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Abstract 

In an ideal study of diagnostic tests, the new diagnostic test and the gold standard 

should be applied to each patient suspected of the disease. But the reality is that 

the gold standard is not applicable due to many limitations, such as its invasiveness, 

high cost, or technical challenge. This project was motivated by the meta-analysis 

of diagnostic tests for deep vein thrombosis (DVT). In diagnosing DVT, the gold 

standard is venography, which is invasive and often not applicable to every patient. 

In fact, it was applied only in a small number of studies. A concurrent reference 

is ultrasonography, which is not risky to patients and has well known diagnostic 

characteristics. D-dimer is a new test of interest for DVT. Among the studies of 

d-dimer, a substantial amount of studies applied ultrasonography as the reference. 

The aim of this project is to develop statistical methods to estimate the diagnostic 

performance of d-dimer by synthesizing studies using both references. 

By assuming known values of sensitivity and specificity of ultrasonography, max-

imum likelihood estimation was applied to acquire estimates of coefficients in the 

log-linear model. When the sensitivity and specificity of ultrasonography were not 

available, data from a systematic review of ultrasonography [6] were employed. Two 

approaches to estimating the diagnostic accuracy of d-dimer were compared: admit-

ting the difference between the two references and ignoring the difference. Taking 

into account heterogeneity across studies, the log-linear model was fitted with ran-

dom disease prevalence and random association between d-dimer and gold standard. 

Two algorithms, the Gaussian Hermite integration and the Gibbs sampling, were ap-

plied to derive estimates in the random effects model. In the model with two random 
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effects, a new design matrix of random effects based on -1 1 contrast was applied 

to improve estimates. This project was a novel application of the Gaussian Hermite 

integration and the Gibbs sampling in the meta-analysis of incomplete multinomial 

data. 

In summary, this project provided statistical methods for the meta-analysis of 

diagnostic tests in the absence of complete data. Results between the test of interest 

and an imperfect reference can be used to estimate the diagnostic performance of 

the test of interest, provided that appropriate adjustments were performed. This 

finding has a strong impact in the literature of diagnostic tests: the gold standard 

may not be necessary in assessing a new test. This is a real milestone in diagnostic 

tests where the gold standard diagnosis is invasive or harmful to patients. 
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Glossary 

GLM: Generalized Linear Model 

GLMM: Generalized Linear Mixed Model 

Silver standard: ultrasonography 

Gold standard: venography 

DU: d-dimer versus ultrasonography 

DV: d-dimer versus venography 

UV: ultrasonography versus venography 

Sd: sensitivity of d-dimer against venography 

Cd: specificity of d-dimer against venography 

S: sensitivity of ultrasonography against venography 

C: specificity of ultrasonography against venography 

Sd1 and Cd1: sensitivity and specificity of d-dimer from the model treating ultra-

sonography the same as venography 

Sd2 and Cd2: sensitivity and specificity of d-dimer from the model treating ultra-

sonography different from venography 

MCMC: Markov Chain Monte Carlo 

Pd,,,: cell probability in the 2 < 2 x 2 contingency table. d=levels of d-dimer, u=levels 

of ultrasonography, v=levels of venography. 

Pd,,.: cell probability summing over levels of venography 

Pd.v cell probability summing over levels of ultrasonography 

Puv cell probability summing over levels of d-dimer 

md: cell counts in the 2 x 2 >< 2 contingency table 
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Md.: cell counts summing over levels of venography 

Md.: cell counts summing over levels of ultrasonography 

cell counts summing over levels of d-dimer 

tabled : observed table of d-dimer versus ultrasonography 

table: observed table of ultrasonography versus venography 

tabled : observed table of d-dimer versus venography 

Pduv'yi,'y2 cell probability conditional on random effects '11 and '12 

Adjusted model: the model adjusting for the difference between the silver standard 

and the gold standard 

Unadjusted model: the model ignoring the difference between the silver standard 

and the gold standard 

1REM: the model with random disease prevalence only 

2REM: the model with the random disease prevalence and random association be-

tween the test and the gold standard. 
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Chapter 1 

Background 

1.1 Sensitivity and specificity in diagnostic tests 

In assessing the clinical performance of diagnostic tests, two widely acknowledged 

measurements are sensitivity and specificity. The sensitivity is defined as the rate 

of positive test results in a group of patients who have the disease. The specificity 

is the proportion of negative test results in healthy patients. An ideal diagnostic 

test discriminates between diseased and healthy patients without error. Let a and ,8 

denote the false negative and false positive rates, then the sensitivity and specificity 

are 1-a and 1-3, respectively. Two other measurements that are highly related to 

sensitivity and specificity are the positive and negative predictive values. In reality, 

the true disease status of a patient is often not known at the time the diagnostic 

test was applied. Given a positive test result, what is the chance that this patient 

has the disease? This is referred to as positive predicted value (PPV) of the test. 

Similarly, the probability that the patient has no disease if the test result is negative 

is called the negative predicted value (NPV). The relationship between positive and 

negative predicted value with sensitivity and specificity is addressed by the following 

expressions. 

Notations: s = sensitivity = P(+Idisease) c = specificity = P(-Ino disease) 

1 
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P(Disease) = prevalence of disease. 

PPV - s x P(disease) 
- s x P(disease) + (1 - c) x [1 - P(disease)] 

NPV - C>< [1 -  P(disease)]  
- c x (1 - P(disease)) + (1 - s) x P(disease) 

Sensitivity and specificity of a test provide indications of how well the test iden-

tifies diseased and healthy patients, respectively. As a function of sensitivity and 

specificity, the likelihood ratio is an alternative measure of test performance. It is 

the ratio of the probability of a test result in diseased patients to the probability of 

the same result in healthy patients. The positive likelihood ratio (PLR) is defined as 

the ratio of probability of test positive in diseased patients over test positive in non-

diseased patients. That is, PLR = sensitivity/ (1-specificity). Similarly, the negative 

likelihood ratio (NLR) = (1-sensitivity)/specificity. Both quantities describe how 

many times more likely the same results are in diseased patients than in healthy pa-

tients. Values above 5 of PLR and below 0.2 of NLR give strong diagnostic evidence 

[75]. 

1.2 Contingency tables and log-linear model 

Categorical variable is defined as a variable that classifies an object into at least 

two mutually exclusive categories. Results from a diagnostic test, for example, are 

classified as positive and negative. For a long time in the literature of categorical 

data analysis, classification tables for two or more variables have been used, namely 

"contingency tables". The rows and columns in a contingency table represent levels 

of the two factors. When a third factor is involved, one 2 x 2 contingency table at 
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each level of the third factor is constructed. Similar extensions can be applied to 

higher dimensions of contingency tables. Each cell count represents the number of 

outcomes that fall in the category, which is a combination of levels from all factors. 

The contingency table carries critical information on the association among factors. 

In the analysis of two-dimensional tables, the Chi-squared test is well known to draw 

conclusions on the relationship between the two factors. Fisher's exact test is an 

alternative when cell counts are small. 

The structure and methods for the analysis of two-dimensional tables are gen-

erally not complicated. The log-linear model has been introduced to analyze high-

dimensional contingency tables in extensive literature. When dealing with positive 

outcomes, the classic linear model is normally considered to be unsatisfactory. The 

reason is that a certain combination of parameter and covariate values may produce 

negative values of the outcome. Even if the linear combination may be found to be 

adequate over the range of the data, extrapolation of the results is often questionable. 

The logarithm function provides the conversion of a positive number to a number 

on the real line. This property makes the log-linear model an intuitive candidate for 

the analysis of contingency tables. In addition, the log-linear model gives rise to a 

multiplicative association between the response and explanatory variables because 

of the log function. This association is not seen in the classic linear model. 

For low dimensional contingency tables with a small number of parameters, max-

imum likelihood estimates (MLE) can be obtained algebraically by solving likelihood 

equations. Difficulties increase as the number of parameters increases. For example, 

in a three-way contingency table, the conditional independence model involves five 

parameters. Estimates of these parameters cannot be written out in closed forms. 
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The iterative proportional fitting procedure has been a traditional method to ac-

quire MLE for log-linear models [12, 20, 89]. Alternatively, the Newton-Raphson 

algorithm is a general approach to derive MLE. Details of this algorithm are covered 

in various statistics textbooks. 

1.3 Generalized linear model (GLM), generalized linear mixed 

model (GLMM) and Bayesian analysis 

The log-linear model imposes a logarithm relationship between the mean of the out-

come and the linear combination of explanatory factors. The model which includes 

any functional form of the relationship between the outcome and the explanatory 

factors is defined as the "generalized linear model" [66] (GLM). It takes the form 

of g(u)=X,8, where X is the design matrix and /3 is the vector of coefficients. The 

function g is known as the link function. Different link functions give rise to different 

models. For example, the logistic regression model differs from linear regression in 

the logit link function on the outcome variable. Explanatory variables in GLM are 

often regarded as fixed effects. 

The inference of the generalized linear model follows a frequentist approach. Un-

der the frequentist approach, the parameter in the likelihood function is an unknown 

but fixed number. By taking a sample which represents characteristics of the popula-

tion, the likelihood function can be constructed with respect to unknown parameters. 

Maximizing the likelihood function produces the best "guess" of the unknown pa-

rameter. For a Bayesian approach, however, the foundation of the theory is different. 

The parameter is regarded as a random variable, which has its own distribution with 
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mode and curvature parameters. By assuming a probability distribution for the un-

known parameter, the knowledge of the parameter can be updated after obtaining a 

sample from the population. The updated information is referred to as the posterior 

distribution of the parameter. The updated value is called the posterior estimate of 

the parameter. The Bayesian posterior estimates and credible sets are analogous to 

MLE and confidence intervals in the frequentist context. 

In a clinical setting, it is sensible to treat some risk factors as fixed but unknown 

values. For example, the overall effect of a drug in men compared to that in women 

can be fixed but unknown. In some situations, however, this may not be true, 

especially at the individual subject level. For example, it makes more sense to treat 

the effect of a drug on a particular patient as a random variable, which follows a 

distribution, than as a fixed value. Combining the concepts of fixed and random 

effects, the GLM can be extended to the generalized linear mixed model (GLMM). 

In this model, a prior distribution is specified on the random effects. The GLMM 

encompasses advantages from both GLM and the random effects model. By means of 

the link function, GLMM allows the analysis of a variety of outcome measurements, 

discrete or continuous. It enables the accommodation of non-normally distributed 

responses and specifies a possibly non-linear link between the mean of the response 

and the predictors. With respect to the distribution of random effects, the normal 

density is a conventional choice. 

The development of computational techniques to solve GLMM, on the other hand, 

has not been satisfactory. The complexity of GLMM produces difficulties in solv-

ing likelihood equations analytically. The expectation-maximization (EM) algorithm 

was proposed as an advantageous technique for maximum likelihood and restricted 
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maximum likelihood estimations [2, 61]. The major advance of EM algorithm is that 

it ensures an elevated likelihood at each iteration, although convergence may be ex-

tremely slow. The Gaussian Hermite quadrature (GHQ) is often used for numerical 

approximations of integrals with Gaussian kernels, i.e., e 2. The marginal likeli-

hood of fixed effect parameters in GLMM has to be derived by integrating out the 

random effects, which often makes the derivation of marginal likelihood analytically 

intractable. Integrations using Gaussian Hermite quadratures have preferable accu-

racy in analyzing GLMM when the number of random effects per cluster is small. 

In recent decades, the Markov Chain Monte Carlo (MCMC), a typical approach for 

Bayesian analysis, has become valuable in analyzing GLMM. It has become extremely 

popular for the analysis of complex statistical models. The MCMC procedure re-

duces the computational complexity of high dimensions to a sequence of much lower 

ones. 

1.4 Application of methods 

Thrombosis is an abnormality of an endovascular clot at an inappropriate place and 

time in the blood [77]. The venous thromboembolism is reflected by alterations in 

blood flow, in the coagulability of blood, and in the vessel wall [77]. It has clinical 

indications relating to several diseases, such as myocardial infarction, stroke and car-

diovascular disorders, which are leading causes of death in industrialized countries 

[77]. Deep vein thrombosis (DVT) is a common but often undiagnosed thromboem-

bolic disease. The clinical examination of DVT is not satisfactory. Among suspected 

patients, venography tests positive for 42% and negative for 58% [77]. Accurate 
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diagnosis of DVT has significant clinical implications. Patients with false positive 

results may receive unnecessary or harmful treatments. False negative results of 

patients may delay their getting necessary and effective treatments. Although the 

importance of detecting thromboembolic diseases has been widely acknowledged, a 

perfect diagnostic tool has yet been developed. Diagnostic tests with high accuracies 

are favorable but frequently they are too expensive or hazardous to be used on high 

volume population-based screening. 

D-dimer, a new diagnostic tool of DVT, has been developed since 1980s, although 

its error rates have not been confirmed. Error rates can be estimated directly if d-

dimer can be applied to the patients whose true disease states are known, but this 

is usually not feasible. D-dimer is highly sensitive at an elevated level (< 500ug/L) 

[77]. Studies suggest that pulmonary embolism is unlikely if plasma d-dimers are 

lower than 500ug/L, which is the most commonly used cutoff [27]. Although there 

has been extensive research on evaluating d-dimer, the role of d-dimer in diagnosing 

DVT is not clear because of the presence of multiple assays, laboratory testings and 

variability of assays [18]. 

Venography has perfect diagnostic reliabilities in distinguishing disease and healthy 

patients. It is the gold standard in the diagnosis of DVT. It is clinically impracti-

cal, however, to apply it to every patient suspected of DVT because it is invasive. 

Sometimes the test was given to the patients with negative results in a previous test. 

In this situation, patients with positive results did not go through the reference test 

at all. On the other hand, ultrasonography, as a non-invasive reference, became an 

alternative for the diagnosis of DVT in various studies. Its sensitivity and specificity 

have been well established in the literature. A large number of studies evaluating 
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the sensitivity and specificity of d-dimer used ultrasound as the reference standard 

[40, 97]. However, biases on the diagnostic characteristics of d-dimer in these stud-

ies were expected if the error rate of ultrasonography was not taken into account. 

Walter [87] and several researchers have investigated the effects of known error rates 

of the reference test on the estimates of the new test. Even with small error rates 

from the reference test, biases in the estimation of the test of interest are substantial 

[63, 78]. 

Ideally, if all three tests were applied to each patient, the complete three-dimensional 

contingency table would be available to estimate characteristics of the test of interest. 

In practice, however, it is almost impossible to have results from all three tests on 

each patient, particularly when tests are expensive, time consuming, or invasive. In 

these circumstances, statistical adjustments have to be applied to obtain corrected 

estimates when the imperfect reference is used. One of the major purposes of this 

project is to combine studies using different references to estimate diagnostic char-

acteristics of d-dimer. There has been a variety of clinical areas that experience the 

same problem as in diagnosing DVT. Two or more references were applied in differ-

ent studies to diagnose diseases, one is error-free and the others are imperfect but 

non-invasive. An example is given below to elaborate the importance and potential 

application of the methods proposed in this project. 

Coronary artery disease (CAD) is the leading cause of death across the western 

world. Prevention and early detection of CAD are critical in clinical practice. X-ray 

coronary angiography is the current gold standard for identifying clinically significant 

coronary artery disease [103]. But it is invasive. The commonly used noninvasive 

reference for CAD is the myocardial perfusion imaging (MPI). In a study that eval-
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uated the diagnostic performance of electrocardiograms (ECG), the MPI instead of 

the gold standard was used as the reference [98]. The authors argued for the use 

of this reference based on clinical considerations. The stress test results introduced 

bias on referral to coronary angiography, which was usually the second diagnostic 

test after ECG. Using MPI as the reference prevented this problem because results 

from ECG and MPI were acquired at the same test. The adv&itage of using an ac-

curate and noninvasive diagnosis on CAD has been widely acknowledged. One of the 

advantageous tools is computed tomography (CT). The clinical usefulness of com-

puted tomography has been well assessed [19] in the diagnosis of CAD. The methods 

in this project intended to analyze pair-wise marginal tables from three diagnostic 

tools, which were the gold standard, silver standard, and the test of interest. The 

gold standard of diagnosing CAD is coronary angiography, and silver standard is 

MPI. CT is the diagnostic test of interest. In this case, marginal tables of the test 

with the gold standard and with the silver standard may be collected, respectively. 

This allows potential application of methods from this project to this setting. 

The methods proposed in this project can be applied to the above clinical dilem-

mas, especially when the gold standard involves invasive or complex procedures, such 

as biopsy or surgery. Furthermore, a variety of applications may be of interest. First 

of all, models proposed here may not be limited to reference tests. This corresponds 

to evaluating the effect of several competing treatments or procedures for a given dis-

ease. In the example of coronary artery disease above, competing non-invasive tests 

are available, such as stress echocardiography [52] and coronary magnetic resonance 

angiography [103]. Comparisons among these tests are potentially viable using the 

method suggested in this project. Results of comparisons contribute to construct a 
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more effective but less invasive diagnostic procedure than using a single diagnostic 

test. This constitutes the second interesting application of the project. Last but not 

the least, the models in this project may provide useful information on the evalua-

tions of test performance against the cost of each test. This information may be of 

interest to health economists to model cost-effectiveness. 



Chapter 2 

Literature Review 

2.1 Meta-analysis and diagnostic tests 

2.1.1 Methods in the meta-analysis of diagnostic tests 

Diagnostic tests are an active research area in the medical sciences. In particular, 

the accuracy of diagnostic tests has been the center of this research area for decades. 

As various studies evaluating the diagnostic accuracy of different tests increases, the 

meta-analysis becomes important for summarizing the findings. The summary per-

formance measures provided by systematic reviews and meta-analysis of diagnostic 

tests play an important role in clinical and health policy decision making on the 

usage of diagnostic tests. As such, methodologies and guidelines for meta-analysis 

evaluating diagnostic tests are proposed and discussed extensively in the literature 

[8, 39, 45, 83]. In the following sections, discussions on some of the most commonly 

applied techniques are presented. 

Summary receiver operational characteristics (SROC) curve 

In assessing the performance of a single diagnostic test, the receiver operating charac-

teristic (ROC) curve [34] is widely recognized. Graphically, ROC is the plot between 

sensitivity and 1-specificity on different thresholds of positive diagnosis. The overall 

measure of accuracy of the test is the area under the ROC curve. The larger the 

area, the higher the values of sensitivity and specificity are. Poor tests have curves 

11 
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close to the diagonal line, where the area under the ROC curve is 0.5. In the case 

of summarizing several diagnostic tests, the summary ROC (SROC) curve has been 

proposed and widely applied to account for different positive diagnosis thresholds 

across studies [38, 47, 53, 59, 79]. The SROC curve is constructed from a regres-

sion model between the log of diagnostic odds ratio (DOR) and the test positivity 

criterion (TPC). The DOR and TPC are defined as the following. 

DOR = log 1-- - log 

TPC = log- + log 

The regression model proposed by Moses [47] takes the following form. 

DOR= c+t3 x TPC 

Using the sensitivity and specificity estimates from each study in the above model, 

the estimates of c and ,8 can be obtained by ordinary regression approach. The 

SROC curve is then constructed by plotting the sensitivity against 1-specificity on 

the original scale. The transformation of the above model from the logit scale to the 

original scale was provided by Moses [47] as the following. 

sensitivity = 1 

x( specificity  
1—specificity) 

An alternative approach to constructing an SROC curve is based on true positive 

and false positive estimates [42]. Rutter and Gatsonis [10] extended this approach 

to a hierarchical model which accounted for within- and between- study variations. 

Walter derived properties of the SROC and provided standard errors for the area 
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under the curve [86]. These approaches, however, did not take into account the 

errors in the estimates of sensitivity and specificity from each study. In the ordinary 

regression model, the independent variable was measured without error. The test 

positive criterion (TPC) is a function of the estimated sensitivity and specificity 

from each study. Errors in the estimates are expected. Application of the ordinary 

regression model using the TPC as predictors does not take into account the error 

in the estimates. This is the major disadvantage of using the summary ROC curve 

in the meta-analysis of a diagnostic test. 

The logit models 

In applied statistics, binomial and Poisson responses have been the center of research 

in the 1990s. Multinomial responses received less development with the majority of 

the research focused on ordinal data using logit and probit links for cumulative prob-

abilities [13, 16, 32, 50]. Daniels and Gatsonis applied the baseline-category logit in 

a hierarchical Bayesian model for cluster multinomial data [54]. Hartzel presented 

a general approach for logit random effects modeling on clustered multinomial re-

sponses [31]. These approaches included the Gibbs sampling from the Bayesian 

standpoint and the maximum likelihood estimation using Gaussian quadratures or 

the expectation maximization (EM) algorithm in the frequentist context. The nor-

mality structure for random effects was assumed. The Poisson log-linear model was 

advocated by Chen to analyze multinomial data [107]. 

In the meta-analysis of comparing diagnostic tests, the logit model was proposed 

by Siadaty [58, 59]. Diagnostic odds ratios can be estimated directly from the logit 

model, which enables the derivation of the summary ROC curve for each study. Corn-
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parisons of the area under the curve (AUC) are derived to compare diagnostic tests. 

Advantages of this model with random effects include the flexibility to allow for miss-

ing values and different sample sizes, the ability to adjust for confounding factors and 

correlations within and between studies, and easy extension to accommodate indi-

vidual patient data [59]. Similar approaches in the meta-analysis of diagnostic tests 

are widely available in various statistical software, such as SAS (genmod procedure), 

R (function geese), and STATA (commands xtgee) [58, 59]. The major concern from 

Siadaty's approach was that several competing tests reported the tables of the test 

versus the gold standard. Each test was evaluated against the same gold standard 

only. The main purpose of this project, however, is to incorporate a large number 

of studies using the imperfect reference due to the fact that the gold standard was 

invasive and not applied in many studies. The logit model is not directly applicable 

to the analysis in this project if one intends to include different references across 

studies. Alternatively, the meta. -analysis may be restricted to studies using the gold 

standard only. The number of such studies, however, is very small. 

2.1.2 Analysis that accounts for different reference standards 

In diagnostic tests, differences in criteria to define positive and negative results, sub-

jective assessments of endpoints, and patient conditions, are major reasons for differ-

ent test results. Many researchers have addressed the clinical importance of including 

heterogeneity among studies in meta-analysis [17, 45, 92]. However, attentions to the 

difference in reference standards applied in each study have not been received in the 

meta-analysis of diagnostic tests. Most meta-analysis of diagnostic tests emphasize 

the method of combining summary statistics, sensitivity and specificity, or functions 
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of these two components. Accounting for different references should be recognized as 

the major concern of pooling results from different studies. Ignoring this information 

produces biased conclusions about the accuracy of the diagnostic test [63, 78]. 

Among the reviews of diagnostic test in cancer, 53% of them included studies 

from multiple reference tests, only 14% of them included studies from a single ref-

erence test, and 33% of the reviews did not report a reference test [83]. Although 

heterogeneity in studies due to different reference tests was addressed in the literature 

[38], statistical solutions to this problem were not concrete. Walter and Irwig [88] 

conducted a comprehensive review on estimations in misclassified categorical data. 

They elaborated on estimation in different scenarios which corresponded to different 

combinations of the number of tests per individual and the number of populations. 

The minimum number of observers (diagnostic tests) for the identifiability of all pa, 

rameters is 3 per individual for any number of populations. In other words, patients 

have to go through at least 3 diagnostic tests in order to identify all parameters. A 

latent class analysis using EM algorithm [2] was proposed to improve estimates of 

the SROC curve when the reference was subject to error [87]. Improvements using 

a Bayesian approach were also discussed by several authors [46, 80]. But all of these 

approaches aimed at corrections either when only one type of table was used, i.e., 

the test of interest versus "silver standard", or in the situation where each individual 

received all tests. De Bock [24] and colleagues suggested estimation via the EM al-

gorithm when there were at least two types of marginal tables, i.e., not all the tests 

were applied to each subject. This approach, however, assumed the sensitivity and 

specificity of each test were the same across studies. This was not true if studies 

used different thresholds of positivity. In our study, variations in the characteristics 
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of the test among different studies were taken into account in the model via random 

effects. 

This project drew its inspiration from the meta-analysis of diagnostic tests for 

deep vein thrombosis. The problem arising from different reference standards not 

only affected clinical estimations of d-dimer but also had significant impacts on the 

meta-analysis. It was difficult to conclude anything about the sensitivity and speci-

ficity of d-dimner in the presence of different references. This gave rise to difficulties 

in the meta-analysis of the diagnostic performance of d-dimer. Conventional meta-

analytic methods cannot be applied directly to combine data from the gold and 

silver standard by ignoring the difference between these two references. Tables from 

pair-wise combinations of the three tests, i.e., marginal Stables, were incorporated 

to acquire accurate estimates and standard errors on the test of interest. Making 

use of available data from all three marginal tables was statistically preferred over 

using data from the gold standard alone. When characteristics of the silver standard 

become well established, sensitivity and specificity of the test of interest can be es-

timated using tables between the test and the silver standard. This indicates that 

tables with silver standard carry useful information on the test of interest. According 

to the scientific philosophy, all relevant and available evidence should be included in 

the meta-analysis. 

2.2 Misclassification in epidemiology 

From an epidemiological perspective, the problem discussed above can be regarded 

as exposure misclassification. Diagnostic results from the gold standard are analo-
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gous to true classifications, whereas results from the silver standard, ultrasound, can 

be viewed as misclassifications. In a generalized definition, Walter and Irwig [88] 

named it an "observation", which may refer to a diagnostic test, a different data 

source, or a different occasion to apply the same method. Tables from studies using 

ultrasonography as the reference were misclassified. Consequently, estimates of the 

test of interest from these studies were biased if adjustments were not made. It was 

shown that bias was substantial even with small diagnostic imperfection from the 

silver standard [63, 78]. The magnitude of bias depended on the diagnostic char-

acteristics of ultrasonography. Different approaches to adjust bias from exposure 

misclassification have been proposed in the literature and summarized below. 

2.2.1 Conventional approaches 

It has been long recognized that measurement errors were among the major weakness 

of epidemiological studies. Initially, understanding the effects of measurement errors 

on exposure-disease relationship was the focus of methodological research. The two 

patterns of errors have been well known as differential and non-differential misclassi-

fication of exposure. If the rates of misclassification in the two exposure groups are 

the same, it is non-differential. Otherwise, if the rate of misclassification depends on 

the disease status, it is differential. It is well known that non-differential misclassi-

fication in exposure generally produces bias in the odds ratio toward the null value 

[44]. The uncertainty about the direction of exposure-disease association, however, 

can increase in non-differential misclassification [64]. Differential misclassification, 

on the other hand, can affect the odds ratio in either protective or harmful direction. 

A large collection of literature is devoted to the corrections of bias due to misciassifi-
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cation. The maximum likelihood estimation (MLE) was a conventional approach to 

solve the likelihood equation in the presence of misclassification. The matrix method 

and inverse matrix method were proposed by several authors for a more straightfor-

ward approach than MLE to correct bias from misclassification [78, 55]. The matrix 

method has been recommended by textbooks [44] and the variance estimation was 

given by Greenland [82]. In the matrix method, the data were partitioned into two 

samples. One was regarded as the validation study and the other was regarded 

as the main study. Expected cell counts in the observed table were a function of 

expected cell counts in the unobserved table and misclassification parameters (sensi-

tivities and specificities). By replacing the expected cell counts with corresponding 

observed counts, and using the validation study to estimate misclassification param-

eters, the cell counts in the unobserved table can be estimated. The corrected log 

odds ratio was then calculated by the estimated cell counts. 

In 1990, Marshall [78] introduced the inverse matrix method for corrections based 

on predictive values. Similar to the matrix method, information in the unobserved 

table, represented by predicted probabilities instead of cell counts, was a function of 

information in the observed table and the predictive values. The predictive values 

were estimated from the validation data. The corrected log odds ratio was calculated 

based on estimated probabilities in the unobserved table. Marshall also improved 

estimations in the matrix method by replacing cell counts with probabilities but 

keeping sensitivity and specificity as misclassification parameters [78]. 

Morrissey and Spiegelman [55] compared efficiencies of the three methods and 

found that: the inverse matrix was more efficient than the matrix method for differ-

ential misclassification and the MLE was more efficient than the matrix method for 
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non-differential misclassification. Several authors have proposed methods to correct 

for non-differential misclassification of exposure [85, 14, 104, 28]. Flanders et al [101] 

considered adjustments for differential misclassification of exposure with respect to 

disease status. They estimated the exposure and disease relationship by a pooled 

stratum specific odds ratio. Kosinski and Flanders [3] proposed a logistic regression 

approach via EM algorithm to correct estimates in the case of exposure misclassifi-

cation. This approach required two imperfect tests but not the gold standard. Note 

that the above methods focused on adjustments in a single study with imperfect 

reference rather than combining the results from different studies. In other words, 

the adjustments proposed by above methods were study-specific and not directly 

applicable to meta-analysis. 

2.2.2 Bayesian approaches 

Corrections of misclassification can also be implemented via the traditional Bayesian 

approach by assuming prior information on parameters. Joseph [46] estimated all 

parameters by means of the beta prior on diagnostic parameters and uniform prior 

on the disease prevalence. Gustafson [63] extended this approach to investigate 

the exposure-disease association (odds ratios) with rough but not exact informa-

tion on misclassification probabilities. The rough information was constructed by 

the validation study, in which patients went through all the tests. With respect 

to algorithms, the Gibbs sampler was the conventional device to obtain Bayesian 

posterior marginal distributions of parameters. In the context of meta-analysis, the 

application of Bayesian hierarchical models is well established [5, 11, 35]. 

Although Bayesian approaches produced stronger conclusions on parameters than 
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frequentist approaches, the conclusions were derived at the cost of stronger assump-

tions, i.e., the prior information. Choices of prior distributions have been discussed 

by several authors. Proposed methods included direct matching of percentiles, means 

and standard deviations to a distribution, [70, 93]. Matching functions of 95% prob-

ability ranges of sensitivity and specificity to parameters in the distribution family, 

the prior distribution can be constructed [46]. For example, the center and a quarter 

of the range can be matched with the mean and standard deviation of the beta dis-

tribution, respectively [46]. Parameters of the beta distribution can then be solved 

as functions of the range of sensitivity and specificity. Furthermore, vigorous as-

sessments of convergence of the posterior distribution are still under discussion. It 

is often difficult to decide when it is safe to terminate the sampler and conclude 

convergence. An example by Cowles [56] showed that the convergence diagnostics 

did not always agree with one another and not any one was superior over the other. 

One common conclusion from above methods was that more iterations were required 

in the presence of high correlations among the parameters [56]. 

In this project, tables of d-dimer and ultrasound were misclassified. Corrections 

on estimates were implemented via the maximum likelihood estimation by solving 

the likelihood equations with constraints. The random effects model allowed the odds 

ratio between d-dimer and venography to vary from study to study. The Gaussian 

Hermite integration was applied as a frequentist approach to estimate parameters 

in the random effects model. In the context of meta-analysis of diagnostic test, this 

project was a novel application of the Gaussian Hermite integration to the meta-

analysis of diagnostic test. It was a simple approach to analyze random effects models 

with high accuracy. The Gibbs sampling for the generalized linear mixed model, as 
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a Bayesian approach, was employed to obtain posterior samples of parameters. The 

Gibbs sampling approach became popular in analyzing complex statistical models 

in the past decade. It was often applied in meta-analysis to derive the summary 

measure of test accuracy [10, 99]. Both the Gaussian Hermite integration and Gibbs 

sampling were applied in this project. They were theoretically and computationally 

straightforward, compared to other approaches, such as the EM algorithm. 



Chapter 3 

Methods 

3.1 Outline of procedures 

3.1.1 Description of data 

As discussed in previous chapters, the diagnostic results from d-dimer studies can 

be summarized into two types of tables: d-dimer versus ultrasonography and d-

dimer versus venography. In the context of a contingency table with three factors, 

the diagnostic data from d-dimer studies were not the complete three-dimensional 

contingency tables. None of the studies had patients go through all three tests 

due to various limitations, such as the availability of the test, invasiveness of tests, 

health status of the patient. Some studies used venography (V) as the reference 

for d-dimer (D) and others used ultrasonography (U). In the context of contingency 

table, data from these studies were regarded as marginal tables. As discussed in 

Chapter 2, information on diagnostic characteristics of ultrasonography was required 

in order to combine these tables correctly. This information can be presented in two 

forms: 1. known values of sensitivity and specificity of ultrasonography; 2. observed 

tables between ultrasonography and venography. In the latter case, the data for 

analysis were three types of tables: d-dimer versus ultrasonography, d-dimer versus 

venography, and ultrasonography versus venography. In the meta-analysis of d-

dimer, the fixed effects model and the random effects model were considered. In 

particular, two forms of data were considered in the fixed effects model. 

22 
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1. Two types of marginal tables were available: D-V, D-U, with known values of 

SENSU and SPEC,,, derived from external sources. 

2. Three types of marginal tables were available: D-V, D-U, and U-V. 

In the random effects model, only the second form of data was considered in the 

analysis. In other words, the tables between ultrasonography and venography were 

collected for analysis, which was a common case in clinical practice. 

3.1.2 The log-linear model and assumptions 

Ultrasonography as the gold standard 

In the diagnostic test of DVT, ultrasonography was often applied as the reference 

test for d-dimer in many studies. If ultrasonography was treated the same as the gold 

standard in the meta-analysis, the DU and DV tables were regarded as diagnostic 

results from the same reference. In this situation, the meta-analysis was to combine 

several 2 x 2 tables and the log-linear model took the following form. 

log(md) = o + /31D + ,82V + /93DV 

In this model, md represented cell counts in the 2x2 table with i=O,l and j=O,l, 

which were two levels of each test. Using the cell probabilities and the observed 

tables between the two tests, the likelihood can be constructed and maximization 

can be performed to obtain estimates of the cell probabilities. In this case, the 

information between ultrasonography and venography was not used in the analysis 

because ultrasonography was assumed the same as venography. 
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Ultrasonography as the silver standard 

If ultrasonography was treated as a reference different from venography, the meta-

analysis of d-dimer involved three tests, d-dimer, ultrasonography, and venography. 

The log-linear model for 2x2x2 contingency table was expressed as the following. 

log(mduv) = Po +,31D + /32U + 03V + /34DV + /95UV + /96DU + /97DUV 

In this model, md represented cell counts in the three-dimensional table with d,u,v 

representing the levels of d-dimer, ultrasonography, and venography, respectively. 

For instance, m000 was the number of negative results in all three tests and m111 was 

the number of all positive results. 

In this model, DV, UV, and DU were the two-way interactions and DUV was 

the three-way interaction of all three tests. Note that Po was not an independent 

parameter because the cell probabilities had to sum to 1 in the multinomial distribu-

tion. It was a function of the rest parameters in the model, which is derived in the 

next section. Note that the estimation of coefficients in the above model depended 

on the available data. For example, in order to estimate the three-way interaction, 

the complete three-dimensional table was required. In the d-dimer studies, however, 

such a table with complete dimension was not observed. Therefore, not all the pa-

rameters in the log-linear model were estimable. Besides, assumptions were set up 

for different clinical settings on the three tests. A general discussion on different 

assumptions was presented by several authors [90, 106], which is summarized below. 

• Complete independence: /94 = /95 = /96 = /97 = 0 

• Conditional independence between d-dimer and ultrasonography given the value 

of venography: /36 = /37 = 0 



25 

. Association between any two tests was not affected by the third test: 67 = 0 

In diagnostic tests, the most widely acceptable assumption was the indepen-

dence between competing tests conditional on the gold standard, i.e., the second 

assumption above. In the diagnosis of DVT, venography was regarded as the gold 

standard. The conditional independence assumption indicated that if the true diag-

nosis from venography was known, the result from d-dimer diagnosis was not affected 

by the result from ultrasonography, and vice versa. In the epidemiologic context, 

this assumption implied that the odds ratio of d-dimer and ultrasonography was 1 in 

either the diseased patients or the healthy patients. By making this assumption, two 

components in the log-linear model were set to zero. These two components were 

the interaction between d-dimer and ultrasound and the three-way interaction, i.e., 

136=197=0. In other words, under the conditional independence assumption between 

d-dimer and ultrasonography, the log-linear model can be written as the following. 

log(mdv) = Po + 31D + /32U + /33V + /34DV + ,85UV 

The conditional independence was assumed throughout the analysis in this project. 

In the matrix format, the above model can be re-written as follows. 

log(mduv) = Xj3 

In this expression, X was the design matrix for the fixed effects (the diagnostic tests) 

and was expressed as the following. 
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1 0 0 0 0 

110000 

101000 

111000 

100100 

110110 

101101 

1 1 1 1 1J 

Based on this matrix, the order of the cell counts were (m000 m100 m010 m110 m001 

m101 m011 mill ). By subtracting the log of the table total from the above model, 

the cell counts can be translated to corresponding cell probabilities. 

In addition, venography was considered an error-free reference. This indicated 

that the probability of test positive in venography corresponded to the prevalence 

of deep vein thrombosis. In the log-linear model, the test positive in venography 

was represented by the coefficient of venography. The interaction between d-dimer 

and venography corresponded to the log of odds ratio between these two factors. 

Similarly, the UV interaction corresponded to the log of odds ratio between ultra-

sonography and venography. Elaborations on these indications would be presented 

in section 3.2. 

= 
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these assumptions were not necessarily valid in most clinical environments. Studies 

were typically conducted at different locations or under different conditions. Each 

set of data was collected independently under different environments. In the context 

of diagnostic tests, studies differed in many clinical and epidemiological conditions, 

such as the disease prevalence, laboratory procedures, patient characteristics, avail-

ability of tests, positivity criteria, and so forth. For example, tests of d-dimer as a 

diagnostic tool often differed in the difference in assays, the availability of central 

laboratory, and point-of-care of testing [68]. Diagnostic accuracy of d-dimer often 

varied across studies. The sources of variation in studies of diagnostic accuracy were 

investigated and summarized in the literature [67]. 

Among the several heterogeneities, disease prevalence was one of the major vari-

ations across studies [67]. As discussed in the previous section, the prevalence of 

disease was represented by the probability of test positive in venography. This was 

considered the first random effect in the log-linear mixed model. The following exam-

ple gave a brief illustration. Two studies had noticeable difference in the prevalence 

of the disease, 0.1. and 0.8, respectively. Tables from the two studies were shown in 

Table 3.1. and Table 3.2. In Study 1, the sensitivity of the test was 7/10 = 0.7 

Tests T+ T- Total 
Disease 7 3 10 
no disease 18 72 90 

Table 3.1: Disease versus diagnostic test from study 1 

and specificity was 72/90 = 0.8. In Study 2, however, the sensitivity of the test was 

24/80 = 0.3 and specificity 10/20 = 0.5. Although both studies had the same table 
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Tests T+ T- Total 
Disease 24 56 80 
no disease 10 10 20 

Table 3.2: Disease versus diagnostic test from study 2 

total of 100, the numbers of diseased patients in the two tables are quite different 

due to extreme values of the prevalence. If the difference in prevalence was not taken 

into account in the analysis, one would collapse the two tables into Table 3.3. The 

Tests T+ T- Total 
Disease 31 59 90 
no disease 28 82 110 

Table 3.3: Disease versus diagnostic test combining study 1 and study 2 

resulting sensitivity of the test was 31/90 = 0.3 and specificity was 82/110=0.74. 

Apparently, the pooled sensitivity was attenuated by data from the high prevalence 

study, whereas the specificity was highly weighted by the low prevalence study. With 

the same table total, high prevalence of disease resulted in large number of diseased 

patients. Therefore, the number of disease and positive test patients was larger than 

that in the low prevalence tables, when calculating the pooled sensitivity. Similarly, 

when calculating the pooled specificity, weights given to the tables with low disease 

prevalence were higher than those given to the tables with high disease prevalence 

because the number of healthy patients was larger in the study with low disease 

prevalence than in the study with high disease prevalence. In fact, this can be re-

garded as the interaction between the study and the disease prevalence, i.e., effect 
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modification by study. The importance of accounting for different prevalence of 

disease among studies was revealed. 

As a relatively new diagnostic test, the clinical performance of d-dimer had not 

been well established. Studies may result in different estimations of the association 

between d-dimer and venography, which was represented by the odds ratio between 

the two tests. In the log-linear model, the odds ratio between d-dimer and venog-

raphy was represented by the DV interaction. Elaboration on this association was 

presented in the next section. In order to account for the difference in odds ra-

tios across studies, the random interaction between d-dimer and venography was 

added to the log-linear model. This random effect allowed variations in the test 

performance of d-dimer across studies. The normal distribution was assumed on the 

random effects. 

3.2 Fixed effects model 

3.2.1 Log-linear model ignoring the imperfection of the silver standard 

If ultrasonography was regarded the same as venography, tables between d-dimer 

and ultrasonography can be regarded as d-dimer and venography. The estimation of 

diagnostic characteristics of d-dimer can be derived by incorporating the two types 

of tables without adjusting for the different reference tests. The log-linear model in 

this situation was expressed as the following. 

log(mdv) = /3 +)31D + ,82V + 33DV 

Specifically, the log of four cell probabilities can be expressed as the following. 

1ogm11 = Io+th+I32+I33 
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1ogm01 = 00 + /32 

log m1o =fio+/31 

log moo = PO 

190 was a function of /3k, /32, and 83 because the four cell counts had to sum to 

the table total. By simple algebra, the corresponding four cell probabilities were 

expressed below. 

P11 = 

Poi = 

Plo = 

Poo = 

e1'1+132+3 

1+ 1+& 2 +e(1+2+$3 

1+e131 +c02 +eI31+2+13 

C13' 
1+&1+&2 +&,+132+133 

1  
1+e(31 +e132 +C13128 

Using these expressions and the observed tables of d-dimer and venography, the 

likelihood function for the i1h table was constructed as the following. 

log Li = x1 log p11 + x1 log poi + x0 log pio + 4c log Poo 

The sum of log likelihood from each table can be maximized with respect to the 

model coefficients ,8, /32, and ,83 using conventional algorithms. Using the functional 

relationship between the cell probabilities and model coefficients, the maximum like-

lihood estimates of cell probabilities can be derived. Applying the delta method, the 

variance covariance matrix of the cell probabilities can be derived. 

3.2.2 Log-linear model adjusting for the imperfection of the silver stan-

dard 

By assuming conditional independence between d-dimer and ultrasonography given 

the status of venography, the log-linear model was expressed in the following format. 

log(m) = /3o + /31D + /32U + /33V + /34DV + /35UV 
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In this model, m was the vector of cell counts md in the 2 x 2 x 2 contingency table. 

The indices of md represented the levels of each diagnostic test: d=O, 1 for d-dimer 

negative and positive; u=O, 1 for ultrasonography negative and positive; v=O, 1 for 

venography negative and positive. Let Pduv denote the cell probabilities in the 2 x 2 x 2 

contingency table. Expressions of these probabilities in terms of model coefficients, 

/3, were listed below. 

109 (P111) = 190 +81+/92 +/33+/34+/35 

log(poii) = /3O+/32+,83+/35 

109 (P101) = 00 +,81+,83+,84 

log(poo1) =190+193 

log (p110) = 00 + /3 + /32 

log (poio) = /3o + /32 

log (pioo) = /3o + /3i 

log (p000)=/30 

Recall that /90 was not an independent parameter. It was a function of the rest 

/3s because all the cell probabilities had to sum to 1 in the multinomial distribution. 

The following expressions provided an elaboration on this issue. 

Pd,, - )< eI1D+/32U+/3aV+/34DV+/35UV 

>i=o >I=o E=üPduv = V' ef31D+i32U+I33V+I34DV+5UV = 1 
duv 

Hence, i3 = -log(1 + e3' + C2 + e12 + e + eP134 + e235 + 

e12345). The cell probabilities can be re-written as the following. 

- C'1+/32+13+194+$5 

Piii - 1+e1 +e132 eI31+/32 +e 3 +c1+133+fl4 +e235 +e123+P4+P5 

e235  

- Poll - 1+e/31+e$2 +e/312 +e 93 +e131+fi34 +efi235 +efi12345 

1+/33+/34 
Pioi = 1+eP1+e12 +eP12 +e 3 +eP134 +e235 +e1234+P5 
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-   
/33 

- 1+6131 +e132 +e1312 +e' 3 +e/31+133+ Pool 134 +e13235 +C1312+13345 

6131+132 

Pilo - - 1+e131 +e132 +6131+132 +e 3 +6131+133+134+6132+133+135+6131+132+133+134+135 

e132  

Polo - 1+e131+e/32 --131+[32 +e 3 +e13134 +6132+133+135 +e1312345 

- /i 

- Pioo  1+e'31+e$2 +6131+132 +c 3 +e13134 +6132+133+135+6131+132+133+134+135 

-  1  
- P000  1+e131 +e132 +6131+132 +e 3 +6131+133+134+6132+133+135+6131+132+133+134+135 

From above expressions, the model coefficients for interactions had clinical mean-

ings. For example, /94 = log(p111) - log(poll) - (log(p110) - log(poio)) = pill X Polo  

The last expression represented the log of odds ratio between d-dimer and venography 

when ultrasonography=1, i.e., in patients with positive test results on ultrasonog-

raphy. Similarly, /35 = log(pill) - log(pioi) - (log(piio) - log(p1oo)) = 100.P111XP100  
poi Xpjo' 

which represented the log of odds ratio between ultrasonography and venography in 

patients with positive test results on d-dimer. 

If we let p = (P000 Pioo Polo Pilo pool Pioi Poii phi), then the likelihood of the 

marginal table can be expressed in terms of p and the observed cell counts. For 

instance, the log likelihood of a DU table was written as the following. 

1og(Ld ) = Ed Xdu. log (Pd,,.) 

In this expression, Xdu, was the vector of cell counts from the table between d-dimer 

and ultrasonography. The order of cell counts in this table was x00 x10. x01. x11., 

which was consistent with the order of Pd,,.. The Pd,,. represented the summation of 

probabilities over the levels of venography for any dt level of d-dimer and Uth level 

of ultrasonography, i.e., Pdu. = Pdul + PduO Similarly, Pd.v = Pdlv + PdOv and P.uv = 

Pluv + POuv. 
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Following a similar procedure, the log likelihood of a DV table and a UV table can 

be derived. In the fixed effects model, the joint likelihood function was the product 

of the likelihood from each table because the tables were collected independently 

from different studies. Based on the joint likelihood, maximum likelihood estimates 

(MLE) of ,8s can be obtained. MLE of sensitivity and specificity of d-dimer can be 

derived accordingly. 

3.2.3 Algorithm of analysis with known sensitivity and specificity of the 

silver standard 

Description of the problem 

When two types of tables were available, i.e., DU and DV tables, the diagnostic 

information from ultrasonography was required in order to distinguish ultrasonogra-

phy from venography. In this case, the sensitivity and specificity of ultrasonography, 

denoted SENSU and SPEC, were assumed known and regarded as two constraints 

on the likelihood function. Expressions of SENSU and SPEC,, in terms of cell 

probabilities were listed below. 

SENSU =  Pill + Poll  
Pill +Poii +Pioi + Pool 

SPEC,, =  P000 + Pioo  
P000 + Pioo + Poio + Pilo 

Using the expressions of Pduv in the previous section, the expressions of SENSU and 

SPEC.,, can be simplified as the following. 

SENSU = 
e132+135 

1 + 6,62+05 

SPEC, = 1 
1 + e2 
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By simple algebra, /32 and P5 can be written as functions of SENSU and SPEC,, 

as /32 = log( l°u) and /35 = log( 1 ) log('-SSPEC,PEC,,  With known values 

SPEC.of SENSU and SPEC, the values of /92 and /95 were determined. In other words, 

knowing the values of SENSU and SPEC.,, was the same as knowing the values of 

/92 and /9 provided that SENSU and SPEC,, did not attain the boundaries of 0 or 

1. The parameters for estimation became /9i, /3, and /34. The vector of coefficients 

can be written as the following. 

/ /31 

log(I—SPBC SPEC, 

/33 

/34 

,'  SENSU  \ I 1-SPEa,L \ 09"1—SENS) SPEC" I 
By incorporating this vector into the likelihood function, maximization procedure 

can be implemented via conventional approaches. Each table used the same vector of 

8 to construct the likelihood. The joint likelihood was the product of the likelihood 

from each table. Maximization was then performed on the joint likelihood to obtain 

estimates of 01, 03 and /94. 

Similar to the procedure described in the previous section, the log likelihood for 

each table took one of the following forms. 

1og(Ld ) = E d. XdU log (pd,,,.) 

log(L) = E .,, x ..,,, log (P.Uv) 

log(L) = E d,, Xdv log (pd.) 
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The log of joint likelihood function was the sum of the log likelihood from each table. 

By means of the Newton-Raphson algorithm, the log(L) can be maximized via an 

iterative process. At the end of the algorithm, the estimates and corresponding 

hessian matrix can be derived with respect to the model coefficients. 

Applying the Newton-Raphson algorithm 

In brief, the Newton-Raphson algorithm can be described as follows: To find a 

root of f(0) =0 given an initial value 00, using the iteration °k+1 = 0k f,(9,) for k = 

0,1)2, ... ,m until convergence. Convergence was assessed by IOk+1 - Okl <, which was 

an arbitrary small positive number. Applying the multivariate version of this theorem 

to solve f(/3) = 0 produced the maximum likelihood estimates (MLE) of coefficients in 

the log-linear model. Note that the convergence criterion was changed to max (I °k+1 - 

0k I) < because Ok was a vector in the multivariate case. This criterion ensured the 

convergence of all parameters because the maximum of differences was bounded by 

. The parameters of interest in this problem were the sensitivity and specificity of 

d-dimer using venography as the reference. After the MLE of coefficients ,B, /33 and 

/34 in the log-linear model were estimated, MLE of cell probabilities in the complete 

three-dimensional table can be derived. Because the sensitivity and specificity of d-

dimer were functions of cell probabilities, the MLE of sensitivity and specificity of d-

dimer would be derived by the MLE of cell probabilities in the following expressions. 

j3iii + 1ioi  SE7\1Sd =. 
Pin + Pioi + Poll + Pool 

P000 + Polo  
SPCd= 

P000 + Polo + Ploo + Pilo 
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If Pduv were represented by model coefficients ,, the expressions of SE2'TSd and 

SPCd can be written as: 

SE2'JSd = 

SPCd=  
1 + e' 

Substituting the MLE of 9i and /34 in above expressions produced the MLE of sen-

sitivity and specificity of d-dimer, namely, SENSd and SPECd. 

In the estimation of /31, /93 and 84 via Newton-Raphson algorithm, the score vector 

and hessian matrix were required. The score vector was the vector of first derivatives 

of the joint likelihood function with respect to each parameter. The hessian matrix 

was the matrix of second derivatives of the joint likelihood with respect to each pair 

of parameters. In order to obtain derivatives of the joint likelihood of each parameter, 

the derivatives of cell probabilities with respect to each parameter should be derived, 

which was listed below. 

Derivatives of Pduv with respect to /9 

Let E e''3 denote the denominator of pd,,,, which was (1+e131 + e2 + e1+fl2 + 

+ e1+3+/34 + &132+/93+/35 + e131 +132 +193 +1 4+195). Derivatives of E e''3 with respect to 

i3, /33 and /34 were calculated as below. 

0yeX13 - 6,61+02+030405 + e,810304 + e/312 + e'8' 
83 - 

5 i: eX13 - eS1+2+33+4+f35 + e/32+/33+/35 + eth+P3+/34 + 

5>eX13 = 6/31+fi2+/33+/34+5 + e131+/33+/34 
54 

Using these expressions, the first derivative of Pduv with respect to each of /3k, 03 

and /94 were calculated as follows. 
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0Piii - & (e,61+02+03+04+05) e e1234+/35 _e/31+/32+I3+fl4+fi5 ô E gXI3 

aL31 - 1 exp =  (e)2 

- efil+fi2+/93+fi4+P5 e123+/345 x e1234+I35 +e 134 +epl+/32 +e1  

-  

= Pill - Pm (Pill + Pioi + Pilo + p100) 

8Pou - a f e132+/33+/35'\ &2+3+5 5 6Xf3 

a/31 -. >e-"I3 ) = (>CX/3)2 

= 0 - Poll (Pill + P101 + Pilo + p100) 

ap101 - ô   _j+fi3+f34 Y CXI3  
0,61 

a131 - 9,61  ( > XP ) (eX/)2 

= Pioi - Pioi(l9iii + Pioi + Pilo + P100) 

- 0 (_& 3 '\ - e93 0 ex's\> ex13) - (eX/3)2 &3 

0 - Pool (PIli ± P101 + Pilo ± P100) 

- 5   -  e' eP12_e/312  E eX13  apilo 8 /31 
a'al 4901 - (% yeXI3) - (ex/3)2 

Pilo - Pilo (Pill + Pioi + Pilo + P100) 

5poio - 8 1  e/32 \ -. e/32  a eXP 
- > ex13) - ( eX/3) 2 88 

= 0 - Polo (Pi ii + Pioi + Pi lo + P100) 
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5Pioo - ô / 'i \ - XJ3ef3i_ e/31  3 ,8 

th e') - (>edI)2 

= P100 - P100 (Pill + Pioi + Pilo + P100) 

8ThMo - .Q... (  e13'  \\ -  1  
001 - ex, ) - (E e-'I3) 8/3k 

= 0 - 0U0( +Pioi + Pilo + P100) 

In the matrix form, derivatives of Pduv with respect to P, can be summarized as 

below. 

0 

1 

0 
X 

1 

0 

1 

/ 
Pill 

Poll 

Pioi 

Pool 

Pilo 

Polo 

Pioo 

Poll 

Pioi 

Pool 

Pilo 

Polo 

Pioo 

\0J \P000J \P000 

Note that   = pl.. P1.. >< PdUV = 0, where pl.. denoted the summation 0/31 

X (Pill + Pioi + Pilo + Pioo) 

I 

of cell 

probabilities over levels of each of ultrasonography and venography given a positive 

result in d-dimer. 

Following similar procedures, the first derivatives of Pduv with respect to 03 and 

/94 can be obtained as the following. 
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Again, E 

1 

1 

0 

0 

Poll 

Pioi 

Pool 

Pilo 

Polo 

Pioo 

\0J \P000 

0 

1 

Poll 

Pioi 

Pool 

Pilo 

Polo 

Pioo 

X (Pill +Pioi +Poii + Pool) 

/ \P000J 

/ Pin / Pin 

Poll Poll 

Pioi Piw. 

o Pool Pool 

o Pilo Pilo 

o Polo Polo 

o Pioo Pioo 

\0J \PoO0J \P000 

-t, -
L_i - 

x 0. 

I 

 (Pill + P101) 

Derivatives of log likelihood with respect to 3 

The log of joint likelihood was the summation of the log likelihood from each marginal 

table. Let Xdu. and Xd.v represent the observed cell counts in DU and DV tables, 

respectively. The log of joint likelihood of 1 DU table and 1 DV table was expressed 

below. 
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logL = log Ld + log Ldv = x11 log (Pill + P110) + x01 log (poll + Polo) + x10 log (pioi + P100) 

+ x00 log (Pool + P000) + x1•1 log (Pill + Pioi) + x0•1 log (Poll + pool) + x1•0 log (Pilo + Pioo) 

+ Xoj log (Polo + P000) 

The Pduv was expressed in terms of 3 after taking into account the constraints 

that all probabilities sum to 1 and that /32 and /35 were determined by SENSU and 

SPEC,,. The first-order partial derivative of the log likelihood with respect to 

was obtained by the following calculation. 

t9logL -  Xii. + . 0) + x (Q.i '9poio 
Pon+Poio I + 0,61 -  P111+P1i0 

Xj. Xi.i  

Plol +P100 k C9,61 '901 PooI+PoOo 0,61 '901+   + pni+pioi a0l(1+ Ofil 1) + 
Xô. 1  i QEQII I Q2QQ1) + 0  (QaIQ a. 2iQQ ' j.  O.O  (2Q2Q j_ '9P000 ' 

poll+pooi 013i o10 pllo+Pioo 03 ' p0O+p0D I I 

Substituting expressions of Pduv in terms of 8 into the derivatives above gave rise to 

the first derivative of log of joint likelihood with respect to /3k. By some algebraic 

work, the first derivative of log likelihood with respect to fil was simplified as the 

following expression. 

9 log L  
6,81 = X11. + Xio. - P1.. E Xii. + Xl.l + Xi.o - pi.. E Xj.k 

Similarly, first derivatives of the log likelihood with respect to /33 and ,84 were 

expressed as follows. 

OlogL - xii.piii  + x01.p011 + xio.Pioi + 00.001 p.. x,j + xii 
()/33 — P111+17110 Pon+Poio P1O1+Pi0o Pooi+P000 

+ Xo.i - P..i 

0logL —  xii.piii  + X1O.17101  

0/34 — P111+17110 P101+17100 Pi.i + Xi.i - Pi.i 

The score vector was constructed using the expressions above. 
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score = ( 8 log L 0 log L 0 logE ' 

a'al C)/33 884 ' 

The second order derivatives of the log likelihood with respect to /3 were derived 

from above expressions. 

02 log L - 
8/3? - - >x.pi..(1—pi..) - >Xjkp1(1—P1) 

02 log  
= x11 211].(1 — Pill ) -- + X01. Poll  - + X10. Plo,  - P1 ' + 

Pu. P11. 1. P01. Plo. " Pio.  

xoo. Pool (1 -  001) - x.p..1(1 - p..') - Xi. W. 1(1 - p..,) 
Poo. Poo. 

02 log L Pill = 11 - + x10- Plol (1 - P101 - — pi.i) — 
0164 Pil, Pu. Plo. " Plo. 

- pi.,) 

02 log L 8,6 1,03 = - Xi.Pi. + E Xi.P..iPi.. - > i.kPi.1 + E Xi.kP..1PL. 
o2 log L - —Xij.Pl.1 Pl..) -  X.kP1.1(1 P1..) 
8 /31/34 - 

02 log  - 02 log  = 11 1 + xio.2(1 - ' — 

813/3 - 813 13 P11. ' P11. Plo. Pio.  

- Xjkp11(1— p1) 

The hessian matrix was the matrix of second derivatives of the log likelihood and 

symmetric about the diagonal. The diagonal and below-diagonal elements of the 

hessian matrix can be constructed using above expressions in the following format. 

hessian = 

/ ô2 log L 
&13? 

52 log L a2 logL  
J31fl3 a3 

ô2 log L 82 log L 821oL 

\19,81,64 09163,84 ale / 
The Newton-Raphson procedure incorporated the score vector and the hessian 

matrix iteratively to acquire the maximum likelihood estimates (MLE) of parame-

ters. At convergence of the algorithm, the variance covariance matrix of 0 can be 
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approximated by the inverse of the observed information matrix evaluated at the 

MLE of P. The observed information matrix was calculated as the negative of hes-

sian matrix. The observed information matrix was used as an asymptotic equivalence 

of the Fisher's information matrix. Let denote the estimated variance covariance 

matrix of . The relationship between hessian matrix and the estimated variance 

covariance matrix of 8 was expressed as follows. 

= (—hessian)' 

The nlm() function in R used the score vector and hessian matrix calculated above 

to derive MLE of parameters in the log likelihood function. 

Note that the parameters of interest were the sensitivity and specificity of d-

dimer, which were functions of model coefficients, 0. Because the variance covariance 

matrix of /3 can be derived from the hessian matrix evaluated at the MLE of P. The 

variance covariance matrix of sensitivity and specificity of d-dimer can be calculated 

via the multivariate delta method. 

In order to apply the delta method, first derivatives of sensitivity and specificity 

with respect to 18 are required. The functional forms of sensitivity and specificity 

with respect to /3 are displayed below. 
Piii+23i0i ei2345  - el4  

Pui +ploi +poii +pooi - el+234+P5 +el34 +e235 +e'33 - 1+Pi 4 SENSd = 

SPEC -- P000+Poio  -  1+efi2  -  1  
d  P000+Poio+Pioo+Puo - 1+e/32+ePl+eI3i+12 - 1+e131 

The first order derivative matrix of SENSd and SPECd was constructed as the 

following: 

= D 8/33 8/34 ( OSENSO 8SENS 0SENSd  

0SPECd 0SPECd 8SPECd  
0j3i 0/33 0/34 

/ C1h1+134 

(l+e01+L34)2 

(l+eO1)2 

0 (l+e1+04)2 

0 0 I 
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Applying this derivative matrix to the delta method with estimated values of 

3, the variance-covariance matrix for sensitivity and specificity were calculated as 

DBc D' 1• 

3.2.4 Algorithm of analysis of cross-tables between the silver standard 

and the gold standard 

Description of the problem 

In the literature of diagnostic tests, tables between the silver standard and the gold 

standard may be available instead of the true sensitivity and specificity of the silver 

standard. In this situation, the tables for analysis were DU, DV, and UV tables. 

Given these tables, the statistical solution to find the maximum likelihood estimates 

(MLE) was straightforward by writing out the joint likelihood from the three types 

of tables and applying the Newton-Raphson algorithm. 

Estimation 

As noted in section 3.2.2, the log likelihood of each marginal table can be expressed 

in the function of observed cell counts and the cell probabilities. The log likelihoods 

of DU, UV, and DV tables had the following expressions. 

log(Ld) = du Xdu. log (Pd,,,.) 

log(L) = 

log(L) = E d,, Xdv log (Pd.v) 

The log joint likelihood was then given by: log(L) = log(L) + log(Ii) + log(Ld ). 

In these log likelihoods, Xdu., X.v and Xd.v were vectors of observed cell counts in the 

DU, UV, and DV tables, respectively. In order to acquire the maximum likelihood 
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estimates (MLE) of model coefficients, the nlm() function in Ft was employed. The 

nlm() function used the Newton-type algorithm to locate the minimum of a function 

and produced the asymptotic hessian matrix. It is a convenient device to carry out 

minimization of an unconstrained function. The negative log likelihood function and 

the model parameters were specified in the nlm() function to obtain the MLEs of 

the parameters. At convergence, the estimates, score vector, and negative hessian 

matrix were produced by the nlm() function. The inverse of the negative hessian 

matrix provided the estimated variance covariance matrix of the model coefficients. 

In order to obtain the variance covariance matrix of the sensitivity and specificity 

of d-dimer, the first order derivatives of sensitivity and sepecificity of d-dimer with 

respect to 13m and 84 were the same as those provided in section 3.2.3. The complete 

derivative matrix can be constructed below. 

I OSENS(L 0SENSd 8SENSd 0SENSd OSENS4 
n I 0/3 0/32 0133 0/34 8/3 

I 49SPECd OSENSd 8SPECd 8SPECd 8SENS  
\ 49,61 0/32 0/33 8/34 8/35 

o 0 1+$4  0 
(1+1+4 )2 

00 0 0 ) 
Using the matrix of derivatives, the estimated variance covariance matrix of sensitiv-

ity and specificity can be obtained by the delta method using the variance covariance 

matrix of /3. 

3.3 Random effects model 

As discussed in 3.1.3, there was heterogeneity among studies on the diagnostic ac-

curacy of d-dimer. Studies differed not only in the reference standard, but also in 
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a set of random factors, such as the prevalence of disease, laboratory procedures, 

patient characteristics, and so forth. By adding random effects in the model, sys-

tematic variations from study to study were taken into account. The difference in 

the disease prevalence and the diagnostic characteristics of d-dimer were considered 

major contributors to the heterogeneity among studies. 

3.3.1 Model accounting for the heterogeneity in disease prevalence 

In this section, the model that took into account heterogeneity in disease prevalence 

among studies was considered. As mentioned in previous sections, the coefficient of 

venography in the log-linear model represented the prevalence of deep vein thrombo-

sis (DVT) if venography was the perfect reference. Taking into account the hetero-

geneity in this coefficient, the random effect of venography was added to the model. 

Unlike conventional random effects models, however, the random intercept is not 

considered. The reason is that in the log-linear model for multinomial distribution, 

the intercept j3o is not an independent parameter. It is, instead, a function of the rest 

of the ,8 because the cell probabilities should sum to 1. With this unusual intercept, 

adding a random intercept is not meaningful. The log-linear model with the random 

coefficient of venography is given below. 

log(m)X/3+Z'y=3o+31D+j32U+/93V+,B4DV+35UV+'yV 

As in conventional random effects models, the random effect of disease prevalence 

in the log-linear model was assumed to have a normal distribution with mean 0 and 

variance, cr2. In this case, the random effect from each cluster was assumed to come 

from the same normal distribution. In other words, the cr2 was assumed to be the 
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same across studies and it was one of the parameters to be estimated. 

3.3.2 Model accounting for heterogeneities in disease prevalence and the 

association between the test and the gold standard 

The second random effect under consideration was the interaction between d-dimer 

and venography. In the log-linear model from section 3.2.2, the interaction between 

d-dimer and venography corresponded to the log odds ratio between d-dimer and 

venography, i.e., the test performance of d-dimer. This may be a systematic variation 

among studies due to difference in positivity thresholds. Taking into account this 

variation, the second random effects log-linear model included both the random 

venography coefficient and the random interaction between d-dimer and venography. 

The log-linear model with two random effects can be expressed as the following. 

In this model, X took the same form as in the fixed effects model and Z was a subset 

of the X matrix because the random effect was a subset of fixed effects. This may 

not necessarily be true in other random effects model. The matrix Z was constructed 

by extracting columns of V and DV from the X matrix. 
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7 V DV 

00 

00 

00 

00 

10 

11 

10 

\1 1/ 

Notice that Z employed the 0-1 contrast as in the conventional random effects model. 

This contrast, however, may have a significant impact on the estimation because the 

column of random interaction between d-dimer and venography only affected two 

cells probabilities in the contingency table. The rest of the six cells, all zeros in the 

Z matrix were not affected by the random DV interaction. Although the random 

intercept 13o had an effect on all cells, it may not overcome the impact from the zero 

values in the Z matrix. 

A different design matrix of random effects using the -1 1 contrast, namely Zr", 

was considered. This matrix had a greater impact on the cell counts than the original 

0-1 Z matrix. In order to derive this new matrix, consider the following -11 contrasts 

for the fixed effects d-dimer(D), ultrasonography(U) and venography(V). 
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x*= 

1 /3oDUV ' 

\1 1 1 1/ 

Multiplying the columns of D and V in X* produced the column of DV in the 

new Z matrix. Combining this new DV column and the V column in X*, the new 

Z* matrix had the following format. 

—1 1 

—1 —1 

1 —1 

1 1 

1 —1 

\1 1 1 

The -11 contrast attenuated the "0" effect when multiplying the columns of d-dimer 

and venography. Compared to the original Z matrix, the new Z* affected all cell 

in the 2 x 2 x 2 contingency table. Both the Z and Z* matrix were applied in the 

log-linear model with two random effects. 
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Distribution of random effects 

The distribution of random effects in the conventional linear mixed models was 

specified as the normal distribution with mean 0 and a variance-covariance matrix. 

In most cases, the random effects were assumed independent. Similar structures 

and assumptions on random effects were applied in generalized linear mixed models 

(GLMM), such as models with logit, log, and probit link functions [23, 29, 76]. In 

other words, the random effects 'y=( y) were jointly normally distributed with 

mean 0 and variance of each random effect forming the diagonal variance matrix E. 

All the analysis of random effects model in this project was based on this assumption. 

In the matrix format, the log linear model was summarized as follows. 

1 m 00'\ - - 

1 0 0 0 0 0 
m 00 go 

1 1 0 0 0 0 —1 —1 
Y)1 010 

C 1 0 1 0 0 0 01 -1 1 

M 1 1 1 0 0 0 132 + 1 1 I, =  
m 01 1 0 0 1 0 0 03 1 —1 [2Cj 

m 01 1 1 0 1 1 0 184 1 1 

1 0 1 1 0 1 1 —1 
m °" /35 

111111 - - 

'Ylc Ni 0 O 0 
i  

2c) 0 0 a2 

The mr" represented cell counts in the cth table and 'Ylc and ')'2c were the two 

random effects in the cth table. The random effects were assumed independent within 

each table and between tables. 
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3.3.3 Estimation using Gaussian Hermite integration 

The joint distribution in the random effects model was calculated as the product of 

the likelihood and the distribution of random effects. In this project, the likelihood 

of the data had a multinomial distribution. The random effects followed the bivariate 

normal distribution with mean 0 and variance matrix E. In order to estimate fixed 

effect coefficients in the random effects model, maximization was performed on the 

marginal likelihood of fixed effects. According to probability theory, the marginal 

likelihood is obtained by integrating the joint distribution with respect to the random 

effects. The normal density of the random effects is, therefore, a component of the 

joint likelihood. Integration over the normal distribution, however, did not yield 

a closed form. This has been the difficulty in analyzing random effects models in 

the literature. Different techniques were applied to approximate the integrals. In 

this project, the Gaussian Hermite approximation was employed because of its high 

accuracy and easy implementation. 

Gaussian Hermite integration 

In the analysis of random effects model, integrating out random effects from the 

joint distribution function has been a challenge for frequentists. As the number 

of random effects increased, the difficulties of integration increased. The Gaussian 

Hermite integration is an advantageous numerical integration approach with high 

accuracy. It originated from the Gaussian formula for integrations over infinite in-

terval. Given sets of ak and Wk, the integration of function f(x) can be approximated 

by summations. This approximation is expressed below. 

(+oo 
j_ w(x)f(x)dx >1wkf(ak) 
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The w(x) is called the weight function. When w(x) = e 2, the approximation was 

called the ilermite formula and took the following form. 

+00 e 2f(x)dx wjj(aj) 

This is the basic idea behind "Gaussian Hermite integration" (Gill). The weights 

Wk are functions of the abscissas ak, and n denotes the number of pairs of ak and 

Wk. Detailed expressions for these two sets of quantities are given by Davis [69]. 

Abramowitz and Stegun. [51] calculated values of ak and Wk for different values of 

n. The accuracy of the integration increases as the number of pairs of abscissas and 

weights increases, although improvement is achieved at the cost of computational 

time. 

In the model with one random effect, i.e., random disease prevalence only, the 

joint distribution was the product of the likelihood from the observed table and 

the normal density of random effects. In order to acquire estimates for the model 

coefficients, maximization should be performed on the marginal likelihood which 

resulted from integrating out random effects. The joint distribution was expressed 

as the following. 

f (data l/3,-y) 2-7—rol 117 

The function f(datal/3, 'y) denoted the likelihood of observed tables. Integration of 

this function was performed with respect to 'y to obtain the marginal likelihood for 

maximization. 

f°f(datal/3,'y) 1  edy 
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Notice that this integral does not fit the Gill approximation directly because the 

function of 'y is not in the standard form as in the Hermite formula. Transformations 

are required. Let x = -. The integral is equivalent to the following expression. 

f°° f (data/3, 'y = \/xa)  1  e 2\/adx 100 = j00 f (data/3, '-y = xo)e 2dx 

This expression now has the same functional form as the Hermite formula. The 

approximation from abscissas and weights can be applied. The integral is then 

approximated by the following summation. 

* = 1 wkf (datal/3, 'y \/crak) 

This procedure can be extended to higher dimensions of integrals. When there 

are two variables to be integrated, X = (x1 x2) for instance, the Hermite formula is 

written as the following. 

00 1+00 e_xf(x)dx :: ' J x = := ww kf (as, ak) -00 -00 

This extension was applied in the model with two random effects. The maximiza-

tion was then performed over the marginal likelihood, i.e., the likelihood integrating 

out all random effects. In order to acquire the marginal likelihood, the two random 

effects were integrated out from the joint distribution. Specifically, for the i'' study, 

7 'yil\ 1 0 cr1 0 
if -' N , the integral to derive the marginal likelihood 

\ 'Yi2) 0 0 U2 ) 
is displayed below 

2 2 
_Yq _ .Yi1  

+00 +00 /3 f_00 f_00 f (data, tyil) 'fi2) \/  e e 2c  1  2,2 d'y1d'y2 
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Again, this did not fit into the Hermite formula directly. In order to match the 

standard expression, transformation was required. Let = a1 and = 

then d'y 1 = -/cr1da 1 and d'y 2 = /a2da 2. With these transformations, the integral 

above can be re-written as the following. 

.1 f+00 +OO f (datal/3, 'Yil = V'u1aji, Yi2 
IT .J—OO .J f  —oo 

The transformed integral matches the Hermite formula and is approximated by the 

following expression. 

.1 E'' ' 1 f3q wzwqf(data )'yji = /cria1j1 ,'yj2 = /c72aqi2) L..j=1 _'= 

In this expression, f (data,8, 'Yil = at1) 'Yi2 = \/o2%2) is the likelihood, where 

positions of tYil and are replaced by the functions of abscissas. The functional 

form of the likelihood was derived from the log-linear model, which involved two 

random effects as presented in previous sections. The log likelihood of the i1h DU 

table, for example, was calculated as the following. 

log (L) = x log (Pd) 

The x was the vector of observed cell counts in the jth DU table. The cell prob-

abilities were expressions in terms of fixed effect coefficients and random effects. 

Similarly, the log likelihoods of the j1h UV table and the k 1DV table were given by 

the following expression. 

log (L,) = 4log(p) 

log (L) = zdv log(p) 
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'freating du for instance, as f (data 10, 'Yil, 'Yi2) and replacing 'Yil and 'Yi2 with /o 1aji 

and \/cT1aqi2, the marginal likelihood of the i' DU table was approximated by the 

following expression. 

Lzdu 

1 -'n E n L4=1 )—NZog( eX 13+/1 ,va2aqj2)) 

In this expression, duMat was the design matrix to obtain the marginal cell proba-

bilities of the DU table. 

Similarly, the marginal likelihoods of the j1h UV and kth DV tables can be de-

rived. The product of these marginal likelihoods composed the marginal likelihood of 

observed tables and fixed effect coefficients. This was the function to be maximized 

with respect to ,8, oj. and 02. The Gaussian Hermite integration procedure for this 

project can be summarized in the steps below. 

. Write out the likelihood for each table. 

• Use the Gaussian Rermite abscissas and weights to approximate the integral 

of joint likelihood and acquire the marginal likelihood (the function with no 

random effects). 

• Take the product of the marginal likelihoods and maximize this product using 

conventional Newton-Raphson type algorithm. 

Note that the variances of random effects o and a were parameters in the 

marginal likelihood functions. Maximizations were performed to acquire estimates 

for these two quantities along with the fixed effect coefficients. A trick to avoid 

negative variances, however, was suggested. In the function for maximization, o and 
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were re-written as cr - log and o- = log 0'2. The log o- and log o became the 

parameters to be estimated. At the convergence of the Newton-Raphson algorithm, 

estimates of log a-?, log cr and /3 were acquired. Exponentiations of log a and log U2 

provided estimates of c 2 and cl. 

In addition, the choice of number of abscissas and weights was considered. Al-

though "20" was the conventional choice in most generalized linear mixed models 

(GLMM), estimates using the 20-point abscissas were not stable for the likelihood 

in this problem. The number was increasedto "25" to improve accuracy at the cost 

of computational intensity. Stability was achieved when the number of abscissas 

and weights was changed to 25. Abscissas and weights for 25 points were derived 

from the ghq() function in the g1mmML package in R. Values of 20 points abscissas 

and weights from this source were verified with Tables 25.9 and 25.10 in the book 

by Abramowitz and Stegun [51]. This evaluation was to ensure correct values of 

25-point abscissas and weights produced by the ghq() function in R. 

Unconditional cell probabilities 

Recall that the log-linear model with random effects took the following form. 

log (mdUVI) = X13 + Zy 

The corresponding cell probabilities were conditional on the random effects in this 

model. The parameters of interest in the context of diagnosing DVT, however, were 

the sensitivity and specificity of d-dimer, which were based upon unconditional cell 

probabilities. In other words, the estimates of sensitivity and specificity of d-dimer 
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from the meta-analysis should represent the overall performance attributes of d-

dimer rather than study-specific characteristics. In order to obtain these estimates, 

an additional step was required to derive unconditional sensitivity and specificity of 

d-dimer. The functions being integrated were the cell probabilities. 

PduvI/3-y =   

Integrations of these probabilities were performed over the random effects in order 

to derive unconditional cell probabilities. Using the Gaussian Hermite abscissas 

and weights again, the integrands of cell probabilities can be approximated. Note 

that each row of above function represented a specific cell probability and hence 

the function was integrated row-by-row with respect to the random effects. For 

example, the r th row of the X and Z matrix corresponded to the rt cell probability, 

where r=1,2,...8. Approximation of this probability by the abscissas and weights 

was expressed below. 

WlWq >Xf3+Z-y 

Again in this expression, 'y was replaced by the vector (\/ulall, V'(72aq2). The 

estimated sensitivity and specificity can be obtained using the unconditional cell 

probabilities. 

In the estimation of model coefficients, the observed information matrix can be 

derived. It is the negative of second derivatives of the log likelihood with respect 
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to each parameter. The inverse of the observed information matrix produced the 

asymptotic variance covariance matrix of the model coefficients P. Based on this 

matrix, the estimated variance covariance matrix of cell probabilities can be derived, 

namely VpdflV, via the delta method. Let V,6 denote the estimated variance covariance 

matrix of (PI /32 /33 /94 ,0). The cell probabilities Pduv were functions of these five 

/3s. Derivatives of Pduv with respect to /3s were required in order to use the delta 

method. Let Dpp denote the derivative matrix of cell probabilities with respect to 

/3. It follows from the delta method that duv = The derivatives of cell 

probabilities with respect to /3 were calculated below. 

Derivatives of Pduv with respect to /3 

The expressions of Pduv in terms of /9 and y were listed below. 

Pm = 

Pou. = 

Pioi = eO+th+3+t34+f1+Y2 

pool = e 0312 

Piio = 

Polo = eflb212 

P100 = 6O+th'Y1'Y2 

P000 e 012 

Again, note that P0 was not an independent parameter. It can be calculated as the 

following. Because E Pduv = e 0 +e62+03+05+71 Y2 + 

e312 + efu212 + e212 + e112 + C'Y12) = 1. It follows that /3o = 

-log (E e''2"). 
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Let E eX13+ZY denote + C/32+/33+/35+'Y112 + eP13412 + 

C/3312 + e/312''12 + e/3212 + e/3112 + e' 2. 

1+fl2±/33+I4+/35+Y1+T2 

Pm = >CX 13+Z 1 

Poll = 

Pioi = 

Pool = 

Pilo = 

Poio = 

E eXI3+f 
el31+133+134+'y1+'2 

eXI3+Z7 

C132 - Y1+72 

eX13+Z' 

e112 

P100 = 

-   

P000 - 

Derivatives of Pduv with respect to ,8 were based on the re-written expressions of 

pd,,,,. Several steps are displayed below to obtain the derivatives. First of all, deriva-

tives of the denominator of cell probabilities with respect to each /3 were calculated. 

Xf3+Zy - e/31+/32+/33+/34+/35+Y1+Y2 + &1+/33+134+'/1+'Y2 + e +/32Yi2 + 6/31i2 
001 

= C/312+/93+/34+/3512 + C/32+/33+/35+Y1 'Y2 + e/31+P2112 + d321+2 

'95 -y - g/31+/32+133+$4+/35+'Y1+'Y2 + e/323512 + g/31+/33+P4+'/1+'Y2 + Cfl312 
0/33 

d   0/34 = e/31+/32+fl3+/34+/95+1+12 + C/31+/33+/34+''1+2 

  - 

0/35 —e /31+/32+/33+/34+/35+y1+'y2 + e/323512 

Using the derivatives of the denomit&ator with respect to each coefficient, the deriva-

tives of cell probabilities can be derived. For example, the derivative of p" with 

respect to /3i can be calculated as the following. 

ÔP111 a r r+°° C$1+/32+/33+/34+$5+Y1+Y2 j ( 
Ofli - j7j J J. J 'Yi, ')'2)Y1t1')'2 

= r+00  X 13+Z-y >< 0 
E Xje+zy  

0/31 

J j0 (>JeX !3+Y) 2 
f('yi, 'y2)dy1d'y2 
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=1 0 

J—+0oo  f('Yi, y2)d'y1d"y2 - f f+00  
—00 x 

l+/32+fl3+/34+fi5+'Yl+2 +C13412 +e/31+/3211 Y2 +eI3lYli2 ( 

f'yi, 'y2) al-ft d'y2 

Note that the first integral in this expression was actually the unconditional probabil-

ity Pili after integrating out the two random effects. Let Pduv denote the probabilities 

integrating out random effects and PdvIi,2 denote the conditional probabilities on 

random effects, the above derivative was equivalent to the following expression. 

c9Pii1 - ri'+ 00 
- - Pill J_ooPii1I'y1(y2 X (Piiil'yi,'(2 + PiOiI/l(y2 + PiiOI'y1çy2 

piooi. 1,2)f('yi) 'y2)d'yid'y2 

Following similar procedures, derivatives of other cell probabilities are: 

Poll, - (' ('+00 8 CP2+/33+135+'Y112 
a)91 -  .- J—oo f('yi)y2)d'yid'y2 

= 0- f f+00 e/32+133+05+71 - 72-00 E CXf3+Z}' X 

C131 +I2+/33+I34+/35+y1+y2 +C 31+/33+/34+'y1 +72 +e12l Y2 I31 Y1 12  f ('yl, 'y) d'y1 d72E X13+Zy 

+ 

+00 
= 0 - f f_00 Poflyl,'y2 X ('y '2)d'yid'y2 

= f aplol f +00 eX13+2.1 x ePl+P3+P4YlY2 _el*/93+I4+Y1+Y2 X 9  001  
—00 e I'+Y) f('yi, 'y2)d'yid'y2 (  

+00 ePl+3+4+Yl+2 I' "+00 e/l+133+/?4+Yl+Y2  f f—co e+ 'y2)d'y1d'y2 - j J_00 
/i +I32+/33+4+/35+y1+?2 +eP13412 +/32Y1 Y2 +ePl Yl Y2 (yl, 'y2) d'y1 dy2 

eXI+ZY 

1' f_+00 
= Pioi - J 00 PioiI 1,2 'y2)d'y1d'y2 

- f f+00 0Pooi = fi  
8/31 —00 (X/3+Zy)2 f(yi, y)dyidy2 
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=0- f J_oo POOi'yi,'y2 X 72)dyidy2 

0Puo - P +00 e1212 ( +oo  
- J f_co e"i+i f('yi) 'y2)d'yid'y2 - 

e191+fl2+133+fl4+135+'y1y2 +e_01+03+04+71 +72 +ef121 Y2 +efi1Y1Y2  f ) d d'-y2 
>2 e'I3+Z7 

+00 

= Pilo - f f_ Pfl0y1,'y2 x 72)d-yid-y2 

= 0 - f f+OO 0f32Y1+Y2 
9/3i J J—co >2XP+Z7 X 

1+2+P3+/4+I5+Y1+y2 +eP13412 +eP1212 +&'  
>2 f ( '2) d71 d722 

=0- f f+Q0 _00 P010fryi,y2 X 72)dyid'y2 

Q21Q - t +00 e1Y1Y2 /  01 -1/1- 72 
- J f_00 >2Cxp+zf7i, 72)d71d72 - 1 1+00 J J —00 >2 0XP+r X 

1+2+/93+/94+j5+y1+Y2 +e/31T1Y2  >2 eX[3+2 f ('yi, 72) d'y1 d'y2 
'y 

+00 

= 00 (PiiiI 1,2 --PioiI 1,2 --PiioI 1,2 +piooI 1,2) f ('yi, 72) d71 d72 P100 - f f_  

'9270o0 - 0 f r+00  e11'2  
8)3k - - J_oo >2ex13+z7 

+e/31+fl212 +e/311 

>2 ex13+zY 

=0- f 

12 ' 

J(7i, y2)dyid72 

P+00 

j_00 p000 1,2 x 72)d71d72 

In matrix format, the above derivatives can be summarized as the following ex-

pressions, where = piii1,2 + pioiI1,2 + P1101-yi,2 + PiOOhyl,y2. 
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0 

1 

0 
X 

1 

0 

1 

\ 0J 

/ 
Pm 

Poll 

Pioi 

Pool 

Pilo 

Polo 

Pioo 

r +00 
J J—oo xp1.. 1, ,2f(y1, -y2)d-yid'y2 

By similar procedures, derivatives of Pduv with respect to /32, /33, ,84, 

displayed below in matrix formats. 

Pm 

'9Pduv - 

002 - 

1 

0 

0 

1 

1 

0 

\0J 

>< 

Poll 

Pioi 

Pool 

Pilo 

Polo 

Pioo 

fr--°° 
J—oo 

P001 171 ,72 

P11OI'y,,'y2 

POlOfryi,'y2 

Pl00fry,,'y2 

\ P000I'yi,'y2 J 

and 05 were 

xp.l.1),,.)/2 f('yl, .y2)cky1dry2 
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0Pduv - 
- 

-904 

1 

1 

1 

0 

0 

0 

/ Pill 

Poll 

Pioi 

Pool 
x 

Pilo 

Polo 

Pioo 

\ 0J \P000j 

P111 

0 

1 

0 

0 

0 

0 

\ 0J 

x 

Poll 

Piw. 

Pool 

Pilo 

Poio 

Pioo 

P000 j 

r r°° 
J J—co 

r +00 
J J—oo 

/ 
P111I'yi,'y2 

POiifry1,'y2 

P101'y1cy2 

P001 171 ,-Y2 

P11OI'yi,'y2 

P0i0Iyi,'y2 

PiOOIyi,'y2 

P000fryi,'y2 

/ PiiiI71,2 

I 

xp.. 11 ,1,..),2f('yl, 72)d'yid'y2 

xpl.l1 ),1,72 f('yl ) y2)dyid'y2 
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5Pdv,v - 

1 Poll 

o Pioi 

o Pool 
X 

o Pilo 

o Polo 

o Pioo 

\Oj \P000J 

/ 
PnlI 1,'y2 

I 

xp.111,),1,),2f('y1, 'y2)d'y1dy2 

The summary matrix of partial derivatives can be constructed below. 
/ ôpoor ap000 8paoo Op000 ôp000 

fl 
J.p/3—  0j9 - 

0,61 8/32 (3/33 (9/34 0/35 

Oploo Q21Q!2 8P100 Oploo Q2Q 
801 8/32 8/33 0/34 8/35 

2Q1Q. 2QQ. !1J2QQ 89010 2QQ 
813i 8/32 8/33 8f34 4905 

Q2na Qng .9p,10 19p,10 QflQ 
001 0/32 8/33 ON 0/35 

2QQi 12QQ1 09pool. t9PO01 0P001  
0 /3i 0/32 0/33 0/34 0/3 

0p101 Oplol 3 p101 Op101 Oplol  

8/3k 8/32 0133 0134 8135 

Lboil Qu i (920fl apoll 
9,61 8/32 8/33 0/34 8/3 

8 p111 Oplll Oplll Oplll Op111 

\ 091 0/32 8/33 8/34 0/35 1 
Based on these derivatives and the variance matrix of /3, the estimated variance 

matrix of Pduv can be derived using the delta method. 
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Variance estimation of SENSd and SPECd 

In order to acquire the estimated variance covariance matrix of SENSd and SPECd, 

the delta method was applied again by using derivatives of SENSd and SPECd with 

respect to pd,,,. 

( 
D8 , = 

0 0 0 0 P1O1+p111 POO1+PO11 P1O1+P111 pOQ1+pohl  

p:.1 p.j p.i 

p100+p110 pQ1o+p000 p100+p110 p010+p000 2 0 0 0 0 
p.o po p.o po 

The estimated variance covariance matrix of SEI'TSd and SPECd was derived by: 

' 8CP PduvD 8C 

3.3.4 Estimations using the Gibbs sampling 

The Gibbs sampling 

As the number of random effects in the generalized linear mixed model (GLMM) in-

creased, the computational burden from the Gaussian Hermite integration increased. 

Bayesian techniques served as alternatives and have become more and more popular 

for solving complex statistical models. In particular, the Gibbs sampling is widely 

applied in Bayesian models, especially those with high-dimensional hierarchical struc-

ture [46, 62, 80, 84, 102]. The theory behind Gibbs sampling can be summarized 

as the following. Suppose that the full conditional distributions for three variables, 

X, Y, and Z, were available. In other words, f(XY, Z), f(YIX,Z) and f(ZIX,Y) were 

known density functions. Given a set of starting values of X, Y, and Z, draws from 

the full conditional distributions were obtained for each of X, Y, and Z. For a large 

number of consecutive draws, the joint distribution of (X, Y, Z) can be approxi-
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mated by the sample distribution of (X, Y, Z) at convergence. The algorithm can 

be summarized in the following steps. 

1. Give a set of starting values (X°, Y°, and Z°). 

2. Sample X' from f(XIY, Z). 

3. Sample +1 from f(YIX', Z). 

4. Sample Zi+1 from fz(ZIXi+l, Yi+1). 

5. Repeat steps 2 - 4 until convergence. 

Geman and Geman [81] showed that the sample distribution of (X, Y, Z) converges 

exponentially to the joint distribution f (X, Y, Z) as the number of iterations ap-

proaches infinity. Adapting the idea from the Gibbs sampling, Zeger and Karim 

proposed an algorithm to overcome computational difficulties in analyzing the gen-

eralized linear mixed model [94]. This project applied the algorithm from Zeger and 

Karim with modifications to perform the meta-analysis of d-dimer. 

Before elaborating details of the algorithm, assumptions of the procedure were 

considered. As proposed by Zeger and Karim, the distribution of fixed effect coeffi-

cients /3 conditional on random effects was independent of the variances of random 

effects. Similarly, the distribution of the variances of random effects was independent 

of the fixed effects. These assumptions can be summarized as the following. 

S f(I3l'y, data, ai,a2) - f(8I'y, data) 

0 f(ai,cr2l/3,'y,data) = f(ai,a21'y) 
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The design matrices in the model, X and Z, were the same as before. The parameters 

to be estimated were 3, c and a2. 

Full conditional distributions of the parameters 

The full conditional distributions of these parameters were derived as the following. 

As stated in Zeger and Karim's paper, the conditional distribution of /3 is approx-

imated by a multivariate normal distribution with mean $ and variance V0. The 

estimated parameters $ and were obtained by solving the log-linear model with 

random effects at the values from the previous step. $ is the vector of estimated 
coefficients from the log-linear model and is the inverse of the Fisher informa-

tion matrix. In our problem, the Fisher information matrix was replaced by the 

observed information matrix. An updated sample of the fixed effect coefficients 3* 

was acquired by taking a sampled value from the multivariate Gaussian distribution, 

Updates of variances of random effects from the conditional distribution of E= (of, o) 

given the random effects 'y was produced by the following steps. 

1. Calculate S = -yj x 'y', where I is the number of independent studies. 

2. Calculate the Choleski decomposition of 8', denoted by H, i.e., 5' = H'H. 

3. Generate W* from Wishart distribution with I - q + 1 degrees of freedom and 

parameter S, where q is the number of random effects in the model. 

4. The variance matrix of random effects is updated by E = (HIW*H)_l . 

In our problem, the number of clusters was the number of independent studies, 

i.e., tables of diagnostic test results from different studies. The number of random 



67 

effects in the model was 2, i.e., q = 2. In addition, the random effects were assumed 

independent. So the off-diagonal elements of E were zero. 

Zeger and Karim claimed that the full conditional distribution of random effects 

'y given the data and current values of fixed effects coefficients /9 did not have a closed 

form and must be derived by numerical techniques. The idea was to find the mode 

and curvature of the joint distribution and to apply the rejection sampling to acquire 

a sampling point of the random effect. This sampling point can be considered as an 

updated value from the conditional distribution of random effects. For conventional 

GLMM with complete data, the mode and curvature can be derived by the iterative 

weighted least squares as mentioned by Zeger and Karim. In our problem, however, 

the form of the likelihood was different from classic models where complete data were 

available. The joint likelihood was the product of likelihoods from all marginal tables. 

The solutions of 9j and estimated variances proposed by Zeger and Karim were not 

applicable to our problem. Instead, the likelihood was treated as a function of the 

unknown random effect parameters. Maximization of the joint distribution, which 

was the product of the likelihood and distribution of random effects, can be achieved 

through the Newton-type algorithm. Given values of /9 and variances of random 

effects from the previous step, the joint likelihood is a function of the random effects 

only. In this circumstance, the mode and curvature of the joint distribution can be 

derived by obtaining the maximum likelihood estimates (MLE) of random effects. 

Because /9 and E are independent, the joint distribution is given by the following 

expression. 

f(dataVy,/3)f('yE)f(/3, E) = 
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In this expression, f(data1l-y, /3) is the likelihood from the th table, namely, 

Because f(J) is the distribution of the variance evaluated at the updated value of 

variance from previous step, it is considered a "constant" with respect to the random 

effects 'y. It is a proportional factor in the maximization of the joint distribution 

and can be removed. The joint distribution is then expressed as the product of the 

likelihood and the distribution of random effects. 

where f (-yi I E) is the bivariate normal density. Again, omitting the "constant" in the 

density, f('yIE) is proportional to: 

f('1IE) o( 

Note that the vector of random effects -yi for the i1h cluster is independent of ran-

dom effects for other clusters. Information in the jth likelihood, L, is related to 'y 

only. Given the values of 9, maximization of Li with respect to -Yi is not affected 

by likelihoods obtained from other tables. This is different from the estimation of 

fixed effects /3, in which all the tables consist of information about the common /3 

parameters. The random effects are cluster-specific. Given current values of /3, max-

imization of the joint likelihood with respect to -yi for each cluster is the same as 

maximization of likelihood from each cluster. 

Let 'j and V"j denote the estimated mode and curvature of the joint distribution, 

p('yj). It is expressed as p('yj) = Denote another Gaussian 

density g('yj) with estimated mean ''j and variance c2v', i.e., N(', c2'O). The rejection 

sampling algorithm was then applied to update the values of random effects. 
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1. generate 'y from g(yj) = N(', c2 ) 

- 2. calculate - p(i)  

3. generate a uniform (0, 1) random value u and let ,(k+1) , .   cig(y) < U 

otherwise return to step 1. 

Zeger and Karim suggested c2 = 2. By the end of these three steps, the vector 

of random effects was updated. 

The Gibbs sampling procedure 

The full conditional distribution of each parameter given the rest was constructed 

above. The Gibbs sampling algorithm can be summarized in the following steps. 

1. Specify initial values of 7i (0) 

2. Estimate fixed effects / and variance f7,3 based on the likelihood of all the data 

with current values of 'y '. 

3. Update values of 3(1) by sampling from Va). 

4. Update values of variance of random effects (k) based on y(/C). 

5. Estimate random effects '5 based on the likelihood with ,8(k+1) and the pre-

defined distribution of random effects with variance 

6. Apply the rejection algorithm to update the random effects (k+1)• 

7. Repeat steps 2 - 6 until convergence. 



70 

Before implementing the above algorithm, the choice of the number of MCMC 

iterations was considered. This issue is related to the convergence assessment in 

MCMC. Although Cowles had reviewed a broad range of methods of convergence 

assessment, there was not a concrete conclusion on which method was superior over 

the others. Zeger and Karim pointed out that the variance of random effects was the 

slowest to converge. In particular, if the variance was small, the sequence would have 

extreme long-term dependence. In this problem, 5000, as in most MCMC sampler, 

was chosen to be the number of iterations. With 2000 burn-in, a total of 7000 

MCMC iterations was determined. Convergence of the Gibbs samples was assessed 

by histograms of posterior sample distributions of the parameters. A normal density 

curve centered at the sample mean and with sample variance as curvature parameter 

was super-imposed on the histogram of each parameter. 

Theoretically speaking, the choice of initial values did not affect the estimation 

results. The choice of initial values, however, did have strong impacts on the rate of 

convergence of MCMC, especially in the case of slow convergence. The initial values 

of random effects in this project were sampled from standard normal distribution. 

Recall that the distribution of random effects was assumed as the normal density 

with mean zero and unknown variance. The sampling distribution of initial values 

was similar to the pre-defined distribution but with variance set at one. 



Chapter 4 

Application 

4.1 Description of d-dimer data 

Chapter 3 provided expositions of different algorithms to analyze the dLdimer data, 

where the complete three-dimensional contingency tables were not available. The 

meta-analysis by Stein and colleagues [68] synthesized diagnostic data from studies 

using different cutoffs and different assays. As with other diagnostic tests, the choice 

of cutoff for positivity affected the sensitivity and specificity of d-dimer. The assays 

differed in sensitivity, specificity and variability among patients with suspected deep 

vein thrombosis (DVT). For this project, data extracted from the d-dimer paper were 

confined to a particular cutoff value and assay. The cutoff chosen was "500" and the 

assay was "SL". The combination of 500 cutoff and "SL" yielded the largest number 

of studies among other choices. Within this set of studies, tables from studies using 

either ultrasonography or venography, but not the both, were selected. 

Test property 1 2 3 4 
true positive 16 32 21 31 
false negative 5 5 15 7 
false positive 4 11 6 24 
true negative 28 21 54 33 
sensitivity 0.76 0.865 0.59 0.816 
specificity 0.87 0.656 0.90 0.571 

Table 4.1: DV tables from d-dimer study [68] 

The DV and DU tables from d-dimer study are summarized in Tables 4.1 and 4.2, 

71 
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Test property 1 2 3 
true positive 44 55 25 
false negative 1 20 4 
false positive 43 36 33 
true negative 12 60 46 
sensitivity 0.98 0.73 0.862 
specificity 0.22 0.625 0.582 

Table 4.2: DU tables from d-dimer study [68] 

respectively. The third type of marginal tables was ultrasonography versus venog-

raphy, which was not specified in the paper of d-dimer [68]. A review article of 

the sensitivity and specificity of ultrasonography was selected [6]. In this review, 8 

studies were assessed. The five studies with complete data on sensitivity and speci-

ficity of ultrasonography were chosen. Data from tables between ultrasonography 

Test property 1 2 3 4 5 
true positive 7 14 26 19 17 
false negative 1 11 1 0 4 
false positive 0 0 2 1 6 
true negative 6 18 29 14 20 
sensitivity 0.88 0.56 0.96 1 0.81 
specificity 1 1 0.94 0.93 0.77 

Table 4.3: UV tables from the literature [6] 

and venography are summarized in Table 4.3 and served as the UV tables in this 

project. 

4.2 Outline of applications 

The analysis in this chapter was based on the two types of marginal tables from 

the d-dimer paper [68] and the tables of ultrasonography and venography from the 
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review of ultrasonography [6]. The conditional independence between d-dimer and 

ultrasonography given venography was assumed in all models and simulations. The 

sensitivity and specificity of d-dimer, namely Sd and Cd, were the parameters of 

interest in all models and simulations. The analysis included two modeling strategies: 

the fixed effects model and the random effects model. 

In the fixed effects model, two scenarios were considered: known sensitivity and 

specificity of ultrasonography versus the observed UV tables. In the first scenario, 

the sensitivity and specificity of ultrasonography were assumed to be 0.95. Two 

models were applied in the analysis: treating ultrasonography as silver standard 

(adjusted model) and treating ultrasonography as a perfect reference (unadjusted 

model). In the latter model, sensitivity and specificity of ultrasonography were not 

applicable, nor were the tables between ultrasonography and venography. Estimates 

of Sd and Cd from the two models were compared. In the simulations, the true 

sensitivity and specificity were chosen as 0.81 and 0.77 respectively from the review 

of ultrasonography. The estimated coefficients of the model in the adjusted model 

were used as true parameter values in the simulation. Bias and mean squared errors 

of estimates from simulations of the two procedures were compared. 

In the second scenario, observed tables between ultrasonography and venography 

were incorporated. No parameter values were assumed. Two models were consid-

ered: treating ultrasonography as the silver standard (adjusted model) and treating 

ultrasonography as the gold standard (unadjusted model). Comparisons on the es-

timates and standard errors from the two models were conducted. Simulations were 

performed to examine and compare the properties of estimates. The estimated co-

efficients from the adjusted model were used as pre-defined parameter values in the 
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simulation. Three types of marginal tables were generated in the simulation. 5000 

simulations were conducted. Bias and mean squared errors of estimates from simu-

lations were compared. 

With respect to the random effects model, two random effects were considered: 

random venography and random interaction between d-dimer and venography. The 

data for analysis were the same tables as in the fixed effects model. Two algorithms 

were considered: Gaussian Hermite integration and the Gibbs sampling suggested 

by Zeger and Karim [94]. Results from these procedures were compared in terms of 

estimated model coefficients and the variance of random effects. Simulations were 

conducted using the Gaussian Hermite integration procedure. Estimated coefficients 

and variances of random effects were applied as true parameter values in the sim-

ulation. In all simulations, bias, mean squared error (MSE), and coverage of 95% 

confidence intervals were calculated. 

4.3 Fixed effects model 

Under the assumption of conditional independence between d-dimer and ultrasonog-

raphy, the log-linear model for the three tests was expressed as the following. 

log(md) = X/3 = !3 + /31D +)32U + /33V + /34DV + /35UV 

In this model, md represented individual cell counts; D, U, and V denote d-dimer, 

ultrasonography, and venography, respectively. With the assumption of conditional 

independence between D and U, five independent coefficients, (/3i 132 P3 ,64 /95), were 

the parameters to be estimated. The design matrix X took the same form as that 

presented in Chapter 3. 
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0 0 0 0 0' 

x= 

110000 

101000 

111000 

100100 

110110 

101101 

1 1 1 1 1J 

Again, /90 is a function of the rest 18s in the form of 8o = —log( eX2_0/31_5), where 

X2_6 is the 2' to 6' columns of the X matrix and 131.-.5 is the vector of P, to 0,5. The 

likelihood of the marginal table can be constructed from the observed data table, X, 

and 01-5-

4.3.1 Analysis of two marginal tables with known sensitivity and speci-

ficity of the silver standard 

The first scenario under consideration is a simple structure of available data. In 

this situation, only one DU table and one DV table were available. The UV table 

was not collected but sensitivity and specificity of ultrasonography were known as 

0.95. As discussed in Chapter 3, the likelihood in this situation was subject to 

constraints. The information from the sensitivity and specificity of ultrasonography 

can be transformed into values of model coefficients. Following this principle, the 

likelihood can be written as a function of the remaining coefficients and maximized 

with regards to these coefficients. When there were more than one DU and DV 

tables, the logarithm of the joint likelihood can be expressed as the sum of the 
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logarithm of the likelihood from each table. Maximization can be performed on the 

joint likelihood. 

Most similar DU and DV tables 

Among the DU and DV tables in the previous section, the tables with similar sensi-

tivity and specificity were selected, which occurred in the last column of both tables. 

The sensitivity and specificity in the DU table were 0.862 and 0.582, respectively. 

The sensitivity and specificity in the DV table were 0.816 and 0.571. 

DV table: 

tests V+ V-

D+ 31 24 

D- 7 33 

DU table: 

tests U+ U-

D+ 25 33 

D- 4 46 

With the DU and DV tables specified above, cell probabilities were estimated using 

the Newton-type algorithm. 

000 Pioo Polo Pilo Pool Plol i3oii Pill 

0.374 0.265 0.0197 0.0139 0.0025 0.0139 0.0474 0.2639 

The estimated sensitivity and specificity were calculated from the estimated cell 

probabilities. 

Sd - 0.848, 6, = 0.585 

By the delta method, the estimate variances for Sd and Cd were obtained. 

V Sd VOd 

0.00217 0.00185 

The corresponding standard errors were 0.047 and 0.043, respectively. 

If ultrasonography was treated the same as venography, the estimated sensitivity 

and specificity of d-dimer were: 
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9, = 0.836, Od = 0.581. 

The standard errors of id and Od were 0.045 and 0.042, respectively. 

Most distinct DU and DV tables 

The analysis above was performed on the most similar DU and DV tables. In this 

section, the most different DU and DV tables, based on sensitivity and specificity, 

were examined. The DU table had sensitivity 0.98 and specificity 0.22. The DV 

table had sensitivity 0.59 and specificity 0.90. 

DV table: 

tests U+ U-

D+ 21 6 

D- 15 54 

DU table: 

tests U+ U-

D+ 44 43 

D- 1 12 

The sensitivity and specificity of ultrasonography were assumed 0.95. The estimated 

cell probabilities were presented below. 

73000 Ploo Polo Pilo Pool Plol Poll Pill 

0.32 0.231 0.0168 0.0122 0.00407 0.0169 0.0774 0.3215 

Estimated Sd and Cd were Sd = 0.806 and Od = 0.581 with standard errors 0.044 

and 0.048, respectively. 

If the ultrasonography was treated the same as venography, the estimated sen-

sitivity and specificity were Sd = 0.802 and Od = 0.574 'with standard errors 0.044 

and 0.046. 

Analysis of all DU and DV tables 

In the situations discussed above, only one DU and one DV tables were used in the 

analysis. In this section, all the available tables from the d-dimer paper [68] were ana-
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lyzed. Again, the known parameters of sensitivity and specificity of ultrasonography 

were set at 0.95. 

Using the maximum likelihood algorithm proposed in chapter 3, the cell proba-

bilities were estimated below. 

000 i3100 1010 Pilo Pool Plol Poll i3iii 

0.313 0.073 0.0165 0.00384 0.011 0.0186 0.210 0.354 

Applying the estimated cell probabilities, 8d and Cd were estimated as Sd = 0.81 

and Od = 0.63 with standard errors 0.0245 and 0.0246, respectively. 

If ultrasonography was treated as the gold standard, the estimated Sd and Od 

using all the DU and DV tables were 0.797 and 0.618, respectively. The standard 

errors were 0.024 and 0.024, respectively. 

4.3.2 Simulations of the model with known sensitivity and specificity of 

the silver standard 

In this section, simulations were conducted to examine the performance of the esti-

mates. Two scenarios were considered. In the first scenario, only one DU table and 

one DV table were generated in each iteration. Estimated sensitivity and specificity 

of d-dimer were obtained at the end of each simulation. In the second scenario, 3 DU 

tables and 4 DV tables were generated and estimates were obtained at the end of 

each simulation. The table total was set at 1000 for all simulations. 5000 simulations 

were performed for each model in each scenario. 

Based on the observed tables of ultrasonography, the known sensitivity and speci-

ficity of ultrasonography were chosen at 0.81 and 0.77, respectively. Besides, 4 sets of 
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sensitivity and specificity of d-dimer were used in the simulation as true parameter 

values, which were extracted from Table 4.1. 

8 d Cd 
0.59 0.90 
0.816 0.571 
0.76 0.87 
0.865 0.656 

Table 4.4: Parameter values of sensitivity and specificity of d-dimer for simulations 
in the fixed effects model 

Simulations using one DU table and one DV table 

In the first scenario, only one DU table and one DV table were generated at each 

simulation. Two models were fitted: admitting the imperfection of ultrasonography 

and ignoring the difference between ultrasonography and venography. The data were 

generated using estimated probabilities from the model admitting the imperfection 

of ultrasonography. Estimates were obtained from each model at the end of each 

simulation. Bias with standard errors, mean squared error, and average coverage 

probability of 95% confidence intervals were obtained for each model. 

Before providing details of the simulation procedure, elaboration of generating cell 

probabilities is presented below. First of all, model coefficients should be expressed 

as functions of the known parameters 8 d, Cd, S, C, and prevalence of disease. In 

Chapter 3, the associations between these quantities were provided and summarized 

below. 

Sd = 1 + 

Cd= 
1 

1 + e' 
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su= 
e 32+135 

1 + e$2+15 

1 
1 + e2 

By simple algebra, these equations can be solved for the model coefficients /3i, /92, 
/3j, and /3, as shown below. 

'81 - log ''d 
- Cd 

/32 = 109 'CC" 

/34 = log1. - log 1  

/35 = log- - 

The expression for 03 was derived by the following steps. First of all, the prevalence 

was expressed as the sum of cell probabilities at venography=1. 

prevalence = P(V+) = P.i. = pin + Pail + Pioi + pool 

Each of the above 4 components on the right-hand side can be expressed as the 

function of model coefficients. 

Pill = 

Pan 

Pioi = 

Pool 

$j+/32+133+/34+/95 

i+& +eLl2 +e$1+$2 +e3 +eLhl +133+134 +132+03+135 +c12+13345 

&2 +/33+135 

i+a131 +2 +&1+132 +3 .fj31+133+134 +e/32+/33+/35 +1133+4+5 

/31+/93+$4 

l+c131 + 02 +e131+I32 +e133 +5/31+133+134 +582+03 -1-05 +e1311-12 1-3 +84+05 

l+e131 +502 +s1+ft2 +& 3 +&1 +83+134 +5021-133 1-05 +51311-02 1-03+04+/35 

The prevalence can then be expressed as the sum of these four fractions. 

P(V+) = fl1+132+P3+84+05 +502+03+85 +&31+3+04 +e 3 

1+501 +c82 +e1+O2 +e3 +eL3i +03+04+5132+83+05+eL31+02+03+84+05 

By some algebra, /33 can be calculated by the following function. 

03 - log  log  l+e01+e82+e0l+132  
- l_P(V+)  1+elh+04+5132+05+501+02+04+05 
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Substituting representations of ,Bi, /32, /34, /35, and the prevalence into the function 

above gave rise to the expression of /3g. 

Using the expressions of all these coefficients, the true cell probabilities can be 

derived. The tables can then be generated by the cell probabilities and table total. 

The simulation procedure is summarized below. 

1. Calculate parameter values of cell probabilities based on known sensitivity and 

specificity of ultrasonography and d-dimer as well as disease prevalence set at 

0.7. 

2. Generate a three-way contingency table based on cell probabilities in step 1 

and table total 1000. 

3. Obtain the marginal DU table by summing cell counts from step 2 over the 

index of venography. 

4. Generate a new three-way contingency table using cell probabilities in step 1. 

5. Obtain the marginal DV table by summing cell counts from step 4 over the 

index of ultrasonography. 

6. Fit the model admitting that ultrasonography is an imperfect reference to the 

tables generated in step 3 and 5. Estimate sensitivity and specificity of d-dimer 

and corresponding 95% confidence intervals were obtained. 

7. Fit the model ignoring the difference between ultrasonography and venography 

to the tables generated in step 3 and 5. Estimates of sensitivity and specificity 

of d-dimer and corresponding 95% confidence intervals were obtained. 
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8. Repeat steps 2 - 7 5000 times. For each model, the bias and mean squared 

error of estimated sensitivity and specificity of d-dimer were calculated. 95% 

coverages of the 95% confidence interval of sensitivity and specificity of d-dimer 

were calculated for each model. 

Settings Sd(0.59) Cd(0.90) S(0.81) C(0.77) Sd(0.816) Cd(0.571) S(0.81) C(O.77) 
Bias Sd1 (s.e.) -0.0253 (0.0136) -0.0199 (0.0109) 
Bias Cd, (s.e.) -0.0979 (0.0155) -0.0775 (0.0193) 
MSE Sdl 0.000827 0.000514 
MSE Cd1 0.00983 0.00638 
95% coverage Sd1 0.535 0.568 
95% coverage Cd, 0 0.0228 
Bias Sd2 (s.e.) -7.57e-05 (0.0143) 0.000172 (0.0115) 
Bias Cd2 (s.e.) 0.000223 (0.0159) 0.000181 (0.0237) 
MSE Sd2 0.000204 0.000132 
MSE Cd2 0.000254 0.000561 
95% coverage Sd2 0.949 0.952 
95% coverage Cd2 0.945 0.953 

Table 4.5: Sd1 and Cd1: sensitivity and specificity of d-dimer from the unadjusted 
fixed effects model using one table of each type; 8d2 and Cd2: sensitivity and speci-
ficity of d-dimer from the adjusted fixed effects model using one table of each type. 

Table 4.5 summarizes the results from simulations using the first two sets of 

sensitivity and specificity of d-dimer in Table 4.4. Table 4.6 displayed the results 

from simulations when the true sensitivity and specificity of d-dimer took the last 

two rows of values in Table 4.4. 

In both tables, biases of Sd and Cd from the model ignoring the imperfection 

of ultrasonography were much larger than those from the model adjusting for the 

difference between ultrasonography and venography. Estimates of 8d and Cd from 

the adjusted model were almost unbiased. The corresponding coverages of Sd and 

Cd were very close to 95%. The coverages of Sd and Cd in the unadjusted model, 
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Settings Sd(0.76) Cd(0.87) S(0.81) C(0.77) Sd(0.865) Cd(O.656) S(0.81) C(0.77) 

Bias 8dl (s.e.) -0.0321 (0.0121) -0.0270 (0.00990) 
Bias Cd1 (s.e.) -0.126 (0.0168) -0.104 (0.0192) 
MSE Sd1 0.00118 0.000824 
MSE 8 dl 0.0161 0.0112 
95% coverage Sd1 0.242 0.229 
95% coverage Cd1 0 2e-04 
Bias 8d2 (s.e.) 0.000399 (0.0127) -8.74e-06 (0.0104) 
Bias Cd2 (s.e.) 0.000412 (0.0179) 0.000441 (0.0233) 
MSE 8 d1 0.000162 0.000108 
MSE Sd1 0.000322 0.000542 
95% coverage Sd2 0.949 0.955 
95% coverage Cd2 0.944 0.948 

Table 4.6: Sd1 and sensitivity and specificity of d-dirner from the unadjusted 
fixed effects model using one table of each type; Sd2 and Cd2: sensitivity and speci-
ficity of d-dirner from the adjusted fixed effects model using one table of each type. 

however, were extremely low, especially in specificity. This was due to the large bias 

and the relatively small standard error in estimating specificity in the unadjusted 

model. 

Figures 4.1, 4.2 and 4.3 displays the sampling distributions from the unadjusted 

and adjusted models when the true sensitivity and specificity of d-dimer were 0.76 

and 0.87, respectively. The vertical lines in all the histograms denoted the true 

parameter values. The true sensitivity fell at the right tail end of the sampling 

distribution of estimates from the unadjusted model. The distance between the 

center of the sampling distribution and the true sensitivity was the absolute bias 

0.032, which was larger than twice the standard error 0.024. Twice the standard error 

was approximately half the width of the 95% confidence intervals. In other words, 

the absolute bias was larger than half the width of the 95% confidence intervals. 

Consequently, only a small portion of the confidence intervals on the right-hand side 
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Estimates of d—dimer in fixed effects model 
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Figure 4.1: Histograms of estimated sensitivity and specificity from unadjusted and 
adjusted fixed effects model using one table of each type 
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Fixed effects model with known Su and Cu 
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Figure 4.2: Boxplots of estimated sensitivity from unadjusted and adjusted fixed 
effects model using one table of each type. True value of sensitivity is 0.76. 
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Fixed effects model with known Su and Cu 
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Figure 4.3: Boxplots of estimated specificity from unadjusted and adjusted fixed 
effects model using one table of each type. True value of specificity is 0.87. 
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of the sampling distribution covered the true parameter values. Specifically, the 

confidence intervals of estimated sensitivities larger than 0.76-0.024=0.736 covered 

the true sensitivity (0.76), where 0.736 was approximately the 75 percentile of the 

sampling distribution. Therefore, the coverage of sensitivity was approximately 0.25. 

The magnitude of bias was substantially large in specificity from the unadjusted 

model, almost 10 times the standard error. Therefore, the coverage of true specificity 

was zero. In contrast, the true sensitivity and specificity were located at the center 

of the sampling distribution of estimates from the adjusted model. The coverage of 

true parameter values was very close to 95% in this adjusted model setting. 

In the analysis from the previous section, sensitivity and specificity of ultrasonog-

raphy were very high, 0.95. The resulting estimated sensitivity and specificity values 

of d-dimer from the two models were very close to each other. In the simulation in 

this section, however, the sensitivity and specificity of ultrasonography were not as 

high as 0.95. Results from simulations indicated that bias would be substantial with 

reference test that was even moderately different from the gold standard. 

Simulations using multiple DU and DV tables 

In this scenario, multiple tables of each type of DU and DV were generated at each 

iteration. Parameter values of model coefficients were calculated following the same 

procedure as that in the previous simulations. The procedure of simulation was 

summarized below. 

1. Calculate parameter values of cell probabilities based on known sensitivity and 

specificity of ultrasonography and d-dimer as well as fixed disease prevalence 

of 0.7. 
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2. Generate a three-way contingency table using cell probabilities in step 1. 

3. Calculate a marginal DU table by summing cell counts from step 2 over the 

index of venography. 

4. Repeat steps 2 and 3 three times to generate three independent DU tables. 

5. Generate a three-way contingency table using cell probabilities in step 1. 

6. Calculate a marginal DV table by summing cell counts from step 2 over the 

index of ultrasonography. 

7. Repeat steps 5 and 6 four times to generate four independent DV tables. 

8. Fit the model acknowledging the imperfection of ultrasonography to the tables 

in step 4 and 7. Estimate sensitivity and specificity of d-dimer and correspond-

ing 95% confidence intervals. 

9. Fit the model ignoring the imperfection of ultrasonography to the tables in 

step 4 and 7. Estimate sensitivity and specificity of d-dimer and corresponding 

95% confidence intervals. 

10. Repeat steps 2 - 9 5000 times. For each model, calculate the bias and mean 

squared error of estimated sensitivity and specificity of d-dimer, 95% coverage 

of the 95% confidence intervals. 

Results from simulations are summarized in Table 4.7 and Table 4.8. Estimates 

from the adjusted approach were almost unbiased with 95% coverage of sensitivity 

and specificity of d-dimer. In the analysis of multiple DU and DV tables, biases of Sd 
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Estimates of d—dimer in fixed effects model 
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Figure 4.4: Histograms of estimated sensitivity and specificity from unadjusted and 
adjusted fixed effects model using multiple tables with known sensitivity and speci-
ficity of the silver standard 
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Fixed effects model with known Su and Cu 
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Figure 4.5: Boxplots of estimated specificity from unadjusted and adjusted fixed 
effects model using multiple tables with known sensitivity and specificity of the 
silver standard 
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Figure 4.6: Boxplots of estimated specificity from unadjusted and adjusted fixed 
effects model using multiple tables with known sensitivity and specificity of the 
silver standard 
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Settings Sd(0.59) Cd(0.90) S(0.81) C(0.77) Sd(O.816) Cd(0.571) S(0.81) C(0.77) 
Bias Sd1 (s.e.) -0.0215 (0.00720) -0.0171 (0.00574) 
Bias Cd1 (s.e.) -0.0854 (0.00807) -0.0675 (0.0102) 
MSE Sdl 0.000513 0.000324 
MSE Cd1 0.00735 0.00466 
95% coverage Sd1 0.152 0.156 
95% coverage Cd1 0 0 
Bias Sd2 (s.e.) 0.000102 (0.00741) -4.24e-05 (0.00600) 
Bias Cd2 (s.e.) 9.58e-05 (0.00801) -4.59e-05 (0.0120) 
MSE 5.50e-05 3.60e-05 
MSE 6.42e-05 0.000144 
95% coverage Sd2 0.953 0.949 
95% coverage Cd2 0.954 0.954 

Table 4.7: Sd1 and Odl: sensitivity and specificity of d-dimer from the unadjusted 
fixed effects model using multiple tables; Sd2 and Cd2: sensitivity and specificity of 
d-dixner from the adjusted fixed effects model using multiple tables 

and Cd estimates from the unadjusted model were slightly reduced compared to those 

when only one table from each type was analyzed. But the standard errors of the 

bias were substantially reduced when multiple tables were analyzed. The reduction in 

standard error outweighed that in the bias. Consequently, the coverage of sensitivity 

in the simulation with multiple tables was lower than that in the simulation with 

only one DU table using the unadjusted model. 

The sampling distributions of the unadjusted and adjusted models were presented 

in Figures 4.4, 4.5, and 4.6. The estimates from the unadjusted model were centered 

away from the true parameter values, whereas those from the adjusted model were 

centered on the true parameter values. Similar to the discussion in the situation 

with one table, the large biases relative to the standard errors provided a plausible 

explanation of why the 95% coverage probability from the unadjusted model was 

very small. 
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Settings Sd(0.76) Cd(0.87) S(0.81) C(0.77) Sd(0.865) Cd(0.656) S(0.81) C(0.77) 
Bias Sdl (s.e.) -0.0278 (0.00640) -0.0229 (0.00527) 
Bias Cd1 (s.e.) -0.110 (0.00880) -0.0907 (0.0103) 
MSE Sd1 0.000812 0.000550 
MSE Cd1 0.0121 0.00833 
95% coverage Sd1 0.0072 0.007 
95% coverage Cd1 0 0 
Bias 8d2 (s.e.) -8.06e-05 (0.00664) 6.64e-05 (0.00545) 
Bias Cd2 (s.e.) -3.39e-05 (0.00888) -6.06e-06 (0-0119) 
MSE Sdl 4.42e-05 2.97e-05 
MSE Cd1 7.89e-05 0.000142 
95% coverage Sd2 0.950 0.951 
95% coverage Cd2 0.954 0.952 

Table 4.8: Sd1 and O: sensitivity and specificity of d-dimer from the unadjusted 
fixed effects model using multiple DU and DV tables; Sd2 and Cd2: sensitivity and 
specificity of d-dimer from the adjusted fixed effects model using multiple DU and 
DV tables 

4.3.3 The effect of disease prevalence on the bias in the unadjusted model 

In the results above, the biases in estimating sensitivity and specificity of d-dimer 

from the unadjusted model were much larger than those from the model accounting 

for the difference in reference tests. To further investigate this bias, simulations were 

performed using different values of disease prevalence and diagnostic characteristics 

of ultrasonography. The prevalences of disease were chosen from 0.1 to 0.9 with 

the spacing of 0.2. Three sets of sensitivity and specificity of ultrasonography were 

applied. Two forms of data were considered: 1 table for each marginal type and 

multiple tables for each marginal type. For each form of data, 1000 simulations were 

performed with table total 1000. 

At the end of the simulation, the magnitudes of biases in estimated sensitivity 

and specificity were plotted against the values of disease prevalence. Results from 
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Figure 4.7: Effect of disease prevalence on the magnitude of bias in sensitivity and 
specificity using the unadjusted model when sensitivity and specificity of the silver 
standard are known 
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simulations were summarized and displayed in Figure 4.7. When there were 1 DU 

and 1 DV tables for analysis, the absolute bias in estimating sensitivity decreased as 

the prevalence of disease increased, regardless the choice of sensitivity and specificity 

of the silver standard. The absolute bias in estimating specificity, on the other hand, 

increased as the prevalence of disease increased, regardless the values of diagnostic 

characteristics of the silver standard. For the same value of disease prevalence, biases 

were smaller when the silver standard had high sensitivity and specificity than those 

when a poor reference standard was applied. The same phenomena were observed 

in the simulations with multiple tables. 

4.3.4 Comparison between the analysis using all tables and the analysis 

using tables from the test and gold standard only 

The above simulations provided evidence that the model adjusting for the imper-

fection of ultrasonography produced estimates with very small biases and had much 

higher efficiency than the model ignoring the difference between the two references. 

In this section, the adjusted model was compared to the model using the DV tables 

only. Both approaches were expected to produce estimates with similar biases. The 

number of tables was the same as that in the previous simulation. The same sets of 

parameter values of Sd, Cd, S, C and disease prevalence of 0.7 were applied. 

Results in Table 4.9 and Table 4.10 indicate that coverages of 95% confidence 

interval were very close to 0.95 in both analyses. The standard errors and mean 

squared errors using all the tables were smaller than those from the analysis using 

DV tables only. The ratio of the mean squared errors from the analysis using both 

DU and DV tables over that from the analysis using DV tables only was smaller than 
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Settings Sd(0.59) Cd(0.90) S(0.81) C(0.77) Sd(O.816) Cd(0.571) S(0.81) C(0.77) 
Bias 8d1 (s.e.) 0.000101 (0.00932) -0.000103 (0.00744) 
Bias Cd1 (s.e.) -0.000112 (0.0085) -0.000160 (0.0143) 
MSE Sd1 8.68e-05 5.53e-05 
MSE Cd1 7.22e-05 0.000205 
95% coverage 8d1 0.952 0.941 
95% coverage Cd1 0.952 0.948 
Bias 8d2 (s.e.) -4.32e-05 (0.00744) -0.000119 (0.00611) 
Bias Cd2 (s.e.) -0.000121 (0.00797) -0.000170 (0.0124) 
MSE Sd2 5.53e-05 3.74e-05 
MSE Cd2 6.35e-05 0.000153 
95% coverage Sd2 0.951 0.946 
95% coverage Cd2 0.952 0.946 

Table 4.9: Sd1 and G1d1: sensitivity and specificity of d-dimer from the fixed effects 
analysis using DV tables only; Sd2 and Cd2: sensitivity and specificity of d-dimer 
from the fixed effects analysis using all DU and DV tables 

1. This indicated that the model using both DU and DV tables was more efficient 

than the model using DV tables only. Using studies from the gold standard alone 

and excluding studies using the imperfect reference in the meta-analysis resulted in 

loss of efficiency. 

In summary, the estimators from the model adjusting for the difference between 

the two references and using all tables had very small biases. Incorporating the 

data from d-dimer and the imperfect reference provided more information on the 

diagnostic characteristics of d-dimer and, hence, smaller mean squared errors than 

using tables from the gold standard alone. 

4.3.5 Analysis of three types of marginal tables 

The model above dealt with situations where DU and DV tables were available 

but not the UV table. The clinical performance of the silver standard, instead, was 
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Settings Sd(0.76) Cd(0.87) S(0.81) C(0.77) Sd(0.865) Cd(0.656) S(0.81) C(0.77) 
Bias S (s.e.) -0.000198 (0.0080) 0.000120 (0.00639) 
Bias Cd1 (s.e.) -8.36e-05 (0.0097) -0.000214 (0.0136) 
MSE Sd1 6.46e-05 4.08e-05 
MSE Cd1 9.45e-05 0.000186 
95% coverage 8d1 0.950 0.951 
95% coverage Cd1 0.951 0.952 
Bias Sd2 (s.e.) -0.000149 (0.00663) 0.000124 (0.00547) 
Bias Cd2 (c.e.) -7.06e-05 (0.0091) -9.71e-05 (0.0120) 
MSE Sd2 4.39e-05 3.00e-05 
MSE Cd2 8.29e-05 0.000143 
95% coverage Sd2 0.950 0948 
95% coverage Cd2 0.951 0.951 

Table 4.10: Sd1 and Cd1: sensitivity and specificity of d-dimer from the fixed effects 
analysis using DV tables only; Sd2 and Cd2: sensitivity and specificity of d-dimer 
from the fixed effects analysis using all DU and DV tables 

known. In a general situation of metaranalysis of diagnostic tests, the UV tables were 

available and all three types of marginal tables were collected. The log likelihood of 

the i' DU table, for example, can be written as the following. 

log(Ldu ) = tabl4 x log (pd,,.) 

In this expression, table was the observed table of d-dimer and ultrasonography. 

The marginal probabilities Pdu. were sum of Pduv over levels of venography, taking 

into account the constraint of all probabilities summing to 1. Expressions of Pduv in 

terms of model coefficients were given in Chapter 3. Similar functional forms for the 

log likelihoods of the jth UV table and the kth DV table can be derived. The log of 

joint likelihood function to be maximized was then calculated as the following. 

logL = > log (L) + > log (L) + >k log (L) 
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Maximization of the joint likelihood was implemented via the nlm() function in R. 

The nlm() function applies the Newton-type procedure to locate the minimum of a 

function. The negative log likelihood was specified in the nlm() and a random sample 

of six uniformly distributed values was given as the starting values of the estimation. 

The nlm() function produced the second derivatives of the likelihood with respect 

to the parameters /3. The inverse of the negative of second derivatives provided an 

asymptotic estimated variance covariance matrix of 3. 

In this analysis, all the tables from Table 4.1, 4.2, and 4.3 were used. The 

estimated cell probabilities were listed below. 

23000 23ioo 230io Pilo Pool 23ioi 23oii 23iii 

0.334 0.163 0.0258 0.0126 0.018 0.0825 0.0652 0.299 

The estimated sensitivity and specificity of d-dimer were given as the following. 

Sd = 0.821, Od = 0.672 

By the delta method, the estimate variances for Sd and Cd were obtained. 

VSd Vod 

0.000600 0.000818 

The standard errors of and Cd were 0.0245 and 0.0286, respectively. 

4.3.6 Simulations on the model using three types of marginal tables 

Simulations were conducted using estimated coefficients in the above analysis as 

parameter values. One marginal table of each type was obtained by generating a 

multinomial three-dimensional contingency table and summing over levels of the 

third factor. The estimated cell probabilities were listed below. 
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P600 PI'oo p6io Pilo P6oi pI'oi p6ii pfii 

0.334 0.163 0.0258 0.0126 0.018 0.0825 0.0652 0.299 

Data from the d-dimer paper [68] consisted of 3 DU tables and 4 DV tables. In 

the review of ultrasonography [6], 5 UV tables were available. In the simulations, 

the same number of marginal tables of each type was generated. In other words, 

3 DU tables, 4 DV tables, and 5 UV tables were generated at each iteration. The 

simulation procedure can be summarized as below. 

1. Generate one multinomial table from Multinom(1000, pd,,,). 

2. Obtain a marginal table from step 1. 

3. Repeat steps 1 and 2 to generate marginal tables for each type: 3 DU, 4 DV, 

and 5 UV tables. 

4. Fit the fixed effects model into the (3+4+5)=12 tables and acquire estimates 

of 3, , and its variance-covariance matrix, . 

5. Estimate sensitivity and specificity of d-dimer, Sd and Od, based on  

6. Estimate variances of sensitivity and specificity of d-dimer using the delta 

method. 

7. Construct 95% confidence interval of ,'d and Cd using the point estimates and 

corresponding estimated variances using these expressions: 

8d ± 1.96/ d and Cd ± 1.96Jad 
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8. If the 95% confidence interval included the true sensitivity (specificity), count 

as 1 in the coverage; if not, count as 0. 

9. Repeat steps 1-8 5000 times and calculate bias, mean square error (MSE), and 

the average coverage rate for sensitivity and specificity. 

Parameters True values Mean of estimates Bias (s.e.) MSE 95% coverage 
Sd 0.821 0.821 5.38e-05 (0.00756) 5.72e-05 0.945 
Cd 0.672 0.672 1.37e-05 (0.00834) 6.95e-05 0.952 

Table 4.11: Simulation on the fixed effects model using three types of marginal tables 

Results in Table 4.11 indicated that the algorithm, produced estimates of Sd and 

Cd with very small biases and small mean squared errors. The coverage rates of the 

estimates from simulations were very close to 95%. 

Treating ultrasonography as the gold standard 

If ultrasonography was treated the same as venography, the marginal tables reduced 

to 1 type, i.e., DV tables. Consequently, the DV tables for analysis combined DU 

and DV tables, i.e., 7 tables in total. The log-linear model can be written in the 

following form. 

log (mdv) + fiD + /3V + /3DV 

The analysis produced point estimates of 19*s as the following. 

* 

1 2* 3* 

—0.481 —1.494 1.85 

The corresponding estimate variances were derived from the nlm() function in R. 
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0.0103 0.0215 0.0323 

The estimated sensitivity and specificity of d-dimer were: = 0.797 and G' = 0.618 

with standard errors 0.024 and 0.024, respectively. Comparing these estimates with 

estimates from the 3-table analysis (&=0.821 and Cd=0.672) means that ignoring 

the fact that ultrasonography was not error-free underestimated the sensitivity and 

specificity of d-dimer. The magnitude of the difference was sizeable. 

Simulations comparing the unadjusted and adjusted models 

Simulations were conducted to compare the two methods: ultrasonography as imper-

fect reference (adjusted model) versus ultrasonography as gold standard (unadjusted 

model). In the simulation, analysis of the same set of marginal tables by the two 

methods was compared. The estimated cell probabilities from the adjusted model 

were used as true parameter values. In other words, the true sensitivity and speci-

ficity for simulations were 0.821 and 0.672. Bias, MSE, and 95% coverage of Sd and 

Cd were obtained for both models. The simulation process can be summarized below. 

1. Generate a multinomial table from Multinomial(1000, Pciuv). 

2. Repeat step 1 to generate marginal tables for each type: 3 DU, 4 DV, and 5 

UV tables. 

3. Fit the fixed effects model of imperfect ultrasonography using all the tables in 

step 2 and acquire estimates of sensitivity and specificity of d-dimer, Sd and 

Cd, and variances. 
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4. Construct 95% confidence intervals of d and Cd using the point estimates and 

their associated variances with the following expressions. 

Sd ± 1.96J d and Cd ± l.96/Vad 

5. If the 95% confidence interval included the true sensitivity(specificity), count 

as 1 in the coverage; if not, count as 0. 

6. Fit the model where ultrasonography was the gold standard to the tables in 

step 2. The DU and DV marginal tables in step 2 were combined as one type 

of marginal tables, The UV tables were not used. 

7. Obtain Sd, Cd and corresponding variances. 

8. Construct 95% confidence intervals of Sd and Od. 

9. If the 95% confidence interval included the true sensitivity (specificity), count 

as 1 in the coverage; if not, count as 0. 

10. Repeat steps 1-9 5000 times and calculate bias, mean square error, and the 

average coverage rates for sensitivity and specificity on each model. 

Models unadjusted model adjusted model 
Bias Sd (s.e.) -0.0185 (0.00722) -2.22e-5 (0.00753) 
Bias Cd, (s.c.) -0.0378 (0.00772) -6.42e-06 (0.00844) 
MSE Sd 0.000396 5.66e-05 
MSE Cd 0.00149 7.12e-05 
95% coverage 8d 0.265 0.948 
95% coverage Cd 0 0.944 

Table 4.12: Comparison between the unadjusted and the adjusted fixed effects model 
on all three types of marginal tables 
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Estimates of d—dimer in fixed effects model 
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Figure 4.8: Histograms of estimated sensitivity and specificity from the unadjusted 
and the adjusted fixed effects model using all three types of tables 
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Fixed effects model with all three types of tables 
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Figure 4.9: Boxplots of estimated sensitivity from the unadjusted and the adjusted 
fixed effects model using all three types of tables 
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Fixed effects model with all three types of tables 
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Figure 4.10: Boxplots of estimated specificity from the unadjusted and the adjusted 
fixed effects model using all three types of tables 
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Results from the two models were compared in Table 4.12. The biases from the 

unadjusted model were more than 10 times larger than the standard errors and the 

95% coverage rates of Sd and Cd were extremely low, whereas those from the adjusted 

model were very close to 0.95. Figures 4.8, 4.9, and 4.10 displayed the sampling 

distributions of estimates from the two models. All the sampling distributions were 

symmetric. The estimated sensitivities from the unadjusted model were centered 

around 0.8, whereas those from the adjusted model were centered nicely on the 

parameter value. The shapes of sampling distributions from the two models were 

similar. With respect to estimating specificity, the estimates from the unadjusted 

model were centered on 0.63. In the adjusted model, estimates were centered nicely 

on the true parameter value. The shapes of the distributions from the two models 

were similar. With the small standard errors relative to the bias from the unadjusted 

model, the coverage of 95% confidence intervals was very low. This explanation is 

similar to those described in the previous section. 

4.3.7 The effect of disease prevalence on the magnitude of bias in the 

unadjusted model 

Similar to the analysis with known sensitivity and specificity of the silver standard, 

the unadjusted model ignoring the difference between the two references produced 

severely biased estimates. Simulations were performed to investigate the effect of 

disease prevalence on the magnitude of bias in the unadjusted model. 

Figures 4.11 and 4.12 provided graphical representations of the absolute biases in 

estimating sensitivity and specificity against different disease prevalence. The three 

curves in each plot represented different diagnostic performances of ultrasonography. 
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Effect of disease prevalence on bias of sensitivity 
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Figure 4.11: Effect of disease prevalence on the magnitude of bias in estimating 
sensitivity using the unadjusted fixed effects model on all three types of tables 
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Effect of disease prevalence on bias of specificity 
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Figure 4.12: Effect of disease prevalence on the magnitude of bias in estimating 
specificity using the unadjusted fixed effects model on all three types of tables 
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The same conclusions can be arrived as those where the sensitivity and specificity 

of the silver standard were known. The bias in estimating sensitivity using the 

unadjusted model decreased as the prevalence of disease increased. The bias in 

specificity, in contrast, increased as the prevalence of disease increased. At the same 

value of disease prevalence, the biases in sensitivity and specificity were small if the 

silver standard had high diagnostic accuracy. 

4.3.8 Comparison between the analysis using all tables and the analysis 

using tables from the test and gold standard only 

In order to compare the efficiencies of the analysis using DV tables only and the 

analysis using all the tables, simulations were performed and mean squared errors 

from the two analyses were compared. 

Analysis DV tables only all tables 
Bias Sd (s.e.) 2.20e-05 (0.0089) -2.67e-05 (0.0074) 
Bias Cd (s.e.) 0.000203 (0.0103) 0.000117 (0.0085) 
MSE Sd 7.92e-05 5.50e-05 
MSE Cd 0.000106 7.25e-05 
95% coverage Sd 0.948 0.953 
95% coverage Cd 0.948 0.946 

Table 4.13: Comparison between the fixed effects model using test versus gold stan-
dard only and the fixed effects model using all three types of tables 

The two approaches produced similar bias. The standard errors from the analysis 

using all tables were slightly smaller than those from the analysis using DV tables 

only. Consequently, the mean square errors from the analysis using all tables were 

smaller than those from the analysis using DV tables only. 

The relative efficiency of the analysis using DV tables only over that using all 
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tables was calculated as the ratio of mean squared error of the analysis using all 

tables over the mean squared error of the analysis using DV tables only. The relative 

efficiency of estimating sensitivity from the two models was 0.69. The same ratio in 

estimating specificity of d-dimer was 0.68. The analysis using all the tables in the 

fixed effects model was much more efficient than the analysis using the DV tables 

only. In other words, the meta-analysis using only tables from the gold standard 

resulted in loss of around 30% of the information. The additional DU tables provided 

diagnostic information of d-dimer as long as appropriate adjustments were taken into 

account. The analysis using all tables carried more information than the analysis 

using DV tables only. 

4.4 Model accounting for the heterogeneity in disease preva-

lence across studies 

4.4.1 Analysis of log-linear model with random disease prevalence only 

As discussed in chapter 3, the disease prevalence varied from study to study. As-

suming that venography was a perfect diagnostic tool of DVT, the prevalence of 

DVT was represented by the marginal probability of venography. In the log-linear 

model, it depended most strongly on the coefficient of venography. Taking into ac-

count difference in disease prevalence across studies, the random effects model can 

be expressed as the following. 

log(m) = X13 + Z-y = /3 + /31D +,62U + /93V + /34DV + 5UV + 'yV 
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In this model, m was the vector of cell counts, 3 was the vector of fixed effect 

coefficients and 'y was the random effect of disease prevalence. Besides the conditional 

independence assumption between D and U, the normal distribution of 'y with mean 

0 and variance u 2 was assumed. Two algorithms for the estimation were applied: 

the Gaussian Hermite integration and the Markov Chain Monte Carlo using Gibbs 

sampling. Estimation procedures using these two algorithms were presented below 

to analyze the d-dimer data. 

Gaussian Hermite integration 

As presented earlier, the joint distribution for integration took the following form 

1 00 —s2 f_00 f (data 10, 'y = y2xa)e dx, 

where f was the likelihood function. This integral can be approximated by summa-

tion when using the Gaussian Hermite approximation 

wzf(data/3, 'y 
77 1 

with abscissas, a1, and weights, w1. For the DU table, L(datal/3 , "y) emit. XIO9(Pdu.) , 

where Pd,,. is the sum of Pduv over the levels of venography. The cell probabilities 

Pduv followed the expressions in Chapter 3 with random effects and evaluated at 

= V'oaz. Similarly, the likelihoods for UV and DV tables can be constructed 

and integrated using abscissas and weights. The joint marginal likelihoods can be 

obtained as the product of individual marginal likelihood. Maximization of the joint 

marginal likelihood provided the estimates of model coefficients and the variance of 

random effect. 

Applying all three marginal tables from the d-dimer data, the coefficients of the 

log-linear model were estimated as the following. 
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/33 /34 /35 

—0.860 —2.53 —2.71 2.42 3.56 

with estimated variances, 

1 2 Vp3 V$5 

0.0243 0.104 0.0669 0.0597 0.164 

the estimated variance of the random effect y was a2 = e49047886 = 0.149. In-

tegrating out the random effect, the following unconditional cell probabilities were 

obtained. 

P000 Ploo Polo Pilo Pool Pioi Pon Pill 

0.3324 0.141 0.0265 0.0112 0.0221 0.106 0.062 0.299 

Based on the estimated variance matrix of /3, the variance matrix of Pduv was derived 

using the delta method. 

The estimated sensitivity and specificity of d-dimer were calculated using the 

unconditional cell probabilities. 

id Gd 

0.8271 0.7026 

Estimated variances of 9d and Od were calculated using the delta method, as pre-

sented in Chapter 3. The standard errors of Sd and Od were estimated as 0.024 and 

0.033, respectively. 

MCMC analysis on the model with one random effect 

The analysis of three types of marginal tables from the d-dimer paper using Gibbs 

sampling followed the same procedures as described in Chapter 3. In brief, the 

procedure can be summarized below. 
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1. Specify initial values of o)• 

2. Estimate fixed effects / and variance based on the likelihood of all the data 

with the value of 'y from step 1. 

3. Sample updated values of ,8(r+1) from N($, ). 

4. Calculate the updated values of Sd and Cd based on the updated model coef-

ficients. 

5. Update values of the variance of random effects 02(r) based on 'yr. 
6. Estimate the random effect ' based on the likelihood with 3("+') and the pre-

defined distribution of the random effect with variance 0.2(7'). 

7. Use the rejection algorithm to update the random effect y(7'+l) 

8. Repeat steps 2 - 7 until convergence. 

According to Zeger and Karim's paper [941, the update of the variance of random 

effect a2 (step 4 above) can be derived by the following steps. 

1. Let S= 1yx j. 

2. Calculate the Choleski decomposition of S', i.e., 8' = H'H. 

3. Generate W* from Wishart distribution with I - q + 1 degrees of freedom and 
parameter 5, where I was the number of studies and q was the number of 

random effects. 

4. Update a2 = (H/W*H)_l. 
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For the log-linear model with 1 random effect, 'yj is a scaler for the i1h study. S in 

the above algorithm is a scaler, which is the sum of 'y? from all studies. Therefore, H 

is a scaler, which is the square root of S-1. The updated a2 was a scaler, simplified 

as a2 = , where W* was a sample from Wishart distribution with I-q+1 degrees 

of freedom and parameter S. 

Sensitivity and specificity of d-dimer were updated in each iteration. The MCMC 

algorithm was run for 7000 iterations. Various assessments of convergence were 

applied: Geweke diagnostics, Raftery and Lewis diagnostics, Heidelberg and Welch 

diagnostics. Statistics and plots related to these assessments were obtained from the 

coda package in R. Samples from the first 2000 iterations were treated as burn-in and 

parameters MCMC sample mean MCMC sample variance 

Sd 0.8261 0.00059 
Cd 0.7083 0.00100 

Table 4.14: Gibbs sampling results using the model with random disease prevalence 

were not included in the posterior sample. Characteristics of 5000 MCMC sample 

are summarized in Table 4.14. 

Histograms of posterior sample of model coefficients are displayed in Figure 4.13. 

The posterior sampling distributions of all fixed effect coefficients appear to be nor-

mally distributed and the running averages of the sample are stable. The posterior 

samples of sensitivity and specificity appear to be normally distributed, see Fig-

ure 4.14. The posterior sampling distribution of the variance of random effect is 

positively skewed, see Figure 4.15. 
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The 95% credible set was constructed by the 2•5th percentile and 97•5th percentile 

of the posterior sample. The posterior credible set of sensitivity was (0.775, 0.871). 

The posterior credible set of specificity values was (0.644, 0.767). 

Comparing the results from Gibbs sampling and those from section 4.4.1, the 

estimates of Sd (0.8261) and Cd (0.7083) from the Gibbs sampling were very close to 

those from Gaussian Hermite integration Sd (0.8271) and Od (0.7026). The posterior 

sample variances, 0.00059 and 0.001 for Sd and Cd, were very close to the estimated 

variances obtained from Gaussian Hermite integration and the delta method, 0.00053 

and 0.00116 for d and Od, respectively. The MCMC sample median of variance of 

random effect, cr2, was 0.09, which was slightly lower than the estimate from Gaussian 

Hermite integration, 0.149. Overall, results from Gaussian Hermite integration and 

Gibbs sampling were very consistent. 

4.4.2 Simulations using Gaussian Hermite integration for the model with 

random disease prevalence 

Gibbs sampling and Gaussian Hermite integration provided consistent results in the 

estimation of model parameters assuming random disease prevalence. Therefore, 

simulations using Gaussian Hermite integration were expected to produce the same 

results of simulations using Gibbs sampling. In the following, simulations were con-

ducted using estimates from the Gaussian Hermite integration as true values. The 

procedure is summarized below. 

1. Sample a random effect value from a Normal(0, o2) distribution. 

2. Calculate cell probabilities based on the log-linear model with known fixed 
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effect coefficients and the sampled value of the random effect in step 1. 

3. Acquire a sample of three-dimensional table from the multinomial distribution 

using cell probabilities in step 2. 

4. Derive the DU marginal table from the table in step 3. 

5. Repeat steps 3-4 three times to obtain 3 independent marginal DU tables. 

6. Acquire another three-dimension table from the multinomial distribution. 

7. Calculate the UV marginal table from the table in step 6. 

8. Repeat steps 6-7 five times to obtain 5 independent marginal UV tables. 

9. Acquire a new three-dimensional table from multinomial distribution. 

10. Calculate the DV marginal table from the table in step 9. 

11. Repeat steps 9-10 four times to obtain 4 independent marginal DV tables. 

12. Use the marginal tables from steps 5, 8, and 11 as available data and fit the 

random effects model. 

13. Estimate model coefficients and variance of random effects. 

14. Integrate out the random effect to obtain unconditional cell probabilities based 

on estimated coefficients and variance of the random effect. 

15. Use the probabilities in step 14 to calculate sensitivity and specificity of d-

dimer as well as 95% confidence intervals and examine whether they covered 

the true values. 
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16. Repeat steps 145 1000 times. Calculate bias, mean squared error, and the 

coverage rate of 95% confidence intervals. 

In order to make the cell probabilities sum to 1, calculation of probabilities in 

step 2 followed an algorithm similar to that in the fixed effects model. The intercept 

was a function of the rest parameters in the form of: /3o = —log(> eXI). The 

estimated sensitivity and specificity of d-dimer and 95% confidence interval were 

calculated at the end of each iteration. 

Parameters True values Mean estimates Bias (s.e.) MSE 95% Coverage 

Sd 0.827 0.828 -0.000495 (0.0134) 0.00018 0.951 
Cd 0.703 0.703 0.00010 (0.0162) 0.00026 0.946 

Table 4.15: Simulation results from Gaussian Hermite integration with random dis-
ease prevalence only 

Comparisons of true values and estimates are summarized in Table 4.15. Results 

from simulations showed that the analysis using Gaussian Hermite integration pro-

duced estimates with very small biases and small mean squared errors (MSE). The 

coverages of confidence intervals for sensitivity and specificity were very close to 95%. 

The sample variances of estimated sensitivity and specificity were 0.0001769 and 

0.0002528, respectively. The mean estimated variance of sensitivity was 0.000178, 

which was close to the empirical variance of estimated sensitivity. The mean esti-

mated variance of specificity was 0.00025, which was close to the empirical variances 

of estimated specificity. The mean estimated variance of random effect was 0.368, 

which was higher than the true value of the pre-defined variance value of 0.149. 
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Treating ultrasonography as the gold standard 

If the marginal tables from d-dimer versus ultrasonography were treated as true 

classifications, the model with random venography can be expressed as the following. 

log(mdv) = i3 +)3'D + 3V + /3;DV + .y*V 

In this model, 'y -'-' N(O, a2). The same procedure of estimation was applied to this 

model using Gaussian Hermite integration. With one random effect in the log-linear 

model, the likelihood function for the study was constructed as the following. 

tab1eulog(p ) 

Note that the UV tables were not used in the analysis because ultrasonography was 

considered to be an error-free reference. The likelihood for the ith study integrating 

out the random effect can be approximated by the summation below: 

* En 
k.lwkLi(mdvI/3*,y* = \/cYak). 

The product of these likelihoods constituted the likelihood function which was max-

imized. The four cell probabilities are given by the following expressions. 

P11 = 

Poi   

Pio = 

1  
Poo = 

The first derivatives of pd, with respect to /3, and /3 can be expressed as the 

following. 
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The derivatives of sensitivity and specificity of d-dimer with respect PP 

to the four cell probabilities in this model were: 
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The estimated variance matrix of sensitivity and specificity of d-dimer was given by: 

SC = SCP PdV SCp 

Using the above expressions, estimates of model coefficients were obtained at the 

end of the maximization step. Integrating out the random effect, the estimated cell 

probabilities can then be derived. 

Poo 23io l3oi P11 

0.363 0.224 0.0838 0.329 

The estimated sensitivity and specificity of d-dimer were 0.797 and 0.618, respec-

tively. Applying the delta method, the standard errors of Sd and Cd were 0.024 

and 0.024, respectively. The estimated 8d and Cd were substantially lower than 

those from the model where ultrasonography was treated as an imperfect reference 

(d=0.8261 and Cd=0.7083). 

Simulations comparing the unadjusted and adjusted models 

In order to compare the difference in estimations from the two models, simulations 

were performed. Marginal tables were generated using the procedure of simulations 

on the model with ultrasonography as an imperfect reference. The estimated /9s from 

the adjusted model were applied as true parameter values of fixed effect coefficients 

in the model. In other words, (/9=-0.85958023, /92=-2.52744121, )33=-2.71081593, 

/34=2.42450599, /35=3.56453207) were used as true coefficients in the log-linear model 

and r2=0.149 was used as the true variance of random effect. Thus, the true sen-

sitivity and specificity of d-dimer were set at 0.8271 and 0.7026, respectively, for 

simulations. The two models were applied to the same set of tables to acquire esti-

mates and variances of 8d and Cd. The numbers of DU, DV, and UV tables were 3, 
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4, and 5, respectively. The table total was 300. At the end of simulations, bias, mean 

square error (MSE), and 95% coverage rates from the two models were compared. 

The procedure can be summarized below. 

1. Calculate the true values of 8d and Cd based on true values of I integrating out 

the random effect, which was normally distributed around zero with variance 

a2 (0.149). 

2. Sample a random effect value from Normal(0, 0.149). 

3. Calculate cell probabilities based on the log-linear model with known fixed 

effect coefficients and the sampled value of the random effect in step 2. 

4. Acquire a sample of three-dimensional table from the multinomial distribution 

with cell probabilities in step 3. 

5. Calculate the DU marginal table from the table in step 4. 

6. Repeat steps 4-5 three times to obtain three DU tables. 

7. Acquire another three-dimension table from the multinomial distribution with 

cell probabilities in step 3. 

8. Calculate the UV marginal table from the table in step 6. 

9. Repeat steps 7-8 five times to obtain five UV tables. 

10. Acquire a new three-dimensional table from multinomial distribution with cell 

probabilities in step 3. 

11. Calculate the DV marginal table from the table in step 8. 
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12. Repeat steps 10-11 four times to obtain four DV tables. 

13. Use the marginal tables from steps 6, 9, and 12 as available data and fit the 

random effects model treating ultrasonography as the silver standard. Estimate 

model coefficients, variance of random effects, unconditional cell probabilities, 

sensitivity and specificity. Calculate 95% confidence interval of Sd and Cd. 

14. Use the marginal tables from steps 6, 9, and 12 as available data and fit the 

random effects model treating ultrasonography as the gold standard. Esti-

mate model coefficients, variance of random effects, marginal cell probabilities, 

sensitivity and specificity. Calculate 95% confidence intervals for Sd and Cd. 

15. Repeat steps 2-14 1000 times. 

16. Calculate bias, mean squared error (MSE), and coverage rate of 95% confidence 

intervals for each model. 

Models unadjusted adjusted 
Bias Sd (s.e.) -0.0199 (0.0136) -0.000652 (0.0138) 
Bias Cd (s.e.) -0.0532 (0.0156) 3.52e-05 (0.0160) 
MSE Sd 0.000579 0.000192 
MSE Cd 0.00307 0.000257 
95% coverage Sd 0.659 0.946 
95% coverage Cd 0.039 0.957 

Table 4.16: Comparison between the unadjusted and the adjusted model with ran-
dom venography only using small number of tables 

Note that estimations in the model where ultrasonography was treated as the 

gold standard did not include the UV tables generated at each iteration. Results 

from the two models were compared in Table 4.16. From Table 4.16, the magnitudes 
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Estimates in the random effects model with random disease prevalence 
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of biases from the unadjusted model were much higher than those from the model 

adjusting for the difference between ultrasonography and venography. The model 

ignoring the error introduced by ultrasonography resulted in substantially biased 

estimates of sensitivity and specificity of d-dimer. The mean squared error from this 

model was much higher than that from the adjusted model. The coverage rate of 

sensitivity from the model ignoring the imperfection of ultrasonography was much 

lower than that from the adjusted model. The coverage rate of specificity from the 

model ignoring the difference between ultrasonography and venography was close to 

zero. Estimates of variance of random effects in both models were higher than the 

true variance. 

Figures 4.16, 4.17, and 4.18 display the distributions of estimated sensitivity 

and specificity of d-dimer from the unadjusted model and the adjusted model. The 

distributions from the unadjusted model were not centered on the true parameter 

values, whereas distributions from the adjusted model were centered nicely on the 

true parameter values. Although the standard errors were larger than those in the 

fixed effects model, the biases from the unadjusted model increased, especially in 

specificity. Therefore, the coverage of confidence intervals was still very low in the 

unadjusted model. 

4.4.3 Comparison between the analysis using all tables and the analysis. 

using tables from the test and the gold standard only in the model 

with random disease prevalence 

In this section, two models were compared: the model using the DV tables only and 

the model using all three types of tables. Simulations were performed to assess the 
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efficiency gained by including tables between d-dimer and ultrasonography in the 

analysis. The parameters for simulations were the same as those in the simulations 

comparing the unadjusted and adjusted models. The number of each type of tables 

was set to 10. The table total was 300. 

Analysis DV tables only all tables 
Bias 8d (s.c.) 0.000517 (0.01) 0.000414 (0.00836) 
Bias Cd (s.e.) 0.000172 (0.012) 8.32e-05 (0.00974) 
MSE Sd 0.000101 7.00e-05 
MSE Cd 0.000137 9.49e-05 
95% coverage Sd 0.939 0.949 
95% coverage Cd 0.955 0.953 

Table 4.17: Comparison between the analysis using the test of interest versus gold 
standard only and the analysis using all three types of tables with random disease 
prevalence 

Table 4.17 showed that the coverage of 95% from both models was very close to 

0.95. The standard errors and mean squared errors from the model using the DV 

tables only were larger than those from the model using all tables. The efficiency of 

using DV tables only relative to that of using all tables was 0.69 for sensitivity and 

0.695 for specificity. Using the DV tables only in the analysis resulted in around 30% 

loss of information. In other words, removing the 10 DU tables from the analysis led 

to 30% loss of information on the diagnostic characteristics of d-dimer. 

In order to assess the relative number of DV and DU tables, simulations were 

performed with the same numbers of DV and UV tables as in the simulation in the 

previous section, i.e., 4 DV tables and 5 UV tables. But the number of DU tables 

was reduced to 1 for simulations. The model coefficients and variance of random 

effect were set the same as previous simulations. The table total was 300. The 

relative efficiency of the analysis using DV tables only to the analysis using all tables 
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Analysis DV tables only all tables 
Bias Sd (s.e.) -1.9e-05 (0.0156) -0.00030 (0.0146) 
Bias Cd (s.e.) 0.0012 (0.0183) 0.0014 (0.0171) 
MSE Sd 0.00024 0.00021 
MSE Cd 0.00034 0.00030 
95% coverage 5d 0.95 0.946 
95% coverage Cd 0.95 0.952 

Table 4.18: Comparison between the analysis using 4 tables of the test of interest 
versus gold standard and the analysis using all tables but only one misclassified table 
in the model with random disease prevalence 

was 0.887756 in estimating sensitivity. The relative efficiency was 0.889 in estimating 

specificity. There was approximately 10% reduction in efficiency of the analysis using 

the DV tables only if 4 DV tables and 1 DU table were available. 

When the number of DV tables increased to 10 and the numbers of DU table 

and UV table were both 1, simulations were performed to compare the efficiencies 

from the two analyses. Results from simulations were summarized in Table 4.19. 

Analysis DV tables only all tables 
Bias Sd (s.e.) -5.35e-05 (0.010) -0.000120 (0.00976) 
Bias Cd (s.e.) -4.19e-05 (0.012) 1.53e-05 (0.0114) 
MSE Sd 9.96e-05 9.51e-05 
MSE Cd 0.000134 0.000129 
95% coverage Sd 0.948 0.942 
95% coverage Cd 0.947 0.948 

Table 4.19: Comparison between the analysis using 10 tables of the test of interest 
versus gold standard and the analysis using all tables but only one misclassified table 
in the model with random disease prevalence 

The mean square errors from both analyses were substantially reduced compared to 

the analysis above with 4 DV tables. The relative efficiency of the analysis using 

DV tables only to analysis using all tables was 0.956 in estimating sensitivity. The 
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relative efficiency in estimating specificity was 0.964. 

Compared to the previous simulation, the mean squared errors the analysis using 

DV tables only were very close to those from the analysis using all tables if the 

number of DV tables was ten times that of the DU tables. When the number of DV 

tables was reduced to 4, the efficiency gained by using all tables was slightly increased 

to around 11%. In the end, when only one misclassified table was collected, the loss 

of efficiency using the simple pooled analysis of tables from the gold standard alone 

was small. 

4.5 Model accounting for heterogeneity in disease preva-

lence and association between the test and the gold stan-

dard across studies 

4.5.1 Analysis of the log-linear model with two random effects 

The heterogeneity of disease prevalence was represented by the random effect of 

venography in the log-linear model. In this section, another random effect was 

added to the model to represent heterogeneity of association between d-dimer and 

venography among studies. As discussed in Chapter 3, the log-linear model with two 

random effects for the jth table was written as the following. 

log(m) = X3 + Z-yj = + 31D + /92U + 33V + ,@4DV + 05UV + 'y1V + 'y2DV, 

'Y1i ( ( 0 0 where N To analyze the model with two ran-

72iJ 0 0 U2 ) 
dom effects, two algorithms were applied to estimate parameters: Gaussian Hermite 

integration and the Gibbs sampling. 
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Gaussian Hermite integration on the model with two random effects 

In order to obtain estimates of the fixed effect coefficients ,8, the marginal likelihood 

for each table was required, which was obtained by integrating out the random 

effects from the full likelihood. The integral was approximated by the expression in 

the Gaussian ilermite integration standard format below. 

>1I wiwqf (datal,3, 'Yil = \/cT1aj1, Y2 = \/a2aqi2). 

In this expression, f (data/3, tyi = V'oiazi, 'Yi2 = \/o2aqi2) was the likelihood func-

tion and positions of 'Yu and -Yi2 were replaced by V12ulati, and /u2aqj2. The 

function f was the likelihood of each table and was in one of the following forms. 

Lidu = et 214ub09(Pdu.) 

= et 109(7.) 
ull 

= 6 abi dv elog(.pd.) 

The marginal likelihood of the it4 DU table was approximated by the following 

expression. 

wjwqett tLb0(Pdu.) 

Similar expressions can be derived for UV and DV tables. The marginal probabilities 

Pd., P.uv, and Pd.v were calculated from the cell probabilities Pduv based on the log-

linear model with two random effects. Expressions of the cell probabilities can be 

referred to those from Chapter 3. Using data from the d-dimer paper [68], the model 

coefficients were estimated. 

01 /32 133 /34 /35 

—0.988 —2.46 —2.63 2.60 3.35 
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The estimated standard deviations of random effects were &=0.0005267 and &2=0.5876. 

Meaningful estimates were the sensitivity and specificity of d-dimer based on cell 

probabilities integrating out random effects. The Gaussian Hermite approach was 

applied again for integration. 

000 l3ioo Polo Pilo fiooi l3ioi Poll :iii 

0.333 0.124 0.0284 0.0106 0.0239 0.123 0.0581 0.299 

The resulting estimates of sensitivity and specificity of d-dimer .were 0.8371 and 

0.7287, respectively. The estimated variances of Sd and Od were calculated using the 

delta method. Based on the estimated variance matrix of ,13, the estimated variance 

matrix of Pduv was derived using the delta method. The steps to obtain estimated 

variance covariance matrix of sensitivity and specificity were similar to those in the 

model with one random effect. The standard errors of sensitivity and specificity were 

0.031 and 0.030, respectively. 

Analysis using Gibbs sampling 

In this section, the Gibbs sampling algorithm was applied to analyze the log-linear 

model with two random effects. The procedure using Gibbs sampling in this model 

was similar to that in the model with 1 random effect. Samplid values from condi-

tional distributions were obtained at each step. An important modification in the 

algorithm was the derivation of the conditional distribution of variances given ran-

dom effects, i.e., f(EI'y). The update of variances c and a given 'y followed the 

steps below. 

1. Calculate S(T)  
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2. Generate a sample value W* from the Wishart distribution with I - q + 1 

degrees of freedom and parameter S, where I was the number of studies and q 

was the number of random effects. 

3. Calculate Choleski decomposition of 8(r)_i, namely H, so that S('')_1 = H(r)H(r). 

4. E was updated by (H(')'W*H('))_i. 

5. The off-diagonal of E was replaced by 0 because the random effects were as-

sumed uncorrelated. 

The sensitivity and specificity were updated at each round of the Gibbs sampling 

process. At the end of the iteration, a posterior sample of sensitivity and specificity 

was obtained. 

By deleting the first 2000 burn-in, posterior sampling distributions of sensitivity 

and specificity of d-dimer were displayed in Figure 4.19. The distributions of sensi-

tivity and specificity were normal. The posterior sampling distributions of variances 

of random effect were displayed in Figure 4.20. The histograms showed a positively 

skewed distribution of both variances. 

Parameters MCMC Sample mean MCMC Sample standard deviation 

Sd 0.8095 0.041 
Cd 0.7128 0.0375 

Table 4.20: Gibbs sampling results using the model with random disease prevalence 
and random interaction between d-dimer and venography 

Summary of the posterior samples of sensitivity and specificity of d-dimer was 

given in Table 4.20. Comparisons of the two sets of results from Gaussian Hermite 
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Figure 4.19: Histograms and running averages of posterior samples of sensitivity and 
specificity in the model with two random effects 

Parameters GHI estimates s.e. Gibbs sampling estimates s.e. 
8 d 0.8371 0.031 0.8095 0.041 
Cd 0.7287 0.030 0.7128 0.0375 

Table 4.21: Comparison of estimates from Gaussian Hermite integration and Gibbs 
sampling in the model with two random effects and 0-1 contrast 
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integration and the Gibbs sampling were summarized in Table 4.21. 

Estimations of Sd and Cd from the two methods were slightly different from each 

other. The posterior sample standard deviations of Sd and Cd were slightly different 

from the standard errors from the Gaussian Hermite approach. The posterior sample 

median of o was 0.108 and that of cr was 0.107. They were not consistent with 

estimates from the Gaussian Hermite integrations. Simulations for the model with 

two random effects using Gaussian Hermite integration did not produce satisfactory 

results. The two algorithms did not provide consistent results in the log-linear model 

with two random effects. 

Gaussian Hermite integration using a new design matrix on random effects 

The design matrix of random effects in the above approaches, Z, used the 0 1 contrast. 

As a result of zeros in the matrix, the random effect of venography affected only four 

cells which corresponded to the four rows of 1 in the first column of Z. Similarly, the 

random effect of interaction between d-dimer and venography affected only two cells 

which corresponded to the two rows of 1 in the interaction. In other words, by such 

a model, four cells with zeros in both columns of Z were not affected by the random 

effects if the constraint of summing to one was set aside at this point. 

In order to reflect random variations across all cells, a new design matrix of Z was 

considered. As presented in Chapter 3, the new Z matrix was constructed below. 
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7 V DV 

z= 

1 —1 

1 1 

This Z matrix was applied in the log-linear model with two random effects and in 

the simulations using Gaussian Hermite integration. 

Using the new design matrix in the log-linear model with two random effects, the 

model coefficients were estimated as the following. 

PI /32 /33 ,84 185 

—0.878 —2.5206 —2.7002 2.4493 3.538 

The estimated variances of random effects were & =0.039 and ô=0.0O1946. 

Clinically meaningful measures were the sensitivity and specificity of d-dimer. 

The Gaussian Hermite approach was applied again to acquire unconditional cell 

probabilities by integrating out random effects. 

000 Ploo Polo Pilo loom Pioi P0mm Pill 

0.333 0.139 0.0268 0.0111 0.0224 0.108 0.0621 0.298 

Based on the estimated probabilities, the sensitivity and specificity of d-dimer were 

calculated as 0.8276745 and 0.705982, respectively. Based on the estimated variance 
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matrix of 8, the variance matrix of Pduv was derived using the multivariate delta 

method. Applying the delta method again, the standard errors of 8d and Od were 

calculated as 0.0246 and 0.0342. 

4.5.2 Simulations of the model with two random effects using the new 

design matrix 

The estimated model coefficients (-0.878, -2.5206, -2.7002, 2.4493, 3.538) and vari-

ances of random effects (0.039, 0.001946) were applied as true parameter values for 

1000 simulations. The corresponding true values of sensitivity and specificity of d-

dimer were, as stated in the estimation before, 0.8276745 and 0.705982, respectively. 

The number of each type of marginal tables was the same as that in the analysis. 

The table total was 300. The simulation procedure was summarized below. 

1. Sample ̂11 and from bivariate Normal distribution with mean 0 and variance 

(o U 
matrix E = = 

0 4 
( 0.039 0 

0 0.001946 

2. Calculate cell probabilities based on known model coefficients and values of 

random effects in step 1. 

3. Acquire a sample of three-dimensional table from the multinomial distribution 

with cell probabilities in step 2. 

4. Obtain the DU marginal table from the table in step 3. 

5. Repeat steps 3-4 three times to obtain 3 independent marginal DU tables. 
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6. Acquire another set of three-dimension table from the multinomial distribution 

with the same set of cell probabilities in step 2. 

7. Obtain the UV marginal table from the table in step 6. 

8. Repeat steps 6-7 five times to obtain 5 independent marginal UV tables. 

9. Acquire the third set of three-dimensional table from multinomial distribution 

with the same set of parameter values in step 2. 

10. Obtain the DV marginal table from the table in step 9. 

11. Repeat steps 9-10 four times to obtain 4 independent marginal DV tables. 

12. Use the marginal tables from steps 5, 8, and 11 as available data and fit the 

random effects model. 

13. Estimate model coefficients and variances of random effects. 

14. Integrate out random effects based on estimated coefficients and variances. 

15. Calculate sensitivity and specificity as well as correponding 95% confidence 

intervals. 

16. Repeat steps 1-15 1000 tithes and calculate bias, mean squared error, and 95% 

coverage. 

Results from simulations were summarized in Table 4.22. The mean estimated 

value o was 0.0373 and the mean estimated o was 0.001849. The true values for 

c 2 and o- were 0.039 and 0.001946, respectively. The estimated variances of random 

effects using the new design matrix of random effects in this model were very close 
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Parameters True Values Mean Estimates Bias (s.e.) MSE 95% Coverage 
Sd 0.8276745 0.82716 -0.000512 (0.0143) 0.00021 0.944 
Cd 0.705982 0.70512 -0.000861 (0.0177) 0.00031 0.938 

Table 4.22: Simulations using the new design matrix on the model with two random 
effects 

to the true values. Results from Table 4.22 indicated that estimates of sensitivity 

and specificity in this model were nearly unbiased. The 95% coverage of confidence 

intervals was close to 0.95. Overall, this approach using the new design matrix for 

random effects worked very well for the log-linear model with two random effects. 

4.6 Sample size issues 

In the analysis of d-dimer data, 3 DU tables, 4 DV tables, and 5 UV tables were 

available for the meta-analysis. The parameters being estimated were 5 fixed effect 

coefficients and 2 random effect variances. The number of independent studies was 

small relative to the number of parameters. In this section, simulations were con-

ducted to assess the performance of estimators in the analysis of two situations using 

the random effects model. The first situation was the analysis when the number of 

tables increased, i.e., more studies were incorporated in the meta-analysis. In the 

second situation, the table total of each study was changed. 

4.6.1 The effect of increasing the number of studies 

As discussed above, the number of independent studies was small relative to the 

number of parameters in this project. Simulations were performed to create 10 
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marginal tables of each type. In other words, the total number of tables available 

for analysis at each iteration increased to 30. The table total was still 300. 

First of all, simulations were performed on the model with 1 random effect, i.e., 

the model accounting for heterogeneity among studies due to prevalence of disease. 

The same procedure as stated in section 4.4.1 was applied except that the DU tables, 

DV tables, and UV tables, were generated 10 times at each iteration. Specifically, 

steps 5, 8, and 11 in the simulation in section 4.4.1 were changed to the following. 

• Repeat steps 3-4 ten times to obtain 10 independent marginal DU tables. 

• 

• Repeat steps 6-7 ten times to obtain 10 independent marginal UV tables. 

S 

• Repeat steps 9-10 ten times to obtain 10 independent marginal DV tables. 

Parameters True values Mean estimates Bias (s.e.) MSE 95% Coverage 

Sd 0.827059 0.82747 0.00041 (0.00836) 7.0e-05 0.949 

Cd 0.702573 0.70266 8.32e-05 (0.00975) 9.5e-05 0.953 

Table 4.23: Simulations of the model with random disease prevalence on 10 marginal 
tables of each type 

The 30 marginal tables were applied to estimate all the parameters in the log-

linear model. Results from simulations were summarized in Table 4.23. The mean 

of estimated variances of sensitivity and specificity were very close to the sample 

variances of the estimated sensitivity and specificity. The mean of estimated variance 
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of the random effect was 0.15. With the true variance of 0.149, the estimated variance 

of random effect by 30 tables was greatly improved. 

Furthermore, simulations were performed on the model with two random effects. 

Similar to the modification above, the number of marginal tables was increased to 

10 for each type. Parameter values were the same as those in section 4.5.2. The 

table total was 300. Results from simulations were summarized in Table 4.24. The 

Parameters True values Mean estimates Bias (s.e.) MSE 95% Coverage 
Sd 0.8276745 0.82716 -0.000511 (0.0091) 8.30e-05 0.95 
Cd 0.705982 0.70528 -0.000703 (0.0101) 0.000105 0.96 

Table 4.24: Simulations of the model with two random effects on 10 marginal tables 
from each type 

mean estimated variances of random effects were 0.0376 and 0.00185, which were 

very close to the true parameter values. 

4.6.2 The effect of changing the number of subjects in each study 

The analysis in the previous section investigated the effect of change in the number 

of studies on the performance of models. In this section, the change in the study size 

was examined. In the d-dimer study, the smallest table total was 53. In this section, 

the size of each study was reduced to 50 subjects. The number of studies remained 

at 10 for each type. The two models with random effects were applied. Parameter 

values were the same as those in the previous section 

Results from simulations using the model with random venography only were 

summarized in Table 4.25. The estimated variance of random effect was 0.143. With 

10 tables of each type, the estimate of variance of random effect was still very close 
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Parameters True values Mean estimates Bias (s.e.) MSE 95% Coverage 
Sd 0.827059 0.8268344 -0.000225 (0.0195) 0.00038 0.957 
Cd 0.702573 0.7028733 0.00030 (0.0240) 0.00057 0.944 

Table 4.25: Simulations of the model with random disease prevalence on 10 marginal 
tables from each type and table total of 50 

to the true parameter value, 0.149. When the table total was reduced to 50 for each 

table, the magnitude of bias in estimated sensitivity and specificity was similar to 

the analysis with larger table total, although the standard errors were increased. 

Parameters True values Mean estimates Bias (s.e.) MSE 95% Coverage 
Sd 0.8276745 0.8265 -0.00116 (0.0183) 0.000335 0.98 
Cd 0.705982 0.70865 0.00267 (0.0223) 0.00050 0.96 

Table 4.26: Simulations of the model with two random effects on 10 marginal tables 
from each type and table total of 50 

In the model with two random effects, results from simulations were summarized 

in Table 4.26. The biases in estimating sensitivity and specificity were slightly larger 

than those in the simulation with 300 table total. The standard errors were twice 

those from the simulations with table total of 300. The sample variances of estimated 

sensitivity and specificity were 0.000334 and 0.000498. The mean variances of the 

estimates were 0.00042 and 0.00060, which were larger than the sample variance. In 

other words, the estimated variance from the delta method may slightly overestimate 

the true variance. Therefore, the coverages of 95% confidence intervals were slightly 

larger than 0.95. Besides, the estimated variances of random effects were 0.0363 and 

0.00546, respectively. These two estimates were not close to the true values. The 
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performance of the model with two random effects with small table total was not as 

good as that with large table total. In reality, however, this may not be a concern 

for d-dimer or other diagnostic tests where the silver standard was widely applied. 

With a less invasive reference, it is feasible to increase sample size to overcome this. 

4.7 Simulations with other parameter values 

In order to assess the generalizability of the models proposed in this project, addi-

tional simulations were performed on the two models with random effects. Parame-

ters in the log-linear random effects model can be classified into two groups: model 

coefficients and distribution parameters. The distribution parameters referred to the 

variances of random effects. Under different clinical settings, these two groups of 

parameters may not be the same as those used in this project. Simulations were 

performed to assess the performance of the two models with random effects when 

these two components changed. In all the simulations, 10 tables were generated in 

each iteration with table total of 300. 

4.7.1 Different variances of random effects 

In the first scenario, different variances of random effects were applied in the simula-

tion with the model coefficients unchanged. Two models were fitted to this scenario: 

the model with random venography only and the model with random venography 

and random interaction of d-dimer and venography. 

In the model with random venography only, the true variance of random effect 

was reduced to 0.01, as compared with 0.149 before. Simulations were summarized 
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Parameters True values Mean estimates Bias (s.e.) MSE 95% Coverage 
Sd 0.8271 0.82722 0.000158 (0.0081) 6.51e-05 0.956 
Cd 0.7026 0.70288 0.000306 (0.0097) 9.41e-05 0.951 

Table 4.27: Simulations from the model with random disease prevalence and the 
variance of random effect at 0.01 

in Table 4.27. Results showed that biases of the estimates are very small and the 

95% coverages were very close to 0.95. The mean of estimated variances was 0.0087, 

which was very close the true parameter value 0.01. The model worked very well 

when the variance of random effect was reduced 10 fold. 

On the other hand, the variance of random disease prevalence was increased 

10 fold, i.e., 1.5, to assess the model performance. The parameter values of model 

coefficients were the same as those in the simulation above. Results from simulations 

Parameters True values Mean estimates Bias (s.e.) MSE 95% Coverage 
Sd 0.8271 0.8257 -0.00130 (0.0081) 6.72e-05 0.952 
Cd 0.7026 0.7041 0.00156 (0.0094) 9.09e-05 0.948 

Table 4.28: Simulations from the model with random disease prevalence and the 
variance of random effect at 1.5 

were summarized in Table 4.28. The biases of estimated sensitivity and specificity 

increased as the variance of the random effect increased 10 fold. With 10 tables of 

each type, the standard errors of the biases were still small. The coverage of 95% 

confidence intervals was very close to 0.95. The mean variance of random effect was 

1.23, which was slightly lower than the true value 1.5. The results indicated that 

the model with random venography still performed well even when the variance of 
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random effect increased 10 fold. 

In the model with two random effects, the true variance of random interaction 

was increased to 0.039, the same as the variance of random venography. In other 

words, the true variances of both random effects in the model were 0.039 for the 

simulation. Results from simulations were summarized in Table 4.29. The estimates 

Parameters True values Mean estimates Bias (s.e.) MSE 95% Coverage 
Sd 0.8222 0.82202 -0.000225 (0.0151) 0.000229 0.928 
Cd 0.6983 0.699358 0.00110 (0.0204) 0.000416 0.922 

Table 4.29: Simulations from the model with two random effects on the variances of 
random effects at 0.039 

in this model had very small biases. The coverage of 95% confidence intervals was 

slightly lower than 0.95. The sample variance of estimated sensitivity was 0.0002293 

and that of specificity was 0.00041523. The mean estimated variance of sensitivity 

from each simulation was 0.0002033 and 0.0003727 for specificity. The estimated 

variances were slightly smaller than the sample variance of the estimates. This was 

the reason why the coverage of true parameter value was slightly lower than the 

nominal 0.95. The mean estimated variances of random effects were 0.0394 and 

0.0374, which were very close to the true parameter values 0.039 and 0.039. 

4.7.2 Different model coefficients 

The second scenario under consideration was that changes were made to the model 

coefficients but not to the variances of random effects. The same two random effects 

models were considered. In both models, the variances of random effects were the 

same as those from the estimation of the d-dimer data. In other words, the variance 
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of random effect in the model with random venography was given as 0.149 for simu-

lations. Accordingly, the variances of random effects in the model with two random 

effects were given as 0.039 and 0.001946, respectively. In each model, 10 tables of 

each type with table total of 300 were generated in the simulations. 

Unlike in linear models, small changes to coefficients in the log-linear model had 

significant impacts on the cell probabilities. In this scenario, small changes were 

made to the model coefficients and performance of the model with two random 

effects was examined by simulations. The model coefficients were changed to the 

following values, which were very close to the original coefficients. 

/31 02 /33 /34 /35 

—1.5 —2 —2 2.5 3 

Using this set of new coefficients, the true Sd and Cd were changed to 0.731 and 

0.817 based on the model with two random effects, respectively. Compared with the 

original Sd (0.8278) and Cd (0.706), they were quite different. 

Parameters True values Mean estimates Bias (s.e.) MSE 95% Coverage 
8 d 0.7310586 0.7306 -0.000462 (0.0086) 7.43e-05 0.956 
Cd 0.8175745 0.8175 -8.42e-05 (0.0096) 9.20e-05 0.954 

Table 4.30: Simulations from the model with random disease prevalence only on a 
different set of model coefficients 

Using the model with random venography, results from simulations were summa-

rized in Table 4.30. The model still provided estimates of sensitivity and specificity 

with very small biases. The coverage rates of 95% confidence intervals were very 

close to 0.95. The mean estimated variance of random effect was 0.15, which was 

very close to .0.149, the true variance of the random effect. 
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Parameters True values Mean estimates Bias (s.e.) MSE 95% Coverage 
Sd 0.73065 0.7305 -1.28e-04 (0.0100) 9.98e-05 0.951 
Cd 0.81726 0.8173 4.73e-06 (0.0101) 0.000101 0.956 

Table 4.31: Simulations from the model with random disease prevalence and associ-
ation between d-dinier and venography on a different set of model coefficients 

In the model with random venography and random interaction between d-dimer 

and venography, the same set of model coefficients as in the model with one ran-

dom effect was applied in the simulation. Results are summarized in Table 4.31. 

The model produced estimates of sensitivity and specificity with very small biases. 

The coverage rates of 95% confidence intervals were very close to 0.95. The mean 

estimated variances of random effects were 0.038 and 0.00188, respectively. These 

estimates were very close to the predefined values of variances of random effects. 

Another set of model coefficients was chosen, which had the values in between the 

above two sets. All other parameter values were the same as those in the simulations 

above. 

/31 02 /33 /34 /35 

—1 —2.5 —2.7 2.4 3.5 

The resulting true sensitivity and specificity of d-dimer became 0.802 and 0.73, re-

spectively, given the same set of variances of random effects. 

Results from simulations were summarized in Tables 4.32 and 4.33 for the model 

with one random effect and two random effects, respectively. Both models provided 

estimates of sensitivity and specificity of d-dimer with very small biases. The cover-

age rates of 95% confidence intervals were very close to 0.95. The estimated variance 

of random effect in the model with random venography only was 0.148, which was 
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Parameters 'Ifrue values Mean estimates Bias (s.e.) MSE 95% Coverage 
8 d 0.80218 0.802614 0.00043 (0.0087) 7.74e-05 0.953 
Cd 0.73106 0.7312583 0.00020 (0.0093) 8.70e-05 0.946 

Table 4.32: Simulations from the model with random disease prevalence only on the 
third set of model coefficients 

Parameters True values Mean estimates Bias (s.e.) MSE 95% Coverage 
Sd 0.80186 0.80168 -0.00017 (0.0095) 9.01e-05 0.944 
Cd 0.73066 0.73093 0.00027 (0.0102) 0.00010 0.947 

Table 4.33: Simulations from the model with random disease prevalence and associ-
ation between d-dimer and venography on the third set of model coefficients 

very close to the parameter value 0.149. The estimated variances of random effects 

in the model with two random effects were 0.03865 and 0.00181244, which were very 

close to the parameter values. 

The simulations above provided more evidence of the applicability of the models 

proposed in this project. When only the variances of random effects changed, esti-

mates from either of the random effects model had very small biases and coverage 

probability close to 95%. When the change was made on the model coefficients, 

estimates from both models had very small biases. The coverages of sensitivity and 

specificity in both situations were very close to the nominal 95% level. 

4.7.3 Poor silver standard 

Simulations in the previous section were performed by changing model coefficients 

and variances of random effects. In practice, these quantities did not have direct 

linkage to the diagnostic performance. Using the functional relationship between 
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model coefficients and sensitivity and specificity, model coefficients for simulations 

can be derived. In diagnostic tests, the imperfect reference may have poor diag-

nostic characteristics. In the following, the performance of models was assessed by 

simulations when the sensitivity and specificity of the imperfect reference were 0.2. 

The derivation of model coefficients based on predetermined values of sensitivity 

and specificity of d-dimer and ultrasonography was similar to that in section 4.3.2. 

An additional step was required when calculating the bias and 95% coverages. The 

true sensitivity and specificity of d-dimer should be calculated by unconditional cell 

probabilities. In other words, integrations over random effects should be performed to 

derive the parameter values of sensitivity and specificity of d-dimer in the simulation. 

Parameters True values Mean estimates Bias (s.e.) MSE 95% Coverage 

Sd 0.59 0.5904947 0.000495 (0.00856) 7.34e-05 0.945 
Cd 0.90 0.900221 0.000221 (0.00924) 8.53e-05 0.95 

Table 4.34: Simulations of the model with random disease prevalence only when 
sensitivity and specificity of the silver standard were both 0.2 

Parameters True values Mean estimates Bias (s.e.) MSE 95% Coverage 
Sd 0.5896585 0.58978 0.000117 (0.00986) 9.72e-05 0.938 
Cd 0.899866 0.900038 0.000172 (0.00976) 9.51e-05 0.948 

Table 4.35: Simulations of the model with random disease prevalence and association 
between d-dimer and venography when the sensitivity and specificity of the silver 
standard were both 0.2 

Tables 4.34 and 4.35 summarized results of simulations. In both models, the 

sensitivity and specificity of ultrasonography were set at 0.2. In each simulation, 

10 tables of each type of marginal tables were generated with table total 300. The 
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true variance of random venography was 0.149 for simulations in Table 4.34. The 

mean estimated variance was 0.161. The true variances of random venography and 

interaction between d-dimer and venography in Table 4.35 were 0.039 and 0.0019, 

respectively. The mean estimated variances from simulations were 0.0390853 and 

0.001905018, respectively. The results showed that both models performed very well 

even when the sensitivity and specificity of the imperfect reference were very low. 

Comparison with the unadjusted model 

Besides, it was interesting to compare the performancesof the model that adjusted 

for the difference between the two references and the unadjusted model when the 

silver standard had low sensitivity and specificity. Simulations were performed on 

models with random disease prevalence only. In the simulations, 10 tables of each 

type with table total of 300 were geneiated. 

Models unadjusted adjusted 
Bias Sd (s.e.) -0.111 (0.0115) 0.000495 (0.00856) 
Bias Cd (s.e.) -0.295 (0.0128) 0.000221 (0.00924) 
MSE Sd 0.0125 7.34e-05 
MSE Cd 0.0874 8.53e-05 
95% coverage Sd 0 0.945 
95% coverage Cd 0 0.95 

Table 4.36: Comparison between the unadjusted model and the adjusted model with 
random disease prevalence when sensitivity and specificity of the silver standard were 
0.2 

Table 4.36 showed that when the sensitivity and specificity of ultrasonography 

(the silver standard) were 0.2, the performance of the unadjusted model was ex-

tremely poor. The biases were much larger than those from the adjusted model. 

The sampling distributions of sensitivity and specificity from the two models were 
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Estimates in the model with random disease prevalence 
when the silver standard was poor 
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Figure 4.21: Histograms of estimated sensitivity and specificity from the unadjusted 
and the adjusted model with random disease prevalence when the silver standard 
was poor 
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Estimates in the model with random disease prevalence 
when the silver standard was poor 
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Figure 4.22: Boxplots of estimated sensitivity from the unadjusted and the adjusted 
model with random disease prevalence when the silver standard was poor 
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Estimates in the model with random disease prevalence 
when the silver standard was poor 
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Figure 4.23: Boxplots of estimated specificity from the unadjusted and the adjusted 
model with random disease prevalence when the silver standard was poor 



157 

displayed in Figures 4.21, 4.22 and 4.23. When the reference test had poor diagnos-

tic characteristics, it was clinically crucial to account for the diagnostic error from 

the reference test. Some researchers had shown that adjustment was important even 

when the sensitivity and specificity of the reference test were high [78]. 

Comparison with the analysis using DV tables only 

When the imperfect reference was poor, it was interesting to compare the analysis 

using DV tables only and that using all the tables. The model with random venog-

raphy only was considered. The sensitivity and specificity of d-dimer were chosen at 

0.59 and 0.90 for simulations, respectively. In each iteration, 10 tables of each type 

were generated and the two approaches were applied. Results were summarized in 

Data used DV tables only all tables 
Bias Sd (s.e.) -1.64e-05 (0.0107) -8.59e-05 (0.00852) 
Bias Cd (s.e.) -0.000378 (0.00982) -0.000398 (0.00927) 
MSE Sd 0.000115 7.25e-05 
MSE Cd 9.66e-05 8.60e-05 
95% coverage Sd 0.96 0.949 
95% coverage Cd 0.951 0.948 

Table 4.37: Comparison between the analysis using DV tables only and the analysis 
using all tables in the model with random disease prevalence only when the sensitivity 
and specificity of the imperfect reference were 0.2 

Table 4.37. From Table 4.37, the mean squared errors from the analysis using DV 

tables only were larger than those from the analysis using all tables. The relative 

efficiency of using the DV tables only to using all tables versus can be calculated. 

The relative efficiency in estimating sensitivity of d-dimer was 0.63. The relative ef-

ficiency in estimating specificity of d-dimer was 0.89. The simulations above showed 

that the estimations adjusting for the difference between the two references were 
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superior over not only the model ignoring the difference but also the analysis using 

the data from the gold standard only. In the first comparison, the model adjusting 

for the difference of reference tests reduced the bias substantially. In the latter case, 

the model using all the available data provided smaller mean squared errors. Re-

moving the tables using the imperfect reference from the analysis resulted in loss of 

information. 

4.7.4 Parameter values close to the boundary 

By definition, the parameter space of sensitivity and specificity is from 0 to 1. Using 

the symmetric confidence interval, like the Wald-type, may result in the limits of 

confidence interval outside the range of 0 and 1. In the above simulations, all the 

limits of confidence intervals were examined. None of the lower limits exceeded 0 

and none of the upper limits crossed 1. This indicated good performance of the 

Wald-type confidence intervals. 

However, the parameter values of sensitivity and specificity of d-dimer in above 

simulations were 0.82 and 0.70. Worries may arise if the parameter values were 

close to the boundary. To examine the performance of the model when parameter 

values were close to the boundary, two sets of parameter values were chosen for 

simulations: 0.05/0.05 and 0.95/0.95. The model with random venography only and 

the model with two random effects were applied in the simulations. The disease 

prevalence was 0.7 and sensitivity and specificity of ultrasonography was 0.74 and 

0.93, respectively. Ten tables of each type were generated at each iteration with table 

total 300. The variances of random effect were the same as those applied in previous 

simulations. Table 4.38 summarized results from 1000 simulations. The lower limits 
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Parameters 'Ifrue values Mean estimates Bias (s.e.) MSE 95% Coverage 
Sd 0.05 0.050096 9.56e-05 (0.00434) 1.89e-05 0.944 
Cd 0.05 0.050023 2.35e-05 (0.0071) 5.03e-05 0.946 

Table 4.38: Simulations of the model with random disease prevalence when parameter 
values were 0.05 

of all confidence intervals did not exceed the boundary of 0. The minimum of the 

lower limits of sensitivity was 0.02632 and that of specificity was 0.01761. 

On the other hand, the true 8d and Cd were chosen as 0.95 for simulations to 

examine the performance of the model with random disease prevalence. Results 

Parameters True values Mean estimates Bias (s.e.) MSE 95% Coverage 

Sd 0.95 0.9499 -6.78e-05 (0.00432) 1.87e-05 0.941 

Cd 0.95 0.9497 -0.000278 (0.00718) 5.16e-05 0.944 

Table 4.39: Simulations of the model with random disease prevalence when parameter 
values were 0.95 

were summarized in Table 4.39. The upper limits of all confidence intervals were 

examined. The maximum of the upper limits of sensitivity was 0.9723 and that 

of specificity was 0.9819. The model still performed well when the true parameter 

values were close to boundaries of the parameter space. 

With respect to the model with two random effects, the parameter values were set 

at 0.95 for simulations. The same setting was applied as in the model with random 

disease prevalence only, i.e., 10 tables for each type with table total of 300. The 

variances of random effects were the same as the simulations before, 0.039 and 0.0019, 

respectively. Results from 1000 simulations were summarized under the model with 
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Parameters True values Mean estimates Bias (s.e.) MSE 95% Coverage 
Sd 0.9498 9.5018 3.513e-04 (0.0044) 1.957e-05 0.94 

Cd 0.9498 9.4972 -1.136e-04 (0.0072) 5.1392e-05 0.95 

Table 4.40: Simulations of the model with random disease prevalence and association 
between test and gold standard when parameter values were 0.95 

two random effects. The upper limits of all confidence intervals were examined. The 

maximum of the upper limits of sensitivity was 0.9708 and that of specificity was 

0.9806. The model with two random effects maintained nice performance even when 

the true parameter values were close to boundaries of the parameter space. 

Parameters True values Mean estimates Bias (s.e.) MSE 95% Coverage 

Sd 0.05016653 5.008464e-02 -8.19e-05 (0.00433) 1.87e-05 0.954 

Cd 0.05016653 5.004186e-02 -1.25e-04 (0.00715) 5.11e-05 0.951 

Table 4.41: Simulations of the model with random disease prevalence and association 
between test and gold standard when parameter values were 0.05 

Using the same model, simulations were performed on true parameter values 

on 0.05. Results were summarized in Table 4.41; The minimum of lower limits of 

sensitivity was 0.03063 and that of specificity was 0.01775. 

4.8 Comparisons among the three models: fixed effects, ran-

dom disease prevalence, and two random effects 

The three models applied in this project were considered three approaches of the 

meta-analysis of d-dimer. Comparisons of the performance of these models on the 
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same dataset were useful because it enabled the assessment of model misclassifica-

tion. On the same set of data, the information criterion was applied to compare 

the performances of the three models. The two commonly available criteria were 

Akaike's information criteria (AIG) and Bayesian information criteria (BIG). Both 

criteria accommodated the trade-off between the value of the log-likelihood and the 

number of parameters to be estimated. The BIG had additional justifications on the 

sample size, e.g., the number of independent clusters in the random effects model. 

The smaller the value of these information criteria, the better the model was. In this 

section, the Bayesian information criterion was applied. The log likelihood and BIG 

from the three models were compared. 

Models fixed effects random venography 2 random effects 
logL -1091.396 -1087.573 -1087.561 
independent samples 12 12 12 
parameters 5 6 7 
BIG 2188.19 2181.62 2182.68 

Table 4.42: Comparison of performances of the fixed effects model and random effects 
models on analyzing the same dataset 

In Table 4.42, the model with random venography had the lowest BIG value, 

which indicated that it was slightly better than the other two models. The fixed 

effects model had the highest BIG among the three, although the differences among 

the three models were not large. 

In order to compare the asymptotic performances of the three models, simulations 

were performed. Estimates from the iñodel with two random effects were applied 

as true parameter values. In other words, the model coefficients were set as the 

following. 
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/32 /:33 /34 /35 

—0.878 —2.5206 —2.7002 2.4493 3.538 

The variances of random effects were set at &2 =0.039 and &=0.001946. 

In the simulation, 3 DU tables, 4 DV tables, and 5 UV tables with table total 

of 300 were generated. The three models were then applied to analyze the same 

dataset at each iteration. Estimates and 95% confidence intervals were obtained 

for each model. At the end of 1000 simulations, the mean squared errors from the 

three models were calculated. Table 4.43 summarized the results from simulations 

Models fixed effects random venography 2 random effects 
Bias Sd (s.e.) -0.0010 (0.015) -0.00126 (0.014) -0.00116 (0.014) 
Bias Cd (s.e.) . -0.0002 (0.019) 0.00061 (0.017) 0.0000766 (0.017) 
MSE Sd 0.000219 0.000201 0.000201 
MSE Cd 0.000366 0.000305 0.000306 
95% coverage of Sd 0.918 0.933 0.948 
95% coverage of Cd 0.888 0.922 0.940 

Table 4.43: Simulations of the fixed effects model and random effects models when 
the true model was the one with two random effects 

comparing the three models where the data were generated from the model with two 

random effects. The biases from the three models were close to each other. But 

the 95% coverage from the fixed effects model was the lowest. The mean estimated 

variances of the estimates, 0.000176 (Sd) and 0.000241 (Cd), were lower than the 

sampling variances of estimates, 0.000218 and 0.0003666, respectively. This indicated 

that the estimated variance based on the fixed effects model underestimated the true 

variance. Consequently, the 95% confidence intervals constructed by the fixed effects 

model did not have 95% coverage. Similar conclusions can be derived for the model 

with random disease prevalence only. The extra variation due to the association 
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between d-dimer and venography was 0.0019, which was relatively small. Therefore, 

the 95% coverages from the model with random disease prevalence only were closer 

to the nominal 95% level than the fixed effects model. 

With respect to efficiency, the mean squared errors from the model with random 

venography and the model with two random effects were smaller than that from the 

fixed effects model. The relative efficiency of the fixed effects model over the model 

with random venography was 0.92 in estimating sensitivity of d-dimer and was 0.83 

in estimating specificity of d-dimer. The relative efficiency of the fixed effects model 

over the model with two random effects was 0.92 in estimating sensitivity and was 

0.84 in estimating specificity of d-dimer. 

The comparisons above indicated that misspecifying the random effects model 

as the fixed effects model resulted in loss of coverage of 95% confidence interval and 

efficiency. In other words, if the fixed effects model was applied in the analysis of 

the data where there was truly heterogeneity, the 95% confidence intervals did not 

have the nominal 95% confidence and the efficiency can be lost for up to 17%. 



Chapter 5 

Discussion 

5.1 Major findings 

The results in Chapter 4 showed that ignoring the difference between the imperfect 

reference and the gold standard led to severely biased estimates of the diagnos-

tic performance of d-dimer. This was consistent with conclusions in the literature 

[26, 73, 74, 100]. The direction of bias on diagnostic accuracy, however, was not 

conclusive in the literature. Some authors pointed out that inaccurate validation 

methods overestimated sensitivity and specificity [73, 74, 100], although some stud-

ies indicated that the direction of bias can be positive or negative [9, 26, 48]. In 

our study, all the biases were calculated as the mean of estimated sensitivity and 

specificity minus the corresponding parameter values. Under the model ignoring the 

difference between the two references, all the biases were negative. This indicated 

that using the inaccurate reference standard underestimated the diagnostic accuracy 

if adjustments were not made under the conditional independence assumption. In 

this project, all the analyses were performed under the assumption of independence 

between the test and the inaccurate reference. Under this assumption, the conclu-

sion of underestimation using the inaccurate reference was consistent with that in 

the literature [9, 48]. When the assumption of independence was not valid, using the 

unadjusted model overestimated the sensitivity and specificity in the literature[9, 48], 

although the analysis on this situation was beyond the scope of this project. 

164 
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In Chapter 4, the effect of disease prevalence on the magnitude of biases under 

the unadjusted model was examined. Figures showed that the magnitude of bias 

in sensitivity decreased as the disease prevalence increased, whereas the inaccuracy 

in specificity increased at the same time. In other words, when disease prevalence 

was high, the bias of sensitivity was small but the bias of specificity was large. 

When the disease prevalence was low, the bias of sensitivity was large but that of 

specificity was small. This finding was consistent with conclusions in the literature 

[22]. The estimation of sensitivity was most accurate with high disease prevalence 

and the estimation of specificity was most accurate with low disease prevalence. This 

phenomenon was observed in both the fixed effects model and the random effects 

model. 

When the number of tables increased to 10 for each type of tables, the estimation 

of variance of random effects was greatly improved. On the other hand, when the 

table total was reduced to 50, the model still provided estimates with very small 

biases using 10 tables of each type. The standard errors of bias were increased (see 

Table 4.25). The results indicated that the model performed well even with study 

size as small as 50. Based on the data for analysis in this project, all studies had table 

total larger than 50. The model was readily applicable to studies of diagnostic tests of 

DVT. Furthermore, when the imperfect reference had poor diagnostic performance, 

i.e., low sensitivity and specificity, the model still performed well (see Table 4.34). 

The standard errors of bias were very close to those in the simulation with 10 tables 

of each type as shown in Tables 4.23. 

For the model with two random effects, similar conclusions can be drawn except 

those on the effect of different study size. When the size of each study reduced 
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to 50, both the magnitude of biases and standard errors of biases increased (see 

Table 4.26). Compared to the simulation with table total of 300 (see Table 4.24), 

the magnitude of bias doubled in estimating sensitivity and that in specificity more 

than tripled. The standard errors doubled. Consequently, the mean squared error 

increased substantially when the table total reduced to 50. The impact of different 

study sizes on the model with two random effects was slightly larger than that on the 

model with random disease prevalence only. Caution should be given to the study 

size when applying the model with two random effects in the meta-analysis. 

In general, the methods proposed by this project took into account the imperfec-

tion of the silver standard and had nice performance over various parameter settings. 

The estimators had very small biases and small mean squared errors. The coverage 

of 95% confidence intervals was very close to 0.95. 

5.2 Comparisons with other approaches 

The models proposed by this project were based on the log link between the outcome 

and the linear combination of diagnostic tests. Although logit link was commonly 

applied in the literature for analysis of probabilities, it is typically useful for binomial 

outcomes. The log-linear model is the traditional approach to analyze contingency 

tables [7, 89, 90, 91, 106]. The model setup was similar to that in the ANOVA-type 

models, which were well-known approaches for applied statistics. In particular, the 

log-linear model provided estimations of joint probabilities whereas the logit model 

provided conditional probabilities. Although both the log-linear model and the logit 

model provided estimates of associations, the log-linear model addressed the inter-
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associations among the three tests, whereas the logit model facilitated examinations 

of a particular subset of associations. In this project, for example, the log-linear 

model specified associations among all three tests via the two-way interactions and 

possibly three-way interactions. If the logit model was applied, the association of 

interest would be the probability of one test given the rest two tests but not between 

the two tests in the model. The log-linear approach provided analysis of all inter-

associations in one model. 

In the meta-analysis of d-dimer, a different approach was attempted by re-

searchers to analyze data in this project. In the following, the approach from Stein 

[68] was presented and compared with the models in this project. 

5.2.1 Comparisons with the Stein paper 

The data for analysis in this project were a subset of the larger dataset in the Stein 

paper [68]. In the paper by Stein and colleagues, the statistical methods involved a 

different setup due to the complexity of data. First of all, the cutoff in the paper 

was 500ng/mL, which was the same as one of the data extraction criteria in this 

project. The studies in this project, however, were restricted to those applied the 

SL assay and either of the references, ultrasonography or venography, but not both. 

Applying these criteria substantially reduced the number of studies to 12 for the 

analysis. More studies were available in the Stein paper, which, on the other hand, 

increased the complexity of analysis. 

Secondly, the mixed model was applied in the Stein paper to account for hetero-

geneity across studies. This was similar to the approaches from this project. The 

mixed model was the method commonly applied in various clinical circumstances 
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where correlations among responses were taken into account. In Stein's paper, three 

random effects were considered in the analysis: assay, patient group, and study. The 

analysis in this project, in contrast, incorporated the prevalence of disease and the 

association between d-dimer and venography as random effects. As stated earlier, 

the data for analysis in this project were restricted to one assay, i.e., SL. Therefore, 

the adjustment on the heterogeneity due to assay was not applicable in this project. 

Besides, the prevalence of DVT was a major representation of differences among 

patient groups. It depended on characteristics of the patients, such as age, gender, 

presence of artery diseases, previous hitory of DVT, and so forth. Applying the 

prevalence of DVT as the random effect can be regarded as an approach similar to 

treating the patient group as the random effect in the model. 

Thirdly, the analysis in the Stein's paper did not take into account the difference 

between the two references, ultrasonography and venography. This was the major 

difference between the methods in Stein's paper and the analysis in this project. 

The choice of collapsing tables from different references was in part due to a variety 

of references from different studies. The impedance plethysmography and plethys-

mography were applied in some studies as references instead of ultrasonography or 

venography. Some studies used both ultrasonography and venography as the refer-

ence. In this project, however, the difference between reference standards was taken 

into account, although the imperfect reference under consideration was ultrasonog-

raphy only. As shown in the results from Chapter 4, accounting for the different 

references across studies was important. 

Furthermore, the restricted maximum likelihood (REML) was applied in Stein's 

paper for variance estimations. The REML was a conventional approach to fixing 
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the problem of biased estimates of the variance in the linear mixed model [15, 30]. 

The approach in this project was considered the maximum likelihood estimation 

(MLE) and was often criticized by producing biased estimates on the variance com-

ponents. Restricted maximum likelihood estimation (REML), on the other hand, 

provided generally unbiased variance estimates by means of an error contrast. The 

error contrast was a linear combination of the observed outcome such that its ex-

pected value was 0. The maximization in the REML approach was performed on the 

error contrast instead of the observed data vector. Harville (1977) [15] compared the 

two approaches, MLE and REML, and pointed out the pros and cons of each ap-

proach. He concluded that MLE generally worked for the model with small number 

of parameters and REML was good for the model with larger number of parameters. 

As the number of parameters increased, the bias from MLE increased. The model 

considered by Harville, however, was the random effects model with identity link 

function, i.e., linear mixed model. Direct generalizations of the REML approach 

to the logarithm link function for multinomial data were still under debate in the 

literature. The major concern of REML was on the bias in estimation for highly 

non-normal response data [4, 31, 60, 105]. 

In general, the major difference between the approach in the Stein paper and the 

models in this project was on the adjustment of the reference test. The approach in 

Stein's paper ignored the different references and collapsed the two types of tables. 

The methods proposed in this project performed appropriate adjustments for the 

different reference tests. 
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5.2.2 Comparisons with estimations using the tables between the test of 

interest versus the gold standard alone 

In Chapter 4, simulations were performed to compare the model using DV tables 

only with the model using all the tables. The mean squared error from the model 

using DV tables alone was larger than that from the model using both DU and DV 

tables, Tables 4.9, 4.10, and 4.13. The relative efficiency of the model using DV 

tables only over the model with all tables was consistently smaller than 1, when the 

number of DV tables was small relative to the number of DU tables. If the number 

of DV tables was 10 times that of DU tables, Table 4.19, the efficiency from the two 

approaches was very close. The analysis using all available tables produced more 

efficient estimates than the approach using tables between the test and the gold 

standard alone. The advance in efficiency was achieved in all the analysis. 

In the context of meta-analysis, studies using the imperfect reference were often 

excluded. In diagnostic tests, however, it was inefficient to perform this procedure 

because the number of studies using the gold standard may be small when the gold 

standard was invasive. If the gold standard test was associated with risk to patients, 

studies applying the silver standard may be predominant. As shown in this project, 

discarding these studies in the meta-analysis resulted in loss of efficiency because 

studies using the silver standard contributed to deriving the diagnostic characteris-

tics of the test of interest. Furthermore, for future applications, the methods pro-

posed in this project provided an evidence of potentially removing the gold standard 

in evaluating a new diagnostic test. If characteristics of the silver standard were well 

established in the literature, the diagnostic performance of the test of interest can be 
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estimated after adjusting for the imperfection of the silver standard. Therefore, the 

methods in this project were perceived to be solutions for estimating the diagnostic 

performance of the test of interest in the absence of a gold standard. Finally, it is 

in keeping with scientific principle to include all available evidence to derive medi-

cal conclusions. Analyses based on all well-designed studies facilitate well-powered 

conclusions. 

5.3 Statistical issues in the analysis 

5.3.1 Advantages and disadvantages of Gibbs sampling and Gaussian 

Hermite integration in random effects model 

In the presence of random effects in the log-linear model, two algorithms were ap-

plied to obtain estimates: Gibbs sampling and Gaussian Hermite integration. In 

the model with random venography only, the two algorithms produced consistent 

estimates. This may be of interest to researchers who perform meta-analysis, in 

which random effects are involved. In the more complicated model with two random 

effects, however, estimates from the two approaches were different, especially in the 

variances of random effects. In this section, the advantages and disadvantages of the 

two algorithms are discussed. 

Advantages of Gibbs sampling and Gaussian Hermite integration 

The Gibbs sampling is a Bayesian approach. It requires the availability of full con-

ditional distributions of each parameter given other parameters. The procedure is 

conducted by generating sequential samples from the full conditional distributions. 

If the conditional distributions are selected properly, it guarantees that the limit-
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ing distribution of samples follows the joint posterior distribution. Gibbs sampling 

was developed to avoid numerical burdens of integrations and maximizations. By 

means of consecutive sampling from the full conditional densities, the Gibbs sam-

pling provides a sample from the target distribution at convergence. Based on the 

posterior sample, estimates and standard errors can be obtained from the posterior 

means and standard deviations. In the present context, sensitivity and specificity of 

d-dimer were the parameters of interest. These two quantities are functions of cell 

probabilities in the three-dimensional table. At each iteration of the Gibbs sampling 

procedure, sensitivity and specificity of d-dimer can be updated by current values of 

cell probabilities. At convergence, the sequential samples of sensitivity and specificity 

represent their posterior target distributions. Inference on these two parameters can 

be derived by the posterior samples. This has advantages over the frequentist ap-

proach, in which functions of parameters have to be transformed to obtain estimates 

of the target parameter. Standard errors must be calculated via approximation in 

frequentist approaches using the delta method, whereas the posterior sample prop-

erties from the Gibbs sampling are essentially exact at convergence. 

In contrast, Gaussian Hermite integration follows the conventional approach un-

der the frequentist framework. In the presence of random effects, which are nuisance 

parameters, integrations of the joint distribution over random effects must be cal-

culated in order to derive the marginal likelihood of model coefficients. The basic 

idea of Gaussian Hermite integration is to approximate integrals with summations. 

Gaussian Hermite integration applies weighted sums to approximate integrals with 

normal kernel. It is often used for integrations in the analysis of random effects 

model and is recommended for its accuracy in estimation. Accuracy increases as the 
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number of abscissas increases. The integrations in this project used 25 points in all 

the analysis. Based on the results in Chapter 4, simulations using Gaussian Hermite 

integrations produced estimates of sensitivity and specificity with very small biases 

and coverage very close to the nominal 95% level. 

Disadvantages of Gibbs sampling and Gaussian Hermite integration 

Despite the advantages of Gibbs sampling and Gaussian Hermite integrations dis-

cussed above, each of these two approaches had disadvantages. First of all, con-

vergence of Gibbs sampling is always a concern. The literature does not provide 

completely reliable methods for the diagnosis of convergence. Conventional meth-

ods for detecting convergence use the histograms and moving-average of posterior 

samples. The histograms aid in detecting normality of the sample. Running-average 

helps to inspect stability of the posterior sample. If there is no apparent evidence of 

instability, one concludes stability and convergence of the posterior sample. 

Gaussian Hermite integration is a frequentist approach to solve the generalized 

linear mixed model (GLMM). By integrating out random effects, the maximiza-

tion can be performed on the marginal likelihood function. However, computational 

intensity from Gaussian Hermite integration increases as the number of abscissas 

increases. 20-point abscissas are often recommended for sufficient accuracy in ran-

dom effects models. However, in our study, 20-point abscissas were not sufficient 

to achieve accuracy and stability in the estimation. The number of abscissas was 

increased to 25-point. When only one random effect was included in the log-linear 

model, it took 2 minutes to obtain maximum likelihood estimates on the marginal 

likelihood. When there were two random effects in the model, however, the maxi-
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mization of the marginal likelihood took almost 5 minutes to complete. The compu-

tational burden increased substantially as the number of dimensions of integration 

increased. Hence, the Gaussian Hermite integration was computationally intensive 

when solving models with high dimensional integrals. 

The Gaussian Hermite procedure in this project was non-adaptive. Several au-

thors [36, 72] have proposed the adaptive Gaussian Hermite quadrature be used in the 

random effects model. The difference between adaptive and non-adaptive approaches 

is the center of the quadratures. The variable of integration in the non-adaptive ap-

proach centers on zero, but in the adaptive approach it centers on the posterior 

mode. Despite the appealing property of centering, the adaptive quadratures did 

not imply fewer functional evaluations [21]. When the number of quadrature points 

is high, e.g. 20, the log-likelihoods from adaptive and non-adaptive approaches are 

close to each other [21]. Laplace approximation is an alternative method to obtain 

estimates in the random effects model, which has been applied in the estimation for 

the generalized linear mixed model [96]. The 18t order Gaussian Hermite quadra-

ture is considered equivalent to the Laplace approximation [36, 72]. In general, the 

Laplace approximation, adaptive and non-adaptive Gaussian Hermite quadratures 

produce similar results. 

5.3.2 Validity of the conditional independence assumption 

In the log-linear model, the number of parameters for estimations depends on the 

assumptions. In the analysis of three-dimentional contingency table, different as-

sumptions can be made on the log-linear model, as discussed in Chapter 1 and 

Chapter 2. These assumptions result in different sets of model coefficients for esti-
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mations. The conditional independence between d-dimer and ultrasonography was 

assumed throughout this project. Clinically speaking, this assumption indicates that 

diagnostic results from d-dimer and ultrasonography from each subject arise from 

distinct sources. In other words, the error in the outcome of d-dimer is not related 

to the error in the diagnosis of ultrasonography, given the true disease status. In 

clinical practice, this indicates that the administrator for d-dimer result of a patient 

should not have any knowledge of the result of ultrasonography on the same patient. 

If the assumption of conditional independence is violated, more fixed effect coeffi-

cients have to be added to the model. The model with all two-way interactions takes 

into account pair-wise associations among the three tests, although the association 

between each pair does not depend on the level of the third test. To reflect this, the 

interaction between d-dimer and ultrasonography should be added to the log-linear 

model. Considering the sample size issue, more tables may be required to estimate 

all the parameters. 

The likelihood ratio test (LRT) can be conducted to compare the model with the 

extra coefficient and the conditional independence model on the same dataset. Twice 

the difference of the log likelihood values from the two models is the test statistic 

and it follows a Chi-square distribution with one degree of freedom. A significant 

test result implies that the conditional independence assumption is violated. The 

likelihood ratio test is appropriate to use to compare nested models. In other words, 

in order to apply the likelihood ratio test, the set of parameters in one model has to 

be a subset of the parameters in the other model. In the case where this requirement 

is not satisfied, the LRT cannot be applied. Information criteria (AIC or BIC), 

instead, are alternatives to compare performances among models, especially random 
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effects models. 

From the clinical standpoint, the conditional independence between two diagnos-

tic tests may not be valid. The independence between d-dimer and ultrasonography 

may be violated if the ultrasonography test result of a patient was known to the 

doctor when he assessed the d-dimer output. 

5.4 Values and clinical importance 

The analysis in this project applied different statistical approaches to the log-linear 

model using the Gaussian Hermite integration and the Gibbs sampling. This project 

was a novel application of these two algorithms in the analysis of incomplete con-

tingency tables. These two algorithms were conventional frequentist and Bayesian 

approaches for random effects model, respectively. They produced consistent results 

in the model with one random effect. As convenient algorithms, they should be given 

more credit and attention in conducting a meta-analysis. In addition, the response 

in the log-linear model was the joint probability of the three tests. This was different 

from conventional logit models, where the response was the conditional probabilities 

of a particular outcome given the values of a set of predictors. The log-linear model 

allows investigations on the inter-association among the three tests, which is often 

not viable in a single logit model. Lastly, the models proposed in this project per-

formed well even for true parameter values close to the boundary when the sample 

size was 300. As presented in Chapter 4, when the true sensitivity and specificity of 

d-dimer were both 0.05 or 0.95, the models provided estimates with very small biases 

and small mean squared errors. The 95% coverage of the Wald-type confidence in-
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tervals was very close to the nominal 0.95 level. The Wald-type construction was the 

common approach for the 95% confidence interval. Although it was criticized by the 

possibility of limits outside the parameter space, the confidence intervals constructed 

in this project did not exceed the boundary of 0 or 1 for sensitivity and specificity. 

Even for parameter values as extreme as 0.05 or 0.95, the lower or upper limits did 

not fall outside the parameter space. 

Besides their statistical advantages, clinical applications of the methods are promis-

ing. In the context of diagnostic tests, the likelihood ratios of a test are useful tools 

for clinicians to determine the disease status of a patient. As introduced in Chapter 

1, the likelihood ratio is the ratio of the probability of a test result among the diseased 

patients over that in the healthy population. For example, the positive likelihood 

ratio is the ratio of the probability of test positive in the diseased population over the 

probability of test positive in the non-diseased individuals. The likelihood ratios are 

highly related to the predictive values, which provide extremely useful information 

in clinical practice. Given a test result, the predictive values provide the updated 

probability of disease or no disease, which is the major concern of patients and doc-

tors. Furthermore, likelihood ratios are critical to update the odds of disease or non 

disease. By multiplying the pretest odds by likelihood ratios, the odds of disease or 

no disease can be updated, yielding the post-test odds. In the presence of multiple 

diagnostic tests, especially in a sequence, the odds of disease and no disease can be 

updated after each test. At the end of the diagnostic procedure, the probability of 

disease can be updated, incorporating the information from all tests. 

The positive and negative likelihood ratios can be derived using the methods 

proposed in this project, since the likelihood ratios of a test are functions of cell 
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probabilities. According to the theory of maximum likelihood, functions of maxi-

mum likelihood estimates are maximum likelihood estimates of the corresponding 

functions of the parameters. Therefore, substituting the estimated cell probabilities 

into the diagnostic likelihood ratios yields the maximum likelihood estimates of the 

likelihood ratios. Using the estimated likelihood ratios, the odds of disease or non 

disease can then be updated. As mentioned above, the post-test odds of disease and 

non disease have important diagnostic indications. Furthermore, the positive and 

negative likelihood ratios can be summarized into one measurement, the diagnostic 

odds ratio. The regression model in estimating the summary ROC curves, as de-

scribed in chapter 2, can then be constructed. The summary ROC curve was applied 

as the summary measure in the meta-analysis of diagnostic tests [57, 83]. It can also 

be extended by adding study-level covariates to explore the source of heterogeneity 

among studies [38]. 

5.5 Limitations 

Despite the appealing properties of estimates in the models and strong clinical indica-

tions from this project, several issues should be drawn to the attention of statisticians 

and clinicians. 

5.5.1 Statistical concerns 

The analysis in this project was based on the contingency tables from the d-dimer 

paper [68]. In these tables, the number of people having each combination of tests 

was collected from each study. This was regarded as the aggregated data. In many 
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statistical analyses, data were typically collected on the measurement unit, rather 

than the aggregated level. In diagnostic tests, the measurement unit was the patient 

in each study. At the individual patient level, the contingency table from the first 

column of Table 4.1, for example, can be presented by the following structure if age 

and gender are covariates to be considered. 

subjectlD d - dimer venography age gender 

1 + + 35 female 

2 + + 25 male 

16 + 

17 

+ 40 male 

+ 30 male 

18 - + 45 female 

21 - + 38 female 

22 + - 28 male 

23 + - 33 female 

25 + - 43 male 

26 - - 36 female 

27 

53 

- 41 female 

- 50 male 
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If the results from each subject were available, the individual level data can be applied 

in the analysis. The model for individual level data was generally different from 

those presented in this project, especially in the random effects model. The random 

effects in the individual level data should correspond to heterogeneity among patients 

instead of study level differences. Patient specific characteristics can be considered, 

such as previous history of DVT, physical examinations, relevant diagnostic tests, 

and the development of clinical prediction rules for each patient. These variables can 

be included as additional columns in the data structure above. Analysis adjusting 

for these factors may provide more insights to the diagnostic performance of d-dimer 

with regard to patient characteristics. 

The models in this project provided satisfactory estimations and confidence inter-

vals. The data for analysis, however, were presented in the aggregated level instead 

of the individual subject level. In meta-analysis, it may be the gold standard to use 

individual subject level data [1, 43]. Analysis using individual level data is considered 

to have higher power than analysis using aggregated data. Besides, investigations 

of the relationship between patient characteristics and treatment effects generally 

require the individual subject level data [33, 49, 65]. Nevertheless, the individual 

level data may not be available for meta-analysis. It depends on many issues, such 

as the administration of each study, the confidentiality of data, cost and time to 

extract data, and so forth. When the individual level data are not available, analysis 

using the aggregated data is the only choice. In the literature of meta-analysis, both 

types of data were applied [25, 65]. In diagnostic tests, however, the majority of 

published meta-analyses continued to be based on aggregated data [1, 25, 37]. The 

analyses based on aggregated data continue to be the mainstay of systematic reviews 
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conducted by many professional societies. 

Besides the concern on the data format, different distributions for the random 

effects may be considered. Although the normal density was common for generalized 

linear mixed models (GLMM), different approaches were attempted in the analysis 

of GLMM [31, 41]. The maximum likelihood estimation was often criticized by 

providing poor estimates of the variance of the random effects. Despite this criticism, 

studies showed that fixed effects estimates in GLMM using the maximum likelihood 

approach was robust to misspecifications of the distribution of random effects [31, 

41, 95]. 

In addition, results from simulations in Chapter 4 provided evidence of good 

performance of the models. The coverages of 95% confidence intervals were very close 

to the nominal 0.95 level in the model with random disease prevalence. The coverages 

in the model with two random effects were also close to 0.95 except when the table 

total dropped to 50 (see Table 4.26), or when the variance of the random interaction 

between d-dimer and venography increased to 0.039 (see Table 4.29). As discussed 

in Chapter 4, the estimated variances in these situations were slightly different from 

the true variance of the estimates, which was the reason for slight departure from 

the nominal 0.95 coverage. Other approaches of estimating the variance may be 

considered. For example, the "sandwich" estimator of variance may be applied. It is 

constructed by the score vector and hessian matrix, which are based on the likelihood. 

The "sandwich" estimator is a robust estimate of variance. In order to derive the 

robust estimator for the variances of sensitivity and specificity, the likelihood should 

be re-parameterized with respect to sensitivity and specificity. This step may be 

challenging given the complexity of the data in this project. 
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Finally, the analysis in this project assumed that all the three types of marginal 

tables were available, especially in the random effects models. In the clinical setting, 

however, the test of interest may not be evaluated against the gold standard at 

all. In other words, there would not be any tables between the test and the gold 

standard. Analyzing this type of data will be an additional step that is necessary 

to convince clinicians to reduce or remove the use of the gold standard in evaluating 

a new test. In the literature, several authors had attempted to provide solutions 

to the analysis of this type of data [46, 24, 63]. These approaches were effective 

under various strong assumptions, which were often not practical in clinical settings. 

Meta-analysis of diagnostic studies in the absence of data between the test of interest 

and the gold standard may be the next challenge for future research. 

5.5.2 Clinical concerns 

One potential implication of this project is that extensive use of the gold standard 

may not be necessary for evaluating a new test. Studies of d-dimer and the silver 

standard provide useful information on the diagnostic characteristics of d-dimer if 

proper adjustment is applied. This conclusion is statistically sensible. Clinicians, 

however, may be skeptical if the gold standard is not used for evaluation. 

In the literature of diagnostic tests, the role of a new test can be classified into 

three types: replacement, early filtering, and post-testing [57, 71]. The role of d-

dimer in diagnosing DVT is early filtering [71]. Only patients with a particular result 

on d-dimer continue the testing pathway. The diagnostic characteristics of d-dimer, 

however, are not conclusive. There are different assays of d-dimer, each with different 

diagnostic properties. The range of sensitivities and specificities is wide and depends 
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on the cutoff value [68]. The specificity may be lower than 0.5 when the cutoff is 500 

ng/mL but as high as 0.78 when the cutoff is 1000 ng/mL [68]. Based on these issues, 

analysis accounting for different assays of d-dimer may be helpful for the diagnostic 

procedure using d-dimer. 

5.5.3 Future research 

The methods in this project show promise in the meta-analysis of diagnostic tests. 

The results, however, were based on certain clinical and statistical assumptions. 

It may be helpful to consider random effects with non-Gaussian densities. In the 

analysis of diagnostic data, the Beta distribution has been applied by several authors 

[46, 63]. Full Bayesian analysis can be performed by specifying prior knowledge of 

the characteristics of d-dimer. The prior knowledge can be derived from other studies 

in the literature. An example was presented by Gustafson [64] to match the mean 

and standard deviations to parameters of the Beta prior. Properties of estimates 

based on different distributions of random effects can be derived and compared with 

those in this project. 

As stated in the previous section, applications of the methods presented in this 

project can be extended to the situation where information between the test and the 

gold standard is entirely unknown. In this circumstance, the maximum likelihood 

estimates can be derived by the procedures similar to those provided in this project. 

With respect to the meta-analysis of the test of interest, however, adjustments for 

heterogeneities across studies may be challenging. In this project, heterogeneities 

across studies in disease prevalence and the association between the test and the 

gold standard were assumed. If the gold standard is not applied in any study, the 
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disease prevalence may not be estimable. Furthermore, the validity or estimation of 

the association between the test and gold standard may be questionable if associated 

tables are not collected. Alternative representations of these two random effects 

should be of concern for future research when the information on the gold standard 

test was not collected. 

5.6 Accessibility to user community 

Various statistical packages have been applied in medical research. As the random ef-

fects model has become imporant in clinical research, estimation procedures for the 

random effects model have been well established in widely used software programs, 

such as SAS, STATA, Minitab, SPSS. The built-in functions in these programs, 

however, were based on the likelihood of complete data. When the likelihood func-

tions did not fit into conventional densities, none of these programs provide direct 

approaches to the estimation, not even a feasible approach. 

The statistical package R used throughout this project is an object-oriented pro-

gramming software. Unlike other statistical software, the B. language does not have 

built-in menus for statistical analysis. Although the lack of convenient menus may 

prevent the widespread use of R for clinicians, its programming nature provided 

a much more flexible and powerful implementations of statistical analysis. In this 

project, for example, the problems to be solved did not directly fit into any existing 

statistical models. In fact, this project was a novel application of advance statistical 

algorithms to the meta-analysis of diagnostic tests with incomplete data. In such a 

circumstance, the software B. may be the only choice. In recent decades, statistical 
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packages for medical research included more and more functions of programming, 

which had been shown to be more flexible and powerful than user-friendly menus. 

For Bayesian analyses, the software Bayesian analysis using Gibbs sampling 

(BUGS) has been popular in the statistical community. BUGS provides a vari-

ety of applications and generates nice graphs of posterior samples. In BUGS, the 

implementation of the Gibbs sampling under conventional likelihoods, such as nor-

mal, beta, poisson, are straightforward, and diagnosis of convergence of posterior 

samples is possible. The programming function in BUGS, on the other hand, can be 

challenging. It is not as flexible as R or S-plus. Most of the applications use built-in 

functions in BUGS. Specifying a non-standard likelihood or user-defined function 

may be challenging. Researchers interested in Bayesian analysis are increasingly 

attracted to R because of the ease of coding algorithms to sample from posterior 

distributions. Besides, the significant number of packages contributed to archives 

is available, which provides tools for Bayesian inference. The coda package, for ex-

ample, provides convergence diagnosis of the posterior sample from Markov Chain 

Monte Carlo. 

The R programs in this project can be classified into two groups, frequentist and 

Bayesian programs. The frequentist programs implemented algorithms in all the 

models, i.e., the Newton-Raphson algorithm and the Gaussian Hermit Integration 

within the Newton-Raphson algorithm. The Bayesian subset of the program referred 

only to the Gibbs sampling algorithm for random effects models. For the convenience 

of end users, all the programs will be compacted into functions in R. Detailed in-

structions of these functions will be submitted for publication to the Comprehensive 

R Archive Network (CRAN) and available to user community. 
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5.7 Summary 

In the development and assessment of a new diagnostic test, the ideal situation is that 

a true gold standard exists and can be applied to every patient. One could hope that 

such a test be completely safe, inexpensive to apply, convenient to operate in any lab 

condition, and most importantly, 100% accurate. In reality, however, such a perfect 

test usually does not exist. Most of the time, the best candidate available is the one 

with extremely high accuracy. In some instances, however, drawbacks of the best test 

hinder its widespread application. These may include the invasiveness and cost of the 

test, patient conditions, and lab environment, amongst others. Taking into account 

these disadvantages, a secondary reference test can be applied, which overcomes most 

drawbacks of the best test and whose accuracy has been well established. 

The results and analysis proposed by this project provided potential evidence 

of using the silver standard in place of the gold standard. Despite the absence of 

complete tables of the three tests, the diagnostic characteristics of the new test 

are still estimable. In particular, the fixed effects model showed that using tables 

between the new test and the silver standard only, diagnostic performance of the 

new test can be estimated after proper adjustments. This conclusion is of extremely 

high clinical value because in many diseases, diagnostic tools with high accuracies 

are often harmful to the patient. This project indicates that given the existing data, 

one may not need to include the gold standard in assessing a new test. 
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