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ABSTRACT

The behavior of reinforced concrete members subjected
to pure torsion has been studied in this investigation;
Considering both equilibrium and compatibility, skew
ben@ing analyses for two rectangular modes were developed
to predict the rotations, strains and stresses at all
levels of 1load and to predict the strengths of reinforced
concreté members . subjected to pure torsion. Since diagonal
‘cracking, which causes discontinuity in the concrete, aﬁd
the,lateral’tension introduced by the reinforcement cause é
reduction in the concrete strength, a stréss—strain curve
for concrete in which the stress has been reduced.was used
in the analyses. The exberimental torsional strengths of
102 beams were compared to the theoretical strengths and

the comparison was found to be excellent.

In order to cover the fuli range between the two
rectangular modes, new modes with triangular and
trapezoidal compression zones were proposed. Considering
only equilibrium, skew bending analyses for the triangular
and trapezoidal modes were developed to predict the
strength of reinforced concrete members subjected to pure
torsion. The effects of cross section aspect ratio, amount

of reinforcement, concrete stfength and softening of
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concrete (reduction in the concrete strength) on the
’ analyses were studied. The results of the triangular and
trapezoidal modes were not entirely satisfactory, therefore

these modes require further refinement.
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CHAPTER 1

INTRODUCTION

1.1 Geheral Remarks and Contents

Many components of structures such as curved and
spandrel beams are subjected to combined torsion, benaing
and shear. Designing these components requires an
understanding of the behavior of structural concrete under
such combined actions. As a contribufion to the complete
understanding, this thesis will present a rational theory

for members subjected to pure torsion.

Following this introduction, Chapter 2 gives a brief
review of two rational theories for concrete members under
torsion, the Skew Bending Theory and ‘the Space Truss
Theory. Skew bending médes using a rectangular compression
zone are .presented, in Chaptér 3 ; both equilibrium and
compatibility are considered, and a softened st;ess—strain‘
relationship for concrete 1is introduced to the analysis.
In Chapter 4, experimental results are compared to the
results of these. rectangular modes. In the same chapter
the effect of softening of concrete on the analysis is

investigated.
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Skew bending modes using a triangular or trapezoidal
compression zone are presented in Chapter 5 ; only
equilibrium is considered. Chapter 6 presents the results
of thesertriangular and trapezoidal modes. In the!same
chapter the effects of several variables on the analysis
are examined. , Summary, conclusions and recommendations are

presented in Chapter 7.

1.2 Object .and Scope

The main objectives of this thesis were to:

1. Introduce a softened stress-strain relationship for
concrete to the analysis of members by the skew
bending rectangular modes and to study its effect on
the results of the analysis.

2. Improve upon the analysis of members using the skew
bending rectangular ‘modes, mainly with ‘regard to
equilibrium of moments, angle of twist and
compatibility.

3. Develop analytical expressions based on the skew
bending rectangular modes to predict the rotations,
strains and stresses.at all levels of load and to
predict the strengths of reinforced concrete members

subjected to pure torsion.



Compare the theoretical predictions and the
experimental results for beams reported in the
literature.

Develop new mathematical skew bending failure modes
with triangular and trapezoidal compression zones
capable of predicting the behavior of symmetrically
reinforced concrete members subjected to pure
torsion,

Study the effect of cross-section aspect ratio,

amount of reinforcement, concrete strength and

.softening of concrete on the results produced by the

new failure modes.



CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

In this chapter, a brief review of two rationai
theories for concrete members under torsion is presented.
First, Lessig's (1958 and 1959) "Skew Bending Theory“ is
presented in  Section - 2.2 and second, Lampert and
Thurlimann's (1968 and 1969) "Space Truss Theory", which
was an improvement upon Rausch's (1929) truss theory, is
presented in Section 2.3. It is interesting to note that
Kuyt (1971) and Elfgren et al <1974) showedrthat if certain
assumptions were made, the skew bending theory and the
truss analogy will yield the samerequationzfor the ultimate

capacity.

2.2 Skew Bending Theory

In 1958 Lessig proposed therskew bending theory, where
equilibrium conditions based on the observed failure
mechanisms were considered. The failure surface was
assumed to be bounded on three sides by a crack that
spiralled around the beam at a constant angle to the
longitudinal axis and the fourth side had a rectangular

compression zone joining the ends of the spiral cracks.
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At failure, Lessig assumed that all reinforcement in the

tension zone yielded.

Two failure modes were observed by Lessig. InlMode 1,
for the case of torsion with predominant bending, the
compression zone forms at the top face of the beam, while
in Mode 2, for the case of pure torsion or torsion with
predominant shear, the compression zone forms at the side
face of the beam, Figure 2.1 . The mode having the minimum

torsional resistance governs the failure.

McMullen and Warwaruk (1967) amongst others observed a
third mode, Mode 3, for beams reinforced with more
longitudinal steel in the bottom than in the top and
subjected to large torsional moments with small bending
moments. The compression zone forms at the bottom face of

the beam, Figure 2.1 .

Lessig's skew bending theory has been adopted for both
reinforced and prestressed concrete members with certain
modifications by many others, for instance McMullen and
Warwaruk (1967), Goode and Helmy (1968), Collins et al-
(1968), GangaRao and zZia (1970), Henry and Zia (1971),
Woodhead and McMullen (1972), Rangan and Hall (1973),
Below et al (1975), Rangan et al (1977) and Ewida and
McMullen (1981 and 1982) .



Mode 1

Mode 2

N.A.
\.
\.
y
- ——— e —_——_——————— - —
compression zone \ l
T~
~—
Mode 3

Figure 2.1 Skew Bending Failure Modes
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Ewida and McMullen used the skew bending theory to
develop mathematical models, satisfying both equilibrium
and cémpatibility conditions, for predicting the strength
of reinforced concrete members under combined loading.
They stated that their models are capable of predicting the
strains and rotations at all levels of load for
under-reinforced, partially overjreinforced and completely

over-reinforced members up to failure.

Under-reinforced beams are beams in which both the
longitudinal bars and the stirrups yield before the maximum
torque is. reached ; partially over-reinforced beams are
beams in which either the 1longitudinal bars or the.
stirrups, but not both, yiela before the maximum torque is
reached ; completely over-reinforced beams are beams in
which neither the longitudinal bars nor the stirrups yield

before the maximum torque is reached.

Unlike Lessig, in their force equilibrium equations
they took into consideration the tensile forces in the
longitudinal and transverse reinforceﬁent located in the
compression‘zone. In combined loading, the failure surface
was assumed by Ewida and McMullen to be bounded on three
sides by cracks that spiralled aroﬁnd the beam at different
inclinationé, Figure 2.2, whereas in .pure torsion the

inclination of the cracks on all three sides was the same.,



compression
plane
(¢ plane)

Figure 2.2 Mode 1 Failure Surface in Combined Loading
after Ewida and McMullen
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Figure 2.3 Stress-Strain Relationship for Concrete in Beams
under Combined Loading after Ewida and McMullen
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The fourth side had a compression zone joining the ends of

the cracks.

For pure torsion, they stated that the tension bars in
the compression zone and the discontinuity of the concrete
due to cracks may reduce the concrete strength to 35% of
its nominal compressive strength, Figure 2.3 . They
proposed a variable stress-strain relationship for concrete
in members under combined 1loading such that there is a
smooth transition between the case of pure torsion where
the reduction factor equals 0.35 and the case of pure

flexure where there is no reduction factor.

Ewida and McMullen (1982) found that the sensitivity
of the skew bending analysis to the reduction factor
increases with an increase in the amount of reinforcement.
The author (1980) found that the sensitivity not only
increases with an increase in the amount of reinforcement
but also increases with an increase in the aspect ratio of

the member cross section.

In their mathematical models, Ewida and McMullen
neglected the moment due to the forces in the vertical legs
of the stirrups in modes 1 and 3 and the moment due to the
forces in the horizontal legs of the stirrups in mode 2.

Also, in deriving the deformation egqguations they assumed
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that the compressive strain parallel to the direction of

the crack is equal to zero.

For a pure torsion failure, Hsu (1968a) presented a
skew bending analysis in which the failure surface was
idealized in a different manner from Lessig's. He observed
that for reinforced concrete members Jtested. under pure
torsion and having a height to width ratio equal to or
larger than 1.5 , the main cracks are perpendicular to the
wider faces of the cross section, while for members of
square cross section the main cracks are not perpendicular
to the face but are diagonal. This implies that the
failure surface for a member of square crosS section is a
plane perpendicular to a diagonal plane and inclined at 45°
to the longitudinal axis of beam, Figure 2.4. Hsu stated
that a failure surface such as this seems to give a minimum
torsional resistance for' square Cross sec£ions. It is
interesting to note that Lessig (1958) stated that a
failure could occur in which the neutral axis intersected
one vertical and one horizontal face of a member, i.e. the

compression zone is triangular.

2.3 Space Truss Theory

The first attempt to ascertain the influence of steel
reinforcement on torsional strength was by Rausch in 1929,

After conducting a series of tests on 500 mm square solid
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Diagonal Plane
(Perpendicular

to this Sheet)

]
2 \T\\Dmel&uk

on Saw Cut Plane

|
|
Failure ! Saw Cut Plane
L
l
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l to this Sheet)
3 I V
l 3
I 45°
2 i 2,4
I

Figure 2.4 Failure Surface and Diagonal Crack of

Square Cross Section after Hsu (1968a)
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and hollow sections, Lampert and Thurlimann (1968 and 1969)
were able to improve upon Rausch's original truss theory

with the "Space Truss Theory".

Lampert and Thirlimann's tests showed that the pure
torsional strengths of similar solid and hollow sections
were identical. Therefore, their truss model was hollow as
shown in Figure 2.5 . It consisted of longitudinal -
reinforcement which was considered to be concentrated into
stringers at the corners, and into intermediate shear
walls., In the shear walls, the stirrups acted as tension
ties and the concrete between the inclined cracks acted as
compression diagonals. They stated that the diagonal
forces in the shear walls wére deflected into the adjacent
walls by means of the longitudinal corner bars. Therefore,
their location determined the cross sectional dimensions of

the model.

The space truss theory has been adopted for both
reinforced and prestressed concrete members with certain
modifications by many others, for instance Lampert et al
(1971), Lampert and Collins (1972), Mitchell and Collins
(1974), Onsongo (1978),Collins and Mitchell (1980) and Hsu
and Mo (1983).

Satisfying  both equilibrium and compatibility

conditions, Mitchell and Collins (1974) wused the space
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Detail

S.s.tano N

Figure 2.5 The Space Truss Model for Pure Torsion
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truss theory to develop their "Diagonal Compression Field
Theory". The theory was capable of predicting the
post-cracking torsional behavior of symmetrically
reinforced and .prestressed under-reinforced, partially
over-reinforced and completely over-reinforced concrete
members in pure torsion. The torsional capacity was based
on the dimensions of the spalled sections; i.e. the area
enclosed by the center line of the stirrups. The author
(1980) amongst others found that spalling was observed only
after the peak 1load was reached. Thus the arbitrary
reduction of cross sectional area as  proposed by Mitchell

and Collins is inconsistent with observed behavior.

Collins and Mitchell (1980) wused the truss analogy to
predict the strength of prestressed - and non-prestressed
concrete members under combined loading. In their analysis
for members in shear they reduced the diagonal compressive
strength,  reasoning that stresses have to be transmitted
across cracked and severely deformed concrete. They
introduced this reduction only for members in shear and not
for members in torsion. Later Vecchio and Collins (1981),
after testing seventeen 890 mm square by 70 mm reinforced
concrete panels subjected to pure shear, derived én
expression to model the observed stress-strain behavior.

They introduced a stress-strain curve for concrete in which
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the stress and the strain have been scaled down,

Figure 2.6.

Hsu and Mo (1983) used the truss analogy and Vecchio
and Collins' (1981) reduced diagonal compressive strength
in their theory "Softening of Concrete in Torsional
Members" which is applicable to symmetrically under
reinforced concrete members in pure torsion. Their theory
is the same as Mitchell and Collins' diagonal compression’
field theory, except that it wutilizes the full cross
section (not the spalled one) and it takes Vecchio and
Collins' reduced diagonal compressive strength (softening

of concrete) into consideration.

El-Degwy and McMullen (1985) presented results of
thirteen symmetrically prestressed concrete rectangular
beams tested under pure torsion. The principal variables

studied were aspect ratio and amount of reinforcement.

Three computer program were developed, the first one
being for the space truss theory with spalling of the
concrete cover after Collins and Mitchell (1980), the
second one being for the space truss theory with softening
of the concrete after Hsu and Mo (1983), and the third one
for the skew bending theory after Ewida (1979) and Ewida
and McMullen (1982). The .behavior of the beams was

compared to the behavior predicted by these three theories.
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Figure 2.6 Vecchio and Coliins' Stress-strain Curve
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El-Degwy and McMullen found that:

1,

The space truss tﬁeory with softening bf concrefe
gave the best overall prediction of torsional
strength.

Both the space truss theories and the skew bending
theory gave a satisfactory but slightly
conservative prediction of torsional strength for
iightly reinforced beams.

All three theories yielded a prediction of
torsional strength that is satisfactory for design
purposes for beams that have moderate to heavy
reinforcement and an aspect ratio of 2.0.

All three theories gave a high (unsafe) prediction
of torsional strength for beams having moderate to
heavy reinforcement and an aspect ratio of 1.0,
whereas all three theories gave a low (over-safe)
prediction of torsional streﬁgth for similar beams
having an aspect ratio of 3.0.

Examination of test results available in the
literature shows that their findings (2,3 and 4)
were true not only for prestressed beams but also

for reinforced concrete beams.



CHAPTER 3

SKEW BENDING ANALYSIS - RECTANGULAR MODES

3.1 Introduction

This chapter describes the skew bending theory for
reinforced concrete members subjected to pure torsion. The
compression zone is rectangular. Equilibrium ‘and

compatibility are considered.

3.2 Stress-Strain Curve for Concrete

Mitchell and Collins (1974) and Rangan et al (1977)

used a parabolic stress-strain relationship for concrete,

Figure 2.3
t
= - 2 .

]
wvhere t. = compressive strength of concrete,

€ = strain at f_ = f;, usually taken as 0.002
and f. = stress in concrete corresponding to a strain

of e,

Ewida and McMullen (1982) used the same relationship
except that they introduced a reduction factor of 0.35 that

scaled down the stress, Figure 2.3

f. = 0.35f;[2(ec/eo)—(ec/eo)2] | (3.2)

s

18
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Vecchio and Collins (1981) proposed a stress-strain
relationship for concrete in which both the stress and the
strain were scaled down, Figure 2.6 . The equation for the

ascending portion of the curve is
!
- - 2
fo = fl2(e /eg)-Ne/e5) ] (3.3)

Equation 3.3 1is identical to Equation 3.1 except that an
empirical coefficient A has been inserted in the second
term. This coefficient was found from tests done at

University of Toronto, Vecchio and Collins (1981), to be

>
1

-_Vr[(eQ+es+2ec)/ec]—0.3 (3.4)

wvhere €9 tensile strain in the longitudinal bars

]

and € tensile strain in the stirrups.

S

The peak compressive strength and corresponding strain are

t
£, = £/ (3.5)

p

€p = €o/A : (3.6)

The equation for the descending portion of the curve is
€ _,—€
c
fo = fol1-(——2)?] (3.7)

(o
260—€p

The average stress coefficient, ky, which will be

required in subsequent sections of the thesis to determine
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the magnitude of C, the compression force in the concrete,

can be derived as:

for €., < €

c p
€ €
ky = —(1 - —) (3.8)
p 3¢p
for ec > ep
N € € €
k; = (1-A) (1 - =B) + (1 - =5 (3.9)
3ec ep 3ep
1
where A= —————-3
(2x-1)

The depth to resultant coefficient, k, ,which will be
required in subsequent sections of the thesis to determine
the location of C, the compression force in the concrete,

can be derived as:

for €c
4 - (e /¢€) ' ‘
k2 = < 15 (3.10)
12—4(ec/ep)

c” ‘p

1 ¢ 2 €. 2 e

G N L - R N

2 6e €. 3 de

ky = 1 - = = £ (3.11)

€ € €

(1-A)1 - —=B) + a1 - =)
3eq b 3ep
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The coefficients k; and k, have been tabulated in

Tables 3.1 and 3.2 respectively as functions of 1/\ and

o

assuming e, = 0,002 .

o]

The diagonal cracking, which causes discontinﬁity in
the concrete, and the lateral tension introduced by the
reinforcement, would obviously cause a reduction in the
concrete strength. Ewida and McMullen's reduction factor
of 0.35 was introduced as an empirical factor that led to
reasonable results, whereas Vecchio and Collins' proposed
stfess—strain curve accomplishes the same thing and is more
general, Therefore Vecchio and Collins' stress-strain
curve will be adopted in this ‘theory and the effect of the
reduction in the concrete strength will be studied in the

next chapter.

3.3 Skew Bending Theory

3.3.1 Mode 1

The failure surface for Mode 1 is shown in Figure 3.1.
It is bounded on three sides, the bottom and the two
" verticals, by cracks spiraling around at a constant
" angle 6. The fourth side has a rectangular compression

zone joining the ends of the cracks.



Table 3.1 kl as a

Function of 1/X and e
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c (eg = 0.002)

1/A

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.10

0.20

0.30

0.40

0.50

0.70

0.80

0.865
0.733
0.602
0.495
0.417
0.359
0.315
0.280
0.252

0.229

0.922
0.861
0.798
0.733
0.667
0.602
0.544
0.495
0.453

0.417

0.922

0.888

0.853

0.815

0.775

0.733

0.689

0.645

0.602

0.563

0.899
0.881
0.860
0.839
0.815
0.789
0.761
0.732
0.700

0.667

0.861
0.851
0.841
0.829
0.817
0.803
0.787
0.770
0.751

0.729

0.809

0.805

0.801

0.796

0.790

0.784

0.777

0.769

0.760

0.750

0.744
0.743
0.742
0.741
0.739
0.738
0.736
0.734
0.732

0.729

0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667

0.667




23

Table 3.2 k, as a Function of 1/A and € (eO = 0.002)

i/\

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.10

0.30

0.40

0.50

0.60

0.70

0.80

0.90

0.439

0.391

0.365

0.355

0.350

0.347

0.345

0.343

0.342

0.341

0.471

0.440

0.413

0.391

0.375

0.365

0.359

0.355

0.352

0.350

0.488
0.465
0.443
0.424
0.406
0.391
0.380
0.371
0.365

0.361

0.503

0.484

0.466

0.448

0.432

0.417

0.403

0.392

0.382

0.375

0.520

0.504

0.487

0.471

0.456

0.442

0.428

0.415

0.403

0.393

0.542

0.527

0.512

0.498

0.483

0.469

0.455

0.442

0.429

0.417

0.572

0.558

0.544

0.530

0.517

0.503

0.490

0.476

0.463

0.450

0.613
0.600
0.588
0.575 |
0.563
0.550
0.538
0.525
0.513

0.500
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Figure 3.1 Mode 1 Failure Surface
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From the geometry of the failure surface the following

equation can be obtained:

tanf

wtanb (3.12)

where 'B = the inclination of the compression zone,
w = [b+2h(1-k)1/Db,
b = shorter overall dimension of rectangular
cross-section,
h = longer overall dimension of rectangular
cross-section,
and k = coefficient used to determine the depth of the

compression zone.

The direction cosines of the 1line joining points
Pl(xlrylrzl) and P2(x2,Y2,22), Figure 3.1 which 1is

perpendicular to the compression zone are:

Q = (x2~x1)/L12 = Sinﬁ
m = (Yz"'yl)/L12 =0 (3.13)
n = (Zz_zl)/le = cosp

vhere Lys distance between points P, and P,

szxz—xl)2+(y2-yl)2+(22—zl)2

The direction cosines of the 1line joining points
P3(x3,¥3,23) and Py(x,,y4,24), which is parallel to the

compression zone are (Figure 3.1):



Qr = (x4-x3)/L34 = - cosp
] m' = (_Y4"Y3)/L34 = 0
n' = (z4—z3)/L34 = sinf

wvhere Lag distance between points P5; and Py

]

/ (X4"’X3)2+(Y4"Y3)2+(Z4-Z3)2
Note that:

Q2+m2+n? = 1
Q12+m|2+n12 = l

Q2'+mm'+nn'= 0
The forces in the longitudinal bars are:

Fi

]
o
[\
|

= F3 = F4 = aQFQ

where agp

stress in the longitudinal bar.

and fQ
The forces in the legs of the stirrups are:

Fg = asfsbltane/s
Fg = aof[0.5(h+hy)~kh]tané/s

\

Fqy = asfsbltanﬁ/s

Fg = Fg 3
vhere ag = area of one leg of a closed stirrup,

fg = stress in the stirrups,

26

(3.14)

(3.15)

(3.16)

cross-sectional area of one longitudinal bar

(3.17)



and s
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shorter center-to-center dimension of a closed

rectangular stirrup,

longer center-to-center dimension of a closed

rectangular stirrup

spacing of stirrups.

The following equation can be obtained by considering

the equilibrium of forces

plane:

where C

and F

n

FxQ + Fom + F_n

y

acting normal to the compression

(3.18)

the compressive force acting normal to the

compression zone

k£ khbsecB/A

the sum of the forces
x axis
F5+F7

asfsbltan9(1+w)/s

the sum of the forces

y axis
Fg-Fg
0

the sum of the forces

z axis

(3.19)

in the direction of the

(3.20)

in the direction of the

(3.21)

in the direction of the

P
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F+Fy+F3+F,

4anQ : (3.22)

Substituting Equations 3.12, 3.13, 3.19, 3.20, 3.21

and 3.22 into Equation 3.18 gives

4anQ+ansbltan29(w+w2)/s
k= - > (3.23)
klfchb(1+w tan<é)/\

The torsional moment is obtained from the equilibrium
of external and internal moments about 1line P3P, which is
parallel to the neutral axis and passes through the point

of application of the compressive stress resultant.

Tn'= MXQ'+ Mym'+ M,n' (3.24)
where T = external torque,
My = internal moments about x axis
h+h, h-h,
= _2anQ( - k2kh)+2anQ(k2kh - —'—“)
2 2
h+h1 tanb
+agf  (—— - kh) [b+h(1-k) ]tané (3.25)
2 s
MY = internal moments about y axis

0 (3.26)
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M, = internal moments about z axis
bl h+h1 h+h1 bltane
= agf —tanb( - kokh)+2a f( - kh)
. s 2 2 2s
—asfs——tanﬁ(kzkh - —) (3.27)
s 2
and h, = longer center-to-center dimension between two

longitudinal corner bars.

Substituting Equations 3.12, 3.14, 3.25, 3.26, and

3.27 into Equation 3.24 gives:

T = 'iZlei ' (3.28)
where Ty =-anQ[h(l—Zkzk)+h2]/2wtan9

T2 = Tl

Ty = agfo[h(1-2kyk)-hy]1/2wtans

Ty = T3

Tg = asfsbltane[h(l—Zkzk)+hl]/2s

Tg = agf tand[h(1-2k)+hy]{b;-[b+h(1-k)1/w}/4s

T, = ésfsblwtane[h(l-Zkzk)—hl]/2s

and T8 = T6

To determine the value of 6 corresponding to the
minimum value of T, Equation 3.28 1is differentiated with
respect to the crack inclination 6, equated to zero and

solved for 6



where g1

and gs
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4dap,fps g | ’
= tan"l/// g g 1 (3.29)
asfsblw S
i=2
h(1-2kyk)
gy+hy
"h(1-2k)+h;

~g3[b+h(1-k)1/(byw)

W(gl—hl)

The following compatibility equations can be derived

from the Mohr's circle of strain shown in Figure 3.2

where T0s

and €

1l

2(6Q+ecr)tan9 o (3.30)
2(es+ecr)/tan9 (3.31)

shearing strain
compressive strain parallel to the direction

of the cracks.

The following equations can be obtained from Equations

3.30 and 3.31

€Q

€er

€S+‘€cr

55 Cor (3.32)

tan

s (3.33)

The strain normal to the compression plane (f-plane)
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— Shearing
Strain

725/2

Normal
-
Strain

‘_Ecr —rj¢ - &g Eil'i-t-:c",: >

Figure 3.2 Mohr's Circle of Strain
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at the tension side may be written as:
€gr = choszﬁ + essinzﬁ + 7stin6cosﬁ (3.34)

The strain normal to the compressibn plane at the

compression side may be written as:
€gc = 7stinﬁco§ﬁ - choszﬁ - essinzﬁ (3.35)

Assuming linear strain distribution normal to the

compression plane, the following equations may be written:

dl—h(l"k)
€ P (3.36)
gc kh ce 7
kh
€ = € (3.37)
ce dl—kh gt
where d; = distance from extreme fiber 1in compression

zone to inner surface of the stirrups at
tension side in Mode 1

and €ce compressive strain in concrete at the extreme
fiber of the compression zone normal to the

compression plane.

Substituting Equations 3.34, 3.35 and 3.37 into

Equation 3.36 gives

l+u )

—

1-u tanf

CYgs = + egtanp) (3.38)
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where u = [dy-h(1-k)1/(d;-kh)

The twist of a beam can be visualized according to the
skew bending model as a rotation about a longitudinal axis
passing through the point of application of the compression
stress resultant, Ewida and McMullen (1982). The twist of
a beam may be expressed in terms of the shearing

strain Tos @S3

v = ’YQS/dI' (3.39)

where dr dl—kzkh

Another expression for the twist of a beam can be
derived from the compatibility of warping displacements of

a thin walled tube element, Onsongo (1978), as:
v = 7Qs(bl+hl)/blhl (3.40)

Using Equation 3.39 Ewida and McMullen got good
correlation with their experimental results. In 1986 Hsu
and Mo, in their comments on El-Degwy and McMullen's (1985)
paper, stated that Equation 3.39 underestimates the value

of the angle of twist.

In the next chapter results using Equations 3.39 and

3.40 will be presented and evaluated.
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3.3.2 Mode 2

The failure surface for Mode 2 is shown in Figure 3.3.
It is bounded on three sides, one of the verticals and the
two horizontals, by cracks spiraling around at a constant
angle 6, The fourth side has a rectangular compression

zone joining the ends of the cracks.

Mode 2 can be handled in a manner similar to that used
for Mode 1. Equations for Mode 2 will be the same as those
for Mode 1 except that w,u,dl,b,bl,bz,h,hl and h, will be
changed to v,r,dz,h,hl,hz,b,bl and b2 respectively; énly

the necessary equations will be presented here.

From the geometry of the failure surface:

tanB = vtanb : (3.41)

[h+2b(1-k)]/h

1}

where v

The coefficient k, used to determine the depth of the
compression zone can be obtained from:
ta,fo+a.f hytan6(v+ve) /s
QT " %s sl

k = , s (3.42)
klfcbh(l+v tan<6)/\ .

The torsional moment is obtained as:

8 .
T = LT (3.43)
1=
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where T, = anQ[b(l—Zkzk)+b2]/2vtan9
T, =T : .
T3 = apf [b(1-2kyk)-b,1/2vtand
Ty = T3
Ty = agfi h,tanf[b(1-2k,k)+b;1/2s
Tg = agftan6[b(1-2k)+by1{hy-[h+b(1-k)1/v}/4s
T, = agfhyvtan8[b(1-2kyk)-by1/2s

and T8 = T6
The crack inclination is obtained as:

dapfos g
6 = tan'l/// 22 1 (3.44)
asfshlv 5

Z g;
g=2 "1

where gy = b(1-2k,k)
92 = 91%b;
93 ='b(1*2k)+bl
9q = “93[h+b(l—k)]/(hlv)

and gg = v(gy-by)

The tensile strain in the longitudinal bars is:

- €y (3.45)

€ =
2 tan?e
The compressive strain parallel to the direction of

the cracks is given by:
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€ = 0.57pgtané - e (3.46)

cr S

The strain normal to the compression plane (f-plane)

at the tension side is:

sinZB + Y5.8infcosp (3.47)
s gs

6‘6t = choszﬂ + €

The compressive strain in concrete at the extreme
fiber of the compression zone normal to the compression
plane is obtained as:

kb

€ = € (3.48)
ce d,-kb gt

The shearing strain can be obtained from:

l+r e
04 = —( + e_tanf) (3.49)
as 1-r tan§g s
where  r = [dy-b(1-k)1/(d,-kb)

The angle of twist is:

Y

7Qs/dr - (3.50)

where a dz—kzkb

or \b = 7Qs(bl+hl)/(blhl) (3.51)
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3.4 Solution Technique

The stress-strain, geometric, equilibrium  and
compatibility relationships which have been derived provide
enough information to predict the torsional response of a
beam if the properties of the section are known. An

iterative procedure can be used as follows:

1. Input ‘the beam data.

2. Select strain in the stirrups eg.

3. Assume the angle of crack 6, the depth coefficient k

and the strain parallel to the direction of the

crack €cre

4, Calculate the strain in the longitudinal bars €0
Equation 3.32,

5. Calculate the inclination of the compression zone §,
Equation 3.12,.

6. Calculate the shearing strgin Tos? Equation 3.38.

7. Calculate the strain parallel to the direction of

the crack Equation 3.33.

€err

8. Calculate the residual of e . if it 1is

unacceptable, go back to step 4 using a new value

for €cr.

9. Calculate the coefficient A, Equation 3.4, where €.

is taken as €cpe

10. Calculate the strain normal to the compression plane

at the tension side €gtr Equation 3.34.
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11. Calculate the strain in concrete at the extreme ’
fiber of the compression =zone normal to the

compression plane ¢ Equation 3.37.

ce’

12, Calculate the . average stress coefficient ki,
Equation 3.8 or 3.9, where €. is taken as e ..

13. Calculate the depth coefficient k, Equation 3.23.

14.. Calculate the residual of k ; if it is unacceptable,
go back to step 4 using a new value for k.

15. Calculate the depth to resultant coefficient ky,
Equation 3.10 or 3.11, where €, is taken as € ..

16. Calculate angle of crack 6, Equation 3.29.

17. Calculate the residual of 6 ; if it is unacceptable,
go back to step 4 using a new value for 6.

18. Calculate angle of twist per unit length V¥,
Equations 3.39 and 3.40.

19. Calculate the corresponding torque resistance T , ,
Equation 3.28.

20. Repeat steps 2 to 19 for a number of values of
strain in the stirrups to get the complete torsional
response in Mode 1.

21. Using Mode 2 equations, repeat steps 2 to 19 for a
number of values of strain in the stirrups to get

the complete torsional response in Mode 2.

22. Select the mode giving the lowest maximum torque.
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According to the foregoing iterative procedure, a
computer program capable of predicting the behavior of
rectangular reinforced concrete beams under pure torsion

has been developed.



CHAPTER 4

COMPARISON OF ANALYSIS AND TEST RESULTS

4,1 Introduction

In this chapter, the experimental torsional strengths
of 102 beams reported in the literature are compared to the
theoretical strengths predicted by the iterative procedure
described in Chapter 3. Torque-twist and torque-strain

curves are also presented.

The reduced concrete strength defined by Equations 3.3
and 3.7, Section 3.2, 1is used in the various calculations
of torque in Sections 4.2, 4.3 and 4.4. Its effect on the

analysis is explicitly presented in Section 4.5.

4,2 Torsional Strengths

In the iterative procedure, strains in the stirrups
are incremented and the corresponding torqgue is calculated
by satisfying both equilibrium and compatibility. The
theoretical torsional strength (maximum torque) is the
torque at which the slope of the torque-twist curve is
zero. Two modes of failure (Mode 1 and Mode 2) have been

checked. The theoretical torsional strength of a beam is

41
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defined as the lowest maximum torque of thertwo strengths
computed according to these two modes of failure.
Generally, a reétangular beam that has a width less than
its depth and that is tested in pure torsion will fail in

Mode 2.

The experimental and theoretical torsional strengths
of the 102 beams are compared in Table 4.1. Of these
beams, 36 have been excluded from the analysis, the reason
for exclusion 1in each case being given in the table.
Excessive stirrup spacing (excess. spac.) is defined as
the stirrup spacing, s, being greater than (b;+hy)/4 or
300 mm, CANQ;A23.3—M84 (1984). Completely over-reinforced
(over-reinf.) beams are defined as those in which the test
results show that neither the longitudinal bars nor the
stirrups yielded before the maximum torque was reached.
Insufficient reinforcement (insuff. reinf.) is when the
calculated post-cracking strength is less than the crackiﬁg

torque Tqp.

After the exclusion, the average ratio of experimental
strength to theoretical strength for the 66 remaining beams
is 1.01 and the standard deviation is 7.8%. For eaéh
reference the average T, (exp.)/T,(th.) and the standard
deviation are also given in Table 4.1, Certainly the
comparison of experimental and theoretical results is

excellent.
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Table 4.1 Comparison of Experimental and Theoretical

Torsional Strengths

s

T, (exp.)| T,(th.)} T, (exp.) Reason for
Ref. Beam : —_—
kN.m kN.m [T, (th.) Exclusion
Bl 22.3 21.4 1.04
= B2 29.3 31.1 0.94 excess. spac.
% B3 37.5 43.1 0.87
\g B4 47.3 55.6 0.85
= B5 56.2 68.3 0.82 over-reinf,
B6 61.7 75.1 0.82 over-reinf.
B7 27.0 27.6 0.98
B8 32.5 31.0 1.05
B9 29.8 | 33.3 0.89
B10 34.4 38.5 0.89
M1 30.4 28.8 1.06
M2 40.6 40.0 1.02
M3 43.8 49,3 0.89
M4 49,6 60.6 0.82 over-reinf,
M5 55.7 72.2 0.77 over-reinf,
M6 60.1 78.9 0.76 over-reinf.
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Table 4.1 (cont.l) Comparison of Experimental and

Theoretical Torsional Strengths

Tu(exp.5 T,(th.) Tukexp.) Reason for
Ref. Beam ——
kN.m kN.m | T, (th.) Exclusion
12 36.0 34.2 1.05
—~ I3 45,7 47.4 0.96
®
§ 14 58.1 59.1 0.98
‘g 15 70.7 73.5 0.6
= 16 76.7 90.7 0.85 over-reinf.
Jl 21.5 20.6 1.04
J2 29.2 28.6 1.02
J3 35.3 39.3 0.90 over-reinf,
J4 40.7 44,6 0.91 over-reinf.
Gl 26.8=T., 24.7 1,09 insuff. reinf.
G2 40.3 37.0 1.09
G3 49.6 50.6 0.98
G4 64.9 64.1 1.01
q5 72.0 78.7 0291 over-reinf.
G6 39.1 36.9 1.06
G7 52.7 52.2 1.01
G8 73.5 69.2 1.06
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Table 4.1 (cont.2) Comparison of Experimental and

Theoretical Torsional Strengths

fef seam T,(exp.) | T,(th.)|T,(exp.) Rgason for
kN.m kN.m [T, (th.) Exclusion

N1 9.1 8.3 1.10

_ Nla 9.0 8.2 1.10

g N2 14.5 13.5 1.07

i’ N2a | 13.2 13.4 0.99

= N3. 12.2 11.7 1.04
N4& 15.7 16.1 0.98 over-reinf.
K1 15.4 13.7 1.12
K2 23.7 22,4 1.06
K3 28.5 28.6 - 1.00
K4 35.0 . 31.7 1.10 over-reinf.
Cl. |11.3=T,, 10.4 1.09 insuff, reinf,
Cc2 15.3 17.9 0.85 excess. spac.
C3 20.0 25.8 0.78 excess. Sspac.
Cc4 25.3 34.8 0.73 over-reinf.
C5 29.7 42.9 0.69 over-reinf,
cé 34.2 50.6 0.68 over-reinf.’
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Table 4.1 (cont.3) Cbmparison of Experimental and

Theoretical Torsional Strengths

T,(exp.)| T,(th.)|T, (exp.) Reason for
Ref, Beam ——
kN.m kN.m |T,(th.) Exclusion
T1A 21,7 23.0 0.94
- T1B 22.9 23.1 0.99
PN .
o
fo] Tlc 22.1 22.9 . 0.97
a
2 ‘
S 634 | 24.7 23.5 1.05
644 32.2 — —_ Inconsistent
Information
1034 48.1 45,5 1.06
1044 60.8 59.0 1.03
1055 77.5 83.3 0.93
1244 59.8 65.2 0.92
1255 80.5 91.4 0.88
1644 96.4 83,3 1,03
1655 119.6 125.1 0.96
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Table 4.1 (cont.4) Comparison of Experimental and

Theoretical Torsional Strengths

T (exp.)| Ty(th.)|T, (exp.) Reason for
Ref . Beam _—
kN.m kN.m | T, (th.) Exclusion
VSl 11.6=T,,| 11.0 1.05 insuff. reinf,
< vs2 20.0 21.1 0.95
%, VS3 29.2 30.1 0.97
;g VsS4 35.1 38.2 0.92 over-reinf.
g VS5 19.2 17f7 1.08 excess., spac.
% VS6 21:1 25.8 0.82 excess. spac.
» vVs7/1 22.0 36.0 0.61 excess. spac.
g VSs7/2 22.0 35.4 0.62 excess. spac.
§ vs8/1 29.2 42.2 0.69 excess. spac.
vs8/2| 29.7 43.0 0.69 | excess. spac.
VS9 22.0 25.4 0.87
vsio 34.0 43.9 0.77 over-reinf.
VB1 — - — = VS10
VB2 43,0 46.8 0.92 over-reinf.
VB3 47.4 49,5 0.96
VB4 49.6 50.6 0.98
vQl 21.6 21.2 1.02




Table 4.1 (cont.5) Comparison of Experimental and

Theoretical Torsional Strengths

48

T,(exp.)| T,(th.)|T,(exp.) Reason for
Ref. Beam e
kN.m kN.m | T, (th.) Exclusion
vQ2 _ — — = VS2
E‘ vQ3 20.4 21.4 0.95
%, vVQ4 31.2 39.4 0.79 over-reinf.
:g vVQ5 _ B — = VS4
g vQé6 36.0 37.2 0.97 over-reinf.
; VQ9- 22.4 21.0 1.07
; val 38.3 45,6 0.84 over-reinf,
é VA2 37.8 43.5 0.87 over-reinf,
§ VA3 34.5 37.6 0.92 over-reinf,
VUl 24.5 25.2 0.97
Vo2 31.0 31.3 0.99
VU3 31.7 33.3 0.95 over-reinf,
VU4 26.5 28.2 0.94
VM1 14.2 12.7 1.12
VM2 40.0 37.7 1.06
VM3 103.0 98.9 1;04
VM4 285.0 296.3 0.96
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Table 4.1 (cont.6) Comparison of Experimental and

Theoretical Torsional Strengths

T,(exp.)| T,(th.)| T, (exp.) Reason for
Ref. Beam ——e )
kN.m kN.m T, (th.) Exclusion
Al 13.1 11.3 1.16
© AlR 12.5 11.2 1.12
a
5 A2 22.6 20.7 1.09
o0
§
= A3 27.8 28.3 | '0.98
& U
5 A4 34.5 38.4 0.90
3
=
= Bl 12.8 10.4 1.23
B1R 12.3 10.4 1.18
B2 20.8 ©18.9 1.10
B3 25.3 25.3 1.00
B4 31.8 33.2 . 0.96
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Table 4.1 (cont.7) Comparison of Experimental and

Theoretical Torsional Strengths

No. of No, of Standard
T,(exp.)
Reference Total Eligible [———— [Deviation
Tu(th.)
Beams Beams %
Hsu (1968Db) 49 30 1.01 7.1
Cameron (1971) 12 11 0.98 5.6
Leonhardt and 31 15 0.99 6.0
Schelling (1974)
' McMullen and 10 10 1.07 10.2
Rangan (1978)
Total 102 66 1.01 7.8
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If completely over-reinforced beams are not excluded,
the average ratio of experimental strength to theoretical
strength for (in this case) 89 beams would be 0.97 with a
standard deviation of 10.7% which is not quite as good
correlation” as when the completely over-reinforced beams

are excluded.

4,3 Torque-Twist Curves

The torque-twist curves for beams having a square, A3,
and a recfangular, B3, cross-section tested by McMullen and
Rangan (1978) are presented in Figures 4.1 and 4.2
respectiveiy. Each figure includes one experimental as

well as two theoretical curves,

For the theoretical torque-twist curves the angle of
twist 1is calculated twice for a specific torque, first
using Equation 3.39 (Mode 1) or Equation 3.50 (Mode 2) and
secondly wusing Equation 3.40 (Mode 1) or Eqﬁation 3.51
(Mode 2).

It is apparent that the torque-twist curves calculated
using Equation 3.40 or 3.51 for angle of twist are closer
to the corresponding experimental curves than the curves

calculated using Equation 3.39 or 3.50 for angle of twist.
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4,4 Torque-Strain Curves

Figure 4.3 ﬁresents the torque versus longitudinal
steel strain curve predicted by the theory presented in
Chapter 3 along with the experimental curve for McMullen
and Rangan's (1978) A3 beam. Figure 4.4 presents the
torque versus stirrup straiﬁ curves for the same beam,
Figures 4.5 and 4.6 present similar curves for McMullen and
Rangan's B3 beam. It can be noted from Figufes 4,3,
4,4 and 4.5 that the theoretical predictions f£fit the
experimental curves Qquite well. In Figure 4.6 the
correlation between the theoretical and the experimental
curves 1is, in the initial stages, not as good as in the
previous figures because thé experimental strain increases
at an irregular rate ; however, in the {inal stages,

correlation is quite good.

4.5 Effect of the Reduction in the Concrete Strength

The torque-twist curves for two beams tested at the
University of Calgary, McMullen and Rangan (1978), are
presented in Figures 4.7 and 4.8. Each figure includes one
experimental as well as two theoretical curves. For the
‘two theoretical curves the angle of twist is calculated
using Equation 3.40 or 3.51 and the torque 1is calculated

twice, first using the full strength of concrete defined by
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Equation 3.1 and seéondly using the reduced concrete

strength defined by Equations 3.3 and 3.7.

It is apparent that the torque-twist curves calculated
using the reduced concrete strength are closer to the
corresbonding experimental curves than the curves
calculated using the full strength of concrete. They are
closer in all aspects, first the maximum torque, second the
descending branches of the curves and third the angleé of
twist at maximum torque. In conclusion, the reduced
concrete strength provides good predictions for the

experimental results.



CHAPTER 5

SKEW BENDING ANALYSIS - TRIANGULAR AND TRAPEZOIDAL MODES

5.1 Introduction

In Chapter 3 the analysis presented was for skew
bending modes with a rectangular compression zone. This
chapter describes modes with triangular and trapezoidal

compression zones.

5.2 Triangular and Trapezoidal Modes

To study the shape of the failure surface visually,
Hsu (1968a) used a large diamond saw to cut reinforced
concrete beams perpendicular to their longitudinal axis.,
They had various'height to width ratios and had been tested
under pure torsion. He observed that for beams having a
height to width ratio equal to or larger than 1.5, the main
cracks seen on the wider faces of the cross sections
penetrated perpendicularly into the beams. For beams of
square cross section the main cracks were not perpendicular

to the face but were diagonal.

This implies that the failure surface for a member of
square cross section is a plane perpendicular to a diagonal

'plane and inclined 45° to the longitudinal axis of the

62
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beam, Figure 2.4, Hsu stated that a failure surface such
as this seems to give a minimum torsional resistance for
square cross sections. It 1is interesting to note that
Lessig (1958), who first proposed the skew bending theory,
stated that a failure could occur in which the neutral axis
intersected one vertical and one horizontal face of a

member, i.e. the compression zone is triangular.

Hsu (1968a) mentioned that beams with square cross
sections require extensive additional investigation. The
available literature shows that nobody tried to analyse a
skew bending failure mode for reinforced concrete beams
with square or rectangular cross section under pure torsion
having a tfiangular compression zone. The author is the

first to try to do so.

According to the analyses and results presented in
Chapters 3 and 4 for Modes 1 and 2 with rectangular
compression =zones, the mode giving the lowest maximum
forque was selected. Generally Mode 2 governs for beams
having a rectangular cross section. For symmetrically
reinforced beams having a équafe cross section, Mode 1 and
Mode 2 give exactly the same results. Hsu and Lessig have
inferred that a failure surface with a triangular

compression zone could occur and perhaps this would give a
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minimum torsional resistance for beams having a square

cross section.

Mode 1 has its rectangular compression zone on the top
side Jjoining the ends of the spiral crack, Figure 5.1a,
while Mode 2 has its fectangular compression zone on one of
the vertical sides joining the ends of the spiral crack,
Figure 5.1i. A failure surface with a triangular
compression zone on a corner is the proposed triangular
mode of failure which 1lies between Mode 1 and Mode 2,

Figures 5.1d, e and f.

In order to cover the full range between the two
rectangular modes (Modes 1 and 2), two failure surfaces
with trapezoidal compression zones are needed. These are
the proposed trapezoidal modes of failure shown in
Figures 5.1b and h. The transitional modes between the

trapezoidal and triangular modes are shown in

Figures 5.1c and g.

For each mode shown 1in Figure 5.1 there are three

views, Front View (F.V.), Top View (T.V.) and Side View
| (s.V.). More detailed figures were presented in Chapter 3
for the two rectangular modes (Modes 1 and 2). In the
following sections more detailed figures will be presented

for the proposed triangular and trapezoidal modes. Also,
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in the following sections the proposed modes of failure

will be analysed.

5.3 Triangular Mode

The failure surface for the triangular mode is shown
in Figure 5.2. It is bounded by a crack that spirals
around the member at a constant angle 6 and has a
triangular compression =zone across one corner of the beam

joining the ends of the spiral crack.

From the geometry of the failure surface the following

equations can be obtained:

tanf, = wj,tané ' (5.1)
where B, = the angle between line 1iii-ii and the x axis
(Figure 5.2, Top View),
v, - b(2—kb)+h(2—kh),
kb
b = shorter overall dimension of rectangular
cross-section,
kp = coefficient used to determine the base length
of the compression zone,
h = longer overall dimension of rectangular
cross-section,
and ky = coefficient used to determine the height of

the compression zone.
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where 31

and 63

tanﬁ4

where ﬁ4

and a

]
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tanf,-(kyh/kyb)tanhs (5.2)

the angle between 1line i-ii and the x axis
(Figure 5.2, Top View),
the angle between line i-iii and the y axis

(Figﬁre 5.2, Front View).
tanatan§, (5.3)

the angle between line 1ii-iiil and the y axis

(Figure 5.2, Front View),

tan™! (kyb/kph) ' (5.4)

The direction cosines of a line perpendicular to the

compression

where a, =

and 22 4

zone are:

ay/ac | ]\ )
ay/ac ' ' (5.5)
az/ac J
O.Skbbtanﬁlkhh

0.5kpbtanfskyh

0.5k, bkyh

/'ai + a§ + ai (5.6)
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The direction cosines of the 1line iv-v which is
parallel to the neutral axis and passes through the point

of application of the compressive stress resultant are:

iv | w

[] X .—X
Q = —o
Liv-v
Yo~ Y3
m' = vy L (5.7)
' _Liv—v
0 = Zy~Ziy
Liv-v o
where Xiy = Db
Xy, = -b’
Yiy = n
Yy = -h'
Ziv = ‘b'tanﬁz
z,, = b'tanﬁ2
Liv-v = ‘/(Xv'xiiv)2 * (Yv"\yiv)2 * (zv"ziv)2

Q|2 + ml2 + n|2 = 1

b' = 0.5kokyb
h' = 0.5kokph '
and ko = the depth to resultant coefficient.

Note that:
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Q2" + mm' + nn'= 0

The forces in the longitudinal bars are:

Fl = F2 = F3 = F4 = anQY

]

where ag cross—-sectional area of one longitudinal bar,

and ny = yield stress of the longitudinal bars.
The forces in the legs of the stirrups are:

Fg = ag sy(bl/s)tane

Fg = ag SY(hl/s)tane

b(0.5-ky)+0.5b;

Fpy = asfsy - tan® "for ky,<0.5[1+(b;/b)]"

or F7 = 0 - "for kb30.5[1+(bl/b)]"

B(kp=0.5)+0.5b; ‘
Fg = agf . tang; "for kb<0.5Fl+(bl/b)]"

or Fg = ag SY(bl/s)tanﬁl ! "for ky>0.5[1+(by/b)]"

h(ky,-0.5)+0.5h;

Fg = agfgy - tanf; "for kp<0.5[1+(hy/h)]"

or Fg = agf. (hy/s)tanfy . "for ky30.5[1+(h;/h)1"
h(0.5-kh)+0.5h1

Fig9 = asfsy - tan6 "for kh<0.5[1+(h1/h)]"

S



or Flo =Q

where ag
fsy
by
hy

and s
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"for ky20.5[1+(hy/h)]"

area of one leg of a closed stirrup,

yield stress of the stirrups,

shorter center-to-center dimension of

a closed rectangular stirrup,

longer center-to-center dimension of a closed
rectangular stirrup

spacing of stirrup.

The following equation can be obtained by considering

the equilibrium of forces acting normal to the compression

plane:

where

the compressive force acting normal to the
compression zone

kqfoan/A (5.8)

the tensile force acting normal to the
compression zone

F,0 + Fom + F,n ' (5.9)

y

average stress coefficient,
compressive strength of concrete,

softening coefficient,
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F. = the sum of the tensile forces in the direction

of x axis

= Fg-FqtFg
FY = the sum of the tensile forces in the direction
of y axis
= F6+F9“F10
and F, = the sum of the tensile forces in the direction

of z axis
= Fy+Fp+F3+F,
= 4anQY

The torsional moment is obtained from the equilibrium
of external and internal moments about 1line iv-v which is
parallel to the neutral axis and passes through the point

of application of the compressive stress resultant

Tn' = MyQ' + M,m' + M,n' (5.10)

wvhere T external moment,

M, = internal moments about x axis
= -2apf [ (h+hy)/2-h" 1+2af o [h'~(h-hjy) /2]
+asfsy(hl/s)tan6{[(kzkhhtanﬁ3)/2]
+[1-(k,/2) IkybtanB;-(1-kp)btanb-(h/2)tanb}
~agfgy {lh(2ky-1)+h; 1/2s}tanf{l (kyhtanf3)/2]
+[ (kykybtanBy) /2]1-[ (kykyhtanfs) /2]}

+asfsy{[h(1—2kh)+hl]/2s}tan9{khhtanﬁ3
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+[(kzkbbtanﬁl)/zl_(h/z)(1"kh)
-[ (kykyhtanBs) /213 (5.11)

internal moments about y axis
—2anQy[(b+b2)/2—b']+2anQy[b'—(b—b2)/2]
S sy(bl/S)taHG{(kzkhhtanﬁ3)/2
+[l—(k2/2)]kbbtanﬁl—(l—kb)btane—htane—(b/2)tan9}
S Sy{[b(l Zkb)+b1]/25}tan9{(kzkhhtanﬁ3)/2
+(1-ky/2)kybtanB;-[ (1-ky)btané]/2}
ag sy{[b(Zkb 1)+by1/2s}tanB; [ (kybtanB,)/2

—(kzkbbtanBl)/2+(k2khhtanﬁ3)/2] (5.12)

internal moments about 2z axis
S Sy(bl/S)tane[(h+hl)/2 -h' ]

+agfgy(hy/s)tanfl (b+by)/2-b']
+agfoy {[b(1-2ky)+by 1/2s}tanblh' - (h-hy)/2]
~agfg {[b(2ky-1)+by 1/2s}tanpy [h'~(h-hy ) /2]
~agfgy {[h(2ky-1)+hy 1/2s3tanf3[b’ - (b-by) /2]

+agf o {[h(1-2ky)+h;1/25}tan6[b' - (b-by) /2] (5.13)

longer center-to-center dimension between two

longitudinal corner bars

= shorter center-to-center dimension between two

longitudinal corner bars.

Substituting Equations 5.11, 5.12 and 5.13 into

Equation 5.10 gives



where Tl

or

i
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10

Z.T; , - (5.14)

~agf oyl (h+hy)/2-h" 1(8' /n")
+agfo [b'=(b=by)/2](m' /n")

~agfgyl (h+hy)/2-h'1(2' /n")
~agf gyl (b+by)/2-b' 1(m'/n")

“agfgylh'=(h-hy)/21(2' /n')

~agf gyl (b+by)/2-b" 1(m' /n*)

agfg [h'=(h-hy)/21(2"/n")
+agfpy b= (b=by)/2]1(m'/n")

S sy(bl/s)tane {[(l 0. 5k2)kbw12

—(l.5—kb)]b—h}tane—(l—kz)khhtan63 (m'/n')

ag sy(bl/s)tane[(h+h1)/2 -h']

ag SY(hl/s)tane {l1- k2/2)]kbbw12
-(l—kb)b—(h/2)}tanG—(l—kz)khhtanﬁ3 (2'/n")

ag Sy(hl/s)tane[(b+b1)/2 -b']

£y {[D(1-2ky)+by1/253tans {[ (1-0. 5k, ) kpwy 5
-0.5(1-ky) Ibtan6-(1-k,) kyhtanBz}(m' /n')

" +agfg {[b(1-2ky)+by 1/2s}tand[h' - (h-h;) /2]

"for kp<0.5[1+(b;/b)1"

0 "for ky30.5[1+(by/b)]"
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S SY{[b(2kb l)+b1]/25}[w12tan9
—(tanﬁ3/tana)]{[(1—k2)/2]kbbw12tan9
+(ky-0. 5)khhtanﬁ3}(m'/n') .
S sy{[b(Zkb—l)+bl]/25}[w12tan9
—(tanﬁ3/tana)][h'—(h—hl)/Z]

"for ky<0.5[1+(by/b)]"

ag sy(bl/s [wy,tané

-(tanfz/tana) {[(1-k,)/2]kybw,tand
+(ky-0.5)kphtanfz}(m'/n')- asfsy(bl/s)[wlztane
-(tanfz/tana) ]J[h'-{ h—hl)/2]

"for ky20.5[1+(by/b) 1"

S sy{[h(Zkh 1)+h1]/25}tan63[0 5k2kbbwl2tan6
-(k2—0.5)khhtanﬁ3](Q /n’ )
agfgy {[h(2ky~1)+hy1/2s}tanf3[b’ - (b-by)/2]

"for ky<0.5[1+(hy/h)1"

S Sy(hl/S)tanﬁ3[0 5k2kbbw12tan9
-(k,-0.5)kyhtanf31(2" /n")
ag SY(hl/s)tanf)’?’[b'—(b by)/2]

"for ky20.5[1+(h;/h)]"

S Sy{[h(l 2kh +h1]/2$}tan9{0 5[k2kbbW12
—h(l—kh)]tan0+(1—k2)khhtan53}(Q /n')
tagfg  {[h(1-2ky)+hy 1/2s}tanf[b’ - (b-by ) /2]

"for ky<0.5[1+(hy/h)]"
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or Tyg = 0 - "for ky20.5[1+(hy/h) 1"

The triangular mode (1-2) .was developed as a
transitional mode from the rectangular mode 1 to the other
rectangular mode 2. Another triangular mode (2-1),
Figure 5.3, was developed as a transitional mode from the
rectangular mode 2 to the other rectangular mode 1. It was
found that either triangular mode, (1-2) or (2-1), can be
used, as both will give identical results for any given

value of «a.

5.4 Solution Technigque for the Trianquiar Mode

The geometric and equilibrium relationships which have
been derived provide enough information to predict the
torsional response of a beam if the properties of the

section are known.

The following iterative procedure can be used:

1. Input the beam data.
2. Initiate the angle a.
3. Assume a range for the angle of crack 6.
4, Assume the coefficient ky.
5. Assume a range for the angle 63.
6. Calculate the coefficient kj, Equation 5.4.
7. Calculate the angles B, and B, Equations 5.1 and

5.3 respectively.
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8. . Calculate the angle fy , Equation 5.2.

S. Calculate the area of the compression zone ac
Equation 5.6.

10. Find the minimum value of a. for the range of f3 (do-
loop between steps 8 and 10).

11. Calculate the forces C and F , Equations 5.8 and 5.9
respectively.

12, Check if. C = F ; if not change the coefficient ky,
and go back to step 5.

13. Calculate the corresponding resisting torque T ,
Equation 5.14.

14, Find the minimum wvalue of T for the range of ¢ (do
loop between steps 4 and 14).

15, Repeat steps 3 to 14 for a number of values of
angle a to get the full torsional respénse for the

triangular mode.

In accordance with the foregoing iterative procedure,
a computer program capable of predicting the behavior of
rectangular reinforced concrete beams under pure torsion

has been developed for the triangular mode..

5.5 Special Triangular Mode

As a check for the Triangular Mode, a special
triangular mode (45-S) for square Cross sections,

Figure 5.4, with a equal to 45° was developed and the
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results agreed with the results given by the general

triangular mode for this special case.

5.6 Trapezoidal Mode (1-2)

To cover the transition range from the rectangular
mode (Mode 1) to the triangular mode, a trapezoidal mode is
‘needed. The failure surface for the trapezoidal mode is
shown in Figuré 5.5. It is bounded by a crack that spirals
around three sides of the member at a constant angle 6 and
has a trapezoidal compression zone across the top (fourth)

side of the beam joining the ends of the spiral crack.

From the geometry of the failure surface the following

equations can be obtained:

tanﬁz wlztane (5.15)

vhere B, = the angle between line 1iv-iii and the x axis

(Figure 5.5, Top View),

Wip = [b+h(2—khr—khQ)]/b,

b = shorter overall dimension of rectangular
cross-section,

h = longer overall dimension of recfangular
cross—section,r

kpp = coefficient used to determine the height of

the right side of the compression zone,
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and kng = coefficient used to determine the height of
the left side of the compression zone.
tanf; = tanfy-{[(kyo-ky,)hl/bltanfy (5.16)
where B, = the angle between line i-ii and the x axis
(Figure 5.5, Top View),
and B3 = the angle Dbetween lines i-iv and ii-iii and
the y axis (Figure 5.5, Front View).
tanf, = tanatan$, - (5.17)
where B, = the angle between line iii-iv and the y axis
(Figure 5.5, Front View)
and a = tan_l{b/[(khQ—khr)h]} (5.18)

The direction cosines of a line perpendicular to the

compression Zohe are:

Qe = ay/ag
m = ay/aC >  (5.,19)
‘n = az'/ac

where a = O.5btanﬁl(khr+khQ)h
a = 0.5btanﬁ3(khr+khq)h
a, = O'Sb(khr+khQ)h

[+)
i

2 2 2 .
c V/ax toay + ag | (5.20)
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2

and Q2 + m2 + n? =1

The direction cosines of the 1line v-vi which is
parallel to the neutral axis and passes through the point

of application of the compressive stress resultant are:

0! - Xvi™ %y
Lv—vi
mo o= i Y (5.21)
Ly—vi
N 2yiT2y
Ly-vi y
where X,; = —b’
X, = Db-b' "for kykpbzb"
or X, = kykyb-b' "for k,kyb<b"
Yyi = Bh'-kykpoh '
Yo = [1-(b"/b)I(kpp-kp)h  ° "for kykpbzb®
or Yy = h' | "for k,kyb<b"
2,3 = b'tanﬁl—z'+k2kthtanﬁ3
z, = —(b—b')tanBl—z‘+kth[k2—(l/kb)]t§n63
| "for k,kybzb"
~or z, = —(b—b')tanBl—z'+(l—k2kb)btan61 "for kokpb<b" '
Ly-vi = ‘/(Xvi"xv)2"'(3’vi”YV)2"'(zvi'zv)2

0'2 4+ m'2 4 n'2 =1
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b' = (b/2kpg) [kpp+ky (kyg=kyp) ]
h' = kykpoh-b' (kpo—ky )h/b
z' = [ky-(b'/kpb) lkyohtanfy .
k, = the depth to resultant coefficient
and  ky = kpo/(Ukpgkpg) (5.22)

Note that:
Q2" + mm' + nn' =0
The forces in the longitudinal bars are:

Fl = F2 = F3 = F4 = aquy

where ap cross-sectional area of one longitudinal bar,

and fQY = yield stress of the longitudinal bars.
The forces in the legs of the stirrups are:

Fg = asfsy(bl/s)tane

Fg = asfsy{[h(O.S—khr)+(h1/2)]/s}tan9
"for ky,>0.5[1~(hy/h)]"

or Fe = asfsy(hl/s)tane "for ky,.<0.5[1-(h;/h)]"
Fp, = asfsy(bl/s)tanﬁl
FB = asfsy{[h(khQ—0.5)+(hl/2)]/s}tanB3
"for ky<0.5[1+(h;/h)]"
or- Fg = asfsy(hl/s)tanﬁ3 "for ky%0.5[1+(h;/h)]"
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Fg = agfg,{[h(0.5-kyo)+(hy/2)1/s}tansd
"for ky(<0.5[1+(h;/h)]"

or Fg =0 "for khQ20.5[1+(hl/h)]"
where ag = area of one leg of a closed stirrup,

fsy = yield stress of the stirrups,

b, = shorter center-to-center dimension of a

closed rectangular stirrup,
hy = longer center-to-center dimension of a closed
rectangular stirrup

and - s = gpacing of stirrup.

The following equation can be obtained by considering
the equilibrium of forces acting normal to the compression

plane:

where C = the compressive force acting normal to the
compression zone

= kyfoa/A (5.23)

F = the tensile force acting normal to the

compression zone

= F 2 + Fym + Fyn (5.24)
ki = average stress coefficient,
t
c = compressive strength of concrete,

A = softening coefficient,
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F, = the sum of the tensile forces 1in the

direction of x axis

= Fg+Fy
FY = the sum of the tensile forces in the
direction of y axis
‘ = FgtFg-Fg
and F, = the sum of the tensile forces 1in the

direction of z axis
= Fy+F,+F3+F,
= 4apfoy

The torsional moment is obtained from the equilibrium
of external and internal moments about 1line v-vi which is
parallel to the neutral axis and passes through the point

of application of the compressive stress resultant

Tn' = MXQ' + Mym' + M,n' (5.25)

where T external moment,

M, = internal moments about x axis
= -2apfo [ (h+hy)/2-h"] + 2apf,.[h'~(h-hy)/2]
+asfsy{[h(0.S—khr)+(hl/2)]/s}tanG[(b—b')tanﬁl
+2'~ky htanB3-0.5h(1-ky ) tanf]
~agf gy ([ (ky=0.5)+(hy/2) 1/s}tanss (0. 5ky htans
+b'tanfy-z')

vagfg, {[h(0.5-ky o) +(hy/2) 1/s}tan6lky htans;

sty{
+b'tanﬁl—O.5h'(l—khQ)tan9—z' ] . (5.26)
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X
1

internal moments about y axis

= -2apf( [ (b+by)/2-b'1 + 2apf.[b"~(b-by)/2]

-asfsy(bl/s)tane[z'+(b—b')tanBl—khrhtanB3
~h(1-ky ) tanf-(b/2)tanb]

—asfsy(bl/s)tanﬁl[z'+(b/2)tanﬁl—b'tanﬁll (5.27) -

M, = internal moments about z axis
asfsy(bl/s)tane[(h+hl)/2—h']
—asfsy(bl/s)tanﬁl[h'—(h—hl)/2]
+agfgy {[n(0.5-ky ) +(hy/2) 1/s}tand[ (b+by)/2-b']
' —asfsy{[h(khQ-0.5)+(h1/2)]/S}tanﬁ3[b'-(b—bl)/2]
+agfg {[h(0.5-kyg)+(hy/2)]/s}tanblb’ - (b-by)/2]
’ (5.28)
h, = longer center—tb—center dimension between two
longitudinal corner bars

and b, = shorter center-to-center dimension between two

longitudinal corner bars.

Substituting Equations 5.26, 5.27 and 5.28 into

Equation 5.25 gives:

j=N
i Mo

1
where Ty = —anQy[(h+h2)/2-h'](Q'/n')

Ty = -agfgyl (h+hy)/2-h'1(2'/n")
-anQy[(b+b2)/2—b'](m'/n')
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agfgylh'~(h-hy)/21(2"/n")
—anQY[(b+b2)/2“b'](m'/nl)

)
w
i

Ty = anQy[h'-(h-hz)/2](Q'/n')
+anQY[b'—(b-b2)/2](m'/n')

Tg = -ag sy(bl/s)tanG [ (b-b’ )wlz—h(l ky,)-0.5b]tané
-{[ (b-b' )/tana]+khrh}tanﬁ3+z' (m'/n') W

S sy(bl/s)tan9[(h+h1)/2 -h' ]

T = anSY{[h(l—Zkhr)+hl]/25}tan9 [ (b-b')wq,
-0.5h(1-ky ) Itané-{[ (b-b')/tana]
+kyhitanfg+z' (2'/n')

+asfsy{[h(l—Zkhr)+hl]/2s}tan9[(b+bl)/2-b']
"for ky,>0.5[1-(hy/h)1"

or Tg = ag Sy(hl/s)tane [ (b-Db' )wlz
~0.5h(1-kp ) Itané-{[ (b-b')/tana]

+kydtanfz+z’ (2'/n')
ag Sy(hl/s)tanG[(b+bl)/2 -b']

"for khr$0.5[1_(h1/h) ]"

T» = -ag sy(bl/s)[wlztane (tanﬁ3/tana)][(0 5b
-b')wy,tané-(0.5b-b’ ) (tanfy/tana)
+z'](m'/n")

ag Sy(bl/s)[wlztane (tanfz/tana)][h’
—(h—hl)/2]
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3
(o)
]
i

fsy{[h(2khQ—l)+hl]/25}tanﬁ3{b'w12tan9
+[0.5kth—(b'/tana)]tanﬁ3—z'}(Q'/n')

~agfgy {lh(2ky-1)+hy 1/2s}tanf3lb' - (b-b;y ) /2]
"for kyg<0.5[1+(hy/h)]"

or Tg = (hl/s)tanB3{b wlztane

dg sy
+[0.5kth—(b'/tana)]tanﬁ3-z'}(Q'/n')
ag sy(hl/s)tanﬁ3[b'—(b bl)/2]

"for ky(20.5[1+(hy/h)]"

and Tg = {[h(1- 2khl)+h1]/25}tan9{[b'w12

ag sy
“OwSh(l"khQ)]tan9+[kth
—(b‘/tana)]tanﬁ3—z'}(Q'/n')
+agfgy {[h(1-2kp) +hy 1/2s}tané b’ - (b-bji) /2]

" "for ky<0.5[1+(hy/h)]"
or Tg = 0 | "for kyg>0.5[1+(hy/h)]"

5.7 Trapezoidal Mode kz—l)

To cover the transition range from the rectangular’
mode (Mode 2) to tbe triangular mode, trapezoidal
mode (2-1) was developed. Its failure surface is shown in
Figure 5.6. It is bounded by a crack that spirals around
three sides of the member at a constant angle 6@ and has a
trapezoidal compression zone across one of the vertical
(fourth) sides of the beam joining the ends of the spiral

crack.
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The trapezoidal mode (2-1) can be handled in a manner
similar to that used for the trapezoidal mode (1-2). For
square cross-sections, the trapezoidal mode (2-1) leads to
the same results as the trapezoidal mode (1-2) for the
angle complementary to the angle ¢ ; e.qg. the torque
computed by mode (2-1) for angle a = 10° is equal to the

torque computed by mode (1-2) for angle a = 80°.

5.8 Solution Technigue for the Trapezoidal Modes

The geometric and the equilibrium relationships which
have been derived provide enough information to predict the
torsional response of a beam if the properties of the

section are known.

The following iterative procedure, similar to that.

used for the triangular mode, can be used:

1. Input the beam data.

2. Initiate.the angle a.

3. Assume a range for the angle of crack 6.

4, Assume the coefficient khQ'

5. Assume a range for the angle f3.

6. Calculate the coefficient ky,., Equation 5.18.
7. Calculate the coefficient ki, Equation 5.22.

8. Calculate the angles f, and B4, Equations 5.15 and

5.17 respectively.
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S. Calculate the angle f,, Equation 5.16.
10. Calculate the area of the compression =zone ag,
Equation 5.20.

1l. Find the minimum value of a,. for the range:of B3

c
(do loop between steps 9 and 11).

12, Calculate the forces C and F, Equations 5.23 and
5.24 respectively.

13. Check if C = F ; if not change the coefficient'khQ
and go back to step 5.

14. Calculate the corresponding resisting torque T,
Equation 5.29.

15. Find the minimum value of T for the range of 6 (do
loop between steps 4 and 15).

16. Repeat steps 3 to 15 for a number of vaiues of

angle a to get the full torsional response for the

trapezoidal mode (1-2).

In accordance with the foregoing iterative procedure,
a computer program capable of predicting the behavior of
rectangular reinforced concrete beams under pure torsion
has been developed for the trapezoidal mode (1-2). The
values of the angle a used in the computer program vary
from the value corresponding to the rectangular mode
(Mode 1), i.e. a = 90° and kp = =, to the value
corresponding to the triangular mode. The value of a

corresponding to the triangular mode is the value that
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results in ky being equal to 1.0.

Using 'thé trapezoidal mode (2—15 equations, another
computer program has been developed. The values of the
angle a used in this program vary from the wvalue
corresponding to the rectanéular mode (Mode 2), i.e.
a = 0° and kp = ®, to the value corresponding to the
triangular moae. The value of a corresponding to the
triangqlar mode is the value that results in ky beiné

equal to 1.0.

5.9 The coefficients k;, ky, and A

For the stress-strain relationship of concrete

presented by Equation 3.1
= £ _ 2
fo = fol2(e/eg)-(eo/eg)?] ( (3.1)

and for a rectangular compression zone such as in

Modes 1 and 2, the average stress coefficient, k4, can be
derived as:
: € €
kyp = —(1 - —) (5.30)
€ 360

(o]

and the depth to resultant coefficient, k,. can be derived
as:

4-(e_ /¢€,.)
kyp = ¢ 0 ‘ (5.31)
12-4(e /¢€g)
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where t. = compressive strength of concrete,
€y = strain at f_ = f; usually taken as 0.002
and f. = stress in concrete correspondiﬁg to a strain
_of €

For the same stress-strain relationship for concrete
(Equation 3.1) but for a triangular compression zone such
as in triangular modes 1-2, 2-1 and 45-S, the avefage

stress coefficient, kj. can be derived as:

2 € €
kyp = - —(1 - —) (5.32)
de
3 €, o

and the depth to resultant coefficient, k,; can be derived
as:
10-2(e /¢€)

Koo = (5.33)
2t 20-5(ey/e,)

The average stress coefficient, k;, corresponding to

the trapezoidal cémpression zone of Mode (1-2) is assumed

to be:
k - k k
h hr hr
klz = klt “_—Q""'""""——' + klr — (5.34)
kng kho
where klz = klr "for khr = khQ"
and .klz = klt "for khr =0 "
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The depth to resultant coefficient, ko5 corresponding
to the trapezoidal compression zone of Mode (1-2) is

assumed to be:

k -k k
h hr hr
k22 = k2t chg  hr + k2r —— (5.35)
kng kng
where k22 = k2r "for khr = khQ"
and kZZ = kzt "for khI’ = 0 "

Equations similar to 5.34 and 5.35 can be assumed for

the trapezoidal compression zone of Mode (2-1).

Rush (19605 stated that the shape of the cross section
has a decisive effect on the value of wultimate strain as
shown in Figqure 5.7. The extreme fiber concrete strain,
€y varies from 0.003 to 0.0035 for a rectangular cross
section and it varies from 0.0038 to 0.0048 for a
triangular cross section. Consequently conservative values
for €, may be 5ssumed as 0.003 for a rectangular
compression zone and 0,004 for a triangular compression
zone, Therefore  the coefficients ki, and ko, are
calculated for e, = 0.003 from Equations 5.30 and 5.31 to
be 0.750 and 0.417 respectively and the coefficients kq;

and ko are'calculated for e, = 0.004 from Equations 5.32

c
and 5.33 to be 0.667 and 0.600 respectively.

The average stress coefficient and the depth to
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resultant coefficient corresponding to a trapezoidal
compression zone, ki, and k,,  respectively, could be
derived as have been done for rectangular (Equations 5.30
and 5.31) and triangular (Equations 5.32 and 5.33)
compression zones. In this case an assumption must be made
regarding the variation of the extreme fiber concrete

strain, from 0.003 for a rectangular compression zone

Gu,

to 0.004 for a triangular compression zone.

For modes having a rectangular compression zone
(Modes 1 and 2) both equilibrium and compatibility were
considered and the softening coefficient X was calculated
from Equation 3.4. For the triangular and the trapezoidal
modes, cbmpatibility was not considered (only equilibrium)
and therefore the softening coefficient A is assumed to
vary linearly with respect to the angle a and it can be

expressed as:

90°-a
A= A H(Ap-N) S (5.36)
90
where A, = softening coefficient for Mode 1,
A, = softening coefficient for Mode 2,
A= "for a = 90°"
and A= "for a = 0° ",



CHAPTER 6

RESULTS OF TRIANGULAR AND TRAPEZOIDAL MODES

6.1 Introduction

In this chapter, the results 6btained from the
triangular and trapezoidal modes will be discussed. The
effects of the aspect ratio, amount of reinforcement,
concrete strength and softening of concrete (reduction in
the concrete stréngth) on the analyses are presented in

this chapter.

6.2 Effect of Aspect Ratio

To study the effect of the aspect ratio on the

analyses, two beams (1 and 2) are considered having aspect

ratios of 1.0 and 2.0 respectively. They have
m = AQnys/Zas(bl+h1)fsy =1.,0 and fQY = fsy = 390 MPa.
Details are shown in Table 6.1. In the iterative

procedures described in Chapter 5 for the trapezoidal and
triangular modes, the . angle a is incremented and the

corresponding torque is calculated.

The torque-alpha curve for the beam having a square
cross section (Beam 1) is shown in Figure 6.1. At the
starting point, the angle a was equal to 90°, which

corresponds to the rectangular mode 1, then its value was

98



Table 6.1 Details of Beams 1-6

Reinforcement
b h b, hy fé
- Beam ' Long. Az Pe Sti- as ° ps
mm mm mm mm MPa
mm2 yA rupps mm2 mm A
1 300 | 300 | 257 | 257 | 40 8 #4 1032 | 1.15 #4 | 129 | 129 | 1.15
2 212 | 424 | 169 | 381 | 40 84 1032 | 1.15 #4 129 | 138 | 1.15
3 300 | 300 | 257 | 257 |40 @#5,4#4 | 1316 | 1.46 #4 129 | 101 | 1.46
4 212 | 424 | 169 | 381 | 40 l4#5,4#4 | 1316 | 1.46 #4 129 | 108 | 1.46
5 300 | 300 | 257 | 257 |25 8#4 1032 | 1.15 #4 129 | 129 |1.15
6 212 | 424 | 169 | 381 |25 84 1032 {1.15 #4 129 | 138 |1.15

66
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decreased in decrements of 1° 'till it reached 45°. A
torque-alpha curve for a beam having a square cross section
with the same reinforcement on each face has an axis of
symmetry, i.e. the values of the torque are exactly the
same for the angle a and its complementary angle. Thus,

Figure 6.1 actually represents half a torque-alpha curve.

"For Beam 1 the triangular mode with a = 45° gives, as
shown in Figure 6.1, the minimum value for the torque.
This implies that the failure surface for a beam having a
square cross section is bounded by a crack that spirals
around the beam at a constant angle and has a 450
triangular compression zone across one corner joining the
ends of the cracﬁ. This supports Hsu's statement mentioned
in Chapters 2 and 5, that a failure surface such as this
seems to give a minimum torsional resistance for square

cross sections.

The torque-alpha curve for the beam having a
rectangular cross section (Beam 2) is shown in Figure 6.2.
Starting with the trapezoidal mode 1-2, the angle a was
decremented and the corresponding torque was calculated.
The first value for a in this mode was 90°, which
corresponds to the rectangular mode 1, and the last value
before the mode changed to the triangular mode was 69°.

Then wusing the trapezoidal mode 2-1 the {first value
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for a was 0°, which corresponds .to the rectangular mode 2,
and the last value before the mode changed to the
triangular mode was 15°. The triangular mode covered the
‘remaining range of a from 16° to 68°. Unlike .the
torque-alpha curve for the square cross section shown in
Figure 6.1, the torque-alpha curve for a rectangular cross

section shown in Figure 6.2 has no axis of symmetry.

As shown in Figure 6.2, the rectangular mode 2 gives a
lower value of torsional resistance than the rectangular
mode 1 but the minimum value for the torsional resistance
is still given by the triangular mode with a = 45°, This
implies that the failure surface for Beam 2, which has a
rectangular cross section with an aspect ratio equal
to 2.0, is similar to the failure surface for Beam 1 which

has a square cross section.

This result is unexpected as for beams having a
rectangular cross section a failure surface such as this
has not been suggested previously while it has been

suggested for beams having a square cross section.

6.3 Effect of Amount of Reinforcement

To examine the effect of the amount of reinforcement
on the analyses, two more beams (3 and 4) are considered,
Table 6.1. They also have m = 1.0, ny = fSy = 300 MPa and

aspect ratios of 1.0 and 2.0 respectively.
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The torque-alpha curves for the beams having a square

cross section (Beams 1 and 3) are shown in Figure 6.3.

As mentioned in the previous section, the triangular
mode with a = 45° gives the minimum torsional resistance
for Beam 1. The torque at a = 90° is 37.6 kN.m and it is
34.3 kN.m at a = 45°. Beam 1 has py = pg = 1.15%. For
. Beam 3, which has more reinforcement than Beam 1 (pQ =bs =
1.46%), the rectangular mode gives the minimum torsionql
resistance. The torque at a = 90° is 46.7 kN.m and it is

46.9 kN.m at a = 45°,

The torgque-alpha curves for the beams having a
rectangular cross section (Beams 2 and 4) are shown in

Figure 6.4.

As mentioned in the previous section the triangular

mode with a = 45° gives the minimum torsional resistance

for Beam 2 which has Py Py = 1.15%. The torqgue at
a = 90° is 35,5 kN.m, at a = 0° is 34.2 kN.m and it is
29.7 kN.m at a = 45°. For Beam 4 which 'has more
reinforcement than Beam 2 (pQ = pg = 1.46%), the triangular
mode still gives the minimum torsional resistance but at

a = 44°, The torque at a = 90° is 44.5 kN.m, at a = 0° is

42.8 kN.m and it is 41.4 kN.m at a = 44°,
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6.4 Effect of Concrete Strength

To study the effect of concrete strength on the
analyses, two more beams (5 and 6) are considered,
Table 6.1. Beams 5 and 6 are identical to Beams 1 and 2

respectively except that for Beams 5 énd 6 f. is equal to

C

25 MPa whereas it is 40 MPa for Beams 1 and 2.

The torque-alpha curves for the beams having a ééuare
cross section (Beams 1 and 5) are shown in Figure 6.5. For
Beam 5 with f;, = 25 MPa, the rectangular mode (a = 90°)
gives T = 35.6 kN.m, which is, as expected, less than the
torque (37.6 kN.m) given by the rectangular mode for Beam 1
with f. = 40 MPa. The 45° triangular mode gives
T = 38.8 kN.m for Beam 5,which is unexpectedly higher than
the torque (34.3 kN.m) given by the 45° triangular mode for

Beam 1.

The torque-alpha curves for the Vbeams having a
rectangular cross section (Beams 2 and 6) are shown in
Figure 6.6. For Beam 6, having fé = 25 MPa, the torqué at
a = 90° is 34.2 kN.m, at a = 0° is 32.3 kN.m and it is
34.3 kN.m at a = 43° ; i,e, the rectangular mode 2
(a = 0°) gives the minimum torsional resistance for.Beam 6.
As mentioned before, tﬁe triangular mode with a = 45° gives

the minimum torsional resistance (29.7 kN.m) for Beam 2

having fé = 40 MPa.
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Like the triangular mode for beams having a square
cross section (Beams 1 and 5), Figure 6.5, . the triangular
mode gives unexpected results for the beams having a

rectangular cross section (Beams 2 and 6), Figure 6.6.

It is apparent from both Figures 6.5 and 6.6 that when
the concrete strength for identicall beams haé been
decreased, the torsional resistance calculated by the
rectangular modes has been expectedly and reasonably
decreaéed, while the torsional resistance calculated by the
triangular mode has been unexpectedlyw and unreasonably

increased.

6.5 Effect of Softening of Concrete

To examine  the sensitivity of the analyses to the

softening coefficient, all six beams are considered.

For Figures 6.1 through 6.6 the softening coefficient,
A, used at each value of a was calculated by Equation 5.36
using A\, and A, for .the rectangular ~modes 1 and 2

respectively.

Figure 6.7 through 6.12 represent torque-alpha curves
for Beams 1 through 6 .with three different values of 1/A
for each value of a. The curves using A; and A, in
calculating A are presented by the symbol + and values of

1/X are shown on the figures. Results are also shown on
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_ Figures 6.7 through 6.12 for values of 1/A 0.05 higher and
0.05 lower -than the values used to calculate the points
represented by the symbol +. The symbol % is used for the
higher values of 1/X while the symbol o is wused for the

lower values.

It 1is clear from Figﬁres 6.7 through 6.12 that, for
beams having both sguare (1, 3 and 5) and rectangular
(2, 4 and 6) cross sections, the rectangular modes give
expected results while the triangular modes give unexpected
ones. When the value of 1/X is increased, the torsional
resistance calculated by ther rectangular modes is
increased, while the torsional resistance calculated by the
triangular mode is decreased. Exactly the opposite occurs

when the value of 1/N is decreased.

6.6 Discussion and Evaluation of Results

To show the difference between the rectangﬁlar and the
45° triangular modes, the torques are calculated. for
Beams 1 and 5 (square cross section) for just one value of
the angle of crack, 6 = 359, The trapezoidal mode with.the
angle a equal to 90°, which corresponds to the rectangular
mode 1, and the triangular mode with a equal to 45° are
used'té calculate the torque as shown in Tables 6.2 and 6.3

respectively.
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Table 6.2 Torque for Rectangular Mode, a = 90°
Beam 1 Beam 5
]

k 0.10] 0.15| 0.20i0.175| 0.10{ 0.20} 0.30| 0.23

g° 63.0| 62.1] 61.2] 61.7| 63.0{ 61.2| 59.2| 60.7

Q 0.891}0.884|0.876{0.880/0.891|0.876|0.859|0.872

m 0 0 0 0 0 0 0 0

n 0.454|0.468/0.481|0.474 0.454]0.481]0.511(0.490

C kN | 193 | 280 | 364 | 323 | 148 | 280 | 395 | 316
F, kN | 206 | 201 | 195 | 198 | 206 | 195 | 184 | 192
Fy kN 0 0 0 0 0 0 0 0
F, kN | 310 | 310 | 310 310 | 310 | 310 | 310 | 310
F kN | 324 | 323 | 320 | 321 | 324 | 320 | 316 | 319
T, = Ty . 10.18 10.32
T, =1, | WY o.51| d 7 0.23
Tg 350 |- 13.91} 350 - 13.53
Te = Tg | 250 |- 1.20] 250 - 1.06
T 150 | ~0.06| 150 | ~1.00

T ¢ 0.00 ‘ ¢ 0.00

8 1 | i, ) ! ! L|
6.1 0.15 0.2 0.1 0.2 0.3
T kN.m K 37.63 K 35.75
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Table 6.3 Torque for Triangular Mode, a = 45°
Beam 1 Beam 5
k 0.20{ 0.30] 0.40| 0.25| 0.30{ 0.50] 0.70| 0.57
i 81.0| 75.9| 70.4| 78.5| 75.9| 64.5| 52.4| 60.3
Q 0.703]0.696}0.686{0.700|0.696{0.670{0.6210.656
m 0.703}0.696/0.686|0.700{0.696{0.670/0.621{0.656
n 0.112{0.175|0.245/0.143{0.175/0.319{0.478|0.373
C kN | 140 | 200 | 254 | 170 | 154 | 235 | 307 | 261
F, kN 81 96 | 104 90 96 | 108 | 114 | 111
F, kN | 81 96 | 104 | 90 96 | 108 | 114 | 111
F_, kN | 310 | 310 | 310 | 310 | 310 | 310 | 310 | 310
F kN | 149 | 188 | 219 | 170 | 188 | 244 | 290 | 261
T, = T3 . 2.01 - 4.35
T, c 3.85 F 9.46
T, 300 = 0.18] 300 -0.76
Tg = Tg | 200 | 13,29/ 200 - 10.69
T5 = Ty0| 100 - -1.22{ 100 |- -0.97
F c
Tg = Tg T% L | .40 ‘ty, L] 102
0.2 0.3 0.4 0.3 0.5 0.7
T kN.m 34.99 38.88
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As has been done in the solution techniques
(Sectiohs 5.4 and 5.8), the coefficient k used to determine
the dimension of the compression zone'has been assumed and
the compressive and tensile forces, C and F respectively,
have been calculated. 1If the force F dges not equél the
force C then a new value of k has been assumed and the
procedure is continued until the forces F and C are equal.
The corresponding resisting torque T has then been

calculated.

It is apparent from Table 6.2 that for both beams
having a = 90° the tensile force F (calculated from
Equation 5.24) decreases slightly with the increase in the
" value of the coefficient k as there are minor changes in
the values of the direction cosines ¢ and n and in the

tensile force component F The compressive force C

x.
(calculated from Equation 5.23) increases significantly
with the increase in the value of the coefficient k as they

are proportionate.

For both beams having a = 45° (Table 6.3), both the
force F (calculafed‘ from Equation 5.9) and the force C
(calculated from Egquation 5.8) increase significantly with
the increase in the value of the coefficient k. The values
of the direction cosine n and the force components F, and
F increase with the increase 'in k and consequently the

y
force F increases. Like beams having e = 90°, the force C
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for beams having a = 45° increases with the increase in k

as they are proportionate.

In Tables 6.2 and 6.3 each of the torque values were
calculated fbr just one value of the angle of crack, 6. A
range of 6 should be assumed in order to get the minimum
value of the torque at a specific angle a as has been done
in the solution techniques. From Table 6.2 for .the
rectangular mode, the value of the torque for Beam 1 with
£. = 40 MPa is 37.63 kN.m which is higher than the torque
(35.75 kN.m) for Beam 5 with f_ = 25 MPa. This trend has
been previously noticed when the minimum value of the
torque was calculated as shown in Section 6.4, Figure 6.5.
From Table 6.3 for the triangular mode, the value of the
torque for Beam 1 is 34.99 kN.m which is less than the
torque (38.88 kN.m) for Beam 5. This trend also has been

noted when the minimum value of the torque was calculated

as shown in section 6.4, Figure 6.5.

The direction cosines 2, m and n are the direction
cosines perpendicular to the compression zone. It is clear
from Tables 6.2 and 6.3 that the values of the direction
cosines varied with the wvariation 1in the wvalue of the
coefficient k¥ used to determine the dimension of the
compression zone. The variation in the direction cosines

for the rectangular mode (a = 90°,yTab1e 6.2) is less than
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the variation for the triangular mode (a = 45°, Table 6.3).
Thié‘ variation in the direction cosines is the primary
reason for the change 1in the tensile force F, with the
increase in the value of the coefficient k, from slightly
decreasing for the rectangular mode to significantly

increasing for the triangular mode.

As mentioned before, the forces F and C must be equal,
i.e. the forces acting normal to the compression piane
must be in equilibrium if the corresponding resisting
torque is to be calculated. In Figure 6.8 for Beam 2 the
torque-alpha curve with the higher values of 1/A is not
completed as equilibrium of the forces F and C could not be

attained, i.e. the F-k and C-k curves did not intersect.

As the direction cosines are a function of the shape
of the failure surface, Equations 5.5 and 5.19, the
proposed failure surfaces for the triangular and
trapezoidal modes need to be modified so that they will
give results as reasonable as the results obtained from the
failure surfaces for rectangular modes. Although the
proposed failure surfaces with triangular and trapezoidal
compression zones which are shown in Figures 5.1
through 5.6 are a logical progression from the failure
surface of rectangular mode 1 to the failure surface of
rectangular mode 2, they do not produce results that are

reasonable, and hence will require further modification.
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For this reason, comparisons with experimental results

would at this time be,meaningless.and have not been done.

6.7 Hsu's Failure Surface

Hsu (1968a) predicted the failure surface shown in
Figure 2.4 for square cross sections and it is reproduced

in Figure 6.13,

The following equation can be obtained by considering

the equilibrium of forces acting normal to the compression

8(anfyotacfa.bq/s)
K = ///[ 40y =2 = (6.1)
. 3k £Lb%/A

The torsional moment is obtained from the equilibrium

plane

of external and internal moments as:

T = 2(l—kzk)b(anQY+asfsybl/s) (6.2)

For Beam 1 with f; = 40 MPa, Hsu's triangular mode
gives T = 52,3 kN.m which 1is higher than the torque,

T = 46.6 kN.m, given by Hsu's triangular mode for Beam 5

1

with fc

25 MPa. Thus, when the concrete strength for

otherwise identical beams is decféased, the torsional
;resistance calculated is also decreased,tr wvhich is
reasonable. However, the results calculated do not agree

with Hsu's statement that "a failure surface such as this
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Figure 6.13 Hsu's Triangular Mode
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seems to give a minimum torsional resistance for square
cross sections". The rectangular mode gives T-= 37.6 kN.m
for Beam 1 and T = 35.6 kN.m for Beam 5 (Section 6.4) which
are less than the 52.3 kN.m and 46.6 kN.m for'Beams 1l and 5

respectively calculated using Hsu's triangular mode.



CHAPTER 7

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

7.1 Summary

The behavior of reinforced concrete members subjected
to pure torsion has been studied in this investigation.
Tﬁeoretical | analyses were developed to . predict the
torsional strengths, rotations, strains and stresses at all
1evelslof load for reinforced concrete members reported in
the 1literature. Failure mechanisms were proposed and
consequently theoretical analyses were developed to predict
the torsional strengths for reinforced concrete members

under pure torsion.

7.2 Conclusions

Based on the findings of this investigation, the

following conclusions are drawn.

1. The analyses developed for skew bending
rectangular modes satisfactorily predict the
torsional behavior for symmetrically reinforced
structural concrete members subjected to pure
torsion. . |

2. The comparison of experimental and theoretical

maximum torque is excellent as the average ratio

126
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of experimental strength to theoretical strength
for 66 beams reported in the literature is 1.01
with a standard deviation of 7.8%.

For skew bending rectangular modes, the
theoretical torque-twist cufves calculated using
the equation for twist derived from compatibility
of a thin walled tube element are closer to the
corresponding experimental curves than "the
theoreticai curves calculated using the equation
for twist based on the skew bending model.

The strains 1in the 1longitudinal steel and the
strains in the stirrups at all levels of load are

satisfactorily predicted by the analysis

"developed for skew bending rectangular modes.

The softened stress-strain relationship used in
the analysis developed for skew Dbending
rectangular modes provides good predictions for
the experimental torque-twist curves.

When the value of a is taken as 909, the analysis
developed for the proposed skew 'bending
trapezoidal mode 1-2 gives a torque value equal
to the torque given by the rectangular mode 1.
Also, when the value of a is taken as 09, the
analysis developed for the proposed skew bending

trapezoidal mode 2-1 gives a torque value equal
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to the torque given by the rectangular mode 2.
When a is taken equal to the angle corresponding
to transition from trapezoidal mode 1-2 to the
triangular mode, the results given by the
trapezoidal mode 1-2 and the triangular mode are
identical ; similarly, when a is taken equal to
the angle corresponding to transition from
trapezoidal mode 2—i to the triangular mode, the
results given by the trapezoidal mode 2-1 and the
triangular mode are identical.

The special triangular mode 45-S for the square
cross section with angle a equal to 45° gives a
torque value equal to the torgue given by the
general triangular mode for this special case.
The general. triangular mode covers the range
between the last value of angle a for the
trapezoidal hode 1-2 and the 1last value of
angle a for the trapezoidal mode 2-1,.

The torqgue-alpha curve for a beam having a square
cross section with the same reinforcement on each
face has an axis of symmetry where the values of
the torque are exactly the same for the angle a
and its complementary angle. For a beam having a
rectangular‘cross section the torque- alpha curve
has no axis of symmetry.

The triangular mode with a equal to 45° gives the
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minimum torsional resistance for a lightly.
reinforced beam (Beam 1) having a square cross
section.. However, if the amount of reinforcement
is increased, the rectangular mode gives the
minimum  torsional resistance for that beam

(Beam 3). This implies that the shape of the

- failure surface is influenced by the amount of

reinforcement.

The proposed triangular mode gives the minimum
torsional resistance for a beam (Beam 2) having a
rectanguiar cross section. A failure surface
with a triangular compression zone has not been
suggested previdusly for beams having a
rectangular cross section although it has been
suggested for beams having a square Cross
section,

When the concrete strength in square and
rectangular cross sections 1is decreased, the
torsional resistance calculated by the
rectangular modes 1is also decreased whereas the
torsional resistance calculated by the triangular
mode increases. This implies that the proposed
failure surface for the tgiangular mode requires
further refinement.

For both square and rectangular cross sections,
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when the value of 1/A 1is increased (where A is
the softening coefficient > 1) 'the torsional
resistance calculated by the rectangular modes is
increased whereas the torsional resistance
calculated by the triangular mode is decreased.
Again, this implies that the proposed failure
surface for the triangular mode requires further
refinement.

Although the propoéed failure mechanisms did not
lead fo satisfactory results, they are good
pioneer steps on the rough road to solution of
the mystery of the failure surface for beams
having a square ' cross section and subjected to

pure torsion.

7.3 Recommendations

Some areas recommended for further study are:

1.

The analyses developed to predict the torsional
strengths, rotations, strains and stresses at all
levels of load for reinforced concrete members
uﬂder pure torsion should be extended to
prestressed concrete members as well.

The stress-strain curve for concrete under

combined loading requires investigation in order

to extend the analyses to reinforced and
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prestressed concrete members under such loading.

The failure mechanisms with triangular and
trapezoidal compression zones require more
investigation to satisfy equilibrium conditions,
then both equilibrium and compatibility
conditions should be satisfied as has been done

for rectangular modes.
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