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Abstract 

Consider the problem of pricing options whose payoffs depend on multiple sources 

of risk (rainbow options). Generally, under well known risk neutrality assumptions, the 

prices of options are calculated to be the expected value of future cash flows, discounted 

with the appropriate risk-he interest rate. However, for many rainbow options, the 

derivation of closeform solutions do not exist. Therefore, there is a need to rely 

on numerical methods such as lattice and finite difference methods or Monte Carlo 

simulation. 

This thesis deals with the use of Monte Cado simulation of stochastic processes 

as applied to option pricing. We numerically develop higher order discretization meth- 

ods for stochastic differential equations and compare their accuracy for high dimen- 

sional option pricing problems. Furthermore, a new quasi-random variance reduction 

technique, extending classical antithetic variates, is introduced to increase simulation 

aciency. This is applied to rainbow options, up to 100 assets, and underlyings with 

stochastic volatility- 
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CHAPTER 1 

INTRODUCTION 

1.1 Generalities 

In their seminal work Black and Scholes applied stochastic processes, more precisely 

geometric Brownian motions, to model the random evolution of stock prices within 

an arbitrage free setting. Ever since, financial modelling via stochastic differential 

equations has become the norm in the practice of trading financial derivatives. Often, 

these complex derivatives are difEcult to price and often case they do not have analytic 

solutions, and one must resort to numerical schemes. Even when analytical solutions 

exist, in dimensions greater than or equal to one, numerical methods must be employed 

to obtain a solution. 

There are many challenging mathematical problems in modeling and implement- 

ing complex derivatives. In this work, we focus on the numerical implementation of 

the Monte Carlo method in option pricing. 

As high performance computing becomes more affordable and the computing 

technology more attainable, Monte Carlo simulation is increasingly feasible and effective 

in pricing complex derivatives. For a general review on the application of Monte Carlo 

simulation to option pricing, we refer to (Boyle, Broadie and Glasserman, 1997) and 

(Monte Carlo: Methodologies and Applications for Pricing and Risk Management, 

1998) and the references therein. 
1 



The two main h e s  of importance in simulation are those of accuracy and 

&ciency, and our principal goal is to numerically investigate these in this thesis. 

The accuracy of a simulation method depends on one hand on the discretization 

techniques used as paths are numerically generated in discrete time. We focus on two 

time discrete approximations of stochastic processes, namely, Euler and Milstein which 

have diffc iat  orders of convergence. In general, discretization schemes for stochastic 

. - 
processes vary fiom their det stic counterparts as there is a need to simulate the 

additional stochastic component. 

The Euler discretization scheme has been extensively discussed in traditional 

finance literature for option pricing. It is simple to use but practical applications of 

this method alone reveal numerical instabilities, due to its low order of convergence 

0.5. The effect of these numerical instabilities decreases when more simulation paths 

are employed or if the number of discrete time-steps is selected to optimize the scheme. 

Therefore, the computational costs associated with these actions are often very high 

and might exceed one's computational capabilities. One way to overcome this problem 

is to resort to higher order stochastic Taylor expansions to discretize the processes 

involved. 

Going beyond Euler's method, (Milstein, 1974) proposes a discretization of order 

1, which in the multiasset or multifactor case, introduces the use of double Ito integrals. 

These double It0 integrals can be simplified for certain classes of stochastic differential 

equations used in finance, but for those that cannot, it is essential to develop acient  
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numerical methods to handle these Ito integrals. This might be the principal reason 

why the Milstein approximation has not received the attention it desenres in financial 

literature. It is necessary to compare these schemes and the feasibiliw of their im- 

plementation for high dimensional option pricing problems. In the context of high 

dimensional option pricing, one should select a scheme solely based on its performance, 

that is, the highest lwel of accuracy and the highest level of efficiency. 

Another main area of concern is the efficiency of the simulation scheme in terms 

of the variance of the final result. Reducing variance and hence increasing aciency 

should take into account the additional computational cost it brings about. For such 

reasons, variance reduction techniques such as antithetic variates have been used with 

great success in option pricing. Note though, the classical form of antithetic variates 

is deemed to be not as effkctive as other forms of variance reduction methods such as 

control variates. However, these methods are case specific and tend not to be simple 

to implement numerically. 

As Monte Carlo simulation for option pricing in its standard form is driven 

by random sampling, one possible variance reduction improvement to this is to utilize 

quasi-random sampling techniques. However, instead of changing the simulation a l p  

rithm, an effective non-random sampling algorithm should utilize previously generated 

random variables in an ordered manner to maximize the accuracy of the results. By 

doing so, one seeks to reflect the distribution of the random variables more accurately. 

Pure random sampling might lead to an over-representation of certain portions of the 
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distributions. By less random sampling under certain rules, one can force sampled 

points to be more evenly distributed. We propose one such method in this thesis. 

In keeping with the objective of financial modelling, simulation methods in o p  

tion pricing should yield numerical results which are useful for benchmarking purposes. 

Indeed, previous work in the area of large basket option pricing only reproduces some 

error plots of their algorithms without quoting actual values. We present full option 

values even for large baskets of up to 100 assets. 

1.2 Literature Review 

(Boyle, 1977) was the first to use Monte Carlo simulations in an option pricing con- 

text. Boyle demonstrated the effectiveness of Monte Carlo simulations by generating 

the process for the underlying asset under the risk-neutrality assumption to price an 

option. The major assumption in Boyle's work was that the returns (ratio of succes 

sive share prices) followed a lognormal distribution. Boyle showed that Monte Carlo 

simulations incorporating variance reduction techniques such as antithetic and control 

variates could be effectively and successfully used to price European call options paying 

dividends. 

This work was updated in a more comprehensive manner twenv years later. 

(Boyle, Broadie and Glasserman, 1997) reported the tremendous flexibility and power 

of Monte Carlo simulations for less trivial option pricing cases. Further work was 



conducted to extend variance reduction techniques and even provided some discussion 

on less random simulations such as Quasi-Monte Carlo. A brief summary of Monte 

Carlo simulations applied to path-dependant option pricing (such as American and 

Asian) and hedging was also covered (see Broadie and Glasserman, 1996). 

During this time, there has been a great amount of published work describing 

the efficiency of Monte Carlo simulations for financial applications. (Clewlow and 

Strickland, 1999), Chapter 4, review the various capabilities of Monte Carlo simulations 

for multiasset models and models with stochastic volatilities . (Barraquand, 1995) 

uses Monte Car10 simulation in conjunction with a specific sampling method to price 

multidimensional European type options and stresses the relevance of Monte Carlo 

for efficient numerical methods in option pricing. (Bhansali, 1998), p. 174, further 

espouses Monte Carlo simulations as the "method of choice for multiasset cases with 

no early exercise features" - 

Since the major criticism of Monte Carlo simulation has been and is the apparent 

slow rate of convergence1 (Kalos and Whitlock, 1986, p. 27): there is a recognition that 

the aciency of Monte Carlo simulation is imperative for successful implement ation in 

financial applications. For instance, (DufEe and Glynn, 1995) highlight the tenuous 

relationship between computing resources and efticiency. Other works which provide 

techniques on speeding up Monte Carlo simulations for acceptable levels of accuracy 

'~ccording to the Central Limit Theorem, the convergence rate is 0 (I/&, p being the number 

of paths. 
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incIude (Ninomiya and Tezuka, 1996), (Papageorgieou and Tkaub, 1996), (Paskov and 

Daub, 1995j and (Paskov, 1997). Recent efforts to improve the efEiciency of Monte 

Carlo via less random algorithms are seen in literature such as (Joy et al., 1996) and 

(Morokoff and C a c h ,  1998). We finally note that Quasi-Monte Carlo is a fast growing 

area of research, we refer to (Lemieux and L'Ecuyer, 2000) and the references therein. 



CHAPTER 2 

SIMULATING STOCHASTIC DIFFERENTIAL 

EQUATIONS 

2.1 Preliminaries 

Before the problem is introduced, we review a few preliminary definitions and refer to 

(Kloeden and Platen, 1999) for full details. The setting within which we will work is 

that of a fltered pmbabilaty space. This can be formally defined by (R, rZL, P), where 

Q is an arbitrary nonempty set called the sample space, II is a 0-algebra of subsets 

of R called events and P is the probability measvre on 2l which assigns to each event 

a probability between 0 and 1 and satisfies p ( A  u B) = p(A) + p ( B )  if A and B are 

disjoint. We r e c d  that a u-algebra P is a collection of subsets of R where 

We also recall that (R, a) is d e d  a measurable space. We can now define a 

mndom variable or measurable finctian. 

Definition 2.1 A vector valued function X = (Xk) : 51 + 3td is measurable or called 
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a vector mndom variable i f  the set 

{W I x k ( w )  5 xk, k = 1 ,..., d )  E n, 

for all x k  f 92. 

Since this thesis is concerned with option pricing with assumed stochastic pr* 

cesses for the underlying assets, we now define a stochastic process. 

Definition 2.2 A stochaPtic p~otess  with Cdez set I and state space 92d is a family 

X = { X ( t ) , t  E I )  

of ~-va lued  mndom variables for each t .  

In this thesis, I will be [O, TI, with T E 92 and T will be henceforth termed as 

the time to expiry or time horizon. 

Definition 2.3 A sample path is a realization of a stochastic process for each w E Q, 

X (., w )  : [0, TI - e. 
The probability distribution that we will focus on is the Gaussian distribution. 

A random variable X is called Gaussian or nonnal N ( p ,  u2), if its density is given by 

The d-dimensional random variable X = (XI ,  ... , xd) is said to have a multivariate 

Gaussian or normal N ( p ,  o) distribution, with p : SZd + 92d and a = (dij) : 92d + Ixd, 
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assuming symmetric matrix values with positive eigenvalues, with its d-dimensional 

density given by 

where lo[ is the determinant of a, 0-' is the inverse of a, and 

Note that once again, the Gaussian distribution is uniquely determined by its first two 

moments, that is, p and a. 

We can now defme the Wiener process W by the following properties: 

Definition 2.4 A d-dzmensiond pmcess W(t)  = (W:, ..., Wt)  measurable with ~espect 

to an increasing family orfiZtmtion of a-algebras {Illt7 t 2 0 )  is a d-dimensional Wiener 

process zf and only zf 

for all 0 5 t 1  < t 2 ,  k = 1, ..., d ,  and where 
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Note the important property 

where Zk - N ( 0 , l ) .  

Recall also that for 0 < T < oo, the class of functions f : [0, T] -+ 0 is 

defined (Kloeden and Platen, 1999, p. 81) to satisfy these properties 

f is jointly C x 2l-measurable, 

E(f ( t J 2 )  < oo for each O 5 t 5 T. 

We next define Stochastic Differential Equations, denoted by (SDE) henceforth. 

Definition 2.5 Consider a d-dirnem.onal vector function p = (#(St, t ) )  : [0, T] x 

St - C, v i th  satiSfynij 0 E e, k = 1, ..., d and a d x d-mat* fbnction 

0 = (okj(st,t)) : [(),TI x Q -, pxd With okj E e, k, j = 1 ,.-., d.  A d-dimensional 

stochdtic process {St, 0 5 t 5 T )  is said to satisfy a stochastic dif le~ntial  equation if 

whem W is a d-dimensional Wiener pmcess. 

Equation (2.1) has a solution, in the sense explained by the following definition. 
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Definition 2.6 With the pdowly defined notations, a strong solut2on to the SDE 

(2.1) is a stochastic pmcess {St ,  t 2 0) that is Q-measurable for any t ,  and such that 

the following conditions hold 

J /okj(s., v) l 2  M: < +m, and 
0 

for d l t  3 0 

Note that the integral form of equation (2.1) now becomes 

Lebesgue Integral Ito Integral 

for any 0 5 t 5 T .  

The sample paths of the Ito process inherit the characteristics of the sample 

paths of the driving Wiener process (see Figure 2.1) and one of the properties of a 

Wiener process is that its paths are not differentiable at any point, h o s t  surely, 

therefore, the Ito integral seen in (2.3) is not a Lebesgue integral. 

Definition 2.7 A step fvnction f E is defined to be 
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for j = 1, ..., n. Let 6; be the subset of all step functions in C$. 

Using this definition, we can define the Ito integral 

Definition 2.8 The Ito integral I(f) is defined as 

where the supremum is taken over all possible dismtzzations of the internal [a, b] and 

n is the number of subintervals. 

In order to ensure the existence and uniqueness of a solution to equation (2.1): 

there have to be &cient conditions on p and 0 as set out in Theorem 5.5 (mksendal, 

1995, p. 64) and Theorem 3.5.3 (Lamberton and Lapeyre, 1996, p. 50))  which we recall 

now: 

Theorem 2.9 Consider the following measurable functions: 

and 

a(., .) : [0, TI x 3P + SPxd. 

For any 0 5 t 5 T ,  zf 
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d d  
for some constant K, lo12 = C C ( o ~ j )  , then (2.1) admits a unique strong soluton 

k l  j=l 

for t E [0, TI. This solution (St) ,0 5 t 5 T,  also satisfies 

Figure 2.1 provides some intuition into the behaviour of the Wiener process 

with relation to an underlying stochastic process. It compares a sample path &om a 

lognormal model, governed by such a stochastic differential equation 

with the associated Wiener process for that particular path. It is quite evident that 

the driving force in the random behaviour of the price path is the corresponding Wiener 

process. The peaks and troughs of the price path correspond exactly to that of the 

Wiener process. 

2.2 Options 

The n+arbitrage approach to pricing options was introduced by (Black and Scholes, 

1973), and also discussed by (Cox and Ross, 1976). Its relationship with risk-neutral 

valuation was put in evidence by (Harrison and Pliska, 1981). We refer to (Bingham 

and Kiesel, 1998) for an excellent presentation on this material. Since the object of 

this thesis is the numerid valuation of options, we henceforth assume that all price 
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Simulated &set Price Path using a Lognormal Model (Black-Scholes) 

- 

10 20 3 0 4 0 5 0 6 0 7 0  80 90 100 
Time-Steps, n 

Associated Wmner Process 

-0.4~ I 
I L I I t I I I I 

0 10 20 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 ~  
Time-Steps, n 

Figure 2.1: Sample Path and Corresponding Wiener Process 

processes are risk neutral, and therefore the price of an option is equal to the expected 

payoff discounted at the risk-fiee interest rate. 

We will seek to determine the expectation of a given functional f of St at a 

given time T, that is, to find E( f (ST) ISo). In the context of option pricing, f defines 

the payoff of a given option on the d securities SF, k = 1, . . ., d, whose price paths are 

governed by a stochastic differential equation of the form (2.1). We can now formally 

define derivatives and options. 

Definition 2.10 A derivotzve asset is a secudy whose valve explicitly depends on an 
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underlying asset on which the derivative is k t t e n .  

An option is a form of derivative, whose value depends on the underlying asset. 

This contingent claim could result in a potential gain for one party and also a concurrent 

potential liabiliw for the opposing party. Options can be either call or put options. 

Definition 2.11 A call option gives its owner the right to buy an asset at a specified 

price (termed the strike or ezemise price, K )  on or before a stated date (termed maturity 

date or time to expiry, T). 

There is also the converse to the call, that is 

Definition 2.12 A put option gives the owner the right to sell the asset at a specified 

price on or before the stated date. 

In general, call and put options can be defined by the dependence of the option 

price on the path of the asset price. 

Definition 2.13 Path zndependent optzons have payoffs depending only on the events 

upon expiration, mgardless of the route taken by the underlying process. 

Definition 2.14 Path dependent options depend on at least one price path in addition 

to the terminal price. 

There are respectively American or European options which are defined as such: 
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Definition 2.15 A European option does not permit the exercise of the said option 

b e f o ~  the expiry date, and has a payoff function of the f o m  

when= in the w e  of a single secu7ity; 

max(ST - K, 0 )  , for a d l  

max(K - ST, 0), for a put 

Definition 2.16 An American option can be exercised at any time between its start 

date to the tenninal date and has a payofffunction of the form 

where T 5 T,  and in the m e  of a single security, 

Figures 2.2 and 2.3 show the basic behaviour of standard European call and put 

options respectively. The truncated payoff is evident when the asset price is less than 

the exercise price for a call, therefore, the option owner is not obligated to exercise the 

option, limiting the losses to only the outlay for the option. The put option is the 

converse to this. 

For more detailed expositions on basic and other exotic options, see (Wilmott, 

1998), (Bhansali, 1998), (Jarrow and Turnbull, 1996), ( m b ,  1997), and (Taleb, 1997). 
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Payoff for Standard European Call Option 
1 1 I I I I I I I 

Figure 2.2: Payoff to the Holder of a Call Option at Maturie 

We will concentrate on options on several risky assets, particularly European rainbow 

options such as basket/portfolio options, strikes and spreads. There will also be nu- 

merical focus on options with multiple underlying processes, such as those seen in the 

system (2.33). 

To obtain the option price, one will discount the expectation E(f (ST)ISo) at 

time T with respect to the risk-free interest rate, T,  i.e. 
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Payoff for Standard European Put Option 
7 I I I I I I I 8 I I 

Figure 2.3: Payoff to the Holder of a Put Option at Maturity 

Since the options that will be focused on do not have exact solutions, numerical meth- 

ods have to be used to compute E(f (&)ISo). These methods include Monte Carlo, 

lattice or tree methods, and finite differences. Lattice, or tree, and finite difference 

methods are useful whenever there are path dependent features in an option, and they 

are numerically efiicient for dimensions up to two. However, lattice and finite difference 

methods are not flexible, as dimensions increase, and as the SDE for the underlying 

or the payo& for different options change, the algorithms have to be completely re- 

vised. Hull and White (1988) note that if the number of nodes at  a point in time is 
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unnecessarily large, the lattice met hods become inefficient as the computational time 

is proportional to the total number of nodes. 

On the other hand, the Monte Carlo method is extremely robust and flexible, 

as the same algorithm can be used for any dimension theoretically. It also has the 

distinct advantage that for path independent options, the same algorithm can be used 

again. Additionally, changes in the payo& require minimnl additional dart. Monte 

Carlo also deals easily with multiple random factors such as stochastic volatiliw. Fur- 

thermore, it is able to incorporate more realistic price processes such as jumps in asset 

prices. Monte Carlo is also relatively cheap to perform as the computational cost of 

simulations increases linearly with the number of variables, so the method's competi- 

tiveness increases for options with multifactor models and large number of assets- The 

major drawback of standard Monte Carlo is the speed of convergence and the apparent 

inapplicability to path dependent options1. Finally, large numbers of simulations are 

required for convergence if standard Monte Carlo is used. 

To summarize, these are the following steps in obtaining an option price numer- 

ically by Monte Carlo: 

1 Generate the sample paths of the underlying assets over the given time horizon 

under the risk neutral measure; 

2. Evaluate the discounted payo& of the option for each path; and 
- - -  

'(~roadie and GLassermao, 1997) use a revised form of Monte Carlo for American option pricing. 
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3. Average these payo& over all paths. 

2.3 Monte Carlo Simulation 

2.3.1 Monte Carlo Methodology 

Suppose to estimate the quantity 8,  we have to use an estimator, K. By using Monte 

Carlo simulation one generates an arbitrary number of independent samples Zi, i = 

h 

1, ..., p, in a sample space Q, where for each Bi ,  

and 

Set 

the sample mean, to be the estimator of 8. Also, note that for any p: 
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According to (Lehmann and Casella, 1998, Chapter 2, pp. 83-100) and (Bar- 

toszy6ski and Niewiadornska-Bugaj, 1996, p. 474), a good estimator iii, should become 

more precise with increasing numbers of samples, p and it should enforce some mea- 

sure of impartiality- This leads us to defining the following characteristics of a good 

estimator. 

Definition 2.17 An estimator 6&, of 0 is weaklv consistent i f f o r  every E > 0 

The estimator iir, is stmnglg consistent if 

Definition 2.18 An estimator iii, of 19 is unbiased if 

E (%) = 0 for all p. 

Additionally, iii, is asymptoticallg anbiased if 
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Unbiasedness of an estimator will ensure that the amount of times the estimator 

% over- and underestimates 9 will cancel each other out in the long run. Note from 

(2.9) that iii, is unbiased. 

The characteristics of consistency and unbiasedness of the estimator iii, are 

justified by the Central Limit Theorem (CLT). 

Theorem 2.19 Let Xi, i = 1, ..., p, ... be independent identzmlly disCributed (iid) 

random variables with mean E (Xi)  = p and war (Xi) = 9 < oo. Then letting 

- P 
X = L C Xi, we have 

i=l 

Using the CLT, we can define 

P 
and thus estimate 0 by X = $ Xi,  or using the terminology introduced in (2.8), we 

i=l 

can use 

The CLT ensures that an asymptotic confidence intend exists for 0. Let us define the 

sample variance as 
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h 

Then using (2.15), with Xi = Bi, p = 8, for large p, the 100 (1 - a) % confidence interval 

for 8 is 

where z p / p  is the 1 - 5 quantile of the standard n o d  distribution. 

Fkom this, we can see that % is strongly consistent and asymptotically unbiased 

because for fixed and known a, 

implying, horn (2.16) and (2.9), 

and also 

P (p_ lixn6ip= B) = 1 h a s t  surely, 

thereby, arriving at the conditions defined in (2.12) and (2.14). 

Consider again the confidence interval in (2.16), it is obvious that to change the 

width of the interval, one only needs to be concerned with 3 since r t  is an arbitrary 

constant. By reducing the width of the interval, the reliability of % as an estimator 

is increased. One does so by either increasing p or decreasing o. Decreasing a by 

a factor of some constant K has the same effect as increasing p by a factor of K2. 
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Obviously, both methods increase the computational cost, with varying p being the 

more expensive of the two. However, since we seek to minimiPe computational cost for 

an acceptable level of accuracy, we chome to use variance reduction techniques for this 

work. 

Measures of Performance 

Consider two unbiased estimators 8and e2 of an option price 6, where one has a lower 

variance, 

Both are unbiased, hence fiom (2.9), 

4 
Alsoy the variance of the estimator 0 , k = 1,2, is known from (2.10) to be 

We need to choose the best estimator based on the criterion of variance levels and 

computational costs involved. 

2.4.1 Level of Variance 

Based on the confidence intenml in (2.16), we know that lowering variance will bring 

the estimator % closer to 0. So, for some fixed p, using variance as a measure of 
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performance, one should select B' as 

If the number of simulations p is fixed for both estimators, it would be inacient 

~2 
to use 8 as one gets a more variant estimator for the same amount of work However, 

ifpk, k = 1,2, is the required simulation to generate each ak then there should be a way 

to measure the work each pk entails. The level of variance as a measure of performance 

then fails to reflect the possible differences in computational effort. 

2.4.2 Level of Efficiency 

As an additional measure of performance that incorporates computational effort, we 

will use the level of efi iency.  We choose to use the measure used by (Boyle et al, 

1997), discussed in (Bratley et al, 1987), (Hammersley and Handscomb, 1964) and 

further mended by (Glynn and Whitt, 1992). We will now review the measure of 

(Boyle et al, 1997). 

Consider the standard error term horn (2.16) again: 

(Boyle et al, 1997) accounts for the computing time, t and the work required to generate 
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a single path, F. Setting 

assuming 121 is a positive integer, the estimators introduced in section 2.4 become 

and the standard error term is revised to 

For the same amount of computing time, tk = t ,  the decision rule is to choose 

8' over a2 if 

2.4.3 Pricing Options 

Consider now the case of option pricing, with the underlying vector of securities (SF), 

k = 1, . . . , d. The stochastic differential equation in (2.1) governs the evolution of Sf. 

Recall that for a payoff function, f ,  we can price an option under the risk-neutral 

measure by 
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This would require the integration of f (ST) over its state space, however, if the exact 

distribution of ST is not known, then this would be irllpossible. 

So, using the methodology of Monte Carlo discussed in section 2.3.1, we sample p 

independently generated prices, S? of Sg, k = I, ..., d, i = 1, ..., p. Using the arguments 

presented in section 2.3.1, we can use this sample average to estimate the option price 

to be 

where r is the risk-free interest rate. 

To generate the sample values, SF of the asset price S;, one needs to simulate 

the paths of the stochastic processes dictated by the SDE in (2.1). We choose to use 

various time discrete approximations to the SDE over the horizon period, [O, TI which 

converge to the continuous time stochastic processes if certain criterion are met. This 

choice is mainly motivated by the fact that sample paths of Ito processes receive the 

nondifferent iability characteristic of the corresponding Wiener processes. Therefore, 

time &mete approximations will seek to approximate these paths. 
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2.5 Discretization Schemes 

2.5.1 Convergence 

For the discretization schemes, we partition the time interval [0, T] into n equal subin- 

tmals. A time discrete appracimation SF of (2.1) reduces it to a stochastic difference 

equation, characterized by the mesh At = $. In order to consider the effectiveness of 

Sft as a good pathwise approximator of St, we need to introduce the absolute ewor 

measure 

which is the expected value of the magnitude of the difference between the Ito process 

St and the approximation Sf'. 

One then says that S f t  wnverges strongly to St with order 7 > 0 at time T, if 

where C is a positive constant independent of At. 

We should note that generally, 

is a biased estimator of 
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However, if S p  converges strongly, then it is asymptotically unbiased (please see (2.14) 

for elaboration). Therefore, we need to home n to be suEciently large to ensure 

P 
that the expectation of % C f (s?~ -. ., SF) is reasonably close to E( f (ST) ISo). This is 

i=l 

seen in Figures 2.4 and 2.5 where increasing the timesteps, n, improves the pathwise 

approximation of the discretization scheme. Henceforth, the distinction between S t i  

and St is dropped to simplify notations. 

I 
0.1 0.2 0.3 a4 0.5 a6 0.7 0.8 03 1 

t i .  t 

Figure 2.4: Euler Scheme with 10 Timesteps 

P 
We recall that in pricing an opt ion, we require the expectation f (s? , . ",.. . , ST) 

*=I 

to approximate E( f (ST) ISo). For this case, it is also possible to approximate the prob 

ability distribution of ST instead of the actual path of ST, since we only require the 

expected value of the terminal distribution. In such a case, we do not require such a 
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Figure 2.5: Euler Scheme with 20 Time-Steps 

strong form of convergence, and we can define the mean e m r  as 

The discrete scheme Sp is said to conveve weukZy with order  ,!3 > 0 at time T, if for 

each f E c2@+l), which, along with its derivatives up to [2(P + I)], have polynomial 

growth, we have 

where C@+l) is the space of continuously differentiable functions up to order [2(P + I)]. 
We will focus on discrete schemes with strong order of convergence 7 because we 

require the simulation models to be applicable to different me5 of options with various 

payo&. Therefore, a goad pathwise approximation of the Ito process is considered more 

essential and &om this point onwards, we only discuss time discrete approximations 
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with respect to the strong convergence criterion in (2.19). 

2.5.2 Euler Discretization 

Consider an initial value problem 

The deterministic Euler method is used to a p p r e a t e  the continuous time differen- 

tial equation. Using the same notations introduced in the previous section and also 

considering t as an integer representing t - z, we have 

where t = 0, ... n. In a stochastic context, the differential equation becomes an SDE, 

for example, of the form (2. I), with an additional Ito integral term d ~ f .  

Therefore, the stochastic Euler discretization is a direct extension of the well 

known 'deterministic Euler method used above. For the SDE, we need to approximate 

the additional Ito term 

AW! = w/+,, - w:. 

Since Wiener processes have independent normally distributed increments, then 

A W ~  - N(O, At) 
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which, using the definition of Wiener processes (see definition (2.4)), also means 

where 2: denotes, here and throughout this thesis, a standard Gaussian random vari- 

able. 

This implies that 

Hence, the Euler scheme for (2.1) becomes 

- d 

Stochastic Term 

for k = 1, . .., d ,  t = 0, .. . , n. The discretized Euler scheme (and other time discrete 

schemes), as a method of approximating the Ito process at discretization points in 

time, lends itself very well for implementation on a digital computer. Furthennore, 

Ito processes inherit the irregularity properties of the associated Wiener process, as 

seen in Figure 2.1, so by discretizing these schemes, these irregularities will not be as 

prominent. 

Although the Euier scheme is of order 1 in the deterministic context, its strong 

order of convergence in the stochastic context is only 0.5 since it ignores some first 

order terms in the stochastic Taylor expansion (see Kloeden and Platen, 1999, Chapter 

5, p. 182) of St+at around St. See Figures 2.4 and 2.5 for some examp1es of the Euler 

scheme approximating an Ito process with different timesteps. 
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2.5.3 Milstein Discretization 

The Milstein scheme incorporates all the first order tenns of the stochastic Taylor 

expansion. It has strong order of convergence equal to 1 but extends the Euler scheme. 

For equation (2.1), the Milstein scheme is written as, see e.g. (Kloeden and Platen, 

d d d  
8 8 2  C C C uLjl(St, t)=(St, t)Ijlj= 

jl=l j2=1 I=1 - 
Additional 1st Order Term 

with 

Figure 2.6 illustrates the differences in the Euler and Milstein discretization 

schemes for a sample path of equation 

with the following parameters: So = 1.0, p = 1.5, o = 1.0. The explicit solution to 

this is well known, see e.g. (Lamberton and Lapeyre, 1997) Chapter 3, Section 3.4.3, 

P- 35, 
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Figure 2.6: Discretization Schemes and the Exact Solution with n = 10 time-steps 

The effect from the additional double Ito integral term is obvious for t getting close to 

the time to expiry, T. 

The main difliculty arising here not evident in the Euler scheme is the com- 

putation of the double Ito integral term, Ijlj2 and this issue is addressed in the next 

sections. 

2.5.3.0.1 Simplifying Cases There exists three simplifying cases in which the 

computation of I,, j2 for the Milstein discretization scheme becomes feasible and simple. 

The following cases are particularly relevant in finance. 

Case 2.20 Additive Volatilities 
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Suppose the volatiliw matrix is only a function of time, with 

b ( 2  - Then obviously the partial derivatives, 

aakj2 - (St , t )  = O  for all k,l as: 

in the Milstein expression (2.22), thereby reducing it to the EuIer scheme (2.21). In 

this particular case, the Euler scheme has order of convergence 1. 

Case 2.21 Uncomlated Assets 

Consider the system (2.1) governing the dynamics of the securities s:. If the 

volatility matrix is only a function of SF itself and the dW: are uncorrelated, the system 

becomes 

Then, the partial derivatives 

a+ 
-(St,t) = O  for all k # 1 ,  as: 

resulting in the volatility matrix a(St, t) in (2.1) being diagonal with each diagonal 

element as {ak(Sf ) ) . As a result of this, the Milstein scheme's (2.22) additional terms 

will only include Ijljl. To compute this double integral, we first give the following. 
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Theorem 2.22 (Chebyshev's Inequality) For any random variable X with 

E ( X )  = p, and 

var(X) = 2, 

for some constant k ,  

b s 

Proposition 2.23 Consider dWTdWs, then we have 
a a 

where Z - N(O, 1). 

P m f .  First, we have 

using the deMtion of the ito integral in (2.4), we get 

whem sj+l = a + e, j = 0, ..., n - 1, then, 
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Grouping terms to factorize, 

and ezpandzng, 

First, let 

and set 

Recall that A Wj N(0, s ,+I - s j), SO 

Being a telescoping sum, 
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Now, the variance is 

Recall that the moment genemting function for A Wj is 

and the fourth de~vatzve of this evaluated at u = 0 will yield 

Now, using Chebyshev 's Inequality in T h w m  (2.22); with X = E,, 

but since the size of the equal inmments is 

b - a  
Sj+l - Sj = -, 

n 



then 

n-1 b - a  ( b - ~ ) ~  C ( s j + ~  - sj12 - - 
n2 n 

j=O 

Then, as n -, w, 

t h  P{IE= - E(en)I 2 k) + 0, and SO 

in pmbability . So, fially,  

but W(6) - W (a )  - N (0, b - a) ,  then 

b - a  = - (z2 - 1)  * 
2 

Now, regarding the calculation of Ijl (2 -25) yields 
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Corollary 2.24 In the above notations 

where At = t,+l - tn. 

Proposition 2.25 Commutative Systems 

The SDE (2.1) is said to be "commutative" , if for all jl , j2 and k, 

In this case the last term in (2.22) can be split into the three forms of the Ito integral, 

d d d  a+ C C C 0''' (St? t )  (St t)Ijljz 
jl=l j2=l 1=1 

d d aakjl C C dlL (St ,  t )  (St t)I'ljl 
jl=l I=l  

Ijlj2 for jl # j 2  cannot be expressed as easily as Ij ,  j2 for jl = jz, so we use an identity 

from (Kloeden and Platen, 1999), (3.15), p. 348 
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using (2.27) we get, after factorizing, 

d d d  

jl=l j2=l  1=1 

One typical example of this case in finance is when the kth security SF follows 

the dynamics: 

d ~ : =  p ( ~ : , - - -  , s ; ' , t ) d t + t k ( s : ) d ~ ;  for k =  I , - - -  ,d (2.29) 

where the W: are correlated standard Wiener processes. As such, it is necessary to 

simulate a multivariate normal distribution, discussed next. 

2.5.3.1 Simulating Multivariate Normal Distributions 

Suppose Z = (zl, ..., zd) where 

zk % N (0 , l )  , (2.30) 

for k = 1, . . . , d and iid denotes identically and independently distributed, then let 

W = A Z  (2.31) 
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where W = (W1, ..., wd) and A is a nonsingular d x d matrix The linear transforma- 

tion in (2.31) has 

and the variance-covariance matrix as 

but 
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and using the distribution of zk in (2.30), we know that . 

getting 

E ( z z ~ )  = [: ; ) = I, 1 being the Identi. matrix. 

.-. 

Therefore, 

Ruthmore, it is easily shown (Lehmann and Casda, 1998, p. 20) with the usual 

formula for density transformations that the distribution of W is 

where f denotes the distribution function and II.II denotes the Jacobian of the linear 

transfohation (2.31), that is, 

w - N (o,AA=). 

Hence, to simulate random variables W, one needs to find A for which x, = A A ~ ,  

and a Cholesky Decomposition can be used for this purpose. 

By using Cholesky decomposition, the commutative system (2.29) is transformed 

to that of the form seen in (2.1). 
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2.5.3.2 Cholesky Decomposition 

For details on this method, see (Conte and de Boor, 1972, p. 142) and (Morgan, 

1984, p. 282). The god of this method is to produce an upper triangular matrix A 

through recursive computation by columns. Let the correlation matrix be C = {p,,}, 

k =  1 ,..., d and j =  1 ,..., d, 

so set 

getting 

ad1 ad2  - - add 
L 

add 1 
0 0 - - -  add 

L 



Solving the system of equations from the matrix multiplication, we get 

1 for k = 1 
akl = 7 and 

pkl for k > 1 

j-1 

1 - C a$ for k = j 

j-1 

&j - akcajc for k > j 
-1 

It can be easily shown next that the system (2.29) is commutative. 

To account for the correlation in the processes, the volatility matrix for equation 

(2.29) is as follows 

T 

diffusion 
Y 

Cholesky Decomposition of Conelation Mat* 

where akj are constants. Then dropping (Sf) for simpler notation, we get 
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Consider the commutativity condition in (2.26), for k # 1,  

dakj -- - 0  for all j = j,, j2. as: 

Thus (2.26) simplifies to 

aakj2 - a#' - &2 - 
as: asf -- 

since a e  = 0 when j > k ( j  = jl,k), then for A,  j2 = 1, ..., k, the left-hand side 

of (2.32) becomes 

while the right-hand side becomes 

So the revised commutativity condition in (2.32) is met for this case. 

Note that if ek is a function of any other security besides SF then the resulting 

system would not be commutative. In such cases the stochastic Ito integrals I,, j2 have 

to be simulated. This issue is addressed in the next section. 

2.5.3.3 Simulating the Multiple Ito Integrals 

There are some types of option pricing problems which do not fall into the above 

mentioned categories. An example is mentioned wherein the volatility of a security 

depends on other factors, thereby necessitating the simulation of the Ito integral IjIj2- 
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Example 2.26 Stochastzc volatility- 

Consider the system: 

where W: and W: are standard Wiener processes correlated by correlation coefficient 

p ( p  = 0 or # 0) , and the identity 

must hold to ensure positive red values for ut. We first ve* that this system is not 

commutative for the general case with correlation p: 

Note that the volati l i~  matrix for the system (2.33) above is 

Using the commutativity condition (2.26), for k = 1, d = 2, jl = 1, j2 = 2, we get 

while 

so the commutativity condition is not met. 
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The problem above requires the direct computation of the multiple Ito integral 

(2.23) and to compute the double Ito integral, one traditional approach is first reviewed 

and then a direct and &dent numerical scheme is proposed. An d y t i c  method is 

proposed in (Kloeden and Platen, 1999) Chapter 5, by expanding the Ito integral as a 

Fourier series and using a truncation as an approximation. This technique is used to 

approximate another form of integrals termed the Stratonovich integrals in Section 8, 

Chapter 5 of the above reference. The approximation, c.f. the above reference p. 347, 

is given as 

where 

-1 

and disregarding the indices, W, X and Y, Z are respectively 2q and 2 standard Gaus- 

sian random variables. We note that larger values of q give more accurate approxi- 

mations. For a given q, formula (2.34) requires the generation of 4(1 + q) standard 

Wiener processes. The value of q must be chosen (see above reference) so that 

for some positive constant K. This condition ensures a strong order of convergence 

7 = 1 for the Milstein scheme using the approximation of (2.34). 
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Another approach presented in (Lari-Lavassani et al, 2000) evaluates the multi- 

ple Ito integrals (2.23) by going back to the very definition of the Ito integral. Recd 

that 

b 
m 

where the supremum is taken over all possible discretizations of the i n t d  [a, b] and k 

is the number of subintervals. 

Proposition 2.27 Conszder the integral 

vith t 5 ti 5 t + At where 

Let X', Yz be 2k + 2 uncomlated standard Gaussian mndom variables. Then, we 

have 

Proof. First, we recall that 
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where ti will be the nearest point to s in the discretization. Therefore, reapplying this 

for the second integral, we get 

Remark 1 To use (2.36) for computing (2.23) the following add2tional identities must 

be w e d  to be wnsistent with the M2lstezn scheme in  (2.22) 

Remark 2 Note that to implement (2.36), for a given number of discn?tizatzons k ,  

only 2k standard Wiener processes are required, and it is now shown to be numerieolly 

more eficzent than (2.34). 

We now compare the numerical efficiency of both formulas (2.34) and (2.36) 

in estimating Ijla The measure of aciency here will be the computational cost 

represented by Flops. The time interval [t , t + At] is considered to be [0, 11 , i-e, At = 1, 

and we take k = q = 1000 to ensure a high level of accuracy for both formulas. 
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This estimation process is repeated 50000 times to produce two distributions for IjLh. 

Having done so, we compare these two distributions to see if there is a significant 

mereme in the two methods. This is done by plotting a histogram seen in Figure 2.7 

of the differences in values that are less than or equal to 0.0001. 

The histogram shows that almost all of the 50000 samples of the differences 

have no significant differences between them, showing that the two distributions are 

almost identical as almost all of the 50000 samples have differences very close to 0. 

The evidence horn the graph is also validated by the numerical d u e s  of the first four 

moments whose values are presented in Table 2.1. First, we note that the moments 

are very close to each other for both methods. Therefore, we can conclude that both 

formulas approximate Ijlj, well, while their major difference is seen in the computational 

cost column. 

Our formula (2.36), relying on the definition of the Ito integral, only requires 

4004 Flops to approximate I,,,, whereas formula (2.34) requires 11024 Flops. This 

means that numericallyy formula (2.36) is much more efficient as it requires 64% less 

computational effort compared to formula (2.34). This is principally due to the number 

of random variables each formula has to generate in order to approximate IjLj,. Formula 

(2.34) requires 4 (1 + q) standard Wiener process, while formula (2.36) only requires 

2 k. For high levels of accuracy, i.e. q c k, formula (2.34) requires less than half of the 

number of standard Wiener processes of formula (2.36). 
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Figure 2.7: Distribution of the DSerences of the Double Ito Integral 

Table 2.1: The Four Moments of the Distributions of the Double Ito Integral. 

Cost in Flops 

x lo7 

11024 

4004 

Volatility 

0.5025 

0.5108 

Ijlj2 Evaluated 

via the Formula 

(2.34) 

(2.36) 

Skewness 

-0.0829 

-0.0208 

Mean 

x 

1.6694 

2.9077 

Kurtosis 

6.7533 

7.0188 



CHAPTER 3 

VARIANCE REDUCTION WITH ANTITHETIC 

VARIATES 

Variance reduction techniques improve the &ciency of Monte Carlo methods. 

They are discussed in (Boyle et al, 1997) or (Clewlow and Camerhill, 1994, among 

others. We briefly motivated the need for variance reduction in the context of the 

Central Limit Theorm as a cheaper alternative to increasing the number of simulations 

in section 2.3.1. 

T To simplify notations, we still consider t as an integer representing in fact t - ;; . 

For a single path of St , we add an additional label i, to be the index for the number 

of simulations, and note that to simulate this path using the time discrete schemes of 

(2.21) or (2.22) requires n x d standard Gaussian random variables. 

These n x d Gaussian random variables define the matrix 

9 = (z.), 

where j = 1,. . . , d and t = 1 , .  . . , n. Each Zi will provide a vector, of length d, of 

random variables, where each 2;' is a Gaussian random variable at time t, for asset 

or dimension j along the path indexed by i. In terms of the Monte Carlo method, to 

improve aciency, all ZE's ate produced at each instant of time, in matrix form before 

passing them through the discretization schemes of (2.21) or (2.22), and at each instant 

of time, the new 2's overwrite the previous ones. We choose to do so for memory 

53 



CHAPTER 3. V-CE REDUCTTON WlTH ANTTTHETTC VARLATES 54 

management and also to prgerve the assumption of independence between random 

variables. 

k. a result of this, there is a oneteone relationship between the matrix 2' 

and a sample path of the discretization of (2.1). Hence our attention can be shifted 

to producing additional matrices Zi, while p r a m  the Gaussian symmetry. That 

is, our emphasis will be on one specific form of variance reduction, namely, antithetic 

variates. 

3.1 Classical Antit het ic Variates (CAV) 

This particular technique of variance reduction exploits the reduction in variance as 

a result of random variables being negatively correlated. The reduction in variance 

arises from the averaging effect of combining results obtained born negatively correlated 

random variables. For instance, laxger than usual estimates of the option price are 

paired with smaller than average values, the final average of these values will drive the 

option price closer to the actual mean of the integrand. 

The idea of classical antithetic variates is to draw p samples Z' = (z?'), i = 

1,. . . , p ,  and pairing them with their reflection, -Zi, to obtain a second path. The 

random inputs from the p pairings ((6, -T) ) are more regularly distributed than the 

2p  independent samples of Zi and -2' and this arises from the symmetric property of 

the normal distribution. Theoretically, the sample average of the random samples C 

is 0. However, due to the randomness of the sample, or obtaining samples which are 
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less representative of the population, the average value of the Zi will not usually be 

zero in actual simulations. We, however, note that the sample mean for the antithetic 

pairs will always be 0. 

Any set of p sample paths Zi = (z?), i = 1,. . . , p  yields p samples of (SF), 
k = 1, .. ., d. Standard Monte Carlo method then estimates the price of a European 

option, under the risk-neutral measure, with payofE f (S+ , . . . , S$) by 

e-rT P 
= - f ( s ,  - - . , ) r = risk-free interest rate. 

p 

However, with classical antithetic variates (CAV), the price of the option is derived 

from two sources 

where s?; k = 1, ..., d is obtained using (2.21) or (2.22), and Sp, k = 1, ..., d is obtaed 

in the same manner except all the Gaussian random variables are the opposite to that 

of s?. A major advantage of this method is the fact that these Gaussian random 

variables are generated once but result in two paths. 

The averaging dect  kom the use of antithetic Mliates is seen in Figure 3.1, 

which shows the sensitivity of the payoff of a standard European call option with 

respect to changing initial prices. We see that even for low levels of simulations and 

t ime-steps , the averaging effect is dramatic. 

The SDE used to price this option is a standard lognormal as in (2.5). The 
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option has the following parameters: 

Initial price, So = l O j ,  j = 1, ..., 20 

Strike price, K = 35, 

Dividends, 6 = 0, 

Volatility, c = 0.2. 

It is priced using the Euler scheme of (2.21) under the risk-neutral measure, r = 0.05, 

with simulation parmeters set at: 

Simulation paths, p = 50 and 

Number of time-steps, n = 30. 

3.2 Zz @ Zz-Symmetric Antithetic Variates 

A symmetric extension of the classical antit hetic variates technique is proposed in (Lari- 

Lawsani et al, 2000). We now review this construction. The idea is to produce £kom 

a given simulated path, three additional paths while maintaining the symmetry of the 

Gaussian distributions involved. At the same time, the method seeks to reduce the 

global variance in a c& effective manner. It extends the CAV method. 

This method proceeds as follows: given a discretization scheme, e.g. (2.21) or 

(2.22), with the matrix of Gaussian variables z?' as defined in a section 3.1, a second 

matrix is produced using (-z?). Both 2;' and (-z?) have the same distribution. 



Averaging Effect of Classical Antithaic Variates 
78 b 1 b I I I 8 I 1 

Figure 3.1: meet of CAV for the payoff of the option 

We now give an algebriac interpretation of the CAV method: 

Let Z2 = (- 1,l) be the group on two elements, and consider its action on the 

discrete space {z?, t = 0, . . . , n, j = 0,  . . . , d )  defined by: 

The above action extends naturally to Zi component-wise. Note that CAV uses the 

entire orbit of a path under the above action, consisting of Zi and its opposite path 

-2. The above Z2-symmetry action leaves the distribution invariant within a given 

orbit. This is a restatement of the fact that CAV preserves the symmetry of the 
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Gaussian distributions - 

The generalization of the above method consists of enlarging this symmetry 

group, by considering the four element group Z2 @ Zz that can be identified with the 

set of two by two matrices 

The new action is then defined on the two dimensional grid {(~!2,, z?)) where t 

assumes all odd values &om 1 to n by: 

- ( )  = (zyl,zti), 

r2 . (z;jl, zp) = (-~j*i -z?), 
t--11 

r3 . ( ) = (zjvi 
t-13 -2i"i), and 

r4 . (  ) = (-zj? @). 
t 1, 

which can also be written as 

for all t = 0,  . . . , n. This action naturally extends to the matrix path Zi = (z?) 
component-wise. 
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This is depicted in Figure 3.2. Geometrically, given a path rl - z?, the second 

path r2- Zi moves in the opposite direction of 6 at all times, the third path r3- Z5 

moves in the same direction as Zi for odd time-steps and in opposite directions for even 

time-steps, and the fourth path I'4- Zi moves in the opposite direction of the third at 

all times. All four paths make an orbit under this Zz CEI Z2 action and have the same 

Gaussian distribution. 

It is noted in (Lari-Lavassani et al, 2000) that there are three copies of Z2 

as subgroups of Z2 e Z2, namely {rl, r2), {rl, r3) and {rl, r4). The case CAV 

corresponds to {rl,  r2), and it is noted that &om a VaTiance reduction viewpoint, the 

other two subgroups done are not quite as effective. We wi l l  see numerically why this 

is so in Table 4-6. Indeed, {rl, r2) has paths which are highly negatively correlated 

as one is just the opposite to the other. However, {rl, r3) and {rl, r4) do not share 

this quality so strongly as at every other time-step, the paths are correlated. 

We establish below that variance becomes s d e r  as the symmetry groups be- 

come larger. From this point forth, we label the Z2 @ ZTsymmetric antithetic variates 

EAV4 (Extended Antit hetic Variates with 4 paths). 



Figure 3.2: Example of the Four Z2 @ Z2 Symmetric Paths 

3.3 Implementation and Efficiency of EAV 

Once a l l  relevant parameters are fixed, 

is a function of the random matrix Z', i = 1, . . . p. We let 
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and define 

where 8' is the option price derived £ram the original path with z?, B* is the price 

-1 ~3 
from (-z?) that moves in an opposite direction to 0 , t9 derives its price fkom the 

tS.3 j i  original path with (- 1) 2,' , and similarly for e4. 

Combining the above option prices in various ways, we can now define three 

additional estimators for the price of the option 

This is done to be consistent with the main idea of antithetic variates, that is, to reduce 

variance by taking groups of random variables and obtaining a suitable average. We 

choose to also include aEAV3 to demonstrate that significant efEciency is only gained 

for estimators associated with subgroups. 

Recall that the subgroup {rl, r2) corresponds to aCAV and Z2 8 2 2  to eEAV4r 

while does not correspond to any subgroup. More precisely, it can be numerically 

verified in the Test Case Option, see Figure 3.3 (refer to section 4.3 for details), that 



aEAv3 does not perform any better than aCAV, but aEAV4 does so significantly. That 

is why aEAV3 is eliminated in future cases as it does not consistently reduce variance in 

comparison to other subgroups. h Figure 3.3, BEAV3 does not perform wd for a given 

level of computational work, especially between 10000 and 20000 Flops. The standard 

error, in this case is taken to be 

shows the option price with EAV4 reaching a stable variance very quickly, for only 

10000 simulation paths, while CAV shows the same pattern, but at a higher level of 

variance. The standard Monte C d o  scheme has the worst result, with variance even 

increasing fkom 15000 to 30000 paths. EAV3 performs alm& as badly as the standard 

scheme at 15000 paths, huthermore, it does not have the steady behaviour as seen for 

CAV or EAV4. This therefore justifies the elimination of EAV3 as a variance reduced 

es tirnat or. 

An alternative interpretation to Figure 3.3 is that for a given level of computa- 

tional cost, EAV4 has the lowest variance while EAV3 is inconclusive. 

3.4 Justification of Variance Reduct ion of EAV 

As discussed in section 2.4, we need to justify the extra computational cost involved 

in variance reduction techniques according to some measures of performance, namely, 

level of variance and level of aciency. The following series of propositions &om (Lari- 
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~b I t I I 1 
0.5 1 1.5 2 2 5  3 

NO. of siml~aths, p x id 

EWr m m e s  with Different Va- 
0.05- 1 t 1 S t a n d a r d  

Figure 3.3: Comparison of Eules Schemes with V&rious Antithetic Variates 

-00- CAV - - EAV3 --- EAV4 

Lavassani et al, 2000) explain the benefits in terms of reducing variance and provide 

an indicator on how effective or costly an estimator is. 

We first need to show that by using the va.rious forms of antithetic Mliates, 

global -variance is actually reduced, and the following proposition does this: 

- 

Proposition 3.1 

- 

- 
- 

- 

- 

- 

- 

0.005 - ~*--=-=-=o:*z*:.z.==.=-- e*---.-.o..--*--- 
- - C ~ I . I . I . I - I O I  5 

-----I.- --*-.- ?I---%=.= 

i) Suppose 
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Then we have 

var pcav] 5 var P(l)] . 

ii) Suppose 

2cou (g(~t'), g((-l)'*' z?)) 5 var (t~(Zp)) + car (g(Zp), g(-Zy)) . 

Then we have 

Proof. We have 

due to the symmetry of the Gaussian distribution, and 

V ~ T  [ g ( ~ f i ) ]  = var [ g ( - Z P ) ]  = var [g((-l)' z?)] = var [g((-I)'+' z;')] . 

Therefore, 

1 P 

= - C {var [ g ( ~ ? i ) ]  + vat [g(-~p)] + ~ C O V ( ~ ( Z ? ' ) ,  ~ J ( - z ? ~ ) ) )  , 
49 ,=I 
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now since 

var [ g ( ~ ) ]  = war [g(-F)] , 

we have 

but 

so, we get 

As for the variance of BEAv4, we have 

because there are 2 paths which move in completely opposite directions to each other, 

while the others have directions based on whether the time-step is even or not, and 

using the assumption, 
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it implies, 

To use the level of aciency as a measure of performance, we need to account 

for the extra effort required to generate eEav4 and BCAV. One would expect the effort 

required for replicating samples of &Av4 to be at most twice that of &AV, which is itself 

at most twice that of 8. The following proposition shows that even after accounting 

for the extra computational cost, PEAVr is still the best estimator in terms of variance 

reduction, followed by gcAv and then the standard Monte Carlo option price: 2. Using 
the level of efficiency we choose to compare 

for two estimators where 01 is the variance of the estimator and Fl is the work required 

to generate the option price. 

Proposition 3.2 Suppose 

and 



for some E 2 0. Then we have 

2var pcAv] 5 var P(l)] 

Proof. Using (3.5) we have 

Similarly, this leads to 

P 

= 2 var Po,] + $ C { m u  (g(~:'),g((-1)'+'~t'))} 
i=l 

rn 

In the previous proposition, we assume that WIJ (g  (z?') , g(- z?) ) 5 0. This 

is the necessary condition for antithetic variates to help in variance reduction. If this 

assumption is not valid, then the variance reduction properties of the antithetic variates 

will not exist and the extra computational effort in generating these variates will be 

an unjustified cost. Numerically, this is simple to verify as the covariance between the 

different option prices can be computed, as it will be seen in Section 4.3, Table 4.6. 
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(Barlow and Proschan, 1975, Section 2.2, p. 29) show that for increasing functions G 

and H, we have 

m (G, H) 2 0. 

Using this, we next show that 

cov (g(z$i), g ( - ~ $ ~ ) )  5 o. 

Proposition 3.3 

(i) Suppose the drifl, p(., t )  and the volatility mat*, o(., t )  are zncmxing and the 

payoff of the option f (Sky ..., S;) is monotone with respect to all s;, j = 1, ...: d .  

Then, t~(~t ' )  is monotone urith respect to all z?. 

(ii) If the finction g(2;') is i n m n g ,  then we have 

Proof. Consider two random matrices, with the notation as defined in earlier sections, 

&jvi and 2;' with the following characteristics 

VP" > zy 
6 for ( t , j ) =  (%PI ,  and (3-6) 

j ,  = 2 j . i  
t f o r ( t , i ) # ( ~ , p )  (3-7) 

h a l l  that the asset price S: is actually a function of its random matrix, i-e. 

we introduce the not ation 
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to imply the asset price S{ for asset j as a function of the random matrix z?'. 

Then (3.7) yields 

Also, at time 6, both (3.7) and (3.6) respectively lead to 

i v j,' sj 21' 
= 8(  ;) f o r j # p ,  and 

s $ ( ~ " )  > SP 4( z p p i  * f o r j - P  

Therefore for the next time instant 19 + I, we can assume that 

which, in turn, implies 

sj (vj7i 
l9+2 $ 1  s for all 2.  

Repeating this until we arrive at time T, we get 

sj vj 2 > sj zi.2 T( T') - T( T 1 f o r d i  

and in general 

Therefore, we conclude fiom this that the payoff f (S+, ..., s;) is monotone with respect 

to all s;, and since 
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it is thus monotone with respect to all z?. 
Now, we know that -z? moves in the opposite direction to z?, SO, g (-2;"') 

is a decreasing function, and -g (-z?) must then be increasing. Therefore, using the 

result &om (Barlow and Proschan, 1975), we have 

In order to reverse the direction of the inequaliw, we need to compare the covarimces for 

fuactions with opposing directions, that is, g (2:') , which is increasing, and g (- z?) , 

which is decreasing. If SO, the result is 



CHAPTER 4 

SIMULATION ACCURACY AND EFFICIENCY 

In this chapter we consider a Test Case Option to illustrate the issues of efficiency 

and accuracy. We measure accuracy by the distance between the estimated option price 

and the true value, that is, whether an estimate has converged to the true price or not. 

Whereas efficiency is measured in terms of the effort it requires to yield an option price 

with low variance. 

The Test Case Option is a standard European call option on an underlying with 

a lognormal process of this fonn 

The option parameters are provided by Table 4.1. 

As a reminder, So denotes the initial asset price, K is the strike or exercise price, 

o is the volatility, 6 is the continuous dividend rate, T is the time to expiry and r is 

the risk-fiee interest rate. Note also that CAV denotes classical antithetic variates and 

EAV4 the Z2 @ Z2-symmetric antithetic variates. The "true" option value of $3.985 

is determined by a Monte Carlo simulation with the Milstein scheme using EAV4 at 

n = 200 and p = 200000. This option d u e  is taken to be the actual option price from 

this point on. This particular option is also priced in (Rubinstein, 1991), p. 21, using 

a binomial tree, yielding $3.99. 
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Table 4.1: Parameters for Test Case Option 

Option Parameters 

so 

K 

d 

6 

T 

r 

To gauge the effectiveness and accuracy of the Monte Carlo simulations, we 

Values 

100 

100 

0.1 

0.05 

0.5 

0.1 

consider two issues, namely, the payoff between the reduction of variance and numerical 

efficiency, and the relationships between convergence schemes and numerical accuracy. 

As a measure of accuracy, we thus define the mlative error as 

Relative Error = - ?rue value" 

and we also define the standard error as 

- batch n 

Standard Error = 

krkh -k 

where 8 = and the batch is the number of times the simulation is repeated. 
b=l 
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4.1 Selection of Time-Step 

R e d  that there sdsts two forms of convergence, one strong and the other we& (see 

(2.19) and (3.5)). Both convergence schemes are affected by their the-step size, that 

is, At = T/n. Therefore, as mentioned earlier, a suitable n has to be selected to ensure 

the discretization schemes converge to the continuous process. We select an optimal 

n via the application of the Milstein algorithm with E N 4  to the Test Case Option. 

We compute the magnitude of the relative error to be consistent with the strong 

convergence requirement of (2.19) to determine the impact of Msying n. We then plot 

the results in Figure 4.1. We note the steady decline in the magnitude of the relative 

error for increasing number of timesteps (which corresponds to a decreasing time-step 

increment At). However, after a threshold point, the magnitude of the relative error 

seems to increase again. To determine an optimal n, we fix an acceptable error bound, 

e-g. 0.005, and the best values for n are those that lead to the relative error falling 

under this acceptable error bound line. For this case, we can see n E [30,100] as a 

possible optimal range. This corresponds to At E [T/100, T/30] 5 [0.005,0.02]. As 

noted before, after n = 65; the curve rises again and although the graph falls into the 

acceptable error region, one can obtain the same result with less computational effort 

for n E [30,65]. Therefore, the most optimal range for n is 
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For the rest of the numerical examples, we will choose n = 30. 

Next, we also show that increasing the number of time-steps does not improve 

the volatility of a Monte Carlo simulation- Figure 4.2 shows that for increasing values 

of n, the volatiliw does not converge, in fact, it oscillates. This is consistent with 

the strong convergence criteria that relates only the relative error to the tirne-step size. 

Furthermore, in the discussions of variance reduction in section 2.3.1, we note that to 

reduce the standard error, the two alternatives are variance reduction or increasing the 

number of simulations, p. 

Figure 4.1: Convergence of Option Price with Respect to Number of Time-Steps 
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Figure 4.2: Impact of Number of Time-Steps on Volatiliw 

4.2 Convergence Schemes and Numerical Accuracy 

We now consider the issue of numerical accuracy. Based on the previous section, we 

have opted to use n = 30 for the numerical results in Tables 4.2 and 4.3. The tables 

compare the Euler and Milstein schemes with different levels of antithetic variates for 

the Test Case Option. In Table 4.2, it is seen that for increasing simulation paths, p, 

the option values start converging to the true value of $3.985. The exception to this 

is the Euler scheme with CAV where at 100000 simulation paths, the option value is 

furthest away from the true value. This is demonstrated in the relative error columns 

where there is a steady decrease, tending to 0. For Euler, EAV4 performs the best 
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with a relative error of 0.0001 for p = 100000. 

In Table 4.3, the results using Milstein also lead to similar conclusions. Milstein 

with EAV4 outperforms the other versions. In fact, Milstein EAV4 shows very steady 

convergence with increasing number of simulation paths. This is also seen in the 

relative error column whereas in the Eder case, the magnitude is only 0.0001. In 

general Milstein outperforms Euler. We should note also that Milstein produces results 

which are less variant, as seen in the proximity of the results to each other between 

successive increases in p. The prices using m e i n  hover around 3.98 in all but 3 cases 

whereas for Euler, there are 6 cases which deviate significantly from 3.98. 

The conclusions from the numerical results also provide evidence that by in- 

creasing the number of simulations, the width of the confidence i n t d  (2.16) shrinks, 

so the estimate of the option price will tend to the actual option price for large p. 



Table 4.2: The relative errors and the computations costs in Flops for Euler discretiza- 

tion. 

Since Milstein has strong order of convergence 1, we expect Milstein to outper- 

form Euler. This is further seen in Tables 4.4 and 4.5. The convergence patterns 

are obvious in the tables. For Euler, it is evident that the prices have not converged 

for th& level of p and oscillate, indicating instability. For Milstein, there is steady 

convergence to 3.985 particularly for the E N 4  case (note that Euler with EAV4 also 

performs well). 

n = 30 

Paths 

P 

1000 

5000 

15000 

30000 

60000 

lo0000 

EAV4 

Value 

3.9829 

3.9857 

3.9826 

3.9863 

3.9860 

3.9851 

No VR 

Rel. 

Error 

-0.0021 

0.0007 

-0.0024 

0.0013 

0.0010 

0.0001 

Value 

3.9691 

4.0004 

3.9880 

CAV 

Flops 

xlo7 

0.0583 

0.2915 

0.8745 

1.7490 

3-4980 

5.8300 

3.9985 

3.9788 

3.9872 

Flops 

xlo7 

0.0277 

0.1385 

0.4155 

Red. 

Error 

-0.0159 

0.0150 

0.0030 

Vdue 

3.9711 

3.9865 

3.9875 

Flops 

x107 

0.0153 

0.0765 

0.2295 

Rel. 

Error 

-0.0139 

0.0150 

0.0025 

0.8310 

1.6620 

2.7700 

0.0135 

-0.0062 

0.0022 

0.0028 

0.0020 

0.0053 

0.4590 

0.9180 

1.5300 

3.9878 

3.9870 

3.9903 
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Table 4.3: The relative errors and the computations costs in Flops for Milstein dis 

cretization. 

We next attempt to relate convergence to the number of time-steps, n and 

the number of simulations, p. This phenomena is seen in the 3 dimensional plot 

of Figure 4.3. The effect of increasing the number of simulations is more dominant 

than increasing the number of time-steps. For instance, at the simulation level of 

approximately 1000 paths, the relative error of the price is very erratic and does not 

improve even with increasing time-st eps. However, for increasing simulation paths, the 

price gets less erratic, also for increasing timesteps, with the best results at p = 15000. 

The observations kom the numerical results in the previous tables are also ver- 

ified graphically. Figure 4.5 plots the relative error against the number of simulations 

n = 30 

Paths 

P 

E4V4 CAV 

Flops 

x107 

0.1063 

0.5315 

1.5945 

3.1890 

6.3780 

10.6300 

Vdue 

4.0096 

3.9781 

3.9822 

3.9858 

3.9883 

3.9867 

Value 

3.9772 

3.9875 

3.9874 

No VR 

Rel. 

Error 

-0.0078 

0.0025 

0.0024 

Rel. 

Error 

0.0246 

-0.0069 

-0.0028 

0.0008 

0.0033 

0.0017 

Flops 

xlo7 

0.0273 

0.1365 

0.4095 

0.8190 

1.6380 

2.7300 

V i e  Flops 

x lo7 

0.0517 

0.2585 

0.7755 

1.5510 

3.1020 

5.1700 

Rel. 

Error 

-0.0161 

-0.0027 

-0.0046 

0.0010 

-0.0007 

0.0088 

1000 

5000 

15000 

30000 

60000 

1OOOOO 

3.9882 

3.9848 

3.9849 

3.9689 

3.9823 

3.9804 

3.9860 

3.9843 

3.9938 

0-0032 

-0.0002 

-0.0001 
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Table 4.4: Relative Error of Euler With Different Variance Reductions, p = 30000. 

Time 

Steps 

10 

30 

50 

80 

Table 4.5: Relative Error of Milstein With Different Variance Reductions, p = 30000 

Time 

Steps 

10 

30 

50 

80 

Standard 

Value 

3.9794 

3.9876 

3.9879 

3.9836 

CAV 

Standard 

Value 

- -- 

3.9774 

3.9835 

3.9824 

3.9847 

Rel. 

Error 

-0.0056 

0.0026 

0.0029 

-0.0014 

W 4  

Flop 

x 10' 

0.1590 

0.4590 

0.7590 

1.2090 

Vdue 

3.9734 

3.9712 

3.9849 

3.9846 

CAV 

Flops 

x107 

Vdue 

Rel. 

~ m o r  

-0.0076 

-0.0015 

-0.0026 

-0.0003 

Value 

3.9826 

3.9887 

3.9883 

3.9842 

EAV4 

M. 

Enor 

FIops 

x107 

0.2910 

0.8310 

1.3710 

2.1810 

Rel. 

&or 

-0.0116 

-0.0138 

-0.0001 

-0.0004 

Vdue 

3.9867 

3.9869 

3.9845 

3.9852 

3-9837 

3.9774 

3.9906 

3.9885 

Flops 

x lo7 

0.6090 

1.7490 

2.8890 

4.5990 

Rel. 

Error 

-0.0024 

0.0037 

0.0033 

-0.0008 

Rel. 

Emor 

0.0017 

0.0019 

-0.0005 

0.0001 

Flops 

x lo7 

0.5310 

1.5510 

2.5710 

4.1010 

-0.0013 

-0.0076 

0.0056 

0.0035 

Flops 

x107 

1.0890 

3.1890 

5.2890 

8.4390 

0.2790 

0.8190 

1.3590 

2.1690 
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Slahce Plot of Relative Error us #TiisSteps vs #Simulations 

T= 0.5 TimeSteps. n 0 0 Simulations, p 

Figure 4.3: The Relative Error versus the Number of Discretizations and the Number 

of Simulations for Standard Euler 

for Euler and Milstein with different kinds of antithetic variates. Standard Euler and 

standard Milstein do not perform well, displaying the erratic and oscillatory behaviour 

as demonstrated in Tables 4.4 and 4.5. In fact, these two schemes are furthest away 

from zero. Note the steep drop in relative error for standard Milstein from 1000 to 

5000 simulation paths. For Euler, it moves in the opposite direction. The addition of 

CAV improves both standard Euler and Mikein dramatically, with both being closer 

to zero and showing convergence behaviour to zero. However, the effect of EAV4 for 

relative error is the most dramatic, with Milstein EAV4 performing the best. After 
1 

15000 simulation paths, Milstein with EAV4 is the only scheme that has fully converged 
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Figure 4.4: Relationship between CPU Time and Computational Costs in Flops. 

as its relative error is not deviating from zero anymore. Euler with EAV4 also performs 

well, but not as well as Milstein with EAV4. 

In section 2.4.2, we also stress the importance of accounting for the computa- 

tional costs, F associated with the respective estimators as in reality, 1 simulation path 

for standard schemes is equivalent to 2 paths for CAV and 4 paths for EAV4. The 

computational cost is represented by Flops, the number of floating point operations, 

automatically generated by Mat lab. Figure 4.4 shows the approximate relationship 

between Flops and CPU time. To put it into a time perspective, it is approximately 

107 Flop per 1.7 seconds of CPU time on a Pentium III machine with 128 MB RAM. 

The associated costs are shown in Figure 4.6. Comparing convergence patterns 

with respect to computational costs in Flops, Milstein with EAV4 dominates again- 
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Figure 4.5: Relative Error of Euler and W e i n  with Different Antithetic Variates 

4.3 Variance Reduction and Numerical Efficiency 

Consider the Test Case Option again. Since we are now focusing on the reduction of 

variance, the first thing we have to check is whether the assumptions of the propositions 

in Section 3.4, that is, 

and 

hold numerically. This is reported in Table 4.6, which shows the correlations between 

option prices using different kinds of antithetic variates. The correlation matrix shows 

that the assumptions are met. Therefore, variance is reduced by using antithetic Mli- 
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Figure 4.6: Euler and Milstein with Different Antithetic Variates for Relative Error 

versus Computational Cost. 

is reduced by using antithetic d a t e s ,  and huthermore, EAV4 reduces variance more 

than CAV, which in turn reduces variance more than standard schemes even after 

accounting for differences in computational costs. 

Here the numerical efficiency of the different methods discussed in the previous 

sections is presented. We choose to use graphical means for this purpose. The 

standard error values are computed from a batch of 15. Figure 4.7 illustrates the 

various aciencies of different schemes in achieving low variant option prices. The 

conclusions are similar to that of the previous section, in that standard Euler and 

Milstein are not very acient  as they require a large number of simulations to obtain 

a reduction in volatiliv. We note that Milstein f& to a much less variant level after 
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Table 4.6: Correlations of the Four Simulated Paths 

the 20000 simulation mark. CAV schemes are more acient  compared to the standard 

schemes because they require only 10000 simulations to reach a plateau in the volatility 

level. It should be pointed out that the difference in volatility between Miktein CAV 

and standard Milstein from 1000 to 5000 simulations is approximately double that of 

Euler CAV and standard Euler, reflecting the efficiency of Milstein over Euler. Both 

schemes with EAV4 are the most acient,  with Milstein EAV4 only requiring 5000 

simulations to attain a very stable result. Euler with EAV4 requires about 10000 

simulations. Neither of the EAV4 schemes display any oscillatory behaviour. Fkom 

a perspective of computational cost, the results are similar for different methods as 

illustrated in Figure 4.8. The conclusion is that for a low level of work, 0.5 x Flops, 

EAV4 in both schemes reach their plateaus where any extra work beyond this point 

would imply a waste of resources. 
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- - Mi- - 

Figure 4.7: Variance of Schemes with Different Antithetic Variates Versus the Number 

of Simulations 

Finally, we again relate variance to the number of simulations and the number of 

time-steps simultaneously. Figure 4.9 is a surface plot of volatiliv versus the number 

of time-steps n versus the number of simulations p. Variance is again seen to mainly 

depend on the number of simulations and not as much on the number of time steps. 

The impact of the number of simulations on the volatility of the option price is greater 

for increasing p, as the surface is less jagged. It has a similar surface to Figure 4.3 

with the same conclusions. 

Therefore, implementing Milstein with EAV4 with a reasonable number of paths 

is the optimal choice in that it is the most cost effective in producing minimum variance 

with the highest accuracy as seen in the previous section. In other words, the trade- 
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Figure 4.8: Variance of Schemes with Different Antithetic Variates versus the Compu- 

tational Costs 

off between variance reduction and the extra computational cost involved in using the 

-Milstein scheme with EAV4 is positive and it would be the scheme of choice. 
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Plot of Vollility vs #fimaSteps vs # Simulaiions 

EmeSteps. n u o -- Simulations. p 

Figure 4.9: S d a c e  Plot of Volatility versus Number of Time-Steps versus Simulation 

Paths 



CHAPTER 5 

NUMERICAL RESULTS 

5.1 Multiasset Options 

Here we put the previous discussions on Monte Carlo simulations and antithetic variates 

to practice in various option pricing problems. There will be particular emphasis on 

options with multiple sources of risk, that is, rainbow options. We focus on options 

with multiple assets (up to 100 assets) and underlying factors. Baskets or portfolio 

options, spreads and strikes are priced using the two discretization schemes and Monte 

Carlo simulations with different variance reduction techniques discussed. Numerical 

treatments of these kinds of options are also found in (Lari-Lavassani et d, 2000). 

Several European multiassets or Rainbow call options on d securities are ex- 

amined. These options have dynamics which are governed, over the horizon [0, TI, 

by 

d ~ :  = ( r -  bk)s:dt +oks:&V(C, k = 1, ..., d (5.1) 

where W? , W? are correlated standard Wiener processes for kl # k2, kl , k2 = 1, . . -, d. 

The options considered do not have closed-form solutions, hence we use Monte 

Carlo simulations to find a price for each type of option considered. For other numerical 

treatments on these options, see the work of (Boyle et al, 1989), (Hua He, 1990) and 
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The option prices are computed using both the Euler and Milstein schemes 

without and with CAV and EAV4 d a n c e  reductions. Since the system (5.1) is of 

the form of formula (2.29), it is commutative. Therefore when the Milstein scheme is 

implemented, formula (2.28) is used. All options are priced with the optimal timestep 

n = 30 and p = 20000 simulation runs. The numerical results are seen in Table 5.22. 

5.1.1 Basket Opt ions 

The payoff for a European basket option is 

where K is the strike price and vk is the weight or number of units of SF in the portfolio. 

The behaviour of a basket option is very similar to that of a standard European call 

option. The payoff function is essentially that of the standard call, where the terminal 

asset price of one asset St is replaced with a weighted average of the fmal prices, SF. 

Using previously defined notation, consider a 2 asset basket option with the 

following parameters, for k = 1,2, as seen in Table 5.1. 

Note that the dividend and the risk-fiee interest rate are continuously com- 

pounded, so one has to account for this by using 

revised parameter = log (1 + parameter). 

We price the option using Milstein with E N 4  with n = 30 and p = 10000. 
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Table 5.1 : Sample Option Parameters 

Option Parameters 

st 
K 

b k  

bk 

P 

W k  

T 

Figure 5.1 shows the similarities between the 2 asset basket option in Table 5.1 

and a standard call option. Referring back to Figure 2.2, we note that the 2 asset basket 

still has the same payoff structure for increasing initial values So, truncated portion is 

to the left and the option only has a value for prices greater than the exercise. This 

payoff structure is also evident for each instant of time. We can also see from Figure 

5.1 that for increasing time to expiries, the basket option value also increases. This 

is explained by the fact that a longer term option allows the holder of the option 

the privilege of having a longer waiting time to exercise. Now, the longer the time to 

expiry, the greater the possibility of a higher terminal asset price while the exercise price 

stays constant, thereby representing a greater potential benefit to the owner. Another 

feature of the basket option is the smoothness of the surface, mwg a characteristic 

Value 

80 -, 120 

200 

0.1 

0.05 

0.5 

1 

0.1 



independent option. 

Surface Plot of 2-Asset Beskst Op(ion over Changing fime to Expiry and Initial Asset Prices 

Figure 5.1: Sensitivity of 2-Asset Basket Option to Varying Expiry Times and Initial 

Asset Prices 

In terms of the accuracy and aciency of the various Monte Carlo schemes, we 

refer to Table 5.22, where it is shown that Milstein with EAV4 yields values closest to 

the "true" value in all cases considered. Additionally, the savings in computational 

cost is evident for increasing1y large number of assets. This is seen in the ratio of 

the computational cost between Euler with no d a n c e  reduction and Milstein with 

EAV4. Milstein with EAV4 increases the computational cost from standard Euler by 

a factor of 4.74 for the 2 asset case, and only by 1.15 for the 100 asset case. This is 



Table 5.2: 2 Asset Basket Option Parameters 

a clear indication that the relative efficiency of Milstein with EAV4 compared to the 

least expensive method, the standard Euler, increases with the number of assets. 

Asset 2 

100 

1 

0.1 

0 

Option Parameters 

so 

W k  

U k  

bk 

5.1.1.1 Portfolio on Two Assets 

Asset 1 

100 

1 

0.1 

0.05 

Consider now basket options on 2 assets given by equation (5.1) with correlation p. 

Some results from (Rubinstein, 1991) and (Ware and Lari-Lavassani, 2000) are repro- 

duced. The two assets satisfy the parameters set out in Table 5.2. 

The dividend and risk-free interest rate are continuously compounded again. 

The true value of $8.2615 in Table 5.22 is computed with n = 200 time steps and 

p = 200000 simulation runs using the Milstein scheme with EAV4. It is consistent 

T 

P 

0.1 

0 
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Table 5.3: Absolute Relative Errors for 2 Asset Basket 

with the results from (Rubinstein, 1991) and (Ware and Lari-Lavasani, 2000), who 

respectively use a quasi-binomial method and a high-order Gauss-Hermite integration 

method. The respective d u e s  obtained are $8.26 and $8.2612. 

Comparing the numerical results in Table 5.22 for this portfolio on two assets, we 

note that for the chosen levels of n and p, Euler has not converged to the true value yet. 

Standard Euler performs the worst, being the furthest from the true value. Even Euler 

with EAV4 has not converged to the true value yet. Milstein consistently outperforms 

the Euler scheme for this particular option in terms of numerical accuracy. We can see 

this in Table 5.3, which shows the absolute value of the relative error defined in (4.1). 

This m e i n  scheme converges, with the use of more antithetic variates, to almost the 

true value, while Euler is not as quick in convergence. F'urthermore, there is a very 

dramatic decrease in the absolute relative error with the addition of antithetic variates, 

implying that antithetic variates are very effective for both cases. It is also evident 

that Milstein's numerical accuracy is about double that of Euler for the standard and 

CAV cases. 

Absolute Relative Errors 

Std. 

CAV 

W 4  

Euler 

0.1113 

0.0130 

0.0107 

Milstein 

0.0605 

0.0051 

0.0006 
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Table 5.4: Ratios of Computational Costs for 2 Asset Basket 

In terms of computational costs, we set standard Euler to be the base case with 

a ratio of 1. The other computational costs will be measures relative to this base 

case and the following table has the results. Milstein is more expensive than Euler 

for all cases with standard Milstein being approximately the same as Euler with CAV. 

Milstein with EAV4 is the most expensive. The results are gathered in Table 5.4. 

We conclude that for a basket on 2 assets, W e i n  outperforms Euler consis- 

tently, and antithetic variates are very &ective. However, the cost of Milstein is 

relatively high. 

MU3te.h 

1.49 

2.50 

4.74 

Ratio of Computational Costs 

Std. 

CAV 

EAV4 

5.1.1.2 Portfolio On Seven Assets 

We next consider a portfolio on 7 assets. This option pricing problem was originally 

presented by (Milevsky and Posner, 1998) and reexamined by (Ware and Lari-La~ssani, 

2000). The portfolio option is embedded within aa index-linked guaranteed investment 

certificate with the interest rate, T = 0.063 and the other parameters are given in Tables 

5.5 and 5.6. 

Euler 

1.00 

1.51 

1.83 



Table 5.5: Index Linked GIC Option Pricing Parameters 

Dividend (%) 

1.69 

2 -39 

1.36 

1.92 

0.81 

3.62 

1.66 

Table 5.6: Correlations Between Indices 

hdex 

TSE 100 

CAC 40 

DAX 

MLB30 

Nilckei 225 

FTSE 100 

S&P 500 
L 

TSE 100 

CAC 40 

D M  

MZl330 

Nikkei 225 

FTSE 100 

S&P 500 

Weght (%) 

10 

15 

15 

5 

20 

10 

25 

So ($) 

1 

1 

1 

1 

1 

1 

1 

Volatility (%) 

11.55 

20.68 

14.53 

17.99 

15.59 

14.62 

15.68 

FTSE 

100 

0.17 

-0.08 

-0.23 

-0.22 

-0.29 

1 

-0.03 

Nikkei 

225 

0.04 

0.5 

0.7 

0.46 

1 

-0.29 

0.13 

TSE 

100 

1 

0.35 

0.1 

0.27 

0.04 

0.17 

0.71 

S&P 

500 

0.71 

0.15 

0.09 

0.32 

0.13 

-0.03 

1 

CAC 

40 

0.35 

1 

0.39 

0.27 

0.5 

-0.08 

0.15 

DAX 

0.1 

0.39 

1 

0.53 

0.7 

-0.23 

0.09 

lMZB 

30 

0.27 

0.27 

0.53 

1 

0.46 

-0.22 

0.32 



Table 5.7: Absolute Relative Errors for 7 Asset Basket 

The true value in Table 5.22 is a result of the Milstein scheme with EAV4 with 

n = 200 and p = 200000 and is consistent with the value of $0.0622 produced using 

high-order Gauss-Hermite integration in (Wre and Lari-Lavassani, 2000). Table 5.7 

compares the distances of the various estimates from the true value for this option. It 

is evident that all schemes converge towards the true value, with W e i n  consistently 

outperforming the Euler schemes for all cases. In fact, Milstien with EAV4 converges 

exactly to the true value. The addition of antithetic variates is seen to also improve 

the dues, with a rapid decrease in absolute relative errors with the addition of each 

antithetic variate method. This is more dramatic in the Euler case. 

Table 5.8 compares relative computational costs with standard Euler as the base 

case again. Milstein is more expensive than Euler for all cases with standard Milstein 

being approximately the same as Euler with CAV. Milstein with EAV4 is the most 

expensive. Note however that the Milstein schemes are not as expensive relative to 

standard Euler in the 2 asset basket case. In fact, we see that Milstein with EAV4 only 

requires 2.67 times the computational cost of standard Euler; while for the 2 asset case, 

Absolute Relative Emom 

Std. 

CAV 

EAV4 

EuZer 

0.0007 

0.0003 

0.0001 

Milstein 

0.0002 

0.0002 

0-0000 
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Table 5.8: Relative Computational Costs for 7 Asset Basket 

Ratio of Computatiod Custs 

Std. 

CAV 

EAV4 

this value was 4.74. Therefore, with increasing number of assets for the options, the 

antithetic variates are more efEcient as it is relatively cheap to obtain highly accurate 

results with respect to standard Euler. 

5.1.1.3 Portfolios on Fifty and Hundred Assets 

Euler 

1-00 

1.23 

1.46 

We consider next portfolios on large numbers of assets N with the following parameters 

set out in Table 5.9. 

The true value for the 50 asset portfolio is produced from the Milstein EAV4 

scheme with n = 200, p = 200000 and the true value for the 100 asset portfolio is from 

the Milstein EAV4 scheme with n = 50, p = 800000. Table 5.10 compares the distances 

of the various estimates from the true d u e  for thb option again. We note that all 

schemes are converging towards the true value, with different rates of convergence. We 

note on one hand the general tread wherein with the addition of antithetic variates, the 

absolute relative error is dramatically decreased, and on the other hand that Milstein 

4 

W e i n  

1.22 

1.67 

2.67 

outperforms Euler in all cases in terms of numerical accuracy. The best results are 
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Table 5.9: Large Asset Basket Option Parameters 

noted for Milstein EAV4 for both 50 and 100 asset cases. 

The next table, Table 5.11, compares the relative computational costs with stan- 

dard Euler as the base case. It is now very obvious that the efficiency increases with 

the number of assets. The computational costs for the 50 asset case are very similar, 

with Milstein using EAV4 only requiring 1.37 times more Flops than standard Euler. 

This is a trend noted h m  the 2 asset case, where Milstein EAV4 was 4.74 more ex- 

pensive than standard Euler. This trend is also more evident for the 100 asset case 

where Milstein EAV4 only requires 1.15 times more Flops than standard Euler. 

We therefore conclude that for options on large numbers of assets, the antithetic 

variates become more efficient as it becomes relatively cheaper to obtain highly accurate 

100 Asset 

70 +0.5j7  j =0 ?..., 99 

1 

0- 1 

0.1/100 

~ 0 0  - 0.05 for jl r j2 

Option Parameters 

so 

'Wk 

b k  

6 k  

P 0'17 j z )  

50 Asset 

70+0.5j, j = 0 ,..., 49 

1 

0.2 

0.1/50 

9 - 0.05 for j, > j2 

r 

T 

K 

0.1 

1 

60 



Table 5.10: Absolute Relative Ekrors for Large Asset Baskets 

Absolute Relative Errors 

Std. 

CAV 

W 4  

Table 5.11: Ratios of Computational Costs for Large Asset Baskets 

results with respect to standard Euler. In other words, extended antithetic variates 

is particularly useful in cases of high-dimensions; Finally the effect of EAV4 is more 

prominent with the higher order scheme of Milstein. 

50 Asset Case 

Ratio of Computational Costs 

Std. 

CAV 

EAV4 

5.1.2 Spread Options 

A dual call option on a spread has a payoff of 

m a x { s + - ~ $ -  K,o). 

100 Asset Case 

Euler 

0.0943 

0.0127 

0.0049 

- 
100 Asset Case 

Euler 

0.0363 

0.0037 

0.0027 

Milstein 

0.0385 

0.0008 

0.0007 

Eder 

1.00 

1.02 

1.07 - 

50 Asset Case 

Milstein 

0.0023 

0.0025 

0.0002 

Milstein 

1.02 

1-06 

1.15 

Euler 

1.00 

1.04 

1.14 

Milstein 

1.04 

1.12 

1.37 
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Table 5.12: Dual Spread Option Parameters 

Option Parameters 

st 

W k  

U k  

6 k  

T 

P 

T 

K 

Figure 5.2 shows the change in option value for a 2 asset spread option with the following 

parameters set out in Table 5.12. 

The dividend and the risk-& interest rate are continuously compounded. It 

is priced using Milstein with EAV4. The increasing option value with increasing time 

to expiry is also evident for the spread, however, unlike the basket option, there is no 

truncated curve for increasing initial prices as the exercise price is only $2. The surface 

is also showing a more prominent increase over time to expiry. The effect of increasing 

initial prices of So is not as dramatic as in the basket option case. In fact, the rate 

of increase over varying initial prices is quite slow. Overall, the surface for the spread 

option corresponds to the surface area of the basket option that is at an angle to the 

Vdue 

80 + 120 

1 

0.1 

0.05 

0.1 

0.5 

0.5 

2 
.A 
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T versus So plane, but high dues  of So at higher time to expiries are more dramatic 

than the basket option. 

Surface Plot of 2-Asset Spread Option over Changing Time to Expiry and Initial Asset Prices 

Figure 5.2: Sensitivity of 2-Asset Spread to Varying Expiry Times and Initial Asset 

Prices 

Consider now the dual spread option prices computed using both the Euler and 

Milstein schemes in Table 5.22. The parameters for the dud spread option are as  seen 

in Table 5.13. 

The dividends and interest rate are continuously compounded. 

Fkom Table 5.22, the Milstein scheme generally outperforms the Euler scheme 

again in terms of numerical accuracy, with Milstein with EAV4 producing an option 
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Table 5.13: 2 Asset Spread Option Parameters 

- 
Option Parameters 

so 

'Wk 

b k  

sk 

T 

P 

price closest to the "true" value of $5.2795. Note that the quasi-binomial solution 

(Rubinstein, 1991) for the same spread is $5.28. In terms of the magnitude of relative 

errors, Milstein with EAV4 outperforms all other schemes and the ratios of computa- 

tional costs yield results very s i d m  to that of the 2 asset basket (see Tables 5.14 and 

5.15). - 

5.1.3 Strike Options 

Asset 1 

100 

1 

0.1 

0.05 

A dual strike option has the following payoff 

Asset 2 

100 

1 

0.1 

0.05 

max {s; - KI, S$ - KZ, 0 ) .  

0.1 

0.5 
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Table 5.14: Absolute blative Errors for 2 Asset Spread 

Milstein 

0.0642 

0.0113 

0.0020 

Absolute Relative E m  

Std. 

CAV 

EAV4 

Table 5.15: Ratios of Computational Costs for 2 Asset Spread 

Euler 

0.0529 

0.0369 

0.0388 

Figure 5.2 shows the change in option value for a dual strike option with the following 

parameters in Table 5.16. 

The dividend and the risk-free interest rate are continuously compounded. The 

strike option is priced using Milstein with EAV4. The behaviour of the surface is very 

similar t o  that of a 2 asset basket option, however, the surface is not as uniform for the 

region from S,' = 100 to $120 as there is a bigger dip in option value at low time to 

expiry. 

The parameters for the dud strike option are as set out in Table 5.17 where the 

dividends and interest rate are continuously compounded. The quasi-binomial solution 

from (Rubinstein, 1991) for this strike is $17.70, while the "true" value generated by 

W e i n  

1-50 

2.49 

4.75 

Ratio of Computational Costs 

Std. 

CAV 

EAV4 

EuZer 

1.00 

1.51 

2.76 
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Table 5.16: Dual Strike Option Parameters 

Milstein with EAV4 is $17.6891. The same conclusion is made for the result as in the 

spread option case, in that, Milstein outperforms Euler and the addition of antithetic 

variates improves the results, especially the addition of EAV4. We also note that for 2 

assets, the cost of EAV4 is high. The convergence pattern and relative computational 

costs also yield similar results to that of the 2 asset basket and spread as demonstrated 

in Tables 5.18 and 5.19. 
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Table 5.17: 2 Asset Strike Option Parameters 

Asset 2 

100 

1 

0.1 

0.05 

Option Parameters 
r 

so 

W k  

U k  

6 k  

Table 5.18: Absolute Relative bars for 2 Asset Strike 

Aaet 1 

100 

1 

0.1 

0.05 

Absolute Relative Errom 

Std- 

CAV 

EAV4 

r 

P 

Table 5.19: Ratios of Computational Costs for 2 Asset Strike 

0.1 

0.5 

Euler 

0.1577 

0.0746 

0.0047 

MiLstein 

0.0033 

0.0187 

0.0044 

Milstein 

1.50 

2.49 

4.75 

Ratio of Computational Casts 

Std. 

CAV 

EAV4 

Euler 

1.00 

1.51 

2.76 



Surface Plot of 2-Asset Strike over Changing Time to Expiry and Initial Asset  Prices 
...-.. 

Figure 5.3: Sensitivity of Dual Strike for Varying Expiry Times and Initial Asset Prices 

5.2 Multifactor Models 

5.2.1 - Stochastic Volatility 

Consider here the system (2.33), where the processes are uncorrelated, i-e., p = 0. Note 

that in this case the technique developed for the estimation of the double Ito integral 

must be used as it was shown that the system does not commute. A European put 

option is priced with c&cients set out in Table 5.20. 

In order to avoid negative dues of o so that the system stays in the real plane, 



Table 5.20: Parameters for Stochastic Volatiliw 

Option Parameters 

Q! 

P 

"I 

r = p  

T 

00 

so 

K 

one has to choose a relatively iarge number of time discretizations. Therefore, the 

interval [0,0.5] is divided into n = 200 time steps. We choose to compare their resulting 

accuracies and variances for the same computational cost so that the efticiency and 

effectiveness of the various methods are more obvious. This is achieved by maintaining 

the corresponding Flops in the same range for each case. 

The results are gathered in Table 5.21, where the Milstein scheme imp1ements 

formula (2.22) with (2.34) and (2.36) in computation of the double Ito integral, ijIvj2. 

The quoted stmdmd deviations are obtained from a batch of 50 experiments. 

This option pricing case is also treated in (Clarke and Parrott, 1999), using 

a multigrid finite merence approach, leading to the option price of 821.417. The 

Values 

4 

0.09 

0.4 

0 

0.5 

0.09 

80 

100 
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analytic solution, derived fkom a Power series, is known horn (Ball and Roma, 1994) 

to be $21.430. We note fmt that MStein with EAV4 using the formula (2.36) clearly 

outperforms the other methods. It consistently yields an option value in the range of 

the analytic solution of $21.43. The results of Milstein wing formula (2.34) are not as 

good, simiLarly for Euler. We also note that with the addition of antithetic variates, 

the volatility of the estimates drops dramatically, with the best variance result for 

E N 4  in aU schemes. Since the computational costs trre a l l  in the same range, we 

can say that in general, Milstein is more efficient and accurate compared to Euler. 

Furthermore, Milstein with formula (2.36) is also superior to Milstein using (2.34) in 

these two aspects. 

Finally, we can conclude that antithetic variates help in reducing volatility and 

improving convergence, additionally, EAV4 is superior to CAV which is superior to no 

antithetic variate. In addition, as in the multiasset case, for options with multifactor 

models, the higher order scheme of Milstein is superior to Euler; and EAV4, used in 

conjunction with Milstein, is very dective. 



Table 5.21: Option Price for Uncorrelated Stochastic Volatility Model 

Scheme 

Finite DSerence 

P o w  Sen'es 

Euler 

Std. 

CAV 

EAV4 

Mikitein (2.34) 

Std. 

CAV 

EAV4 

Miktein (2.36) 

Std. 

CAV 

EAV4 

Value 

2 1.4170 

21 -4300 

21.4160 

21.4345 

21.4277 

21.4635 

21.4393 

21.4430 

21.4389 

21.4337 

21.4303 

p 

32000 

21000 

11000 

3000 

3000 

2000 

3000 

3000 

3000 

k o r q  

9 

9 

5 

20 

20 

10 

SD 

0.0921 

0.0193 

0.0195 

0.2393 

0.0540 

0.0488 

0.3039 

0.0533 

0.0415 

~ l o p s ( x 1 0 ~ )  

12.2 

14.7 

14.7 

12.5 

14.9 

14.6 

12.1 

14.8 

14.8 
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Table 5.22: Numerical Results for Various Multi-Asset Options. 

BASKET 

%Asset 

Flops x lo7 

7-Asset 

F l o p  x lo7 

5@Asset 

Flops x lo7 

100-Asset 

Flop x107 

S P m m  

2-&set 

Flops x107 

STRIKE: 

2-Asset 

Flops xlo7 

The'' 

Value 

8.2615 

304.5001 

0.0622 

1345.3 

27.7828 

2014.1 

40.351 

92816.4 

5.2795 

304.2601 

17.6891 

304.2601 

n = 30, p 

Std. 

8.1502 

0.972 

0.0615 

7.592 

27.8771 

312.2083 

40.3147 

1224.4 

5.3324 

0.966 

17.5314 

0.966 

= 20000 

Std. 

8.2010 

1.4520 

0.0624 

9.272 

27.8213 

324.2083 

40.3280 

1248.4 

5.2153 

1.446 

17.6924 

1.446 

Euler 

CAV 

8-2745 

1.466 

0.0625 

9.306 

27.7955 

324.4143 

40.3473 

1248.8 

5.2426 

1.454 

17.6145 

1.454 

E4V4 

8.2508 

2.69 

0.0621 

13.57 

27.7877 

354.8223 

40.3483 

1309.7 

5.3183 

2.666 

17.6938 

2.666 

W e i n  

CAV 

8.2564 

2.426 

0.0620 

12.66 

27.7836 

348.4143 

40.3485 

1296.8 

5-2682 

2.406 

17.7078 

2.406 

EAV4 

8-2621 

4.61 

0.0622 

20.29 

27.7821 

428.223 

40.3512 

1405.7 

5.2775 

4.586 

17.6847 

4.586 
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