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ABSTRACT 

The behavior of reinforced concrete members subjected 

to pure torsion has been studied in this investigation. 

Considering both equilibrium and compatibility, skew 

bending analyses for two rectangular modes were developed 

to predict the rotations, strains and stresses at all 

levels of load and to predict the strengths of reinforced 

concrete members.subjected to pure torsion. Since diagonal 

cracking, which causes discontinuity in the concrete, and 

the lateral 'tension introduced by the reinforcement cause a 

reduction in the concrete strength, a stress-strain curve 

for concrete in which the stress has been reduced was used 

in the analyses. The experimental torsional strengths of 

102 beams were compared to the theoretical strengths and 

the comparison was found to be excellent. 

In order to cover the full range between the two 

rectangular modes, new modes with triangular and 

trapezoidal compression zones were proposed. Considering 

only equilibrium, skew bending analyses for the triangular 

and trapezoidal modes were developed to predict the 

strength of reinforced concrete members subjected to pure 

torsion. The effects of cross section aspect ratio, amount 

of reinforcement, concrete strength and softening of 

111 



concrete (reduction in the concrete strength) on the 

analyses were studied. The results of the triangular and 

trapezoidal modes were not entirely satisfactory, therefore 

these modes require further refinement. 
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LIST OF SYMBOLS 

Only ' symbols which are used repeatedly are defined here. 

Generally a symbol is also defined when it first appears in 

the text. 

A2 = cross-sectional area of all longitudinal bars. 

ac = area of the compression zone. 

a2 = cross-sectional area of one longitudinal bar. 

a =' area of one leg of a closed stirrup. 

ax = area of the compression zone perpendicular to 

the x axis. 

ay = area of the compressicn zone perpendicular to 

the y axis. 

= area of the compression zone perpendicular to 

the z axis. 

b shorter overall dimension of rectangular 

cross-section. 

b1 shorter center-to-center dimension of a closed, 

rectangular stirrup. 

b2 = shorter center-to-center dimension between two 

longitudinal corner bars. 

C = compressive, force acting normal to the 

compression zone. 

= distance from extreme fiber in compression zone 

to inner surface of the stirrups at tension side 

in' Mode 1. 
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d2 = distance from extreme fiber in compression zone 

to inner surface of the stirrups at tension side 

in Mode 2. 

F = tensile force acting normal to the compression 

zone. 

= sum of the tensile forces in the direction of x 

axis. 

= sum of the tensile forces in the direction of y 

axis. 

= sum of the tensile forces in the direction of z 

axis. 

= compressive stress in a concrete fibre 

corresponding to a strain of 

= compressive strength of concrete. 

f = stress in the longitudinal bars. 

fQY = yield stress of the longitudinal bars. 

= peak compressive strength = 

fs = stress in the stirrups. 

fsy = yield stress of the stirrups. 

h = longer overall dimension of rectangular 

cross-section. 

h1 = longer center-to-center dimension of a closed 

rectangular stirrup. 

= longer center-to-center dimension between two 

longitudinal corner bars. 

xiv 



k = coefficient used to determine the depth of the 

compression zone in Modes 1 and 2. 

kb = coefficient used to determine the base length of 

the compression zone in triangular mode. 

= coefficient used to determine the base length of 

the bottom side of the compression zone in 

trapezoidal mode 2-1. 
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kbt = coefficient used to determine the base length of 

the top side of the compression zone in 

trapezoidal mode 2-i. 

kh = coefficient used to determine the height of the 

compression zone in triangular mode. 

khQ = coefficient used to determine the height of the 

left side of the compression zone in trapezoidal 

mode 1-2. 

khr = coefficient used to determine the height of the 

right side of the compression zone in 

trapezoidal mode 1-2. 

k1 = average stress coefficient. 

ki r = average stress coefficient corresponding to a 

rectangular compression zone. 

kit = average stress coefficient corresponding to a 

triangular compression zone. 

ki z = average stress coefficient corresponding to a 

trapezoidal compression zone. 

xv 



k2 r 

k2t 

= depth to resultant coefficient. 

= depth to resultant coefficient corresponding to 

a rectangular compression zone. 

= depth to resultant coefficient corresponding to 

a triangular compression zone. 

= depth to resultant coefficient corresponding to 

a trapezoidal compression zone. 

Q,m,n = direction cosines of a line perpendicular to the 

compression zone. 

Q',m',n'= direction cosines 

neutral axis and 

application of the 
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about x 
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inclination of the compression zone in 

triangular and trapezoidal modes. 

= inclination of the compression zone in Modes 

land 2. 

'YQS =  shearing strain. 

= compressive strain in a concrete fiber. 

Ece = compressive strain in concrete at the extreme 

fiber of the compression zone normal to the -

compression plane. 

ecr = compressive strain parallel to the direction of 

the cracks. 

e  = tensile strain in the longitudinal bars. 

= strain corresponding to the peak compressive 

strength = e0/X. 

= tensile strain in the stirrups. 

= strain at fc = fc, usually taken as 0.002. 

6 PC = strain normal to the compression plane at the 

compression side. 

ept = strain normal to the compression plane at the 

tension side. 

8 = inclination of the cracks. 

= softening coefficient. 

= softening coefficient for Mode 1. 

= softening coefficient for Mode 2. 
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= longitudinal reinforcement ratio. 
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CHAPTER 1 

INTRODUCTION 

1.1 General Remarks and Contents  

Many components of structures such as curved and 

spandrel beams are subjected to combined torsion, bending 

and shear. Designing these components requires an 

understanding of the behavior of structural concrete under 

such combined actions. As a contribution to the complete 

understanding, this thesis will present a rational theory 

for members subjected to pure torsion. 

Following this introduction, Chapter 2 gives a brief 

review of two rational theories for concrete members under 

torsion, the Skew Bending Theory and the Space Truss 

Theory. Skew bending modes using a rectangular compression 

zone are presented in Chapter 3 ; both equilibrium and 

compatibility are considered, and a softened stress-strain 

relationship for concrete is introduced to the analysis. 

In Chapter 4, experimental results are compared to the 

results of these rectangular modes. In the same chapter 

the effect of softening of concrete on the analysis is 

investigated. 
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Skew bending modes using a triangular or trapezoidal 

compression zone are presented in Chapter 5 ; only 

equilibrium is considered. Chapter 6 presents the results 

of these triangular and trapezoidal modes. In the same 

chapter the effects of several variables on the analysis 

are examined. Summary, conclusions and recommendations are 

presented in Chapter 7. 

1.2 Object .and Scope  

The main objectives of this thesis were to: 

1. Introduce a softened •stress-strain relationship for 

concrete to the analysis of members by the skew 

bending rectangular modes and to study its effect on 

the results of the analysis. 

2. Improve upon the analysis of members using the skew 

bending rectangular modes, mainly with regard to 

equilibrium of moments, angle of twist and 

compatibility. 

3. Develop analytical expressions based on the skew 

bending rectangular modes to predict the rotations, 

strains and stresses at all levels of load and to 

predict the strengths of reinforced concrete members 

subjected to pure torsion. 
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4. Compare the theoretical predictions and the 

experimental results for beams reported in the 

literature. 

5. Develop new mathematical skew bending failure modes 

with triangular and trapezoidal compression zones 

capable of predicting the behavior of symmetrically 

reinforced concrete members subjected to pure 

torsion. 

6. Study the effect of cross-section aspect ratio, 

amount of reinforcement, concrete strength and 

softening of concrete on the results produced by the 

new failure modes. 



CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

In this chapter, a brief review of two rational 

theories for concrete members under torsion is presented. 

First, Lessig's (1958 and 1959) "Skew Bending Theory" is 

presented in Section 2.2 and second, Lampert and 

Thirlimnn's (1968 and 1969) "Space Truss Theory", which 

was an improvement upon Rausch's (1929) truss theory, is 

presented in Section 2.3. It is interesting to note that 

Kuyt (1971) and Elfgren et al (1974) showed that if certain 

assumptions were made, the skew bending theory and the 

truss analogy will yield the same equation for the ultimate 

capacity. 

2.2 Skew Bendinq Theory 

In 1958 Lessig proposed the skew bending theory, where 

equilibrium conditions based on the observed failure 

mechanisms were considered. The failure surface was 

assumed to be bounded on three sides by a crack that 

spiralled around the beam at a constant angle to the 

longitudinal axis and the fourth side had a rectangular 

compression zone joining the ends of the spiral cracks. 
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At failure, Lessi.g assumed that all reinforcement in the 

tension zone yielded. 

Two failure modes were observed by Lessig. In Mode 1, 

for the case of torsion with predominant bending, the 

compression zone forms at the top face of the beam, while 

in Mode 2, for the case of pure torsion or torsion with 

predominant shear, the compression zone forms at the side 

face of the beam, Figure 2.1 . The mode having the minimum 

torsional resistance governs the failure. 

McMullen and Warwaruk (1967) amongst others observed a 

third mode, Mode 3, for beams reinforced with more 

longitudinal steel in the bottom than in the top and 

subjected to large torsional moments with small bending 

moments. The compression zone forms at the bottom face of 

the beam, -Figure 2.1 

Lessig's skew bending theory has been adopted for both 

reinforced and prestressed concrete members with certain 

modifications by many others, for instance McMullen and 

Warwaruk (1967), Goode and Helmy (1968), Collins et a1 

(1968), GangaRao and Zia (1970), Henry and Zia (1971), 

Woodhead and McMullen (1972), Rangan and Hall (1973), 

Below et al (1975), Rangan et al (1977) and Ewida and 

McMullen (1981 and 1982) 
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N. A. 

N. A. 

Mode 1 

compression zone 

Mode 3 

Figure 2.1 Skew Bending Failure Modes 
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Ewida and McMullen used the skew bending theory to 

develop mathematical models, satisfying both equilibrium 

and compatibility conditions, for predicting the strength 

of reinforced concrete members under combined loading. 

They stated that their models are capable of predicting the 

strains and rotations at all levels of load for 

under-reinforcea, partially over-reinforced and completely 

over-reinforced members up to failure. 

Under-reinforced beams are beams in which both the 

longitudinal bars and the stirrups yield before the maximum 

torque is. reached ; partially over-reinforced beams are 

beams in which either the longitudinal bars or the 

stirrups, but not both, yield before the maximum torque is 

reached ; completely over-reinforced beams are beams in 

which neither the longitudinal bars nor the stirrups yield 

before the maximum torque is reached. 

Unlike Lessig, in their force equilibrium equations 

they took into consideration the tensile forces in the 

longitudinal and transverse reinforcement located in the 

compression zone. In combined loading, the failure surface 

was assumed by Ewida and McMullen to be bounded on three 

sides by cracks that spiralled around the beam at different 

inclinations, Figure 2.2, whereas in pure torsion the 

inclination of the cracks on all three sides was the same.. 
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N.A. 

compression 
plane 

(c plane) 

Figure 2.2 Mode 1 Failure Surface in Combined Loading 
after Ewida and McMullen 
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Figure 2.3 Stress-Strain Relationship for Concrete in Beams 
under Combined Loading after Ewida and McMullen 
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The fourth side had a compression zone joining the ends of 

the cracks. 

For pure torsion, they stated that the tension bars in 

the compression zone and the discontinuity of the concrete 

due to cracks may reduce the concrete strength to 35% of 

its nominal compressive strength, Figure 2.3 They 

proposed a variable stress-strain relationship for concrete 

in members under combined loading such that there is a 

smooth transition between the case of pure torsion where 

the reduction factor equals 0.35 and the case of pure 

flexure where there is no reduction factor. 

Ewida and McMullen (192) found that the sensitivity 

of the skew bending analysis to the reduction factor 

increases with an increase in the amount of reinforcement. 

The author (1980) found that the sensitivity not only 

increases with an increase in the amount of reinforcement 

but also increases with an increase in the aspect ratio of 

the member cross section. 

In their mathematical models, Ewida and McMullen 

neglected the moment due to the forces in the vertical legs 

of the stirrups in modes 1 and 3 and the moment due to the 

forces in the horizontal legs of the stirrups in mode 2. 

Also, in deriving the deformation equations they assumed 
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that the compressive strain parallel to the direction of 

the crack is equal to zero. 

For a pure torsion failure, Hsu (1968a) presented a 

skew bending analysis in which the failure surface was 

idealized in a different manner from Lessig's. He observed 

that for reinforced concrete members tested • under pure 

torsion and having a height to width ratio equal to or 

larger than 1.5 , the main cracks are perpendicular to the 

wider faces of the cross section, while for members of 

square cross section the main cracks are not perpendicular 

to the face but are diagonal. This implies that the 

failure surface for a member of square cross section is a 

plane perpendicular to a diagonal plane and inclined at 45° 

to the longitudinal axis of beam, Figure 2.4. Hsu stated 

that a failure surface such as this seems to give a minimum 

torsional resistance for square cross sections. It is 

interesting to note that Lessig (1958) stated that a 

failure could occur in which the neutral axis intersected 

one vertical and one horizontal face of a member, i.e. the 

compression zone is triangular. 

2.3 Space Truss Theory 

The first attempt to ascertain the influence of steel 

reinforcement on torsional strength was by Rausch in 1929. 

After conducting a series of tests on 500 mm square solid 
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Diagonal Plane 
(Perpendicular 
to thisSheet1 

3 

4 

Failure 

Plane 

2 

3 

Diagonal Crack 
on Saw Cut Plane 

ISaw Cut Plane 
(Perpendicular 
to this Sheet) 

450 

2,4 

1. 

Figure 2.4 Failure Surface and Diagonal Crack of 

Square Cross Section after Hsu (1968a) 
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and hollow sections, Lampert and Thiirlimann (1968 and 1969) 

were able to improve upon Rausch's original truss theory 

with the "Space Truss Theory". 

Lampert and ThUrlimann's tests showed that the pure 

torsional strengths of similar solid and hollow sections 

were identical. Therefore, their truss model was hollow as 

shown in Figure 2.5 . It consisted of longitudinal 

reinforcement which was considered to be concentrated into 

stringers at the corners, and into intermediate shear 

walls. In the shear walls, the stirrups acted as tension 

ties and the concrete between the inclined cracks acted as 

compression diagonals. They stated that the diagonal 

forces in the shear walls were deflected into the adjacent 

walls by means of the longitudinal corner bars. Therefore, 

their location determined the cross sectional dimensions of 

the model. 

The space truss theory has been adopted for both 

reinforced and prestressed concrete members with certain 

modifications by many others, for instance Lampert et al 

(1971), Lampert and Collins (1972), Mitchell and Collins 

(1974), onsongo (1978),Collins and Mitchell (1980) and Hsu 

and Mo (1983). 

Satisfying both equilibrium and compatibility 

conditions, Mitchell and Collins (1974) used the space 
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truss theory to develop their "Diagonal Compression Field 

Theory". The theory was capable of predicting the 

post-cracking torsional behavior of symmetrically 

reinforced and prestressed under-reinforced, partially 

over-reinforced and completely over-reinforced concrete 

members in pure torsion. The torsional capacity was based 

on the dimensions of the spalled sections; i.e. the area 

enclosed by the center line of the stirrups. The author 

(1980) amongst others found that spalling was observed only 

after the peak load was reached. Thus the arbitrary 

reduction of cross sectional area as proposed by Mitchell 

and Collins is inconsistent with observed behavior. 

Collins and Mitchell (1 980) used the truss analogy to 

predict the strength of prestressed and non-prestressed 

concrete members under combined loading. In their analysis 

for members in shear they reduced the diagonal compressive 

strength, reasoning that stresses have to be transmitted 

across cracked and severely deformed concrete. They 

introduced this reduction only for members in shear and not 

for members in torsion. Later Vecchio and Collins (1981), 

after testing seventeen 890 mm square by 70 mm reinforced 

concrete panels subjected to pure shear, derived an 

expression to model the observed stress-strain behavior. 

They introduced a stress-strain curve for concrete in which 
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the stress and the strain have been scaled down, 

Figure 2.6. 

Hsu and Mo (1983) used the truss analogy and Vecchio 

and Collins' (1981) reduced diagonal compressive strength 

in their theory "Softening of Concrete in Torsional 

Members" which is applicable to symmetrically under 

reinforced concrete members in pure torsion. Their theory 

is the same as Mitchell and Collins' diagonal compression 

field theory, except that it utilizes the full cross 

section (not the spalled one) and it takes Vecchio and 

Collins' reduced diagonal compressive strength (softening 

of concrete) into consideration. 

El-Degwy and McMullen (1985) presented results of 

thirteen symmetrically prestressed concrete rectangular 

beams tested under pure torsion. The principal variables 

studied were aspect ratio and amount of reinforcement. 

Three computer program were developed, the first one 

being for the space truss theory with spalling of the 

concrete cover after Collins and Mitchell (1980), the 

second one being for the space truss theory with softening 

of the concrete after Hsu and Mo (1983), and the third one 

for the skew bending theory after Ewida (1979) and Ewida 

and McMullen (1982). The .behavior of the beams was 

compared to the behavior predicted by these three theories. 
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El-Degwy and McMullen found that: 

1. The space truss theory with softening of concrete 

gave the best overall prediction of torsional 

strength. 

2. Both the space truss theories and the skew bending 

theory gave a satisfactory but slightly 

conservative prediction of torsional strength for 

lightly reinforced beams. 

3. All three theories yielded a prediction of 

torsional strength that is satisfactory for design 

purposes for beams that have moderate to heavy 

reinforcement and an aspect ratio of 2.0. 

4. All three theories gave a high (unsafe) prediction 

of torsional strength for beams having moderate to 

heavy reinforcement and an aspect ratio of 1.0, 

whereas all three theories gave a low (over-safe) 

prediction of torsional strength for similar beams 

having an aspect ratio of 3.0. 

5. Examination of test results available in the 

literature shows that their findings (2,3 and 4) 

were true not only for prestressed beams but also 

for reinforced concrete beams. 



CHAPTER 3 

SKEW BENDING ANALYSIS - RECTANGULAR MODES 

3.1 Introduction 

This chapter describes the skew bending theory for 

reinforced concrete members subjected to pure torsion. The 

compression zone is rectangular. Equilibrium and 

compatibility are considered. 

3.2 Stress-Strain Curve for Concrete  

Mitchell and Collins (1974) and Rangan et al (1977) 

used a parabolic stress-strain relationship for concrete, 

Figure 2.3 

= fc [2(E c/eo )_ c/6o)2] 

where fc = compressive strength of concrete, 

(3.1) 

60 = strain at fc f, usually taken as 0.002 

and fc = stress in concrete corresponding to a strain 

of 

Ewida and McMullen (1982) used the same relationship 

except that they introduced a reduction factor of 0.35 that 

scaled down the stress, Figure 2.3 

fc = O.35f c E2(6 c/E o )_(6 c/6 o)2] 

18 

(3.2) 



19 

Vecchio and Collins (1981) proposed a stress-strain 

relationship for concrete in which both the stress and the 

strain were scaled down, Figure 2.6 . The equation for the 

ascending portion of the curve is 

fc = fc [2 c/eo )_?(6 c/e o)2] (3.3) 

Equation 3.3 is identical to Equation 3.1 except that an 

empirical coefficient X has been inserted in the second 

term. This coefficient was found from tests done at 

University of Toronto, Vecchio and Collins (1981), to be 

= .7 [(c2+e5+2e)/e] -O. 3 (3.4) 

where eQ = tensile strain in the longitudinal bars 

and es = tensile strain in the stirrups. 

The peak compressive strength and corresponding strain are 

= 

ep = 

(3.5) 

(3.6) 

The equation for the descending portion of the curve is 

fc = f[l ( cP)2] 
2e0-e 

(3.7) 

The average stress coefficient, k1, which will be 

required in subsequent sections of the thesis to determine 
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the magnitude of C, the compression force in the concrete, 

can be derived as: 

for c c .: 

for cc > 

ki = e _E( 1 - _E) 
3e 

k1 = (1-X')(1 

where A' = 

1 

(2X-1) 2 

p 

e e e 
_2) + XT_E(i - 

3e 

(3.8) 

(3.9) 

The depth to resultant coefficient, k2 ,which will be 

required in subsequent sections of the thesis to determine 

the location of C, the compression force in the concrete, 

can be derived as: 

for cc . 

4 - 
K2 = 

for c c > e1 

k2 = 1 

12-4( ec/ep) 

1e e,.2 cc 
) -i) + X' —(  - - 

2 Gec c p 3 4e 

(l-X')(l - ) 
ec: 

e 
+ E( l - c c) 

3e 

(3.10) 

(3.11) 
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The coefficients k1 and k2 have been tabulated in 

Tables 3.1 and 3.2 respectively as functions of 1/X and cc 

assuming e0 = 0.002 

The diagonal cracking, which causes discontinuity in 

the concrete, and the lateral tension introduced by the 

reinforcement, would obviously cause a reduction in the 

concrete strength. Ewida and McMullen's reduction factor 

of 0.35 was introduced as an emp.irical factor that led to 

reasonable results, whereas Vecchio and Collins' proposed 

stress-strain curve accomplishes the same thing and is more 

general. Therefore Vecchio and Collins' stress-strain 

curve will be adopted in this theory and the effect of the 

reduction in the concrete strength will be studied in the 

next chapter. 

3.3 Skew Bendinq Theory  

3.3.1 Mode 1 

The failure surface for Mode 1 is shown in Figure 3.1. 

It is bounded on three sides, the bottom and the two 

verticals, by cracks spiraling around at a constant 

angle 0. The fourth side has a rectangular compression 

zone joining the ends of the cracks. 
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Table 3.1 ki as a Function of 1/X and e (e 0 = 0.002) 

0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004 

0.10 0.865 0.922 0.922 0.899 0.861 0.809 0.744 0.667 

0.20 0.733 0.861 0.888 0.881 0.851 0.805 0.743 0.667 

0.30 0.602 0.798 0.853 0.860 0.841 0.801 0.742 0.667 

0.40 0.495 0.733 0.815 0.839 0.829 0.796 0.741 0.667 

0.50 0.417 0.667 0.775 0.815 0.817 0.790 0.739 0.667 

0.60 0.359 0.602 0.733 0.789 0.803 0.784 0.738 0.667 

0.70 0.315 0.544 0.689 0.761 0.787 0.777 0.736 0.667 

0.80 0.280 0.495 0.645 0.732 0.770 0.769 0.734 0.667 

0.90 0.252 0.453 0.602 0.700 0.751 0.760 0.732 0.667 

1.00 0.229 0.417 0.563 0.667 0.729 0.750 0.729 0.667 
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Table 3.2 k2 as a Function of l/X and = 0.002) 

ec \ O.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004 

0.10 0.439 0.471 0.488 0.503 0.520 0.542 0.572 0.613 

0.20 0.391 0.440 0.465 0.484 0.504 0.527 0.558 0.600 

0.30 0.365 0.413 0.443 0.466 0.487 0.512 0.544 0.588 

0.40 0.355 0.391 0.424 0.448 0.471 0.498 0.530 0.575 

0.50 0.350 0.375 0.406 0.432 0.456 0.483 0.517 0.563 

0.60 0.347 0.365 0.391 0.417 0.442 0.469 0.503 0.550 

0.70 0.345 0.359 0.380 0.403 0.428 0.455 0.490 0.538 

0.80 0.343 0.355 0.371 0.392 0.415 0.442 0.476 0.525 

0.90 0.342 0.352 0.365 0.382 0.403 0.429 0.463 0.513 

1.00 0.341 0.350 0:361 0.375 0.393 0.417 0.450 0.500 
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From the geometry of the failure surface the following 

equation can be obtained: 

tang = wtanO (3.12) 

where 0 = the inclination of the compression zone, 

w = [b+2h(l-k)]/b, 

b = s horter overall dimension of rectangular 

cross-section, 

h = longer overall dimension of rectangular 

cross-section, 

and k = coefficient used to determine the depth of the 

compression zone. 

The direction cosines of the line joining points 

P1 (x11 y1 ,z1) and P2 (x2 ,y21 z2 ), Figure 3.1 which is 

perpendicular to the compression zone are: 

= (x2-x1 )/L1 2 = sing 

m = (y2-y1 )/L12 = 0 

n = (z 2-z1 )/L12 = cos13 

where L12 = distance between points P1 and P2 

= /( x2_x1 )2+(y2_y1)2+( z2_z1 )2 

F (3.13) 

The direction cosines of the line joining points 

P3 (x3 ,y3 ,z 3) and P4 (x4 ,y4 ,z4 ), which 

compression zone are (Figure 3.1): 

is parallel to the 
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= (x4-x3 )/L34 = 

= (y4-y3 )/L34 = 

= (z4-z3 )/L34 = 

- cosI3 

0 

sins 

where L34 = distance between points P3 and P4 

= /( X4_X3 )2+ Y4_Y3 2+( Z4_Z3 )2 

Note that: 

= 1 

= 1 

QQ.'+mn'+nn'= 0 

The forces in the longitudinal bars are: 

F1 = F2 = F3 = F4 = aQF 

(3.14) 

(3.15) 

(3.16) 

where aQ = cross-sectional area of one longitudinal bar 

and f = stress in the longitudinal bar. 

The forces in the legs of the stirrups are: 

F5 = a5f5b1tan9/s 

F6 = a5f5 [O.5(h+h1 )-kh]tanO/s 

F7 = a5f5b1tanl3/s 

F8 = F6 

where as = area of one leg of a closed stirrup, 

fs = stress in the stirrups, 

} (3.17) 
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b1 = shorter center-to-center dimension of a closed 

rectangular stirrup, 

h1 = longer center-to-center dimension of a closed 

rectangular stirrup 

and s = spacing of stirrups. 

The following equation can be obtained by considering 

the equilibrium of forces acting normal to the compression 

plane: 

C =FQ+Fm+Fn (3.18) 

where C = the compressive force acting normal to the 

compression zone' 

= klf ckhbsecl3/X (3.19) 

FX = the sum of the forces in the direction of the 

x axis 

= F5+F7 

= a5f5b1tan6(1+w)/s (3.20) 

= the sum of the forces in the direction of the 

y axis 

= F6-F8 

= 0 (3.21) 

and Fz = the sum of the forces in the direction of the 

z axis 
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= F1+F2+F3+F4 

= (3.22) 

Substituting Equations 3.12, 3.13, 3.19, 3.20, 3.21 

and 3.22 into Equation 3.18 gives 

k 
4aQfQ+aSfSbltan29 (w+w2 )/s 

k1fhb(1+w2tan26)/X 
(3.23) 

The torsional moment is obtained from the equilibrium 

of external and internal moments about line P3P4 which is 

parallel to the neutral axis and passes through the point 

of application of the compressive stress resultant. 

Tn'= MQ'4 Mm'+ Mn' (3.24) 

where T = external torque, 

Mx = internal moments about x axis 

h+h2 h-h2 
= -2a K fK ( - k2kh)+2a K fK (k2kh 

2  2 

h+h1 tan9 
kh) [b+h(1-k)]tan6 

2 s 

M = internal moments about y axis 

(3.25) 

= 0 (3.26) 
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Mz = internal moments about z axis 

b1 h+h1 h+h1 b1tan9 
= a5f — tan9( k2kh)+2a5f5( kh) 

s 2 2 2s 

b1 h-h1 
-a5f5—t.anl3(k2kh -  

S 2 
(3.27) 

and h2 = longer center-to-center dimension between two 

longitudinal corner bars. 

Substituting Equations 3.12, 3.14, 3.25, 3.26, and 

3.27 into Equation 3.24 gives: 

8 
T = E 

i=1 Ti 

where Ti = aQfQ[h(l-2k2k)+h2 ]/2wtan0 

T2 =T1 

T3 = aQfQ[h(l-2k2k)-h2)/2wtan9 

T4 = T3 

T5 = a5f5b1tan0[h(1-2k2k)+h1 ]/2s 

T6 = a5f5tanO[h(l-2k)+h){b1-[b+h(1-k)]/w}/4S 

T7 = a5f5b1wtan8[h(l-2k2k)-h1 ]/25 

and T8 =T6 

(3.28) 

To determine the value of 8 corresponding to the 

minimum value of T, Equation 3.28 is differentiated with 

respect to the crack inclination 8, equated to zero and 

solved for 0 



30 

6 = tan 
f'4a 2fs g1 

a5f5b1w S 
E g1 

i=2 

where 91 = h(1-2k2k) 

and 

(3.29) 

92 = g1+h1 

93 =h(1-2k)+h1 

94 = -g 3[b+h(1-k)]/(b1w) 

95 = w(g1-h1) 

The following compatibility equations can be derived 

from the Mohr's circle of strain shown in Figure 3.2 

= 2 (eq+e cr )tanO (3.30) 

7Qs = 2(e s+e cr )/tanO (3.31) 

where 7Qs = shearing strain 

and Ccr = compressive strain parallel to the direction 

of the cracks. 

The following equations can be obtained from Equations 

3.30 and 3.31 

- Cs+€ cr 

- tan20 - 6cr 

ecr = 0.575tan6 - Cs 

(3.32) 

(3.33) 

The strain normal to the compression plane (I3-plane) 



31 

Figure 3.2 lylohrts Circle of Strain 
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at the tension side may be written as: 

C At = ecos 2 3 + e5sin213 + 'y25sin3cos13 (3.34) 

The strain normal to the compression plane at the 

compression side may be written as: 

3c = 'y 25sinl3cos/3 - eQcosP - e551n213 (3.35) 

Assuming linear strain distribution normal to the 

compression plane, the following equations may be written: 

d1-h(l-k) 
6 8c =  ece 

kh 

kh 

ece = d1_kh13t 

(3.36) 

(3.37) 

where d1 = distance from extreme fiber in compression 

zone to inner surface of the stirrups at 

tension side in Mode 1 

and Ece = compressive strain in concrete at the extreme 

fiber of the compression zone normal to the 

compression plane. 

Substituting Equations 3.34, 3.35 and 3.37 into 

Equation 3.36 gives 

7 Qs - 2 + e5 tan) 

1-u tanl3 
(3.38) 
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where u = [d1-h(1-k)]/(d1-kh) 

The twist of a beam can be visualized according to the 

skew bending model as a rotation about a longitudinal axis 

passing through the point of application of the compression 

stress resultant, Ewida and McMullen (1982). The twist of 

a beam may be expressed in terms of the shearing 

strain 7Qs as: 

= 7cLs/dr (3.39) 

where dr = d1 k2kh 

Another expression for the twist of a beam can be 

derived from the compatibility of warping displacements of 

a thin walled tube element, Onsongo (1978), as: 

= 7q1+hi)1b1i (3.40) 

Using Equation 3.39 Ewida and McMullen got good 

correlation with their experimental results. In 1986 Hsu 

and Mo, in their comments on El-Degwy and McMullen's (1985) 

paper, stated that Equation 3.39 underestimates the value 

of the angle of twist. 

In the next chapter results using Equations 3.39 and 

3.40 will be presented and evaluated. 
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3.3.2 Mode 2 

The failure surface for Mode 2 is shown in Figure 3.3. 

It is bounded on three sides, one of the verticals and the 

two horizontals, by cracks spiraling around at a constant 

angle 0. The fourth side has a rectangular compression 

zone joining the ends of the cracks. 

Mode 2 can be handled in a manner similar to that used 

for Mode 1. Equations for Mode 2 will be the same as those 

for Mode 1 except that w,u,d1 ,b,b1 ,b21 h,h1 and h2 will be 

changed to v,r,d2 ,h,h1 ,h2 ,b,b1 and b2 respectively; only 

the necessary 'equations will be presented here. 

From the geometry of the failure surface: 

tang = vtanO (3.41) 

where v = [h-i-2b(l-k)]/h 

The coefficient k, used to determine the depth of the 

compression zone can be obtained from: 

k 
4a Qf +a5f5h1tan20 (v+v2 )/s 

k1fbh(l+v 2tan2O)/X 

The torsional moment is obtained as: 

8 
T = ≥ Ti 

(3.42) 

(3. 43) 
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where Ti = aQfQ[b(1-2k2k)+b2 ]/2vtan9 

T2 =T1 

T3 = aQfQ(b(1-2k2k)-b2 ]/2vtan8 

T4 = T3 

T5 = a5f5h1tan0[b(l-2k2k)+b1 ]/2s 

T6 = a5f5tan6[b(1-2k)-4-b1 ]{h1-[h+b(l-k)]/v}/4s 

T7 .= a5f5h1vtan9{b(l-2k2k)-b1 ]/2s 

and T8 =T6 

The crack inclination is obtained as: 

e = tan 
a2f2s g1 

where 91 = b(1-2k2k) 

92 = g1 -i-b1 

f5h1v 5 

i=2 

93 =-b(1-2k)+b1 

94 = g3[h+b(1k)]/(h1v) 

and 95 = v(g1-b1) 

The tensile strain in the longitudinal bars is: 

6s €cr 

tan26 ecr 

(3.44) 

(3.45) 

The compressive strain parallel to the direction of 

the cracks is given by: 
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ecr = O.5'YQStanO - (3.46) 

The strain normal to the compression plane (13-plane) 

at the tension side is: 

cot = eQcosJ3 + e5sin j3 + (3.47) 

The compressive strain in concrete at the extreme 

fiber of the compression zone normal to the compression 

plane is obtained as: 

Ece = 
kb 

d2-kb et 

The shearing strain can be obtained from: 

7Qs = ___ E + 

l-r tanP 
e5tan13) 

where r = [d2-b(l-k)]/(d2-kb) 

The angle of twist is: 

0 = 72 s/dr 

where dr = d2 k2kb 

or = 7qs (bl+hl)1(blhl) 

(3.48) 

(3.49) 

(3.50) 

(3.51) 
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3.4 Solution Technique 

The stress-strain, geometric, equilibrium and 

compatibility relationships which have been derived provide 

enough information to predict the torsional response of a 

beam if the properties of the section are known. An 

iterative procedure can be used as follows: 

1. Input the beam data. 

2. Select strain in the stirrups es . 

3. Assume the angle of crack 0, the depth coefficient k 

and the strain parallel to the direction of the 

crack ecr . 

4. Calculate the strain in the longitudinal bars eQ, 

Equation 3.32. 

5. Calculate the inclination of the compression zone a, 
Equation 3.12. 

6. Calculate the shearing strain 7Qs , Equation 3.38. 

7. Calculate the strain parallel to the direction of 

the crack 6cr' Equation 3.33. 

8. Calculate the residual of C cr ; if it is 

unacceptable, go back to step 4 using a new value 

for €cr • 

9. Calculate the coefficient 

is taken as ecr . 

10. Calculate the strain normal to the compression plane 

at the tension side eat, Equation 3.34. 

Equation 3.4, where Cc 
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11. Calculate the strain in concrete at the extreme 

fiber of the compression zone normal to the 

compression plane 6ce' Equation 3.37. 

12. Calculate the average stress coefficient 

Equation 3.8 or 3.9, where ec is taken as Ece• 

13. Calculate the depth coefficient k, Equation 3.23. 

14. Calculate the residual of k ; if it is unacceptable, 

go back to step 4 using a new value for k. 

15. Calculate the depth to resultant coefficient k2, 

Equation 3.10 or 3.11, where 6c is taken as Cce • 

16. Calculate angle of crack 9, Equation 3.29. 

17. Calculate the residual of 9 ; if it is unacceptable, 

go back to step 4 using a new value for 0. 

18. Calculate angle of twist per unit length P, 

Equations 3.39 and 3.40. 

19. Calculate the corresponding torque resistance T 

Equation 3.28. 

20. Repeat steps 2 to 19 for a number of values of 

strain in the stirrups to get the complete torsional 

response in Mode 1. 

21. Using Mode 2 equations, repeat steps 2 to 19 for a 

number of values of strain in the stirrups to get 

the complete torsional response in Mode 2. 

22. Select the mode giving the lowest maximum torque. 

, 
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According to the foregoing iterative procedure, a 

computer program capable of predicting the behavior of 

rectangular reinforced concrete beams under pure torsion 

has been developed. 



CHAPTER 4 

COMPARISON OF ANALYSIS AND TEST RESULTS 

4.1 Introduction 

In this chapter, the experimental torsional strengths 

of 102 beams reported in the literature are compared to the 

theoretical strengths predicted by the iterative procedure 

described in Chapter 3. Torque-twist and torque-strain 

curves are also presented. 

The reduced concrete strength defined by Equations 3.3 

and 3.7, Section 3.2, is used in the various calculations 

of torque in Sections 4.2, 4.3 and 4.4. Its effect on the 

analysis is explicitly presented in Section 4.5. 

4.2 Torsional Strengths  

In the iterative procedure, strains in the stirrups 

are incremented and the corresponding torque is calculated 

by satisfying both equilibrium and compatibility. The 

theoretical torsional strength (maximum torque) is the 

torque at which the slope of the torque-twist curve is 

zero. Two modes of failure (Mode 1 and Mode 2) have been 

checked. The theoretical torsional strength of a beam is 

41 
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defined as the lowest maximum torque of the two strengths 

computed according to these two modes of failure. 

Generally, a rectangular beam that has a width less than 

its depth and that is tested in pure torsion will fail in 

Mode 2. 

The experimental and theoretical torsional strengths 

of the 102 beams are compared in 'Table 4.1. Of these 

beams, 36 have been excluded from the analysis, the reason 

for exclusion in each case being given in the table. 

Excessive stirrup spacing (excess. spac.) is defined as 

the stirrup spacing, s, being greater than (b1 +h1 )/4 or 

300 mm, CAN3-A23.3-M84 (1984). Completely over-reinforced 

(over-reinf.) beams are defined as those in which the test 

results show that neither the longitudinal bars nor the 

stirrups yielded before the maximum torque was reached. 

Insufficient reinforcement (insuff. reinf.) is when the 

calculated post-cracking strength is less than the cracking 

torque Tcr . 

After the exclusion, the average ratio of experimental 

strength to theoretical strength for the 66 remaining beams 

is 1.01 and the standard deviation is 7.8%. For each 

reference 

deviation 

comparison 

excellent. 

the average T(exp.)/T(th.) and the standard 

are also given in Table 4.1. Certainly the 

of experimental and theoretical results is 
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Table 4.1 Comparison of Experimental and Theoretical 

Torsional Strengths 

Ref. Beam 
T(exp.) 

kN.m 

T(th.) 

kN.m 

T(exp.) Reason for 

Exclusion T(th.) 

B]. 22.3 21.4 1.04 

B2 29.3 31.1 0.94 excess. spac. 
Co 

B3 37.5 43.1 0.87 

B4 47.3 55.6 0.85 
In 

B5 56.2 68.3 0.82 over-reinf. 

B6 61.7 75.1 0.82 over-reinf. 

B7 27.0 27.6 0.98 

BB 32.5 31.0 1.05 

B9 29.8 33.3 0.89 

B1O 34.4 38.5 0.89 

Ml 30.4 28.8 1.06 

M2 40.6 40.0 1.02 

M3 43.8 49.3 0.89 

M4 49.6 60.6 0.82 over-reinf. 

MS 55.7 72.2 0.77 over-reinf. 

MG 60.1 78.9 0.76 over-reinf. 
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Table 4.1 (cont.1) Comparison of Experimental and 

Theoretical Torsional Strengths 

Ref. Beam 
T(exp.) 

kN..m 

T(th.) 

kN.in 

T(exp.) Reason for 

Exclusion T(th.) 

12 36.0 34.2 1.05 

13 45.7 47.4 0.96 
00 

14 58.1 59.1 0.98 
'-I 

15 70.7 73.5 0,96 

16 76.7 90.7 0.85 over-reinf. 

Ji 21.5 20.6 1.04 

J2 29.2 28.6 1.02 

J3 35.3 39.3 0.90 over-reinf. 

J4 40.7 44.6 0.91 over-reinf. 

Gi 2G.BTcr 24.7 1.09 insuff. reinf. 

G2 40.3 37.0 1.09 

G3 49.6 50.6 0.98 

G4 64.9 64.1 1.01 

G5 72.0 78.7 0.91 over-reinf. 

G6 39.1 36.9 1.06 

G7 52.7 52.2 1.01 

GB 73.5 69.2 1.06 
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Table 4.1 (cont.2) Comparison of Experimental and 

Theoretical Torsional Strengths 

Ref. Beam 
T(exp.) 

kN.m 

T(th.) 

kN.m 

T(exp.) Reason for 

Exclusion T(th.) 

(
8
9
6
I
)
 
flSH 

Ni 9.1 8.3 1.10 

Nia 9.0 8.2 1.10 

N2 14.5 13.5 1.07 

N2a 13.2 13.4 0.99 

N3. 12.2 11.7 1.04 

N4 15.7 16.1 0.98 over-reinf. 

Kl 15.4 13.7 1.12 

K2 23.7 22.4 1.06 

K3 28.5 28.6 1.00 

K4 35.0 31.7 1.10 over-reinf. 

Cl ll.3Tcr 10.4 1.09 insuff. reinf. 

C2 15.3 17.9 0:85 excess. spac. 

C3 20.0 25.8 0.78 excess. spac. 

C4 25.3 34.8 0.73 over-reinf. 

C5 29.7 42.9 0.69 over-reinf. 

C6 34.2 50.6 0.68 over-reinf. 
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Table 4.1 (cont.3) Comparison of Experimental and. 

Theoretical Torsional Strengths 

Ref. Beam 
T(exp.) 

kN.m 

T(th.) 

kN.m 

T(exp.) Reason for 

Exclusion T(th.) 

C
a
m
e
r
o
n
 
(
1
9
7
1
)
 

T1A 21.7 23.0 0.94 

T1B 22.9 23.1 0.99 

TiC 22.1 22.9 0.97 

634 24.,7 23.5 1.05 

644 32.2 - - Inconsistent 
Information 

1034 48.1 45.5 1.06 

1044 60.8 59.0 1.03 

1055 77.5 83.3 0.93 

1244 59.8 65.2 0.92 

1255 80.5 91.4 0.88 

1644 96.4 93.3 1.03 

1655 119.6 125.1 0.96 
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Table 4.1. (cont.4) Comparison of Experimental and 

Theoretical Torsional Strengths 

Ref. Beam 
T(exp.) 

kN.m 

T(th.) 

kN.m 

T(exp.) Reason for 

Exclusion T(th.) 

L
e
o
n
h
a
r
d
t
 
a
n
d
 
S
c
h
e
l
l
i
n
g
 
(1

97
4)

 

VS1 ll.GTcr 11.0 1.05 insuff. reirif. 

VS2 20.0 21.1 0.95 

VS3 29.2 30.1 0.97 

VS4 35.1 38.2 0.92 over-reinf. 

VS5 19.2 17.7 1.08 excess. spac. 

VSG 21.1 25.8 0.82 excess. spac. 

VS7/1 22.0 36.0 0.61 excess. spac. 

VS7/2 22.0 35.4 0.62 excess. spac. 

VSB/1 29.2 42.2 0.69 excess. spac. 

VSB/2 29.7 43.0 0.69 excess. spac. 

V59 22.0 25.4 0.87 

VSiO 34.0 43.9 0.77 over-reinf. 

VB1 - - - =VS1O 

VB2 43.0 46.8 0.92 over-reinf. 

VB3 47.4 49.5 0.96 

VB4 49.6 50.6 0.98 

VQ1 21.6 21.2 1.02 
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Table 4.1 (cont.5) Comparison of Experimental and 

Theoretical Torsional Strengths 

Ref. Beam 
T(exp.) 

kN.m 

T(th.) 

kN.m 

T(exp.) Reason for 

Exclusion T(th.) 

Le
or

ih
ar

dt
 
a
n
d
 
S
c
h
e
l
l
i
n
g
 
(1

97
4)

 

VQ2 - - - =VS2 

VQ3 20.4 21.4 0.95 

VQ4 31.2 39.4 0.79 over-reinf. 

VQ5 - - - =VS4 

VQ6 36.0 37.2 0.97 over-reinf. 

VQ9 22.4 21.0 1.07 

VA1 38.3 45.6 0.84 over-reinf. 

VA2 37.8 43.5 0.87 over-reinf. 

VA3 34.5 37.6 0.92 over-reinf. 

VU1 24.5 25.2 0.97 

VU2 31.0 31.3 0.99 

VU3 31.7 33.3 0.95 over-reinf. 

VU4 26.5 28.2 0.94 

VM1 14.2 12.7 1.12 

VM2 40.0 37.7 1.06 

VM3 103.0 98.9 1.04 

VM4 285.0 296.3 0.96 
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Table 4.1 (cont.G) Comparison of Experimental and 

Theoretical Torsional Strengths 

Ref. Beam 
T(exp.) 

kN.m 

T(th.) 

kN.m 

T(exp.) Reason for 

Exclusion T(th.) 

'M
c
M
u
l
l
e
n
 
a
n
d
 
R
a
n
g
a
n
 
(
1
9
7
8
)
 

Al 13.1 11..3 1.16 

AiR 12.5 11.2 1.12 

A2 22.6 20.7 1.09 

A3 27.8 
28 •3: 0.98 

A4 34.5 38.4 0.90 

Bi 12.8 10..4 1.23 

B1R 12.3 10.4 1.18 

B2 20.8 18.9 1.10 

B3 25.3 25.3 1.00 

B4 31.8 33.2 0.96 
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Table 4.1 (cont.7) Comparison, of Experimental and 

Theoretical Torsional Strengths 

Reference 

No. of 

Total 

Beams 

No. of 

Eligible 

Beams 

T(exp.) 
u  

Standard 

Deviation 

% 
T(th.) 

Hsu (1968b) 49 30 1.01 7.1 

Cameron (1971) 12 11 0.98 5.6 

Leonhardt and 31 15 0.99 6.0 
Schelling (1974) 

McMullen and 10 10 1.07 10.2 
Rangan (1978) 

Total 102 66 1.01 7.8 
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If completely over-reinforced beams are not excluded, 

the average , ratio of experimental strength to theoretical 

strength for (in this case) 89 beams would be 0.97 with a 

standard deviation of 10.7% which is not quite as good 

correlation' as when the completely over-reinforced beams 

are excluded. 

4.3 Torque-Twist Curves  

The torque-twist curves for beams having a square, A3, 

and a rectangular, B3, cross-section tested by McMullen and 

Rangan (1978) are presented in Figures 4.1 and 4.2 

respectively. Each figure includes one experimental as 

well as two theoretical curves. 

For the theoretical torque-twist curves the angle of 

twist is calculated twice for a specific torque, first 

using Equation 3.39 (Mode 1) or Equation 3.50 (Mode 2) and 

secondly using Equation 3.40 (Mode 1) or Equation 3.51 

(Mode 2). 

It is apparent that the torque-twist curves calculated 

using Equation 3.40 or 3.51 for angle of twist are closer 

to the corresponding experimental curves than the curves 

calculated using Equation 3.39 or 3.50 for angle of twist. 
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4.4 Torque-Strain Curves  

Figure 4.3 presents the torque versus longitudinal 

steel strain •curve predicted by the theory presented in 

Chapter 3 along with the experimental curve for McMullen 

and Rangan's (1978) A3 beam. Figure 4.4 presents the 

torque versus stirrup strain curves for the same beam. 

Figures 4.5 and 4.6 present similar curves for McMullen and 

Rangan's B3 beam. It can be noted from Figures 4.3, 

4.4 and 4.5 that the theoretical predictions fit the 

experimental curves quite well. In Figure 4.6 the 

correlation between the theoretical and the experimental 

curves is, in the initial stages, not as good as in the 

previous figures because the experimental strain increases 

at an irregular rate ; however, in the final stages, 

correlation is quite good. 

4.5 Effect of the Reduction in the Concrete Strenqth  

The torque-twist curves for two beams tested at the 

University of Calgary, McMullen and Rangan (1978), are 

presented in Figures 4.7 and 4.8. Each figure includes one 

experimental as well as two theoretical curves. For the 

two theoretical curves the angle of twist is calculated 

using Equation 3.40 or 3.51 and the torque is calculated 

twice, first using the full strength of concrete defined by 
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Equation 3.1 and secondly using the reduced concrete 

strength defined by Equations 3.3 and 3.7. 

It is apparent that the torque-twist curves calculated 

using the reduced concrete strength are closer to the 

corresponding experimental curves than the curves 

calculated using the full strength of concrete. They are 

closer in all aspects, first the maximum torque, second the 

descending branches 

twist at maximum 

concrete strength 

experimental results. 

of the curves and third the angles of 

torque. In conclusion, the reduced 

provides good predictions for the 



CHAPTER 5 

SKEW BENDING ANALYSIS - .TRIANGULAR AND TRAPEZOIDAL MODES 

5.1 Introduction 

In Chapter 3 the analysis presented was for skew 

bending modes with a rectangular compression zone. This 

chapter describes modes with triangular and trapezoidal 

compression zones. 

5.2 Trianqular and Trapezoidal Modes  

To study the shape of the failure surface visually, 

Hsu (1968a) used a large diamond saw to cut reinforced 

concrete beams perpendicular to their longitudinal axis. 

They had various height to width ratios and had been tested 

under pure torsion. He observed that for beams having a 

height to width ratio equal to or larger than 1.5, the main 

cracks seen on the wider faces of the cross sections 

penetrated perpendicularly into the beams. For beams of 

square cross section the main cracks were not perpendicular 

to the face but were diagonal. 

This implies that the failure surface for a member of 

square cross section is a plane perpendicular to a diagonal 

plane and inclined 45° to the longitudinal axis of the 

62 
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beam, Figure 2.4. Hsu stated that a failure surface such 

as this seems to give a minimum torsional resistance for 

square cross sections. It is interesting to note that 

Lessig (1958), who first proposed the skew bending theory, 

stated that a failure could occur in which the neutral axis 

intersected one vertical and one horizontal face of a 

member, i.e. the compression zone is triangular. 

Hsu (1968a) mentioned that beams with square cross 

sections require extensive additional investigation. The 

available literature shows that nobody tried to analyse a 

skew bending failure mode for reinforced concrete beams 

with square or rectangular cross section under pure torsion 

having a triangular compression zone. The author is the 

first to try to do so. 

According to the analyses and results presented in 

Chapters 3 and 4 for Modes 1 and 2 with rectangular 

compression zones, the mode giving 

torque was selected. Generally Mode 

having a rectangular cross section. 

reinforced beams having a square cross 

Mode 2 give exactly the same results. 

inferred that a failure surface 

the lowest maximum 

2 governs for beams 

For symmetrically 

section, Mode 1 and 

Hsu and Lessig have 

with a triangular 

compression zone could occur and perhaps this would give a 
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minimum torsional resistance for beams having a square 

cross section. 

Mode 1 has its rectangular compression zone on the top 

side joining the ends of the spiral crack, Figure 5.la, 

while Mode 2 has its rectangular compression zone on one of 

the vertical sides joining the ends of the spiral crack, 

Figure 5.li. A failure surface with a triangular 

compression zone on a corner is the proposed triangular 

mode of failure which lies between Mode 1 and Mode 2, 

Figures 5.ld, e and f. 

In order to cover the full range between the two 

rectangular modes (Modes 1 and 2), two failure surfaces 

with trapezoidal compression zones are needed. These are 

the proposed trapezoidal modes of failure shown in 

Figures 5.lb and h. The transitional modes between the 

trapezoidal and triangular modes are shown in 

Figures 5.lc and g. 
F.' 

For each mode shown in Figure 5.1 there are three 

views, Front View (F.V.), Top View (T.V.) and Side View 

(S.V.). More detailed figures were presented in Chapter 3 

for the two rectangular modes (Modes 1 and 2). In the 

following sections more detailed figures will be presented 

for the proposed triangular and trapezoidal modes. Also, 
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in the following sections the proposed modes of failure 

will be analysed. 

5.3 Triangular Mode 

The failure surface for the triangular mode is shown 

in Figure 5.2. It is bounded by a crack that spirals 

around the member at a constant angle 0 and has a 

triangular compression zone across one corner of the beam 

joining the ends of the spiral crack. 

From the geometry of the failure surface the following 

equations can be obtained: 

tan/3 2 w12tan8 (5.1) 

where 02 = the angle between line iii-u and the x axis 

(Figure 5.2, Top View), 

b( 2-kb)+h( 2- kh) 
Wi2 

kbb 

b = shorter overall dimension of rectangular 

cross-section, 

kb = coefficient used to determine the base length 

of the compression zone, 

h = longer overall dimension of rectangular 

cross-section, 

and kh = coefficient used to determine the height of 

the compression zone. 
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tang, = tanl32-(khh/kbb)tanl33 (5.2) 

where 01 = the angle between line i-ii and the x axis 

(Figure 5.2, Top View), 

and 133 = the angle between line i-i ii and the y axis 

(Figure 5.2, Front View). 

tanj3 4 = tanatan132 

where 13 4 = the angle between line u-i ii and the y axis 

(Figure 5.2, Front View), 

and a = tan'(kbb/khh) (5.4) 

The direction cosines of a line perpendicular to the 

compression zone are: 

Q = ax/ac 

m = ay/ac 

n = a/a 

where ax = O. 5kbbtanl3lkhh 

a = O. 5kbbtan/33khh 

a = O. 5kbbkhh 

and + rn2 + n2 = 1 

I (5.5) 

(5.6) 
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The direction cosines of the line iv-v which is 

parallel to the neutral axis and passes through the point 

of application of the compressive stress resultant are: 

-Si 

Llvv 

X  

yiv 

yv 

ziv 

z  

yv-yiv 

zv-z iv 

Liv_v 

= bt 

= -b' 

= h' 

= -h' 

= -b  tan/3 2 

= b'tanl32 

L±vv = / (x -i±  )2 + (y-y•  )2 + (z-z±)2 

+ m' 2 + n' 2 = i 

b' = O. 5k2kbb 

h' = O. 5k2khh 

and k2 = the depth to resultant coefficient. 

Note that: 

(5.7) 
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QQI + mm' + nn'= 0 

The forces in the longitudinal bars are: 

F1 = F2 = F3 = F4 = aQf QY 

where aq = cross-sectional area of one longitudinal bar, 

and f. = yield stress of the longitudinal bars. 

The forces in the legs of the stirrups are: 

F5 = a5f5y(b1/s)tanO 

F6 = a5f5 (h1/s)tanO 

b( 0.5-kb)+O. 5b1 
F7 = a5f5  'tanO "for 

S 

or F7 = 0 

b(kb-O. 5 )+O. 5b1 
F8 = asfsy tan 1 

s  

or F8 = a5f5y (b1/s)tanl3 1 

"for kb>.0.5[11Dl/b)] 

"for kb<O 5[l+(b1/b)]" 

"for kb.0.5[l+(bl/b)]" 

h(kh-0 .5 )+ 0.5h1 
F9 = a5f5  tanj3 3 "for 

5 

or F9 = a5f5 (h1/s)tanI3 3 "for 

h( 0.5-kh)+ 0.5h1 
F10 = a5f5  tanG "for kh< 0.5[l+(hl/h)I" 

5 
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or F10 = 0 "for kh0.5[l+(hl/h)]" 

where as = area of one leg of a closed stirrup, 

fsy  = yield stress of the stirrups, 

b1 = shorter center-to-center dimension of 

a closed rectangular stirrup, 

h1 = longer center-to-center dimension of a closed 

rectangular stirrup 

and s = spacing of stirrup. 

The following equation can be obtained by considering 

the equilibrium of forces acting normal to the compression 

plane: 

C = F 

where C = the compressive force acting normal to the 

compression zone 

= kifac/X (5.8) 

F = the tensile force acting normal to the 

compression zone 

= F X Q + Fm + Fn 

= average stress coefficient, 

f = compressive strength of concrete, 

X = softening coefficient, 

(5.9) 
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Fx = the sum of the tensile forces in the direction 

of x axis 

= F5-F7+F8 

the sum of the tensile forces in the direction 

of y axis 

= F6 +F9-F10 

and F = the sum of the tensile forces in the direction 

of z axis 

= F1+F2+F3+F4 

= 4a QfQ 

The torsional moment is obtained from the equilibrium 

of external and internal moments about line iv-v which is 

parallel to the neutral axis and passes through the point 

of application of the compressive stress resultant 

Tn! = MXQ' + Mm' + Man' 

where T = external moment, 

W. = internal moments about x axis 

(5.10) 

= -2af Q [(h+h2 )/2 -h']+2a QfQ [h' - (h-h2)/2] 

+af 5 (hi/s)tan 6 {[ (k2khhtanl33)/2] 

+[1-(k2/2) ]kbbtanj3l- (l -kb)btanO -- (h/ 2)tan 6} 

aSfSY {[h(2khl)+hl ]/2s)tanl33{[(khhtanl33)/2] 

+[(k2kbbtan/3 1)/2]-[(k2khhtan133)/2]} 

+aSfSY{[h(l2kh)+hl]/2s}tanO{khhtanl33 
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+[ (k2kbbtanl3l)/2]- (h/2) (l -kh) 

-[(k2khhtanl33)/2)} 

my = internal moments about y axis 

= -2af Q [(b+b2)/2-b']+2a QfQ [b'-(b-b2 )/2] 

aSfSY (bl/s)tanO{(k2khhtan133)/2 

+[l_(k2/2)]kbbtanj3 l-(l-kb)btanG-htan8-(b/2)tanO) 

+aSfSY {[b(l2kb)+bl ]/2s1tan0{(k2khhtanl33)/2 

+( 1-k2/2 )kbbtanl3l-E (1-kb)btanO)/2} 

aSfSY {[b(2kbl)+bl]/2s}tanl3l[(kbbtan!31)/2 

- (k2kbbtan/31)/2+(k2khhtanP3)/2] (5.12) 

Mz = internal moments about z axis 

= a5f5 (b1/s)tanOL (h+h1)/2-h'] 

+a5f5 (h1/s)tanO[ (b+b1 )/2-b' 

+aSfSY ([b(1-2kb)+bl]/2s}tan6[h' - (h-hl)/2] 

_afsy ([b(2kb_1)+bl ]/2s}tani3l[ht_(h_hl )/2] 

aSfSY ([h(2khl)+hl]/2s}tanl33Eb(bbl)/2] 

+aSfSY{[h(l2kh)+hl]/2s)tanO[b -(b-b1 )/2] (5.13) 

h2 = longer, center-to-center dimension between two 

longitudinal corner bars 

and b2 = shorter center-to-center dimension between two 

longitudinal corner bars. 

Substituting Equations 5.11, 5.12 and 5.13 into 

Equation 5.10 gives 
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10 
T = i=1 Ti 

where Ti = _a QfQ [(h+h 2 )/2-h' ](Q'/n') 

+aQfQ[b-(b-b2)/2](m/n) 

T2 = -aQf QY [ (h+h2 )/2-h' ](Q ' /n ' 

-a QfQ [(b+b2 )/2-b' ](m'/n' 

T3 =af Qy [h'-(h-h2)/2](2'/n') 

-a QfQ [(b+b2)/2-b ](m'/n') 

= 

= _8f 1/s)tanO {[(1-O,5k 2)kbw12 

_(1.5-kb)]b--h)tanO-(1-k2)khhtanl33 (m'/n' 

+af(bi/s)tan 6( (h+h1 )/2-h' 

(5.14) 

T6 = af 5 (hi/s)tanO 3j 1- (k2/2)]kbbw12 

_(lkb)b- (h/2)}tanO -(1-k2)khhtar1 3 (Q.'/n') 

+af(hi/s)tane[ (b+b1 )/2-b' ] 

T7 = aSfSY{[b(1-2kb)+bl]/2s}tan9{[(1-0.5k2)kbw12 

+aSfSY{[b(12kb)+bl]/2s}tan8[h -(h-h1 )/2] 

"for 

or T7 = 0 "for 
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T8 = aSfSY([b(2kbl)+bl]/2s}[w12tan0 

-(tanl33/tana)]{[(1-k2)/2]kbbw12tan9 

+(k2 -O.5)khhtan133}(m'/n') 

aSfSY {[b( 2kb 1 )+b1]/2s}Ew12tanO 

-(tanI3 3/tana.)1[h'-(h-h1 )/2] 

"for kb<O. 5[1+(bl/b)]" 

or T8 = _af(bi/s)[wi2tane 

- (tan!33/tana){[( 1-k2)/2 ]kbbw12tan 6 

+(k2_O.5)khhtanl33)(m'/n') -aSfSY (bl/s)[w12tan 6 

-(tan133/tana)][h'-(h--h1)/2] 

"for 

T9 = _a$fSY{Eh(2kh_1)+hl]/2s}tan133[O.5k2kbbw12tafl9 

- (k2 -O.5)khhtanl33](Q'/n' 

aSfSY f[h(2khl)+hl]/2s}tanl33(b(bbl)/2] 

"for kh<O.5 [1+(hl/h)]" 

or Tq aSfSY(hl/s)tanl33[O.5k2kbbw12tar16 

- (k2 -O. 5)khhtanl33](Q'/n') 

_af(hi/s)tanI33[b' - (b-bi)/ 2] 

"for 

and T10 = aSfSY{[h(1_2kh)+hl]/2S}tafl9{O.5[k2kbbWl2 

-h(1-k)]tan9+(1_k2)khtani33}('/n' 

+aSfSY {[h(l2kh)+hl]/2s}tanO[b(bbl)/2) 

"for 
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or T10 = 0 "for khO.5[1+(hl/h)]". 

The triangular mode (1-2) was developed as a 

transitional mode from the rectangular mode 1 to the other 

rectangular mode 2. Another triangular mode (2-1), 

Figure 5.3, was developed as a transitional mode from the 

rectangular mode 2 to the other rectangular mode 1. It was 

found that either triangular mode, (1-2) or (2-1), can be 

used, as both will give identical results for any given 

value of a. 

5.4 Solution Technique for the Trianqular Mode 

The geothetric and equilibrium relationships which have 

been derived provide enough information to predict the 

torsional response of a beam if the properties of the 

section are known. 

The following iterative procedure can be used: 

1. Input the beam data. 

2. Initiate the angle a. 

3. Assume a range for the angle of crack 6. 

4. Assume the coefficient kb. 

5. Assume a range for the angle 03-

6. Calculate the coefficient kh, Equation 5.4. 

7. Calculate the angles 02 and 134, Equations 5.1 and 

5.3 respectively. 
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8. Calculate the angle 91 , Equation 5.2. 

9. Calculate the area of the compression zone ac 

Equation 5.6. 

10. Find the minimum value of ac for the range of 133 (do' 

loop between steps 8 and 10). 

11. Calculate the forces C and F , Equations 5.8 and 5.9 

respectively. 

12. Check if. C = F ; if not change the coefficient kb 

and go back to step 5. 

13. Calculate the corresponding resisting torque T 

Equation 5.14. 

14. Find the minimum value of T for the range of & (do 

loop between steps 4 and 14). 

15. Repeat steps 3 to 14 for a number of values of 

angle a to get the full torsional response for the 

triangular mode. 

In accordance with the foregoing iterative procedure, 

a computer program capable of predicting the behavior of 

rectangular reinforced concrete beams under pure torsion 

has been developed for the triangular mode.. 

5,5 Special Trianqular Mode 

As a check for the Triangular Mode, a special 

triangular mode (45-S) for square 'cross sections, 

Figure 5.4, with a equal to 450 was developed and the 
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results agreed with the results given by the general 

triangular mode for this special case. 

5.6 Trapezoidal Mode (1-2)  

To cover the transition range from the rectangular 

mode (Mode 1) to the triangular mode, a trapezoidal mode is 

needed.. The failure surface for the trapezoidal mode is 

shown in Figure 5.5. It is bounded by a crack that spirals 

around three sides of the member at a constant angle 9 and 

has a trapezoidal compression zone across the top (fourth) 

side of the beam joining the end of the spiral crack. 

From the geometry of the failure surface the following 

equations can be obtained: 

tanl32 w12 tan9 (5.15) 

where 02 = the angle between line iv-iii and the x axis 

(Figure 5.5, Top View), 

w12 = [b+h( 2 kh r khc)]/b, 

b = shorter overall dimension of rectangular 

cross-section, 

h = longer overall dimension of rectangular 

cross-section, 

khr = coefficient used to determine the height of 

the right side of the compression zone, 
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and kh2 = coefficient used to determine the height of 

the left side of the compression zone. 

tan131 = tanl32-{[(kh Q--khr)hj/b}tan!33 (5.16) 

where I3 = the angle between line i-ii and the x axis 

(Figure 5.5, Top View), 

= the angle between lines i-iv and u- iii and 

the y axis (Figure 5.5, Front View). 

tanl3 4 = tanatanI32 (5.17) 

where 04 = the angle between line iii-iv and the y axis 

(Figure 5.5, Front View) 

and 13 

and a = tan'{b/[(khQ -khr )h]} (5.18) 

The direction cosines of a line perpendicular to the 

compression zone are: 

Q = ax/ac 

m = 

•n =a/a 

where ax = O.5btanl3l(khr+khq)h 

= O.5btan133(khr+khq)h 

a = O. 5b(khr+khQ)h 

} (5.19) 

(5.20) 
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and + M2 + n2 = 1 

The direction cosines of the line v-vi which is 

parallel to the neutral axis and passes through the point 

of application of the compressive stress resultant are: 

2' = 

n 

where Xvi 

or 

or 

X  

Lv_vi 

zv i-zv 

Liv_vi 

= -b' 

= b-b' 

xv = k2kbb-b' 

yvi = h' -k2kh2h 

yv 

YV 

Zvi 

= [l(b'/b)](khçkhr )h 

= h i 

= b'tanl3l-z'+k2kh 2htan!33 

> (5.21) 

I 

"for k2kbbb" 

"for k2kbb<b" 

"for k2kbbb" 

"for k2kbb<b" 

Zv = -(b-b')tanl3l-z'+khQh[k2-(1/kb)itanl33 

"for 

or Zv = - (b-b')tan/31-z'+( 1-k2kb)btan131 "for 

Lv_vi = /(xv i_xv )2+(yv i_yv )2+(zv i_zv)2 

Qt2 + rn' 2 + fl' 2 = 1 

k2kbbb" 

k2kbb<b" 
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= (b/ 2khQ)[khr+k2(khkhr )] 

h' = k2kh2h_b'(khQ_khr)htb 

z' = [k2 - (b'/kbb)]khQhtan!33 

= the depth to resultant coefficient 

and kb = khq/(kh2khr) 

Note that: 

QQ' + mm' + nn' = 0 

The forces in the longitudinal bars are: 

F1 = F2 = F3 = F4 = aQfQ 

(5.22) 

where aQ = cross-sectional area of one longitudinal bar, 

and fQY  = yield stress of the longitudinal bars. 

The forces in the legs of the stirrups are: 

F5 = a5f5 (b1/s)tan8 

F6 = asfsy{[h(O.5-khr)+(hl/2))/s}tafl& 

"for khr>O.5[1(hl/h) ]" 

or F6 = af(hi/s)tanG "for khr O. 5[l(hl/h)]" 

F7 = a5f5 (b1/s)tanI3 1 

F8 = a5fsY{[h(kh-0.5)+(hl/2)]/S}tafl133 

"for khq<0. 5E1+(hl/h))" 

or F8 = a5f5 (h1/s)tan13 3 "for 
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F9 = aSfSY fl:h(O.5 -kh)+(hl/2)]/S}taflO 

"for h<0.5h1+thlh1fl 

or F9 = 0 "for khO.5[l+(hl/h)]" 

where as = area of one leg of a closed stirrup, 

fsY = yield stress of the stirrups, 

b1 = shorter center-to-center dimension of a 

closed rectangular stirrup, 

h1 = longer center-to-center dimension of a closed 

rectangular stirrup 

and s = spacing of stirrup. 

The following equation can be obtained by considering 

the equilibrium of forces acting normal •to the compression 

plane: 

C = F 

where C = the compressive force acting normal to the 

compression zone 

= kifa/X (5.23) 

F = the tensile force acting normal to the 

compression zone 

=FQ+Fm+Fn (5.24) 

k1 = average stress coefficient, 

fc = compressive strength of concrete, 

= softening coefficient, 
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Fx = the sum of the tensile forces in the 

direction of x axis 

= 

F = the sum of the tensile forces in the 

and 

direction of y axis 

= F6+F8-F9 

F = the sum of the tensile forces in the 

direction of z axis 

= F1+F2+F3+F4 

= 4af 2 

The torsional moment is obtained from the equilibrium 

of external and internal moments about line v-vi which is 

parallel to the neutral axis and passes through the point 

of application of the compressive stress resultant 

Tn' = MQ' + Mm' + Mn' 

where T = external moment, 

(5.25) 

MX = internal moments about x axis 

= -2a QfQ [(h+h2 )/2-h' ] + 2a QfQ [h'-(h-h2)/2] 

+asfsy {[h(O.5_khr )+(hl/2)]/s}taflO[(b_b')tafll3l 

+z'_khrhtanI33_O. 5h(l_kh)tanO) 

aSfSY {[h(khQ O.5)+(hl/2)]/s}tanl33(O.5khQhtanl33 

-4-b'tan/31-z') 

+aSfSY {[h(Q.5_khQ)+(hl/2 )]/S}taflO[khQhtafll33 

+b'tanl3l-O.5h(1-khQ)tanO-z' 1 (5.26) 
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M = internal moments about y axis 

= -2a Qf[(b+b2)/2-b'] + 2a QfQ7[b'-(b-b2 )/2] 

-a5f5 (b1/s)tan6(z'+(b-b' )tanl -khrhtan133 

h( 1 khr )tafl 6 (b/2 )tanO] 

-a5f5 (b1/s)tanI3 1 [z'+(b/2)tan13 1-b'tanI31] (5.27) 

Mz = internal moments about z axis 

= a5f5 (b1/s)tan6[ (h+h1 )/2-h'] 

-a5f5(b1/s)tanP1[h' -(h-h1 )/2] 

+asfsy f[h(O.5_khr)+(hl/2)]/s}tan0[(b+bl)/2b'] 

aSfSY {[h(khQ O.5)+(hl/2)]/s}tanl33[b(bbl)/2] 

+aSfSY ([h(O.5kh Q)+(hl/2)]/s}tanO[b(bbl)/2] 

(5.28) 

h2 = longer center-to-center dimension between two 

longitudinal corner bars 

and b2 = shorter center-to-center dimension between two 

longitudinal corner bars. 

Substituting Equations 5.26, 5.27 and 5.28 into 

Equation 5.25 gives: 

9 
T = Z T• 

i=1. • 

where T1 = -a Qfq [(h+h2)/2 -h']('/n') 

+af 2 [b-(b-b2)/2](m/n) 

T2 = -a çf2 [(h+h 2)/2-h'](Q'/n') 

-a qfQ [ (b+b2 )/2-b' ](m'/n' 

(5.29) 
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T3 = aQfQ[h_(h_h2)/2](Q/n) 

](m'/n') 

T4 = aQfQ [h-(h-h2)/2](1/n) 

T5 = -af(bi/s)tan 9 [(b-b' )w12h(lkhr) 0.5b]taflO 

-{[(b-b')/tana]+khrh}tanP3+z' (m'/n') 

.I-af(bi/s)tan 8[(h+hi)/2-h'] 

T6 = asfsy{[h(1-2khr)+hl)/2s}tanO [(b-b')w12 

_O.5h(lkhr)]tafl0{E(bb' )/tana] 

+khrhltant33+z' (Q'/n') 

+asfsy {[h(1_2khr )+hl ]/2s}tan&[(b+bl)/2b'] 

"for khr>O. 5[1 (hl/h)]" 

or T6 = af(hi/s)tanO [(b-b' )w12 

_O.5h(lkhr)]tafl0{[(bb' )/tana] 

+khr)tani33+z' (Q'/n') 

+af(hi/s)tanO[ (b+b1 )/2-b'] 

"for khr O. 5[1 (hl/h)]" 

T7 = _af(bi/s)[wi2tanO_(tanI33/tana)]E(O.5b 

-b' )w12 tan0-(O.5b-b' ) (tan133/tana) 

+z' ](m'/n' 

_af(bi/s)[wi2tan8_(tanI33/tana)][h' 

-(h-h1)/2] 
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T8 = aSfSY{[h(2khQ1)+hl]/2s}tanl33{bw12tan8 

+[O.5khQh_(b'/tana)]tanl33 -z'}(Q'/n') 

aSfSY ([h(2kh 2 1)+hll/2s]tan133Eb(bbl)/2] 

"for khQ<O. 5[l+(hl/h)]" 

or T8 = -a5f5(h1is)tan133{b'w12tan9 

+[O.5kh Qh-(b'/tancz.)]tan!33-z'}(Q'/n') 

-a5f5 (h1/s)tanI3 3[b'-(b-b1 )/2] 

"for khQ.O. 5[1+(hl/h)]" 

and T9 = aSfSY Uh(1-2kh1)+hl]/2s}taflO{[b'w12 

- O.. 5h(l -khQ)]tanO+[khh 

-(b'/tana)]tan/3 3-z' }(Q'/n') 

+aSfSY {(h(12kh2 )+hl]/2s}tanO[b(bbl)/2] 

"for khQ <0.5[1+(,hl/h)l lt 

or 0 

5.7 Trapezoidal Mode (2-1) 

"for 

To cover the transition range from the rectangular 

mode (Mode 2) to the triangular mode, trapezoidal 

mode (2-1) was developed. Its failure surface is shown in 

Figure 5.6. It is bounded by a crack that spirals around 

three sides of the member at a constant angle 6 and has a 

trapezoidal compression zone across one of the vertical 

(fourth) sides of the beam joining the ends of the spiral 

crack. 
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The trapezoidal mode (2-1) can be handled in a manner 

similar to that used for the trapezoidal mode (1-2). For 

square cross-sections, the trapezoidal mode (2-1) leads to 

the same results as the trapezoidal mode (1-2) for the 

angle complementary to the angle a ; e.g. the torque 

computed by mode (2-1) for angle a = 100 is equal to the 

torque computed by mode (1-2) for angle a = 80°. 

5.8 Solution Technique for the Trapezoidal Modes  

The geometric and the equilibrium relationships which 

have been derived provide enough information to predict the 

torsional response of a beam if the properties of the 

section are known. 

The following iterative procedure, similar to that 

used for the triangular mode, can be used: 

1. Input the beam data. 

2. Initiate the angle a. 

3. Assume a range for the angle of crack 9. 

4. Assume the coefficient khc. 

5. Assume a range for the angle 133. 

6. Calculate the coefficient khr, Equation 5.18. 

7. Calculate the coefficient kb, Equation 5.22. 

8. Calculate the angles 92 and 134, Equations 5.15 and 

5.17 respectively. 
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9. Calculate the angle 01, Equation 5.16. 

10. Calculate the area of the compression zone a, 

Equation 5.20. 

11. Find the minimum value of ac for the range of 03 

(do loop between steps 9 and 11). 

12. Calculate the forces C and F, Equations 5.23 and 

5.24 respectively. 

13. Check if C= F ; if not change the coefficient khQ 

and go back to step 5. 

14. Calculate the corresponding resisting torque T, 

Equation 5.29. 

15. Find the minimum value of T for the range of 0 (do 

loop between steps 4 and 15). 

16. Repeat steps 3 to 15 for a number of values of 

angle a to get the full torsional response for the 

trapezoidal mode (1-2). 

In accordance with the foregoing iterative procedure, 

a computer program capable of predicting the behavior of 

rectangular reinforced concrete beams under pure torsion 

has been developed for the trapezoidal mode (1-2). The 

values of the angle a used in the computer program vary 

from the value corresponding to the rectangular mode 

(Mode 1), i.e. a = 90° and kb = , to the value 

corresponding to the triangular mode. The value of a 

corresponding to the triangular mode is the value that 
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results in kb being equal to 1.0. 

Using the trapezoidal mode (2-i) equations, another 

computer program has been developed. The values of the 

angle a used in this program vary from the value 

corresponding to the rectangular mode (Mode 2), i.e. 

a = 00 and kh = , to the value corresponding to the 

triangular mode. The value of a corresponding to the 

triangular mode is the value that results in kh being 

equal to 1.0. 

5.9 The coefficients k1 k2 and 

For the stress-strain relationship of concrete 

presented by Equation 3.1 

f[2(e c/e o )_(e c/eo)2] (3.1) 

and for a rectangular compression zone such as in 

Modes 1 and 2, the average stress coefficient, kir can be 

derived as: 

kir = —(l _E) 
eo 3e 

(5.30) 

and the depth to resultant coefficient, k2r can be derived 

as: 

k2 r = 

4-( ec/e o) 

12_4(e  /e0) 
(5.31) 
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where f c compressive strength of concrete, 

co = strain at fc = c usually taken as 0.002 

and fc = stress in concrete corresponding to a strain 

of 

For the same stress-strain relationship for concrete 

(Equation 3.1) but for a triangular compression zone such 

as in triangular modes 1-2, 2-i and 45-S, the average 

stress coefficient, kit can be derived as: 

2ec cc) 
kit 4e 

(5.32) 

and the depth to resultant coefficient, k2t can be derived 

as: 

10-2( 
k2t =   

20-5( e/e0 ) 
(5.33) 

The average stress coefficient, klz corresponding to 

the trapezoidal compression zone of Mdde (1-2) is assumed 

to be: 

where 

and 

kiz 
khQ -  khr 

= kit   + kl r 
kh khQ 

kiz =  ki r 

kiz =  kit 

khr 
(5.34) 

"for khr = khQ" 

"for khr = 0 " 
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The depth to resultant coefficient, k2z corresponding 

to the trapezoidal compression zone of Mode (1-2) is 

assumed to be: 

khq - khr khr 
k 2 =k2t   +k2 r 

khQ khq 

where k2 = k2 r 

and k2 = k2t 

(5.35) 

"for khr = kh 

"for khr = 0 " 

Equations similar to 5.34 and 5.35 can be assumed for 

the trapezoidal compression zone of Mode (2-1). 

Rush (1960) stated that the shape of the cross section 

has a decisive effect on the value of ultimate strain as 

shown in Figure 5.7. The extreme fiber concrete strain, 

Cu t varies from 0.003 to 0.0035 for a rectangular cross 

section and it varies from 0.0038 to 0.0048 for a 

triangular cross section. Consequently conservative values 

for e, may be assumed as 0.003 for a rectangular 

compression zone and 0.004 for a triangular compression 

zone. Therefore the coefficients kir and k2r are 

calculated for cc = 0.003 from Equations 5.30 and 5.31 to 

be 0.750 and 0.417 respectively and the coefficients kit 

and k2t are calculated for cc = 0.004 from Equations 5.32 

and 5.33 to be 0.667 and 0.600 respectively. 

The average stress coefficient and the depth to 
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resultant coefficient corresponding to a trapezoidal 

compression zone, klz and k2z respectively, could be 

derived as have been done for rectangular (Equations 5.30 

and 5.31) and triangular (Equations 5.32 and 5.33) 

compression zones. In this case an assumption must be made 

regarding the variation of the extreme fiber concrete 

strain, Eu , from 0.003 for a rectangular compression zone 

to 0.004 for a triangular compression zone. 

For modes having a rectangular compression zone 

(Modes 1 and 2) both equilibrium and compatibility were 

considered and the softening coefficient X was calculated 

from Equation 3.4. For the triangular and the trapezoidal 

modes, compatibility was not considered ,(only equilibrium) 

and therefore the softening coefficient X is assumed to 

vary linearly with respect to the angle a and it can be 

expressed as: 

90°-a 

X = 
90 0 

(5.36) 

where X, = softening coefficient for Mode 1, 

= softening coefficient for Mode 2, 

= "for a = 90 0 t1 

H and X = "for a. = 00  



CHAPTER 6 

RESULTS OF TRIANGULAR AND TRAPEZOIDAL MODES 

6.1 Introduction 

In this chapter, the results obtained from the 

triangular and trapezoidal modes will be discussed. The 

effects of the aspect ratio, amount of reinforcement, 

concrete strength and softening of concrete (reduction in 

the concrete strength) on the analyses are presented in 

this chapter. 

6.2 Effect of Aspect Ratio  

To study the effect of the aspect ratio on the 

analyses, two beams (1. and 2) 

ratios of 1.0 and 2.0 

are considered having aspect 

respectively. They have 

M = AQfQ s/2a5 (b1+h1 )f 5 = 1.0 and = f = 300 MPa. 

Details are shown in Table 6.1. In the iterative 

procedures described in Chapter 5 for 

triangular modes, the angle a is 

corresponding torque is calculated. 

the trapezoidal and 

incremented and the 

The torque-alpha curve for the beam having a square 

cross section (Beam 1) is shown in Figure 6.1. At the 

starting point, the angle awas equal to 90° , •which 

corresponds to the rectangular mode 1, then its value was 
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Table 6.1 Details of Beams 1-6 

Beam 
b 

mm 

h 

mm 

b 
1 

mm 

h 
1 

mm 

C 

MPa 

Reinforcement 

Long. 

2 
mm 

ru s 

a5 

2 
mm 

s 

mm 

P8 

1 300 300 257 257 40 8#4 1032 1.15 #4 129 129 1.15 

• 2 212 424 169 381 40 8114 1032 1.15 #4 129 138 1.15 

3 300 300 257 257 40 4#5,4i14 1316 1.46 #4 129 101 1.46 

4 212 424 169 381 40 4115,4114 1316 1.46 #4 129 108 1.46 

5 300 300 257 257 25 8114 1032 1.15 #4 129 129 1.15 

6 212 424 169 381 25 8114 1032 1.15 #4 129 .138 1.15 



100 

44.0 

42.0-

40.0-

36.0-

34.0-

Triangular 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+  Trapezoidal 

++ 
+ 

32.0-i  
45.0 50.0 55.0 60.0 65.0 70.0 75.0 80.0 85.0 90.0 

0 

Figure 6.1 Torque-Alpha Curve for Bean 1 



101 

decreased in decrements of 1° till it reached 450• A 

torque-alpha curve for a beam having a square cross section 

with the same reinforcement on each face has an axis of 

symmetry, i.e. the values of the torque are exactly the 

same for the angle a and its complementary angle. Thus, 

Figure 6.1 actually represents half a torque-alpha curve. 

For Beam 1 the triangular mode with a = 450 gives,, as 

shown in Figure 6.1, the minimum value for the torque. 

This implies that the failure surface for a beam having a 

square cross section is bounded by a crack that spirals 

around the beam at a constant angle and has a 450 

triangular compression zone across one corner joining the 

ends of the crack. This supports Hsus statement mentioned 

in Chapters 2 and 5, that a failure surface such as this 

seems to give a minimum torsional resistance for square 

cross sections. 

The torque-alpha curve for the beam having a 

rectangular cross section (Beam 2) is shown in Figure 6.2. 

Starting with the trapezoidal mode 1-2, the angle a was 

decrernented and the corresponding torque was calculated. 

The first value for a in this mode was 90°, which 

corresponds to the rectangular mode 1, and the last value 

before the mode changed to the triangular mode was 690 . 

Then using the trapezoidal mode 2-1 the first value 
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for a was 00, which corresponds to the rectangular mode 2, 

and the last value before the mode changed to the 

triangular mode was 15° . The triangular mode covered the 

remaining range of a from 16° to 68°. Unlike the 

torque-alpha curve for the square cross section shown in 

Figure .6.1, the torque-alpha curve for a rectangular cross 

section shown in Figure 6.2 has no axis of symmetry. 

As shown in Figure 6.2, the rectangular mode 2 givs a 

lower value of torsional resistance than the rectangular 

mode 1 but the minimum value for the torsional resistance 

is still given by the triangular mode with a = 45. This 

implies that the failure surface for Beam 2, which has a 

rectangular cross section with an aspect ratio equal 

to 2.0, is similar to the failure surface for Beam 1 which 

has a square cross section. 

This result is unexpected as for beams having a 

rectangular cross -section a failure surface such as this 

has not been suggested previously while it has been 

suggested for beams having a square cross section. 

6.3 Effect of Amount of Reinforcement  

To examine the effect of the amount of reinforcement 

on the analyses, two more beams (3 and 4) are considered, 

Table 6.1. They also have m = 1.0, fQy  = f sy = 300 MPa and 

aspect ratios of 1.0 and 2.0 respectively. 
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The torque-alpha curves for the beams having a square 

cross section (Beams 1 and 3) are shown in Figure 6.3. 

As mentioned in the previous section, the triangular 

mode with a = 450 gives the minimum torsional resistance 

for Beam 1. The torque at a = 90° is 37.6 kN.m and it is 

34.3 kN.m at a = 45° . Beam 1 has PQ = = 1.15%. For 

Beam 3, which has more reinforcement than Beam 1 (p =Ps = 

1.46%), the rectangular mode gives the minimum torsional 

resistance. The torque at a = 900 is 46.7 kN.m and it is 

46.9 kN.m at a = 45 

The torque-alpha curves for the beams having a 

rectangular cross section (Beams 2 and 4) are shown in 

Figure 6.4. 

As mentioned in the previous section the triangular 

mode with a = 450 gives the minimum torsional resistance 

for Beam 2 which has p, = = 1.15%. The torque at 

a = 90° is 35.5 kN.m, at a = 00 is 34.2 kN.m and it is 

29.7 kN.m at a = 450 For Beam 4 which has more 

reinforcement than Beam 2 (P Q = P5 = 1.46%), the triangular 

mode still gives the minimum torsional resistance but at 

a = 44° . The torque at a = 90° is 44.5 kN.m, at a = 00 is 

42.8 kN.m and it is 41.4 kN.m at a = 440. 
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6.4 Effect of Concrete Strenqth 

To study the effect of concrete strength on the 

analyses, two more beams (5 and .6) are considered, 

Table 6.1. Beams 5 and 6 are identical' to Beams 1 and 2 

respectively except that for Beams 5 and 6 f is equal to 

25 MPa whereas it is 40 MPa for Beams 1 and 2. 

The torque-alpha curves for the beams having a square 

cross section (Beams 1 and 5) are shown in Figure 6.5. For 

Beam 5 with f = 25 MPa, the rectangular mode (a = 90°) 

gives T = 35.6 kN.m, which is, as expected, less than the 

torque (37.6 kN.m) given by the rectangular mode for Beam 1 

with f = 40 MPa. The 450 triangular mode gives 

T = 38.8 kN.m for Beam 5,which is unexpectedly higher than 

the torque (34.3 kN.m) given by the 45° triangular mode for 

Beam 1. 

The torque-alpha curves for the beams having a 

rectangular cross section (Beams 2 and 6) are shown in 

Figure 6.6. For Beam 6, having f = 25 MPa, the torque at 

a = 90° is 34.2 kN.m, at a = 0° is 32.3 kN.m and it is 

34.3 kN.m at a = 430 ; i.e. the rectangular mode 2 

(a = 00) gives the minimum torsional resistance for Beam 6. 

As mentioned before, the triangular mode with a = 450 gives 

the minimum torsional resistance (29.7 kN.m) for Beam 2 

having f = 40 MPa. 
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Like the triangular mode for beams having a square 

cross section (Beams 1 and 5), Figure 6.5, the triangular 

mode gives unexpected results for the beams having a 

rectangular cross section (Beams 2 and 6), Figure 6.6. 

It is apparent from both Figures 6.5 and 6.6 that when 

the concrete strength for identical beams has been 

decreased, the torsional resistance calculated by •the 

rectangular modes has been expectedly and reasonably 

decreased, while the torsional resistance calculated by the 

triangular mode has been unexpectedly and unreasonably 

increased. 

6.5 Effect of Softeninq of Concrete  

To examine the sensitivity of the analyses to the 

softening coefficient, all six beams are considered. 

For Figures 6.1 through 6.6 the softening coefficient, 

X, used at each value of a was calculated by Equation 5.36 

using X1 and X2 for the rectangular modes 1 and 2 

respectively. 

Figure 6.7 through 6.12 represent torque-alpha curves 

for Beams 1 through 6 with three different values of l/? 

for each value of a. The curves using X and X2 in 

calculating X are presented by the symbol + and values of 

l/X are shown on the figures. Results are also shown on 
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Figures 6.7 through 6.12 for values of l/X 0.05 higher and 

0.05 lower -than the values used to calculate the points 

represented by the symbol +. The symbol * is used for the 

higher values of 1/A while the symbol o is used for the 

lower values. 

It is clear from Figures 6.7 through 6.12 that, for 

beams having both square (1, 3 and 5) and rectangular 

(2, 4 and 6) cross sections, the rectangular modes give 

expected results while the triangular modes give unexpected 

ones. When the value of 1/A is increased, the torsional 

resistance calculated by the rectangular modes is 

increased, while the torsional resistance calculated by the 

triangular mode is decreased. Exactly the opposite occurs 

when the value of 1/A is decreased. 

6.6 Discussion and Evaluation of Results  

To show the difference between the rectangular and the 

triangular modes, the torques are calculated for 450 

Beams 1 and 5 (square cross section) for just one value of 

the angle of crack, 6 = 35°. The trapezoidal mode with-the 

angle a equal to 900, which corresponds to the rectangular 

mode 1, and the triangular mode with a equal to 450 are 

usedto calculate the torque as shown in Tables 6.2 and 6.3 

respectively. 
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Table 6.2 Torque for Rectangular Mode, a = 90 0 

Beam  Beam  

k 0.10 0.15 0.20:0.175 0.10 0.20 0.30 0.23 

go 63.0 62.1 61.2 61.7 63.0 61.2 59.2 60.7 

Q 0.891 0.884 0.876 0.880 0.891 0.876 0.859 0.872 

m 0 0 0 0 0 0 0 0 

n 0.454 0.468 0.481 0.474 0.454 0.481 0.511 0.490 

C .kN 193 280 364 323 148 280 395 316 

Fx kN 206 201 195 198 206 195 184 192 

F kN 0 0 0 0 0 0 0 0 

Fz kN 310 310 310 310 310 310 310 310 

F kN 324 323 320 321 324 320 316 319 

Ti = T2 10.18 10.32 
F 

T3 = T4 kN 0.51 
kN F 

0.23 

T5 
3501 13.91 350 13.53 

T6 = T9 250r 1.20 

xC 

1 .06 

T7 150 
C 

-0.06  150 -1.00 

T 8 
0.00 0.00 

.1 0.15 0.2 0.1 0.2 0.3 

T kN.m k 37.63 k 35.75 
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Table 6.3 Torque for Triangular Mode, a = 450 

Beam 1 Beam 5 

k 0.20 0.30 0.40 0.25 0.30 0.50 0.70 0.57 

01 81.0 75.9 70.4 78.5 75.9 64.5 52.4 60.3 

0.703 0.696 0.686 0.700 0.696 0.670 0.621 0.656 

m 0.703 0.696 0.686 0.700 0.696 0.670 0.621 0.656 

0.112 0.175 0.245 0.143 0.175 0.319 0.478 0.373 

C kN 140 200 254 170 154 235 307 261 

FX kN 81 96 104 90 96 108 114 111 

F kN 81 96 104 90 96 108 114 111 

Fz kN 310 310 310 310 310 310 310 310 

F kN 149 188 219 170 188 244 290 261 

T = T3 
kN 

2.01 4.35 

T2 c 3.85 9.46 

T4 300 0.18 300 - 
, -0.76 

T5 = T6 200 13.29 2oo r 2' 10.69 

T7 = T10 100-1.22 100 I- 1 -0.97 

F J 
T8 = T9 1.40 i 1.02 

0.2 0.3 0..4 0.3 0.5 0.7 

T kN.m 34.99 38.88 
k 
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As has been done in the solution techniques 

(Sections 5.4 and .5.8), the coefficient k used to determine 

the dimension of the compression zone has been assumed and 

the compressive and tensile forces, C and F respectively, 

have been calculated. If the force F does not equal the 

force C then a new value of k has been assumed and the 

procedure is continued until the forces F and C are equal. 

The corresponding resisting torque T has then been 

calculated. 

It is apparent from Table 6.2 that for both beams 

having a = 900 the tensile force F (calculated from 

Equation 5.24) decreases slightly with the increase in the 

value of the coefficient k as there are minor changes in 

the values of the direction cosines Q and n and in the 

tensile, force component F. The compressive force C 

(calculated from 

with the increase 

are proportionate. 

Equation 5.23) increases significantly 

in the value of the coefficient k as they 

For both beams having a = 45°, (Table 6.3), both the 

force F (calculated from Equation 5.9) and the force C 

(calculated from Equation 5.8) increase significantly with 

the increase in the value of the coefficient k. The values 

of the direction cosine n and the force components F and 

increase with the increase 'in k and consequently the 

force F increases. Like beams having a = 900 , the force C 
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for beams having a = 450 increases with the increase in k 

as they are proportionate. 

In Tables 6.2 and 6.3 each of the torque values were 

calculated for just one value of the angle of crack, 0. A 

range of 0 should be assumed in order to get the minimum 

value of the torque at a specific angle a as has been done 

in the solution techniques. From Table 6.2 for the 

rectangular mode, the value of the torque for Beam 1 with 

f = 40 MPa is 37.63 kN.m which is higher than the torque 

(35.75 kN.m) for Beam 5 with f = 25 MPa. This trend has 

been previously noticed when the minimum value of the 

torque was calculated as sl)own in Section 6.4, Figure 6.5. 

From Table 6.3 for the triangular mode, the value of the 

torque for Beam 1 is 34.99 kN.m which is less than the 

torque (38.88 kN.m) for Beam 5. This trend also has been 

noted when the minimum value of the torque was calculated 

as shown in section 6.4, Figure 6.5. 

The direction cosines Q, m and n are the direction 

cosines perpendicular to the compression zone. It is clear 

from Tables 6.2 and 6.3 that the values of the direction 

cosines varied with the variation in the value of the 

coefficient k used to determine the dimension of the 

compression zone. The variation in the direction cosines 

for the rectangular mode (a = 90° , Table 6.2) is less than 
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the variation for the triangular mode (a = 45° , Table 6.3). 

This variation in the direction cosines is the primary 

reason for the change in the tensile force F, with the 

increase in the value of the coefficient k, from slightly 

decreasing for the rectangular mode to significantly 

increasing for the triangular mode. 

As mentioned before, the forces F and C must be equal, 

i.e. the forces acting normal to the compression plane 

must be in equilibrium if the corresponding resisting 

torque is to be calculated. In Figure 6.8 for Beam 2 the 

torque-alpha curve with the higher values of l/X is not 

completed as equilibrium of the forces F and C could not be 

attained, i.e. the F-k and C-k curves did not intersect. 

As the direction cosines are a function of the shape 

of the failure surface, Equations 5.5 and 5.19, the 

proposed failure surfaces for the triangular and 

trapezoidal modes need to be modified so that they will 

give results as reasonable as the results obtained from the 

failure surfaces for rectangular modes. Although the 

proposed failure surfaces with triangular and trapezoidal 

compression zones which are shown in Figures 5.1 

through 5.6 are a logical progression from the failure 

surface of rectangular mode 1 to the failure surface of 

rectangular mode 2, they do not produce results that are 

reasonable, and hence will require further modification. 
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For this reason, comparisons with experimental results 

would at this time be,meaningless and have not been done. 

6.7 Hsu's Failure Surface 

Hsu (1968a) predicted the failure surface shown in 

Figure 2.4 for square cross sections and it is reproduced 

in Figure 6.13. 

The following equation can be obtained by considering 

the equilibrium of forces acting, normal to the compression 

plane 

/8(a Qf Q +a5f5 b1/s) 

k = / (6.1) 
3k1fb2/X  

The torsional moment is obtained from the equilibrium 

of external and internal moments as: 

T = 2(1-k2k)b(af 2 +a5f5 b1/s) (6.2) 

For Beam 1 with fc = 40 MPa, Hsu's triangular mode 

gives T = 52.3 kN.m which is higher than the torque, 

T = 46.6 kN.m, given by Hsu's triangular mode for Beam 5 

with f = 25 MPa. Thus, when the concrete strength for C. 

otherwise identical beams is decreased, the torsional 

resistance calculated is also decreased, which is 

reasonable. However, the results calculated do not agree 

with Hsu's statement that 'Ta failure surface such as this 
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seems to give a minimum torsional resistance for square 

cross sections". The rectangular mode gives T= 37.6 kN.m 

for Beam 1 and T = 35.6 kN.m for Beam 5 (Section 6.4) which 

are less than the 52.3 kN.m and 46.6 kN.m for Beams 1 and 5 

respectively calculated using Hsu's triangular mode. 



CHAPTER 7 

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

7.1 Summary 

The behavior of reinforced concrete members subjected 

to pure torsion has been studied in this investigation. 

Theoretical analyses were developed to predict the 

torsional strengths, rotations, strains and stresses at all 

levels of load for reinforced concrete members reported in 

the literature. Failure mechanisms were proposed and 

consequently theoretical analyses were developed to predict 

the torsional strengths fdr reinforced concrete members 

under pure torsion. 

7.2 Conclusions  

Based on the findings of this investigation, the 

following conclusions are drawn. 

1. ThEi analyses developed for skew bending 

rectangular modes satisfactorily predict the 

torsional behavior for symmetrically reinforced 

structural concrete members subjected to pure 

torsion. 

2. The comparison of experimental and theoretical 

maximum torque is excellent as the average ratio 

i26 
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of experimental strength to theoretical strength 

for 66 beams reported in the literature is 1.01 

with a standard deviation of 7.8%. 

3. For skew bending rectangular modes, the 

theoretical torque-twist curves calculated using 

the equation for twist derived from compatibility 

of a thin walled tube element are closer to the 

corresponding experimental curves than the 

theoretical curves calculated using the equation 

for twist based on the skew bending model. 

4. The strains in the longitudinal steel and the 

strains in the stirrups at all levels of load are 

satisfactorily predicted by the analysis 

developed for skew bending rectangular modes. 

5. The softened stress-strain relationship used in 

the analysis developed for skew bending 

rectangular modes provides good predictions for 

the experimental torque-twist curves. 

6. When the value of a is taken as 900, the analysis 

developed for the proposed skew bending 

trapezoidal mode 1-2 gives a torque value equal 

to the toque given by the rectangular mode 1. 

Also, when the value of a is taken as 00, the 

analysis developed for the proposed skew bending 

trapezoidal mode 2-1 gives a torque value equal 
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to the torque given by the rectangular mode 2. 

7. When a is taken equal to the angle corresponding 

to transition from trapezoidal mode 1-2 to the 

triangular mode, the results given by the 

trapezoidal mode 1-2 and the triangular mode are 

identical ; similarly, when a is taken equal to 

the angle corresponding to transition from 

trapezoidal mode 2-1 to the triangular mode, the 

results given by the trapezoidal mode 2-1 and the 

triangular mode are identical. 

8. The special triangular mode 45-S for the square 

cross section with angle a equal to 450 gives a 

torque value equal to the torque given by the 

general triangular mode for this special case. 

The general triangular mode covers the range 

between the last value of angle a for the 

trapezoidal mode 1-2 and the last value of 

angle a for the trapezoidal mode 2-1. 

9. The torque-alpha curve for a beam having a square 

cross section with the same reinforcement on each 

face has an axis of symmetry where the values of 

the torque are exactly the same for the angle a 

and its complementary angle. For a beam having a 

rectangular cross section the torque- alpha curve 

has no axis of symmetry. 

10. The triangular mode with a equal to 450 gives the 
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minimum torsional resistance for a lightly 

reinforced beam (Beam 1) having a square cross 

section. However, if the amount of reinforcement 

is increased, the rectangular mode gives the 

minimum torsional resistance for that beam 

(Beam 3). This implies that the shape of the 

failure surface is influenced by the amount of 

reinforcement. 

11. The proposed triangular mode gives the minimum 

torsional resistance for a beam (Beam 2) having a 

rectangular cross section. A failure surface 

with a triangular compression zone has not been 

suggested previously for beams having a 

rectangular cross section although it has been 

suggested for beams having a square cross 

section. 

12. When the concrete strength in square and 

rectangular cross sections is decreased, the 

torsional resistance calculated by the, 

rectangular modes is also decreased whereas the 

torsional resistance calculated by the triangular 

mode increases. This implies that the proposed 

failure surface for the triangular mode requires 

further refinement. 

13. For both square and rectangular cross sections, 
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when the value of l/? is increased (where ?. is 

the softening coefficient > 1) the torsional 

resistance calculated by the rectangular modes is 

increased whereas the torsional resistance 

calculated by the triangular mode is decreased. 

Again, this implies that the proposed failure 

surface for the triangular mode requires -further 

refinement. 

14. Although the proposed failure mechanisms did not 

lead to satisfactory results, they are good 

pioneer steps on the rough road to solution of 

the mystery of the failure surface for beams 

having a square cross section and subjected to 

pure torsion. 

7.3 Recommendations  

Some areas recommended for further study are: 

1. The analyses developed to predict the torsional 

strengths, rotations, strains and stresses at all 

levels of load for reinforced concrete members 

under pure torsion should be extended to 

prestressed concrete members as well. 

2. The stress-strain curve for concrete under 

combined loading requires investigation in order 

to extend the analyses to reinforced and 
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prestressed concrete members under such loading. 

3. The failure mechanisms with triangular and 

trapezoidal compression zones require more 

investigation to satisfy equilibrium conditions, 

then both equilibrium and compatibility 

conditions should be satisfied as has been done 

for rectangular modes. 
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