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Abstract 

Along with advancements in microelectromechanical system (MEMS) technology, many 

modern personal navigation devices incorporate measurements from various sensors 

alongside Global Navigation Satellite Systems (GNSS) receivers. Despite using these 

sensors, GNSS still remains an important component of these navigation devices in view 

of its absolute positioning capability. Thus, when it comes to navigating in GNSS signal 

degraded areas like in urban and natural canyons, the performance of such multi-sensor 

integrated navigation systems is still found to be sub-optimal. In particular, existing 

filtering algorithms are often unreliable in such environments. This affects the usability of 

such personal navigation devices in some applications where reliability is a critical 

parameter. Moreover, reliability can be further degraded by the occurrence of faults in 

other sensors besides GNSS. This research thus develops several algorithm modules 

with an ultimate goal of improving the performance, and especially reliability, for low cost 

multi-sensor integrated navigation systems. 

Among the proposed algorithm modules, the first method modifies the filtering algorithm 

by replacing the assumption of normal distribution of GNSS measurements with that of a 

heavy-tailed distribution. The second module adapts the covariance of the GNSS 

measurements to match the true error characteristics of the surrounding environment, 

based on the consistency of GNSS derived user acceleration values to those obtained 

from inertial measurement units.  Finally, a third algorithm module detects possible faults 

arising in various sensors. Based on the type of sensor fault, the algorithm either rejects 

some of the measurements before they enter the integration filter, issues a warning signal 

to indicate lack of reliability information or deems the navigation solution unusable. The 
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proposed algorithms are tested with numerous field data sets collected in various 

environments as well as with carefully simulated faults that are added to clean 

measurements. 

The analysis of the results obtained using the proposed methods indicate a significant 

improvement in the reliability of the navigation solution. The average improvement in the 

reliability varied between 15 % and 26 % for the data sets used in the analysis. Position 

accuracy was also found to improve. In particular, maximum position errors are 

significantly decreased, up to a factor of 2.5 in some cases. Finally, the simulated as well 

as actual faults occurring in the sensor measurements were also correctly detected. 
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Chapter One: Introduction 

Global Navigation Satellite Systems (GNSS) receivers have become an essential feature 

of modern day life. They are used for a variety of applications such as navigation, location, 

survey and precise timing. While originally designed for military applications, GNSS soon 

became an essential component of many civilian applications like aviation and car 

navigation. In recent years, GNSS have become the backbone of an extensive number 

of civilian applications including many personal navigation applications. Users of modern 

navigation applications would like to have personal navigation devices that have 

seamless, continuous navigation capability. Despite tremendous improvements in 

performance during the last decade, however, when it comes to signal degraded 

environments, namely urban canyons, under foliage or indoors, GNSS still fails to achieve 

these requirements. A very promising approach to meet the aforesaid criteria is to aid 

GNSS with other complementary sensors, such as inertial measurement units (IMU), 

barometers and magnetometers. The speedy advancement in the 

microelectromechanical systems (MEMS) technology in the last decade or so has 

enabled the realization of these complementary sensors in extra small forms. Along with 

the reduction in size, MEMS realization also significantly reduces power consumption, 

thus making them suitable for use in portable navigation devices. In such integrated 

navigation systems, the information from various sensors is fused together to obtain a 

final solution. The data fusion process comes with two inherent challenges that have to 

be addressed appropriately. Firstly, the measurement from various sensors should be 

modeled as accurately as possible and all the uncertainties should be incorporated during 
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data fusion. Secondly, if an unmodeled error occurs in any of the sensor measurements, 

the navigation system may not be able to identify the degradation of the navigation 

solution and, consequently, the users may not be alerted about such degradation, thus 

making navigation unreliable. Reliability is one of the most critical parameters for many 

applications using integrated navigation devices. Hence, it becomes essential to have a 

mechanism that ensures the detection and isolation of modeled as well as unmodeled 

errors in all the sensors being used. 

1.1 Background 

Personal Navigation Devices (PND) are portable electronic devices that can be used for 

positioning and navigation purposes. They include electronic appliances with a wide 

spectrum of applications, ranging from road navigation units, used in automobiles, to 

various pedestrian navigation applications, including mobile phone users, first responder 

services, military, travel aids for visually impaired, etc. Initially, PNDs were purely based 

on GNSS. However, with the advent of new technologies, progress in the GNSS receiver 

technologies, and with the immense expansion of the markets of PNDs, the requirements 

of many applications have also increased. The PNDs based on GNSS alone often fall 

short of meeting these requirements in terms of accuracy, availability and reliability. 

Specifically, meeting these requirements while navigating in urban canyons, dense 

foliage areas and indoors is most difficult since in these environments GNSS suffers from 

problems such as a limited field of view, signal attenuation, multipath and signal 

unavailability (Lachapelle 2010). These problems have been alleviated to some extent by 

the development of high sensitivity GNSS (HS-GNSS) receivers (Van Diggelen 2009). In 
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indoor environments, dense forests, urban areas, or any other area where the GNSS 

signals are strongly attenuated, the use of HS-GNSS can significantly improve the chance 

of detecting GNSS signals, thus improving the availability of a navigation solution. The 

goal of these HS-GNSS receivers is to improve the signal detection ability, by improving 

the signal to noise ratio (SNR). However, as the broadcast GNSS signal power cannot be 

increased, a HS-GNSS receiver reduces the effect of the noise on the correlation process 

by increasing the integration time for the acquisition of the signal (Bickerstaff et al 2006). 

The maximum integration time, though, is limited due to requirements like the ability to 

track the user dynamics, time to first fix (TTFF) and navigation data bit transitions. These 

limitations are addressed to some extent by using more correlators, to speed up the signal 

search or sometimes, by reducing the search space on signal parameters through the 

use of assisted information (Van Diggelen 2009). Nevertheless, integrating the signal for 

longer duration makes the receivers more susceptible to multipath errors (Lachapelle 

2010), which results in large position and velocity errors. Thus, in spite of using HS-

GNSS, the PND’s based on GNSS alone don’t meet the requirements of many 

applications, mainly in terms of reliability of the navigation solution. As a result, recent 

PNDs are often found to be integrated with other self-contained sensors, e.g., IMU, wheel 

speed sensors, barometers, etc. These sensors are self-contained, in the sense that they 

can be used in almost any location or environment, and they don’t rely on an external 

reference system or an external radio frequency (RF) signal source.  An integrated 

navigation system called AP15, recently developed by Trimble Navigation Ltd, is an 

example of the form of modern PNDs that can be used for a variety of commercial mobile 

positioning and orientation applications. Moreover, when combined with a wheel-mounted 
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Distance Measurement Instrument (DMI), in addition to the GNSS receiver and inertial 

sensors, this unit provides a full 6-degrees-of-freedom navigation solution for land 

vehicles that is capable of providing position and orientation information even during times 

when the GNSS is completely denied (GPS World 2013). Similar products from several 

manufacturers that use other sensors besides GNSS are now commercially available and 

extensively used in numerous applications, e.g., tracking of first responders, human 

motion analysis in sports, or analysis of braking and acceleration technology in vehicles. 

Nevertheless, even for personal navigation devices that consist of GNSS integrated with 

other self-contained sensors, especially those using relatively low cost MEMS IMUs, the 

quality of GNSS signals plays a significant role in navigation. Consequently, when it 

comes to harsh environments, the absence of GNSS or the presence of biased and noisy 

GNSS measurements can result in significant errors, depending upon the quality of the 

sensors and the navigation algorithm being used. There are two facets to this problem, 

firstly the possibility of errors should be appropriately reflected by the estimated accuracy 

of the navigation solution; and secondly, these errors should be reduced as much as 

possible through proper characterization of their statistics. The first issue is the problem 

of reliability. Reliability is the level of trust that can be placed on the navigation solution 

provided by a personal navigation device. It specifies a degree of confidence about the 

accuracy of the estimated navigation solution. Reliability is very important for some 

applications, especially those related to safety and authentication. For instance, a tracking 

system worn by a criminal offender that monitors the offender’s movement within local 

communities should be very reliable, as it is associated with safety and legal 
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consequences. Some other examples of such applications include military operations, 

authenticating user’s identity through position for electronic voting, etc. Moreover, in 

personal navigation devices that use multiple sensors to generate the navigation solution, 

an undetected fault in any of the sensors can make the computed navigation solution 

unreliable. Hence, in such multi-sensory integrated navigation systems, reliability should 

also be monitored at the individual sensor level. 

1.2 Limitations of Previous Work 

A reliable navigation solution can be obtained by detecting, identifying and removing 

faults in any of the sensor measurements used to obtain the final solution. In the case of 

GNSS, this basically means finding faults in measurements from satellites. However, 

personal navigation devices also use other sensors, besides GNSS, in order to obtain the 

navigation solution. Hence, it is also necessary to validate the measurements obtained 

from these sensors by detecting and removing any fault present therein. 

The following sub-sections present a brief review of some of the theoretical contributions 

and research developments related to the reliability of navigation systems made in the 

past. Moreover, these contributions are broadly categorized into two types, namely those 

dealing with faults in GNSS measurements and secondly, those that take into account 

faults in other sensors. 

1.2.1 Faults in GNSS measurements 

For the case of GNSS, reliability can be obtained either at the system level or at the user 

level. Faults occurring at the system level have been the focus of most reliability schemes 

developed since the very early days of GNSS. These faults mainly comprise those arising 
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on the satellite side (errors in orbital predictions, satellite clock, etc.) and the ionospheric 

error. However, for personal navigation devices, the problem mainly occurs at the user 

level. In harsh environments, GNSS signal degradation occurs in user surroundings due 

to such issues as multipath, signal blockage and attenuation. Hence, in these 

environments, reliability has to be implemented at the user level (Simon et al 2010). User 

level reliability can be obtained through receiver autonomous integrity monitoring (RAIM). 

Over the years, many RAIM schemes have been proposed in the literature (e.g., Lee 

1986, Sturza 1988, Parkinson & Axlerad 1987, etc.), and they are all based on some kind 

of self-consistency checks among the available measurements. Since RAIM was 

originally designed for aviation, to detect the failures in satellites, many assumptions 

made during its development are not suitable for ground based personal navigation 

devices. For instance, the assumption about the presence of a single fault at a time is not 

appropriate for location based services as the occurrence of multiple simultaneous faults, 

such as large code multipath combined with high noise, is common in urban canyon 

environments. Moreover, assuming that the errors are distributed normally may also be 

unsuitable, especially in the presence of multipath. As a result, traditional RAIMs tend to 

degrade in performance when it comes to determining the reliability of navigation 

solutions in signal degraded environments. As depicted in Figure 1-1, the blockage of 

GNSS signals by buildings and structures often reduces the visibility of satellites in urban 

areas or inside buildings. Relying on traditional RAIMs in such scenarios can thus lead to 

unavailability of reliability information, due to lack of sufficient redundancy following the 

removal of faulty measurements.  
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Figure 1-1: GNSS Signal Masking in Urban Area 

 

Some new RAIM schemes have been proposed to address the problem of multiple 

simultaneous faults, e.g. Angus (2006), Kuusniemi (2005) and Schroth et al (2008). 

However, removing multiple satellites often leads to unavailability of the reliability 

scheme, especially in areas where visibility of satellites is very poor. Moreover, in some 

of these algorithms, the computational complexity increases drastically as the number of 

available measurements increase and the error bound increases with the number of 

measurement faults. In particular, it is noted that, as new global and regional navigation 

systems are being developed and deployed, many contemporary PNDs are capable of 

tracking navigation signals from multiple constellations. The addition of the new satellite 

signals, through the incorporation of newer constellations, drastically increases the 

computational cost of the aforementioned fault detection and exclusion techniques. 
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Furthermore, the fault detection schemes generally assume constant measurement error 

statistics, as reflected by the GNSS measurement covariance. In degraded environments, 

this assumption is often invalid, as the true GNSS error statistics varies while the user 

navigates. This can be addressed by adapting the assumed covariance of the GNSS 

measurements to suit the true measurement quality. Several techniques have been 

proposed in the literature to adapt the covariance of GNSS measurements. These 

techniques, however, come with several drawbacks, such as filter instability, divergence 

and computational complexity (Almagbile et al 2010, Hide et al 2002). This calls for the 

development of reliability scheme that takes into account all the challenges in the signal 

degraded environments and is suitable for all kinds of personal navigation applications. 

1.2.2  Faults in other sensors 

As mentioned earlier in Section 1.1, in case of a multi-sensory integrated navigation 

system, the measurements from sensors other than GNSS have to be validated as well 

in order to obtain a reliable navigation solution. The users of such personal navigation 

devices often navigate in environments where GNSS measurements are corrupt, very 

scarce or even totally denied, thus rely heavily on other sensors for navigation. As a 

consequence, a fault in any of these sensors can result in highly unreliable navigation 

solutions. Therefore, detecting the faults in these sensors is very important for personal 

navigation devices. Although this issue was identified a long time ago, only limited 

research work can be found in the literature. For instance, Sturza (1988), Wei & Huddle 

(1986) and Bancroft & Lachapelle (2011) used multiple inertial systems in order to attain 

sufficient redundancy, and the reliability was subsequently obtained by checking the 
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consistency between multiple navigation solutions corresponding to each inertial system. 

However, this approach of using multiple inertial systems significantly increases cost and 

complexity. Similarly, Sukkarieh et al (2000) propose a redundant inertial measurement 

unit for unmanned air vehicles that uses multiple low-cost accelerometers and 

gyroscopes whose measurements are combined optimally to improve the information 

content of the integrated navigation system. Such redundant inertial sensor configurations 

allow the detection of faults in any of the inertial sensors being used. Furthermore, Bras 

et al (2012) propose two strategies to detect and isolate the faults in the inertial sensors. 

The first approach simply uses redundant measurements from multiple sensors of similar 

kind, while the second approach exploits the analytical redundancy between dissimilar 

sensors. Both of these approaches use multiple inertial sensors and hence carry the 

same drawbacks as the previous techniques. In conclusion, the research mentioned 

above and other similar work is found to use redundant sensors, in order to validate the 

proper operation of the self-contained sensors resulting in higher cost and and often 

higher complexity of the overall navigation system. Hence, there is a need to explore and 

design a cost effective reliability scheme that can detect and isolate faults in any of the 

navigation sensors used in integrated navigation systems. This becomes increasingly 

important with low cost portable devices that have limited power supplies and are limited 

in size.   

1.3 Objectives and Contributions 

Considering the limitations of existing work related to the reliability of personal navigation 

devices that are based on multiple sensors, this research proposes a novel scheme to 



 

10 

improve the reliability of personal navigation applications. In particular, the research 

investigates new methods to optimize the use of GNSS measurements in harsh signal 

conditions, as well as to assess the reliability of individual sensors, by exploiting the 

analytical redundancy among the dissimilar sensor measurements. The specific 

objectives and contributions of this thesis are summarized as follows: 

1. Optimization of the use of GNSS measurements in harsh signal conditions: The 

research primarily focuses on improving the reliability of personal navigation 

systems in areas where GNSS signals are degraded. In this regard, some 

algorithms are developed that take into account wide-ranging challenges 

pertaining to such environments and either assign appropriate weights to the 

GNSS measurements or reject the bad measurements. The key idea here has 

been to characterize the GNSS measurement errors as closely as possible to the 

true error statistics.  

2. Pre-filter validation of self-contained sensors: The reliability of multi-sensor 

integrated navigation system relies on proper functioning of each individual sensor 

used for navigation. Hence, it is imperative to ensure that the measurements from 

all of these sensors are valid. A pre-filter sensor validation scheme is thus 

developed where the mathematical relationships between different sensor 

measurements are used to obtain analytical redundancy between different types 

of sensors. This scheme confirms the correct operation of various sensors before 

they are used to generate the navigation solution. Any sensor measurement that 
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is deemed to be invalid by the pre-filter sensor validation scheme is discarded by 

the navigation filter. 

3. Assessment and analysis of the integrated navigation system: The proposed 

algorithms and architectures are assessed through multiple sets of field data 

collected in varied environments. The performance of the integrated navigation 

system is analysed from different perspectives. Specifically, the fault detection and 

exclusion capability of the proposed architecture is assessed through the 

computed reliability values. Such analysis involves the use of simulated faults 

added to clean data, as well as the faults that are attributed to the navigation 

environment.  Finally, the advantages and limitations of the proposed scheme are 

identified.  

1.4 Thesis Outline 

After a brief background of personal navigation devices, and description of the research 

objectives, the remainder of the thesis is organized as follows: 

Chapter 2 provides the theoretical background related to multi-sensor integrated 

navigation systems. It starts with a brief introduction of the sensors used in a typical 

personal navigation device and presents the measurement error characteristics of these 

sensors. The theory of Kalman filtering is then introduced, followed by details on multi-

sensor integration techniques. The standard Kalman filter based multi-sensor integrated 

navigation system, developed following the techniques presented herein, will serve as a 

benchmark against which the novel methods proposed in this thesis will be compared. 
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The concept of residual based statistical reliability testing and reliability theory in general 

is presented in Chapter 3. The challenges of fault detection in degraded GNSS signal 

environments are discussed and the limitations of conventional fault detection techniques 

are identified. A concept of reliability for multi-sensor integrated navigation systems is 

then introduced. In addition, the possibilities of faults in different sensors and their nature 

are briefly discussed. 

Chapter 4 details the development of a novel filtering architecture, which is proposed to 

improve the reliability of navigation solution in harsh GNSS signal environments. Firstly, 

the idea of using a heavy tailed distribution for GNSS measurement errors is presented. 

The implementation and fault handling that results from using such a distribution is also 

detailed. Finally, an adaptive approach that changes the assumed covariance of the 

GNSS measurements to suit the actual error characteristics in the user surroundings is 

presented. 

In Chapter 5, a pre-filter sensor validation scheme is proposed to detect and isolate faults 

in disparate sensors. Several mathematical developments that observe common 

parameters using dissimilar sensors are presented in the subsequent sub-sections. 

Ultimately, the order of fault handling and the actions taken during the occurrence of faults 

in any of the sensors is demonstrated through a flowchart of the proposed scheme.  

Chapter 6 elaborates on the experimental setup, including the equipments being used, 

the mode of navigation, test environments, etc. The proposed algorithms are assessed 

through an in depth analysis of the results obtained by processing multiple sets of field 



 

13 

data collected in such varied environments as open sky, urban canyons and natural 

canyons. Primarily, the proposed algorithms are assessed in terms of reliability and 

accuracy of the navigation solution. 

Finally in Chapter 7, the major contributions of the thesis are summarized; some 

conclusions are drawn based on the assessment of the proposed algorithms and possible 

future work is identified.  
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Chapter Two: Multi-sensor Personal Navigation Devices  

This chapter begins with a brief presentation of the theoretical background on disparate 

sensors and systems used in modern PNDs. In particular, the working principles of the 

sensors being used in the realization of the multi-sensor PND prototype used in this thesis 

are discussed. The techniques used to integrate the sensor measurements in such 

integrated navigation systems are then provided. 

2.1 GNSS 

Global Navigation Satellite System (GNSS) refers to any radio navigation system that 

provides geo-spatial positioning with global coverage, using signals transmitted from 

satellites. The user position is determined through a technique called trilateration; 

wherein, the distances to the satellites from the user’s position are estimated based on 

the time of arrival (TOA) of the signals. Global Positioning System (GPS), the first modern 

GNSS, was developed by the U.S. Department of Defense (DoD) and was declared 

operational in 1995. Although primarily designed for military use, GPS provides position, 

navigation and timing (PNT) services to both military and civilian users. Besides GPS, 

other global and regional navigation systems have been developed over the years that 

have significantly contributed to the revolutionizing of satellite based navigation. Another 

fully operational GNSS called GLONASS (Global Navigation Satellite System) was 

developed by the Russian Federation and is providing similar services as the GPS. Yet 

another GNSS is being built by the European Union (EU) and the European Space 

Agency (ESA) and is called Galileo. A few satellites have already been deployed and 
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position was computed using solely Galileo signals for the first time on March 2013. As 

of now, the Galileo system is expected to be fully operational by around 2020. Similarly, 

China is also developing a GNSS called the BeiDou Satellite Navigation System (BDS), 

which has already begun offering services in some regions and is expected to be fully 

operational by 2020. Besides GNSS, several regional navigation systems such as the 

Indian Regional Navigation Satellite System (IRNSS) and the Japanese Quasi-Zenith 

Satellite System (QZSS) are also being developed. These regional navigation systems 

are very similar to GNSS in terms of structure and functionality, but differ from GNSS in 

that they are designed to offer reliable services in only a specific region, as compared to 

the world wide coverage of the GNSS. The availability of various global and regional 

navigation systems and the possibility to combine them together in a receiver have made 

an immense impact on the performance of satellite based navigation systems and helped 

the proliferation of applications that benefit from using such navigation systems.  

2.1.1 GNSS Architecture 

A GNSS mainly consists of three segments: the Space Segment, the Control Segment 

and the User Segment.  

The space segment basically comprised the satellite payloads and the orbital 

configuration over which the satellites orbit. In the case of GPS, the space segment 

consists of a medium earth orbit (MEO) constellation of 24 satellites, distributed in six 

nearly circular orbital planes, inclined at 55 degrees relative to the equatorial plane (Misra 

& Enge 2011). Similarly, the GLONASS space segment also consists of a MEO 

constellation of 24 satellites, but distributed in three orbital planes, whose ascending 
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nodes are 120 degrees apart (ICD GLONASS 5.1 2008). The Galileo space segment, 

however, will be comprised of a MEO constellation of up to 30 satellites (including three 

active spares) distributed in three orbital planes, inclined at 56 degrees.  

The control segment, also known in some cases as the ground segment, comprises a few 

control stations or master stations and several other ground stations that are dispersed 

over various locations. The major functions of the control segment include monitoring 

satellite orbits and satellite health, predicting ephemerides and clock parameters, and 

updating satellite navigation messages (Misra & Enge 2011).  

Finally, the user segment consists of the GNSS receivers, whose main function is to 

receive the satellite signals, determine the measurement observables and solve the 

navigation equations in order to provide various PNT services.  

2.1.2 GNSS Measurements 

The most common GNSS observable is the code phase measurement. The signal 

transmitted by a satellite can be identified and aligned with the receiver generated replica 

signal, by using the autocorrelation properties of the pseudorandom noise (PRN) code. 

Assuming that all the satellites and receivers are synchronized to the system time and 

that there is no clock drift, such alignment at the receiver gives the signal transit time, 

which on multiplication by the speed of light in vacuum yields the satellite-receiver range 

(Misra & Enge 2011). However, since the satellite and receiver clocks are not 

synchronized, there is a bias in range that is computed in this manner. Hence, each range 

measurement is contaminated by clock error, as a result of which these range 

measurements are also referred to as pseudorange measurements. In addition to the 
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clock errors, the pseudorange measurements are further diluted by the introduction of 

other error components as well. The code phase or pseudorange observable between a 

receiver and an ith satellite can be represented as (Lachapelle 2010) 

( )i i i i i i

iono tropor c dT dt d d d ρρ ρ ε= + − + + + +  2-1 

where 

ir   : range between receiver antenna and satellite i (m) 

c    : speed of light (m/s) 

dT   : receiver clock error with respect to the system time (s) 

idt   : satellite clock error with respect to the system time (s) 

dρ   : orbital position error (ephemeris) (m) 

i

ionod   : ionospheric delay (m) 

i

tropod   : tropospheric delay (m) 

i

ρε   : receiver noise, multipath and unmodeled errors (m) 

Although pseudoranges are the most common GNSS observables, they are not the most 

precise ones. A much precise satellite to receiver range can be obtained using carrier 

phase measurements. The carrier phase measurement by a GPS receiver is the 

difference between the phases of the receiver generated carrier signal and the carrier 

signal at the same frequency received from a satellite at the instant of the measurement 

(Misra & Enge 2011). This provides an indirect means of measuring the signal transit time 

and, consequently, the satellite-receiver range. The initial difference between the two 
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phases is a fraction of a cycle of the carrier signal. When the tracking is continued, the 

carrier phase measurement becomes a certain number of full carrier cycles, plus a 

fractional part of the phase cycle. The initial integer number of whole cycles, known as 

the integer ambiguity, is however unknown and thus has to be solved along with other 

navigation parameters. The carrier phase measurement for the ith satellite can be 

expressed in the unit of length (m) as 

( )i i i i i i

c amb iono tropor c dT dt d N d d φφ ρ λ ε= + − + + − + +  2-2 

where 

cλ   : carrier wavelength (m) 

ambN   : integer ambiguity 

i

φε   : receiver noise, carrier phase multipath and unmodeled errors (m) 

In spite of being very precise, the carrier phase measurements cannot easily be used for 

several applications, due to frequent losses of phase lock which lead to cycle slips. Cycle 

slips are the discontinuities in the measured number of cycles (ambiguities) that occur 

due to numerous reasons such as loss of one or more satellites, blunders in 

measurements and excessive receiver dynamics. A new ambiguity occurs each time a 

cycle slip occurs, making the effective use of carrier phase difficult to achieve in 

pedestrian environments, although current research is addressing this limitation. For 

instance, Bhaskar (2014) proposes a technique that exploits the quasi-periodic nature of 

the pedestrian dynamics to dynamically compensate for the changes occurring in carrier 

phase measurements as a result of such dynamics.  
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Similarly, another GNSS observable, commonly used in many applications, is the Doppler 

measurement. This is a measure of the frequency shift of the tracked satellite’s signal, as 

indicated by the numerically controlled oscillator (NCO). The observed frequency differs 

from the nominal carrier frequency, because of Doppler shifts produced due to the 

dynamics and clock drifts of both the satellite and the user (Axelrad & Brown 1996). The 

Doppler shift caused by relative satellite and user motion is proportional to the projection 

of the relative velocities onto the line of sight vector. The Doppler measurements thus 

formed can be used to determine the absolute user velocity. The Doppler observation of 

the ith satellite, in units of m/s, is given as 

( )i i i i i i

iono tropor c dT dt d d d
φ

φ ρ ε= + − + + + + �
� � � �� � �  2-3 

where 

ir�   : range rate between receiver antenna and satellite i (m/s) 

dT�   : receiver clock drift error 

idt�   : satellite clock drift error 

dρ�   : orbital velocity error (ephemeris) (m/s) 

i

ionod�   : ionospheric error drift (m/s) 

i

tropod�   : tropospheric error drift (m/s) 

i

φ
ε �   : receiver noise, Doppler multipath rate of change and unmodeled errors 

(m) 



 

20 

2.1.3 GNSS Measurement Errors 

Based on their sources, GNSS measurement errors can be broadly categorized into three 

classes, namely i) satellite-based errors, ii) propagation errors and iii) receiver-based 

errors (Lachapelle 2010). 

i) Satellite-based errors mainly include orbital errors, satellite clock errors and group 

delay. Orbital errors, also referred to as ephemeris errors, and satellite errors are caused 

by imperfections in the prediction of orbital and clock parameters that occur in the control 

stations. These prediction errors grow with the age of data and hence can be reduced 

through more frequent data uploads to the satellites (Misra & Enge 2011). The difference 

in delays experienced in the satellites, by signals of different frequencies, results into an 

error termed as group delay. A scaled version of such delay is broadcast in the ephemeris, 

which should be taken into account at the receiver. 

ii) Propagation errors are constituted by errors contributed by different media, as the 

signal traverses from the satellite to a receiver. One of the most critical mediums that 

affects the GNSS signal is the ionospheric layer of the atmosphere. Characterized by the 

presence of free electrons, the ionosphere causes the speed of the signal to be different 

from that in vacuum, thus resulting in a delay in the range measurements and a phase 

advance by an equal magnitude in the carrier phase measurements. The effects of this 

dispersive medium are more severe during a phenomenon called ionospheric scintillation. 

The ionospheric error can be mitigated to some extent by using multiple frequency signals 

or by using ionospheric models. Another deviation from the vacuum speed of light is 

caused by the troposphere. The speed of radio waves through the troposphere depends 
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on factors such as temperature, pressure and humidity (Parkinson 1996). The 

tropospheric error is also mitigated by the use of some tropospheric models. Besides 

these atmospheric effects, some intentional or unintentional radio frequency interference, 

coming from radio transmitters in the vicinity of a receiver, can also result in measurement 

errors. However, a more serious error that occurs due to the medium in the user proximity 

is multipath. Multipath is an error caused by reflected signals entering the front end of the 

receiver and masking the real correlation peak. Multipath is more severe in areas with 

large reflecting surfaces, such as urban areas and natural canyons. Multipath can cause 

significant biases in the GNSS measurements, especially in the absence of line of sight 

signals. Although various techniques have been proposed to mitigate the effect of 

multipath, it still remains a challenging problem.  

iii) Receiver-based errors are mainly comprised of stochastic noise introduced in various 

components of the receiver and a number of deterministic bias components. Random 

measurement noise is introduced in various sections of the receivers, including antenna, 

amplifiers, cables, etc. Errors, both stochastic and deterministic, are also introduced due 

to the imperfections of receiver clocks. Finally, some deterministic biases are introduced 

by transmission delays in various sections of the receiver. Moreover, these delays vary 

for different channels and signal frequencies, resulting in inter-channel and inter-

frequency biases (Dhital et al 2011). Receiver-based errors can be mitigated through 

calibration and proper stochastic characterization. 
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2.2 Other Sensors 

Recent personal navigation devices use several other sensors besides a GNSS receiver 

in order to obtain a navigation solution. The sensors that have been used for the 

realization of a multi-sensor integrated navigation system in this thesis are discussed 

below. 

2.2.1  Inertial Measurement Units 

An inertial measurement unit (IMU) is generally comprised of two orthogonal inertial 

sensor triads: an accelerometer triad and a triad of gyroscopes (El-Sheimy 2006). 

However, some IMUs incorporate additional inertial sensors in skewed configuration to 

improve reliability. An IMU also includes a processor that is responsible for functions like 

calibrating out many of the raw sensor errors, performing boundary checks to detect 

sensor failures, and converting the sensor outputs from potential difference, current, or 

pulses into units of acceleration and angular rate (Groves 2008).  

2.2.1.1 Accelerometers 

An accelerometer measures acceleration or specific force (acceleration plus gravitation) 

along a sensitive axis. It consists of a proof mass suspended from a case along the 

accelerometer’s sensitive axis, restrained by a pair of springs. On application of an 

accelerating force along the sensitive axis, the proof mass gets displaced from its 

equilibrium position. This displacement, measured by a pickoff unit, is proportional to the 

applied acceleration. The measurement of the pickoff is eventually scaled to give an 

indication of acceleration along the sensitive axis (El-Sheimy 2006).  
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Based on the technique used to sense the acceleration along a sensitive axis, 

accelerometers can be classified into various types, such as pendulous accelerometers 

and vibrating wire accelerometers. These accelerometers may be built using either 

conventional mechanical construction or MEMS technology (Groves 2008). Performance 

of these accelerometer technologies is usually described by their bias and scale factor 

stability, discussed later in Section 2.4. Generally, the mechanical constructions are better 

in terms of performance, but are much bulkier and more expensive than their MEMS 

counterparts.  

2.2.1.2  Gyroscopes 

Gyroscopes, commonly termed as gyros, measure angular velocity with respect to an 

inertial frame of reference. These measurements, after removal of deterministic errors, 

can be transformed to any other frame of interest.  

Based on their working principle, gyros can be categorized into three types: Spinning 

mass gyros, optical gyros and vibratory gyros. The spinning mass gyros have been 

around since the mid nineteenth century and are realized using mechanical construction, 

following principles of conservation of angular momentum. The optical gyros, however, 

use the Sagnac effect on counter-rotating laser beams and an interferometric phase 

detector to measure the relative phase changes and consequently the angular rate with 

respect to inertial space (Grewal et al 2001). Ring laser gyros (RLG) and fiber optic gyros 

(FOG) are the two fundamental types of optical gyros. Finally, the vibratory gyros detect 

the angular rate through the measurement of Coriolis acceleration of the vibrating 

element, as the gyro is rotated. Vibratory gyros are almost exclusively realized using 
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MEMS technology. Generally, the performance improves progressively from vibratory to 

optical to spinning mass gyros. However, due to such advantages as low-cost, low weight, 

power requirements and significant improvement in MEMS technology, vibratory gyros 

are now widely used in many applications, including PNDs. 

2.2.2 Magnetometers 

Magnetic field sensors, or magnetometers, measure the magnetic field generated by an 

electronic device, ferromagnetic materials or the earth’s magnetic field. Magnetometers 

are used in a wide range of applications, like detecting anomalies in geophysical surveys 

or in a production line, detecting metallic objects, resolving direction (compass), etc. In 

navigation, magnetometers are basically used as a compass to determine the user 

direction through the detection of earth’s magnetic field.  

The magnetic field of the earth resembles the dipole field produced by a simple bar 

magnet, with maximum field strength at the two poles. The field can be envisioned as 

lines of force that leave from the magnetic North Pole and re-enter at the South Pole, 

making an arc parallel to the surface of the earth. The intensity of this magnetic field varies 

between approximately 0.25 to 0.65 gauss around the surface of earth. 

Depending on the field sensing range, Caruso et al (1998) categorized the magnetic 

sensors into three types: low field sensors (detect magnetic fields less than 1 micro 

gauss), Earth’s field sensors (detect fields between 1 micro gauss and 10 gauss) and 

bias magnetic field sensors (detect fields above 10 gauss). The magnetometers that are 

used in PNDs for determining direction/heading fall under the category of Earth’s field 

sensors.  
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Different types of Earth’s field sensors, including fluxgate sensors, magneto-inductive 

sensors and magneto-resistive sensors, can be used to derive a magnetic heading using 

Earth’s magnetic field. Among these different types, the magneto-resistive sensors and, 

in particular, the anisotropic magneto-resistive (AMR) sensors are considered to be highly 

suitable for PNDs, because of features such as miniaturized structure, the ability to detect 

very weak fields and the possibility of mass production as an integrated circuit, as well as 

a very short response time, etc. (Caruso 1997). The AMR elements change their effective 

resistance on application of a magnetic field. The magnetic field sensed by these sensors 

are sensitive to the direction of the field. Hence, the vector magnetic field components 

sensed by an orthogonal triad of such sensors can be used for orientation estimation. 

This heading computation, however, is often challenged, due to the magnetic 

perturbations from ferromagnetic materials in the vicinity of the sensors. A detailed 

description of such effects is presented in Chapter 3. 

2.2.3 Barometer 

Barometers, also known as barometric pressure sensors or barometric altimeters, are 

pressure transducers designed to measure absolute ambient air pressures. The air 

pressure mainly changes with altitude, as well as with the variation in the weather. Due 

to these characteristics, barometers are often used for such varied applications as 

forecasting weather, indoor floor tracking, aiding information in navigation systems and 

obtaining elevation profiles in sport applications. In navigation, the barometer is used as 

an extra height observation. The pressure measurement from a barometer is converted 

into altitude, using the international standard atmosphere (ISA) model: 
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where  

h  = altitude in m 

P  = measured pressure (Pa) 

g  = Earth’s gravitational force (9.8 m/s2) 

oP  = standard pressure at sea level (101325 Pa) 

oT  = standard temperature (288.15 K) 

gL = atmospheric temperature gradient (-6.5e-3 K/m) 

gR  = ideal gas constant (287.1 J/kg/K) 

The absolute height computed using the above model is often found to be erroneous, as 

it does not take into account the pressure changes caused by sudden changes in weather 

or due to wind. This is discussed in detail in Chapter 3. 

Barometers can be broadly categorized into two major types; one that uses fluid (mercury, 

water or oil based barometers) and the other that does not use fluid (aneroid barometers). 

The aneroid barometric pressure sensors that are realized using MEMS technology are 

most common in PNDs and many other applications, due to their small size, simplicity of 

use and low cost. The pressure measurements in the MEMS pressure sensors can be 

made using capacitive, inductive or resistive (piezoresistive or pressure sensitive 

resistors) techniques (Bicking 1998). 
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2.3 NavCube 

NavCube is a multi-sensor hardware platform developed in the Position, Location and 

Navigation (PLAN) group of the University of Calgary (Morrison et al 2012). It comprises 

a multi-frequency survey grade GNSS receiver, two high sensitivity GPS (HS-GPS) 

receivers and a HS-GNSS receiver. Besides the receivers, it also consists of various 

inertial sensors and has a capability to be connected to a maximum of 10 external sensor 

pods through two connection ports. The external sensor pods’ measurements are all 

synchronized internally within the NavCube.  

The receivers included in the NavCube are listed in Table 2.1.  

Table 2.1.1: Receivers inside the NavCube 

Receiver Signals Supported 

OEM628  

(NovAtel Inc., Calgary, AB, Canada) 

L1/L2 GPS/GLONASS 

(L5 with firmware change) 

u-blox 6T  

(U-blox, Thalwil, Zurich, Switzerland) 
L1 GPS 

SiRF IV  

(SiRF Technology Inc., San Jose, CA, 

USA) 

L1 GPS 

Teseo II  

(STMicroelectronics, Geneva, 

Switzerland) 

L1 GPS/GLONASS 
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The inertial sensors present inside the NavCube includes Analog Device’s six degrees of 

freedom inertial sensors (ADIS16375), each comprising a tri-axis gyroscope and a tri-axis 

accelerometer. The inertial sensor is accompanied by a magnetometer triad from 

Honeywell (HMC5883L) and a barometer from Bosh Sensortec (BMP085). Similarly, an 

Analog Device’s ADIS16488 inertial sensor was connected externally to the NavCube 

during the field tests reported later. The ten degrees of freedom inertial sensor pod 

includes a tri-axis gyroscope, a tri-axis accelerometer, a tri-axis magnetometer and a 

pressure sensor. The key specifications of the inertial sensors included in the NavCube 

and those connected externally are given in Table 2.2. 

Table 2.2 NavCube Sensor Specifications 

Sensor Parameter 

Internal Sensors 
(ADIS16375 + 
HMC5883L + 
BMP085) 

External 
Sensors 
(ADIS16488) 

Gyroscopes 

In-Run Bias Stability (1σ) 12 °/hr 6.25 °/hr 
Angular Random Walk (1σ) 1 °/√hr 0.3 °/√hr 

Rate Noise Density 72 °/hr/√Hz RMS 
23.8 °/hr/√Hz 
RMS 

Accelerometers 

In-Run Bias Stability (1σ) 0.13 mg 0.1 mg 
Velocity Random Walk (1σ) 0.076 m/s/√hr 0.029 m/s/√hr 

Noise Density 
0.06 mg/√Hz 
RMS 

0.067 mg/√Hz 
RMS 

Magnetometers 
Dynamic Range ±8 gauss ±2.5 gauss 
Resolution 2 mgauss 0.45 mgauss 

Barometer Noise 2.5 Pa RMS 3 Pa RMS 
 

The features of the NavCube are summarized in the following sub-sections. 
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2.3.1 Timing 

The OEM628 GNSS receiver inside the NavCube lies at the heart of time synchronization 

of the sensors in the NavCube. The Pulse per Second (PPS) signal from this receiver is 

distributed to all the sensor modules in order to synchronize them to the GPS time. 

Moreover, the time and data controller inside the NavCube steers the sampling train of 

all sensors inside the NavCube and those connected externally thus ensuring that the 

data sampled from various sensors are within a margin of ±100 µs.  

2.3.2 Data logging 

All data collected by the receivers and sensors inside the NavCube as well as those 

collected by the external sensors are internally synchronized and logged into an SD card 

for post processing. 

2.3.3 Power 

All the components inside the NavCube and the external sensor pods connected to it are 

powered using a four cell 88.8 Watt-hr lithium polymer battery pack. Once fully charged, 

it can support the full system along with eight external sensor pods for approximately 4.5 

hours. 

2.4 Inertial Sensors Error Characterization 

The raw measurements of the inertial sensors are affected by various error sources. 

These errors degrade the accuracy of the measured observables and consequently the 

navigation solution. The errors are more severe in case of low cost MEMS sensors which 

are typically used in most of the personal navigation devices. Hence, it becomes very 

important to identify, characterize and mitigate the effect of these errors to the extent 
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possible. Both accelerometers and gyros are subject to similar types of errors. The major 

error components in each sensor include bias, scale factor and noise. In this regard, the 

specific measurement of the accelerometers and the angular rate measurements of the 

gyros, for the case of a sensor with three orthogonal axes, can be modeled by the 

following observation equations (El-Sheimy 2006, Godha 2006). El-Shiemy (2006) has 

modeled the accelerometer scale factor to consist of a linear and a non-linear component. 

However, for the grade of IMUs used in this dissertation, a simple linear model suffices.   

a g a af f b S f N f gδ ε= + + + + +�  2-5 

g g g gw w b S w N w ε= + + + +�  2-6 

where the subscripts a and g represent accelerometer and gyro respectively,  

f�  is the measured specific force vector (m/s2) 

f  is the true specific force vector (m/s2) 

w�  is the measured angular rate (°/hr) 

w  is the true angular rate (°/hr) 

b  is the bias vector 

S  is a diagonal scale factor matrix 

gδ  is the vector representing the deviation from the theoretical gravity value 
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N  is an off-diagonal matrix representing non-orthogonality of the sensor triad 

ε  is the vector representing the random noise attribution of the sensor 

2.4.1 Major Error Components 

The errors outlined in the above inertial sensor measurement models define how much 

can be expected from an inertial sensor in terms of navigation performance. A brief 

description of these error components and methods used in a navigation filter to mitigate 

their effect is given below.  

2.4.1.1 Bias 

Bias refers to the sensor output which is present even in the absence of any input. It 

consists of a deterministic and a random time varying part. The deterministic part is often 

termed as bias offset while the stochastic part is termed as bias drift or bias instability.  

The bias offset can generally be removed through calibration (Noureldin et al 2013). For 

a good quality IMU (navigation grade or better), the variability of the bias offset is very 

small and a factory calibration is good enough to remove it. However, for low cost MEMS 

IMUs, the bias offset values can be quite significant and their repeatability is very poor, 

meaning that bias offset values vary every time the IMU is turned on. For this reason, 

bias offset is also known as turn on bias. This turn on bias thus requires a calibration at 

the beginning of every data collection mission.  

Similarly, the bias drift refers to a random bias component that varies throughout the run 

in a particular mission and is attributed due to various factors such as temperature 

variations, instabilities with the sensors, etc. (Titterton & Weston 2004). These time 
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varying error components are modeled as a random process and corrected for after 

estimation in a navigation filter. The characterization of the random process is discussed 

in Section 2.4.2. 

2.4.1.2 Scale Factor 

Scale factor is the ratio relating the output signal of a sensor to the physical quantity being 

measured. It is commonly expressed in parts per million (ppm). It is generally considered 

deterministic and hence is removed from the raw sensor data through calibration as in 

the case of the bias offset. However, sometimes it is also found to be modeled as a 

parameter comprised of second order deterministic components as well as a random 

component (Godha 2006, Titterton & Weston 2004).    

2.4.1.3 Non-Orthogonality 

The non-orthogonality of the sensor axes, resulting from some imperfections in the 

manufacturing process, causes the measurement in each sensor axis to be affected by 

the measurements of the other two axes. As with the scale factors, these cross-coupling 

errors are also generally expressed in ppm. Non-orthogonality errors can generally be 

calibrated using some special techniques or estimated in a navigation filter (El-Sheimy 

2006).   

2.4.1.4 Noise 

Noise is an additional signal arising due to number of sources in the sensor itself or those 

due to interference from surrounding electronic equipment. The noise is more significant 

in low cost MEMS sensors as compared to the higher grade IMUS. The presence of noise 

limits the performance of inertial sensor in terms of independent operation, resolution, 
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dynamics etc. Noise is stochastic in nature and hence cannot be removed by the use of 

deterministic models. The noise in the inertial sensors is often assumed to be white, which 

is to say the spectral noise density is the same at all frequencies (El-Sheimy 2006). White 

noise in an accelerometer measurement, when integrated, is a random walk in velocity. 

Hence the noise component in the accelerometer measurement is usually termed as 

velocity random walk. Similarly, a white noise in a gyro measurement is usually termed 

as angular random walk. The characterization and quantization of inertial sensor noise is 

discussed in Section 2.4.2. Inertial sensor noise is usually expressed in terms of the roots 

of power spectral density (PSD). The common units for accelerometer noise are /g Hzµ  

or 2/ /m s Hz  and that for gyros are / hr°  or / /hr Hz° (Groves 2008). 

2.4.2 Stochastic modeling of random errors 

All the time varying random errors, including bias drift and noise, have to be modeled 

stochastically. Unlike in dynamic modeling where the inputs are deterministic, the inputs 

in the case of stochastic modeling are unobservable. So the main principle of stochastic 

modeling is to assume the system model to have a certain canonical form and to drive 

such a canonical model by white noise sources of certain strength. The stochastic model 

can then be obtained by computing the transfer function. In fact for a linear time-invariant 

system, it is possible to characterize the unknown model by just observing the output 

when driven by the white noise at the input (IEEE Std 647 2006).  
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One of the most straightforward methods of characterizing the inertial sensor error is to 

use the PSD. For the case of stationary processes, the two-sided PSD, ( )S w and 

covariance,C( )τ are related as 

( ) ( )jwS w e C dτ τ τ
+∞

−

−∞
= ∫  2-7 

However, instead of directly using the frequency domain approach like PSD, several time-

domain approaches are used in practice for stochastic modeling due to simplicity. The 

correlation function approach is the most common approach adapted for such purpose. 

It is a time domain dual of the PSD method. The residual sensor error (after removal of 

the deterministic parts) is modeled by passing a white noise sequence through a shaping 

filter which changes the correlation characteristics of the input signal sequence to fit the 

residual error component of the inertial sensor (Nassar et al 2003). However, since an 

infinite length of data is required to compute autocorrelation, a major limitation of the auto-

correlation method, and hence its frequency domain dual PSD method, is that usually a 

huge length of data is required to obtain a sufficiently accurate estimate (Brown & Hwang 

1997). 

For random processes which are intrinsically discrete, the auto-covariance sequences 

can be related to the coefficients of the difference equations of an auto regressive moving 

average (ARMA) process (Papoulis 1991). Several techniques have been proposed for 

estimating the coefficients of such a model. Nassar (2003) analyzes three such 

techniques and proposes a modified scheme to model inertial sensor biases as an 

autoregressive (AR) process. However, as with any other correlation based methods, 
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ARMA methods are very model sensitive and works best only with an a priori knowledge 

based on a model of few terms (IEEE Std 647 2006).  

Another time domain analysis technique called the Allan variance method falls among the 

most popular approaches for characterising inertial sensor errors. This technique was 

originally developed to study the frequency stability of oscillators (Allan 1966). In the Allan 

variance method, the randomness in the data is assumed to be generated by error 

sources of a specific character. The magnitude of each noise sources is then estimated 

by inspecting the characteristic curve obtained through some operation on the entire 

length of data. Unlike the one-to-one mapping between the PSD and correlation based 

methods, the mapping from the noise spectrum to Allan variance is not one-to-one. As a 

result, the Allan variance doesn’t always yield a unique noise spectrum. This is the main 

limitation of the Alan variance method. Nevertheless, the Allan variance method offers a 

very effective means to segregate low frequency errors from the high frequency errors. 

This property is very useful while modeling a system that includes both high and low 

frequency components. Readers are encouraged to refer to Allan (1966), IEEE Std 647 

(2006) or El-Sheimy et al (2008) for further details on the Allan variance technique. 

From Equation (2-5) and (2-6) as well as the discussion about the nature of errors in 

Section 2.4.1, it follows that there are basically two types of errors in inertial sensors, 

namely the slowly varying low frequency errors (eg, bias instability) and the high 

frequency noise (eg, velocity random walk and angular random walk). In this research, 

the slowly varying bias instabilities are modeled using the autocorrelation method. The 

autocorrelation of the empirical data was first used to identify any resemblance with some 
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known stochastic model. For the case of sensor bias instabilities, the autocorrelation of 

the residual error resembled a first order Gauss Markov (GM) process (Gelb 1974). 

Hence, the parameters of the first order GM model, represented by Equation (2-8), were 

tuned to fit the autocorrelation of the residual sensor errors:  

( ) ( ) ( )GMx t x t w tβ= − +�  2-8 

where  

β  is the reciprocal of the time constantτ   

2( ) 2 ( )GMw t w tσ β=  is the model uncertainty with a spectral density 
22q βσ=  

2σ  is the temporal variance of the process 

( )w t  is the white noise driving the system model 

Once the GM parameters are determined, the inertial sensor bias errors represented by 

Equation (2-8) are incorporated in the navigation filter and estimated along with other 

state parameters. 

The high frequency noise terms (angular and velocity random walk) have much shorter 

correlation times as compared to the bias instabilities. These errors are characterized by 

a white noise process and are quantized using the Allan variance method. The spectral 

density thus computed are incorporated while using the inertial sensor measurements in 

the navigation filter. 
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2.5 The Kalman Filter 

The Kalman filter (KF) is a Bayesian estimation technique (Bayes & Prince 1763) 

developed by R.E. Kalman (1960). Following the Bayesian inference technique, the KF 

intends to improve the statistical inference by using the prior knowledge of a system or 

state in addition to the observed data. Unlike classical approaches (e.g. Maximum 

Likelihood Estimation) where the parameter of interest is assumed to be a deterministic 

but unknown constant, the Bayesian techniques (e.g. KF) consider the parameter to be a 

random variable. Hence there is always an uncertainty associated with the estimated 

parameter. The KF algorithms operate in a recursive configuration wherein the state 

parameters predicted on the basis of prior knowledge of the system are optimally 

combined with the latest observations to obtain the best possible state estimate. KFs are 

used in a wide range of applications in various fields including biomedical engineering, 

positioning and localization, economic modeling, etc. A variant of KF is used in this 

dissertation to realize the multi-sensor integrated navigation system. This section intends 

to present a brief introduction to the KF technique. However, exhaustive explanations 

about the KF technique and the derivation of the algorithm itself can be found in such 

texts as Kay (2001), Brown & Hwang (1997), Grewal & Andrews (1993), etc.  

A statistical filtering problem involves estimating certain parameters called states that 

completely define the behaviour of a system. In order to estimate these state parameters, 

the KF uses two sets of information; firstly, the state model that defines the time evolution 

of states and secondly, the measurement model that allows to observe the state 

parameters through some measurement data. The state model, also known as the 
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process or the dynamics model, basically incorporates the deterministic and stochastic 

properties of the state. It is developed on the basis of knowledge of the physics of the 

application (Maybeck 1994) and the certainty of such knowledge. In a very generic 

discrete time form, the state and measurement model can be expressed as: 

1 1 1 1( , ,w )k k k k kx f x u− − − −=  2-9 

( , )k k k kz h x v=  2-10 

where 

xn

kx R∈  is the state vector of order xn  at time k   

1ku −  is the known input at time 1k −   

zn

kz R∈  is the measurement vector of order zn   at time k   

1kf −  is the state function that defines the time evolution of the system states 

kh  is the observation function 

1kw −  and kv  are called process noise and measurement noise respectively representing 

the uncertainties in the state and measurement model. 

The known input parameter ku  is often excluded from the state model as it is common in 

most of the applications and hence will be ignored from henceforth.  
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The KF combines the process information represented by Equation (2-9) with the 

measurements of the state parameter to generate the estimate of the state vector kx . 

The KF, however, is based on the following assumptions: 

1. Both the system and measurement models are linear. 

2. An initial unbiased estimate of the state vector is available along with the 

associated uncertainty. 

3. The process and measurement noise are white and uncorrelated with each other 

as well as uncorrelated with the state vector.  

With the above assumptions, the state and measurement models can be rewritten as 

1, 1 1k k k k kx x w− − −= Φ +
 2-11 

k k k kz H x v= +
 2-12 

where 1,k k−Φ  is the transition matrix of order x xn n×  that defines how the system is going 

to evolve from 1k −  to k . Similarly, kH  is the design matrix of order z xn n×  that relates 

the measurements to the state vector.  

The recursive KF algorithm basically comprises two stages as summarized below. 

Prediction Stage 

1, 1
ˆ ˆ
k k k kx x− +

− −= Φ  2-13 
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1, 1 1,

T

k k k k k k kP P Q− +

− − −= Φ Φ +  2-14 

Update Stage 

ˆ ˆ ˆ( )k k k k k kx x K z H x+ − −= + −  2-15 

1( )T T

k k k k k k kK P H H P H R− − −= +  2-16 

( )k k k kP I K H P+ −= −  2-17 

P  is the state covariance matrix representing the uncertainty of the estimated state 

vector. Similarly, the covariance matrices Q  and R  represent the uncertainty in the state 

model and the measurement error covariance. The minus and plus superscripts 

respectively indicate the values before and after an update while the superscript T

denotes transpose of a matrix. Finally, K  is the Kalman gain matrix that indicates how 

the filter weighs between the state model and the measurements.  

The KF, however, cannot be used unless modified for a majority of real world problems 

including GNSS, INS or any other multi-sensor integrated navigation system as they don’t 

meet the linearity conditions of the KF. In order to handle such situations, several KF 

based sub-optimal techniques has been proposed in the literature such as linearized 

Kalman filter (LKF), extended Kalman filter (EKF), unscented Kalman filter (UKF), etc. 

Dhital (2010) summarized some of those techniques and compared their performance for 

tracking applications using both simulated and field data. 
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The EKF technique is one of the most commonly used estimation technique for nonlinear 

applications. It has a relatively much smaller computational cost compared to other 

techniques and performs on par with some more complex techniques as long as the 

degree of non-linearity is not too high. For this reason, EKF has been chosen for 

implementation of the navigation algorithms herein. The EKF linearizes the state and/or 

observation functions through a Taylor-series expansion and applies the linear KF to the 

model. The linearization is done around the most recent estimate of the state vector 

2.6 Coordinate Frames and Transformations 

Before beginning a discussion about the navigation algorithms in a multi-sensor 

integrated system, it is important to understand the coordinate frames in which the 

navigation parameters could be expressed. Hence a brief introduction about the relevant 

coordinate frames is presented in this section. Moreover, the transformation equations 

required during the implementation of the navigation algorithms presented in this 

dissertation are also present. 

2.6.1 The Inertial Frame 

An inertial frame (i-frame) is an ideal reference frame that satisfies Newton’s laws of 

motion. This implies that the frame does not rotate nor accelerate, but may be in uniform 

linear motion. However, since a body initially at rest or moving with constant velocity will 

accelerate under the gravitational influence of the sun and planets thus violating Newton’s 

first law, a more practical inertial frame is usually adopted which is defined as the Earth-

centered inertial frame (ECI). Extremely distant celestial objects that have not shown any 

evidence of changing their relative orientation are considered as the reference in defining 
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the ECI. The origin of the inertial frame is defined to lie at the Earth’s centre while the x-

axis and y-axis lie along the equatorial plane such that the x-axis always points toward 

the vernal equinox and the y-axis is at 90 degrees from the x-axis in the direction of 

Earth’s rotation. The z-axis always points along the mean rotation axis of the Earth. 

2.6.2 The Earth-Centred Earth-Fixed (ECEF) Frame 

The ECEF frame (e-frame) has its origin at the Earth’s centre and all axes remain fixed 

with respect to the Earth. The x-axis and y-axis lie along the equatorial plane with the x-

axis pointing toward the Greenwich meridian and the y-axis pointing at 90 degrees east 

of Greenwich meridian. The z-axis points along the Earth’s axis of rotation from the centre 

to the North Pole. The ECEF frame rotates with respect to the ECI at a rate of 

approximately 15 °/hr about the z-axis. The navigation algorithms in this dissertation are 

implemented in ECEF. 

2.6.3 The Local Level Frame (LLF) 

The LLF (l-frame), also known as the navigation frame or geodetic frame, has its origin at 

the point where a navigation solution is sought for which is usually the location of GNSS 

antenna or the centre of inertial sensor. The x-axis points to the east and the y-axis points 

to the true north. The z-axis completes the right-handed coordinate system by pointing 

up, perpendicular to the reference ellipsoid (Noureldin et al 2013). This frame is thus also 

referred to as east, north and up (ENU) frame. A similar LLF that completes left-handed 

coordinate systems is called the north, east and down (NED) frame. This frame is 

subjected to a rotation with respect to ECEF as well as ECI.  
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2.6.4 The Body Frame 

The body frame (b-frame) is a coordinate frame that remains fixed with respect to the 

object (e.g. vehicle, human, etc.) for which a navigation solution is sought. In many 

applications, the inertial sensor is often mounted in a way that its axes coincide with that 

of the body frame. The origin of the body frame coincides with that of the navigation frame. 

The y-axis points towards the forward direction, the x-axis points towards the right and 

the z-axis points up towards the vertical direction thus completing the right-handed 

coordinate systems.    

2.6.5 Coordinate Frame Transformations 

The inertial sensor outputs are measured in b-frame. As the navigation algorithms are 

implemented in e-frame during this research, transformation between the b-frame and e-

frame is required. Moreover, some results are more intuitive when expressed in the l-

frame. Hence a transformation between e-frame and l-frame is also relevant. In this 

regard, some coordinate frame transformations used during this work are summarized 

below. Detailed derivations of the transformations can be found in Noureldin et al (2013), 

Groves (2008), etc.  

2.6.5.1  Transformation between the l-frame and the e-frame 

The coordinate frame transformations can be represented using rotation matrices which 

are derived as a function of angular velocities between the coordinate frames. A 

transformation from l-frame to e-frame is defined in terms of the rotation matrix e

lR   
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sin sin cos cos cos

cos sin sin cos sin

0 cos sin

e

lR

λ ϕ λ ϕ λ

λ ϕ λ ϕ λ

ϕ ϕ

− − 
 = − 
  

 2-18 

where ϕ  and λ  are the latitude and longitude of the user. 

2.6.5.2 Transformation between l-frame and b-frame   

The angular velocities that define the rotation of the l-frame with respect to the b-frame 

are associated with changes in pitch, roll and azimuth angles. Thus the rotation between 

the l-frame and the b-frame is computed as a function of these angles as  

cos cos sin sin sin sin cos cos sin sin sin cos

sin cos cos sin sin cosAcosp sin sin cos sin cos

cos sin sin cos cos

l

b

A r A p r A p A r A p r

R A r A p r A r A p r

p r p p r

− − + 
 = + − 
 − 

 2-19 

where p , r  and A  are pitch, roll and azimuth angles respectively. 

2.6.5.3  Transformation between b-frame and e-frame 

The transformation between the b-frame and e-frame can be obtained by simple matrix 

multiplication of the two rotation matrices in Equations (2-18) and (2-19): 

e l e

b b lR R R=  2-20 

Finally, it is noted that the coordinate frames can be transformed back and forth by simply 

taking the transpose of a matrix. For instance, the rotation from the e-frame to the b-frame 

is given by ( )
T

e

bR .  
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2.7 Multi-Sensor Integration 

As discussed in Chapter 1, modern personal navigation devices combine the information 

from various sensors in an attempt to improve the navigation performance. The sensors 

in such multi-sensor systems are usually complementary in nature so that the information 

from one sensor helps to some extent to overcome the drawbacks of others. Inertial 

navigation systems (INS) lie at the heart of integrated navigation systems. An INS is 

defined as the combination of inertial sensors and the algorithms that compensates the 

sensor errors and then computes the navigation solution from the error compensated 

data. For a standalone INS, however, as the inertial sensor measurements are integrated 

to obtain the navigation solution, the sensor errors are accumulated thus increasing the 

navigation error. The increase in the navigation error is much rapid in case of the MEMS 

grade IMUs typically used in PNDs. Hence, there must be some sort of update from other 

sensors in order to correct the drift in the navigation solution. Moreover, since INS is a 

relative positioning system, it must be initialized and updated with information coming 

from an absolute positioning system. The integration of INS and GNSS thus forms the 

base of the integrated navigation system which can be supplemented through integration 

of other sensors to improve the performance of the navigation system. 

The INS/GNSS integration can be realized using different architectures. The three main 

integration architectures are 

1. Loosely coupled 

2. Tightly coupled 

3. Ultra-tightly or deeply coupled  
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In the loosely coupled INS/GNSS architecture, the GNSS and the INS independently 

compute the navigation solutions which are then fused together by an optimal estimator 

to improve a final navigation solution. This architecture relies heavily upon the INS 

solution in areas like urban canyons where the GNSS solution is often unavailable. 

Hence, this architecture is not suitable for systems using low cost MEMS IMUs.   

A tightly coupled architecture has a more centralized structure wherein a single 

integration filter is employed to fuse INS and GNSS measurements. The GNSS 

pseudorange and Doppler measurements are combined with those predicted from INS to 

form an input to the centralized integration filter. This scheme provides more accurate 

solutions than the loosely coupled scheme because the blending of pseudorange and 

Doppler measurements from the two systems has more information (less correlation) than 

the blending of position and velocity solutions in the case of the loosely coupled scheme 

(Farrell & Barth 1999). 

Finally, the ultra-tight scheme integrates the INS and GNSS at the GNSS tracking level 

itself. Although this architecture has several benefits, it is not the most preferred 

integration scheme in the PNDs due to the complexity of the software architecture and 

computations, and the necessity to access the GNSS hardware. Thus, the tightly coupled 

architecture has been chosen for the implementation of the integrated navigation system 

in this research. 

The multi-sensor integrated system has been realized using a strapdown configuration 

wherein the sensors are attached rigidly or ‘strapped down’ to the body of the user or 
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vehicle (Titterton & Weston 2004). The various algorithmic stages of the multi-sensor 

integrated navigation are summarized in the following sub-sections.  

2.7.1 Initialization 

As mentioned earlier, INS is a relative navigation system and hence it needs to be 

initialized with position and velocity obtained from some absolute navigation system. The 

most commonly used source for such initialization is the GNSS. Hence the INS was 

initialized with a GNSS solution obtained using least squares (LS) technique (Kay 2001). 

Alternatively, the INS could also be initialized using a pre-surveyed position and known 

velocity (e.g. zero velocity knowing the user is static). 

2.7.2 Alignment 

Alignment is the process of computing the initial attitude of the INS. Alignment is done in 

two steps: computing initial roll and pitch angles through accelerometer levelling, and the 

initial azimuth through gyro compassing. 

2.7.2.1 Accelerometer Levelling 

The idea of accelerometer levelling is to compute the x and y axis rotations required to 

mathematically align the z-axis of the stationary IMU to the z-axis of the l-frame so that 

the gravity field is completely observed by the z-axis of the accelerometer. Such rotations 

along x and y axis gives the values of the roll and pitch as  

1sin
b

xfr
g

−
 

=  
   

2-21 
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1sin

b

yf
p

g

−
 

=   
   

2-22 

where 
b

xf  and 
b

yf  are the accelerometer measurements in the body frame averaged over 

a period of time during the levelling.  

2.7.2.2 Gyro Compassing 

While stationary, the only rotation sensed by the levelled gyros is the component of Earth 

rotation, cosew ϕ . Here, ew  is the angular velocity of the Earth about the z-axis in the 

ECEF coordinate frame. Knowing that the east component of the Earth rotation is zero, 

the initial heading (azimuth) can be found by rotating the IMU about its z-axis such that 

the east gyro component becomes zero (El-Sheimy 2006). However, in the case of the 

MEMS IMUs, the initial azimuth cannot be computed using gyro compassing because the 

gyro drift is greater than ew  in the static mode. The other option would be to use GNSS 

for the initial azimuth. This method, however, requires the system to be moving. The initial 

heading can also be computed from magnetometer. But one has to be careful about the 

possibility of surrounding magnetic perturbations.         

2.7.3 Mechanization 

Mechanization is the process of obtaining the navigation parameters (position, velocity 

and attitude) from the inertial sensors. The mechanization equations define how a 

navigation solution is obtained starting from the raw IMU data. During this research, the 

mechanization is realized in the ECEF frame shown as a block diagram in Figure 2-1. 
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2.7.3.1 Mechanization Steps in ECEF Frame 

 

The different steps of mechanization in the above block diagram are briefly summarized 

below. The text presented in this section closely follows the texts in Noureldin et al (2013), 

El-Sheimy (2006) and Titterton & Westen (2004). Hence, an in-depth derivation and 

discussion about the INS mechanization can be found in these references.  

1. Input measurement correction: The first step in mechanization is to remove the 

estimated biases in the accelerometers and gyros. These biases are modeled, 

estimated and updated along with the other state parameters in the navigation 

filter. For low grade IMUs, however, other errors such as scale factors and 

misalignments have to be included in the state vector as well. The angular velocity 
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Figure 2-1. Block Diagram of INS Mechanization in ECEF Frame 
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and specific force measurement after the removal of biases from the raw 

measurements are given as 

b b

ib ib gw w b= −�
 2-23 

b b

af f b= −�  2-24 

where the subscript ib  in 
b

ibw  indicates the rotation from b to i  while the 

superscript b  indicates that the angular velocity w  is expressed in the b-frame. 

The same convention is followed for similar notations in the rest of this dissertation. 

2. Rotation matrix from alignment: It follows from Equation (2-18) through (2-20) that 

the rotation matrix b

eR  is a function of INS attitude and the user position. Hence 

the position and attitude values obtained from initialization and alignment are used 

to obtain the rotation matrix b

eR .  

3. Angular increments: The body angular rates with respect to the e-frame is 

computed as 

b b b b b e

eb ib ie ib e iew w w w R w= − = −  2-25 

where 15deg/ se

ie ew w= ≈  is the Earth rotation rate. The angular increments 

pertaining to the rotation of b-frame with respect to e-frame are thus obtained by 

multiplying the angular rate in Equation (2-25) by the time interval of mechanization

t∆ . 



 

51 

b b

eb ebw tθ = ∆  2-26 

4. Attitude update: Once the angular increments are available in the b-frame, the 

corresponding attitudes are updated using the quaternions method (Kuipers 1999). 

This method is selected primarily because they are computationally simple and more 

robust against the singularity conditions. The rotation matrix e

bR  can be conveniently 

computed from the quaternions using a simple transformation matrix. The rotation 

matrix thus updated using the quaternions is used for transforming the specific force 

into the e-frame. In the subsequent cycles of mechanization, the rotation matrix b

eR  is 

directly obtained from the rotation matrix updated in the previous cycle instead of the 

values obtained from the alignment as discussed in the second step. 

5. Transformation of the specific force: The updated rotation matrix is used to transform 

the specific force from the b-frame to the e-frame. 

e e b

bf R f=  2-27 

The velocity increment vector corresponding to the sensed acceleration in e-frame is 

then obtained by integrating this specific force over a small sampling period. 

1

( ) ( )
k

k

t

e e b

f b

t

v R t f t dt
+

∆ = ∫
 

2-28 

The rotation matrix ( )e

bR t  can be approximated as 
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b( ) ( )(I S )e e

b b kR t R t= +  2-29 

where I  is a unit matrix of order 3x3 and bS  is a skew symmetric matrix of the small 

incremental changes of rotation over the time interval [tk, t]: 

0

0

0

b b

z y

b b b

z x

b b

y x

S

θ θ

θ θ

θ θ

 −
 

= − 
 − 

 2-30 

where b

xθ , b

yθ  and b

zθ are the x, y and z components of the vector b

ebθ . 

6. Coriolis and gravity correction: The Coriolis correction involves removing the 

acceleration components induced due to the rotation of Earth with respect to the 

inertial frame. The Coriolis acceleration is represented in the e-frame as: 

0 2 0 2

2 2 0 0 2

0 0 0 0

e x e x

e e e

coriolis ie e y e y

z

w v w v

a v w v w v

v

 − −   
    = Ω = =    
        

 2-31 

Since the Earth’s gravity is not uniform throughout the surface of the Earth, different 

gravity models has been proposed in the literature to get the gravity vector at a specific 

location on Earth. In this regard the gravity model proposed in Schwarz & Wei (1990) 

has been adapted in this work. The velocity increment of Equation (2-28) is thus 

corrected for the Coriolis acceleration 
e

coriolisa  and the gravity vector obtained using 

the gravity model 
eg . 
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e e e e

f f coriolisv v a t g t∆ = ∆ − ∆ + ∆  2-32 

7. Velocity update: The INS velocity is updated as 

e e e

fv v v= + ∆  2-33 

where ev  is the velocity vector in the e-frame. 

8. Position update: Similarly, the position is then updated as 

e e er r v t= + ∆  2-34 

where er  is the position vector in e-frame. 

9. Attitude Computation: After the updated position is available, the INS attitude (roll, 

pitch and azimuth) can be obtained by first computing the rotation matrix 
e

lR  followed 

by computation of l

bR  as 

l l e

b e bR R R=  2-35 

where, e

bR  is taken from Step 4.  The attitude parameters can be computed as the arc 

tangents of the components of matrix l

bR . 

2.7.3.2 INS Dynamic Error Model 

As discussed in Section 2.4, the inertial sensor measurements are affected by various 

deterministic and stochastic errors. To account for the effect of these errors in the 

navigation solution, it is essential to understand how these errors propagate in the 

navigation equations. This is represented by deriving the INS dynamic error model in the 
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form of a set of differential equations. An INS dynamic navigation state model in e-frame 

is given as 

2

( )

e e

e e b e e e

b ie

e e b b

b b ei ib

r v

v R f v g

R R

   
   

= − Ω +   
   Ω + Ω   

�

�

�

 2-36 

where
e

ieΩ , 
b

eiΩ  and 
b

ibΩ  are the skew symmetric forms of the angular velocities 
e

iew , 
b

eiw  

and 
b

ibw , respectively. The above dynamic state model leads to an INS error state model 

of the form: 

1 1 1 12 2x F x F xδ δ δ= +�  2-37 

where  

1

r

x v

δ

δ δ

ε

 
 =  
  

 : errors in the INS navigation parameters (position, velocity and attitude) 

2

b

b

ib

f
x

w

δ
δ

δ

 
=  
 

 : inertial sensor error state with time varying bias components (bias 

instabilities) in the accelerometers and the gyros 

1F  and 12F  : dynamic matrices  

Similar to the navigation error states shown in Equation (2-37), the time varying stochastic 

errors in the inertial sensors also need to be modeled and estimated along with other 
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parameters in the navigation filter. The bias instabilities in the inertial sensors are 

modeled using a GM model.  

22 ( )b b

a a af f w tδ β δ β σ= − +�
 2-38 

22 ( )b b

ib g ib g gw w w tδ β δ β σ= − +�
 2-39 

where ( )w t  is the white process noise for the sensor error model. The subscripts a and g 

represent accelerometers and gyroscopes. 

The composite dynamic model including the navigation states and the inertial sensor 

biases can be represented by 

1 1 12 1

2 2 2

0
( )

0

x F F x
w t

x F x G

δ δ

δ δ

       
= +       

      

�

�
 2-40 

where 

2

0

0

a

g

F
β

β

− 
=  − 

 and 

2

2

2

2

a a

g g

G
β σ

β σ

 
 =
 
 

  

Modeling the errors in the form of Equation (2-40) allows propagating the uncertainties 

associated with each state parameter during the mechanization process. The 

uncertainties are represented in the form of a state covariance matrix. 
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2.7.4 GNSS Update 

As discussed in the previous sections, the accuracy of an INS is much affected by the 

errors in the inertial sensors. In the case of an INS that uses low cost MEMS sensors, the 

output can drift rapidly making it essentially unusable for navigation. Thus, in order to 

improve performance, the errors in the inertial sensors must be compensated through 

regular updates from some external sources. GNSS is one of the most commonly used 

sources of update for an INS. During the course of this research, pseudorange and 

Doppler measurements from a GNSS receiver are used to update the INS in a tightly 

coupled configuration. However, the integration of GNSS measurements into the INS as 

an update calls for the estimation of some nuisance parameters, namely clock bias and 

clock drift which are modeled respectively as random walk and random constant 

processes (Brown & Hwang 1997). 

bcdt cdt w= +�  2-41 

dcdt w=��  2-42 

where 

cdt    : clock bias (m) 

c d t�    : clock drift in (m/s) 

bw     : process noise for clock bias 

dw     : process noise for clock drift 
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The GNSS update is implemented using the update stage equations of an EKF and have 

similar form as the equations (2-15) through (2-17), albeit the state parameters in this 

case are expressed as error terms. The linearization point however is taken as the 

position and velocity computed in the latest INS mechanization step. Moreover, the state 

covariance is also obtained from the INS mechanization step instead of the prediction 

stage. Thus, the INS mechanization can be thought of as a prediction stage of the EKF. 

With regard to the update stage EKF equations, the main parameter to derive for any 

update to an INS is the design matrix. In case of the GNSS, the pseudorange 

measurements for an ith satellite given in Equation (2-1) can be expressed without the 

error terms as 

2 2 2

x, , ,(r ) (r ) (r )i i

i x y i y z i zr cdT r r r cdTρ = + = − + − + − +  2-43 

where 

x, y, z,(r ,r ,r )i i i    : coordinates of ith satellite in the ECEF frame 

( , , )x y zr r r    : user coordinates in the ECEF frame  

Equation (2-43) is linearized around ( , , )x y zr r r
� � �

 obtained from the mechanization step and 

the predicted clock bias term cdT
�

 using first order Taylor’s series expansion. This results 

into an equation that relates pseudorange measurements to the errors in user position 

and the clock bias term. 
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,, ,

, , ,=
ˆ ˆ ˆ

y i yx i x z i zi

x y z x i x y i y z i zi i i

r rr r r r
r r r cdT u r u r u r cdT

r r r
δρ δ δ δ δ δ δ

−− −
+ + + = + + +

�� �

 2-44 

where  

2 2 2

x, , ,(r ) (r ) (r )i

i x y i y z i zr r r r= − + − + −
� � � �

  

( )i i i i ir cdTδρ ρ ρ ρ= − = − +
���

 

Thus, for N satellites, 

1

,1 ,1 ,1

,N 3 1

,1 ,1 ,1

1

1

1

x x

x x x

y y

N

z zN

x x x

r r
u u u

r r
H

r r
u u u

cdT cdT

ρ

δ δ
δρ

δ δ

δ δ
δρ

× ×

   
       
        = =        
         

   

� � � � �  2-45 

where 11N×  is a matrix of order Nx1 with all elements equal to one. 

Similarly, a design matrix that relates Doppler measurements to the position, velocity and 

the clock drift is of the form 

1

1, 3 , 3
(1/ )

x

y

z

N xr N v N

N

y

z

r

r

r

H H v

v

v

cdT

φ φ

δ

δ

δφ δ

λ δ

δφ δ

δ

×× ×

 
 
 

   
    =    
   
   

 
 
 

� �

�

�

�

�

 2-46 

where λ  is the wavelength of the GNSS signal. 
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Considering a full state vector that has been realized during this research, the design 

matrix for GNSS update takes the form:  

, 3 3 3 3 3 1 1 1

, 18
3 3 3 1 1 1, 3 , 3

0 0 0 0 0 1 0

0 0 0 0 0 (1/ )

N N N N N N N N

GNSS N
N N N N N Nr N v N

H
H

H H

ρ

φ φ
λ

× × × × × × × ×

×
× × × × × ×× ×

 
=  
 � �

 2-47 

The EKF state vector 18 1x ×  comprises the following states: position error ( 3 1rδ × ), velocity 

error ( 3 1vδ × ), attitude error ( 3 1ε × ), accelerometer bias ( 3 1fδ × ), gyro bias ( 3 1wδ × ), barometer 

bias ( 1 1barδ × ), clock bias ( 1 1cdT × ) and clock drift ( 1 1cdT ×
� ).    

18 1 3 1 3 1 3 1 3 1 3 1 1 1 1 1 1 1

T

x r v f w bar cdT cdTδ δ ε δ δ δ× × × × × × × × ×
 =  

�  2-48 

2.7.5 Other Updates 

Besides GNSS, the multi-sensor integrated navigation system in this research also 

incorporates updates from other sensors and sources which are discussed in the 

following sub-sections. 

2.7.5.1 Heading Update  

The azimuth computed from magnetometer measurements serves an attitude update for 

the INS. The INS azimuth can be expressed in terms of the components of the estimated 

rotation matrix l

bR
�

 and is given as 

1 (2,1)
tan

(2,2)

l

b

l

b

R
A

R

−
 

=   
 

�

�  2-49 
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where (i, j)l

bR
�

 indicates an element in the ith row and jth column of the matrix 
l

bR
�

   

It follows from Godha (2006) that given equations (2-35) and (2-49), the azimuth can be 

expressed in terms of attitude errors as 

1 2 3 41 1

1 2 3 4

tan tan
x y zA

A x y z

n n n nN
A

D d d d d

ε ε ε

ε ε ε
− −

 + + + 
= =     + + +   
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The numerator and denominator coefficient terms are defined as follows: 

1

2

3

4

1

2

(1,3) (2,2) (1,2) (3,2)

(1,1) (3,2) (1,3) (1,2)

(1,2) (1,2) (1,1) (2,2)

(1,1) (1,2) (1,2) (2,2) (1,3) (3,2)

(2,3) (2,2) (2,2) (3,2)

l e l e

e b e b

l e l e

e b e b

l e l e

e b e b

l e l e l e

e b e b e b

l e l e

e b e b

n R R R R

n R R R R

n R R R R

n R R R R R R

d R R R R

d

= −

= −

= −

= + +

= −

=

3

4

(2,1) (3,2) (2,3) (1,2)

(2,2) (1,2) (2,1) (2,2)

(2,1) (1,2) (2,2) (2,2) (2,3) (3,2)

l e l e

e b e b

l e l e

e b e b

l e l e l e

e b e b e b

R R R R

d R R R R

d R R R R R R

−

= −

= + +

 2-51 

The heading error equation can now be expressed as 

3 31 1 2 2

2 2 2 2 2 2

,1 3 3 1

A AA A A A
x z z

A A A A A A

A

N n D dN n D d N n D d
A

N D N D N D

H

δ ε ε ε

ε× ×

−− −
= + +

+ + +

=

 2-52 

Thus the design matrix for heading update is given as 

1 3 1 3 ,1 3 1 3 1 3 1 1 1 1 1 10 0 0 0 0 0 0Mag AH H× × × × × × × × =    2-53 
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2.7.5.2 Height Update 

A height measurement obtained from a barometer using Equation (2-4) is also used as 

an external height update for the INS. The height observed from the barometer is in local 

level frame. Hence the differential equation is of the form 

l l l

Baroh H xδ δ=  2-54 

Since it is a direct height observation in the l-frame, the design matrix for barometer is  

[ ]0 0 1l

BaroH =  

However, the error state should be expressed in the e-frame. Thus a transformation of 

the error state vector from l-frame to the e-frame is required. 

l l e e e

Baro Baroh H A x H xδ δ δ= =  2-55 

The matrix A transforms the error state vector and is given as 

1

2 2

cos cos ( )sin cos ( )cos sin cos cos

cos sin ( )sin sin ( )cos cos cos sin

(1 )sin (1 )cos hcos 0 sin

a N h N h

A a N h N h

a e N e

ϕ λ ϕ λ ϕ λ ϕ λ

ϕ λ ϕ λ ϕ λ ϕ λ

ϕ ϕ ϕ λ

−
− + − + 

 = − + + 
 − + − + 

 2-56 

where  

a    : semi major axis of Earth 

2

2
1

b
e

a

 
= − 

 
  : first eccentricity 
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b    : semi minor axis of Earth 

2 21 sin

a
N

e ϕ
=

−
 : prime vertical radius of Earth 

Thus,  

2 2( (1 )sin (1 )cos hcos ) sin Baroh a e N e x z H rδ ϕ ϕ ϕ δ λδ δ= − + − + + =  2-57 

where 2 2(1 )sin (1 )cos hcos 0 sinBaroH a e N eϕ ϕ ϕ λ = − + − +    

The time varying bias in the barometer is modeled as a random constant parameter. 

Considering this component, the complete design matrix for the height update is given as 

[ ]1 3 1 3 1 3 1 3 1 1 1 1 1 10 0 0 0 1 0 0BAR BaroH H × × × × × × ×=  2-58 

2.7.5.3 Zero Velocity Update 

For pedestrian navigation, especially for the case of foot mounted IMU, an algorithm 

regularly checks for the zero velocity state during the stance phase when the foot is in 

contact with the ground (Susi 2012). Once a zero velocity state is detected, it is used as 

a velocity update to the INS. This is a direct observation of velocity and hence the design 

matrix is easily computed in the following form: 

[ ]1 3 1 3 1 3 1 3 1 3 1 1 1 1 1 10 1 0 0 0 0 0 0ZUPTH × × × × × × × ×=  2-59 

Similar to the zero velocity update (ZUPT), another update that could be used for foot 

mounted pedestrian navigation is the zero angular rate update (ZARU). By analogy to 
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ZUPT algorithm, ZARU is based on the idea that during stance phase, foot attitude is 

considered constant and hence the rate of change of attitude is zero. Using such update 

improves the estimation of attitude angles and consequently yields more accurate 

navigation solution (Benzerrouk et al 2014).  
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Chapter Three: Reliability of Personal Navigation Devices  

In the case of personal navigation devices that use measurements from multiple sensors 

to generate a navigation solution, the reliability of the navigation solution is determined 

by the capability of the PNDs to detect and remove faults occurring in any of the sensors. 

To address this issue, this chapter attempts to identify the major fault scenarios in the 

navigation sensors or systems used to generate the navigation solution. For personal 

navigation systems that are realized using low cost microelectromechanical systems 

(MEMS) sensors, the quality of the GNSS signals play a significant role in the navigation 

solution. The absence of GNSS or the presence of biased GNSS measurements can 

result in significant errors in the navigation solution. Considering this, the problem of 

reliability is categorized into two groups, one related to the quality of GNSS 

measurements and the other related to the faults occurring in other sensors in use. 

Irrespective of the categorization, the reliability of the overall navigation solution can be 

improved only by avoiding the use of hazardous and misleading information coming from 

any of the sensors in use.  

3.1 GNSS Reliability Theory 

The common errors occurring in GNSS measurements, as discussed in Chapter 2, can 

be easily accounted for by incorporating them into the stochastic model. However, the 

measurement outliers, arising due to satellite failure, ionosphere scintillation or multipath, 

result in biases in the navigation solution. Thus, detecting and removing such 

measurement outliers is important. The most common approach adapted over the years 
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in order to detect and remove faults or outliers in GNSS measurements is to use the RAIM 

(receiver autonomous integrity monitoring) technique.  As the name suggests, RAIM 

attempts to detect the presence of and remove any errant satellite measurement through 

self-consistency checking among the available measurements and without any sort of aid 

from external sources. RAIM, however, requires a certain degree of measurement 

redundancy to effectively isolate and remove the outliers. A RAIM architecture is based 

on statistical detection theory and involves hypothesis testing in order to detect faulty 

satellite measurements. Two statistical tests are conducted, first to detect if there is an 

occurrence of a fault followed by a second test to identify the particular satellite with the 

fault. Both of these tests include two hypotheses, a null hypothesis ( 0H ) that states there 

is no fault and an alternate hypothesis ( aH ) for a situation with a fault. Both of these tests, 

however, are based upon certain assumptions. As with any statistical testing method, 

RAIM inherently requires a known or assumed measurement error distribution. For a 

system implemented using a Kalman filter, both the process model as well as the 

measurement errors are generally assumed to be zero-mean, white and Gaussian 

distributed.  

The first test, which intends to detect the presence of a single faulty measurement, is 

often termed a global test. The global test requires at least one redundant measurement, 

in order to be able to detect the fault. One of the most common statistical methods 

adapted for this test is the variance factor test (Vanícek & Krakiwsky 1986). The 

measurement covariance matrix R  is often expressed as 
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2

0 RR Qσ=  3-1 

where 2

0σ  is the a priori variance factor and RQ  is the co-factor matrix of R . If the variance 

factor is unknown, the best approximation can be obtained by computing the a posteriori 

variance factor given by  

1
2

0ˆ
T

Rv Q v

n m
σ

−

=
−

 3-2 

where n  is the number of satellite measurements, m  is the size of the state vector kx  

and v  is the innovation vector denoted as 

ˆ
k k kv z H x−= −  3-3 

Assuming a known a priori variance factor, the variance factor test compares the a priori 

variance factor to the a posteriori variance and thus the null hypothesis 0H  is that 
2 2

0 0σ̂ σ=

. The corresponding test statistic, ξ , can be shown to be of the following form: 

1Tv R vξ −=  3-4 

For Gaussian distributed errors and consecutively Gaussian distributed innovations, the 

test statistic ξ  attains a chi-squared (
2χ ) distribution with n m−  degrees of freedom. 

The hypothesis testing is then conducted as follows (Leick 2004): 

2 2

0 /2 1 /2( ):H Nofault α αχ ξ χ −> >  3-5 
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2

/2( ):aH Fault αχ ξ<  or 
2

1 /2αξ χ −<  

where α  is the significance level, representing the probability of rejecting the null 

hypothesis 0H  when 0H  is actually true. This is often termed a Type I error.  

If a fault scenario is detected through the global test, a second test, commonly termed as 

a local test or blunder detection, is performed to identify the faulty measurement. This test 

requires the presence of at least two redundant measurements. Again, assuming a known 

2

0σ , hypotheses are tested for individual standardized innovations, given as  

( )

1
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T
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v ii
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−
=  

3-6 

where [ ]0 0 1 0 0
T

iM = � � has 1 at the ith column (corresponding to the ith 

satellite measurement being tested) and 0 elsewhere, and vC  is the innovation 

covariance matrix given by 

T

vC HP H R−= +  3-7 

where H  and P−  represent the design matrix and predicted state covariance matrix, as 

defined in Chapter 2. Now, the null hypothesis is that the standardized innovation is 

distributed normally, with zero mean and unity variance, while the alternate hypothesis 

states that it is distributed normally with a non-zero mean and unity variance. The 

respective hypotheses are accepted or rejected based on the following comparison: 
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Although the significance level of the local test ( 0α ) can be different from that of the global 

test, its selection may not be independent from α . The parameter 0α  must be related to 

α  as well as to the probability of missed detection, β , which is the same for both the 

tests. The parameter β  represents the probability of accepting the hypothesis 0H  when 

it is actually false. Such a failure situation is termed a Type II error. Parameters α  and β  

are commonly defined as a function of application requirements. The parameter 0α  is 

then derived, based on its relation to the other two parameters. 

Often, a blunder in one of the satellite measurements results in an increase in 

standardized innovations corresponding to other satellite measurements, thus causing 

them to exceed the threshold. In such a scenario, to avoid removing a good measurement 

instead of the measurement with the actual blunder, the measurement with the largest 

standardized innovation exceeding the threshold is identified as the blunder and excluded 

during the computation of the navigation solution. 

The FDE (fault detection and exclusion) scheme presented above (comprised of the 

global and local tests) is widely adopted for removing faults in GNSS measurements and, 

hence, it will be considered to be the benchmark against which the novel FDE scheme 

proposed in Chapter 4 will be compared when it is assessed.  
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Besides detecting and removing the outliers, RAIM is also used to provide integrity 

information that indicates the maximum size of the blunder that can go undetected and 

its effect on the navigation solution. This information is quantized in the form of internal 

and external reliability parameters (Baarda 1967). Such applications as aviation usually 

define a theoretical boundary in terms of an external reliability value, beyond which the 

solution is deemed unreliable.   

The information about the integrity of individual satellite measurements (primarily the 

range measurements) can also be obtained through local area ground based augmented 

systems (LBAS) or regional satellite based augmented systems (SBAS). The SBAS are 

more common as they are usually available for all GNSS users in the region of availability. 

SBAS monitors the health of satellites through the use of a network of ground based 

monitoring stations. The integrity information is then uploaded onto the SBAS satellites 

for transmission to the users. Some of the commonly used SBAS include wide area 

augmentation system (WAAS), European geostationary navigation overlay service 

(EGNOS) and GPS aided geo augmented navigation (GAGAN). 

Many personal navigation applications do not specify any requirements in terms of an 

external reliability boundary. Moreover, when realized as a multi-sensor integrated 

navigation system, the overall integrity of the navigation solution is also dependent upon 

other sensors. Hence, the integrity information in these applications is not very relevant. 

Nevertheless, the reliability of the navigation solution is still a very important parameter 

for many personal navigation applications. In the context of this thesis, reliability is thus 

defined as the capability of the navigation system to give a solution with proper estimated 
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accuracy and is formulated as the percentage of errors bounded by ±3σ  or 99.7% (three 

times the estimated standard deviation of the position or velocity solution along a 

particular axis envelope). For example, if a navigation system estimates a position with 

accuracy (1σ ) of 5 m along a particular axis, then it means that the error along that axis 

is expected to be less than 15 m with a confidence of 99.7% (i.e., 3σ  along that axis). 

However, as shown in Figure 3-1, if the true position along that axis is 20 m away from 

the estimated position, then the navigation solution is considered unreliable.  

The above definition of reliability is thus different from the internal and external reliability 

parameters that were introduced by Baarda (1967). Such quantization of reliability 

provides a means to assess how well a navigation system or a navigation algorithm 

performs in terms of consistency between the estimated navigation solution and the 

associated estimated accuracy. Thus, if a navigation system gives a solution such that 

the estimated position is within three times the estimated standard deviation of the 

position along a particular axis for 800 out of 1,000 time epochs, then the reliability of the 

navigation system along that particular axis is said to be 80 %.  
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Figure 3-1: Example of an Unreliable Position Solution 

 

As discussed in Section 1.2.1, degraded GNSS signal environments present unique 

conditions that cannot be appropriately addressed by traditional RAIM techniques. Thus, 

in order to improve the reliability of the navigation solution in the presence of biases and 

noise in the GNSS measurements, a more robust RAIM technique is required that 

overcomes the limitations and drawback of the prevalent techniques. 

3.2 Faults in other navigation sensors 

Besides GNSS, the presence of outliers in the measurement made by any other 

navigation sensors can result into the deterioration of the navigation solution. In order to 

obtain a reliable navigation solution, the navigation algorithm should also be able to 

detect, identify and remove faults occurring in other sensor measurements used to obtain 
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the final solution. The following sub-sections briefly discuss some of the possible fault 

scenarios in those sensors used during the research. 

3.2.1 Faults in Magnetic Field Sensors 

Magnetic field sensors have been used for a long time to derive magnetic headings, by 

using Earth’s magnetic field. However, in the case of low cost magnetic field sensors, 

commonly used in personal navigation devices, the heading computation is often 

challenging, due to the faults occurring in the magnetic field measurements. These faults 

primarily are caused by the magnetic perturbations from ferromagnetic materials in the 

vicinity of the sensor or due to the imperfections in the calibration parameters. 

3.2.1.1 Magnetic Perturbations 

Magnetic perturbations result from any magnetic sources other than the Earth’s magnetic 

field and are the major cause of faults in magnetometers. The magnetic perturbations are 

not explicitly due to the magnetic field sensor itself. However, for the application in hand, 

the magnetic field measurements arising from any other sources other than the Earth’s 

geomagnetic field are interpreted as interference that gives rise to the faults. Based on 

the source of magnetic field generation, such perturbations can be primarily divided into 

two types, namely hard and soft iron errors. Hard iron errors occur due to a permanent 

magnetic field, generated by a permanent magnet or some electronic sub-systems near 

the sensor. Similarly, soft iron errors occur due to the generation of magnetic fields by 

ferromagnetic materials. These fields are mainly induced by the Earth’s magnetic field. 

Magnetic perturbations are commonly found when navigating in urban areas and indoors, 

due to the abundance of perturbing sources in those environments. Figure 3-2 shows an 
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example of the total magnetic field using data collected in an urban area. It can be 

observed that the field is noisy and contains a large number of spikes that correspond to 

the magnetic perturbations in the test area. The black horizontal line indicates the ideal 

total magnetic field in the test area in the absence of perturbing sources. 

 

Figure 3-2: Total Magnetic Field in Urban Area 

 

If the significantly perturbed magnetometer measurements are incorporated in the form 

of heading updates when computing the navigation solution, it is more likely to degrade 

the navigation solution than to improve it.  

3.2.1.2 Calibration of Magnetic Field Sensors 

The raw magnetometer data is contaminated by the magnetic field perturbations coming 

from sources (hard and soft iron) in and around the host platform. These measurements 

are also affected by such instrumentation errors as scale factors, non-orthogonality and 
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bias offsets. Hence a calibration algorithm is required to estimate and compensate for 

these deterministic errors, before the measurements are used for computing the 

navigation solution. Correspondingly, various calibration methods have been introduced 

in literature. One group of these calibration techniques relies on external reference 

information, such as the exact orientation of the earth’s magnetic field or a reference 

heading from some other source (Jirawimut et al 2003). However, such external 

information may not be available for many applications. A second group of calibration 

techniques does not rely on such external reference (Caruso 1997, Gebre-Egziabher et 

al 2006). But these methods ignore or simplify some of the error sources in order to 

reduce the complexity. Finally, a third category of calibration techniques are available 

which are more rigorous and complete. Most of the methods under this category perform 

the calibration by solving the ellipsoid fitting problem (Dorveaux et al 2009, Renaudin et 

al 2010). These methods are based on the fact that the locus of clean tri-axis 

magnetometer measurements forms a sphere that transforms into an ellipsoid in the 

presence of errors. The goal of the calibration technique is thus to transform the ellipsoid 

into a sphere with proper origin and radius. This requires redundant measurements of 

magnetic field in a wide range of orientations. The method proposed by Renaudin et al 

(2010) uses an adaptive least-squares estimator to provide a solution to the ellipsoid 

fitting problem and derives the calibration parameters in the process. This algorithm 

requires no external information, other than the true magnitude of the magnetic field being 

measured. The same method has been adapted during this dissertation for the calibration 

of raw magnetometer data. The drawback of this method, however, is that it requires the 

user to rotate the device around each axis to observe the entire locus. It is also 
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computationally very intensive and is not suitable for on the fly calibration of the 

magnetometer in portable devices. Some recently proposed methods (Fang et al 2011, 

Tabatabaei et al 2013) claim to achieve calibration accuracy on par with the intensive 

ellipsoid fitting methods, but with much less complexity.  

The adapted calibration algorithm is still prone to some errors, due to the presence of 

perturbations from sources other than the host platform during calibration or some 

possible imperfections in the error modeling. This can lead to a situation where the errors 

may exist in different axes of the magnetometer measurements, despite having a proper 

total magnetic field. Such situation can lead to errors in the heading computation. 

3.2.2 Faults in Barometers 

The height computed using the ISA model in Equation (2-4) is often found to be 

erroneous, as it does not take into account local pressure changes caused by reasons 

other than the change in altitude itself. The atmospheric pressure can change significantly 

over a very short duration (e.g. before a heavy rainfall). The barometer interprets this as 

a change in altitude; and, if not corrected, it can degrade the navigation solution. Such 

errors can be mitigated to a good extent by using differential barometry wherein a 

differential height information is used by placing a barometer at a base location with 

known elevation. The use of differential height information cancels out the effect of 

change in the local atmospheric conditions. The accuracy of the differential height 

depends on the proximity of the remote barometer to the base (McLellan et al 1994). 

Other common fault scenarios in barometers occur due to pressure variations generated 

by wind gusts. 
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To investigate the effect of pressure generated by wind, often termed as wind loading, 

barometric data was collected using two digital pressure sensors from Bosch Sensortec 

(BMP085 and BMP180). One set of data was collected during a low wind condition, while 

the other set of data was collected during a higher wind event. The wind, as measured 

by a Kestrel wind meter (Kestrel 4200 Pocket Air Flow Tracker), varied between 15 km/h 

and 40 km/h. For both data sets, the reference altitude was obtained as a double 

differenced carrier phase solution, using geodetic grade receivers and antennas at both 

the rover and base station.  

Assuming a static atmospheric condition, the error in the barometer reading can be 

modeled as 

( ) ( ) ( )initial windt b b t n tε = + +  3-9 

where initialb is the bias introduced by instrument errors, windb is the error introduced by the 

presence of wind and n  is the stochastic noise component. The component initialb , 

however, will be different for the two sensors in use as their instrument errors are different. 

Similarly, ( )windb t  will also be different for the two sensors due to various factors, e.g. 

difference in the casing and sensor locations.  

Further, removing the initial offset in the barometer derived altitude measurements, the 

residual error can be represented as 

0 0( ) ( ( ) ( ))residual sensor reft h t h tε ε= − −  3-10 
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where sensorh  is the altitude obtained from the pressure sensor using Equation (2-4), 0t  is 

the start time and refh  is the reference altitude. Ignoring the noise term, the difference 

0 0( ) ( )sensor refh t h t−  gives the initial instrumentation bias and the bias due to wind at time 

0t . Thus the residual error can be rewritten as 

0

0

0

( ) ( ( ))

( ) ( ) ( ( ))

( ) ( ) ( )

residual initial wind

initial wind initial wind

wind wind

t b b t

b b t n t b b t

b t b t n t

ε ε= − +

= + + − +

= − +

 3-11 

The residual altitude errors computed for the data set obtained during high wind 

conditions are plotted in Figure 3-3. The blue and red dotted lines show the altitude errors 

for the two pressure sensors. The variations ranged between 5 and 10 m. The wind meter 

showed that the speed of the wind was maximum at the top of the 2,200 m high mountain 

where the data was collected and decreased along the lower parts of the ridge leading to 

the summit, indicating proportionality to the wind speed. 
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Figure 3-3: Altitude Error during High Wind Condition 

 

To analyze the effect of wind on the stochastic part of the error, a high order polynomial 

fit was then obtained to estimate the error trend as plotted alongside the residual error 

values in the above figure. The variance of the barometer data was then observed, after 

removing the error trend ( trendε ). The estimate of the stochastic noise component was 

then obtained by removing this error trend from the residual error as 

residual trend( ) (t)n t ε ε≈ −�  3-12 

The stochastic nature of the noise, estimated by using the equation introduced above, 

was analyzed by plotting the histogram of the noise component for one set of barometric 

data (Barometer 2). From the histogram depicted in Figure 3-4, it can be observed that 
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the barometric noise distribution closely follows a normal distribution, as indicated by its 

coherence with the normal fit plotted in red. 

 

Figure 3-4: Histogram of Barometer Noise during Windy Condition 

 

Moreover, the variance was observed to be slightly higher during high winds as compared 

to the variance obtained during low wind conditions, as indicated in Table 3-1. The 

increase in variance was higher in the case of Barometer 1, which was fully exposed to 

the west wind, as compared to Barometer 2, which was in a pocket. Although the variance 

differences are not significant, the biases shown in Figure 3-3 are, which is the most 

critical. 
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Table 3-1. Barometric Noise during Different Wind Conditions 

 1Barometerσ  (m) 2Barometerσ  (m) 

Low Wind 0.7 1.1 

High Wind 1.2 1.3 

 

From the above analysis, it can be concluded that the wind generated pressure not only 

leads to significant dynamic biases in the barometer derived altitude, but also increases 

the noise of the barometer data.  

To further investigate possible fault scenarios in a barometer, pressure data was logged 

using a commercial “GPS unit”. Garmin’s Forerunner 910xt watch was used to collect the 

pressure data, while GPS was turned off. The pressure data collected during a hike of 

over six hours showed some large jumps in the pressure even during low wind conditions. 

This could likely be attributed to the response of the low cost pressure sensor to the user 

dynamics. The jump in the recorded pressure was more than a 100 m at one instance, 

as seen in Figure 3-5; where the barometer derived altitude obtained using the 910xt 

watch is compared to the altitude obtained from Garmin’s 64st receiver (a high-sensitivity 

GPS and GLONASS receiver with barometer).    
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Figure 3-5: Altitude Profile for two Receiver Units 

 

Thus, having identified various fault scenarios in typical pressure sensors used in the 

PNDs, it can be concluded that a navigation filter, performing a height update using 

barometer data, must incorporate a fault detection and exclusion scheme to prevent the 

effect of such faults in the navigation solution.   

3.2.3 MEMS Inertial Sensor Faults 

As with other self-contained sensors, inertial sensors (comprising triads of 

accelerometers and gyroscopes) that are realized using microelectromechanical systems 

(MEMS) technology are preferred in PNDs, due to their ultra-small size, low cost and 

lower power consumption. Errors such as bias, scale factor, non-orthogonality and noise 

are more severe in these sensors, as compared to those of their mechanical counterparts. 
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Thus, these errors have to be characterized properly and often need to be estimated 

along with other navigation parameters. However, apart from these errors, MEMS inertial 

sensors also often suffer from unexpected faults that cannot be modeled in a navigation 

filter.  

One such failure situation is caused by deviation from the initial factory temperature 

calibration. This is more likely to happen with an inertial sensor that has been used for a 

few years, due to aging.  

Other failure situations include stiction effects, which are more detrimental. Stiction or 

static friction is caused by adhesion of a microstructure to the adjacent surfaces when 

restoring forces are unable to overcome such interfacial forces as capillary forces, 

hydrogen bridging, electrostatic forces and van der Waals forces (Kolpekwar et al 1998, 

Tas et al 1996). For instance, a proof mass in an accelerometer can get “stuck” on the 

substrate due to a strong adhesive force resulting from surface interaction. Stiction could 

occur either during fabrication or while in use. In use stiction is more likely to occur during 

high humidity and temperature conditions or during high dynamics and jerk. Stiction can 

result in spurious measurement output or often railed measurements and thus if not 

detected can seriously compromise the navigation solution. 
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Chapter Four: Design of a Filtering Strategy for Challenged 

Environments  

 
 

As discussed in Chapter 1, areas such as urban and natural canyons offer very harsh 

conditions for GNSS due to the presence of multipath, high noise and signal blocking. In 

those environments, the FDE schemes based on the conventional RAIM techniques are 

found to be inferior in handling large GNSS errors, often occurring simultaneously in 

multiple satellite measurements, mainly due to incorrect assumption about the error 

distributions. The inconsistency between the assumed and the true error statistics often 

leads either to removal of good measurements by the FDE or to improper weighting of 

each measurement. Removing a good measurement in environments where GNSS 

signals are already depleted not only degrades the navigation solution but can also make 

the FDE scheme unavailable due to lack of sufficient redundancy.  

Thus, with an ultimate goal of improving the reliability of personal navigation systems in 

GNSS challenged environments, some novel statistical filtering techniques are proposed 

in the following sections. The fundamental strategy that has been followed is to make the 

assumed GNSS measurement error statistics as close as possible to the true one. In this 

regard, two approaches have been adopted herein to address two major challenges faced 

by the FDE schemes in harsh environments, namely non-Gaussianity and varying error 

statistics. 
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4.1 Student's t-Distribution for GNSS Measurement Errors 

In the Bayesian framework, the influence of measurement outliers on inference for 

estimates, including population means and medians, can be reduced by replacing the 

normal distribution model by a heavy tailed distribution. Such heavy tailed distributions 

allow for the possibility of high noise and possibly biased observations. These 

distributions treat observations far from the regression line as high variance observations, 

yielding results similar to those obtained by deweighting the outliers (Gelman et al 1995). 

This, to a certain extent, avoids having to reject measurements because of incorrect error 

modeling. Moreover, in the case of GNSS measurement errors occurring in environments 

like urban canyons where a significant proportion of measurements could be affected by 

multipath, a heavy tailed distribution is likely to be more representative of the true errors 

than the normal distribution, thus leading to more precise test statistics and hence a better 

FDE. This was examined by plotting the cumulative density function (CDF) of approximate 

range errors of all available GNSS measurements for a data collected in a typical urban 

area. The range errors were computed following the procedure described in Appendix A. 

The mean of the range errors was approximately zero while the standard deviation was 

computed to be 9.6 m. The high variance is attributed to the presence of large 

measurement error which will either be rejected or significantly de-weighted. A more 

practical value of assumed GNSS accuracy falls around 5 m. Hence, Gaussian distributed 

samples were simulated with zero mean and standard deviation value of 5 m. Moreover, 

samples were also simulated with an equivalent heavy tailed distribution (Student’s t-

distribution). The CDFs for the two simulated cases were plotted along with the CDF of 

the range error data mentioned above. From these CDF plots in Figure 4-1 and the 
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zoomed version in Figure 4-2, the heavy tailed distribution is observed to be a closer 

approximation to the range error data in urban canyon. It is specifically noted that the 

Gaussian CDF underestimates the frequencies in the tails of the true distribution. 

Figure 4-1: Empirical CDF of Range 
Error 

Figure 4-2: Empirical CDF of Range 
Error (Zoomed) 

 

The assumption of a heavy tailed measurement error distribution in the Kalman filter 

implementation can be described in terms of the changes occurring in the Bayesian 

framework. The process noise in the prediction stage is still assumed to follow a Gaussian 

distribution. But the measurement errors are now assumed to follow the Student’s t-

distribution, or simply t distribution, instead of the Gaussian distribution. The use of the t 

distribution for GNSS measurement errors, however, makes the filtering problem 

intractable, as the functional measurement model that appears in the form of a likelihood 

function and transition density in the Bayesian framework (Kay 2001) does not reduce to 

a closed form solution as in the case of Gaussian distributed errors. Two techniques are 
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available to implement the filtering algorithm with such a distribution. One option is to use 

Monte Carlo techniques such as particle filters (Arunlampalam et al 2002). However, 

these techniques are computationally very demanding and are not preferred in most of 

the commercial products. Hence, a computationally effective option is chosen for the 

implementation of the filter with a t distribution. This method expresses the t distribution 

as a Gaussian mixture through the introduction of an auxiliary random variable λ . The 

measurement error distribution is thus expressed as 

k( | x ) ( | , ) ( )k k k k k kp y p y x p dλ λ λ= ∫  4-1 

where ky  is the measurement vector of dimension d , kx  is the state vector, | ,k k ky x λ  

follows a Gaussian distribution (i.e. 
1

| , ~ ( ),k k k k k

k

y x N h x Rλ
λ

 
 
 

) and  kλ  follows a 

Gamma distribution (i.e. ~ ,
2 2

k

ϑ ϑ
λ

 
Γ  
 

). The parameter ϑ  is the degree of freedom that 

determines the Kurtosis (heavy tailedness) of the t distribution. The heaviness of the tail 

of the t distribution increases with a decrease of ϑ . It has been found, in many 

applications, that 4ϑ =  gives a reasonable heaviness in the tail of the distribution (Lange 

et al 1989) and hence the same value is adopted during this dissertation.  

In order to make the computation of the resulting posterior density function tractable, the 

standard Variational Bayes (VB) technique is followed; wherein, the posterior probability 

density function (probability associated with the parameter of interest, given the 

observations) is approximated by the product of two probability densities.  
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k k k k(x , | z ) q(x )q( )kp λ λ≈  4-2 

Again, the density k( )q λ  follows a Gamma distribution, albeit with different parameters, 

and kq( )x  is approximated with a Gaussian distribution with covariance
1

k

k

R
λ

. The VB 

approximation minimizes the Kullback-Leibler (KL) divergence between the product 

approximation and the true posterior density function, following the calculus of variations. 

As the variational parameters of kq( )λ  and kq( )x  are coupled, they are solved through 

fixed point iteration, resulting into an algorithm of the following form (Piche et al 2012):  
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where M  is the number of VB fixed-point iterations. 

The numerical integrations, corresponding to the measurement update stage, in the 

above algorithm are computed using the Cubature rule (Arasaratnam & Haykin 2009).  

Despite using the t distribution for measurement errors, some form of FDE is still needed 

in order to account for gross errors. Hence, a FDE technique similar to the one used for 

Gaussian distributed measurement errors has been used. Due to the symmetry of the t 
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distribution, the test statistic for a local test assumes the same form as that for the normal 

distribution (Vanicek & Krakiwsky 1986), namely    

iir

i

C

r

)(
=ξ

 
4-4 

The threshold (Th ) is, however, derived from the t distribution, ( ,1 )tTh t ϑ α= − . The 

parameter tα  is the probability of false alarm for the t distribution and is commonly a 

design parameter. 

4.2 Adaptation of GNSS Measurement Covariance  

The navigation filters in personal navigation devices usually make an a priori assumption 

of the measurement covariance of the sensors being used. For a relatively good MEMS 

IMU, like the one used in this work (see Chapter 2.3), the stochastic characteristics of the 

measurement errors can be considered constant. However, the same does not apply for 

the case of GNSS measurements. For instance, the measurement covariance of a non-

line of sight (NLOS) GNSS measurement is most likely to increase as the user moves 

into a deep canyon environment or on city streets due to multipath and low signal strength. 

Hence, a fixed a priori covariance for GNSS measurements in harsh environments will 

not correctly represent the true error characteristics of GNSS measurements. Hence, 

some adaptive technique must be used to continually tune the measurement covariance 

of GNSS measurements. Several techniques have been proposed in the literature to 

adapt the GNSS measurement covariance to changing signal conditions. These 

techniques however come with several drawbacks, including filter instability, divergence, 
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computational complexity or poor accuracy (Almagbile et al 2010, Hide et al 2002). 

Hence, in order to adapt the GNSS measurement variances with the changing signal 

conditions and considering the drawbacks of the prevalent adaptive techniques, a new 

technique is proposed in this work. This method scales the a priori variance of the GNSS 

measurements before they are fed to the navigation filter while avoiding various 

drawbacks of the earlier adaptive techniques. 

The proposed method computes the user acceleration from GNSS Doppler 

measurements and compares its consistency with that obtained from accelerometers in 

the IMU. With a tactical grade MEMS IMU, the user acceleration obtained using 

accelerometers is fairly accurate and hence is taken as a reference to compare with that 

obtained from GNSS Doppler measurements. Thus, during good GNSS signal conditions, 

the two accelerations are highly consistent whereas in GNSS signal degraded 

environments, the consistency between the two accelerations degrades. Based on this 

characteristic, a scaling factor is computed to scale the assumed covariance of GNSS 

measurements thus adapting it in accordance with the changing GNSS signal conditions. 

A top level block diagram of the proposed method is depicted in Figure 4-3. 
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Figure 4-3: Block Diagram of GNSS Covariance Adaptive Scheme 

 

Firstly, the user accelerations are computed along the three axes of the Earth Centered 

Earth Fixed (ECEF) frame using the GNSS Doppler measurements. The details on the 

computation of the user acceleration from the GNSS are given in Appendix B. The user 

accelerations are also sensed by the accelerometers inside the IMU. These 

accelerations, however, are in the IMU sensor frame. Thus they are transformed into the 

ECEF frame using rotation matrices so that they can be directly compared with the 

accelerations obtained using the GNSS measurements. The errors associated with each 

solution are assumed to follow Gaussian distributions. For the case when the GNSS 

measurement errors are assumed to follow the t distribution, the adaptive part of the 

GNSS variance still assumes a Gaussian distribution for the Doppler measurements while 

computing a GNSS derived user acceleration. The components IMUa  and GNSSa  in Figure 
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4-3 are the user acceleration values along a certain axis obtained using the accelerometer 

and that computed from the GNSS Doppler measurements respectively with associated 

standard deviation values of IMUσ  and GNSSσ . The consistency between the two 

accelerations can then be expressed as the area overlap between the two acceleration 

distributions as shown in Figure 4-4.  

 

Figure 4-4: Consistency between User Accelerations 

 

The overlap between the distributions can be calculated as a Bhattacharyya coefficient 

(BC) (Thacker et al 1998). Firstly, the Bhattacharyya distance (DB) for two univariate 

normal acceleration distributions is given as 
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The parameter BC is then obtained as 

BDBC e−=  4-6 

The consistency between these two accelerations, as indicated by the parameter BC , is 

generally high in open sky conditions. However, in areas where the GNSS measurement 

quality degrades, the consistency between the two accelerations decreases. This is 

attributed to the increase in the variance of GNSS Doppler measurements and the error 

in the GNSS derived acceleration. Thus, in areas with a good consistency, a higher weight 

(lower variance) is assigned to GNSS measurement updates while in areas with a poor 

consistency, a lower weight is used. This is done by scaling the a priori GNSS variance 

using a scale factor, SFf , that is computed based on the consistency between the two 

accelerations, as indicated in the block diagram of Figure 4-3.  

The adaptation of the GNSS variance, based on the consistency of the acceleration 

values obtained using the two sensors, proposed in this dissertation, is shown in the 

flowchart of Figure 4-5. 
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Figure 4-5: Flowchart for Adaptation of GNSS Variance 

 

As with other non-adaptive filters, initially an assumption is made about the a priori 

variance for the GNSS measurements. The goal of the above architecture is to find a 

value to scale this a priori variance, so that the assumed measurement noise distribution 

closely matches the true error characteristics. As mentioned in Appendix B, the condition 

of the minimum number of Doppler measurements required for obtaining the user 

acceleration must however be met before the consistency between the accelerations can 
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be computed.  The method described in Appendix B can be considered as a loosely 

coupled consistency check as the comparison is done after the user accelerations are 

made available by the two systems. However, the comparison could also be done using 

a tightly coupled approach. With the knowledge of the orientation of the IMU and the 

direction cosines of the satellites, the accelerations on the IMU could be mapped to the 

line of sight acceleration from the Doppler derivative of each satellite. This method would 

obviate the condition of having a certain minimum number of Doppler measurements.  

In order to mitigate the effect of noise in the Doppler measurements, the consistency is 

computed as a moving average of the consistency values at ‘n’ number of GNSS epochs; 

such that the adjacent epochs are typically separated by 50 ms. A buffer to store the 

consistency values of ‘n’ consecutive epochs is thus maintained. This introduces a latency 

of ‘n-1’ epochs at the beginning before the a priori variance scale factor can be computed. 

Moreover, if not enough Doppler measurements are available somewhere during the 

processing, then the buffer is reset as it has to hold the consistency values of ‘n’ 

consecutive epochs in order to get the filtered consistency values. 

Once the buffer is full, the current value of consistency is repeatedly computed by scaling 

the initial a priori variance with a range of scale factors. The final scale factor, and hence 

the final a priori variance, for the current epoch is chosen such that the moving average 

of the consistency values is maximized. 

The performance of the filtering schemes presented in this chapter is compared to the 

standard approach in Chapter 6.   
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Chapter Five: Pre-Filter Sensor Validation  

For personal navigation devices that are realized as a multi-sensor navigation system, a 

fault occurring in any of the sensors in use can affect the performance of the navigation 

system, potentially compromising the reliability of the navigation solution. It is thus 

imperative to detect and remove faults occurring in the individual sensors before they are 

integrated in a navigation filter. In this in regard, a pre-filter sensor validation scheme that 

is able to detect the occurrence of faults in individual sensor measurements is proposed 

in this chapter.  

In order to realize a scheme that can overcome the drawbacks of prevalent methods, as 

discussed in Section 1.2.2, the sensor validation scheme proposed herein is designed 

while considering the constraints in terms of cost and complexity of the navigation system. 

These constraints are met by exploiting the analytical redundancy between dissimilar 

sensors to detect faults in the measurements. Analytical redundancy is achieved through 

the mathematical relationships between different sensor measurements. This avoids the 

use of redundant sensors which is common among the prevalent sensor validation 

schemes. The proposed scheme confirms the correct operation of various sensors before 

they are used in the estimation scheme (e.g. extended Kalman filter) thereby improving 

reliability. Sensor measurements deemed to be invalid by the sensor validation scheme 

can then be discarded.  
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5.1 Sensor Validation through Common Parameter Observation 

Having identified the possible fault scenarios in various sensors, as discussed in Section 

3.2, the proposed pre-filter sensor validation scheme confirms the correct operation of 

individual sensors through comparison of consistencies between common parameters 

obtained using dissimilar sensors. These common parameters are termed inter-sensor 

equivalents. The inter-sensor equivalents provide the analytical redundancy between 

dissimilar sensors already present in the multi-sensor platform and thus avoids the use 

of multiple sensors of the same kind for detecting faults.  

The inter-sensor equivalents used in the pre-sensor validation scheme include user 

acceleration, angular velocity and magnetic field vector. These parameters can be 

observed independently using measurements from at least two different sensors in the 

multi-sensor platform. Before discussing the proposed sensor validation architecture in 

Section 5.2, the methods of observing these inter-sensor equivalents using different 

sensors are presented in the following sub-sections. 

5.1.1 User Acceleration 

User acceleration can be obtained using differentiated GNSS Doppler measurements. 

The computation of user acceleration from GNSS Doppler measurements is given in 

Appendix B. Similarly, the user acceleration can also be obtained from acceleration 

measurements. However, in order to compare these accelerations, the acceleration 

values have to be transformed appropriately to a common coordinate frame. Similarly, 

user acceleration can also be obtained along the vertical direction using twice 
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differentiated barometric altimeter measurements. Thus the comparison of barometer 

derived accelerations with that of other sensors will be only along the vertical axis.  

The observation of user acceleration using three disparate sensors, available in the multi-

sensor platform used during this work, provides an analytical redundancy of two. Due to 

this redundancy, it is possible to detect and isolate a fault occurring in one of the sensor 

measurements.   

5.1.2 Angular Velocity 

Angular velocity can be directly observed through the gyroscope measurements. 

However, angular velocity can also be derived from differentiated magnetometer 

measurements. The derivation of the angular velocity from magnetometer measurements 

is based on the assumption that the magnetic field intensity remains constant. Thus, any 

change in the orientation of the tri-axis magnetic field sensor results in respective changes 

in the fields sensed along the axes of the magnetometer. Consequently, a rate of change 

of the sensed magnetic field corresponds to the rate of change of orientation (i.e. the 

angular velocity). The derivation of the angular velocity from magnetometer 

measurements is presented below. 

The geomagnetic field vector of Earth in the local level frame (L-frame) is given as  

sin

cos

tan

L

d

H H d

I

 
 =  
  

 5-1 
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where H  is the geomagnetic field strength in the horizontal plane, d  is the magnetic 

inclination angle and I  is the magnetic inclination. 

The magnetic field measured by the magnetometer triad in the body frame (B-frame) can 

then be expressed as 

B L

p r h

B L

L

H T T T H

R H

=

=
 5-2 

where B

LR  is a rotation matrix from the L to the B frame which can be expanded as a 

function of changes in pitch, roll and azimuth angles. 
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Assuming that the magnetic field is constant when going from time t  to t t+ ∆  and that 

H  and d  are known, the time derivative of Equation 5-2 gives 

 5-4 

However, the rate of change of the transformation matrix B

LR  can be given as (Noureldin 

et al 2013) 



 

100 

 5-5 

where L

BLΩ is the skew-symmetric form of angular velocity given as 

0

0
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BL z x

y x

w w
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w w

 −
 
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 − 

 5-6 

Thus, from equations 5-5 and 5-6, 

 5-7 

Using the property aa b b× = Ω , where a b×  is the cross product of the two vectors a  and 

b  and aΩ  is the skew-symmetric matrix of vector a , Equation 5-7 can be expressed as 

 5-8 

where BH
Ω  is the skew-symmetric form of vector BH  and 

x
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z
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w w

w

 
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. 

The angular velocity B

BLw  can thus be obtained as 
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 5-9 

However, the system of linear equations represented by Equation 5-9 does not have a 

unique solution and the inverse of the matrix BH
Ω  does not exist. Hence, during this work, 

the angular velocity is computed as a best fit solution that is optimized in the least squares 

sense (i.e. the solution with a minimum Euclidean norm). Such solution can be obtained 

by computing the Moore-Penrose pseudoinverse of the matrix BH
Ω . Hence Equation 5-9 

can be modified to the following form: 

 5-10 

where BH

+Ω  is the pseudoinverse of the matrix BH
Ω . 

There are several ways of computing the pseudoinverse. One of the computationally 

efficient and accurate ways is to use the singular value decomposition. The singular value 

decomposition factorizes a real matrix A  of dimension m n×  to the form: 

TA U V= ∑  5-11 

where U  is a unitary matrix of order m m× , ∑  is an m n×  diagonal matrix containing 

singular values of A  and V  is a unitary matrix of order n n× . The pseudoinverse of matrix 

A  is then computed as 

TA V U+ += ∑  5-12 
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The matrix 
+∑  is obtained by inverting all the non-zero diagonal elements of the matrix 

∑ . 

The observation of angular velocity using two dissimilar sensors provide an analytical 

redundancy of one. This enables the detection of measurement faults in any of these 

sensors. The identification of the fault, however, is not possible with the available degree 

of redundancy. But the sensor validation scheme does not need to rely on a single inter-

sensor equivalent to attain analytical redundancy. A higher degree of redundancy can be 

obtained through the comparison of more than one inter-sensor equivalents among 

dissimilar sensors, which will be discussed in Section 5.2.  

5.1.3 Magnetic Field Vector 

Finally, the third inter-sensor equivalent is the magnetic field vector which is directly 

obtained from magnetometer measurements. They can also be obtained using a 

reference geomagnetic field model such as the international geomagnetic reference field 

model (IGRF).  The magnetometer measurements must be rotated to the same frame as 

the reference model (or vice-versa) and thus is fundamentally tied to the efficacy of the 

attitude solution.  Alternatively the measurements can be compared on a magnitude 

basis, in which case the system acts more like a perturbation detector (e.g. Afzal et al 

2011). In this case, the magnitude of the total magnetic field can be simply computed 

from the magnetometer measurements as 

( )2 2 2B

X Y ZH H H H= + +  5-13 
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where XH , YH  and ZH  are the magnetometer measurements sensed by the 

magnetometer along its orthogonal axes.  

5.2 Pre-Filter Sensor Validation Flowchart 

The flowchart of the proposed pre-filter sensor validation architecture is depicted in Figure 

5-1. The purpose of this proposed architecture is to validate the measurements from four 

sensors, namely the magnetometer triad, the gyroscope triad, the accelerometer triad and 

the barometer. Only the validated sensor measurements are passed on to the integration 

filter, while the faulty sensor measurements are rejected. In the case when validation is 

not possible, a warning signal is issued to alert the user.  

Some of the sensors can be validated simultaneously while the validation of some is 

dependent on the validation of other sensors. The sequence of validation is based on the 

degree of redundancy. In the validation architecture realized during this work, the 

accelerometer and magnetometer measurements are validated at the beginning due to 

higher degree of analytical redundancy. This is followed by the validation of the barometer 

and gyroscope measurements.  
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Figure 5-1. Pre-Filter Sensor Validation Flowchart 

 

The sensor validation scheme realized as per above flowchart makes the sensor 

validation highly independent from the integrated filter. It thus acts as an effective quality 

control measure before faults are tested through innovation based tests in the integration 

filter.     

5.2.1 Magnetometer Validation 

The magnetometer is validated through the observation of two inter-sensor equivalents. 

Firstly, the total magnetic field obtained from the reference geomagnetic field model is 

compared to the total magnetic field computed from the triad of calibrated magnetometer 

measurements. Similarly, the magnetometer is also compared to the gyroscope through 
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the observation of angular velocities. The angular velocities derived from the 

magnetometer measurements are compared to those observed using the gyroscopes. 

Thus, by comparing the magnetometer to the reference magnetic field and the gyroscope, 

through the observation of two inter-sensor equivalents, an effective analytical 

redundancy of two is obtained during magnetometer validation. Based on the consistency 

of the magnetometer with the reference magnetic field and the gyroscopes, a decision is 

made if the magnetometer measurement is valid or not.  

If the magnetometer is deemed valid, it is then passed to the integration filter and is also 

further used to validate the gyroscope measurements. However, if the magnetometer fails 

validation, the magnetometer measurement will not be used in the integration filter. 

Moreover, an invalid magnetometer measurement also means that it will no longer be 

possible to validate the gyroscopes. In such a case, a yellow flag would be raised to 

indicate that some of the sensors could not be validated and that the estimated navigation 

solution is not completely reliable. 

The details on the comparison of inter-sensor equivalents for the validation of sensor 

measurements is given in Section 5.2.5. 

5.2.2 Gyroscope Validation 

As mentioned in the previous section, the gyroscope can be validated only after the 

magnetometer has been validated. The validation is again done through the comparison 

of the angular velocities observed by the magnetometer and the gyroscope. With just one 

degree of redundancy in this comparison, it would not have been possible to identify the 

faulty sensor measurement if the magnetometer was not already validated.   
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The gyroscopes and the accelerometers are however the core components of the 

integration filter which is realized as a strap-down inertial navigation system (INS) using 

extended Kalman filter (EKF) equations. Thus, if any of these sensors are deemed to be 

invalid, a red flag is raised to indicate that the navigation solution is not reliable. 

Alternatively, a GNSS only solution could be made available in case of failure of 

accelerometers or gyroscopes.  

It is therefore important to ensure that the detection of fault in these primary sensors is 

not caused due to some short term errors in the validation algorithm or a short 

communication failure. Thus, a fault should be declared in the primary sensors only if the 

detected fault persists for a significant time duration. In this regard, a fault is declared in 

the gyroscope measurements only if the consistency of the gyro derived angular velocity 

with that derived from magnetometer is below the pre-set threshold for 80 % of the data 

within a time span of 30 s. In this regard, a moving average filter of 30 s is maintained, 

which counts the percentage of data during which the consistency is below the threshold. 

A red flag is raised only when the count reaches 80%. 

5.2.3 Accelerometer Validation 

The accelerometer is validated using only one inter-sensor equivalent, namely the user 

acceleration. The user acceleration obtained using the accelerometer is compared to that 

obtained using the GNSS and barometer.  

If the accelerometer is deemed valid, it is used in the navigation filter and further used to 

validate the barometer measurement. As with the gyroscope, an accelerometer is 

deemed to be faulty only if its consistency with other sensors falls below the pre-set 
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threshold for 80 % of the epochs during a time window of 30 s. If the accelerometer is 

deemed to be faulty, a red flag is raised to indicate that the solution is unreliable. However, 

in situations when the number of GNSS measurements is insufficient to compute user 

accelerations, faults occurring in the accelerometer cannot be identified. In such cases, 

a yellow flag is raised to indicate that the sensor could not be validated. This is common 

in indoor scenarios.  

5.2.4 Barometer Validation 

Finally, the validated accelerometer is used to test the barometer measurement. The user 

acceleration along the vertical direction obtained using the accelerometer is compared to 

that obtained from the barometer. If the barometer could not be validated, it is not used 

in the integration filter. 

5.2.5 Sensor Validation through Consistency Comparison 

The comparison of the inter-sensor equivalents and their quantization can be better 

understood through Figure 5-2. 

The consistencies between different sensors are computed through the comparison of 

inter-sensor equivalents. In order to quantize the consistencies, the inter-sensor 

equivalents observed or computed from each sensor are assumed to be drawn from 

normal distributions with corresponding means equal to the computed values of the inter-

sensor equivalents. The variances of the normal distributions can be obtained from the 

noise characteristics of the respective sensors after the application of necessary 

transformations. The consistencies between two sensors can then be expressed as the 

overlap between the two distributions related to the estimated inter-sensor equivalent 
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values. The overlap between the distributions can be calculated as a Bhattacharyya 

coefficient (BC) following the same procedure discussed in Section 4.2.  

The consistency parameters 1C , 2C , 3C  and 4C , in Figure 5-2, are all computed as 

Bhattacharyya coefficients. For instance, during accelerometer validation, the 

consistency parameters 3C  and 4C  are computed as follows: 
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where ,IMU Ua  and ,Baro Ua  are the user accelerations along the vertical direction obtained 

from accelerometer and barometer while ,IMU Uσ  and ,Baro Uσ  are the associated 

uncertainties. The parameter 4C  is however computed as an average of consistency 

values along the three orthogonal axes as  
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where ,LFIMUa  and GNSS,LFa  are the user accelerations along a particular local level frame  

(LF E, N or U; , , )LF E East N North U Up= = = =  obtained from accelerometer and GNSS 

while ,LFIMUσ  and GNSS,LFσ  are the associated uncertainties. 

 

Figure 5-2. Consistency Comparison between Sensors 

 

In order to mitigate the effect of noise that is translated from the sensor measurements to 

the inter-sensor equivalents, a moving average filter is used to smooth the inter-sensor 

equivalent values. The moving average filter is implemented using a Hanning window of 

length five seconds. The Hanning window has a maximum gain at the centre while the 
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side-lobes roll off at approximately 18 dB/octave. Such use of filtering, however, 

introduces latency at the output, thus imposing a limitation for real time output realization. 

It can be seen from Figure 5-2 for magnetometer and accelerometer validations, the two 

consistency values are combined through simple averaging. However, a more 

sophisticated weighing scheme could be used to combine these parameters. Once the 

consistency values are computed, the validity of the individual sensors is determined by 

comparing the consistency parameters to a certain threshold. The values of these 

thresholds are determined empirically and depend upon factors such as system 

configuration, sensor error characteristics and application requirements.   

The pre-filter sensor validation scheme proposed above is tested with both simulated as 

well as actual sensor faults present in the field data collected in various environments as 

presented in the following chapter.  
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Chapter Six: Data Collection and Assessment of the Proposed 

Algorithms  

 

Considering that the overall goal of this research work is to improve the reliability of multi-

sensor integrated navigation systems in harsh environments, the algorithms developed 

in Chapter 4 and Chapter 5 are now assessed by processing multiple field data collected 

in such harsh environments as urban areas and natural canyons. Due to the modularity 

of the proposed algorithms, the individual algorithm modules are assessed separately as 

well as in combinations. In the case of the pre-filter sensor validation scheme presented 

in Chapter 5, the fault scenarios may not occur in some sensors during field tests. Hence, 

the proposed validation scheme is mostly assessed by adding sensor errors in clean data 

sets. However, the algorithm module is also assessed by processing field data collected 

in some particular test environments in which actual faults occur in some of the sensors. 

6.1 Data Collection Setup 

In order to evaluate the performance of the proposed algorithms, both pedestrian and 

vehicular data were collected in GNSS signal challenged environments. The data 

collection platform, namely the NavCube (Morrison et al 2012) is the primary component 

in all the experiments. The other major component in the test setup is the NovAtel’s SPAN 

system which was used to provide the corresponding reference solutions. The SPAN 

system consists of a low noise, tactical grade LCI IMU from Northrop-Grumman Litef 

GMBH and a NovAtel SPAN-SE GNSS receiver.  
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The experimental setup for most of the field tests was of the form depicted by the block 

diagram in Figure 6.1.  

 

 

Figure 6-1. Block Diagram of Equipment Setup 

 

As shown in Figure 6-1, GNSS data collected using NovAtel’s high performance GPS-

702-GG antenna was split to feed the OEM628, or simply OEM6, receiver inside the 

NavCube and the SPAN-SE receiver. A small ANN-MS-0-005 active patch antenna from 

u-Blox was used to collect GNSS data for the high sensitivity u-blox 6T, or simply u-blox6, 

receiver inside the NavCube. The inertial data, magnetometer data and barometer data 

were collected using the ADIS16488 sensor unit, connected externally to the NavCube. 



 

113 

Figure 6-2 shows a typical equipment setup for collecting pedestrian data. It comprises a 

rigid aluminium backpack that houses the NavCube, external sensor pod, antennas, the 

reference system and the batteries to power the equipment. The total weight of the 

backpack along with the equipment carried over it is approximately 25 kg, most of the 

weight being that of the rigid pack itself and the GPS/INS unit needed for the reference 

trajectory. While the first external sensor pod (External Sensor Pod 1), seen in the figure, 

is mounted rigidly over the backpack, a second sensor pod (External Sensor Pod 2) is 

mounted on the ankle of the user. 

 

Figure 6-2. Pedestrian Data Collection Equipment Setup 
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A reference navigation solution was computed for each field test in order to evaluate the 

accuracies of the navigation solutions. Besides the SPAN system carried in the backpack, 

the reference system also comprised a static base station set at a pre-surveyed location. 

A NovAtel Propak V3 receiver was used for this purpose. The reference solution was 

computed using a tightly-coupled GNSS/INS solution, computed using NovAtel’s 

Waypoint Inertial Explorer post-processing software. The accuracy of the reference 

trajectory was better than 0.2 m (1 σ ) for most of the experiments.  

6.2 Test Environments 

In order to assess the performance of the proposed schemes, field data were collected in 

various environments. The data were mostly collected in areas with poor GNSS signal 

conditions. However, data was also collected in fault free environments in order to be able 

to analyse the performance of the proposed scheme with simulated errors added to 

specific sensor measurements at specific times. The field tests carried out in different 

environments during this research are summarized in the following subsections.  

6.2.1 Urban Canyon Data 

Urban canyons, created by the presence of tall buildings on either side of a street in dense 

urban areas, make navigation very challenging, especially for navigation systems with 

GNSS as a major component. The presence of multiple NLOS multipath signals with 

significant biases and limited visibility of the satellites degrades the quality and availability 

of the GNSS measurements. Hence, in order to assess the proposed schemes in GNSS 

challenged environments, both vehicular and pedestrian data were collected in downtown 
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Calgary, Canada. The test environment, shown in Figure 6-3, presented elevation mask 

angles varying from 15 to over 75 degrees.  

 

Figure 6-3. Pedestrian Data Collection in an Urban Canyon 

 

For all the data sets collected in the urban area, the equipment setup was similar to that 

shown in the block diagram of Figure 6-1. The base station for each of these tests was 

set at a pre-surveyed location at the University of Calgary, forming a distance of 

approximately 6 km. 

Three sets of data were collected in the urban canyon. With a motive of assessing the 

proposed schemes for both vehicular and pedestrian mode, a set of vehicular data was 
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collected in July 2011 followed by a set of pedestrian data in the same area collected in 

August 2012. Since the adopted magnetometer calibration technique requires the 

magnetometer to be rotated in different orientations during initialization, a further set of 

pedestrian data was collected in July 2013 by following the required calibration procedure 

in order to be able to use the magnetometer data.  

The above mentioned data sets will henceforth be referred to as Urban Canyon Vehicular 

Data, Urban Canyon Pedestrian Data-1 and Urban Canyon Pedestrian Data-2. 

6.2.2 Natural Canyon Data 

Unlike urban canyons where multipath is more specular, the multipath in natural canyons 

is generally more diffuse.  The variation in the type of multipath while still limiting geometry 

and availability provides a unique test of the algorithms presented herein. Using a similar 

equipment setup as the urban scenario, data was thus collected in two natural canyon 

environments. For both of these data sets, the base stations were set on a car parked 

close to the trail head. Hence, the baselines for these data sets are smaller than 2 km.  

The first set of natural canyon data was collected in February 2013 in King’s Creek 

Canyon, Kananaskis Country, Alberta. This data set will be referred to as Natural Canyon 

Pedestrian Data-1. The test environment, as shown in Figure 6-4, presented satellite 

mask angles varying between 50 and 80 degrees.  
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Figure 6-4. Pedestrian Data Collection in a Natural Canyon 

 

The reference trajectory obtained for this natural canyon data set is shown in Figure 6-5. 

The trajectory starts at Highway 40 and follows the creek until its end, 1,500 m later. The 

same snow path was easy to follow exactly on the way back. The fact that the same path 

was followed forth and back was also used to assess trajectory repeatability. However, 

despite following the same path in both directions, the error characteristics and signal 

availability do not remain the same due continuous changes in satellite geometry.  

A second set of natural canyon data was collected in July 2014 in Grotto Canyon, 

Canmore, Alberta. This data set will be referred to as Natural Canyon Pedestrian Data-2. 

The length of this canyon is approximately 850 m. Similar to the Urban Canyon Pedestrian 

Data-2, the magnetometer calibration procedure was followed during initialization. 
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Figure 6-5. Reference Trajectory (Natural Canyon Pedestrian Data-1) 

 

6.2.3 Open Sky Data 

Apart from the data collected in harsh environments, some tests were also carried out in 

fault free environments. The data collected in such environments are as equally important 

as the ones collected in harsh conditions. The availability of clean data makes it possible 

to investigate the effect of controlled input measurement alterations to the performance 

of the proposed algorithms. Faults are simulated in the individual sensor measurements 

and their effects on the proposed algorithms are studied.  

The open sky data were also collected using a similar setup to before. The test locations, 

however, were very close to the University of Calgary. Thus, a base station set at a pre-
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surveyed location at the university was used during the computation of the reference 

solution in each case.  

Three sets of data were collected in open sky conditions. One set of vehicular data was 

collected on September 2012 around the university in a fairly open sky condition. 

Similarly, a set of pedestrian data was also collected around the university in August 2012. 

Finally, one more set of pedestrian data was collected in July 2014, in Nose Hill Park, 

Calgary, which has completely open sky conditions. These three data sets will henceforth 

be referred to as Open Sky Vehicular Data, and Open Sky Pedestrian Data-1 and Open 

Sky Pedestrian Data-2. 

The data sets used for the assessment of the algorithms proposed in this dissertation are 

summarized in Table 6-1. 

Table 6-1. Summary of Field Tests 

Data Set Test Location Test Date 

Urban Canyon Vehicular Data Downtown Calgary July 2011 

Urban Canyon Pedestrian Data-1 Downtown Calgary August 2012 

Urban Canyon Pedestrian Data-2 Downtown Calgary July 2013 

Natural Canyon Pedestrian Data-1 King’s Creek Canyon February 2013 

Natural Canyon Pedestrian Data-2 Grotto Canyon July 2014 

Open Sky Vehicular Data University Area September 2012 

Open Sky Pedestrian Data-1 University Area August 2012 

Open Sky Pedestrian Data-2 Nose Hill Park July 2014 
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6.3 Assessment of GNSS Measurement Covariance Adaptive Scheme 

As discussed in Chapter 3, a standard tightly coupled GPS/INS filter with residual based 

FDE is considered as a benchmark against which the proposed algorithms are compared. 

The GNSS range and Doppler measurement errors in this filter are assumed to follow 

Gaussian distributions. This benchmark filter, implemented in a C++ software program 

(Bancroft 2010), is termed as the “Standard filter” in this dissertation. Similarly, the 

GPS/INS filter implemented with the covariance adaptive algorithm proposed in Section 

4.2 is referred to as the “Adaptive filter”. 

The Urban Canyon Pedestrian Data-1 is used to assess the performance of the proposed 

adaptive scheme. The subject walked along the streets in the downtown area carrying 

the equipment on a backpack as shown in Figure 6-3. Used for analysis are the GNSS 

data collected with the OEM6 receiver inside the NavCube, along with the inertial data 

collected using the external sensor pod placed beside the antenna on top of the backpack. 

The navigation system is implemented as a GPS/INS integrated system. The backpack 

was kept stationary at the beginning to obtain a rough estimate of gyroscope biases. 

Before evaluating the performance of the proposed scheme, the pseudorange 

measurements collected in the test environment are analyzed to assess the effect of 

multipath on the measurements and, consequently, on navigation solution. With the 

knowledge of true position (from the reference solution) and satellite coordinates (from 

ephemeris), true ranges were obtained. The pseudorange differences and true ranges 

thus obtained leave a composite of clock bias and errors. The clock bias was then 

estimated and removed. The pseudorange error computation is discussed in further detail 
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in Appendix A. The residual range errors, shown in Figure 6-6, mainly comprise multipath 

and may include small effects due to tropospheric and ionospheric modeling errors.    

 

Figure 6-6. Pseudorange Errors – OEM6 (Urban Canyon Pedestrian Data-1) 

 

It can be observed that the range errors are quite significant at many epochs, exceeding 

well over 100 m, thus indicating highly degraded GNSS signal conditions. The presence 

of NLOS multipath signals and signal fading can cause the receiver to generate such 

erroneous measurements through shift of the numerically controlled oscillators (NCO) 

and distortion of the correlation function. 

With the primary focus of the proposed covariance adaptive scheme being improvement 

in the reliability of the navigation solutions, the two solutions computed using the Standard 
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and the Adaptive filters are compared in terms of reliability in Figure 6-7. The reliability, 

as defined in Section 3.1, is determined by the estimated accuracy associated with the 

navigation solution. The reliability values are computed following the post processing of 

the data using the above mentioned two filtering algorithms along easting, northing and 

vertical directions in the local level frame. 

 

Figure 6-7. Reliability of Navigation Solution – OEM6+IMU (Urban Canyon 
Pedestrian Data-1) 

 

The reliability values shown in the above figure indicate that the consistency between the 

position solutions and the associated estimated accuracies is much higher in the case of 

the proposed adaptive filtering algorithm as compared to the standard approach. Such 

improvement in reliability occurred despite the fact that there were many epochs where 
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the numbers of valid GPS Doppler observations were less than four during which the a-

priori variance could not be adapted to fit the true GNSS measurement error 

characteristics. This means that the dynamic adaptation of the GNSS measurement 

covariance results into more realistic values of estimated accuracies, making the 

navigation solution more reliable. While the reliability is still not perfect in either of the 

approaches, the improvement is excellent. There was a 36 % improvement in easting and 

a 23 % improvement in northing, as shown in Figure 6-7. The improvement along the 

vertical direction was negligible.   

Similarly, the position accuracies of the two pedestrian navigation solutions are compared 

along the horizontal and vertical directions in Figure 6-8 and Figure 6-9.  

Figure 6-8. Horizontal Error – 
OEM6+IMU (Urban Canyon Data-1) 

Figure 6-9. Vertical Error – OEM6+IMU 
(Urban Canyon Data-1) 

 

The error values are obtained by comparing the navigation solutions to the reference 

solution obtained using the procedure described in Section 6.1. In accordance to the 
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pseudorange errors shown in Figure 6-6, the position errors are higher for both methods 

during the times when the GNSS measurement updates are corrupted by multipath. 

However, the maximum error along the horizontal direction is significantly reduced in the 

case of the proposed adaptive approach during the worst signal conditions. This can also 

be observed through the trajectories plotted for the two approaches along with the 

reference trajectory in Figure 6-10. 

 

Figure 6-10. Navigation Trajectories (Urban Canyon Pedestrian Data-1) 

 

Similarly, the proposed adaptive scheme is also assessed using a vehicular data 

collected in the same environment (Urban Canyon Vehicular Data). Again, the GNSS 

data was collected with the OEM6 receiver inside the NavCube. The inertial data in this 

case was collected using the ADIS16375 IMU inside the NavCube. The reliability values 
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computed for this data set, along the axes of local level frame, are shown in Figure 6-11.  

As with the previous data set, due to the lack of sufficient number of valid GPS 

measurements, the algorithm was not able to adapt the variance for many GPS epochs. 

Nonetheless, the proposed adaptive algorithm still increases the reliability by 21 % in 

easting, 7.3 % in northing and 2.5 % in the up direction. The RMS errors along the 

horizontal and vertical directions decreased by approximately 5 m and 1.5 m respectively. 

 

Figure 6-11. Reliability of Navigation Solution – OEM6+IMU (Urban Canyon 
Vehicular Data) 

 

The proposed adaptive technique can be utilized to its fullest benefit if the measurement 

quality is degraded but there are still enough valid GPS Doppler measurements to 

compute user acceleration and consequently the acceleration consistency. To assess the 
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performance of the algorithm during such conditions, the pedestrian data collected in an 

open sky condition around the University of Calgary (Open Sky Pedestrian Data-1) is 

used. 

At least seven GPS satellites were visible for the whole navigation test. During post 

processing, normally distributed range errors with a mean of 20 m and a standard 

deviation of 10 m were added to three satellite measurements for a period of 5 minutes. 

Similarly, randomly selected Doppler errors of values ranging from -5 Hz to 5 Hz (i.e. 

approx. -0.95 m/s to 0.95 m/s for GPS L1 signal) were also added to the same satellite 

measurements. 

The reliability of the navigation solution is shown in Figure 6-12. The adaptive approach 

significantly improved the reliability of the position solution along all axes. There has been 

a reliability improvement of 25.4 % in easting, 44.9 % in northing and 8.2 % in the up 

direction. Contrary to the previous scenarios, there were only a few epochs where the 

numbers of valid Doppler observations were insufficient to compute the user 

accelerations. Thus, the covariance could be adapted almost all the time to fit the true 

measurement error characteristics, which consequently led to an excellent reliability 

improvement. 
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Figure 6-12. Reliability of Navigation Solution – OEM6+IMU (Open Sky Pedestrian 
Data-1) 

 

In addition to improving the reliability, the proposed adaptive algorithm also improved the 

accuracy of the navigation solution along the horizontal direction as shown Figure 6-13. 

However, the algorithm often tends to over-bound the assumed GNSS error distribution 

during the times with good signal conditions. This occasionally results in slight 

degradation in the accuracy, as seen in the case of the vertical accuracy, shown in Figure 

6-14. This is acceptable given the significant reliability enhancement.  
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Figure 6-13. Horizontal Errors – 
OEM6+IMU (Open Sky Pedestrian 

Data-1) 

Figure 6-14. Vertical Errors – 
OEM6+IMU (Open Sky Pedestrian 

Data-1) 
 

The RMS error values computed for the position solutions obtained using the two filters, 

for the three data sets, are summarized in Table 6-2. 

Table 6-2. RMSE (Standard Vs Adaptive) 

 

RMSE (m) 

Standard Adaptive 

Horizontal Vertical Horizontal Vertical 

Urban Canyon Vehicular Data 14.8 21.0 11.2 18.4 

Urban Canyon Pedestrian Data-1 12.1 8.8 9.8 9.6 

Open Sky Pedestrian Data-1 2.6 3.3 2.4 4.8 

 

When it comes to navigating in areas like urban canyons, the GNSS measurements are 

not only corrupted by multipath but the visibility of satellites is also reduced. In such 
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environments, any rejection of GNSS measurements by the FDE will decrease the effect 

of GNSS updates in the integrated GNSS/INS filter. Moreover, this also leads to 

unavailability of the FDE scheme itself due to the lack of redundancy. Consequently, the 

unavailability of the FDE can degrade the reliability of the navigation solution. It is thus 

desirable to retain more measurements, albeit by choosing proper variances. The 

proposed scheme just does that and hence increases the availability of the GNSS 

measurements. The increase in the availability of range and Doppler measurements (after 

rejection of measurements by the FDE) on going from the standard to the adaptive 

approach is listed in Table 6-3. 

Table 6-3. Measurement Rejection by the FDE 

 

Percentage of Measurements Rejected 
(%) 

Standard Adaptive 

Range Doppler Range Doppler 

Urban Canyon Vehicular Data 0.12 8.32 0.05 6.7 

Urban Canyon Pedestrian Data-1 1.0 18.7 0.98 6.13 

Open Sky Pedestrian Data-1 ~0 18.04 0 5.17 

 

6.4 Assessment of the Use of t distribution for GNSS Measurement Errors 

Prior to the incorporation of the algorithm proposed in Section 4.1 in an integrated 

navigation system, the suitability of using a heavy tailed distribution is examined through 

an initial test carried out using only GNSS range and Doppler measurements. The GNSS 

data collected in pedestrian mode using the OEM6 receiver under fairly open sky 
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conditions (Open Sky Pedestrian Data-1) is used for the assessment. Simulated errors 

were added to three satellite measurements for nearly 70% of the data in order to analyze 

the performance of the filters in presence of known faults. The simulated errors on the 

three satellites consisted of uniformly distributed pseudorange ( ρ ) errors ranging from 10 

to 70 m and uniformly distributed Doppler ( ) errors ranging from -10 Hz to 10 Hz (±1.9 

m/s). The results obtained with the navigation filter implemented with the assumption of t 

distributed measurement errors are compared against the results obtained with the 

assumption of normally distributed (N ) measurement errors. The comparisons are done 

for three cases, namely i) measurements without simulated errors, ii) measurements with 

simulated pseudorange errors and iii) measurements with simulated pseudorange as well 

as Doppler errors. RMS errors as well as reliability were calculated in local coordinates 

as shown in Table 6-4. It can be seen that the filter with the t distribution for measurement 

errors are least affected by the faults. It is also observed that, for the case with no added 

errors, the results are analogous for the two filter types. In fact, for an open sky data 

similar to the one used in this particular test, GNSS measurement errors follow the normal 

distribution more closely than the t distribution. This is supported by the slightly but not 

significantly better horizontal accuracy as well as better reliability along the local axes in 

case of the filter that assumes normal distribution for the measurement errors. Hence the 

t distribution is preferable for such an application. 
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Table 6-4. RMSE and Reliability (Open Sky Pedestrian Data-1 with Simulated 
Errors) 

 
No errors 

Added 

Errors added 
on ρ  

Errors added 

on ρ  and φ�  

RMSE (m) 

N  
Horizontal 2.6 6.4 6.5 
Vertical 2.3 7.9 7.5 

 

t 
Horizontal 2.7 5.0 6.0 
Vertical 2.3 6.9 6.3 

 

Reliability (%) 

N  
East 93.4 73.0 68.4 
North 81.0 56.2 46.0 
Up 97.0 66.5 61.6 

 

t 
East 72.3 71.9 70.0 
North 80.0 60.3 73.4 
Up 69.0 55.7 62.1 

 

Taking the above result as an affirmation of the suitability of the t distribution for GNSS 

challenged environments, the algorithm proposed in Section 4.1 is incorporated in the 

GNSS/INS integrated system. The resultant algorithm module is assessed by analyzing 

the results obtained by processing the two pedestrian data sets collected in harsh 

environments, namely Urban Canyon Pedestrian Data-1 and Natural Canyon Pedestrian 

Data-1. 

The GPS/INS integrated navigation system with t distributed GNSS measurement errors 

is referred to as the ‘VB filter” for it uses the Variational Bayes technique in its realization 

(Webb & Copsey 2011). Moreover, when the algorithm module with t distributed GNSS 

measurement errors is combined with the covariance adaptive model of Section 4.2, the 

resulting module is termed as “VB Adaptive filter”. The following analyses in this section, 

thus, presents comparative assessment of three algorithms, namely (i) “Standard filter”, 
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(ii) “VB filter” and (iii) “VB Adaptive filter”. Furthermore, since carrier to noise ratio (C/No) 

based weighting has been found to be more robust in harsh GNSS signal conditions, the 

Sigma-ε variance model discussed by Wieser et al (2005) is used to scale the GNSS 

range and Doppler measurements in all three filters. 

A rough idea of the nature of measurement discrepancies in the urban canyon data 

(Urban Canyon Pedestrian Data-1) was developed through the assessment of 

pseudorange measurements in Figure 6-6. To further illustrate the nature of signal 

degradation, the carrier to noise ratios (C/No) of available GNSS measurements are 

plotted in Figure 6-15 along with the average of all the C/No values at each epoch plotted 

in dark green. It is observed that the C/No values are very low at 30 dB-Hz for many 

measurements in the middle section of the test duration. Such low values will result in 

higher measurement noise. This further highlights the limitations imposed by the test 

environment in terms of signal conditions. 
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Figure 6-15. C/No Values – OEM6 (Urban Canyon Pedestrian Data-1) 

 

The performances of the above mentioned three filters are first inter-compared by 

computing absolute values of horizontal and vertical errors. In order to confine the 

analysis to degraded environments, the errors are plotted only for the section of the data 

in which the GNSS conditions are very harsh and the errors are more severe. In this 

regard, the portions of the data, especially at the beginning and at the end, during which 

the user was static in a relatively open sky condition with many line of sight (LOS) GNSS 

measurements are omitted. Moreover, it is also known that the error values can grow very 

large corresponding to the times for which the satellite geometry is very poor as indicated 
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by the dilution of precision. Thus, to segregate the effect of biased and diffused 

measurements from that of poor satellite geometry, the error statistics are computed only 

for the times in which the position dilution of precision (PDOP) values are less than 10. 

The PDOP values, plotted alongside the errors in Figure 6-16 and Figure 6-17, also gives 

an idea of the effect of masking in the urban environment. 

 

Figure 6-16. Horizontal Errors (VB and VB Adaptive) – OEM6+IMU (Urban Canyon 
Pedestrian Data-1) 
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Figure 6-17. Vertical Errors (VB and VB Adaptive) – OEM6+IMU (Urban Canyon 
Pedestrian Data-1) 

 

The above figures show that the errors along both horizontal and vertical directions are 

smaller in the case of VB filters, thus indicating the robustness of using the t distribution 

in environments with multipath laden GNSS measurements. The maximum horizontal 

error decreases by a factor of about 2.5 when using VB and VB Adaptive as compared to 

the Standard filter. The accuracy seems to slightly degrade in the adaptive case. This is 

most likely due to subtle over-bounding of the assumed GNSS error distribution. Such 

over-bounding decreases the weight of the GNSS measurements. This de-weighting 

often leads to the dilution of unaffected measurements, thus degrading accuracy. 
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However, as observed in the previous section, the adaptive module very significantly 

improves the reliability of the navigation solution.  

The above figures also include error plots for the GPS only solution which is realized 

using an extended Kalman filter (EKF) that assumes a normal distribution for range and 

Doppler measurements. A standard residual based FDE is also implemented to detect 

and eliminate aberrant measurements. The error plots for the GPS only solution gives an 

idea about the GNSS signal conditions in the test environment. It is observed from the 

error plots that there are a few instances where the errors are in the range of 200 m, thus 

leading to much higher RMSE as compared to the integrated GPS/INS solutions.  

The algorithm modules are further compared in terms of another critical performance 

parameter, namely reliability. Figure 6-18 shows the average reliability values along the 

axes of the local plane for the three filters discussed above. It is observed that the 

reliability values are lower for the Standard filter. This is a common problem with standard 

Kalman filters, especially in integrated systems like GPS/INS where the estimated 

accuracy of the navigation solution is often optimistic. However, the reliability values are 

found to improve with the VB filter and even further with the VB Adaptive filter, thus 

mitigating the limitations of standard Kalman filters. These reliability results further 

indicate that, among the three filters, the VB Adaptive filter best characterizes the true 

GNSS noise characteristics. 
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Figure 6-18. Reliability of Navigation Solution – OEM6+IMU (Urban Canyon 
Pedestrian Data-1) 

 

As discussed in the previous section, availability of GNSS measurements is another key 

parameter to be assessed in such signal deprived environment. Since the t distribution 

inherently tends to retain more measurements, the availability of GNSS measurements 

was found to increase when using the t distribution. The percentage of range 

measurements rejected by the FDE decreased from 1.0 % to 0.5 % when going from the 

Standard filter to the VB Adaptive filter. The standard approach identified 18.7 % of the 

Doppler measurements as faults and subsequently rejected them. This indicates that the 

Doppler measurements had an optimistic variance associated with the observation in 

comparison to the internal solution.  This statistic pointedly shows how the standard 

method is insufficient since the system is incapable of handling the increased variance in 
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the degraded environment.  The VB filter alternatively rejected only 0.3 % of the Doppler 

measurements.  

Additionally, if a personal navigation system is also required to provide GNSS integrity 

parameters such as horizontal and vertical integrity limits, then a certain minimum 

requirement in terms of GNSS measurement availability must be met. When using only 

GPS, as in this work, a minimum of 5 GPS measurements must be available. However, 

in signal challenged environments, the available GNSS measurements are often less than 

5 due to signal masking. Moreover, improper assumption of measurement noise statistics 

can also add to this unavailability. The availability of the integrity information for the three 

filters discussed above is tabulated in Table 6-5. Since there are only a few epochs with 

PDOP higher than 10, the exclusion of those epochs did not change the availability values 

by more than 0.1 %. Thus the tabulated availability values were computed without 

discarding those epochs. The tabulated values indicate a slight improvement in terms of 

availability of GNSS integrity information with the VB filters as compared to the Standard 

filter. However, for users navigating in GNSS challenged environments for a prolonged 

duration of time, such improvement could be magnified. 

Table 6-5. Availability of GNSS Integrity Information – OEM6 (Urban Canyon 
Pedestrian Data-1) 

 Standard VB 
VB 

Adaptive 
Availability Percentage of Integrity 
Information 

78.3 80.1 79.5 
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The proposed algorithm modules are further assessed using the pedestrian data collected 

in a natural canyon (Natural Canyon Pedestrian Data-1). The GNSS data collected using 

two different receivers, namely an OEM6 and u-blox6 are used for the analysis. The use 

of data from different GNSS receivers further validates the performance analysis of the 

proposed algorithms. Similarly, the IMU data collected using the external sensor pod 

(ADIS16488), mounted on top of the backpack, is used. During the analysis, the GNSS 

data collected using the two receivers are integrated separately with the IMU in order to 

obtain the integrated solutions for the three filters, namely Standard, VB and VB Adaptive.  

Firstly, the range errors were computed using a similar technique as that for the urban 

data set using the GNSS data from the OEM6 receiver. These range errors, plotted in 

Figure 6-19, show that a significant portion of the data is affected by biased 

measurements, which at some epochs go as high as nearly 120 m.  

Figure 6-19. Pseudorange Errors – 
OEM6 (Natural Canyon Pedestrian 

Data-1) 

Figure 6-20. CDF of Pseudorange 
Errors – OEM6 (Natural Canyon 

Pedestrian Data-1) 
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Moreover, a cumulative density function (CDF) of the absolute values of the range errors 

is also plotted in Figure 6-20 along with the CDF of absolute values of the normal fit to 

the range errors. It can be observed from the figure that there are not only errors with 

significant magnitude but there is also a high non-conformity between the two CDFs. This 

indicates that assuming a normal distribution for such errors is likely to lead to a sub-

optimal navigation solution. The deviation of the range error distribution from the normal 

distribution is obvious from the normal probability plot of the range errors shown in Figure 

6-21. The deviation from the straight line indicates the departure from the normal 

distribution.   

 

Figure 6-21. Normal Probability Plot of Range Errors – OEM6 (Natural Canyon 

Pedestrian Data-1) 
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The nature of signal degradation in the natural canyon is further illustrated through the 

carrier to noise ratios of the GNSS signal collected using the OEM6 receiver, as plotted 

in Figure 6-22. 

 

Figure 6-22. C/No Values – OEM6 (Natural Canyon Pedestrian Data-1) 
 

With a broad idea about the nature of signal degradation in the test environment, the 

integrated solutions for the three filters (Standard, VS and VB Adaptive), obtained 

separately using the GNSS data from u-blox6 and OEM6, are compared in terms of the 

position accuracies. The horizontal and vertical errors obtained using GNSS data from 

the u-blox6 receiver integrated with the IMU data are shown in Figure 6-23 and Figure 6-
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24. These errors are computed following the same procedure as that for the previous data 

set, neglecting the static LOS data at the two ends of the canyon. Moreover, the data 

corresponding to the time epochs with very high PDOP values (PDOP >10) are also 

discarded during the position error computation. As before, the error values obtained for 

the GPS only solutions and the PDOP values are also included. 

 

Figure 6-23. Horizontal Errors – ublox6+IMU (Natural Canyon Pedestrian Data-1) 
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Figure 6-24. Vertical Errors – ublox6+IMU (Natural Canyon Pedestrian Data-1) 
 

A considerable improvement in accuracy can be observed when using the proposed 

schemes as compared to the Standard filter. The maximum errors are also found to 

decrease significantly with the proposed schemes. The reliability values for the same data 

set, as depicted in Figure 6-25, again shows that there is an improvement in the reliability 

of the navigation solution with the proposed VB Adaptive filter. 



 

144 

 

Figure 6-25. Reliability of Navigation Solution – ublox6+IMU (Natural Canyon 
Pedestrian Data-1) 

 

The position errors and reliability values are re-calculated by processing the GNSS data 

collected using the OEM6 receiver tightly integrated with the IMU data. The results 

obtained are tabulated in Table 6-6. 

Table 6-6. RMSE and Reliability – OEM6+IMU (Natural Canyon Pedestrian Data-1) 

 

RMS Errors (m) 
 

Reliability (%) 

Horizontal Vertical Easting Northing Height 

Standard 12.2 12.1 32.7 32.5 36.7 

VB 16.4 12.1 56.7 50.3 38.9 

VB Adaptive 12.0 11.4 57.7 50.9 42.4 
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The above table indicates a slight improvement in accuracy when using the proposed 

scheme. However, there is a considerable improvement in the reliability of the navigation 

solution. This further validates the claim that the proposed algorithm, which adapts the 

covariance of the t distributed GNSS measurement errors, characterizes the GNSS 

measurement errors more closely to its true behaviour.  

Finally, the availability of integrity information was also computed as before. As with the 

previous data set, the availability of integrity was again found to improve when using the 

proposed scheme. The improvement in availability is summarized in Table 6-7 for the 

GPS/INS solutions obtained using both OEM6 and u-blox6 receivers. 

Table 6-7. Availability of GNSS Integrity Information (Natural Canyon Pedestrian 
Data-1) 

 Standard VB 
VB  

Adaptive 

Availability of Integrity 
Information (%) 

OEM6 71.9 72.0 71.9 

u-blox6 65 74.5 74.5 

 

6.5 Assessment of Pre-Filter Sensor Validation Scheme 

The pre-filter sensor validation scheme, presented in Chapter 5, is assessed through the 

simulation of faults in various sensor measurements. The following sub-sections evaluate 

the performance of the proposed algorithm module in the presence of faults in individual 

sensor measurements.  
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6.5.1 Simulation of Faults in Accelerometers 

As discussed in Section 3.2.3, MEMS inertial sensors can potentially suffer from faults 

like stiction which can cause the IMU to output spurious measurements. The performance 

of PNDs that use such sensors can severely degrade if the outliers in the inertial sensor 

measurements go undetected. Hence, to assess the capability of the pre-filter sensor 

validation scheme in detecting such faults, a spurious effect is simulated in the 

accelerometer measurements in the open sky data collected at Nose Hill Park (Open Sky 

Pedestrian Data-2). The faults are simulated through addition of a constant acceleration 

of 0.2 m/s2 in all axes. Such faults are simulated in the accelerometer measurements for 

five minutes, occurring between the 10th and the 15th minute, as shown in the vertical 

acceleration plot in Figure 6-26. 
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Figure 6-26. User Acceleration along Vertical Direction (Open Sky Pedestrian 
Data-2) 

 

Pedestrian navigation is typically characterized by a high order of short term dynamics. 

In the case of a strap-down INS configuration realized for such high dynamic applications, 

even a small error in attitude (especially roll and pitch) can result in significant errors in 

the computation of user acceleration, due to the infiltration of the gravity component. This 

often induce large spikes in the vertical acceleration of the form observed in the above 

figure that occur even during the times when no fault is simulated. The presence of such 

spikes makes the acceleration comparison more challenging.  

The faults in the accelerometer measurements has to be detected by the acceleration 

validation block in Figure 5-1. This is done through the computation of consistencies 
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between the accelerations obtained using the IMU with those obtained using the 

barometer and GPS. The consistency values, computed as Bhattacharyya coefficients 

(which assume values between 0 and 1, 1 being the highest consistency) using equation 

4-6, are plotted as a function of time in Figure 6-27 and Figure 6-28. It is observed that, 

during the period of simulated faults, the accelerometer measurements are highly 

inconsistent with the barometer and GPS measurements in terms of the observed inter-

sensor equivalent, namely the user acceleration. As a result, the combined consistency 

values in Figure 6-29 are also consistently below the threshold during the occurrence of 

accelerometer faults. However, as discussed in Chapter 5, a careful approach is adopted 

before declaring a fault in the key sensors, namely accelerometers and gyroscopes. Thus, 

unlike the case with other sensors like barometers and magnetometers, the 

accelerometer measurements are not immediately deemed invalid when the combined 

consistency value is below the threshold. The accelerometer is deemed to be generating 

spurious measurements only when the combined consistency values are below the 

threshold for at least 80 percent of the epochs during a time window of 30 second.  A 

moving average filter with a 30 s window in the accelerometer validation block keeps track 

of the percentage of epochs at which faults were detected in the accelerometers (i.e. 

percentage of epochs when the combined consistencies were below the threshold).  

Figure 6-30 shows the output of this moving average filter as a function of time. It is 

observed from this figure that soon after the simulated faults are introduced, starting at 

the 10th minute, the percentage rises above 80. It is at this point that the accelerometer 

is deemed to be outputting faulty measurements and a red alert flag is generated. 

Moreover, it is also observed that the combined consistency values are often below the 
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threshold even at times when no fault was simulated. This mostly correspond to the times 

when there are spikes in the user acceleration values obtained from the IMU, potentially 

causing the validation scheme to wrongly declare fault in the accelerometers. However, 

the relaxed approach used while declaring fault in the accelerometer avoids the possible 

false alarm that can result due to such short term spikes.  

Figure 6-27. Acceleration Consistency 
between IMU and Barometer – With 
Simulated Faults in Accelerometer 

(Open Sky Pedestrian Data-2) 

Figure 6-28. Acceleration Consistency 
between IMU and GPS – With 

Simulated Faults in Accelerometer 
(Open Sky Pedestrian Data-2) 
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Figure 6-29. Combined Consistency 
for Validity of Accelerometer – With 
Simulated Faults in Accelerometer 

(Open Sky Pedestrian Data-2) 

Figure 6-30. Percentage of Epochs 
with Combined  Consistencies below 
Threshold during 30s Window – With 

Simulated Faults in Accelerometer 
(Open Sky Pedestrian Data-2) 

 

6.5.2 Simulation of Faults in Barometer 

The analysis of the barometer data collected during windy conditions, as presented in 

Section 3.2.2, showed that the faults introduced in the barometer measurements due to 

the wind results in both bias and noise in the barometer derived altitude. Hence, in order 

to assess the sensor validation scheme during similar conditions, faults of similar nature 

are simulated in the clean barometer data, collected in an open area with low wind 

conditions (Open Sky Pedestrian Data-2). The faults simulated in the barometer 

measurements can be modeled as 

2

, ( )Sim Baro Windt at bt nε = + + Pa 6-1 
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where 2at bt+  represents the time varying bias component defined by the constant terms 

a  and b , and [ )0,1mint ∈ . Windn  is the random component, namely  normally distributed 

barometric noise with a similar variance as obtained for the windy data of Section 3.2.2. 

The minute long simulated error, represented by Equation 6-1, is repeated for fifteen 

minutes, from the 10th minute to 25th minute. The resulting errors in altitude can be 

observed from the barometer derived altitude plot in Figure 6-31 and its zoomed version 

in Figure 6-32. 

Figure 6-31. Barometer Derived 
Altitude – With Simulated Faults in 

Barometer (Open Sky Pedestrian Data-
2) 

Figure 6-32. Zoomed Altitude Plot – 
With Simulated Faults in Barometer 

(Open Sky Pedestrian Data-2) 

 

As with the accelerometers, the simulated barometer faults also have to initially go 

through the accelerometer validation block. Although the simulated barometer faults are 

quite severe in nature, they should not affect the validity of the accelerometers. To 

investigate the effect of such faults, the acceleration consistencies are computed as 
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before and are plotted in Figure 6-33 through Figure 6-35. During the presence of 

simulated faults in the barometer, the consistencies between user acceleration along the 

vertical direction obtained from the IMU and that obtained from the barometer, as shown 

in Figure 6-33, are very poor and often below the threshold value. The consistency 

between the user accelerations obtained using the IMU and the GPS, however, are not 

affected. The combined consistencies, shown in Figure 6-35, indicate the presence of 

many epochs during which the consistency values are below threshold. This is due to the 

severity of the simulated barometer errors. However, these faults are not enough to cause 

a false alarm in the acceleration validation as illustrated by the percentage of 

accelerometer faults shown in Figure 6-36.  

Figure 6-33. Acceleration Consistency 
between IMU and Barometer – With 

Simulated Faults in Barometer (Open 
Sky Pedestrian Data-2) 

Figure 6-34. Acceleration Consistency 
between IMU and GPS – With 

Simulated Faults in Accelerometer 
(Open Sky Pedestrian Data-2) 
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Figure 6-35. Combined Consistency 
for Validity of Accelerometer – With 

Simulated Faults in Barometer (Open 
Sky Pedestrian Data-2) 

Figure 6-36. Percentage of Epochs 
with Combined  Consistencies below 
Threshold during 30s Window –  With 
Simulated Faults in Barometer (Open 

Sky Pedestrian Data-2) 
 

After passing through the accelerometer validation block, the barometer data is then 

passed to the barometer validation block before it could be used in the integration filter. 

The barometer validation block prevents the faulty barometer measurements from 

entering the integration filter. The effectiveness of such validation scheme is examined 

by computing the accuracy of the navigation solution in presence of the above simulated 

barometer measurement errors. Two integrated solutions are computed using GPS, IMU 

and barometer, namely one with the pre-filter sensor validation scheme and the other 

without the validation scheme. The position errors of the two navigation solutions are 

plotted along the horizontal and vertical directions in Figure 6-37 and Figure 6-38. 

Moreover, the RMS errors are also tabulated in Table 6-8.   
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Figure 6-37. Horizontal Errors – 
OEM6+IMU+Baro (Open Sky 

Pedestrian Data-2) 

Figure 6-38. Vertical Errors – 
OEM6+IMU+Baro (Open Sky 

Pedestrian Data-2) 
  

Table 6-8. RMSE and Maximum Errors – OEM6+IMU+Baro (Open Sky Pedestrian 
Data-2) 

 RMS Errors (m) 
RMS Errors – 

Simulation Period 
(m) 

Maximum Error 
(m) 

 Horizontal Vertical Horizontal Vertical Horizontal Vertical 

Without 
Validation 

3.6 12.8 3.3 18.6 6.1 44.2 

With 
Validation 

3.6 10.6 3.3 12.4 5.6 17.5 

 

From the above error plots it is observed that, in the absence of the pre-filter sensor 

validation scheme, the position solution becomes highly erroneous. The above table 

shows the RMS values of the position errors computed for the whole trajectory as well as 

only at the times when the barometer errors are simulated. Due to the nature of the errors, 

however, despite having considerable fluctuations in the position solution, the RMS value 
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of the errors are not very different as compared to the solution where the sensor validation 

scheme was included. Nonetheless, as shown in the above table, the use of sensor 

validation scheme significantly (from 44 to 18 m) reduces the maximum error along the 

vertical direction by preventing the infiltration of simulated barometer faults into the 

integration filter. From the above analysis, one can conclude that in the case of a 

sustained wind, the position solution can deviate significantly if the pre-filter sensor 

validation scheme is not used. This highlights the importance of using such sensor 

validation scheme in personal navigation devices. 

As indicated by the above results, the barometer validation scheme is very effective in 

detecting the faults arising in the barometer due to wind or short term pressure jumps 

associated with the user dynamics. However, in the case of low frequency barometric 

errors arising due to pressure variations over a longer duration of time, the proposed 

scheme will fail to detect the error as the rate of change in barometric pressure derived 

altitude due to such variation is negligible. This could potentially lead to a significant bias 

in height without being detected by the sensor validation scheme should a system be 

used continuously for long periods of time without differential barometric aiding. 

6.5.3 Simulation of Faults in Magnetometer 

Similar to the above sub-sections, faults are simulated in the magnetometer 

measurements in order to assess the performance of the magnetometer validation block 

of Figure 5-1. Normally distributed random errors with a standard deviation of 0.03 gauss 

are added to the magnetometer measurements for a period of five minutes, from the 10th 
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minute to the 15th minute. The simulated errors are on par with the auxiliary magnetic 

fields arising from typical magnetic perturbation sources in urban environments. 

The sensor validation scheme, proposed in Chapter 5, validates the magnetometer 

measurements through the comparison of two inter-sensor equivalents, namely the 

angular velocity and the magnetic field strength. Figure 6-39 shows the angular velocities 

along the x-axis, obtained using the gyroscope as well as those derived from the 

magnetometer measurements. The zoomed plot in Figure 6-40 shows that the two 

angular velocities are in close agreement with each other. However, during the times 

when errors are simulated in the magnetometer measurements, the consistency of the 

two angular velocities degrades. This is shown by the angular velocity plot in Figure 6-

41, which is zoomed during the period when faults are simulated. 
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Figure 6-39. Angular Velocities along X-axis – With Simulated Magnetometer Error 
(Open Sky Pedestrian Data-2) 
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Figure 6-40. Angular Velocities along 
X-axis – Zoomed at Times Without 

Simulated Errors 

Figure 6-41. Angular Velocities along 
X-axis – Zoomed at Times With 

Simulated Errors 
 

Throughout the duration of the simulated magnetometer faults, the magnetometer 

measurements were found to be highly inconsistent with both reference geomagnetic field 

as well as the gyroscopes, when compared in terms of the relevant inter-sensor 

equivalents. The combined consistency values, shown in Figure 6-42, indicate many 

epochs during which the consistencies are below the threshold, thus correctly leading to 

the rejection of faulty magnetometer measurements.   
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Figure 6-42. Combined Consistency for Validity of Magnetometer – With 
Simulated Faults in Magnetometer (Open Sky Pedestrian Data-2) 

 

For the above data set, despite the simulation of faults in the magnetometer, due to very 

good GPS signal conditions, the position solution did not degrade even without the use 

of the sensor validation scheme. This, however, will be very different in scenarios where 

GPS is degraded. Hence, to analyze the effect of such magnetometer faults on the 

navigation solution during harsh GPS conditions and to assess the capability of the 

sensor validation scheme to improve the performance during such scenarios, 

magnetometer faults are simulated in a pedestrian data set collected in a natural canyon 
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environment (Natural Canyon Pedestrian Data-2). A natural canyon environment 

represents a scenario where a navigation system can get high benefits from using the 

magnetometer. The heading updates from the magnetometer can be very useful on 

improving the performance of the navigation system in such scenarios with degraded 

GPS conditions. Moreover, unlike urban environments, natural canyons or dense forests 

do not have the problem of magnetic perturbations. Thus, for the assessment of the 

sensor validation scheme in such scenarios, magnetic faults of the nature similar to the 

one simulated for the previous data set is simulated again. The five minute long faults, 

however, are added to the data in three instances starting from the 10th, 25th and the 40th 

minutes.  

The external sensor pod used for this test was mounted on the ankle of the user. With 

such foot-mounted IMU, the filtering algorithm is also implemented to incorporate zero-

velocity updates, as discussed in Section 2.7.5.3. The navigation algorithm using zero-

velocity updates is capable of providing a navigation solution with a reasonable accuracy 

for much longer durations of time as compared to the navigation algorithm that does not 

incorporate such velocity updates. 

The performance of the sensor validation scheme used in the above described scenario 

is assessed by computing the position errors along horizontal and vertical directions as 

shown in Figure 6-43 and Figure 6-44. The errors are plotted for two cases, one with the 

sensor validation scheme and the other without its use.  
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Figure 6-43. Horizontal Errors – With 
Simulated Magnetometer Errors 

(Natural Canyon Pedestrian Data-2) 

Figure 6-44. Vertical Errors – With 
Simulated Magnetometer Errors 

(Natural Canyon Pedestrian Data-2) 
 

The RMS errors and the maximum error values in the above plots are summarized in 

Table 6-9. The error values are found to be reduced when using the pre-filter sensor 

validation scheme.  The maximum horizontal error in particular is reduced by 50% from 

138 to 69 m. 

Table 6-9. RMSE and Maximum Errors (Natural Canyon Pedestrian Data-2) 

 

RMSE  
(m) 

Maximum Error  
(m) 

Horizontal Vertical Horizontal Vertical 

Without Sensor Validation 19.2 10.8 138 30 

With Sensor Validation 13.9 9.5 69 20 
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6.5.4 Assessment in the Presence of Magnetic Perturbations 

The effectiveness of the proposed pre-filter sensor validation scheme is further assessed 

by processing and analyzing a pedestrian data set collected in an urban area (Urban 

Canyon Pedestrian Data-2), often characterized by the presence of numerous magnetic 

perturbing sources.  

Urban areas, such as the ones chosen as the test locations during this work, offer harsh 

GNSS conditions. Thus, aiding the navigation system with measurements from any other 

sensors could be very useful in improving the performance of the navigation solution. For 

instance, the heading update from the magnetometer can significantly reduce the errors 

during poor GNSS conditions. However, an urban area also offers equally harsh 

conditions for magnetometer measurements due to the abundance of perturbing sources. 

The interference from these perturbing sources often results in high noise and short term 

biases in the magnetic field measurement, as depicted in Figure 3-2. 

The pre-filter sensor validation scheme must be effective enough to incorporate good 

magnetic measurements and discard faulty ones. In this regard, the effectiveness of 

magnetometer validation was examined by computing position errors horizontally and 

vertically. 

Figure 6-45 and Figure 6-46 show the horizontal and vertical errors plotted for three 

cases: 

1. GPS/IMU integrated solution  

2. GPS/IMU and magnetometer integrated solution with no pre-filter sensor validation 

scheme 
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3. GPS/IMU and magnetometer integrated solution with pre-filter sensor validation 

scheme 

Table 6-10 summarizes the root mean square errors (RMSE) and the maximum error 

values for the three cases. It is observed that the RMSE and the maximum error values 

are actually higher, along both horizontal and vertical directions, in the case of the 

integrated solution that uses magnetometer without the validation scheme as compared 

to the integrated solution that uses only GPS and IMU. Thus, the magnetic heading 

update without the validation of magnetometer data proved to have an adverse effect on 

the navigation solution. However, the inclusion of sensor validation scheme prevented 

the faulty magnetometer measurements from being used in the integration filter. 

Consequently, the heading updates with validated magnetometer measurements resulted 

in better performance. Specifically, both the RMSE and maximum errors along the 

horizontal direction are reduced by considerable amounts as compared to the case 

without magnetometer aiding. The improvement along the vertical direction is however 

very small. This is expected as heading updates affect only the horizontal coordinates. 
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Figure 6-45. Horizontal Errors – OEM6+IMU+Mag (Urban Canyon Pedestrian Data-
2) 



 

165 

 

Figure 6-46. Vertical Errors – OEM6+IMU+Mag (Urban Canyon Pedestrian Data-2) 

 

Table 6-10. RMSE and Maximum Errors (Urban Canyon Pedestrian Data-2) 

 

RMSE  
(m) 

Maximum Errors 
(m) 

Horizontal Vertical Horizontal Vertical 

GPS/IMU 14.9 22 216 134 

GPS/IMU/Mag –  
Without Sensor Validation 

15.6 24 311 157 

GPS/IMU/Mag –  
With Sensor Validation 

9.9 21 130 132 
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Furthermore, the CDF plots of the above results, plotted in Figure 6-47 and Figure 6-48, 

gives more insight to the performance of the proposed method. These plots depict that 

the proposed method is superior especially in addressing the gross errors that occur for 

approximately 10 % to 30 % of the data. The CDF of the horizontal errors, in Figure 6-47, 

shows the integrate filter that uses heading updates without the fault detection scheme 

severely deteriorates for the last 30 % of the data. However, on including the FDE these 

gross errors are significantly reduced.  

 

Figure 6-47. CDF of Horizontal Errors – OEM6+IMU+Mag (Urban Canyon 
Pedestrian Data-2) 
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Figure 6-48. CDF of Vertical Errors – OEM6+IMU+Mag (Urban Canyon Pedestrian 
Data-2) 

 

6.6 Assessment of Complete Filtering Algorithm 

Finally, the filtering algorithm that includes all the proposed algorithm modules is 

assessed for the complete personal navigation system using a pedestrian data collected 

in an urban canyon environment (Urban Canyon Pedestrian Data-2). As mentioned 

before, the complete personal navigation system developed during this work includes a 

GPS receiver, a barometer with accelerometer, gyroscope and magnetometer triads. The 

navigation filters to be inter-compared are termed “Standard filter” and “Proposed filter”. 

These filtering algorithms are similar to the “Standard filter” and “VB Adaptive filter” 
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described in Section 6.4, but include additional data from barometer and magnetometers. 

Moreover, the proposed filter also incorporates the pre-filter sensor validation scheme 

presented in Chapter 5. The accuracies of the navigation solutions obtained using the two 

filters are shown in Figure 6-49 and Figure 6-50. The RMS values of the errors, along 

with the maximum error values, are given in Table 6-11. 

 

Figure 6-49. Horizontal Errors - Complete System (Urban Canyon Pedestrian Data-
2) 
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Figure 6-50. Vertical Errors - Complete System (Urban Canyon Pedestrian Data-2) 

 

Table 6-11. RMSE and Maximum Errors (Urban Canyon Pedestrian Data-2) 

 

RMSE  
(m) 

Maximum Errors  
(m) 

Horizontal Vertical Horizontal Vertical 

Standard 14.3 8.2 291 15.6 

Proposed 13.9 5.7 86 12.1 

 

From the above figures and the table, it is observed that the errors are reduced both 

horizontally as well as vertically when using the proposed scheme. Specifically, the 

proposed scheme is seen to be more robust against unmodeled sensor faults that can 
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cause the navigation solution to deviate significantly from the true trajectory. This is 

indicated by the high values of maximum errors in the case of the standard filter, which 

when using the proposed filter decreases significantly.  

Moreover, as with the previous data sets and the analyses presented in the previous 

sections, the algorithm modules within the proposed filter is found to make the navigation 

solution more reliable as compared to that obtained from the standard filter. This is 

observed from the reliability values obtained for the two filters as plotted in Figure 6-51. 

 

Figure 6-51. Reliability of Navigation Solution – Complete System (Urban Canyon 
Pedestrian Data-2) 
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It is observed that the inclusion of barometer in the navigation filter makes the vertical 

solution more optimistic. This is reflected by the lower reliability values for both the filters, 

as seen in the above figure. Nonetheless, the improvement on using the proposed 

algorithms is still significant. 
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Chapter Seven: Conclusions and Recommendations  

This research investigated various methods for improving the reliability of a personal 

navigation system that use multiple sensors. Different algorithm modules were proposed 

to mitigate the effect of faults occurring in any of the sensors in use on the performance 

of the navigation system, especially the reliability of the navigation solution. The proposed 

algorithms were thus assessed for multiple scenarios where faults occur in the sensor 

measurements. This final chapter draws conclusions from these investigations and 

provides some recommendations as to what can be done further with regard to improving 

the reliability of personal navigation systems. 

7.1 Conclusions 

When navigating in environments with degraded GNSS signal conditions, personal 

navigation devices, which may use various sensors along with GNSS, often result in 

highly erroneous and unreliable navigation solutions. Moreover, in navigation systems 

that are realized as multi-sensor integrated systems, the navigation solution can also 

degrade due to faults occurring in other sensors besides GNSS. Hence it is necessary to 

identify and remove these faults. In this regard, the research presented in this thesis can 

be considered to be composed of two parts. The first part presented novel methods to 

improve the reliability of personal navigation systems in areas where GNSS signals are 

degraded. Similarly, the second part developed a sensor validation architecture to detect 

and remove faults in other sensors before they are used to generate navigation solution 

in the integration filter. Thus, based on the theoretical development and analyses based 
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on actual tests conducted in diverse environments as presented in the previous chapters, 

the following conclusions are deduced: 

1. The GNSS measurement covariance adaptive scheme proposed in Chapter 4 

significantly improved the reliability of the navigation solution when compared to 

the standard approach defined in the thesis. The reliability values, computed along 

the three mutually perpendicular axes of the local level frame, were found to 

improve substantially for both vehicular and pedestrian data sets collected in urban 

canyons. On average, single-axis reliability was found to increase by 

approximately 15 % when using the proposed covariance adaptive scheme.   

2. The covariance adaptive scheme was also found to be more robust than the 

standard approach in the sense that the maximum errors occurring during 

extremely harsh signal conditions were significantly reduced. The accuracy of the 

navigation solution was also found to improve. 

3. Adaptation of the GNSS measurement covariance also mitigated unnecessary 

measurement rejections due to improper characterization of GNSS measurement 

noise. This led to an increase in the availability of GNSS measurements, which 

could also be retained by over-bounding their errors. However, mere over-

bounding through the adoption of higher covariance values can lead to poor 

accuracy. Although the algorithm slightly over-bounded the assumed GNSS error 

distribution during good signal conditions, the fact that the overall accuracy did not 

degrade and instead became better, proves the validity of the proposed covariance 

adaptation method.  
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4. One of the limitations of the proposed covariance adaptive algorithm is that a 

minimum number of Doppler measurements is required to compute the user 

acceleration for the covariance adaptation. This condition was not always met at 

the test locations and, as a result, the covariance could not be adapted all the time. 

However, the benefit of the proposed scheme was magnified when assessing the 

scheme in a simulated environment with several simultaneously degraded satellite 

signals but still having a sufficient number of Doppler measurements to compute 

user acceleration. The average reliability in this case improved by 26 %. 

5. The Student’s t-distribution is more representative of the GNSS measurement 

errors in harsh environments as compared to the normal distribution. The 

implementation of the integrated navigation system with an assumption of t 

distribution for GPS measurement errors resulted in better accuracy and reliability 

in harsh environments, without degrading the solution in open sky environments. 

The maximum horizontal error decreased by a factor of about 2.5 when using the 

t distribution. The t distribution based algorithm also improved the reliability of the 

navigation solution as well as the measurement availability.  

6. The integration of the two algorithm modules presented in Chapter 4, termed as 

VB (Variational Bayes) Adaptive during the analysis, resulted in the best 

performance in terms of reliability of the navigation solution. The analyses of this 

combined module, performed using two pedestrian data sets collected in harsh 

environments, showed an average reliability improvement of approximately 22 %. 

7. The analysis of the proposed pre-filter sensor validation architecture was preceded 

by a detailed theoretical study and experimental analyses of the nature of the faults 
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in various sensors. This was necessary in order to simulate realistic faults in the 

sensor measurements for the assessment of the proposed sensor validation 

algorithm. 

8.  The dynamics associated with pedestrian navigation applications imposes a major 

challenge in the computation of user accelerations from an IMU. The errors in the 

estimated attitude (especially roll and pitch) result in the infiltration of the gravity 

component into the user acceleration, which makes the acceleration comparison 

in the validation architecture very challenging.  

9. The proposed architecture was able to detect the sustained faults simulated in the 

accelerometers by correctly identifying the inconsistency of user acceleration 

values when compared to the user accelerations obtained from other sensors. The 

architecture however is not able to detect short-term accelerometer errors as these 

cannot be distinguished from the occasional gravity component infiltration caused 

by user dynamics.  

10. The sensor validation architecture successfully prevented the faulty barometer 

measurements from entering the integration filter. The simulated faults resembled 

the scenario with high wind conditions. The adoption of the sensor validation 

scheme during such fault simulated conditions reduced the maximum error values 

by approximately 38 m along the vertical direction and 12 m along the horizontal 

direction.  

11. Heading updates from a magnetometer can significantly improve the performance 

of the integrated system in areas where GNSS is degraded. However, the faults 

arising in magnetometer measurements due to interference from ferromagnetic 
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substances in the vicinity can make the heading update counter-effective, further 

deteriorating the navigation solution. The detection and removal of magnetometer 

faults using the proposed technique considerably improved the accuracy of the 

navigation solution. In particular, the maximum horizontal error was significantly 

reduced. 

12. The complete filtering algorithm, which incorporates the novel methods proposed 

in Chapter 4 and Chapter 5, provided navigation solutions with better accuracy and 

reliability, thus validating the benefits of using the proposed techniques in personal 

navigation devices.   

7.2 Recommendations 

Considering the findings of this research, the following recommendations are suggested 

for future work: 

1. The concept of validating sensor measurements through the observation of 

common parameters using dissimilar sensors can be applied to improve the 

estimation of those parameters that are used in a navigation filter. For instance, 

the angular velocity obtained from the magnetometer could be used to improve the 

angular velocity estimate from a low cost gyroscope. 

2. In order to be able to incorporate more magnetometer measurements in areas with 

many perturbing sources, a magnetometer calibration technique that can perform 

on the fly calibration could be used. Such a calibration method must however have 

an acceptable accuracy and should be computationally effective. 
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3. The effects of user dynamics on the computation of IMU accelerations can be 

mitigated by using advanced techniques that deal with these dynamics. 

4. The benefits of the proposed algorithms can be explored in pedestrian navigation 

applications that are realized using pedestrian dead reckoning method instead of 

the strap-down configuration. 

5. The analysis of the proposed methods using different grades of inertial sensors 

could provide an interesting insight into the suitability of these methods for various 

applications. 

6. The proposed methods can be further extended by inclusion of new sensors and 

signals including wheel speed sensors (for vehicular use), Wi-Fi, etc. The inclusion 

of such sensors is likely to further improve the performance of personal navigation 

devices through the addition of new observations, constraints and redundancies. 
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APPENDIX A: GNSS RANGE ERROR COMPUTATION 

GNSS pseudorange measurements can be expressed as 

r cdtρ ε= + +  A-1 

where ρ  is the pseudorange, r  is the true range (true distance between the satellite and 

the receiver position), cdt  is the receiver clock bias and ε  is the total range error which 

include atmospheric errors, orbital errors and multipath. 

With the availability of an accurate reference solution for the user locations and with the 

knowledge of satellite positions from the ephemeris data, the true range r  can be 

calculated. Now the problem lies in the segregation of ε  from cdt . 

The clock bias can be estimated in a filter by fixing the known receiver position and 

velocity from the reference solution and by modeling ε  as a stochastic parameter. 

However, despite having a high observability obtained by fixing user position and velocity, 

accurate clock estimation cannot still be obtained. This is because of the fact that, in 

presence of large biases, cdt  and ε  get highly correlated due to which some part of ε  

gets consumed in cdt . 

Thus, to mitigate the effect of multipath and other biases and noise in the estimation of 

cdt , an FIR filter is applied to the estimated clock bias. Finally, the range error is 

computed as 

r cdtε ρ= − −
�

 A-2 

where cdt
�

 is the filtered clock bias. 
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APPENDIX B: COMPUTATION OF USER ACCELERATION FROM 

GNSS DOPPLER MEASUREMENTS 

 
 
The user acceleration can be obtained from GNSS, either using phase measurements or 

Doppler measurements. In either case, the first step is to obtain the phase range 

acceleration. Assuming that phase measurements are used, the carrier phase range 

acceleration is obtained as follows (Serrano et al 2004): 

 B-1 

where 

( ) ( )
( )

2

t t t t
t

t

φ φ
φ

+ ∆ − − ∆
≈

∆
�  

Now, the velocity (Doppler) measurements can be expressed as 

, , , ,.( )i i u s i u i ion i trop i i iu v v B d dφ ξ ε= − + + + + +� � �� � �  B-2 

where iu  is the unit vector of the ith satellite, uv  is the user velocity, ,s iv  is the velocity of 

the ith satellite, ,u iB�  is the clock drift, ,ion id�  is the ionospheric delay rate, ,trop id�  is the 

tropospheric delay rate, iξ�  is the rate of change of orbital error and iε�  is the contribution 

of the receiver noise and other unmodeled errors. The contribution of atmospheric errors 

and orbital errors are usually very small and thus can be considered as a part of the 

stochastic noise component. Equation B-2 can thus be re-written as 
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 B-3 

where 
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The range acceleration is given as 

 B-4 

where ua  and ,s ia  are user and satellite velocities respectively.  

The rate of change of the unit directional vector is approximately zero. Hence, we assume 

0iu =� . The range accelerations and user acceleration can thus be shown to be related 

as 

It can be shown that the range accelerations and user acceleration are related as 

 B-5 

This is in the form: 

z Hx ε= +  

where z  is the measurement vector, x  is the vector of state parameters, H  is the design 

matrix relating the state parameters to the measurements and ε  is the error vector. 
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The accelerations can thus be estimated by solving Equation B-5 using least squares 

technique. 

 

 


