
University of Calgary

PRISM Repository https://prism.ucalgary.ca

The Vault Open Theses and Dissertations

2013-04-30

A Hybrid Multi-Objective Evolutionary

Algorithm for Wind-Turbine Blade Optimization

Sessarego, Matias

Sessarego, M. (2013). A Hybrid Multi-Objective Evolutionary Algorithm for Wind-Turbine Blade

Optimization (Master's thesis, University of Calgary, Calgary, Canada). Retrieved from

https://prism.ucalgary.ca. doi:10.11575/PRISM/24761

http://hdl.handle.net/11023/650

Downloaded from PRISM Repository, University of Calgary



UNIVERSITY OF CALGARY

A Hybrid Multi-Objective Evolutionary Algorithm for Wind-Turbine Blade Optimization

by

Matias Sessarego

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF MECHANICAL AND MANUFACTURING ENGINEERING

CALGARY, ALBERTA

APRIL, 2013

c© Matias Sessarego 2013



Abstract

A concurrent-hybrid non-dominated sorting genetic algorithm II (hybrid NSGA-II) has been

developed and applied to the simultaneous optimization of the annual energy production,

flapwise root-bending moment and mass of the National Renewable Energy Laboratory’s

(NREL) 5 MW wind-turbine blade. To estimate the aerodynamic and structural perfor-

mance, blade element momentum (BEM) and beam models were developed and validated.

By hybridizing a multi-objective evolutionary algorithm (MOEA) with gradient-based local

search, it is believed that the optimal set of blade designs could be achieved at lower com-

putational cost than for a conventional MOEA. To compare the rate of convergence between

the hybrid and non-hybrid NSGA-II on the NREL 5 MW blade optimization, a computa-

tionally intensive case requiring 110,000 objective-function evaluations was performed using

the non-hybrid NSGA-II. From this particular case, a 1.8% increase in the annual energy

production and 4.7% decrease in the flapwise root-bending moment with the same mass as

the NREL 5 MW blade was achieved. The inclusion of local gradients in the blade optimiza-

tion, however, shows no improvement in the convergence for this three-objective problem. A

study on the gradient quality shows that the numerical instability of BEM and beam models

hinders suitable gradient calculations.
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Chapter 1

INTRODUCTION

1.1 Need for Wind Energy

Global climate change, air pollution and acid rain have generally been accepted in today’s

society to be caused by humanity’s fossil fuel consumption. Fossil fuels emit harmful pol-

lutants such as carbon dioxide gas, a major contributor to the greenhouse effect. Meeting

the future’s need for energy without further damage to the environment depends on imple-

menting cleaner alternative-energy solutions. In particular, renewable energy resources are

the ideal candidates for reducing humanity’s fossil fuel dependency and the harmful pollu-

tants associated with it. With the current continuous increase in global demand for power,

renewable energy technologies are becoming more important and must be deployed quickly

and extensively.

Examples of renewable energy include solar energy, biofuels, hydropower, geothermal

energy and ocean tidal and wave energy. Wind power, through the use of wind turbines,

is now one of the most cost-effective and environmentally-friendly methods of generating

electricity. An economic and rapid reduction in carbon dioxide emissions can be achieved by

large-scale deployment of wind energy. All emissions from a wind turbine construction are

offset within the first three to six months of operation. For its remaining 20 year lifetime,

wind turbines run emissions free [16].

As projected by the Global Wind Energy Council (GWEC) [5], the annual installed

wind capacity across the globe will continue to grow as shown in Figure 1.1. Following the

earthquake, tsunami and nuclear disaster of March 11, 2011 in Japan, the world is calling for

a transformation of the energy system towards more renewables such as wind power. The

German government has decided to phase out all nuclear power by 2020 and has installed
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Figure 1.1: Global annual installed wind capacity between 1996 and 2011. Retrieved from [5].

the most wind power of all countries in Europe in 2011.

However, like all other power sources, renewable and non-renewable, wind power does

come with its own potential drawbacks. Similarly with solar energy, wind power is an

intermittent energy source that can only be used when nature supplies it. If wind is not

available when there is a need for energy, electricity must be obtained from a substitute

energy source. Conversely, when there is a surplus of wind, the energy must be stored or

exported elsewhere. Conventional power sources such as fossil fuel power plants do not

depend on the unpredictability of weather conditions.

Other potential drawbacks include noise, visual impact, shadow flickering caused by the

sun and rotating blades, electromagnetic interference, collisions with birds and bats, and

interference with military aviation. However, a majority of these drawbacks can be dealt

with in different ways and are becoming less of an issue in recent years. For offshore wind

energy installations, noise, visual impact and flicker are becoming insignificant due to their

more remote locations. The positive aspects of wind power outweigh the negative.
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Figure 1.2: Upwind, three-bladed HAWT. Modified from [6]. c©2001 John Wiley & Sons
Ltd.

1.2 Wind Turbine Types

Two types of modern wind turbines in use today are horizontal-axis wind turbines (HAWT)

and vertical-axis wind turbines (VAWT). When the rotor axis is aligned horizontally or in the

direction of the wind, the turbine is called a HAWT. When the rotor axis is aligned vertically

or perpendicularly to the wind direction, the turbine is called a VAWT. In the current market,

HAWTs are commercially more competitive and hence significantly outnumber VAWTs.

Even though VAWTs are generally more expensive, it is important to know that they do

have some advantages over HAWTs.

The most predominant type of HAWT has three blades and an upwind configuration as

shown in Figure 1.2. The rotor radius is denoted by the letter R and the hub height as the

letter H. The length of the blades is obtained by subtracting the hub radius rhub, from R.

There exist subgroups within the HAWT class that are based on the control strategies

employed to ensure that the turbine operates within its design range. The most common

control strategies involve variable speed and pitch regulation. A variable-speed HAWT can

adjust the rotational speed whereas a pitch-regulated one can adjust the angles of the blades
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relative to the plane of rotation. A pitch-regulated and variable-speed HAWT is the most

common configuration that implements both control strategies and will be the focus for

Chapters 3–6. Pitch regulation and variable-speed operation are discussed in section 3.4 of

this thesis.

1.3 Power from the Wind

The total power from the wind comes in the form of kinetic energy expressed by:

Pwind =
1

2
ṁV 2

o (1.1)

where ṁ is the mass flow rate and Vo is the wind speed. The above equation can be rewritten

in the following form:

Pwind =
1

2
ρairAV

3
o (1.2)

in terms of the air density ρair, and the swept area of the rotor, A = πR2. Ideally for power

extraction, the kinetic energy from the wind is reduced to zero and converted completely

into useful mechanical or electrical energy. This is not achievable realistically, thus the

non-dimensional quantity known as the power coefficient CP , is defined:

CP =
P

Pwind
=

P
1
2
ρairπR2V 3

o

(1.3)

where CP is the ratio between the power extracted from the wind P , to the total available

power. Studying equation (1.3), it is observed that the power depends on R, CP , and the

air density and wind speed of a site.

The site has a significant impact since power depends on the cube of the wind speed.

Hence, it is most favourable to place turbines where the average wind speed is high. The

second influential factor is R, where a doubling of R results in four times the power. The

increase in power with R explains to a great extent the trend of increasing size throughout

the years as shown in Figure 1.3. Besides the reasons given in section 1.1, offshore wind

4



2008

250 m Ø

15 m Ø

112 m Ø

R
ot

or
 d

ia
m

et
er

 (
m

)

Airbus A380
wing span

80m

126 m Ø

126 m Ø

160 m Ø

?

'85 '87 '89 '91 '93 '95 '97 '99 '01 '03 '05 '10 ? 1ST year of operation

.05 .3 .5 1.3 1.6 2 4.5 5 7.5 8/ 10 rated capacity (MW)

Figure 1.3: Turbine size growth. Retrieved from EWEA [7].

energy installations are also attractive because wind speeds are higher and limitations on R

are lower compared to onshore installations.

The power coefficient CP , depends on the tip speed ratio and the rotor design. For a

pitch-regulated turbine, CP will also depend on the pitch angle of the blades denoted by θ,

where θ is the angle between the tip chord and the plane of rotation (see section 3.3.1). The

tip speed ratio λ, is the ratio of the rotational speed of the blade tip to the incoming wind

speed Vo (i.e. λ = ωR/Vo). A maximum value of CP occurs for one λ and can be achieved

for a range of wind speeds by variable-speed operation. Values of λ for maximum CP in

pitch-regulated and variable-speed wind turbines typically range between six and eight.

The theoretical maximum of CP , known as the Betz–Joukowsky limit [17], is equal to

16/27 but only a CP of approximately 0.5 can be achieved in practice. The Betz–Joukowsky

limit does not represent the maximum efficiency and does not include the efficiency of con-

version of mechanical to electrical energy. It is possible to exceed the Betz–Joukowsky limit

if the mass flow rate through the rotor is increased, which can be accomplished by placing
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the rotor in a diffuser. No such large-scale HAWT employs a diffuser and thus shrouded

wind turbines are not studied in this thesis.

1.4 Scope of Thesis

This thesis will focus on the methods used to optimize CP with respect to rotor design

while also considering the blade structural performance. Optimizing CP does not necessarily

mean maximizing the CP value to attain maximum power as per equation (1.3). A more

appropriate target is to maximize the annual energy production (AEP) measured in MWhrs,

which is the energy produced by a rotor per year:

AEP = 8760

Vo,cut-out∫
Vo,cut-in

P (Vo)f(Vo)dVo (1.4)

where 8760 is the number of turbine operating hours per year and f(Vo) is the wind speed

probability of a candidate site. The effect of f(Vo) on the AEP is not studied in this thesis,

thus the simple and generic Rayleigh probability density function is used. The maximum

and minimum wind speeds are Vo,cut-out and Vo,cut-in respectively. The power as a function

of the wind speed P (Vo), is known as the power curve and is described in detail for a pitch-

regulated and variable-speed HAWT in section 3.4.3. The dependency on CP for the AEP

can be observed by combining equations (1.3) and (1.4) that yields:

AEP = 8760
π

2
ρairR

2

Vo,cut-out∫
Vo,cut-in

V 3
o CP (Vo, λ, θ)f(Vo)dVo (1.5)

where CP is a function of Vo, λ and θ for a pitch-regulated and variable-speed HAWT. The

goal is therefore to determine CP such that the integral in equation (1.5) is a maximum.

This thesis studies and applies algorithms for optimizing wind-turbine rotors for AEP and

structural performance with the aid of geometric, aerodynamic and structural models. The

optimization algorithm and the geometric, aerodynamic and structural models have all been

developed by the author using MATLAB R© software. Chapter 2 will review the work that
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has been done in the past and outline the contributions from this thesis. The aerodynamic

model implemented is based on the blade element momentum (BEM) method and will be

described in Chapter 3. The structural model is based on a cross-sectional model and Euler-

Bernoulli beam theory, and will be described in Chapter 4. A summary of the assumptions

involved in the aerodynamic and structural models is provided in Appendix A. In Chapter 5,

the optimization algorithm is depicted, which is then applied for the illustrative case of the

National Renewable Energy Laboratory’s (NREL) 5 MW wind-turbine blade optimization

shown in Chapter 6. Lastly, conclusions and future work will be provided in Chapter 7. For

further information regarding sections 1.1 to 1.3, see references [5, 6, 7, 16, 17, 18].
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Chapter 2

LITERATURE REVIEW

2.1 Introduction

The simultaneous optimization of wind-turbine blade design with respect to the many dif-

ferent and sometimes conflicting requirements is a challenging task. The coupling between

the aerodynamics, structural mechanics, acoustics, blade vibrations and other engineering

aspects under a number of constraints requires the use of numerical approximation tech-

niques. Purely analytical methods for multi-disciplinary optimization do not exist. Even

when considering the aerodynamics alone, analytical methods for optimizing blades are lim-

ited. For example, Wilson and Lissaman [19] presented a method of deriving the optimum

wind-turbine blade chord and flow angles for the single objective of maximum CP . The

downside of this method is that it requires a prescribed design tip speed ratio and usually

the AEP should be considered rather than CP . The drag of the blade sections was also

assumed zero and the tip-loss factors were neglected. Realistically, the drag and the tip loss

should be considered when determining the optimum chord and twist.

Numerical methods implemented for wind-turbine blade optimization consist of local and

global search algorithms as well as hybrid methods that combine them. Before describing in

more detail the numerical methods and their application to wind-turbine blade optimization,

the objective-function space must first be studied. The objective-function space will hereafter

be referred to as the objective space. Many of the concepts described in this chapter are

borrowed from Luke [20], who provides a brief and rational overview of the objective space

and the field of optimization algorithms.
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2.2 Objective Space: Exploitation versus Exploration

Any design problem will have an objective space that is shaped by the range of values of the

design (or decision) variables. When optimizing a particular design for a single objective, the

goal is to attain the global maximum or minimum of the objective space and to extract the

corresponding values of the decision variables. The end result is a single optimal solution.

In contrast, a multi-objective problem will typically give rise to a set of optimal trade-off

(or Pareto-optimal) solutions known as the Pareto-optimal set. It is possible that a multi-

objective optimization (MOO) problem has a solution that is optimal in every objective.

However, more often than not the objectives are conflicting. In other words, an optimal

value for one objective will lead to a non-optimal value for another. The individual who

executed a MOO must study the trade-off solutions available to him/her and select the one

that is the most suited for his/her applications.

The objective space can be simple; the objective value varies smoothly, continuously and

with minimal variations in response to changes in the decision variables. Conversely, some

are rapidly changing or stochastic, discontinuous, deceptive, multimodal, or undefined. The

performance of a particular type of algorithm largely depends on the objective space under

consideration. Hence, an individual who is attempting an optimization would ideally have a

good understanding of both the algorithms available and the nature of the objective space.

Unfortunately, the nature of the objective space is frequently not known until the objective

function has been evaluated a sufficient number of times.

Algorithms with a high degree of exploitation are commonly used for most objective

spaces because they are the fastest in producing a result. In a exploitative algorithm, an

initial design is improved incrementally by local alterations of the decision variables until

a local or global optimum is found. Local optimums are designs with the best objective-

function value only within the vicinity of the initial design. Global optimums are optimums

of the entire objective space. Clearly, a global optimum is much more desirable than a local
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optimum. The significant disadvantage of exploitative algorithms is that they usually result

in a local optimum.

To attain a global optimum using an exploitative algorithm, either an initial design must

be selected that is very near the global optimum or the objective space must be very simple

as discussed previously. For example, a very simple objective space would only have a

single maxima. This particular objective space would be characterized as unimodal. For

the multimodal case, multiple peaks or dips in different magnitudes exist. Exploitative

algorithms usually become trapped in local optima for multimodal objective spaces. To

increase the probability of attaining a global optimum, exploration –the ability to search

away from the immediate neighbourhood– must be infused in the algorithm.

The above discussions on the objective space as well as local and global optimality are

applicable to both single and multiple objective function optimizations. However, it is im-

portant to remember that the number of objective functions may determine the number of

optimal solutions typically obtained.

2.3 Gradient-Based Methods

Gradient-based optimization relies on evaluating the derivatives (or finite difference approx-

imations to them) of the objective function and are local search algorithms. They are

generally exploitative. Gradient-based techniques perform efficiently only when the function

is continuous and differentiable. If the objective function is stochastic, it will likely prema-

turely converge to a solution that is nowhere near a global or even a local optimum. The

derivatives for a stochastic objective function become distorted and when optimality condi-

tions appear to be satisfied at a final point because of noise, the gradient-based algorithm

stops. Large steps can be taken in evaluating the derivative to mitigate this problem but

the algorithm may take longer to converge to the final solution.

Fuglsang and Madsen [21] employ the method of feasible directions (MFD) for optimizing
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a 1 MW stall-regulated rotor for cost performance, defined as the AEP relative to the material

consumption. The objective function stated for the optimization is the AEP at a site with

the Danish roughness class 1. In the MFD, the sensitivity of the AEP on the decision

variables is found by using a forward-difference approximation. The AEP values used in the

forward-difference approximation are calculated by perturbing each of the decision variables.

Results indicate a potential improvement of cost performance of 11%.

Fuglsang et al. [22] later performed a site-specific design optimization using cost of energy

(COE) as the objective. The COE includes both the AEP and turbine component costs, and

potentially other costs such as operation and maintenance. A detailed description of the costs

included for the COE is shown in the appendix of [22]. Six different sites were investigated

comprising of normal flat terrain, offshore and complex terrain. The algorithm employed

is not specified, however it is mentioned that numerical differences were used because the

exact gradients could not be calculated. Results show that the differences in characteristics

of each site had a significant effect on the outcome of the turbine COE.

Lee et al. [23] performed a MOO using a modified method of feasible directions (MMFD)

and a probabilistic approach. The probabilistic approach was included to aid the MMFD

in reaching a global optimum rather than a local optimum blade shape. Thus by using

the probabilistic approach, the disadvantage of the MMFD being a localized optimizer is

mitigated. The two objectives of maximum capacity factor (CF ) and minimum blade cost

were converted into a single objective using a weight factor. The CF is defined as the

AEP generated during the year, divided by the number of hours in the year multiplied by

the turbine rated power Prated (i.e. CF = AEP/(8760Prated). The conversion of a multi-

objective problem to a single-objective one using a weight factor is a classical technique

called the method of weighted objectives. A set of optimum solutions was then obtained

after executing the optimization for different values of the weight factor. This optimum set

of solutions (Pareto-optimal set) resulted in an approximation of a trade-off curve known
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as the Pareto front. The Pareto front provides information about the compromise between

two competing objectives or indicates a global or local maximum. This information can

be valuable, which a single-objective optimization (SOO) such as in [21] and [22] cannot

provide.

Kenway and Martins [24] optimized the COE for a commercial 5 kW Wes5 Tulipo wind

turbine keeping the cost fixed to an original baseline design. In other words, the AEP was

the objective being optimized and the cost was held as a constant value. The gradient-

based sequential quadratic programming (SQP) method in the commercial software package

SNOPT was used to perform the optimization. The BEM method and XFOIL [25] were

used in the aerodynamic analysis, while a Timoshenko beam model for the structural. Two

different sites were considered for the optimization that resulted in two significantly different

optimum blade designs.

Xudong et al. [26] made use of the fmincon function in MATLAB to perform a constrained

optimization on three different wind-turbine rotors for minimum COE. The COE defined here

was simply the ratio of the rotor cost over the AEP. The fmincon function implemented is

gradient-based because it uses the Hessian to find the minimum of the objective function [27].

The Hessian is the matrix of all second derivatives of the objective function with respect

to the decision variables. The optimization was done using an aero-elastic code, which

includes structural dynamics and BEM theory models to provide accurate blade performance

predictions.

Bottasso et al. [28] also implemented the fmincon function, specifically the SQP method in

the fmincon routine. Conversely to [26], a multi-disciplinary optimization on AEP and blade

weight was performed. The two objectives were optimized sequentially in an iterative manner

until convergence was achieved. In addition to fmincon, Bottaso used another commercial

optimization software to allow a more thorough search of the decision space. It is suspected,

but not known, that a genetic algorithm (GA) was used as the global optimization solver,
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while the SQP was used for localized optimization. This postulation is based on Figure 1

in the paper since a description of the global solver is not given. A high-fidelity aero-servo-

elastic model and a detailed cross-sectional structural model were used to compute the AEP

and blade weight respectively.

2.4 Evolutionary Algorithms

The genetic algorithm (GA) [29] used in [28] belongs to a larger set of algorithms known

as evolutionary algorithms (EAs). Due to their similarity with Darwinian evolution (hence

evolutionary in EA) many terms from biology are used to describe the various components

of EAs. Unlike gradient-based techniques, EAs rely on stochastic operators instead on com-

puting derivatives. For example, the most traditional operators in GAs are called crossover

and mutation (details given in the subsequent paragraph). The stochastic behaviour of EAs

allows a global search of the objective space and has the distinct advantage of being capa-

ble of handling discontinuous, stochastic and non-differentiable functions. Thus, EAs are

generally exploration algorithms whereas gradient-based techniques tend to be exploitative.

Unfortunately, the approach implemented in EAs is less efficient than in gradient-based al-

gorithms thus they typically require longer computation times. Hence, when using EAs,

it is critical to have objective functions that are as computationally efficient as possible.

Computationally intensive objective functions used in conjunction with an EA will result in

unreasonable computation times.

In addition to the stochastic based approach, EAs deal with a set of solutions (population)

rather than a single solution (individual) typical of gradient-based methods. Operators such

as crossover and mutation are applied to the decision variables of the population in the

hope of producing superior individuals. In almost all crossover operators, a portion of the

decision variables between two or more individuals (parents) are combined when creating new

individuals called children. To ensure each child is unique (hence enhancing the diversity
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of the population), the mutation operator applies a slight random alteration of one or more

decision variables belonging to the child. For a SOO, the best individual in the population is

the end result of the optimization. In MOO, the entire population can be used to approximate

the Pareto front in one simulation run. For this reason, EAs are prominent in MOO. In Lee et

al. [23], it was necessary to run the optimization several times to attain a Pareto-optimal set.

However, modifications to an EA are necessary for MOO applications and as a result these

modified EAs belong to a distinctive class known as multi-objective evolutionary algorithms

(MOEAs).

One method of converting an EA to a MOEA involves the concept of domination. The

well-known non-dominated sorting procedure of Goldberg [29] will be described here. In this

procedure, a ranking scheme is used to distinguish superior individuals from the inferior.

The first step is to classify the individuals of a population in a multi-objective space as

either non-dominated or dominated. Non-dominated individuals are superior to all other

individuals in at least one objective function (which may not be same in comparison to

different individuals). All other individuals of the population are dominated. The set of non-

dominated individuals (non-dominated or Pareto front) is then assigned the highest ranking

score possible (e.g. 1). They are then ignored temporarily and the population is reclassified

as non-dominated and dominated. The non-dominated front of the new population is then

assigned a rank lower than the previous non-dominated front (e.g. 2). The process is repeated

until the entire population is assigned a ranking score. Further description of non-dominated

sorting can be found in Chapter 5, section 5.3.

Three primary distinctive types of EAs will be discussed: Genetic algorithm (GA), evo-

lution strategies (ES) and differential evolution (DE).

2.4.1 Genetic Algorithm

Selig and Coverstone-Carroll [30] incorporated an inverse design scheme [31] into a GA for

optimizing the AEP of a family of stall-regulated wind-turbine rotors. They named their
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computer program PROPGA. The inverse design scheme that was implemented is another

separate computer program known as PROPID, which is an extension of the PROP [32]

code based on BEM. PROPID allows the determination of blade geometry corresponding

to the desired rotor performance and aerodynamic characteristics input by the user. As

a result of this approach, certain rotor constraints can be enforced in the GA without

the use of constraint-handling techniques such as penalty functions. A penalty function

modifies the objective value(s) of the individuals that violate constraints so that they are

less likely to be deemed superior to other individuals that do not violate any constraints.

Frequently, the worst possible objective value(s) are assigned for the constraint-violating

individuals. Because penalty functions are generic, the performance in most cases is not sat-

isfactory [33]. The trade-off studies performed using PROPGA yielded valuable information

for wind-turbine blade design.

Giguère and Selig [34] later updated PROPGA to include a MOO capability. In the

updated PROPGA, the aerodynamics, structures, noise and cost are considered in the blade

geometry optimization. The user can select two objectives from a choice of three, which

are minimum COE, maximum AEP or CP , and minimum rotor thrust or torque. The

user may also select the cost of any turbine component instead of the COE for one of the

objectives. Unlike in [23], the objectives are not converted into a single objective. The

objectives are treated separately by grouping individuals into different Pareto front ranks

using non-dominated sorting. Using non-dominated sorting, the trade-off curve was obtained

in a single simulation run. The optimization algorithm in PROPGA is a MOEA.

The non-dominated sorting genetic algorithm II (NSGA-II) [14] is another MOEA. NSGA-

II combines the non-dominated sorting procedure with a GA and is an improvement from the

original NSGA [35] in three respects: The computational complexity is reduced, elitism is

introduced in the algorithm and the need to specify a sharing parameter is removed. When

superior individuals are generated within the population at one cycle (generation), elitism
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ensures that these individuals remain within the population for subsequent generations. This

technique is known to improve the convergence of GAs [14]. The sharing function guides the

NSGA towards a well-distributed Pareto-optimal set but requires a parameter input by the

user. The downside is that the value chosen for this parameter has a significant effect the

sharing function’s performance and one does not know what the optimum value is for a given

problem. Therefore, the sharing function is replaced with the crowded-comparison operator

in the NSGA-II, which uses crowding distance as a measure of the density (or diversity) of

individuals. When multiple individuals are assigned the same rank, the crowded-comparison

operator aids the NSGA-II in selecting the least crowded individuals (see section 5.6). For

a real-coded GA within the NSGA-II, the simulated binary crossover (SBX) [36] and poly-

nomial mutation [37] operators are used (see sections 5.7 and 5.8).

An improved version of the NSGA-II has been applied for optimizing the NREL offshore

5 MW baseline wind turbine [4] in Wang et al. [38]. The optimization objectives are maximum

CP at a design wind speed and minimum blade mass. Two improvements were made to the

original NSGA-II: 1) the lateral diversity and 2) the uniformity of solutions on the non-

dominated front. The crowded-comparison operator discussed previously ensures diversity

along a non-dominated front but does not ensure diversity lateral to the non-dominated

front (see Figure 2 in [39]). Next, a non-dominated front is considered uniformly distributed

only when the non-dominated solutions are equidistant in the objective space. The two

improvements were accomplished by incorporating both controlled elitism [39] and a dynamic

crowding distance (DCD) approach [40]. All EAs lie at different positions on the exploitation

and exploration spectrum, and their placement is directly related to the extent of elitism

in the algorithm. Controlled elitism allows the extent of elitism (or lateral diversity) in the

NSGA-II to be controlled through a parameter. Next, the methodology used in the NSGA-

II to measure the crowding-distance of individuals contains two flaws as noted by Luo et

al. [40] that negatively affects the uniformity of solutions. In [40], the DCD is proposed
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to account for these two flaws, but the methods will not be discussed in detail here. The

crowding-distance measurement is however, explained in Chapter 5, section 5.5.

The NSGA-II was also implemented and modified in [41] where the power coefficient and

noise levels were optimized under uncertainty. The source of uncertainty described in [41]

was insect contamination, which affects the aerodynamic and acoustic performance of wind-

turbine blades. To include the uncertainties as part of their optimization, modifications

were made to the non-dominated sorting and crowding-distance measurement in the NSGA-

II. In the non-dominated sorting, the values of the ranks were converted from being positive

integers to positive real numbers. The non-integer component of the“probabilistic rank”

contained information regarding the uncertainty, while the integer component had the same

value and purpose as in the original non-dominated sorting procedure.

2.4.2 Evolution Strategies

In addition to the GA in the EA family, evolution strategies (ES) [42] is another type of

EA. ES differs from other EAs in that the decision variables are usually altered mainly by

the mutation operator. The algorithm typically starts by evaluating the objective-function

value (fitness) of a randomly generated initial population and selecting the fittest individu-

als (parents) to produce children. The remaining individuals from the population are then

eliminated. This selection procedure is called truncation selection and is distinctive of ES.

The number of parents selected from the population (mating pool size) and the total number

of children that they produce is chosen by the user. The children then replace or combine

with the parent population and the process is repeated. In contrast, GAs most commonly

use tournament selection whereby the best individual from a number (typically 2) of ran-

domly chosen distinct individuals from the population becomes a parent (see section 5.6).

Tournament selection is repeated until the number of parents returned is equal to the size

of the mating pool. An application of ES is described by Benini and Toffolo [43] and trun-

cation selection is implied in their step-by-step description of the algorithm. However, in
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addition to the mutation operator, they included crossover to alter the decision variables.

The crossover operator is a distinguishing feature of GAs, but it has long been included in

ES as well.

Benini and Toffolo [43] also implemented a MOEA for optimizing stall-regulated HAWTs

similarly as in [34]. The two objectives were to maximize the AEP per square metre of wind

park and minimize the COE. Trade-off curves were obtained for different turbine rated

powers and were compared to individual commercial turbines. The trade-off curves are

also obtained by use of non-dominated sorting. The MOEA used by Benini and Toffolo

differs from [34] in the diversity-preserving mechanism and the use of ES instead of the GA.

The diversity-preserving mechanisms discussed thus far include the sharing function and

crowded-comparison operator. As outlined in [43], the two main goals of a MOEA are 1)

convergence to the true Pareto-optimal set and 2) the spread of solutions over the entire

Pareto-optimal set. In order to achieve the second main goal, Benini and Toffolo integrated

an improved diversity-preserving mechanism that they developed called genetic diversity

evaluation method (GeDEM).

The traditional sharing function used in [34] modifies the fitness values (i.e. COE, AEP or

CP , etc...) to maintain diversity in the population. For example, a particular blade geometry

(individual) that has dissimilar features in comparison with the rest of the population will

have their fitness increased. The amount by which the fitness is increased or decreased is

scaled in proportion to the individual’s level of dissimilarity. As mentioned previously for

the NSGA, a parameter input (scaling factor) is required. Conversely, Benini and Toffolo’s

algorithm maintains diversity by including an additional measure together with the Pareto

rank score. They call this procedure GeDEM and they used the minimum Euclidean distance

in the decision-variable space from another individual as a measure of diversity. In the NSGA-

II, the diversity is measured using crowding distance and is evaluated on the objective space

rather than the decision-variable space.
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2.4.3 Differential Evolution

Differential evolution (DE) [44] is another type of EA. DE is an adaptive mutation algorithm,

where the mutation occurs through a vector arithmetic operator between three randomly

chosen individuals from the population. At each generation, the magnitude of the mutation

changes depending on whether the current population is spread out or condensed. Wood [45]

optimized the power and starting performance of small wind-turbine blades using DE and

good results were obtained. DE on its own is not a MOEA. To include MOO capabilities

to DE, Wood used the method of weighted objectives (similarly as in [23]) and executed

the optimization several times to attain the Pareto-optimal set. The Pareto-optimal set

could have been obtained in a single run by implementing the dominance concept with DE,

however this was not done.

Clifton-Smith [46] optimized small wind-turbine blades with DE as well but with an addi-

tional objective function: the aerodynamic noise, which was estimated by using an empirical

noise prediction model described in Leloudas et al. [47]. Once again, the method of weighted

objectives was used but this time a three-dimensional (3D) Pareto front approximation was

obtained. The 3D surface displayed the optimal trade-offs between CP , starting time and

aerodynamic noise. From all the wind-turbine blade optimizations found in the literature,

Clifton-Smith’s is the only case where a 3D surface was obtained. Clifton-Smith [46] was

not the only one to perform noise minimization for wind-turbine blades, since this was also

done by Leloudas et al. [47] (using fmincon) and others for large-scale turbines.

2.5 Other Non-Gradient Based Methods

2.5.1 Particle Swarm Optimization

Particle swarm optimization (PSO) [48] is a stochastic and population-based approach that

mimics the swarming behaviour of insects, the shoaling of fish and the flocking of birds. A

population of individuals in EA terminology is analogous to a swarm of particles in PSO.
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In contrast to an EA, the PSO algorithm does not involve any selection or crossover in

the population. Particles simply move or mutate towards promising regions of the objective

space. The movement of the particles are represented by velocity vectors, which are computed

by a vector arithmetic much like the DE mutation operator. An inertia weight was later

introduced by Shi and Eberhart [49] into the PSO algorithm that allows the balancing

between global and local search. The inertia weight can be a function of time or a constant

but [49] focussed mostly on the latter.

Liao, Zhao and Xu [50] implemented their own improved PSO algorithm for minimizing

the blade mass of a 1.5 MW wind turbine. The improvements include a logarithmic inertia

weight that monotonically decreases through each iteration and the addition of a selection

operator employed by GAs. The type of selection operator and the reasoning as to why it

improves the PSO algorithm is not given. The models used in their optimization are third-

party codes and the decision variables are the thickness and location of the layers in the spar

caps. A reduction in blade mass was achieved.

Another application of PSO is found in Yang et al. [51], who optimized the power of

a 2 MW HAWT. The aerodynamic model implemented involves computing the circulation

along the wind-turbine blade axis by means of the Biot-Savart theorem, Kutta-Joukowski

lift formula, and wing-section theory. The decision variables were the chord and twist dis-

tributions of the wind-turbine blade.

2.5.2 Complex Method

A complex method was employed by Zhiquan, Xiong, and Yan [52] to optimize the AEP of a

600 kW wind turbine. Much like EAs, the complex method does not rely on gradients. The

complex method searches for the optimum by constructing vertices in a feasible domain. A

vertex is a point where two or more lines or edges intersect in geometrical shapes such as

polygons or triangles [53]. The geometrical shape formed by the vertices in unconstrained

optimization problems is known as a simplex. For constrained optimization problems, the

20



geometrical shape is a complex. The Nelder-Mead simplex method [54] is a well-known

unconstrained optimization solver that was extended by Box [55] to handle boundary and

non-linear constraints. The complex formed by the vertices changes shape throughout the

optimization according to the objective function evaluated at each of the vertices. The

vertex with the worst objective-function value is discarded and a new one is formed. Once

the centre of the complex has reached the optimum point under the required degree of

accuracy, the optimization is terminated. Results show slight improvements in comparison

with the 600 kW NM600/43 commercial wind turbine.

2.6 Hybrid Evolutionary and Memetic Algorithms

Hybrid EAs are algorithms that consist both of an EA and a local search technique, and are

also called memetic algorithms. The main reason for including local search procedures in an

EA is to reduce the number of objective-function evaluations required to attain the optimum

solution, thus improving their convergence speed [56, 57]. No such MOO of wind-turbine

blades using a hybrid EA has been found in the literature and is therefore investigated in

this thesis. It may be argued that Botasso et al. [28] used both a GA and a local solver for

their blade optimization, but the algorithms implemented cannot be considered collectively

as a hybrid EA. The local search is likely applied after a number of iterations from the GA.

Furthermore, it is not a multi-objective algorithm since a single objective is being optimized

sequentially. Lee et al. [23] incorporate a probabilistic approach to enhance the global search

abilities of their gradient-based local solver, however there is no mention of the use of an EA.

In this thesis, a hybridized MOEA and gradient-based local search is developed and applied

for the first time, to the author’s knowledge, on a MOO of wind-turbine blades.

In addition to the implementation of a hybrid MOEA for optimizing wind-turbine blades,

a three-objective optimization will be performed. All large-scale wind-turbine blade MOOs

discussed thus far have only been based on a bi-objective problem resulting in a 2D Pareto
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front, which may or may not have included constraints that could have been converted into

additional objectives. Instead of a trade-off curve obtained in a bi-objective problem, a

trade-off surface will be the end result for the three-objective case. The increase in compu-

tational resources required for the three-objective case relative to the bi-objective one may

be mitigated by the improved convergence properties of the hybrid MOEA.

2.7 Summary

In this chapter, the field of wind-turbine blade optimization was introduced. Initially, an-

alytical methods were studied and found to be limited by crucial assumptions as noted in

Wilson and Lissaman’s [19] work. As a result, gradient and non-gradient based numerical

methods were implemented by researchers for many years in optimizing wind-turbine blades.

For any optimization problem where numerical methods are used, a thorough understanding

of the objective space is necessary. Therefore, a brief description of the different shapes

(or landscapes) of objective spaces and their relationship with the degree of exploitation

and exploration in an algorithm was given. Examples of gradient and non-gradient based

algorithms applied for wind-turbine blade optimization was then outlined.

From the extensive literature review, it was determined that a hybrid MOEA has never

been applied for optimizing wind-turbine blades. Furthermore, all MOO studies on large-

scale wind-turbine blades have been restricted to a bi-objective problem resulting in a two-

dimensional trade-off curve. Consequently, the aim of this project is to develop a hybrid

MOEA and apply it for a three-objective wind-turbine blade optimization problem. To

justify the potential of using a hybrid MOEA instead of a regular MOEA, a study on con-

vergence is necessary. Chapters 3 and 4 describe the wind-turbine blade aerodynamic and

structural models employed for calculating the three objective functions respectively. Chap-

ter 5 describes the hybrid MOEA in detail, which is applied for the three-objective blade

optimization as shown in Chapter 6. The study on convergence for analytical test func-
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tions and the blade optimization problem is included in Chapters 5 and 6 respectively. The

conclusions on the three-objective blade optimization and convergence results are given in

Chapter 7.
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Chapter 3

AERODYNAMIC MODEL

3.1 Introduction

The aerodynamic model is based on the classical blade element momentum (BEM) method.

BEM is commonly used in industry to predict wind-turbine performance due to its simplicity

and speed. With BEM, the aerodynamic forces determine the power and thrust for different

λ and pitch angles. Two theories constituting BEM are blade element theory (BET) and

momentum theory.

The momentum theory component was first conceived by Rankine [58] in 1865 and was

later improved by Froude, R.E. [59] (1889) to estimate ship propeller performance using the

actuator disc concept. The actuator disc concept replaces the rotor with a permeable disc

of zero thickness in a steady-state, frictionless and incompressible flow field. The pressure

and velocity are also assumed to be uniform over the area of the disc, but the pressure can

be discontinuous across the disc. With these assumptions, Bernoulli’s equation with simple

one-dimensional continuity and axial momentum theory can be applied to determine the

velocity and pressure distributions upstream and downstream of the rotor as well as the

velocity and thrust at the rotor plane. Conservation of energy can subsequently be used

to determine the power. In 1920, Joukowski [60] included the effects of wake rotation in

the theory [17]. An important drawback of momentum theory is that it does not consider

the geometry of the blades. In other words, performance properties are obtained for rotors

with an infinite number of blades and for real rotors that have a finite number of blades if

corrections such as tip-loss factors are applied.

The secondary component, BET, was originated by Froude, W. in 1878 [61] and developed

by Drzewiecki (1892, 1920) [62, 63] for the analysis of airplane propellers [64, 65]. There was
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also the contribution by Lanchester in 1915 [66] summarized in Glauert [67]. In BET, the

blades are divided into a number of blade elements and treated aerodynamically as airfoils

(i.e. two-dimensional (2D)). It is assumed that each blade element acts independently and

the radial component of the flow along the blade can be ignored. Thus for each blade element,

it is possible to determine the aerodynamic forces based on local 2D flow conditions. The

aerodynamic forces over the blade length can then be integrated and used to estimate rotor

performance. From this approach, one can study the effect of blade geometry such as the

shape of the airfoils used, and the twist and chord distributions. However, the effect of the

rotor wake on the local flow conditions in BET is generally not known precisely and as a

result a crude assumption is often necessary.

The effect of the rotor wake on local blade element flow conditions can be formulated

as an induced velocity W , or as a fraction of the undisturbed wind speed Vo, and the blade

element rotational velocity ωr, known as the axial and tangential induction factors a and a′

respectively (see Figure 3.3). Fortunately, a and a′ can be estimated by combining momen-

tum theory with BET. BET, which considers the blade geometry, provides the geometrical

aspect that momentum theory does not have. Then, Glauert combined BET and momentum

theory to form BEM and applied it for the aerodynamic analysis of airscrew propellers and

windmills [67]. Glauert’s work was then extended by Wilson for the application to wind

turbines [19]. The essential purpose of BEM is to determine the unknown induction factors

needed to calculate the aerodynamic performance of a particular wind-turbine rotor design

at a given set of flow conditions. The BEM method based on Hansen’s formulation [8] is

presented in sections 3.2 and 3.3.

3.2 Actuator Disk Concept

This section will briefly show the theory developed by Rankine and Froude in terms of

an energy extracting device such as a wind turbine. Consider a streamtube as shown in
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Control volume

Figure 3.1: Actuator disk concept for a wind turbine. Reproduced from [8].

Figure 3.1 where air enters at Vo, passes through the disk at u, and leaves at u1 in the wake.

Since the disk extracts kinetic energy from the incoming air, u1 must be less than Vo. The

air is also traveling at a low Mach number and thus can be treated as incompressible. Based

on these statements and according to continuity:

VoR
2
o = uR2 = u1R

2
1 (3.1)

the flow must expand because Vo > u > u1, hence Ro < R < R1. The thrust T , is the force

resulting from the pressure drop (∆p) across the disc expressed as:

T = ∆pπR2 (3.2)

which can also be obtained by applying conservation of momentum in the axial direction

and using equation (3.1):

T = ρairuπR
2(Vo − u1). (3.3)

Applying Bernoulli’s equation between the free stream and just in front of the disc and again

between the wake and just behind the disc gives:

∆p =
1

2
ρair(V

2
o − u21). (3.4)
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Combining equations (3.2), (3.3), and (3.4) results in:

u =
1

2
(Vo + u1). (3.5)

The axial induction factor a, is denoted by:

a =
Vo − u
Vo

. (3.6)

Combining equations (3.5) and (3.6) yields:

a =
Vo − u1

2Vo
. (3.7)

Applying conservation of energy, the power generated is:

P =
1

2
ρairuπR

2(V 2
o − u21). (3.8)

The power and thrust coefficients are denoted by:

CP =
P

1
2
ρairπR2V 3

o

(3.9)

and

CT =
T

1
2
ρairπR2V 2

o

(3.10)

respectively. Combining equation (3.7) with equations (3.8) and (3.9) yields:

CP = 4a(1− a)2. (3.11)

Similarly, combining equation (3.7) with equations (3.3) and (3.10) yields:

CT = 4a(1− a). (3.12)

Equations (3.11) and (3.12) are shown graphically in Figure 3.2. It is observed that CP is

a maximum at 16/27 (Betz–Joukowsky limit) when a = 1/3. The effects of rotation in the

wake and the introduction of the tangential inductor factor a′, for the actuator disk concept

is provided in [8] and will not be discussed here.
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Figure 3.2: The power (CP ) and thrust (CT ) coefficients as a function of the axial induction
factor (a).

3.3 Blade Element Momentum Method

3.3.1 Blade Element Theory

Blade element theory begins by discretizing the wind-turbine blade by N number of elements.

Each element is of length dr and its cross-section is shown in Figure 3.3. The flow around a

blade element is quantified by four components of velocity. The first is the undisturbed wind

speed Vo, the second is the rotational velocity of the blade element ωr, and the third is the

induced velocity W . By introducing the axial (a) and tangential (a′) induction factors, W

is decomposed into two separate components in terms of Vo and ωr as shown at the bottom-

right of Figure 3.3. The fourth component that is assumed negligible is the velocity of the

blade deflections. The wind speed Vo is also assumed to act always in the axial direction

normal to the rotor plane. The relative velocity Vrel, seen by the blade element is obtained

by the vector addition of the three components of velocity. Once the axial and tangential

components of Vrel are known, the local flow angle φ, and the angle of attack α, can be

determined by using equations (3.13) and (3.14):

φ = tan−1
(1− a)Vo
(1 + a′)ωr

= tan−1
1− a

(1 + a′)λr
, (3.13)
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Rotor plane

Rotor plane

chord line

Figure 3.3: Blade discretization (left) and the velocity vectors seen by a blade element
(top-right) in terms of the induction factors (bottom-right) where θt is a combination of the
pitch angle (θ) and twist (β), as θt = θ + β. Reproduced from [8].

α = φ− (θ + β) (3.14)

where β is the blade-element twist, θ is the blade-pitch angle, and λr is the local speed ratio

defined as λr = ωr/Vo. The angle of attack is used to interpolate the lift (Cl) and drag (Cd)

coefficients from an airfoil data table typically obtained from either wind tunnel tests or a

simulator such as XFOIL and computational fluid dynamics software. For example, Table 3.1

shows the S809 airfoil data obtained from wind tunnel testing at the Delft University of

Technology [1]. The data is plotted in Figure 3.4 where the data between α = 20.16◦ and

α = 30◦ is extrapolated. In the current thesis, high Reynolds number (Re) airfoil data

(i.e. Re ≥ 106) typical of large-scale wind-turbine blade sections is used. Since Cl and

Cd vary only slightly for high Re, it is assumed that Cl and Cd are independent of Re to

simplify the interpolation procedure. Using the lift and drag coefficients, the normal (Cn)

and tangential (Ct) force coefficients can be determined for a given φ as shown in Figure 3.5

and equations (3.15) and (3.16):
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Table 3.1: S809 airfoil data table for Reynolds number of 1.0 million [1]
α(◦) Cl Cd

-1.04 0.019 0.0095
-0.01 0.139 0.0094
1.02 0.258 0.0096
2.05 0.378 0.0099
3.07 0.497 0.0100
4.10 0.617 0.0100
5.13 0.736 0.0097
6.16 0.851 0.0095
7.18 0.913 0.0127
8.20 0.952 0.0169
9.21 0.973 0.0247
10.20 0.952 0.0375
12.23 1.007 0.0636
13.22 1.031 0.0703
14.23 1.055 0.0828
15.23 1.062 0.1081
16.22 1.043 0.1425
17.21 0.969 0.1853
18.19 0.938 0.1853
19.18 0.929 0.1853
20.16 0.923 0.1853

Cn = Cl cosφ+ Cd sinφ, (3.15)

Ct = Cl sinφ− Cd cosφ. (3.16)

Once Cn and Ct are determined for all blade elements, the rotor thrust and torque can

be calculated. The differential thrust (dT ) and torque (dQ) for each element are given by

equations (3.17) and (3.18):

dT = Bpndr, (3.17)

dQ = rBptdr (3.18)

where B is the number of blades, and pn and pt are the normal and tangential forces per

length evaluated using:

pn = Cn
1

2
ρairV

2
relc, (3.19)

30



−5 0 5 10 15 20 25 30
0

0.5

1

1.5

Angle of Attack α (°)

L
if

t (
C

l) 
an

d 
D

ra
g 

(C
d) 

C
oe

ff
ic

ie
nt

s

 

 
C

l

C
d

Figure 3.4: Lift and drag coefficients as a function of the angle of attack for the S809 airfoil.
Retrieved from [9].

Rotor plane

Figure 3.5: Aerodynamic forces occurring at a local blade element. Reproduced from [8].
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pt = Ct
1

2
ρairV

2
relc. (3.20)

In equations (3.19) and (3.20), the variable c is the chord length of the blade element. From

Figure 3.3, Vrel is given by:

Vrel =
(1− a)Vo

sinφ
(3.21)

and

Vrel =
(1 + a′)ωr

cosφ
. (3.22)

Combining equations (3.17), (3.19) and (3.21) gives:

dT =
1

2
ρairB

V 2
o (1− a)2

sin2 φ
cCndr. (3.23)

Similarly with equations (3.18), (3.20) and (3.22):

dQ =
1

2
ρairB

Vo(1− a)ωr(1 + a′)

sinφ cosφ
cCtrdr. (3.24)

The only unknowns in equations (3.23) and (3.24) are a and a′, which are obtained by

combining BET with momentum theory.

3.3.2 Momentum Theory

A modified momentum theory is implemented in BEM where the flow through the rotor is

assumed to behave as non-interacting circular streamtubes. This method is commonly re-

ferred to as strip theory and involves the discretization of a control volume in N streamtubes.

This is in contrast to the actuator disk concept described in section 3.2, where the control

volume involves no discretization. By dividing the control volume into N streamtubes, the

set of equations from momentum theory can be combined with the blade element equations,

which were obtained by dividing the blade by N as well. A streamtube of thickness dr is

shown in Figure 3.6.

Applying conservation of axial momentum on a streamtube gives an expression for the

differential thrust:

dT = 4πrρairV
2
o a(1− a)dr. (3.25)
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Figure 3.6: Streamtubes used in BEM. Reproduced from [8].

Similarly, applying conservation of angular momentum gives the differential torque:

dQ = 4πr3ρairVoω(1− a)a′dr. (3.26)

The power (dP ) is obtained by multiplying dQ with the angular velocity of the rotor, ω:

dP = ωdQ (3.27)

Before combining equations (3.25) and (3.26) with equations (3.23) and (3.24), momentum

theory must be corrected using Prandtl’s tip-loss factor and Glauert’s correction.

3.3.2.1 Tip-Loss Factor

The momentum equations ((3.25) and (3.26)) were derived assuming the rotor consisted of

an infinite number of blades (i.e. permeable disk). Clearly, turbines in reality only have a

limited number of blades and this assumption is not valid. The influence of the vortices shed

by a rotor with a finite number of blades on the induced velocity field is different from that

of a rotor with an infinite number of blades. These shed vortices are concentrated at the

blade tips and create a helical structure in the wake. For an infinite number of blades, the

helical structure will be a vortex cylinder, whereas the helical structure for the finite case will

consist of B discrete tip vortices. Therefore, a correction should be applied to the induced
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velocities near the tip region as a function of B to account for this effect. The inclusion of a

tip correction is critical because the aerodynamic forces near the tip greatly contributes to

the overall performance of the wind turbine. The most widely used tip correction involves

Prandtl’s tip-loss factor F , shown in Glauert [67] as the ratio between the average induced

velocity from the streamtube ā, and the induced velocity at the blades ab, which tends to

zero near the tip. Prandtl’s tip-loss factor presented by Glauert is inconvenient for BEM

computations and a simpler approximate expression is given by:

F =
2

π
cos−1 e−fP (3.28)

where

fP =
B

2

R− r
r sinφ

. (3.29)

Using Prandtl’s tip-loss factor, the momentum equations ((3.25) and (3.26)) are corrected

as follows:

dT = 4πrρairV
2
o a(1− a)Fdr, (3.30)

dQ = 4πr3ρairVoω(1− a)a′Fdr. (3.31)

In Prandtl’s derivation, a series of parallel planes with uniform spacing was used to ap-

proximate the helical vortex system behind the rotor. A more realistic and accurate analysis

was performed by Goldstein [68], however its solution is complex because it involves an infi-

nite series of Bessel functions. Due to the simplifications made by Prandtl, his tip correction

has limitations affecting its accuracy. For example, Prandtl’s approximation should only be

used for high tip-speed ratios and when the number of blades exceeds two. If these limita-

tions are respected, then a similar result to that of Goldstein’s is achieved. A more recent tip

correction was proposed by Shen et al. [69], which they claim results in better aerodynamic

load predictions near the tip. However, Clifton-Smith [70] found that the suitability of the

tip correction by Shen et al. to be highly questionable from an aerodynamic point of view

for blade optimizations. Despite the more accurate tip-correction models available in the
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literature such as those discussed in [68] and [69], Prandtl’s is used here because of its simple

implementation.

3.3.2.2 High-Thrust Correction

When the axial induction factor a, becomes approximately 0.4, the turbine enters in the

turbulent-wake state. This occurs when the turbine is operating at low wind speeds with

constant rotation (i.e. high values of λ). In the turbulent-wake state, the thrust coefficient

CT , deviates from momentum theory as shown by the experimental data [71] plotted in

Figure 3.7. According to momentum theory, see equation (3.7), the speed of the flow in

the rotor wake u1 becomes zero at a = 0.5 and negative for a > 0.5. This implies that the

wake begins to propagate upstream, which does not occur in reality. As a increases past

0.4, turbulence in the rotor wake develops and increases. Consequently, the flow in the wake

slows down but CT continues to increase.

Glauert proposed an empirical relationship to fit the experimental data but did not in-

clude the tip-loss effect. This can be adjusted by multiplying the momentum component,

CT = 4a(1− a), and a in Glauert’s fit by F . However, this forms a discontinuity at a = 0.4

whenever F is less than one. A modified Glauert correction by Buhl [10] is used here that

accounts for both the tip-loss effect and the discontinuity. It’s implementation will be shown

in the following section. Although the equations proposed by Glauert and Buhl approxi-

mately replicate the experimental data, they are not based on any physical rationalization

of the flow behaviour and additional thrust occurring in the turbulent-wake state [65]. More

accurate experimental data at high thrust is required which to base an accurate correction.

3.3.3 BEM Algorithm

The blade element and momentum theory equations have been introduced and it is now

possible to describe the last step in the BEM algorithm. The axial and tangential induction

factors are obtained by combining equation (3.23) with (3.30) and equation (3.24) with (3.31)
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respectively:

a =

(
4F sin2 φ

σCn
+ 1

)−1
, (3.32)

a′ =

(
4F sinφ cosφ

σCt
− 1

)−1
(3.33)

where the solidity σ, is a function of r and is defined by:

σ(r) =
c(r)B

2πr
. (3.34)

Note that the modified Glauert correction:

a =
18F − 20− 3

√
CT (50− 36F ) + 12F (3F − 4)

36F − 50
(3.35)

is applied instead of equation (3.32) when CT ≥ 0.96F , which is the equivalent of when

a ≥ 0.4. The thrust coefficient, CT , is obtained by combining its definition (equation (3.10))

for a blade element:

CT =
dT

ρairπV 2
o dr

(3.36)

with equation (3.23) from blade element theory that yields:

CT =
(1− a)2σCn

sin2 φ
. (3.37)
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Returning to equations (3.13) and (3.14), the induction factors a and a′ are not known until

equations (3.32), (3.33) and (3.35) are calculated. Therefore, a and a′ in BEM must be

solved iteratively until convergence is achieved. The BEM algorithm is summarized by the

following 6 steps and can be executed simultaneously for all blade elements:

1. Set an initial guess of a = 0 and a′ = 0;

2. Compute the flow angle φ, and hence the angle of attack α, using equa-

tions (3.13) and (3.14);

3. Interpolate the lift (Cl) and drag (Cd) coefficients from airfoil data tables using

α and compute the normal (Cn) and tangential (Ct) force coefficients using

equations (3.15) and (3.16);

4. Compute the tip-loss factor F , using equations (3.28) and (3.29), and the

thrust coefficient CT , using equation (3.37);

5. Compute a′ using equation (3.33) and apply equation (3.32) or (3.35) depend-

ing on the value of CT for a;

6. Check the values of a and a′ with those from the previous iteration. If the

tolerance level is met, terminate the algorithm, else return to step 2 and input

the values of a and a′ from step 5.

Once a and a′ are obtained within a certain tolerance level or the maximum number of

iterations pre-set by the user is reached, the thrust and power can be calculated from ei-

ther the blade element or momentum theories. The blade element theory equations (3.23)

and (3.24) are used here and normalized to give the differential power (dCP ) and thrust

(dCT ) coefficients with respect to µ = r/R:

dCP = B
(1− a)λ2(1 + a′)

πR sinφ cosφ
cCtµ

2dµ, (3.38)
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dCT = B
(1− a)2

πR sin2 φ
cCndµ. (3.39)

Equation (3.38) is obtained by combining equations (3.9), (3.24) and (3.27) for a blade

element and similarly equation (3.39) by combining equations (3.23) and (3.36). The CP

and CT for a rotor is then calculated by integrating from the hub radius rhub/R, to 1. Recall

that the BEM method involves a discretization by N and hence trapezoidal integration is

used to numerically evaluate equations (3.40) and (3.41):

CP =

1∫
rhub/R

B
(1− a)λ2(1 + a′)

πR sinφ cosφ
cCtµ

2dµ, (3.40)

CT =

1∫
rhub/R

B
(1− a)2

πR sin2 φ
cCndµ. (3.41)

3.4 Control and Regulation Strategy

Modern HAWTs are equipped with control or regulation systems to ensure the turbine

operates safely within its design range. For example, at high wind speeds, the power produced

by the aerodynamic torque (see dQ in equation (3.27)) may exceed the maximum limit for the

generator. To prevent exceeding the generator limit, a control system can adjust the pitch

angle of the blades or the rotor’s rotational speed, ω. Control and regulation systems are also

necessary in emergency situations. For instance, in case of a grid outage and high winds, the

rotational speed of the rotor will accelerate dangerously due to the loss in generator torque.

Unless a countermeasure is employed, the rotor’s rotational speed will continue to increase

leading to the destruction of the turbine.

Pitch and variable-speed control are not only used as safety mechanisms but also to

optimize CP in equation (1.5) at lower wind speeds. In addition, to maximize the amount of

wind through the rotor, yaw control is used to ensure the rotor’s rotation axis is aligned with

the wind direction at all times. Wind-turbine yaw and varying wind directions, however, is

not considered in this thesis. This section will describe how the BEM method can be used
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to predict the power curve for a pitch-regulated and variable-speed HAWT. Pitch regulation

will be discussed first followed by variable-speed operation.

3.4.1 Pitch Regulation

By actively changing the pitch angle of the blade θ, as shown in Figure 3.3 and equa-

tion (3.14), the angle of attack α, can be adjusted to control the lift and drag forces, and

consequently the power output. The adjustments can be achieved in practice by fitting each

blade with a motor and rotating each blade independently. Two pitch-regulation methods to

reduce the power output include increasing the angle of attack until the blades begin to stall

(pitch-to-stall) or decreasing the angle of attack such that the leading edge of the blade is

pointing towards the wind direction (pitch-to-feather). The former method is advantageous

in that the necessary angle to pitch the blade is smaller in comparison with the later. How-

ever, pitching to stall is not as precise and is accompanied by severe aerodynamic loadings.

For these reasons, among others, most modern HAWTs pitch the blades towards feather

in high winds. Pitch-to-stall and pitch-to-feather can readily be observed by referring to

Figure 3.4. When α exceeds approximately 15.3◦, the airfoil (or the blade element) begins to

stall and the drag coefficient becomes large. Conversely, when pitching to feather, α becomes

small and the lift and drag coefficients approach zero. Both methods reduce the tangential

force coefficient Ct, in equation (3.16) that results in lower torque (equation (3.24)) and

power (equation (3.27)).

The power curve for a fixed-speed HAWT with and without pitch regulation is shown

in Figure 3.8. From this figure, the turbine that is kept at θ = 0◦ pitch far exceeds its

rated power (Prated) of 60 kW and thus also its generator limit. When the same turbine with

pitch regulation reaches 60 kW at the rated wind speed of 12 m/s, Prated is achieved for all

higher wind speeds by pitching the blades to feather. Instead of pitch regulation, the 0◦

blade pitch could be readjusted such that the peak power lies below the Prated line. HAWTs

that implement this approach are called stall regulated as opposed to pitch regulated. To
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Figure 3.8: Fixed-speed HAWT with and without pitching to feather. Modified from [6].
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decrease α in pitch-regulated HAWTs, θ must increase per equation (3.14). The increase in

θ is shown in Figure 3.8 where the pitch angle increases from 6◦ to 24◦. It is also possible to

increase the power output below the rated wind speed using pitch adjustments, however this

becomes unnecessary for pitch-regulated HAWTs that also feature variable-speed operation.

3.4.2 Variable Speed

As discussed in section 1.3, the power coefficient CP , depends on the tip speed ratio λ, and

the pitch θ, for pitch-regulated wind turbines for both constant and variable speed. By

implementing pitch regulation and variable speed, it is possible to run the turbine at the

optimum CP (CP,opt) for a range of wind speeds at one λ and θ (λopt and θopt). Figure 3.9

displays the power as a function of the rotational speed for a fixed-pitch wind turbine with

and without variable speed. Variable-speed operation is represented by the thick curved line

that intersects the point of maximum possible power at each wind speed, Vo. Each intersec-

tion corresponds to CP,opt at a constant λopt = ωR/Vo where ω increases proportionally with

Vo. In contrast, fixed-speed operation is represented by the thin vertical line and it is easily
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observed that maximum power is not achieved at each Vo.

If CP = CP,opt = CP (λopt, θopt) for a range of Vo, then equation (1.3) can be combined

with P = ωQ to solve for the torque, Qopt:

Qopt =
1

2
ρair

R5πCP (λopt, θopt)

λ3opt
ω2 = Koptω

2 (3.42)

where Kopt is a constant. Combining equation (3.42) with P = ωQ once again gives an

expression for the optimum power:

Popt = Koptω
3. (3.43)

The power for variable-speed operation (curved line) shown in Figure 3.9 is given by equa-

tion (3.43) and will continue to increase with ω3 until either the maximum tip speed (ωR),

ω, or Prated is reached. The limit on tip speed is due to noise emission, since wind turbine

generated noise is well correlated with ωR (although there are other factors such as tip and

airfoil shapes) [72]. If the limit on ωR is reached before the Prated mark for increasing Vo, ω

becomes constant and the power is maximized using pitch adjustments. Once Prated is at-

tained, pitch adjustments are no longer used to maximize the power but rather to maintain
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Prated for all higher values of Vo as shown in Figure 3.8.

3.4.3 Pitch-Regulated and Variable-Speed HAWT Control Regions

To help illustrate sections 3.4.1 and 3.4.2, Figure 3.10 displays the power and thrust curves as

well as the pitch and RPM schedules for a pitch-regulated and variable-speed wind turbine.

Three distinct control regions, I, II and III are shown in Figure 3.10. Region I is the

variable-speed region where equation (3.43) applies. As shown in Figure 3.10(d), the RPM

increases proportionally with Vo to maintain a constant λopt and CP (λopt, θopt). The constant

CP (λopt, θopt) is also reflected in Figure 3.10(c), where θ = θopt. In region II, the RPM

becomes constant due to the tip-speed limit and pitch adjustments are used to optimize the

power. When optimizing for power in region II, the pitch will typically decrease to achieve

an increase in Ct (see section 3.4.1). However, it is common practice to constrain the pitch

to be greater than or equal to θopt. This simplifies the pitch scheduling and also reduces the

adverse thrust. As shown in Figure 3.10(b), the highest thrust occurs between regions II

and III, and would increase further if the pitch constraint were removed. The reduction in

thrust by imposing the pitch constraint is considered more beneficial than the potential gain

in power. In region III, Prated is reached and remains constant as shown in Figure 3.10(a).

The constant Prated is the result of pitch regulation, which pitches the blades towards feather

as shown in Figure 3.10(c). Also in region III, the thrust decreases and the RPM remains

at its maximum allowable value.

To obtain the performance curves in Figure 3.10 using the BEM method, it is necessary

to compute CP and CT through equations (3.40) and (3.41) for a range of λ and θ that

encompasses all possible operating conditions typical to pitch-regulated and variable-speed

HAWTs. Surface plots of CP and CT as a function of λ and θ are displayed in Figures 3.11

and 3.13 respectively. As shown for large values of λ and θ in Figure 3.11, a negative value

of CP indicates that the rotor will not turn and will act as a brake [73]. Following the

descriptions in sections 3.4.1 and 3.4.2, the performance curves are then extracted from the
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Figure 3.10: Power (a) and thrust (b) curves for a typical pitch-regulated (c) and vari-
able-speed (d) HAWT.

surface plots, which lie in the positive region of CP and CT as illustrated in Figures 3.12

and 3.14 respectively.

3.5 Verification and Experimental Validation

3.5.1 Verification with WT Perf

A BEM code was developed following the description given in section 3.3 and verified with

WT Perf by the National Wind Technology Center (NWTC) [74]. WT Perf is a descendent

of the PROP code written in FORTRAN, which is also based on the BEM method. The

Advanced Wind Turbine (AWT-27) with a 27 m rotor diameter is selected from the WT Perf

test archive as the baseline turbine for comparing CP results. CT is not considered because

WT Perf does not provide a readily available output for this coefficient. Furthermore, dif-

ferences in CP as a function of λ and θ are studied rather than differences in the power and

thrust curves (as shown in Figure 3.10) because WT Perf does not have a pitch and RPM
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Figure 3.11: Power coefficient CP , as a function of λ and θ for a typical HAWT.
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Figure 3.12: 2D plot of power coefficient CP (+), as a function of λ and θ for a typical HAWT.
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Figure 3.14: 2D plot of thrust coefficient CT (+), as a function of λ and θ for a typical HAWT.
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scheduler. The relative change ∆, is calculated using:

∆ =

∣∣∣∣CP − CWT Perf
P

CBetz-Jouk.
P

∣∣∣∣ 100% (3.44)

where CBetz-Jouk.
P = 16/27. The results are shown in Figure 3.15 for λ from 0.5 to 10 and

θ from -10◦ to 40◦. For λ beyond 10, WT Perf does not converge for some values of θ and

hence is not computed.

The minimum and maximum values of ∆ are 6.4 × 10−5% and 8.28% respectively. As

shown in Figure 3.15, ∆ becomes large for high values of λ and θ. This occurs because the

absolute magnitude of CP increases significantly in this region as shown in Figure 3.11, which

results in a large difference between CP and CWT Perf
P in the numerator of equation (3.44).

Consequently, the reference value of CBetz-Jouk.
P in the denominator becomes inappropriate

(i.e. too small), yielding a large ∆. If CWT Perf
P is used as the reference value instead of

CBetz-Jouk.
P in equation (3.44), then ∆ < 1% would be the result. However, CWT Perf

P was

not chosen as the reference value because ∆ approaches infinity when CWT Perf
P is near zero.

Nevertheless, pitch-regulated and variable-speed HAWTs rarely operate within this range

because of the negative CP and can therefore be neglected in the blade optimization.
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Besides the propagation and accumulation of small numerical inconsistencies through-

out the BEM algorithms, the source of discrepancy between the two codes may also be the

result of the different methods implemented for solving the induction factors. The devel-

oped BEM code uses fixed-point iteration with relaxation factors, while WT Perf employs a

combination of the Newton-Raphson and bisection methods. An attempt was made to incor-

porate the Newton-Raphson and bisection methods for the developed BEM code, however

the fixed-point approach (with relaxation factors) was found to be easier to implement for

the optimization considered in this thesis. For details regarding the fixed-point and Newton-

Raphson methods, refer to [75]. As shown in Figure 3.16, the values of CP computed from

the developed BEM code and WT Perf are almost identical. Therefore, the developed BEM

code is assumed to be sufficiently accurate for the remainder of this thesis.

3.5.2 Validation with NREL UAE Measurements

This section describes the accuracy of the BEM method with respect to measurements in a

controlled experimental setting. First, potential corrections needed in the BEM method for

3D effects and its relationship with aerodynamic stall and rotation will be discussed. Then,

the results obtained from BEM with and without the 3D corrections will be compared to

experimental measurements for a stall-regulated wind turbine. The BEM code developed in

this thesis does not include 3D corrections for simplicity and is deemed to have less of an

effect for pitch-regulated wind turbines. Furthermore, as will be shown in section 3.5.2.2,

discrepancies still occur despite the corrections. Determining and implementing the most

appropriate 3D correction for BEM is beyond the scope of this thesis. Nonetheless, the

effects of 3D flow behaviour should be discussed.

3.5.2.1 Three-Dimensional and Rotational Effects

As discussed in section 3.1 for BET, each blade element on the blade is treated aerodynami-

cally as an airfoil that acts independently from other blade elements. In addition, the radial
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Figure 3.16: 2D plots of the computed power coefficient CP , as a function of λ and θ vs.
from WT Perf for AWT-27.

48



component of the flow along the blade is ignored. Consequently, BEM does not take 3D

effects into account. While a wind-turbine rotor is rotating, a component of the flow moves

outwards from the blade root to the blade tip due to centrifugal and Coriolis forces. This

particular phenomenon leads to stall delay and predominantly influences the aerodynamics

near the blade root. In terms of blade performance, an augmentation in the lift (especially)

and drag is observed. As a result, the performance of a wind turbine benefits from stall

delay. Although stall delay may appear logical, it is still far from being completely under-

stood. The inclusion of the stall-delay effect in BEM can be approximated by adjusting the

2D airfoil data near the aerodynamic stall region.

Wind-turbine researchers have developed numerous different methods for adjusting airfoil

data to include stall delay. One method is by Chaviaropoulos and Hansen [76] and is based

on a semi-empirical correction law that is derived from a quasi-3D Navier-Stokes model. The

quasi-3D model is a simplification of the 3D incompressible Navier-Stokes equations. The

semi-empirical relations are given by:

Cl,3D = Cl,2D + h1(c/r)
h2 cosh3 (β)[Cl,INVISICID − Cl,2D], (3.45)

Cd,3D = Cd,2D + h1(c/r)
h2 cosh3 (β)[Cd,2D − Cd,2D(MIN)] (3.46)

where Cl and Cd are the lift and drag coefficients respectively. For each blade element, the

variable c is the chord length, r is the radius from the centre of rotation, and β is the twist.

The three constants h1, h2, and h3 are calibrated based on a computational data base, and

they depend on the airfoil data table used. For the stall-regulated NREL UAE wind turbine

described in section 3.5.2.2, h1, h2, and h3 are equal to 2.2, 1.3, and 4 respectively. From

equations (3.45) and (3.46), the pronounced influence of stall delay near the blade root is

indicated by the c/r term. At the root section, r is small and c is large, giving a large value

for c/r and hence an increase in Cl,3D and Cd,3D. The effect of the correction on the lift and

drag coefficients is shown in Figure 3.17 for the S809 airfoil at 33% of the blade span.

49



−5 0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Angle of Attack α (°)

Li
ft 

(C
l) 

an
d 

D
ra

g 
(C

d) 
C

oe
ffi

ci
en

ts

 

 
3−D C

l

2−D C
l

3−D C
d

2−D C
d

Figure 3.17: 2D- versus 3D-corrected S809 airfoil data at 33% of the blade span.

3.5.2.2 NREL UAE Measurements

The semi-empirical model developed by Chaviaropoulos and Hansen has been incorporated in

BEM and renamed ROTABEM. ROTABEM was then used to model the aerodynamic perfor-

mance of an instrumented, 2-bladed and stall-regulated wind turbine constructed by NREL.

The NREL wind turbine has a 10 m rotor diameter and was placed in the National Full-

Scale Aerodynamics Complex located in the NASA Ames Research Center for experimental

testing. This particular experimental test is known as the NREL Unsteady Aerodynamics

Experiment (UAE) in the NASA-Ames wind tunnel or alternatively, NREL UAE Phase VI.

A blind comparison was conducted where numerous researchers (e.g. Chaviaropoulos and

Hansen) attempted to predict the performance of the NREL turbine using their own mod-

eling tools without knowing the experimental results. The results from the NREL UAE is

compared to the BEM output in this section.

ROTABEM has been replicated in MATLAB by incorporating equations (3.45) and (3.46)

with the BEM code as described in section 3.3, and replacing the correction by Buhl with the

one used by Chaviaropoulos and Hansen, the unmodified Glauert correction. The necessary

instructions, airfoil data, and blade dimensions were taken directly from Chaviaropoulos and

50



Hansen’s documentation of their code in the Participant’s documentation file available on

the NREL Ames test website [9]. The replication was required to study the ROTABEM

output with and without the 3D corrections. Furthermore, NREL kept all modeler predic-

tions anonymous and it was unknown which of the results belonged to Chaviaropoulos and

Hansen’s ROTABEM.

Figure 3.18 displays the results for the particular test case consisting of a steady wind at

varying speeds with the NREL turbine in an upwind configuration and 0◦ yaw. Four torque

curves are shown of which two are acquired by digitizing Figure 8 in [11]. The digitized data

consists of the experimental measurements obtained from the instrumentation mounted on

the NREL wind turbine (black curve) and the output from ROTABEM (purple curve). The

remaining two curves are from the replicated ROTABEM code with (blue curve) and without

(red curve) the 3D corrections. As shown in Figure 3.18, a nearly identical match is achieved

between ROTABEM developed by Chaviaropoulos and Hansen, and the replicated version.

However, despite the 3D corrections, discrepancies exist between ROTABEM and the mea-

sured data. As one might expect, according to stall-delay theory, the BEM code without the

3D correction under predicts the torque for all wind speeds. Conversely, ROTABEM over

predicts the torque from 10 m/s to 13 m/s but also under predicts the torque from 15 m/s

to 25 m/s. Based on this analysis, it is not evident how current 3D-correction models may

significantly improve the accuracy of BEM, and is therefore not included in this thesis. A

similar conclusion was also found by Breton, Coton and Moe [77], where a total of six differ-

ent 3D-correction models were investigated and in general, over predicted the loads on the

turbine.
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Chapter 4

STRUCTURAL MODEL

4.1 Introduction

The structural model consists of a cross-sectional model and beam theory. Similarly as in

the BEM method, the blade is divided into N blade elements where the cross-section of each

element is analyzed structurally. Figure 4.1 illustrates a typical wind-turbine blade cross-

section. To perform the structural analysis, the mechanical properties of each material in

the cross-section are assumed to be isotropic. Consequently, a mechanical property such as

the elastic modulus E, is independent of the direction of loading considered. The isotropic

assumption allows E to be simply multiplied with the cross-sectional area A, the first moment

of area S, and second moment of inertia I, to obtain the stiffness EA, ES and EI for each

blade element. In reality, most wind-turbine blades are fabricated from fibre-reinforced

plastics (FRP), whose properties do depend on the direction of loading and are said to be

anisotropic. The fibre orientation in FRPs provides stiffness to the blade in the directions

where the loads are large, and less stiffness where it is not needed. In addition to its superior

stiffness properties, FRPs have high strength-to-weight ratios making them ideal for wind-

turbine blades. The calculation of cross-sectional properties including anisotropic effects,

however, is complex and as a result the cross-sectional model presented here is restricted to

the simpler isotropic case. To estimate the structural behaviour of a wind-turbine blade using

beam theory, the cross-sectional properties such as the bending stiffness EI, are required as

input.

By definition, a beam is a structure having one of its dimensions much larger than the

other two [78]. Beams are commonly used in civil and mechanical engineering with the

main purpose of supporting loads. For a wind turbine, the blade’s inner core is designed
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Figure 4.1: Photo of an actual wind-turbine blade cross-section taken at NREL in Golden,
CO, USA. Credit: Green Career Central (http://www.greencareercentral.com).

similarly to that of a beam to support the aerodynamic loads produced by the blade’s outer

aerodynamic shape. In contrast, the blade’s outer aerodynamic shape is usually designed

as a thin shell that contributes minimally to the blade structural strength. Because of the

resemblance, beam theory can be used to model the structural behaviour of a wind-turbine

blade.

Beam theory allows designers to perform simple structural analyses. Alternatively, tools

that implement the finite element method can also be used but rely on increased computing

costs, and are more suitable for detailed stress and displacement analysis of complex struc-

tures. A number of beam theories exist in the literature based on different assumptions and

levels of accuracy. Among them, Euler-Bernoulli beam theory is one of the simplest and

most widely used. The Euler-Bernoulli assumptions are as follows [78]:

1. The cross-section is infinitely rigid in its own plane;

2. The cross-section remains plane after deformation;

3. The cross-section remains normal to the deformed axis of the beam.
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These assumptions are typically valid for thin cross-sections and small deformations. For

thick structures and large deflections, the assumptions are not valid because shear defor-

mation and cross-sectional warping occurs [79]. To account for some of the Euler-Bernoulli

assumptions, a higher order Timoshenko beam model can be used instead. In Timoshenko

beam theory, cross-sections still remain plane but are no longer normal to the deformed axis

of the beam (shear deformation). The Euler-Bernoulli beam model is implemented here be-

cause of its simpler implementation with the cross-sectional model in the preliminary design

optimization of wind-turbine blades. Consequently, it is assumed that blade deformations

are small in comparison with the blade length and shear effects are negligible.

4.2 Cross-Sectional Model

4.2.1 Cross-Sectional Layup

The cross-section of a wind-turbine blade is a complex shape composed of many parts and dif-

ferent materials. There are several designs of the layup regarding the number and placement

of skins, shear webs, leading- and trailing-edge reinforcements, and spar caps, in addition

to the dimensions and materials selected for each (see Figure 4.2 for definitions of terms).

A layup common to many blade designs is the box type as shown in Figure 4.2, and is

selected as the baseline for the cross-sectional model. In the box-type layup, the spar caps

are glued in-between the two shear webs forming a box within the upper and lower surfaces.

Although box-type layups may vary from one wind-turbine blade to another, the one con-

sidered here includes a shell composed of a gelcoat (for the surface) and two skins, two shear

webs, fore and aft panels, and two spar caps of equal thickness. Leading- and trailing-edge

reinforcements, which mainly provide edgewise stiffness (EIy in section 4.2.4), are not in-

cluded. Approximate dimensions for the gelcoat, skins, shear webs, and panels are obtained

from [80]. The thickness distribution of the spar caps between the blade root and tip is left

as an optimization variable, and is discussed in section 4.4. The materials selected for the
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Figure 4.2: Typical box-type layup at a wind-turbine blade cross-section.

various components of the cross-section are from [2] and summarized in Table 4.1 with their

mechanical properties. Since materials are treated in an isotropic manner as mentioned in

section 4.1, the more crucial flapwise component from [2] is chosen for the elastic modulus E.

If desired, the user may input their own dimensions and material properties, as well as the

location of the shear webs in the cross-sectional model. Here, the shear webs are located at

0.2c and 0.5c, where c is the chord length. However, to further describe this model, materials

from [2] will be used as example.

Table 4.1: Material properties used in cross-sectional model [2].

Property [0◦] A260 [±45◦][0◦] CDB340 Rand. Mat Balsa Gel Coat

Elastic Mod., E (GPa) 31.0 24.2 9.65 2.07 3.44
Density, ρ (kg/m3) 1700 1700 1670 144 1230

The skins and spar caps are fabricated from an epoxy matrix reinforced with E-glass

fibres (i.e. fibreglass). The spar cap is composed of uniaxial ([0◦]) A260 fabric, where the

fibres are oriented along the blade ([0◦]) giving maximum stiffness in that direction. The

two skins in the shell consist of a random mat and triaxial ([±45◦][0◦]) fibreglass laminate

designated CDB340. For the shear webs and panels, balsa is used with a layer of CDB340

on each side. This forms a sandwich construction of CDB340 separated by a balsa core. To

facilitate the integration across the shear-web and panel coordinates (see section 4.2.2), a

continuous piece of balsa between the shear web and panel is assumed.
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4.2.2 Laminate Coordinates Calculation

The cross-sectional model begins by importing the x- and y-airfoil profile coordinates corre-

sponding to each blade element from the blade root to tip. To obtain a laminate of constant

thickness all around the inner airfoil’s contour (see left of Figure 4.3), the slope across the

coordinates of the laminate must match that of the airfoil profile. Therefore, the subsequent

step is to compute the slope about the airfoil’s upper and lower profile using finite differences

as shown on the right of Figure 4.3. Using the slope normal to that of the airfoil profile and a

given thickness, the coordinates of the laminate are computed. This procedure is extended to

the multi-laminated cross-section in Figure 4.2 and scaled in proportion to the blade element

chord, as illustrated in Figure 4.4.

4.2.3 Green’s Theorem

Green’s theorem is: ∫∫
S

(
∂N

∂x
− ∂M

∂y

)
dxdy =

∮
L

Mdx+Ndy, (4.1)

which states that the surface integral over a planar region As, can be converted to a line

integral along the boundary of As. Applying Green’s theorem, the surface integral equations
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for the area (A), first moment of area (S), and second moment of inertia (I) are converted

to line integral equations, as shown by:

A =

∫∫
As

dxdy = −1

2

∮
L

y dx− x dy, (4.2)

Sx =

∫∫
As

x dxdy =
1

2

∮
L

x2 dy, (4.3)

Sy =

∫∫
As

y dxdy = −1

2

∮
L

y2 dx, (4.4)

Ix =

∫∫
As

x2 dxdy =
1

3

∮
L

x3 dy, (4.5)

Iy =

∫∫
As

y2 dxdy = −1

3

∮
L

y3 dx, (4.6)

Ixy =

∫∫
As

xy dxdy = −1

4

∮
L

xy2 dx− x2y dy. (4.7)

The conversion of a surface to a line integral allows the geometrical properties A, Sx, Sy, Ix,

Iy and Ixy for each laminate in a multi-laminated cross-section to be evaluated by simply

integrating from one coordinate to the next.

4.2.4 Calculation of Cross-Sectional Properties

Before calculating the cross-sectional properties, definitions must be outlined. Following the

reference coordinate system shown on Figure 4.5, the definitions are as follows [8]:
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• Linear mass ρA =
∫∫
As

ρ(x, y) dxdy;

• Longitudinal stiffness EA =
∫∫
As

E(x, y) dxdy;

• Moment of stiffness about the x-axis ESx =
∫∫
As

E(x, y)y dxdy;

• Moment of stiffness about the y-axis ESy =
∫∫
As

E(x, y)x dxdy;

• Bending stiffness about the x-axis EIx =
∫∫
As

E(x, y)y2 dxdy;

• Bending stiffness about the y-axis EIy =
∫∫
As

E(x, y)x2 dxdy;

• Moment of centrifugal stiffness EIxy =
∫∫
As

E(x, y)xy dxdy.

For homogeneous and isotropic materials, ρ and E are constants and simply multiplied with

equations (4.2) to (4.7) to obtain the above-mentioned cross-sectional properties.

The weighting method as described in [81] is used to extract the effective cross-sectional

properties for each blade element. First, the equivalent elastic modulus of the shell EShell, is

calculated by using the thickness τ , of the shell’s constituents as weights:

EShell =
Egelcoatτgelcoat + Erandom matτrandom mat + ECDB340τCDB340

τgelcoat + τrandom mat + τCDB340

. (4.8)

A similar approach is performed to obtain the equivalent density of the shell, ρShell. The

linear mass for the shell, spar cap, shear webs, and panels are then computed and aggregated

to obtain the linear mass of a blade element m:

m = [ρA]Shell + [ρA]Spar Caps +

num. layers∑
[ρA]

Webs/Panels
layer . (4.9)

Similarly, the effective stiffness quantities are obtained as follows:

EAtotal = [EA]Shell + [EA]Spar Caps +

num. layers∑
[EA]

Webs/Panels
layer , (4.10)

ESx,total = [ESx]
Shell + [ESx]

Spar Caps +

num. layers∑
[ESx]

Webs/Panels
layer , (4.11)

ESy,total = [ESy]
Shell + [ESy]

Spar Caps +

num. layers∑
[ESy]

Webs/Panels
layer , (4.12)
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EIx,total = [EIx]
Shell + [EIx]

Spar Caps +

num. layers∑
[EIx]

Webs/Panels
layer , (4.13)

EIy,total = [EIy]
Shell + [EIy]

Spar Caps +

num. layers∑
[EIy]

Webs/Panels
layer , (4.14)

EIxy,total = [EIxy]
Shell + [EIxy]

Spar Caps +

num. layers∑
[EIxy]

Webs/Panels
layer . (4.15)

To calculate the strains and deflections using Euler-Bernoulli beam theory as explained

in section 4.3, the bending stiffness about the principal axes (EI1 and EI2), where the axes

have its origin in the point of elasticity (PE), are required as input. The PE is defined as the

point where a normal force Nz,norm (in/out of the x-y plane), will not give rise to a bending

of the beam. The procedure given by Hansen [8] is used here to determine EI1 and EI2.

First, the PE is calculated in the x-y reference frame as follows:

xPE =
ESy,total
EAtotal

, (4.16)

yPE =
ESx,total
EAtotal

. (4.17)

Then, the parallel axis theorem is used to translate EIx,total, EIy,total, and EIxy,total (equa-

tions (4.13) to (4.15)) to the PE:

EIx,PE = EIx,total − y2PEEAtotal, (4.18)

EIy,PE = EIy,total − x2PEEAtotal, (4.19)

EIxy,PE = EIxy,total − xPE yPEEAtotal. (4.20)

The angle between the x-axis (with origin at the PE) and the first principal axis is referred

to as the principal stiffness angle ξ, and is defined as:

ξ =
1

2
tan−1

(
2EIxy,PE

EIy,PE − EIx,PE

)
. (4.21)

Finally, EI1 and EI2 are obtained through:

EI1 =
EIx,PE + EIy,PE

2
+
EIx,PE + EIy,PE

2
cos 2ξ − EIxy,PE sin 2ξ, (4.22)
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EI2 =
EIx,PE + EIy,PE

2
− EIx,PE + EIy,PE

2
cos 2ξ + EIxy,PE sin 2ξ. (4.23)

The above procedure can be visualized in Figure 4.5, which displays a cross-section with the

relevant cross-sectional properties.

chord line

2nd principal axis

1st principal axis

principal stiffness anglePE

Figure 4.5: Cross-section showing relevant structural properties (ξ enlarged for clarity).

4.2.5 Verification with Analytical Model

This section describes the verification results using an analytical model referred to as the

double-ellipse. In the double-ellipse model, a blade consists entirely of an elliptical annulus

made of a single isotropic material. The double-ellipse model is to verify the calculation of the

cross-sectional properties (section 4.2.4) because of its readily available solution. Figure 4.6

displays the cross-section at the blade root and tip for an arbitrary blade. The width and

height of the outer ellipse is equal to the chord and thickness of the blade element respectively.

The blade element cross-sections in-between the root and tip are not shown in Figure 4.6 for

brevity.

In addition to an analytical model, PreComp (Pre-processor for computing Composite

blade structural properties) [82] written in FORTRAN by the NWTC will also be used

for verification. Cross-sectional properties computed by PreComp include flapwise (EIx),

edgewise (EIy), longitudinal (EA) and torsion stiffness, cross-coupled stiffness properties

(for anisotropic layups), inertia properties, and shear-centre (SC), centre-of-mass (CM), and
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Figure 4.6: Double-ellipse cross-section at blade root (left) and tip (right) of an arbitrary
wind-turbine blade.

tension-centre (i.e. PE) offsets. To compute these properties, PreComp uses a method

that combines a modified classical laminate theory with a shear-flow approach. The shear-

flow approach, akin to Bredt-Batho’s for metallic blades, accounts for the warping effects

when computing the torsion stiffness, cross-coupled stiffness properties, and other structural

properties [83]. Although tailored for composite blades with anisotropic layups, PreComp

may also be used to compute cross-sectional properties for the special case of an isotropic

composite material. As stated in the user’s guide [83], PreComp was verified with analytical

models (elliptical, rhombus and rectangular) made of isotropic materials.

The computed, analytical and PreComp results for the relevant cross-sectional properties

of an arbitrary blade using the double-ellipse model are shown in Figures 4.7 to 4.10. Since

stiffness properties from PreComp are referenced to the SC by default, it was necessary to

obtain the computed and analytical stiffness results referenced to the SC for comparison.

The SC is defined as the point where a shear force will not give rise to a twisting of the

beam. Since the torsional stiffness and SC are not considered in the current cross-sectional

model, the PE coordinates from equations (4.16) and (4.17) are manually replaced with the
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SC coordinates from PreComp for verification studies only. Similarly, PreComp does not

compute the principal stiffness angle ξ, but rather the orientation of the principal inertia

axes ξCM, which is referenced to the CM. Modifications were made to the cross-sectional

model to output ξCM.

Results from Figures 4.7 to 4.10 demonstrate good agreement between the current model

and PreComp, but slight discrepancies with the analytical solution. To further distinguish

the discrepancies, the relative change ∆, from the analytical solution, is plotted in Fig-

ures 4.11 and 4.12. As shown in Figure 4.11, ∆ grows in a similar trend for both the

cross-sectional model and PreComp from the blade root to tip. The increased magnitude

of ∆ from PreComp in comparison to the current model is because of the limit imposed by

PreComp on the number of airfoil coordinates used as input. Since the resolution of the

airfoil profiles for the current model is greater than that of PreComp, it is expected that

the current model will have a smaller magnitude of ∆. The maximum values of ∆ at the

blade root and tip are 1% and 24.4% respectively. Although ∆ for the PE coordinates and

ξCM are very small, the significant increase in ∆ for the mass and stiffness is disconcerting.

Recognizing that similar results were obtained for the current model and PreComp, further

study on the double-ellipse was performed.

In the double-ellipse model, the slope of the inner ellipse does not match that of the outer

ellipse. As shown on the bottom of Figure 4.13, the relative change in slope ∆slope, between

the outer and inner ellipses grows as the relative thickness (t/c) decreases (where t in this

case is the outer-ellipse’s height). The same trend is observed in ∆ from Figure 4.11, where

t/c decreases towards the blade tip. Recall from section 4.2.2 that the cross-sectional model

calculates the inner-contour coordinates for a given distance (or laminate thickness) normal

to the airfoil profile. This procedure is necessary to maintain a constant laminate thickness.

As a result, the inner-contour coordinates will have the same slopes as the outer ellipse. In

other words, the computed and PreComp inner contours are not ellipses. The difference in
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inner-contour shapes are shown in Figure 4.14 for the illustrative case of an outer ellipse

with a relative thickness of 20% (t/c = 0.2) and 0.09c laminate thickness. Note that the

magnitude of ∆slope and ∆ depends on (t/c) when compared to the laminate thickness, since

an infinitesimally thin laminate will result in zero ∆slope and ∆.

Clearly, the cross-sectional model and PreComp are calculating the cross-sectional prop-

erties as intended. When the circular root is considered alone, ∆ is less than 1% for all

cross-sectional properties as shown in Figures 4.11 and 4.12. The reason is because the slope

of the inner and outer contours for a circular annulus are identical. Modifying the current

model such that the inner-contour coordinates were identical to that of an ellipse resulted

in ∆ of less than 1.3% for all cross-sectional properties from root to tip of the blade.

4.2.6 Verification for Realistic Blade Cross-Section

The current section describes the verification results for a blade with airfoil and structural-

layup geometries that vary along the blade span. The box-type layup as described in sec-

tion 4.2.1 is implemented. Since this particular cross-section is more sophisticated than

the double-ellipse model described in section 4.2.5, an analytical solution is not available.

Figures 4.15 to 4.18 display the computed and PreComp results for an arbitrary blade. In

contrast to the symmetrical double-ellipse, yPE is not always zero for the more realistic blade

cross-section (see Figure 4.17). The asymmetry can also be seen in ξCM from Figure 4.18,

where ξCM is no longer equal to 0◦ as in Figure 4.10.

Both codes show good agreement for all properties except for slight discrepancies in

the stiffness EIy,SC, the x-coordinate of the PE, and ξCM. Similarly as explained for the

verification of the BEM code with WT Perf in section 3.5.1, the different methodologies

used and small numerical inconsistencies may be the source of discrepancy between the two

codes. As mentioned in section 4.2.5, PreComp implements a modified classical laminate

theory approach and has a limit on the number of airfoil coordinates used as input. In

addition, PreComp does not assume a continuous piece of balsa between the shear web and
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panel (see section 4.2.1) and positions the shear webs in a slightly different location than in

the cross-sectional model described here. For the remainder of this thesis, it will be assumed

that the developed cross-sectional model is sufficiently accurate, and for brevity, the relative

change (∆) between the cross-sectional model and PreComp will not be discussed.

4.3 Beam Model

4.3.1 Bending Moments and Deflections

Having computed the aerodynamic loads from BEM (section 3.3), and the blade structural

properties from the cross-sectional model (section 4.2), it is now possible to calculate the

bending moments and deflections as described by Hansen [8]. As explained in section 4.1 and

illustrated in Figure 4.19, a wind-turbine blade can be modelled as a beam. Here, a prismatic

cantilever beam with a rectangular cross-section is assumed. Hence, the cross-section from

root to tip is uniform and EI is constant. In reality, the wind-turbine blade is tapered,

twisted, and varies in EI from root to tip. However, the box formed by the spar caps –which
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Figure 4.19: A wind-turbine blade modelled as a beam. Reproduced from [8].

mostly determines the blade stiffness– and shear webs, is nearly rectangular in shape as in

a beam (see Figure 4.5)1. In the beam model, the blade is divided into N number of blade

elements that coincide with the blade elements in BEM. First, the aerodynamic loads pn and

pt are taken from the maximum thrust experienced between Vo,cut-in and Vo,cut-out as shown

in Figure 3.10(b), and rotated by the corresponding pitch angle θ, to obtain pz and py.

The point of maximum thrust is when the aerodynamic loads reach their maximum possible

values, and therefore the worst-case scenario for structural considerations. Then, the shear

forces Tz and Ty, and bending moments My and Mz, are calculated for each blade element

by numerically integrating equations (4.24) to (4.27):

dTz
dx

= −pz(x), (4.24)

dTy
dx

= −py(x), (4.25)

dMy

dx
= Tz(x), (4.26)

dMz

dx
= −Ty(x), (4.27)

which are derived from a free body diagram of an infinitesimal piece of the beam (Fig-

ure 4.20). Only the static case is considered, and hence the inertia terms m(x)δ̈z(x, ts) and

1This is true along the outer portion of the blade, but at the cylindrical root, the spar caps and shear
webs are somewhere in between a box and a cylinder [84].
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Figure 4.20: Free body diagram for an infinitesimal piece of the beam. Reproduced from [8].

m(x)δ̈y(x, ts), where δ is the deflection and ts is time, in equations (4.24) and (4.25) have

been neglected.

The bending moments about the principal axes are obtained using:

M1 = My cos(β + ξ)−Mz sin(β + ξ), (4.28)

M2 = My sin(β + ξ) +Mz cos(β + ξ) (4.29)

where β is the twist measured from the tip chord and ξ is the principal stiffness angle. The

curvatures about the principal axes are calculated from Euler-Bernoulli beam theory:

κ1 =
M1

EI1
, (4.30)

κ2 =
M2

EI2
, (4.31)

which are rotated back to the y- and z-axes using:

κz = −κ1 sin(β + ξ) + κ2 cos(β + ξ), (4.32)

κy = κ1 cos(β + ξ) + κ2 sin(β + ξ). (4.33)

The slopes ψy and ψz, and deflections δz and δy, are obtained numerically from:

dψy
dx

= κy, (4.34)

dψz
dx

= κz, (4.35)
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dδz
dx

= −ψy, (4.36)

dδy
dx

= ψz (4.37)

where δz and δy are rotated by θ to attain δn and δt. To solve the shear forces, bend-

ing moments, slopes, and deflections, the boundary conditions for a cantilever beam where

T
(N)
z = 0, T

(N)
y = 0, M

(N)
y = 0, M

(N)
z = 0, ψ

(1)
y = 0, ψ

(1)
z = 0, δ

(1)
z = 0, and δ

(1)
y = 0 are ap-

plied when integrating equations (4.24) to (4.27) and equations (4.34) to (4.37) respectively.

The superscripts (1) and (N) correspond to the blade root and tip respectively.

4.3.2 Verification of Bending Moment and Deflection Calculations

To verify the beam model calculations, the 2 MW Tjæreborg turbine test case from Hansen [8]

is chosen. From this test case, it is possible to verify the aerodynamic loads computed from

BEM and the bending moments from the beam model. To perform such a verification, the

aerodynamic and structural data for the Tjæreborg turbine from Øye [85, 86] was used.

Figure 4.21 displays the results from BEM and the digitized data from Hansen for the

aerodynamic load about the first principal axis at Vo = 10 m/s. As shown in Figure 4.21,

the aerodynamic load from BEM and Hansen are in good agreement, which is necessary

for verification of the bending moment calculations through equations (4.24) to (4.29). The

good agreement between the beam model and the digitized data from Hansen in Figure 4.22

confirms that the bending moments are computed correctly.

The 2 MW Tjæreborg turbine test case does not provide a verification of the deflection

calculations (equations (4.34) to (4.37)) unless the effect of the centrifugal force on the

deflected blades, known as centrifugal stiffening, is included in the beam model. Centrifugal

stiffening reduces the flapwise bending moment from the blade root to tip (see Figure 4.22),

and can be included in the beam model by adding the centrifugal load to the aerodynamic

loads (see Hansen [8]). Since the extra loading from the centrifugal force depends on κ and

ψ, which in turn depends on the aerodynamic loads, an iterative procedure is necessary
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Figure 4.21: Computed aerodynamic load about the first principal axis vs. from Hansen [8]
for 2 MW Tjæreborg turbine at Vo = 10 m/s.
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Figure 4.23: Simple distributed loads on a cantilever beam gives an analytical solution for
the deflections.
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Figure 4.24: Computed normal (δz) and tangential (δy) deflections vs. analytical results.

to obtain the bending moments and deflections. The author has made several attempts

to include centrifugal stiffening within the beam model, but did not manage to achieve a

stationary solution. It is assumed that centrifugal stiffening has a negligible effect and to

verify the calculation of the deflections, an analytical test case is used instead. The analytical

test case is illustrated in Figure 4.23, and the computed and analytical results are shown in

Figure 4.24. A relative change of less than 0.5% was achieved.

4.4 Structural Optimization and Constraints

As stated in section 4.2.1, the thickness distribution of the spar caps between the blade root

and tip is an optimization variable (Figure 4.25(a)). The spar-cap thickness (SCT) is not
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Figure 4.25: Blade element spar-cap thickness (SCT) (a), bending stiffness (b), bending
moment (c), and flapwise deflection (d) distributions for an arbitrary blade. Retrieved
from [3].

determined by the conventional or hybrid MOEA as described in Chapter 5, but through

an optimization scheme internal to the code describing the structural model instead. The

internal optimization minimizes the blade mass mblade, while satisfying the strain and tip

deflection constraints to be presented below. When a particular blade cannot satisfy the

strain or tip deflection constraints, the optimization determines the SCT distribution such

that the constraint violation is a minimum. Once the spar-cap thickness distribution is

found, the element bending stiffness (EI1 and EI2) and bending moment (M1 and M2)

distributions about the principal axes (Figures 4.25(b) and 4.25(c)) can be used to calculate

the strain. From Euler-Bernoulli beam theory, the strain in the cross-section using the x′-

and y′-coordinate frame (see Figure 4.26) is given by:
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Figure 4.26: Cross-section showing structural properties and strain measurement locations
(ξ enlarged for clarity). Retrieved from [3].

ε(x′, y′) =
M1

EI1
y′ − M2

EI2
x′ +

Nz,norm

EA
. (4.38)

Evaluating equation (4.38) for the entire cross-section is difficult, and hence assumptions are

made for simplification. First, since the longitudinal stiffness EA, is large and the normal

force Nz,norm, is small for large-scale wind-turbine blades, the third term in equation (4.38)

is assumed negligible:

ε(x′, y′) =
M1

EI1
y′ − M2

EI2
x′. (4.39)

The two terms in equation (4.39) represents two distinct strain components, which were

aggregated based on the principle of superposition of Euler-Bernoulli beam theory to yield the

total strain occurring on a blade element. Here, each strain component is treated separately

as ε1 and ε2, and whether ε is in compression (−) or tension (+) is not considered, as shown

by:

ε1 =

∣∣∣∣M1

EI1

∣∣∣∣ |y′|, (4.40)

ε2 =

∣∣∣∣M2

EI2

∣∣∣∣ |x′|. (4.41)

Clearly, the maximum strain occurs at y′max or y′min for ε1, and x′max or x′min for ε2:

ε1,max =

∣∣∣∣M1

EI1

∣∣∣∣max[|y′max|, |y′min|], (4.42)

ε2,max =

∣∣∣∣M2

EI2

∣∣∣∣max[|x′max|, |x′min|]. (4.43)
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As a result, x′max, x
′
min, y′max and y′min become the strain monitoring locations as shown

in Figure 4.2. The x′- and y′-coordinates referenced to the principal axes are obtained via

transformation of x and y using: x′

y′

 =

 cos ξ sin ξ

− sin ξ cos ξ


 (x− xPE)

(y − yPE)

 . (4.44)

Equations (4.42) and (4.43) can now be easily implemented with the optimization algorithm

as a strain constraint given by:

(max[ε1,max, ε2,max]− εmax)/εmax ≤ 0. (4.45)

The maximum allowable strain (εmax) in equation (4.45) is a value used typically in blade

design and is not associated to specific material and safety factor choices. The value of εmax

is also constant from the blade root to tip.

The maximum tip deflection δmax, in equation (4.46) is equal to 50% of the initial blade

tip clearance, which is the allowable tip deflection under normal turbine operation for a

quasi-static analysis in the Germanischer Lloyd regulations [87]:

(δtipflap − δmax)/δmax ≤ 0. (4.46)

The flapwise tip deflection δtipflap, is equal to δn (or δflap) at the blade tip. Figure 4.25(d)

displays δn for an arbitrary wind-turbine blade.
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Chapter 5

HYBRID MULTI-OBJECTIVE EVOLUTIONARY

ALGORITHM

5.1 Multi-Objective Optimization Concepts

We consider a multi-objective optimization problem of the form:

minimize f1(x), f2(x), . . . , fq(x)

subject to x ∈ X

X = {x ∈ Rn|

gd(x) = 0, d = 1, . . . , Nd|

he(x) ≤ 0, e = 1, . . . , Ne|

xLk ≤ xk ≤ xUk , k = 1, . . . , n}

(5.1)

with q ≥ 2 possibly conflicting objective functions. The vector of objectives z = f(x) =

(f1(x), f2(x), . . . , fq(x)) is called an objective vector and the vector of decision variables x =

(x1, x2, . . . , xn) a decision vector. The decision vector x is an element of the n-dimensional

real numbers x ∈ Rn that satisfy all constraints. The functions gd(x) and he(x) are equality

and inequality constraints respectively, and the decision variables xk are bounded by upper

(xUk ) and lower (xLk ) values. Altogether, x belongs to the feasible region X. Problem (5.1)

may be expressed as a combination of maximization and minimization of f(x) as well. For

this chapter, concepts will be explained treating problem (5.1) as minimization only (unless

otherwise stated) and in Chapter 6 as a combination of minimization and maximization.

Three definitions regarding optimality in multi-objective optimization follow:

Definition 1 : The decision vector x∗ ∈ X for problem (5.1) is called a Pareto-optimal

solution if there does not exist another x ∈ X such that fi(x) ≤ fi(x
∗) for all i = 1, . . . , q and
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fj(x) < fj(x
∗) for at least one j where j = 1, . . . , q. An objective vector is Pareto optimal if

the corresponding decision vector is Pareto optimal as well. The set of all objective vectors

that are Pareto optimal is known as the Pareto front.

Definition 2 : The decision vector x∗ ∈ X for problem (5.1) is called a weakly Pareto-

optimal solution if there does not exist another x ∈ X such that fi(x) < fi(x
∗) for all

i = 1, . . . , q. An objective vector is weakly Pareto optimal if the corresponding decision

vector is weakly Pareto optimal.

Definition 3 (from Geoffrion [88]): The decision vector x∗ ∈ X for problem (5.1) is called

a properly Pareto-optimal solution if it is Pareto optimal and if there is some real number

M > 0 such that for each fi(x) and each x ∈ X satisfying fi(x) < fi(x
∗), there exists at

least one fj(x) such that fj(x
∗) < fj(x) and

fi(x
∗)− fi(x)

fj(x)− fj(x∗)
≤M . (5.2)

An objective vector is properly Pareto optimal if the corresponding decision vector is properly

Pareto optimal. In other words, a solution is properly Pareto optimal if there is at least one

pair of objectives for which a finite decrement in one objective is possible only at the expense

of some reasonable increment in the other objective [89]. The properly Pareto-optimal set

represents bounded trade-offs within the Pareto-optimal set. Based on these three optimality

definitions, the properly Pareto-optimal set is a subset of the Pareto-optimal set which is a

subset of the weakly Pareto optimal set.

In the field of multiple criteria decision making (see e.g. Miettinen [90]), multi-objective

optimization problems are treated in a single-objective sense by using scalarization func-

tions. Among the numerous different scalarization functions available in the literature, an

achievement scalarizing function (ASF) [90, 91] is commonly used and is given by:

minimize
q

max
i=1

wi(fi(x)− z̄i) + ρo

q∑
i=1

wi(fi(x)− z̄i)

subject to x ∈ X

(5.3)
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Figure 5.1: Illustrating the projection of a feasible (A) and infeasible (B) reference point
onto the Pareto front (thick lines). Reproduced from [12]. c©2009 Massachusetts Institute
of Technology.

where wi = 1/(zmaxi − zmini ) is a weight factor assigned to each objective function fi(x)

and z̄i is a reference point z̄ ∈ Rq. An augmentation term where ρo takes a small positive

value (e.g. 10-6) is added to produce properly Pareto-optimal solutions. Here, ρo is called

an augmentation coefficient and provides a bound for desirable or acceptable trade-offs (see

definition 3). If the augmentation term is removed, the solutions to problem (5.3) can be

weakly Pareto optimal. That is, the augmentation term guarantees Pareto-optimal solutions

independent of z̄. When the ASF is solved, the reference point z̄ is projected onto the Pareto

front in a direction specified by the weight factor w. In the context of hybrid MOEAs, the

maximum and minimum values of each objective function in the current population are

zmaxi and zmini respectively. Furthermore, the reference point z̄ is the objective vector of an

individual selected for local search. Figure 5.1 illustrates the projection of a feasible (A)

and infeasible (B) reference point onto the Pareto front (thick lines). The resulting Pareto-

optimal solutions of A and B are A′ and B′ respectively. The cones (orthogonal lines on

A, A′, B and B′) represent the indifference curves when ρo = 0 in the ASF and the last

point where the cone intersects the feasible region (shaded area in Figure 5.1) is the solution

obtained [12]. When ρo > 0, a broader cone is formed than the one shown in Figure 5.1.

Equation (5.3) has a non-differentiable objective function and hence gradient-based solvers
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cannot be used. To apply a gradient-based solver, the ASF can be converted into a differen-

tiable equivalent as discussed in [90].

5.2 Concurrent-Hybrid NSGA-II

The hybrid algorithm developed by the author is based on the concurrent-hybrid NSGA-II

(hybrid NSGA-II) by Sindhya et al. [57]. The hybridization is composed of a non-gradient

based MOEA and a gradient-based local search. In [57], the NSGA-II is chosen as the

MOEA and the sequential quadratic programming (SQP) method for the gradient-based

local search. The local search entails solving the differentiable version of equation (5.3) and

is applied according to a predefined saw-tooth probability function P local
l . In this work, an

alternative MOEA could be used instead of the NSGA-II, however, the NSGA-II is selected

for the same reasons as stated in [57]. For the gradient-based local search, the MATLAB

R2011a fminimax command is used since it reformulates equation (5.3) into its differentiable

form and applies the SQP method automatically [27]. The hybrid NSGA-II step-by-step

procedure is given below:

1. Generate a random initial population Po of size Npop and set iteration count

l = 0;

2. Sort population to different non-domination levels (fronts i = 1, 2, . . . , etc.)

and assign each individual a fitness equal to its non-dominated level (i = 1 is

the best level);1

3. Create offspring population Ql of size Npop using binary tournament selection,

crossover and mutation operators;

4. Perform non-dominated sorting to Ql and identify different fronts Ki, i =

1, 2, . . . , etc.;

1This procedure is non-dominated sorting, see section 5.3.
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5. Perform local search on some individuals chosen with a probability of P local
l

from the offspring population Ql in front K1. Replace the chosen individuals

from the offspring population with the improved individuals from the local

search;

6. Combine the parent and offspring populations and create Rl = Pl ∪Ql;

7. Perform non-dominated sorting to Rl and identify different fronts Fi, i =

1, 2, . . . , etc.;

8. Set new population Pl+1 = ∅. Set a count i = 1 and as long as |Pl+1|+ |Fi| ≤

Npop, perform Pl+1 = Pl+1 ∪ Fi and i = i+ 1;

9. Include the most widely spread (Npop−|Pl+1|) members of Fi by clustering Fi

into (Npop − |Pl+1|) clusters and choosing one representative individual from

each cluster;

10. Check if the maximum number of objective-function evaluations has exceeded.

If yes, terminate the algorithm, else set l = l + 1 and return to step 2.

The selection, crossover and mutation operators in step 3 are the main constituents of a

GA and several different types exist for each. Binary tournament selection is an example of

a selection operator and is used in the NSGA-II. The type of operators chosen for solving

a particular optimization problem will have the most significant effect on the performance

of a GA. In addition, each operator includes parameter settings that also influences the

GA’s performance. Detailed explanation of the three operators can be found in one of many

available textbooks on the topic (e.g. Deb [13]). Binary tournament selection, crossover and

mutation are briefly described in sections 5.6 to 5.8.

The algorithm described above differs from [57] in steps 4, 5, and 9. Step 4 is an additional

step necessary for step 5, which allows only the best (i = 1) offspring to be chosen for local
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search. In step 9, the NSGA-II crowding routine [14] for including the most widely spread

members of Fi is replaced by the clustering approach used in SPEA [92]. The clustering

approach is shown in [93] to produce a better spread of solutions in comparison with the

NSGA-II crowding routine for a number of three-objective test problems.

5.3 Non-dominated Sorting

The non-dominated sorting procedure is described in this section. The domination between

two individuals (solutions) x(1) and x(2), is defined as follows [13]:

Individual x(1) is said to dominate x(2), if both the following conditions are true:

1. Individual x(1) is no worse than x(2) in all objectives. Thus, x(1) and x(2) are

compared based on their objective-function values f(x(1)) and f(x(2)).

2. Individual x(1) is strictly better than x(2) in at least one objective.

For a given population (set of solutions), a pairwise comparison can be made using

the above definition (Figure 5.2(a)). All individuals that are not dominated by any other

are non-dominated, and their objective vectors constitute the first non-dominated front F1

(Figure 5.2(b)). To classify the entire population into different non-domination levels (or

fronts Fi), the procedure as previously described in section 2.4 is performed. Once the

non-dominated individuals of level 1 (F1) are determined, they are temporarily disregarded

from the population. Then, the non-dominated individuals of level 2 (F2) are determined

from the non-dominated individuals of the remaining population. The procedure is repeated

until the entire population is classified into a non-dominated level. Figure 5.3 illustrates the

non-dominated fronts for a population of five individuals (i.e. P = {1, 2, 3, 4, 5}). Hence,

the non-dominated fronts of P is as follows:

F1 = {3, 5}, F2 = {1, 4}, F3 = {2}.
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Each individual in the population is assigned a ranking score RS, which is equal to the non-

domination level to which they belong. The RS value is used in the crowded-comparison

operator (section 5.6) to differentiate superior individuals from the inferior.

The definition of domination is reminiscent of definition 1 in section 5.1. In this case, the

individuals in the first non-dominated level become Pareto optimal if they are not dominated

by any other possible solutions in the objective space.

5.4 Constraint Handling

In terms of the hybrid NSGA-II, non-linear inequality constraint violation is minimized and

removed by using the selection-based constraint-handling approach described in [14] and [33]

for the NSGA-II, and the method in the fminimax SQP routine for the gradient-based local

search. Since the wind-turbine blade optimization problem does not contain any equality

constraints (see section 6.3), equality constraint handling is not considered. In the presence

of constraints, the definition of domination in section 5.3 is modified as follows [14]:

Individual x(1) is said to constrained-dominate x(2), if any of the following conditions is

true:

1. Individual x(1) is feasible and x(2) is not.

2. Individuals x(1) and x(2) are both unfeasible, but x(1) has a smaller overall

constraint violation.

3. Individuals x(1) and x(2) are feasible and x(1) dominates x(2).

An individual is feasible if it lies in the feasible region X, and unfeasible if it violates

one or more constraints. Using the above definition, the non-dominated sorting procedure

will assign any feasible individual a better ranking score than any unfeasible individual.

When two individuals are unfeasible, the one with a smaller constraint violation has the

better ranking score. Figure 5.4 illustrates the feasible individuals 4, 5, and 6 in the first
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and second fronts, while the unfeasible individuals in the lower fronts, for a constrained

bi-objective problem.

In addition to applying the hybrid NSGA-II for analytical test functions (section 5.9) and

the blade optimization (Chapter 6), the NSGA-II embedded in the MATLAB R2011a gamul-

tiobj command [27] will also be used for comparison. However, gamultiobj does not include

non-linear inequality constraint-handling capabilities needed for the blade optimization. The

constraint handling in the gamultiobj routine consists of linear inequality and equality con-

straints, and boundary constraints only. Consequently, a simple penalty approach is used

instead. Using the blade optimization problem as example, when a candidate blade design

violates one or more non-linear inequality constraints, the penalty approach sets the objec-

tive vector f(x) to the worst possible values (i.e. AEP = −1050 and Mflap,root = mblade = 1050

– see section 6.4.1). Using this method allows the algorithm within gamultiobj to discard

unfeasible blade designs without having to modify the coding, which is necessary for the

selection-based approach. The crossover and mutation operators in the NSGA-II and ga-

multiobj as well as the fminimax SQP routine always satisfy the boundary constraints. The
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constraint handling procedure in the hybrid NSGA-II has been verified using constrained

analytical test functions [14, 94, 95].

5.5 Crowding-Distance Measurement

The crowding distance (CD) measurement used in the crowded-comparison operator (sec-

tion 5.6) is described here. Following the non-dominated sorting of Rl (step 7 – section 5.2),

the individuals in each front (Fi, where i = 1, 2, . . . , etc.) are sorted according to each

objective function zi, in ascending order of magnitude. The individuals with the smallest

(zmin
i ) and largest (zmax

i ) objective-function values are then assigned an infinite CD. All

intermediate individuals j, are assigned a CD equal to the absolute normalized difference

in objective-function values of two adjacent individuals (j + 1) and (j − 1). This proce-

dure is repeated for each zi. The overall CD for each individual CDj, is then obtained by

aggregating the CD from all zi. Equation (5.4) gives the CD calculation for intermediate

individuals:

CDj =

q∑
i=1

∣∣∣∣∣z(j+1)
i − z(j−1)i

zmax
i − zmin

i

∣∣∣∣∣ (5.4)

The CD computation is illustrated in Figure 5.5 for a bi-objective problem, where i is

an intermediate individual (i.e. i = j). The individuals marked in filled circles belong to the

same front, in this case F1. The boundary individuals F1(0) and F1(l), have an infinite CD,

while intermediate individuals are assigned a CD according to equation 5.4. In Figure 5.5,

the CDj represents half of the perimeter of the cuboid formed by the neighbouring individuals

(j + 1) and (j − 1).

5.6 Crowded-Comparison Operator

In the NSGA-II, the crowded-comparison operator is combined with binary tournament

selection to guide the selection of individuals towards a uniformly spread Pareto-optimal

89



Cuboid

f1

f2

i
i-1

i+1

0

l

Figure 5.5: Crowding-distance calculation. Individuals marked in filled circles are on the
same front. Reproduced from [14]. c©2002 IEEE.

set. Binary tournament selection as described in section 2.4.2, is when the best individual

from a number (typically 2, hence binary) of randomly chosen distinct individuals from the

population becomes a parent. Binary tournament selection is repeated until the number of

parents returned is equal to the size of the mating pool, which is then subjected to crossover

and mutation to create children for the generation. The crowding distance (CD) is used as a

measure of diversity, described in section 5.5, when determining the best individual. Assume

each individual i, in the population contains two quantities: 1) ranking score (RSi) and 2)

crowding distance (CDi). The crowded-comparison operator (≺n) for two individuals i and

j, is as follows:

i ≺n j,

if RSi < RSj,

or RSi = RSj and CDi > CDj.

In other words, between two individuals with different ranking scores, the individual with

the lower ranking score is preferred (or the individual belonging to a better front). If the

ranking score between the two individuals are the same, then the individual that is the least

crowded (higher CD) is preferred.
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5.7 Crossover

As explained in section 2.4, the crossover operator combines the decision vectors of two or

more parents when creating children for the next generation. Among the many crossover

operators available, only the intermediate and scattered crossover will be discussed in detail.

A third crossover operator traditionally used in the NSGA-II is the simulated binary crossover

(SBX) [36]. Of all the crossover operators in the gamultiobj routine and SBX, the SBX was

able to produce the best spread of solutions for analytical test functions (see section 5.9).

The crossover fraction (see Tables 5.1 and 6.3), is the probability that the two or more

parents will crossover.

5.7.1 Intermediate Crossover

Intermediate crossover is the default crossover operator in the MATLAB R2011a gamultiobj

routine. Given two parents x
(1)
Parent and x

(2)
Parent, the operator creates children x

(1)
Child and

x
(2)
Child, using the following formula:

xChild = x
(1)
Parent + uo(x

(2)
Parent − x

(1)
Parent) (5.5)

where uo is a uniformly distributed pseudo-random number between 0 and 1. Figure 5.6

illustrates intermediate crossover for two arbitrary parents x
(1)
Parent and x

(2)
Parent, where uo =

0.9 and uo = 0.3 produces x
(1)
Child and x

(2)
Child respectively.

Figure 5.6: Intermediate crossover for two arbitrary parents x
(1)
Parent and x

(2)
Parent, where

uo = 0.9 and uo = 0.3 produces two children x
(1)
Child and x

(2)
Child, respectively.

91



5.7.2 Scattered Crossover

Scattered crossover, also known as uniform crossover, creates a random binary vector where

the probability of each element in the vector being 0 or 1 is typically 50%. The decision

variables in the decision vectors of two parents x
(1)
Parent and x

(2)
Parent, are then exchanged

according to the elements equal to 0 in the binary vector. The end result are two distinct

children x
(1)
Child and x

(2)
Child. Figure 5.7 displays scattered crossover for two arbitrary parents

x
(1)
Parent and x

(2)
Parent, producing x

(1)
Child and x

(2)
Child.

Figure 5.7: Scattered crossover for two arbitrary parents x
(1)
Parent and x

(2)
Parent, producing two

distinct children x
(1)
Child and x

(2)
Child.

5.8 Mutation

Following crossover, the mutation operator ensures that each child is unique by slightly alter-

ing (or mutating) the child’s decision vector. Depending on the degree, mutation maintains

the diversity of the population. The polynomial mutation [37] operator using a variable

mutation probability pm, is described here. In this operator, a polynomial probability dis-

tribution is used to create the variable of a mutated child xMut.Child, in the vicinity of the

original variable xChild. The following procedure is implemented to determine xk,Mut.Child

subject to upper (xUk ) and lower (xLk ) bounds for k = 1, 2, . . . , n [33]:

1. Create a random number uo between 0 and 1.

2. Calculate the parameter ζ̄ using:
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ζ̄ =


[2uo + (1− 2uo)(1− ζ)ηm+1]1/(ηm+1) − 1, if uo ≤ 0.5,

1− [2(1− uo) + 2(uo − 0.5)(1− ζ)ηm+1]1/(ηm+1), otherwise,

where ζ = min[(xk,Child − xLk ), (xUk − xk,Child)]/(xUk − xLk ).

3. Calculate the mutated child using:

xk,Mut.Child = xk,Child + ζ̄(xUk − xLk ).

The variance of the polynomial probability distribution (or mutation intensity) is a func-

tion of the distribution index ηm, which is a user-defined parameter that is strictly positive.

5.9 Verification using Analytical Test Function

Before applying the hybrid algorithm for wind-turbine blade optimization, its performance

on analytical test functions from the ZDT [96] and DTLZ [95] test suites was investigated.

For brevity, the results for only the DTLZ2 test function will be shown here. DTLZ2 is

scalable in both the number of objectives and the number of variables, and does not contain

any equality or inequality constraints. The number of objectives and variables chosen are

q = 3 and n = 20 respectively, which matches comparatively to the wind-turbine blade

optimization problem. The three-objective DTLZ2 is expressed by:

minimize f1(x) =

(
1 +

20∑
i=3

(xi − 0.5)2

)
cos
(π

2
x1

)
cos
(π

2
x2

)
f2(x) =

(
1 +

20∑
i=3

(xi − 0.5)2

)
cos
(π

2
x1

)
sin
(π

2
x2

)
f3(x) =

(
1 +

20∑
i=3

(xi − 0.5)2

)
sin
(π

2
x1

)
subject to x ∈ X

X = {x ∈ R20|

0 ≤ xk ≤ 1, k = 1, . . . , 20}

(5.6)
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Figure 5.8: Three-objective DTLZ2 Pareto front (|PFtrue| = 441 shown for clarity). Re-
trieved from [3].

and its Pareto front is shown in Figure 5.8.

In the current study, the performance of an algorithm for multi-objective optimization

is focussed on convergence. Hence, the generational distance (GD) [97] metric is used to

compare different algorithms. The GD metric measures the mean Euclidean distance in

the objective space between each solution and its nearest Pareto-optimal solution in the

true Pareto front (PFtrue). The PFtrue shown in Figure 5.8 was derived from 441 perfectly

spread Pareto-optimal solutions. When the solutions from an algorithm lie exactly on the

Pareto-optimal solutions of PFtrue, the GD will have the optimal value of zero. This seldom

occurs because the heuristics prevent a perfectly-spread and fully-converged set of solutions.

As shown for two MOEAs in Figure 5.10, the solutions are randomly distributed and are

situated at varying distances from PFtrue. Therefore, the aim is to attain the minimum GD

value in as few objective-function evaluations as possible rather than achieving GD = 0.

When assessing the convergence, it is common practice to calculate the mean GD based on

multiple runs to account for the heuristic effects. Furthermore, since the accuracy of the GD

is dependent on the resolution of PFtrue, a large number (i.e. |PFtrue| = 10, 000) should be

used for GD calculations. The worst (max) and best (min) runs define a max-min interval,
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which is used for assessing the range in possible GD.

The mean GD versus the number of objective-function evaluations from 10 runs is plot-

ted for four algorithms in Figure 5.9. For illustrations of GD max-min intervals pertaining

to the four algorithms, refer to Appendix B. Here, the evaluation of all objective-functions

in the objective vector is considered as one objective-function evaluation. Two of the four

algorithms consist of the NSGA-II as described in section 5.2 with and without the gradient-

based local search. The gamultiobj command with improved and default parameter settings

comprises the remaining two algorithms. Attempts were made to determine the parameters

(such as the crossover and mutation operators) that resulted in the best possible convergence

for gamultiobj. Accordingly, identical parameters were used for the hybrid and non-hybrid

NSGA-II whenever possible for a fair comparison. A summary of the algorithms and param-

eter settings are given in Table 5.1.

Figure 5.9 clearly shows that the hybrid NSGA-II outperforms all other algorithms with

respect to the GD metric. The inclusion of gradient-based local search has successfully re-

duced the number objective-function evaluations needed to reach the minimum GD value

by more than 50% in comparison to the regular NSGA-II. Figure 5.10 displays the objec-

tive vectors obtained from the hybrid and non-hybrid NSGA-II at 10,000 objective-function

evaluations. Although the hybrid produces solutions closer to PFtrue, the difference in the

GD values between the two algorithms is small. It is observed from Figure 5.10 that the

reduction in objective-function evaluations is attributed to the fine-tuning capabilities of

gradient-based local search that the regular NSGA-II lacks. For this particular test func-

tion, executing gamultiobj using its default settings yields poor convergence. Similar results

for the four algorithms have been obtained for other ZDT and DTLZ test functions. Based on

these results, it is in the authors’ interest to achieve the same reduction in objective-function

evaluations for the wind-turbine blade optimization problem as well.
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Table 5.1: Summary of algorithms and parameter settings for DTLZ2 test function. Retrieved from [3].

hybrid NSGA-II NSGA-II gamultiobj gamultiobj (default)

Population size (Npop) 200 200 200 200
Selection binary tournament binary tournament binary tournament binary tournament
Crossover scattereda scattereda scattereda intermediate
Crossover fraction 0.9b 0.9 0.9 0.8
Mutation polynomial polynomial adaptive feasible adaptive feasible
Mutation probability 0.001b 0.001 – –
Mutation index 20b 20 – –
Pareto fractionc 1 1 1 0.35
Spread maintenance clustering approach clustering approach crowding routine crowding routine

aAlso known as uniform.
bAs suggested by Sindhya et al. [57].
cControls elitism, see section 2.4.1.
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Chapter 6

MULTI-OBJECTIVE OPTIMIZATION OF NREL

5MW TURBINE

6.1 Variables

Before presenting the objective functions determined by the aerodynamic and structural

models, the variables involved in the optimization are described briefly. Bézier curves that

are manipulated by control points (CPs) define the blade twist and chord (c) distributions

(Figure 6.1(a)–(b)), and the non-dimensional radial locations (r/R) of the master airfoils

(γairfoil) for the relative thickness (t/c) distribution (Figure 6.1(c)). The master airfoils are

a set of key airfoils used to interpolate the lift and drag coefficients, and profile coordinates

for the entire blade. The master airfoils for the illustrative case of the NREL 5 MW blade

optimization are given in Table 6.1 and plotted in Figures C.1 to C.3. In Figure 6.1(b), the

root chord is iterated such that a monotonically-decreasing dimensional thickness is obtained,

as shown in Figure 6.1(d). The dimensional thickness is the product of the relative thickness

and the chord. The CPs and distributions are shown in Figure 6.1 for an arbitrary blade.

The methodology used to define the blade shape follows that of Sale’s HARP Opt

code [98] closely with two main exceptions: 1) the number of CPs for the twist and chord

distributions outboard of the maximum chord position is adjustable, and 2) a piecewise cu-

bic hermite interpolating polynomial is used to interpolate the relative thickness across the

master airfoils between the root and tip. Exception 1) provides the user a choice of the

number of CPs used and 2) is a simpler approach. For exception 2), HARP Opt involves a

linkage between a cubic polynomial fit and a piecewise-linear distribution subject to slope

requirements at the endpoints. The reader is referred to [98] for a detailed description of the
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optimization variables.

The decision vector x is given by:

x = (CP1,twist,CP2,twist, . . . ,CPNu,twist,

CP1,chord,CP2,chord, . . . ,CPNv ,chord,

γ1,airfoil, γ2,airfoil, . . . , γNw,airfoil)

(6.1)

where the number of CPs for the twist and chord are Nu and Nv respectively, and Nw is the

number of master airfoils plus one.

6.2 Objective Functions

A total of three objective functions are simultaneous optimized to achieve the Pareto-optimal

set of blade designs. Two objective functions are obtained from the aerodynamic model

(Chapter 3) which are:

maximize AEP = 8760

∫ Vo,cut-out

Vo,cut-in

P (Vo, θ, λ)f(Vo) dVo, (6.2)

minimize Mflap,root =

∫ R

rhub

rpn(r) dr. (6.3)

Equation (6.2) is the equivalent of equation (1.4), and as already explained in section 1.4,

8760 is the number of turbine operating hours per year, P (Vo, θ, λ) is the rotor power obtained

from the power curve (Figure 3.10(a)), and f(Vo) is the wind speed probability, the Rayleigh

probability density function. Here, a maximization of the AEP is performed by minimizing

the negative value of its objective function. The second objective function (equation (6.3))

is to minimize the peak flapwise root-bending moment Mflap,root, obtained from the thrust

curve (Figure 3.10(b)) and is expected to improve the blade fatigue life. This objective

is similar to the constraint imposed on the aero-elastic (time-dependent) computations in

Fuglsang [22], where the mean Mflap,root at the wind speed corresponding to maximum power

was not allowed to exceed a specified value. From Fuglsang’s work, fatigue loads were shown
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to vary linearly with the mean Mflap,root. In this thesis however, only static (or steady)

computations are performed. It is assumed here that minimizing Mflap,root in the static

sense is the equivalent of minimizing the mean Mflap,root in the aero-elastic case.

The third objective function is calculated from the structural model (Chapter 4) given

by:

minimize mblade =

∫ R

rhub

mdr. (6.4)

where m is the linear mass of a blade element and mblade is the blade’s total mass.

6.3 Constraints

There are two types of constraints involved in the optimization of the wind-turbine blade.

The first type are non-linear inequality constraints and the second are boundary constraints.

The inequality constraints are equations (4.45) and (4.46), and equations (6.7) to (6.9). The

strain and tip deflection constraints given by equations (4.45) and (4.46) are reiterated as

follows:

(max[ε1,max, ε2,max]− εmax)/εmax ≤ 0, (6.5)

(δtipflap − δmax)/δmax ≤ 0. (6.6)

During the optimization, the chord has a tendency to approach very large values to maximize

the AEP. To prevent this from occurring, equation (6.7) is included that forces candidate

blades to have a planform area (A) less than or equal to that of the original blade design

(Ao):

(Ao − A)/Ao ≤ 0. (6.7)

Equation (6.7) may be unnecessary for two reasons: 1) more restricted boundary limits on

the chord (see equation (6.11)) can be used to achieve the same purpose and 2) the increase

in chord is counteracted by the mblade minimization. Here, the planform area constraint is

added as an additional precaution to ensure that the optimal blades have feasible geometries
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and are comparable to each other [99]. The remaining set of inequality constraints given by:

(fi,min(x)− fi(x))/fi,min(x) ≤ 0, (6.8)

(fi(x)− fi,max(x))/fi,max(x) ≤ 0 (6.9)

prevents a multi-objective optimization algorithm from searching an excessively large region

of the objective space. In other words, we are only interested in blade designs that are in

the vicinity of the original. For the blade optimization considered here, AEP, Mflap,root, and

mblade are constrained to be within ±5%, ±40% and ±40% from the original respectively.

All inequality constraints (equations (6.5)to (6.9)) are normalized to prevent bias from any

particular constraint.

The second type, the boundary constraints expressed by equations (6.10) to (6.12), in-

volve limiting the CPs for the twist and chord, and γairfoil:

CPL
u,twist ≤ CPu,twist ≤ CPU

u,twist, (6.10)

CPL
v,chord ≤ CPv,chord ≤ CPU

v,chord, (6.11)

γLw,airfoil < γw,airfoil < γUw,airfoil (6.12)

where u = 1, . . . , Nu, v = 1, . . . , Nv, and w = 1, . . . , Nw. In practice, the limits are derived

from the transportability and manufacturing requirements. For example, a blade cannot be

transported on a truck if it exceeds a maximum chord length. Such requirements are not

considered here and as a result, a wide range of boundary values to ensure a variety of blade

designs is implemented instead.

In addition to the constraints discussed above, limits are imposed in the control and

regulation strategy (section 3.4). For example, excessive turbine-generated noise is avoided

by including a limit on the tip speed (ωR) and the power is constrained to be less than or

equal to Prated. These constraints are treated by selecting the appropriate value of CP for

each Vo in the aerodynamic model, and not by the constraint handling techniques discussed

in section 5.4.
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6.4 Wind-Turbine Blade Optimization

6.4.1 Optimization Problem

We restate problem (5.1) in terms of the wind-turbine blade optimization problem. Following

the suggestions in [100], equations (6.2), (6.3) and (6.4) are used in the objective vector f(x).

The decision vector is given by equation (6.1), and the inequality and boundary constraints in

the feasible region X are equations (6.5) to (6.9), and equations (6.10) to (6.12) respectively.

Since the competitiveness of wind energy against other energy sources depends mostly on

cost, minimizing the cost (or COE) has typically been considered as an objective function

(e.g. [22, 23, 26, 34, 43]). However, the cost of a turbine is difficult to calculate and

assumptions are often made for simplification. In [23, 26] and [43], the cost depends on

the blade (or rotor) only. When determining the blade cost, mass is used as a parameter

([26, 43]). Here, mblade is assumed to be well correlated to cost. Detailed cost models can

be found in [22] and [34], which consider several components including rotor, tower, gearbox

and generator, as well as other costs such as operation and maintenance.

The NREL offshore 5 MW baseline wind-turbine blade is selected as an initial design for

optimization and its basic properties are shown in Table 6.1 [4]. The structural layup and

material properties are not provided in [4], thus the structural layup and material properties

described in section 4.2.1 are applied instead. The twist, chord and thickness distributions

for the NREL 5 MW blade are displayed in Figure 6.5. For the results given in the following

section, 30 blade elements (N = 30) and 21 design variables (Nu = 6, Nv = 7 and Nw = 8)

were used. Constraint values set in the blade optimization are summarized in Table 6.2.

6.4.2 Results and Discussion

In contrast to test functions such as those discussed in section 5.9, PFtrue cannot be de-

rived for the wind-turbine blade optimization problem. As a result, before determining the

convergence of the algorithms, an approximation of PFtrue is necessary to calculate the GD
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Table 6.1: Basic NREL 5 MW wind-turbine properties. Retrieved from [4].

Rating (MW) 5
Number of blades 3
R (m) 63
Vcut-in (m/s) 3
Vcut-out (m/s) 25
Rated tip speed (m/s) 80
Master airfoils Cylinder (1.0),
(t/c in parentheses) DU40 (0.405), DU35 (0.35),

DU30 (0.30), DU25 (0.25),
DU21 (0.21), NACA64 (0.18)

Table 6.2: Summary of constraint values used in NREL 5 MW blade optimization.

Property Value Property Value Property Value

εmax 2580µε f1,min(x) 0.95AEPNREL CPL
u,twist, u = 1, . . . , Nu 0◦

δmax 5.272 m f2,min(x) 0.60MNREL
flap,root CPU

u,twist, u = 1, . . . , Nu 20◦

Ao 213.9 m2 f3,min(x) 0.60mblade CPL
v,chord, v = 1, . . . , Nv 0.002

f1,max(x) 1.05AEPNREL CPU
v,chord, v = 1, . . . , Nv 0.111

f2,max(x) 1.40MNREL
flap,root γLw,airfoil, w = 1, . . . , Nw 0

f3,max(x) 1.40mblade γUw,airfoil, w = 1, . . . , Nw 0.85/1a

aA combination of 0.85 and 1 used for γUw,airfoil.

metric. This can be achieved by executing a multi-objective optimization that results in a

well-spread and fully-converged Pareto-optimal set. An accurate GD calculation also requires

that the size of the Pareto-optimal set is large. In an attempt to meet these requirements

using the computational resources available, PFtrue is approximated by executing the algo-

rithm described in section 5.2, without the gradient-based local search, for as many (l = 110)

iterations as possible and with a large population size (Npop = 1000). The result of the ap-

proximation is shown in Figure 6.2. In Figure 6.2, a Pareto-optimal solution (PO–star) with

the same mblade as the NREL 5 MW blade (circle) is also plotted. The PO has a 1.8% increase

in AEP and 4.7% decrease in Mflap,root with respect to the NREL 5 MW turbine. Conse-

quently, not only has the algorithm successfully optimized the initial design for more than one

objective, but it has also provided a complete set of optimal trade-off solutions as illustrated
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Figure 6.2: Rotated views of the Pareto front for the NREL 5 MW blade optimization
including NREL 5 MW blade (circle) and a Pareto-optimal solution (PO–star). Retrieved
from [3].
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blade = 1 for

NREL 5 MW blade optimization including NREL 5 MW blade (circle) and a Pareto-optimal
solution (PO–star).

by the surface in Figure 6.2. As discussed in section 6.3, the Pareto-optimal set is, however,

bounded by the inequality constraints on the objective space (equations (6.8) and (6.9)).

Figures 6.3 and 6.4 display the NREL blade on the AEP/AEPNREL–Mflap,root/M
NREL
flap,root and

Mflap,root/M
NREL
flap,root–mblade/m

NREL
blade planes where mblade/m

NREL
blade = 1 and AEP/AEPNREL = 1

respectively. Pareto-optimal solutions on the AEP/AEPNREL–mblade/m
NREL
blade plane where

Mflap,root/M
NREL
flap,root = 1 do not exist, and hence is not shown.

A comparison of the twist, chord and thickness distributions for PO and the NREL

5 MW blade are shown in Figure 6.5. It is observed that the twist (Figure 6.5(a)) and

chord (Figure 6.5(b)) near the root section for PO both reach their maximum allowable

values set by the boundary constraints in equations (6.10) and (6.11). Conversely, there is a

decrease in thickness (Figure 6.5(c)–(d)) near the root but an increase at about r/R = 0.7

instead. A decrease in chord also occurs between the mid-span and blade tip. The step in

relative thickness from t/c = 0.25 (DU25) to t/c = 0.18 (NACA64) at about r/R = 0.85

in Figure 6.8(c) is because of an upper boundary constraint γUw,airfoil, imposed on the DU
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master airfoils, which was set to 0.85 in the blade optimization. Figures 6.6 and 6.7 depict

the blade geometries in different views for the NREL 5 MW and PO respectively.

Figure 6.8 displays the power and thrust curves, as well as the pitch and RPM schedules

for the NREL 5 MW blade and PO. Although barely noticeable, the increase in AEP for

PO is shown in Figure 6.8(a), where PO produces more power for all wind speeds up to

Vrated. The increase in power is attributed to PO’s improved value of CP,opt = 0.5022 in

comparison to CP,opt = 0.4841 of the NREL 5 MW blade at the variable-speed region (i.e.

region I in Figure 3.10). This translates to an improvement of 3.73% in CP,opt. The decrease

in Mflap,root for PO is demonstrated in Figure 6.8(b), where the peak thrust is lower than

the NREL 5 MW blade. In Figure 6.8(c) for PO, CP,opt corresponds to a lower pitch angle

(θopt = −1.4◦), and the maximum allowable tip speed (ωR = 80 m/s) is reached at a lower

wind speed (Vo = 9.8 m/s). For the NREL 5 MW blade, θopt = 0◦ and Vo = 10.4 m/s when

ωR = 80 m/s (Figure 6.8(d)).
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Figure 6.5: Blade element twist (a), chord (b), and thickness (c)–(d) distributions for the NREL 5 MW blade and a Pareto-op-
timal (PO) solution. Retrieved from [3].
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Figure 6.6: Blade geometry views of NREL 5 MW.
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Figure 6.7: Blade geometry views of a Pareto-optimal solution.
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Figure 6.9: Blade element tangential aerodynamic force pt, at the wind speed where Mflap,root

is a maximum for the NREL 5 MW blade and a Pareto-optimal (PO) solution.

To further understand why PO is superior to the NREL 5 MW blade, the tangential and

normal aerodynamic forces versus r/R at peak Mflap,root are plotted in Figures 6.9 and 6.10

respectively. Observing Figure 6.9, the increase in power is credited to the rise in pt towards

the root of the blade, since dP = ωdQ and dQ = rBptdr (equations (3.27) and (3.18)). The

rise in pt is the result of the increase in lift, achieved by replacing the cylindrical (t/c = 1.0)

portion of the NREL 5 MW blade with an airfoil shape (t/c ≈ 0.4), and increasing the twist

and chord (see Figure 6.5(a)–(c)). With the increase in lift involves higher pn as shown

in Figure 6.10. Although an adverse effect, this has minimal impact on Mflap,root because

Mflap,root =
∫ R
rhub

rpn(r) dr and r is small near the root. Examining Figure 6.10, the decrease

in Mflap,root is driven by the reduction in pn towards the tip of the blade (where r is large),

achieved by using thicker airfoils and decreasing the chord (see Figure 6.5(b)–(c)). Reducing

pn however, consequently lowers pt and also the power. The loss in power at r/R > 0.5

for this particular blade is compensated by the increase in power from altering the blade at

r/R < 0.5. At the variable-speed region, the differential power coefficient dCP for PO is

much larger than the NREL 5 MW blade near the root, as shown in Figure 6.11.
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is a maximum for the NREL 5 MW blade and a Pareto-optimal (PO) solution.
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timal (PO) solution at the variable-speed region.
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Figure 6.12 compares the structural properties between the NREL 5 MW blade and PO.

In Figure 6.12(a), there is an increase in spar-cap thickness (SCT) both at the root and

tip. The increase in SCT at the root is the result of replacing the stiffer cylindrical part

of the blade with an airfoil that is less stiff in EI1. This is shown in Figure 6.12(b) where

despite the increase in SCT, EI1,NREL is still much larger than EI1,PO at r/R < 0.25.

Because of the loss in stiffness in EI1,PO, the flapwise deflection δflap, for PO becomes

larger between r/R = 0 and r/R = 0.75 as shown in Figure 6.12(d). To satisfy the tip

deflection constraint, SCT is added towards the tip region, specifically between r/R = 0.75

and r/R = 1. Consequently, δflap begins to converge towards the deflection profile of the

NREL 5 MW blade at r/R = 0.75. Since EI2 is well correlated with chord, the increase in

chord at r/R < 0.5 yielded an increase in EI2 as well. Figure 6.12(c) displays the bending

moments about the principal axes for the NREL 5 MW blade and PO. The reduction in

Mflap,root for PO is clearly illustrated by the lower M1,PO distribution compared to M1,NREL.

The increase in M2,PO at r/R < 0.25 is because of the higher pt generated by the airfoil in

comparison to the cylinder.
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Figure 6.12: Blade element spar-cap thickness (SCT) (a), bending stiffness (b), bending moment (c), and flapwise deflection
(d) distributions for the NREL 5 MW blade and a Pareto-optimal (PO) solution.
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Having computed a well-defined Pareto-optimal set that approximates PFtrue, it is now

possible to apply the algorithms and measure their convergence. Table 6.3 summarizes the

parameter settings used for three algorithms, which are based on the studies performed on

the ZDT and DTLZ test functions. As shown on the last row of Table 6.3, the wind-turbine

blade optimization problem differs from the DTLZ2 test case in the addition of constraint

handling. The three algorithms used are the hybrid and non-hybrid NSGA-II, and gamultiobj.

Figure 6.13 displays the GD results for the three algorithms. Due to the high computational

cost involved in the wind-turbine blade optimization, each algorithm is executed once only (as

opposed to 10 runs for DTLZ2) for calculating the mean GD. Consequently, the GD results in

Figure 6.13 may be subjected to uncertainties for the same reason as described in section 5.9.

Furthermore, the max-min interval cannot be estimated. Note that the max-min interval

from a test function study (e.g DTLZ2 in section 5.9) cannot be transferred onto the wind-

turbine blade optimization problem, since the nature of the objective functions (or objective

spaces) between the two problems are fundamentally different. Additional uncertainty in the

GD calculation will also be introduced because of the approximation of PFtrue. The effect

of the approximation is demonstrated by the slightly scattered Pareto-optimal solutions in

Figures 6.3 and 6.4.

As shown in Figure 6.13, the hybrid fails to provide the significant reduction in objective-

function evaluations anticipated from the ZDT and DTLZ test-function studies. For the first

6000 objective-function evaluations, the NSGA-II results in the best convergence while the

hybrid and gamultiobj perform less efficiently. The effect of the penalty constraint-handling

approach in gamultiobj is seen by the GD values that exceeds the upper limit of the y-axis

on the plot. As discussed in section 5.4, this occurs because the objective vector is set to

the worst possible values for unfeasible blade designs, which are abundant during the early

stages of the optimization. After 1200 objective-function evaluations, the convergence for

gamultiobj almost matches that of the other two algorithms.
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Table 6.3: Summary of algorithms and parameter settings for the three-objective NREL
5 MW blade optimization. Retrieved from [3].

hybrid NSGA-II NSGA-II gamultiobj

Population size 200 200 200
Selection binary tournament binary tournament binary tournament
Crossover scattered scattered scattered
Crossover fraction 0.9 0.9 0.9
Mutation polynomial polynomial adaptive feasible
Mutation probability 1/21a 1/21a –
Mutation index 20 20 –
Pareto fraction 1 1 1
Spread maintenance clustering approach clustering approach crowding routine
Constraint handling selection based selection based penalty based

aA commonly used heuristic (1/n) [57].
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Figure 6.13: Algorithm convergence for the three-objective NREL 5 MW blade optimization.
Retrieved from [3].
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There are a few potential factors that might explain the hampered performance of the

hybrid NSGA-II on the wind-turbine blade optimization problem. The most significant

and likely one is due to the substantial increase in complexity of the objective functions in

comparison to the simple analytical ZDT and DTLZ test cases. Like all other gradient-based

methods, fminimax requires that the objective and constraint functions are continuous and

are sensitive to small changes to the decision vector. If the objective functions are calculated

from numerical models involving discretizations and interpolations such as BEM and the

structural model used here, then a distorted gradient and alteration to the decision vector

results. For illustration, the values of the ASF from a local search performed on an individual

from the DTLZ2 and wind-turbine blade optimization problems are shown in Figure 6.14.

When the value of the ASF decreases monotonically as the number of objective-function

evaluations increases, then the objective vector of the individual chosen for local search is

being minimized (or improved) as expected by the dominant first term in equation (5.3).

This is shown clearly for the DTLZ2 on the left of Figure 6.14 but is not the case for the wind-

turbine blade optimization. The magnified view on the right of Figure 6.14 displays noisy

behaviour that is representative of the nature of the objective functions. The term noisy used

here is not associated to the random process of a physical nature (such as turbulence) but

the systematic numerical noise inherent to the non-smoothness of the objective functions.

This noise prevents the gradient-based local search in minimizing the objective vector and

hence the value of the ASF barely deviates from zero.

There are a few potential solutions to the improvement of the gradient-based local search

in the hybrid NSGA-II for the presented three-objective optimization of wind-turbine blades.

The first is to reduce the discretization by decreasing the number of blade elements or CPs.

This will allow perturbations in the decision vector to have a more significant impact on

the objective vector, which a gradient-based solver can detect more easily. This has been

verified in the early stages of an optimization executed soon after using 10 blade elements,
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Figure 6.14: Value of the achievement scalarizing function (ASF) for DTLZ2 and blade
optimization problems. Regular y-axis scale (left) and magnified (right). Retrieved from [3].

but was never completed. Secondly, increasing the gradient’s step-size while still captur-

ing the derivatives of the objective functions may also give a similar effect. Besides the

discretization, the interpolation of the lift and drag coefficients as well as the airfoil-profile

coordinates from the master-airfoil data (see section 6.1) may also introduce noise in the

objective functions. To mitigate this potential source of noise, the master-airfoil data must

be sufficiently refined. Finally, replacing the objective functions with analytical expressions

(similar to DTLZ2) whenever possible will ensure accurate gradient calculations. For ex-

ample, the blade cross-sectional shape can be approximated by the analytical double-ellipse

model (see section 4.2.5). The double ellipse does not require interpolations or numerical

integration, hence will be sensitive to changes in the decision vector and provide exact values

for mblade, δflap, and ε. Although better for gradient calculations, the double ellipse is not a

realistic model of a wind-turbine blade. For a detailed discussion on gradient-quality analysis

see [100]. As an alternative to gradient-based local search, non-gradient based approaches

should also be attempted since they are more robust in noisy environments. Direct-search

methods such as pattern search [101] and the complex method (section 2.5.2) are the ideal

candidates.
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Chapter 7

CONCLUSIONS

7.1 Conclusions

The purpose of this thesis was to develop an efficient multi-dimensional optimization frame-

work for the preliminary design of large wind-turbine blades. The framework combines ob-

jective functions for aerodynamic performance as energy output, and structural performance

as root-bending moment and blade mass. The optimization is performed by maximizing

or minimizing the objective-function values while also satisfying constraints. Constraints

include strain, blade tip deflection, and restrictions in the blade shape. An efficient opti-

mization algorithm is developed into the framework that searches for the optimum blade

designs. Since basic data for commercially-produced large blades is not available, the op-

timization was focussed on the National Renewable Energy Laboratory’s (NREL) 5 MW

blade designed for offshore applications. The codes implementing each objective function

were developed and extensively tested against appropriate benchmarks to give confidence in

the accuracy of the final optimization.

For many years, gradient and non-gradient based methods were implemented by re-

searchers in optimizing wind-turbine blades. Following an extensive literature review, the

author believes that an optimization algorithm based on a hybrid multi-objective evolution-

ary algorithm (MOEA) has never been applied for wind-turbine blade optimization. Further-

more, all multi-objective optimization studies on large-scale wind-turbine blades have been

restricted to a bi-objective problem resulting in a two-dimensional trade-off curve. Hybrid

MOEAs are known to have superior convergence properties than conventional MOEAs, re-

quiring fewer objective-function evaluations to attain the optimum solutions. In the current

study, the execution of all codes implementing each objective function requires a consider-
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able amount of computing time and consequently, it is critical to reduce the total number

of objective-function evaluations as much as possible. The overall efficiency of the optimiza-

tion framework therefore depends strongly on the optimization algorithm implemented. For

these reasons, the project was focussed in developing and applying a hybrid MOEA for a

three-objective wind-turbine blade optimization problem where a three-dimensional trade-off

surface is the end result.

Among the several hybrid MOEAs available, the one developed is based on the concurrent-

hybrid non-dominated sorting genetic algorithm II (hybrid NSGA-II), and is comprised of

a hybridized gradient and non-gradient based MOEA. The hybrid NSGA-II has been devel-

oped and applied for the simultaneous optimization of three objective functions: 1) annual

energy production (AEP), 2) flapwise root-bending moment Mflap,root, and 3) mass mblade,

of the NREL 5 MW wind-turbine blade. The codes implementing each objective function

consist of blade element momentum (BEM) and beam models, which were validated by com-

paring their outputs with those from the National Wind Technology Center’s WT Perf and

PreComp codes, the NREL Unsteady Aerodynamics Experiment Phase VI measurements,

analytical cases, and results from the literature.

In the hybrid NSGA-II, the non-gradient based component is a MOEA, whereas the

gradient component involves solving a differentiable version of the achievement scalarizing

function (ASF). The MOEA is the NSGA-II, and the sequential programming method is used

to solve the ASF. To compare the rate of convergence between the hybrid and non-hybrid

NSGA-II, the generational distance (GD) metric is used. The GD metric requires prior

knowledge of the true Pareto front PFtrue, which is unknown for the blade optimization.

Hence, a computationally intensive case requiring 110,000 objective-function evaluations

using the non-hybrid NSGA-II was performed to approximate PFtrue.

From this approximation, a 1.8% increase in AEP and 4.7% decrease in Mflap,root with the

same mblade as the NREL 5 MW blade was achieved. Comparing the optimized blade with
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the original NREL 5 MW reveals an increase in twist and chord near the root, but a decrease

in chord between the mid-span and blade tip. A decrease in thickness at the root is also

observed. Although these design trends yield improved performance, they should be used

with caution. Assumptions were made to simplify the aerodynamic and structural models

(see Appendix A or sections 3.1–3.3.2, 4.1–4.2.1, and 4.3–4.4), suggesting that the results are

only as accurate as the models themselves. Therefore, further and more accurate modelling is

important for finalizing the design. Computational fluid dynamics (CFD) and finite element

software, as well as scaled model testing could be used to validate the blade performance.

Despite the promising results obtained for the hybrid NSGA-II on analytical test functions,

no significant improvement in convergence was observed for the three-objective wind-turbine

blade optimization problem. The numerical noise inherent to BEM and the structural model

prevent a suitable gradient from being calculated.

7.2 Recommendations

Although the optimization framework developed has successfully improved the NREL 5 MW

blade design, its efficiency has not reached its full potential. The author recommends the

following steps (in order of decreasing importance – 1. being the most important) to reduce

the numerical noise and hence improve the gradient-based local search:

1. Reduce the number of blade elements or control points. This will allow per-

turbations in the decision vector to have a more significant impact on the

objective vector, which a gradient-based solver can detect more easily. Using

10 blade elements, the author observed an improvement in the ASF value dur-

ing the early stages of a separate optimization run. This optimization run was

never completed and an in-depth analysis on convergence was not performed.

Conversely, by reducing the number of blade elements, the accuracy of the

span-wise distributions (aerodynamic loads, structural properties, etc.) will
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also be reduced. Determining the best compromise between the number of

blade elements used (modelling accuracy) and the performance of the gradient

calculations (computational cost) may be necessary.

2. Adjust the gradient step-size while still capturing the derivatives of the objec-

tive functions. If the noise is trivial in comparison to the gradient step-size,

then an improvement in the ASF value should be attained. The author has

made several attempts but did not manage to achieve any improvements.

3. Increase the resolution of the master-airfoil data. If the lift and drag coef-

ficients and airfoil-profile coordinates are coarse, then numerical instabilities

will arise when they are interpolated. The lift and drag data used consisted of

approximately 142 points, while airfoil-profile coordinates consisted of approx-

imately 400. The author has revised the master-airfoil data and recommends

further refinement only if a sufficient improvement in the ASF value has not

been achieved after completing steps 1 and 2 above.

4. Replace the objective functions with analytical expressions. Objective func-

tions that consist of analytical equations rather than numerical approximations

will ensure accurate gradient calculations. For example, the cross-sectional

properties of the wind-turbine blade can be estimated using an elliptical model,

which has a readily available analytical solution. Analytical equations do not

exhibit any noise, but generally involve assumptions, limitations and decreased

accuracies in modelling.

As an alternative to the recommendations provided above, a non-gradient based approach

for local search should also be attempted since they are less influenced by noisy objective

functions. Direct-search methods such as pattern search and the complex method are the

ideal candidates.
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7.3 Future Work

In addition to the continued investigation of hybrid MOEAs for the benefit of convergence,

other capabilities of the optimization framework may be improved with further research.

For example, additional objective functions, variables, and constraints may be included. An

objective function together with the maximization of AEP, and minimization of Mflap,root

and mblade could be noise minimization, resulting in a four-dimensional optimization prob-

lem. An effective treatment of four objective functions will likely require adjustments to the

NSGA-II or a different method of optimization. It has been reported in the literature that

the performance of MOEAs based on the non-dominance concept, such as the NSGA-II, de-

teriorates rapidly with increasing number of objective functions [102]. Wagner, Beume, and

Naujoks [103] show that indicator-based MOEAs such as the S metric selection evolutionary

multi-objective algorithm (SMS-EMOA) [104] perform very well in problems with more than

three objective functions. Additional variables may include control points that determine the

airfoil shape of each blade element in the aerodynamic model, and the chord-wise position

of the shear webs and spar caps of each blade element in the structural. To compute the lift

and drag coefficients of an arbitrary airfoil shape, simulators such as XFOIL and CFD codes

can be employed.

When optimizing wind-turbine blades, minimizing the cost of energy (COE) is typically

used as an objective function. This allows the cost of wind energy to be compared with the

cost of other energy sources. In this thesis, it was assumed that mblade was well correlated to

cost. In the future, a detailed cost model including turbine components such as rotor, tower,

gearbox, and generator, and other costs such as foundation and operation and maintenance,

should be developed and implemented.

Lastly, higher fidelity models such as FAST (Fatigue, Aerodynamics, Structures, and

Turbulence) [105] and VABS (Variational Asymptotic Beam Sectional Analysis) [106] tools

could be incorporated to compute the objective functions. FAST is a comprehensive wind
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turbine aero-hydro-servo-elastic tool that combines a rotor aerodynamics module (aero), a

platform hydrodynamics module for offshore applications (hydro), a control system dynamics

module (servo), and a structural dynamics module (elastic) to allow coupled aero-hydro-

servo-elastic analysis in the time domain [107]. VABS is a finite-element based cross-sectional

analysis tool capable of modelling anisotropic blades with arbitrary sectional topology and

material constructions [108]. Instead of VABS, PreComp could also be used. PreComp

however, possesses more limitations than VABS. Implementing FAST and VABS into the

optimization framework will substantially increase the modelling accuracy, but will increase

the computing time per objective-function evaluation. FAST and VABS may also introduce

additional difficulties when evaluating the gradients for a hybrid MOEA.
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Appendix A

Assumptions in Aerodynamic and Structural Models

A.1 Aerodynamic Model

The aerodynamic model is based on the blade element momentum method, which includes

the following assumptions:

1. Each blade element acts independently and the circular streamtubes are non-

interacting;

2. The flow is steady;

3. The flow acts in the axial direction normal to the rotor plane (i.e. no yaw);

4. Reynolds numbers are sufficiently high, such that the lift and drag coefficients

can be interpolated regardless of the Reynolds number;

5. Prandtl’s tip-loss factor is sufficient to correct the tip-loss effects;

6. Wake rotation and wake expansion effects are negligible, although corrections

are available; see Døssing, Madsen and Bak [109];

7. The effects of blade pre-bending and coning are negligible.

A.2 Structural Model

The structural model consists of a cross-sectional model and beam theory, which includes

the following assumptions:

1. All materials in the cross-section behave isotropically;
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2. The balsa between the shear web and panel is a continuous piece;

3. Blade deformations are sufficiently small in comparison with the blade length,

such that Euler-Bernoulli assumptions apply;

4. The blade can be treated as a prismatic cantilever beam with a rectangular

cross-section;

5. The effect of centrifugal stiffening is negligible;

6. Each strain component can be treated separately and the strain in the longi-

tudinal direction is negligible;

7. Strain due to compression (−) and tension (+) can be treated identically.
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Appendix B

Generational Distance for DTLZ2 Test Function

The generational distance (GD) metric is used to measure the convergence of four algorithms

for the DTLZ2 test function. This section displays the set of results from 10 runs, which is

separate from the one described in section 5.9, but with the same parameters as shown in

Table 5.1. In Figures B.1 and B.2, the maximum, minimum, and mean values of GD are

plotted for each algorithm in the DTLZ2 test function problem.
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Figure B.1: Maximum, minimum, and mean GD for the three-objective DTLZ2 test function
using |PFtrue| = 10, 000 and 10 runs for GD calculation. Hybrid NSGA-II versus NSGA-II.
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Figure B.2: Maximum, minimum, and mean GD for the three-objective DTLZ2 test function
using |PFtrue| = 10, 000 and 10 runs for GD calculation. Hybrid NSGA-II versus gamultiobj.
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Appendix C

NREL 5MW Blade Master-Airfoil Data
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Figure C.1: NREL 5 MW airfoil profiles. Retrieved from [15].
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Figure C.2: NREL 5 MW airfoil lift coefficients for Reynolds number of 6-7 million. Retrieved
from [15].
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Figure C.3: NREL 5 MW airfoil drag coefficients for Reynolds number of 6-7 million. Re-
trieved from [15].
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