtained from the solution of equation 3.79. Equation 3.71 states that 

the maximum peak flow is related to '2 by 

'lp(M),T = C12,T (3.85) 

Therefore, in general, the maximum peak flows of any return period are related to 

rainfall intensities i with a constant duration t1 as 

= w1i1/(1 - 0.4b) (3.86) 

where W1 is a constant corresponding to a constant duration t1. If the pdf of I 

(1 (1)) is known, then the pdf ((M)) can be obtained from equation 3.86 and 

3.30, i.e., 

= 

when f(i) is Gamma 

Equation 3.86 is a power function similar to equation 3.56. It was proven for 

equation 3.56 that if f(i) is Gamma, then the coefficients of variation and skewness 

of g(qp) are independent of the constant, being dependent solely on Cv(i) and the 

exponent in the power function. By analogy with equation 3.59 and 3.60 

(r()r(2b' + ) - r(b' +  
Wpm I'(2b' + ) (3.88) 

r2()r(3b' + i) - 3r()r(2b' + ) r(b' + ) + 2r3(b' + )  
Cs(q M) = (3.89) 

2' ' (r()r(2b' + ) - r2(b' + 

For both equations 3.88 and 3.89, 77 
= Cv2(i) and b' = 1 —O.4b Equations 3.88 

and 3.89 demonstrate that for correlated rainfall inputs with b in equation 3.73 

a constant, the coefficients of variation and skewness of the maximum peak flow 

(3.87) 
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probability distribution are constants. Since by equation 3.71 maximum peak flows 

and the corresponding rainfall intensities are linearly related, then both 

and h(i) (the pdf of the rainfall intensities corresponding to the maximum peak 

flows) will have exactly the same Cv and Cs. This result is very different from 

that obtained for constant duration rainfall ( i.e. uncorrelated inputs). Figure 3.19 

shows the Cs - Cv relationships for-both constant duration rainfalls and correlated 

rainfall inputs. The two sets of curves have only their two extremities in common 

when b is variable and Cv(i) is constant. For a constant b and variable Cv(i), 

all (Cs(q (M) ),Cv(q (M))) lie on a single line. The equation of the pdf of the 

maximum peak flows given that f(i) is Gamma, is by analogy with equation 3.58 

given by 

ib' 11Y=  A1 1 (l)?l/b' (77 - exp[— 
r(i7) b' W1 (M )  W1 qP A( _ ) / (M)I (3.90) 

where W1 is defined in equation 3.86, A and 77 are parameters of f(i) and b' 

1 
1 - 0.4b 

The foregoing analysis and results apply to the case where f() is Gamma. For 

any other fQ, equations 3.86 and 3.87 can still be used to find ((M)) although 

an analytical solution may not always be possible. 

3.3.3 Random Rainfall Events on a Pervious Plane 

In this subsection, the effects of infiltration are investigated. The system is kept 

simple by assuming that both the rainfall rates (i) and the infiltration rates (f) 

are uniformly distributed over time and space. The infiltration rate f can either 

be constant for all rainfall events or have a pdf h(f) which will be the uniform 
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Figure 3.19: Comparing Cs - Cv relations of peak flows from constant 
duration rainfall inputs with those from correlated rainfall inputs when 
f(i) is Gamma. 
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distribution with a lower limit fmin and an upper limit fmax. Monte Carlo 

simulation will be used to generate random rainfall and infiltration rates. Since i 

and f are uniform over time, the random effective rainfall intensity ie is 

ie = i - f (3.91) 

The peak runoff for any random 1e is then 

qp = ie(l'— exp[ (16k_ k1' k < 1.6 (3.92) 

qp : ie, ≥ 1.6 (3.93) 

where 

0.4  0.6 
k= i to(L) (3.94) 

Constant Duration Rainfall 

For a Normal f(i) with mean im and a Uniform h(f) with mean fmeart = 

0.5(fmin + fmax), the Cs - Cv relationships for g(qp) are shown in Figure 3.20. 

The minimum infiltration rate, 1mm, and im  were set to 0 and 100 mm/hr re-

spectively. Figure 3.20 indicates that the Cs - Cv curves are displaced to the right 

and upwards for increasing fmax. As with the impervious plane, each curve starts 

from a maximum (C.s(qp), Cv(qp)), and then tends towards a limiting Cv(qp) ap-

proximately equal to m _ [rnean.• is  is the standard deviation of f(i). The lowest 

Cv (qp) is approximately equal to the Cv of the effective rainfall instead of the total 

rainfall as was the case with the impervious plane. The shift in the Cs - Cv curves 

means that the skewness of g(qp) has increased. 



81 

(Cs(q),Cv(q)) fmean ( mm/hr) 

o (0.00,0.30) 0 

+ (0.26,0.43) 25 
(0.50,0.60) 50 -

> X (0.54,0.66) 75,100 

0 1.0 Jmaxl50,200 mm/hr 

- fmax100 mm/hr 
.-, .-.-. 

, 

tAX Jmax50 mm/hr 

C 

Normal 
Mean of f(i) : 100 mm/hr 
CV(i) = 0.3 

0 h(f) : U(0 -> fmax) 

max=0 mm/hr 

0.5 1.0 1.5 

Coefficient of 'skewness, Cs 

2.3 

Figure 3.20: Cs - Cv relationships of peak flows from pervious planes with 

f(i) : Normal and h(f) : Uniform. 
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For a given fmax, (Cv(qp), Cv(qp)) is a constant for a constant kme. The 

latter is defined as 

and 

0.4 0.6 
kme --  (ie) t0(  

rtL 
(3.95) 

(ie)m  = - frneart (3.96) 

For constant kme and Cv(i), Cv(qp) and C.s(qp) increase with increasing fi-nax. 

However, after a certain fmax, the Cv(qp) - C.s(qp) curve is not very sensitive to 

further increase in fmax. This limiting frnax is approximately equal to 21m, or 

fmean 1m• The dashed line in Figure 3.20 shows the approximate location of the 

limiting Cs - Cv curve when f(i) is Normal. Figure 3.21 shows the corresponding 

results when f(i) is Gamma. 

Correlated Rainfall Inputs with Random Infiltration Rates 

For correlated inputs, the mean rainfall intensity im  is assumed to be related to 

the rainfall duration to by the equation which has been reproduced below 

a 

0 

(3.97) 

As described for the case of an impervious plane, Cv(qp) and Cs(qp) are determined 

by the Monte Carlo simulation method. The characteristics of the plane are So 

= 0.01, n. = 0.02, and L = 500 m. f(i) and h(f) are the Gamma and Uniform 

distributions respectively, a in equation 3.97 is 456.2 and b in the same equation 

will be allowed to take a constant value between 0.42 and 0.72 for a number of 

runs. The minimum infiltration rate is 0 mm/hr and the maximum infiltration 

rate is a random value between 0 and 70 mm/hr for each run. The maximum peak 
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Figure 3.21: Cs - Cv relationships of peak flows from pervious planes with 
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flow is that peak flow which is greatest for increasing duration of rainfall, all other 

parameters held constant. 

Figure 3.22 shows the Cs - Cv relationships for the maximum peak flows and 

effective rainfall intensities. The coefficient of variation of f(i), the total rainfall in-

tensity pdf, is 0.3. Unlike the case of the impervious plane, (Cs( ()) Cv( () )) 

is no longer coincident the (Cs, Cv) of the effective rainfall pdf and the difference 

increases with an increase in fmax and a decrease in b (equation 3.93). This 

means that for correlated inputs with infiltration, the pdf's of the maximum peak 

flows and effective rainfall are no longer linearly related. This is further confirmed 

by Figure 3.23 which is a plot of the maximum peak flows and effective rainfall 

intensities against return period. If a ratio CT is defined as 

CT = (M), T) (3.98) 

e, T 

then, it is observed that CT is smaller for smaller T's and vice-versa. For a given 

b (equation 3.93) CT increases with T until it is the same as C (equation 3.71) for 

an impervious plane. This implies that infiltration reduces the higher frequency 

peak flows more than the lower frequency peak flows. The latter are also very close 

to the maximum peak flows of the same frequency from impervious planes. For a 

given fmax and T, a higher b decreases CT. These results are at variance with the 

Rational method which assumes C to be only the fraction of rainfall lost and not 

to be dependent on the return period of the design peak flow required. The next 

section examines the effect of a constant infiltration rate for all rainfall intensities. 
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Correlated Rainfall Inputs With Constant Infiltration Rates 

The behaviour of q (M) T and under constant infiltration rates are shown in 

Figure 3.24. The plane has the following characteristics length = 1500 in, slope 

= 0.03, and roughness = 0.04. The regional constants for the correlated rainfall 

inputs are : a = 338.7 and Ii = 0.70. The rainfall intensity pdf f(i) is the Gumbel 

distribution with Cv(i) = 0.3 and Cs(i) = 1.14. The coefficient of skewness of 

the Gumbel distribution is a constant at 1.14. For a particular return period T, 

iT was simulated for various durations as determined by the IDF curves and the 

maximum peak runoff was obtained. The no-infiltration case shows that the flows 

with high return periods (i.e. rare events) are generated by shorter duration and 

higher intensity rainfalls. When infiltration is considered, however, the rare events 

tend to be those of lower intensities and longer durations than the more frequent 

events. Also, the ratio C of p(M),t to T,tm is no longer constant. And for 

an infiltration rate exceeding 20 mm/hr, it seems that the rainfall events yieding 

maximum peak runoffs have almost a constant rainfall intensity for T between 2 

and 200, only the duration of each event changes. 

3.4 Effects of Non-uniform Random Inputs on Peak Flow 

Probabilities 

In the previous sections rainfall and infiltration rates were assumed to be uniform 

both areally and temporally. While uniform rates are characterized by single val-

ues, truly non-uniform rates have to be specified for each unit area at every time 

step. The infinite number of possible configurations precludes an all encompass-
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ing solution to the rainfall-runoff process. An alternative approach is to adopt an 

easily describable form of the most usual distributional shape of the variable and 

determine the sensitivity of the statistical parameters of the peak runoff series to 

the characteristics of the shape. The critical shape will evidently be a function of 

plane and other input characteristics. 

The time distribution of rainfall intensity i is assumed to be triangular in shape 

with the peak intensity ip occuring at time tp which is usually in the first or-second 

quartile of the total rainfall duration to. The ratio 1P can vary.between 0 and 1. 
to 

The corresponding uniform hyetograph with an equal volume of rainfall over to 

has a constant intensity of . These variables are illustrated in Figure 3.25. The 

time distribution of infiltration rate f is of a decreasing exponential type. The 

infiltration rate f at any time t ≥ t01 is given by an equation similar in form to 

equation 3.1 

f = fc + (fo - fc)exp(—fk(t - t0f)) (3.99) 

fk is a decay constant dependent on the soil type. The runoff is assumed to be 

produced by the rainfall excess depicted by the shaded area. 

In the following subsections the effects of LP, fc, fo, and .1k on the statistical to 

characteristics of random peak flows series are examined. i, fc, and fo are assumed 

to random variables generated from known pdfs. For these complex cases there is no 

analytical or even semi-empirical equation relating i to qp• Hence, for every random 

input the Diffusion equations have to be solved numerically over the duration of 

the runoff to obtain the peak runoff. 
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3.4.1 Triangular Distribution of Rainfall Intensity on an Impervious 

Plane 

In this subsection the rainfall intensity is assummed to be spatially uniform and 

to have a triangular distribution over its duration. For a given rainfall duration 

to, the volume of precipitation it0 is triangularly distributed over to such that the 

peak intensity ip ( = 2i) occurs at tp where 0 ≤ tp ≤ to. The ratio, p, of tp to 

to is kept constant for a particular random series of rainfall intensities. The runoff 

due to average (i.e. 1/2 of the peak intensity) rainfall intensity ranging between 

1 mm/hr and 200 mm/hr in steps of 1 mm/hr are numerically simulated and the 

corresponding peak flows qp determined. 6000 random average rainfall intensity 

values are generated from .f(i). The corresponding 6000 random values of peak 

flows qp are obtained by interpolating between the numerically simulated values. 

The resulting random series of qp are analysed for their statistical parameters. 

Figures 3.26 and 3.27 show the Cs(qp) - Cv(qp) relationships for 1(i) Normal and 

Gamma respectively (Cv(i) = 0.3 for both cases). p varies between 1 and 6 10 

where 

LP  

to 
(3.100) 

The Cs(qp) - Cv(qp) curve for spatially uniform rainfall intensity is shown on the 

respective figures when f(i) is Normal and Gamma. 

For all p's, the Cs(qp) - Cv(qp) curves including that of the uniformly dis-

tributed i, start from the same maximum (Cs(qp), Cv(qp)) and converge to the 

Cv(i) of f(i). This is an expected result because for low rainfall intensities of short 

durations over runoff planes with rough surfaces over shallow slopes the temporal 
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distribution of the rainfall intensity is not very significant. For the other extreme 

of the conditions mentioned, i.e, high rainfall intensities with long durations, etc., 

the temporal distribution of i is again not significant because the peak runoff is 

probably equal to the rainfall intensity. Between the two limiting co-ordinates, the 

curves from the triangularly distributed rainfall intensities separate from that of 

the uniformly distributed i. The separation between the curves for the triangularly 

distributed rainfall intensties increase for decreasing p until it becomes insignificant 

over most of the curve for p < 

The behaviour of the Cs(qp) - Cv'(qp) curves for the triangularly distributed 

rainfall intensities can be explained by examining the i - qp curves for different ps. 

The latter curves are shown in Figure 3.28 for p = -, , and 1 . For these curves, qp 

is plotted against , the equivalent uniform rainfall intensity. It was demonstrated 

in Figure 3.13 that the coefficient of skewness of the peak runoff series was related 

to the curvature of the i - qp curve. When the curve is concave and f(i) is Normal, 

the coefficieit coefficient of skewness of the peak flow series is positive, conversely, 

when the curve is convex the coefficient of skewness is negative. When the curve 

transits from a concave shape to a convex shape through an inflexion point, the 

coefficient of skewness will range between a maximum and a minimum. For the 

lower range of , the curves for triangular' and uniform distributions of rainfall 

intensity are concave and coincident and therefore explains why the maximum 

(Cs(qp), Cv(qp)) from either distribution of rainfall is the same. For increasing i, 

the i - qp curve for uniformly distributed rainfall intensity becomes convex after 

an inflexion point, however, the corresponding curves for triangularly distributed 

rainfall intensities continue on a concave path. So, while the (C.s(qp),Cv(qp)) 
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coordinates of the uniformly distributed rainfall intensity decrease, those of the 

triangularly distributed rainfall intensity remain at the maximum for a longer range 

of i. The i - qp curves for the triangular distribution of rainfall intensity eventually 

reach an inflexion point, however the latter is not well defined. The consequence 

of this behaviour is that the relationship between i and qp can be approximated 

by power function types of equations over a considerable range of i. It has been 

shown in section 3.3.2 (see Figure 3.19) that for a variable b in equation 3.56 and a 

constant Cv (i), the relationship between the coefficients of variation and skewness 

of the peak flow series is almost a straight line between the point of maximum 

skewness and the skewness of the rainfall intensity distribution f(i). Of the three 

curves for triangularly distributed rainfall intensity, the one for p = I is better 

approximated by power functions (its point of inflexion occurs outside the range of 

rainfall intensities tested and is at a higher intensity that the other two curves) and 

its Cs (qp) - Cv(qp) curve is almost a straight line between the maximum coefficient 

of skewness of qp and (Cs(i), Cv(i)). The i - qp curves for the other two values of 

p have their inflexion points at lower rainfall intensities and their Cs(qp) - Cv(qp) 

curves are in between that of the uniformly distributed rainfall intensity and that 

ofp= . 

An interesting observation from Figure 3.28 is that for triangularly distributed 

rainfall intensities, the coefficients of skewness and variation of the peak runoff 

series are close to the maximum over a large range of mean rainfall intensities 

and are not too sensitive to the time of occurence of the peak rainfall intensity. 

If this observation holds true for more complicated hydrological systems, then, 

detailed measurement of rainfall intensity distributions over time may not be very 
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important, at least as far as the coefficients of variation and skewness of the peak 

flows are concerned. 

3.4.2 Triangular Distribution of Rainfall Intensity on a Pervious Plane 

The case of non-uniform rainfall intensity on a pervious plane is very close to a 

natural situations. The number of variables has increased considerably compared 

to the basic system of uniform rainfall intensity over an impervious plane. The 

ratio is now 5 to 1. fo, fc, and fk have to be specified for the infitration curve and 

i and p for the rainfall hyetograph. fo and fc are Uniformly distributed random 

variables while i, the equivalent temporally uniform rainfall intensity, has a Gamma 

pdf. p is taken to be and fk is' assumed to be constant for a given soil type. The 

plane characteristics are L = 500 m,50 = 0.01 and ii = 0.02. fo is U(100,25) and 

fc is U(25,0). The infiltration curves for the cases of fo = 100 mm/hr, fe = 25 

mm/hr, and fk = (0.005, 0.05, 0.02) are shown in Figure 3.29. The curve with fk 

= 0.05 can nearly simulate the case of uniform loss rate. This case is dealt with in 

the next section for correlated rainfall inputs. 

199 values of each random variable (Ic, fo, and i) were generated by the Monte 

Carlo simulation technique. The peak runoffs were obtained by numerical simula-

tion of the Diffusion Wave equations. The Cs - Cv relationships of the random 

peak flows for im  ranging between 10 and 150 mm/hr are shown in Figure 3.30. 

Compared to the impervious case, both Cs(qp) and Cv(qp) from a pervious plane 

have increased. The curves for the three fk are very close to one another until 

in goes below 50 mm/hr. For- very low mean rainfall intensities, the effect of the 

infiltration is very significant. 
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3.4.3 Correlated Non-Uniform Rainfall Inputs on a Pervious Plane 

The analysis performed for correlated rainfall inputs with constant infiltration 

rates and spatially uniform rainfall intensity in section 3.3.3 is repeated in this 

section for rainfall intensity having a triangular distribution in time. The ratio p 

of time to peak intensity to duration of rainfall is . The same plane and rainfall 

characteristics are used. The results are shown in Figure 3.31. The behaviour of 

q,V(M), tm and IT, tm with tm are similar to that observed for the uniform rainfall 

case in Figure 3.24. The ratios of qP". Mi t to 1T tM are no longer constants with 

T. And, low frequency peak flow events tend to be from lower intensity and longer 

duration rainfall events than the high frequency peak flow events. 

3.5 Summary 

The relationships between the coefficients of variation and skewness of random 

peak flow series were studied for the most basic element of a conceptual watershed, 

the single sloping plane. Assuming that the flow could be approximately described 

by the numerical solutions to the Diffusion Wave equations, the results obtained 

for the different plane and rainfall parameters considered were as follows. 

For uniform and constant duration rainfall events with no infiltration, the 

(C.s(qp), Cv(qp)) coordinates of the peak flow series start from a maximum loca-

tion determined by the pdf of the rainfall intensity f(i), its coefficient of variation 

Cv(i), its coefficient of skewness Cs(i), and a parameter k (= i0.4t0(0nr-)0.6) 

taking a value less than 0.5. When k increases, the magnitudes of C.s(qp) and 

Cv(qp) decrease until C.s(qp) reaches a minimum which is less than Cs(i), at this 
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minimum Cv(qp) is still greater than Cv(i). On further increase of k, when some 

peak flows are the steady state values, the Cs(qp) - Cv(qp) curve moves towards 

(Cs(i), Cv(i)). The behaviour of (Cs(qp), Cv(qp)) is related to the shape of the 

i - qp curve. When the latter is concave, at low k values, then Cs(qp) and Cv(qp) 

are greater than Cs(i) and Cv(i) respectively. Conversely, when the shape of the 

i - qp) curve is convex, the coefficient of skewness of the random peak flow se-

ries is lower than the corresponding than that of the rainfall intensity. Since a 

"real" i - qp curve starts off as concave, goes through an inflexion point, becomes 

convex and finally becomes linear (at steady states), therefore the shape of the 

Cs(qp) - Cv(qp) curve is as described above. 

For a given f(i), the maximum (Cs(qp), Cv(qp)) coordinates for varying values 

of Cv(i) lie on a single curve. For a Normal f(i), the curve is almost linear with 

the ratio of Cs(qp) to Cv(qp) approximately equal to 1.21. 

When infiltration is taken into account, the (C.s(qp),Cv(qp)) coordinates in-

crease relative to those from impervious planes. The incrase occurs because infil-

tration changes the pdf f(i) of the rainfall intensity and the coefficients of variation 

and skewness of the effective rainfall intensity increase. When Cv(i) and Cs(i) are 

increased to Cv(ie) and C.s(ie), the same conclusions as for impervious cases are 

reached. 

The effect of a non-uniform temporal distribution (triangular) distribution of 

rainfall intensity on the coefficients of variation and skewness of the random peak 

flow series is important only when very high mean rainfall intensities are being 

considered. For low mean rainfall intensities the maximum (Cs(qp), Cv(qp)) co-

ordinates are exactly the same as for uniformly distributed rainfall intensities, 
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independent of the shape of the rainfall hyetograph. When the mean rainfall in-

tensities are increased the C.s(qp) - Cv(qp) curves separate from that of uniformly 

distributed rainfall intensities, although their general shape are very similar for 

hyetographs where the peak rainfall intensity occurs close to the end of the storm. 

When the peak rainfall intensity occurs close to the start of the rainfall event, 

then the C.s(qp) - Cv(qp) curve is almost a straight line joining the maximum 

(C.s(qp), Cv (qp)) coordinate to (Cs(i), Cv(i)). 

For correlated rainfall inputs, characterised by IDF curves, the most important 

result obtained is that for a given meteorological region, (Cs(q), Cv(qp)) of the 

maximum peak flows are constants for given Cv (i) and independent of the char-

acteristics of the plane. The ratio of maximum peak flow of given return period 

to the corresponding rainfall intensity of the same return period is a constant for 

all return periods. The ratio, however, varies with the rainfall charateristics (i.e. 

different regions) and is not equal to 1 as assumed in the Rational Method for 

impervious catchments. The ratio becomes variable when infiltration is taken into 

account. The statistical parameters of the peak flows then become sensitive to the 

characterisation of the infiltration rates. For impervious planesi the low frequency 

flood events are caused by longer duration and smaller intensity rainfall events 

than the high frequency floods events are. The addition of infiltration reverses the 

latter conclusion. The effect of non-uniform rainfall intensity on impervious planes 

is nil. The coefficients of skewness and variation of the peak flows are independent 

of the temporal distribution of the rainfall intensity and depend only on the char-

acteristics of the IDF curves. The ratio of maximum peak flow of a given return 

period to the corresponding rainfall intensity of the same return period is still a 
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constant. As with the case of temporally uniform rainfall, inclusion of infiltration 

makes the ratios variable. 



Chapter 4 

STATISTICAL CHARACTERISTICS OF 

RANDOM FLOOD EVENTS ALONG A 

STREAM 

4.1 Introduction 

In hydrology, floods are extreme events of great importance. A flood may be 

characterized by its peak flow rate, level, volume, or duration depending upon 

which parameter is critical for design and planning purposes. Consequently, the 

definition .of a flood has to take account of engineering and/or water management 

features. For example, peak flow rate is critical for the design of culverts, whereas 

peak flood level is very important in relation to human activities along a stream. 

In this chapter, peak flow rate and flood level are the two flood parameters under 

study. 

Because of the extreme complexities of flow generating processes, an exact and 

continuous simulation of streamfiow is not possible as yet. Records of peak flow 

rates and flood levels indicate that these quantities are functions of time and space, 

and appear to fluctuate in a random manner. For practical applications then, these 

variables must necessarily be expressed in terms of probabilities. When historic 

flood records for a sufficient number of years are available, a frequency analysis 

of the relevant flood parameter can give its sample probability distribution. This 

105 
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distribution can then be used to predict the probable flood at the gaged location 

for return periods generally not exceeding twice the number of years of data. Such 

a probabilistic analysis assumes that the floods are time independent, which may 

not be totally true even when annual floods are being analysed. This assumption 

will, however, be taken for granted throughout this chapter. Two other problems 

associated with frequency analysis of floods are ( 1) the relative shortness of flow 

records, and (2) the transposition of the probability distribution of the floods from a 

well-gaged location to a section several kilometres upstream or downstream. These 

two problems can be circumverted by a composite physical-probabilistic approach 

to the determination of the statistical patterns in random flood events. As outlined 

in Chapters 1 and 3, this approach is based on a Monte Carlo simulation of the flood 

causative factors and a deterministic evaluation of the flood paramaters (depth or 

peak flow). 

In the next two sections, the effects of two modes of generating random flood 

series on the statistical characteristics of peak flows and flood levels at various 

locations along a stream are investigated. In the first mode, it is assumed that 

the flood wave enters the upstream end of the stream as a point input, and that 

there is no lateral inflow along the length of the stream. This situation can be 

representative of the lower reaches of a river system and is typified by a long 

stream with relatively mild slopes. The input flood hydrograph is assumed to have 

a gamma-type distribution over time with the peak level occuring at either pre-

determined or random times. The peak levels and consequently the peak flow rates 

are assumed to be randomly distributed with known statistical parameters. In the 

second mode it is assumed that the flood is generated by lateral inflow only. This 
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situation is conceptualized as a stream with two side planes. Rainfall on the planes 

generates overland flow and this input, distributed along the length of the stream, 

creates the flood. Such a mode of flood generation would be typical of the upstream 

region of a watershed. The rainfall intensities and infiltration rates are assumed 

to be random quantities with known probability distribution functions (pdf). In a 

natural watershed both modes of flood generation occur simultaneously and such 

cases are treated in Chapter 5. 

4.2 Random Flood Events along a Stream with Upstream 

Point Inflow 

An important step in the design of regulatory and service structures across natural 

streams is the identification and description of statistical patterns in seemingly 

random peak flows and depths at the desired locations. When " sufficient" data are 

available at the section of interest, the assignment of probability levels to various 

magnitudes of floods is not difficult. Very often, though, the location of interest is 

several kilometers upstream of the gaging station. It is common knowledge that 

as a flood wave moves downstream it attenuates. One immediate consequence of 

the subsidence-of the flood wave is that the mean of the random peak flows and 

depths will be lower at sections downstream of the gaging station. The change 

in the other statistical parmeters of the random series, such as its coefficients 

of variation and skewness, is however more complex. This section explores the 

change in the statistical parameters of the probability distribution of a flood along 

the length of the stream as a function of the stream and flood characteristics. 
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The streams under consideration, in this section are assumed to have a wide and 

rectangular cross-section and are prismatic. The flood hydrograph at the upstream 

end of a particular stream is described in terms of rate of change of depth of flow 

with time and is assumed to have the shape of a gamma-type curve. The time 

to peak depth can either increase or decrease with increasing peak depth. The 

flow in the stream is assumed to b'e uniform before the flood wave arrives. The 

probability distribution of the peak depth is assumed to be known together with 

its statistical parameters. An approximate analytical solution of the flood level 

subsidence together with a Monte Carlo simulation of the peak depths is used to 

determine the change in the statistical parameters of the peak depths' probability 

distribution. Similar changes for the case of peak flows are determined. 

4.2.1 Characterization of Upstream Flood Hydrograph 

The change in depth of flow with time at a particular section is approximated by 

a two-parameter gamma distibution equation 

= yp( - 1exp[(1 - — 1)] + Yo 
tp tp 

(4.1) 

where y is the depth of flow at time t, yo is the uniform depth existing at t = 0, Yp is 

the maximum rise in flow depth, tp is the time to peak depth (yo + yp), and e is an 
empirical fitting paramater. A similar form of equation for fitting unit hydrographs 

is suggested by Gray ( 1968). Figure 4.1 illustrates the flood hydrograph for some 

values of Yp tp, and . When all other parameters are constant, an increase in e 
causes an increase in the rate of rise of the depth of flow. Conversely, an increase 

in tp decreases the rate of increase of y. Equation 4.1 can then be used to generate 
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Figure 4.1: Gamma-type input flood hydrographs. 
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flood hydrographs of a wide range of shapes. 

4.2.2 Rate of Flood Level Subsidence with Distance 

Henderson ( 1963, 1966) has established an expression for the rate of subsidence 

of the maximum flood level at a section with distance. The theory applies to 

slow rising floods in wide rectangular prismatic streams. The essential steps in th e' 

derivation of the space rate of subsidence are given in this section. An approximate 

but explicit equation for the maximum depth of flow along the stream is then 

obtained as a funtion of the stream and flood characteristics. 

Figure 4.2 shows the crest part of an instantaneous profile of the flood wave 

along the stream. A is the point where the depth of flow is a maximum at this 

particular moment. Therefore at A, 

(4.2) 

The distance along the length of the stream is denoted by x. B is the point where 

the flow rate is a maximum at the same moment. Therefore at B, 

Substituting equation 4.3 into the equation of continuity 

SQ by + - 

Sx St  

where ,b is the width of the stream, results in 

5!JB - 0 
St 

(4.3) 

(4.4) 

(4.5) 
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Physically, equation 4.5 means that the depth at B is the greatest that will occur 

at that section over the duration of the flood. The total derivative of y with respect 

to x at B is 

Because by = 0, therefore 

dyB - 8YB + dt byB 
dx Ox dx St 

(4.6) 

dyBSyB 
dx - Ox (4.7) 

Equation 4.7 states that d?X Iy  the space rate of subsidence of y, is equal to   
SB' 

the instantaneous slope of the wave profile at B. Henderson assumes that the shape 

of the wave profile between A and B can be approximated by a parabola with the 

vertex at A and one axis vertically through A. The equation of the parabola and 

its first and second derivatives are 

YYA+k 

by 
—=kx 
Ox 

5x2 

(4.8) 

(4.9) 

(4.10) 

where k is a constant at a particular time and varies as the flood crest moves along 

the stream. x is the horizontal distance from A. 

Using only the first two terms in the equation for the friction slope Sj 

by v5v iSv 
Sç=S— — —  —-- -  — (4.11) 

Ox gOx got 

where So is the slope of the stream and v is the velocity of flow, the discharge Q 

at B is given by 

Q= —y b 5/3 
71 

(4.12) 
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b is the width of the stream and n is the Manning's coefficient of roughness of 

the stream bottom. From equations 4.12, 4.3, 4.8, and 4.10 and after some alge-

braic manipulations and approximations, Henderson obtains an expression for the 

distance X1 between A and B 

1— oo 

The space rate of subsidence, dyB is then given by 

(4.13) 

(4.14) 

From a consideration of the wave velocities CA and CB at A and B respectively, 

Henderson derives the following two equations involving k 

- C2 &2 
(4.15) 

where °  is the second derivative over the crest region of the y - t curve (river 

stage record) at B. 

dk - 5 

dx - 4 S0 
(4.16) 

Using equations 4.15 and 4.16, equation 4.14 can now be integrated to give the 

depth y at any distance X from the station where the records are available 

Y = YA(- - 

4 bt2 So 
(4.17) 

If the y - t curve is approximated by the gamma-type curve given by equation 4.1, 

then at the crest 

82y yp(1— ) 

st2 - t 
(4.18) 
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CA can be written in terms of A by the following equation (Raudkivi, 1979) 

5/  2/3 
CA= 3 

Equation 4.17 can now be re-expressed as 

9 yp(i - ) 22 X )_4/15 
Y = YA( - 20 t S( y14/.3 

(4.19) 

(4.20) 

Yp is equal to A minus the uniform depth existing before the flood wave arrives. 

Equation 4.20 gives an approximate but explicit expression for the maximum depth 

of flow along the stream as a function of the stream and flood characteristics. 

4.2.3 Rate of Flood Peak Subsidence with Distance 

Using the Manning's form of the resistance equation of flow, the flow rate can be 

expressed as 

Q =  
1 b 

ox gOs got 
(4.21) 

where R is the hydraulic radius of the channel. When the last two terms under the 

square root sign are neglected and R is approximated to y for a wide rectangular 

channel, the flow rate can be re-expressed as 

Q = P5/3/s0 - 

by 
(4.22) 

Equation 4.22 states that the flow rate is not a unique function of depth. On the 

rising stage of a flood, 6Y is negative and therefore Q will be greater than Qo, the VX 

uniform flow discharge for the same depth y, given by 

Qo (4.23) 
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Conversely, on the falling stage of a flood, is positive and Q is less than the VX 

corresponding Qo. So, when the depth is plotted against the discharge at a partic-

ular section of the stream during the passage of a flood a closed loop is obtained. 

by is a very difficult parameter to obtain directly. However, it can be expressed 

as a function of the stage-time relationship, the usual form of flow recording at a 

section. 

by lSy 

bX cot 

Using equation 4.24, equation 4.22 can be recast as 

= 

1 by 
SO+ 1  

(4.24) 

(4.25) 

Equation 4.25 is the " Jones formula". Henderson ( 1966) points out that there is 

a logical error in this equation. Equation 4.25 describes the effect of subsidence 

on the flow rate, yet it is based on equation 4.24 which assumes that dy = 0, i.e., Tt 

the flood wave is kinematic and therefore cannot subside. A more refined analysis, 

however, showed that the error is negligible. 

For the flood inflow hydrograph characterized by equation 4.1, byat time t is 
TT 

given by 

by I ) ___ 

yt   + 
01. I, tp 

where is the rise/fall after time t and is equal to Yt - yo. C is given by 

C = 5 
Yt'V'8o 

(4.26) 

(4.27) 

Using equations 4.1, 4.25, 4.26, and 4.27 looping curves for two of the inflow hydro-

graphs plotted in Figure 4.1 are illustrated in Figure 4.3. Curve number 2 clearly 
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shows that at a particular section, the depth keeps rising after the maximum dis-

charge has occured and on the falling stage the flow is momentarily uniform. Points 

A and B on curve number 2 in Figure 4.3 correspond to points A and B on Figur'e 

4.2. Figure 4.3 also shows that the difference between the maximum discharge 

and maximum uniform discharge increases with maximum depth reached and e. 

As the flood waive moves downstream, these two factors (yp and ) decrease and 

consequently Q tends towards Qo at maximum flow rate. It is this fact that is 

used to obtain the maximum flow rate along the length of the stream. 

For the upstream section, the maximum flow rate is obtained by simulating 

the inflow hydrograph, calculating the corresponding stage-discharge curve, and 

determining the peak flow rate. The difference between the uniform and actual 

unsteady peak flow is expected to be greatest at the upstream section. At a 

distance X downstream, the maximum flood level reached is calculated by means 

of equation 4.20. This maximum depth is substituted into the equation for uniform 

flow 

Q= b Y V80 5/3 f 

to obtain the maximum discharge at a section X metres downstream. 

4.2.4 Effects of Flood and Stream Parameters on the Statistical Char-

acteristics of Random Peak Depths 

(4.28) 

The characteristics of the stream are as follows : slope = 0.0015, Manning's coef-

ficient of roughness = 0.03, and its width is 50 m. The stream has a rectangular 

cross-section. The uniform base flow depth is assumed to be constant at 0.2 m. 

The peak depth at the upstream section of the stream is assumed to have a Nor-
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Figure 4.3: Stage-discharge curves for two shapes of flood hydrographs. 
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mal probability distribution function with mean Ym1 and coefficient of variation 

Cv,1. For yml and Cv ,,1 equal to 3 m and 0.25 respectively, 6000 random values 

of peak depths are generated using the Monte Carlo simulation technique. The 

corresponding subsided depths at distances along the stream starting at 20000 m 

from the upstream section and increasing in steps of 10000 m are determined using 

equation 4.20. Three cases of inflow hydrographs are considered, namely, the time 

to peak depth is constant, increases, and decreases with increasing peak depth of 

flow. For the first case, tp is set to 3600 seconds. For the second case tp is assumed 

to vary according to 

tp = 1800y 4 (4.29) 

where tp is the time to peak depth and Yp is the peak depth at the upstream 

section. For the third case 

tp = 7200y °6 (4.30) 

, characterising the peakedness of the inflow hydrograph, is assigned a constant 

value of 15. The forms of and the numerical values in equations 4.29 and 4.30 

are arbitrary and designed only to quantify the three cases to be studied. For 

each case, coefficients of variation and skewness of the generated subsided depths 

at each section are computed using standard formulae and plotted. The resulting 

- curves are shown in Figure 4.4. 

It can be observed from Figure 4.4 that the behaviour depends very much on the 

relationship between the time to peak depth and the peak depth itself. When the 

time to peak depth is increasing with peak depth, both the coefficient of variation 

and the coefficient of skewness increase along the downstream length. Conversely, 
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for the case where the time to peak depth is decreasing with peak depth, the 

'coefficient of variation decreases along the length of the stream. The coefficient of 

skewness initially decreases from its original value, i.e.,it becomes negative. As the 

distance increases it reaches a minimum value and then starts to increase again, but 

it still remains negative for a considerable distance. Although equations 4.29 and 

4.30 are arbitrary relationships between time to peak depth and peak depth, they 

do represent real physical possibilities. The conditions causing decreasing time 

to peak with peak depth could be a combination of high intensity short duration 

rainfalls, steep overland areas, and low infiltration rates in the upland regions of 

the basin. When the watershed is elongate and the rainfall events are of the low 

intensity-long duration type, then it is reasonable to expect greater .depths of flow 

to occur further down along the time horizon. 

Figure 4.4 also shows that as the distance from the upstream section is in-

creasing, the rate of increase/ decrease of the coefficients of variation and skewness 

decreases. The behaviour of Cvy2 and Cs 2 can be explained by an examina-

tion of the deterministic relationship between upstream and downstream depths as 

given by equation 4.20. At a given distance X, Figure 4.5 clearly demonstrates the 

difference between the two equations 4.29 and 4.30 relating time to peak depth to 

peak depth. When the time to peak increases with peak depth the curve (1 or 2) is 

d2 
increasingly steeper, i.e., Ydn is greater than zero. For the other case, the curve 

dyftp 

(3 or 4) gets less and less steep as the upstream depth decreases, i.e., d2dn is less 
Yup 

than zero. As dempntrated in Figure 3.13, when the input distribution is Normal, 

a indicates a ± coefficient of skewness. The behaviour of Cv112 — Cs112 in 
dx 
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Figure 4.4 then becomes evident. 

The physical reasons behind the curvatures of the relationships shown in Figure 

4.5 can themselves be qualitatively explained as follows. When the time to peak 

depth is increasing more rapidly than the rate at which the peak depth is increasing, 

then the crest part of the stage record (y - t) becomes less sharp, i.e., 4 becomes 
closer to zero (or increases since 4 is always negative). According to equation 
4.20 then, the rate of subsidence for increasing depths decreases. Hence the yup - 

Yup plot curves towards the 45° line representing no subsidence. Conversely, when 

the time to peak is decreasing while the peak depth is increasing, the absolute 

62 ' 
value of increase because of the sharper crests. So, when the depth increases, 

the subsidence rate increases, and the Yup - Ydn plot curves away from the 45° 

line. For both types of Yup - Ydn relationships, the crest of the y - t record at 

sections downstream is getting flatter. This means that for increasing distance 

downstream, the rate of change in the statistical parameters decreases until there 

is no significant increase/ decrease in the statistical parameters. Curve number 3 on 

Figure 4.4 shows that the skewness actually starts to increase again after reaching 

a certain minimum value. This is explained as a consequence of curve number 4 

in Figure 4.5 being flatter than curve number 3. The above discussion assumes 

that equation 4.20 is correct. As mentioned in section 4.2.2, this equation is only 

approximate and the errors in it may accumulate with distance. 

The effects of the other stream and flood characteristics on the coefficients of 

variation and skewness can be discussed through an analysis of equation 4.20. First 

and foremost, it must be stressed that the direction the change in skewness takes 
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place is governed by the relationship between time to peak depth and peak depth. 

Equation 4.20 is an explicit relationship between the upstream and downstream 

depths. The factor [(1 - )1?X] in equation 4.20 can be speficied independently 

of the others (y and tp). A change in this factor will affect the rate of change 

of the statistical parameters in the direction they have already taken (determined 

by y and tp). Increasing (sharpness of the crest of the stage record) and/or 

(Manning's roughness coefficient) and/or S0 (slope of stream bed) will decrease 

the distance X needed to obtain a given (Cs 2, Cv 2) coordinate. This means 

that the space rate of change of Cv,2 and Cs ,,2 increases with increasing e n, and 
decreasing So. This conclusion holds as bug as the assumptions in the derivation 

of equation 4.20 are not violated. 

4.2.5 Statistical Characteristics of Random Peak Flows 

The method outlined in section 4.2.3 is used to determine the peak flow rates 

corresponding to the peak depths of flow generated by the Monte Carlo simulation 

in section 4.2.4. The coefficients of variation and skewness of the peak flow series are 

computed for the same conditions outlined in section 4.2.4. The equivalent curves 

corresponding to those in Figure 4.4, but for peak flows, are shown in Figure 4.6. 

The (Cs, Cv) coordinate of the peak flow depth pdf at the upstream section 

is (0.25,0.0). The corresponding (Cs, Cv) coordinate for the peak flow rate pdf is 

(0.40,0.49). Since Q is a power function of y and the exponent is approximately , 

the pdf of Q will have a positive skewness as discussed in section 3.3.1. The Cs—Cv 

curves, for the peak flow series follow the same pattern as those for peak depths. 

The absolute changes in the coefficients of variation and skewness are however 
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greater for the peak flow than for peak depth. The same general conclusions as 

.outlined in section 4.2.4 for peak depths apply to the case of peak flow rates. 

4.3 Random Flood Events along a Stream with Lateral 

Inflow 

The previous section dealt with point inflows as one mode of flood generation 

along a stream. Among the upper reaches of a watershed, and particularly in 

first-order streams, floods are characteristically generated by lateral inflows. In 

general, lateral inflow is the sum of groudwater, subsurface, and overland flows. In 

this section it is assumed that overland flow is the only mode of flood generation 

along a stream. First-order streams are usually steep and are of relatively short 

lengths. The catchment area contributing lateral inflow into the stream also has a 

relatively steep bed slope. Betson (1964) observed that the area actually producing 

lateral inflow is usually a fraction of the total basin.drainage area. The percentage 

was found to be as low as 5% in some cases. The contributing area was situated 

alongside the streams where the initial soil moisture content is the highest. The 

physical first-order watershed can be conceptualized as a single stream with two 

side planes. A schematic of such a system is illustrated in Figure 4.7. 

The nature of the statistical characteristics of random peak flow series at the 

edge of a sloping plane has been treated in Chapter 3. A similar study is done in 

this section on the stream-plane combination. The objective is to determine ( 1) 

the effect of the stream and plane parameters and (2) the effect of rainfall and 

infiltration parameters on the statistical characteristics of the peak flow series. 
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Figure 4.7: Schematic of a stream-plane configuration. 
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4.3.1 Numerical Simulation of Flow in a Stream-Plane Configuration 

The equations of continuity and momentum are used to solve for the flow on the 

planes and in the stream. The numerical simulation of flow on the plane is exactly 

the same as described in section 3.2.2. When simulating flow in the stream, it is 

assumed that the momentum of the lateral inflow is negligible. Then, the same 

procedure as for the plane can be used to numerically solve for flow in the stream 

using similar continuity and momentum equations. Two modifications in the pro-

cedure are ( 1) i in equation 3.3 is replaced by the lateral inflow per unit 'width, 

and (2) equation 3.14 is 'replaced by 

= \/Sf, j   2/3 

q3 3 b+2y3' 

where b is the width of the stream. The latter is assumed to have a rectangular 

cross-section and to be prismatic. For given rainfall, plane, and stream character-

istics the peak flow can then be obtained. 

(4.31) 

4.3.2 Method for obtaining Statistical Parameters of Random Peak 

Flows 

The deterministic system of continuity and momentum equations is made proba-

bilistic by assuming that each rainfall intensity (and infiltration rate if the latter 

is 'being considered) is one member of a random series with known pdf and statis-

tical parameters. Monte Carlo simulation is used to generate 6000 random rainfall 

intensities. For a given set of stream-plane parameters and rainfall duration, peak 

flows were determined by numerically simulating rainfall intensities starting from 2 

mm/hr and increasing in steps of 2 mm/hr up to a maximum, typically 150 mm/hr. 
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The peak flows corresponding to the 6000 random intensities are then obtained by 

linear interpolation if the random rainfall intensity falls between two consecutive 

intensities for which the peak flows are known. The peak flows are normalized 

by dividing by the total runoff contributing area upstream of the section of inter-

est. Standard techniques are then used to determine the statistical parameters of 

the random peak flows for the given set of stream-plane parameters and rainfall 

duration. The procedure is repeated for other sets of physjographic and rainfall 

characteristics. 

4.3.3 Uniform Rainfall Intensity on an Impervious Plane 

C.s(qp) - Cv)qp) relationship along the length of the stream 

The simplest configuration of the stream-plane system is areally and temporally 

uniform rainfall intensity on a rectangular impervious plane on each side of a 

prismatic stream with a rectangular cross-section. Some of the system parameters 

are as follows : length of each runoff plane is 200 m, slope and roughness of each 

plane are respectively 0.02 and 0.04. The length of the stream is 20000 m, its width 

is 10 m, and the peak discharge is extracted at 4 km intervals for each simulation. 

Although a first-order stream of length 20 km is not very common, this length 

was chosen so that the assymptotic effects of stream length could be studied. For 

rainfall intensities starting from 2 mm/hr and increasing in steps of 2 mm/hr up 

to 150 mm/hr, the corresponding peak discharges are obtained for 3 cases : ( 1) 

rainfall duration = 3600 s, slope of stream = 0.01, (2) rainfall duration = 3600 

s, slope of stream = 0.005, and (3) rainfall duration = 1800 s, slope of stream = 

0.01. The roughness of the stream bed is kept constant at 0.04. For the statistical 
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analysis it was assumed that the pdf of i (f (i)) was ( 1) Gamma with a mean of 

50 mm/hr and a standard deviation of 15 mm/hr (Cv(i) is then 0.3 and Cs(i) 

is 0.6) and (2) Normal with a mean of 50 mm/hr and a standard deviation of 

10 mm/hr (Cv(i) = 0.2 and Cs(i) = 0.0). For both these cases, all the rainfall 

intensities (6000 of them) generated by Monte Carlo technique were between the 

lower and upper limits of the rainfall intensities simulated. The Cv(qp - Cs(qp) 

curves for the random peak flow series along the length of the stream are shown in 

Figures 4.8 and 4.9 for a Normal and Gamma pdf of i respectively. In each figure, 

the corresponding Cv(qp) - Cs(qp) curves for random peak flows at the edge of a 

plane due to uniform rainfall intensity have been included. The latter curves are 

reproduced ,from Figures 3.11 and 3.14. 

Some observations on Figures 4.8 and 4.9 are given below. As the distance from 

the most upstream cross-section increases, Cs and Cv for the random peak flow 

series increase. They start from (Cs, Cv) of the rainfall intensity pdf and seem 

to tend towards a maximum (Cs, Cv) identical to the limiting maximum (Cs, Cv) 

for the plane alone. The starting coordinate of the (Cs(qp), Cv(qp)) is explained 

as follows. For the given parameters of the planes, the km value as defined by 

equation 3.41 and reproduced below is greater than 1.8 for all 3 cases. 

.0.4 0.6 
km = 2m t04( nL (4.32) 

The discussion in section 3.3.1 and the results on Figures 3.11 and 3.14 indicate 

that for km greater than 1.8, the (Cs, Cv) of the peak flow series at the edge of the 

planes is equal, to that of the rainfall pdf. Physically, it means that for most of the 

rainfall intensities generated, the flow on the planes has reached steady state in a 
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time shorter than the duration of the rainfall. This condition is not uncommon in 

natural first-order basins (Eagleson, 1971,1972). So, for the most upstream section 

of the stream, (Cs(qp), Cv(qp)) is equal to (0.0,0.2) and (0.3,0.6) for the Normal 

and Gamma rainfall inputs respectively. As the distance from the upstream section 

increases, only some of the incoming stream flow will remain at steady state. The 

flow on the planes will still be at steady state, but the different characteristics of 

the stream will attenuate the steady lateral inflow. The results from Figures 3.12 

and 3.13 demonstrate that when part of the random series contains steady state 

values and part non-steady values, then the coefficient of skewness has a tendency 

to decrease relative to the starting coordinate. At greater distances downstream, 

the peak flows (all peak flows have been normalized by dividing by the runoff 

contributing area above the section of interest) are all less than the rainfall inten-

sities and hence the coefficients of variation and skewness of the peak flow series 

increase. The last two statements explain the general curvature and direction of 

the (Cs(qp), Cv(qp) curves for the stream-plane configuration. It is noticed that 

the Cs - Cv curve of the plane is similar in shape to the (Cs(qp), Cv(qp)) curves. 

In fact, if all parameters in equation 4.32 are kept constant and only L (the length 

of the plane) is allowed to increase, then both sets of curves exhibit the same char-

acteristics with respect to L. The tendency of the (Cs(qp), Cv(qp)) curves for the 

stream-plane to converge towards a limiting maximum value can be qualitatively 

explained by the following arguments. For relatively long streams, the runoff con-

tribution from the area of the planes in the lower reaches of the stream is negligible 

compared to the peak flow at those sections. By the time the major portion of the 

flow reaches the downstream section, the flow rate from the planes at that section 
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may be zero or in recession. Hence the flow along the stream may be approxi-

mated as a long-wave flood input hydrograph as far as the downstream section is 

concerned. And it has been shown in section 4.2.4 that Cs(qp) and Cv(qp) increase 

at a rapidly decreasing rate as the length of the stream increases. This explains 

the tendency of the Cs(qp) - Cv(qp) curves to converge towards a limiting value. 

The flow on the planes and in the streams are governed by the same equations of 

continuity and momentum. It was shown in section 3.3.1 that for the plane, at low 

km values (that is, planes with long runoff lengths, mild slopes, and rough surfaces 

under low rainfall intensities) the relationship between peak flow and rainfall in-

tensity degenerates into a power function relationship not too dissimilar from that 

derived from the kinematic wave equations. The power function had a constant 

exponent and it is proven in Appendix A that for a constant exponent, Cs and 

Cv become independent of all physiographic parameters and depend only on the 

particular value of the exponent and the coefficient of variation of the rainfall pdf. 

It is hypothesized that at long distances from the uppermost section of the stream 

where C.s(qp),Cv(qp)) tends towards a limiting value a similar power function 

exits. 

Figures 4.8 and 4.9 show that although the Cs(qp) - Cv(qp) curves for the 

sets of stream parameters and rainfall duration are similar in shape, they exhibit 

a tendency to move away from the corresponding curve for the plane alone for 

decreasing rainfall duration and stream slopes. This is a result of the fact that 

for decreasing rainfall durations, km for the planes decreases. The proportion 

of peak flows values that stays at steady state for a certain section in the stream 

decreases very rapidly and this causes the coefficient of skewness to increase almost 
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immediately after the most upstream section is past. 

Cs(qp) - Cv(qp) relationship for different mean rainfall intensities at a 

particular section 

The analysis described in the previous section is repeated at three sections : 4, 12, 

and 20 km from upstream, for mean rainfall intensities ranging from 10 mm/hr to 

50 mm/hr. The rainfall intensity pdf was the Gamma distribution, with Cv = 0.3 

and Cs = 0.6. The lower limit of the mean rainfall intensity was chosen such that 

km for the plane is at least 1.6, hence, about half of the lateral inflows would be at 

steady state. (When km = 1.6, the mean rainfall intensity 1m and all intensities 

greater that it would have reached steady state.) This situation may not be too 

dissimilar from what happens on natural first-order basins. The upper limit of the 

mean rainfall intensity was governed by the upper limit of the rainfall intensity for 

which a peak flow is available (150 mm/hr in the present,case). The Cs(qp)—Cv(qp) 

curves for the 3 sections along the stream are shown in Figure 4.10 together with 

the Cs - Cv curve for the plane only. The rainfall duration was 3600 s and the 

slope and roughness of the stream were 0.01 and 0.04 respectively. 

The shapes of the C.s(qp) - Cv(qp) exhibit similar behaviour as those in Figures 

4.8 and 4.9. The major parts of these curves lie inside the Cs - Cv curve for 

the plane alone. For very small mean rainfall intensities (Cs(qp), Cv(qp)) curves 

exhibit some deviations. At low im  the rainfall intensities generated are small 

and comparable to the step by which the simulated intensities are increasing (2 

mm/hr). Hence, interpolation is not very accurate and this explains the deviations 

at low im . The rest of the curves are explained as follows. For large mean rainfall 
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intensities the curves converge towards (Cs, Cv) of the rainfall pdf. For decreasing 

mean rainfall intensities, the effect is similar to increasing stream length, i.e, greater 

attenuation and increasing coefficient of skewness. Part of the explanation for the 

shift of the Cs(qp) - Cv(qp) curves away from the Cs - Cv curve for the plane 

alone can be ascribed to the temporal distribution of the lateral inflow into the 

stream. In section 3.4.1 the effect of a triangular distribution of rainfall intensity 

over time on the Cs(qp) - Cv(qp) was discussed. It was shown in Figures 3.26 and 

3.27 that a triangular distribution of rainfall intensity shifts the Cs(qp) - Cv(qp) 

curves inwardly. A similar situation exists in the stream-plane configuration. The 

lateral inflow into the stream is uniform over space but is trapezoidally distributed 

over time. In section 3.4.1 the reasons why a temporally non-uniform distribution 

of rainfall intensity shifts the Cs(qp) - Cv(qp) curves inwardly are given and the 

same reasons apply here. 

Region within which (Cs(qp),Cv(qp)) is most likely to be found 

Figures 4.8, 4.9, and 4.10 indicate that the limits of the Cs(qp) - Cv(qp)) curves 

for a stream are the Cs - Cv curve for a plane and a line, almost straight, joining 

the (Cs, Cv) for the rainfall intensity pdf to the maximum (Cs, Cv) of the peak 

flow series for a plane only. It is hypothesized that the equation of this line is 

defined by assuming a power function between qp and i of the form 

qp = ai (4.33) 
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where b varies between 1 and 2. Under this assumption, for a Gamma pdf of rainfall 

intensity, the equation of the line is given by (see Appendix A) 

r2()r(3b + i) - 3r(ii)F(2b + )(b + ) + 20(b + ii) (434) 
Cs(qp)Cv3(qp) = r3 (b + i) 

where 77 is equal to  2• Figure 4.11 shows the region within which (C.s(qp), Cv(qp) 
Cv(i) 

is most likely to be found f(i) Gamma and Cv(i) = 0.3. The effects of vary-

ing plane width and slope, non-uniform rainfall intensity, and infiltration on this 

hypothesis are examined in the following sections. 

4.3.4 Uniform Rainfall Intensities on Planes with Non-uniform Char-

acteristics 

In a natural watershed, the slopes, widths, and roughnesses of the overland runoff 

areas are not constant along the length of the stream. The variations in these 

characteristics appear to be random. In general, though, the slopes of the runoff 

areas become smaller along the length of the stream and the widths of the runoff 

contributing areas decrease too. To simulate and examine the effects of such varia-

tions, the analysis of the previous section is repeated with the runoff length, slope, 

and roughness of the side planes taking different values for every 4 km along the 

length of the stream. The values are given in Table 4.1. The Cs(qp) - Cv(qp) 

curves for two rainfall durations : 3600 and 1800 seconds are shown in Figure 

4.12. The rainfall intensity is uniformly distributed has a Gamma pdf with mean 

ranging from 10 to 55 mm/hr. The hypothetical limits of (C.s(qp), Cv(qp)) have 

been superimposed for comparison purposes. The deviations at short rainfall dura-

tions and low mean rainfall intensities are the result of inaccurate interpolation for 
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Figure 4.11: Limiting region within which the coefficients of skewness and 

variation of the peak flow pdf can be expected to be found when f(i) is 

Gamma with Cv(i) = 0.3. 
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Table 4.1: Characteristics of stream-plane configuration 

STEAM LENGTH 

(ke) 

PLRNE 

RUNOFF WIDTH (m) SLOPE ROUGHNESS 

0-4 200 0.820 0.040 

175 0.018 0.835 

125 0.015 0.020 

100 0.012 0.025 

75 0.010 0.020 
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small rainfall intensities. For " short" first-order streams with " high" bed slopes 

and " long" rainfall durations, however, the (Cs(qp),Cv(qp)) generated seem to 

lie within the hypothetical limits even if the physical characteristics of the runoff 

planes are not uniform along the length of the stream. 

4.3.5 Spatially Non-uniform Rainfall Intensity 

Natural storms usually have decreasing rainfall intensities from their centres to 

their peripheries. This possibility is simulated by assuming that different fractions 

of the rainfall intensity occur over five sections, each 4 km long, of the 20 km long 

stream. Three cases are considered. In the first case the maximum intensity occurs 

at the centre of the stream-plane combination with the intensity decreasing at the 

same rate both upstream and downstream. The chosen fractions are 0.625, 1.094, 

1.562, 1.094, and 0.625. In the other cases the maximum intensity occurs at one 

end of the stream (upstream, downstream) and decreases towards the other end. 

The total rainfall was kept the same as the centred storm. The fractions for these 

cases are 0.625, 0.859, 0.938, 1.172, and 1.406. For the three cases, the areally 

average rainfall intensity is equal to the uniform rainfall intensity of section 4.3.3. 

The rainfall duration is 3600 seconds. 

Analyses similar to those of the previous two sections are carried out. The 

objective is to determine whether (Cs(qp), Cv(qp)) is still within the hypothetical 

limits. Figure 4.13 shows that the Cs(qp) - Cv(qp) curves for the differently 

positioned storms are within the limits. The Cs(qp) - Cv(qp) curve for the storm 

with the highest intensity on the lower reaches of the stream is slightly different 

from the other two and the curves in Figure 4.12. With increasing mean rainfall 
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intensity, instead of converging towards (Cs, Cv) of the rainfall intensity pdf, it 

makes a " u-turn" and moves towards the limiting line defined by a power function 

relationship between input and output. When the rainfall intensity is highest on 

the lower reaches, the peak flow at the outlet depends on the relative magnitude 

and time of arrival of the runoff from the lower and upper reaches. When the 

rainfall intensity is low, it is reasonable to assume that the peak flow at the outlet 

will depend mostly on the flow coming in from the upper reaches. In this case then, 

the situation is not very different from storms having their maximum intensity on 

the centre or upper reaches of the stream. At high rainfall intensities, however, 

the runoff from the lower reaches may dominate and be close to steady state. A 

random series of peak flows would then contain a mixture of steady state and non-

steady state flows. For such mixtures, the direction that the coefficient of skewness 

takes depends on the proportion of either type of flow. The curvature of the curve 

for the bottom-centered storms may be due to the foregoing statement. 

4.3.6 Temporally Non-uniform Rainfall Intensity 

Temporally non-uniform rainfall intensity is simulated by a triangular hyetograph. 

Figure 3.25 shows a schematic of the non-uniform rainfall hyetographs. The Cs(qp)— 

Cv(qp)curves for p (ratio of time to peak intensity to rainfall duration) equal to 41 

and 1 are illustrated in Figure 4.14. They all lie within the hypothetical limits. 21 4 

The curves for p = and are almost indistinguishable from each other. When 

Figures 4.10 and 4.14 are compared with respect to the Cs(qp) - Cv(qp) Curve for 

to = 3600 seconds at a section 20 km from upstream, it is noticed that the effect of 

the triangular distribution of the rainfall intensity is not very significant as far as 
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Cs and Cv are concerned. The effects become significant only for sections closer 

to the upstream section. 

4.3.7 Non-uniform Rainfall Intensities, Non-uniform Plane Character-

istics, and Constant Infiltration Rate 

In this section, the parameters of the stream-plane system are as follows 

1. The rainfall intensity has a triangular distribution over time with the peak in-

tensity occuring at three-tenths of the total rainfall duration of 3600 seconds. 

This temporal distribution is the same over the entire watershed. 

2. The spatial distribution of the rainfall intensity is expressed as a fraction 

of the uniform rainfall intensity generated. The total rainfall depth for the 

system is equal to that obtained assuming the equivalent uniform intensity. 

The fractions are as follows : 0.857 for 0-4 km section, 0.714 for 4-8 km 

section, 1.286 for 8-12 km section, 1.0 for 12-16 km section, and 1.143 for 

16-20 km section. 

3. There is a constant infiltration rate of 25 mm/hr over the entire watershed. 

The effect of the infiltration rate is to reduce the effective rainfall intensity 

and to vary its duration. 

4. The watershed characteristics are as given in Table 4.2. 

The stream has a rectangular cross-section with a width of 10 m. Its slope and 

roughness are 0.01 and 0.04 respectively. 
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Table 4.2: N.on-uniform rainfall and plane characteristics along length of 
stream 

STRERPI 

LENGTH (km) 

PNE 

WIDTH Cu) SLOPE ROUGHNESS 

FRRCTION Of UNIFORM 

RRI•NFRLL INTENSITY 

•0-4 

4-8 

a - 12 

12 - 16 

is 20 

200 0.025 0.040 

150 0.020 0.030 

100 0.015 0.035 

100 0.025 0.025 

75 0.010 0.020 

0.857 

0.714 

1.288 

1,000 

1.143 
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Figure 4.15 shoivs the variation of Cv(qp) and Cs(qp) along a stream 20 km 

long. The pdf of the total rainfall intensity is Normal. Two cases of its coefficient 

of variation, 0.1 and 0.15, are considered. The mean equivalent (over whole basin) 

uniform rainfall intensity varies between 50 and 85 mm/hr. The interpretation 

of the curves in Figure 4.15 is made difficult by the fact that the coefficient of 

variation of the effective rainfall intensity pdf changes with the mean total rainfall 

intensity. This is so because Cv(ie), the coefficient of variation of the mean rainfall 

intensity pdf, is given by 

Cv(ie) = CV(i)  (4.35) 

where f is the infiltration rate set to a constant value of 25 mm/hr, ie is the 

effective rainfall intensity, and i is the total rainfall intensity. Also, along the length 

of the stream, different fractions of the mean uniform rainfall intensity occur and 

therefore Cv(ie) will change along the length of the stream too. However, all the 

transformations of the total rainfall intensity into effective rainfall intensity will be 

of the form 

frac(i) - f (4.36) 

where frac is the fraction given in Table 4.2 for each segment of the stream. This 

linear transformation means that the pdf of 1e will also be Normal. (This is the 

reason why f(i) was chosen to be Normal. A linear transformation of a Gamma 

variable of the form given by equation 4.36 is not necessarily Gamma too.) If f(i) is 

Normal, it was shown in section 3.3.1 (equation 3.47) that the extreme coefficients 

of variation and skewness of the random peak flows from a plane are related as 
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follows 

Cs(qp) l.21Cv(qp) (4.37) 

When the line defined by equation 4.37 is plotted on Figure 4.15, it is noticed that 

if fits the (Cs(qp), Cv(qp)) coordinates at sections greater than 12 km from the 

upstream for most of the input conditions. The (Cs(qp), Cv(qp)) coordinates for 

sections closer to the upstream end tend towards the line Cs = 0, which charac-

terises the Normal distribution. This is an expected result because the pdf of i6 is 

Normal and for sections close to the upstream most of the peak flows may be at 

steady state and hence the coefficient of skewness of the latter must tend towards 

that of the Normal distribution (i.e. 0). Some (Cs(qp), Cv(qp)), especially those 

midway along the stream, exhibit large divergences from the limiting curves. The 

middle segment of the stream, according to Table 4.2, received the highest frac-

tion of rainfall intensity. The Cs(qp) and Cv(qp) at this section is probably being 

very much influenced by the local conditions. This indicates that whereas non-

uniform conditions (rainfall and plane characteristics) on their own do not affect 

the Cs(qp) - Cv(qp) relationships significantly relative to uniform conditions as 

described in the previous sections, when mixed together, these non-uniform con-

ditions can cause large localized deviations. However, it should be borne in mind 

that these deviations are conditional upon all rainfall and plane characteristics 

being exactly the same for all simulated rainfall intensities. In all the previous 

analyses it has been assumed that parameters such as duration of rainfall, width of 

runoff plane, roughness of stream, etc. remain the same for all generated rainfall 

intensities. In reality, all these parameters would be stochastic. It is conceivable 

then that these variations in the parameters may dampen the large deviations 
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in Cs(qp) and Cv(qp). The general conclusion from the above discussion seems 

to be that the Cs - Cv limits as defined by that of a plane and a power func-

tion relationship between i and qp are average loci for Cs(qp) and Cv(qp) from a 

stream-plane combination. And unless a section close to the upstream end is being 

considered, (Cs(qp), Cv(qp)) coordinates seem to lie mostly in the region close to 

the corresponding extreme coordinates for a plane. 

4.4 Summary 

This chapter dealt with the statistical characteristics of flood events from a stream-

plane configuration. The effects of two modes of flood generation were examined. 

In the first mode, it was assumed that the flood wave was of the point input 

type.. It is approximated by a hydrograph of a Gamma shape at the upstream 

end of the channel. No lateral inflow or outflow occurs along the stream. A 

composite physical-probabilistic approach based on a Monte Carlo simulation of the 

flood peaks/levels at the upstream section and a deterministic routing of the flood 

wave along the length of the stream indicates that the coefficients of skewness and 

variation of the random peaks/levels increase or decrease depending on the relative 

importance of the rate of rise of the inflow rate and the time to peak flow/depth. 

When the rate of rise of the inflow rate increases at a significantly higher rate 

than the time to peak for increasingly higher rate of flow/depth, the coefficients 

of variation and skewness decrease along the length of the stream. Conversely, 

when the characteristics of the flood wave are governed primarily by the time to 

peak flow rate/depth, the coefficients of variation and skewness increase along the 
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length of the stream. The rate of change in these statistical parameters decreases 

at an increasingly higher rate along the length of the stream, i.e., the coefficients 

become insensitive to further attenuation after a certain degree of attenuation has 

been reached. 

The second liiode of flood generation assumes that all the flow is generated 

from rainfall on the planes on the sides of the stream. There is no point input 

flow at the upstream end of the channel. The most significant result is that under 

various rainfall and stream-plane characteristics the (Cs(qp), Cv(qp)) coordinates 

of the random peak flow series lie within limits defined by the curve obtained for a 

single plane and a straight line joining the (Cs, Cv) of the rainfall intensity pdf to 

the maximum (Cs(qp), Cv(qp)) of the peak flow pdf for a plane only. At the most 

upstream section of the channel (Cs(qp), Cv(qp)) is identical with (Cs, Cv) of the 

rainfall pdf. This assumes that the width of the runoff planes is small enough for 

steady state to be reached earlier than the duration of the rainfall. This is not an 

inconceivable situation in first-order natural watersheds: As the distance from the 

most upstream section increases, Cs(qp) and Cv(qp) increase towards the limiting 

maximum obtained for a plane. The Cs(qp) - Cv(qp) curves from a stream-plane 

combination are shifted inwardly from that obtained for uniformly distributed rain-

fall on a plane. The situation is analogous to the curves obtained from temporally 

non-uniform rainfall intensity on a plane, the inflow from the planes into the stream 

is trapezoidally distributed over time. The effect of spatially and temporally non-

uniform rainfall intensity is to make the coefficients of variation and skewness of 

the peak flows from a stream to coalese within a small region close to the theo-

retical maximum. When infiltration is superimposed on the. rainfall hyetograph 
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the same conclusions are reached as long as Cv(i) is changed to Cv(ie), the coef-

ficient of variation of the effective rainfall intensity. The main conclusion is that 

for relatively low mean rainfall intensities, shallow stream and plane slopes, and 

a long distance downstream, the co-ordinates (coefficient of skewness, coefficient 

of variation) of the random peak flow series from a stream-plane combination are 

very close to one another and to the maximum obtained for a plane. 



Chapter 5 

STATISTICAL CHARACTERISTICS OF 

RANDOM PEAK FLOWS FROM A 

NETWORK OF STREAMS 

5.1 Introduction 

Over the years there have been many attempts to relate peak flows of various re-

turn periods to physiographic characteristics of watersheds. In a few cases climatic 

parameters have been included. Most of these relationships are of an empirical na-

ture. Lacking a physical basis, they may not be suitable for use in areas other than 

those for which they have been developed. The effects of physical characteristics 

and spatial structure of a river system on the statistical characteristics of a random 

series of peak flow series in conjunction with the prevailing climatic regime is an 

ongoing field of research. It was demonstrated in the previous two chapters that 

at an elemental level of a watershed, that is, a single plane or a single stream with 

two side planes, the coefficients of variation and skewness of the random peak flow 

series lie within a mathematically definable region of the Cs - Cv plane for given 

input parameteters. For conditions which produce a slow response from a water-

shed, most of the coefficients of the variations and skewnesses from a stream-plane 

configuration were found to be concentrated within a small area of the hypothetical 

limits of (Cs(qp),Cv(qp)). In a network of streams, the peak flow at the outlet is 

153 



154 

a mixture of flows from all the streams above the outlet. Because of the different 

flow velocities in each stream, the peak flow at the outlet is not a simple function 

of the local peak flows of the contributing streams. The randomness of the peak 

flows at the outlet is then not only a function of the randomness in the rainfall 

parameters but also of the spatial structure of the watershed. The objective of 

this chapter is to determine the effects of a network of streams on the statistical 

characteristics of random peak flow series. 

The drainage network of a natural watershed is conceptualized as a combina-

tion of runoff planes and streams. Horton's laws of drainage network and Strahler's 

ordering procedures, are used to generate stream networks and runoff contributing 

areas. For given rainfall and stream network characteristics peak flows correspond-

ing to a range of rainfall intensities are determined by a numerical simulation of 

the equations of continuity and momentum. Monte Carlo simulation technique 

is used to generate random rainfall intensities within that range. The statistical 

characteristics of the corresponding random peak flow series are obtained using 

standard statistical techniques. The following sections examine the effects of node 

density, stream length ratio, runoff contributing area, and rainfall and infiltration 

characteristics. 
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5.2 Numerical Simulation of Peak Flows from Stream Net-

works 

5.2.1 Numerical Simulation 

The equations governing the flow through a stream network are the continuity 

equation, 

by + Sq 
-- =i 
St Sx 

and the approximate form of the momentum equation, 

Sf = So - by - 

J Sx 

(5.1) 

(5.2) 

where y is the depth of flow, q is the flow rate per unit width, Sf is the energy 

slope, S0 is the slope of the runoff plane or a wide and rectangular stream, and 

i is the rainfall rate for a plane and the overland runoff rate for a stream. The 

numerical procedure for the solution of equations 5.1 and 5.2 is essentially the same 

as that described for the stream-plane configuration in section 4.3.2. The only 

major addition to the procedure is the specification of the boundary conditions 

at the junctions of streams. The simplest configuration of a stream network is 

one which contains only one junction as depicted in Figure 5.1. The conservation 

of mass and monentum equations are used to specify the boundary conditions at 

the confluence. The confluence is assumed to be of a point-junction type with no 

storage capacity. The conservation of mass equation is 

Qo=Ql+Q2 (5.3) 

• Qi from the ith upstream channel at the kth time level is calculated from the depth 

of water in the first segment of the downstream channel at the (k - l)th time level. 
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Figure 5.1: Schematic of flow at a confluence of streams. 
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The slope of the energy line, Sf, i, for the last segment of the ith upstream channel 

at the kth time level is obtained from the depths of flow in the penultimate segment 

of the ith upstream channel and the first segment of the downstream channel at 

the kth time level, that is, 

Sf,,=S0,+ x+x0 (5.4) 

where n is the number of segments in the ith channel. In this way the effects of the 

water level downstream of the confluence are accounted for. The kinetic energy of 

the inflow is assumed to be lost in the junction and the sum (Q1 + Q2) is uniformly 

distributed over W0.LsX0. 

5.2.2 Evaluation of the Numerical Procedure 

The numerical procedure used to solve for q in equations 5.1 and 5.2 is an ex-

picit finite difference scheme. In such a scheme, the unknown flow parameters 

(depth and flow rate) at the end of a time period and at a specified location are 

expressed as functions of the known parameters at the beginning of the same time 

period. Explicit schemes are the simplest of all numerical schemes, yet because of 

stability considerations require very small computational time steps. The latter 

are governed by the Courant conditions (equation 3.16). Analytical solutions of 

equations 5.1 and 5.2 are not available. The explicit finite difference solution' for 

given network and rainfall input parameters was compared to the solution from a 

more sophisticated model which has been found to give very good results on actual 

watersheds. 

The model is the one-dimensional hydrodynamic model developed by Environ-
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ment Canada. Complete details on the model are given in Environment Canada 

One-Dimensional Hydrodynamic Model Computer Manual ( 1982). Only a brief 

description is presented here. The 1-D model is a numerical method to simulate 

transient water quality and flow conditions in river networks and tidal estuaries. 

The model is called one-dimensional because the velocity of flow across a channel 

cross-section is assumed to be uniform and called hydrodynamic because it uses the 

full St. Venant equations to simulate gradually varied unsteady flows. An implicit 

finite difference scheme is used to solve a simplified and linearized version of the St. 

Venant equations. A weighted residual method of optimization is applied to the 

linearized equations to minimize the difference between the continuous equations 

and the discrete approximations. Appropriate local and temporal adjustments are 

made to account for the non-linear characteristics of the governing equations. The 

implicit scheme is unconditionally stable and the Courant criterion governs the 

convergence of the scheme. 

The 1-D model has been used on numerous projects. In the St. Lawrence 

study it was used to determine flood levels for the design of dykes in an area 

where the highly regulated flows of the St. Lawrence River meets the partially 

regulated flows of the Ottawa River. In the Peace-Athabasca study it was used to 

determine the effects of existing and proposed control structures on the channels 

within the delta. A 22-year period was simulated as opposed to the normally short 

simulation periods not exceeding several days required for flood studies. The model 

has been found capable of reproducing instantaneous discharges to within 4% to 

7% of that actually measured (using conventional measuring techniques). Water 

balance checks showed discrepancies between ±0.8% and ±1.5% for the 22-year 
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simulation of the Peace-Athabasca Delta system. 

The present numerical scheme and the 1-D model were used to simulate the 

flow from a synthetic network with only one confluence. The input conditions and 

stream characteristics were such that the discrepancy between the two schemes 

would be expected to be very large. The characteristics of the network are shown in 

Figure 5.2. Very shallow or very steep slopes of the streams make the approximate 

form of equation 5.2 very inaccurate compared to the full St. Venant equations. 

However, the discharge hydrograph shown in Figure 5.3 indicates that the difference 

in peak flow between the two numerical proceedures is only of the order of 10%. 

The difference decreases for similar networks with steeper slopes. The slopes of 

the streams used for the simulation of random rainfall events are about fifty to a 

hundred times higher than that used in the comparison test. The inaccuracy in 

the peak flo's for such networks may therefore be less than 10%, however, the 

errors would not necessarily be a monotonk funtion of slope. The influence of the 

rainfall intensity, as far as it determines the discharge in the network, may also be 

significant. Since this study is mainly concerned with the dimensionless statistical 

parameters of the random peak flows and not the actual peak flows, therefore, the 

absolute errors in the peak flows are not important as long as they are not so large 

as to distort the relationship between the rainfall parameters and the peak flow. 

The 1-D model took about 45 seconds to produce the hydrograph shown in 

Figure 5.3 while the explicit scheme took only 2 seconds. The savings in com-

putational time are quite substantial, especially, when considering the number of 

runs required to obtain the statistical characteristics of the peak flows (at least 

200 runs are required for each (C.s(qp), Cv(qp)) co-ordinate). Furthermore, a more 
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Rainfall duration = 1200 s 
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Length = 890 

Width = 2.5 m 

Slope = 0.0004 

Roughness = 0.04 
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Length = 2920 m 
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2 

1 

Runoff plane 

on each side of all streams 

Length = 200 m 
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Slope 0.02 
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Figure 5.2: Schematic of river system used in testing the explicit numer-

ical scheme against the i.-D hydrodynamic model. 
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sophisticated model such as the 1-D model requires more intricate programming 

to incorporate non-uniform rainfall inputs and to simulate more complex network 

patterns. So, while giving less accurate flow rates, as compared to the 1-D model, 

the explicit numerical scheme is the one better suited for the purposes of this study. 

5.3 Statistical Characteristics of Random Peak Flows from 

Constant Duration Rainfalls 

The distinguishing characteristics of a river network is the joining together of 

streams to form single streams which themselves may link with other streams 

further down the network. The presence of these confluences distorts the discharge 

hydrograph at the outlet of the network. The amount of distortion depends on the 

number and spatial distribution of the confluences, the individual characteristics of 

the streams and- the associated runoff planes, and the rainfall parameters. When 

the rainfall input is random, the randomness in the peak flows at the outlet is 

expected to be a function of the randomness of the input as well as the structure 

of the network. It would be interesting to determine whether the presence of the 

confluences affects the relationship between the statistical characteristics of rainfall 

and peak flow in ways different from those of single planes and streams. 

The statistical parameters of the random peak flow series are determined as 

follows. Numerical simulation using the procedure outlined in section 5.2 is used 

to generate peak flows correspondingto rainfall intensities increasing from 1 mm/hr 

to 150 mm/hr in steps of 1 mm/hr. Then for given rainfall pdf (Normal, Gamma, 

and/or Gumbel) with known parameters, Monte Carlo simulation technique is 
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used to generate 6000 random rainfall intensities. The corresponding 6000 random 

peak flows are obtained by interpolating between peak flows for known rainfall 

intensities. Standard statistical methods are then used to determine the mean, 

coefficient of variation, and coefficient of skewness of the random peakflow series. 

5.3.1 Topological Description of a Network of Streams 

Horton ( 1932), Langbein ( 1947), and Strahler (1957) are just a few of the scientists 

who have given the description of watershed and channel networks a quantitative 

basis. Numerous parameters exist to describe the physiographic and topological 

characteristics of a watershed. However, only a few of these are truly independent 

variables. Those which are relevant to this study are described below. 

1. Basin order, u 

The basin order, u, is the highest stream order in the basin. In natural 

basins u can range between 1 and 5 (Chow, 1964). The ordering scheme is 

that of Strahier ( 1957). Figure 2.2 shows a synthetic basin of order 3, ordered 

according to Strahler's rules which are 

(a) Streams that originate at a source are first-order streams. 

(b) When two streams of the same order join, the emerging stream is of 

order 4 + 1. 

(c) When two streams of different order join, the emerging stream has the 

higher order of the two combining streams. 

2. Bifurcation Ratio, RB 
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This term represents the base of an inverse geometric series relating the 

number, N, of streams of order 4D to the basin order u. 

N=R (5.5) 

or, 

RB=  r 
.Lv+1 

In a natural basin RB can range between 2 and 5. 

N, 
(5.6) 

3. Stream Length Ratio, RL 

RL is the base of a direct geometric series relating the mean length L, of 

streams of order to the mean length L1 of streams of order 1. 

or, 

RL = L  

In a natural basin RL is between 1.5 and 3.5. 

(5.7) 

(5.8) 

Synthetic networks for the purposes of this study are created by keeping u, RB, 

and RL within their respective range found in natural basins. 

5.3.2 Effect of Basin Order 

When the order of a drainage network with constant bifurcation ratio and runoff 

contributing area increases there is an increase in the number of streams andcon-

fluences in the network. This implies that the average length between reaches is 

shorter and hence the degree of attenuation of flow through the network is lesser. 
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The result is a basin with a faster response. The effect of the basin order on the 

statistical characteristics of the random peak runoff series is investigated through 

three synthetic networks illustrated in Figure 5.4. Networks (a) to (c) have order 

2, 3, and 4 respectively. The characteristics of the 3 networks are given in Table 

5.1 The number of confluences in each network is 1, 3, and 7. Network (c) therefore 

has the fastest response. Each network has a stream length ratio (RL) of approx-

imately 1.5 and a bifurcation ratio (RB) of 2. The width of the overland runoff 

plane on each side of each stream is 200 m. The total length of all the streams is 

42000 m, and the total runoff contributing area is 16800000 sq. metres for each 

network. 

The statistical characteristics of the random peak runoff series from each net-

work are determined as outlined in section 5.3. The pdf of the rainfall intensity 

is Normal with im  ranging from 50 to 80 mm/hr and Cv(i) equal to 0.2. The 

rainfall intensity is spatially and temporally uniform. The duration of the rainfall 

events is 1800 s for one set of simulations on the 3 networks. Rainfall durations of 

3600 seconds are further simulated on network (c). Figure 5.5 shows the outcome 

of the statistical analysis. On the same figure, the limits of (Cs(qp), Cv(qp)) as 

hypothesised in the previous chapter have been superimposed. The first obser-

vation pertinent to all three networks under the various input conditions is that 

the coefficients of variation and skewness are within the hypothetical limits despite 

the distortion that the confluences in the networks may cause to the runoff hydro-

graphs. It is further observed that the shorter duration and lower mean rainfall 

intensity conditions bring (Cs(qp), Cv(qp)) closer to the limiting maximum defined 

by the hypothetical region. These two observations are exactly the same as ob-
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CO 

Figure 5.4: Synthetic networks of order 2, 3, and 4 with each having a 
stream length ratio 1.5. 
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Table 5,1: Characteristics of networks illustrated in Figure 5.4. 

Parameter STREAM NETWORK 
(a) (b) (c) 

RB 

U 
L ( m) 

RL (app.) 

Li, (m) 
L2 ( m) 
L3 ( rn) 
L4 ( m) 
LI ( m) 
Ni ( m) 
N2 ( m) 
W3 ( m) 
W4 ( m) 
Si 
S2 
S3 
84 
n  
n2 
n3 
n4 

2 2 2 

2 3 4 
42000 42000 42000 
1.5 1.5 1.5 

12000 4600 2002 
18000 6820 2800 

- 10020 4200 
- - 8400 

30000 21402 15400 
15 15 15 
25 20 20 
- 25 25 
- - 30 

0.215 0.015 0.215 
0.01 0.013 .2.013 

- 2.01 0.21 
- - 0.008 

0.035 0.035 0.035 
223 0.031 0.031 

- 0.029 2.029 
- - 0.02? 

Width, slope, and roughness of side-planes 
are 200 m, 2.025, & 0.04 respectively. 
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Figure 5.5: Cs - Cv relationships of peak runoff from synthetic networks 
of order 2, 3, and 4. 
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tamed for the single-stream system and are similar to the behaviour exhibited by 

the statistical parameters of peak runoff from a single plane. It can therefore be 

assumed that under the conditions specified above, a network of streams responds 

in the same way as a single plane/single stream-plane as far as the behaviour of 

the statistical parameters of the peak runoff series are concerned. This suggests 

that a characteristic common to the three systems (plane, single stream-plane, and 

stream network) is predominant in determining the coefficients of variation and 

skewness of the peak runoff series. A closer examination of the (Cs(qp), Cv(qp)) 

coordinates from three networks for constant input conditions reveals that an in-

crease in the basin order u decreases both Cs(qp) Cv(qp). An increase in basin 

order decreases the length of the longest path of flow LI from the furthest point 

in the network to its outlet. The longest flow path for the three networks (a), 

(b), and (c) are 31000 m, 21400 m, and 15400 m respectively. For im  equal to 50 

mm/hr and rainfall duration of 1800 s (Cs(qp), Cv(qp)) coordinates for the three 

networks are (0.312,0.335), (0.300,0.275), and (0.287,0.227) respectively. For 1m 

equal to 80 mm/hr and rainfall duration of 1800 s, and corresponding coordinates 

are (0.306,0.300), (0.291,0.238), and (0.278,0.184) respectively. Cs(qp) is the pa-

rameter which is the more sensitive to the basin order. For the particular case 

being considered, a change in u from 2 to 4 decreases the longest path length by 

about 50% and the coefficient of skewness decreases by about 40% when im  = 80 

mm/hr. The coefficient of variation decreases by about 5% for the same case. The 

shallow gradient of the Cs - cv curve for the plane illustrates the sensitivity of 

the coefficient of skewness of the peak flows to runoff length. Under the conditions 

'being considered in this section (constant duration of rainfall, uniform distribution 
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of rainfall intensity, etc.,) transfering coefficients of skewness from one watershed 

to another is permissible only if the longest runoff path of each watershed is not 

very different from each other. 

5.3.3 Influence of Stream Length Ratio on Statistical Characteristics 

of Peak Flows 

In the previous section the stream length ratio RL was kept at a constant value 

of approximately 1.5. Increasing RL for a given total stream length decreases 

the length of the first-order streams and increases the length of the highest order 

stream. The net effect is that for a given basin order, increasing RL increases the 

length of the longest runoff path D. The three networks illustrated in Figure 5.5 

were used as a base to create 2 new sets of three networks with RL approximately 

equal to 2 and 2.5 for each set. The characteristics of the extra six synthetic 

networks (each still having RB = 2) are given in Table 5.2. The total lengths of 

the streams were kept at 42000 m for each network. 

The Cs(qp) - Cv(qp) curves for peak flows from 3 networks of different stream-

length ratios ( 1.5, 2.0, and 2.5) but same basin order (u = 4) are shown in Figure 

5.6. The rainfall input parameters are the same as given in section 5.3.2. The 

patterns exhibited by the statistical parameters of the peak flows have not changed 

from those of Figure 5.5. Shorter duration rainfalls are more likely to produce 

(Cs(qp), Cv(qp)) closer to the extremity of the hypothetical region. Increasing the 

duration of the rainfall brings the coordinates towards the (Cs, Cv) of the rainfall 

intensity. As far as the network characteristics are concerned, their effects seem 

less direct. The (Cs(qp), Cv(qp)) coordinates for the nine networks with im  equal 
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Table 5.2: Characteristics of 6 synthetic networks with different stream 
length ratios. 

Parameter STREAM NETWORK 
(d) (e) (f) (g) (h) ( I) 

RB 

U 

RL 

Li 
L2 
L3 
L4 
Li 
WI 
W2 
W3 
W4 
SI 
S2 
93 
S4 
ni 
n2 
n3 
n4 

(m) 
(app.) 

Cm) 
Cm) 
Cm) 
Cm) 
Cm) 
Cm) 
Cm) 
Cm) 
Cm) 

2 2 2 

2 3 4 
42000 42000 42000 
2.0 2.0 20 

10600 3600 1400 
20800 7200 2600 

- 13200 5000 
- - 12400 

31400 24002 19420 
15 15 15 
25 20 22 
- 25 25 
- - 32 

0.215 2.015 0.215 
0.01 0.013 0.213 

- 0.21 0.01 
- - 0.008 

0.035 0.035 0.035 
2.23 0.031 0.031 

- 0.229 0.029 
- - 0.02? 

2 2 2 

2 3 4 
42000 42002 42000 
2.5 2.5 2.5 

9400 2800 800 
23200 ?000 2200 

- 16800 5800 
- - 15200 

32600 26600 24000 
15 15 15 
25 20 20 
* 25 25 
- - 30 

0.015 0.015 0.015 
0.21 0.013 0.013 

- 0.21 0.01 
- - 0.008 

2.035 2.035 0.035 
2.03 0.031 0.031 

- 0.029 0.029 
- - 0.02? 

Width, slope, and roughness of side-planes 
are 200 m, 0.025, & 0.04 respectively. 
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Figure 5.6: Cs - Cv relationships of peak flows from networks of different 
stream-length ratios. 
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to 50 and 80 mm/hr are listed in Table 5.3. The statistical parameters from the 

network of order 2 are not sensitive to RL while the same parameters increase 

with RL for the higher order basins. The effect of the increased longest runoff 

path for higher order basins is therefore apparent. For two networks with the same. 

length of the longest runoff path (24000 m) but with (u,RL) equal to ( 3,2.0) and 

(4,2.5) respectively, the coefficient of variation is almost the same for both while 

the coefficient of skewness has increased for the bne with the lower (u, RL). The 

conclusion from the results of this and the previous section seems to be that unless 

small watersheds are being considered, the effect of the network characteristics on 

the statistical parameters of the peak runoff is not very significant compared to 

the effects of the rainfall characteristics. 

5.3.4 Spatially Non-uniform Runoff Contributing Areas 

The previous section considered streams with runoff planes of constant width. In 

natural watersheds upland overland runoff areas usually have greater widths and 

steeper slopes than those in the lower reaches of the watershed. The number of 

synthetic networks that can be created to simulate non-uniform width and slope of 

runoff contributing areas is virtually infinite. The objective of this section will be 

restricted to determining whether under such conditions the statistical parameters 

of the peak runoff series are still within he limiting hypothetical region. Two 

synthetic networks were created. For 1oth networks, RL = 1.5 and u = 4. The 

widths of the runoff planes for the 1st , 2nd, 3rd, and 4th order streams were 

200, 150, 100, and 50 in respectively for one network and 100, 75; 50, and 25 m 

respectively for the second network. The length of the longest runoff path is the 
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Table 5.3: Cs - Cv values for the nine networks listed in Tables 5.1 and 
5.2 under mean rainfall intensities of 50 and 80 mm/hr. 

Network MEAN RAINFALL INTENSITY (mm/hr) 

se 80 

U R Li Cv Cs CV Cs 

(a) 2 1.5 30020 

(b) 3 1.5 21400 

(c) 4 1.5 15400 

(d) 2 2.0 31400 

(e) 3 2.0 24020 

(f) 4 2.2 19400 

(g) 2 2.5 32622 

(h) 3 2.5 26602 

(1) 4 2.5 24200 

2.312 0.335 

0.302 2.275 

0.287 .0.22? 

2.311 0.329 

0.302 0.287 

2.292 0.243 

2.306 0.300 

2.291 0.238 

0.279 0.184 

0.304 0.293 

0.294 0.246 

2.283 0.205 

0.310 0.32? 0.304 0.290 

0.304 0.298 0.296 2.261 

2.299 0.2?? 0.291 0.233 

Pdf of rainfall intensity Is Normal with Cv(1) - 2.2 
Rainfall duration - 1800 s 
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same for both cases. 

The results of the statistical analysis of the random peak flows from each net-

work are shown in Figure 5.7. Some individual results are as follows : for the 

first network (with the wider runoff planes for each stream) the (Cs(qp), Cv(qp)) 

coordinates for im  equal to 50 and 80 mm/hr respectively are (0.288,0.217) and 

(0.276,0.162); for the second network the corresponding coordinates are (0.302,0.288) 

and (0.293,0.240) respectively. The duration of the rainfall events was set to 1800 

seconds. Compared to the network with a uniform width of 200 m for all runoff 

planes, the coefficients of variation and skewness of the first network have decreased 

and increased for the second network. The change in the coefficient of variation 

for the first network is negligible. Explanation of the individual results are dif-

ficult because of the interaction of various parameters, not all of them changing 

the statistical parameters in one direction. One would expect that for the smaller 

plane widths of the second network the overland flow reaches steady state faster 

and stays there longer and according to previous results (plane or stream-plane 

combination) this should lead to a decrease in the coefficients of variation and 

skewness. The decrease does occur for the first network. For the second network 

it can only be speculated that smaller runoff widths produce smaller flows which 

are attenuatted to a greater extent over the length of the streams. This is anal-

ogous to large rainfall intensities over long runoff planes, (Cs(qp), Cv(qp)) may 

be close to those of the rainfall close to the upstream end of the plane but both 

parameters increase for sections downstream. The main result seems to be that 

while non-uniform distribution of runoff contributing areas affect the coefficients of 

variation and skewness of the random peak flows, the influence is only significant 
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Figure 5.7: Cs - Cv relationships of peak flows from two networks with 
non-uniform runoff contributing areas. 
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under extreme conditions. For conditions expected to prevail over natural basins, 

the statistical parameters of the peak flows are concentrated within a small area 

of their hypothetical limits. 

5.3.5 Triangular Temporal Distribution of Rainfall Intensity 

The effect of non-uniform temporal distribution of rainfall intensity is simulated by 

assuming that the rate of rainfall increases from 0 mm/hr at time t = 0, increases 

to a peak value of ip at time t = tp, and decreases back to 0 at time t = to. Two 

ratios p, defined as tP in section 3.4, are selected for study. They are and 

The peak rainfall intensity is twice the equivalent uniform rainfall intensity. TO 

Random rainfall intensities having the above charateristics are simulated over two 

networks. u and RE are 3, 2.5 and 4, 1.5 for the two networks respectively. Both 

networks have a uniform width of 200 m for all the runoff planes. The pdf of the 

rainfall intensity is Normal with Cv(i) equal to 0.2 and im  ranging from 50 to 80 

mm/hr. The duration of the rainfall events are 1800 s for one set of simulations 

and 3600 s for another. The results of the statistical simulation are shown in Figure 

5.8. 

The main observation from Figure 5.8 is that the effect of a tiiangular distri-

bution of rainfall does not change the basic conclusion obtained from the other 

sections, namely, that (Cs(qp), Cv(qp)) of the peak runoff series lie within a region 

close to the extremity of their hypothetical limits. The statistical coefficients of the 

peak flows are relatively insensitive to the network characteristics. The duration 

of the rainfall events still has the predominant influence. 
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5.3.6 Spatially Non-uniform Distribution of Rainfall Intensity 

Analyses similar to the previous section are done with spatially non-uniform rain-

fall. The rainfall intensity is uniform over time. The spatial distribution of the 

rainfall intensity, specified as fractions of the equivalent uniform intensity giving 

the same depth of flow, is as follows : on the l', 2nd, 3rd, and 4th order streams 

for the network with u equal to 4, the fractions are 0.90, 1.50, 0.80, and 0.64 respec-

tively; the network with u equal to 3 has fractions 0.90, 1.50, and 0.65 respectively 

on the 1st , 2nd, and 3,d order streams. 

The results of the statistical analyses are shown in Figure 5.9. The effect of 

non-uniform spatial distribution of rainfall intensity is minimal as far as the area 

within which (C.s(qp),Cv(qp)) are located is concerned. 

5.3.7 Spatially and Temporally Non-uniform Rainfall Intensity on Spa-

tially Non-uniform Runoff Contributing Areas 

This final section dealing with constant duration rainfall combines the non-uniformity 

of runoff contributing areas (section 5.3.4), temporally non-uniform rainfall (sec-

tion 5.3.5), and spatially non-uniform rainfall (section 5.3.6) together. For the 

fourth order basin, the l', 2nd, 3rd, and 4th order streams have plane widths 

equal to 200, 150, 100, and 50 m respectively. The respective fractions of uniform 

rainfall intensity are 0.90, 1.40, 0.70, and 0.69. The equivalent uniform rainfall 

intensity over the whole basin gives the same depth of water as the non-uniform 

spatial distribution of rainfall intensity. For the third order network, the 1st , 2nd, 

and 3 order streams have plane widths respectively equal to 200, 163.4, and 90 

m. The respective fractions of uniform rainfall intensity are 0.80, 1.50, and 0.54. 
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Both networks have the same runoff contributing areas. The results of the statis-

tical analysis are shown in Figure 5.10. The results seem to indicate that as the 

basin and rainfall characteristics become more non-uniform, while still simulating 

"normal" conditions, the coefficients of variation and skewness of the peak runoff 

series coalesce in the region close to the extremity of their hypothetical limits. 

Summary for Constant Duration Rainfall 

The main result stemming from the simulation of random rainfall events of constant 

duration on stream networks is that the coefficients of variation and skewness of the 

random peak flows are concentrated within a small region at the extremity of the 

their hypothetical limits. While the characteristics of the networks do affect the 

coefficients, their influence is not very significant when compared to that exerted 

by the rainfall parameters. This has been shown to be the case even under non-

uniform watershed and rainfall parameters. 

5.4 Statistical Characteristics of Peak Flows from Corre-

lated Rainfall Inputs 

It is common knowledge that in natural rainfall events intensities and durations are 

correlated, high intensity events tend to be of " short" duration while low intensity 

events generally have relatively longer durations. Present day knowledge of rainfall 

physics is not sufficient to physically determine this correlation. An empirical-

statistical analysis of rainfall records provides a set of synthetic curves relating 

rainfall intensity, rainfall duration, and frequency of occurence. Figure 3.18 shows 

typical intensity-duration-frequency (IDF) curves. The effect of correlated rainfall 
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inputs on the statistical parameters of peak flows from a network of streams is 

discussed in this section. As explained in section 3.3.2 for correlated rainfall inputs, 

only the extreme peak flows are considered. The analyses are performed on two 

networks with the first one having (U,RL) equal to (3,2.5) and the second having 

(u,RL) equal to (4,1.5). Both these networks have their characteristics listed in 

Tables 5.1 and 5.2 respectively. The pdf of i, f(i), is the Gumbel Extreme-value 

distribution with a constant coefficient of skewness of 1.14. 1m varies with its 

duration t according to 

a 
= - 

t 
(5.9) 

where a and b, regionally determined constants, are equal to 338.7 and 0.7 respec-

tively. t is in minutes and i in mm/hr. For a selected return period T of rainfall 

iñteñsity and duration t, iT, t is calculated from 

T,t = im ,t(1 + Cv(i)KT) (5.10) 

Cv(i) is assumed to be 0.3 and KT is the frequency factor of the Gumbel dis-

tribution for return period T. The rainfall events, 'T, t, are routed through the 

networks and the maximum peak flow determined for T ranging between 2 and 

200. The rainfall intensity of return period T and duration t giving the maximum 

peak flow by IT and the maximum peak flow is denoted by W , T Both variables 

are plotted against t on the IDF figures. 

5.4.1 Spatially and Temporally Uniform Rainfall Intensity 

The rainfall intensity is spatially and temporally uniform. All streams have planes 

with runoff planes 200 m wide. Figure 5.11 shows the rainfall IDF curves together 
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with the plots of ILand from the two networks described in. section 5.4. 

They indicate that the low-frequency maximum peak flows occur for rainfall du-

rations shorter than those for high-frequency maximum peak flows. The plots of 

both ITand qM T have similar shapes. The ratio C of q T to IT, 

both networks is a constant for T's between 2 and 200. C is equal to 0.70 and 

0.64 for the first and second network respectively. A constant value for C is also a 

result obtained for single planes under correlated rainfall inputs. It was proven in 

section 3.3 that C is a constant for all T's. It is reasonable to assume the same for 

the networks. The similarity of the results from the networks to those from single 

O planes goes even further. The parameter I 4t, where t is the duration for which 

maximum peak flow ccurs, is a constant for both networks. The same parameter 

is also a constant on single planes.. 

The constant of proportionality C on a single plane ranged between 0.95 and 

0.89 with bin equation 3.70 between 0.52 and 0.72. It was shown in section 3.3.2 

that C was dependent on b only and independent of the planes' characteristics (S0, 

n., and L). When b is equal to 0.7, the constant C from the first and second networks 

are 0.70 and 0.64 respectively. C for the case of networks depends on b as well as the 

network characteristics. The lower values for C on stream networks are probably 

due to the combined effects of the stream characteristics and the confluences. The 

actual values of C for stream networks depend on accurate numerical methods of 

simulating flows. For the purposes of this study, an accurate value of C is not 

necessary. Whether it is constant or not with return periods T is more important. 

For the rest of this chapter, the values of C obtained will be presented, but their 

significance relative to network and climatic characteristics will not be discussed 
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Figure 5.11: Return periods of maximum peak flows and correspond-
ing rainfall intensities from two networks under uniform and correlated 
rainfall intensities. 
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in detail. 

A constant ratio between W , T and IT combined with a constant value of 

I 4t imply, by analogy with the case of single planes, that ( i) the pdf of qM  and 

I are of the same functional form with exactly the sam coefficients of variation and 

skewness, only the dimensional statistical parameters such as the mean, standard 

deviation, etc., differ,'and ( 2) the coefficients of variation and skewness of qM  

or I are funtions of b, a regional climatic parameter describing the IDF curves, 

and Cv(i) only. ' Note that Cv(i) is the coefficient of variation of f(i), the pdf 

of j of a constant duration. f(i) is the Gumbel' distribution in this case. If 1(1) 

were the Gamma distribution analytical solutions for 1(I), Cv(I), and Cs(I) are 

as presented in section 3.3.2. When f(i) is the Gumbel distribution with Cv(i) 

equal to 0.3 and b equal to 0.7, Cv(I) and Cs(l) are 0.426 and 1.626 respectively. 

These coordinates lie very, close to the line joining the (Cs, Cv) coordinate of the 

rainfall intensity distribution to the upper limit of the (Cs(qp), Cv(qp)) coordinate 

of random peak flows from constant duration rainfall events. These and similar 

values for other Cv(i) and b are obtained as follows. 6000 random values of i from 

f(i) are generated. i are transformed into I using equation 3.86 reproduced below 

I = (a cort,startt).ih/(1 - 0.4b) (5.11) 

Statistical analyses are then performed on the corresponding random series of I. 

Since I and qM  are linearly related, therefore Cv(q) = Cv(I) and Cs(q) 

The results in this section indicate that as far as coefficients of variation and 

skewness of the maximum peak flows are concerned, they are ( 1) constants for a 
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given climatic regime, and (2) independent of the topological characteristics of the 

stream networks. The- effects of non-uniform rainfall and network characteristics 

are investigated next. 

5.4.2 Non-uniform Runoff Contributing Areas 

Non-uniform runoff contributing areas are simulated by assigning runoff planes of 

different widths to each stream order. For the first network, the 1st , 2nd, 3rd, and 

4th order streams have planes of widths 200, 150, 100, and 50 m respectively. For 

rd the second network, the widths of the runoff planes along the 1st , 2nd, and 3 

order streams are 200, 163.4, and 90 m respectively. Both networks have the same 

total area'of runoff contributing areas. In the first network all other plane and 

stream characteristics have been kept the same as the first network with constant 

width runoff planes. In the second network, the widths, slopes, and roughnesses 

of the streams are different from those of the second network with constant width 

runoff planes. The same procedure as outlined in the previous section is used to 

determine the maximuth peak runoff for return periods ranging from 2 to 200 years. 

The results are shown in Figure 5.12 for the first and second networks. The shapes 

of the ' i, T and IT curves are not different from those from the networks with 

uniformly distributed runoff contributing areas. 

The ratio C is equal to 0.70 for the first network and 0.66 for the second network. 

The constant of proportionality for uniformly and non-uniformly distributed runoff 

areas in the first network is the same. C for the second network with the non-

uniformly distributed areas is different from that with the uniformly distributed 

areas. In the second network the characteristics of the streams have been changed 
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Figure 5.12: Return periods of maximum peak flows and corresponding 
rainfall intensities from two networks with non-uniform distribution of 
runoff areas and under uniform correlated rainfall intensities. 
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and this probably explains the difference in the  value. 

For both networks, given that the ratio of maximum peak flow to rainfall inten-

sity is a constant, it therefore implies that the coefficients of variation and skewness 

of the maximum peak flow pdf are constants for given b and Cv(i) and indepen-

dent of the network characteristics. For the given rainfall characteristics, Cv(q) 

= 0.426 and Cs(qm ) = 1.626. 

5.4.3 Temporally Non-uniform Rainfall Intensity 

Temporally non-uniform rainfall intensity is simulated by assuming a triangular 

variation of the rainfall rate with time. Two cases of temporally non-uniform 

rainfall intensity are considered for each of the two networks described in section 

5.4.1 ; in the first case the ratio of time'to peak intensity to duration of rainfall, 

p = tP  , is equal to and in the second case p is equal to . The widths of the 10 

runoff planes for all streams are set to a constant value of 200 m. The equivalent 

uniform intensity is assumed to have a Gumbel pdf with Cv(i) = 0.30 as before. 

The results are shown in Figures 5.13 and 5.14. The ratios qM, for the 

two networks are as follows : for p = and p = the ratios are 1.07 and 1.08 10 

respectively for the first network and 1.12 and 0.98 respectively for the second 

network. Since the C values are constant even for temporally non-uniform rainfall, 

therefore the coefficients of variation and skewness of the maximum peak flows are 

independent of the networks' characteristics and are equal to 0.426,1.626 for the 

particular f(i) and b-value under consideration. 
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Figure. 5.14: Return periods of maximum peak flows and corresponding 
rainfall intensities from two networks under temporally non-uniform 
and correlated rainfall intensities with p = 7/10. 
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5.4.4 Spatially Non-uniform Rainfall Intensity 

All the streams have 200 m wide runoff planes. The rainfall intensity is uniformly 

distributed over its duration. Spatially non-uniform rainfall is simulated by as-

signing different fractions of equivalent spatially uniform rainfall intensities over 

the different stream orders such that the average depth of rain is equivalent to the 

spatially uniform depth of section 5.4.1. The first network had fractions 0.9, 1.5, 

0.8, and 0.64 assigned to its l, 2nd, 3rd, and 4th order streams respectively. The 

second network had fractions 0.9, 1.5, and 0.65 over its 1.t , 2nd, and 3rd order 

streams. The resulting plots of qM, T and IT for the two networks are shown in 

Figure 5.15. 

The C values are still constant for all return periods, 0.72 for the first network 

and 0.69 for the second network. This implies that for both networks Cv(q) = 

0.426 and Cs(q) = 1.626, as before. 

5.4.5 Combined Effect of Spatially and Temporally Non-uniform Rain-

fall Intensity 

The distribution of the runoff planes' widths is as in section 5.4.2, the rainfall 

intensity is temporally distributed with p = 0.3; and is spatially distributed as 

in section 5.4.4. The resulting plots of qM,T and IT for the two networks are 

shown in Figure 5.16. Even for these non-homogeneous conditions, the C values 

are constant for all return periods, 1.05 for the first network and 1.03 for the 

second network. This implies that for both networks, the coefficients of variation 

and skewness of the maximum peak flows have stayed the same as before. The 

emerging conclusion is that Cv(q) and Cs(q) are dependent only on b and 
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Figure 5.15: Return periods of maximum peak flows and corresponding 
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Cv(i) for correlated rainfall events on stream networks with no infiltration. 

5.4.6 Uniform Rainfall Intensity and Constant Infiltration Rate 

The networks under study are still the same two as in the previous sections. The 

rainfall intensity is spatially and temporally uniform. All streams have runoff 

planes 200 m wide. A constant infiltration rate of f mm/hr is superimposed on 

the rainfall hyetograph. Three cases of f : 0, 5, and 20 mm/hr, are considered. 

The case f = 0 is the same as that of section 5.4.1. The plots of qM  and IT are 

shown in Figures 5.17 and 5.18 for the two networks respectively. When f 

0, the curves for maximum peak flows and corresponding rainfall intensities have 

similar shapes and the low-frequency maximum peak flows are associated with 

shorter duration rainfall events than are the high-frequency flows. For f > 0, as 

expected q T have decreased and the corresponding 'T have increased. The 

durations of the rainfall events have consequently decreased. When f = 5 mm/hr, 

the durations of the rainfall events causing the high frequency maximum peak flows 

have decreased proportionately more than those for the low frequency flows. This 

is especially evident in the case of the second network. When f = 20 mm/hr, there 

is a complete reversal in the direction of the plots of qM, T and 'T compared to 

the f = 0 case. The low frequency maximum peak flows are now generated from 

rainfall events with longer durations than are the high frequency flows. The ratios 

C of qM T toIT are no longer constants for f > 0. In the case of the first network, 

C ranges between 0.34 for T = 2 and 0.56 for T = 200 when f = 5 mm/hr. When 

f = 20 mm/hr, C then ranges between 0.05 and 0.26. The ratios are still variable 

when effective rainfall intensity (1T - f) is considered. All these results are similar 
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to those obtained for pervious single planes under similar input conditions. 

Infiltration rates are rarely uniformly distributed over time and space and also 

rarely constant for all rainfall events. As was discussed in section 3.3, the effect of 

constant/random, uniform/non-uniform infiltration is to increase Cv(qp) Cs(qp) 

and to decrease, qp for all return periods. Infiltration decreases the effective rainfall 

intensity and as a result Cv of the effective rainfall intensity increases and the effect 

on the statistical parameters of the peak flows follows. For design purposes, where 

only the extreme events are of importance, the no infiltration case is the most 

critical. If the runoff generating process is as assumed in this dissertation, i.e., 

the immediate runoff occurs only on anarrow strip of land close to the streams, 

then it is not inconceivable that these runoff contributing areas would be close 

to a state of permanent near-saturation. The widths of these saturated zones do 

not significantly affect the statistical parameters of the maximum peak flows, as 

discussed in section 5.4.4. So, although infiltration is an important variable in the 

rainfall-runoff process, it may have to be neglected for design purposes, in which 

case, the results oithe sections for no infiltration are those to be used for estimating 

low frequency flows. 

5.4.' Non-uniform Rainfall and Runoff Area Parameters and Constant 

Infiltration Rate 

In this section the analysis performed in section 5.4.4 is repeated for inflitration 

rates f of 0, 5, and 20 mm/hr. The rainfall intensity is spatially and temporally 

variable and the widths of the runoiT contributing areas are different for each stream 

order. The results are shown in Figures 5.19 and 5.20 for the first and second 
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network respectively. The patterns of the qM, T and IT plots are similar to those 

obtained for the two networks under uniform conditions. The ratios C are variable. 

For f = 20 mm/hr, the low frequency maximum peak flows are generated from 

rainfall events of longer durations than those for high frequency extreme flows. 

The behaviour is exactly the opposite observed for the no infiltration case. 

5.5 Discussion of Results From Single Planes, Single Streams, 

and Networks of Streams 

The objective of this study has been to determine the role that the mechanics of the 

hydrological process has in influencing the statistical parameters of the probability 

distribution of peak flows from conceptual watersheds. These watersheds ranged 

from single runoff planes and stream-planes combinations to networks of streams. 

The physiographic characteristics of the watersheds were assumed to be invariant 

over time, but, could be non-uniform sptial1y. The physical structure of the 

rainfall inputs ranged from spatially and temporally uniform distribution of rainfall 

intensities with constant duration to non-uniform rainfall intensities correlated with 

rainfall durations. The probability distributions of the rainfall inputs were assumed 

to be known. The Monte Carlo simulation technique was used to generate random 

rainfall intensity values. The flow was routed through the watersheds by using a 

finite difference scheme to solve for the equations of continuity and momentum. 

The resulting random series of peak flows were then analysed for their statistical 

characteristics. 

The results indicate that the statistical characteristics of random peak flows 
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from the watersheds follow a consistent pattern determined by the equations of 

continuity and momentum. The response from the single planes are more sensi-

tive to the specification of the rainfall and watershed characteristics than stream 

networks are if constant duration rainfall events are being considered. The sta-

tistical parameters of the peak flows from the planes only become insensitive to 

the rainfall and plane characteristics when certain conditions are met. These are 

planes of long runoff lengths, shallow slopes, and high Manning's roughness and 

rainfall of low mean intensities and short durations. In fact, for these combina-

tions of factors, the coefficients of variation and skewness of the peak flows are at or 

close to their maximums for given pdf of rainfall intensity. And a given coefficient 

of variation of rainfall intensity yields a fixed (constant) maximum coordinate of 

coefficients of variation and skewness. The parameters are constants at their max-

imum values because under these conditions the relationship between peak flow 

and rainfall intensity is of a power function type and it has been proven that such 

equations produce constant coefficients of variation and skewness dependent only 

on the exponent of the power function and independent of the multiplying fac-

tor. The latter determines the mean of the peak flow pdf. The maximums occur 

for an exponent equal to 5/3. The Kinematic Wave equations characterize this 

type of rainfall intensity-peak flow relationship and have been found by several 

investigators (Overton, 1970 and Wooding, 1966) to approximate actual watershed 

responses. In this thesis it has been proven that the Diffusion Wave equations 

degenerate into an equation very close to that obtained from a solution of the 

Kinematic Wave equations und'er conditions of low rainfall intensities with long 

durations over long runoff planes with shallow slopes and rough surfaces. 
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The insensitivity of the coefficients of variation and skewness to rainfall (except 

for the pdf type and its coefficient of variation) and watershed characteristics under 

conditions that generate slow responses carries through to stream-plane combina-

tions and stream networks. In fact, for these configurations the insensitivity occurs 

for larger ranges of the input variables. This is so because the attenuating effects 

are more dominant than on a single plane. The coefficients of variation and skew-

ness seem to coalesce close to the corresponding maximum value from a plane. 

The positions of the coordinates are not very sensitive to non-uhiform rainfall and 

watershed characteristics. 

The above results have been obtained only for conceptual watersheds. It is hy-

pothesized that the same results can be extended to natural watersheds according 

to the following argument. Natural watersheds can be expected to attenuate flows 

to a greater extent than their corresponding conceptual representations. The latter 

can only be specified by average values for the stream and runoff plane character-

istics. Since attenuation of flows directs the coefficients of variation and skewness 

towards their maximums, the natural watershed can only accelerate that pattern. 

And the maximum has been shown to correspond to that obtained from assuming 

that the flow is kinematic. Flows from natural watersheds have been found to 

be closely approximated by solutions of the Kinematic Wave equations. Both the 

pattern exhibited by the behaviour of the statistical parameters and the empirical 

evidence of the type of flow prevailing in natural watersheds lead one to expect the 

coefficients of variation and skewness of peak flow from natural watersheds to be 

close to the theoretical maximums. 

If the rainfall inputs are correlated, then, the statistical characteristics (coef-
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ficients of variation and skewness) of the random peak flows are independent of 

the physiographic characteristics of the watersheds and depend only on the pdf 

of the rainfall intensity for a particular duration and a parameter that relates 

the mean uniform rainfall intensities to their corresponding durations on the IDF 

curves. The foregoing statement is. true only if effective rainfall intensity is being 

considered and it lends support to the practice of using regional skew coefficients 

for determining peak flows of various return periods. If the characteristics of the 

fainfall regime (intensity and duration) within a region can be specified by a set 

of IDF curves, then the coefficients of variation and skewness within that region 

are constants for all watersheds from single planes to stream networks. It is as 

sumed that for any watershed being considered the rainfall pattern stays the same 

for each storm event. The effect of infiltration on this conclusion is very complex 

and needs further investigation. For relatively low infiltration rates the conclusion 

may still be approximately true if the analysis is performed with effective rainfall 

intensity. However, for relatively high infiltration rates, the effect of the latter on 

the coefficients of variation and skewness of the maximum peak flows has not been 

determined. 

The study has dealt with two possible relationships between rainfall intensity 

and rainfall duration, either the duration is constant for all events or there is an 

inverse power function type of relationship between rainfall intensity and duration 

as given by equation 5.9. These two cases produce exactly the same coefficients 

of variation and skewness under only two situations. These are ( 1) for constant 

duration rainfall events, the peak flows are from watersheds with relatively high 

attenuating effects on the flow and the latter can be approximately characterised 
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by the Kinematic Wave equations; for correlated rainfall inputs, the exponent b 

in equation 5.9 is equal to 1, i.e., i = and (2) for constant duration rainfall 

events the peak flows are the steady state flows; for correlated rainfall inputs, 

the exponent b in equation 5.9 is equal to 0, i.e., rainfall intensity is independent 

of duration and the maximum peak flow is equal to the steady state flow. The 

discrepancy between the results from the two types of rainfall events increases as b 

decreases from 1, is greatest when b 0.4, and is nil when b is equal to 1 or 0. The 

parameter b usually lies between 0.6 and 0.8 for natural rainfall events. Within this 

range the coordinates of coefficients of variation and skewness of the peak flows are 

close to those from constant duration events from slow response watersheds. This 

may suggest that for relatively large watersheds it may not be necessary to make a 

distinction between constant duration storms events and correlated rainfall inputs. 

The coefficients of variation and skwness for the random peak flows from such a 

watershed can be estimated from the rainfall data if there is not sufficient data on 

•the annual peak flows. 



Chapter 6 

CONCLUSIONS AND RECOMMENDATIONS 

6.1 Scope of Study 

The objective of the study is to determine the intrinsic nature of the statistical 

characteristics of random peak flows generated from conceptual watersheds by us-

ing a composite deterministic-statistical approach. Assumptions are first made on 

the stochastic nature of the input variables, rainfall and infiltration. The Monte 

Carlo simulation technique is used to generate random series of each variable from 

its respective probability distribution function. The corresponding random series 

of peak flows from a watershed of given characteristics are then obtained by nu-

merically solving the Diffusion Wave equations of continuity and momentum for 

each set of input random variables. The numerical scheme used is of the explicit. 

finite difference type. The statistical characteristics of the random series of peak 

flows are obtained using standard technique. The influence of rainfall, infiltration, 

and watershed characteristics is studied through their effects on the relationship 

between. the coefficient of variation and coefficient of skewness of the random peak 

flow series. 

The conceptual watersheds vary in complexity from a single impervious runoff 

plane under uniform rainfall intensities of constant durations to a network of 

streams and pervious planes under non-uniform rainfall intensities which are cor-

related with their durations. The runoff planes are rectangular and of constant 

206 
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slope and roughness. Streams of a given order have rectangular cross-sections and 

are prismatic. The two runoff planes on each side of a stream can have variable 

characteristics along the length of the stream. The network of streams is char-

acterised by the basin order, bifurcation ratio, stream length ratio, and longest 

continuous stream length. Rainfall intensities are either spatially and temporally 

uniform or have different mean values over different areas in a network and/or can 

be temporally non-uniform. In the latter case, the rainfall hyetograph is assumed 

to be triangular in shape with the peak intensity occuring at specified times along 

the duration axis: The rainfall durations can be constant for a given random series 

of rainfall intensities or are correlated with the rainfall intensities. In the latter 

case the correlation between rainfall intensity and duration is expressed through 

synthetic Intensity-Duration-Frequency curves. When rainfall intensity and dura-

tion are correlated the (maximum) peak flow is the maximum of all peak flows for 

a given return period of rainfall intensity. Infiltration rate is either uniform over 

time or decreases exponentially according to Horton's equation. In either case the 

rate is not necessarily the same over the entire watershed. The conclusions of this 

study pertain to the effects of these conditions on the relationship between the 

statistical parameters of the random peak flows. 

6.2 - Conclusions 

The most important result of the study is that for a given probability distribution 

function of rainfall intensity with known coefficient of variation Cv(i) and coeffi-

cient of skewness C.s(i), the coefficients of variation Cv(qp) and skewness Cs(qp) of 
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the random peak flow series lie within a fixed and mathematically definable region 

on a plot of Cv against Cs. This conclusion holds for all the rainfall and conceptual 

watersheds' characteristics simulated, including the case when rainfall intensity and 

duration are correlated. In the latter case, the coefficients of variation and skewness 

of the maximum peak flowsbecome independent of all watershed characteristics 

and depend only dn a parameter characterising the Intensity-Duration-Frequency 

curves. When infiltration is included, then the pdf and coefficients of effective 

rainfall intensities must be used, instead of those of total rainfall intensity. The 

above result still holds for constant duration rainfalls, but not for correlated rainfall 

events. 

The region within which the coordinates (Cs(qp),Cv(qp)) lie is enclosed by a 

curve and a line having (Cs(),Cv(i)) and a maximum (Cs(qp),Cv(qp)) as com-

mon points. The maximum (Cs(qp), Cv(qp)) is determined by the coefficients of 

skewness and variation respectively of a transformed pdf of peak flow assuming a 

relationship of the form 

qp = ai' (6.1) 

exists between peak flow qp and rainfall intensity i. The factor a can take any 

constant value. The (Cs(qp), Cv(qp)) obtained from simulating random uniform 

rainfall intensities of constant durations on a single impervious plane define the 

path of the curve. A general analytical equation of the curve has not been found. 

The relationship between qp and i defining this curve is given by 

.k )1.31\ 
qp =exp[ i(1— 1.6—k (6.2) 
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where k is 

k = 0.4t ( V' )0.6 
nL 

(6.3) 

In equation 6.3, to is the duration of the rainfall, S0 is the slope of the runoff 

plane, and n and L are its roughness and length respectively. Equation 6.2 is a 

semi-empirical solution to the Diffusion Wave equations. The equation of the line 

joining the maximum coefficients of variation and skewness of the random peak 

flow series to the corresponding coordinate of the rainfall intensity is defined by 

assuming that a power function of the form given by equation 6.1, but with the 

exponent on i taking values between 1 and 5/3, holds between qp and i. 

The effects of watershed and rainfall characteiistics on the position of (Cs(qp), Cv(qp)) 

within that region are as follows. Runoff planes with high slopes, low rough-

nesses, and short runoff lengths under rainfall of relatively longer durations cause 

the coefficients of variation and skewness of random peak flows to move towards 

(C.s(i), Cv(i)). Conveise1y, conditions which promote slow runoff iesponse (shallow 

slopes, long runoff lengths, etc.) generate (Cs(qp), Cv(qp)) closer to the maximum 

coordinate. Compared to temporally uniform rainfall intensity, triangular tempo-

ral distributions of rainfall intensities tend to shift the coordinates towards the 

maximum. For low mean rainfall intensities, the time at which the peak intensity 

occurs becomes insignificant. When rainfall intensity and duration are correlated 

and a relationship of the form 

(6.4) 

holds between rainfall intensities of a specified return period T and their respective 

durations, then the coefficients of variation and skewness of the maximum peak 
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flows lie on the line joining (Cs(i),Cv(i)) to the maximum (Cs(qp),Cv(qp)). This 

line is characteristic of power functions between i and qp, and for the case of 

correlated rainfall events the exponent on i in equation 6.1 is 1/(1 - 0.4b). The 

coefficients of variation and skewness depend only on b and are independent of the 

characteristics of the plane. 

The effects of the characteristics of a network of streams can be summarised by 

stating that conditions promoting greater attenuation of flow produce coefficients 

of variation and skewness closer to the maximum. These conditions are relatively 

smaller stream length ratio, smaller basin order, and longer distance between the 

most upstream point of the watershed and its outlet. For a network of streams, the 

characteristics of the watershed tend to be of relatively lower significance than the 

duration of the rainfall, especially when the coefficients of variation and skewness 

are already close to the maximum. Since rainfall durations are important parame-

ters in the study of peak flows from a network of streams, it is therefore necessary 

to incorporate the correlation between rainfall duration and intensity in the anal-

ysis. When this is done, the result is identical to that obtained for a plane, i.e., 

the coefficients of variation and skewness of the maximum peak flows are constants 

for a given set of IDF curves and are independent of all watershed characteristics. 

This result is still valid for temporally and spatially non-uniform rainfall intensity. 

The last two conclusions are significant as far as their application to " real" 

watersheds are concerned. The study has dealt solely with conceptual watersheds. 

Its results, however, indicate that the complexity of the individual components 

of the rainfall-runoff process may not carry through to the positions of the the 

coefficients of variation and skewness of the maximum peak flows on the Cs - Cv 
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plane for watersheds which have relatively high flow attenuating potential. " Real" 

watersheds may be expected to have features which promote attenuation of flow. 

Hence, even for constant duration rainfall events, where the characteristics of the 

watershed play some part in determining the coefficients of variation and skewness 

of the random peak flows, the latter may be so close to the maximum that they 

may be considered independent of the watershed characteristics. 

As noted above, the effect of inflltition in the case of constant duration rainfall 

events can be taken account of by simply dealing with the pdf of effective rainfall 

intensity. When rainfall duration and intensity are correlated, however, the effect 

of infiltration on the statistical characteristics of maximum peak flows is not as 

quantifiable as is the case with impervious watersheds. The only significant result 

obtained is that while for impervious watersheds the peak flows with smaller prob-

abilities of being exceeded are generated by rainfall events of shorter durations, for 

pervious watersheds, the peak flows with smaller probabilities of being exceeded 

are generated by rainfall events with the longer durations. In some cases, the in-

tensities of rainfall generating all the maximum peak flows are close to a constant 

value, only the durations vary. 

6.3 Recommendations 

The following areas needing further research are suggested. They are based on the 

discussion of the results of this study. 

A definition of the " size" of a watershed in terms of its physical characteristics 

and the prevailing rainfall characteristics is needed. One conclusion of this study is 
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that the coefficients of variation and skewness of random peak flows are expected 

to be at their maximums for watersheds which significantly attenuate the runoff. 

These watersheds include those with relatively large drainage areas and also the 

smaller ones under short duration, low intensity rainstorms. The definition may be 

similar to that derived for a plane. In the latter case, a parameter km less than 0.5 

(equation 3.41), which includes the plane and rainfall characteristics, defines the 

conditions that will produce the theoretical maximum coefficients of variation and 

skewness for uniform rainfall intensities of constant durations. The investigation 

would follow the same lines as the present one but concentrate more on the mean 

value of the random peak flows than on the higher moments. This means that 

a relatively lesser number of random events may be simulated, thus considerably 

reducing the computational times. However,' it also means that the numerical 

method for solving the equations of flow must be rigourously tested to provide 

accurate values of peak flows. 

The effect of infiltration on the statistical parameters of random peak flows 

when rainfall intensities and durations are correlated needs further investigation. 
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Appendix A 

STATISTICAL CHARACTERISTICS OF 

POWER FUNCTIONS OF A GAMMA 

VARIABLE 

Let the random variable Y be a power function of a random variable X. The power 

function is of the form 

Y =aXb, a,b>0 (A.1) 

If the probability density f(x) of X is known, then the kth moment about the 

origin of Y is given by 

°° f(x)[aXb]kdx (A.2) 
lnk[Y] = f--Oo 

Le't f(x) be the Gamma density function: 

- le— AX 
1(x)  , x,A,i >0 (A.3) 

The mean of X is 

E(X) = (A.4) 

The variance of X is 

V(X) = - (A.5) 

The coefficient of variation of X is 

CV(X) = (A.6) 
07-7 
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The coefficient of skewness of X is 

Cs(X) 

The kth moment about the origin of Y is given by 

A fomk[Y] = F( 17 OO 11) x11 - le_AX(axb)kdx 

akA11 00 kb + 11 - 1edx 
mktYl = F(11) O 

Using the equality 

or, 

x17 - 1e'dx = r - 

the 1st moment about the origin of Y is 

aA11 00 
mi[Y]= r(11)fo x ?7_le•AZdx= aA 11 1'(b+17) 

T() Ab+11 

the 2" moment about the origin of Y is 

rn2[Y] = a2A r(11) f°° 2b + 11 - 1edx = a2A 77 r(2b + )  
r(11) A2b+17 

the 3rd moment about the origin of Y is 

a3A 00 m3[YI = 3b +11 - le_AXdx = a3A  T(3b + 17) 
r11 fo r(11) A3b+11 

(A.7) 

(A.11) 

(A.12) 

(A.13) 

The 2 and 3rd central moments (about the mean) of Y are related to the 

moments about the origin as follows. Let p.k[YJ denote the kth central moment of 

Y. 

/22P"I = m2[YI - m[Y] 
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After some algebraic manipulations, the 2nd and 3r4 central moments of Y 

respectively are 

I22[Yj - ()2 r()r(2b + 17) - r2 (b + ii) 
(A.16) 

- r2(17) 

_ a 3r2(i7)F(3b + 1) - 3r()r(2b + fl) F(b + ii) + 21'3(b + 17)  
T77 (A.17) p3[Y} - i3() 

The statistical characteristics of the transformed random variable Y are as 

follows. The mean of Y is 

E(Y) = m1[Y]= a F(b+ri) 

The coefficient of variation of Y is 

CV(Y) --  J2[Y1 - (r(17)r(2b + ,q) - T2(b +  

E(Y) - I'(b+) 

The coefficient of skewness of Y is 

(A.18) 

(A.19) 

CS(Y) = 3/2 = r2(17)r(3b + ) -  3r(17)r(2b + 17)r(b + ) + 2r3(b + )  
(r(17)r(2b+)_r2(b+17))3/2 

(A.20) 

The coefficients Cv(Y) and Cs(Y) are related according to the following equa-

tion 

Cs(Y)Cv3(Y) = r2(17)r(3b + ) -  3r(17)r(2b + 17)T(b + 17) + 2r3(b + )  
r3(b + ) (A.21) 


