THE UNIVERSITY OF CALGARY

Integrating Informal and Formal Requirements Methods:
A Practical Approach for Svstems Emploving Spatially Referenced Data
by

Alan D. Goodbrand

A THESIS
SUBMITTED TO THE FACULTY OF GRADUATE STUDIES
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

CALGARY. ALBERTA

OCTOBER. 2000

©Alan D. Goodbrand 2000

i+l

National Library Bibliothéque nationale
of Canada du Canada
Acquisitions and Acquisitions et
Bibliographic Services services bibliographiques
395 Waetlington Straet 385, rue Weilington
Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada
Your e Votre rélerence
Qur ¢ Notre réirerce
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de

reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-64954-7

Canadi

ABSTRACT

From any Requirements Specification. the intention is to develop a workable system. [t is
therefore the responsibility of the Requirements Engineer to state the requirements in such
a way as to minimize ambiguity and increase precision.

Formal methods were developed to express requirements which were not open to
interpretation (Hayes. 1987). They are best used in areas that suit expression via
mathematics (Barden et al.. 1994). Spatially referenced data seems well suited to this type
of specification due to the fact that it is represented by sets. Formal methods are best
utilized in the areas of set acquisition. manipulation. retrieval and representation (Barden et
al.. 1994).

This thesis sets out to show that 2 Requirements Specification for a system using Spatially
Referenced data can benefit in the areas of precision and reduced ambiguity with the
integration of formal methods. Changes made to the Informal Requirements as a result of

their formal specification will be used to show this.

11

TABLE OF CONTENTS

ABSTRACT 11}
TABLE OF CONTENTS v
LIST OF TABLES A1
LIST OF FIGURES VIl
CHAPTER 1 1
1.0 INTRODUCTION .o cceeereveeeciceereseesesesssassensesommensseearesaresssrsssareossseseme seerssesssersvasassesasnsesassan !
1.1 FORMAL REQUIREMENTS SPECIFICATIONSnoceecvrvervnessrerernrrssesssssasssessesresessessrassssases 1
1.2 DOMAIN BACKGROUND ..ottt eestee e eee e e ssemmessmresaessmeessmmenees seesamestmmraseeeseesnrenn 3
1.3 AIMS AND OBIECTIVES e eees e seeeeceemoeesssememeessseessme st sssmeasent cenb s ssansssssensrensnnessrnens 4
1.4 INFORMAL SPECIFICATION BACKGROUNDoeeeeeeeeeeeeeeeeeetmeersnneeesesseescasnresssnnsssssnneses 5
1.5 THESES STRUCTURE oveieeeeeeecceerrasressssemesssesessssssmsasssssssessbessrsmnemenssasassssssesssmsesssensssnssnrne 7
CHAPTER 2 8
D0 CURRENT STATE OF THE ART «eeeecceeeneiiccrrsesrssssssssisrrssssicsassssssssessassssasassanrsraesssnbsmasns 8
2.1 REQUIREMENTS ENGINEERINGooioeireirciieerceeessivensessassssssassssesssosss sessssssessesssesnsess anere 8
D P ATTAL AT A Sy ST M orctiieeeeeeeeeeeeeceeeeeoseeeeceessesessessnseesesssneesessessssrsssansessnsnsesenssssres i4
2.3 FORMAL METHODS..ccceeeeeeereereerrecraeerene eeeveeeeamsiesssebesseesesssessensesasesssnnesnsrreseesaranen 26
D S UMMARY ¢ oeeeeeeeeeeeeieerrmtseesrosssbeaas st neseemameaeesnmesaeesssssns assasssensans ssasssartssassnssnsrarsoasnsrtes 33
CHAPTER 3 37
3.0 INTEGRATING INFORMAL AND FORMAL REQUIREMENTS METHODS: A PRACTICAL
APPROACH FOR SYSTEMS EMPLOYING SPATIALLY REFERENCED DATA cvvevereerrererieeneene 37
3.1 GIVEXN SETS AND GLOBAL CONSTANTS...... et r e e s e e st mseaenae e eaeeennens 39
3 A BS T RACT ST ATES ittt ceeeeseae st ee s seeeesseseseaessesesnsssossase e ssssnresssesersesessasessssmnnes 31
3.3 INITIAL STATES oo oot eeeeereesee e e emeeeesseeeesa s smmeeesiaaansme sesemen eereerereeaaarasnas 47
3.3 ABSTRACT OPERATIONS ceeeteeetteeeeeeerrctesenseeessessassesssbesssssssasssnnsesssssansosssessmssessesssassssmnres 48
3.5 PROVING THE SPECIFICATION eeereeeeerasoeatraameetaasastessiasnnsneesennneeraresraransentes 80
3.6 REQUIREMENTS DISPOSITION ...uceeeeircnveeeireeceee e eeeesassseseessnsssensesmasseesesssasesesassessensesnas 85
3.7 S UMMARY oo et s e e e sees e o se e saseamae e esoa et st seeroe e st eeasesanbeasbaesaaseane et eeneaneren 38
CHAPTER 4 89
4.0 EVALUATION OF SPECIFICATION METHOD eeooeceeeereceeersennecssrenns reverrreannononas 89
] AN ALY SIS oot eeeecceeressseeeaasassmtosceaas st et e ameeeenmemoeasasRsasseetrseaaseasassnnsnanresranteeen ey nnnaresans 93
3.2 SEMMARY oo creeeeemmeeressessseeesssesssmsssses st mesnnenns eeeeeoeneeeeoataeeannennsas 94
CHAPTER 5 95
5.0 CONCLUSIONS ..ovenerereeeean . . 95
3.1 FUTURE WORKuevvrnen. . . 98
REFERENCES 100

APPENDIX A 102

1.0 REQUIREMENTS FOR A LAND MANAGEMENT INFORMATION SYSTEM......cocevrenrereeeerens 102
L IRFOAUCHION. ..o eeeeeeee e teeneeseva s snasrat e s s aa e naesmcaas rescennenrnbrns 102
1.2 General DeSCriDLION.cocv ittt et 104
1.3 Specific REQUITEMENLSou.ouveeemeeeeeiectiineei it s s 107

LIST OF TABLES

Table 3.1 - Requirements Disposition through Formal Methods

vl

LIST OF FIGURES

Figure 2.1 - Dataflow DIQIaMI.......ccueeecrererseercmsses st st b 11
Figure 2.2 - Entity Relationship DI@gramcceeevsevmrmremreimceecmrrinsm st 12
Figure 2.3 = Grid LAYOUL coueeeeeeeeete ettt e 17
Figure 2.4 — COTEction LIRSovvvmvrrverisnsicesccrmscmmnistress s e 19
Figure 2.5 — Section Layout................. e eereesenieseemesetstesrestesmaseaibesnesha et e e Tt b b e b e b e e e n e nnn s 21
Figure 2.6 - Mapguide SAMPE......oooouurrereee ettt 25
Figure 2.7 — Schemna Set DEfinitionscovvveeeeeirriemememsncnetn et sasnes 27
Figure 2.8 — Example Schema ... reerea oot e e 28
Figure 2.9 — Formaliser eXampleveeuveureeemmeemciien s 32
Figure 2.10 — Formaliser SYMBOIS .o.oem et 34
Figure A.1 ~ Construction ACHVILY couwvevcerevseeusen e 109
Figure A.2 — Appraisal AcUVILY ...ccoeeeveee rererereeee bt e b s ceererenenen 114
Figure A.3 — Operations ACTVILY .oveevueenrnnessisesiciisiins st n et san 116
Figure A.d —~ Land AZent ACHUVILY ..ovureerm ettt s reevereaeane 119
Figure A.5 — Legal ACHVITY oottt reeereereeearatearnranaas et s neass 121

vii

Chapter 1
1.0 Introduction

The Institute of Electrical and Electronics Engineers (IEEE) defines a requirement as
(Macaulay. 1996):
1. A condition or capacity needed by a user to solve a problem or achieve an

objective.”

12

“A condition or capability that must be met or possessed by a system or system
component to satisfy a contract. standard. specification. or other formally imposed

documents.”

LI

A documented representation of a condition or capability asin 1 or 2.7 (p 4)

This definition is correct at the very highest level of requirements gathering but what must
be remembered is that with a Requirements Specification. the intention is to develop a
workable system. Therefore it is the responsibility of the Requirements Engineer to state
the requirements in such a way as to minimize ambiguity and be as precise as possible.
The majority of system development projects that fail. do so due to insufficient
requirements specification or ambiguous specifications (Gause & Weinberg, 1989).

When specifications are written in a natural language, such as English. they tend to have
contradictions. ambiguities and omissions. The solution to this is to express specifications

formally using mathematical terminology (Schach, 1993).
1.1 Formal Requirements Specifications

Formal requirements specifications were developed in an effort to express requirements in a

precise mathematical language which was not open to interpretation (Hayes. 1987). Using

2
this method. if the Requirements Engineer expressed the requirements using mathematics
and the system developer understood that mathematics, the system that resulted would
accurately satisfy the requirements.

Formal requirements therefore resuit in a more precise system development phase than that
which would normally be obtained if the requirements were expressed in informal plain
language. Formal requirements should be used. however, only in areas that best suit
expression via mathematical constructs (Barden et al.. 1994). [t is finding that dividing line
which is most important. How can we properly integrate informal and formal requirements
acquisition methods? This question cannot be answered without first examining the data.
In other words. there is no correct answer to this question of integrating informal and
formal requirements methods. The answer depends on the type of data with which you are
dealing. This thesis chooses to deal with the aspect of integrating informal and formal
requirements acquisition methods within the context of spatially referenced data. That is.
data that is or can be represented on maps. This particular type of data seems best suited to
formal requirements due to the fact that it is best represented by sets. Formal requirements
are best utilized in the areas of set acquisition, manipuliation. retrieval and representation

(Barden et al.. 1994) and spatial data is an area that may benefit from this methed.

Ths thesis sets out a framework within which formal requirements methods can be used in
systems that utilize spatially referenced data. It's specific context is within a Land
Management Information System (LMIS) utilized within the province of Alberta, Canada
using the Dominion Land Survey system of representation. A complete informal

specification, written bv the author in his professional capacity as an Information

3
Technology consultant, is included in Appendix A of this document for just such a system.
The methods utilized within are therefore specific to that particular frame of reference.
Extrapolation of the findings of this thesis into broader areas of research and usage is

beyond its scope and can be an area for future research.

1.2 Domain Background

The province of Alberta. Canada has a predominantly energy based economy. mainly oil
and gas. The nature of these products are that they must be extracted from the ground in
place and shipped elsewhere for refinement and market. The majority of this product
transportation takes place via underground pipelines crisscrossing the province. of which
there are approximately 23.000 kilometers within Alberta alone. The owners of these
pipelines must keep track of all pertinent data with regards to each and every kilometer of
pipe that they own as well as all pertinent data in regards to the land where the pipeline
resides. To accomplish this task. the major pipeline companies each use a "Land
Management Information System" (LMIS) of one sort or another.

The nature of the data involved, plus the fact that the province of Alberta uses the
Dominion Land Survey nomenclature for land title description. makes this sort of product
highly set oriented. These sets are related by relations and functions which can be precisely
defined. It is these factors that lead the author to believe that this type of application is one

which can benefit from the use of formal requirements specification methods.

1.3 Aims and Objectives

The aim of this thesis is therefore to show that when a formal specification is incorporated

into the Requirements Specification Document for an LMIS system, the specification that

results will be of greater precision.

In order to accomplish this aim. the following objectives must be met:

1.

tJ

(9%)

Understand the current state of the art — The current state of the art for this thesis
consists of three separate areas. namely: Requirements Engineering, Spatial Data
Systems and Formal Methods. Evaluate each area separately followed by material
dealing with their integration.

Develop an informal Requirements Specification for a Land Management
[nformation System.

Develop a tormal requirements specification for systems emploving spatially
referenced data. This will be achieved by taking the informal Requirements
Specification Document developed as the second objective and then developing a
formal specification for the same system. An existing utilization of Formal
Methods for a system of this nature could not be found in the literature.

Critical analysis of the method - From the above objective. a complete specification
for an LMIS system will result. How do we know that this is a better specification
then one produced by informal methods? This objective will be met by tracking
changes to the informal specification that have taken place due to it being specified

formally. These changes to the informal specification will be the result of

discovered errors or ambiguity which were brought to light as a result of the formal

specifications.
With the completion of these objectives it is intended that the existing Software
Engineering body of knowledge will be enriched through the addition of this case study
demonstrating the applicability and practicality of Formal Methods. The formal
specification of software is not widely utilized in industry in North America due mainly to
a lack of available information and examples for the professional Requirements Engineer.
This thesis. with its aims and objectives. researches the area of the applicability and
practicality of Formal Methods in the specific context of systemns employing spatially
referenced data and sets out to aid the professional Requirements Engineer in his

continuing quest for better tools and methods.
1.4 Informal Specification Background

Appendix A of this thesis contains a complete informal specification for a Land
Management Information System. This informal specification satisfies objective 2 as
stated above and is used to develop the Formal Specification required by objective 3. It
uses a narrative format. as prescribed by the client. and approximately follows the [EEE
Guide to Software Requirements Specifications (IEEE. 1984).

The product being specified provides information about parcels of land and allows land
management activities. It must be available 24 hours a day, 7 days a week. It must provide
an on-line. visual representation of all land parcels within the province of Alberta on which

the company has an obligation. By obligation. it is meant that the company either owns the

6

land. leases the land. has a right-of-way through the land or has an obligation to the
landowner or occupant due to having other obligations on adjacent parcels of land.

The requirements for this system will be described from the perspective of the 5 user
groups, namely:

Construction — This group deals with land issues prior to construction of a pipeline
or other facility. Their function is to determine landowners and regulations pertaining to
the affected parcels of land. They must then complete all legal requirements to confirm that
construction can begin on the affected land at the required time.

Appraisals - When a right-of-way is required through a parcel of land. obligations
are incurred by the company. These obligations are usually. but not always. in the form of
monetary compensation. [t is the job of the Appraisals group to determine the value of
such compensation.

Operations — This user group deals with the day to day issues of land after
construction has been completed. This includes. completing all contractual obligations for
the ongoing use of the land. maintaining accurate information in regards to the land and
responding to all inquiries with regards to additional uses of the land.

Land Agents — Land Agents are the peopie that communicate directly with the
landowners. They gather information. resolve disputes and generally maintain a good
rapport between the landowner or occupant and the Company.

Legal — The legal departrnent ensures that all regulations and obligations between

the landowner. company and government are properly completed.

1.5 Thesis Structure

Chapter 2 describes the Current State of the Art. It consists of background material with
regards to representing spatial data in Alberta as well as a review of the current state of
Requirements Engineering with particular emphasis to spatially referenced data and the
integration of formal and informal methods. The product “Mapguide” from Autodesk. the
“Z~ specification language and the “Z” specification software “Formaliser” from Logica
UK are also described.

Chapter 3 is a complete Formal Specification for the Land Management Information
System described as an informal narrative specification in Appendix A.

Chapter 4 is an evaluation of the completed Formal Specification in Chapter 3 to determine
what it has actually accomplished. it's practicality and usefulness.

Chapter 5 concludes the thesis. It concentrates on how this research satisfied the aim and
objectives and what additional areas there are for further research.

Appendix A consists of a complete Requirements Specification Document entitied
“Requirements ftor a Land Management Information System”. This document was created
by the author of this thesis in his professional capacity as an Information Systems
consultant and is used as the basis for the creation of the Formal Specification. It uses an

informal narrative format. as prescribed by the client, and was created through interviews

with stakeholders from each of the various user groups.

Chapter 2

2.0 Current State of the Art

This chapter presents an overview of the relevant literature found available for this Thesis.
This chapter has been divided into three separate categories: Requirements Engineering,
Spatial Data Systems and Formal Methods. Each of these disciplines is mature in its own
right. but very little has been done to specifv spatial data systems formally. Formal methods
have not been emploved before in the Requirement stage of a Spatial Data project that the

author is aware of.

2.1 Requirements Engineering

The Institute of Electrical and Electronics Engineers (IEEE) defines the term requirement
as (Macaulay. 1996):
1. A condition or capacity needed by a user to solve a problem or achieve an

objective.”

!J

A condition or capability that must be met or possessed by a system or system
component to satisfy a contract. standard. specification. or other formally imposed

documents.”

Lo

A documented representation of a condition or capability asin 1 or 2.” (p 4)
Requirements Engineering can be defined as the systematic process of developing

requirements through an iterative co-operative process of analyzing the problem.

9

documenting the resulting observations and checking the accuracy of the understanding
gained (Pohl. 1993).

The intention of Requirements Engineering is therefore the eliciting and documenting of
system and stakeholder requirements for the purpose of developing a workable system. It is
theretore the responsibility of the Requirements Engineer to state the requiremnents in such
a way as to minimize ambiguity and be as precise as possible. The majority of system
development projects that fail do so due to insufficient requirements specifications or
ambiguous specifications (Gause & Weinberg, 1989).

The concepts of what a requirement is and various ways of eliciting them and documenting
them are well described in the RE literature. Various approaches. including Structured
Analysis. Joint Application Design. Soft Systems Methodology. Interactive and Group
Session approaches are well covered in the literature (Macaulay. 1996). The essential role
of the requirements phase is to ensure that the users' needs are properly understood before
designing and implementing a system to meet them (Humphrey. 1990). In all cases the end
product of the successtul Requirements Engineering process is a "Requirements
Specification Document (RSD).” (Macaulay, 1996).

The particular method used for the creation of the informal RSD section of this thesis is
that of a modified "Structured Analysis”. This method was not chosen by the author but
was at the direction of the client for whom this RSD was prepared. This technique involves
the interviewing of users and coilecting and analvzing information from various documents

(Macaulay. 1996). Dataflow Diagrams and Ennty Relationship Diagrams are two of the

10

main tools used by the Requirements Engineer practicing Structured Analysis (Buckley.
1989).

Dataflow Diagrams are used to depict data and process (Woodman. 1990). They depict how
and what data enters a process. how and what data leaves a process and the transformation
process itself. It is a simple style which has both strengths and weaknesses. Creating
Dataflow Diagrams can be learned easily and they are very easy to understand. but that
simplicity implies a lack of sophistication which can lead to a lack of expressive power and
disagreements in interpretation (Woodman. 1990). Dataflow Diagrams were originaily
introduced between 1977 and 1979 by Gane and Sarson (1979). Yourdon and Constantine
(1978) and DeMarco (1978) with each successive work building upon the work of the
other. Figure 2.1 is a small sample Dataflow Diagram which illustrates a basic process. that
of producing a simple payroll.

In this specific Dataflow Diagram. data is recorded on a Timecard by a "Time Keeping
Clerk” and flows to the "Calculate Pay’ process. The ‘Pay Calculations’ flow to the
“Prepare Paycheck™ process. As can be seen by this particular example. processes have
inputs and outputs and are designated by rectangles with rounded corners. A horizontal
line separates the process designation from its description. Sources or stores of data, be
they people or file storage. are designated by squares. The direction of data flow is shown

bv a directed line segment with the method of data flow listed along side the arrow.

Employee Pay Cakuistons

11

¥
! 2
I paymon) Emplovee
i EEEm—
Dept [mpae Recoxds
i Paycheck Copy Pavcheck Earnngs
I _—--——-1
! |
Reconciiation Tiansaction Camh Deb |
—
Paycheda Journal
_L ;
s
Reconcie
Prepare Payiol |
Summary Isummsy&?a\cheao] Summary
Payrol Summary

Paycheck

Il

_ ¥

Payol

) A P
Summary |
Fie Dutribute
| Paycheck
Paychedck

Empoyee

Figure 2.1 - Dataflow Diagram
(http://pink | .bschool.ukans.eduw/Administration/dataflow.htm)

Entity Relationship Diagrams are similar to Dataflow Diagrams in that they graphically

relay information. Whereas Dataflow Diagrams show input. process and output, ER

diagrams show relationships and information about relationships. Relationships may be one

10 one. one 0 many. many to one. many to many etc. An example is shown below as figure

22
! (DEPARTMENT PRINTER
1| # DEPARTMENT # PRINTER_QUEUE !
|| o DEPARTMENT _NAME 0 PRINTER TYPE
| 6 LOCATION =
A
f 3 o
5 &
: i :
: - *
; 9. :
; 2 &
¢
HISTORY
bpgeA Generates created by _ ﬂHlSORY_ID
B = o HISTORY |P_ADDRESS
: o CHANGE TIMESTAMP
i
E 5 X
E -]
1 g ébe
s &
3 ’ ‘
) /
-1 - K
f‘ef’ .'
& |
. |
- 1
!
HHC |
4 HHC_SERIAL . IP_ADDRESS |
0 SOFTWARE_VERSION .mayuse __ Assignedto, #1P_ADDRESS |
0 CURRENT_IP_ADDRESS 0 AREA :
o PORT |

Figure 2.2 — Entity Relationship Diagram
(httpx//www.scis.nova.edw/~hunterthyMCIS630/week04.html)

-

13

Descriptions of how to create a Requirements Specification Document using a narrative
technique are well documented (Macaulay. 1996} (Humphrey. 1990) (Buckley. 1989). The
format for this particular RSD is defined by the client for whom this project is being done.
It does. however. closely follow the IEEE Guide to Software Requirements Specifications

(IEEE. 1984) being laid out as follows:

Table of Contents
I Introduction

1.1 Purpose

1.2 Scope

1.3 Definitions. Acronyms and Abbreviations

1.4 References

1.5 Overview
2 General Description

2.1 Product Perspective

2.2 Product Functions

2.5 User Characteristics

2.4 General Constraints

2.5 Assumptions and Dependencies
3 Specific Requirements

3.1 Functional Requirements
.1.1 Functional Requirement 1
5.1.2 Functional Requirement 2
3.1.3 Functional Requirement 3

L

3.2 External Interface Requirements
3.3 Performance Requirements
3.4 Other Requirements
Appendices
In order to measure the increase in precision of the RSD with the application of formal

methods. changes to the informal requirements will be tracked and change control will be

practiced. Requirements Management. being a Kev Process Area of the Capability Maturity

14

Model (Paulk. 1993). will be managed in such a way as to establish a baseline after the
Informal Requirements have been produced following the Structured Analysis method.
Changes to the requirements as a result of the integration of formal methods will be
identified through Requirements Management and indicate a change in precision.

Most of the systems that have been specified using the Structured Analysis method do not
possess the mathematical orientation that spatiallv referenced systems do. This. and the
fact that formal methods are best used in areas of set manipulation (Barden et al.. 1994)
leads the author to believe that a Requirements Specification Document for a system
emploving spatially referenced data and the resuiting system will benefit trom the

application of formal methods.

2.2 Spatial Data Systems

Spatial data is data that is or can be displaved on maps. Within the province of Alberta.
Canada. where the University of Calgary resides. a great deal of the industry is energy
based. primarily oil and gas. These natural resources require that anyone who wants to
exploit them come to them and be involved with the land. People own land. People reside
on land. People hold rights to land. All of these things have to be accommodated when
dealing with natural resources.

Spatial data. in the context of this thesis. refers also to the attributes connected with the
land. Parcels may be of any size, anvwhere in the province. Each parcel has several

attributes associated with it: Location. size. owner. classification. rights held. resources

15

available etc. Each of these attributes must be captured. held on a database, maintained,
manipulated. inquired upon intelligently etc.

The province of Alberta is divided using the Dominion Land Survey system. a system
which was used initially in the 19th century. This system is described in detail in
"Understanding Western Canada's Dominion Land Survey System” by Robert McKercher
and Bertram Wolfe (1986). A thorough understanding of this system is required in order to
understand the specific details of the requirements as stated by the Land Engineers.

While understanding the Dominion Land Survey System emploved in Western Canada is
not a requirement to understanding the requirements gathering techniques developed.
having an understanding of the underlying conventions will assist the reader in assessing
it's viability for other projects.

Western Canada's Dominion Land Survey System. (McKercher. 1989)
Grid layout

The Western Canadian system of land description known as the Dominion Land Survey
(D.L.S.) system allows anyone to pinpoint any parcel of land as small as 4 hectares
anywhere on the dominion grid. For the purposes of this document. the system is applicable
between latitudes 49°N (the Canada U.S. border) and 60°N (the border with the NorthWest
Territories) and the first meridian at 97°2728.4"W and the coastal meridian at
122°45'39.6"W. There are 8 lines of meridian used within the system as defined below.

1. First meridian at 97°27'28.4"W longitude.

12
.

Second meridian at 102°W longitude.

. Third meridian at 106°W longitude.

Ll

4. Fourth meridian at 110°W longitude.

W

Fifth meridian at 114°W longitude.

6. Sixth meridian at 1 18°W longitude.

7. Seventh meridian at 122°W longitude.

8. Coastal meridian at 122°45'39.6"W longitude.
These meridian lines were defined in 1869 when the first Western Canada Survey was
begun. The choice of 97°2728 4"W as the first meridian was arbitrary as it defined the
western most limit of settlement up to that date. The choice of the Coastal meridian being
122°45'39.6"W. approximately 55 km west of the Seventh meridian. occurred at a later date
and was due to it's initial survey being conducted by the British Columbia provincial
government. not the Dominion government. and it being incorporated into the D.L.S. at a
later date.
Beginning at the intersection of 97°2728.4"W (the first meridian) and 49°N (the Canada
U.S. border) and proceeding towards the north-west. a grid was established using east-west
running lines called "Township lines” and north-south running lines known as "Range
lines". These lines were set at 6 miles (approximately 10km) apart (See figure 2.3).

(McKercher. 1989)

17

WINNIPEG

13T MEMDIAN 97°27'20.4"W

{ % _ }v-:

qrownse une
o

- 49N —L

gt N | N
RANGE RANGE, FANGE
3 2 2)

RANGE UINE

Figure 2.3 - Gnd Layout

This method of dividing the land into 6 miles square townships proceeded in a westerly
direction until reaching the next meridian. At that point the meridian line became the
western most boundary of the township. These townships were still 6 miles from north to
south but less than 6 miles from east to west. Commencing at the next meridian. the process
was repeated beginning with 2 new 6 x 6 mile township immediately to the west of the
meridian. This method of designation ran northwest from the intersection of each meridian

and the 49th parallel. encompassing all habitable areas of the provinces.
Complications
The township lines running east and west all run parallel following the lines of latitude. The

number of townships between the 49th parallei and the 60th parallel is therefore constant at

126. The lines of longitude however converge. [f the range lines, which run north and

18

south, then followed the lines of longitude established at 6 miles at the 49th parallel
northward, the distance between range lines would be considerably less than 6 miles at the
60th parallel. To account for this fact, the second township line was established as a
correction line as well as every fourth township line north. The southern most border of the
new townships were re-surveved at 6 miles and the range lines again followed a new line of
longitude. What resuited from this was that the townships immediately north of a correction
line had a southern boundary of 6 miles and a northern boundary of approximately 115’ (35
m) less. A township with it's northern boundary on a correction line however had a
southern boundary of 345" (105 m) less and a northemn boundary of 460’ (140 m) less than
the township immediately north of it. See figure 2.4 (McKercher. 1989) for a visual

representation of this.

49°N

z
<
A :
=
=
-
3.2.W1 31wl {=&
.
G D Clg CORRECTION
E LINE
2-2.W1 2.1.W1
1.2.W1 1-1-wl
B A

Figure 2.4 - Correction Lines

While the number of townships on a north-south line between the 49th parallel and the 60th

parallel therefore is a constant 126. the number of townships on an east-west line between

meridians varies from a maximum of 36 at the 49th parallel to a minimum of 23 at the 60th

parallel.

Subdividing Townships

Given the grid system shown above, it is possible with only 3 numbers to locate any
township in the area bordered by the 49th parallel, the 60th parallel, the first meridian and
the Alberta, British Columbia border. This set of 3 numbers is by convention expressed in
the order township, range. meridian. For example. 12-9 W4 is the legal description for
township 12 meaning the 12th township north of the 49th parallel. range 9 west of the 4th
meridian. Townships are always expressed as West of a certain meridian west of the first
meridian. The system actually does carry on east of the first meridian where the grid logic
is mirrored and townships are expressed as being east of a certain meridian. but that is
outside the scope of this thesis.

Each township is approximately 23.040 acres (9.325 hectares) in size. Each township is
therefore divided into up to 36 square sections each approximately | mile (1.6 km) on each
side. The standard 6 mile by 6 mile township therefore becomes 36 1 mile by | mile
sections. These sections number trom the south east most corner winding in a snake like

fashion until section 36 in the north-east corner (figure 2.5). (McKercher. 1989).

31132(33|34|35]|36
30 29|28 272625
19120 21 | 22|23 |24
18|17116115|14 13

718192110112

EHDER 1301 4 |
& RIS 4 P SNWANE| 1
Sle/18 S|uws718 SWTSE
321 43| 2y [
QUA%EI lE?AL QUA‘RTEI SEC%ON
OF LEGAL SUBDIVISION SECTION 1640 acres|
S%IODWISIOlN 140 acresl 140 acres}
acres,

Figure 2.5 — Section Layout

Each section is then approximately 640 acres or 260 hectares in size. The legal description
of a section can then be described with 4 numbers. The section number is always the first
number in the 4 section sequence. 20-12-9 W4 is then section 20 of township 12, range 9
west of the 4th meridian.

Sections can further be subdivided 2 ways depending on the requirements. The simplest is
to divide the section into quarter sections each labeled by their compass direction. A single
section has quarter sections SE. SW. NE. NW. SW-20-12-9 W4 is then the south-west
quarter section of section 20. township 12, range 9 west of the 4th. Each quarter section is

approximately 160 acres or 65 hectares in size.

=
If the land is to be put to use where the quarter section is too large a subdivision, then the
section can be divided into "Legal Subdivisions”. A legal subdivision is 1/16 of a section.
subdivided in the same manner as a township is divided into sections, starting from the
south-east corner and winding to the north-east comer dividing the section into 16 parcels.
Each legal subdivision is approximately 40 acres or 16 hectares. A legal subdivision can
also be quartered giving the smallest subdivision of 10 acres or 4 hectares which can be
expressed using the Dominion Land Survey System. Three numbers tell vou that vou are
dealing with a township. Four numbers tell vou that you are dealing with a section. Five
numbers tell vou that vou are dealing with a legal subdivision. SW-20-12-9 W4 is then the
south-west quarter section of section 20. township 12. range 9 west of the 4th. SW-15-20-
12-9 W4 is then the south-west quarter ot legal subdivision [5 of section 20. township 12,

range 9 west of the 4th.
Attributes of Spatially Referenced Data

Understanding the Dominion Land Survey system is paramount to understanding the
requirements of this specific project. Equally important is understanding the attributes and
characteristics of spatially referenced data and Geographic Information Systems in general.
Primary is an understanding of the two main methods for representing spatial data: Raster
and Vector. A raster data structure is made of individual cells in a two dimensional row and
column format (A.&C.E.T.. 1997). Each cell is of the same size and that size determines
the resolution of the data. It is akin to thinking of pixels on a computer screen. The second
type of spatial data representation is vector. Vector structures make use of common

geometrical figures such as points. lines and polygons to represent the spatal

23
characteristics of real world entities {A.&C.E.T.. 1997). Primitive vector structures can be
combined to make complex data representations. Using both vector or raster methods,
attribute data can be layered (Burrough. 1996). That is, data that has common
characteristics or a common theme can be grouped. stored and displayed separately. When
the spatial data is analyzed certain layers can be included or excluded depending on the
tvpe of analysis that is occurring. Either method will result in a certain amount of
interpolation due to the discrete nature of computer systems and the continuous nature of
the real world (Burrough. 1996). This discreteness is represented by layering, a
phenomenon which is contrary to reality.

Spatial Data References

Several texts deal with spatial data. "Fundamentals of Spatial Information Systems” by
Robert Laurini and Derek Thompson (1996) is especially thorough at describing the more
mathematical nature of spatial data. Several texts such as "Geographic Information
Systems" by D.R. Fraser Taylor (1991) and "Principles of Geographical Information
Systems for Land Resources Assessment” by P.A. Burrough (1996) excellently describe the
GIS system which is the primary use of spatial data. "Spatial Analysis and Spatial Policy
using Geographic [nformation Systems” by Les Worrall (1991) brings these two highly
related topics together giving several excellent examples of the types of analysis that can be
done from the spatially referenced data used in a GIS.

Requirements Specification Document for Client

The informal Requirements Specification Document (RSD) for this thesis was created as a

result of a study done in conjunction with a major Otl and Gas company in Calgary. Most

24
of the requirements elicited deal with the method of using such a system, its inputs outputs
and processes. The literature for spatial data systems was used to elicit requirements of a
more technical nature as well as assist in probing areas of requirements that could be
overlooked using strictly the users as the only source of data.

Autodesk MapGuide

The client for whom this studv was done has already purchased a product for visual
representation of their data. This is the Mapguide product from Autodesk
(http://www.autodesk.com/products/mapguide). Mapguide permits the use of both Raster
and Vector data files and provides an intelligent client system for viewing and
manipulation. It comes complete with an engine for zooming and extracting data at any
desired level. The following (figure 2.6) is a screen print trom a Mapguide application
showing data from a number of Alberta sections utilizing layered data in both raster and

vector formats.

0]
W

Figure 2.6 — Mapguide Sample

The Mapguide viewer is a stand alone application which would reside on each users
desktop. That way each user can tailor their view of the data to their own preference. The
data. however. is centrally stored. Each user. therefore. sees the same information. Data
from vector file formats includes ESRI. SHP. ESRI. ARC/INFO. Intergraph. Mapinfo.
Atlas and CSV. Raster file formats include GIF. TGA. CALS, PNG. BMP. JPEG and
TIFF. These consist of all the common file formats used by most GIS packages available

today.

2.3 Formal Methods

Formal Methods of requirements specification came into being as a result of the lack of
precision and the presence of ambiguity in a narrative requirements specifications. A
computer program should be correct. but it must be correct with respect to a specification.
Computer programs are "formal” in the fact that they operate according to formal logic and
discrete mathematics. In order to prove that a program is correct with respect to its abstract
specification one must formalize its specification (Gibbins. 1990).

"A Formal Method is a set of rigorous engineering practices which is generally based on
formal systems and which are applied to the development of engineering products such as
software or hardware" (Gibbins. 1990). They apply logic and simple mathematics to
programming (Jacky. 1997). Formal methods are by definition of a mathematical nature
and work well in representing systems which have a high set orientation (Barden et al..
1994). This is what led the author to believe that they would be applicable to the project of
specifving a Land Management Information System. Formal methods. however, are not
infallible. They cannot guarantee that software is perfect (Hall. 1990). They can in many
cases augment traditional specification methods. Only rarely can a formal method be
applied to all aspects of a system (Bowen. 1993).

Several formal specification languages exist. "A formal language is a language which has a
precise set of semantics. as opposed to natural languages (English. French, German.
Swedish) in which it is possible to construct ambiguous sentences. A formal language is
needed to support a formal method.” (Gibbons. 1990, p 1). CLEAR is a theory-oriented

specification language. OBJ is an executable specification language. VDM and “Z” are

27
both non executable formal specification languages (Gibbons, 1990). The most common
form of formal specifications is the "Z" language (Barden et al.. 1994). It is based on the
mathematical discipline of first-order logic and set theory (Diller. 1992). It is the "Z"
language which will be used to express the formal specification within this thesis.

At the heart of the "Z" specification is a notation known as the "Schema". An example of a
schema is shown in figure 2.7 (Stepney. 1995)

[VAME FILE]

__FrleSys

fsys : NAME +» FILE
optn :PNAME

open C dom fsys

Figure 2.7 — Schema Set Definitions

This particular schema is a file system specification which has a state consisting of a
mapping from file names to tile contents and the set of files open for reading. The
declaration [VAME. FILE] defines the set of all VAME"s and the set of all FILEs as basic
types in the specification. The identification at the top of the box “FileSys™ is the name of
the schema. The horizontal line divides the schema into 2 parts. The section above the line
contains the declaratives. In the case of FileSys there are 2 declarations. The first declares

the function fsys which when given a VAME returns a FILE. ie. fsystNAME) = FILE. The
second declaration open: P NAME defines the set open as the power set of VAME. That

1s. the set open can be any subset of the set of all elements of type VAME.
The area beneath the line consists of the predicate of the schema. In this case. the set open

is said to be a subset of the domain of the function fsys.

28

This particular file system has a Read operation. as shown by the name of the following
schema in figure 2.8, that takes a list of NAME's and returns a corresponding list of FILE's.
For each file. if it is open. the operation gives the actual contents. but if it's closed. or does
not exist. the operation gives an error (Stepney, 1995).

| closed doesNotExist : FILE

—Read
SFileSys
n?:seq NAME
flrseq FILE

#f1 = #n?

Yi:l..#n%e
(nl: €open= fle = fsys(n? 1))
A(n? € domfsys\ open = fls = closed)
A(n?+ g domfsys = fl1 = doesNotErest)

Figure 2.8 - Example Schema

Prior to the schema is a single declaration of 2 new sets. closed and doesNotExist of type
FILE.

Operation schemata act on previously defined elements. [n this case, the operation Read
operates on the set FileSys. The symbol = indicates that the set FileSys does not change as
a result of the Read operation. If the operation did change the set then the symbol
A would replace the = indicating a change to the set was occurring as a result of the
operation.

A question mark (“77) indicates input to an operation. In the case of the Read operation, n?

indicates the input will be a sequence of VAME's. An exclamation point (*!™) indicates

29

output. f! indicates the output will consist of a sequence of FILE’s. That completes the
declarations.

The first line of the predicate section of the Read operation states that the number of
outputs will equal the number of inputs. The second statement is a conjunction. It can be
read as follows: For every i. i ranging from 1 to the number of input VAME’s. if the NAME
input. n7i. is an element of the set open then output f1i. the result of the function fsys(n?).
This will be of type FILE as defined in the FileSys schema. If n?i is not an element of open
then check to see if n2 is an element of the set dom fsys \ open . that is. the difference
between the set dom fsvs and the set open. If that is the case. retun closed. If neither of
the first 2 predicates are satistied then check that the input 7?i is not an element of the set
dom fsvs. in which case. return doesNotExist.

Another common concept within “Z™ is that of the tuple. Sets consist of a number of
clements of the same type. Tuples. on the other hand. associate elements of any type in a
fixed order (Jacky. 1997). For example. a date is represented by 3 related elements of

different types. month. day and year.
DAY =1..31: MONTH==1..12: YEAR=2

This says DAY can be from I to 31. MONTH from I to 12 and YEAR must be an Integer.
[f we order the tuple YEAR. MONTH. DAY then the tuple (2000,01.10) represents January
10. 2000. () Parentheses distinguish tuples from sets which employ braces {} (Jacky.
1997). Order is important in tuples. (2000.01.10) is not the same tuple as (2000.10.01)
whereas {2000.01.10} and {2000.10.01} are the same set.

The tuple is first defined as a Cartesian Cross Product

DATE = YEAR X MONTH X DAY

It can be declared within an unnamed schema

| start,end : DATE

STarc
e =

(2000,0L1,11)
200C,06,02)

—~

and then utilized in future schemata.

Updates to sets are indicated in “Z™ by use of the override operator @& (Spivey. 1992).

The symbol — 1is defined within ~Z" as the “Maplet relation’. It is simply a graphical
representation of an ordered pair. x — y is therefore a graphic way of expressing (x.v)
(Spivey. 1992).

For example. we could declare the set NormalYear = {jan — 31 feb — 28.mar — 31. apr
= 30.may +— 31jun — 30jul — 3l.aug — 31.sep — 30.0ct — 31l.nov — 30,

dec = 31}. that is. a set of relations between names of months and number of days. In

order to define the set LeapYear all we would have to do is define LeapYear = NormalYear
& {feb — 29}. This would make LeapYear identical to NormalYear except for the fact

that Leaptear would have feb with 29 days whereas NormalYear would have feb with 28
(Diller. 1992).

With regards to "Z" standards. from discussions with other formal methods practitioners
(Stepney. 1998) . Spivey. (1992) is the current de facto standard. Spivey. being a major

contributor to the development of the "Z" language. describes it in detail but is more of a

3
reference text. The literature describes "Z" quite well with several worked examples.
(Bjomer. 1982). (Hayes. 1987). (Barden et al.. 1994). (Wordsworth. 1993) This thesis will
document the process involved in getting from the standard informal narrative requirements
specification to the integrated formal specification.

A good variety of "Z" literature can be found in academic circles and companies that
specialize in formal methods. One such company. Logica UK. produces a product called
"Formaliser” which is a "Z” composer and tvpe checking tool.

Formaliser allows the user to compose “Z~ schemata and include them in many types of
documents. There is continuous tvpe checking so that the user is notified of an error as it is
typed and it can be corrected immediately. The following is an actual screen layout of a test

~Z" schema included with the product for demonstration purposes.

(X2
[]

Structurliag a Yideo SEhop

| (crpted from [Barden et al %4, Clhapter 11
1€

Parent Sectioa: "zZ2 Toolkit"

O

n «video has a title,

a subject by which we can classify it,
and a certificate from the film censors.
(o]

[SUBJECT, TITLE]

CERT ::= eXempt | uCert | pg | twelve | fifteen
| eighteen

rideo
title : TITLE
subject : sSUBJECT
cert : CEAT

T

<
bve introduce given sets for names, addresses and
dates (used to record dares of birth, release dates

for films, and current dates) .
O

Cuom oy LT I W T st

Figure 2.9 - Formaliser example

Formaliser runs under Microsoft Windows 3.1. 95 and NT. Output can be saved as text
files suitable for processing by the LaTeX text formatting program or Microsoft Word or
Corel WordPerfect. As can be seen from the above figure. Formaliser provides full support
for schema notation and the full "Z" character set.

A Formaliser specification document is constructed through a mixture of structure editing
and direct text entry (Logica. 1995). This document is held within Formaliser as a
hierarchy of nodes. Nodes can represent text blocks, declarations. schemata, predicates or

any other type of fully contained “Z™ statement.

G
L

One would begin by inserting a node. It would appear in the Formaliser document as:
<Paragraph>

The next step is to instantiate that node. To do this, the type of the statement being inserted
must be known. For example. if the node was instantiated as a “schema box™. the node
would change to

—<SchemaName> [<WNord><Stroke>]
<BasicDecl>

<Predicate>

This gives the basic structure of a schema box. Notice that the one <Paragraph> node now
consists of 3 different nodes. The SchemaName node requires no further refinement but
clicking on it with the mouse allows you to type in the name of the schema. changing the

box to

—FileSys{<Word><Stroke>]
<BasicDeci>

<Predicate>

[f the "Word™ or "Stroke™ nodes are not required. clicking on them and pressing the space

bar results in

—rileSys
<Basicbhecl>

<Predicate>

In order to create the declarations, the <BasicDecl> node must be instantiated further.

Selecting the ColonDecl node type from the instantiation list changes <BasicDecl> to

34
<DecIName> : <Expression>. Clicking on <DecIName> and keying the declaration name
vields fsys : <Expression>. [nstantiating the node <Expression> as an
InFixGenericExpression vields fsys : <Expressionl> <InGen><Stroke> <Expressionl>.
Clicking on the first <Expressionl> and typing NAME. clicking on the second
<Expressionl> and typing FILE. clicking on <Stroke> and hitting the space bar vields fsys
: NAME <InGen> FILE.

Formaliser contains a complete symbol palette for all the "Z™ symbols. Clicking on

<InGen> and clicking on “Symbol Palette™ brings up the following window:

}=" Symbols H[=1E3
Keyboard shortcut:

‘ } [4 x . € - ~ v = & Y 3 3. \ r b4 ;

)} # ¢ %] c c P. wu n u n — = ° q > <

{ } . ¢ v - = = S = 3N 2 < 2 N, F
N I) - ! t { | t © £ c s o r a e

=1 n z [t} 1 4 a a a ¥ 3 & G n -} K A B v

x p o T v ¢ 4 v @

Current editor: Spatial {Z2 Grammar]

Figure 2.10 ~ Formaliser symbols

Doubleclick on the symbol —— and it will be inserted in the highlighted area of the

document resulting in the schema now looking like:

—rileSys |
fsys : NAME —— FILE

<Predicate>

Highlighting the entire declaration node and pressing the “Append Node™ command vields;

1
ys : NAME —— FILE
asicDecl>

<Predicate>

The process would then be repeated for the second declarative node. The steps of node
insertion. instantiation is repeated until the schema is complete. At that point a new node
would be inserted after the entire schema and another schema can be build in the same
manner. Formal "Z" specifications of any size can be created this way and type checking is
done “on the fly" meaning that the specification must be valid at all times. Declarations

must therefore precede operations.
2.4 Summary

This chapter has explored the relevant literature with regards to the three significant areas
of this document. namely: Requirements Engineering, Spatial Data and Formal Methods.
Each of these three disciplines is mature in its own right but their integration appears to be
unexplored as of vet.

There are many different methods of Requirements Engineering but their goal is the same,
that being to produce a specification for a svstem. The particular method being used for this
thesis is that of a modified "Structured Analysis”. This is due not to any particular fit but to
the fact that it is the method used by the client for whom this particular Requirements
Specification Document is being produced. The primary tools for "Structured Analysis" are

the Dataflow Diagram and the Entity Relationship Diagram. both of which are explored.

36
This thesis explores the Formal Specification methods for a system employing Spatially
Referenced Data. This too is an area requiring special attention. This chapter presented a
synopsis of the Dominion Land Survey system which is used in the province of Alberta,
Canada. where this study is taking place. Understanding of the DLS is paramount to
understanding the requirements. [t is the framework within which the requirements are
elicited and specified.
Basic information concerning the nature of spatial data is also presented. The difference
between Raster and Vector presentation is explored as is the nature of the "layering” of
data.
The Mapguide product is introduced as it is the preselected engine which will be used in
the development of this product.
The final section of this chapter deals with Formal Methods. The questions as to what are
Formal Methods and why are they used are answered. The "Z" language is the formal
specification language which will be used for the formal specification of this Requirements
Specification Document so it is introduced as to its notation and syntax. The product
"Formaliser". which will be used for the production of the "Z" specification. is also

described.

Chapter 3

3.0 Integrating Informal and Formal Requirements Methods; A Practical Approach
for Systems Employing Spatially Referenced Data

Appendix A of this document contains a complete informal narrative Requirements
Specification Document as presented to and accepted by a client. This chapter extends that
Document by expressing the requirements formally using the “Z™ Specification Language.
The intention of this exercise is to see if integrating Formal Specifications into the Informal
Narrative Specification results in a reduction of ambiguity and an increase in precision.
The ~Z" specification is followed by a formal proof of a schema and a table showing in
which schema each of the informal requirements is specified.
[ntroduction
The method used to develop the “Z" specifications will be based on the method descnbed
in "Z in Practice™ by Rosalind Barden. Susan Stepney and David Cooper (1994). The
resulting specification will consist of the following;
I. The given sets and global constants for the specification. together with an informal
description of their significance.
2. A schema that describes the abstract state. [f the state is complex different parts
should be determined in separate schemata. then combined using the schema
calculus.

A schema that describes the initial state of the system.

(W)

4. Schemata that describe the abstract operations on the state.

38
5. Information to assist the reader of the specification, for example a cross reference

list of schema names.

The method used consists of examining and analyzing each of the requirements from
Appendix A. in order, and determining if each requirement represents a functional or non
functional requirement. Functional requirements result in a schema specifving the
operation required to fulfill the function. If the schema is operating on data not yet
represented in an abstract state. an abstract state schema is also created representing the
data. If the schema representing the record has already been specified it is determined if all
data required to fulfill the function is specified. If it is. then the operation is specified. If it
isn’t. the new required data is added to the record schema as well as the operation schema.
Any new functions or relations are added to the ProtoDatabase schema and Database
schema. Any new files are added to the [nitDatabase schema and any new responses are
added to the list of valid responses. To satisfy the audit requirements, any new change
descriptions are added to the CHANGEDESC set. Finally text is added to describe the
schema.

Non functional requirements that either do not require or cannot be specified are described

in informal text.

39
This “Z” specification describes a Land Management Information System. It was

produced using “Formaliser” available from Logica UK Ltd.

3.1 Given Sets and Global Constants

The system controls a set of projects each having a Project Name and Start Date.

(PROJNAME, DATE]

Sets of quartersection designations and Legal Land Descriptions must be associated to an

individual project.

{QSNAME, LLD]

The following basic data types can be associated with People and Legal Land Descriptions.
[PERSON, ADDRESS, CONTACTDATA]

[n order to satisfy requirement CR8 — Provide Audit Trail, there must be an audit log which

contains user id’s. current date and time and a description of changes made.
[USERID, DATETIME]

CHANGEDESC ::= addpro] | deleteproj | modifyproj | addgtrs
| deleteqtrs | addperson | deleteperson
i addlld | deletelld | addllddesc | modllddesc
| delllddesc | addcompensation | addcontdates
| appraise | addform | modform | delform
| assignform | updatecontactdata
| addencroachment

40

Encroachments are requests made by third parties to cross or utilize and existing Right-of-
Way.

[ENCROACHMENT]

Forms are maintained by the Legal Group and are associated with Projects and LLD’s.

[FORM, FORMDETAIL, FORMPACKAGE]

Null Datatypes must be specified.

| NULLDATE : DATE

| NULLFORM : FORM

| NULLFORMS : P FORM

I NULLPACKAGE : FORMPACKAGE

| NULLPACKAGES : P FORMPACKAGE

| NULLLLDS : P LLD

| NULLQTRS : P QSNAME

| NULLPROJECT : ProjectRecord

| NULLPERSON : PersonRecord

| NULLPEOPLE : P PersonRecord

All possible responses must be specified.

Responses ::= success | notactive | notentered |
alreadvactive | alreadyentered | cannotasscciate |
notassociated | xnownperson | unknownperson | formassigned |
alreadydescribed | notdescribed | formexists |

formdoesnotexist | compensationexists | cannotassign
Response == P Responses

31
3.2 Abstract States

The following declarations define the datatypes within the systern that will be used as

records.

The LogRecord contains the userid. datetime stamp and a description of every modification

to the database.

LogRecord
loguser : USERID

logchangedt : DATETIME
lcgchange : CHANGEDESC

LLD's have several descriptive attributes which will be combined under the data type
LandDesc. These are land size. purchase price. last sold date and Canada Land Index.

LandbDesc
LandSize : N
LandPrice : N
LandScoldDate : DATE
andCLI : N

LLDRecord
lld : LLD
lldDesc : LandDesc

Quartersections can contain more than one LLD.

uarterseccionRecord
desc : QSNAME
lids : P LLD

42

A Project record consists of a Project name. a start date and a list of Quartersections

associated with that project.

ProjectRecord
name : PROJNAME
startdate : DATE
guartersections : P QSNAME

People are Landowners. Occupants or anyone required to be known to the system. They
possess an address and contact information as well as the set of forms and form packages

that person can receive.

—PerscnRecord
name : PERSON
prol ¢ PROJNAME
ild : LLD
wnere : ADDRESS
contact : CONTACTDATA
forms : P fORM
packages : P FORMPACKAGE

Forms are contained within their own set to be maintained by the Legal Group.

FormRecord
formname : FORM
formdetail : FORMDETAIL
formpackage : FORMPACKAGE

Compensations are based on the Project and the LLD.

whom and when.

43

They determine what is owed to

—CompenszticonRecord
CompProj : PRCINAME
ComplLD : LLD
CompPerson :
CompStartDatce :
CompDueDate :
lompStopDate
CompAmt : N

Encroachments are kept together keved by Project ID and LLD.

S
(@]

=)

]
[¥ I |
O

8 |

o n
[A} §
0O M
(a) w)
|
3
m L
|
rt

s |
A1)
ty

©$1 e e
=1
n

wy g

s}
0
U
O

a
W]

Tasks are a combination of Project ID and LLD.

tasks of the operations department.

They are used to determine the required

P:o; : PROJNAME
XLLD : LD

Cheques contain a persons name. address. cheque date and amount.

Zhegque
Chegname :
Chegaddr :
Chegdate :
Chegamt : N

JERSON
ADDRESS
DATE

H“

The 'ProteDatabase’ is a schema which contains the records and files associated with the
project. It contains the abstract state. the declaration that ActiveProjects are projects for
which the startdate has a valid value as well as constraints that project and person records

have unique names. Functions are contained within the 'Database’ schema.

—ProtoDatabase)
Logfile : P LogRecord
ProjectFile : P PrcociectRecord
Perscnfile : P PersonRecord
LLDFile : P LLDReccord
Quartersecticgnfile : P QuartersecticonRecord
TormFile : P TormRecord
CompensatcionTile P CompensationReccord
IncroachmentFilse : P ZIncroachmentRecord
ActiveProjects : P ProjectRecord
ActivePrciects
= X @ PrciectRecord
X € TrojectFile a x.startdate = NULLDATE
¥ X,¥ © FrojectRecord e X.name = y.name = X = Y
¥ %,y : Fersoniecord e x.name = y.name a X.ild = y.llid
=Sx='!'
I

The following function prototypes are deciared.

SvmbolDefiniticn: relation (AlreadyActive _)
SymbolBefiniticn: relation (AlreadyEntered _)
Symbolfefiniticn: relation (LLDAlreadyDescribed _)
SymbolBefinition: relation { _ XKnownPerson _ }
SymbolDefinition: relation (ZxistingForm _)
SymbolDefinition: relztion (AssignedForm _)
SvmbolDefinition: relation (AssignedPackage _)
Svmbolfefiinition: reiation (_ AlreadyAssociated _)
SympbolBefinicicn: relation { _ AlireadyDescribed _)

45

The -Database Schema contains the ‘ProtoDatabase’ as well as all the function

implementations.

—Database |
ProtoDatabase
GetDBProj : PRCJINAME — ProjectRecord
GetDBPersonbyProj : PROJNAME — PersonRecord
AlreadyActive _ : P PROJNAME
AlreadyEntered _. : P PROJNAME
LLDA.readyDescribed _ : P LLD
- XnownPerson _ : P PERSON
IxistingForm _ : P FORM
Assignedform _ : P FORM

AssignedPackage . : P FORM
— AlreadyAssociated _ : QSNAME — PROJNAME
— AlreadvDescribed _ : QSNAME — LLDC

—
‘0
LI}

t O
3
(M
0O
(t
28l

jectRecord e p.name = n) =

1 = NULLPROJECT)

© : PerscnRecord e D.prej = n) =

—
—
i LI A

v D : PersonRecord | £.proj = 4 e
GetDBPersonbyProj n = p))
A (= (2 o : PerscnRecord e p.prej = n) =

SetDBPersoncyProj n = NULLPERSON)
: PROJNAME
AlreadyActive n
= (I g : ProjectRecord | p

<L
8 |

M

ActiveProjects e
o.name = n)
1 : PROJCNAME
AlreadyEntered n
= (2 v : ProjectRecord | p
= 1)

<L

th

ProjectFile o

7 L : LLD o

LLDAlreadyDescriped 1

= (3 lr : LLDRecord | lr € LLDFile e 1r.1l1d = 1)
¥ o : PERSON; 1 : LLD e

1 XnownPerson n
= {2 p : PersonRecord |
p.name = n A o.lld

£ : FORM e

ExistingForm =

= (2 Ir : rcrmRecord | £
fr.formname = £)

Z 1 FORM

AssignedForm £

= (3 fr : FormReccrd; pr

fr ¢ FormFile a

fr.Zormname = I A £

£ : FORM

AssignedPackage =

= (z Ir : FormRecord; pr

fr € FormFile &

Zr.Zormname z
an Zr.formpackage €

n ¢ PRCINAME; g : QSNAME

I Alreadyassociated n

= (3 ¢ : Pro-ectReccra
c.name = n
A {3 gs : CSNAME |

as = q))
q L : LLD e

: PersonRecord |
pr € Personfile e
€ pr.iorms)

'g
LA

'g
[*H]
0
e
i

0
@
wn

€ Projectfile o

gs € p.gquartersecticns e

= (3 gs : QuartersecticnRecord |
gs € QuartersectionFile
gs.desc = g
A {3 11d : LLD | 1lld € gs.llds e 1ld = 1))

46

3.3 Initial States

[nitially the Database is empty.

—IinitDatabase
Database

i~

[b I L L6]

e @ O

o
'_4
|40
oo
1
= ®

o
l

(2]
I
®

"

47

3.4 Abstract Operations

Projects can be added if they are not already entered. In order to satisfy CR8 — Provide

Audit Trail. all changes to all sets require an addition to an audit log file.

Schema 1.
—AddProject
ADatabase
0? : PROJNAME
d? : DATE
dt? : DATETIME
user? : USERID
r! : Response
"Add new ZProject Re
- AlreadvEntered ©?
(3 new : ProiectRe
new.name = 2? A
A new.guarterse
- ’

: LogRec
.loguser =
A 1.logchan
A LogFile’

=

12
g g
Ny
o

Iy
m o
0.
o
0

>
ty

"Remaining

PersonFile’ =

TTAOT

r —
LLDFile =

LLDFil
QuartersectionfFil
Formrile’ =
Compensaticonfile’
Zncroachmentrils’

|53
ge

are

e
e’

-
P

ser? A l.logchangedt =
= addproj
LogFile v {1l}) A r! = {success}

essage if new croject azlready exists™

A LogFile’ = LogFile

e unchanged”

Person:;le

= QuartersectionfFile

SormFile

CompensationfFile
EncroachmentfFile

48

49

Projects can be modified (have their start date changed) if they are entered and the date to
change to is not NULL.

Schema 2.

—ChangeProject
ADatabase

©? : PROJNAME
notnulldate? : DATE
dt? : DATETIME
user? : USERID

z! : Response

new.name = old.name A new.startdate = notnulldate?
A new.gquartersecticns = cld.quartersecticns
A Projectfile’ = ProjectFile \ {old} v <new})
A (2 1 : LogRecocrd e
i.loguser = user? a l.logchangedt = dt?
A l.logchange = modifyproj
A LogFile’ = LogFile u {1}) A r! = {success}
"Produce an error message 1f project does not exist"
- AlreadyEntered p? =
ProjectfFile’ = Projectfile a LogFile’ = Logfile
A r! = {(notentered}

"Remaining Files are unchanged”
P

Parsonfile’ = PersonFile

LLDFile’ = LLDFile

QuartersectionFile’ = QuartersectionFile
TormFile’ = rormFile

CompensationFilie’ CompensationFile
EncroachmentFiile’ = EncroachmentFile

Projects can be deleted if they exist and are not active.

Schema 3.

—Deleterroject
ADatzbase

p? : PROJNAME
proj : ProjectRecord
dt? : DATETIME

user? : USERID

r! : Response

"Delete project if already entered”
AlreadvEntered p? s - AlreadyActive p?
pro] = GetDBProj o7

A Projectfile’ = ProcjectFile \ {proj}
A (3L LogRecord s

i.loguser = user? a l.logchangedc

Z.logchange = deletepraoj
ogFile’ = LogFils

.

¥7]

>

>

i A x!

~ i}

[

- AlreadyEntered p? =
Projectfile’ = ProjectFile a LogFile’
A r! = ‘notentered}

"Remaining Files are unchanged"
Personfile’ = PersonFile

ZncroachmentfFile’ = EncroachmentFile

LLDFile’ = LLDFile

QuartersectionFile’ = QuartersectionFile
FormFile’ = FormFile

Compensationfile’ = CompensationFile

LogFilie

"Produce an error message if project does not exisc”

"Produce an error message if project to deiete is active"
AlreadyActive p? =

Projectfile’ = ProjectFilie a LogFile’

A ! = {active}

Abstract Operations Schemata 1. 2 and 3 specifyv Construction Requirements 1. Projects
may now be added. modified and deleted.

Quartersections must now be associated with individual active projects if they are not
already associated.

Schema 4.

—AddQuarterSection .|
ADatabase
p? : PROJNAME
: QSNAME
: DATETIME
user? : USERID
r! : Response

"Asscciate quartersection with project if project is"
"active and gquartersection 1s not a
"Create a new gQuartersection record i:
eadyActive 2?7 A -~ q? AlreadyAssociated p? =
old,new : ProjectRecord |

old.name =
new.name = ld name
A new.startdate = old.startdate
A new.quartersect;ons
= ¢old. auar°ersections v {g
ProjectFile’ = Projectfile \ {old} u {new})
old,n : Qua:tersect'onRecord I

olc.desc = g? A old ¢ QuartersectionfFile e
new.desc = g? A new.llds = NULLLLDS
A QuartersectionFil

= QuartersectionfFile v {new})
A (3 1 : LogRecord e
.loguser = user? a i.logchangedt = dt?
i.logchange = addgtrs
LogFile’ = LogFile u {1}) A r! = {success}

" o

Al
(

X
-
3

(38 }
—

4

t

> >

"Produce error message if project is not active"

- Alre adyﬂctfve p? A q? AlreadyAssociated p? =
ProjectFile’ = ProjectFile A LogFile’ = LogFile
A r! = {notactive}

N’]

wy
9

"Produce error message 1f project is active but"”
"quartersection is already associated"
AlreadyActive ©? A g? AlrezdyAssociated p? =
ProjectFile’ = ProjectFile a LogFile’ = LogFile
A r! = {alreadyassociated}
"Produce error message if trying to associate an already"
"associated quartersection to a&n inactive project"”
- AlreadyActive p? A g? AlreadyAssociated p? =
ProjectFile’ = ProjectFile a LogFile’ = LogFile
A r! = {(notactive,alreadyassociated}

"Remaining Files are unchanged”
PersonfFile’ = PersonfFile

LLDFile’ = LLDFile

FormFile’ = rormFile
CompensationFile’ CompensationfFile
EncroachmentfFile’ = EncroachmentFile

QuarterSections can be deleted from specific projects if the project is active and the
quartersection is already associated.

Schema 3.

—DeleteQuarterfecticn !
ADatabase

p? : PROJNAME

a? : QSNAME

dc? : DATETIME

user? : USERID

r! : Response

"Delete quartersection if project is active and”
"quartersection is associated with project”
AlreadvActive p? A g? AlreadyAssociated p? =
(2 old,new : ProjectRecord |
old.name = p? A 0ld € ProjectFile es

new.name = old.name

A new.startdate = old.startdate

A new.quartersections

= old.gquartersections \ {q?}
ProjectFile’ = ProjectFile \ {0ld} u {new})
A (3 1 : LogRecord ¢
l.loguser = user? a l.logchangedt = dt?
1l.logchange = deleteqgtrs
LogFile” = LogFile u {1}) A r! = {success}

> >

"Produce error message if project is not active"

- AlreadyActive p? A gq? AlreadyAssociated p? =
ProjectFile’ = ProjectFile a LogFile’ = LogFile
A r! = {notactive}

"Produce error message if project 1is active but"

"gquartersection is not associated"

lreadvActlve p? A - g? AlreadyAssociated p? =
ProjectFile’ = ProjectFile A LegFile’ = LogFile

A r! = {notassociated}

"Produce error message if trying to delete & non”
"associatad guartersection Zrom a nen activ

- AlreadvActive p? A = g? AlreadyAssociated p
ProjectFile’ = ProjectFile A LogFile’ = L i
A ! = {notactive,notassociated}

"Remaining Files are unchanged"
PersonFile’ = PersonFile

LLDFile’ = LLDFile

QuartersectionFile’ = QuartersectionFile
FormFile’ = FormFile

CompensaticnFile’ = CompensationFile
EncroachmentFile’ = EncroachmentFile

Abstract Operation Schemata 4 & 35 specify Construction Requirements 2. Quarter

Sections can now be added and deleted from active projects.

54
The list of QuarterSections must now be sent to the Alberta Registry Office so that all
Legal Land Descriptions within those QuarterSections can be determined and added to the
project.
Given a specific project. produce a list of all associated QuarterSections.

Schema 6.

—GetQuarterSections —
=Database

p? : PROJNAME

TOLRIS! : P QSNAME

r! : Response

"Produce a list of quartersections for a project if"
"project is active"

AlreadyActive p? =

roLRIS! = (GetDBProj p?).quarcersections

ri = (success}

¥

>

"Produce an error message if the project is not active"
- AlreadvyActive p? = r! = {notactive}

The set that is retrieved from the government registry will contain all the Legal land
Descriptions and Landowner information for each QuarterSection requested. This data
must now be associated with appropriate QuarterSections.

Associated with each QuarterSection sent to the registry is returned the Legal Land
Descriptions. Landowners address and contact data. Occupants address and contact data.

land sizes. purchase prices. last sold dates and Canada Land Indexes.

35
Add the people. addresses and contact data to the People file. People may or may not be
associated with any particular LLD. There must exist the ability to delete people as well in
case of changes in ownership etc.

Schema 7.

—AddPerson
ADatabase
p? : PERSON

pr? : PROJNAME

1?2 : LLD

a? : ARDDRESS

¢? : CONTACTDATA
dt? : DATETIME
user? : USERID
r! : Response

"Add perscn iI not already known and groject is active"
-~ 1? XnownPerscn p 2
(3 new : PersonRecord

Lot

new.name = p? A NeW.proj = pr? A new.lld = 17
A new.where = a? A new.contact = ¢?
A new.forms = NULLFORMS

>

new.packages = NULLPACKAGES

A PersonfFile’ = PersonFile u {new})
A (3 1 : LogRecord =
l.loguser = user? a l.logchangedt = dt?
A l.logchange = addperson
~ LogFile’ = LogFile u {1}) A r! = {success}

"Produce error message if project is not active”
- AlreadyActive pr? a 1? XnownPerson p? =
Persconfile’ = Personfile a LogFile’ = LogFile
A ! = {notactive}

"Produce error message if person is already known"
1?7 XnownPerson p? A AlreadyActive pr? =
SersonfFile’ = PersonfFile a LogFile’ = LogFile

A r! = {knownperson}

"Produce error message if person is already known"

"and project is not active"

1? KnownPerson p? A - AlreadyActive pr? =
PersonFile’ = PersonFile A LogFile’ = LogFile
A r! = {notactive, knownperson}

"Remaining Files are unchanged”
ProjectFile’ = ProjectFile

LLDFile’ = LLDFile

QuartersectionFile’ = Quartersectionfile
FormFile’ = FTormFile

CompensationFile’ = CompensationFile
EncroachmentFile’ = EncroachmentFile

Schema 8.

—DeletePersaon \

ADatabase

o7 FERSON
pr? : PROJNAME
12 : LLD

dt? : DATETIME
user? : USERID
r! : Respanse

"Delete person i

f already known”

1? KnownPerson p? =
co

b

(3 old : PersonRecord |

old.name = p? A old.proj = pr?

A old.ild = 1 old € PersonfFile =
sonFile’ = PersonFile \ {old})

: LogRecord e

.loguser = user? a l.logchangedt = dt?
1.logchange = deleteperson

LogFile’ = LogFile u {1}) A r! = {success}

2 A
Pe

A (E

b=t by

> >

"Produce error message if person is unknown"

- 12 XnownPerscn p? =

Personfile’ = PersonFile a LogFile’ = LogFile
n r! = {unknownperson}

"Remaining Files are unchanged"

56

ProjectFile’ = ProjectFile

LLDFile’ = LLDFile

QuartersectionFile’ = QuartersectionFile
FormFile’ = FormFile

CompensationfFile’ = CompensationfFile
EncroachmentFile’ = EncroachmentcFile

Add the Legal land Descriptions to the QuarterSection file associated with the appropriate
QuarterSection. This can be done either as a result of the file returned from the government
registry or manually in the cases where the data did not exist within the registry.

Schema 9.

—AddLLDtoQuartersection
ADatzbase

g? : QSNAME

1?2 : LLD

-

LLD to Quartersection if not already described”
- g? AlreadVDescrloed 1?2 =

old,n : QuartersectionRecord |

ola.desc = g? A 0old € QuartersectionFile e
new.desc = old.desc
A new.llds = old.llds v {17}
QuartersectionFile’
= QuartersectionFile \ {old} v {new})

-

A (3 1 : LogRecord ee
l.loguser = user? a l.logchangedt = dt?
A 1.logchange = addlld
A LogFile’ = LogFile u {l}) A r! = {success}

"Produce error if already described"
q? AlreadyDescribed 17 =

QuartersectionFile’ = QuartersectionFile

A LogFile’ = LogFile a r! = {alreadydescribed}

"Remaining Files are unchanged"
Projectrile’ = ProjectFile
PersonFile’ = PersonFile

LLDFile’ = LLDFile

FormFile’ = FormFile
CompensationFile’ CompensationFile
EncroachmentFile’ = EncroachmentFile

Schema 10.

—DeletelLDfromQuarcersection 1
ADatabase

g? : QSNAME

1?2 : LLD

dt? : DATETIME

user? : USERID

r! : Response

"Delete LLD Irom guartersection i
g? AlreadyDescribed 1?2 =
(3 old,new : QuartersectionRecord |
ald.desc = a’ A old € QuartersecziconfFile e
new.desc = old.desc
A new.llds = old.llds \ {17}
QuartersectionFile’
= Quartersectionfile \ {o0ld} o <new})
1 : LogRecord
l.ioguser = user? a l.logchangedt = dt?
.logchange = deletelld
ogFile’ = LogFile uv {l}) A r! = {success}

h

ready descriped”

-+

a

>
(Y] >

L—n |_. .__

A
A

"Produce errcr message 1f guartersection is not already”
"described”

- q? AlreadyD scribed 12 =
QuartersectionFile’ = QuartersectionfFile
A LogFile’ = LogFile A r! = {notdescribed}

"Remaining riles are unchanged”
ProjectFile’ = Projectfile
PersonfFile’ PersanfFile

LLDFile’ = LLDFile
FormFile’ = FormFil
CompensationfFile’ = CompensationFile
EncroachmentFile’ = EncroachmentFile

39
At this point projects are being created and made active. QuarterSections are being

associated with those projects and Legal Land Descriptions and landowner/Occupant data

are being associated with those QuarterSections.

The Legal Land Description is now described. Full functionality of add. modify and delete
is required.

Schema 11.

—AddLandDesc 1
ADatabase
1?2 : LLD
d? : LandDesc
: DATETIME
r? : USERID
: Response

O B
RSN

o
=t
o

"Describe LLD i1f nct already described”
A

- LLDAlreadyDescribed 1
(= new : LLDRecord e«
new.lld = 17 A new.lldDesc = 1d?
A LLDFile’ = LLDFile < {new}}

A (3 1 : LogRecord e
1.loguser = user? a l.logchangedt = dt?
A l.lcgchange = addllddesc
A LogFile’ = LogFile u {1}) A r! = {success}

"Produce error message 1f LLD is already described”
LLDAlreadyDescribed 1?
LLDFile’ = LLDFile

=
an LogFile’ = LogFile
A r! = {alreadydescribed

4

"Remaining Files are unchanged”
ProjectFile’ = ZrojectFile
PersonfFile’ = Personfile
QuartersectionFile’ = QuartersectionfFile
FormFile’ = i

Compensation
Tncroachment

[o s
L2 3 L

e’ = CompensationfFile
EncroachmentFile

m
1]

60

Schema 12.

—ModLandDesc
ADatabase
1?2 : LLD
1d4? : LandDesc
dt? : DATETIME
user? : USERID
r! : Response

"Modify LLD iI already described"”
LLDAlreadylescribed 1? =
(Z old, new LLDRecord |
0ld.ild = 17 A 0ld ¢ LLDFile =
new.lld = ocid.lld A new.lldDesc = 142
A LLDFile’ = LLDFile \ {old} u {new})
LogRecor

|_~ .

11
LD
d e

[

.loguser = user? a l.lggchangedt = dt?
A~ l.logchange = modllddesc
A LogFile’ = Logfile o {13y & ol = {success}

"Produce error message 1f L

- LLDAlreadyDescribed 1? =

LLDFile’ = LLDFiie a LogFile’ = LogFile
A r' = {notdescribed}

LD is not ziready described”

o8

"Remaining Files zre unchanqed"
ProjectFile’ = Projectfile

Personfile’ = Person Fll
QuartersectionfFile’ = Quartersectionfile
rormFile’ = rform F ile

CompensacionFile’ = CompensationFile
ZncroachmentFile EncroachmentFiie

61

Schema 13.

—DellandDesc
ADatzbase
i?2 : LL
dt? : DATETIME
user? : USERID
! : Response

"Delete LLD description if already described”
LLDAlreadyDescribed 1?2 =

3 pld : LLDRecord | old.lld = 1? A gld € LLDFile
LLDFile’ = LLDFile \ {cold})
A {2 1 : LogRecord e

_..oguser = user? a l.logchangedt = dt?
A L..ogchange = delllddesc
! File o

A LogFile’ = Log {l}) A r! = isuccess}

"Broduce 2rror message 1i LLU is not descriped"
- LLDAlreacdyDescribed 1? =

LlDFlle’ = LLIFile a LogFile’ = Logfile

A r! = [notdescribed}

are unchangegd”
rojectFile

erscnfFile
le’ = Quartersectionfile
£
r

Compensationfile’ = CompensationFile
Zncroachmentfile’ = ZncroachmentFile

The Construction Group has the ability to enter Contract dates into the system either by
Project Name or Project LLD kev. First a Compensation record must be created for each

Project. LLD. Person combination.

Schema 14.

—AddCompensaticnRecord
ADatakase
? : PROJNAME
2 : LLD
rson? : PERSON
? : DATETIME
er? : USERID
: Response

"Add & new compensation record keyed by project, 114
"person i it does not exist”
(3 new : CompensationRecord &

new.CocmpProil = ©? A new.CompLLD = 17

A new.CompPerson = person?

A new ¢ CompensationfFile) =

(3 new : CcmpensationRecord o
new.CompProl = 0? A new.CompLLD = 17
A new.lcmpPersen = perscn?
A new.lompStartDate = NULLDATE
A new.lcmoluelate = NULLDATE
A new.CcmeStcplate = NULLDATE A new.CompAmt = &
A Compensaticonfiie’ = CompensationFlle o {newtl)
A (2 1 : LogRecord e
-.ioguser = user? a i.logchangedt = dt?
A l.logchange = addcompensation
A LogF:le’ = LogFile u {1l}) A ! = {success}

g

roduce an error message iI the compensation recorgd"
] :

—

tionRecord o
new.CompProj = 07 A new.CompLLD =

A new.CompPerson = person?

A new € CompensationFile) =
Compensationtile’ = CompensaticnFile

r —_

A Logril = Lcgflle A r! = {compensationexists}

bt
"

nyo -

Remaining -l.es are unchanged"
Projectfile’ = ProjectfFile

Sersonfile’ = Persénflle

LLDFile’ = LLDEile

Quartersectionfile’ = Quartersectionfile
Formbile’ = FormFile

Sncrcachmentfile’ = ZncroachmentFil

and"

Schema 15.

DA
duedate? : DAT
stoodate? : DA
dt? : DATETIME
user? : USERID
r! : Response

"Add contract dates if the project is active”
A.Lre::dy.‘-.cg_l'v 2

D
(2 old,new CompensationRecord |
mpPr

cmpProi = p? A old.ComplLLD = 17
A 0ld € Compensationfile e
new.CompProl = 9? A new.ComplLlD = 17
A new.lompPerson = old.CompPerson
A new.CcmpStartDate = startdate?
A new.lomeluelate = cduedate?
A new.CompStorlate = stopdate?
A new.ComepAmt = old.CompAmt
A CompensationfFile’
= CompensationFile \ {old} v {newj})
A (32 1 : LogRecord e
_.loguser = user? a l.logchangedt = dt?
A l.logchange = addcontdates
A LogFile’ = LegFile u {1};) A r! = {success)
"Zroduce an =rrcr message 1 the prcject is not active"
- AlreadyActive p? =
CompensationFile’ = CompensationFile
A LogFile’ = Logfile A r! = {notactive}
"Remaining Files are unchanged”
Projectfile’ = ProjectFile
Personfile’ = Personfile
ZIDFiie’ = LLLCFile

TormFile’ =

L
Quartersection
Encroachmentri

Schema 16.

"Droduce &n error message
- AlreadyActive p? =
Compensationfile Compensationrile

A LogFile’ LogFile a {notactive}

r

[

"Remaining Files are unchanged”
ProjectFile’ = Projectfilie

Personfile’ = FersonfFile

L1LDFile’ = LLDFile

Quartersect*o nfFile’ = QuartersectionFile
rormFile’ = FormFile

Encroachmencgfile’ = EncroachmentfFile

—EnterContractDatesEnMass 1
ADatabase
p? : PROJNAME
startdate? : DATE
duedate? : DATE
stopdate? : DATE
dt? : DATETIME
user? : USERID
r! : Response
"Update all compensation records for this project if the”
"project i1s active”
AlreadyActive p? =
CompensationfFile’
= Compensationfile
\ { old : CompensationReccrd |
2ld.CompProl = ©? A old € CompensationfFile }
v + new : CompensationRecord |
v old : CcocmpensationRecord |
cia.CompProi: = ¢? A old € Compensaticenfile
new.CcmpProj = ©?
A new.CompLlD = cld.CompLLZ
A new.CompPerson = old.CompPerson
A NEW. Comnsba- Date = startdate?
A new.Compluelate = duedate?
A new.CompStopDate = stopdate?
A new.CompAmt = old.CompAmt }
A (3 1 : LogRecord e
_.loguser = user? a l.logchangedt = dt?
A l.logchange = addcontdates
A LogFile’ = LogFiie v {1}) A r! = {success}

is not active”

65
At this point in the project. all QuarterSections are known and all available data connected
with them is known and entered into the system.
This completes the formal specification for the first series of tasks for the Construction
Group. Their next task is to inform the Appraisal Group of the new project so they can

determine fair compensation for each landowner/Occupant for the project.

Appraisals are for each LLD for each project. A particular LLD may have several contracts
associated with it depending on how many projects run through that particular piece of

property. Appraisals are therefore keyed by Project and LLD.

Schema 17.

—AppraisebylLLD

ADatzbase

p? : PROJNAME
1?2 : LLD
appraisal? : N
dt? : DATETIME
user? : UJSERID
r! : Response

the
the
advActive p? =

old, new : CompensationRecord
old.CompPrcj = p? A old.CompLLD
A S1d ¢ CompensationFile o

B
LD if oroject is active"
re
3

new.Comp?rol = 07 a new.ComplLLD = 17
A new.lompPerscen = old.CompPerscon
2 new.CcmpStartlate = cold.CompStartl

A new.Compbuel
A new.CompStep
new.CompaAmt =

ate = old.CompdueDate
nlate = old.CompStopDat
apora15a1°

a» CompensationfFile’
= CompensationFile \ {old} v {new
A (2

: LogRecord e
.loguser = user? a 1i.
1.logchange = appraise

LogFile’ = LogFile u {1l})

'ﬂ. }-

lcgchangedt

> >

P

"Produce an error message if
- AlreadyActive p? =
Compensat:icnFile’ = CompensationFile

A LogFile’ = LogFile a r! {notactive}

the project

"Qemaining are unchanged”
Projectfile roiectriie

PersonFile’ = PersonfFile

LLDFile’ = LLDFile

QuartersectionfFile’ = QuartersectionFile
Formfile’ = TormFile
IncroachmentfFile’ =

Tiles
r

1]
49]

Encr

achmentFile

compensation record with a new apprais

e

})

= dt?

isuccess}

1s not active"

66

Schema 18.

—AppraiseEnMass 1
ADatabase
p? : PROJNAME
appraisal? : N
dc? : DATETIME
user? : USERID
r! : Response

"Modify all compensation records Ifor a project with a”
"new appraisal if the project is active
readyActive
Comoensat on
= Ccmpensat
v 4 old

I

[|
-~

O()Q(‘)Ol—“U
M

'U -
'-«l
Y

R

ensationRecord |
.CompProi = p? & ¢ld € CompensationFile !
cmpensationRecord |
: CompensationRecord |
old.CompProj = p?
A 0ld € CompensaticnFile e
new.CompPro; = 07
A new.CompLlD = old.CompLLD
A new.CompPerson = old.CompP
A new.CompStartDate
= old.CompStartbDate
A new.CompDueDate = old.CompDueDate
A new.CompStopDate = cold.CompStopDate
A new.CompAmt = appraisal? }
: LogRecord e

om

—

Q
w ¢ NEew @
kg

Q.

(=]

erson

>
Ly

[B

.loguser = user? a l.logchangedt = dt?
A l.logchange = appraise
an LogfFile’ = LogFile u {l}) a ! = {success}

"Droduce an errcr message 1if the project is not active”
- AlreadyActive p? =
Compensationfrile’ = CompensationfFile
A LogFile’ = LogFile a r! = {notactive}
"Remaining Files are unchanged”
ProjectFile’ = ProjectFile
PersonFile’ = PersonFile
LLDFile’ = LLDFile
QuartersectionfFile’ = QuartersectionfFile
T 1 File

File’ = EncroachmentFile

68

This completes the specification for the appraisal process. LLD’s can now be appraised by

project either individually or en masse.

The Appraisal Group then informs the Construction Group that the appraisals are complete.

The Construction Group informs the Legal Group that a new project requires legal forms.

It is one of the tasks of the Legal Group 10 maintain the set of available forms.

Forms consist of a form name and details as stored within the Forms database. Forms may

be added. changed or deleted.

Schema 19.

69

—AddForm

ADatabase

TORM
FORMDETAIL
FORMPACKAGE
DATETIME

USERID

Response

g

0
(XV]

L T TR o 1
.

)

e}
=W 'O Q.

)

1 r?

o4
M

8]

"add Form if it does not exist"
- ExistingForm £f? =
(3 new FormRecord e

new. formname £2 new.formdetail
new.formpackage fp?
ormFile’ = rFormFile u {new})
LogRecord e
.loguser user? A
L.logchange dd
LogFile’ = i

[#Y]

-
-

A

>

iy >
.

(BRI 5}

1.logchangedt
orm

-

~0g

C

- =
[=3 L
File

&

"Produce error message if

ExistingForm £? =
FormFile’ = FormFile A LogFile’

{formexists}

A r!

"Remaining Files are unchanged"
ProjectFile’ = ProjectFile
Personfile’ = PersonFile
LLDFile’ = LLDFile

= QuartersectionfFile
CompensationFile
EncroachmentFile

QuartersectionFile”
CompensaticnFile’
zncroachmencfFile’

dt?

15uccess;

form already exists"

LogFile

Schema 20.

—MaintainfForm

ADatabase

: FORM

: FORMDETAIL

TORMPACKAGE
: DATETIME

user? : USERID

ri : Response

'

?

Fh My Iy
t g
LIS I TS]

.

o}

"Maintain form if it exists"
ExistingForm £? =
(3 old,new : FormRecord !
old.formname = £? A old € FormFile
new.formname = £? A new.formdetail = f£d?
A new.fcrmpackage fp?
TormFile’ = rormfFile u {new})
: LogRecord e
lcguser = user? A l.logchangedt = dt?
L.logchange = modform
LogFiie’ = LogFile u {1}) A r! = {success:;

1) >
[
]

.

> >

"Produce error message if form to maintain does not exist"
-~ ExistiangForm £? =

FormFile’ = FormFile A LogFile’ = LogFile

an r! = {formdoesnotexist}

"Remaining Files are unchanged"”
r

ProjectFile’ = ProjectFile
Personfile’ = Personfile
'

LLDFile’ = LLDFile

QuartersectionFile’ = QuartersectionFile
CompensationfFile’ CompensationFile
EncreoachmentfFile’ EncroachmentFile

70

In order for a form to be deleted, it cannot be currently in use within any project.

Schema 21.

—DeleteForm 1
ADatabase

£? : FORM

dt? : DATETIME

user? : USERID

r! : Response

"Delete form if it exists and it or its package is not"
"assigned anywhere"
ExistingForm £? A - AssignedForm £?
A -~ AssignedPackage £? =

(2 old : FormRecord |

old.formname = £? A old € FormFile

ormFile’ = FormFile \ {old})
LogRecord e

ul

Ly

>
— ey

[

.loguser = user? a l.logchangedt = dt?
A l.logchange = delform
A LogFile’ = LogFile v {1}) A r! = {success}

"exist"

- ExistingfForm £f? =
FormFile’ = FormFile a LogFile’ = LogFile

A r! = {formdoesnotexist}

"Produce an error message if the form to delete exists"
"but 1s currently being used"

FormFile’ = FormFile A LogFile’ = LogFile
n r! = {formassigned}

"Remaining Files are unchanged”
ProjectFile’ = ProjectFile

PersonfFile’ = PersonFile

LLDFile’ = LLDFile

QuartersectionFile’ = QuartersectionFile
CompensationFilef = CompensationFile
EncroachmentFile’ = EncroachmentFile

"Produce an error message if the form to delete does not"

ExistingForm £? a (AssignedForm f£? v AssignedPackage) 7=

71

72
Forms that are maintained by the Legal Group can be assigned to a specific Project/LLD

combination. These can be changed at any time by the Legal Group.

Schema 22.

—AssignFormbyLLD 1
ADatabase
: PROJNAME
1d? : LLD
2 : FORM
fp? : FORMPACKAGE
: DATETIME
user? : USERID
r! : Response

[19

"Assign the form to an LLD i
"exist"

the form and project bozh"

AlreadyActive p? A ExistingForm £? =
Personfile’ = PersonfFile
V¢ 2ld : PersonRecord |
gld.proj = 2 A 0ld.1lld = 11d? & oid = PersonFile }

v { new : PersonRecord |
v old : PersonRecord |

old.proj = p? A old.lld = 1lld?

A 0ld € PersonFile e

new.name = old.name A new.proj = p?
new.lld = 11d?
new.where = old.where
new.contact = old.contact
new.forms = old.forms u {£?}

A new.packages = old.packages u {ip?} }
LogRecord ee

.loguser = user? a l.logchangedt = dt?
1.logchange = assignform
LogFile’ = LogFile u {1l}) A r! = {success}

> > > >

>

—_

ty
=

A
A

"Produce an error message if the project is not active"
- AlreadyActive p? A ExistingForm £? =

PersonFile’ = PersonFile a LogFile’ = LogFile

A r! = {notactive}

"Produce an error message if the form does not exist"

AlreadyActive p? A -~ ExistingForm £? =
PersonFile’ = PersonFile A LogFile’ = LogFile
A r! = {formdoesnotexist}

"Produce an error message 1f the project i1s not active"
"and the form does not exist"
AlreadyActive p? a -~ ExistingForm £? =

PersonFile’ = PersonFile A LogFile’ = LogFile

A r! = {notactive, formdoesnotexist}

"Remaining Files are unchanged"”
ProjectFile’ = ProjectFile

LLDFile’ = LLDFile

QuarcersecticgnfFile’ = QuartersectionFile

TormFile’ = FormFile
CompensaticnFile’ = Compensationfile
EncroachmentFile’ = Encroachmentfile

Forms can also be assigned to persons not associated with a project. These can be pre
created forms or custom forms.

Schema 23.

—AssignrormpyPerson

1
ADatabase

pr? : PERSCN

1?2 : LLD

£? : FORM

fp? : FCRMPACKAGE

dt? : DATETIME

user? : USERID

r! : Response

"Assign a form to a person if the person and form both"

"exist"
1? XnownPerscn pr? a ExistingForm f? =
Persenfile’ = PersonFile \

1
{ 0ld : PersonRecord |old.name = pr? a old € PersonFile }
v { new : PersonRecord |
v old : PersonRecord |
old.name = pr? A old € PersonfFlile o

74

new.name = Pr? A new.proj = old.proj
new.lld = oid.lld A new.where = old.where
new.cantact = old.contact

new.forms = old.forms v {£7}

new.packages = old.packages o {fp?} }

: LogRecord e

> > > >

>
(Y7}
H

1.loguser = user? a l.logchangedt = dt?
a~ l.logchange = assignform
A LogFile’ = LogFile v {l1}) A r! = {success}

"Produce an error message if the person does not exist”
- 1? KnownPerson pr? A ExistingForm £? =

PersonfFile’ = PersonFile a LogFile’ = LogFile
A r! = {unknownperson}

"Produce an error message if the form does not exist”
1? KnownPerson pr? a -~ ExistingForm £? =

Personrile’ = PersonFile a LogFile’ LogFile

A r! = {formdcesnotexisth

"Broduce an error message if the person is unknown"
"and the form does not exist”
-~ 1? KnownPersen pr? a -~ ExisctingForm £? =
PersonFile’ = PersonfFile a LogFile’ = LogFile
A r! = {unknownperson, formdoesnotexist}

"Remaining Files are unchanged"
ProjectFile’ = ProjectfFile

LLDFile’ = LLDFile

QuartersectionFile’ = QuartersectionFile
FormFile’ = FormFile

CompensationFile’
EncroachmentFile’

CompensationFile
EncroachmentFile

1

J

At this point the Legal Group has designated ail documentation that has to be completed for
this project. The Construction Group is then informed of task completion and they must

then carry out the obligations.

75

Construction Group obligations at this point consist of printing all required documentation.
Contact data is retrieved from the set of People and is inserted into the forms as required.

Schema 24.

—Decerminelocumentation
=Database

? : PROJNAME
ToPrinter! : P FORM
: Response

"Determine documentation if the project 1s active"
AlreadyActive p? =

ToPrinter! = (GetDBPersonbyProi p?).forms

A ! = {success}

"Produce an error message Lf the project is not active"
- AlreadvActive p? = r! = {notactive}

|

All required documentation for the project is printed. This is then given to the Land Agents
for distribution.
The Land Agents require access to all contact information in order to deliver the
documentation.

Scherna 23.

—GetContactData
=ZDatabase

: PERSON

: LLD
ontactlata! : P CONTACTDATA
! : Response

(X% IR |

1y Cr =g

"GCet contact dat
1? XnownPerson p
Contac:tData!
= { contact : CONTACTCATA !
¥ pr : PersconRecord |
pr.name = p? A pr € PersonFile

&

a2 for land agent if person is known"
7 =

contact = pr.contact } a r!

—

? KnownPerson p? = r!

{success}

"Produce error message if person 1s unknown"
1 ! = {unknownperson}

J

76

The Land Agent has a requirement to update the Contact Data with the results of the

contact made with the recipient of the documents. Included in the contact data is an

acknowledgment of the delivery of required decumentation.

Schema 26.

—UpdateContaczData

ADatabase

pr? : PROJNAME
1?2 : LLD

: PERSCN

cd? : CONTACTDATA
dt? : DATETIME
user? : USERID

r! : Response

Ity

"Update che contact data
"a known perscn”
1?7 XncwnPerson p? =

(3 old,new : PersonRecord |

A
A new.Zorms = old.forms

A new.packages = gld.packages
T4t

A (2 1 : LogRecord

A LogFile’ = LogFile u <1}) A

- 12 XnownPerscn p? =

FormFile’ = FormFile

cld.name = 0? A old.proj = pr?

A cld.lld = 12 A old £ PersonFile e
new.name = 9? A New.proj = pr? a new.l
new.where = old.where a new.contact

fersontlile’ = PersonFile u {new})

l.loguser = user? a l.logchangedt
A _.-ogchcnq = updatecontactdata

rom the iand agent 1I this

1ld = 172
= cd?

dc?

r! = {success}

DersonFile’ = PersonFile a LogFile’ = LogFile
A r! = lunknownpersont

"Remzining Files are ncnanqea

Projectfile’ = Projectli

LLDFile’ = LLDFile

Quar;ersect onFile’ = QuartersectionFile

"Produce an error message iI this I1s an unknown person"

77

CompensationFile’ Compensationfile
Zncroachmentfile’ = Encroachmentfile

At this point control of the project is ready to be handed over 1o the Operations Group.

One of the tasks of the Operations Group is to pay amounts due to people 1o whom the
company has a contractual obligation. [n order to accomplish this task they must be
informed of all obligation 30 days before they are due.

Schema 27.

—DetermineTasks

ZDatabase

ThirtyDaysfromNcw : DATE

ToDe! : P Task

r! Jesponse

"Determine tasks Ior next thirty days”
Tobao!

= { Task ¥ cr : CompensationRecord |

cr.CompbDueDate
= ThirtyDaysFromNow e

r! = isuccess}

On the day that the task is due. write a cheque to each eligible recipient. After the cheque

has been written. update the due date for that compensation to one vear from today.

Schema 28.

vsFromToday

0 M 17
0 0‘ 25}

onse

O G oty g

O g v m ry
RO O
H o o)k

-0
a

'™
o |
(8
1]
a}

-
v cr : Compensatil

[OIN{:}
m =
= 1 D

L B Sl

O

0
rt

~

Chequestc
A Cheques

= ¢r.C
A Chegues

A (2 pr o

omoDuePa
new : Compens
v old : C

: BATE

cmToday : DATE
P Cheque

{ ChegquestoPrint : Chegue |

onRecord | cr.CompDueDate = today?

Print.Chegamt = cr.CompAmt
toPrint.Chegname

ompPerson

toPrint.Chegdate

cr.CcmpDueDarte

PersonRecord |

name = cr.CompPerson
sonfile e

.Chegaddr = pr.where)
lonFile

rda |

te = today? A old € CompensationF
ationRecord |

ompensationRecord |

(@]
l O
A

cld.CompDueDate = today?

A QO

1d ¢ CompensationFile e

new.CompProj = cld.CompProij

A new.C
A new.C
A new.C
= ol

A new.C
= On
new.C
new.C
e’ = Prcie
! erson

> >

[{ I

h']
~ - t:'
[

O
“l r-r) [2¥]
rB

chmentfile’ =
{success}

ompLLlD = olid.CompLLD

ompPerson = old.CompPerson
ompStartDate

d.CompStartDate

ompDuelate

eYearfromToday

ompStopDate = old.CompStcpDate
ompAmt = old.CompAmt }

ctFile

File

= QuartersectionFile

EncreoachmentFile

\
»

ile

'r

78

Record encroachments that are received for any specific project.

Schema 29.

—addEncroachment 9
ADatabase

2 : ENCROACHMENT
1id? : LLD

? : PROJNAME

"Add encroachment to &n active project"

L.loguser = user? a l.logchangedt = dt?
..logchange = addencroachment

ogFile’ = LogFile v {1}) A r! = {success?

A

"Produce error message if project is not active"
-~ AlreadyActive p? =

ZncroachmentfFile’ = Zncroachmentf:le

A LogFile’ = LogFile A z! = {notactive}

<

5
-
-

LG

ng Files are unchanged”
‘e’ = ProjectFile
ersonfile
Quartersection Quartersecticnfile
rormfile’ =

CompensationFile’ = CompensationFile

AlreadyActive p? =
(3 new : SncroachmentRecord e
new.ZncProi = 0? A new.EnclLD = 11d?
A new.IZncroachment = e?
A new.zZncStartDate = startdate?
A new.zncStopDate = stopdate?
A ETncroachmenctfile’ = EncroachmentFile u (new})
A (3] LogRecord e

79

80

Encroachments are registered with the Provincial Government by sending them to the

Provincial Registry.

Schema 30.
—RegisterEncroachments —
=Database

oGov! : P ENCROACEMENT
r! : Response

"Register encroachments with the government for active”
"oroiects"
Alreadvactive p? =
ToGov! = « n : ENCRCACHMENT |
=

7 er : EpncroachmentRecord |
er.ZncProj = p? e
n = er.Zncrcachment } A r! = {success}
"Produce srror message I project is net aciive"
- AlreadyiActive p? = r! = {notactive}

3.5 Proving the specification

Proving a specification is not intended to prove that the specification properly represents
the informal requirements. That is impossible to do. It is intended to verify that the Formal
Specification is correct within itself (Barden et al.. 1994). That is to say. it is “internally
consistent”. The value of determining the fact that the Formal Specification is internally
consistent is that it is the Formal Specification that will be used to design the application,
not the informal narrative specification. A Formal Specification that is internally consistent
1s one that can be constructed. Proving a specification is a very laborious and expensive

undertaking (Barden et al.. 1994) and a complete proof of this Formal Specification is

81

bevond the scope of this thesis although there is evidence that conducting an extensive
proof is more effective at finding errors than extensive testing (King. 2000). One proof will
be included to demonstrate the technique. The technique is as demonstrated in Bergmann
et al (1980). Several rules will be used.

The first will be that of "Assumption™. Assumptions are true statements given as part of
the theorem being proven. They are stated at the beginning of each level of scope with the
proof following.

A “Tautology™ is simply a statement that is always true. It differs from an assumption in
that it will usually consist of a disjunction of opposites. Something will be true or its
opposite will be true.

Conjunction Elimination “a-Elimination™ removes terms from a conjunctive statement.
Conjunction Elimination. Simplification. Equality and Rewrite steps are all intended to
simplifv the proof by removing unused information. changing the order of information
without altering its meaning or renaming information to names used later on in the proof.
The statements associated with these rules is logically equivalent to the statements from
which they were derived.

An “Implication™ is a relationship between two propositions in which the second is the
logical consequence of the first. If it is true that “If A then B” and A is true, then B can be
derived..

The technique of “Constructive Dilemma™ is used to complete the proof. Constructive
Dilemma tells us that if we have 2 separate assumptions in a disjunction and both

assumptions logically imply a third statement that that statement can be taken as true.

The Schema that will be proved is Schema 4 — AddQuarterSection. It will show that when
the AddQuarterSection operation is executed adding QuarterSection QS to Project PN, the
result will be the relation QS AlreadvAssociated PN.

Proof

Prove that adding Quartersection QS to Project PN results in a state of Quartersection QS
being AlreadyAssociated with Project PN.

PN = Project Name

QS = LLD of quartersection being added

Now = Current datetime stamp

Userid = User id of user pertorming operation

Response = Response from abstract operation

Theorem (AddQuartersection PN QS Now Userid Response =

QS AlreadyAssociated PN)

1. AddQuartersection PN QS Now Userid Response Assumption
2 QS AlreadyAssociated PN v Tautology
- @S AlreadyAssociated PN

3. QS AlreadyAssociated PN Assumption
(AddQuartersection’s
precondition fails)

4. (Z p : ProjectRecord | p € ProjectFile o Definition of

p.name = PN AlreadyAssociated
A (3 gs : QSNAME | gs € p.quartersections e
qs=QS))

3. - QS AlreadyAssociated PN Assumption

(AddQuartersection’s

. precondition passes)

(3 old.new : ProjectRecord | 1.5. Definition of
old.name =p? A old € ProjectFile « AddQuartersection
new.name = old.name
A new.startdate = old.startdate
A new.quartersections = old.quartersections u {q?}

n ProjectFile’ =ProjectFile \ {old} u {new})
A {3 old.new : QuartersectionRecord |
olddesc=q? A old ¢ QuartersectionFile e
new.desc =q? a new.llds=NULLLLDS
A QuartersectionFile’ = QuartersectionFile v {new})

A (31 : LogRecord e

Lloguser = user? A llogchangedt = dt?

l.logchange = addqtrs

A LogFile’ =LogFile ¢ <1}) a r! = {success}

>

)

old.new : ProjectRecord ! 6. n~Elimination
old.name =p? A old & ProjectFile «

new.name = old.name

A new.startdate = old.startdate

A new.quartersections = old.quartersections v {q?}

A ProjectFile’ = ProjectFile . ‘old} < ‘new})

(31}

old.new : ProjectRecord 7. A-Elimination
old.name =p? a old ¢ ProjectFile «

new.name = old.name

A new.quartersections = old.quartersections v {q2}

A ProjectFile’ =ProjectFile \ ‘old} v {new})

LAY}

old.new : ProjectRecord ! 8. Equality
old ¢ ProjectFile o

new.name = p?

A new.quartersections = old.quartersections v {q?}

A ProjectFile’ = ProjectFile \ {old} u {new})

Ll

old.new : ProjectRecord 9. Simplification
old € ProjectFile »

new.name = p?

A new.quartersections = old.quartersections v {Q?}

A new ¢ ProjectFile’)

—
Y]

old.new : ProjectRecord | 10. Simplification
old € ProjectFile o

new.name = p?

A g? € new.quartersections

A new ¢ ProjectFile’)

14.

tn

16.

17.

18.

1

(3

L

new : ProjectRecord |
new.name = p?

A Q7 £ new.quartersections
n new € ProjectFile’)

new : ProjectRecord |
new € ProjectFile’ o
new.name = p?

A q? € new.quartersections

new : ProjectRecord |
new € ProjectFile o
new.name = p?

A G2 € new.quartersections)

new : ProjectRecord |
new < ProjectFile e
new.name = PN

A QS € new.quartersections)

p : ProjectRecord |
p < ProjectFile «
p.name = PN

QS ¢ p.quartersections

QS ¢ p.quartersections

(2 gs : QSNAME | gs € p.quartersections e

Qs

(2

(3

A

(3 p

(3 gs :

gs=QS))

€ p.quartersections =>

qs : QSNAME | gs € p.quartersections e

s=QS))

p : ProjectRecord | p € ProjectFile

p.name = PN

gs=QS))

: ProjectRecord | p € ProjectFile «

p.name =n

A (3 @gs :

qs=q))

QS AlreadyAssociated PN

QSNAME | gs € p.quartersections e

11, Simplification,

removal of “old™

2. Reorder

13. Rewrite
“ProjectFile " ™/
“ProjectFile”

14, Rewrite
~p?"/PN. ~q7/QS

15. Rewrite
“new /" p”

Assumption

17. 3 Introduction

[7-18. Implication
Introduction

16.19. Implication

QSNAME | gs e p.quartersections e

2.3-4.5-20
Constructive
Dilemma

21, Definition of
AlreadyAssociated

34

85

23. AddQuanersection PN QS Now Userid Response = 1-22. Implication
QS AlreadyAssociated PN

QED
3.6 Requirements Disposition

Each of the narrative requirements from the Requirements Specification Document in
Appendix A is listed in the matrix that follows (Table 3.1). Next to the requirement is the
disposition of that requirement. That can be either: N/A if the requirement could not be or
was not intended to be expressed formally. or the Schema designation from this chapter.

Table 3.1 - Requirements Disposition through Formal Methods

| Requirements from Narrative RSD ; Disposition

1 ‘
General Requirement 1 — Ease of Use { NJA
General Requirement 2 - Y2K Compliant ‘ N/A
General Requirement 3 - Secure N/A
Construction Requirement 1 — Add Project Schema 1,2,3
Construction Requirement 2 — Assign Quartersections Schema 4,5
Construction Requirement 3 — Assign Subdivisions Schema 9
Construction Requirement 4 - Receive landowners Schema 6
Construction Requirement 5 — Parse LRIS List N/A

t Construction Requirement 6 — Record Land Data Schema 7
Construction Requirement 7 — Manually enter land data Schema i1

86

Construction Requirement 8 — Provide Audit Trail All
Construction Requirement 9 — Notify Appraisals N/A
Construction Requirement 10 — Notify Construction Group N/A
Construction Requirement 11 — Select Forms Schema 24
Construction Requirement 12 - Package Forms Schema 22,23
i Construction Requirement 13 — Designate Recipients Schema 23
é Construction Requirement 14 — Enter Data en-mass Schema 16
. Construction Requirement 15 — Notify Operations Group N/A
; Appraisal Requirement 1 ~ Notify Appraisals N/A 1
‘ Appraisal Requirement 2 — Access to Data N/A

- Appraisal Requirement 3 — Assign Compensation

Schema 17,18

i Appraisal Requirement 4 — Mass Update Schema 18 WI
Appraisal Requirement 5 — Notify Requesting Group N/A
Operations Requirement 1 — Retrieve Obligations Schema 27
Operations Requirement 2 — Get Obligation Data N/A
Operations Requirement 3 — Update Landowner Data Schema 7,8

i Operations Requirement 4 — Notify Appraisal Group N/A

: Operations Requirement 5 — Print Documentation Schema 24

| Operations Requirement 6 — Record Encroachment Requests Schema 29
Operations Requirement 7 —~ Create Custom Forms Schema 19,20,21
Operations Requirement 8 — Register Encroachments Schema 30

L

87

Land Agent Requirement 1 — Access Contact Data Schema 25
Land Agent Requirement 2 — Access from Remote Locations N/A

Land Agent Requirement 3 — Record New Contact Data Schema 26
Land Agent Requirement 4 — Acknowledge Documentation Schema 26
Legal Requirement 1 ~ Notification of Project N/A

Legal Requirement 2 — Access to Government Data N/A

Legal Requirement 3 — Designate Documentation Schema 22,23
Legal Requirement 4 — Direct Documentation Schema 22
Legal Requirement 5 — Third Party Documentation Schema 23
Legal Requirement 6 — Maintain Document List Schema 19
Legal Requirement 7 — Package Documentation ; Schema 19 ‘

Legal Requirement 8 — Create Templates

Schema 19,20,21 \

Legal Requirement 9 — Determine Data Source for Templates Schema 19
External Interface requirement 1 — Windows NT 4.0 N/A
External Interface requirement 2 — Seamless Access to LMIS N/A
External Interface requirement 3 — Access to Autodesk Mapguide | N/A
External Interface requirement 4 — Seemless Access to StrataWeb | N/A
External Interface requirement 5 — StrataWeb Data N/A
Performance requirement 1 — Response Time N/A

38

3.7 Summary

This chapter formally specified, using the “Z" formal specification language. the informal
requirements for a Land Management Information System as found in Appendix A. In the
next chapter. this formal specification will be compared to the informal specification to
determine if areas of ambiguity or lack of precision were discovered in the informal

specification as a result of the formal specification.

&9

Chapter 4

4.0 Evaluation of Specification Method

This chapter presents an evaluation of the Requirements Specification Document created
through the integration of Informal and Formal Specification Methods. In particular. it
seeks to discover errors or ambiguity in the informal requirements document found in
Appendix A as a result of specifying the informal requirements formally using the “Z~

formal specification language.

Did the creation of a formal “Z" Specification using Formaliser resuit in errors or
omissions being detected in the informal narrative Requirements Specification Document?
This can only be determined by a re-examination of the Requirements Specification
Document in Appendix A and comparing it with the Formal Specification from Chapter 3.

Not all requirements from Appendix A could. or should be. specified formally. A formal
specification is not intended to replace a narrative RSD but to compliment it where best

suited. (Barden, 1994).

Requirements CR1 - Add Project

Requirement CR1 states — “When the Construction Group is notified that a new project is
being considered. they must be able to designate a name and number for that project. All
relevant project information can be obtained using that unique identification.”

This is the only reference to creating a set of projects. The ambiguity and lack of precision

in this statement is not readily apparent. The “Z” specification details ail the operations

90

that would be required to properly carry out this function including Add. Modify and
Delete and all error conditions. This is specified in Schema 1, AddProject, Schema 2,
ChangeProject and Schema 3. DeleteProject. It is precise and unambiguous. A better
rewording of Requirement CR-1 would be;

CR1 - When the Construction Group is notified that a new project is being considered,
they must be able to add that new project identification and description to the set of
projects if it has not been already entered. This function must also allow modification of
existing project names and deletion of an existing project prior to it being assigned a valid
start date. A project will be considered active once a valid start date has been assigned to

it.

Requirement CR3 — Assign Subdivisions

Requirement CR3 deals with the providing of a list of quartersections to the Alberta
Government in order to retrieve a list of landowner data. No method of retrieving that list
is given. The requirement could be satisfied by simply giving the user a free format screen
on which a list of quartersections could be typed. which would be unsatisfactory. The “Z~
specification, Schema 6. GetQuarterSections. shows how the Project ID must be entered in
order to retrieve the data . A more precise stating of that requirement would be:

CR3 - The system must include a function through which the user may select or enter a
project ID and have returned a list of all associated quartersections in a format that can be

passed to the Alberta Government Land Registry Information System for processing.

91

Requirement CR7 — Manually enter land data

Requirement CR7 deals with the manual entry of landowner/occupant data as it becomes
available. Can this data be modified if it currently exists? Schema 12, ModLandDesc of
the “Z" specification says ves. the narrative RSD is ambiguous. CR?7 is better reworded as
follows:

CR7 - Vot all required information is returned via the provincial LRIS. A function must
exist which allows the user 1o create, modify or delete required quartersection attribute

data.

Requirement CR8 - Provide Audit Trail
CRS8 states that an audit trail is required. but for which functions? This is clearly shown in

the “Z" specification as all schemata that modify data create an appropriate Log Record.

Requirement CR14 — Enter Data en-mass

CR14 deals with entering contract data per landowner. [t is not clear that the key to this
data is Project-LLD and that Add. Modify and Delete functions are required. This is
clearly stated in the “Z" specification as Schema 16. EnterContractDatesEnMass. CR14 is
better reworded as follows:

CR14 - The Construction Group must be able to enter. update and delete contract start
dates. contract terms and end dates for each landowner. either individually or en-mass.
Individual data must be referenced by Project Name and LLD whereas en-mass updates

must be able to be done by Project Name only.

Requirement AR4 — Mass Update

AR4 does not mention that the key for appraisal amounts is Project-LLD. This is clearly
defined in Schema 18. AppraiseEnMass. A more precise requirement would state:

AR4 - Entering an amount per hectare and selecting the affected LLD's from a list of all

LLD’s associated with the selected project shall update appraisal amounts for all parcels.

Requirement OR1 — Retrieve Obligations

Requirement OR1 does not state what data is required for it’s report. This is only
determined in Schema 27. DetermineTasks. ORI is better reworded as follows:

ORI - It is one of the tasks of the Operations Group to satisfy contractual obligations.
They must therefore have a list of all Project names and LLD's on a daily basis for which

contractual obligations are due within the next 30 calendar days.

Requirement OR4 — Notify Appraisal Group

OR4 states that the Operations Group must have the ability to notify the Appraisal group
when a new appraisal is required. [t is not clear as to what data is to be passed. They must
be notifted with Project ID and LLD. This is clear from the data returned by Schema 27.
DetermineTasks. OR4 should be reworded as follows:

OR4 — The Operations Group must have the ability to notify the Appraisal Group at
contract renewal time of any Project Name, LLD combinations for which a revised
appraisal is required. They must also have the ability to be notified by the Appraisal

Group when the appraisal is complete and updated.

4.1 Analysis

The informal narrative Requirement Specification in Appendix A has 50 documented
requirements. As a result of the Formal Specification of these requiremenis using “Z”, 8,
or 16%. of the requirements were modified.

Requirement CR1 is both incomplete and ambiguous. It does not specify all required
functionality to complete the requirement.

Requirement CR3 is incomplete in that it does not specify the data required to complete the
task.

Requirement CR7 sufferes from ambiguity in that as it is originally informaily stated it
leaves room for interpretation.

Requirement CR8 dealt with the requirement for an audit trail. [t is incomplete in that it
does not state under what circumstances an audit trail is required.

Requirement CR14 is both incomplete and ambiguous in that it does not state what
functionality is required and leaves open to interpretation what information is required to
complete it.

Requirement AR4 1s incomplete in that it does not state under what circumstances changes
may be made to the database.

Requirement OR1 is incomplete in that it does not state what information is required.
Requirement OR4 is also incomplete in that it does not state what information is required to
complete the requirement.

It was believed by the client that the narrative Requirements Specification Document was

complete. accurate and unambiguous. It was the intention of that client to construct a

94

system using the informal Requirement Specification as the description of the requirements
for this new system. Its Formal Specification using “Z” has shown that there would have
been questions raised or assumptions made during the project’s development. Delays
would have resulted for several reasons. In cases of incompleteness. the person developing
the design from the informal Requirement Specification would have had to returned to the
Requirements Engineer in order to get clarification as to what was actually required. In
cases of ambiguity. the designer would either have returned to the Requirements Engineer
for clarification or made assumptions as to what was required. If assumptions were made
in the design phase which did not satisfy the client. extensive and expensive development
could take place which would be unacceptable to the client. Expensive rework could then
result. Delays would have resulted in later phases ot the project in order to resoive these

ambiguous situations.
4.2 Summary

Chapter 4 examined the informal Requirements Specification Document found in Appendix
A to v and discover ambiguity. incompleteness and lack of precision. It accomplished
this through a comparison of the requirements in Appendix A with their Formal
Specification from Chapter 3. Eight examples of ambiguity and incompleteness were

discovered and documented.

95
Chapter 5

5.0 Conclusions

Did an increase in precision and a decrease in ambiguity take place within the

Requirements Specification Document with the introduction of Formal Methods?

In order to draw conclusions. the aim and objectives as stated in Chapter | must be
examined as to whether they were achieved or not. From Chapter 1. the aim of this
document was “to show that when a formal specification is incorporated into the
Requirements Specification Document for an LMIS system. the specification that results
will be of greater precision”. Chapter 4 determined that the Requirements Specification
Document for an LMIS system found in Appendix A did suffer from a lack of precision
and that the Requirements Engineer could decrease that lack of precision through an
examination of a Formal Specification of those requirements.

Objective | was to understand the current state of the art. This was divided into three
distinct disciplines. namely: Requirements Engineering. Spatial Data systems and Formal
Methods. This was accomplished in Chapter 2. The subject of Requirements Engineering
is extensive and the current state of the art was taken within the context of creating an
informal narrative style Requirements Specification Document. An understanding of
Spatial Data systems was also taken within the context of creating an Requirements
Specification Document for a Land Management Information Svstem within the Oil and

Gas industry in the province of Alberta. Canada. Understanding Formal Methods was

96

achieved by developing the ability to create “Z" specification using the Formaliser
application purchased from Logica UK Ltd.

Objective 2 was to develop an informal narrative RSD for a Land Management Information
System. This objective was clearly satisfied as Appendix A of this document as this was a
reduced Requirements Specification Document as accepted for the client for whom this
project was developed.

Objective 3 was to develop a method of integrating informal and formal requirements
methods for systems employing spatially referenced data. This was the main abjective of
this thesis. developing a tormal specification for the system as defined through the informal
Requirements Specification Document from Appendix A. Chapter 3 is the Formal
Specification of that system. The narrative text interspersed with the ~Z" code integrates
the two torms of specification. It should also be noted that by using the “Z" specification
product “Formaliser™. not only was the benefit of specifving the requirements formally
shown but the benefit of specifically using “Z" through the rigor of this particular
specification product.

Objective 4 is a critical examination of the combined results of Chapter 3 and Appendix A.
This is accomplished as Chapter 4. Chapter 4 shows that the creation of the formal
specification and the application of the precise specifications against the informal
Requirements Specification Document resulted in changes to 8 of 50 requirements.

The Requirements Specification Document as specified in Appendix A was as accepted by
the client for whom this project was being developed. The fact that this was accepted

showed that no ambiguity or lack of precision was initially evident. The client felt that

97

Appendix A properly defined the requirements for the svstem they desired. The creation of
the Formal ~Z" Specification identified ambiguity and lack or precision not initially
evident. Since the cost of correcting errors increases with the stage in which they're
discovered (Gause & Weinberg. 1989), this thesis shows that by utilizing Formal Methods.
errors and omissions can be discovered earlier in the system development process and
therefore will result in a more accurate. cheaper and faster system development.

There is a tradeoff in that extensive time is spent in the creation of the Formal
Specification. [t could extend the Requirements phase of a project by many months. For
this particular project. the time spent creating the formal specification was approximately

equal to the time spent in creation of the informal requirements document.

There is also evidence that constructing a complete proof of a specification can tind

additional errors (King. 2000). Only a single proot was included in this thesis whereas a

complete proof of the entire specification would increase the cost and time spent in the

Requirements phase substantially. [t is beyond the scope of this thesis to determine if there

is a threshold beyond which the cost to find errors is greater than finding them in

subsequent development or testing phases.

In conclusion. this thesis began in Chapter 1 with a clearly stated aim and 4 related

objectives. [n each of the subsequent chapters. that aim and each of the objectives were

successfullv satisfied and can be summarized as follows:

“The integration of Informal and Formal requirements methods for systems employing

spatially referenced data can result in a Requirements Specification Document that is less

98

ambiguous and more precise than a Requirements Specification Document constructed

using informal methods alone™.
5.1 Future Work

The fact that the cost and time to correct errors increases with the amount of time they are
undetected. combined with the fact that the integration of Formal Methods into the
Requirements Specification phase of this project resulted in a decrease in ambiguity, an
increase in precision and a more complete specification. lends credence to the ascertain that
Formal Methods are a valuable tool in the Requirements Elicitation phase. Companies that
are involved with determining a project’'s requirements would be well advised to
investigate utilizing Formal Methods in an effort 1o improve this phase and shorten the
overall length of a project. This ignores any etfort that may be involved in the learning and
application of Formal Methods. Future work would be required to determine if the effort
required to integrate Informal and Formal Methods offsets the gains in the increases in
precision and reduction of ambiguity.

This thesis deals with a specific form of project. that being. one employing spatially
referenced data. Owing to the set oriented nature of spatial data. do the conclusions
determined in this thesis apply equally to projects with non spatially referenced data?
Similar work has been done with other types of projects but to what extent can the
conclusions be applied generally?

It should also be noted that although the system specified emploved spatially referenced
data. the svstem was also highly record oriented. Did the applicability of the Formal

Specifications to this system arnse due to the record orientation or the spatially referenced

99

data orientation? This specification was completed using the “Z" formal specification
language. Is this particular formal language well suited to record orientation? Repeating
this specification using another formal language. such as ZEST or VDM would indicate the
effectiveness of the chosen language.

This specification was completed using the product “Formaliser”. In order to show
whether or not the specification was influenced by the rigors of using this particular
product. the specification should also be repeated using another Formal Specification editor
and type checker.

In creating the Formal Specification found in Chapter 3. certain decisions had 10 be made
concerning the design and architecture of the svstem. This fact also indicates that Formal
Specifications may be equally useful. if not more so. in other phases. particularly the design
phase of a project. An excellent opportunity wouid present itself to research this area if the

system specified within this thesis were to be eventually constructed.

100

References

Architectural & Civil Engineering Technologies."GIS Technology”, Southem Alberta
Institute of Technology, 1997

Barden. Rosalind & Stepney. Susan & Cooper. David."Z in Practice". Prentice Hall. 1994
Bergmann. M. & Moor. J. & Nelson. J.."The Logic Book™”. Random House. 1980

Bjomer. Dines & Jones. Cliff B.." Formal Specification & Software Development”. Prentice
Hall. 1982

Bowen. J. P. & Hinchey. M. G.."Seven more myths of formal methods?". IEEE Inc.. 1995
Buckley. F.J.."Implementing Software Engineering Practices". Wiley and Sons. 1989

Burrough. P.A.." Principles of Geographical Information Systems for Land Resources
Assessment”. Clarendon Press. Oxford. 1996

DeMarco. T.."Structured Analysis and System Specifications”. Yourdon Press. 1978
Diller. Antoni.."An Introduction to Formal Methods". Wiley and Sons. 1992

Gane. C. & Sarson. T.."Structured Systems Analysis: Tools and Techniques”. Prentice Hall.
1979

Gause. Donald C. & Weinberg. Gerald M.." Exploring Requirements - Quality before
Design". Dorset House Publishing, 1989.

Gibbins. P.."What are formal methods?". Buttersworth. 1990

Hall. Anthony.."Seven myths of formal methods?". [EEE Inc., 1990

Haves. lan."Specification Case Studies". Prentice Hall, 1987.

Humphrey. W. S.." Managing the Software Process". Addison-Wesley, 1990.
[EEE."IEEE Guide to Software Requirements Specifications". IEEE Inc.. 1984
Jacky. Jonathan."the way of Z". Cambridge. 1997

King. S. & Hammond. J. & Chapman. R. & Prvor, "Is Proof More Cost-Effective Than
Testing?". IEEE Transactions on Software Engineering, August. 2000

101

Launni. Robert & Thompson, Derek," Fundamentals of Spatial Information Systems".
Academic Press, 1996

Logica UK."Z Specific Formaliser User Guide", Logica. 1995
Macaulay. Linda A.."Requirements Engineering”. Springer-Verlag, 1996.

McKercher. Robert B. & Wolfe. Bertram." Understanding Western Canada's Dominion
Land Survey System”. University Extension Press. University of Saskatchewan. 1986.

Paulk, Mark C. et al.."Key Practices of the Capability Maturity Model". SE] Technical
Publications. 1993.

Pohl. K."The three dimensions of Requirements Engineering - Fifth International
Conference on Advanced Information Systems Engineering”. Springer-Verlag, 1993

Schach. Stephen R.."Software Engineering”. Irwin. 1993.

Spivey. J. M.."The Z Notation: A Reference Manual - 2nd Edition”. Prentice Hall. 1992.
Stepney. Susan.”Testing as Abstraction”. Logica UK Ltd.. 1995

Stepney. Susan.” Personal Communications”. 1998

Taylor. Fraser."Geographic Information Systems". Pergamon Press. 1991

Woodman. M.." Yourdon dataflow diagrams: a tool for disciplined requirements analysis"
Buttersworth. 1990

Wordsworth. J. B.."Software Development with Z". Addison-Wesley. 1993.

Worrall. Les."Spatial Analysis and Spatial Policy using Geographic information Systems".
Belhaven Press. 1991

Yourdon. E. & Constantine. L.."Structured Design: Fundamentals of a Discipline of
Computer Program and Systems Design". Yourdon Press. 1978

102
Appendix A

1.0 Requirements for a Land Management Information System

This appendix contains a complete narrative specification for a Land Management
Information System. This Requirements Specification Document is as accepted by the

client and is going to be used to develop the system described within.

1.1 Introduction

1.1.1 Purpose
The following is a Requirements Specification Document (RSD) for a system to manage
the Land Information requirements for 2 major Alberta. Canada. Oil and Gas system. [t
will be described using a narrative format as prescribed by the client and will
approximately follow the [EEE Guide to Software Requirements Specifications (IEEE.

1984). This Requirements Specification Document is as accepted by the client.

1.1.2 Scope
This RSD will describe the required functionality for a Land Management Information
System (LMIS). The requirements for this system will be described from the perspective of
the 5 user groups. namely:
Construction — This group deals with land issues prior to construction of a pipeline

or other facility. Their function is to determine [andowners and regulations pertaining to

103

the affected parcels of land. They must then complete all legal requirements to confirm that
construction can begin on the affected land at the required time.

Appraisals — When a right-of-way is required through a parcel of land, obligations
are incurred by the company. These obligations are usually, but not always. in the form of
monetary compensation. [t is the job of the Appraisals group to determine the value of
such compensation.

Operations — This user group deals with the day to day issues of land after
construction has been completed. This includes. completing all contractual obligations for
the ongoing use of the land. maintaining accurate information in regards to the land and
responding to all inquiries with regards to additional uses of the land.

Land Agents — Land Agents are the people that communicate directly with the
landowners. They gather information. resolve disputes and generally maintain a good
rapport between the landowner or occupant and the Company.

Legal — The legal department ensures that all regulations and obligations between

the landowner. company and government are properly completed.

1.1.3 Definitions, Acronyms and Abbreviations

CLI - Canada Land Index — A numeric value used to designate what a particular
parcel of land can be used for.
LLD - Legal Land Description — The description of a parcel of land as registered

with the government of Alberta Land Registry Information System.

104

LMIS - Land Management Information System — A system used to maintain
information about land including landowners, occupants, uses. regulations and obligations.

LRIS - Land Registry Information System — A computer application operated by
the government of Alberta to provide land registry data to the public.

RSD - Requirements Specification Document — A document describing the
requirements for a system in sufficient detail that the actual system can be designed and

constructed from the document.

1.2 General Description

1.2.1 Product Perspective
This product provides information about parcels of land and allows land management
activities. It must be available 24 hours a day. 7 days a week. [t must provide an on-line.
visual representation of all land parcels within the province of Alberta on which the
company has an obligation. By obligation. it is meant that the company either owns the
land. leases the land. has a right-of-way through the land or has an obligation to the

landowner or occupant due to having other obligations on adjacent parcels of land.

1.2.2 Product Functions
Product functions are subdivided by the 5 different user groups. This section provides an
overview of the functions of each of the groups.
Construction - It is the function of the Construction Group to determine the

affected legal descriptions for any parcel of land for any new construction project. Once

105

the legal descriptions for all affected parcels have been determined, the Construction Group
must then determine all legal obligations that the company has towards any landowners,
occupants, municipal governments and the provincial government. This is done in
conjunction with the Legal Department. Once obligations have been determined, the
Construction Group notifies the Appraisal Group of the affected parcels who determine fair
compensation for any encumbrances. This information is given to the Land Agents who
visit the Landowners or Occupants. explain the nature of the new project and attempt to
obtain written legal consent.

Once consent has been given. all legal documents must be registered with the government
and all pertinent data entered into the system.

Appraisals — [t is the function of the Appraisals Group to determine fair
compensation for the right to have a right-of-way on a persons land. This can be done at
construction time for a new project. during arbitration for a disputed claim or when a
contract comes up for renewal. The Appraisals Group must be able to determine. through
the system. the affected parcels. all data in regards to a particular parcel that would affect
its value and be able to update the system with the new data.

Operations — The primary function of the Operations Group is to fulfill the
company obligations to the landowner. occupant or other affected party. This includes
payment of compensation as detailed in the contract, notification to the landowner or
occupant of any new work to take place and renegotiation of the contract upon expiry. The

Operations Group must also maintain up to date landowner and occupant data.

106

Usually a single parcel can have several rights-of-way. It is also the function of the
Operations group to work with other companies in negotiating and granting permissions for
one right-of-way to cross or encroach on another.

Land Agents — Land Agents are the main communication vehicle between the
Company and the Landowner and/or Occupant. They use the system to obtain contact
information and to store contact history. They deliver legal documentation which is output
from the system. and maintain status information on the different landowners. occupants or
any other affected party.

Legal — All legal documentation such as contracts. caveats. rights-of-way
agreements etc. are output from the system. The Legal Department determines which
documents are applicable to which specific situation. They must therefore be able to
maintain all potential documents within the system and specify which ones are to be used in

each instance. This must be on-line and immediate.

1.2. User Characteristics
Each of the 3 different user groups has unique characteristics and so will be listed here
separately.

Construction — The Construction Group work in the office. not in the field. The
system must. therefore. be available on their desktops. in their offices with local access to
printers. External access must be available to the Alberta Government online registry
svstem for acquiring current land title data and electronic submission and filing of legal

documentation.

107

Appraisals — The Appraisal Group function in much the same way as the
Construction Group. They require the same access as the Construction Group plus
additional access to topographical information. government agricultural databases.
including the Canada Land Index. and current real estate information.

Land Agents - Land Agents work both in the office and in the field. They require
on-line access from both locations as they must keep accurate and extensive field notes.
They must have up to date access to all contact information as well as contact history,

Legal — The Legal Department requires on-line office access only. Their tunction
is to maintain legal documentation and determine which documentation is appropriate in
any given situation. Since they do not file or register forms directly. they do not require on-
line access to any external government databases. Government regulations are currently
communicated by mail but enhancements to the system to allow email of new policies and

circulars by the government should be anticipated.

1.3 Specific Requirements

1.3.1 Functional Requirements
Functional requirements will be divided into 6 categories. The first category will be
general in that they will be requirements which are appropriate to all users. They are user
independent. The remaining 5 sections will consist of the requirements for each specific
user group.
1.3.1.1 General Functional Requirements

1.3.1.1.1 General Requirement 1 — Ease of Use

108

GR1 - The system must be easy to use. There are manual methods to accomplish almost
all functions which will be incorporated into this system and the system must be easier to
use then the manual methods in order to realize the benefits.
1.3.1.1.2 General Requirement 2 — Y2K Compliant
GR2 ~ The system must be Year 2000 compliant. Even if the system is not delivered until
after the vear 2000 it will contain historical data. 4 digit vears are required for all dates.
1.3.1.1.3 General Requirement 3 - Secure
GR3 - The system must be secure. All users are required to have a user id and password in
order to gain access. Access to each of the different functions is to be individually
controlled. There is to be a single security administrator function which will control

aCCESss.

a9

1.3.1.2 Construction Functional Requirements

The following Activity Chart shows the Construction function of this LMIS system.

Receive
notification of
new project.

]

A 4
Assign designation
and description to
new project.

v

Determine all
quarter sections in

project. \
Manual \ /
i

Retrieve and enter
all landowner &
occupant data.

Alberta LRIS

{

A 4
Determine proper
compensation from
Appraisals

i

h 4
Determine legal
obligations from
Legal.

|

A 4
Carry out initial
legal obligations.

v
Notify Operations
group.

Figure A.1 - Construction Activity

110

1.3.1.2.1 Construction Requirement 1 — Add Project
CR1 - When the Construction Group is notified that a new project is being considered they
must be able to designate 2 name and number for that project. All relevant project
information can be obtained using that unique identification.

1.3.1.2.2 Construction Requirement 2 — Assign Quartersections
CR2 - All projects are associated with a parcel or parcels of land. From construction
drawings prepared by the Engineering department. the Construction Group can determine
all affected quarter sections. They must have the ability to create a list associating all
affected quarter sections with the project. Affected quarter sections may be land on which
construction will actually take place or land adjacent to the construction that contains a
Right-of-Way.

1.3.1.2.3 Construction Requirement 3 — Assign Subdivisions
CR3 - The construction department must have the ability to determine all legal
subdivisions within all affected quarter sections. This is accomplished by providing the
Alberta Land Registry Office with a list of the affected quarter sections. This list is given
electronically through the Land Registry Information System (LRIS), which is a system
operated by the Alberta Government for use by the pubiic.

1.3.1.2.4 Construction Requirement 4 — Receive landowners
CR4 -~ The LRIS system retumns a list of alfl legal descriptions and landowners within all
requested quarter sections. This list is electronic and can be received either by mailed
diskette or email.

1.3.1.2.5 Construction Requirement 5 — Parse LRIS List

L1

CRS - The system must provide for the ability to parse the returned LRIS list and record all
legal land description and landowner information for all affected quarter sections.
1.3.1.2.6 Construction Requirement 6 - Record Land Data
CR6 — The system must provide for the capability to record the following data for each
legal land description affected:
Legal Land Description (LLD)
Project Identification
Landowner Name
Landowner Address
Landowner contact information
Phone (Home. Business. Fax. Cellular)
Email
Occupant (if other than landowner)
Occupant Address
Occupant contact information
Phone (Home. Business. Fax, Cellular)
Email
Total land area in Hectares
Canada Land Index (showing land usage)
Date land last sold
Last selling price

1.3.1.2.7 Construction Requirement 7 —~ Manually enter land data

112

CR7 - Not all of the above information is always on the LRIS report. A facility must exist
to allow the Construction agent the ability to manually enter data as it becomes available.

1.3.1.2.8 Construction Requirement 8 — Provide Audit Trail
CR8 - An Audit trail must be provided so that the agent who entered the information can
be determined as well as the date and time it was recorded.

1.3.1.2.9 Construction Requirement 9 — Notify Appraisals
CR9 - When the construction agent has determined that all affected LLD’s have been
determined. as well as all landowners. he/she must be able to electronically pass the list to
the Appraisal Group for determination of fair compensation. This list must contain all
affected LLD’s. all landowners and a detailed description of the project. including a link to
the Engineering drawings if possible. The appraiser will enter the suggested compensation
associated with the LLD and Project Id.

1.3.1.2.10 Construction Requirement 10 — Notify Construction Group
CRIQO - Once the appraiser has determined and updated the data with suggested
compensation. the construction agent must be electronically notified that this task is
complete and that they can proceed with their next task.

1.3.1.2.11 Construction Requirement 11 — Select Forms
CR11 - The Construction agents and the Legal Department must have the ability to select
from a list of legal forms which form(s) is to be sent to a specific landowner or occupant.

1.3.1.2.12 Construction Requirement 12 — Package Forms

113

CR12 - These forms must be able to be grouped into “packages” so that if a list of multiple
forms is always sent for a specific project type then the package can be selected for creation
as opposed to multiple individual forms.

1.3.1.2.13 Construction Requirement 13 — Designate Landowners
CR13- The Construction Group and/or Legal Department must have the ability to
designate non landowners or occupants to be the recipient of documentation. For example.
local governments. municipal governments. Provincial government. Royal Canadian
Mounted Police and local newspapers.

1.3.1.2.14 Construction Requirement 14 — Enter Data en-mass.
CR14 - The Construction Group must be able to enter contract start dates. contract terms
and end dates for each landowner either individually or en-mass. Usually all contracts for a
given project have the same start and end dates but if a specific landowner seeks arbitration
then that particular contract can have different dates and terms.

1.3.1.2.15 Construction Requirement 15 — Notify Operations Group
CR13 ~ A method for the Construction Group must exist so that they can declare a project

ready for construction and can pass it to the Operations Group.

114

1.3.1.3 Appraisal Functional Requirements

The following Activity Chart shows the Appraisal function of this LMIS system.

| Receive request for
appraisal from

Construction or
Operations group.

| ‘

| Examine sources of cost

If information:

. - Existing contracts for

|

|

|

|

|

|

|

this or neighbouring
. parcels.
i - Market value.
- Purchase price.
i - Land use (CLD)
. - Extent of work being
. done.

v
Determine fair
compensation
using above data.

|

*I
| Update system
with compensation

data.

Notify requesting
group of appraisal
completion.

Figure A.2 — Appraisal Activity

[s

1.3.1.3.1 Appraisal Requirement 1 — Notify Appraisals
ARI - A method must exist to allow the Construction Group or Operations Group to
inform the Appraisal Group that an appraisal is required. This appraisal can be requested at
the beginning of a new construction project or at the renewal of an existing contract for a
completed project.

1.3.1.3.2 Appraisal Requirement 2 — Access to Data
AR2 - The appraiser must have ready access to all the information entered by the
construction agent. Land size. Right-of-Way width, project particulars and land use. ali
contribute to the final amount of compensation determined by the appraiser.

1.3.1.3.3 Appraisal Requirement 3 — Assign Compensation
AR3 - The appraiser must be able to associate a compensation amount with a particular
LLD and project. Multiple projects may be on the same parcel of land.

1.3.1.3.4 Appraisal Requirement 4 — Mass Update
AR4 — Usually most parcels within a specific township will receive the same amount of
compensation per hectare. A method must therefore exist tor mass update. Entering an
amount per hectare and selecting the affected LLD’s from a list should update all parcels.

1.3.1.3.5 Appraisal Requirement 5 - Notify Requesting Group
AR5 - The Appraiser must have a method of informing the requesting group, either
Construction or Operations. that the appraisal is complete and the requesting group can

proceed with their next task.

1.3.1.4 Operations Functional Requirements

The following Activity Chart shows the Operations function of this LMIS system.

116

Determine
current
obligations.

]

v

Determine current
payee.

T

\ 4

Determine proper
compensation from
Appraisals if
contract being
renewed.

A 4

Execute current
obligations.

/

Determine legal
obligations from
Legal.

\ 4

Carry out legal
obligations.

Receive external
request for service.

Figure A.3 — Operations Activity

7

1.3.1.4.1 Operations Requirement 1 — Retrieve Obligations
ORI1 - It is one of the jobs of the Operations department to satisfv contractual obligations.
They must therefore have notification of upcoming obligations. This should be in the form
of a hard copy report produced on a daily basis.

1.3.1.4.2 Operations Requirement 2 — Get Obligation Data
OR?2 - Obligations involve paving specific amounts of money to specific people at specific
times. Each of these 3 items is determined by contract.

1.3.1.4.3 Operations Requirement 3 — Update Landowner Data
OR3 - Obligations usually involve paying sums to the current landowner or occupant. The
Operations Group therefore require access to the identical functionality as the Construction
Group in determining and updating current data.

1.3.1.4.4 Operations Requirement 4 — Notify Appraisal Group
OR4 - The Operations Group must have the ability to notify the Appraisal Group at
contract renewal time to determine a revised compensation. They must also have the
ability to be notified by the Appraisal Group when the appraisal is complete and updated.

1.3.1.4.5 Operations Requirement 5 — Print Documentation
OR3 - The Operations Group must have the ability to create documents as designated by
the Legal Department in the same fashion as the Construction Group.

1.3.1.4.6 Operations Requirement 6 — Record Encroachment Requests
ORG6 — Requests are received from third parties to encroach on an existing Right-of-Way

for several reasons. The Operations Group must have the ability to record all requests

18

identifving the third party. date, Operations Agent and request including LLD’s affected
and the nature of the request.

1.3.1.4.7 Operations Requirement 7 — Create Custom Forms
OR7 - In addition to the legal documentation concerning the current project. the Operations
Group must also have the ability to create both form and customized letters and contracts to
third parties concerning their requests.

1.3.1.4.8 Operations Requirement 8 — Register Encroachments
ORS8 — The Operations Group must have the abiiity to register encroachment contracts with

the provincial government in the same fashion as is done with construction contracts.

119

1.3.1.5 Land Agents Functional Requirements

The following Activity Chart shows the Land Agents function of this LMIS system.

Receive request for
service from
Construction or
Operations.

-

Determine all
quarter sections
involved.

i 4
Determine
Landowner contact
i information.

L 4
\ Carry out
' obligations.

T

Y
| Record results.

Figure A.4 — Land Agent Activity

120

1.3.1.5.1 Land Agent Requirement 1 — Access Contact Data
LARI - The Land Agent uses the system to determine and record contact data. The first
form of contact is usually notification of an upcoming project on a person’s land. They
therefore. must have access to project particulars and landowner/occupant data.

1.3.1.5.2 Land Agent Requirement 2 — Access from Remote Locations
LAR2 - Land Agents works in the field. They must have access to the data they require
while at remote locations.

1.3.1.5.3 Land Agent Requirement 3 — Record New Contact Data
LAR3 - The Land Agent must be able to record contact history. The system requires the
ability for them to record unlimited free text in regards to contact. This data must be keyed
by project id and date.

1.3.1.5.4 Land Agent Requirement 4 — Acknowledge Documentation
LAR4 - One of the Land Agents tasks is to deliver legal documentation. They must have
the ability to enter into the system that each piece of documentation has been delivered and
accepted by the recipient. Each document required for each LLD must then be separately

identified with the L.and Agent being able to confirm its delivery.

1.3.1.6 Legal Functional Requirements

The following Activity Chart shows the Legal function of this LMIS system.

Receive
notification of
new project.

v

Determine legal
obligations for
contract.

|

v

Designate all
forms required for
contract.

Governments of
Alberta and
Canada.

/

S —

Design any new
forms required.

Figure A.5 — Legal Activity

1.3.1.6.1 Legal Requirement I — Notification of Project
LR1 - The Legal Group confirms that all legal requirements are properly met for any
project. new or existing. They therefore must have the ability to be electronically notified
of a project by either the Construction group or the Operations group.

1.3.1.6.2 Legal Requirement 2 — Access to Government Data
LR2 - Legal requirements consist of the proper preparation, delivery and registration of all
legal documents as prescribed by the Province of Alberta and the Government of Canada.
They must therefore have the ability to determine such requirements in the manner
prescribed by the respective government agencies be this manual or electronic.

1.3.1.6.3 Legal Requirement 3 — Designate Documentation
LR3 - Once the legal requirements for a specific project are known. the Legal group must
have the ability to designate what forms must be completed. delivered and registered for
each parcel of land.

1.3.1.6.4 Legal Requirement 4 — Direct Documentation
LR4 - There can be multiple recipients for documentation pertaining to an individual LLD.
Some documents may be intended for the landowner. some for the occupant only if
different from the landowner. The Legal group then must have the ability to direct
documents to specific individuals or groups.

1.3.1.6.5 Legal Requirement 5 — Third Party Documentation
LRS - Documents may not always be intended for or associated with a specific LLD.
Some documents may be intended for local newspapers. municipal governments, owners or

occupants of land adjacent to the project etc. The Legal group therefore requires the ability

123
to designate some documents to third parties and have their deliveries and registrations
confirmed in a manner similar to documents intended for landowners/occupants.

1.3.1.6.6 Legal Requirement 6 — Maintain Document List
LR6 - All available documents must be selected from a list. The legal group maintains this
list having the ability to add. delete or modify document names and identifications.

1.3.1.6.7 Legal Requirement 7 — Package Documentation
LR7 - The Legal group must have the ability to designate individual documents for
delivery or pre-determined groups. These would consist of packages of documents which
all would be delivered together under specific circumstances.

1.3.1.6.8 Legal Requirement 8 — Create Templates
LR8 - The Legal group determines the format of each and every document that can be
delivered. They must therefore have the ability to create templates for all required
documents. These templates must have the ability to designate what is fixed text and what
can be filled in by the Construction group or Operations group. The Microsoft Word Mail
Merge facility or the Jetform product both have this capability.

1.3.1.6.9 Legal Requirement 9 — Determine Data Source for Templates
LR9 — Document templates must have the ability to determine sources of data for areas

designated as variable by the Legal Group.

124

1.3.2 External Interface Requirements
Requirements should designate what is required in any particular system, not how they are
to implemented. The following section deals with requirements for the Human-Computer
Interface (HCI) as well as interfaces to external systems. Some of these may be considered
how in that they designate a specific method of implementing functionality. These may be
mandated due to a need to adhere to Corporate Standards. follow a prescribed procedure or
make use of existing technology within a company.

1.3.2.1 External Interface requirement 1 - Windows NT 4.0
EIRI - The system must be able to run on a Windows NT 4.0 platform.

1.3.2.2 External Interface requirement 2 — Seamless Access to LMIS
EIR2 - Access to the Province of Alberta Land Registry Information System must be
seamless. That is. access must be from the same computer as this LMIS is running on with
files being created by the LRIS system which are accessible to the LMIS.

1.3.2.3 External Interface requirement 3 — Access to Autodesk Mapguide
EIR3 - The Land Management [nformation System is not a Geographical [nformation
System (GIS) in that it does not contain all the information contained in many of the
commercially available GIS’s. such as Mineral data, Oil & Gas data etc.. however a visual
component is required. = The company has purchased the StrataWeb product
(http//www strataweb.com) which uses the Autodesk Mapguide drawing engine.
(http//www_autodesk.com/products/mapguide)

1.3.2.4 External Interface requirement 4 — Seemless Access to StrataWeb

125

EIR4 — StrataWeb must be accessible from within the LMIS. The user must not have to
exit the LMIS to access StrataWeb and then re-establish a connection the LMIS.

1.3.2.5 External Interface requirement 5 — StrataWeb Data
EIRS - The following data are required within StrataWeb:

Map of Alberta

All cities and towns

All township lines drawn

All range lines drawn

All registered pipelines

All lakes. rivers and streams

Canada Land Index value for each quarter section in the province

1.3.3 Performance Requirements
1.3.3.1 Performance requirement | — Response Time
PR1 - No response time for any local activity is to exceed 3 seconds. Responses from

external systems (i.e. LRIS) are the only exceptions.

Appendices
The document as was signed off by the client contained in its appendices technical data on
Jetform. StrataWeb. Autodesk Mapguide and Microsoft Windows Mail Merge. These will

be omitted from this thesis.

