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ABSTRACT 

Studies in the modeling of input traffic and the performance analysis of queue-

ing systems with bursty input based on the principle of maximum entropy and of 

queueing theory are presented. The method of entropy maximization is applied to 

study both the single server and multiserver queueing systems. Then, two types of 

bursty input traffic are investigated. For a bulk data input, two equivalent arrival 

processes are obtained. For a doubly stochastic Poisson input, an approximation by a 

two-state Markov modulated Poisson process and the associated interarrival time dis-

tribution are determined. Finally the performance analysis of queueing systems with 

these two bursty inputs is investigated. Results for the mean delay, the mean queue 

length, the waiting time distribution and the state probability distribution are de-

rived. Comparisons of theoretical results with simulation results show good accuracy 

of the modeling of the input traffic and the approaches employed in the performance 

analysis of queueing systems. 
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CHAPTER 1 

INTRODUCTION 

1.1 STATEMENT OF THE PROBLEM 

With the rapid advances of telecommunication networks and the increasing de-

mands for communication services, modeling and performance analysis of the telecom-

munication networks have become more and more important problems in the related 

areas. 

The primary function of telecommunication networks is to provide a communica-

tion path between user devices connected to the networks. Contention for resources in 

a telecommunication network can be modeled as a network of queues, each consisting 

of service stations with random input traffic. 

Performance analysis of communication networks is concerned with the nature and 

characteristics of traffic flow in the networks. Important quantities of analysis are the 

number of messages or packets at each service station, the queue length, the message 

or packet delay, the throughput and other parameters of interest. These quantities 

form a basis for assessing the functional effectiveness of the network. Thus, to carry 

out quantitative performance analysis, mathematical models that interrelate the im-

portant parameters of traffic flow must be employed. The mathematical framework 

of queueing theory provides one important type of technique that is frequently used 

for this purpose. 
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Queueing systems deal with processes in which customers arrive or are generated, 

wait their turn for service, are serviced, and then depart. Many of the access protocols 

for networks involve such a sequence, where messages correspond to the customers 

in the processes. Thus, approximate queueing models can be used to study the 

communication networks and develop quantitative measures of performance. 

A communication network may be regarded as a collection of interconnected nodes 

and links with different kinds of facilities that provide communications. Using the 

queueing models, each network node may be represented by a single queue. 

A queueing system is completely characterized by three essential features: the 

input process, the queue discipline, and the service mechanism. For the queue disci-

pline, the most natural queue discipline is that the customers form a queue and wait 

for service according to the order of arrival. This is called the first-come-first-served 

or first-in-first-out (FIFO) queue discipline. The service mechanism is concerned with 

the distribution function of the length of service times. In a telecommunication net-

work, it deals with the time to process a message over a channel or through a device 

and is determined by the length of the input message. The traffic in a network is 

typically nonuniform or stochastic in nature. At any point in the network, the arrival 

times of the basic unit (character, packet, message) are random variables. So the 

nature of the input traffic to any nodes in a network is a major factor in determining 

the performance of the network. 

Many models of queueing systems assume that arrivals occur according to a Pois-

son process. Intuitively, the Poisson process may be characterized by the properties 

that events occur one at a time and do not depend on the past history of events. 

The models with Poisson input are often mathematically tractable. However, ex-

perimental results and extensive studies [1]-[31] show that the wide variety of traffic 
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supported by the modern telecommunication networks have different traffic charac-

teristics. Some traffic, such as data, is highly bursty, while some traffic, such as voice 

and video, is continuous and correlated. These measured results indicate that the 

conventional Poisson assumption is inaccurate or inadequate for modeling the real 

network input traffic. Hence, there is a need for more accurate input traffic modeling 

for the performance analysis of such networks. 

For the queueing systems with non-Poisson input traffic, even the simplest models 

involving bursty and correlated traffic tend to be difficult to solve analytically. As a 

consequence, many attempts to resolve this issue have recently been made. 

A queueing system can be described by the state of the system. The state of the 

queueing system is characterized by a unique probability distribution called station-

ary probability distribution under statistical equilibrium. From the state probability 

distribution of the queueing system various performance measures of interest can be 

obtained. 

In queueing theory, the common way to obtain the stationary state probability 

distribution of a queueing system is to solve the differential-difference equations which 

describe the dynamic system state behavior by employing the properties of statistical 

equilibrium of Markov processes. However, except in a few simple cases, such as 

the queueing models represented by the birth and death process, the explicit results 

are difficult to represent analytically. A lot of efforts have been made in proposing 

bounds and approximations for the more complex cases [32]-[66]. Many of these 

approximations are based on the partial knowledge of the first two moments of the 

distributions. However, even in the presence of empirical data, the characterization 

of these distributions involves a degree of arbitrariness which may cause a significant 

variation in the performance metrics [66],[38]. To overcome this shortage, a method 
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using entropy maximization has been studied and employed. 

1.2 REVIEWS OF PREVIOUS RESEARCH 

Many studies have been published regarding the investigation of traffic process in 

different networks and the methods of characterizing and representing them approx-

imately. 

Results in [1]-[3] show that the data traffic in a packet network is bursty. A 

common model for data traffic is the batch process. The investigation of batch-

arrival queueing models are presented in [4]-[11]. There are other kinds of data traffic 

processes which are discussed in [12], [13]. An arrival process of packets from a voice 

source is fairly complex due to the strong correlation among arrivals. In [14]-[16], 

the correlated generation of voice packets within a call is modeled by an Interrupted 

Poisson Process. Another common 'approach for modeling aggregated arrivals from 

N voice sources is to use a two-state Markov modulated Poisson process [21], [22]. 

Performance analyses of packet voice communication systems are given in [14]-[22]. 

In [23] and [24], two input traffic models for video sources are proposed. One is the 

continuous-state Autcregressive process and the other is the discrete-state, continuous 

time Markov process. The performance analyses of packet video communications are 

discussed in [23] and [26]. With the development .of the integrated services digital 

networks, the integration of voice, data, video and other traffic into a network has 

received considerable attention. Studies in this issue are presented in [27]-[31]. 

1.3 THESIS OUTLINE 

In chapter 2, the concepts of maximum entropy and minimum cross entropy are 

introduced and the principles of maximum entropy and minimum entropy are applied 

to study the single server queueing system, the Erlang loss system and the Erlang 
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delay system. State proability distributions of these queueing systems are derived. 

The second moment of the state is calculated for some special systems. 

Chapter 3 is devoted to the characterization and modeling of input traffic. Two 

kinds of input traffic are examined. One is the batch data process which represents 

the packet arrival process in computer communication networks, and the other is 

the Markov modulated Poisson process which represents a doubly stochastic Poisson 

'process for packet arrival process in a packet switching system. The packet interarrival 

time distributions are derived and the statistical properties of the traffic models, 

such as the burstiness and correlation are discused. Finally, numerical results are 

presented. 

In Chapter 4 performances of queues with batch arrival process or Markov modu-

lated Poisson arrival process are studied based on the principle of maximum entropy 

and on the G/M/1 model. Numerical results are also provided. 

Chapter 5 draws the main conclusions of the work and recommends some topics 

for further research. 



CHAPTER 2 

MAXIMUM ENTROPY ANALYSIS OF QUEUEING 
SYSTEMS 

2.1 INTRODUCTION 

Entropy maximization and cross-entropy minimization are general approaches to 

inferring a probability distribution from constraints which incompletely or partially 

characterize that distribution. The principle of maximum entropy has been shown[39] 

to be a uniquely correct, self-consistent method of inference for estimating probability 

distributions given -information in the form of mean value. 

Entropy maximization was first proposed as a general inference procedure by 

Jaynes[40] although it has historical roots in physics [41]. It has been applied in 

a remarkable variety of fields [42]-[49], including statistical mechanics and thermody-

namics, reliability estimation, traffic networks, queueing theory and computer system 

modeling, system simulation, system modularity, spectral analysis and general prob-

abilistic problem solving. 

Utilization of the principle of maximum entropy in systems modeling has been 

made by various authors [49]-[60]. The analyses of queueing problem by entropy max-

imization are twofold. First, we shall show that many well-known formulae of queue-

ing theory can be derived by means of entropy maximization. As such we shall show 

that the maximum entropy formalism can provide a framework for the analysis of 
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queueing systems. Second, we shall use the resulting estimates of the distributions in 

system modeling and performance analysis. 

In this chapter we shall introduce the principles of maximum entropy and minimum 

cross-entropy and apply these principles to the analyses of single server queues and 

multiserver queues. 

2.2 THE PRINCIPLES OF MAXIMUM ENTROPY AND 

MINIMUM CROSS ENTROPY 

Consider a system that has a set X of possible states {x0, x1, ...} which may be 

finite or countably infinite and x, ii = 0, 1, ... may be specified arbitrarily. The 

probability that the system is in state x is denoted by p(Xn). Suppose all that is 

known about these state probabilities are (m+1) constraints of the form 

p(x)XnGX = 1 (2.1) 

fk(sn)p(xn)=Fk ,k=1,2,...,m (2.2) 
rEX 

where {Fk} are the prescribed mean values defined on the set of functions {fk(x)}. 

The system entropy function is defined as 

H(p) = - E p(x)lnp(x) (2.3) 
xn€x 

The principle of maximum entropy states that of all the distributions satisfying 

the constraints given by (2.1) and (2.2), the minimally prejudiced distribution which 

should be chosen is the one that maximizes the entropy function (2.3). 

The principle of minimum cross-entropy is a kind of generalization that applies in 

cases when there is prior knowledge about the system states in addition to the con-

straints. This principle states that, of all the distributions that satisfy the constraints, 
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one should choose the one that minimizes the cross-entropy 

H(p,q) = - p(x)ln{p(x)/q(x)} (2.4) 
EX 

where q(x) is an estimate factor of p(Xn ), called estimates of the state probability 

distribution. Maximization of entropy (2.3) is a special case of minimization of cross-

entropy (2.4) when q(xn) is uniform for Xn E X [39]. 

Minimization of (2.4) subject to constraints (2.1) and (2.2) can be carried out 

using the method of Lagrange multipliers. We define the Lagrangian 

Lg = H(p, q) - go( p(Xn) 1) - E fik( fk(Xn)P(Xn) - Fk) (2.5) 
xEX k=1 vEX 

where /3k, k=O,1, ...,mare  the Lagrange multipliers associated with the constraints. 

Then the necessary conditions for a stationary point of Lg are 

and 

OLg =0 
ôp(Xn) 

513k 

(2.6) 

(2.7) 

Performing the differentiations in (2.6) and (2.7), we obtain 

and 

M 

1 + 1n(p(x)/q(x)) + /3o + E fikfk(x) = 0 (2.8) 

xnex 

k=1 

p(Xn) = 1 
zEX 

fk(Xn)p(Xn)=Fk ,k=1,2,...,m 

(2.9) 

(2.10) 
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Solving (2.8) for P(Xn) yields 

where 

p(x) = --q(x fl)exp{—/3kfk(x fl )} 

ZP k=1 

Z = exp{1+ 180} 

M 

(2.11) 

= i: q(x)exp{—/3kfk(xk)} (2.12) 
xEX k=1 

Substituting (2.11) into (2.2), we get 

m 

q(xfl)exp{—  Pk- fk(x)}=Fk ,k=1,2,...,m (2.13) 
EX 1=1 

From (2.12) and (2.13) we can determine Z, and hence the Lagrange multipliers 

Then p(Xn) are given by (2.11). 

2.3 SINGLE SERVER QUEUES 

The G/G/1 queue represents an infinite capacity queueing system with general 

independent input, general service time distribution and a single server. The M/G/1 

queue represents a queueing system with Poisson arrivals and a general service time 

distribution. The G/M/1 queue is the dual of the M/G/1 queue and has a general 

arrival pattern and a single exponential server. These models are of great value in 

the performance analysis of complex queueing systems, such as computer and flexible 

manufacturing systems modelled as general queueing networks. 

Analysis of a single server queue based on the principle of maximum entropy 

has been carried out by several authors [52]-[56]. Particularly, D.D. Kouvatsos has 

obtained many theoretical results for single server queueing systems. In this part, 

first we shall present the results for the G/G/1 queue based on entropy maximization 

obtained by Kouvatsos, then we shall apply those results to the M/G/1 queue and 
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the G/M/i queue, and compare them with the exact results obtained from queueing 

theory. 

2.3.1 The G/G/1 Queue 

Consider a stable first-come first-served (FCFS) G/G/i queue. Suppose that the 

queue is in steady-state and the state of the queueing system is defined by the number 

of customers N (being served and waiting in the system). A system is said to be in 

state n if N = x,-, = n. Let p be the equilibrium state probability that there are 

n customers in the system, i.e. p = p{N = n}, and .A be the mean arrival rate, 

in customers /second, i the mean service rate, in customers/second, c the squared 

service time coefficient of variation. 

For the G/G/i queue the constraints are: 

(a) Normalization 

(b)Utilization 

where 

(c) Mean 

(2.14) 

Poi — p (2.15) 

A 
P=; 

= E(N) 

(2.16) 

(2.17) 
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By using the solution method described in section 2.2, we have 

h(n) Pn— - qnX J n 
,,, 4-/p 

where 

= 0,1,... 

Ii ,n=0 
h(n)=10 ,n=i,2,... 

and 

#I and f32 are the Lagrange multipliers. 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

Since we have no prior information about the states of the system we assume 

uniform prior estimates, q = 1 for all n and write (2.18) as 

p,,, = (2.22) 
TP 

Substituting this Pn into (2.14)-(2.17), we obtain Z,, x and y as 

E(N) - p (2.23) 

and 

Then p, is given by [56] 

(1 -  p)(E(N) - p) 

i — p 

E(N) — p 

E(N) 

= I. _E_. (E(N)—p'\1 
E(N). E(N) I 

,n = 0 

,n ≥ 1 

(2.24) 

(2.25) 

(2.26) 

This result is the state probability distribution of a single server queue with known 

first moment of the system state. 
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2.3.2 The M/G/1 Queue 

For the M/G/1 queue, we use the Pollaczek-Khinchin formula[61] for the mean 

number of customer E(N) in the system 

E(N) = 

Substituting E(N) into (2.26) we have 

p 

p {1— = 2(1 - p)pfl  (1+c)''  
(2—p—pc)2 

(2.27) 

(2.28) 

Expression (2.28) provides an approximation of p for an M/G/1. system with 

known average arrival rate and the first two moments of the service time. From 

(2.28) we can calculate the variance of the random variable N 

- 

Var(N) p2(2—p+pc)2 2—p2+p2c  
4(l—p2) + 2(1—p) 

(2.29) 

As an example, consider the M/M/1 queue, where the service time distribution is 

exponential and c 2 = 1, from (2.28) and (2.29) we have 

p=(1—p)p2 (2.30) 

and 

Var(N) (1 ..o) 2 (2.31) 

which yields the exact classical result for the M/M/1 queue [61]. 

As another example, consider the M/D/1 queue, where the service time is constant 

and c2 = 0, from (2.28) and (2.29) we have 

PnS 2(1—p)1 P 
n (2.32) 
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and 

Var(N) — p2(2—p) 2—p2 
— 4(1 —p2) + 2(l—p) 

The classic result for Var(N) of M/D/i queue is [62] 

Var(N)= 1  (p - - 32 
+3 p4"\ 

1 - p2 

(2.33) 

(2.34) 

From (2.33) and (2.34) we note that there is a difference between the maximum 

entropy solution and the classic solution. 

2.3.3 The G/M/1 Queue 

For the G/M/1 queue, the mean waiting time is equal to 

w= 
it(1o) 

0' 

where o is the root of the equation 

(2.35) 

or = - 1L0) (2.36) 

where A*(.) is the Laplace- Stieltj es transform of the interarrival time distribution 

function A(t). By means of Little's formula[63], the average number of customers in 

the system is given by 

E(N)=A(W4)= '°  

Y 1-0 

Substituting E(N) into (2.26), we get 

{ i_p - p(i - 17) or 

which is the exact classic result [61]. 

= 0 
,n ≥ 0 

(2.37) 

(2.38) 
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2.4 MULTISERVER QUEUES 

We shall use the maximum entropy method to derive the state probability distri-

bution for the Erlang loss system and the Erlang delay system. 

2.4.1 The Erlang Loss System 

Suppose that in an Erlang loss system there are s servers with service rate p and 

customers arrive according to a Poisson process with rate ). If an arriving customer 

finds all servers busy, then the customer will be rejected. 

Let {p}, n=O,1,...,s be the steady-state probability distribution of having n cus-

tomers in the system at any moment. Assume that some information about the state 

probabilities is knowii and expressed in the following constraints: 

(a) The normalization condition 

(2.39) 

(b) The mean number of customers in the system 

8 

fl n = E(N) (2.40) 
n=O 

For the Erlang loss system, the condition on conservation of traffic holds 

3 

n=O 

or 

n=O 

where a = 

nPn =a(1—p3) (2.41) 

nJZPn = A(1 —.p,) (2.42) 
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In order to determine the probability distribution {p,,} by the method, of entropy 

maximization, we formulate the problem as follows: 

Minimize H(p, q) = - >1 p, ln{p/q} (2.43) 

subject to the constraints (2.39) and (2.40). 

The optimization problem can be solved by the method of undetermined La-

grange's multipliers leading to the solution 

Thus we have 

From (2.39) we have 

and (2.40) 

Using (2.41), we get 

1 
pn= --- qnx ,n=0,1, ... ,s 

ZIP 

qo 
P0 = 

Lip 

E(N) = E=° nqnx' 
V's n 
LO qnx 

E= $-I + 1)q +i x' 1 
V'3 n 
Lin=0 qX 

(2.44) 

(2.45) 

(2.46) 

(2.47) 

(2.48) 

E(N) = a(1 —.p) (2.49) 

= a p (2.50) 
n=0 

- 

— 0qx' (2.51) 
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Comparing (2.48) and (2.51), we find qn and qn+1 have the following relation 

a 1 

or 

qn+i :--

a  1 
qn =-1--- qo ,n=O,1,, .... 

X n  

Substituting (2.53) into (2.44) we have 

and 

a 
Pn=PO ,n=O,1,... 

P0 =a an 
/-sn0 

(2.52) 

(2.53) 

(2.54) 

(2.55) 

Expressions (2.54) and (2.55) are the exact solution known as the Erlang distribu-

tion [61]. 

2.4.2 The Erlang Delay System 

In an Erlang delay system, the number of states of the system is infinite. If an 

arriving customer finds all the servers busy, the customer will wait in the queue until 

service is available. 

For the Erlang delay system, we assume the following constraints: 

(a) The normalization condition 

'(2.56) 

(b) The mean number of customers in the system 

00 

Th n = E(N) (2.57) 
n=0 
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Moreover, suppose Pn, n=0,1,...,s-1 are given. For the Erlang delay system 

a' 
Pn = Po 

and 

s—i k a a 

k=O 

where a = 

The maximum entropy solution for Pn under the constraints (2.56)-(2.58) is 

where 

P,i= { -qe'x' 
,n≥s p qnX 

= 

zp, 

S = 

(2.58) 

(2.59) 

(2.61) 

(2.62) 

and th, /32 and aj,j = 0, 1, ..., s - 1 are the Lagrange multipliers associated with the 

constraints (2.56)-(2.58), respectively. 

From Takahashi [64], for a given interarrival time distribution FA() and service 

time distribution Fs(.) with rational Laplace- S tieltj es transforms F(s) and F(s), 

respectively, 

where 

Pn+i  
= y < 1 if n is sufficiently large 

pn 
(2.63) 

y = F(sk) (2.64) 

and k is the unique positive root satisfying the characteristic equation 

F(sk)F(—k) = 1 (2.65) 
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For p,n ≥ .s, of (2.60) 

y = 
qn 

(2.66) 

From (2.64) we know that y is a constant which is independent of n. This means 

that {qn} in (2.60) should be either constant or geometric because in both cases 

is independent of n. For both cases (2.60) can be written as 

=f $ex ,O≤n≤s p —1 
,n≥s 

Substituting p,,. of (2.54) into (2.56)-(2.58), we obtain [10] 

E(N) - s(1 - p0) + - l)pj 

where 

E(N) - (s - 1)(1 —p0) +;(s —i - l)p 

(1 - ,=o p)2W  

ZP [E(N) - s(1 - p0) + 7(s 

s—i 

IF = .[E(N) - (s - 1)(1 - p0) + E( - i - 1)p] 2 

(2.67) 

(2.68) 

(2.69) 

(2.70) 

When the input process is Poisson with rate A and exponential service time dis-

tribution with service rate ,a, we have 

F(s)= 

and 

(2.71) 

Fs*(s) = (2.72) 

where s is the Laplace- S tieltj es transform variable. Substituting (2.71) and (2.72) 

into (2.65) to solve for k and substituting this k into (2.64) to solve for y, we find 

a 
y =-

S 
(2.73) 
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where s is the number of servers. 

Then substituting this y and {p}, 0 ≤ n < s - 1, of (2.58) into (2.71) and (2.72) 

and using (2.67) we obtain the state probabilities [10] 

a'3 (Po - 0<n<s—1 
pn = .71 1 a\' 

Pot;) fl≥S 
(2.74) 

Note that this result is known as the state probability distribution of the Erlang 

delay system. 

2.5 SUMMARY 

In this chapter, we have applied the principle of maximum entropy to analyze 

queueing systems and determined the equilibrium state probability distribution for 

several queueing systems. We have presented the maximum entropy solution for the 

state probability distribution of the G/G/i queue obtained by Kouvatsos, and used 

the method of minimum cross-entropy with the estimate factor of the distribution 

involved to derive for the first time the state probability distributions for the Erlang 

loss system and the Erlang delay system respectively. 

From these results, it can be seen that the solution method presented is a general 

method for determining the state distributions when only partial prior information in 

the form of mean value about the system state is available. The maximum entropy 

solution is the approximation of the queueing system performance analysis., The 

accuracy of the approximation depends on the prior information provided. Generally 

the approximations are the least-biased choices for the given information. 



CHAPTER 3 

CHARACTERIZATION AND MODELING OF INPUT 
TRAFFIC 

3.1 INTRODUCTION 

A "Poisson process is a good approximation for the input process of customers to a 

queueing system if customers arrive one at a time and if the arrival of one customer 

does not affect the probability of future arrivals. These conditions are frequently 

met, for example, by the arrival process of telephone calls to a central office, since 

there is a large number of potential callers each of whom calls infrequently. It is 

important to note that queueing models which assume Poisson arrivals can often 

be solved analytically. However, in some situations a Poisson process may not be 

sufficient as a good approximation for input processes. 

Due to the development of data networks and the Integrated Services Digital Net-

works (ISDN), various communication services are available, such as data, voice and 

video, etc., each having different traffic characteristics. For example, data traffic input 

process has quite irregular or bursty statistics and may not be adequately modeled 

by a Poisson process, while traffic like voice and image is lengthy and steady and 

exhibits high correlation, and the aggregate packet arrival process resulting from the 

superposition of the streams from many voice sources is quite complicated, possessing 

a certain burstiness that leads to surprisingly large packet delays in the multiplexer 

under heavy loads. In order to evaluate the performance of such networks, it is im-
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perative to appropriately model and characterize the input traffic and to establish 

the relations of the input source parameters with network parameters. 

In this chapter, we shall study two kinds of input traffic and develop mathematical 

models for their representations. The first kind of traffic is expressed by a batch 

process. We shall apply the principle of maximum entropy to establish an interarrival 

time distribution function. The second kind of traffic concerns the bursty arrival of 

packets to a node in a packet-switching network. We shall represent the traffic by a 

Markov- Modulated Poisson process. 

3.2 INDEXES OF DISPERSION 

Since the first analysis of data traffic in computer communication networks in the 

mid- and late 1970's, which showed that packet arrival processes are highly vari-

able, researchers have frequently described data traffic in computer communication 

networks as "bursty". Yet a precise definition of burstiness is not available in the 

literature. Most researchers seem to invoke the term bursty when confronted with 

processes having nonexponential interarrival time distributions. The vagueness sur-

rounding the concept of burstiness stems both from its use to denote different types 

of variability in many disparate situations and from the difficulty of characterizing in 

meaningful ways the capricious nature of packet arrivals. 

In [65] R. Gusella introduced an approach to characterize the variability of mea-

sured paèket arrival processes with indexes of dispersion. Indexes of dispersion have 

long been known in the statistics community as a powerful tool in the analysis of 

the second-order properties of point processes. R. Gusella demonstrated that indexes 

of dispersion are valuable and valid tools for characterizing the variability of packet 

arrival processes. 
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3.2.1 The Index of Dispersion for Intervals (IDI) 

Let { Xj, k ≥ 1) represent the sequence of interarrival times of an arrival pro-

cess. We assume that { Xi, k ≥ 1 } is stationary, by which we mean that the 

joint distribution of (X11, X2,. .. ,XI+k) is independent of i for all k. Let Sk = 

X 1 + X12 +•.• + X+k denote the sum of k consecutive interarrival times. The 

index of dispersion for intervals is defined by [65] 

2 
Ck 

kVar(Sk) - Var(Sk)  
E2(Sk) 7 kE2(X) 

kVar(X) + 2>j:3=1 (k —j)cov(X,X j) 

kE2(X) 

C 2 + (k - l)pk (3.1) 

where Var(X) and E(X) are the common variance and common mean of the Xk 

respectively, c is the squared coefficient of variation of a single interarrival time, 

Pk = cov(X, X+k)/Var(X) is the autocorrelation coefficient. 

For k=1, 4 = c. For Ic ≥ 1, 4 is k times the squared coefficient of variation of 

Sk. For a Poisson process, 4 c = 1. For a renewal process, Pk = 0, so 4 = c. If 

the process is bursty, C2 is usually larger than 1. For a nonrenewal process, pk ≥ 0, so 

4 ≥ c, 4 reveals the relationship between the variability and the correlation among 

successive interarrival times in the aggregate packet arrival process. It measures the 

cumulative covariance (normalized by the square of the mean) among k consecutive 

interarrival times. The notion of cumulative covariance seems to be very important 

for the multiplexer application, because the exceptionally large packet delays under 

heavy loads are due not only to high values of C2 but also to the cumulative effect of 

many small individual covariances. Looking for fluctuations in the IDI sequence 4, 
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k ≥. 1 is a good way to test deviation from the renewal property. In [66], [67] and 

[68], the sequence dk is used as the basis for calculating the variability parameter to 

approximately characterize the arrival process. 

3.2.2 The Index of Dispersion for Counts (IDC) 

Let N(t) denote the counting process associated with an arrival process. Then N(t) 

is equal to the number of arrivals in an interval of length t. The index of dispersion 

for counts is defined as 

It = Var(N(t))  
(3.2) 

For a Poisson process, It = 1. In general, It will not be constant for renewal 

processes in which counts in disjoint intervals are correlated. I, is an alternate way 

to evaluate the variability of point processes from the perspective of packet arrivals. 

It can be proved that the limits of the IDI and IDC are equal, i.e. [65] 

lim c = lim It 
k-+oo t—+oo 

3.3 BATCH PROCESSES 

(3.3) 

In computer communication networks, packet switching techniques are widely 

used, where messages are divided into smaller pieces called packets, each of which 

has a maximum length. Since the message length is a random quantity, a message 

consists of a random number of packets. In this case, we shall say the arrival process 

of packets forms a batch arrival process with random batch size. Batch process is one 

of the models that is often used to represent bursty data traffic. 
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3.3.1 General Batch Process 

Consider a general batch process satisfying the following conditions: 

1. Message arrivals follow a stationary and orderly input process with mean arrival 

rate A, or mean interarrival time t, - 1/). 

2. Each message consists of a random number L of packets with probability pi 

P{L = i}, i=1,2,..., and mean E(L). 

3. Let T be a mixed random variable denoting the packet interarrival time with 

probability density function fT(t). The range of T is from 0 to +oo. 

4. Let T1 be a random variable denoting the interarrival time of messages. 

5. Define i, as the length of time between the arrival instant of the first bit of a 

given packet and the arrival instant of the first bit of the previous packet of the same 

message. 

6. Let T2 be a random variable denoting the total time duration of all the packets 

in a message. 

In terms of tp, there are two general cases: 

(a) t, is constant. 

(b) tp is variable. 

Note that t, is resulted from the processing time of a packet in a packet switching 

office or a node of a computer network. When the packet lengths in bits are the same, 

t, is constant. When the packet lengths in bits are not the same, t, is variable. For 

most practical cases t, is constant, so we shall consider case (a) only in the following 

sections. It is interesting to note that the limiting case where t1, = 0, can be used to 

represent the traffic with batch arrivals. 
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3.3.2 Equivalent Packet Arrival Process I 

We shall derive the interarrival time distribution function for a batch arrival process 

with constant t, by the principle of maximum entropy. 

According to the conditions of 1-6 in section 3.3.1, we have the following relations: 

E(T2) = iE(L) (3.4) 

and 

Note that 

and 

where 

E(T) =  1  
AE(L) 

PIT <t}=O 

PIT = tpj = 1 E(L) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

a = PIT, > T2} (3.9) 

Since E(L) > 1 and PIT, > T2} ≤ 1, then a < E(L). 

The probability density function fT(t) can be written as 

fT( C,) 1) = (1 E )5(t T t) + f(t - t)U(t - t) (3.10) 

where fc(t) denotes the continuous part of fT(t), 8(t) is the Dirac delta function, and 

U(t) is the unit step function. 
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In order to find f(t), we note that fT(t) is subject to the following constraints: 

(a) Normalization condition 

or 

or 

1 00  +it 00 f0(t—t)dt=i fT(t)dt= 1— E(L) p (3.11) 

ro f(u)du = a (3.12) 
Jo . E(L) 

(b) Mean interarrival time condition 

fo
0

JtP 

0 

00 a + E(L) fr(t)dt = t(1 - E(L) tf(t - t )dt - A 

Jo  

00 

(u + tp)fc(u)du'= 1 -  (E(L) - c)tA0 
)0E(L) 

Define the entropy function 

H =  f(u)lnf0(u)du 

(3.13) 

(3.14) 

(3.15) 

We determine f0(u) by maximizing the entropy function H subject to the con-

straints in (3.12) and (3.14). This is an isoperimetric problem of the calculus of 

variations. We can solve the optimization problem by introducing the Lagrange mul-

tiplers 'yb, kO,1 and forming the Lagrangian 

Setting 

Lg = —f0(u)1nf0(u) - yof0(u) - y1(u + t)f0(u) 

OLg  
—lnf0(u) -1— -yo —71(u+t) =0 

&f0(u) 

(3.16) 

(3.17) 
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leads to 

where 

f(u) = Gpe•--Y1U 

Gp = e l0 hiP 

Using (3.12) and (3.14), we obtain G and as 

and 

a 2 Ac  

G = E(L)(l - E(L)t)) 

= 1 - E(L)tA 

Substituting G,, and 71 into (3.18), .we obtain 

M t) = (1 - E (L ))ö(t - t) + E(L) 'y1e - 

Then the packet interarrival time distribution function FT() is given by 

FT (t) = (1 - ____ - 

E(L) 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

It follows that the squared coefficient of variation of the packet interarrival time is 

CT = !(1 - AtE(L))2(2E(L) - c) (3.24) 

It remains to determine a. There are two ways to find a. One way is to find a by 

measurement. Another way is by (3.9). 
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When we use the measuiement method, we first find the probability PIT 

by measurement, then we calculate a by (3.8) 

a = E(L)(1 - PIT = t}) (3.25) 

If we use the second method, we have to assume that the probability density 

function of message interarrival time T1 is given by fi (t), or the corresponding distri-

bution function is F1(t), and the probability density function of total packet duration 

T2 is f2(t). Note that T1 and T2 are independent random variables. Then a can be 

calculated as follows: 

Since 

a = 1—P{T1<T2} 

= 1—j' j'fj(v)f,(u)dvdu 

= 1_JI Fi(u)12(u)du 

00 

f2(t) = E P{L = n}8(t - nt) 
n=O 

Substituting (3.27) into (3.26), we obtain 

00 

(3.26) 

(3.27) 

1— >P{L=n}Fi(ntp) (3.28) 
nO 

For example, if message arrivals follow a Poisson process with arrival rate A,, and 

the message size has the geometric distribution 

p{L =n} =p'(1—p) 

By means of (3.28) and (3.29) and the relation of p = 1/E(L), we have 

(E(L) - 

a = E(L) - 

(3.29) 

(3.30) 
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Thus we have established an equivalent packet interarrival time distribution func-

tion (3.23) or density function (3.22) for a batch arrival process. We see that fT(t) in 

(3.22) is a generalized exponential density function and is expressed in terms E(L), 

t and tp. 

Now we consider the limiting case where t, - 0. When t -4 0, we have from 

(3.28), (3.20) (3.21) and (3.24) respectively, 

cr=1 

G = E(L) 

'Yi = 

and 

(3.31) 

(3.32) 

(3.33) 

4 = 2E(L) - 1 (3.34) 

It follows that 

fT(t) = (1  1 WO E(L) +  

and 

(3.35) 

FT(t) = (1 E(L)e)U(t) (3.36) 

The results given in (3.31) to (3.36) are identical with those obtained by Wu [10]. 

3.3.3 Equivalent Packet Arrival Process II - 

In this section we shall establish another equivalent packet interarrival time dis-

tribution function using the same method with a different constraint, the variance of 

the interarrival time, Var(T). We consider the limiting case where t, = 0. 
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Since t, = 0, we have 

and 

PIT= 0}=i .E(L) 
1 

(3.37) 

M t) = (1 1  E(L) )8(t) + f(t)U(t) (3.38) 

For t,=0, we have from (3.30), a = 1. From the normalization condition (3.12) 

and the mean condition (3.14) we have 

or = E(L) 

and 

ro tf(t)dt = AE(L) 

Now we introduce the second moment constraint as 

1000(t 1 )2fT(t)dt = Var(T) )E(L) 

or 

where E(T2) is given by 

J00 i2f(t)dt = E(T2) 
, 

E(T2) = E 1 (L) (4+1) 

Note that 4 can be determined by measurement. 

(3.39) 

(3.40) 

(3.41) 

(3.42) 

(3.43) 

Furthermore, as tp = 0, for a batch process with an arbitrary message interarrival 

time probability density function f1(t) and mean message length E(L), the density 
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function fT(t) of the batch process can be written as 

1 
MO = (1  )8(t) + E(L) f1(t)U() E(L) 

From (3.44) we have 

and 

E(T) - E(T1) 
E(L) 

E(T2) - E(T12) 
E(L) 

(3.44) 

(3.45) 

(3.46) 

4 = E(L)(4 + 1) - 1 (3.47) 

Expression (3.47) shows that for E(L) > 1 the squared coefficient of variance of 

the interarrival time of a batch arrival process expressed by c. is greater than E(L) 

times that of the message arrival process expressed by c. The larger the E(L), the 

greater the 4. of the batch arrival process. 

In addition, we can obtain 4 by (3.47) if we know c, the squared coefficient 

of variation of the message interarrival time. So (3.47) provides another way to 

determine 4. 

Suppose that the message interarrival time is exponential with rate A. Then the 

density function f1(t) becomes 

and 

f1(t) = \ce_ t (3.48) 

(3.49) 
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Substituting f1(t) and c into (3.44) and (3.47) respectively, we have 

and 

fT() = (1 E(L ))S(t) +   (3.50) 

4 = 2E(L) - 1 (3.51) 

which are exactly the results given in (3.35) and (3.34). 

Essentially the problem of finding an approximate density function fT(t) reduces 

to the problem of finding an approximate density function 11(t). When the message 

arrival process is Poisson, the maximum entropy solution for the interarrival time 

distribution under the mean arrival time constraint is exact. But for a non-Poisson 

process, the solution is only an approximation. If we want to get a more accurate 

solution for fT(i) or 11(t), we have to introduce more constraints as we do in this 

section. 

In order to determine the density function f(t) by the maximum entropy method 

subject to the conditions (3.39), (3.40) and (3.42), we define the entropy function 

00 

H = -  f(t)1nf0(t)dt 

and the Lagrangian 

Lg = — fc()lnf(t) + i9of(t) + /31tf0(t) + /92t210(t) 

By maximizing (3.53) we get 

(3.52) 

(3.53) 
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MO 
e_P2(t+ 161 )2 

.2i2_ (e+-,)2  
= Ze 2 2 2y 

where 

and 

(3.54) 

(3.55) 

(3.56) 

Using the constraints(3.39), (3.40) and (3.42), we obtain the following set of equa-

tions 

and 

00 2 

('71 + tc)e22 J edt - (t0 +.E(L)E(T2)) = 0 
'yl 

(3.57) 

'72 = 71c + E(L)E(T2) (3.58) 

ZP 71 + lc  

= E(L)(7t + E(L)E(T2)) 
(3.59) 

Resorting to numerical methods, we can solve these equations, and then find Zr,, 

71 and 72. Substituting them into (3.54) we can determine the second equivalent 

interarrival time probability density function. The density function in (3.54) is a 

normal-like distribution with mean and variance determined by the mean message 

length E(L), the mean interarrival time t0/E(L) and the second moment of interarrival 

time E(T2). 
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3.3.4 Numerical Results And Comparision 

In this section we will present some numerical results from simulations and results 

from theoretical analyses in section 3.3.2 and 3.3.3. 

First we discuss the relation of a with E(L) and t and the relation of CT with 

E(L) and t,, which are presented in (3.30) and (3.24) respectively. 

Fig. 3.1 shows a as a function of E(L) for given t and E(T2), i.e. E(L)t. The 

results show that for given t and E(T2), a almost keeps the same value when E(L) 

or t, varies, and a is less for greater E(T2). These agree with the definition of a given 

in (3.9). 

Fig. 3.2 shows the curve of the coefficient of variation of interarrival time, CT, 

versus E(L) under given i and E(T2). Fig. 3.3 shows CT as a function of E(L) for 

given t and t,. Fig. 3.4 shows the curve of CT versus tP under given t and E(L), and 

From these figures we can see the effect of E(L) on CT and the effect of nonzero tP on 

CT. 

When t is equal to zero or E(T2) = tE(L) = 0, CT increases as E(L) increases, 

see the solid curves in Fig. 3.2 and Fig. 3.3. When t, is not equal to zero and E(T2) is 

kept unchanged, CT increases while E(L) increasing, see the dotted curve in Fig. 3.2. 

If E(T) increases as E(L) increases for given ti,, Cr increases with E(L) increasing at 

first but decreases after E(L) approaches a certain value, see Fig. 3.3. From (3.24) 

and Fig. 3.3 we can see that CT decreases to zero when 

i.e. 

E(T)=  1  =t 
)E(L) 

(3.60) 

(3.61) 
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or 

E(T2) =t, (3.62) 

The reason for CT decreasing with E(L) increasing is that, after E(L) increases to 

a certain value, the packet interarrival time T decreases to and tends to t, and the 

number of packet interarrival times which are equal to t, is much greater than the 

number of packet interarrival times which are not equal to t,. Under this condition, 

the variance of .T decreases, so does the coefficient of variation. At the point E(L) = 

as (3.61) establishes, .the variance of T decreases to zero, so the coefficient of 

variation decreases to zero. The increase of t, also decreases the variance of packet 

interarrival time for given E(L), 50 CT decreases when t, increases for given E(L), see 

Fig. 3.4. 

Now we consider the interarrival time ditributions for the batch arrival processes 

with Poisson or non-Poisson message arrivals. 

Fig. 3.5 and Fig. 3.6 show the continuous part of the interarrival time density 

function f) for the batch processes with Poisson message arrivals and with t, equal 

to 5ms and lOms, respectively. In both figures two theoretical curves obtained from 

(3.22) are shown. For the curve with a we determine the parameter a in (3.22) 

by (3.30). For the curve with am we determine a by obtaining PIT = t} from 

simulation first and then calculating (3.25). 

In table 3.1 and table 3.2 the simulation results and computation results of PIT = 

a and CT as functions of E(L) are provided. In both tables, PIT= t}3 and CT3 

are obtained from simulation results, P{T = t} and CT, are calculated by (3.8) and 

(3.24) respectively with a, and CT,,, is obtained from (3.24) with am . Comparing 

the results provided in Fig. 3.5, Fig. 3.6, table. 3.1 and table. 3.2, we see that 
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Table 3.1. Results of PIT = t}, a and CT with Me" Input, t = 120ms, t, = 2ms 

E(L) P{T=t}3 P{T=t} am CTs CTm CTc 

5 0.8288 0.8170 0.8559 0.9151 3.040 2.996 2.888 
8 0.9011 0.8906 0.7909 0.8749 3.829 3.800 3.604 
10 0.9180 0.9150 0.8204 0.8499 4.134 4.029 3.956 
15 0.9521 0.9471 0.7932 0.7339 4.782 4.786 4.551 -
16 0.9557 0.9511 0.7088 0.7828 4.941 4.872 4.630 

the interarrival time density function given in (3.22) matches favorably with the 

simulation results. We can say that (3.22) or (3.23) is a good approximation for the 

interarrival time of the batch input process with Poisson message arrival and nonzero 

I,. The results with am are more closer to the simulation results than those with a. 

It indicates that the more exact the a is, the more closer the result we could obtain 

from (3.22) comparing to the simulation result. 

In the case where t, is equal to zero, when the message arrival process is Poisson, 

the interarrival time density function given by (3.22) can exactly represent the batch 

arrival process. This can be seen from Fig. 3.7, Fig. 3.8 and table 3.3. In table 3.3, 

PIT = and CT are obtained from simulation results. PIT = and cTI are 

calculated by (3.8) and (3.24) respectively. 

If t, = 0 and the message arrival process is not Poisson, the repiesentation of the 

interarrival time probability density of the batch process by (3.22) is not so good. 

Therefore (3.54) should be used. 

In Fig. 3.9 and Fig. 3.10 the message arrival processes are assumed to be uniformly 

distributed over the interval of 0 to 2t. The interarrival time density given by (3.22) 

and (3.54) are plotted in both figures. In table 3.4 we provide 'a comparison of CT 

and PIT = 0}. PIT = 0} obtained from both formaulae are the same with value 
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Table 3.2. Results of P{T = a and CT with MK Input, t = 120ms, t = 5ms 

E(L) PIT =t}3 PIT =t} am a, CT3 CTm CTc 

5 0.8607 0.8380 0.6963 0.8099 2.854 2.894 2.667 
8 0.9198 0.9082 0.7342 0.6413 3.636 3.262 3.040 
10 0.9475 0.9309 0.6910 0.5252 3.545 3.551 3.084 
15 0.9699 0.9598 0.6025 0.4515 2.989 2.697 2.619 
16 0.9767 0.9632 0.5874 0.3728 2.225 2.437 2.303 

Table 3.3. Results of PIT = t7,} and CT with Mx Input, t = 120ms, t, = 0 

E(L) PIT = t}3 PIT = CT3 CT! 

5 0.8247 0.80 3.250 3.0 
8 0.8884 0.8750 4.045 3.872 
10 0.9065 0.90 4.281 4.359 
15 0.9370 0.9333 5.307 5.385 
16 0.9388 0.9375 5.583 5.568 

Table 3.4. Results of PIT = t} and CT with G- Input, tc = 120ms, t, = 0 

E(L) PIT = t}3 PIT = CT3 CT! CT!! 

5 0.8071 0.80 2.401 3.0 2.380 
8 0.8926 0.8750 3.137 3.873 3.109 
10 0.9201 0.90 3.602 4.359 3.511 
15 0.9342 0.9333 4.419 5.385 4.358 
16 0.9397 0.9375 4.535 5.568 4.509 
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of 1 - l/L and accurate, but CT are quite different. In the table CTI is calculated 

by (3.24) and CTII is obtained from (3.47). Fig. 3.9 , Fig. 3.10 and table 3.4 show 

that the results obtained from (3.54) matches the simulation results much better than 

those obtained from (3.22). 

From the above results we can see that when the message arrival process is Poisson 

with random message length, (3.22) yields very accurate results. If the message 

process is not Poisson, (3.54) is better than (3.22) in the sense that the variance of 

the interarrival time obtained from (3.54) is more close to that of the simulated batch 

arrival processes than (3.22). 

3.4 DOUBLY STOCHASTIC POISSON PROCESS AND 

MARKOV-MODULATED POISSON PROCESS 

In this section we shall study the arrival process of packets to a node in a packet 

-switching network. When calls are connected by the switching circuits, the route 

through which packets travel for a particular call is fixed for the duration of the call. 

We shall show that if an individual call in its holding time generates packets according 

to a Poisson process, then the instantaneous packet arrival rate at any node is equal 

to the sum of the rates for the calls routed through the node, which varies randomly 

with time. In this case, the arrivals are correlated and the traffic is said to be bursty. 

3.4.1 Traffic Model 

The arrival process of packets can be generated in the following way [12]. Consider 

an Erlang delay system with s servers and service rate pi, see Fig. 3.11, where call 

requests arrive at the system following a Poisson process with rate A. When a call 

setup is initiated, packets are generated according to a Poisson process with a rate 
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) in the duration of the call holding time. Let m(t) denote the number of calls in 

progress at time t. Then the packet generating rate is 

= Am(t) (3.63) 

where m(t) is the number of busy servers at time t. Thus m(t) is a random function 

fluctuating in unit steps between 0 and s. The packet stream generated then is offered 

to a node of the switching network. 

The traffic considered here is thus a nonhomogeneous Poisson process with rate 

)m(t). In general the packet stream to each node is different with different traffic 

parameters A,, s, /11 and 

3.4.2 Doubly Stochastic Poisson Process 

The packet stream described in section 3.4.1 is in fact a doubly stochastic Poisson 

process with rate A(t) which itself is a realization of a stationary, continuous-time 

stochastic process. Since )(t) = Am(t), the statistical properties of )(t) are deter-

mined by m(t). 

As is well known, for the Erlang delay system, m(t) has stationary probabilities 
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{pn, n=O,1, ... ,s} which is given by 

fl 

Pn { 
*Po  

S!  
3 

where 

3-1 k 1 

k= OIC s! 1—- 
S 

and 

(3.64) 

(3.65) 

(3.66) 

is the offered load of the Erlang delay system. Thus p, is the equilibrum probability 

that n servers are busy. With this choice of absolute probabilities, m(t) is a strictly 

stationary process, whose mean, variance and third moment are, respectively, 

and 

m1 = a1 (3.67) 

01 = a1(1 _p) 

M3 - a + ai(3a1 - 23s + a - alp.) 

The covariance function of m(t), R(t), can be expressed as [69] 

R(t) = E{[m(u + t) - mi][m(u) - mi]} 

where r is the time constant defined by 

(3.68) 

(3.69) 

(3.70) 

1 f-=  'rC 72 - R(t)dt (3.71) 
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we have [12] 

1 
Tc -   

[1i(lps) 
(3.72) 

From (3.63) the rate process A(t) is also a stationary counting process with random 

value A, = jA,, j=O,1,...,s. Denote the mean, variance, the third moment and the 

covariance function of A(t) by )tmi,Am2,Am3 and r(t) respectively. They are simply 

related to the corresponding moments and the covariance function of m(t). In terms 

of the moments of m(t) given by (3.67)—(3.70) we have 

and 

E(A(t)) = a1A (3.73) 

Am2 = E[A(t) - Am1]2 = ai(1 - p3)A (3.74) 

Am3 = E(A3(t)) = (cT2 + 3a 2 
- 2Sp3 + a - alp,) (3.75) 

r(t) = Ao.2e_ (3.76) 

Now we examine the packet arrival process N(t), the number of arrival packets at 

time t. By the definition of the doubly stochastic Poisson process, the probability of 

exactly k packets arriving in t is given by [70] 

Pk(t) = P{N(t) = k} 

= E() [ (fA(u)du)k expf I A(u)du}] 
k=O Jo 

Then the mean number of arrival packets over the interval (0, t) is 

(3.77) 

E(N(t)) = E(E(N(t) I A(t))) = E(A(t)t) = Amit (3.78) 
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The IDC of the packet arrival process is given by [70] 

1 + 2-1 t(t — u)r(u)du 
mlt 

Substituting r(t) in (3.76) into (3.79), we get 

It = 1 + 2a2r0 + 2o 2r2 .L 
2,r.2 _L 

- 

aiA ai)t 

As t —* oo, we obtain 

2o.2 
100 =1+ TO 

ajAp 

1) 

(3.79) 

(3.80) 

(3.81) 

This result shows that the index of dispersion for counts 100 is related to both the 

variance a2 and the time constant r of m(t). 

From (3.2) and (3.80) we get the second moment of the number of arrival packets 

over the interval (0, t) 

E(N2(t)) = aAt2 + (aiA + 2o-2r0)t - 2o2r(1 - 

3.4.3 Markov-Modulated Poisson Process 

(3.82) 

The packet arrival process considered in section 3.4.1 is a correlated doubly stochas-

tic process. Since the rate process .X(t) is a fairly complicated process which is difficult 

for analysis, we shall present an approximating packet arrival process which is also 

a doubly stochastic but analyzable when offered to a queueing system and which 

matches the important statistical properties of the rate process )(t). 

A Markov-modulated Poisson process (MMPP) is a doubly stochastic Poisson 

process where the rate process A(t) is determined by the state of a continuous-time 

Markov chain. We define the state of the Markov chain or the state of the MMPP 
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as follows. When the rate process A(t) is equal to Aj at time t, j=O,1, ... ,m (m is an 

integer), the Markov chain or the MMPP is said to be in state j. We also call this 

rate process a phase process. When the rate is A, j=O,1,...,m, the process is said to 

be in phase j. 

Since the packet arrival process disscused in section 3.4.1 is a doubly stochastic 

Poisson process with a rate process being a phase process, the arrival rate A3 = jA 

at time t, j=O,1, ... ,s, we can choose an MMPP as an approximating process. We 

use a two-state MMPP for which simple analytic or algorithmic queueing results are 

available [12]. The Markov chain is in state j (j=1,2) if the arrival proces is Poisson 

with rate A3. The transition rate of state 1 and 2 are r1 and r2, respectively. 

Denote the equilibrium probability vector of the two-state MMPP by 

It is known that 

P = [P1, P21 

r2  r1  

r1 + r2' r1 + 

(3.83) 

(3.84) 

The four parameters A1, A2, r1 and r2 completely determine the two-state MMPP. 

Now we shall derive the interarrival time distribution for the two-state MMPP in 

terms of A1, A2, r1 and r2. 

Let T denote the interarrival time of packets and G(t) its complementary distri-

bution function 

Since 

G(t) = P{T> t} (3.85) 

G(t) = PIT > t} = Pf Nt = O} (3.86) 
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It follows from (3.77) 

t 
G(t) = E ()(exp{— 10 A(u)du}) 

Where 

- f ) i if the Markov chain is in state 1 at t 
- 1., A2 if the Markov chain is in state 2 at t 

Define 

and 

Then 

G1(i) = PIT > t'I A(0) = 

G2(t) = PIT > t I )(0) = 2} 

(3.87) 

(3.88) 

(3.89) 

(3.90) 

G(t) = piGi(t) + p2G2(t) (3.91) 

From the stationary property of )(), it follows that, the quantity 

t+h 
E(exp{_j )t(u)du 

is independent of h. By considering the possible changes of \(1) during a small time 

interval (0,h), we can write 

G1(t + h) = (1 - rih)e_\1hGi(t) + r1he 2 G2(t) + o(h) (3.92) 

As Ii -* 0, we have the difference-differential equation 

G(t) = — (r1 + \1)G1(t) + r1G2(t) (3.93) 

Similarly, we have 

G(t) = r2Gi() - (r2 + )¼2)G2(t) (3.94) 
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The solutions to these difference-differential equations are 

and 

where 

and 

G1(t) = aieht + 7lie_2t 

G2(t) = c2e131t + i2€2 

(3.95) 

(3.96) 

th = + r2 + Al+ A2) - (rj + r2 + Al + A2)2 - A1A2 - A1r2 - A2r1 (3.97) 
2 V4 

92 = r2+ A1+ A2) + 

Thus 

+ r2+ A1 + A2)2 - A1A2 - A1r2 - A2r1 (3.98) 

G(t) = ae_1t + C 2t (399) 

The interarrival time distribution function of the two-state MMPP is given by 

F(t) = 1 - G(i) 

= 1 - ae 1t - 

Since G(0)=1, we have 

then 

F(t) = 1 - ae_131t - (1 - a)e2t 

and the density function is 

f(t) = a/31C°t + /32(1 - a)e32i 

(3.100) 

(3.102) 

(3.103) 
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By using the mean interarrival time condition, we find 

1 r1+r2  
()31/32 ,8) 

/32 -  01  A1r2 + A2r1 
(3.104) 

From (3.103) we see that the interarrival time distribution of a two-state MMPP 

is a hyperexponential distribution. The squared coefficient of variation of the inter-

arrival time is given by 

2 2(+) 
CT =   (-!2L + i2)2 (3.105) 

As we mentioned before, the two-state MMPP and its interarrival time distribution 

are completely determined by parameters A, A2, r1 and r. However, there may be 

more than one way to choose them. Here we use the method by [12] to choose these 

four parameters such that the statistical characteristics of the rate process, Am i, Am2, 

Am3 and r are matched with those of the two-state MMPP. 

We set 

and 

A1r2 + A2i'1 
Am1 = r (3.106) 

1 + T2  

Am2 - - r1r2(Ai - A2)2 
(rj+r2)2 (3.107) 

Ar2 + Ar1 
.Am 3 = (r1 + r2)2 (3.108) 

Am2Tc = JO°° r1r2(Ai - A2)2 _(rl+r2)tdt = r1r2(A1 A2)2  
(r1 + r2)2 (r1 + '2) 

Solving equations (3.106)—(3.109), yields the following relations [12]: 

1 

(3.109) 

(3.110) 
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V2 
71 

=   

r(1 + ) 

and 

where 

and 

)Arni+iJ_ 77 

A2 = Ami - 

77 

77 = 1+(6_4+62) 

6  Am3 

- Am2\/X 

(3.112) 

(3.113) 

(3.114) 

(3.115) 

Now we denote the number of arrivals of the two-state MMPP over the interval 

(O,t) by N. Given the four parameters of the MMPP using the same procedure as in 

deriving (3.78) to (3.82), we have 

E(N) 

It 

and 

A1r2 + A2r1  
t 

r1 + 72 

(A, r2+ A2.r1)22 + I1r2 + A2r1 2(A1 - A2)2r1r21 
(r1 + r2)2 [ r1 + r2 + (r1 + r2)3 j 
2(A1 - A2)2r1r2 

(1 - exp{—(r1 + r2)t}) 
(ri + r2)4  

- I+ 2(A1 - A2)2r1r2 

- (r1 + r2)2(Air2 + A2ri) 

2(A1 - 
(r1 + r2)3(Air2 + .X2rj)t1 - exp{—(r1 + r2)t}) 

2(A1 - A2)2r1r2 
100 =1+  

(ri + r2)2(Air2 + A2ri) 

t 

(3.116) 

(3.117) 

(3.118) 

(3.119) 
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We find that when we use equations (3.11O)-(3.113) to choose ), )'2, r1 and r2, 

the statistics in (3.116), (3.117) and (3.118) are equal to those in (3.78), (3.82) and 

(3.80) respectively. 

3.4.4 Simulation Results 

In this section we present the simulation results and compare them with analytical 

results. obtained in section 3.4.3. 

First we set up an Erlang delay queueing system with s servers as shown in Fig. 

3.11. This system generates the packets process. The input of the calls to the system 

is Poisson with rate Ac. The service time distribution is exponential with mean value 

. During each service period, packets are generated by a Poisson process with rate 

A. 

It is interesting to note that the probability density function of packet interar-

rival time obtained by simulation is exponential-like. See Fig. 3.12 to Fig. 3.15 as 

examples. Here we use the coefficient of variation of packet interarrival time to char-

acterize the bursty nature of the packet process. The simulation results show that the 

coefficient of variation of packet interarrival time is greater than 1, which indicates 

that the packet process is indeed a bursty one. Since the coefficient of variation of an 

exponential distribution is equal to 1, the interarrival time distribution of the packet 

processes we are investigating is not an exponential distribution. 

In section 3.4.3 we used a two-state MMPP to represent the packet process and 

showed that the interarrival time distribution of a two-state MMPP is hyperexpo-

nential. Fig. 3.12 and Fig. 3.13 show the density functions of the packet interarrival 

time obtained by simulation and the numerical results obtained by the MMPP model 
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Figure 3.12. Packet Interarrival Time Probability Density, s= 2, a1 = 0.25, t, = 5ms 
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respectively. In both figures s is equal to 2 but the mean packet rates or the offered 

load a1 are different. Fig. 3.14 and Fig. 3.15 give the results for s=4. 

Fig. 3.16 and Fig. 3.17 show the coefficient of variation of the packet interarrival 

time CT as a function of the offered load a1 for s=2 and s=4 respectively. In these 

figures, we keep the mean number of packets per call, i.e. A/t1, unchanged. We see 

that CT decreases with increasing a1. 

Fig. 3.18 and Fig. 3.19 show CT as a function of the mean number of packets per 

call for s=2 and s=4 respectively. In both figures, a1 is kept constant. The results 

show that, for given a1, CT increases while A/ 1 grows. It indicates that )¼/1 is one 

of the important elements which influence the burstiness of the packet process. 

In Fig. 3.20 and Fig. 3.21 with s=2 and s=4 respectively, we set tc = l2Oms and 

5ms and change pi. Both .\p/ji and a1 = '\c/pi change as yj varies. The results 

reflect the compound effects of )/jz1 and a1 on CT, which are shown in Fig. 3.16 to 

Fig. 3.19. 

Comparing the approximation with simulation results, we see that the hyperexpo-

nential distribution is a good approximation for the packet process in the sense that 

the density function is closer to the simulation result and the distribution can yield 

good approximations for the first and second moments of the packet interarrival time. 

It should be pointed out that the parameters, a, th and /32 of the hyperexponen-

tial distribution (3.102) are determined by the parameters A, , A, r1 and r2, so the 

accuracy of the approximation of the interarrival time distribution depends on the 

choice of these parameters. 
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3.5 SUMMARY 

In this chapter, first, we use the maximum entropy method to develop two inter-

arrival time distribution formulas for a batch arrival process. In formula (3.22) we 

use the first moment of interarrival time as a constraint. In formula (3.54) we use 

both the first and second moments of interarrival time as constraints. Through the 

analyses and comparisons we have shown that when the message arrival process is 

Poisson with random message length, formula (3.22) yields very accurate results for 

the interarrival time distribution of the batch arrival process. If the message process 

is not Poisson, formula (3.54) yields a better approximation. 

Secondly, we use a two-state Markov-modulated Poisson process to approximate 

a doubly stochastic Poisson process. We also analyz the statistical properties of the 

traffic with the two models and obtaine an interarrival time distribution for the two-

state MMPP. In the analysis it is shown that the Markov-modulated Poisson process 

can be used to represent the characteristics for both the burstiness and correlation of 

the traffic. 



CHAPTER 4 

PERFORMANCE ANALYSIS OF QUEUEING SYSTEMS 

In this chapter we shall discuss the performances of queues with batch process 

or doubly stochastic Poisson process as an input. In section 4.1, queueing models 

with batch arrival process are studied. In section 4.2, queueing models with doubly 

stochastic Poisson process input are investigated. In both sections we shall utilize the 

analytical results of those input processes obtained in chapter 3 to derive the mean 

delay, the mean queue length, the waiting time distribution and the state probability 

distribution for the considered queues. 

4.1 PERFORMANCE ANALYSIS OF QUEUES WITH 
BATCH ARRIVAL PROCESSES 

Batch-arrival queueing models can be used in many practical situations, such as 

the analysis of message packetization in data communication systems. In general it 

is difficult to find tractable expressions for the probability distributions, such as the 

waiting time distribution and the state probability distribution. It is, therefore, useful 

to have easily computable approximations for these probabilities. In this section, we 

shall give approximations for the Mx/G/1 model and the GX/M/1 model by using 

the principle of maximum entropy. Also we shall discuss the methods to calculate the 

mean delay in these queueing systems. 



62 

4.1.1 Delay in the Mx/G/1 Queue 

The batch processes discussed in this section satisfy the conditions given in. section 

3.3.1. If the message arrivals follow a Poisson process with rate A, the packet process 

is a Poisson batch arrival Mx input process. 

In a Mx/G/l queue, the service times of packets, S, are independent identi-

cally distributed random variables with distribution function Fs(t) and the Laplace-

Stiéltjes transform F(s). We assume F3(0) = 0 and the mean service rate be ft . 

For convenience we introduce the following notations. Let 

• D be the delay of a packet in the queueing system. 

Nq be the queue length. 

• W be the waiting time of an arbitrary test packet in a batch, W1 the waiting time 

of the first packet in the batch, and W2 the waiting time caused by packets which are 

in the same batch and are served before the test packet. 

F(t) be the distribution function of X and F(s) be the corresponding Laplace-

Stieltjes transform. 

B*(s) denote the Laplace- S tieltj es transform of the total amount of service time 

required by all packets belonging to one batch. 

For a Mx/G/1 queue with t,, equal to zero, because W is the sum of W1 and W2 

and W1 and W2 are independent random variables, it has been shown that [4] 

F, (s) = Fj,1(s)Fj,2(s) (4.1) 

and 

E(W) = E(W1) + E(W2) (4.2) 
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where 

F*,,,1(s) =  (l — p)s 
S - A(1 - B*(s)) 

1 _.B*(s) 
F 2 (s) = E(L)(1 - F(s)) 

and 

From (4.3) and (4.4), we get, respectively 

and 

= p[E(L2)/E(L) + c] 
E(W1)  2/1(l—p) 

E(W2) = E(L2)/E(L) —1 

where 4 is the coefficient of variation of the service time. 

So we have the mean waiting time of the packet 

E(W) p(1 + 4) + .E(L2)/.E(L) -  1  
2(1—p) 

The mean delay is given by 

- 1) + E(L2 E(D)  )/E(L). + 1  
= 

2i(1 - p) 

By means of Little's formula, we find the mean queue length 

E(Nq) = AE(L)E(W) 

p2(1 +4) + pE(L2)/E(L) - p 
= 2(1—p) 

(4.3) 

(4.4) 

(4.5) 

(4.7) 

(4.8) 

(4.9) 

(4.10) 
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For a Mx/G/1 queue with nonzero ti,, after taking account of the effect of t we 

get the approximate mean waiting time of the packet 

E(W) - p(l + 4) + E(L2)/E(L) -  1 tE(L) [1 - Fs(t)]  

2 (l — p) 2 

The mean delay is 

p(l + 4) + E(12)/E(L) - 1  [1 - Fs(t)] + 1/z 
2z(lp) 2 

and the mean queue length is 

p2(1 + 4) + pE(L2)/E(L) - P tE(142 [1 - Fs(4)] E(Nq) 
2(l—p) 2 

(4.12) 

(4.13) 

Now we assume that the message length L has a geometric distribution 

P(L = i) = p(l - p) 1, i = 1,2, ... (4.14) 

with mean E(L) = 1/p and E(L2) = (2 - p)/p2, then for the M"/G/l queue with 

zero ti,, the mean waiting time reduces to 

or 

2(1 - p) 

E(W) = (1 + 4) + (2E(L) - 2) 

- P) 

The mean delay becomes 

E(D) = P(cs —1) + 2E(L) 

2[t(1 - p) 

and the mean queue length is 

E(Nq) - p2(1 + 4) + 2pE(L) - p 
- 2(l—p) 

(4.15) 

(4.16) 

(4.17) 

(4.18) 
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For the Mx/G/1 queue with nonzero t,, the mean waiting time becomes 

E(W) p(i + c) + E(L) E(L) [1 - Fs(t)] 
2p(l — p) 2 

The mean delay is 

o(l + cs) + 2E(L) - 2 tE(L) [1 - Fs(t)] + i/p 
2p(i—p) 2 

and the mean queue length is 

= p2(1 + c) + pE(L) tE(L)2  
E(Nq)   J [1 - Fs(t)] 

2(i—p) 2 

4.1.2 The Waiting Time Distribution for the M"/G/i Queue 

(4.19) 

(4.20) 

(4.21) 

We shall derive the waiting time distribution for the Mx/G/i queue by means of 

the entropy maximization method. 

First we should determine if the distribution function Fw(t) has a jump at t=0. 

Since [7] 

Fw(0) = F,(oo) 

from (4.3) and (4.4), we have 

= (oo)F,2(oo) (4.22) 

Fw(0) = E 

This result indicates that Fw(i) has a jump of Fw(0) at t=0. 

(4.23) 

Let fw(t) be the density function of packet waiting time W. Since the distribution 

function F(t) has a jump of Fw(0) at t=0, thus fw(t) can be written as 

fw(t) = Fw(0)5(t) + fw(t) (4.24) 



66 

where fw(t) denotes the continuous part of the density function. 

Let the entropy function of fw(t) be defined as 

00 
H = —jfwc(t)lnfw0(t)dt 

The normalization condition is given by 

(4.25) 

F(0) + j fw, (t)dt = 1 (4.26) 

and the mean of W is given by 

I co tfw(t)dt = E(W) (4.27) 

By maximizing the entropy function H in (4.25) subject to the constraints (4.26) 

and (4.27), we get the maximum entropy solution for fw(t) as 

fw(t) = exp{-1 - yo - yit} 

where yo and are the Lagrange multipliers. 

Then substituting fw(t) into (4.26) and (4.27), we get 

[1 - F(0)]2 
exp{-1--yo}=  E(W) 

and 

7i 
E(W) 

1—Fw(0)  

Inserting (4.29) and (4.30) into (4.28), we obtain the density function 

[1— Fw(0)]2 1— Fw(0) 
fw(t) = E(W) exp{  E(W) t} 

and the distribution function 

(4.28) 

(4.29) 

(4.30) 

(4.31) 

1—Fw(0)  tj Fw(t) = 1 - [1 - Fw(0)]exp{ E(W) (4.32) 
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where E(W) is given by (4.16). 

Substituting (4.23) and (4.16) into (4.32), we obtain the waiting time distribution 

as 

= 1 - E(L) —1 + p [E(L) —1 + p][2jz(l- p)] 
E(L) ex{ E(L)[p(l + 4) + 2E(L) - 21 t} (4.33) 

4.1.3 State Probability Distribution for the MK/G/1 Queue 

By means of Little's formula, we calculate the average number of packets in the 

system as 

E(N) = .AE(L)E(D) (4.34) 

= [P2 (C2 —1) + 2pE(L)]/[2(1 - p)] (4.35) 

Define the number of packets in the system as the state of the M"/G/l queue. 

We obtain the maximum entropy (ME) state probability distribution using (2.26) 

= I 1- P 
pn = •  2p(1—p)  1p(4+1)+2E(L)-21_1 

( p(c-1)+2E(L) I p(c9-1)+2E(L) J 

4.1.4 Mean Delay in the G"/M/1 Queue 

(4.36) 

For the Gx'/M/l queue, the service time distribution is exponential. We can use 

the G/M/1 model to analyze the G"/M/1 queue. For the G/M/1 queue, we have 

the mean waiting time, mean delay and mean queue length as [61] 

(4.37) 

(4.38) 
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and 

E(Nq) Pa (4.39) 

where o- is the root of the functional equation 

- , 0 <o <1 (4.40) 

and F(s) is the Laplace- S tieltj es transform of the packet interarrival time distribu-

tion FA(t). 

In section 3.3, we have developed two equivalent packet interarrival time density 

functions (3.22) and (3.54) by means of the maximum entropy principle. Now we shall 

use them to calculate the mean waiting time and the mean delay for the G'/M/1 

queue. 

If we use the first moment approximation of the interarrival time for the Gx input 

process in formula (3.22), we have 

F(s) = [1 _ a'y1  }6 8tP 

E(L) + E(L)(s + i) 

where a and 71 are given by (3.21) and (3.30), respectively. 

Then o- satisfies (4.40), or 

a [1 a')'1 E(L) + E(L)(p - ta + 
-(-t')tp 

(4.41) 

(4.42) 

After solving (4.42) for o, we can calculate the mean values given in (4.37)-(4.39). 

Now we consider the limiting case t - 0. When t, is equal to zero, we have a = 1 

and 'y' = A, see (3.31) and (3.33). Then (4.42) becomes 

=1 E(L)+ 
- + (4.43) 
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The solution of (4.43) is given by 

or i—p 
= E(L) (4.44) 

Substituting this o into (4.37)-(4.39), we obtain the mean values for the G'/M/1 

queue 

and 

- E(L)-1+p 

E(D) - E(L) 

— (1— p) 

E(Nq) - pE(L)—p+p2  

- (1— p) 

(4.45) 

(4.46) 

(4.47) 

If we use the second moment approximation of the interarrival time for the Gx 

input process in formula (3.54), we have 

E(L) + Zexp{_} J°° exp{— (t +i)2 st}dt (4.48) 

where Z,-yi and ̂ 12 are given by (3.55)-(3.57), respectively. And o satisfies (4.40), or 

= - E(L) + Zpexp{  + IL'Y2 - iw'y2)2 L+WY2LcrY2 exp{—---}dt (4.49) 

After solving (4.49) for o, we can calculate the mean waiting time, mean delay 

and mean queue length by (4.37)-(4.39). 

4.1.5 The Waiting Time Distribution and The State Probability Distri-

bution for The Gx/M/i Queue 

Using the G/M/i model, we have the waiting time distribution as [61] 

Fw(t) = 1 - (4.50) 
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and the state probability distribution as [61] 

pk— { 1—p ,k=0 
- p(i—o-)o-' ,k≥1 (4.51) 

If we consider the case of zero t, and use the first moment approximation of the 

interarrival time for the G" input process, o is given by (4.44). Then (4.50) and 

(4.51) become, respectively 

and 

Fw(t)1 [E(L)—l+P'j(1—p)  
E(L) ]exp{ E(L) t} 

Pk { ,k=0 = p(i-.p) r L=e.. k—i 
E(L)L E(L)] ,k≥i 

4.1.6 Numerical Results 

(4.52) 

(4.53) 

When we calculate the numerical results in this section, we will consider three spe-

cial cases. The first is the M"/M/1 queue where the input is a bulk Poisson process 

and the service time distribution is exponential. The second is the Mx/D/1 queue 

where the input is the bulk Poisson process either but the service time is constant. The 

third is the G"/M/1 queue where the input is assumed to be uniformly distributed 

message arrivals with random packet length, and the service time is exponentially 

distributed. 

Fig. 4.1 and Fig. 4.2 show the mean delay of packet in a M'/M/i queue as a 

function of p or E(L) for given t, tP and r = i/it in the queue. By comparing these 

two figures, we find that an increase in t will reduce the mean delay of the packet. 

In Fig. 4.3 and Fig. 4.4, the mean delay is shown as a function of E(L) for given ti,, 

p and r. We see that for the same value of p, an increase in E(L) will increase the 

mean delay of the packet in a M"/M/i queue. 
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In Fig. 4.5 and Fig. 4.6, the service time is constant. The effect of E(L) on 

the mean delay and the effect of t on the mean delay are the same as those in the 

Mx/M/1 queue as shown in Fig. 4.1 and Fig. 4.2. 

In Fig. 4.7 and Fig. 4.8, the message arrivals of the batch input processes to 

the single server queues are assumed to be uniformly distributed over the interval 

of 0 to 2t. The service time distribution is exponential. In these two figures, the 

mean delays calculated based on the two different interarrival time density function, 

formula (3.22) and formula (3.54) respectively, are presented and compared with the 

simulation results. We see that the results based on formula (3.54) are more accurate 

than those based on formula (3.22).' 

Fig. 4.9 and Fig. 4.10 show the waiting time probability density of the Mx/M/1 

queue for zero t, and 5ms, respectively. We see that the simulated results are 

closely matched with the theoretical results. The waiting time density function of 

the M"/D/l queue are shown in Fig. 4.11 and Fig. 4.12. Since we only use the first 

moment of the waiting time to derive the waiting time distribution for the M"/G/1 

queue in section 4.1.2, there is a difference between the theoretical results and the si-

multion results. But function Fw(t) in (4.33) can be used to approximate the waiting 

time distribution for the M"/G/1 queue. 

In Fig. 4.13 and Fig. 4.14 the waiting time density function of the same queue 

as in Fig. 4.7 and Fig. 4.8 are presented. As expected, the results based on formula 

(3.54) are closer to the simulation results than those based on formula (3.22). 

From the above discussions and the results we may conclude that our results 

obtained from the performance analysis are fairly accurate. 
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Figure 4.2. Mean Delay in the M"/M/l Queue, t, = 5ms, t = 120ms, r = 7ms 
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Figure 4.3. Mean Delay in the Mx/M/1 Queue, t, = 0, p = 0.875, ,r = 7rns 
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Figure 4.4. Mean Delay in the M'/M/1 Queue, t = 5ms, p = 0.875, r = 7ms 
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Figure 4.5. Mean Delay in the M''/D/1 Queue, t, = 0, tv = 120ms,r = 7rns 
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Figure 4.6. Mean Delay in the M -"/D/l Queue, t, = 5ms, t = l2Oms, r = 7ms 
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Figure 4.7. Mean Delay in the G"/M(1 Queue, t, = 0, t = 120ms, r = 7rns 
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Figure 4.8. Mean Delay in the G"/M/l Queue, t, = O,p = O.875,T = 7rns 
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Figure 4.9. Waiting Time Probability Density for the M"/M/1 Queue 

tp = 0, t = 120ms, E(L) = 10, r = 7ms 
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Figure 4.10. Waiting Time Probability Density for the Mx/M/1 Queue 
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Figure 4.11. Waiting Time Probability Density for the Mx/D/l Queue 
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Figure 4.12. Waiting Time Probability Density for the M"/D/l Queue 
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Figure 4.14. Waiting Time Probability Density for the Gx/M/1 Queue 
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4.2 PERFORMANCE ANALYSIS OF THE MMPP/M/1 
QUEUE 

Queueing models that deal with the Markov- modulated Poisson process (MMPP) 

as an input have been studied by several authors. A single-server queue with general 

service time distribution and multilevel input has been studied by Neuts[71], where 

algorithmic results are presented, and in [72] results for the exponential service time 

case are also presented. In [73] Kuczura treats the superposition of a Poisson and 

interrupted Poisson process(IPP), which is equivalent to a two-state MMPP. The 

results in [73] are applied to the problem in [12] by Heffes. More recently in [21] 

Heffes and Lucantoni provide a method for the analysis of the performance of a 

statistical multiplexer with inputs consisting of the superposition of voice streams 

together with data streams, which is modeled as a MMPP/G/1 queue. 

In this section we shall consider a single exponential server queueing system with a 

doubly stochastic Poisson process(DSPP) input. Since a DSPP may be approximated 

by a two-state MMPP, we shall model the queueing system as a MMPP/M/1 queue 

and use the G/M/1 model to analyze it. 

4.2.1 Measurement Method For the MMPP Input 

As we know, in order to apply the G/M/1 model to the performance analysis of 

the MMPP/M/1 queue, we have to determine the interarrival time distribution of 

the MMPP. In section 3.4.3, we have derived the interarrival time distribution for 

the MMPP given by (3.102). The distribution is a hyperexponential distribution 

characterizedd by'parameters ), A2,ri and r2. Since A,, )'2, r1 and r2 are determined 

by the original DSPP input process, the way we choose these parameters is very 

important to the use of (3.102) or (3.103) as the interarrival time distribution for the 
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input process. In section 3.4.3 we use a method by Heffes for choosing those four 

parameters [12]. Here we introduce another method to obtain the parameters a, /3k, 

and /32 for the distribution (3.102). 

Let T be the interarrival time of the packet. Then the first three moments of T 

are, respectively, denoted by 

M1 E(T) (4.54) 

M2 = E(T2) (4.55) 

and 

7fl3 = E(T3) (4.56) 

Assume m1, m2 and m3 can be obtained by measurement. When the input process 

is ergodic, we can use the time averages of the interarrival time as the measurement 

results of m1, rn2 and m3. Using (3.103) we establish the following equations 

and 

a 1—a 
, 

P1 0 2 

2a 2(1—a) 
p2 2 M2 
1 92 

6a 6(1—a)  
j33 —m3 

(4.57) 

(4.58) 

(4.59) 

By solving (4.57)-(4.59) for a, #I and /32, we find 

1 -  2m1z + mz2  
a = (4.60) 

1 - 2m,+ m2z2 

m1z - 1 
=   (4.61) 
m2z m1 
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and 

82 = z (4.62) 

where 

Z = 
(ma - rn2m1) + J(ma - m1m2)2 + 4(m3m1 - 7n 2)(M2 - m2) 

2(m—m) 
(4.63) 

Thus, for given m1, m2 and m3 we can determine the parameters c, th and 132 

and the interarrival time distribution for the input process or the two-state MMPP 

by (4.60)-(4.63). Note that the method introduced in this section is a general way to 

determine the interarrival time distribution (3.102) for the two-state MMPP. 

4.2.2 Performance Analysis of the MMPP/M/1 Queue 

Let W be the waiting time, D the delay, Nq the queue length, /22 the mean service 

rate-of the server, and F(s) the Laplace- S tieltj es transform of the interarrival time 

distribution of the input process. By the G/M/1 model we have the mean waiting 

time 

the mean delay 

the mean queue length 

E(W) - 0• 

- /22(1 - 

E(D) =  1 
/22(1 - 0') 

E(Nq) = I-0-

the waiting-time probability distribution 

Fw(t) = 1 - cre1z2(17)t 

(4.64) 

(4.65) 

(4.66) 

(4.67) 
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and the state probability distribution 

where 

{ l-P2 ,k=0 Pk - p2(J_.)o.k_l ,k≥1 

P2= 1 
m12 /.t1fL2 

As,, A, ii are defined in section 3.4.1, and o' is the root of the equation 

Using (3.102) we have 

Then a- satisfies (4.70), or 

or 

where 

and 

O<o.<1 

a/3j 

3 +/32 

af3  + (1—o)/32 

P2P2o.+th P21t2a-+/32 

(4.68) 

(4.69) 

(4.70) 

(4.71) 

(4.72) 

ac  + ba'2 + co• + d = 0 . (4.73) 

a = 92 

b = —(2 + i2fl1 + i2132) 

c 12 +2p2/32+/3j2+a/3lp2—c/32t2+fil/32 

d = —(cE/91[L2 a/32/J2 + 32,u2 +/31/92), 

(4.74) 

(4.75) 

(4.76) 

(4.77) 
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4.2.3 Numerical Results 

First, we show the packet interarrival time probability density of the two-state 

MMPP model with parameters °,th and /32 obtained by the measurement method 

and compare them with the simulation results. 

In Fig. 4.15 and Fig. 4.16, s equals to 2 and s is the number of servers in the Erlang 

delay system which generates the DSPP traffic, see section 3.4.1. In Fig. 4.17 and 

Fig. 4.18 s equals to 4. We see that the measurement method presented in section 

4.2.1 can also accurately determine the packet interarrival time distribution for the 

two-state MMPP model. 

Then, we consider the mean delay of a packet in a MMPP/M/1 queue. In the 

following figures, for the curves of MMPP/M/1 I we use the method by Heffes [12] 

in section 3.4;3 to determine parameters Al, ) 2, r1 and r2 for the two-state MMPP 

model, and for the curves of MMPP/M/1 II we use the measurement method to 

obtain parameters a,th and /32 for the two-state MMPP model, and r2 = l/P2 is 

equal to 2.5ms. 

Fig. 4.19 and Fig. 4.20 show the mean delay as a function of the traffic in-

tensity P2 = (\A)/(,i1p2) for s=2 and s=4 respectively. It can be seen that the 

results of MMPP/M/1 II are more closer to the simulation results than the results of 

MMPP/M/1 I. 

The relation of the mean delay and the mean number of packets per call, A/p1, 

is shown in Fig. 4.21 and Fig. 4.22 for s=2 and s=4, respectively. In both figures, 

P2 = 0.8. We find that the mean delay increases slightly as A,/y, increases even 

though P2 is unchanged, and the simulation results are more sensitive to the value of 

)t/ than theoretical results. It indicates that the mean delay depends not only on 
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P2 but also on 

The compound effects of p2 and Ap/,ui on the mean delay are shown in Fig. 4.23 

and Fig. 4.24. In both figures, P2 increases as )7,/,u1 increases. 

Last, we present the curves of the waiting time probability density of the MMPP/M/1 

queue in Fig. 4.25 - Fig. 4.28. We see that the results of MMPP/M/1 queue can 

match the simulation results very well. 

The results in this section show that our approximation of the DSPP traffic with 

the MMPP in section 3.4 and our analyses on the performances of MMPP/M/1 

queues in section 4.2 are accurate. Comparisons of results of MMPP/M/1 I and 

MMPP/M/1 II show that the method to determine the parameters a, /3i and /32 in 

section 4.2.1 is more accurate than the method by Heffes. It means that if we choose 

the parameters for the MMPP model more accurately, we can obtain better results 

for the performance analysis of the queues. 

4.3 SUMMARY 

In this chapter we have obtained several performance analysis results for the 

Mx/G/l , G"/M/l and MMPP/M/1 queues. We derive the mean waiting time, 

mean delay and mean queue size for these queues. We use the maximum" entropy 

method to obtain the ME solutions for the waiting time distribution and the state 

probability distribution for the Mx/G/1 queue. We apply the G/M/1 model to 

the Gx/M/1 queue and the MMPP/M/1 queue to obtain the waiting time distribu-

tions and the state probability distributions. We show that analytical and simulation 

results agree closely. 
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Figure 4.15. Packet Interarrival TimeProbability Density, s = 2, a1 = 0. 25, t, = 5m.s 
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Figure 4.17. Packet Interarrival Time Probability Density, s = 4, a1 = 0.25, t, = 5ms 
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 

In this thesis we have presented studies for modeling of input traffic and per-

formance analysis of queueing systems with bursty input based on the principle of 

maximum entropy and on results of queueing theory. 

We have applied the prinäples of maximum entropy and the minimum cross en-

tropy to determine the equilibrium state probability distributions for several single 

server queues and multiserver queues. For single server queues, we use maximum 

entropy solutions of the G/G/i queue obtained by Kouvatsos to calculate the distri-

butions for the M/G/i queue and G/M/i queue. For multiserver queues, we employe 

the method of cross entropy minimization with the estimate factor of the distribu-

tion introduced to derive for the first time the state probability distributions for the 

Erlang loss system 'and the Erlang delay system, respectively. By showing that the 

well-known results from queueing theory can be obtained by the principle of maxi-

mum entropy we are led to the conclusion that the maximum entropy formalism can 

provide a framework for analysis of queueing systems. 

We have investigated the characteristics of two typical inputs in packet networks 

and developed equivalent arrival processes for them. We establish mathematical mod-

els for their associated interarrival time distributions. 
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For the batch data arrival process, we derived two interarrival time distributions by 

using the method of entropy maximization. These distributions yield useful models 

for the batch input processes in which mean values of interarrival time and message 

length are taken into consideration in one distribution. In the first interarrival time 

distribution, we used the first moment of interarrival time as a constraint. The 

distribution turns out to be a generalized exponential type. In the second interarrival 

time distribution, we used both the first and second moments of the interarrival time 

as constraints. The result is a normal-like distribution. Comparisons of simulation 

and theoretical results indicate that the first distribution can yield exact results for 

the batch processes with Poisson message arrivals and, if the message process is not 

Poisson, the second distribution yields a better approximation. 

For the doubly stochastic Poisson process, we used a two-state Markov modulated 

Poisson process as an approximation. We derive an interarrival time distribution for 

the two-state MMPP and found that the distribution is hyperexponential determined 

by the four parameters of the two-state MMPP. We also investigate the statistical 

properties of the traffic, such as the burstiness of the traffic characterized by the 

coefficient of variation of interarrival time. Numerical results show that the two-state 

MMPP is a good approximation for the doubly stochastic Poisson input process. 

Following that part, we carry out performance analysis of queueing systems by 

applying the mathematical models established for the batch arrival processes and 

the doubly stochastic Poisson input processes and by using the method of entropy 

maximization and the G/M/1 queue results from queueing theory. We determine 

the mean delay, the mean queue length, the waiting time distribution and the state 

probability distribution for the queues. The results are compared favorably with 

simulations. These results show good accuracy of our approximations of the input 



94 

traffic and the approaches we employed in the performance analysis of the queueing 

systems. 

Before we finish the whole thesis, we shall make some suggestions for the problems 

remaining and for future studies. 

When applying the method of entropy maximization to performance analysis of 

queueing systems, such as determining the system state probability distribution, the 

choice of proper prior information as constraints is of great significance. One of the 

problems is with what kind of minimum prior information can we determine the 

exact distribution for the queueing systems, and under what kind of constraints we 

can obtain good approximate results as required. 

In the modeling of input traffic, the Markov modulated Poisson process is a useful 

model that can represent traffic with the bursty and correlated characteristics involved 

and which can represent particularly aggregate traffic generated by the superposition 

of several point processes. One problem existing in the applications of the MMPP is 

how to fit an MMPP model to the arrival processes, i.e. how to choose the parameters 

of the MMPP from the original arrival processes. 

To obtain an analytical solution for performance analysis of a queueing system with 

non-Poisson input and general service time distribution is very difficult. In addition 

to the method of entropy maximization, other efficient approaches which can provide 

analytically practical solutions for such systems remain to be developed. 
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