I Introduction

The et common methodological approach for natural language procesdip il
i wonymten of representation and operations that allows sentencen fo lae frabol
an il forned expressions In some formal language. Often thin tn neconidiahi by
developtg nonel of phrase sbructure rules that deseribe the syntax of 0 patuend T
Wi el wowet of predicates that capture the semantie relations |41, 1 | i
Wi ol npproneh haw proven to be particularly successful for question nnae g o
Lenne which cnn tnke advantage of correspondences hetween natueal Innpupe il ol
Hhwory |[#] 11 s consequently become a popular method for AL resen b, o
b mume the touchstone of machine intelligenee the Taring tent [27] e o i
dommin ol question answering.

Untortunntely, the Turing test has distorted the developent ol natuyal fnnpiop
procemtng by placing undie emphasis on the degrees to which a computer can ool
Locepientlonn nt the expense of more ereative uses of lnnguage. While piy e b
havve ldyesmed more sublime aspects of Taguage uee |1, 18, 17], 8 conspleooinoabatioon
et byl nntuenl Tanguage procowsors haw heen thelr dependence on fnimn iniat
focutinndnte woresponse. Inorder for the machine to perform a lem piad o ol
bninge eachange, 10 must be able to actuallze bronder anpects of dbsgim bk
e alitlity 1o Tustigate n natural language exchange, follow a tople ol i na anl
wilentwnd wid Indtiate the logleal conelusion of an exchange. Farthermore Heolihiy
Locnappont thewe nspects eanonly be properly assessed 116 enn doowo wl it b
inlervontlon, provoeation, or control.

i e ontlines TATLONR, & research affort deslgned to investignte i o
e b ol inbueal Tanguage through the procoss of telling storles. Vo peniynb aliny
et compurter has to Initiate & discourne by Introductng an opentup o o
cnab ol chinendters; develop and unvedl a plot that provides continuity for Hie s
el Ldng the story o a suitable climax and denonement, [18). While w gl
syulem nhined al watislying these requirementa must necessarily he conepnnl with
the prablen of sentence form and content, the principal diffienlty of fevt pemalin
nildecmed by ratton s the arrangement of natural language expresdons o o lgstoal
nid colierent nequence [4].

Inccondinee with a speech aet theory of natural language |6, 24, 01 9] 1 e
teit i he nentences of aostory ss deliberate actn by n spesker T e oag 1 b
ahle ta trent the coherency problem as the more general problem ol ae o panning
Fwthermore, by taking advantage of an analogy betweon sory telling anil g
plvbg, eatton solves many of the diffieultion associated with text peneiatlin by
Wi well understood techniques of astomated game playlng Wy inpstng s
eletentn onto game elements, the sentences of a story are generated by o sbiali gl
Het b nlind g Lo the sequence of moves for a game. 'Fhis endows Uhe verntting s
with n plot tht follows a consistent path from an inftial sitaation thionph toa fapiol
cone himlon

2 Text generation

All automatic text generating systems must confront three primary difficulties: 1)
deciding what information is to be expressed in the text, 2) finding a suitable sequence
for presenting this information, and 3) transforming the information into well formed
sentences of a particular language [11, 13]. The first of these is essentially a problem of
extracting relevant information fragments from a knowledge base [20, 36]. Interactive
systems most often accomplish this by looking for clues within the input expressions.
Using simple principles of set manipulation, these clues are regarded as a kind of
mathematical description of the subject of discussion [9, 12, 25, 33]. For example, the
underlying principle of a set theoretic question-answering system is that the answer
to a question will be an element of the power set for the database contents. Key
words from the query are applied as set operations for filtering out the relevant
data items. Nouns and adjectives construct subsets, verbs and prepositions establish
relations between subset elements, conjunctions perform union and intersection on
the subsets, and determiners establish quantification. The resulting subset (possibly
empty) will contain the candidate answers to the query [8].

For non-interactive systems, deciding what information is to be conveyed in the
text is much less straightforward. Such systems require a mechanism for maintaining a
consistent and focussed topic of discourse while guarding against lapses into monotony
[5]. An effective content mechanism for a story generating system can be designed
which imitates the psychological phenomenon of a mental picture—an image of the
story’s current situation maintained in the mind of the speaker. As events occur
in the story, their continuity and plausibility are checked against the mental picture
before the image is permanently altered with the appropriate consequent effects. The
image often contains details that are not explicitly stated in the discourse, but which
play an important role in controlling contextual fidelity [26].

A computer program for generating story text can simulate this mental picture
with a data structure that contains a full description of the current story situation
[18]. Information within this structure is updated as the story events take place. A
frame-based analysis of this context model allows those data elements that undergo
change to be regarded as salient story features by the text generator [31].

2.1 Production rules and creativity

The transformation of data changes into sentences is achieved by production rules.
Story events and data objects are matched with appropriate lexical entries, using
thematic and grammatical specifications to ensure such things as tense and number
agreement. The entries are subsequently instantiated into specific syntactic prescrip-
tions from an arbitrarily complex phrase-structure grammar. Further embellishment
operations may also be applied to perform operations like pronoun substitution [10].

Though such rules are able to generate readable text from changes to the con-

text model, they alone will not produce text with a high degree of semantic interest.
Clearly the “creativity” of the story generator will ultimately depend on the mecha-
nism responsible for bringing about the changes to the story situation. The ordering
of the expressions generated must reflect reasoned sequences of events within the
story, and follow a logical presentation of germane information.

TAILOR uses production rules and a context model to generate text that reflects
salient story points [29]. The order of presentation for this information is determined
by sequencing story events using a problem-solving approach in which characters
are expected to satisfy goals [30]. The characters choose events that will help them
achieve their objectives, and as the events occur they bring about changes to the
story’s context model. Text is generated as a report of these events, and a coherent
plot emerges as a by-product of the characters’ planning processes.

The underlying design of the planning mechanism rests on an analogy between
story telling and game playing. Before the function of this mechanism can be properly
explained it is necessary to identify how each aspect of a story has its equivalent in a
game.

3 The story game infrastructure

Wittgenstein observed that when people engage in discourse they do so by playing
what he called the language game [32, 14, 3]. He postulated that people issue ut-
terances and follow topics of discourse in manners that support their conversational
objectives. They accomplish this by constructing and modifying plans for speech acts
in just the same way as they play games.

Wittgenstein’s metaphor works particularly well with respect to narratives. The
beginning of a story is similar to an opening game position prior to play. For both
games and stories there is a series of events between the beginning and the end which
lead from the initial state to the final one. In a game these events are the moves of
the players. In a story they are the events that cause transition from one situation
to another. The participants in the game have their counterparts in the characters
within the story, and the playing area is the environment in which all events of the
story occur and all character strategies either succeed or fail.

3.1 The characters

In keeping with the tradition of story-telling programs [16, 22|, the characters of
TAILOR-made stories are personified animals (though this tradition probably derives
from the amount of story-ness animals can lend to a text). Character types are defined
by predicates which outline the respective attributes of a few arctic animals. Figure 1
shows three of the character predicates and how they define a type of animal by
including its eating habits, abode, and a set that specifies its methods of locomotion.

animal(polarbear,carnivorous,cave,{walk,swim}).
animal (arctictern,omnivorous,nest,{fly}).
animal (caribou,herbivorous,copse,{walk}).

Figure 1: Some of the predicates that define character types.

TAILOR creates a principal character (protagonist) from the database of character
types, and assigns that character a name. As with games, where each participant has
at least one principal objective that must be achieved, the protagonist is provided
with an initial predicament from which he will derive an implicit primary objective.
Thus, if Horace the hungry caribou were chosen, his implicit goal would be to become
not hungry. To satisfy this objective, the character must construct and modify a plan
of action that promises to bring him to a successful goal state. Just as the game
ends when a player’s primary objective is obtained or a point is reached where its
satisfaction becomes impossible, so the story ends when the protagonist arrives at a
goal state, or at a non-goal state from which the primary objective is unattainable—a
tragedy, as it were. The story text is generated as a recounting of the successes and
failures experienced by the protagonist as his plan is executed.

3.2 The story space

TAILOR views a story as a path through a state space beginning in an initial state
and ending in a final one, with intermediate situations corresponding to states that
are subject to certain ordering restrictions. A story space is a graph whose nodes
are situations and whose edges are events that allows transition from one node to
another. Each story generated corresponds to one particular path through this story
space network.

One function of the story space is to provide a collection of discrete locations
in which events may occur—the setting. A small portion of the Canadian Arctic
frontier is sustained by TAILOR and contains 22 distinct locations. Figure 2 shows
how locations are defined with a predicate that includes a set specifying their contents,
and a set of travel modes which permit access to them. Paths are not explicitly defined
between locations. Instead the locomotive abilities of the characters determine what
places are accessible from any given location.

The cango rule defined in Figure 2 establishes this connectivity relation. The rule
is expressed as a logical statement, where the notation

a :- b, c.
has the declarative meaning

bAc=a,

location(iceberg,{ice,fish},{swim,fly}).
location(tundra,{moss,berries},{walk,fly}).
location(shore,{rocks,twigs,fish},{swim,fly}).
location(village,{fire,inuit},{walk,fly}).
location(hill,{berries,twigs},{walk,fly}).
location(marsh,{moss},{walk,fly}).

cango(Agent ,Dest) :- animal (Agent,_,_,Modes),
location(Dest,_,Access),
intersect (Modes,Access).

Figure 2: Some location predicates and the connectivity rule.

a, b and c being logic predicates with the appropriate number of arguments. Names
that begin with lower case letters are constants, and those beginning with upper case
letters are variables. Free variables are implicitly existentially quantified, and a ¢’ is
used as a “don’t care” variable. Thus the cango condition is true for an Agent wanting
to go to location Dest if the Modes of locomotion for the Agent have a non-empty
intersection with the Access modes for that location. Because the eating habits and
abode of the animal and the contents of the location are not relevant for this rule
they are left as “don’t care” variables.

After the protagonist has been created and assigned an initial predicament, he is
placed at a randomly chosen location from which to begin his search for a solution.
A portion of this solution will involve moving from one location to another. But the
story space network also includes states wherein something other than the location is
changed. Some items within a particular location can be moved to another, changing
the current location’s contents and inducing a change of state. Moreover, the execu-
tion of an action that neither affects the contents of the current location nor moves
the protagonist to another location may still bring about a change in the story situ-
ation. For instance, when the character looks for something in a particular location
the situation is changed abstractly from a novel environment to a familiar one. Thus,
state changes are effected through execution of the protagonist’s plan. The plan itself
is a list of primitive actions whose occurrence will cause changes, whether subtle or
conspicuous, to the current situation.

3.3 The primitive actions

The concept of a primitive action derives from Schank’s theory of conceptual depen-
dency. This proposes that all specific actions can be generalized to one of a handful
of basic primitives according to their characteristic similarities [21]. For example,
the acts of throwing, picking up, and walking are all related in that they reflect the

primitive(travel,Agent,Action,Dest):-
cango(Agent ,Dest),
location(Dest,_,Access),
animal (Agent,_,_,Modes),
member (Action,Access),
member (Action,Modes).

Figure 3: The travel primitive.

physical movement of something from one place to another. Conceptual dependency
theory generalizes these actions as specific instances of physical transfer—the PTRANS
primitive. This allows the entities involved to be viewed as sharing the same depen-
dency relations (i.e. some agent moved something from somewhere to somewhere
else). Abstract movements, like the transfer of control or possession, are generalized
under the ATRANS primitive, and the transfer of knowledge, information, and other
mental concepts are reduced to MTRANS—mental transference. Further primitives are
defined for eating and drinking (INGEST), hearing and seeing (ATTEND), and several
other general categories of activity, each of which is intended to permit meaningful
inferences to be made.

Like conceptual dependency theory, TAILOR embodies a set of primitives that
will erase the subtle differences between actions that might otherwise be considered
distinct according to more superficial characteristics. For example, the characters
of TAILOR stories move from location to location by flying, walking, or swimming;
but each of these forms of transportation is merely a specific instance of the more
general action of travelling. Any action, when bound to the current story situation,
constitutes an event that causes a transition from that situation to a new one. To
prevent the story from slipping into redundancy, each event must effect an entirely
different transition. The reduction of a specific action to its primitive correlative is,
therefore, essential if the generator is to prevent the occurrence of an event that is
fundamentally the same as some prior event.

The primitive actions of TAILOR are grouped into five abstract categories: 1)
travel, for getting about, 2) speak, for asking or telling, 3) seek, for looking and
finding, 4) need, for recognizing deficiencies, and 5) employ, for using items found
in the story environment. For any primitive to become a candidate event for the
story it is necessary to determine whether or not sufficient conditions exist in the
current situation to permit that action to be executed. Each primitive is defined as
a predicate which evaluates these preconditions and (if satisfiable) returns a specific
action. For example, the travel primitive in Figure 3 is permissible if the Agent is
able to reach the location Dest. Once the cango rule is satisfied, a specific Action
from the location’s Access modes—one that is also included in the animal’s Modes of
locomotion—is returned. Since any number of primitive actions may be permissible

initialplan(hungry, [need,look,find,eat]).
primitive(need,_,need,_).

primitive(eat,Agent,eat,Locale):-
location(Locale,Contents,_),
animal (Agent,Diet,_,_),
eats(Diet,Contents).

eats(herbivorous,Foods) :- member(moss,Foods).

Figure 4: The hungry plan and some essential information.

for a given situation, heuristics are used to create a plan of events that promises to
bring the protagonist closer to a solution state.

4 Planning stories

At the time the protagonist is assigned an initial predicament he is also supplied with
a minimal plan for achieving his goal. As was previously mentioned (section 3.2), the
plan is a list of primitive actions which, when realized as story events, will satisfy
the protagonist’s primary objective. The plan is minimal in that it assumes ideal
circumstances for its execution. However, though some actions of the initial plan are
trivially effectible, there are others whose preconditions are not satisfied. For example,
Figure 4 shows that the initial plan for hungry begins with the primitive need which
has no preconditions and is consequently always executable (Note: the notation [...]
denotes an ordered sequence of items). The final action of the initial plan, however,
is the action eat which requires that the current location of the protagonist contain
food agreeable to his diet. If this requirement cannot be immediately satisfied then
the plan must be modified by the addition of further actions (perhaps travel) whose
execution will correct the deficit.

4.1 Modifying an existing plan

When “game plans” fail to bring about desired results for a player, she must be
able to revise her plan in search of an alternative solution. Typically, there will be
several options available, requiring the player to have a number of heuristics that can
be applied to select the most promising plan of action. Similarly, the characters of
TAILOR must use heuristics to select an appropriate series of primitives from a variety
of possible plan modifications.

evaluate(_,Agent,Locale,Value):-

(setof (Friend,animal (Friend,_,_,_) ,Helpers),
remove(Agent ,Helpers,Help),
location(Locale,Contents,_),
intersect(Contents,Help),

Value = 7) ; Value = 0.

evaluate(Problem,Agent,Locale,Value):-
animal (Agent,_,Home,_),
assoc3(Problem,Home,Remedy),
location(Locale,Contents,_),
findall(Val,eval3(Contents,Remedy,Val), Vals),
sum(Vals,Value).

assoc3(homeless,nest,twigs).

eval3(Items,Item,Val):- (member(Item,Items), Val = 9) ; Val = 0.

Figure 5: Two of the evaluation functions.

TAILOR uses a set of evaluation functions to search the story space for a solu-
tion path. These functions are applied to all possible next states which could result
from the execution of each permissible primitive action for the current situation. The
functions derive a numerical value for each possible next state by assessing the re-
spective values of the state contents. The sum of these values is assumed to reflect
the degree to which a character believes a particular action could be a relevant part
of a solution. For example, the first evaluate function expressed in Figure 5 assesses
the value of a state according to whether or not there is someone at that location
who could be asked a question. The set of location contents is checked against the
set of all characters (excluding the Agent doing the assessment) to see if they have
anything in common. If they do, the state’s overall value is increased by 7; otherwise
no value is added (the semicolon denotes logical “or”). The second evaluate function
in Figure 5 assesses how much help each of the location’s contents will offer to the
Agent for solving his Problem by rating each item according to its association with a
Remedy. Once all evaluation results have been calculated for each permissible action,
the highest valued next state is treated as the one that the Agent believes to be most
desirable.

The evaluation process is repeated for each permissible action from all reachable
next states; thus endowing the Agent with a degree of foresight. Since an exhaustive
search of the story space is computationally intractable, the evaluation is only per-
formed for states which lie within a fixed distance from the current situation. The

PLAN:[need, look,find,eat]
STORY BOARD:[]

PLAN:[look,find,eat]
STORY BOARD:[<shore,horace,need,moss>]

PLAN:[travel,look,find,eat] plan is modified
STORY BOARD:[<shore,horace,need,moss>]

PLAN:[look,find,eat]
STORY BOARD:[<shore,horace,need,moss>,<shore,horace,walk, tundra>]

etc., etc., . .

Figure 6: Plan primitives are transformed into story events.

sequence of events which will bring the story to the highest valued state is then added
to the plan and the next primitive on the list is executed. The evaluation process
is repeated after each event to permit a plan that had previously been regarded as
optimum to be devalued in the light of new information.

4.2 The story board

Each event of a story is represented as a data structure containing the specific action,
the agent who performed it, the location from which it occurred, and the direct object
for the action. When a primitive action is executed it is removed from the plan list
and its corresponding event information is recorded in the story board list. The story
board serves two purposes. It is the record of all story events 1) from which the text
is ultimately generated, and 2) against which all permissible events can be checked
for uniqueness. Figure 6 shows how each element of a plan list is transformed into an
event data structure and added to the end of the storyboard.

Given that TAILOR regards a story as any path through the story space network,
it is essential to put in place a mechanism that safeguards against infinite loops.
This is accomplished by insisting that each event of the story be unique. That is,
for any action to be considered a candidate event for the current situation of the
story, it cannot have occurred previously under the same circumstances. Uniqueness
is evaluated by constructing an event data structure corresponding to the action and
checking that the structure does not appear in the story board list. This means that
at least one of the structure’s data fields (either the action under consideration, the
agent who would perform it, the location from which it would occur, or its direct
object) must be different from those of all prior events in order for that action to
qualify as a candidate transition. The story ends either when the plan list is empty
(which indicates that the protagonist has satisfied his primary objective) or when the

9

sentence > sub-phrase,verb-part,obj-phrase
|| sub-phrase,verb,proper-noun,wh-phrase
Il sub-phrase,verb,proper-noun,decl-phrase

sub-phrase -> proper-noun
Il pronoun
verb-part > verb
|| verb,particle
obj-phrase -> noun
quantifier,noun

det,noun,prep-phrase

prep-phrase -> prep,det,locative
wh-phrase -> interrogative,decl-phrase
decl-phrase -> declarative,aux,obj-phrase

Figure 7: The phrase structure grammar of TAILOR.

story arrives at a situation for which there is no unique, permissible event (which
indicates that the protagonist failed to reach a goal state).

4.3 Generating story text from the story board

After all events have been determined, the text-generating mechanism transforms the
completed story board into a corresponding sequence of simple,! past tense sentences.
Each event data item is removed from the story board and its contents are paired with
appropriate words from the lexicon. The words are then mapped on to a syntactic
structure in accordance with certain grammatical constraints—such as number and
person agreement, and thematic roles. Figure 7 outlines a syntactic description of
the phrase structures available in TAILOR.

The selection of a syntactic structure is constrained by the action being expressed—
in particular, by the valency requirements? of the correlative verb. For example, a
syntactic structure which permits the use of a wh-phrase can only be used with the
speak primitive, and more specifically with the verb asked. Instances where more than

The term simple is used to denote a class of sentences which have a single subject and a single
predicate with no subordinate or coordinate clauses.
2The valency requirements for a verb are its transitivity and thematic constraints.

10

Events Sentences

once upon a time there
was a caribou named wally.
wally was cold.

[iceberg,wally,need,fire] he needed a fire.
[iceberg,vally,walk,tundra] he walked to the tundra.
[tundra,wally,look,fire] wally looked for a fire.
[tundra,wally,find,fire] he found no fire.
[tundra,wally,walk,village] wally walked to the village.
[village,wally,look,fire] he looked for a fire.
[village,wally,find,fire] he found a fire.
[village,wally,warm,fire] wally warmed himself by the fire.

. and lived happily ever after!

Figure 8: The one-to-one correspondence between events and sentences.

one syntactic pattern is permissible result in a random selection from the possible al-
ternatives (e.g. where a pronoun or proper noun can be used to refer to the subject
of the sentence). The resulting text reflects a one-to-one relationship between each
event of the story board and each sentence in the body of the story—as the example
of Figure 8 exemplifies. The exceptions to this process are the first two sentences,
which are produced during the character and setting selection procedure, and the fi-
nal one, which is generated in accordance with the state of the plan list at the story’s
conclusion.

4.4 Introducing conflict into the plot

So far we have examined how TAILOR uses its planning mechanism for generating
stories of the simplest kind—single character stories. But automated game playing
systems are most often concerned with issues of strategy development in multi-player
games. Techniques like the state-evaluation heuristics described in section 4.1 were
developed as methods for plan construction in the face of opposition. In fact, one
might argue that the most interesting aspect of games in general is having to develop
a strategy for success in a situation where someone at cross purposes is both able and
eager to interfere with one’s objective.

Most stories use a similar notion of conflict to develop plots with greater interest
and higher levels of intricacy. In keeping with the game analogy, TAILOR brings
conflict to its stories by introducing a character into the story space who will interact
with the story’s hero in ways which will impede the hero’s search for a solution path.®

3The analogy being expressed here is between stories and a particular class of games called
zero-sum perfect-information games (of which chess and tic-tac-toe are good examples).

11

The antagonist arrives in the story at the location of the current situation only
after several events have transpired. To facilitate the interaction of the antagonist
and the protagonist, the story planner allows the characters to take turns at selecting
primitive actions for the story events. Both characters use the same heuristic functions
for evaluating next states, but the antagonist does so with the purpose of directing
the story to low-valued situations. For this reason, when the protagonist is searching
the story space for an optimum plan of action from the current situation, he must
bear in mind that the next event will be determined by his opponent and, thus, will
most probably not be in his best interest.

If the purpose of the protagonist is to select a sequence of events that will maximize
his chances of success, then the purpose of the antagonist is to select events which will
minimize those chances. Therefore, when the protagonist searches for a maximum
valued reachable state, he must take into account that the antagonist will ensure that
every other event will cause transition to a minimum valued situation. This so called
minimaz principle is a standard technique used in computer game-playing systems
(28] for preventing the planning mechanism from overlooking long term consequences
for short term benefits.

To ensure that the characters interact, it is sometimes necessary for the antagonist
to take several consecutive turns. Since he has no means of keeping and modifying
a plan of his own, he must make static evaluations at each turn. By examining the
protagonist’s plan, he tries to ascertain which of the primitive actions available to
him will guide the story to a least favourable situation for the hero. If the antagonist
is unable to bring the story to a state of lower value than the current situation, and
if there is a primitive action available to him whose occurrence would constitute a
unique event, he is allowed to initiate another consecutive story event.

In principle, all primitive actions are executable by either character, providing
the relevant preconditions are satisfied. In practice, however, there are some actions
which are of use only to one character or the other. For example, the mental action
of concealing usually precedes the abstract action of telling a lie. Since such nefarious
actions are always perceived to reduce the hero’s chances of finding a solution, there
is no situation in which the protagonist will select such actions. Good guys never
lie! Furthermore, some primitive actions are explicitly defined to give higher or lower
next state values. For example, the action ask is considered to be the best way of
finding a solution path and is consequently often chosen when its preconditions are
satisfiable. Figure 9 shows an example of a two-character story generated by TAILOR.

5 Conclusions

This research demonstrates a system that plans speech acts and provides a means
for modifying its plans as the discourse unfolds. Furthermore, it shows how a story
can be generated by sustaining a microcosm that realizes the propositions of the
discourse. It illustrates how the story-telling process can capitalize on the richness

12

once upon a time there was an arctictern named truman.
truman was homeless. truman needed a nest. he flew to
the shore. truman looked for some twigs. truman found
no twigs. he flew to the tundra. he met a polarbear
named horace. truman asked horace where there were some
twigs. horace concealed the twigs. horace told truman
there were some twigs on the iceberg. truman flew to the
iceberg. he looked for some twigs. he found no twigs.
horace walked to the shore. he swam to the iceberg.
horace looked for some meat. he found some meat. he ate
truman. truman died.

Figure 9: A two-character tale of conflict.

of the environment, in terms of pre-prepared mental pictures of locations, to enrich
the stories themselves by adding relevant detail to them. It provides a method of
creating text that follows a logical sequence of natural language expressions from the
initiation of a discourse to a reasonable conclusion—without external stimulation or
human intervention.

There are a number of fairly obvious ways to improve the quality of the text
the system generates. These range from the introduction of simple lexical rules for
capitalization, through the connection of sentences by conjunctions, both coordinating
(e.g. “and” and “but”) and subordinating (e.g. “if”, “when”, “because”), to the
use of more elaborate phrase-structure rules to generate more sophisticated sentence
structures. However, such improvements would be relatively superficial.

A more serious criticism of the system is that no clear distinction is made between
the story itself and the telling of it. TAILOR first generates a simulated event sequence
within the story space and then reads it out item by item. The story slavishly relates
the events in the order in which they occur. This has particularly serious consequences
in multi-character stories, for the actions of each character are interleaved even when
they do not interact. A focus-of-attention mechanism would separate the event se-
quence from the story and allow the story-teller more latitude to separate parallel
event sequences, suppress irrelevant actions, and even to apply rhetorical tricks like
concealing crucial events until long after they have occurred.

The Turing test is a game between two players, a person and a computer, that
takes all initiative away from the players and places it in the hands of an interrogator.
In contrast, Wittgenstein’s idea of a language game focuses attention on the initiative
required to plan and execute speech acts to serve one’s goals, and the central role that
this plays in our interactions. Following this view, the methods that TAILOR employs
for creating, modifying and merging speech act plans for discourse participants—
which, though illustrated here in a severely limited context, are quite general—may

13

have application in other language domains.

Acknowledgements

We gratefully acknowledge the stimulating research environment provided by the
Knowledge Science Lab at the University of Calgary. This research is supported by
the Natural Sciences and Engineering Research Council of Canada.

References

[1] D. Appelt. Planning english referring expressions. Artificial Intelligence, 26:1-
33, 1985.

(2] J. L. Austin. How to do things with words. Oxford University Press, 1962.

[3] G. P. Baker and P. M. S. Hacker. Wittgenstein: Understanding and meaning.
Basil Blackwell Publisher Ltd., Oxford, 1980.

[4] M. Bratman. Intentions, Plans, and Practical Reason. Harvard University Press,
Cambridge, Massachussetts, 1986.

[6] Bertram C. Bruce. Generation as a social action. In Theoretical Issues in Natural
Language Processing-1, pages 64-67. Association for Computational Linguistics,
1975. Urbana-Champaign.

[6] P. Cohen and C. R. Perrault. Elements of a plan-based theory of speech acts.
Cognitive Science, 3(3):177-212, 1979.

[7] J. A. Fodor. The Language of Thought. Harvard University Press, Cambridge,
Massachussetts, 1975.

[8] R. Frost and J. Launchbury. Constructing natural language interpreters in a
lazy functional language. The Computer Journal, 32(2):108-121, 1989.

[9] B. Green, A. Wolf, C. Chomsky, and K. Laugherty. Baseball: An automatic
question answerer. In E. Feigenbaum and J. Feldman, editors, Computers and

Thought, pages 207-216. McGraw-Hill, New York, 1963.

[10] Ralph Grishman. Computational Linguistics. Cambridge University Press, Cam-
bridge, 1986.

[11] Barbara J. Grosz, Karen Spark Jones, and Bonnie Lynn Webber, editors. Read-
ings in Natural Language Processing. Morgan Kaufmann Publishers Inc., Los

Altos, Calif., 1986.

14

[12] J.. Hoepelman. On questions. In F.. Kiefer, editor, Questions and Answers. D.
Reidel Publishing Co., Dordrecht, 1983.

(13] J. J. Katz and P. M. Postal. An Integrated Theory of Linguistic Descriptions.
The MIT Press, Cambridge, Massachussetts, 1964.

[14] Saul A. Kripke. Wittgenstein on Rules and Private Language. Harvard Univer-
sity Press, Cambridge, MA, 1982.

(15] K. McKeown. Discourse strategies for generating natural language-text. Artifi-
cial Intelligence, 27:1-42, 1985.

[16] J. R. Meehan. Tale-spin, an interactive program that writes stories. In Proceed-
ings Fifth International Joint Conference on Artificial Intelligence, pages 91-98,
Cambridge, Mass., August 1977.

[17] R. C. Parkison, K. M. Colby, and W. S. Faught. Conversational language
comprehension using integrated pattern-matching and parsing. Artificial In-
telligence, 9:111-134, 1977.

(18] Frank Rose. Into the heart of the mind. Vintage Books, New York, 1985.

[19] D. E. Rumelhart. Notes on a schema for stories. In D. G. Bobrow and A. Collins,
editors, Studies in Cognitive Science, pages 122-137. Academic Press, New York,
1975.

[20] G. Salton. Automatic text processing. Addison-Wesley, Reading, Massachussetts,
1989.

[21] R. Schank and R. Abelson. Scripts, Plans, Goals and Understanding. Lawrence
Erlbaum Assoc., Hillsdale, NJ, 1977.

[22] R.C. Schank and C.K. Riesbeck. Inside computer understanding: five programs
plus miniatures. Lawrence Erlbaum Associates, 1981.

[23] J. R. Searle. Speech Acts: An Essay on the Philosophy of Language. Cambridge
University Press, Cambridge, 1969.

[24] J. R. Searle. A taxonomy of illocutionary acts. In K. Gunderson, editor, Lan-
guage, mind, and knowledge. University of Minnesota Press, 1976.

[25] R. F. Simmons. Natural language question-answering systems:1969. Communi-

cations of the ACM, 13:15-30, 1969.

[26] P. Thorndyke. Cognitive structures in comprehension and memory of narrative

discourse. Cognitive Psychology, 9:88-110, 1977.

15

[27] A. M. Turing. Computing machinery and intelligence. Mind, 59:433-460, Octo-
ber 1950.

(28] J. von Neumann and O. Morgenstern. Theory of games and economic behaviour.
Princeton University Press, Princeton, New Jersey, 1944.

[29] Robert Wilensky. Points: A theory of the structure of stories in memory. In
W. Lehnert and M. Rengle, editors, Strategies for Natural Language Processing,
pages 345-374. Lawrence Erlbaum and Assoc., 1982.

[30] Terry Winograd. A Procedural Model of Language Understanding, pages 152-
186. W. H. Freeman and Company, New York, 1973. Schank, R. and Colby, K,
eds.

[31] Patrick Henry Winston. Artificial Intelligence. Addison-Wesley, Reading Mass.,
1984.

[32] L. Wittgenstein. Philosophical Investigations. Basil Blackwell Ltd., Oxford, UK,
1953.

[33] W. A. Woods. Procedural semantics for a question answering system. In 1968
AFIPS Conference Proceedings, volume 33, pages 457-471, 1968.

[34] W. A. Woods. Transition network grammars for natural language analysis.
CACM, 3(10):591-606, 1970.

[35] W. A. Woods. Semantics and quantification in natural language question an-
swering. Advances in Computers, 17:2-64, 1978. Academic Press, New York.

[36] W. A. Woods, R. M. Kaplan, and B. Nash-Webber. The lunar sciences natural
language information system. Final report 2378, Bolt, Beranek and Newman,

Cambridge, Mass., 1972.

16

