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Abstract

Consider the problem of pricing options whose payoffs depend on multiple sources
of risk (rainbow options). Generally, under well known risk neutrality assumptions, the
prices of options are calculated to be the expected value of future cash flows, discounted
with the appropriate risk-free interest rate. However, for many rainbow options, the
derivation of close-form solutions do not exist. Therefore, there is a need to rely
on numerical methods such as lattice and finite difference methods or Monte Carlo
simulation.

This thesis deals with the use of Monte Carlo simulation of stochastic processes
as applied to option pricing. We numerically develop higher order discretization meth-
ods for stochastic differential equations and compare their accuracy for high dimen-
sional option pricing problems. Furthermore, a new quasi-random variance reduction
technique, extending classical antithetic variates, is introduced to increase simulation
efﬁcien;:y. This is applied to rainbow options, up to 100 assets, and underlyings with

stochastic volatility.
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CHAPTER 1
INTRODUCTION

1.1 Generalities

In their seminal work Black and Scholes applied stochastic processes, more precisely
geometric Brownian motions, to model the random evolution of stock prices within
an arbi_trage free setting. Ever since, financial modelling via stochastic differential
equations has become the norm in the practice of trading financial derivatives. Often,
these complex derivatives are difficult to price and often case they do not have analytic
solutions, and one must resort to numerical schemes. Even when analytical solutions
exist, in dimensions greater than or equal to one, numerical methods must be employed
to obtain a solution.

There are many challenging mathematical problems in modeling and implement-
ing complex derivatives. In this work, we focus on the numerical implementation of
the Monte Carlo method in option pricing.

;As high performance computing becomes more affordable and the computing
technology more attainable, Monte Carlo simulation is increasingly feasible and effective
in pricing complex derivatives. For a general review on the application of Monte Carlo
simulation to option pricing, we refer to (Boyle, Broadie and Glasserman, 1997) and

(Monte Carlo: Methodologies and Applications for Pricing and Risk Management,

1998) and the references therein.
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| The two main issues of importance in simulation are those of accuracy and
efficiency, and our principal goal is to numerically investigate these in this thesis.

The accuracy of a simulation method depends on one hand on the discretization
techniques used as paths are numerically generated in discrete time. We focus on two
time discrete approximations of stochastic processes, namely, Euler and Milstein which
have differeat orders of convergence. In general, discretization schemes for stochastic
processes vary from their deterministic counterparts as there is a need to simulate the
additional stochastic component.

The Euler discretization scheme has been extensively discussed in traditional
finance literature for option pricing. It is simple to use but practical applications of
this method alone reveal numerical instabilities, due to its low order of convergence
0.5. The effect of these numerical instabilities decreases when more simulation paths
are employed or if the number of discrete time-steps is selected to optimize the scheme.
Therefore, the computational costs associated with these actions are often very high
and might exceed one’s computational capabilities. One way to overcome this problem
is to réort to higher order stochastic Taylor expansions to discretize the processes
involved.

Going beyond Euler’s method, (Milstein, 1974) proposes a discretization of order
1, which in the multiasset or multifactor case, introduces the use of double Ito integrals.
These double Ito integrals can be simplified for certain classes of stochastic differential

equations used in finance, but for those that cannot, it is essential to develop efficient
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numerical methods to handle these Ito integrals. This might be the principal reason
why the Milstein approximation has not received the attention it deserves in financial
literature. It is necessary to compare these schemes and the feasibility of their im-
plementation for high dimensional option pricing problems. In the context of high
dimensional option pricing, one should select a scheme solely based on its performance,
that is, the highest level of accuracy and the highest level of efficiency.

Another main area of concern is the efficiency of the simulation scheme in terms
of the variance of the final result. Reducing variance and hence increasing efficiency
should take into account the additional computational cost it brings about. For such
reasons, variance reduction techniques such as antithetic variates have been used with
great success in option pricing. Note though, the classical form of antithetic variates
is deemed to be not as effective as other forms of variance reduction methods such as
control variates. However, these methods are case specific and tend not to be simple
to implement numerically.

As Monte Carlo simulation for option pricing in its standard form is driven
by rm&om sampling, one possible variance reduction improvement to this is to utilize
quasi-random sampling techniques. However, instead of changing the simulation algo-
rithm, an effective non-random sampling algorithm should utilize previously generated
random variables in an ordered manner to maximize the accuracy of the results. By
doing so, one seeks to reflect the distribution of the random variables more accurately.

Pure random sampling might lead to an over-representation of certain portions of the



CHAPTER 1. INTRODUCTION 4
distributions. By less random sampling under certain rules, one can force sampled
points to be more evenly distributed. We propose one such method in this thesis.

In keeping with the objective of financial modelling, simulation methods in op-
tion pricing should yield numerical results which are useful for benchmarking purposes.
Indeed, previous work in the area of large basket option pricing only reproduces some
error plots of their algorithms without quoting actual values. We present full option

values even for large baskets of up to 100 assets.

1.2 Literature Review

(Boyle, 1977) was the first to use Monte Carlo simulations in an option pricing con-
text. Boyle demonstrated the effectiveness of Monte Carlo simulations by generating
the process for the underlying asset under the risk-neutrality assumption to price an
option. The major assumption in Boyle’s work was that the returns (ratio of succes-
sive share prices) followed a lognormal distribution. Boyle showed that Monte Carlo
simulations incorporating variance reduction techniques such as antithetic and control
variates could be effectively and successfully used to price European call options paying
dividends.

This work was updated in a more comprehensive manner twenty years later.
(Boyle, Broadie and Glasserman, 1997) reported the tremendous flexibility and power

of Monte Carlo simulations for less trivial option pricing cases. Further work was
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conducted to extend variance reduction techniques and even provided some discussion
on less random simulations such as Quasi-Monte Carlo. A brief summary of Monte
Carlo simulations applied to path-dependant option pricing (such as American and
Asian) and hedging was also covered (see Broadie and Glasserman, 1996).

During this time, there has been a great amount of published work describing
the efficiency of Monte Carlo simulations for financial applications. (Clewlow and
Strickland, 1999), Chapter 4, review the various capabilities of Monte Carlo simulations
for multiasset models and models with stochastic volatilities. (Barraquand, 1995)
uses Monte Carlo simulation in conjunction with a specific sampling method to price
multidimensional European type options and stresses the relevance of Monte Carlo
for efficient numerical methods in option pricing. (Bhansali, 1998), p. 174, further
espouses Monte Carlo simulations as the “method of choice for multiasset cases with
no early exercise features”.

Since the major criticism of Monte Carlo simulation has been and is the apparent
slow rate of convergence' (Kalos and Whitlock, 1986, p. 27), there is a recognition that
the efﬁ;:iency of Monte Carlo simulation is imperative for successful implementation in
financial applications. For instance, (Duffie and Glynn, 1995) highlight the tenuous
relationship between computing resources and efficiency. Other works which provide

techniques on speeding up Monte Carlo simulations for acceptable levels of accuracy

! According to the Central Limit Theorem, the convergence rate is O (1/,/p), p being the number

of paths.
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include (Ninomiya and Tezuka, 1996), (Papageorgieou and Traub, 1996), (Paskov and
Traub, 1995) and (Paskov, 1997). Recent efforts to improve the efficiency of Monte
Carlo via less random algorithms are seen in literature such as (Joy et al., 1996) and
(Morokoff and Caflisch, 1998). We finally note that Quasi-Monte Carlo is a fast growing

area of research, we refer to (Lemieux and L’Ecuyer, 2000) and the references therein.



CHAPTER 2
SIMULATING STOCHASTIC DIFFERENTIAL
EQUATIONS

2.1 Preliminaries

Before the problem is introduced, we review a few preliminary definitions and refer to
(Kloeden and Platen, 1999) for full details. The setting within which we will work is
that of a filtered probability space. This can be formally defined by (2,2, P), where
Q2 is an arbitrary nonempty set called the sample space, 2 is a o-algebra of subsets
of Q called events and P is the probability measure on ™A which assigns to each event
a probability between 0 and 1 and satisfies p(A U B) = p(A) + p(B) if A and B are

disjoint. We recall that a o-algebra 2 is a collection of subsets of 2 where

Q € A
A° € A fAed

A € o ifA;, 4. Any €2

n=1
We also recall that (£2,9) is called a measurable space. We can now define a

random variable or measurable function.

Definition 2.1 A vector valued function X = (X*) : @ — R? is measurable or called
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a vector random variable if the set

{w| XFw) <z, k=1,...,d} €Q,
for all . € R.

Since this thesis is concerned with option pricing with assumed stochastic pro-

cesses for the underlying assets, we now define a stochastic process.

Definition 2.2 A stochastic process with index set I and state space R? is a family

X={X(¢),tel}
of R4-valued random variables for each t.

In this thesis, I will be [0,T], with T € R and T will be henceforth termed as

the time to expiry or time horizon.

Definition 2.3 A sample path is a realization of a stochastic process for each w € Q,

X(,w):[0,T] — R

The probability distribution that we will focus on is the Gaussian distribution.

A random variable X is called Gaussian or normal N (u,0?), if its density is given by

\/2;7@{-2—};@-#)"}.

The d-dimensional random variable X = (X!,..., X9) is said to have a multivariate

f(z) =

Gaussian or normal N (u, o) distribution, with g : ®¢ — R¢ and o = (o*7) : R¢ — Rd*4,
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assuming symmetric matrix values with positive eigenvalues, with its d-dimensional
density given by

o2

@) = e exp [ 3o = o @ - )

where |o] is the determinant of o, 0! is the inverse of o, and

d d
- 1
(z—wTo @ —m) =) —( — )z — 1y).
k=1 j=1
Note that once again, the Gaussian distribution is uniquely determined by its first two

moments, that is, 4 and o.

We can now define the Wiener process W by the following properties:

Definition 2.4 A d-dimensional process W (t) = (W}, ..., W2) measurable with respect
to an increasing family or filtration of o-algebras {A.,t > 0} is a d-dimensional Wiener

process if and only if

E(Wr|%)

i
L

EWE -Wf2,) = 0, wpland

E((Wy = W)W —W)|y) = (t2 —t1) Skuy

forall0 <t <¢t, k=1,...,d, and where
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Note the important property

m‘;—Wt’: = il — ¢ Zk forallOstl Stg
where ZF ~ N(0,1).

Recall also that for 0 < T < oo, the class £2 of functions f : [0,T] — Q is

defined (Kloeden and Platen, 1999, p. 81) to satisfy these properties
f is jointly £ x 2A-measurable,
T
[ B9 < oo,
0
E(f(t,)%) <o foreach0<t<T.
We next define Stochastic Differential Equations, denoted by (SDE) henceforth.

Definition 2.5 Consider a d-dimensional vector function p = (u*(S:,t)) : [0,T] x
Q — R, with uF satisfying \/u* € £, k = 1,...,d and a d x d-matriz function
o = (c¥9(5,,t)) : [0,T] x Q@ — R4 with o* € £%, k,j = 1,..,d. A d—dimensional

stochastic process {S:,0 <t < T} is said to satisfy a stochastic differential equation if

dsS, = #(Sg, t)dt + G’(St, t)dm (21)

where W is a d-dimensional Wiener process.

Equation (2.1) has a solution, in the sense explained by the following definition.
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Definition 2.6 With the previously defined notations, a strong solution to the SDE

(2.1) is a stochastic process {S:,t > 0} that is A,-measurable for any t, and such that

the following conditions hold

t
/Ip"(S,,,v)[ dv < +o0,
0

t
'/|t7’°j(.5',,,'z))|2 dW? < +oo, end
0

t d t
Sk _ Gk = / g (Sy,v) du+ Y / o*i(S,,v) dW3 (2.2)
(1} (1}

=1

forallt >0

Note that the integral form of equation (2.1) now becomes

t t
S, — Sp = / 1(S,, v) dv + / o(S,, v)dW, (2.3)
& , 9 ,
Lebagut[ntegral Ito [;tregral

forany 0 <t <T.

'I'he sample paths of the Ito process inherit the characteristics of the sample
paths of the driving Wiener process (see Figure 2.1) and one of the properties of a
Wiener process is that its paths are not differentiable at any point, almost surely,

therefore, the Ito integral seen in (2.3) is not a Lebesgue integral.
Definition 2.7 A step function f € £2 is defined to be

ftw)=f(tjw) wp.l, fort; <t <tin
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for j=1,...,n. Let G2 be the subset of all step functions in £3.
Using this definition, we can define the Ito integral.

Definition 2.8 The [to integral I(f) is defined as

b n—1
10 = [ few)W=sup 3 f (5.0) (Wores - W2} wpl 240
: 7=0

where the supremum is taken over all possible discretizations of the interval [a,b] and

n is the number of subintervals.

In order to ensure the existence and uniqueness of a solution to equation (2.1),
there have to be sufficient conditions on x and o as set out in Theorem 5.5 (Qksendal,

1995, p. 64) and Theorem 3.5.3 (Lamberton and Lapeyre, 1996, p. 50), which we recall

now:
Theorem 2.9 Consider the following measurable functions:
p(-.):0,7] x R — R
and
o(.,.) : [0,T] x R? — R4,
ForanyO0<t<T,if

I”’(z’ t) - u(y? t)l + IO’(.'B, t) - a(yi t)l < le - yl y T, Y€ Rd and

|z, t)| + lo(z, )] < K(1 + |z])




CHAPTER 2. SIMULATING STOCHASTIC DIFFERENTIAL EQUATIONS 13

d d
for some constant K, |of* = 3 3 (o% )2 , then (2.1) admits a unique strong solution
k=1 j=1

fort € [0,T]. This solution (S;),0 <t < T, also satisfies

E( sup |s,|2) < 0.

0<t<T
Figure 2.1 provides some intuition into the behaviour of the Wiener process

with relation to an underlying stochastic process. It compares a sample path from a

lognormal model, governed by such a stochastic differential equation
ng = Mthdt + O’gSgdW.t, (25)

with the associated Wiener process for that particular path. It is quite evident that
the driving force in the random behaviour of the price path is the corresponding Wiener
process. The peaks and troughs of the price path correspond exactly to that of the

Wiener process.

2.2 Options

The no-arbitrage approach to pricing options was introduced by (Black and Scholes,
1973), and also discussed by (Cox and Ross, 1976). Its relationship with risk-neutral
valuation was put in evidence by (Harrison and Pliska, 1981). We refer to (Bingham
and Kiesel, 1998) for an excellent presentation on this material. Since the object of

this thesis is the numerical valuation of options, we henceforth assume that all price
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Simulated Asset Price Path using a Lognormal Mode! (Black-Scholes)

L] T

1.15
[72]
@
£ 1.1
o
@
§ 1.08

1
10 20 30 40 50 6 70 8 90 100
Time-Steps, n
0.4 Associated Wiener Process
0.2~

g
s O
>

02+

_0.4 L L J3 ) - L 1 L 1 L ]

0 10 20 30 40 50 60 70 80 S0 100
Time-Steps, n

Figure 2.1: Sample Path and Corresponding Wiener Process

processes are risk neutral, and therefore the price of an option is equal to the expected
payoff discounted at the risk-free interest rate.

We will seek to determine the expectation of a given functional f of S, at a
given t.ime T, that is, to find E(f(St)|So). In the context of option pricing, f defines
the payoff of a given option on the d securities S¥, £ = 1, ..., d, whose price paths are
governed by a stochastic differential equation of the form (2.1). We can now formally

define derivatives and options.

Definition 2.10 A derivative asset is a security whose value explicitly depends on an
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underlying asset on which the derivative is written.

An option is a form of derivative, whose value depends on the underlying asset.
This contingent claim could result in a potential gain for one party and also a concurrent

potential liability for the opposing party. Options can be either call or put options.

Definition 2.11 A call option gives its owner the right to buy an asset at a specified
price (termed the strike or ezercise price, K ) on or before a stated date (termed maturity

date or time to expiry, T ).
There is also the converse to the call, that is

Definition 2.12 A put option gives the owner the right to sell the asset at a specified

price on or before the stated date.

In general, call and put options can be defined by the dependence of the option

price on the path of the asset price.

Definition 2.13 Path independent options have peyoffs depending only on the events

upon ezpiration, regardless of the route taken by the underlying process.

Definition 2.14 Path dependent options depend on at least one price path in addition

to the terminal price.

There are respectively American or European options which are defined as such:
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Definition 2.15 A FEuropean option does not permit the ezercise of the said option

before the expiry date, and has a payoff function of the form

max {0, f (Sf,...5%)},
where in the case of a single security,

max(St — K,0), for a call
f(Sr)= )
max{K — Sr,0), for a put

Definition 2.16 An American option can be ezercised at any time between its start

date to the terminal date and has a payoff function of the form

max {0, f (S%,...,5%)},
where 7 < T, and in the case of a single security,

max(S, — K,0), for a call
f(S7) =
max(K — S-,0), for a put
Figures 2.2 and 2.3 show the basic behaviour of standard European call and put
options respectively. The truncated payoff is evident when the asset price is less than
the exercise price for a call, therefore, the option owner is not obligated to exercise the
option, limiting the losses to only the outlay for the option. The put option is the
converse to this.

For more detailed expositions on basic and other exotic options, see (Wilmott,

1998), (Bhansali, 1998), (Jarrow and Turnbull, 1996), (Kolb, 1997), and (Taleb, 1997).
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Payoft for Standard European Call Option

120~

100~

Option Value, $

0 20 40 60 80 100 120 140 160 180 200

Figure 2.2: Payoff to the Holder of a Call Option at Maturity

We will concentrate on options on several risky assets, particularly European rainbow
options such as basket/portfolio options, strikes and spreads. There will also be nu-
merical focus on options with multiple underlying processes, such as those seen in the
system (2.33).

To obtain the option price, one will discount the expectation E(f(St)|Sa) at

time T with respect to the risk-free interest rate, r, i.e.

e TE(f(S1)|S0)-
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7 Payoff for Standard European Put Option

8 & 3

Option Value, $

N
Q

120 140 160 180 200

Figure 2.3: Payoff to the Holder of a. Put Option at Maturity

Since the options that will be focused on do not have exact solutions, numerical meth-
ods have to be used to compute E(f(St)|So). These methods include Monte Carlo,
lattice or tree methods, and finite differences. Lattice, or tree, and finite difference
methods are useful whenever there are path dependent features in an option, and they
are numerically efficient for dimensions up to two. However, lattice and finite difference
methods are not flexible, as dimensions increase, and as the SDE for the underlying
or the payoffs for different options change, the algorithms have to be completely re-

vised. Hull and White (1988) note that if the number of nodes at a point in time is
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unnecessarily large, the lattice methods become inefficient as the computational time
is proportional to the total number of nodes.

On the other hand, the Monte Carlo method is extremely robust and flexible,
as the same algorithm can be used for any dimension theoretically. It also has the
distinct advantage that for path independent options, the same algorithm can be used
again. Additionally, changes in the payoffs require minimal additional effort. Monte
Carlo also deals easily with muitiple random factors such as stochastic volatility. Fur-
thermore, it is able to incorporate more realistic price processes such as jumps in asset
prices. Monte Carlo is also relatively cheap to perform as the computational cost of
simulations increases linearly with the number of variables, so the method’s competi-
tiveness increases for options with multifactor models and large number of assets. The
major drawback of standard Monte Carlo is the speed of convergen;:e and the apparent
inapplicability to path dependent options!. Finally, large numbers of simulations are
required for convergence if standard Monte Carlo is used.

To summarize, these are the following steps in obtaining an option price numer-

ically by Monte Carlo:

1. Generate the sampie paths of the underlying assets over the given time horizon

under the risk neutral measure;

2. Evaluate the discounted payoffs of the option for each path; and
!(Broadie and Glasserman, 1997) use a revised form of Monte Carlo for American option pricing.
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3. Average these payoffs over all paths.

2.3 Monte Carlo Simulation

2.3.1 Monte Carlo Methodology

Suppose to estimate the quantity 6, we have to use an estimator, m,. By using Monte
Carlo simulation one generates an arbitrary number of independent samples 9:i =

1,...,p, in a sample space (2, where for each @,

E(8:) =6 (26)
and

var (’5‘-) = o2 2.7)
Set

7ip = 110 34, (2.8)

the sample mean, to be the estimator of §. Also, note that for any p,

E (@) = % Zp: E(5) =0 (2.9)

=1
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and

var ()

(2.10)

According to (Lehmann and Casella, 1998, Chapter 2, pp. 83-100) and (Bar-

toszynski and Niewiadomska-Bugaj, 1996, p. 474), a good estimator 7, should become

more precise with increasing numbers of samples, p and it should enforce some mea-

sure of impartiality. This leads us to defining the following characteristics of a good

estimator.

Definition 2.17 An estimator m, of 0 is weakly consistent if for everye >0

1 M, — 0] < =1. .
lim P (i~ 6] <€) =1 (2.11)

The estimator i, is strongly consistent if

P pllxgomp = 9) =1 (2.12)

Definition 2.18 An estimator M, of 6 is unbiased if

E (mp) =6 for all p. (2.13)

Additionally, m, is asymptotically unbiased if

lim E () = 6. (2.14)
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Unbiasedness of an estimator will ensure that the amount of times the estimator
M,y over- and underestimates 6 will cancel each other out in the long run. Note from
(2.9) that m, is unbiased.
The characteristics of consistency and unbiasedness of the estimator i, are

justified by the Central Limit Theorem (CLT).

Theorem 2.19 Let X;, i = 1,...,p,... be independent identically distributed (iid)
random variables with mean E (X;) = p and var (X;) = 6> < oo. Then letting

X=1 ZX,, we have

t=1

(X —p)

o/ 75 — N(0,1) (2.15)

in distribution as p — oo.
Using the CLT, we can define

X; =6,

- P
and thus estimate ¢ by X = %

‘ X, or using the terminology introduced in (2.8), we
can use
P
= 530
The CLT ensures that an asymptotic confidence interval exists for §. Let us define the
sample variance as

gl

p

=1
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Then using (2.15), with X = 9;, u = 6, for large p, the 100 (1 — o)) % confidence interval

for 8 is

o c
96[" - — za, M +—ze.:| 2.16
o= Tz 73 Mot 2 (2.16)
where z,/2 is the 1 — 3 quantile of the standard normal distribution.

From this, we can see that 7, is strongly consistent and asymptotically unbiased

because for fixed and known o,

o
lim — — 0,
p—oo /P
implying, from (2.16) and (2.9),
- -~ — 0
g, e

and also
P plix‘rglomp = 0) =1 almost surely,

thereby, arriving at the conditions defined in (2.12) and (2.14).

Consider again the confidence interval in (2.16), it is obvious that to change the
width of the interval, one only needs to be concerned with % since zg is an arbitrary
constant. By reducing the width of the interval, the reliability of 7, as an estimator
is increased. Omne does so by either increasing p or decreasing ¢. Decreasing o by

a factor of some constant K has the same effect as increasing p by a factor of K2.
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Obviously, both methods increase the computational cost, with varying p being the
more expensive of the two. However, since we seek to minimize computational cost for
an acceptable level of accuracy, we choose to use variance reduction techniques for this

work.

2.4 Measures of Performance

- ~2 .
Consider two unbiased estimators 8'and 8 of an option price 8, where one has a lower

variance,

Both are unbiased, hence from (2.9),
E [él] =E [92] =4.
Also, the variance of the estimator ’9*, k = 1,2, is known from (2.10) to be

var (8] = %,

We need to choose the best estimator based on the criterion of variance levels and

computational costs involved.

2.4.1 Level of Variance

Based on the confidence interval in (2.16), we know that lowering variance will bring

the estimator 7, closer to 6. So, for some fixed p, using variance as a measure of
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performance, one should select @1 as

LIS
™1

N

< o3. (2.17)

l

If the number of simulations p is fixed for both estimators, it would be inefficient
to use 8" as one gets a more variant estimator for the same amount of work. However,
if px, £ =1, 2, is the required simulation to generate each §" then there should be a way
to measure the work each p;. entails. The level of variance as a measure of performance

then fails to reflect the possible differences in computational effort.

2.4.2 Level of Efficiency

As an additional measure of performance that incorporates computational effort, we
will use the level of efficiency. We choose to use the measure used by (Boyle et al,
1997), discussed in (Bratley et al, 1987), (Hammersley and Handscomb, 1964) and
further extended by (Glynn and Whitt, 1992). We will now review the measure of
(Boyle .et al, 1997).

Consider the standard error term from (2.16) again:

Tk k=12

75

(Boyle et al, 1997) accounts for the computing time, ¢ and the work required to generate
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a single path, F. Setting

— (&
p_ Fk 3

assuming |_-;:J is a positive integer, the estimators introduced in section 2.4 become

For the same amount of computing time, t, = t, the decision rule is to choose

51 over 92 if

oV F < 0’2\/F2

=> oF < oiF,. (2.18)

2.4.3 Pricing Options

Consider now the case of option pricing, with the underlying vector of securities (S¥),
k=1,..d The stochastic differential equation in (2.1) governs the evolution of Sy.
Recall that for a payoff function, f, we can price an option under the risk-neutral

measure by

0 =e"TE(f(St)|S0)-
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This would require the integration of f (Sr) over its state space, however, if the exact
distribution of Sr is not known, then this would be impossible.

So, using the methodology of Monte Carlo discussed in section 2.3.1, we sample p
independently generated prices, S&* of Sk, k=1, ...,d,% = 1, ..., p. Using the arguments
presented in section 2.3.1, we can use this sample average to estimate the option price

to be

where r is the risk-free interest rate.

To generate the sample values, S3* of the asset price S, one needs to simulate
the paths of the stochastic processes dictated by the SDE in (2.1). We choose to use
various time discrete approximations to the SDE over the horizon period, [0,T] which
converge to the continuous time stochastic processes if certain criterion are met. This
choice is mainly motivated by the fact that sample paths of Ito processes receive the
nondifferentiability characteristic of the corresponding Wiener processes. Therefore,

time discrete approximations will seek to approximate these paths.
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2.5 Discretization Schemes

2.5.1 Convergence

For the discretization schemes, we partition the time interval [0, T} into n equal subin-
tervals. A time discrete approximation S2¢ of (2.1) reduces it to a stochastic difference
equation, characterized by the mesh At = % In order to consider the effectiveness of
SAt as a good pathwise approximator of S;, we need to introduce the absolute error

measure
E(ISr - S¢*)),

which is the expected value of the magnitude of the difference between the Ito process
S; and the approximation S2%.

One then says that SA* converges strongly to S; with order v > 0 at time T, if
E(|ST — SP*|) < C(At)” (2.19)

where C is a positive constant independent of At.

‘We should note that generally,

14
%Zf(s%‘, ..y S3)

i=1

is a biased estimator of

E(f(ST)|S0)-
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However, if SA* converges strongly, then it is asymptotically unbiased (please see (2.14)
for elaboration). Therefore, we need to choose n to be sufficiently large to ensure
that the expectation of % i‘i. f(S¥, ..., SF") is reasonably close to E(f(Sr)|So). This is
seen in Figures 2.4 and 2.5 where increasing the time-steps, n, improves the pathwise
approximation of the discretization scheme. Henceforth, the distinction between SA*

and S; is dropped to simplify notations.

22 Euler Scheme and Exact Soluion i 10 time-sieps
2

1.8

Figure 2.4: Euler Scheme with 10 Time-Steps

) P . i
We recall that in pricing an option, we require the expectation }D 3. f(S7, ..., SF)
i=1
to approximate E(f(St)|Se). For this case, it is also possible to approximate the prob-
ability distribution of Sr instead of the actual path of S, since we only require the

expected value of the terminal distribution. In such a case, we do not require such a
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Euler Schame and Exact Solution lor 20 ime-steps
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Figure 2.5: Euler Scheme with 20 Time-Steps

strong form of convergence, and we can define the mean error as

E (f(Sr)) — E(f(S8)) .

30

The discrete scheme S is said to converge weakly with order 3 > 0 at time T, if for

each f € C%¥+1)  which, along with its derivatives up to [2(8 + 1)], have polynomial

growth, we have

|E (f (St)) — E (f (S8)) | < C (At)°

(2.20)

where C2(3+1) is the space of continuously differentiable functions up to order [2(8+1)].

We will focus on discrete schemes with strong order of convergence -« because we

require the simulation models to be applicable to different types of options with various

payoffs. Therefore, a good pathwise approximation of the Ito process is considered more

essential and from this point onwards, we only discuss time discrete approximations
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with respect to the strong convergence criterion in (2.19).

2.5.2 Euler Discretization

Consider an initial value problem

ds
dt

u(s,t)

s{te) = so

The deterministic Euler method is used to approximate the continuous time differen-
tial equation. Using the same notations introduced in the previous section and also

considering t as an integer representing ¢ - £, we have
St+1 = 8¢ + p(se, t)AL

where t = 0,...n. In a stochastic context, the differential equation becomes an SDE,
for example, of the form (2.1), with an additional Ito integral term dW; .

Therefore, the stochastic Euler discretization is a direct extension of the well
known deterministic Euler method used above. For the SDE, we need to approximate
the additional Ito term

AWZ = m{I'-At - Wy

Since Wiener processes have independent normally distributed increments, then

AW} ~ N(0, At)



CHAPTER 2. SIMULATING STOCHASTIC DIFFERENTIAL EQUATIONS 32

which, using the definition of Wiener processes (see definition (2.4)), also means
AW = VALZ,

where Z! denotes, here and throughout this thesis, a standard Gaussian random vari-

able.
This implies that
dW} ~ VAtZ:.
Hence, the Euler scheme for (2.1) becomes

d
Sk1 = SF+ 4k (S, )AL+ o™ (S, t)VALZ] (2:21)
Deterministic Euler J =1 v

Stochasgc Term
for k =1,...,d, t = 0,..,n. The discretized Euler scheme (and other time discrete

schemes), as a method of approximating the Ito process at discretization points in
time, lends itself very well for implementation on a digital computer. Furthermore,
Ito processes inherit the irregularity properties of the associated Wiener process, as
seen in Figure 2.1, so by discretizing these schemes, these irregularities will not be as
promiz;ent.

Although the Euier scheme is of order 1 in the deterministic context, its strong
order of convergence in the stochastic context is only 0.5 since it ignores some first
order terms in the stochastic Taylor expansion (see Kloeden and Platen, 1999, Chapter
5, p. 182) of S;.a: around S,. See Figures 2.4 and 2.5 for some examples of the Euler

scheme approximating an Ito process with different time-steps.
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2.5.3 Milstein Discretization

The Milstein scheme incorporates all the first order terms of the stochastic Taylor
expansion. It has strong order of convergence equal to 1 but extends the Euler scheme.
For equation (2.1), the Milstein scheme is written as, see e.g. (Kloeden and Platen,

1999), p. 346,

d
Sk = SE+ uF (S )AL+ D M (S, )VAL(Z]) + (2.22)
i=1

Euler gcheme

d d :
. goth
Z Z Z 0,1.11 (Sh t)—'a-s"t[_(Sg, t)Ijsz

f1=1 je=1 I=1

('

7

Additional 1st Order Term
with
t+At s
- / / AW AW, (2.23)

t t

IJ':J'z
Figure 2.6 illustrates the differences in the Euler and Milstein discretization
schemes for a sample path of equation

ng = I.ngdt + O'Sgde

with the following parameters: Sp = 1.0, # = 1.5, ¢ = 1.0. The explicit solution to
this is well known, see e.g. (Lamberton and Lapeyre, 1997) Chapter 3, Section 3.4.3,

p- 35,

o2
St=Soexp((y—?)t+aW}) .
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Euler and Milstein Schemes vs Exact Solution
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Figure 2.6: Discretization Schemes and the Exact Solution with n = 10 time-steps

The effect from the additional double Ito integral term is obvious for ¢ getting close to
the time to expiry, T

The main difficulty arising here not evident in the Euler scheme is the com-
putation of the double Ito integral term, I; ;, and this issue is addressed in the next

sections.

2.5.3.0.1 Simplifying Cases There exists three simplifying cases in which the
computation of I, j, for the Milstein discretization scheme becomes feasible and simple.

The following cases are particularly relevant in finance.

Case 2.20 Additive Volatilities
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Suppose the volatility matrix is only a function of time, with
o(Se,t) = o(t)

in (2.1). Then obviously the partial derivatives,

o2

6_55(St’t) =0 forall k,1

in the Milstein expression (2.22), thereby reducing it to the Euler scheme (2.21). In

this particular case, the Euler scheme has order of convergence 1.
Case 2.21 Uncorrelated Assets

Consider the system (2.1) governing the dynamics of the securities Sf. If the
volatility matrix is only a function of SF itself and the dW are uncorrelated, the system

becomes
dSk = p(St,--- ,8%)dt + o*(S5)dWF, k=1, ---,d. (2.24)

Then, the partial derivatives

Oo*iz
'5:95—(5:,25) =0 forall k#1I,

resulting in the volatility matrix o(S;,t) in (2.1) being diagonal with each diagonal
element as {o*(SF)}. As a result of this, the Milstein scheme’s (2.22) additional terms

will only include I;;;,- To compute this double integral, we first give the following.
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Theorem 2.22 (Chebyshev’s Inequality) For any random variable X with

E(X) u, and

]

var(X) = o2,
for some constant k,
o2
P{X —pl 2k} < 5.

b s
Proposition 2.23 Consider [ [ dW,dW;, then we have

aa

b

f / aW,aw, = 2=2(z2 1) (2.25)

2

where Z ~ N(0,1).

Proof. First, we have

b s b
/ f AW, dW, = / (W, — W,)dW,
a a a

b
= /Wdes - Wa(Wb - Wa):
a
using the definition of the Ito integral in (2.4), we get

b n-—-1
f WdW, = Y W, (W,,,, — W,))

7=0

where 5j4; =a + m’;—“l, j=0,..,n—1, then,

n-1 n—1
1
D W (Wep = Wey) = 5D 2W,W,,, —2W;
1 n-1
= 3 Z2W,jW,j+1 - Wsz:- - W32j + Wi‘u - ijq—;

7=0
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Grouping terms to factorize,

n—l

- 22;( W2, -Wi) = (W2, —2W, W, +W2)
o
n—l

2 2( Sjel W2 (W"j+l - Wsi)z ’
j=0

and ezpanding,

= _[( (W-u Wso)2 +
(W2 —W2) — (W, —W,,)* + ...+

(W2 w2 ) (Wsn - WSn—x)z]

Sn~1
1 132 2
= W) - W) -5 > (W, - W)’
J—O
First, let
AW; = Wi = Wy,
and set

En = nz_:(AW,-)z.

j=0
Recall that AW, ~ N(O, Sj+1 = SJ‘), so
n—-1 n~1
E(ea) =Y _E(AW; = Zvar (AW)) =) (sj41 — 55)-
=0 i=0

Being a telescoping sum,

E(en) =b—a.

37



CHAPTER 2. SIMULATING STOCHASTIC DIFFERENTIAL EQUATIONS

Now, the variance is

n-1

var (ep) = Zvar [(AW'J-)z]
7=0
n-1

= Y {E[aw,))’ - [Eawy)]}
=0
n-—1
< Y E(awy).
=0
Recall that the moment generating function for AW; is

(CEER
$44-1"%y
J+2 J u2

maw;, (u) = e
and the fourth derivative of this evaluated at u = 0 will yield
E(AW;)* = maw, (0) = 3 (sj1 — 55)%,

so,

n—1

var (e,) < 3 Z (8541 — Sj)2 .

=0

Now, using Chebyshev’s Inequality in Theorem (2.22), with X = &n,

P{‘En - E(En)l > k} < va”;c(zsn)

n-1

3 2
< EZ (sj41 — $5)°
j=0
but since the size of the equal increments is

b-a
Sj41 — S5 = n
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then
n—1 n—1 2 2 2
2 b—a\?_ _ (b—a)® (b—a)
;(3141—3:') ‘—g( n ) A
Then, as n — oo,
3 &= . 3 (b—a)
ﬁ;(sj-i-l"sj) =% n -0,

thus P {|e, — E(e,)| =2 k} — 0, and so

in probability. So, finally,
b s b
//dWTdWS = /W,dW, — Wo (W, — Wy),

a

12

= {-;—Wz(b) +2W2(a) - W(a)W(b)} - 3(6-a)
1 1
= W) -W)* -5 -a)

but W(b) — W(a) ~ N(0,b — a), then

b

/ / W,

a

%[\/b_——aZF - %(b —a)

b—a
2

(22-1).

Now, regarding the calculation of I;;,, (2.25) yields

{3W20) - W@ - 50— a) } - WaWs - W)

39
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Corollary 2.24 In the above notations
tntl s
Lin= [ [ awsaws
t t
_ At

=5 ((z8)* - 1)

where At = t, 1 — ty.
Proposition 2.25 Commutative Systems
The SDE (2.1) is said to be “commutative”, if for all j1, j2 and k,

Z T (s,,t) 5 S, (s,,t) = Zalaz(st,t) 53] (S,,t) (2.26)

=1

In this case the last term in (2.22) can be split into the three forms of the Ito integral,

Iju'z

d d d

ZEZ”"‘(S}J) aSl (Sta )J]_Jo

=1 j2=1 I=1
d nh-1 d

= Zzza'n(s,,t) 55! (S:,t)Im

N1=2j2=1 l=1

d n-1 d
PIPIP MR 55 O (So )l +
11—2 Jz-—l =1
aln (Sh t) (Sh t)IJ Ji- (2-27)
ZZ e (50

I;;, for j, # j» cannot be expressed as easily as I;,;, for ji = j2, so we use an identity

from (Kloeden and Platen, 1999), (3.15), p. 348

Livin + Iy = AWjIAsz,
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using (2.27) we get, after factorizing,

d d d

PIPIP I 35, (S0 Ol

Ji=1j2=1 I=1
d -1 d

= Aty ZZO’"‘(S:,:&) 25! (s,,t)(znz”)

]1-2 ]2-1 =1

EZ (S0 t) e O (S (2P~ 1). (2.28)

n=11=1

One typical example of this case in finance is when the kth security Sf follows

the dynamics:
dSt = (S}, -+ , S, t)dt + EH(SEYAW for k=1,--- ,d (2.29)

where the W} are correlated standard Wiener processes. As such, it is necessary to

simulate a multivariate normal distribution, discussed next.
2.5.3.1 Simulating Multivariate Normal Distributions
Suppose Z = (Z*, ..., Z%) where
ZEE N(0,1), (2.30)
for k =1,...,d and iid denotes identically and independently distributed, then let

W = AZ (2.31)
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where W = (W1, ..., W?) and A is a nonsingular d x d matrix. The linear transforma-

tion in (2.31) has

E(W) = E(AZ)

AE(Z)

and the variance-covariance matrix as

> w = E(WwWT)

- E [(AZ) (AZ)T]

= E[AZZTAT]
= AE(ZZT) AT
but
T ((21)2 zZ1zz ... ZIZd\
A 21
VAV A (Z2)2 727d
ZZT = =
A A
\led 7274 ... (Zd)2)
So
(E(Zl)z E(2'2%) -.. E(ZIZ")\
E(Z'Z%) E(2%)* E(22Z%)
E (2Z7) = ( ,

\ E(Z'z%) E(z°Z%) - E (29)° )
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and using the distribution of Z* in (2.30), we know that

1, fork; #ks
E (Z2k2R) = :
0, for kl = kg
getting
1 0
E(ZZ") =] : -.. : | =1 I being the Identity matrix.
0 1
Therefore,

szAIAT=AAT.

Furthermore, it is easily shown (Lehmann and Casella, 1998, p. 20) with the usual

formula for density transformations that the distribution of W is.

fw@) = fz(w)- A7
LA - 37 (aAT)w
(2m)¢

where f denotes the distribution function and [|.|] denotes the Jacobian of the linear

transformation (2.31), that is,
W~N (0, AAT) .

Hence, to simulate random variables W, one needs to find A for which 3\ = AA7,
and a Cholesky Decomposition can be used for this purpose.
By using Cholesky decomposition, the commutative system (2.29) is transformed

to that of the form seen in (2.1).
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2.5.3.2 Cholesky Decomposition

For details on this method, see (Conte and de Boor, 1972, p. 142) and (Morgan,
1984, p. 282). The goal of this method is to produce an upper triangular matrix A
through recursive computation by columns. Let the correlation matrix be 3 = {o;},

k=1,.,dand j=1,..,d,

(an 0 0 \
az1 a2 0
A= ,
Kadl aq2 Qdd )
so set
S - aa7,
getting
( 10 0 \ ( a3 0 0 \ an az aq; \
01 0 as1 Q29 0 0 a9 aqge
\00 1) \aﬂ Qg9 add) KO 0 add/
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Solving the system of equations from the matrix multiplication, we get

(73]

\
P

Ak

\

1 fork=1
, and
Py fork>1
iz,
1-3 a% for k= j
c=1
j=1 .
Prj — Qe fork > j
c=1

It can be easily shown next that the system (2.29) is commutative.

45

To account for the correlation in the processes, the volatility matrix for equation

(2.29) is as follows

(esn o o ) P o )
2 Q2
(7] = 0 £°(S) 0 y az a2 0
\ 0 0 Ed (Sg ) ) \a.dl Qad2 add )
h diﬂ?u:ion g Choles;y Decamposi!io?zjf Con'elation‘Mazriz

where a;; are constants. Then dropping (S¥) for simpler notation, we get

(

\

)

0 0

1
ané

an? axnt? 0

an€ apf® -+ awt’ |
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Consider the commutativity condition in (2.26), for k # [,

do*i S
55T =0 for all j = 1, Ja-
t
Thus (2.26) simplifies to
) 3 ) 7
i % _ ki %a; ) (2-32)
t

Since ax; = 0 when j > k (j = j1,j2), then for j1,j2 =1, ..., k, the left-hand side

of (2.32) becomes

ek

Ak, E° aks, 95F
while the right-hand side becomes

a k
akj, € akj bé’?

So the revised commutativity condition in (2.32) is met for this case.
Note that if £€* is a function of any other security besides Sf then the resulting
system would not be commutative. In such cases the stochastic Ito integrals /;,;, have

to be simulated. This issue is addressed in the next section.

2.5.3.3 Simulating the Multiple Ito Integrals

There are some types of option pricing problems which do not fall into the above
mentioned categories. An example is mentioned wherein the volatility of a security

depends on other factors, thereby necessitating the simulation of the Ito integral I;,;,.
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Example 2.26 Stochastic volatility.

Consider the system:

dSt = ]J-Stdt + \/ES:MI
do, = a(B—o;)dt +v\/0.dW/ (2.33)

where W} and W? are standard Wiener processes correlated by correlation coefficient

p (p =0 or # 0), and the identity
7% < 2aB

must hold to ensure positive real values for o;. We first verify that this system is not
commutative for the general case with correlation p:

Note that the volatility matrix for the system (2.33) above is

VTS 0
Yo/Ft YV o (1 — p)

Using the commutativity condition (2.26), for k =1,d =2, j; =1, j» = 2, we get

0] =

2
30.12
n ———— =
E-_-l o (Sg,t) asé (Sg, t) 0,
while

2 dot! 1
S 0(S,, t) 55 (Seit) = 57V1 = pSt,
b 0S; 2

so the commutativity condition is not met.
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The problem above requires the direct computation of the multiple Ito integral
(2.23) and to compute the double Ito integral, one traditional approach is first reviewed
and then a direct and efficient numerical scheme is proposed. An analytic method is
proposed in (Kloeden and Platen, 1999) Chapter 5, by expanding the Ito integral as a
Fourier series and using a truncation as an approximation. This technique is used to
approximate another form of integrals termed the Stratonovich integrals in Section 8,

Chapter 5 of the above reference. The approximation, c.f. the above reference p. 347,

is given as
Lin = [L,= (320 2% + oY 20 — Y Z] ) At + (2.34)
At 1 ; iz . . i .
P - J1 J2) J2 Il
27T ;1 T(Xr (\/izt +Wr ) Xr (‘/§Zt +Wr ))
where

1 1 &1
Pe= 127 2n2 2272

(2.35)

and disregarding the indices, W, X and Y, Z are respectively 2¢q and 2 standard Gaus-
sian random variables. We note that larger values of ¢ give more accurate approxi-
mations. For a given q, formula (2.34) requires the generation of 4(1 + q) standard

Wiener processes. The value of ¢ must be chosen (see above reference) so that

K
-_— > e
qg=q(At) > A7

for some positive constant K. This condition ensures a strong order of convergence

v = 1 for the Milstein scheme using the approximation of (2.34).
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Another approach presented in (Lari-Lavassani et al, 2000) evaluates the multi-

ple Ito integrals (2.23) by going back to the very definition of the Ito integral. Recall

that
b k-1
[ £e.w)awe = sup 3 ft ) Wy — W),
2 i=0

where the supremum is taken over all possible discretizations of the interval [a, b and &

is the number of subintervals.

Proposition 2.27 Consider the integral

t+At s
L = dWirdw 2
IJlJz - / / T s 1
t t

with t < t; <t + At where
ti=t+_,i=0,1,...,k.

Let X, Y* be 2k + 2 uncorrelated standard Gaussian random variables. Then, we

have
At k-1 1 ) )
L = S O xy. (2.36)
=0 J5=0

Proof. First, we recall that

-1

s

1 1 __yn
/ awi =~ S (Wi, - Wi
t 7=0

t—-1
= ‘/—Ak—tZXj

=0
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where ¢; will be the nearest point to s in the discretization. Therefore, reapplying this

for the second integral, we get

At :
L, = \/ S XH)WE, - W)

j=0
k-1 z—l
- YES /B
=0
k-1 i-1
- X o
=0 j=0

Remark 1 7o use (2.36) for computing (2.23) the following additional identities must

be used to be consistent with the Milstein scheme in (2.22)

) 1 .
Z} = = X and
' vk Zo
] 1 k-1
zr = — Y:.
’ vk ;o

Remark 2 Note that to implement (2.36), for a given number of discretizations k,
only 2k standard Wiener processes are required, and it is now shown to be numerically

more efficient than (2.34).

We now compare the numerical efficiency of both formulas (2.34) and (2.36)
in estimating I; ;. The measure of efficiency here will be the computational cost
represented by Flops. The time interval [t,t+ At] is considered to be [0, 1], i.e, At = 1,

and we take k = ¢ = 1000 to ensure a high level of accuracy for both formulas.
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This estimation process is repeated 50000 times to produce two distributions for I ;.
Having done so, we compare these two distributions to see if there is a significant
difference in the two methods. This is done by plotting a histogram seen in Figure 2.7
of the differences in values that are less than or equal to 0.0001.

The histogram shows that almost all of the 50000 samples of the differences
have no significant differences between them, showing that the two distributions are
almost identical as almost all of the 50000 samples have differences very close to 0.
The evidence from the graph is also validated by the numerical values of the first four
moments whose values are presented in Table 2.1. First, we note that the moments
are very close to each other for both methods. Therefore, we can conclude that both
formulas approximate I, ;, well, while their major difference is seen in the computational
cost column.

Our formula (2.36), relying on the definition of the Ito integral, only requires
4004 Flops to approximate [ ;, whereas formula (2.34) requires 11024 Flops. This
means that numerically, formula (2.36) is much more efficient as it requires 64% less
comput'ational effort compared to formula (2.34). This is principally due to the number
of random variables each formula has to generate in order to approximate I ;,. Formula
(2.34) requires 4 (1 + ¢) standard Wiener processes, while formula (2.36) only requires
2k. For high levels of accuracy, i.e. ¢ = k, formula (2.34) requires less than half of the

number of standard Wiener processes of formula (2.36).
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Mistogram of Differences Between Methods for Simutating |
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Figure 2.7: Distribution of the Differences of the Double Ito Integral

I ;, Evaluated | Mean | Volatility | Skewness | Kurtosis | Cost in Flops
via the Formula | x10~3 x 107
(2.34) 1.6694 | 0.5025 -0.0829 | 6.7533 11024
(2.36) 2.9077 | 0.5108 -0.0208 | 7.0188 4004

Table 2.1: The Four Moments of the Distributions of the Double Ito Integral.
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CHAPTER 3
VARIANCE REDUCTION WITH ANTITHETIC
VARIATES

Variance reduction techniques improve the efficiency of Monte Carlo methods.
They are discussed in (Boyle et al, 1997) or (Clewlow and Carverhill, 1994), among
others. We briefly motivated the need for variance reduction in the context of the
Central Limit Theorem as a cheaper alternative to increasing the number of simulations
in section 2.3.1.

To simplify notations, we still consider ¢ as an integer representing in fact ¢ - Z.
For a single path of S; , we add an additional label i, to be the index for the number
of simulations, and note that to simulate this path using the time discrete schemes of
(2.21) or (2.22) requires n x d standard Gaussian random variables.

These n x d Gaussian random variables define the matrix
Z' = (Z{%),

where; =1,...,dand t = 1,... ,n. Each Z*! will provide a vector, of length d, of
random variables, where each Z}* is a Gaussian random variable at time ¢, for asset
or dimension j along the path indexed by ¢. In terms of the Monte Carlo method, to
improve efficiency, all Z*’s are produced at each instant of time, in matrix form before
passing them through the discretization schemes of (2.21) or (2.22), and at each instant

of time, the new Z’s overwrite the previous ones. We choose to do so for memory
53
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management and also to preserve the assumption of independence between random
variables.

As a result of this, there is a one-to-one relationship between the matrix Z*
and a sample path of the discretization of (2.1). Hence our attention can be shifted
to producing additional matrices Z*, while preserving the Gaussian symmetry. That
is, our emphasis will be on one specific form of variance reduction, namely, antithetic

variates.

3.1 Classical Antithetic Variates (CAV)

This particular technique of variance reduction exploits the reduction in variance as
a result of random variables being negatively correlated. The reduction in variance
arises from the averaging effect of combining results obtained from negatively correlated
random variables. For instance, larger than usual estimates of the option price are
paired with smaller than average values, the final average of these values will drive the
option price closer to the actual mean of the integrand.

The idea of classical antithetic variates is to draw p samples Z¢ = (Z}%), i =
1,...,p, and pairing them with their reflection, —Z*, to obtain a second path. The
random inputs from the p pairings {(Z?, —Z*)} are more regularly distributed than the
2p independent samples of Z' and —Z* and this arises from the symmetric property of
the normal distribution. Theoretically, the sample average of the random samples Z*

is 0. However, due to the randomness of the sample, or obtaining samples which are
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less representative of the population, the average value of the Z* will not usually be
zero in actual simulations. We, however, note that the sample mean for the antithetic
pairs will always be 0.

Any set of p sample paths Z¢ = (Z7%), i = 1,...,p yields p samples of (S;‘.’i),

k =1,..,d Standard Monte Carlo method then estimates the price of a European

option, under the risk-neutral measure, with payoff f(5% ,...,S5%) by
- e“rT L4 . .
6 = Z f(SE,... 8%, r = risk-free interest rate. (3.1)
=1

However, with classical antithetic variates (CAV), the price of the option is derived

from two sources

3.2)

. -rT P Li d,i Sl 5d,i
OCAv-—-e Z‘f(s ""’ST)+f(ST7--~’ST)’

i=1 2
where S&*, k = 1, ..., d is obtained using (2.21) or (2.22), and $¥°, k = 1, ..., d is obtained
in the same manner except all the Gaussian random variables are the opposite to that
of S5*. A major advantage of this method is the fact that these Gaussian random
variables are generated once but result in two paths.

The averaging effect from the use of antithetic variates is seen in Figure 3.1,
which shows the sensitivity of the payoff of a standard European call option with
respect to changing initial prices. We see that even for low levels of simulations and

time-steps, the averaging effect is dramatic.

The SDE used to price this option is a standard lognormal as in (2.5). The
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option has the following parameters:

Initial price, Sy = 10j, j=1,...,20
Strike price, K = 35,
Dividends, § = 0,

Volatility, 0 = 0.2.

It is priced using the Euler scheme of (2.21) under the risk-neutral measure, » = 0.05,

with simulation parameters set at:

Simulation paths, p = 350 and

Number of time-steps, n = 30.

3.2 7, & Z-Symmetric Antithetic Variates

A symmetric extension of the classical antithetic variates technique is proposed in (Lari-
Lavassani et al, 2000). We now review this construction. The idea is to produce from
a given~ simulated path, three additional paths while maintaining the symmetry of the
Gaussian distributions involved. At the same time, the method seeks to reduce the
global variance in a cost effective manner. It extends the CAV method.

This method proceeds as follows: given a discretization scheme, e.g. (2.21) or
(2.22), with the matrix of Gaussian variables Z}" as defined in a section 3.1, a second

matrix is produced using (—Z7"). Both Z7* and (—ZJ") have the same distribution.
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Averaging Effect of Classical Antithetic Variates

18 T T -1 I

- -d
&8 2
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3
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G20 40 60 8 100 120 140 160 160 200

Figure 3.1: Effect of CAV for the payoff of the option

We now give an algebriac interpretation of the CAV method:
Let Z; = {—1,1} be the group on two elements, and consider its action on the

discrete space {Z}*,t =0,...,n, =0,... ,d} defined by:

1-27 = ZI* and

(-1)-z%* -z}

The above action extends naturally to Z* component-wise. Note that CAV uses the
entire orbit of a path under the above action, consisting of Z* and its opposite path
—Z'. The above Z,-symmetry action leaves the distribution invariant within a given

orbit. This is a restatement of the fact that CAV preserves the symmetry of the
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Gaussian distributions.

The generalization of the above method consists of enlarging this symmetry
group, by considering the four element group Z; & Z, that can be identified with the

set of two by two matrices

The new action is then defined on the two dimensional grid {(Z7,, Z7*)} where ¢

assumes all odd values from 1 to n by:

Lo (205, 28) = (B4, 2,
Ty (204, 2F) = (~2t4,-2),

Ts- (2}, Z}) (2}, -Z#%), and

Ti-(285,2) = (=285, 209,
which can also be written as
r,-z¥* = z¥,
0oz = -zt
[3-Z7 = (-1)'*'Z}, and
Ny 2P = (-1’2},

for all t = 0,...,n. This action naturally extends to the matrix path Z* = (Z}*)

component-wise.
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This is depicted in Figure 3.2. Geometrically, given a path I'; - Z}*, the second
path I';- Z' moves in the opposite direction of Z* at all times, the third path I's- Z*
moves in the same direction as Z* for odd time-steps and in opposite directions for even
time-steps, and the fourth path ;- Z* moves in the opposite direction of the third at
all times. All four paths make an orbit under this Z> & Z, action and have the same
Gaussian distribution.

It is noted in (Lari-Lavassani et al, 2000) that there are three copies of Z,
as subgroups of Z; @ Z,, namely {I';,I'>}, {I'1,T3} and {I1,T4}. The case CAV
corresponds to {I';, 2}, and it is noted that from a variance reduction viewpoint, the
other two subgroups alone are not quite as effective. We will see numerically why this
is so in Table 4.6. Indeed, {I';,I';} has paths which are highly negatively correlated
as one is just the opposite to the other. However, {I';,I's} and {I';,I'y} do not share
this quality so strongly as at every other time-step, the paths are correlated.

We establish below that variance becomes smaller as the symmetry groups be-
come larger. From this point forth, we label the Z; & Z;-symmetric antithetic variates

EAV4 (Extended Antithetic Variates with 4 paths).
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Figure 3.2: Example of the Four Z; & Z, Symmetric Paths

3.3 Implementation and Efficiency of EAV

Once all relevant parameters are fixed,

—rT P

>_fSr... .57

i=1

[

p

is a function of the random matrix Z*,i=1,...p. We let

9(Z') = 9(ZI") =T f(SF', ... . ST)




CHAPTER 3. VARIANCE REDUCTION WITH ANTITHETIC VARIATES 61

and define

~1 1 L4 3,8

6 = =3 (2, (33)
PO

8 = 13 g2, and
pi=lg t ]

i 1< t+k g

6 = ;}:g((-l) Z3), for k=3,4

i=1

where §' is the option price derived from the original path with Z7*, 8 is the price
from (—Z7*) that moves in an opposite direction to 91, 6 derives its price from the
original path with (—1)**® Z#* and similarly for 8.

Combining the above option prices in various ways, we can now define three

additional estimators for the price of the option

R 8 +8°
bcav = 5
A1 a2 a3
- 6 +6 +86
fpavsy = — and
A él + é2 + 33 + é4
fpave = 1 .

This is done to be consistent with the main idea of antithetic variates, that is, to reduce
varianc.e by taking groups of random variables and obtaining a suitable average. We
choose to also include fg4v3 to demonstrate that significant efficiency is only gained
for estimators associated with subgroups.

Recall that the subgroup {I';,I'2} corresponds to Bcav and Zo & Z, to Ogava,
while 8 Eavs does not correspond to any subgroup. More precisely, it can be numerically

verified in the Test Case Option, see Figure 3.3 (refer to section 4.3 for details), that
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@cavs does not perform any better than Gcav, but 85414 does so significantly. That
is why 6 EAav3 is eliminated in future cases as it does not consistently reduce variance in
comparison to other subgroups. In Figure 3.3, 85.avs does not perform well for a given
level of computational work, especially between 10000 and 20000 Flops. The standard

error, in this case is taken to be

15 (8, 0
207 0

shows the option price with EAV4 reaching a stable variance very quickly, for only
10000 simulation paths, while CAV shows the same pattern, but at a higher level of
variance. The standard Monte Carlo scheme has the worst result, with variance even
increasing from 15000 to 30000 paths. EAV3 performs almost as badly as the standard
scheme at 15000 paths, furthermore, it does not have the steady behaviour as seen for
CAV or EAV4. This therefore justifies the elimination of EAV3 as a variance reduced
estimator.

An alternative interpretation to Figure 3.3 is that for a given level of computa-

tional cost, EAV4 has the lowest variance while EAV3 is inconclusive.

3.4 Justification of Variance Reduction of EAV

As discussed in section 2.4, we need to justify the extra computational cost involved
in variance reduction techniques according to some measures of performance, namely,

level of variance and level of efficiency. The following series of propositions from (Lari-
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Euler Schemes with Different Antithetic Variates
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Figure 3.3: Comparison of Euler Schemes with Various Antithetic Variates

Lavassani et al, 2000) explain the benefits in terms of reducing variance and provide
an indicator on how effective or costly an estimator is.
We first need to show that by using the various forms of antithetic variates,

global variance is actually reduced, and the following proposition does this:
Proposition 3.1

i) Suppose

cov(g(Z}*), (= 2¢%)) < var(g(21))-
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Then we have
var [doav] < var [].
ii) Suppose
2cov (9(Z3%), (1) %)) < var (g(Z]%)) + cov (9(Z}), 9(—Z1")) -
Then we have
var [Bpava) < var [Boav] < var [6%].
Proof. We have
E [9’“] = E(g(Z), k=1,2,3,4
due to the symmetry of the Gaussian distribution, and
var [g(Z}*)] = var [9(—2Z{")] = var [g((-1)" Z{")] = var [g((-1)""" Z}7)] .
Therefore,
E {écuw] =
and

var [aCAV] = wvar [1 i g(2l%) +9(-Zif'i)]
=1

y 2

64

= 2 2 {ver [o(22)] + var [o(=Z1)] + 2e00(9(ZE), o(~ZE"))}

=1
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now since
var [¢(Z7)] = var [9(—Z7)],
we have
var [Beav] = 55 ;1 {var [9(2#)] + cov (9(ZH), 9(~Zi")) }
but
cov (9(23), 9(—2§*)) < var [9(Z{™)]

so, we get

var [éo,w] < % i {var [¢(Zi*)]} = var[d']. (3.5)

As for the variance of 8g4v4, we have
var [éEAw] = var[l ig(Zf’i) +g(—=Z) +
4p =1

9 ((=1)*Z#*) + g ((-1)* 28%)]

( 4;)2 S {dvar (g(ZE%)) + 4 cov (9(Z), 9(~ZE)
i=l1

+8 cov (9(277),9((-1)"" Z{"))}

because there are 2 paths which move in completely opposite directions to each other,
while the others have directions based on whether the time-step is even or not, and

using the assumption,

2c0v (9(Z#*), 9((=1)**" Z{)) < war (g(Z{")) + cov (9(Z8%), 9(~21)) ,
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it implies,
var [@ EAW] < war [éc,w] and

~

var [@mw] < war [9CAV] < var(d)

To use the level of efficiency as a measure of performance, we need to account
for the extra effort required to generate Ogavs and 8cay. One would expect the effort
required for replicating samples of 6 g av4 to be at most twice that of 6cav, which is itself
at most twice that of 51. The following proposition shows that even after accounting
for the extra computational cost, BEav, is still the best estimator in terms of variance
reduction, followed by fc av and then the standard Monte Carlo option price, 51. Using

the level of efficiency we choose to compare
o1F1 <o F

for two estimators where o is the variance of the estimator and F) is the work required

to generate the option price.
Proposition 3.2 Suppose

cou(9(Z{*),9(—2{")) < 0
and

cov (9(Z), g((-1)""" Z)) < e
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for some € > 0. Then we have

- - 2
4var [054V4] < 2uarffcav] + f- and

2var [@c,w] < wvar [5(1)]

Proof. Using (3.5) we have

P
2var [90,41/] = %Z {var [g(Z]*)] + cov (9(ZF*),9(-Zi%)}
. ‘l;l B "
< = Z {var [g(Z]*)]} = var(8"").

Similarly, this leads to

twar [Opave] = §Z{var (9(ZF%)) + cov (9(Z8), 9o(~ ZH))

i=1

+2 cov (g(Z#), g((-1)*™* Zi%))}

P
= 2 var [Bou] + ; 3~ {eov (9(ZE%), o((-1)*** Zi)) }

i=1

< 2var [éc,w] + %e.

67

In the previous proposition, we assume that cov (g(Z7*), g(—Z7*)) < 0. This

is the necessary condition for antithetic variates to help in variance reduction. If this

assumption is not valid, then the variance reduction properties of the antithetic variates

will not exist and the extra computational effort in generating these variates will be

an unjustified cost. Numerically, this is simple to verify as the covariance between the

different option prices can be computed, as it will be seen in Section 4.3, Table 4.6.
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(Barlow and Proschan, 1975, Section 2.2, p. 29) show that for increasing functions G

and H, we have
cov (G,H) > 0.
Using this, we next show that
cov (9(Z1),9(—~2Z1")) < 0.
Proposition 3.3
(i) Suppose the drift, u(.,t) and the volatility matriz, o(.,t) are increasing and the
payoff of the option f(S%, ..., S%) is monotone with respect to all Si,j=1,..d.
Then, g(Z¥*) is monotone with respect to all Z}*.
(ii) If the function g(Z*) is increasing, then we have
cov (9(2%),9(~21") < 0.
Proof. Consider two random matrices, with the notation as defined in earlier sections,
V7" and Z}* with the following characteristics
| VPt > Z5 for (t,7) = (9,p), and (3.6)
Vit = 2" for (t.5) # (9.0) (3.7)

Recall that the asset price S{ is actually a function of its random matrix, i.e.

we introduce the notation

5i(Z")
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to imply the asset price S for asset j as a function of the random matrix Z7*.

Then (3.7) yields
3 (V) =83_(Z3)) forall j.
Also, at time 1%, both (3.7) and (3.6) respectively lead to

SH(VEY) = S)(Z§") forj+#p, and

S5(Vg) > 85(25%) for j=p.
Therefore for the next time instant ¥ + 1, we can assume that
S$+1(Wf:1) 2 S§+1(Z$i1 ,
which, in turn, implies
1’5.+2(V0{’:2) 2 S$+2(Z$'_:2) for all 4.
Repeating this until we arrive at time 7', we get
SI(VEY) = SH(Z5) for all 4
and in- general

S3(VE') > S3(2F)-

69

Therefore, we conclude from this that the payoff f(S}, ..., S¢) is monotone with respect

to all S}, and since

g (Zi*) = e~ T f(S¥, ..., STY),
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it is thus monotone with respect to all Z7*.

Now, we know that —Z7* moves in the opposite direction to Z*, so, g (-z#)
is a decreasing function, and —g (—Z7") must then be increasing. Therefore, using the

result from (Barlow and Proschan, 1975), we have
cou(g (Z), g (~Z3)) 2 0.

In order to reverse the direction of the inequality, we need to compare the covariances for
functions with opposing directions, that is, g (Z7), which is increasing, and g (—Z{"),

which is decreasing. If so, the result is

cov(g (Z*) 9 (-2Z1%)) <.




CHAPTER 4
SIMULATION ACCURACY AND EFFICIENCY

In this chapter we consider a Test Case Option to illustrate the issues of efficiency
and accuracy. We measure accuracy by the distance between the estimated option price
and the true value, that is, whether an estimate has converged to the true price or not.
Whereas efficiency is measured in terms of the effort it requires to yield an option price
with low variance.

The Test Case Option is a standard European call option on an underlying with

a lognormal process of this form
dSt =(T—6) St dt+o St dm.

The option parameters are provided by Table 4.1.

As a reminder, Sy denotes the initial asset price, K is the strike or exercise price,
o is the volatility, é is the continuous dividend rate, 7" is the time to expiry and r is
the risk-free interest rate. Note also that CAV denotes classical antithetic variates and
EAV4 the Z; & Z,>-symmetric antithetic variates. The “true” option value of $3.985
is determined by a Monte Carlo simulation with the Milstein scheme using EAV4 at
n = 200 and p = 200000. This option value is taken to be the actual option price from
this point on. This particular option is also priced in (Rubinstein, 1991), p. 21, using

a binomial tree, yielding $3.99.

71
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Option Parameters | Values
So 100
K 100
o 0.1
6 0.05
T 0.5
T 0.1

Table 4.1: Parameters for Test Case Option

To gauge the effectiveness and accuracy of the Monte Carlo simulations, we
consider two issues, namely, the payoff between the reduction of variance and numerical
efficiency, and the relationships between convergence schemes and numerical accuracy.

As a measure of accuracy, we thus define the relative error as

Relative Error = 8 — “true value” (4.1)

and we also define the standard error as

batch
1

'~k -~ 2
Standard Error = 6, —6 4.2
Vv batch ?_L_? ( b ) 42
—~ batch ak
where 6 = o and the batch is the number of times the simulation is repeated.
b=1
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4.1 Selection of Time-Step

Recall that there exists two forms of convergence, one strong and the other weak (see
(2.19) and (3.5)). Both convergence schemes are affected by their time-step size, that
is, At = T/n. Therefore, as mentioned earlier, a suitable n has to be selected to ensure
the discretization schemes converge to the continuous process. We select an optimal
n via the application of the Milstein algorithm with EAV4 to the Test Case Option.
We compute the magnitude of the relative error to be consistent with the strong
convergence requirement of (2.19) to determine the impact of varying n. We then plot
the results in Figure 4.1. We note the steady decline in the magnitude of the relative
error for increasing number of time-steps (which corresponds to a decreasing time-step
increment At). However, after a threshold point, the magnitude of the relative error
seems to increase again. To determine an optimal n, we fix an acceptable error bound,
e.g. 0.005, and the best values for n are those that lead to the relative error falling
under this acceptable error bound line. For this case, we can see n € [30,100] as a
possible optimal range. This corresponds to At € [T/100,T/30] =~ [0.005,0.02]. As
noted before, after n = 65, the curve rises again and although the graph falls into the
acceptable error region, one can obtain the same result with less computational effort

for n € [30,65]. Therefore, the most optimal range for n is

n € [30,65], or

At € [T/65,T/30] = [0.008,0.02).
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For the rest of the numerical examples, we will choose n = 30.

Next, we also show that increasing the number of time-steps does not improve
the volatility of a Monte Carlo simulation. Figure 4.2 shows that for increasing values
of n, the volatility does not converge, in fact, it oscillates. This is consistent with
the strong convergence criteria that relates only the relative error to the time-step size.
Furthermore, in the discussions of variance reduction in section 2.3.1, we note that to
reduce the standard error, the two alternatives are variance reduction or increasing the
number of simulations, p.

0.05 Piot of Absolste Relative Error versus Number of Time-Steps

! .

o

£
T
1

o
T
L

[=]
g

|Relative Error]
o 2 o
B g

() 10 20 %

Figure 4.1: Convergence of Option Price with Respect to Number of Time-Steps
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Figure 4.2: Impact of Number of Time-Steps on Volatility

4.2 Convergence Schemes and Numerical Accuracy

We now consider the issue of numerical accuracy. Based on the previous section, we
have opted to use n = 30 for the numerical results in Tables 4.2 and 4.3. The tables
compare the Euler and Milstein schemes with different levels of antithetic variates for
the Test Case Option. In Table 4.2, it is seen that for increasing simulation paths, p,
the option values start converging to the true value of $3.985. The exception to this
is the Euler scheme with CAV where at 100000 simulation paths, the option value is
furthest away from the true value. This is demonstrated in the relative error columns

where there is a steady decrease, tending to 0. For Euler, EAV4 performs the best
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with a relative error of 0.0001 for p = 100000.

In Table 4.3, the results using Milstein also lead to similar conclusions. Milstein
with EAV4 outperforms the other versions. In fact, Milstein EAV4 shows very steady
convergence with increasing number of simulation paths. This is also seen in the
relative error column whereas in the Euler case, the magnitude is only 0.0001. In
general Milstein outperforms Euler. We should note also that Milstein produces results
which are less variant, as seen in the proximity of the results to each other between
successive increases in p. The prices using Milstein hover around 3.98 in all but 3 cases
whereas for Euler, there are 6 cases which deviate significantly from 3.98.

The conclusions from the numerical results also provide evidence that by in-
creasing the number of simulations, the width of the confidence interval (2.16) shrinks,

so the estimate of the option price will tend to the actual option price for large p.
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n =30 No VR CAV EAV4
Paths | Value | Rel. | Flops | Value | Rel. | Flops | Value | Rel. | Flops
P Error | x107 Error | x107 Error | x107
1000 | 3.9691 | -0.0159 | 0.0153 | 3.9711 { -0.0139 | 0.0277 | 3.9829 | -0.0021 | 0.0583
5000 | 4.0004 { 0.0150 | 0.0765 | 3.9865 { 0.0150 { 0.1385 | 3.9857 | 0.0007 | 0.2915
15000 | 3.9880 | 0.0030 } 0.2295 | 3.9875 | 0.0025 | 0.4155 | 3.9826 | -0.0024 | 0.8745
30000 | 3.9985 | 0.0135 | 0.4590 | 3.9878 | 0.0028 { 0.8310 | 3.9863 | 0.0013 | 1.7490
60000 | 3.9788 | -0.0062 | 0.9180 | 3.9870 | 0.0020 | 1.6620 | 3.9860 | 0.0010 | 3.4980
100000 | 3.9872 | 0.0022 | 1.5300 { 3.9903 [ 0.0053 { 2.7700 | 3.9851 | 0.0001 { 5.8300

Table 4.2: The relative errors and the computations costs in Flops for Euler discretiza-

tion.

Since Milstein has strong order of convergence 1, we expect Milstein to outper-

form Euler. This is further seen in Tables 4.4 and 4.5. The convergence patterns

are obvious in the tables. For Euler, it is evident that the prices have not converged

for this level of p and oscillate, indicating instability. For Milstein, there is steady

convergence to 3.985 particularly for the EAV4 case (note that Euler with EAV4 also

performs well).
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n =30 No VR CAV EAV4

Paths | Value | Rel. | Flops | Value | Rel. | Flops | Value | Rel Flops

P Error | x107 Error | x107 Error | x107

1000 | 3.9689 | -0.0161 | 0.0273 | 4.0096 | 0.0246 | 0.0517 | 3.9772 { -0.0078 | 0.1063

5000 { 3.9823 | -0.0027 | 0.1365 | 3.9781 | -0.0069 | 0.2585 | 3.9875 | 0.0025 | 0.5315

15000 | 3.9804 | -0.0046 | 0.4095 | 3.9822 | -0.0028 | 0.7755 | 3.9874 | 0.0024 | 1.5945

30000 | 3.9860 | 0.0010 | 0.8190 | 3.9858 | 0.0008 | 1.5510 | 3.9882 | 0.0032 | 3.1890

60000 | 3.9843 | -0.0007 | 1.6380 | 3.9883 | 0.0033 | 3.1020 | 3.9848 | -0.0002 | 6.3780

100000 | 3.9938 | 0.0088 | 2.7300 | 3.9867 | 0.0017 | 5.1700 | 3.9849 | -0.0001 | 10.6300

Table 4.3: The relative errors and the computations costs in Flops for Milstein dis-

cretization.

We next attempt to relate convergence to the number of time-steps, n and
the number of simulations, p. This phenomena is seen in the 3 dimensional plot
of Figure 4.3. The effect of increasing the number of simulations is more dominant
than increasing the number of time-steps. For instance, at the simulation level of
approximately 1000 paths, the relative error of the price is very erratic and does not
improve even with increasing time-steps. However, for increasing simulation paths, the
price gets less erratic, also for increasing time-steps, with the best results at p = 15000.

The observations from the numerical results in the previous tables are also ver-

ified graphically. Figure 4.5 plots the relative error against the number of simulations
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Standard CAV EAV4
Time | Value | Rel. | Flops | Value | Rel. | Flops | Value | Rel. | Flops
Steps Error | %107 Error | x107 Error | x107
10 | 3.9794 | -0.0056 | 0.1590 | 3.9774 | -0.0076 | 0.2910 | 3.9734 | -0.0116 | 0.6090
30 | 3.9876 | 0.0026 | 0.4590 | 3.9835 | -0.0015 | 0.8310 | 3.9712 | -0.0138 | 1.7490
50 | 3.9879 | 0.0029 | 0.7590 | 3.9824 | -0.0026 | 1.3710 | 3.9849 | -0.0001 | 2.8890
80 | 3.9836 | -0.0014 | 1.2090 | 3.9847 | -0.0003 | 2.1810 | 3.9846 | -0.0004 | 4.5990

Table 4.4: Relative Error of Euler With Different Variance Reductions, p = 30000.

Standard CAV EAV4
Time | Value{ Rel. | Flops | Value | Rel. | Flops | Value | Rel. | Flops
Steps Error | x107 Error | x107 Error | x107
1‘.:1 3.9837 | -0.0013 { 0.2790 | 3.9826 -0-0024 0.5310 | 3.9867 | 0.0017 | 1.0890
30 | 3.9774 | -0.0076 | 0.8190 | 3.9887 | 0.0037 | 1.5510 | 3.986S | 0.0019 | 3.1890
50 | 3.9906 | 0.0056 | 1.3590 | 3.9883 | 0.0033 | 2.5710 | 3.9845 | -0.0005 | 5.2890
80 | 3.9885 | 0.0035 | 2.1690 | 3.9842 | -0.0008 | 4.1010 | 3.9852 | 0.0001 | 8.4390

Table 4.5: Relative Error of Milstein With Different Variance Reductions, p = 30000
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Surface Plot of Relative Error vs # Time-Steps vs # Simulations
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Figure 4.3: The Relative Error versus the Number of Discretizations and the Number
of Simulations for Standard Euler

for Euler and Milstein with different kinds of antithetic variates. Standard Euler and
standard Milstein do not perform well, displaying the erratic and oscillatory behaviour
as demonstrated in Tables 4.4 and 4.5. In fact, these two schemes are furthest away
from zero. Note the steep drop in relative error for standard Milstein from 1000 to
5000 simulation paths. For Euler, it moves in the opposite direction. The addition of
CAV improves both standard Euler and Milstein dramatically, with both being closer
to zero and showing convergence behaviour to zero. However, the effect of EAV4 for
relative error is the most dramatic, with Miistein EAV4 performing the best. After

15000 simulation paths, Milstein with EAV4 is the only scheme that has fully converged
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.. Relationship Between CPU Time and Fiosting Point Operations
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Figure 4.4: Relationship between CPU Time and Computational Costs in Flops.

as its relative error is not deviating from zero anymore. Euler with EAV4 also performs
well, but not as well as Milstein with EAV4.

In section 2.4.2, we also stress the importance of accounting for the computa-
tional costs, F’ associated with the respective estimators as in reality, 1 simulation path
for standard schemes is equivalent to 2 paths for CAV and 4 paths for EAV4. The
compui;a.tional cost is represented by Flops, the number of floating point operations,
automatically generated by Matlab. Figure 4.4 shows the approximate relationship
between Flops and CPU time. To put it into a time perspective, it is approximately
107 Flops per 1.7 seconds of CPU time on a Pentium III machine with 128 MB RAM.

The associated costs are shown in Figure 4.6. Comparing convergence patterns

with respect to computational costs in Flops, Milstein with EAV4 dominates again.
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Euler vs Milstein with Different Antithetic Variates
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Figure 4.5: Relative Error of Euler and Milstein with Different Antithetic Variates

4.3 Variance Reduction and Numerical Efficiency

Consider the Test Case Option again. Since we are now focusing on the reduction of
variance, the first thing we have to check is whether the assumptions of the propositions

in Section 3.4, that is,
cov(g(Z{"),9(-21)) <0
and
cov (g(Z{), 9((-1)""' 2}%)) < e,

hold numerically. This is reported in Table 4.6, which shows the correlations between
option prices using different kinds of antithetic variates. The correlation matrix shows

that the assumptions are met. Therefore, variance is reduced by using antithetic vari-
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002 Euler vs Miistein with Ditterent Antithetic Variates
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Figure 4.6: Euler and Milstein with Different Antithetic Variates for Relative Error

versus Computational Cost.

is reduced by using antithetic variates, and furthermore, EAV4 reduces variance more
than CAV, which in turn reduces variance more than standard schemes even after
accounting for differences in computational costs.

Here the numerical efficiency of the different methods discussed in the previous
sections is presented. We choose to use graphical means for this purpose. The
standard error values are computed from a batch of 15. Figure 4.7 illustrates the
various efficiencies of different schemes in achieving low variant option prices. The
conclusions are similar to that of the previous section, in that standard Euler and
Milstein are not very efficient as they require a large number of simulations to obtain

a reduction in volatility. We note that Milstein falls to a much less variant level after
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gW) | g(=W) | g(-1'W) | g((—=1)**'W)
g(W) 1 |-0.6285] -0.0013 - 0.0059
g(—W) -0.6285 1| 0.0007 0.0010
g(—1'W) -0.0013 | 0.0007 1 - 0.6277
g((~1)**'W) | - 0.0059 | 0.0010 | - 0.6277 1

Table 4.6: Correlations of the Four Simulated Paths

the 20000 simulation mark. CAV schemes are more efficient compared to the standard
schemes because they require only 10000 simulations to reach a plateau in the volatility
level. It should be pointed out that the difference in volatility between Milstein CAV
and standard Milstein from 1000 to 5000 simulations is approximately double that of
Euler CAV and standard Euler, reflecting the efficiency of Milstein over Euler. Both
schemes with EAV4 are the most efficient, with Milstein EAV4 only requiring 5000
simulations to attain a very stable result. Euler with EAV4 requires about 10000
simulations. Neither of the EAV4 schemes display any oscillatory behaviour. From
a perspective of computational cost, the results are similar for different methods as
illustrated in Figure 4.8. The conclusion is that for a low level of work, 0.5 x 107 Flops,
EAV4 in both schemes reach their plateaus where any extra work beyond this point

would imply a waste of resources.
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Euler vs Milstein with Different Antithetic Variates
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Figure 4.7: Variance of Schemes with Different Antithetic Variates Versus the Number

of Simulations

Finally, we again relate variance to the number of simulations and the number of
time-steps simultaneously. Figure 4.9 is a surface plot of volatility versus the number
of time-steps n versus the number of simulations p. Variance is again seen to mainly
depend on the number of simulations and not as much on the number of time steps.
The im.pact of the number of simulations on the volatility of the option price is greater
for increasing p, as the surface is less jagged. It has a similar surface to Figure 4.3
with the same conclusions.

Therefore, implementing Milstein with EAV4 with a reasonable number of paths
is the optimal choice in that it is the most cost effective in producing minimum variance

with the highest accuracy as seen in the previous section. In other words, the trade-
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Figure 4.8: Variance of Schemes with Different Antithetic Variates versus the Compu-

tational Costs

off between variance reduction and the extra computational cost involved in using the

Milstein scheme with EAV4 is positive and it would be the scheme of choice.
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Plot of Volatility vs # Time-Steps vs # Simulations
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Paths



CHAPTER 5
NUMERICAL RESULTS

5.1 Multiasset Options

Here we put the previous discussions on Monte Carlo simulations and antithetic variates
' to practice in various option pricing problems. There will be particular emphasis on
options with multiple sources of risk, that is, rainbow options. We focus on options
with multiple assets (up to 100 assets) and underlying factors. Baskets or portfolio
options, spreads and strikes are priced using the two discretization schemes and Monte
Carlo simulations with different variance reduction techniques discussed. Numerical
treatments of these kinds of options are also found in (Lari-Lavassani et al, 2000).
Several European multiassets or Rainbow call options on d securities are ex-

amined. These options have dynamics which are governed, over the horizon [0, T,

by
dSF = (r— 6)Skdt + o SFAWE, k=1,..,d (5.1)

where W2, W2 are correlated standard Wiener processes for k; # kg, k1, k2 = 1,..., d.

The options considered do not have closed-form solutions, hence we use Monte
Carlo simulations to find a price for each type of option considered. For other numerical
treatments on these options, see the work of (Boyle et al, 1989), (Hua He, 1990) and

(Lari-Lavassani et al, 2000).
88
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The option prices are computed using both the Euler and Milstein schemes
without and with CAV and EAV4 variance reductions. Since the system (5.1) is of
the form of formula (2.29), it is commutative. Therefore when the Milstein scheme is
implemented, formula (2.28) is used. All options are priced with the optimal time-step

n = 30 and p = 20000 simulation runs. The numerical results are seen in Table 5.22.

5.1.1 Basket Options

The payoff for a European basket option is

we{(g05) )

where K is the strike price and v is the weight or number of units of SF in the portfolio.
The behaviour of a basket option is very similar to that of a standard European call
option. The payoff function is essentially that of the standard call, where the terminal
asset price of one asset S} is replaced with a weighted average of the final prices, S¥.
Using previously defined notation, consider a 2 asset basket option with the
followiﬁg parameters, for k£ = 1,2, as seen in Table 5.1.
Note that the dividend and the risk-free interest rate are continuously com-

pounded, so one has to account for this by using
revised parameter = log (1 + parameter).

We price the option using Milstein with EAV4 with n = 30 and p = 10000.
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Option Parameters | Value
SE 80 — 120
K 200
Ok 0.1
bk 0.05
p 0.5
Wi 1
T 0.1

Table 5.1: Sample Option Parameters

Figure 5.1 shows the similarities between the 2 asset basket option in Table 5.1
and a standard call option. Referring back to Figure 2.2, we note that the 2 asset basket
still has the same payoff structure for increasing initial values Sy, truncated portion is
to the left and the option only has a value for prices greater than the exercise. This
payoff structure is also evident for each instant of time. We can also see from Figure
5.1 that for increasing time to expiries, the basket option value also increases. This
is explained by the fact that a longer term option allows the holder of the option
the privilege of having a longer waiting time to exercise. Now, the longer the time to
expiry, the greater the possibility of a higher terminal asset price while the exercise price
stays constant, thereby representing a greater potential benefit to the owner. Another

feature of the basket option is the smoothness of the surface, typifying a characteristic
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independent option.
Surface Plot of 2-Asset Basket Option over Changing Time to Expiry and initial Asset Prices
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Figure 5.1: Sensitivity of 2-Asset Basket Option to Varying Expiry Times and Initial

Asset Prices

In terms of the accuracy and efficiency of the various Monte Carlo schemes, we
refer to Table 5.22, where it is shown that Milstein with EAVY yields values closest to
the “true” value in all cases considered. Additionally, the savings in computational
cost is evident for increasingly large number of assets. This is seen in the ratio of
the computational cost between Euler with no variance reduction and Milstein with
EAV4. Milstein with EAVY increases the computational cost from standard Euler by

a factor of 4.74 for the 2 asset case, and only by 1.15 for the 100 asset case. This is
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Option Parameters | Asset 1 | Asset 2

So 100 100
W 1 1

Ok 0.1 0.1
Ok 0.05 0

T 0.1

P 0

T 0.5

K 200

Table 5.2: 2 Asset Basket Option Parameters

a clear indication that the relative efficiency of Milstein with EAV4 compared to the

least expensive method, the standard Euler, increases with the number of assets.

5.1.1.1 Portfolio on Two Assets

Consider now basket options on 2 assets given by equation (5.1) with correlation p.
Some results from (Rubinstein, 1991) and (Ware and Lari-Lavassani, 2000) are repro-
duced. The two assets satisfy the parameters set out in Table 5.2.

The dividend and risk-free interest rate are continuously compounded again.
The true value of $8.2615 in Table 5.22 is computed with n = 200 time steps and

P = 200000 simulation runs using the Milstein scheme with EAV4. It is consistent
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Absolute Relative Errors | Euler | Milstein

Std. 0.1113 | 0.0605
CAV 0.0130 | 0.0051
EAV4 0.0107 | 0.0006

Table 5.3: Absolute Relative Errors for 2 Asset Basket

with the results from (Rubinstein, 1991) and (Ware and Lari-Lavassani, 2000), who
respectively use a quasi-binomial method and a high-order Gauss-Hermite integration
method. The respective values obtained are $8.26 and $8.2612.

Comparing the numerical results in Table 5.22 for this portfolio on two assets, we
note that for the chosen levels of n and p, Euler has not converged to the true value yet.
Standard Euler performs the worst, being the furthest from the true value. Even Euler
with EAV4 has not converged to the true value yet. Milstein consistently outperforms
the Euler scheme for this particular option in terms of numerical accuracy. We can see
this in Table 5.3, which shows the absolute value of the relative error defined in (4.1).
This Milstein scheme converges, with the use of more antithetic variates, to almost the
true value, while Euler is not as quick in convergence. Furthermore, there is a very
dramatic decrease in the absolute relative error with the addition of antithetic variates,
implying that antithetic variates are very effective for both cases. It is also evident
that Milstein’s numerical accuracy is about double that of Euler for the standard and

CAV cases.
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Ratio of Computational Costs | Euler Milstein

Std. 1.00 1.49
CAV 1.51 2.50
EAV4 1.83 4.74

Table 5.4: Ratios of Computational Costs for 2 Asset Basket

In terms of computational costs, we set standard Euler to be the base case with
a ratio of 1. The other computational costs will be measures relative to this base
case and the following table has the results. Milstein is more expensive than Euler
for all cases with standard Milstein being approximately the same as Euler with CAV.
Milstein with EAVY is the most expensive. The results are gathered in Table 5.4.

We conclude that for a basket on 2 assets, Milstein outperforms Euler consis-
tently, and antithetic variates are very effective. =~ However, the cost of Milstein is

relatively high.

5.1.1.2 Portfolio On Seven Assets

We next consider a portfolio on 7 assets. This option pricing problem was originally
presented by (Milevsky and Posner, 1998) and reexamined by (Ware and Lari-Lavassani,
2000). The portfolio option is embedded within an index-linked guaranteed investment
certificate with the interest rate, 7 = 0.063 and the other parameters are given in Tables

5.5 and 5.6.
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Index So (8) | Weight (%) | Volatility (%) | Dividend (%)
TSE 100 1 10 11.55 1.69
CAC 40 1 15 20.68 2.39
DAX 1 15 14.53 1.36
MIB30 1 5 17.99 1.92
Nikkei 225 1 20 15.59 0.81
FTSE 100 1 10 14.62 3.62
S&P 500 1 25 15.68 1.66

Table 5.5: Index Linked GIC Option Pricing Parameters

TSE | CAC | DAX | MIB | Nikkei | FTSE | S&P

100 | 40 30 225 100 | 500
TSE 100 1| 035 01} 0.27 0.04| 017| 0.71
CAC 40 0.35 1| 039( 0.27 05| -0.08) 0.15
DAX 01| 0.39 1| 0.33 0.7 -0.23| 0.09
MIB30 0.27| 027 | 0.53 1 0.46 | -0.22| 0.32
Nikkei 225 | 0.04 0.5 0.7} 0.46 1| -029| 0.13
FTSE 100 | 0.17 | -0.08 | -0.23 | -0.22 | -0.29 1{-0.03
S&P 500 0.71| 015 0.09} 0.32 0.13| -0.03 1

Table 5.6: Correlations Between Indices
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Absolute Relative Errors | Euler | Milstein

Std. 0.0007 | 0.0002
CAV 0.0003 | 0.0002
EAV4 0.0001 | 0.0000

Table 5.7: Absolute Relative Errors for 7 Asset Basket

The true value in Table 5.22 is a result of the Milstein scheme with EAV4 with
n = 200 and p = 200000 and is consistent with the value of $0.0622 produced using
high-order Gauss-Hermite integration in (Ware and Lari-Lavassani, 2000). Table 5.7
compares the distances of the various estimates from the true value for this option. It
is evident that all schemes converge towards the true value, with Milstein consistently
outperforming the Euler schemes for all cases. In fact, Milstien with EAV4 converges
exactly to the true value. The addition of antithetic variates is seen to also improve
the values, with a rapid decrease in absolute relative errors with the addition of each
antithetic variate method. This is more dramatic in the Euler case.

Table 5.8 compares relative computational costs with standard Euler as the base
case again. Milstein is more expensive than Euler for all cases with standard Milstein
being approximately the same as Euler with CAV. Miistein with EAV4 is the most
expensive. Note however that the Milstein schemes are not as expensive relative to
standard Euler in the 2 asset basket case. In fact, we see that Milstein with EAV4 only

requires 2.67 times the computational cost of standard Euler; while for the 2 asset case,
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Ratio of Computational Costs | Euler | Milstein

Std. 1.00 1.22
CAV 1.23 1.67
EAV4 1.46 2.67

Table 5.8: Relative Computational Costs for 7 Asset Basket

this value was 4.74. Therefore, with increasing number of assets for the options, the
antithetic variates are more efficient as it is relatively cheap to obtain highly accurate

results with respect to standard Euler.

5.1.1.3 Portfolios on Fifty and Hundred Assets

We consider next portfolios on large numbers of assets N with the following parameters
set out in Table 5.9.

The true value for the 50 asset portfolio is produced from the Milstein EAV4
scheme with n = 200, p = 200000 and the true value for the 100 asset portfolio is from
the Milstein EAV4 scheme with n = 50, p = 800000. Table 5.10 compares the distances
of the various estimates from the true value for this option again. We note that all
schemes are converging towards the true value, with different rates of convergence. We
note on one hand the general trend wherein with the addition of antithetic variates, the
absolute relative error is dramatically decreased, and on the other hand that Milstein

outperforms Euler in all cases in terms of numerical accuracy. The best results are
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Option Parameters 50 Asset 100 Asset
So 70+055, 7=0,..,49|70+0.55, j7=0,..99
Wi 1 1
Ok 0.2 0.1
bk 0.1/50 0.1/100
p (J1, J2) & — 0.05 for j, > j2 £ — 0.05 for ji > j
T 0.1
T 1
60

Table 5.9: Large Asset Basket Option Parameters

noted for Milstein EAV4 for both 50 and 100 asset cases.
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The next table, Table 5.11, compares the relative computational costs with stan-

dard Euler as the base case. It is now very obvious that the efficiency increases with

the number of assets. The computational costs for the 50 asset case are very similar,

with Milstein using EAV4 only requiring 1.37 times more Flops than standard Euler.

This is a trend noted from the 2 asset case, where Milstein EAV4 was 4.74 more ex-

pensive than standard Euler. This trend is also more evident for the 100 asset case

where Milstein EAV4 only requires 1.15 times more Flops than standard Euler.

We therefore conclude that for options on large numbers of assets, the antithetic

variates become more efficient as it becomes relatively cheaper to obtain highly accurate
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50 Asset Case | 100 Asset Case
Absolute Relative Errors | Euler | Milstein | Fuler | Milstein
Std. 0.0943 | 0.0385 | 0.0363 | 0.0023
CAV 0.0127 | 0.0008 | 0.0037 | 0.0025
EAV4 0.0049 | 0.0007 } 0.0027 | 0.0002

Table 5.10: Absolute Relative Errors for Large Asset Baskets
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50 Asset Case | 100 Asset Case

Ratio of Computational Costs | Fuler | Milstein | Fuler | Milstein
Std. 1.00 1.04 1.00 1.02
CAV 1.04 1.12 1.02 1.06
EAV4 1.14 1.37 1.07 1.15

Table 5.11: Ratios of Computational Costs for Large Asset Baskets

results with respect to standard Euler. In other words, extended antithetic variates

is particularly useful in cases of high-dimensions; Finally the effect of EAV4 is more

prominent with the higher order scheme of Milstein.

5.1.2 Spread Options

A dual call option on a spread has a payoff of

max {S} — S% — K, 0} .
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Option Parameters | Value

SE 80 — 120
Wi 1

Ok 0.1

bk 0.05

r 0.1

p 0.5

T 0.5

K 2

Table 5.12: Dual Spread Option Parameters

Figure 5.2 shows the change in option value for a 2 asset spread option with the following
parameters set out in Table 5.12.

The dividend and the risk-free interest rate are continuously compounded. It
is priced using Milstein with EAV4. The increasing option value with increasing time
to expiry is also evident for the spread, however, unlike the basket option, there is no
truncated curve for increasing initial prices as the exercise price is only $2. The surface
is also showing a more prominent increase over time to expiry. The effect of increasing
initial prices of Sy is not as dramatic as in the basket option case. In fact, the rate
of increase over varying initial prices is quite slow. Overall, the surface for the spread

option corresponds to the surface area of the basket option that is at an angle to the
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T versus Sy plane, but high values of Sy at higher time to expiries are more dramatic
than the basket option.

Surface Plot of 2-Asset Spread Option over Changing Time to Expiry and Initial Asset Prices

Option Price, $

Time to Expiry, T 0 @

Figure 5.2: Sensitivity of 2-Asset Spread to Varying Expiry Times and Initial Asset

Prices

C’onsider now the dual spread option prices computed using both the Euler and
Milstein schemes in Table 5.22. The parameters for the dual spread option are as seen
in Table 5.13.

The dividends and interest rate are continuously compounded.

From Table 5.22, the Milstein scheme generally outperforms the Euler scheme

again in terms of numerical accuracy, with Milstein with EAV4 producing an option
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Option Parameters | Asset 1 | Asset 2

So 100 100
W 1 1

Ok 0.1 0.1

Ok 0.05 0.05

T 0.1
p 0.5
T 0.5

K 2

Table 5.13: 2 Asset Spread Option Parameters

price closest to the “true” value of $5.2795. Note that the quasi-binomial solution
(Rubinstein, 1991) for the same spread is $5.28. In terms of the magnitude of relative
errors, Milstein with EAV4 outperforms all other schemes and the ratios of computa-
tional costs yield results very similar to that of the 2 asset basket (see Tables 5.14 and

5.15).

5.1.3 Strike Options

A dual strike option has the following payoff

max {S%- - Kl, Sv% - Kz, 0} .
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Absolute Relative Errors | FEuler | Milstein
Std. 0.0529 | 0.0642
CAV 0.0369 | 0.0113
EAV4 0.0388 | 0.0020

Table 5.14: Absolute Relative Errors for 2 Asset Spread

Ratio of Computational Costs | Euler | Milstein
Std. 1.00 1.50
CAV 1.51 2.49
EAV4 2.76 4.75

Table 5.15: Ratios of Computational Costs for 2 Asset Spread

Figure 5.2 shows the change in option value for a dual strike option with the following
parameters in Table 5.16.

The dividend and the risk-free interest rate are continuously compounded. The
strike option is priced using Milstein with EAV4. The behaviour of the surface is very
similar to that of a 2 asset basket option, however, the surface is not as uniform for the
region from S} = 100 to $120 as there is a bigger dip in option value at low time to
expiry.

The parameters for the dual strike option are as set out in Table 5.17 where the
dividends and interest rate are continuously compounded. The quasi-binomial solution

from (Rubinstein, 1991) for this strike is $17.70, while the “true” value generated by
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Option Parameters Value
Sk 80 — 120
Wy 1
Ok 0.1
Ok 0.05
T 0.1
p 0.5
T 0.5
K 100

Table 5.16: Dual Strike Option Parameters

Milstein with EAV4 is $17.6891. The same conclusion is made for the result as in the
spread option case, in that, Milstein outperforms Euler and the addition of antithetic
variates improves the results, especially the addition of EAV4. We also note that for 2
assets, the cost of EAV4 is high. The convergence pattern and relative computational
costs also yield similar results to that of the 2 asset basket and spread as demonstrated

in Tables 5.18 and 5.19.
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Option Parameters | Asset 1 | Asset 2

So 100 100
Wi 1 1

Ok 0.1 0.1
bk 0.05 0.05
T 0.1

P 0.5

T 0.5

K 90

Table 5.17: 2 Asset Strike Option Parameters

Absolute Relative Errors | Euler | Milstein
Std. 0.1577 | 0.0033
CAV 0.0746 | 0.0187
EAV4 0.0047 | 0.0044

Table 5.18: Absolute Relative Errors for 2 Asset Strike

Ratio of Computational Costs | Euler | Milstein
Std. 1.00 1.50
CAV 1.51 2.49
EAVY4 2.76 4.75

Table 5.19: Ratios of Computational Costs for 2 Asset Strike

105
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Surface Plot of 2-Asset Strike aver Changing Time to Expiry and Initial Asset Prices

P T

N
(=]
L

yi

Option Price, $

120

04
0.2

Time to Expiry, T 1
S,

Figure 5.3: Sensitivity of Dual Strike for Varying Expiry Times and Initial Asset Prices

5.2 Multifactor Models

5.2.1 Stochastic Volatility

Consider here the system (2.33), where the processes are uncorrelated, i.e., p = 0. Note

that in this case the techniques developed for the estimation of the double Ito integral

must be used as it was shown that the system does not commute. A European put

option is priced with coefficients set out in Table 5.20.

In order to avoid negative values of o so that the system stays in the real plane,
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Option Parameters | Values

a 4
B8 0.09
¥ 04

r=p 0
T 0.5
0o 0.09
So 80
K 100

Table 5.20: Parameters for Stochastic Volatility

one has to choose a relatively large number of time discretizations. Therefore, the
interval [0,0.5] is divided into n = 200 time steps. We choose to compare their resulting
accuracies and variances for the same computational cost so that the efficiency and
effectiveness of the various methods are more obvious. This is achieved by maintaining
the corresponding Flops in the same range for each case.

The results are gathered in Table 5.21, where the Milstein scheme implements
formula (2.22) with (2.34) and (2.36) in computation of the double Ito integral, I, ;,.
The quoted standard deviations are obtained from a batch of 50 experiments.

This option pricing case is also treated in (Clarke and Parrott, 1999), using

a multigrid finite difference approach, leading to the option price of $21.417. The




CHAPTER 5. NUMERICAL RESULTS 108
analytic solution, derived from a Power series, is known from (Ball and Roma, 1994)
to be $21.430. We note first that Milstein with EAV4 using the formula (2.36) clearly
outperforms the other methods. It consistently yields an option value in the range of
the analytic solution of $21.43. The results of Milstein using formula (2.34) are not as
good, similarly for Euler. We also note that with the addition of antithetic variates,
the volatility of the estimates drops dramatically, with the best variance result for
EAV4 in all schemes. Since the computational costs are all in the same range, we
can say that in general, Milstein is more efficient and accurate compared to Euler.
Furthermore, Milstein with formula (2.36) is also superior to Milstein using (2.34) in
these two aspects.

Finally, we can conclude that antithetic variates help in reducing volatility and
improving convergence, additionally, EAV4 is superior to CAV which is superior to no
antithetic variates. In addition, as in the multiasset case, for options with multifactor
models, the higher order scheme of Milstein is superior to Euler; and EAV4, used in

conjunction with Milstein, is very effective.
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Scheme Value | SD | Flops (x107)| p |korg
Finite Difference | 21.4170
Power Series 21.4300
Euler
Std. | 21.4160 | 0.0921 12.2 32000
CAV | 21.4345 | 0.0193 14.7 21000
EAV4 | 21.4277 | 0.0195 14.7 11000
Milstein (2.34)
Std. | 21.4635 | 0.2393 12.5 3000 9
CAV | 21.4393 | 0.0540 14.9 3000 9
EAV4 | 21.4430 | 0.0488 14.6 2000 5
Milstein (2.36)
Std. | 21.4389 | 0.3039 12.1 3000 20
CAV | 21.4337 | 0.0533 14.8 3000 20
EAV4 | 21.4303 | 0.0415 14.8 3000 10

Table 5.21: Option Price for Uncorrelated Stochastic Volatility Model
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n = 30, p = 20000
“True” Euler Milstein
Value Std. CAV | EAV4 Std. CAV | EAV4
BASKET
2-Asset | 8.2615 | 8.1502| 8.2745| 82508 | 82010 8.2564| 8.2621
Flops x107 | 304.5001 0.972 1.466 2.69 1.4520 2.426 4.61
7-Asset | 0.0622 | 0.0615| 0.0625| 00621 | 0.0624| 0.0620| 0.0622
Flops x107 | 1345.3 7.592 9.306 13.57 9.272 12.66 | 20.29
50-Asset | 27.7828 | 27.8771| 27.7955 | 27.7877 | 27.8213| 27.7836 | 27.7821
Flops x107 | 2014.1 | 312.2083 | 324.4143 | 354.8223 | 324.2083 | 348.4143 | 428.223
100-Asset | 40.351 | 40.3147 | 40.3473 | 40.3483 | 40.3280 | 40.3485 | 40.3512
Flops x107 | 92816.4 | 1224.4| 1248.8| 1309.7| 12484 | 1296.8| 1405.7
SPREAD
2-Asset | 52795 | 5.3324| 52426 5.3183| 5.2153| 5.2682| 5.2775
Flops x107 | 304.2601 0.966 1.454 2.666 1.446 2.406 | 4.586
STRIKE
2-Asset | 17.6801 | 17.5314 | 17.6145 | 17.6938 | 17.6924 | 17.7078 | 17.6847
Flops x107 | 304.2601 0.966 1.454 2.666 1.446 2.406 | 4.586

Table 5.22: Numerical Results for Various Multi-Asset Options.
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