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Abstract 

Let A be a set in the plane E. Given two points a and 6 in A, if tã + (1. - t)b is in 

A for every t E [0, 1], then we call X a convex set. In particular, a set is convex if 

the line segment joining any two points in the set is also contained in the set. Let 

2L = {A : i E I} be a family of convex sets. A line that meets every member of 9,1 is 

called a common transversal. The focus of this work involves an examination of the 

conditions which must be imposed upon a family of convex sets in order to ensure 

that a common transversal exists. The intention is to present major results in the 

study of common transversals and outline several beautiful proofs. 
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Chapter 1 

Introduction 

When people ask me what I do as a graduate student, I sometimes tell them that I 

play with quarters and dental floss. They look at me quizzically and I then proceed 

to explain in greater detail what it is I do. However, what it really boils down to is 

a roll of quarters and a box of dental floss. 

This introduction is meant to be an informal overview of what is to be discussed 

in the text. The text discusses some beautiful and pivotol results in various areas 

dealing with the study of transversals. These results are drawn from research that has 

been conducted in the last thirty years. It is by no means offered as a comprehensive 

synopsis of the study of transversals. On the contrary, it is intended as a gentle 

starting point from which other strains of research can be sought out. 

As with most forms of discrete geometry, it is very easy to understand the gen-

eral problem from which various other problems and generalizations have sprouted. 

However, solutions to any of these problems are rarely forthcoming. Many proofs 

are quite involved and require a very sophisticated approach to yield a solution. 

Nonetheless, the problems are very tangible in the sense that we may draw a dia-

gram of a problem to improve our intuition and from such diagrams we see how to 

produce or refute the desired result. 

This section introduces the general problem in a tangible way. Instead of using 

formal definitions of convex set and transversal, we first approach the problem intu-

itively. Picture a flat surface, a table top say, but this tabletop extends infinitely in 
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all directions. Next picture a roll of quarters. Sometimes this roll is finite, sometimes 

it is infinite. Usually, the roll is infinite unless otherwise specified. We shall start 

with a finite roll. Now, place the quarters on the table top so that each one is lying 

fiat and no two quarters are overlapping. Next, take a piece of dental floss, making 

sure to hold it taut, see if you can get it to touch all of the quarters. If you can, we 

say that the quarters are lying in a good way and if not then they are lying in a bad 

way. When we have infinitely many quarters then the dental floss is infinitely long, 

but still taut. 

The question that we now ask is: what conditions do we need to impose so that 

the roll of quarters, after being placed on the table, is lying in a good way? If you 

play with the quarters and the dental floss on the table then it quickly becomes 

apparent that the quarters cannot lie just anywhere. In fact, they need to be close 

in some sense. How do we make sure that the quarters are close enough? 

One way to do this is to require that any five of the quarters be lying in a good 

way. In other words, you can touch any five quarters with a taut piece of dental floss. 

Certainly this will force the quarters to be close in some sense, but is it enough to 

ensure that the entire roll of quarters is lying in a good way? Yes! Even if the roll 

of quarters is infinite; as long as any five can be touched by a taut piece of dental 

floss, the entire family can. 

An obvious question arises now: is five the best possible such number? More 

precisely, if any four (three or two) quarters are touched by a taut piece of dental 

floss, can the entire family be touched by a taut piece of dental floss? The answer, 

in the case of the finite roll of quarters and the infinite roll of quarters, is no. 

We now formalize these concepts. A circle is a quarter. When two circles are 
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disjoint we require that the quarters not overlap or even touch at a point. A family 

of disjoint circles is a roll of quarters that has been placed on the table so that the 

quarters are lying flat and are not overlapping or even touching. A transversal is 

a taut piece of dental floss that touches all of the quarters in the roll and an n-

transversal is a transversal that meets n of the quarters. The plane is the table top. 

The family is called T when the quarters are lying in a good way and T(n) when 

any n. of the quarters are lying in a good way. 

Given a family of n circles, what is the smallest k such that if the family is T(k) 

then it is also T? This problem asks what is the smallest Ic such that if any Ic circles 

in the family are touched by a line then the whole family of circles is touched by a 

line? It was posed by Hadwiger in 1955 and has been the source of much fruitful 

research in mathematics. In 1958, Grünbaum conjectured, incorrectly, that Ic = 4. 

As was mentioned earlier, Ic = 5 and it would seem that our work here is done. 

On the contrary there are many questions to examine yet. For example, what if 

we replace circles by squares? So, we play the game with match books instead of 

quarters. As long as the edges of the matchbooks are parallel then k = 4 suffices. 

What about line segments? So, we play the game with match sticks instead of 

quarters. Here, if the match sticks are parallel then k = 3 suffices. 

Other lines of research that can be conducted include looking at families of dif-

ferent sizes of circles, squares and line segments or combinations thereof. Can the 

problem be generalized to higher dimensional objects such as spheres, cones and 

cylinders? Are there other transversal properties like T and T(n) that can be stud-

ied? 

These questions are examined and some solutions are given. Other questions are 
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still open for further research. Before we can proceed to answer these questions we 

need formal definitions. We introduce these definitions as we proceed, but it may 

be invaluable for the readers to remind themselves that we are dealing with nothing 

more than quarters and dental floss. 



Chapter 2 

Helly's Theorem 

We begin with a little history as provided by Danzer, Grflnbaum and Klee in [7]. 

Eduard Helly, born June 1, 1884, in Vienna, is the founder of this particular area 

of study in Geometry. He received his Ph.D. in 1907 from the University of Vienna 

under W. Wirtinger. After publishing a few important articles in functional analysis, 

he made the crucial geometric discovery, which we discuss shortly, in 1913. Helly 

served in the army in 1914 and was wounded by the Russians. He was interned 

in Siberia with T. Rado and did not return to Austria until 1920. After having 

held several distinguished positions at the University of Vienna and working as a 

consultant for various economic institutions, in 1938 Helly, along with his wife and 

son, moved to the United States of America. Helly held positions at several post-

secondary educational institutions until his death in 1943. 

Let C be a set in IB'. Given two points a and bin C, if t + (1 - t) is in C for 

every t E [0, 1], then we call C a convex set. In particular, a set is convex if the line 

segment joining any two points in the set is also contained in the set. This definition 

is crucial and will be assumed throughout the text. 

Theorem 1 Helly's Theorem. Let 2t be a family of at least n +1 compact, convex 

sets in E'. If each n + 1 members of 2t have a point in common then there is a point 

in common for all members of 2t. 

This is Helly's important discovery. Made in 1913, it has launched many im-

5 
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portant lines of research in geometry. We sketch out a proof of Helly's Theorem for 

intervals on a line. Given a family of closed intervals [ai, b1], [a2, b2],... such that any 

two of them have a point in common, let a = sup{aj : i ≥ 1} and b = inf{b : i ≥ 1}. 

First we verify that a < b. Suppose that a> b, then there exists an i and a j such 

that a ≥ ai > bj ≥ b. Consequently, [ai, b] fl [ai, b] = 0 contrary to our assumption. 

If a = b then [a, b] is just a point; otherwise, it is an interval. In either case 

[a, b] ç [ai, b1] fl [a2, b2] fl .... Otherwise there exists either an i or a j such that 

a < ai or bj < b. More general proofs can be found in other works, we merely seek 

to introduce Helly's Theorem. 

Let 1 ≤ rn ≤ n, an rn-flat in En is an rn-dimensional affine space embedded 

in En and called a hyper-surface or a hyper-plane when m = n - 1. Let t be a 

family of compact, convex sets in 1E. A transversal rn-flat of QL is an rn-flat that 

intersects each member of ?L An 1-transversal rn-ft at of QL is an rn-flat that intersects 

1 members of 2t. Using this terminology, Helly's Theorem states that if a family of 

compact, convex sets in Fn has an (n + 1)-transversal 0-flat for each n + 1 members 

then it has a transversal 0-flat. 

Generalizing the problem leads one to ask: under what conditions does a family of 

compact, convex sets in En have a transversal rn-flat? In particular, if the family has 

an (n + 1)-transversal rn-flat for each n + 1 members then does it have a transversal 

rn-flat? For a moment, consider the case where rn = 1. What we are essentially 

seeking here are conditions that ensure the existence of a line that meets or intersects 

each member of the family. Is it sufficient that any n + 1 of them be met by a 

line? Questions like this are what we seek to answer and understand in some detail. 

Specifically, we look at the two dimensional version of this problem where m = 1. 
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We restrict our attention to compact, convex sets in the plane 1E2 and straight lines 

meeting these sets. 

In the two dimensional case, a line that meets each member of 2 is called a 

transversal of 2L. If there exists a transversal of QL then 2t satisfies Property T. If 

there is a transversal of every sub-family consisting of n members of 9A, where n E Z, 

then 2C satisfies Property T(n). In the study of transversals, one tries to determine 

the necessary conditions that must be imposed on a family 2L to ensure that 2L satisfies 

Property T. Ideally, one tries to impose as few conditions as possible. Typically one 

asks: if the family 2t satisfies Property T(n) then does it satisfy property T? If it 

does then we write T(n) T, otherwise, T(n) 54> T. Next, if such an n exists, 

we may ask if it is the best possible such n? By best possible we mean smallest or 

minimal with respect to the stated property. 

It is precisely these types of problems that we examine in some detail. Afterwards, 

we examine some related problems that arise in the planar case. Once we have 

examined these problems we look at higher dimensional generalizations. We examine 

conditions under which hyper-planes meet families of compact convex sets in 1E, n ≥ 

3. More precisely, we ask does there exists a minimal 1 such that if a family has 

an 1-transversal (n - 1)-flat for each 1 members then it has a transversal (n - 1)-

flat? We specifically focus on problems in three dimensions and utilize an intuitive 

development of these problems. Finally we return to problems in 1E2 and examine 

some related transversal properties. All of the problems studied are so called Helly 

Type Transversal problems. We do not consider other types of transversal problems 

in this manuscript. 



Chapter 3 

"Two Counterexamples Concerning Transversals 

for Convex Subsets of the Plane" 

3.1 Introduction 

This chapter provides counterexamples for the following conjectures: 

Conjecture 1 For families of disjoint, congruent squares, T(5) = T. 

Conjecture 2 For families of disjoint, congruent, compact, convex sets, T(6) T. 

Conjecture 3 For families of n disjoint line segments, T(n - 1) T. 

The first two conjectures had been open for quite some time. The constructions 

given by Lewis in [22], outlined in this chapter, are standard and widely cited. A 

counterexample to Conjecture 1 is given, followed by a counterexample to Conjecture 

3, which is used to generate a counterexample to Conjecture 2. These particular con-

structions are widely cited and no work on transversals would be complete without 

studying these counterexamples. 

3.2 The Counterexamples 

A close examination of Figure 3.1 reveals that this configuration of six congruent 

squares is certainly T(5) but not T. Any five of the six squares have a transversal 

8 
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given by one of the lines 11, 12,... , 16. We can check that there is no line that intersects 

all six squares. To do so we begin by translating 1, 12,... , 16 so that these six lines 

pass through the origin. Next, consider the translates of 11 and 12, neither of these 

lines is a transversal for the six squares nor is any line parallel to either of them. 

Furthermore, any line that lies within the acute angle formed by the translates of l 

and 12 is not a transversal nor is any line parallel to it; this fact is apparent from 

Figure 3.1. In a similar fashion, we continue to rule out lines until we have the 

desired result; that is, the family is not T. Hence, we see that Conjecture 1 is false. 

Observe that in the preceding construction, the squares S and S6 can be placed 

as far apart as desired with the same result achieved; of course, the transversals 

14 need to be adjusted appropriately as do 52 and S5. Consequently one may 

add additional squares between S and 52, and between 55 and S6 to obtain the 

following much stronger result: 

Theorem 2 Given any natural number k, k > 5, there exists a disjoint family con-

sisting of k congruent squares such that the family has property T(5) but does not 

have property T(6). 

To construct the counterexample for Conjecture 3, we begin with n - 1 directed 

lines, concurrent at 0, oriented and labeled as in Figure 3.2. Take a point on R1 

and connect it to a point on Qi; this is line segment S1. To obtain line segment 

Si, 2 < i < n - 1, take a point on R between 0 and Si-1 fl Ri and connect it to a 

point on Qi so that Sidoes not intersect any of S1, S2,... , 8. Line segment S is 

obtained by joining 0 to a point on Q. In this manner, we obtain a family of n line 

segments such that any n - 1 subfamily has a transversal. One of the transversals is 
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given by a line that passes through a point in the region bounded by R_3 and R_2 

and through a second point in the region bounded by and Q. The remaining 

transversals are given by the lines aff(Rj). 

The family will not be T. This can be checked easily by considering any two 

adjacent directed lines, neither of these lines, nor any line parallel to them, will be 

a transversal for the entire family. Furthermore, no line lying in the acute angle 

formed by these two directed lines is a transversal, nor is any line parallel to it. The 

case n = 7 is depicted in Figure 3.3. 

Recall the following result (B2 is the closed unit disc): 

Theorem 3 If 2 = {A1, A2,... , A} is a family of compact convex sets in the plane, 

which does not posses property T, then there exists a real number 5, 5 > 0, such that 

the family 2L = {A1 + SB2, A2 + SB2,... , A,,, + 5B2} also lacks property T. 

This is a restatement of the fact that, given a family of compact convex sets, we 

may expand the family by an arbitrarily small factor without the risk of introducing 

transversals or removing existing transversals. Applying the preceding theorem to 

the construction of the counterexample to Conjecture 3 yields the following result: 

Theorem 4 Given any natural number n ≥ 3, there exists a family of n congruent 

rectangles such that the family has property T(n - 1) but not T. 

Theorem 4 is obtained by considering the family of line segments discussed in the 

counterexample to Conjecture 3 and then expanding the line segments, essentially 

fattening them. Each of the newly fattened line segments contains a rectangle. It 

is the existence of this family of rectangles that verifies Theorem 4. This theorem 

immediately disproves Conjecture 2 by taking n = 7. 
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3.3 Conclusion 

Shortly, we discuss the results of Grünbaum on parallelograms with parallel edges. 

If one considers disjoint translates of a parallelogram then one obtains T(5) T. 

Furthermore if one deals with a family of parallelograms with parallel edges then 

one obtains T(6) = T. However, as we see here, if one allows for the possibility of 

rotations then these statements no longer hold. Take away the restriction to trans-

lates and one has the counterexample to Conjecture 1. Allow for the parallelograms 

to have non-parallel edges and one has the counterexample to Conjecture 2. Thus 

we see how critical these restrictions are. The counterexample to Conjecture 3 is 

truly fascinating. One would expect that for any family with n members, property 

T(n - 1) is so restrictive, that the family necessarily has property T. As we have 

seen, this is not the case. 
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IY 

- v 

Figure 3.1: A family of six squares that is T(5), but not T. The transversal 1i is the 
line which meets all of the sets except S. 
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Figure 3.2: Preliminary orientation of the n - 1 lines for the construction of a 
counterexample to Conjecture 3. 
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Q7 

Q3 Q4 Q5 

Figure 3.3: Demonstration of Theorem 4 for the case n = 7. Observe that conv(R) 
is a transversal that meets all of the line segments except S 1 for i = 0, 1, 2, 3, 4, 5. 
The dashed line indicates a transversal that meets all of the line segments except for 
S7. The text describes how to determine that this family has no common transversal. 



Chapter 4 

"On Common Transversals" 

4.1 Introduction 

There are two main results discussed in [11]. The first is a very important and widely 

cited result showing that T(5) implies T for disjoint translates of a parallelogram. 

The second result is incorrect and we provide a counterexample. 

4.2 Theorems 

Unless otherwise stated, 2L denotes a family of translates of a parallelogram. Two 

parallelograms with parallel edges, P1 and P2, are opposed when P1 and P2 are 

separated by two lines parallel to intersecting edges (cf. Figure 4.1). 2L satisfies 

property T'(n) if there exist two members of 9A, P1 and P2, which are opposed such 

that given any n members of Qt, say A1, A2,... , A,, there is a line which intersects 

P1, P2, A1, A2, . . . )An. 

Lemma 1 For any family of parallelograms with parallel edges, T'(3) implies T. 

This is a corollary to Helly's Theorem due to Hadwiger and Debrunner. An 

English translation of the work Grflnbaum cites this result from is unavailable at the 

time of writing this thesis;therefore we use the result without proof. 

Theorem 5 Let 9.1 be a family of disjoint translates of a parallelogram. If 7t has 

property T(5), then it has property T. 

15 
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Proof. Without loss of generality, we assume that the members of 2L are squares. 

The proof for a family of disjoint translates of an arbitrary parallelogram is analo-

gous. The directions determined by the edges of the squares may be assumed to be 

horizontal and vertical. Further, we assume that there are at least six squares. 

Suppose there exist two squares, P1, P2 E 2L, such that the squares are opposed 

(cf. Figure 4.2). Since 9.1 has property T(5), given any three members of 2L and P1 

and P2, there is a transversal for these five squares. In particular we observe that 

the family is T'(3) and by applying Lemma 1, we have that the family is T. 

Next, assume that no two squares in the family are opposed. Thus, for any two 

squares, there exists a horizontal, or vertical, line intersecting the squares, and since 

they are disjoint there exists a vertical, respectively horizontal, line which separates 

the pair. Since the family has at least six squares, there are three squares, possibly 

more, which are separated in pairs by horizontal or vertical lines. We assume the 

latter is true (the former case is analogous). 

Denote by 2L' a subset of 2L which is maximal with respect to the property that 

any two members of ?t* can be separated by a vertical line. If QL* = 2t then Theorem 5 

follows from well known results on common transversals of sets separated by parallel 

lines. These results are discussed in a later chapter. Thus we need only consider 

the situation where Qt* QL. As a result of the preceding assumptions about 2t, it 

is clear that the problem reduces to the three cases diagramed in Figure 4.3. All 

other configurations are obtained from these three cases by symmetry. The line in 

Figure 4.3 is called 1 and the remaining squares of the family are met by the dashed 

portion of the line. 

By principal squares, we mean any of the two, three, or four squares depicted 



17 

in Figure 4.3. In particular, given any family satisfying th& assumptions thus far, 

there are two or three or four members of the family that conform to one of the the 

three configurations depicted in Figure 4.3. These squares are the principal squares 

for the given family. 

It is easy to see that the principal squares can be intersected by some line. Such 

an intersecting line exists as a result of the family being T(5). Let m1 be the line 

that intersects the principal squares and forms a minimal angle with 1. Let m2 be 

the line that intersects the principal squares and forms the maximal angle with 1 (cf. 

Figure 4.3). Since the family satisfies T(5), a square, other than one of the principle 

squares, can be chosen so that a line meets that square and all of the principle 

squares. However, this square, which we now call S, is arbitrarily chosen, so we may 

proceed to chose S as fax away from the principle squares as we please. It is clear that 

the transversal for S and the principle squares approaches one of either m1 or m2 as 

S is chosen sufficiently fax away from the cluster of principle squares. It follows that 

one of m1 or m2 must intersect all members in the family. If there exists a square S 

that is not intersected by either m1 or m2 then there is a line that intersects S and 

the principle squares that forms an angle with 1 less than that formed by m1 and 1 

or greater than that formed by m2 and 1; and any other possibility would mean that 

S does not meet the dashed portion of 1. Consequently the family satisfies property 

T. 

. 

Theorem 6 For families of disjoint, congruent circles containing at least six mem-

bers, T(4) implies T. 
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This theorem is incorrect. Figure 4.4 provides a counterexample. Inspecting the 

Figure reveals a family of six circles which satisfies property T(4), but fails to satisfy 

property T. The counterexample can easily be extended to include as many circles 

as desired. 

4.3 Conclusion 

Grünbaum makes two crucial observations regarding Theorem 5. First of all, we note 

that the restriction to translates in the Theorem is critical. Figure 4.5 demonstrates 

a family which is certainly T(5), but not T(6). What makes this counterexample 

possible is the fact that rotations are permitted. The second observation is that T(5) 

cannot be replaced by T(4), cf. Figure 4.6. Next, Grünbaum makes the following 

two conjectures: 

Conjecture 4 Let ?L be a family of translates of a parallelogram. If 2t has property 

T(5), then it has property T. 

Conjecture 5 Let Qt be a family of disjoint translates of a convex set. If 21 has 

property T(5), then it has property T. 

In Conjecture 4, the restriction to disjoint parallelograms is dropped, and in Con-

jecture 5, Grflnbaum makes a very sweeping generalization by considering translates 

of an arbitrary convex set. 

Turning to Theorem 6, the counterexample given here can be found in [1] and 

was produced independently by the author and Chris Foster. The erroneous result 

is cited as recently as 1993 and is persistent throughout the literature in this area of 

study. 
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Figure 4.1: P1 and P2 are separated by lines parallel to intersecting edges. 

Figure 4.2: Separated Squares 
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1 

1 

Figure 4.3: Possible arrangements of principal squares. The remaining squares touch 
the dashed portion of the line. 

Figure 4.4: Counterexample to Griinbaum's Theorem 6. The arrangement is ex-
aggerated for clarity. A more detailed examination of this counterexample is made 
later. 



21 

'2 

15 

Figure 4.5: In this example, we see what happens when we remove the restriction 
to translates in Theorem 5. As soon as rotations are allowed, this counterexample 
arises. 

Figure 4.6: T(4) T 



Chapter 5 

"Geometric Permutations for Convex Sets" 

5.1 Introduction 

This chapter introduces the basic theory of geometric permutations and how these 

notions relate to the theory of transversals. Fundamental definitions are given and 

two important theorems are presented. This discussion presents work found in [20]. 

5.2 Definitions 

Let 1 be a directed line in E2 and 0 a point on 1. Because 1 is directed, there is 

a natural way of viewing points on 1 as either preceding 0 or following 0. By the 

half lines 1(0) and l(0), we mean the part of 1 preceding 0 and following 0, 

respectively. When the point 0 has been clearly specified, and there is no risk of 

confusion, we simplify the notation and write l, instead of l(0), and 1, instead 

of 1(0). 

Consider the directed lines 11 and 12 intersecting at the point 0. The half lines 1, 

and l precede 0 and the half lines lt and l follow 0. The lines l and 12 separate 

the plane into four quadrants: Qi, Q2, Q3 and Q. The quadrant Q is bounded by it 

and l. Next, Q2 is the quadrant located counterclockwise of Qi, Q3 is the quadrant 

located counterclockwise of Q2 and the remaining quadrant is Q (cf. Figure 5.1). 

By an odd quadrant, we mean Qi or Q3 and by an even quadrant, we mean Q2 or 

22 
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Q4. 

We say that a set crosses a quadrant Qi if it intersects both of the half lines that 

bound Q, and it strictly crosses Qi if it crosses the quadrant but does not contain 

0. Let T C E2 and T' be a translate of T that contains 0. Then T is said to be 

odd with respect to 11 and 12 if T' C_ Qi U Q, and even with respect to 11 and 12 if 
T' Q2 U Q. Observe that if a line segment strictly crosses an even quadrant, then 

it is odd, and if it strictly crosses an odd quadrant, then it is even (cf. Figure 5.2). 

Unless otherwise stated, 21 = {A1,... , A} denotes a family of n pairwise disjoint, 

compact, convex sets in the plane, E2. A straight line meeting each of the sets in 21 

is a common transversal. All families 21 considered in this chapter have a common 

transversal. 

Let 21 = {A1,... , A} be a family of disjoint line segments. Observe that the 

affine hull of each Ai E 21 is the line containing A. Let Ai 0 A1 in 21. We say that 

Ai penetrates A1 if aff(A) fl A1 =h 0. Observe that if there exist distinct numbers 

i and j such that aff(A) = aff(A1) then, because the family 21 has a common 

transversal, aff(A) = aff(A) for any two members, A,, and A, of the family. In 

other words, all of the line segments lie along a single line. Because this trivial case 

is of little interest, we rule it out and assume that aff(A) aff(A1) whenever i 0 j. 

Consequently, we have the following result: 

if Ai penetrates A1 then A1 does not penetrate A,i j. (*) 

Next, Ai and A1 are mutually non-penetrating if neither penetrates the other. Finally, 

if Ai penetrates A1 and A1 penetrates each Ak E 21 \ {A, A1}, we say that Ai and 
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Aj is a strong pair and write (Ad, As). The family {A, B, X1, X2,... , X,} in Figure 

5.3 demonstrates (A, B) and mutually non-penetrating sets X1, X2,... , X. 

It is clear that a common transversal t of a family 2 meets the sets in a definite 

order, up to reversal, and therefore determines a permutation, p, and its reverse —p. 

The pair f = {p, —p} is called a geometric permutation of ?t. If our transversal, t, 

is a directed line then there is no ambiguity regarding the order of the sets in 2L 

The permutation denoted by p corresponds to the natural ordering of the sets in 

91, which results from t meeting the family; with the obvious reverse permutation 

denoted by —p. Strictly speaking the pair consisting of the permutation and its 

reverse characterizes a G.P. However, when we are dealing with directed common 

transversals, we simplify the notation by freely interchanging f and p whenever the 

context is clear. 

It is easy to devise families where infinitely many common transversals of the 

family generate the same geometric permutation. In fact, we can partition the 

transversals of a family into equivalence classes where each equivalence class consists 

of transversals which generate the same geometric permutation. Two transversals, 

t1 and t2, of a family are said to be equivalent if and only if they both generate 

the same geometric permutation. For our purposes, the specific transversal which 

generates a given geometric permutation is of little consequence. Only the geometric 

permutation in question is of interest. Thus, we simplify our notation once more and 

use ' to refer to any transversal that generates the geometric permutation f whenever 

there is no risk of confusion. 

If = (A 1) A2,... , A_1, , Ai,,) is a geometric permutation of 2t 

then ' \ Ail = (A 1, A2,... , A_1) , Aj. Given the geometric permutation 
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(A 1) A 2,... , A) of QL, we simplify the notation and denote it by (i1, i2,... , ia). 

Denote by 'P the set of all geometric permutations of ?L. We assume throughout 

that 21 admits a common transversal and hence Pa 0 0. 

5.3 Theorems 

Now that the critical definitions have been introduced, we discuss the two major 

theorems of the paper. Let f(n) be the maximal integer such that there exists 

a family, 9A, of pairwise disjoint, compact, convex sets in the plane with I2LI = n 

and JP%J = f(m). The first theorem provides upper and lower bounds for f(n). It 

should be noted that the upper bound is very coarse and can be refined by imposing 

additional restrictions on the family ?L. This is precisely what the second theorem 

achieves by considering a family of disjoint line segments. This result is stated as a 

corollary. 

(n"\ 
Theorem 7 2n-2≤f(n)≤ I I ≥'• 

\2) 

The geometric construction for the lower bound, given any positive integer n, is 

straightforward. It involves two congruent discs, Ax and A, and n - 2 parallel line 

segments, A1, A2,... , Figure 5.5 demonstrates the arrangement of the sets 

for n = 5 and Figure 5.6 indicates the transversals. 

Generalizing the preceding construction is easy and yields 2n - 2 geometric per-

mutations: 
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(x)1,2,3,...,n-2,y) (y,1,2,3, ... ,n-2,x) 

(1,x,2,3,... ,n— 2,y) (l,y,2,3, . . . ,n— 2,x) 

(1,2,x,3,...,n-2,y) (1,2,y,3,...,n-2,x) 

(1,2,3, ... ,n-2,x,y) (1,2,3, ... ,n-2,y,x) 

Turning to the upper-bound, we note that given any two disjoint, convex, compact 

sets, A and B, in the plane, 1E2, there are at most four lines of support. If neither 

of the sets is a point then there are exactly four lines of support 11, 12, 13 and 14. The 

four lines are chosen so that the lines are tangent to each of A and B as in Figure 

5.7. In this instance we write L(A, B) = {&,... , l}. If one of the sets is a point, or 

both of the sets are points, then there are at most two lines, or one line, of support, 

respectively, and L(A, B) is amended accordingly. 

Given a geometric permutation, i, of the family of compact, convex sets 2L = 

{A1, A2,... , A,}, let t be a transversal that generates 1. We show that a pair of 

compact, convex sets in 91, say Ai and A, can be chosen so that t € L(A, A) is 

a transversal of 2t and t is equivalent to t. If t supports two compact, convex sets 

in ?t then we are done for t, = t and Ai and Ai are chosen to be the sets which 

t supports. Suppose that t supports only one set, say A. If we rotate the line t 

through a sufficiently small angle, 0, so that the line maintains tangential contact 

with A then the newly obtained line is a transversal of ?t. There is a maximal angle 

so that if one rotates the line beyond this angle, the line is no longer a transversal 

of 2L. It is clear that at 0 the line is tangent to some A Ai and that this new 

transversal is equivalent to t. Thus t, is the line obtained by rotating t through the 
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angle 8, t € L(A, A) and t is equivalent to t,.. Next, suppose that t does not 

support any element of Qt. It is easy to see that there is a transversal parallel to 

t that supports some set A. Simply translate a copy of t, keeping it parallel to t, 

until it is tangent to some set in 2t, this is Aj; the whole time ensuring that the new 

line intersects the family. This new line generates the same geometric permutation 

as t and so the problem reduces to the previous case. Hence for every geometric 

permutation of 2t = {A1, A2,... , A,}, we have a way of associating it with a set 

In 
L(A, Al). Since there can be at most  sets L(A, As), i j, it follows that 

•2) 
(n 

I2QtI≤ I 

Theorem 8 Let 2 be a family of n disjoint, closed line segments in the plane. Then 

≤ n. For rt ≥ 3, there exists a family 2L of n disjoint line segments with 

I1'Qd 04 4 
In order to construct a family QC of n line segments so that IPl = n, we begin 

with n lines l, l, 10, 11, 12,... , concurrent at 0 and oriented as in Figure 5.8. 

Choose a point p on 10 following 0 and connect it to a point p on l, preceding 

0. Notationally, the resulting line segment, A4, passes through points, which we 

now label, P, Pg,. .. , .P_3, following 0, on 11, 12,.  4_3, respectively, and through 

the point, which we now label, p4 on l preceding 0. To construct line segment 

Ak, k ≥ 5, we chose a point P1_4 on lk-4 following and connect it to a point 

on 1k5 preceding 0 so that the resulting line segment does not intersect any 

of A4,... , A 1. Notationally, Ak passes through the points, which we now la-
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bell P'_3, P, 2, P_1,.. . P_3 following 0 on 1k-2, lk-1, ... , l 3, respectively, 

and through the points, which we now label, P, P, P Ok  P, Pt,... , P_5 preced-

ing 0 on l, l, 10, 11, 12,... , lk-5, respectively. To construct line segment A3, we first 

choose a point P_3 on l 3 preceding 0. If n = 3 then connect P_3 to a point 

on l, following 0. If n = 4 then connect P, 3 to a point on 10 following 0. If 

n ≥ 5 then connect P_3 to a point P 4 on l_4 between 0 and P_4 so that the 

points P, P, P, P, P,... , P,_5 where A3 intersects each of the respective lines 

l, l 10, 11,12,... l_5 all follow 0. Choose a point P,_3 on ln_3 following p 

connect it to a point P,,2 between 0 and P.4 on l; this is line segment A2. Finally, 

line segment A1 is obtained by connecting a point P' between P2 and Pr4 to a point 

P' between 0 and P. See Figure 5.9 for an example of six line segments giving 

rise to six geometric permutations. 

Before we can show that IPd ≤ n for any family 2 of n disjoint closed line 

segments, we need to develop a few minor results. We state these results as lemmas. 

Lemma 2 Given a family of line segments, Qi, and A, B, C, D E Qt. If (A, B), (A, C) 

and (D,B) then B=C andA — D. 

Proof. Since (A, B), A penetrates B and B penetrates all line segments X E 

2t \ {A, B}. Since (A, C), A penetrates C and C penetrates all line segments X E 

21.' \ {A, C}. Thus if B 0 C then C 0 {A, B} so B penetrates C, but B 0 {A, C} so 

C penetrates B, but by (*) this is a contradiction indicating B = C. From (A, B) 

we get that B penetrates all X E 21 \ {A, B} and if A =h D then B penetrates D, 

but (D, B) means that D penetrates B contradicting (*) which gives A = D. • 

Lemma 3 Given any family of line segments, there are at most three different strong 
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pairs. 

Proof. Suppose that there exists a family ?L where (Ai, B), for i = 1, 2, 3,4 and 

that (A, B) 0 (A,B),i =h j. If Ai = A,i =A j, then by Lemma 2 Bi = Bj which 

would mean (Ad, B) = (As, By), i j, a contradiction. Thus Ai 0 Aj whenever 

i =A j. A similar argument gives B B, i j. Now A1 penetrates B1 and 

B1 penetrates all X E 2t \ {A1, B1 } and A2 penetrates B2 and B2 penetrates all 

X E ?L\ {A2, B2}. If A1 0 B2 and A2 0 B1 then B1 penetrates B2 and B2 penetrates 

B1. This contradiction shows that A1 = B2 or A2 = B1. Without loss of generality, 

we assume the latter. Observe that (A1, A2) implies that A2 penetrates A3. Applying 

the previous argument to (A2, B2) and (A3, B3) yields either 112 = B3 or A3 = B2, 

but the fact that A2 penetrates A3 rules out (A3, A2) and so A3 = B2 is the only 

possibility. Similarly we obtain 114 = B3. Thus we have (A1, A2) and (A3, A4), 

whence A2 penetrates A4 and A4 penetrates A2. This final contradiction proves 

Lemma 3. • 

Lemma 4 If 2L is a family of disjoint line segments in the plane with I2tI ≥ 3 then 

there are at most three different sets, say B1, B2, B3, in QL such that: 

1• \ Bi E1} < I7 cI-1 

Before we proceed to prove this lemma, we need to make the following observa-

tion. 

Observation 1 Let Qt = {Ai, A2,... , Ajc,... 1m X} be n line segments 

with directed lines li and 12, meeting at 0, generating the two geometric permutations: 
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17, = (A1, A2,... ,Ak_1) X, Ak,... ,Am ,... , An-1) 

P2 = (A1) A2,... Ak,... , Am, X, Am+i,... , An-1) 

CASE I. If k < m then 

(1) X penetrates Aj for j ≤ Ic —1 and for j ≥ m+ 1; 

(2) Aj penetrates X for all j, Ic ≤ j ≤ m with the exception of at most one; 

(3) X strictly crosses an odd quadrant of 11, 12. 

CASE II. If Ic = m then 

(1) If X is even with respect to l. and 12 then X penetrates Ai for i =A m; 

(2) If X is not even with respect to 11 and 12 then Am strictly crosses an odd 

quadrant and Am penetrates Ai for any A Am and X penetrates Am; 

(3) If Am does not penetrate X then Am penetrates Ai for any 

i,1 ≤i≤n -1,im. 

We explore thisobservation intuitively through the use of diagrams. In the first 

case, the situation may be depicted by Figure 5.10. In the diagram, we have two 

directed transversals, 13. and 12, meeting the line segments in the orders p, and P2, 

respectively. A careful examination of all possible arrangements of the line segments 

reveals that this picture is indeed representative of what is occurring in this situation. 

Segment A* is unique in the sense that its orientation may vary so that it penetrates 

X or so that it does not penetrate X. Thus, it is the exceptional line segment in 
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Case I (2). Clearly, Case I (1) and Case I (3) are satisfied as well. In the second case, 

the assumption generates three possible arrangements, depicted in Figure 5.11, and 

the various implications are again clear from the diagrams. 

Proof. Lemma 4. Suppose that A E 21. such that I{ \ A : E ?t}I < 

I I - 1. This occurs when one of two possible conditions is satisfied. The first 

possibility is that, after removing A from all of the geometric permutations, what had 

been three distinct geometric permutations have now collapsed into one geometric 

permutation. The other possibility is that, after removing A from all of the geometric 

permutations, two pairs of previously distinct geometric permutations, that is all four 

are pairwise distinct, have collapsed in such a way that each pair is now one geometric 

permutation. Formally we have two conditions: 

Condition 1. There are at least three different geometric permutations 

P1,P2,P3 E 2 such that j51 \ {A},p2 \ {A},p3 \ {A} E lQt\{A} all form the same 

geometric permutation in l2L\A}. In particular z5 \ {A} = p2 \ {A} = p3 \ {A} in 

PL\{A}. Here, three geometric permutations have become one. 

Condition 2. There exist two distinct geometric permutations p', 12 E ?\{A} and 

there exist for each i = 1, 2 distinct geometric permutations p, pz2 E such that 

p \ {A} = p \ {A} for each i 1, 2. Here, four geometric permutations have 

become two. 

Thus, to complete the proof, we need to show that there are at most three 

members of 21. that satisfy either Condition 1 or Condition 2. Suppose that X E 21. 

satisfies Condition 1. So, there are three geometric permutations E 
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that, after removing X, collapse into one geometric permutation. More precisely, if 

k ≤ 1 <rn then we write: 

= (A1, A2,... , X, Ak,... , 

= (A1)A2,... , At) X,A1+i ,... ,A._1) 

1•3 = (A,) A2)  ,Am, X,Am+i ,... ,A_1). 

Clearly, z51 \ {X} = P2 \ {X} = 5j \ {X} in P2t\{A}. Let 11,12 and 13 be the 

directed lines that generate the geometric permutations JY1, P2 and ff3 respectively. 

We now apply Observation Case I to 11 and 13 to coiiclude that at least one of Ak 

and Am penetrates X. Without loss of generality, we assume that Ak penetrates 

X. Now, if 1 + 1 <rn then by applying Observation Case I to 12 and 13 we obtain 

the contradiction X penetrates Ak. So we may assume 1 + 1 = rn and we refer to 

Observation Case II applied to 12 and 13. If X is even with respect to 12 and 13 then, 

by (1), X penetrates Ak, a contradiction. Hence, we may assume that X is not even 

with respect to 12 and 13 , whence, by (2), (X, Am ). Thus, we have shown that if 

X satisfies Condition 1 then there exists some B e 2 such that (X, B). A similar 

argument, shows that if X satisfies Condition 2 then there exists some B E 2t such 

that (X, B). Regardless of which condition is satisfied by X, we see that (X, B) 

necessarily follows for some B E 2t. Since, by Lemma 3, there are at most three 

strong pairs, the desired result follows immediately. • 

With Lemma 4 in hand we can now turn to the proof of the upper bound of 

Theorem 8. Let LI = n. If n is 1 or 2 then it is easy to see that 2Q11 = 1 ≤ n in 

both cases. Next, there are only six permutations that can be obtained by arranging 
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three objects and half of these permutations are simply reversals of the other half, 

there can only be at most three distinct geometric permutations. Thus, if n = 3, it is 

clear that JP%J ≤ n. So assume n ≥ 4 and we proceed inductively. Since I2tI ≥ 4, we 

can apply Lemma 4. So there is some B E 91 such that { \ B : P E P}I ≥ IP tI —1. 

It is clear that {j3 \ B : P E P2t} SO I{ \ B : .1 E 2}j ≤ 2Qt\{B}I. 

Because IQi \ {B}I = n - 1, we can apply the inductive hypothesis to conclude that 

≤ n— 1. Thus, ≤ {\B E P}I+i ≤ PQ\{B}I+i ≤ (n1)+l = fl. 

Thus, IP2(1 ≤ n completing the proof of Theorem 8. 

Corollary 1 For families of disjoint line segments f(n) = n, Vn E N. 

5.4 Conclusion 

This chapter has provided an intensive introduction to the study of geometric per-

mutations. The results discussed here are interesting and the ideas developed prove 

to be crucial in later chapters. 
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Q3 

Figure 5.1: An example of two directed lines, 11 and 12, intersecting at 0, giving rise 
to the half lines 1j, i, l, l and the quadrants Q, Q2, Q, Q. 

Figure 5.2: Examples of sets that cross quadrants, strictly cross quadrants and sets 
that are even and sets that are odd: C crosses Q2; A, E and D strictly cross Q, Q 
and Q respectively; A is even; B is odd. 
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A 

Figure 5.3: A family {A, B, Xi, X2,... , X,}. where (A, B) is valid and 
X1, X2,... , X are mutually non-penetrating. 

000 
A1 A2 A, 

(a (b (c 

Figure 5.4: Examples of different sets of geometric permutations, l'j, arising from 
different families, QL = {A1, A2, A3}, of disjoint, convex sets. (a) 7' = {(1, 2,3)1. 
(b) 7' = {(1, 2,3), (2,1, 3)}. (c) P = {(1, 2,3), (2, 1,3), (1,3, 2)}. 

Figure 5.5: An example demonstrating f(S) ≥ 8. 
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Figure 5.6: A closer view of Figure 5.5 with the positions of the eight transver-
sals indicated. The transversals and their corresponding geometric permutations 
are p = (o) 1)2)3)y) ) q = (1,x,2,3,y), r = (1,2,x,3,y), s = (1,2,3,x,y), 
t = (1, 2) 3, y, x), u = (1) 2, y, 3, x), v = (1)y,2,3,x), w = (y, 1, 2, 3, x). 

Figure 5.7: li and 12 separate and support A and B. 

12 11 10 

1_3 

z 

Ix 

Figure 5.8: Orientation of Transversals. 
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(2,1,3,4,5,6) (6,2,1,3,4,5) 

(6,5,2,1,3,4) 

(6,5,42,1,3) 

(6,5,4,1,2,3) 

(2,3,1,4,5,6) 

Figure 5.9: An example of six line segments yielding six geometric permutations. 



38 

Am+ 

Figure 5.10: An illustration for the observation. In the diagram we have two directed 
transversals, 11 and l2 meeting the line segments in the orders pi and P2, respectively. 
A careful examination of all possible arrangements of the line segments reveals that 
this picture is indeed representative of what is occurring in this situation. Segment 
A* is unique in the sense that its orientation may vary so that it penetrates X or so 
that it does not penetrate X. Thus, it is the exceptional line segment in Case I (2). 
Clearly, Case I (1) and Case I (3) are satisfied as well. 
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Figure 5.11: An illustration for the observation. 



Chapter 6 

"The Maximum Number of Ways to Stab n 

Convex Non-intersecting Sets in the Plane is 

2n-2" 

6.1 Introduction 

Previously, we showed the construction of a family of n sets that possessed 2n - 2 

Geometric Permutations [20]. We now show that this is the maximum number of 

Geometric Permutations that any family, of m disjoint, convex sets in the plane, can 

have. The discussion is based on the work in [9]. 

6.2 Results 

Let ?L be a family of n pairwise disjoint, compact, convex sets in the plane. As we 

have seen previously, a directed line 1 that meets all of the members of ?t induces 

a linear ordering of these members in a natural way. We denote the members of 

QL by 1,2,... , n and denote the ordering induced by a directed line transversal by 

(i1, i2,.•• , ia). We say that i E 2t is left tangent to 1 if it lies 'in the closed half 

plane to the left of 1, where left is determined by standing above the directed line 

and facing in the direction the line is oriented (cf. Figure 6.1). Now, for a critical 

observation, we note that two disjoint sets have at most two common left tangents 

40 
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(cf. Figure 6.2). 

For every a E [0, 2ir) we define 1(a) as the unique directed line that satisfies: 

(i) a is the angle between the positive x-axis and 1(a). 

(ii) No set in 91 is contained in the open half plane to the left of 1(a). 

(iii) At least one set of 2t is contained in the closed half plane to the left of 1(a). 

We observe that, of all the directed transversals of 2t that form an angle a with 

the positive x-axis, 1(a) is the right most parallel transversal. By this we mean that 

no other directed transversal, parallel to 1(a), is contained in the open half plane to 

the right of 1(a) (cf. Figure 6.3). Now, a line 1(a) is said to be an extreme line if it 

is left tangent to at least two sets in ?L (cf. Figure 6.4). 

Thus far, the discussion has been limited to directed line transversals. How-

ever, the goal is to discuss undirected transversals and the geometric permutations 

they induce. In order to do this, we first show that every undirected transversal 

can be moved continuously to an extreme line which generates the same geometric 

permutation. 

Lemma 5 Every undirected transversal of 91 can be moved continuously to an ex-

treme line without ever changing the induced geometric permutation. 

Proof. Let t be an undirected transversal. The transversal t may be directed in 

one of two directions, let a0 and a1 = a0 +,7r be the angles t makes with the positive 

x-axis in these respective directions. Observe that t can be translated continuously 

to 10 = 1(ao) or 11 = l(al) in such a way that the induced geometric permutation 

does not change. Now, let i0 be the set contained in the closed half plane to the left 
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of lo and i1 be the set contained in the closed half plane to the left of l. The sets i0 

and i1 are assumed to be sets that are uniquely left tangent to lo and 11, respectively. 

If they are not unique, that is to say some set other than i0 is left tangent to lo or 

some set other than i1 is left tangent to l, then in either case we immediately have 

an extreme line, given by 10 or 1, and we are done. 

First, suppose i0 i1 and lo meets i0 preceding i1; consequently, 11 meets i1 

preceding i0 (cf. Figure 6.5). Rotate 10 and 11 clockwise, keeping them parallel to 

each other and tangent to i0 and i1 respectively, until either 10 is tangent to some set 

other than i0 or 11 is tangent to some set other than i1. Let l and l represent the 

lines lo and 11 respectively after having been rotated in the fashion just described (cf. 

Figure 6.5). Lines l and l are transversals of 2L; they induce the same geometric 

permutation as t and satisfy one of the following four cases: 

CASE I. Line l is left tangent to i1 and therefore is an extreme line. 

CASE II. Line l is left tangent to i0 and therefore is an extreme line. 

CASE III. Line l is tangent to some set i other than io and i1. Since l is to 

the left of l and intersects all of the sets in 21, i is left tangent to i. (cf. Figure 

6.5). Thus,l is an extreme line. 

CASE IV. Line l is tangent to some set i' other than i0 and i1. Since l is to 

the left of 11 and intersects all of the sets in 2L, l is left tangent to i. Thus, l is an 

extreme line. 

Analogous arguments can be made in the case io =h i1 and lo meets i1 preceding 

io, as well as in the case io = ii. • 

Recall that two transversals are equivalent if they generate the same geometric 

permutation. This lemma shows that any transversal of 2L is equivalent to some 
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transversal which is an extreme line. Hence, it is sufficient to determine the maximum 

number of such extreme lines, as the upper bound on the number of extreme lines is 

the same as the upper bound on the number of geometric permutations. 

Let i(a) be the member of ?L contained in the closed half plane to the left of 1(a). 

In the event that no unique member exists then leave i(a) undefined. Clearly, i(a) 

is defined except for possibly a discrete number of angles a. 

Shortly we describe a method to generate a cyclic sequence of integers C(2t) = 

j,, which is called a cycle of Qt if: 

(i) ij 0 i+,, for 1 ≤ j ≤ m and i211 = ii. 

(ii) the circle of angles can be partitioned into m intervals [as, a+,) for 1 ≤ j ≤ m 

and am+1 = a1, such that i(a) = ij for all a E [as, a+i). 

Consider 1(a) as a ranges from 0 to 2ir and the corresponding sets i(a). It is easy 

to see that the set i(a) is defined and remains constant on some interval (a1, a2) 

where 0 < a1 < a2; we choose i1 = i(a) for a1 < a < a2. Next, it is easy to see 

that the set i(a) is defined and remains constant on some interval (a2, a3) where 

a1 <a2 <a3; we choose i2 = i(a) for a2 <a < a3. Continuing in this way we 

generate the desired sequence. Furthermore, it is clear that i(a) changes every time 

the angle a yields an extreme line 1(a). Hence, a new entry is added to the sequence 

whenever 1(a) becomes an extreme line as a ranges from 0 to 2ir. In particular, the 

length of the cycle m is the number of extreme lines. Thus, all that remains to be 

shown is that m ≤ 2n - 2. 

For the following lemma, a scattered sub-cycle of C(2t) is a cyclic sequence ob-

tained from C(2L) by removing some of its members. The remaining integers appear 
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in the same order as they did in C(QL). For example 123, is a scattered sub-cycle of 

14253 

Lemma 6 The cycle C(QL) contains no scattered sub-cycle of the form abab, with 

ab. 

Proof. Suppose there is a sub-cycle of the form abab. There exist angles a- < 

a2 < a3 < a4 such that i(al) = a, i(a2) = b, i(a3) = a, i(a4) = b. This implies 

that each of the intervals (al, a2), (a2, as), (a3, a4) and (a4, a1) contains an angle for 

which there exists a common left tangent of a and b. However, as was previously 

noted, only two such left tangents can exist. s 

This lemma shows that if one removes all the members of C(2t) except for a and 

b then all that will remain is a cycle of the form: aa. .. abb. . . b. A sequence that 

satisfies Lemma 6 and has the property that no two consecutive integers are the same 

is called an (n, 2)-cycle, where n indicates the maximum number of distinct integers 

appearing in the sequence. Since C(2t) is clearly an (n, 2)-cycle, the following lemma 

completes the proof. 

Lemma 7 If ui2.. im is an (rt, 2)-cycle then m ≤ 2n - 2. 

Proof. First, there is always an integer a that occurs exactly once. For if not, 

then let ij and ih be two consecutive appearances of a such that k - j modulo m 

is a minimum. However, by Lemma 6, any integer c that occurs in the circular 

interval i, i 1 •• , ik_1 cannot occur outside of this interval. In particular, the two 

instances of a must lie within this circular interval; a contradiction. 

The lemma holds trivially in the case n = 2. So, assume that the lemma holds 

for (n - 1, 2)-cycles. Suppose that 11j2 m is an (n, 2)-cycle. From the preceding 
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argument we can find an element a that occurs exactly once in this cycle. Remove a 

from the cycle. If the predecessor and the successor of a are identical, then remove 

one of them. Clearly, we are left with an (n - 1, 2)-cycle of cyclic length at least 

m - 2 and at most length m - 1. By the inductive hypothesis we have either 

m-1≤2(n-1)-2=2n-4orm-2<2(n-1)-2=2n-4. Ineithercasewe 

obtain m<2n-2. • 

Finally, we state the major result of the paper which now follows immediately 

from the preceding lemmas. 

Theorem 9 For n ≥ 4, the maximum number of geometric permutations realized 

by n convex, closed and pairwise non-intersecting sets in the plane is 2n - 2. For 

= 1, 2, 3 the maximums are 1, 1, 3 respectively. 

6.3 Conclusion 

To conclude, we note that the only place in the preceding argument where com-

pactness is needed is in the definition and construction of the lines l(). However, 

with a few minor modifications to the preceding argument, we may dispense with 

boundedness all together. Thus, we obtain the same results for a family of closed, 

convex sets whose members need not be compact. On a final note, the (n, 2)-cycles 

discussed here are called Davenport-Schinzel cycles and a great deal of study has 

been devoted to them. In this case, they are employed to prove a beautiful result in 

the study of transversals. 
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Figure 6.1: A is left tangent to 1. 

In 

Figure 6.2: Sets A and B have at most two left tangents, namely m and n. 
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Figure 6.3: No other directed transversal, parallel to 1(a), is contained in the open 
half plane to the right of 1(a). 

Figure 6.4: Extreme Line. 



Figure 6.5: An illustration for the proof of Lemma 5. 
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Chapter 7 

"Proof of Grünbaum's Conjecture on Common 

Transversals for Translates" 

7.1 Introduction 

Given a family of disjoint translates of a compact, convex set in the plane which 

satisfies property T(5) then the family satisfies property T. Grünbaum conjectured 

this in 1958, and in this chapter we examine Tverberg's proof (cf. [23]) of what has 

come to be known as Grünbaum's Conjecture. The proof is a reductio ad absur-

dum where one begins by assuming a general counterexample and then by deducing 

several facts regarding the counterexample, one reduces the complexity of the struc-

ture under scrutiny, until finally the resulting structure is easily shown not to exist. 

The proof technique employed also demonstrates the integration of computers with 

mathematics to aid in a tedious computational process. 

7.2 Preliminaries 

Given a compact, convex set K, we indicate the translate of K that results from the 

translation vector c being applied to K by K+c. In this chapter, 2L = {K+c : i E I} 

is a family of disjoint translates of a compact convex set K in 1E2 where K contains 

the origin. Since K contains the origin, Cj is thought of as a point in K + Cj. Let 

C = {Cj : i E I} denote the set of all these points. 
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The convex hull of a set S, denoted cony(S), is the smallest convex set containing 

S. For example, if S is the set of two points x and y in the plane 1E2 then the line 

segment joining these two points would be their convex hull. See Figure 7.1 for 

more examples. Given 5, a set of points in IE2, the points are said to be convexly 

independent if no point x lies in the interior of conv(S \ {x}). In Figure 7.1 (a), (b) 

and (d) the points are convexly independent, but in (c) the points are not, as one of 

the points lies in the interior of the convex hull of the remaining points. 

In this chapter, a direction D is a line through the origin. Let S be a point set in 

the plane E. We define the K-height of S in the direction D to be the quotient of the 

length of the orthogonal projection of cony(S) on D by the length of the projection 

of K on the same line (cf. Figure 7.2). 

Consider the family of translates of the circle K shown in Figure 7.3. One can 

see that in the direction perpendicular to the transversal, the point set of centers 

cannot have K-height greater than 1. So, effectively the K-height gives us a measure 

of how spread out the family of translates is in a particular direction. In order for 

a transversal to exist in a particular direction, the family must be sufficiently close, 

in the sense that the K-height must be less than or equal to 1 in the orthogonal 

direction. To summarize, if the K-height is greater than 1 then no transversal can 

exist in the orthogonal direction. If it is less than or equal to 1 then a transversal 

exists with equality typically indicative of a unique transversal and strict inequality 

typically indicative of transversals in an open set of neighboring directions. 

The following claims are easy to verify and are offered without proof. These 

claims refine our intuition regarding what the K-height in fact indicates about a 

family with a transversal. These important results are used throughout this chapter. 
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Claim 1 If the family QL satisfies property T then, in the direction orthogonal to a 

transversal, the K-height of C is less than or equal to 1. 

Claim 2 If the family QL fails to have property T then in all directions, the K-height 

of C is greater than 1. 

Claim 3 If the family 2t satisfies Property T(n) for some positive integer n then, 

for any set {cj1 ,cj2 ,... ,cj} where i1 <i2 < <i,, the K-height of that set is less 

than or equal to 1 in some direction D = D(i1, i2,... , i,). 

We describe now Hadwiger's Shrinking Process. Observe that in Figure 7.4 the 

family in (a) has more than one transversal whereas the family in (b) only has one 

transversal. The goal of Hadwiger's Shrinking Process is to take a family, where 

any, say, three members have a transversal, and shrink all of the members uniformly 

so that any three members continue to have a transversal, but some three members 

are separated and supported by their respective transversal as in Figure 7.4(b). For 

example, suppose the the family QL satisfies T(3), let ). € [0, 1] such that it is minimal 

with respect to the property that )2t = {AA A € ?L} satisfies T(3). It is clear that 

there are three members of AQL that are separated and supported by their respective 

transversal as in Figure 7.4(b). This process can be carried out for any general 

property, not just T(3), as we see shortly. 

Given a set A, the affine hull of A, aff(A), is the smallest affine set which contains 

A. For example, given two points x and y in E2, aff({x, y}) is the line passing 

through x and y, and for a line segment s in E2, aff(s) is the line containing s. 

Given three non-collinear points x, y and z in the plane E2, d(x, y, z) denotes the 

(minimal) distance from x to aff({y, z}). 
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Let P be a convex n-gon with no two sides parallel. Given a side s of P, we 

assign to s the vertex v of P which has maximal distance from aff(s). We call v 

the opposite vertex of s (cf. Figure 7.5). Label the vertices of the n-gon clockwise 

1)21 ... , n and then starting with the first side following vertex 1 clockwise, label 

the sides clockwise j(1),j(2),... ,j(n). Let ji be the opposite vertex of j(i), then 

the sequence ji, j2,.•• 'in is called the shape sequence of the n-gon (cf. Figure 7.5). 

Let P and P' be two convex n-gons. Let fi be a map between the vertices of P 

and P' and f2 be a map between the edges of P and P'. Then, f = (fl, f) is called 

a map between P and P. We say f is a bijection between P and P' if and only if 

fi and f2 are bijections. 

Let f be a bijection between P and P'. Suppose that whenever v is the vertex 

opposite to the side s in P, fl(v) is the vertex opposite to the side f2(s) in F', in 

this case we say that opposition is preserved by f (cf. Figure 7.6). Next, suppose 

that whenever v is a vertex incident with the side s in F, fl (v) is the vertex incident 

with with the side f2(s) in F', in this case we say that incidence is preserved by f. 

An n-gon P' has the same shape as P if there exists a bijection, g, between P and 

F' such that incidence and opposition are preserved by g. 

Claim 4 If two convex n-gons, P and P', have the same shape sequence then P and 

F' have the same shape. 

Proof. Let i1 i2 • ,i be the shape sequence for P and il,2, jn be the 

shape sequence for F'. The vertices of both P and P' are labeled, clockwise, 1,... , n. 

Let [m, m + 1] denote the side joining the vertices m and m + 1 where n + 1 = 1. 

It is clear that m is the vertex opposite [m, m + 1] in P and that im is the vertex 
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opposite [m, m + 1] in F' . Let f, (m) = m and f2 ([m, m + 1]) = [m, m + 1]. It 

is clear that f = (fl, f2) is a bijection between P and F' that preserves incidence. 

Given an arbitrary side of F, say [m, m+ i is the vertex opposite this side. Now, 

fi(im) = m and because the shape sequences for P and P' are the same, m = m, 

but j is the vertex opposite [m, m + 1] in F'. Since f2([m, m + 1]) = [m, m + 1], it 

follows that fi (fm) is the vertex opposite f2 ([m, in + 1]) and so f = (fl, f2) preserves 

opposition. a 

Claim 5 If two n-gons, P and P', have the same shape then after an appropriate 

relabeling of the vertices, P and F' have the same shape sequence. 

Proof. If P and F' have the same shape sequence then there is nothing to 

prove. If the shape sequences are different then, using the opposition and incidence 

preserving bijection f = (fl, f), relabel vertex f(1) in F' as 1 and then continuing 

clockwise label the remaining vertices 2,3,... , n. Now check the shape sequences of 

P and P'. If they are the same then we are done; otherwise, there cannot exist an 

opposition and incidence preserving bijection between P and F'. a 

Let N be some positive integer. Let Q be a regular k - gon where k ≤ N and k 

is odd. Distribute the points q1, q2,... , qN—k on the sides of Q such that none of the 

points overlap each other, nor do they overlap any of the vertices of Q. Next choose 

points P1,P2,... ,PN-k so that each pi is near qj and conv(Q U {pl,p2,... )pNk}) is 

a convex N-gon, which we call P. If each p2 is chosen sufficiently near qj then, since 

k is odd, it follows that only the vertices of Q are opposite the sides of P. Thus the 

shape of P depends only on the distribution of q1, q,... , q2rr. A straightforward 

induction on N shows that all possible shapes are obtained in this manner. 
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For our purposes we are only interested in the case N = 6. So there are only two 

choices for k ≤ 6 and k odd; namely k = 3 or k = 5. Thus N - k is either 1 or 3 

and, consequently, there are only four possible shapes (cf. Figure 7.7). 

7.3 The Counterexample 

Let Qt = {K + Cj : i E I} be a counterexample to Grünbaum's Conjecture. So, is 

a family of disjoint translates of a compact convex set, K, where 2t satisfies T(5), 

but not T. Furthermore, we assume 1211 ≥ 6. The goal is to examine the properties 

that QL exhibits by virtue of being a counterexample. Based on these properties, 2L is 

reduced from an infinite family of translates of some general compact, convex set to 

a family of six translates of a compact, convex, centrally symmetric polygon. Once 

this is done, the six centers are examined. As was established earlier, six points 

in the plane can have one of only four shape sequences. The various geometric 

permutations that arise from each shape sequence are studied. This study reveals 

that incompatible geometric permutations arise from each shape sequence. From 

this we conclude that no such counterexample, as the one we have supposed, may 

exist, whence Grünbaum's Conjecture is established. 

Since 21 does not have a transversal, we have already noted that C = {Cj : i E 

I} must have K-height greater than 1 in all directions. Let D be some arbitrary 

direction. The orthogonal projection of comv(C) onto D is a line segment whose end 

points are generated by two distinct elements of C, say c and c. Since the K-

height of C is greater than 1, the K-height of {c, c} is greater than 1. Therefore, 

in a given direction D, a finite subset CD of C must have K-height greater than 1. 
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Furthermore, it is clear that the K-height of CD is greater than 1 in an open set of 

directions neighboring D. Ideally, CD should be non-trivial, so JCDJ ≥ 6. 

Thus, we can cover the circle S with open sets, where each of the open sets 

is associated with a finite subset of C with K-height greater than 1. Because 8' 

is compact, we can choose a finite number of these open sets to cover 8' and the 

finite union of the associated finite subsets of C has K-height greater than 1 in all 

directions. Thus we may assume that 1%1 = N is finite. We write 21 = {K + c1, K + 

,K+ CN} and C= {c,, C2, ... CN} 

Next replace K by k = (K - K) (cf. Figure 7.8). Clearly, 1? is a compact, 

convex set. It is easy to check that K-height and kS-height are the same in all 

directions. Consequently, none of the existing transversals are altered nor are any 

new transversals added. The family t = {R+ci, R+c2,... , .t?+cj,r} has transversals 

in exactly the same directions that QL does. It is clear that if two sets intersect 

then these sets have common transversals in all directions. Therefore, if there is an 

intersecting pair of elements in 9A, the pair have common transversals in all directions. 

Because QL and L have transversals in exactly the same directions, the corresponding 

pair in 2t has common transversals in all directions. This means the pair, in 2t, 

intersects, which is a contradiction; since, the translates in Q are disjoint. Hence, 

the family 2t is disjoint. The new family 2L, consisting of translates of a centrally 

symmetric, compact, convex set, continues to be a counterexample; that is to say, 

satisfies Property T(5), but not T. Thus, we assume that K is centrally symmetric. 

Inscribe K in a centrally symmetric polygon K'. It is clear that we can choose 

K' so that area of K' \ K is so small that the difference in the K-height of K' and 

the K-height of K is arbitrarily small. It follows that for an appropriate choice of 
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K', the K-height and K'-height of any subset of C differs by an arbitrarily small 

amount. So little is this difference, that we continue to have a counterexample if we 

replace K by K. Hence, we may assume that K is a polygon. (cf. Figure 7.9). 

Thus, Qt = {K + c1, K + c2,... , K + CN} is a disjoint family of translates of a 

centrally symmetric, compact, convex polygon K centered at the origin. 2t satisfies 

Property T(5) but does not satisfy Property T. The set C = {c1, c2,... , CN} may 

be viewed as the set of centers for the respective members of 2t; that is Cj is the 

center for K + c. For a sufficiently small €> 0, we may replace K by (1 + c)K and 

continue to have a counterexample. Thus we have the freedom to move the centers 

so that no three centers are collinear and no two lines aff{c, c} and aff{cm, c,} are 

parallel whenever {i, i} 0 {m, n}. Since C and eortv(C) have the same K-height 

in all directions we may remove any points in C that lie in the interior of comv(C) 

along with the corresponding translates in 2t. If, after discarding these sets, 19AI < 6 

then the desired result follows trivially. Hence, we assume 1I ≥ 6 and QI continues 

to be a counterexample. So we may assume that the centers, C = {ci, c2,... , CN}, 

are convexly independent. 

Continuing with the mutilation of K, we now arrange for K to have sides parallel 

to aff {Cj, c3 } for each i j. This is achieved by selecting one of the directions and 

then cutting two arbitrarily small triangles from K, so that the cut is parallel to 

the selected direction (cf. Figure 7.10). The triangles should be small enough so 

that the family remains T(5). It may be necessary to replace K by (1 + €)K for a 

sufficiently small 6> 0 prior to the cutting process. The process is repeated in each 

of the directions, aff{cj, c3}. 
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(N 
Next, to each of the 2 newly formed sides, add an isoscies triangle with 

2) 

height denoted by hij if the cut was made in a direction parallel to aff{cj, c}. 

Opposite triangles have the same height to ensure symmetry (cf. Figure 7.11). 

K* is the new polygon formed after all the triangles have been added to the cut 

sides of K and we let Q* = {K* + c1, K* + c2,... , K + CN}. It is clear that the 

aforementioned process has not removed from 2L* any transversals that were present 

in 2t nor has it added any transversals to 2t" that were not in 2L Thus ?L* continues 

to be a counterexample and we no longer distinguish it from QL. Let lij denote the 

length of the projection of K in a direction orthogonal to aff {C.j, c1}. It is clear, 

from the way that the original set K was cut, namely arbitrarily small triangles, 

the possible replacement of K by (1 + 6)K for a sufficiently small e > 0 and the 

arbitrariness of hij, that each lij varies over some interval and can be treated as a 

free variable. Thus if we consider the following polynomials: 

d(Ct,Cr,$)lij - d(Ck,Ci,Cj)lrs, 1 Jr, s,t}I = I{i,i,k}I = 3 ≤ I {i,j,r,s} 1 (7.1) 

we can chose ljj so that none of the polynomials vanish. 

Let A E [0, 1] so that it is maximal with respect to the property that there exists 

some five element subset of {c1, C2,... , CN}, say {Cj1, c25 }, which has (AK)-

height greater than or equal to 1 in all directions, with equality at least once. By 

applying Hadwiger's Shrinking Process there exists such a A. Since the (AK)-height 

of {Cj1,Cj2, ... Cj5} is 1 in some direction, the family {K+c 1,K+cj2,... ,K+c 5} 

has a transversal in the orthogonal direction. This transversal is tangent to exactly 

three of the sets. If it were tangent to less than three of the sets then the transversal 
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could be moved to meet the five sets at interior points which would indicate that 

(AK)-height is less than 1. If it were tangent to more than three sets then either 

there are three collinear points among the five points {c 1, c2,. . . Cj5 } or there are two 

distinct parallel lines generated by four of the points in {Cj1, Cj2,. .. c5 } (cf. Figure 

7.12). Let AK + c, AK + cv, AK + c be the three sets to which the transversal is 

tangent, meeting the sets in the given order. Due to the nature of the construction 

the transversal separates AK + c from AK + c and AK + cXL, and the following 

equation holds: 

= 1. (7.2) 

Figure 7.13 illustrates the previous equation with A = 1. The transversal is 

unique to {Cj1, Cj2,. .. C25 }; if not then there would be {c2,, ci,, c} 9 {Cjj, Cj2 ,.. . r2,} 

such that {x, z} 0 {u, w} and so that d(c, c, c)/Al = 1. This would make 

one of the non-vanishing equations cited above vanish because d(c, c, cw)/Aluw = 

d(c, c, c)/Al implies d(c, c, c)Al - d(c, c, q,)Aluw = 0 and since A h 0 we 

have d(c, c, - d(c, c, c)l = 0. Hence the transversal is unique. 

Thus we have found five elements in Qt, {K + Cj1, K + Cj 2,... , K + c5}, which 

have a unique transversal. There exists some sixth element in Qt that does not 

share a transversal with these five elements. That is to say that there is some 

element K + c E 2L that when added to {K + c1,K + c2,... ,K + c25} would 

make {K+c 1,K+c 2,... ,K+cjs,K+cu} satisfy Property T(5), but not T(6). 

If no such element existed then every set in would share a transversal with {K + 

Cj1, K + Cj2,... , K + c5 }. Since there is only one transversal that intersects these 

five sets, each set in 2L would have to meet this transversal. Consequently the family 
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would satisfy Property T contrary to the previous assumption made about the family. 

Hence {K+cj1, K+ci2.... . K+cj5, K+c} does not satisfy Property T(6), but does 

satisfy Property T(5) and is therefore a counterexample to Grflnbaum's Conjecture. 

In particular we may assume that the counterexample to Grünbaum's Conjecture 

has cardinality N = 6. 

7.4 The Contradiction 

Now that we have reduced the counterexample to this more manageable family of 

six translates of a compact, convex, centrally symmetric polygon we try to show that 

this family does not exist. To aid in this endeavor, we employ the earlier established 

notions of geometric permutations and shape sequences. 

Because we know that our family QL = {K + c1, K + c2,... I K + c6} satisfies 

property T(5), every subfamily of L with 5 members has a transversal. Therefore, 

(6'\ 
any configuration of the members of 2L in the plane elicits = 6 geometric 

\5) 

permutations of length 5. Consider all 6-tuples of geometric permutations of length 

5. By systematically eliminating each 6-tuple until none is left, we conclude that 

the counterexample cannot exist which in turn asserts Grflnbaum's Conjecture. At 

worst we are looking at 606 six-tuples, as there are (5 . 4 . 3 . 2 - 1)/2 = 60 geometric 

permutations; we divide by 2 because we do not distinguish a geometric permutation 

and its reverse. The preceding estimate does not account for repetitions of geometric 

permutations within a 6-tuplé, which is obviously disallowed, so the actual number 

of 6-tuples that need to be checked is considerably lower. Although there are only 

finitely many possible 6-tuples of geometric permutation of length 5 the number is 
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still quite high. Tverberg checked each possibility by hand and then rechecked his 

work with a computer. The remaining discussion is intended merely to serve as an 

illustration of how the work was carried out and by no means is it offered as an 

exhaustive approach to the problem. 

The question that needs to be answered now is: what exactly was Tverberg check-

ing? How was he able to conduct the elimination process? There were two things 

that Tverberg checked. First, the position of the members of the counterexample 

21 conform to very specific configurations that can be described by shape sequences. 

These configurations limit the possible geometric permutations that arise. Secondly, 

certain pairs of geometric permutations are incompatible, which means that a family 

exhibiting one of the geometric permutations cannot exhibit the other. As we see 

shortly, there are only four possible configurations, for now call them P1, F2, P3 and 

F4, that members of QL may conform to. With each of these configurations, whole 

families of geometric permutations can be eliminated. Then checking for incom-

patible geometric permutations, we are left with only two 6-tuples and these are 

eliminated by purely geometric means. 

Now, for a somewhat more detailed explanation of the process. The six centers, 

C {c1, c2,... , c6}, can be thought of as the vertices of a polygon. Because the 

centers have been assumed to be convexly independent, we know that the polygon 

is a convex 6-gon. Furthermore, we have assumed that no two lines aff{c, c} 

and off {cm, c} are parallel whenever {i, i} 0 {m, n}, so no two sides of the 6-

gon are parallel. Thus, this hexagon conforms to the specifications described in the 

Preliminaries section; cf. the sequel to Claim 5. In the earlier discussion it was 

stated that there are only four possible shapes that a 6-gon can have. In particular 
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there is a bijection between any 6-gon and one of the four 6-gons in Figure 7.7. 

Therefore, the hexagon of centers corresponds to one of these shapes. With these 

shapes, only certain geometric permutations arise. For example, a closer inspection 

of the 5, 5, 1, 1, 3, 3 shape sequence in Figure 7.7 reveals that geometric permutations 

of the form (... , 1,... , 5,... , 2,...) are not permissible; that is to say there is no 

line meeting K + c1,... , K + c6 in the order (for example) 4, 1, 6, 5, 3, 2. Suppose 

that, for a contradiction, the preceding statement is not true, and let 1 be the line of 

support for K + c1 and K + c2 which does not separate these sets and which is not a 

line of support for comv(2t). Because we have assumed the existence of a geometric 

permutation of the form (... ) 1,... , 5,... , 2,...), K + c5 meets 1. Now, K + c5 is 

the member of 2C which is furthest away from 1; this is clear for this particular shape 

sequence and how it was obtained. Consequently, K + c3, K + c4 and K + c6 all meet 

1. Hence, l is a transversal for 2t which means that QL satisfies property T, contrary 

to the assumption that . is a counterexample to Grünbaum's Conjecture. 

Two geometric permutations are said to be incompatible if they cannot both 

occur for the same configuration of sets. In other words, given a family of compact, 

convex, sets and a transversal of this family generating one geometric permutation, 

a second geometric permutation is incompatible with the first if there does not exist 

a transversal of the family generating the second geometric permutation. 

Let A, B, X, Y, P E QL, then the following pairs are incompatible: 
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I, : ABXY, BAYX 

12: AXBY,AYCX 

13: AXPYB,YABX 

14: AXYZ, AYPZX 

15: AXYPZ, AYZX 

If the family has a geometric permutation that contains one member of the pair 

I where j E {1, 2,... , 5} then there can be no geometric permutation of the family 

containing the other member. It should be noted that I. is true in general and 

12 follows with some minor restrictions having to be put in place, but Is,... 15 

follow only in the context of this proof. Figure 7.14 demonstrates why I is an 

incompatible pair of geometric permutations. Each of the two transversals must 

meet the sets in the given order. Connecting the respective points on each of the 

lines generates line segments which overlap. Because we are dealing with a family of 

disjoint, convex sets, an immediate contradiction arises in all possible cases. After 

the tedious examination of all 6-tuples, done by hand and verified by computer, two 

6-tuples remain: 

((3,2,4,5, 6)(4, 3,5,6, 1)(5, 4,6,1, 2)(6, 5, 1, 2, 3)(1, 6,2,3, 4)(2, 1,3,4,5)) 

((2,3,4,6,5)(3,4,5,1,6)(4,5,6,2,1)(5,6,1,3,2)(6,1,2,4,3)(1,2) 3) 5,4)) 

and they both occur when the shape sequence is 5,5, 1, 1, 3, 3 or 5, 5, 6, 1, 3,4. 

These two 6-tuples can be eliminated through purely geometric means. Because of 

all the restrictions imposed on the members of 9A and the given geometric permuta-

tions, if one tries to draw such a family then the members necessarily overlap which 
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is contrary to the assumption that the members of 2t are disjoint. Hence, there is no 

possible arrangement for the members of 2L in the plane which has not been elimi-

nated. Therefore, we conclude that no counterexample to Griinbaum's Conjecture 

exists. 

7.5 Conclusion 

Verifying Grflnbaum's Conjecture has served as one of the finest problems in the 

study of transversals. This solution to the problem required an extensive, but tedious, 

checking process that was verified by a computer. Tverberg's proof is quite elegant 

and serves as a bridge between the world of pencil and paper mathematics and 

the world of mathematics done using computers. The proof relied on notions from 

disciplines outside of geometry such as topology and analysis. The solution to this 

problem shows that all fields of mathematics are closely related and that research in 

one area cannot be conducted in a vacuum oblivious to other areas of study. 
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Figure 7.1: Examples of convex hulls of point sets. 

11 

12 

 I 

Figure 7.2: The K-height of a set of two points. The K-height is 11/12. 
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Figure 7.3: The K-height of the set of centers of circles. 

Figure 7.4: An example of a family with more than one transversal and a unique 
transversal. 
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Figure 7.5: An example of a polygon where the opposite vertex for each side is 
indicatd. The vertices are labeled interior to the polygon and each side is labeled 
with the opposite vertex for that side exterior to the polygon. The shape sequence 
for this polygon is 4,4,1,3. 

fi 

V 

S c(s) 

f2 

Figure 7.6: Opposition preserving bijection. 

f1(v) 
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Figure 7.8: k = - K) 

Figure 7.9: Inscribing a compact convex set in a centrally symmetric polygon. K is 
the circle which has been inscribed in the centrally symmetric polygon K'. Observe 
that as the number of sides increases the K-height of K' approaches 1. 
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-   

Figure 7.10: Illustration of the cutting process. We do not illustrate the horizontal 
cuts for simplicity. 
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Figure 7.11: Illustration of the gluing process. We do not illustrate the triangles 
corresponding to the horizontal cuts for simplicity. 
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Figure 7.12: Parallel lines and collinear points result if more than three sets are 
tangent to the transversal. In the above diagram, two distinct parallel lines have been 
generated by the center points. In the lower diagram, three centers are collinear. 
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Figure 7.13: Illustration of Equation 7.2 with A = 1. 

A B X 

B A Y X 

A X 

Y 

Figure 7.14: Illustration of incompatible pair I. Each of the two transversals must 
meet the sets in the given order. Connecting the respective points on each of the 
lines generates line segments which overlap. Because we are dealing with a family of 
disjoint convex sets, an immediate contradiction arises in all possible cases. 



Chapter 8 

"Common Transversals for Families of Sets" 

8.1 Introduction 

In this chapter we continue our study of transversals, but from a different perspective. 

Thus far, our examination has been restricted to the plane. We now broaden our 

scope and consider the problem of finding common transversals for families of sets in 

other settings. Recall that this problem of finding common transversals is related to 

Helly's Theorem. The present discussion relies heavily on this fact and a variation of 

Helly's Theorem is presented. Furthermore, the proofs, as presented by Grünbaum 

in [12], are only outlines and rely on results cited elsewhere. In some cases, these 

results are not available in English. Hence the intent here is to develop an intuitive 

feel for the problems at hand. This chapter is not intended to be a rigorous study 

of the problem. We develop the necessary concepts and then apply them loosely to 

develop our in6uition with regards to these types of problems. 

8.2 In General 

First we present a version of Helly's Theorem that is used throughout this chapter. 

This particular form of the theorem is somewhat less general than other forms, but 

is useful for the present discussion. A compact subset C of IE'is called a cell if C is 

homotopic to a point (cf. Figure 8.1). Let be a family of cells in E. Given two 
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integers i and j, where i ≤ j, if the intersection of any k members of is a cell for 

each k E {i, i + 1,... , j - 1, j} then t satisfies the Total Intersection Property from 

i to j. In this case we write C satisfies property TIP{i,... ,j}. 

Theorem 10 Helly's Theorem. If is afamily of cells in En that satisfies TIP{2,... , n} 

and the intersection of any n + 1 members is not empty, then the intersection of all 

members of C is not empty. 

Let Sj = {H : 0 ≤ i ≤ m} be a family of parallel hyperplanes in En where the 

hyperplane Hi E .55 lies between H_1 and H +1 for all 1 ≤ i ≤ m - 1. A family 

= {K : 1 ≤ i ≤ m} of subsets of En is said to be separated by parallel hyperplanes 

or simply separated if there exists a family of parallel hyperplanes = {H : 0 ≤ i ≤ 

m} such that Ki is contained in the open region of E' bounded by H_1 and Hi for 

all 1 ≤ i ≤ m. Figure 8.2 illustrates this definition in 1E2 and Figure 8.3 illustrates 

this definition in E. In this case we also say that . is separated by .55 or . separates 

A. 

Let J = {K : 1 ≤ i ≤ m} be a family of sets separated by the parallel hy-

perplanes 5 = {H : 0 ≤ i ≤ m}. Without loss of generality, we may assume 

that the hyperplanes are parallel to some axis in En. Consider Ki E . and sup-

pose that 1 is a line that intersects K, H0 and Hm. The points x0 = 1 fl H0 and 

Xm = 1 fl Hm describe the line 1 uniquely when given as the ordered pair (x0, Xm). 

In particular, any line which intersects K, H0 and Hm can be described uniquely 

by such a pair of points. Furthermore, the pair of points (x0, Xm) may be viewed as 

a single point in E22. The reason for this is as follows: regardless of which line 

generates the points, x0 and Xm are always in the plane H0 and Hm respectively. 
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Since H0 and Hm are parallel to one of the axes in ]E'2, one of the coordinates of 

x0 and one of the coordinates of x, is redundant. For example, consider the line 

(x0) cern) in E. Write x0 = (a1, a2,... , a,... , a,) and Xm = (b1, b2,... ) b*,... , bm) 

where a and b are the coordinates corresponding to the H0 plane and the Hm plane 

respectively. Thus the line (x0, rn) in ETh can be uniquely identified with the point 

(a1,a2,. .. ) an) b1,b2,... ,b) in E22. Thus, for each 

Ki E A there exists a set C E E22 such that each point in Ci is uniquely identified 

with a line that intersects K, H0 and Hm, and for each such line there is a point in 

C2 which is uniquely identified with it. We call C2 the C-set of K. 

We use Figure 8.4 to illustrate the preceding concepts. In this discussion n = 2, 

so En = E2 and E22 = E2. However, to reduce confusion, we contini'ie to write E'2 

and IE22 to distinguish between these two spaces, but the reader should understand 

that En = E2 and 2n2 = E2. In the figure, the set K E En is illustrated in the 

top and the set C E E22, which is the C-set of K, is illustrated in the bottom. 

Now, K E El = E2 is the line segment from (0, —1) to (0, 1) and is bounded by 

the parallel hyperplanes, which in E2 are just lines, H0 = {(-1, y) : y € RJ and 

Hm = {(1, y) y E }. We now describe a means by which to obtain C E E2'-2 = E2. 

Select a point on K, call it z, and a line that intersects z, H0 and Hm, call it 1. Let 

1 fl H0, Zrn = 1 fl Hm and write zo = (x0) yo), Zrn = (Xm, Ym). Observe that, 

if one pivots 1 about z then a unit increase (decrease) of z0 along H0 results in a 

unit decrease (increase) of zm along Hm. In other words, fix x0 and Xm and if one 

increases (decreases) Yo by a given amount, then y,-,., decreases (increases) by the 

same amount. In particular, this pivoting process generates pairs (yo, Yrn) which lie 

along a line with negative slope, call it L. It is clear that L € E22 and every point 
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along L corresponds uniquely to some line through z, H0 and Hm and every such line 

corresponds uniquely to some point along L. Therefore, L is the C-set of z. Write 

L = C and note that throughout this discussion z was an arbitrary point in K, so 

for each z E K we obtain a C-set C. Thus, C = U C,, and it is clear that this is a 
zEK 

union of all lines with slope —1 and abscissa coordinate in [-2,2] (cf. Figure 8.4). 

Let A Ki 1 ≤ i ≤ m} be a family of sets separated by the parallel hyper-

planes  Hi 0 ≤ i ≤ m}, let Ci be the C-set corresponding to Ki and write 

= {C,: 1 < i < m} for the family of C-sets corresponding to A. 

Lemma 8 If the intersection of any n members of is not empty then the family 

satisfies property T(n). 

Proof. Without loss of generality we choose K1,... , Ky., as an arbitrary subfam-

ily of A. By assumption, there is a point in c, fl C2 fl... fl C. Corresponding to 

this point, there is a line which intersects Ki for each i = 1, 2.. . n. i 

At this juncture, we discuss an application of Helly's Theorem as given in The-

orem 10. This discussion takes place under ideal assumptions which, unfortunately, 

cannot be made. However, the discussion serves as a useful illustration of how to 

apply Theorem 10 to C-sets to generate results about transversals for families of 

convex, compact sets in I. 

Suppose for a moment that each member of C is a cell and that the intersection of 

any 2,3,... , 2n-2 members of t is a cell. A straightforward application of Theorem 

10 indicates that if the intersection of any (2n - 2) + 1 = 2n - 1 members of C is 

not empty then the intersection of all members of C is not empty. If the intersection 

of any 2n. - 1 members of is not empty then, by the preceding lemma, . satisfies 
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property T(2n - 1). If the intersection of all members of is not empty then i 

satisfies property T. Therefore, in this particular situation, property T(2n - 1) 

implies property T. However, as can easily be seen in Figure 8.4, the sets Ci E 

need not be bounded and hence are not necessarily cells. Fortunately, the following 

theorem is valid: 

Theorem 11 If 5% is a separated family of compact, convex subsets of En such that 

the family of C-sets corresponding to 5%, C, satisfies TIP{3, 4,... , 2n - 2}, then 

T(2n - 1) implies T. 

In this paper, Grünbaum does not show how to obtain this result directly, but 

rather cites another paper from which results can be drawn that make proving this 

theorem possible. The idea behind the proof is that even if the members of C are not 

cells, we are able to cut a sufficiently small piece from each Ci E C to make it a cell 

(cf. Figure 8.5). Next, it can be shown that the intersection of two members of C is 

a cell. The Appendix shows a computational approach to determine the intersection 

of two C-sets corresponding to two perpendicular line segments. Finally, under the 

given assumption we may apply Helly's Theorem to this family of C-sets that have 

been cut and the result follows. An immediate consequence of this theorem is the 

following: 

Corollary 2 If 5% is a family of compact convex sets in E?l, whose members are 

contained in distinct parallel hyperplanes, then T(2n - 1) implies T. 

In the plane E2, this is simply the well known result T(3) implies T for a family 

of parallel line segments. This corollary gives us higher dimensional analogues of this 

result. The situation in E3 is illustrated in Figure 8.6. 
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Let K E E be a compact, convex set that contains the origin. A set k is similar 

to K if there exists an x € IE" and A > 0 such that K = x + AK (cf. Figure 8.7). 

Let A = {x + AK i E I} be a family of sets similar to K. The family A is called 

p-thin for p ≥ 1 if (x + pAK) fl (x + pAK) = 0 whenever i 0 j. The notion of 

p-thinness provides a means by which to describe how far apart any two members in 

the family are (cf. Figure 8.8). The larger the value of p, the more spread out the 

family is. 

Corollary 3 For 2-thin families of closed spheres in E'', T(2n - 1) implies T. 

As before, Griinbaum does not give a proof of this corollary, but cites another 

paper from which results can be drawn to complete the proof. Intuitively, the result 

is clear. Because the family is 2-thin, this somehow ensures that the members of the 

family are sufficiently far apart, but not too far apart, since the family is T(2n - 1), 

forcing the family to have a common transversal. 

8.3 In E3 

Let . be a family of convex sets in ii!. The family A is called k-simple if, whenever 

the straight lines lo and 11 intersect any k members of ., say K1,... , Kk, there exists 

a continuous family of straight lines 1(t), 0 ≤ t ≤ 1, such that 1(t) fl K 0 for all 

t E [0, 1] and for all i E {1, 2,... , k} and 1(0) = lo and 1(1) = l . Illustrated in 

Figure 8.9 is a 3-simple family. 

Lemma 9 Let i. = {K 1 ≤ i ≤ m} be a family of sets separated by the parallel 

hyperplanes = {H : 0 ≤ i ≤ m}. The family . is k-simple if and only if the 

intersection of any k sets in = {C : 1 ≤ i ≤ m} is path connected. 
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Proof. Suppose that . is k-simple. Without loss of generality, we consider the 

intersection c, fl c2n. .. nck of k arbitrarily chosen elements in . Suppose x, y E 

C1 fl C2 fl. . . fl Cj then there exist lines lx and l, that meets each of K1, K2,... , Kk. 

By k-simplicity, there exits a continuous family of lines 1(t), 0 ≤ t ≤ 1, that intersects 

each K,i=1,...,k for all tE[0,1] and i=1, ... ,k and l(0)— lx, l(1)=l. Let l(t) 

be the unique point in E2'2, n = 3, that corresponds to the line 1(t) for all t E [0, 1]. 

Clearly l(t)E C1flC2fl. . . nck for all  E [0, 1]. Thus, L(t) =l(t),t € [0,1] is a path 

from L(0)=l(0)=l=xtoL(l)_—l(1)=l=y entirely inClflC2 fl ... flCk. 

For the converse, assume lo and 11 meet any k members in A. Consider k arbitrarily 

chosen members of J, without loss of generality, we may call them K1, K2,... , K. 

Now, 10 and 11 will correspond to two points in C1 fl c2 fl. . . C,, say 0 and 1, which is 

path connected. The lines corresponding to the points on the path yield the desired 

family. 

Lemma 10 In 1E, let A = {K 1 ≤ i ≤ m} be a family of sets separated by the 

parallel hyperplanes = {H : 0 ≤ i < m}. Let A be the subset of H0 consisting of 

points through which pass straight lines intersecting all the members of Q If A is 

connected, then it is simply connected. 

Proof. Assume that A is not simply connected. Let x be a point of a bounded 

component A* of the complement of A in H0. Essentially, what we are doing is 

assuming that that A has a "hole" in it and we attempt to derive a contradiction. 

We can think of A* as the hole and the point x lies in it (cf. Figure 8.10). Now, 

let Bi denote the cone with vertex x and generated by K. Let Di = Bi fl Hm and 

D = {D : i = 1, 2,... , m}. Recall that the members of . are convex, hence the 
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members of D are also convex. Furthermore, the intersection of any two members of 
m 

D is convex, so if the intersection of any three members is not empty then fl D 0 
i=1 

by Helly's Theorem. However, the line passing through x and some point in the 

intersection of all the members of D meets each member of K which implies that 

x E A. This is a contradiction, so there exist integers p, q, r such that 1 ≤ p ≤ q < 

r ≤ m and D fl D fl Dr = 0. If Di fl Dj = 0 for some i and j then there exists 

a plane passing through x which separates Ki and K (cf. Figure 8.11). This can 

only happen if x is in an unbounded component of the complement of A, which it 

is not. Hence, we arrive at a contradiction that indicates: Di fl D 0 for all i and 

j. Consequently, in Hm, D U Dq U Dr has a bounded component which we call D*. 

Let E be the ellipse of maximal area inscribed in D*. Next, let Pq and Pr denote the 

planes passing through x separating E from Bq and Br, respectively, and let H(Pq) 

and H(Pr) be the closed half spaces, bounded by P. and Pr respectively, that do not 

contain E. If F = H0 fl H(Pq) fl H(Pr) then it is clear that x E F, F is unbounded, 

F is connected and F fl A is 'empty. But this contradicts the assumption that A* is 

a bounded component in the complement of A. This final contradiction asserts the 

validity of the lemma. • 

Theorem 12 If A is a 4-simple separated family of compact convex subsets of E3, 

then T(5) implies T. 

Proof. Apply Lemma 10 and Theorem 11 with n = 3. • 
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8.4 Conclusion 

Prior to this chapter, the discussion of transversals was limited to the plane. The 

results presented here indicate that generalization of previously examined results are 

possible. However, the problems become increasingly difficult and even generalizing 

results from E2 to IE3 are extremely difficult. It should be pointed out that Grflnbaum 

discusses a generalization of the problem to projective space, but we do not consider 

such generalizations in this text. 

Figure 8.1: Examples of sets homotopic to points in 1E2 and 1E3. 
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Figure 8.2: Example of separated sets in El. 
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Figure 8.3: Example of separated sets in I. 
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H0 H1 

Figure 8.4: Example of a set of points C in E2 corresponding to all the lines which 
pass through K, H0 and Hm 
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Figure 8.5: Cutting a small piece from the set on the left generates the cell on the 
right. 
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Z Z  

Figure 8.6: An illustration of Corollary 2 in E. 
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/ 
Figure 8.7: Similar sets. 
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Figure 8.8: These two circles are 2-thin. After doubling their radii their intersection 
will remain empty. 
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Figure 8.9: A 3-simple family. 
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Figure 8.10: Illustration of a set that is NOT simply connected with bounded com-
ponents in the complement. 
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Figure 8.11: Di fl Dj = 0 = 2 a plane through x which separates K and K. 



Chapter 9 

"Thin Sets and Common Transversals" 

9.1 Introduction 

So far, in our study of transversals, we have looked at lines meeting convex sets. An 

interesting way to generalize the problem might be to examine planes and hyper-

planes meeting convex sets. Here we ask: what conditions must be imposed on a 

family of compact, convex sets, so that it is met by some hyperplane? This is what 

is examined in this paper [16]. 

A convex set in E"-, n ≥ 2 is called a thin set if its dimension is equal to n. - 1. 

For example, lines and line segments are thin sets in 1E2. Suppose 2t is a family of 

compact convex sets in E'. A transversal rn-flat of Qt is an m dimensional afline 

space that intersects each member of Qt. For example, if 2L is a family of compact, 

convex sets in 1E2 that has a transversal 1-flat then that is the same as saying there is 

a transversal or a line that meets all of the members of 2t (cf. Figure 9.1). A family 

of compact, convex sets in E3 that has a transversal 2-flat is a family where each 

member is met by a two dimensional affine space which is just a plane (cf. Figure 

9.2). 

Suppose that QL is a family of compact, convex sets, in E', which can be linearly 

ordered in such a way that each subfamily of ?t with k members has a transversal 

1-flat that meets the k members in the specified order. In this instance, we say 

that ?L satisfies Property 0(k). If ?L is a family of compact, convex sets that has a 
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transversal rn-flat then we say that 21 satisfies Property Tm. Now, it is clear that a 

family satisfies Property T1 if and only if it satisfies Property T. 

9.2 Discussion 

Theorem 13 For any finite family of disjoint, compact, convex sets in IETh, if the 

family satisfies Property 0(3) then it satisfies Property T_1. 

Proof. 

Suppose that Qt = {A1, A2,. . . At} is a family of disjoint compact convex sets that 

is ordered in accordance with Property 0(3). Figure 9.3 illustrates what happens 

when Aj n conv(A U A,) = 0 in 1E2, j ≤ j ≤ k. It is clear from the figure that 

no line meets the three sets A, A, Ak. Since any three sets A, A, Ak in 21, where 

i ≤ j ≤ k, are met by a line, it follows that Aj fl conv(A U A) 0 0. 

We now employ a procedure that is common in the study of transversals and that 

has been demonstrated before. For each i, where 1 ≤ i ≤ t, we fix a point xi c A 

and contract A about the point xi by a factor of A, where 0 ≤ A ≤ 1. In particular, 

A' = {x + A(x - x) : x E A} is the set Ai after it has been contracted by A about 

x. Let 2L' = 

Let /3 = inf{A : 0 ≤ A ≤ 1 and A fl conv(A' U A) 0 for any i,j,k where 

1≤ i <j < k ≤t}. We note that there exist integers x,y,z where l ≤x <y <z ≤t 

such that Aflconv(AUAA) = 0 for all A where 0 ≤ A < 3 ≤ 1. To see this, observe 

that the members of 9,1 are compact, convex sets from which it follows that A E QL is 

closed for each i, 1 ≤ i ≤ t. So, given A, A, Ak in QL, there is a maximal AiJ,k so that 

Aflconv(A'UA) = 0 for all A where 0 ≤ A < ≤ 1. In other words, we contract 
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the closed sets until they are separated and supported by a hyperplane. In E2, this is 

referred to as the Hadwiger Shrinking Process and in higher dimensions the existence 

of a separating and supporting hyperplane is ensured by results in Grünbaum's classic 

work on convex polytopes. Clearly, /3 = max{.A,,k : 1 ≤ i <i <k ≤ t}. Thus, there 

exist integers x, y, z where 1 ≤ x <y < z ≤ t such that AA fl conv(A U A) = 0 for 

all )whereO≤)<f3≤1.Andwhen).=Oweobtain1≤x<y<ztsuchthat 

fl conv(A U A) 0 and A) is separated from A) and A). 

Previously, when carrying out the aforementioned shrinking process) we observed 

that the process does not alter the properties a family possesses. For example, we 

have seen results in E2 where a family continues to exhibit critical properties, such 

as T(k), after the shrinking process has been carried out. However, as a result of the 

shrinking process, a unique transversal has been obtained for some subfamily of the 

original family. Consequently, in order for T(lc) to hold, the entire family must meet 

the unique transversal and we conclude that the family satisfies property T. In this 

case, even after the shrinking process has been carried out, the family 20 continues 

to satisfy Property 0(3) because of the way 8 was chosen. To conclude the proof, 

we show that A, A and A meet some hyperplane, that the remaining members of 

2V3 must also meet. We do so by considering two cases. 

CASE I. aff (A6 U comv(A U As)) 0 E'. 

In this case, conv(A U A) is contained in some hyperplane, call it H. Now, 

aff(conv(A U A) = aff (AP U A) and so aff(A U A) is contained in H. Since, 

?V3 satisfies 0(3) all members of 2L'3 meet aff (A13 U A) which is contained in H. 

Consequently, 21P has an transversal (n - 1)-fiat. As A C A, for each i, 1 < i ≤ 



95 

it follows that 2L satisfies Property T_1. 

CASE H. aff(A U conv(A U A))-= E. 

As discussed earlier, there exists a hyperplane H that separates AY6 from AO and 

A. It is clear that H supports A, .4 and A. Let H be the closed half space 

determined by H containing A.P. Let H be the closed half space determined by H 

containing A and 4. Figure 9.4 illustrates these concepts in E. 

We claim that H intersects Ac,, for any w E {1, 2,. . . t} \ {x, y, z}. We examine 
thecasel≤w<x. Theothercasesx <w <y,y< w <zandz <w <tare 

entirely analogous. Since, Aflconv(AU4) 0 we obtain A,nH 0. Similarly, 

4 fl conv(A U 4) 0 yields A fl H 0. Thus, A, fl H 0. Therefore, is 

met by an transversal (n - 1)-flat. As 4 C A, for each i, 1 ≤ i ≤ t it follows that 
2L satisfies Property T_1. 

Corollary 4 Hadwiger's Theorem. If a finite family of disjoint compact convex sets 

in E2 can be linearly ordered in such a way that each subfamily consisting of three 

members admits a transversal intersecting the members in the specified order, then 

the family satisfies Property T. 

Proof. Apply Theorem 13 with n =2. a 

Theorem 14 Let 2L be a finite family of compact, convex, thin sets in En. If any 

three members admit a transversal 1-flat and if for any two members of Qt, say A1 

and A2, we have A1 fl aff(A2) = 0 = A2 fl aff(Ai) then Q{. admits a transversal 

(n - 1)-flat. 
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Proof. Observe that, if it can be shown that 91 satisfies 0(3) then by applying 

Theorem 13 the result follows immediately. Let 91 = {A1, A2,. . . A} and we induce 

an ordering on 91. Before we do this, however, we make a critical observation. Given 

a subset of 91, say 91', and some A E 91', a division X U V of 91' \ {A} is obtained by 

letting all the members of 91' \ {A} that lie on one side of the hyperplane aff(A) be 

in X and the rest be in Y, whence X U V = 91' \ {A}. 

Observe that this division is made possible by two assumptions. The first is 

that the members of 91 are thin sets. Hence, given Ai E 21, there is a hyperplane 

that contains A. Secondly, no other member of 21 intersects that same hjrperplane 

because of the assumption that for any two members of 91, say A1 and A2, we have 

A1 fl aff(A2) = 0 = A2 fl aff(A1). 

Now, define A1 <A2 and write QL. = {A1, A2,.. . A}, m ≥ 2. We assume that 

21 has been linearly ordered, so that for each i, 1 ≤ i ≤ m if X U V = 21 \ {A} 

is the division described above then it satisfies the following condition: All of the 

members of X are smaller than A and lie on one side of the hyperplane aff(A), 

which we call A and all the members of V are larger than Ai and lie on the other 

side of the hyperplane aff(A), which we call At. It is easy to see that this condition 

produces an ordering of 21m  that is transitive and that under this ordering 2tm is 

0(3). 

Now, given Am+i and 1 ≤ i ≤ m, define Am+i < Ai if Am+i C A and Am+i > A 

if Am+i C At and let Q1.m +i = 2tm U {Am+i }. If A,A,Ak E 2tm+i and Ai <A3 

and Aj <Ak, but Ak ≤ Ai then Ak lies in a region of En bounded by aff(A) and 

aff(A) that does not intersect either Ai nor A (Figure 9.5). However, this cannot 

occur because Ai would be bounded away from Ai and Aj in such a way that no line 



97 

could meet all three sets, contrary to the assumptions of the theorem. Thus, Ai <A3 

and Aj < Ak imply Ai < Ak and so the ordering is transitive, which means 

is linearly ordered. Furthermore, any transversal 1-flat that meets any three sets of 

say A, A, Ak where Ai < Aj < Ak, must meet them in the specified order 

because Ai and Aj lie on different sides of aff(A), whence 2tm +i is 0(3). Hence, by 

induction 2L satisfies Property 0(3). • 

Corollary 5 Santaló's Theorem. If every three members of a finite family of parallel 

line segments in the plane admit a transversal then the family admits a transversal. 

Proof. Apply Theorem 14 with n = 2 U 

Observe that we can make an even stronger statement in E2 than Santalo's Theo-

rem. Recall that two compact convex sets, A1 and A2, are mutually non-penetrating 

if A1 fl aff(A2) = 0 = A2 fl aff(A1). By dropping the requirement that the segments 

be parallel and ask that they only be mutually non-pentrating, we have a stronger 

form of Santaló's Theorem. 

9.3 Conclusion 

In this chapter, well known and important results in the plane have been generalized 

to higher dimensions. The techniques employed were generalizations of already well 

known techniques that have been used to prove the planar cases of these important 

results. The higher dimensional version of Hadwiger's and Santalo's Theorems are 

interesting and exciting. Even more interesting is that the planar case of Santalo's 

Theorem, as proved here, allows us to drop the requirement that the segments be 

parallel and ask that they only be mutually non-penetrating. 
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Figure 9.1: A family of sets in E2 that has a 1-transversal fiat. 
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Figure 9.2: A family of sets in 1E3 that has a transversal 2-flat. 
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Figure 9.3: An illustration of what happens when A5 fl conv (Ai U At,) = 0 in E2. 

Figure 9.4: An illustration for Case II of Theorem 13. There exists a hyperplane H 
that separates AP from A and A. It is clear that H supports A, A and A. Let 
H be the closed half space determined by H containing A. Let H be the closed 
half space determined by H containing Ae and A. 
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Ak 

At A 

At 

Figure 9.5: In the plane: A, A, Ak E 2L 4 and Ai <A3 and Aj <Ak, but Ak ≤ A. 
Then, Ak lies in a region of E2 bounded by aff(A) and aff(A) that does not intersect 
either Ai nor A,. 



Chapter 10 

"On the Helly Number for Hyperplane 

Transversals to Unit Balls." 

10.1 Introduction 

This article [1] provides a survey of major results in the study of transversals. In 

particular, three, important results are mentioned and proofs are given. We discuss 

each result in turn. 

10.2 Discussion 

Theorem 15 For each integer n ≥ 6, there exists a family of n pairwise disjoint 

unit discs in 1E2 such that any four have a common transversal, but some five do not. 

In other words, this result indicates that property T(4) does not imply property 

T. This is an important result, because in [11], Grünbaum claims to have proved that 

T(4) does imply T, for circles. This erroneous result has been cited and appealed 

to over the last forty years without question. The paper currently being discussed 

is the only work, known to the author, that has attempted to correct this result. 

Figure 10.1 shows an example of a family which proves Theorem 15 for the case 

n = 6. The other cases are easy to extrapolate. 

Now, we introduce an interesting generalization of the notion of pairwise disjoint 
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in the plane. We say that a family of compact, convex sets in Ed, 1 ≤ k < d, is 

(k - 1)-separated if no k + 1 of the sets has a transversal (k - 1)-flat. So, 0-separated 

is the same as pairwise disjoint. In the case of 1-separated, this is the same as the 

requirement that no three sets are met by a line. Recall that if a family satisfies 

Property T then the family is met by a transversal n fiat. If a family satisfies 

Property T(k) then every subfamily consisting of k members has a transversal n-

flat which we call the k-transversal n-flat for those particular k members of the 

family. 

Theorem 16 If there exists a collection of n, (d - 2)-separated unit balls in Ed for 

which Property Td_j.(k) holds, but Property Td_l(k + 1) does not hold, then there is 

a family of n + 1, (d - 1)-separated unit balls in. 1Ed+l for which Property Td(k + 1) 

holds, but Property Td(k + 2) does not hold. 

Proof. Let 2C = {G1,... , G,,} be a family of (d - 2)-separated unit balls in Ed 

for which Property Td_l(k) holds, but Property Td_l(k + 1) does not hold. Without 

loss of generality, we may assume that any k members of the family are met in the 

interior by some hyperplane. This assumption follows from the fact that we may 

enlarge the members of the family without damaging any of the existing conditions 

and properties the family exhibits. We now construct the required family 9L' 

{D1,... , D, D 1} of (d— 1)-separated unit balls in E' for which Property Td(k+ 

1) holds, but Property Td(k + 2) does not hold. Embed Ed in E' 4' and denote the 

hyperplane E° in E' 1 by H0. If (x 1, x2,... , xd) is the center of Gi in Ed then let 

Di be the unit ball with center (x 1, x2) ... , Xid, y) and D 1 be the unit ball with 

center Xn2,... , Xnd, Yn-i-i) where each yi is yet to be determined. Figure 10.2 
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demonstrates these notions when d = 3. From the diagram, it is easy to see that 

Gi is simply the projection of Di onto H0. Observe that both D and D 1 project 

onto G in H0. 

First, we choose Yi, y2) ... , y, Y+1 so that Yi <Y2 < <Yn <Yn+1. Second, we 

show that Yi, y2, . .. Y, Y+i can be chosen so that 21! is (d— 1)-separated. Without 

loss of generality, let D1,... , be an arbitrary subfamily of W. It is clear that 

Yd+1 can be chosen, sufficiently large, so that it lies above all hyperplanes meeting 

For if not then a standard compactness argument shows that there 

exists a limiting hyperplane, say H, that meets D1,... , D1 such that H n H0 is a 

transversal (d— 2)-flat of G1,... , Gj+ ; contrary to the assumption that 21. is (d— 2)-

separated. Hence, we may choose Yi, y2,. .. , y, so that 21! is (d - 1)-separated. 

Third the family 21! satisfies Property Td(k + 1). Given any k +1., members of 21! 

the property follows trivially if D and D 1 are among them. Simply project these 

members of 21! onto their corresponding members of 2L in H0. Then, by Property 

Td_l(k) there exists a k-transversal (d - 1)-fiat which meets G and the other k - 1 

members of 2 that are projections of members of V. Finally, take the (k + 1)-

transversal d-flat that contains the aforementioned k-transversal (d - 1)-flat and we 

are done. Next, without loss of generality, suppose that D1,... , Dj+i is an arbitrary 

subfamily of 2 that contains at most one of D or By Property Td_1 (k), 

there exists a k-transversal (d - 1)-fiat which meets G1,... , Gk and we can find a 

hyperplane, say H, in E'' containing H and meeting D1,... , DJ,. Now, by tilting 

H appropriately and choosing Yk+1 sufficiently large, H will also meet Dk+1 yielding 

the desired result. 

Finally, the family does not satisfy Property Td(k+2). Without loss of generality, 
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we choose G1,... , having no transversal (d-1)-fiat. If y+1 is chosen sufficiently 

large then D1,... , Di+i, D+1 has no transversal d-flat. The proof of this is similar 

to the preceding argument showing 21! is (d - 1)-separated. a 

The Helly number is the smallest integer k, so that if a family in Ed satisfies 

Property Td-1(k) then it also satisfies Property Td-1. The preceding two Theorems 

yield the following corollary. 

Corollary 6 The Helly number for hyperplane transversals to families of d - 2 or 

more (d - 2)-separated unit balls in E' is at least d + 3. 

Theorem 17 Danzer's Theorem. Given n ≥ 5 pairwise disjoint unit discs in the 

plane, if any five of the discs have a common transversal then the whole family has 

a common transversal. 

Recall that Grünbaum conjectured and Tverberg verified that Property T(5) 

implies Property T for a family of disjoint translates. Theorem 17 is simply a special 

case of this result. The authors claim to have derived a proof which is independent 

of Danzer's proof. Essentially, the authors mimic Tverberg's proof of the Grflnbaum 

Conjecture from [23]. 

They assume that a counterexample exists and show, as Tverberg did, that there 

is a reduction to a family consisting of six circles, the centers of the circles are 

convexly independent and no three centers are collinear. Recall that, after Tverberg 

completed this part of the proof, he showed that such a family cannot exist. This 

was achieved through a somewhat tedious computational process where all possible 

combinations of geometric permutations the family could exhibit were checked and 

eliminated. The authors do the same thing, but by citing a previous work done by 
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one of the authors on geometric permutations, the number of cases that need to be 

checked is reduced drastically. 

10.3 Conclusion 

One final note regarding this paper is that an interesting conjecture is made in the 

introductory section. The authors conjectured that: for every d > 2 there exists 

an integer kd such that for families of (d - 2)-separated families of unit balls in Ed 

Property Td_1(kd) implies Property Td-1. There is no indication of how to produce a 

proof for this conjecture, but the authors cite recent work in this area that suggests 

such a conjecture is plausible. 

Figure 10.1: An example of Theorem 15 for the case n = 6. The centers are 
(0,0), (3, 0)(10, 1 + 2), (10,—i - 2), (12,1 + e), (12,—i - e). If we choose E > 0 
sufficiently small then the example works. In the diagram, the choice of e has been 
exaggerated for clarity. 



107 

Figure 10.2: An illustration for Theorem 16. For each i, Gi is simply the projection 
of Di onto H0. 



Chapter 11 

"Cutting Families of Convex Sets" 

11.1 Introduction 

In this chapter, we introduce a new transversal property and discuss a few results 

related to this property. The discussion is based on material found in [18]. A family 

t, of sets in the plane E2, has property T - k, k ≥ 0, if there exists a straight line 

intersecting all but at most k members of QL. The main result of this chapter shows 

the existence of some integer k, such that if one has a family of pairwise disjoint 

translates exhibiting property T(3) then it also has property T - k. It should be 

noted, in advance, that the k considered in this paper is universal for all families 

of pairwise disjoint translates. In this chapter, we outline the major proofs. We 

discuss other transversal properties in greater detail later; our goal here is to gain a 

familiarity with this particular transversal property. 

11.2 Discussion 

Lemma 11 Let {A1, B, A2} be a family of rectangles satisfying the following condi-

tions: 

(Li) the edges are of length no greater than r and parallel to the coordinate axes; 

(L2) the distance between each two rectangles of the family is greater than r; 
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(L3) the horizontal axis h intersects the three rectangles in the order A1, B, A2 

and separates A1 U A2 from B (cf Figure 11.1). 

If D is any rectangle satisfying (Li) and the family {A1, B, A2, D} satisfies (L2) 

and also has property T(3) then D intersects h. 

Proof. Referring to Figure 11.1, suppose that D lies strictly above h. If D does 

not intersect the vertical strip generated by extending the edges of B, which are 

perpendicular to h, then one of {A1, B, D} or {A2, B, D} fails to have a transversal, 

contrary to the assumption that {A1, B, A2, D} is T(3); or D is within a distance 

of r to one of the other three sets, contrary to the assumption that {A1, B, A2, D} 

satisfies (L2). 

If D lies above the line generated by extending the upper edge of A2 then 

{A2, B, D} fails to have a transversal. Hence, D intersects Y, the rectangular region 

generated by extending the edges of B, which are perpendicular to h, and the upper 

edge of A2. Consequently, the distance between D and B is less than r, contrary to 

the assumption that {A1, B, A2, D} satisfies (L2). Thus, D cannot lie strictly above 

h. An analogous argument shows that D cannot lie strictly below h and so we have 

that D intersects h. • 

Theorem 18 Let QL be a family of compact convex sets in the plane and suppose 

that each member of QL has a diameter no greater than r > 0. If QL has property T(3) 

then there exist three discs of radius 3r such that there is a common transversal for 

all members of 21 which do not intersect any of the discs. 

Proof. Let 2t = {C(y) : 'y E F} be a family of compact convex sets where each 

set has diameter no greater than r > 0 and the family satisfies the property T(3). For 
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each 'y E r, choose a point x('y) E C(-y) and contract C(-y) about the point x(-y) by 

a factor of A E [0, 1]. Let Ao be the minimum value of A, such that for the contracted 

family, 2L' = {C' (y) : 'y E rj, there is a common transversal for every three members 

C'('yi), C'('y2), C'(-y3), whenever c&(C(y), C('yk)) > (1+ /)r, 1 ≤ i i ≤ 3. First, 

consider the case where no three members of 21! are mutually separated by a distance 

of (1 + A/2-)r. In this case, there are two further possibilities: no members are 

separated by a distance of at least (1 + \/)r or there is some pair separated by a 

distance of at least (1 + \/)r. 

Theorem 19 Jung's Theorem. If a compact, convex set has diameter less than r it 

is contained in a circle of radius no greater than r//. 

If all members of 21! are within a distance of (1 + \/)r of each other then choose 

any two members of 21! and appealing to Jung's Theorem yields that each of these two 

sets is contained in a disc of radius no greater than r//. The remaining members 

of 21! must be within a distance of (1+ \/)r of at least one of these discs and so must 

be contained in at least one of two discs of radius (1 + + 1/N/3-)r < 3r. Thus, 

in this case the theorem is trivially satisfied. Next, suppose that there is some pair 

separated by a distance of at least (1 + V2-)r. It is easy to see that each of these sets 

will be contained in a square with edge length at most r. In turn, this square can 

be inscribed in a circle of radius at most r/V and the remaining sets in the family 

will be at most a distance of (1 + \/)r from each of these circles. 

All that is left is to examine the case where there are at least three members of 

21! mutually separated by a distance of (1+ \/)r. By the above described shrinking 

process (Hadwiger's Shrinking Process), there exist three members of 21.', call them 
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C'('yi), C'(y2) and C'(y3), such that C'('12) is separated from C'('yi) and C(-y3) by 

a line h and h is tangent to C'(-yi), C'('y2) and C'(-y3). Let A1 be the smallest 

rectangle, with one pair of edges parallel to h, containing C'(-Y,). Let B be the 

smallest rectangle, with one pair of edges parallel to h, containing C'(-y2). Let A2 be 

the smallest rectangle, with one pair of edges parallel to h, containing C'(-y3). 

It is clear that A1, B and A2 correspond to Lemma 11. Thus, any member of 2L' 

that does not intersect one of the circles of radius 3r centered about C'(-y1), C'(-y2) 

and C'(-y3) meets the line h as a result of a straightforward application of Lemma 

11. U 

Corollary 7 Given r > 0, /3 > 0 and n > 0, there is some positive integer 1 = 

l(r, /3, n) such that T(3) implies T - 1 for any family 21 of compact convex sets sat-

isfying: 

(Cl) each member of Qt has diameter no 'reater than r; 

(Ce) for every n-membered subfamily of 2t, say {A1, A2,... , A,.j. C Qt, the area 

U1 Ai is no smaller than On. 

The corollary is an immediate consequence of Theorem 18. 

Theorem 20 There exists a positive integer k such that for any family of pairwise 

disjoint translates of a compact, convex set T(3) implies T - k. 

Proof. Apply the corollary with r = /3 = , n = 1. M 

11.3 Conclusion 

This completes our examination of the transversal property T - k. It should be 

noted that other literature places an upper bound of 128 on k. In this paper an 
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upper bound of 48irr2fi' + (n. - 1) is placed, where r is the largest diameter of any 

member of the given family. 

i r 

A1 Y A2 

B 

Figure 11.1: Illustration for Lemma 11. 

J J 



Chapter 12 

"An upper bound for families of linearly related 

plane convex sets." 

12.1 Introduction 

In this chapter we explore a different type of problem related to transversals as 

described in [5]. Given a family 2 of pairwise disjoint, compact, convex sets in 

E2, we recall that 2t satisfies Property T(n) provided that every subfamily of 21., 

consisting of n members, has a transversal. It satisfies Property T if there exists a 

common transversal that intersects the entire family. If for any n members of the 

family 21 there is a common transversal that meets no other members of the family 

then 21. satisfies Property G(n). The family 21. satisfies Property 1(n) provided that 

any line meets at most n members of 21.. In this chapter we explore the Property 

G(n) and discuss a theorem that shows that any family of compact, convex sets that 

satisfies the property G(n), n ≥ 3, has cardinality at most n + 46. 

12.2 The Result 

Lemma 12 Let J be a system of intervals on a line such that no point is covered by 

more thank members of J. Then J = J1 U J2 U... U Jk where J, fl Jk = 0 and each 

J consists of pairwise disjoint intervals. 

The proof of this lemma is due to Hajós and Wiener. We use this result without 
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proof. 

Lemma 13 Let 2L* be a family of compact, convex sets in ]E2 such that the members 

of 2t* are separated by parallel lines. Then, if the family satisfies Property T(3), it 

satisfies Property T. 

This is equivalent to asking that the family be separated by one dimensional 

hyperplanes, namely lines, and the results in [12] apply. 

Lemma 14 Let QL be a family of pairwise disjoint compact convex sets of 1E2 where 

≥ 9. Then, if the family satisfies Property G(3) then it satisfies Property 1(7). 

Proof. 

Suppose that the preceding statement is not true. Let p be a line that meets 

eight members of 2L, say A, A2,... , A8, in the given order up to reversal. We now 

introduce some notation: 

H'=conv(UAi) 

H" = conv((J A) 

H* = conv([JAk) 

I/- = conv(p n (A1 U A4)) 

p" = conv(p n (A5 U A8)) 

= conv(p fl (A4 U A7)) 

We make the following observations. First, IF is the conyex hull of the first four 

members of A1, A2,... , A8 and H" is the convex hull of the latter four, while H* is 
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the convex hull of four specially selected members. Next, p' is a line segment lying 

along p that runs from A1 to A4, p " is a line segment lying along p that runs from 

A5 to A8, and p is a line segment lying along p that runs from A4 to A7. Finally, it 

is clear that p' fl p" = 0. (cf. Figure 12.1). 

Claim 6 There exists Ai C int(H') for some i E {1, 2, 3, 4} and there exists Aj C 

int(H") for some j E {5, 6, 7, 8}. 

Suppose that Ai 0 int(H') for each i E {1, 2, 3, 4}. It is clear that G(3) yields 

Aflbd(H') is connected for each i = 1, 2, 3,4 (cf. Figure 12.2). As a result, we obtain 

an orientation of the closed convex curve bd(H') so that the sets A1, A2, A3 and A4 

meet bd(H') in one of the following cyclic orders: A1, A2, A3, A4, A1, called CO1, or 

A1, A2, A4, A3, A1, called CO2. Other orders are obtained through symmetry and 

some orders are not possible as demonstrated in Figure 12.3. 

Suppose that A4 C int(H*). Immediately we have that A4 C int(conv(At U Am )) 

for some t < m where t, m E {5, 6, 7}; an intuitive demonstration of this fact is given 

in Figure 12.4. From this we conclude that, any line which meet A4, but meets 

neither At nor Am, separates At and Am. Now, in the case of CO1, because the 

family satisfies Property G(3), we obtain a line q that meets A2, A4 and A8 but does 

not meet any of the other sets in {A1, A2,... , A8}. In particular q separates At and 

Am, whence q fl p E conv(p fl (At U Am )) C p " . However, it is easy to check that our 

choice of q separates A1 and A3, whence q fl p E coriv(p fl (A1 U A3)) 9 p'. Since, p' 

and p " are disjoint, we arrive at a contradiction. A similar argument for CO2 can 

be made by considering a line q which only meets A1, A4 and A8. In this instance 

q n  E conv(p fl (At U Am )) c p " and q n  E conv(p fl (A2 U A3)) 9 p' which is again 
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a contradiction since p' fl p" = 0. Thus, A4 0 int(H*). 

Suppose that At C int(H*) for some t E {5, 6, 7}. In the case of 001, if we 

choose a line r that only meets A1, A3 and A, we immediately have r fl p € p' \ A4 

because r separates A2 and A4 and r fl p E p \ A4 because At C int(H*). So the 

line r intersects the line p twice, a contradiction. An identical contradiction arises 

in the case of 002 by considering the line r that intersects the sets,, and only the 

sets, '42, A3 and A. Hence, At 0 int(H*) for all t E {5, 6, 7}. 

So, Ak flbd(H*) 0 for all k E {4, 5, 6, 7} and as before, we obtain an orientation 

of bd(H*) so that the sets '44, A5, '46, A7 meet the boundary in on of the two cyclic 

orders: A4, A5, '46, A7, A1, (CO3), and A4, A5, '47, '46, '44, (004). If CO1 and 003 

hold then a line meeting only A2, A4, A6 intersects p twice since it will separate A1 

from A3 and A5 from A7. Similarly, if 001 and 004 hold then a line meeting 

only A2, '44, '47 intersects p twice; if CO2 and 003 hold then a line meeting only 

A1, A4, AG intersects p twice; if 002 and 004 hold then a line meeting only A1, A4, '47 

intersects p twice. All of these contradictions fridicate that Ai C int(H') for some 

E {1, 2, 3, 4}. An analogous argument shows that Aj c int(H") for some j E 

{5, 6, 7, 8} Therefore, Claim 6 holds. 

Let Ai and Aj be the sets in Claim 6 and let Aq E 2t\{A1, A2,... A8}. Since the 

family satisfies Property 0(3), there is a line t which meets only the sets A, A, Aq. 

It is immediately clear that t intersects p' and p" which is a contradiction, since p' 

and p " are disjoint. Therefore, 2 satisfies property 1(7). 

U 

Theorem 21 Let 2L be a family of pairwise disjoint, compact, convex sets with the 
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Property G(n), n ≥ 3. Then 19AI ≤ n + 46. 

Proof. 

We proceed inductively. Let n = 3. For each A E ?L, let (A) denote the 

orthogonal projection of A onto the fixed line u and let J = {p(A) A E 2L}. First, 

observe that because the members of 21 are convex, the members of J form a system 

of intervals. By Lemma 14, 2t satisfies Property 1(7) whence no point on is covered 

by more than seven members of J. Thus, by Lemma 12, J = J1 U J2 U ... U J7, 

where J fl Jk = 0, and each J consists of pairwise disjoint intervals. Second, the 

authors cite other work, which is found in the following chapter, showing that, under 

the assumption given 12tl <co. Consequently, a straightforward geometric argument 

yields ,a(A) = (B) implies A = B, from which it is follows that = IJI. 

Clearly there is an integer k, 1 ≤ k ≤ 7, such that IJkI ≥ IJI/7 = I2t/7. Let 

Fk = {A E QL: j(A) E Jk}. It is easy to check that 1Fk1 = JkI. Since the members 

of Fk are separated by parallel lines we may apply Lemma 13 to show that Fk 

admits a common transversal. Furthermore, by Lemma 14, IFkI ≤ 7, otherwise 

Property 1(7) would fail. So, 1211/7 ≤ IJI = IFkI ≤ 7 and we immediately have 

≤49=3+46=n+46,n=3. So, the base case holds. 

Now, assume that for any family 2L" of pairwise disjoint, compact, convex sets 

with the Property G(n), 1W I ≤ n + 46. Next, suppose that 2t is a family of pairwise 

disjoint, compact, convex sets with the Property G(n + 1). Let A E QL, we claim 

that 2L \ {A} has Property G(n). Given {A1, A2,... , A} 9 QL \ {A}, we observe 

that {A, A1, A2,... , A} C QL has a transversal, 1, that meets all of these n + 1 

sets and only these sets in 2t, because Qt satisfies Property G(n + 1). Clearly, 1 is 

a transversal that meets all of the sets {A1, A2,... , A} 9 ?L \ {A} and only these 
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sets in QL \ {A} and so t \ {A} satisfies Property G(n). By the induction hypothesis 

- 1 = ?L \ {A}I :5n +46,  whence 2L1 ≤ (n + 1) + 46. • 

12.3 Conclusion 

This chapter briefly introduced the notions of Property G(n) and Property 1(n). 

The methods utilized in the proofs in this chapter are standard and commonly em-

ployed when dealing with these properties. The final theorem is interesting and it 

is important, because whenever one is dealing with a family that satisfies Property 

one immediately knows that the family is finite and an upper bound is known. 

H" 

PH 

7 2 3 4 

H' 

5! ' 6 

Figure 12.1: A schematic representation of H', H", H*, p', p" and p. The family 
shown here need not satisfy any properties of Lemma 14. 
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Figure 12.2: An example of why Ai fl bd(H') is connected for each i = 1, 2, 3, 4. Here 
A2 fl bd(H') is not connected. There is no line that meets the sets A1, A3, A4 that 
does not meet A2. Hence this family fails to exhibit Property G(3). 
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3 
1 4 

2 

H' 

Figure 12.3: An example demonstrating that the sets A1, A2, A3, A4 cannot meet 
bd(H') in the cyclic order A1,A3,A2,A4,A1. The sets meet pin the order 1,2,3,4. 
If the sets meet bd(H') in the cyclic order 1, 3, 2, 4, 1 then the line segment joining 2 
on bd(H') to 2 on p intersects the line segment joining 3 on bd(H') to 3 on p. Since 
the sets are convex, the point of intersection lies in both 2 and 3, contradicting the 
assumption that the sets are disjoint. 
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P 
(b) 

Figure 12.4: An intuitive explanation of why 
A4 c int(H*) = A4 C int(conv(At U Am )) for some t < m where t, m E {5, 6, 7}. 
The sets A4, A5, A6, A7 meet p in that order (a). Thus, if A4 C int(H*) then a 
configuration similar to (b) arises and the result is immediately apparent. 



Chapter 13 

"Linearly Related Plane Convex Sets." 

13.1 Introduction 

In this chapter, based on [6], we continue our exploration of other transversal prop-

erties. To begin, we summarize the properties of interest. Let 2t be a family of 

compact convex sets in E2 and n be a positive integer. 

Definition 1 Property G(n). For any n members of ?t, there is a line meeting 

exactly these n sets. See Figure 13.1. 

Definition 2 Property H(n). The boundary of the convex hull of any subset 9J! of 

Q meets at most n sets of W. See Figure 13.2. 

Definition 3 Property 1(n). Any line meets at most n members of 9A. 

Definition 4 Property I. Any line meets only a finite number of members of 2t. 

We first observe that if a family satisfies Property G(n) then it satisfies Property 

T(n), so G(n) is a much stronger condition than T(n). Thus far, when discussing the 

Property T(n), we have imposed stringent conditions on the family so that it may 

satisfy property T. In particular the discussion has been limited to line segments, 

parallelograms and translates of a compact, convex sets. The present discussion 

yields a remarkable result: if a family satisfies Property G(n) then the family is 

finite, irrespective of the members of the family. 
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Note that if a family satisfies Property 1(n) then it satisfies Property I and 

that if a family satisfies Property H(n) then the convex hull of any sub-family of the 

family is the convex hull of at most n members of the sub-family. These observations, 

although trivial, are easily overlooked and are used frequently in what follows without 

further mention. 

13.2 G(n)=t H(n +2) 

Theorem 22 Let 2L be a family of pairwise disjoint, compact, convex sets in E2 that 

satisfies Property G(n). Then Qt satisfies Property H(n + 2). 

Proof. Suppose that 2L does not satisfy Property H(n + 2). Therefore, there is 

a subset 21! of 21. such that the boundary of the convex hull of 21! meets at least n +3 

members of 21', say A1, A2,... , A 3. Let H = conv(21.') and we use the standard 

notation SH to denote the boundary of H. Observe that Ai fl ÔH is conneãted for 

each i, 1 ≤ i ≤ n + 3. For, if there is some j, 1 ≤ j ≤ n + 3, such that A1 n oH is 

not connected then (intH) \ A1 has two components from which we can draw the 

two sets A and A. in 21! so that they lie in different components of (itH) \ A1. 

Furthermore, it is clear from the way A and A have been chosen, that any line 

that meets A and A must also meet A3. Figure 13.3 helps illustrate the situation 

described. Now, choose A, 4, and n-2 members from 21.' that are distinct from A, 

4, and A1. By G(n) there is a line that meets only the n members of 21' we have just 

chosen. In particular, the line does not meet A. However, this line intersects A 

and A, whence it intersects A1 and we arrive at a contradiction. Therefore, Ai fl OH 

is connected for each i, 1 ≤ i ≤ n + 3. 
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Now, 8H is a closed convex curve. Thus, without loss of generality, we may 

orient 6H and label the sets A1, A2,... , A, +3 so that 5H meets the sets in the 

cyclic order A1, A2,... , A, 3, A1. By Property G(n), there exist two lines p and q 

such that p meets only the sets A1, A3, A5, A7, A8, A9,... , A +3 and q meets only 

the sets A2, A4, A6, A7, A8, A9,... , A, 3. More precisely, p meets all of the sets 

A1, A2,... ,A +3 except A2, A4, A6 and q meets all of the sets A1, A2,... , A +3 except 

A1, A3, A5. Because A1 and A3 are disjoint and p intersects both of these sets, 

there is a segment of p that lies between A1 and A3 which we call P. Formally, 

= con.v(pfl(Ai uA3))\(A1 U A3). 

Because A2 fl (p U A1 U A3) = 0, A2 is contained in a region R of H bounded by 

A1, A3 and P (cf. Figure 13.4). Due to the cyclic ordering of A1, A2,... , A, 3, it 

follows that R fl 6H meets only the sets A1, A2, A3, and these sets are the only sets 

contained entirely in R. Therefore, it follows that if Aj fl R 0 0, j = 4, 5,... , n + 3 

then Ajnpo O. The preceding statement yields (A4 U A6) 0 H \ R implies P, and 

consequently p, meets (A4 U A6) which contradicts the choice of p. So, (A4 U A6) C 

H\R. If qfl3 = 0 then q would be a line that meets A2, but not P UA1 UA3. Clearly, 

such a line cannot intersect H \ R which means the q cannot meet (A4 U A6) C H \ R. 

Therefore q fl p =h 0 and a completely symmetric argument yields p fl 4 0 0 where 

= conv(q n (A4 U A6)) \ (A4 U A6). Thus, p fl 4 0, which can only. occur if 

5H meets the sets A1, A3, A4, A6 in one of the cyclic orders A1, A4, A3, A6, A1 or 

A1, A3, A6, A4, A1. Since it cannot, due to the original cyclic ordering imposed on 

A1, A2,... , and 5H, the theorem follows immediately. m 
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13.3 G(n)I(n+8) 

Again, 21 is a family of pairwise disjoint, compact, convex sets in E2 and we assume 

that it satisfies Property G(n). To facilitate the discussion we introduce some no-

tation. Given two distinct members of QL, say Ai and A, let Hij = comv(A U As). 

We stipulate that at most one member of 2L is a point. If we allow more than one 

member of ?L to be a point, say Ai and Aj are two such points in E2, thenHij is 

a line segment contained in a line t, say. Now, by G(n) any n - 2 members of QL 

distinct from Ai and Aj will meet t, consequently 19AI ≤ n. Recall that the major 

result in this discussion is that a family, which satisfies G(n), is finite; in this case, 

where more than one member of the family is a point, the result follows trivially. 

Because Hij is not a line segment, this follows from the preceding stipulation 

that at most one member of Qt is a point, we obtain distinct lines of support for A 

and Aj which are also lines of support for Hij. We label these lines tij and t,j and 

write = ti, fl Hj, t tj,j fl (cf. Figure 13.5). Observe that if some member 

of 9A\ {A, A}, say Ak, meet both and t then any line which intersects both A 

and Aj must intersect Ak. If 19AI > n then choose n - 2 members of 2 \ {A, A, Ak}. 

By Property G(n), there is a line which intersect these n - 2 sets and A, A, but 

does not intersect any other member of 2L. However,this line meets Ai and A, so 

it also meet Ak, which is a contradiction. Therefore, we reduce to the trivial case 

where 1%1 ≤ n. Henceforth, we assume that no set meets both and t. 

Let 2L be a family of pairwise disjoint, compact, convex sets in E2 and as-

sume that it satisfies Property G(n). Let us assume p is a line that meets the 

sets A1, A2,... , A+3, where Ai E 21 and 1 ≤ i ≤ n + 3, in the order given. Let 
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conv(p n (A1 U A 3)). Since the family satisfies Property G(n), we may ap-

ply Theorem 22 to conclude that the family satisfies Property H(n + 2). Thus, 

A1 C int(conv(Ai U A2 U... U A 3)), for some j, 1 ≤ j ≤ n + 3. 

Lemma 15 Let  bea line such that qflA1 0 and qflA=0 for 1≤i74j≤n+3. 

Then qnfio 0. 

Proof. Observe that the fashion in which p meets the sets A1, A2,... , 

generates an obvious linear ordering. If A1 = A1 then as we have seen before A1 E 

II(Am) A) for some m and n and q separates Am and A. So, immediately we have 

the desired result. A similar argument applies if A1 = 

Thus, A1 lies between A1 and A+3 in the sense that A1 fl Hi,+3 0 0, otherwise 

the line p could not interset the sets in the order given. If A1 C H1, 3 then clearly 

q separates A1 and A+3. Consequently, p meets q at a point in H1,+s, and q np 0 0. 

If A1 0 H1,+3 then it must meet one of the line segments t13 or t 31, but not 

both. It must meet at least one, since A1 fl Hi,+3 =A 0, but it cannot meet both as 

was discussed earlier. Without loss of generality, assume A1 fl tln+3 4 0. Because 

A1 C int(conv (A1 U A2 U. .. U A +3 )), there exist i and k, 1 <i 0 j k ≤ n + 3, such 

that Ai and Ak both meet tL+3 and A1\H1,+3 C H. Thus, A1 C H1,+3 U Hij and 

q separates A and A, y E {1, i} and x E {j, n + 3}. Schematically, this situation 

is represented in Figure 13.6. In the diagram, we see that the critical aspect of this 

proof lies in the fact that Ai and Ak meet As a result, the only way q can 

meet A1 is if it separates the sets A1, A, Ak and A 3 in the previously described 

fashion. Consequently, p meets q in a point in A1 C H1, 3 U H, so q fl 0. u 

Theorem 23 If QL is a family of pairwise disjoint, compact, convex sets in E2 that 
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satisfies Property G(n) and 19tJ > n + 9 then the family satisfies Property I(n + 8). 

Proof. Before proceeding, we note that the result is straight forward, but some-

what tedious to prove in the case of 2tI = n + 9 and the result makes no sense if 

II <n+9. 
We first show that the theorem holds for n = 3 and then proceed inductively. 

Suppose that Qt is a family of pairwise disjoint, compact, convex sets in E2 that 

satisfies Property G(3) and I2tI > 12, but the family does not satisfy Property 

1(11). So, there is a line p that meets (at least) twelve members of 2t which we 

call A1,... , Al2. Clearly, p generates a linear ordering of those sets and without 

loss of generality we assume that p meets the sets in the stated order. Because 

the family satisfies Property G(3), by Theorem 22, the family satisfies Property 

H(S). Hence, there is an Ai E {A1,... , A6} and an A1 E {A7,... , Ai2} such that 

Ai C int(conv(A1U ... UA6)) and A1 C int(coriv(A7U ... UAi )). Because 12CI > 12, 

there is a A E QL \ {A1,... , A1 }. Now, by appealing to Property G(3), we obtain 

a line, q, that meets the sets A, A, A1 but does not meet any other set of QL. This 

means that q satisfies the conditions of Lemma 15 with respect to the collection 

A1,... , A6, so q meets p at a point in P = conv(p fl (A1 U. .. U A6)). However, q also 

satisfies the conditions of Lemma 15 with respect to the collection A7,... , Al2, so q 

meets p at a point in $ = conv(p fl (A7 U... U Al2)). Since p fl = 0, we arrive at 

a contradiction as the preceding statements indicate that line q, which is certainly 

distinct from p, meets the line p at two distinct points. 

Suppose that for any family Qt' of pairwise disjoint, compact, convex sets in E2 

that satisfies Property G(n) and IWI > n + 9, the family also satisfies Property 

I(n + 8). Let 2t be a family of pairwise disjoint compact convex sets in 1E2 that 
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satisfies Property G(n + 1) and I2tI > (n + 1) + 9 = n + 10. Choose an element 

A E Qt. Next choose m members of 2t \ {A}, call them A1,... ,A. By appealing 

to Property G(n + 1), we obtain a line t that intersects the sets A, A1,... , A, and 

only these sets in QL Clearly, t intersects the sets A1,... , A, and only these sets 

in ?L \ {A}. As A1,... , A, were arbitrarily chosen in 2 \ {A}, we see that any n 

members of 2L \ {A} have a line which intersects them, and only them, in 2t \ {A}. 

Hence, 2t \ {A} satisfies Property G(n) and 121 \ JAI  > n + 10 - 1 = n + 9, so by 

the induction hypothesis 91 \ {A} satisfies Property I(n + 8). Therefore, given any 

line it can meet at most n. +8 elements in QL \ {A} and that same line may possibly 

meet A as well, which means that any line will meet at most m +9 members of 21. In 

fact, if a line met n + 10 members of 21 then, after possibly removing A from those 

n + 10 sets, we would have n +9 members of 21 \ {A} with a line meeting them; this 

would contradict the assumption that 21 \ {A} is I(n + 8). In particular, 21 satisfies 

Property I(n + 9) = I((n + 1) + 8) and the induction is complete. 

13.4 H(n)+I=I9.I<oo 

Let 21 be a family of pairwise disjoint, compact, convex sets in 1E2 that satisfies 

Property H(n) and Property I. Suppose that A E 21 and denote by s(A) the set of 

all supporting lines of A. If p e s(A) then Q, denotes the closed half plane bounded 

by p that contains A, and R denotes the closed half plane bounded by p that does 

not contain A (cf. Figure 13.7). Observe that, in the space of lines 1E2, the set s(A) 

is connected, path connected in fact, and there is an obvious way to describe what 

it means for two lines in s(A) to be sufficiently close. Furthermore, observe that Q 
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and R vary continuously with p in the sense that if the line t is sufficiently close to 

p in s(A) then Qt is arbitrarily close to Qp and Rt is arbitrarily close to R in E2 (cf. 

Figure 13.8). Let .s*(A) = {p E s(A) : R contains an infinite number of sets of ?t} 

and s°(A) = s(A) \ s*(A) (cf. Figure 13.9). 

Lemma 16 For A E 2L, either s(A) = s*(A) or s(A) = s°(A). 

Proof. We first show that s*(A) and s°(A) are open in s(A). 

Let p E s*(A) and write F = {A E 2L: A C irit(R)} and H = conv( U A). 
AEF 

Clearly, R contains infinitely many members of 21. Property I ensures that at most 

only a finite number of those members meet p so the remainder must lie in the 

interior of R. In particular, H contains infinitely many members of ?L. However, 

Property H(n) ensures that is the convex hull of at most n members of QL, which 

indicates that is a closed and bounded convex set in int(R). So, p fl = 0, 

but more importantly, t fl = 0 for all t sufficiently close to p. Since Rt tends to 

R as t tends to p, H C R, implies H C R. Since H contains infinitely many 

members of 2t, then so does R. Consequently, t E s*(A) for all t sufficiently close 

to P. Thus we have shown that, for an arbitrary element p E s*(A), .we can find 

an open neighborhood of points in s(A) about p that is contained in s*(A). Hence, 

s*(A) is open s(A). 

Next, let p E s0(A) and write F = {A E 2t : A C int(Q)} and = 

conv( U A). Clearly R contains only finitely many members of QL, so Qp must 
AEF; 

contain the rest. Property I ensures that at most only finitely many members of 2t 

meet p, whence int(Q) contains infinitely many members of 2t. In particular, H° 

contains infinitely many members of 9.1. Because of Property H(n), H° is a closed 
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and bounded convex set. Again, lines t, chosen sufficiently close to p in s(A), yield 

half planes Qt that contain H° in their interior. Since, H° contains all but a finite 

number of members of 2L, t e s0(A) for all t sufficiently close to p. Thus, we have 

shown that for an arbitrary element p E s°(A), we can find an open neighborhood 

of points in s(A) about p that is contained in s°(A). Hence, s°(A) is open in s(A). 

Finally, we note that s(A) = s*(A) U s°(A), s*(A) fl s°(A) = 0 and s*(A), s°(A) 

are both open in and contained in s(A). Thus, if s*(A) 0 and s°(A) =A 0 then s(A) 

is not a connected set which is a contradiction. Hence, either s°(A) = 0 or s(4) = 0 

and the lemma follows immediately. • 

Theorem 24 Let be a family of pairwise disjoint compact convex sets in E2 that 

satisfies Property H(n) and Property I. Then 1211 is finite. 

Proof. Let H = conv(Q). By appealing to property H(n), there are at most n 

sets that meet the boundary of H. Let A and B be two such sets. As A and B are 

disjoint, there is a line t which strictly separates them. Let PA be the closed half 

plane bounded by t which contains A and PB be the closed half plane bounded by t 

which contains B. 

Since A is convex and t fl A = 0, there is a line p E s(A) that is parallel to t such 

that PB C R. Because we have chosen A so that it meets the boundary of H, there 

is a line .s E s(A) that supports H. Now, H C Q3 and because of Property I, there 

can be at most finitely many members of ?t that meet s and consequently there are 

not infinitely many members of 91 in R3. Henèe, s(A) = s°(A), which means that 

R contains only finitely many members of 2 and, in turn, PB contains only finitely 

many members of 2t. An analogous argument shows that PA contains only finitely 
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many members of 2L. Since Th 2 = PA U PB, the result follows. • 

13.5 C(n) = 1%1 <oo 

Corollary 8 If QL is a family of pairwise disjoint, compact, convex, sets in E2 that 

satisfies Property G(n) then Jal is finite. 

Proof. G(n)H(n+2)+I(n+8)H(k)+I, where k=n+2=I2Lj<oo. 

13.6 Conclusion 

The main result of this paper made no major assumptions about the family, other 

than it satisfies Property G(n), with the major consequence being that the family 

must be finite. Other results in the study of transversals have been restrictive in 

the sense that the families were composed of translates, or parallelograms. However, 

here we have been free to consider any arbitrary family. It is interesting to note that 

neither Property H(n) (cf. Figure 13.11) nor Property I (cf. Figure 13.11) are 

sufficient to ensure that the family is finite. 
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Figure 13.1: Property G(2). 
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Figure 13.2: Property G(2) and H(5). 

Figure 13.3: An illustration for Theorem 22. The set Ai fl 6H is not connected and 
any line that meets both Am and A must also pierce A. 
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Figure 13:4: The region R. 

Figure 13.5: We obtain distinct lines of support for Ai and A, which are also lines of 
support for Hip We label these lines tjj and tji and write '13 = tij fl Hjj, t = t1 fl H. 
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Figure 13.6: An illustration for Lemma 15. We see that Ai and Ak meet t. As 
a result, the only way q can meet Aj is if it separates the sets A1, and A 3 and if 
it separates the sets Ai and Ak. Hence q fl 0. 

Qp R 

Figure 13.7: An illustration of Qp and R. 
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Figure 13.8: An illustration of how Qt is arbitrarily close to Q, and how Rt is 
arbitrarily close to R in E2 provided t is sufficiently close to p in s(A). 
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kp 
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Figure 13.9: An illustration of a line p in s* (A). 
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1{IIIII:IIII:IIII 
Figure 13.10: Property H(2) alone does not ensure is finite. 
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Figure 13.11: Property I alone does not ensure 19,11 is finite. 



Chapter 14 

"On the (n - 2) Transversals of n Convex Subsets 

of the Plane" 

14.1 Introduction 

This chapter continues the exploration of other transversal properties. Let 2t be a 

family of pairwise disjoint, compact, convex sets and suppose that 0 0 2L' C 2L. We 

write A' = conv(12L'). Recall that a family 91 may satisfy the following properties: 

Definition 5 Property G(n). For any n members of QL there is a line meeting exactly 

these n sets. 

Definition 6 Property H(n). The boundary of the convex hull of any subset Qt' of 

Q1 meets at most n sets of W. 

In addition to these previously discussed properties, the family may satisfy: 

Definition 7 Property J(n). There exist n sets in ?t so that these sets are met by 

a line. 

Let I?LI = n ≥ 3. Observe that, in this case, J(n) and T(n) are equivalent. 

In the discussion of [22], it was demonstrated that T(n - 1) need not imply T(n). 

Consequently, in this situation, T(n - 1) need not imply J(n) as well. However, it 

is natural to ask if T(rz, - 2) implies T(n - 1) or J(n - 1). The goal of this chapter 

is to provide an answer to these two questions by discussing the results of [3]. 
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14.2 Discussion 

Let ?L = {A1, A2,... ,A} be a family of n pairwise disjoint, compact, convex sets in 

E2. We assume n ≥ 4, since n = 3 yields trivial results. We write Bij = conv(A, Ai). 

If 2t has Property G(n - 2), then given Ai and Ai in 21, where Ai =A A, we obtain a 

transversal Lij of 9,1 \ {A, A}. 

Lemma 17 For any positive integer k, there exists a smallest integer g(k) such that 

if * is a family of compact convex sets in 1E2, such that no three members of 2L 

satisfy property H(2) and 2t*I > g(k) then there are k sets in Qt, say, A1, A2,... , A 

so that Ai fl bd(coriv(Ai U A2 U ... U A,)) 0 0 for each i = 1,2... , k. 

We omit a proof of this Lemma which can be found in [4]. Instead, we note that 

this is a generalization of a theorem for points in the plane. In the simpler version, 

we ask: what is the fewest number of points g(k) in the plane, no three collinear, 

required to ensure that there is a convex k-gon among those points? In the case 

of k = 3 it is clear that g(3) = 3. However, less obvious is 9(4) = 5. Examining 

Figure 14.1 reveals that four points can be arranged so that the convex hull of those 

four points is only a triangle. However, the stipulation that no three points are 

collinear ensures that any fifth point must lie in one of the twelve regions indicated 

in Figure 14.1. By examining each case we obtain the desired result. The Property 

H(2) in Lemma 17 is similar to the stipulation that no three points are collinear and 

Ai fl bd(conv(Ai U A2 U. .. U Ac)) 0 0 is similar to the notion of a convex k-gon but 

the "vertices" are convex sets instead of points. The existence of the desired number 

g(k) is ensured by the cited article and we proceed without any further remarks. 

Lemma 18 If Qi has the Property G(n - 2), then 2L has Property H(5). 
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Proof. Suppose that does not satisfy H(5). So, there is a subset of L, say 

= {A1, A2,. . . , A6}, such that Aflbd(A') 0, where A' = conv(2t'). If Aflbd(A') 

is not connected then we observe that (intA') \ Aj has two components from which 

we can choose two sets, A and A, in A' so that they lie in different components of 

(intA') \ A. Since L1, meets A and A and any line that meets AX and 4, clearly 

meets A, L1, meets A; a contradiction. Hence, Aj fl bd(A') is connected. Thus, we 

may assume that the sets A1, A2,... , A6 meet the closed convex curve bd(A') in the 

cyclic order A1, A2,. . . ,A6, A1. 

If L1,3 does not separate A1 and A3 then A1 and A3 must lie on the same side 

of L1,3. Due to the way the sets A1, A2,... , A6 meet the closed convex curve bd(A'), 

A2 fl bd(A') lies on the same side of L113 as A1 and A3. Thus, in order for A2 to meet 

L1,3 it must cross irtt(conv(Ai U A3)). In particular, if t1 and t2 are the two lines that 

support A1 and A3 that also support conv(Ai U A3) and t = t1 fl eonv(Ai U A3) and 

= t2 fl conv(A1 U A3) then A2 fl t h 0 and A2 n t 0. Recall from the discussion 

of [6] that this cannot happen. 

So, L1,3 separates A1 and A3, and L4,6 separates A4 and A6. Thus, the lines 

L1,3 and L4,6 meet at a point q = L1,3 fl Ii4,6 and q E B1,3 \ {A1 U A3}, q € B4,6 \ 

{A4 U A6}. This implies that bd(A') meets the sets A1, A3, A4, A6 in the cyclic order 

A1, A6, A3, A4, A1 (cf. Figure 14.2). This contradicts the original cyclic ordering 

and the lemma holds. • 

Lemma 19 If 21! is a subset of Vi where any three members of 21! satisfy Property 

H(2) then 21.' satisfies Property H(2). 

Proof. If 21.' does not satisfy H(2) then we obtain at least three sets that meet 
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the boundary of their respective convex hull which is a contradiction. • 

Lemma 20 If ?t has the Property G(n - 2), then no eight element subset of ?t has 

Property H(2). 

Proof. Let {A1, A2,... , A8} 2t have Property H(2). Figure 14.3 demon-

strates what such a set might look like. By H(2), there exist three sets A1, A2, A3 

so that A2 C B1,3 and Ai 0 B1,3, i = 4, 5, 6, 7, 8. Observe that L1,3 strictly separates 

A1 and A3. Next, we develop some notation that is necessary in the following dis-

cussion; Figure 14.4 illustrates the notation. First, we obtain lines M and N that 

support A1, A3 and B1,3. Let M* = M fl B1,3, N' = N fl B1,3, L ,3 be the compo-

nent of L1,3 \ (intBi,$) that meets M* and L'1,3 be the component of L1,3 \ (intBi,$) 

that meets N', p'' = L,3 fl M*, p' = L'1,3 fl N', [p*,p] = eonv{p*,p}. Finally, 

F* = {A Ai fl (M* U L ,3) 0 and 4 ≤ i ≤ 8}, F' = {A : A fl (N' U L'1,3) 0 

and 4 ≤ i ≤ 8}. 

We make the following observations. First, L1,3 = L,3 U [p", p'] U L'1,3. Next, 

G(n - 2), which ensures that A4,... , As meet L1,3, and Ai 0 B1,3, i = 4, 5, 6, 7, 8 

allows us to conclude F*UF/ = {A4, A5,... , As}. Finally, if F*flF 0 0 then choose 

Ai E F* n F'. There are four cases to examine. If Ai fl M* 0 and Ai fl N' 54 0 

then we arrive at the usual contradiction that arises when a set crosses the convex 

hull of two other sets, A1 and A3 in this case. If Ai fl L ,3 0 0 and Ai fl L'1,3 0 

then the same contradiction arises. Finally, Ai fl M* 0 and Ai fl L'1,3 0 0 cannot 

occur because of H(2) and Ai 0 B1,3, i = 4, 5, 6, 7, 8. Similarly, Ai fl L 3 0 and 

Ai fl N' 0 cannot occur. Thus, F* fl F' = 0. 

One of F* or F' must contain three of the sets A4,... , A8. Without loss of 
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generality, we assume {A4, A5, A6} C F* and A5 C B416. Clearly, L113 separates A1 

and A3, and L416 separates A4 and A6. So, we obtain a point q = L113 fl L,6 and it 

is easy to check that q E B1,3 \ {A U A3} and q E B416 \ {A4 U A6}. We write L1,3 = 

L ,3 U [p, q] U [q, p']U L'113. If A4 fl (L 3 U [ps, q]) =A 0 and A4 n (L' 113 U [q, p']) 0 then 

we arrive at contradictions identical to those described in the preceding paragraph, 

when it was shown that F* fl F' = 0. So without loss of generality, we assume 

A4 fl (L ,3 U [p*, q]) = 0. As F* fl F' = 0 and L113 meets A4 we get A4 fl [q, p'] 0. 

Since A4 C F, it meets M* as well. However this can only occur if L416 meets A4, 

contrary to the choice of E416. i 

In the proof of the next theorem we use Ramsey Theory. Suppose that a set has 

a cardinality equal to or greater than the Ramsey Number R3 (a, b). This means that 

if the 3-tuples of our sef are colored red or blue then no matter how the coloring is 

carried out there exists a subset of our set that is all red and has cardinality a or 

there exists a subset of our set that is all blue and has cardinality b. 

Theorem 25 If Qt has the property G(n-2), then there is an integer N, independent 

of n, such that n<N. 

Proof. Let N = R3(8, g(6) + 1). Suppose 19il ≥ N. Color every three element 

subset red if it is H(2) and blue otherwise. Now, there is a subset 2L . C L such 

that 19A, I = 8 and it has the property that every three element subset of J is H(2) 

(i.e. 21, is red) or there is a subset 2L2 C QL such that I?12I = g(6) + 1 so that no 

three members of Q2 are H(2) (i.e. t2 is blue). In the first case, by Lemma 19, 2t1 

is H(2). So, we have eight members of ?L that are H(2) which contradicts Lemma 

20. In the second case, by Lemma 17, there are six members of 2 that meet the 



145 

boundary of their respective convex hull. This last statement contradicts Lemma 

18. a 

Corollary 9 Let QL be a family of pairwise disjoint, compact, convex sets in E2 that 

satisfies Property G(m). Then Qtj < m + 1 for m> N. 

Proof. If 1211 > m + 1 then there is 2V C Q such that 12VI = m + 2 and ?t' 

is G(m). Let n = m + 2, JWJ = n and QL' is G(n - 2). So, by Theorem 25, 

N > n = m + 2 > N + 2 which is a contradiction. a 

Corollary 10 Let 2L be a family of n ≥ N pairwise disjoint, compact, convex sets 

in E2 that satisfies Property T(n - 2). Then 2t satisfies Property J(n - 1). 

Proof. IfLisT(n-2), but not J(n-1) then clearly ntis G(n-2). Letm= n-2, 

so 2t is G(m) and Qf.j = n = m +2. However, by Corollary, 9, IQLI ≤ m + 1. So, we 

arrive at a contradiction. a 

Theorem 26 For any positive integer n ≥ 4, there exists a family of n pairwise 

disjoint compact convex sets in E2 which satisfies Property T(n —2) but not T(n - 1). 

Proof. Refer to the chapter on [22]. Replace QTh by Q where Q = conv{a, b} 

where a is a point on R_4 between 0 and fl R_4 and b is a point on Q,. 

Checking as we did in the chapter on Lewis' work the result follows immediately (cf. 

Figure 14.5). • 

14.3 Conclusion 

The questions posed at the beginning of the chapter have now been answered. Corol-

lary 10 shows that T(n - 2) does indeed imply J(n - 1). ,However, Theorem 26 
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shows that T(n - 2) does not imply T(n - 1). 
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Figure 14.1: An illustration indicating why g(4) ≥ 5. 



148 

4or6 
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q 

L1,3 

6 or 4 

3 

L4,6 

Figure 14.2: An illustration indicating why the cycling ordering is 1, 6, 3, 4 or 1, 4, 3, 6 
contrary to the original ordering. 



Figure 14.3: Eight convex sets that are H(2). 
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43 

L13 

Figure 14.4: An illustration for Lemma 20 indicating the notation used. 
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R4 

Si 
R5 Ow Q7 

Figure 14.5: An illustration of Theorem 26 for n = 7. 



Chapter 15 

Other Papers 

In preparing this manuscript, other papers were studied and, for various reasons, not 

included. In some cases, the results were repetitions of results already discussed. In 

other cases, the proofs were incorrect or definitions were lacking or the notation was 

incomprehensible. We discuss some of these papers now and give reasons for not 

including them. 

Due to errors in the proof of the main result and excessively poor notation, we do 

not devote a chapter to [17]. Similarly, poor notation made [15] incomprehensible. 

Since it and [13] are special cases of results discussed in [12], we omit an in depth 

discussion of these papers. 

Several extensions and generalizations of the planar transversal problem have 

been discussed. One particular generalization is omitted, however, and that is 

the generalization to the projective plane. A great deal of the discussion in this 

manuscript has required very little a priori familiarity with concepts in geometry. 

The goal throughout has been to provide a straight forward intuitive development 

of the study of transversals. In order to examine the generalization to the projective 

plane, a familiarity with projective geometry is necessary. Thus, parts of [12] and all 

of [21] are omitted from the discussion. 

A family, in Th 2, is said to satisfy Property TTh if the family can be partitioned into 

n or fewer subfamilies, each of which have a transversal. The problem of finding the 

smallest n such that for each r ≥ 3, T(r) implies TTh is called a Gallai-type transversal 
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problem. This manuscript only deals with Helly-type transversal problems and so [8] 

is omitted. 



Chapter 16 

Conclusion 

Arriving at the end of the discussion, we now look back to the beginning. It all started 

with a roll of quarters and a piece of dental floss and evolved in many directions, 

Generalizations of the problem in the plane were examined, analogous problems in 

higher dimensions were examined, problems dealing with geometric permutations 

and other transversal properties were looked at as well. 

In the study of transversals one tries to determine the necessary conditions that 

must be imposed on a family to ensure that Qt satisfies Property T. Ideally, one 

tries to impose as few conditions as possible. As we have seen, many of the results 

have been restricted to translates of compact convex sets. Ultimately, we seek a 

result of this nature for nothing more than an arbitrary family of compact convex 

sets. However, as we have seen, allowing certain rotations makes obtaining such a 

result nearly impossible. The various avenues of research discussed here are providing 

very interesting results and much work is still needed. 

On a final note, we briefly discuss a useful application of the theory presented 

here. Most pure mathematicians go about their business of proving theorems with 

little consideration for how these results may be applied in a real world context. 

Nonetheless, it is sometimes quite interesting to see how these theoretical matters 

are applied. In the literature, several applications of the study of transversals are 

mentioned, but the one discussed now is the most interesting and straightforward 

one. 
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In the design of computers, computer boards and electronic circuitry, it is de-

sirable to minimize the distance between certain components to improve computer 

speed and decrease processing time. The components may be modeled by convex 

sets, parallelograms for the most part, and the circuitry joining these components 

may be viewed as transversals. A whole family of components needs to be con-

nected together as well as certain sub-families of components. It is often necessary 

to connect any n components and all components in the most efficient way possible, 

by straight lines of circuits. The results from the study of transversals allow com-

puter component designers to know whether their designs are even possible before 

attempting to design such circuitry. 

To conclude, we note that the results discussed here are simple, but beautiful. 

Most of the works discussed require no specialized knowledge. No intensive theorems 

that require years of study were used, just simple intuitive reasoning. This is the 

inherent beauty of geometry. The problems are easy to understand and almost 

deceptively simple. However, the solutions are creative and require a great deal of 

ingenuity. This ingenuity is witnessed here, as some of the most beautiful results in 

the study of transversals have been examined. 



Chapter 17 

Appendix 

We briefly outline a method for obtaining the intersection of two C-sets. The work 

described here is the result of an attempt to improve the author's intuition regarding 

Grflnbaums reasoning. The end result is a few nice diagrams of the intersection of 

two C-sets. 

We begin with two line segments in the plane (cf. Figure 17.1). The line segments 

are perpendicular to each other and are of length two. One lies along the x-axis from 

o to 2; we call it 12. The other is centered at —1 and runs from (-1, 1) to (-1, —1) 

we call it ii. The line segments are bounded on either side by two lines, H0 and H1, 

parallel to the y-axis passing through —3 and 3, respectively. 

Our goal is to determine the intersection of the C-sets for these two line segments 

where H0 and H1 are the "parallel hyperplanes". That intersection is simply all of 

the lines that intersect both line segments. The text describes a means to determine 

the C-set of a single line segment. We modify that approach here. 

First, partition one of the line segments, say 12, into k evenly spaced disjoint, 

intervals. For the end point of each interval do the following: pivot a line about the 

end point so that the line passes through all points on l. Clearly, this generates 

closed intervals on H0 and H1 for each end point on 12. Essentially, H0 becomes the 

x-axis in the space where the C-sets are situated and H1 becomes the y-axis in the 

space where the C-sets are situated. For a unit increase along the H0 axis we obtain 

a unit decrease along the H1 axis. So, for each endpoint on 12, we are generating 

156 



157 

lines in the new space with negative slope and passing through the origin. In fact, 

we are generating line segments, because the intervals along H0 and H1, generated 

for each end point on 12, are closed and bounded. The union of all of these line 

segments produces an approximation of the intersection of the C-sets for the given 

line segments. 

We derive equations for these line segments and by refining the partition along 12 

we obtain a more precise approximation for the intersection of these two C-sets. By 

appealing to the Mathematical and Statistical package Maple, we may plot these line 

segments to produce an approximate picture of what the intersection of the C-sets for 

these two line segments looks like. The Maple code and diagrams of approximations 

for partitions of 10, 100 and 1000 points (along 12) are attached. The important thing 

to observe, in the following diagrams, is that the intersection of the two C-sets is a 

cell. 
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ii 

Ho 

(c,d) 

l:l.......• ••••• 

Hi 

H1 

H0 

(a,b) 

Figure 17.1: A line segment that lies in the intersection of the C-sets of the line 
segments 11 and 12. The solid line passing through the end point of 12, when pivoted 
about that end point, between the two dotted lines, sweeps out a closed interval on 
H0 and H1. By interpreting H0 and H1 as the axis of a new space where the C-sets 
are situated we obtain a line segment that lies in the intersection of the C-sets for l 
and 12. 



> k := 10; 

k:= 10 
> X [seq ((3*k+2k n )/(k+2 n ), n0..k)]; 

13, 817919 211123125 
X :=  [ , , , , 2, , , i:' , 

> Y : [seq((3*k+2*n)/(k+2*n), n0..k)I; 

[ -7 -13 -3 -11 -9 -2 -7 -3 -i 

7 '2' 9 
>plot([seq([[X[±],Y[i]J,[-X{i],-Y[±]]], i=1..k+1)]); 

3 

3 

k 100; 

L k:=100 
> X := [seq((3*k+2*n)/(k+2*n), n=0.k)]; 

[ 151 38 153 77 31 39 157 79 159 8 161 81 163 41 33 83 167 42 169 17 171 43 173 

51'13' 53'27'11'14' 57'29' 59'3' 61'31' 63'16'13'33' 67'17' 69' 7' 71'18' 73' 

87 7 44 177 9 179 9 181 91 183 46 37 93 187 47 189 19 191 48 193 97 39 49 197 99 

37'3'19' 77'39' 79'4' 81'41' 83'21'17'43' 87'22' 89' 9' 91'23' 93'47'19'24' 97'49' 

199 201 101 203 51 41 103 207 52 209 21 211 53 213 107 43 54 217 109 219 

99 101' 51 103 53 

11 221 

2 ' '26'21' ' 107'27' 109' ii' 111'28' 113'57'23'29' 117' 59' 119' 6'121' 

111 223 56 9 113 227 57 229 23 231 58 233 117 47 59 237 119 239 12 241 121 243 61 

61'123' 31'5' 63'127' 32' 129' 13' 131'33' 133' 67 '27'34' 137' 69' 139' 7' i.41' 71 '143' 36' 

49 123 247 62 249 5 

29"'73 ' 147' 37' 149' 3 

> Y = [seq ((_3*k+2*n)/(k±2*n), n=O. .k)]; 

-149 -37 -147 -73 -29 -18 -143 -71 -141 -7 -139 -69 -137 -17 -27 -67 -133 -33 

51 '13' 53 '27' 11' 7' 57 '29' 59 '3' 61 '31' 63 ' 8 '13' 33' 67 '17' 



-131 -13 -129 -16 -127 -63 -5 -31 -123 -61 -121 -3 -119 -59 -117 -29 -23 -57 -113 -14 

69 7' 71' 9' 73 '37'3' 19' 77 '39' 79 '2' 81 '41' 83 '21'17'43' 87'll' 

-111 -11 -109 -27 -107 -53 -21 -13 -103 -51 -101 -99 -49 -97 -12 -19 -47 -93 -23 -91 

89' 9' 91 23' 93 '47' 19' 12' 97'49' 99 101' 51' 103' 13' 21' 53' 107' 27' 109' 

-9 -89 -11 -87 -43 -17 -21 -83 -41 -81 -2 -79 -39 -77 -19 -3 -37 -73 -9 -71 -7 -69 

11' 111' 14' 113' 57' 23' 29' 117' 59' 119' 3' 121' 61' 123' 31'S' 63' 127' 16' 129' 13' 131' 

-17 -67 -33 -13 -8 -63 -31 -61 -3 -59 -29 -57 -7 -11 -27 -53 -13 -51 -1 

33' 133' 67' 27' 17' 137' 69' 139' 7' 141' 71'143' 18' 29' 73' 147' 37'149' 3,. 
>plot([seq({[X[i],Y[i]},[-X[i],-Y[±]]], ±=1..k-i-1)]); 

> k := 1000; 

k:= 1000 
> X : [seq((3*k+2*n)/(k+2*n), n=0..k)]; 

[ 1501 751 1503 188 301 753 1507 377 1509 151 1511 189 1513 757 303 379 
X:=[3 501'251' 503' 63'101'253' 507'127' 509' 51' 511' 64' 513'257'103'129' 

1517 759 1519 38 1521 761 1523 381 61 763 1527 191 1529 153 1531 383 1533 767 

517'259' 519'13' 521'261' 523'131'21'263' 527' 66' 529' 53' 531'133' 533'267' 

307 192 1537 769 1539 77 1541 771 1543 193 309 773 1547 387 1549 31 1551 194 

107' 67' 537'269' 539'27' 541'271' 543' 68'109'273' 547'137' 549'll' 551' 69' 

1553 777 311 389 1557 779 1559 39 1561 781 1563 391 313 783 1567 196 1569 157 

553'277'111'139' 557'279' 559'14' 561'281' 563'141'113'283' 567' 71' 569' 57' 



1571 393 1573 787 63 197 1577 789 1579 79 1581 791 1583 198 317 793 1587 397 

571'14' 573'287'23' 72' 577'289'579'29' 581'291 583' 73'117'293' 587'147' 

1589 159 1.591 199 1593 797 319 399 1597 799 1599 8-1601 801 1603 401 321 803 

589' 59' 591' 74' 593 '297' 119' 149' 597 '299' 599 '3' 601 '301' 603' 151' 121'303' 

1607 201 1609 161 1611 403 1613 807 323 202 1617 809 1619 811621:811 1623 203 

607' 76' 609' 61' 611'153 613'307' 123' 77' 617'309' 619'31' 621 311' 623' 78' 

13 813 1627 407 1629 163 1631 204 1633 817 327 409 1637 819 1639 41164F 821 

5 '313'. 627' 157' 629' 63' 631' 79' 633 '317' 

1643 411 329 823 1647 206 1649 33 1651. 413 

643'161'129'323' 647' 81' 649'13' 651'163' 

1661 831 1663 208 333 833 1667 417 1669 167 

661 '331' 663' 83'133' 333' 667' 167' 669' 67 

1679 42 1681 841 1683 421 337 843 1687 211 

679' 17' 681 '341' 683'171' 137'343' 687' 86' 

1697 849 1699 17 1701 851 1703 213 341 853 

697'349' 699' 7' 701'351' 703' 88'141'353' 

343 429 1717 859 1719 43 1721 861 1723 431 

143' 179' 717 '359' 719' 18' 721 '361' 723' 181' 

1733 867 347 217 1737 869 1739 87 1741 871 

733'367' 147' 92' 737'369' 739'37' 741'371' 

1751 219 1753 877 351 439 1757 879 1759 44 

751' 94' 753'377'151'189' 757'379' 759'19' 

1769 177 1771 443 1773 887 71 222 1777 889 

769' 77' 771'193' 773'387'31' 9V 777'389' 

1787 447 1789 179 1791 224 1793 897 359 449 

787'197' 789' 79' 791' 99' 793'397' 159' 199 

361 903 1807 226 1809 181 1811 453 1813 907 

161'403' 807'101' 809' 81' 811'203' 813'407 

1823 228 73 913 1827 457 1829 183 1831 229 

823'103'33'413' 827'207' 829' 83' 831' 104' 

1841 921 1843 461 369 923 1847 231 1849 37 

841 '421' 843 '211' 169' 423' 847' 106' 84.9' 17' 

1859 93 1861 931 1863 233 373 933 1867 467 

859'43' 861 '431' 863 108' 173'433' 867'217' 

1877 939 1879 47 1881 941 1883 471 377 943 

877'439' 879'22' 881 '441' 883'221' 177'443' 

127' 159'. 637 319' 639 16' 641" 321' 

1653 827 331 207.1657 829 1659 83 

653 '327' 131' 82' 657 329' 659 '33' 

1671 209 1673 837 67 419 1677 839 

671' 84' 673'337'27' 169' 677'339' 

1689 169 1691 423 1693 847 339 212 

689' 69' 691'173' 693'347' 139' 87' 

1707 427 1709 171 1711 214 1713 857 

707 ' 177' 709' 71' 711' 89' 713 '357' 

69 863 1727 216 1729 173 1731 433 

29'363' 727' 91' 729' 73' 731'183' 

1743 218 349 873 1747 437 1749 7 

743' 93' 149' 373' 747' 187' 749 '3' 

1761 881 1763 441 353 883 1767 221 

761'381' 763'191'153383' 767' 96' 

1779 89 1781 891 1783 223 357 893 

779'39' 781'391' 783' 98'157'393' 

1797 899 1799 9 1801 901 1803 451 

797'399' 799'4' 801'401' 803'201' 

363 227 1817-909 1819 91 1821 911 

'163' 102' 817 '409' 819 '41' 821 '411' 

1833 917 367 459 1837 919 1839 46 

833 '417' 167"209' 837'419' 839'21' 

1851 463 1853 927 371 232 1857 929 

851 '213' '.5V427'171'107' 857 '429' 

1869 187 1871 234 1873 937 15 469 

869' 87.' 871'109' 873'437' 7'219' 

1887 236 1889 189 1891 473 1893 947 

887' Ill' 889' 89' 891'223' 893"i'17' 



379 237 1897 949 1899 19 1901 951 1903 238 

179' 112' 897'449' 899' 9' 901'451' 903'113' 

1913 957 383 479 1917 959 1919 48 1921 961 

913 '457"183'229' 917'459' 919'23' 921 '461' 

1931 483 1933 967 387 242 1937 969 199 97 

931 '233' 933 '467' 187' 117' 937 '469' 939 '47' 

1949 39 1951 244 1953 977 391 489 1957 979 

949'19 951'119' 953'477' 191'239' 957'479' 

1967 246 1969 197 1971 493 1973 987 79 247 

967'121' 969' 97' 971'243' 973'487'39' 122' 

381 953 1907 477 1909 191 1911 239 

181'453' 907'227' 909' 91' 911'114' 

1923 481 77 963 1927 241 1929 193 

923'231'37'463' 927'116' 929' 93' 

1941 971 1943 243 389 973 1947 487 

941 '471' 943 '118' 189'473' 947'237' 

1959 49 1961 981 1963 491 393 983 

959'24' 961'481' 963'241'193'483' 

1977 989 1979 99 1981 991 1983 248 

977'489' 979'49' 981'491' 983'123' 

397 993 1987 497 1989 199 1991 249 1993 997 399 499 1997 999 1999 2001 1001 

197' 493' 987 '247' 989' 99' 991 ' 124' 93 '497' 199'249' 997'499' 999, L, 1001' 501' 
2003 501 401 1003 2007 251 2009 201 2011 503 2013 1007 403 252 2017 1009 2019 

1003' 251'201' 503'1007' 126' 1009' 101' 1011' 253' '1013' 507'203' 127' 1017' 509'1019' 

101 2021 1011 2023 253 81 1013 2027 507 2029 203 2031 234 2033 1017 407 509 

51'1021' 511'1023' 128'41' 513'1027' 257' 1029' 103' 1031' 129' 1033' 517'207' 259, 

2037 1019 2039 51 2041 1021 2043 511 409 1023 2047 256 2049 41 2031 513 2053 

1037' 519' 1039'26' 1041' 521 '1043'261'209' 523 '1047' 131' 1049'21' 1051'263' 1053' 

1027 411 257 2057 1029 2059 103 2061 1031 2063 258 413 1033 2067 517 2069 207 

527'2:11' 132' 1057' 529'1059' 53'lOGl' 531'1063' 133'213' 533'1067' 267' 1069' 107' 

2071 259 2073 1037 83 519 2077 1039 2079 52 2081 1041 2083 521 417 1043 2087 

1071' 134' 1073' 537 '43'269' 1077' 539'1079' 27' 1081' 541 '1083'271"2117' 543 '1087' 

261 2089 209 2091 523 2093 1047 419 262 2097 1049 2099 21 2101 1051 2103 263 

136' 1089' 109' 1091'273' 1093' 547 '219' 137' 1097' 549' 1099' 11' 1101' 551 '1103' 138' 

421 1053 2107 527 2109 211 2111 264 2113 1057 423 529 2117 1059 2119 53 2121 

221' 553 ' 1107'277' 1109' 111' 1111' 139' 1113' 557 '223'279' 1117' 559 ' 1119'28' 1121' 

1061 2123 531 17 1063 2127 266 2129, 213 2131 533 2133 1067 427 267 2137 1069 

561' 1123'281' 9' 563'1127' 141' 1129' 113' 1131'283' 1133' 567'227' 142' 1137' 569' 

2139 107 2141 1071 2143 268 429 1073 2147 537 2149 43 2151 269 2153 1077 431 

1139' 57' 1141' 571'1143' 143'229' 573' 1147'287' 1149'2' 1151' 144' 1153' 577 '231' 

539 2157 1079 2159 54 2161 1081 2163 341 433 1083 2167 271 2169 217 2171 543 

289'1157' 579' 1159'29'1161' 581'1163'291,'233' 583 "116 7 '146' 1169'117'117"L293' 

2173 1087 87 272 2177 1089 2179 109 2181 1091 2183 273 437 1093 2187 547 2189 

1173' 587'4,7' 147'1177' 589' 1179' 59' 1181' 591'1183'148'237' 593' 1187' 297' 1189' 

219 2191 274 2193 1097 439 549 2197 1099 2199 11 2201 1101 2203 551 441 1103 

119' 1191'149'1193' 597'239' 299'1197' 599'1199' 6'1201' 601'1203'301'241' 603' 



2207 276 2209 221 2211 553 2213 1107 443 277 2217 1109 2219 111 2221 1111 2223  

1207' 151' 1209' 11' 1211'303' 1213' 607'24.3' 152' 1217' 609' 1219 61 ' 1221' 611 ' 1223' 

278 89 1113 2227 557 2229 223 2231 279 2233 1117 447 559 2237 1119 2239 56 

153'49' 613'1227' 307' 1229' 123' 1231' 154' 1233' 617'247'309' 1237' 619' 1239'31' 

2241 1121 2243 561 449 1123 2247 281 2249 9 2251 5563 -2253 1127 451 282 2257 

124f' 621'1243'311'249' 623'1247' 156' 1249'S' 1251'313' 1253' 627'251' 157' 1257' 

1129 2259 113 2261 1131 2263 283 453 1133 2267 567 2269 227 2271 284 2273 1137 

629'1259' 63'1261' 631'1263' 158' 253' 633'1267' 317' 1269' 127' 1271' 159' 1273' 637' 

91 569 2277 1139 2279 57 2281 1141 2283 571 457 1143 2287 286 2289 229 2291  

51' 319' '1277' 639' 1279'32' 1281' 641' 1283'321' 257' 643' 1287' 161? 1289' 129' 1291' 

573 2293 1147 459 287 2297 1149 2299 23 2301 1151 2303 288 461 1153 2307 577 

323' 1293' 647 '259' 162' 1297' 649' 1299"13' 1301' 651 ' 1303' 163'.261' 653' 1307'327' 

2309 231 2311 289 2313 1157 463 579 2317 1159 2319 58 2321 1161 2323 581 93 

1309' 131' 1311' 164' 1313' 657 '263'329' 131'7' 659' 1319'33' 1321' 661 ' 1323'331' 53' 

1163 2327 291 2329 233 2331 583 2333 1167 467 292 2337 1169 2339 117 2341 1171 

663 '1327' 166' 1329' 133' 1331'333' 1333' 667 '267' 167' 1337' 669' 1339' 67' 1341' 671' 

2343 293 469 1173 2347 587 2349 47 2351 294 2353 1177 471 589 2357 1179 2359 

1343' 168'269' 673 ' 1347'337' 1349'27' 1351' 169' 1353' 677 '271'339' 1357' 679' 1359' 

59 2361 1181 2363 591 473 1183 2367 296 2369 237 2371 593 2373 1187 19 297 

34' 1361' 681'1363' 341'273' 683' 1367' 171' 1369' 137' 1371'343' 1373' 687'll' 172' 

2377 1189 2379 119 2381 1191 2383 298 477 1193 2387 597 2389 239 2391 299 2393 

1377' 689 '1379' 69' 1381' 691' 1383' 173'277' 693' 1,387'347' 1389' 139' 1391' 174' 1393' 

1197 479 599 2397 1199 2399 12 2401 1201 2403 601 481 1203 2407 301 2409 241 

697 '279'349' 1397' 699'1399' 7'1401' 701 ' 1403'351'281' 703' 1407' 176' 1409' 141' 

2411 603 2413 1207 483 302 2417 1209 2419 121 2421 1211 2423 303 97 1213 2427 

1411' 353' 1413' 707'283' 177' 1417' 709' 1419' 71' 1421' 711 '1423' 178' 57' 713' 1427' 

607 2429 243 2431 304 2433 1217 487 609 2437 1219 2439 61 2441 1221 2443 611 

357' 1429' 143' 1431' 179' 1433' 717'287' 359' 1437' 719' 1439'36' 1441' 721' 1443'361' 

489 1223 2447 306 2449  

289' 723' 1447' 181' 1449' 

1231 2463 308 493 1233  

731 '1463' 183'293' 733' 

2479 62 2481 1241 2483  

1479'37' 1481' 741 '1483' 

312 24971249 2499 5] 

187' 1497' 749'1499' 3 

49 2451 613 2453 1227 491 307 2457 1229 

29' 1451'363' 1453' 727'291' 182' 1457' 729' 

2467 617 2469 247 2471 309 2473 1237 99 

1467'367' 1469' 147' 1471' 184'473 737 '59' 

621 497 1243 2487 311 2489 249 2491 623 

371'297' 743 ' 1487' 186' 1489' 149' '1491'373' 

2459 123 2461 

1L159' 73 '1461' 

619 2477 1239 

3(59' 1477' 739' 

2493 1247 499 

1493' 747 '299' 



> Y : [seq ((_3*k+2*n )/(k+2*n ), n=0..k)]; 

1-3, -1499 -749 -1497 -187 -299 -747 -1493 -373 -1491 -149 -1489 -93 -1487 -743 -297 501 '251' 503' 63 '101' 253' 507 '127' 509' 51 ' 511 '32' 513 '257' 103' 

-371 -1483 -741 -1481 -37 -1479 -739 -1477 -369 -59 -737 -1473 -92 -1471 -147 -1469 

129' 517 '259' 519'13' 521 261' 523' 131'21'263' 527 '33' 529' 53' 531' 

-367-1467 -733 -293 -183 -1463 -731 -1461 -73 -1459 -729 -1457 -91 -291 -727 -1453 

133" 533 '267' 107' 67 537 269' 539' 27' 541'271' 543 '34' 109'273' 547' 

-363 -1451 -29 -1449 -181 -1447 -723 -289 -361 -1443 -721 -1441 -18 -1439 -719 -1437 

137' 549'11' 551 ' 69 553 277' 111' 139' 557 '279' 559' 7' 561 '281' 563' 

-359 -287 -717 -1433 -179 -1431 -143 -1429 -357 -1427 -713 -57 -89 -1423 -711 -1421 -71 

141' 113'283' 567 71 569 57' 571.' 143' 573 '287'23'36' 577 '289' 579 '29' 

-1419 -709 -1417 -177 -283 -707 -1413 -353 -1411 -141 -1409 -88 -1407 -703 -281 -351 

581 '291' 583 ' 73 '117' 293' 587 ' 147' 589 ' 59 ' 591 '37' 593 '297' 119' 149' 

-1403 -701 -1401 -7 -1399 -699 -1397 -349 -279 -697 -1393 -87 -1391 -139 -1389 -347 

597 '299' 599 '3' 601 '301' 603'151' 121'303' 607 '38' 609 61 ' 611'153' 

-1387 -693 -277 -173 -1383 -691 -1381 -69 -1379 -689 -1377 -86 -11 -687 -1373 -343 

613 '307' 123' 77' 617 '309' 619 '31' 621 '311' 623 '39' 5 313,' 627 '157' 

-1371 -137 -1369 -171 -1367 -683 -273 -341 -1363 -681 -1361 -17 -1359 -679 -1357 -339 

629 ' 63 ' 631 ' 79 ' 633 '317' 127' 159' 637 '319' 639 ' 8 ' 641 '321' 643 ' 161' 

-271 -677 -1353 -169 -1351 -27 -1349 -337 -1347 -673 -269 -84 -1343 -671 -1341 -67 

129' 323' 647 ' 81' 649 ' 13' 651 ' 163' 653 '327' 131' 41' 657 '32.9' 659 '33' 

-1339 -669 -1337 -167 -267 -667 -1333 -333 -1331 -133 -1329 -83 -1327 -663 -53 -331 

661 '331' 663 83' 133'333' 667 167' 669' 67' 671 '42' 673 337'27' 169' 

-1323 -661 -1321 -33 -1319 -659 -1317 -329 -263 -657 -1313 -82 -1311 -131 -1309 -327 

677 '339' 67917' 681 '341' 683171' 137'343' 687. '43' 689' 69' 691'173' 

-1307 -653 -261 -163 -1303 -651 -1301 -13 -1299 -649 -1297 -81 -259 -647 -1293 -323 

693 '347' 139' 87 ' 697 '349' 699 ' 7 ' 701 '351' 703 '44' 141' 353' 707 ' 177' 

-1291 -129 -1289 -161 -1287 -643 -257 -321 -1283 -641 -1281 -16 -1279 -639 -1277 -319 

709' 71' 711' 89' 713 '357' 143' 179' 717 '359' 719' 9' 721 '361' 723'181' 

-51 -637 -1273 -159 -1271 -127 -1269 -317 -1267 -633 -253 -79 -1263 -631 -1261 -63 

29' 363' 727 ' 91' 729 ' 73 ' 731 ' 183' 733 '367' 147' 46' 737 369' 739 '37' 

-1259 -629 -1257 -157 -251 -627 -1253 -313 -1251 -5 -1249 -78 -1247 -623 -249 -311 

741 371' 743'93 '149'373' 747 '187' 749 '3' 75f'47' 753377'151'189' 

-1243 -621 -1241 -31 -1239 -619 -1237 -309 -247 -617 -1233 -77 -1231 -123 -1229 -307 

757 '379' 759 ' 19' 761 '381' 763 ' 191' 153' 383' 767 '48' 769 ' 77 ' 771 '193' 



-1227 -613 -49 -153 -1223-611 -1221 -61 -1219 -609 4217 -76 -243 -607 -1213 -303 

773 '387'31' 97' 777 '389' 779 '39' 781 '391' 783 '49' 1S'7.'393'787 '197' 

-1211 -121 -1209 -151 -1207 -603 -241 -301 -1203 -601 -1201 -3 -1199 -599 -1197 -299 

789' 79' 791' 99' 793 '397' 159' 199' 797 399' 799 '2' 801 '401' 803 '201' 

-239 -597 -1193 -149 -1191 -119 -1189 -297-1187 -593 -237 -74 -1183 -591 -1181 -59 

161'403' 807'101' 809' 81' 811 '203' 813 407' 163'51' 817 '409' 819 '41' 

-1179 -589 -1177 -147 -47 -587 -1173 -293 -1171 -117 -1169 -73 -1167 -583 -233 -291 

821 '411' 823 ' 103' 33' 413' 827 '207' 829 ' 83 ' 831 52' 833 '417' 167' 209' 

-1163 -581 -1161 -29 -1159 -579 -1157 -289 -231 -577 -1153 -72 -1151 -23 -1149 -287 

837 '419' 839 '21' 841 '421' 843 '211' 169'423' 847 53' 849 '17' 851 '213' 

-1147 -573 -229 -143 -1143 -571 -1141 -57 -1139 -569 -1137 -71 -227 -567 -1133 -283 

853 '427' 171' 107' 857 '429' 859 '43' 861 '431' 863 54' 173'433' 867 '217' 

-1131 -113 -1129 -141 -1127 -563 -9 -281 -1123 -561 -1121 -14 -1119 -559 -1117 -279 

869' 87' 871'109' 873 '437'7' 219' 877 '439' 879'll' 881 '441' 883 '221' 

-223 -557 -1113 -139 -1111 -111 -1109 -277 -1107 -553 -221 -69 -1103 -551 -1101 -ii 

177' 443' 887 ' 111' 889 ' 89 ' 891 '223' 893. '447' 179' 56' 897 '449' 899 ' 9 

-1099 -549 -1097 -137 -219 -547 -1093 -273 -1091 -109 -1089 -68 -1087 -543 -217 -271 

901 '451' 903 ' 113' 181' 453' 907 '227' 909 ' 91 ' 911 '57' 913 '457' 183' 229' 

-1083 -541 -1081 -27 -1079 -539 -1077 -269 -43 -537 -1073 -67 -1071 -107 -1069 -267 

917 '459' 919 '23' 921 '461' 923 '231' 37' 463' 927 '58' 929 ' 93.' 931 '233' 

-1067 -533 -213 -133 -1063 -531 -1061 -53 -1059 -529 -1057 -66 -211 -527 -1053 -263 

933 '467' 187' 117' 937 '469' 939 '47' 941 '471' 943 '59' 189' 473' 947 '237' 

-1051 -21 -1049 -131 -1047 -523 -209 -261 -1043 -521 -1041 -13 -1039 -519 -1037 -259 

949 '19' 951 ' 119' 953 '477' 191' 239' 957 '479' 959 ' 12' 961 '481' 963 '241' 

-207 -517 -1033 -129 -1031 -103 -1029 -257 -1027 -513 -41 -64 -1023 -511 -1021 -51 

193'483' 967'121' 969' 97' 971 '243' 973 '487'39'61' 977 '489' 979 '49' 

-1019 -509 -1017 -127 -203 -507 -1013 -253 -1011 -101 -1009 -63 -1007 -503 -201 -251 

981 '491' 983'123' 197'493' 987 '247' 989' 99' 991 '62' 993 '497' 199'249' 

-1003 -501 -1001 -999 -499 -997 -249 -199 -497 -993 -62 -991 -99 -989 -247 -987 

997 '499' 999 1001' 501' 1003' 251' 201' 503' 1007' 63' 1009' 101' 1011' 253' 1013 

-493 -197 -123 -983 -491 -981 -49 -979 -489 -977 -61 -39 -487 -973 -243 -971 -97 

507' 203' 127' 1017' 509' 1019' 51' 1021' 511' 1023' 64'-4-1' 513' 1027' 257' 1029' 103' 

-969 -121 -967 -483 -193 -241 -963 -481 -961 -12 -959 •-479 -957 -239 -191 -477 -953 

1031' 129' 1033' 517' 207' 259' 1037' 519' 1039' 13' 1041' 521' 1043' 261 '209' 523' 1047' 

-119 -951 -19 -949 -237 -947 -473 -189 -59 -943 -471 -941 -47 -939 -469 -937 -117 

131'1049' 21'1051' 263' 1053' 527' 211' 66'1057 529 7 1059' 53' 1061' 531' 1063' 133' 



-187 -467 -933 -233 -931 -93 -929 -58 -927 -463 -37 -231 -923 -461 -921 -23 -919 

213' 533' 1067' 267'1069' 107' 1071' 67' 1073' 537' 43' 269' 1077' 539' 1079' 27'1081' 

-459 -917 -229 -183 -457 -913 -57 -911 -91 -909 -227 -907 -453 -181 -113 -903 -451 

541' 1083' 271' 217' 543' 1087' 68' 1089' 109' 1091' 273' 1093' 547' 219'137' 1097' 549' 

-901 -9 -899 -449 -897 -56 -179 -447 -893 -223 -891 -89 -889 -111 -887 -443 -177 

1099' 11' 1101' 551' 1103' 69' 221' 553' 1107' 277' 1109' 111' 1111' 139' 1113' 557' 223' 

-221 -883 -441 -881 -11 -879 -439 -877 -219 -7 -437 -873 -109 -871 -87 -869 -217 

279' 1117' 559' 1119' 14' 1121' 561' 1123 281' 9' 563' 1127' 141' 1129' 113' 1131' 283' 

-867 -433 -173 -54 -863 -431 -861 -43 -859 -429 -857 -107 -171 -427 ••853 -213 -851 

1133' 567' 227' 71'1137' 569' 1139' 57' 1141' 571'1143' 143'229' 573' 1147' 287' 1149' 

-17 -849 -53 -847 -423 -169 -211 -843 -421 -841 -21 -839 -419 -837 -209 -167 -417 

23' 1151' 72' 1153' 577' 231' 289' 1157' 579' 1159' 29' 1161' 581' 1163' 291' 233' 583' 

-833 -52 -831 -83 -829 -207 -827 -413 -33 -103 -823 -411 -821 -41 -819 -409 -817 

1167' 73' 1169' 117' 1171' 293' 1173' 587' 47' 147' 1177' 589' 1179' 59' 1:181' 591' 1183' 

-51 -163 -407 -813 -203 -811 -81 -809, -101 -807 -403 -161 -201 -803 -401 -801 -2 

74' 237' 593'1187' 297' 1189' 119' 1191' 149' 1193' 597' 239' 299' 1197' 599' 1199' 3' 

-799 -399 -797 -199 -159 -397 -793 -99 '-791 -79 -789 -197 -787 -393 -157 -49 -783 

1201' 601' 1203' 301' 241' 603' 1207' 151' 1209' 121' 1211' 303' 1213' 607' 243' 76' 1217' 

-391 -781 -39 -779 -389 -777 -97 -31 -387 -773 -193 -771 -77 -769 -48 -767 -383 

609' 1219' 61' 1221' 611' 1223' 153' 49' 613' 1227' 307' 1229' 123' 1231' 77' 1233' 617' 

-153 -191 -763 -381 -761 -19 -759 -379 -757 -189 -151 -377 -753 -47 -751 -3 -749 

247' 309'1237' 619' 1239' 31' 1241' 621' 1243' 311' 249' 623' 1247' 78'1249' 5' 1251' 

-187 -747 -373 -149 -93 -743 -371 -741 -37 -739 -369 -737 -46 -147 -367 -733 -183 

313' 1253' 627' 251' 157' 1257' 629' 1259' 63' 1261' 631'1263' 79' 253' 633' 1267' 317' 

-731 -73 -729 -91 -727 -363 -29 -181 -723 -361 -721 -9 -719 -359 -717 -179 -143 

1269' 127' 1271' 159' 1273' 637' 51' 319' 1277' 639' 1279' 16' 1281' 641' 1283' 321' 257' 

-357 -713 -89 -711 -71 -709 -177 -707 -353 -141 -44 -703 -351 -701 -7 -699 -349 

643' 1287' 161' 1289' 129' 1291' 323' 1293' 647' 259' 81' 1297' 649' 1299' 13' 1301' 651' 

-697 -87 -139 -347 -693 -173 -691 -69 -689 -43 -687 -343 -137 -171 •.683 -341 -681 

1303' 163' 261' 653' 1307' 327' 1309' 131' 1311' 82' 1313' 657' 263' 329' 1317' 659' 1319' 

-17 -679 -339 -677 -169 -27 -337 -673 -42 -671 -67 -669 -167 -667 -333 -133 -83 

33' 1321' 661'1323' 331' 53' 663' 1327' 83' 1329' 133' 13fl' 333' 1333' 667' 267' 167' 

-663 -331 -661 -33 -659 -329 -657 -41 -131 -327 -653 -163 -651 -13 -649 -81 -647  

1337' 669' 1339' 67'1341' 671' 1343' 84' 269' 673' 1347' 337' 1349' 27' 1351' 169' 1353' 

-323 -129 -161 -643 -321 -641 -8 -639 -319 -637 -159 -127 -317 -633 -79 -631 -63 

677' 271' 339' 1357' 679'1359' 17' 1361' 681' 1363' 341' 273' 683' 1367' 171' 1369' 137' 



-629 -157 -627 -313 -5 -39 -623 -311'-621 -31 -619 -309 -617 -77 -123 -307 -613  

1371' 343' 1373' 687' 11' 86' 1377' 689' 1379' 69' 1381' 691'1383' 173' 277' 693' 1387' 

-153 -611 -61 -609 -38 -607 -303 -121 -151 -603 -301 -601 -3 -599 -299 -597 -149 

347' 1389' 139' 1391' 87' 1393' 697' 279' 349' 1397' 699' 1399' 7' 1401' 701' 1403' 351' 

-119 -297 -593 -37 -591 -59 -589 -147 -587 -293 -117 -73 -583 -291 -581 -29 -579 

281' 703' 1407' 88' 1409' 141' 1411' 353' 1413' 707' 283' 177' 1417' '109' 1419' 71' 1421' 

-28 -577 -36 -23'-287 -573 -143 -571 -57 -569 -71 -567 -283 -113 -141 -563 -281 

711'1423' 89' 57' 713' 1427' 357' 1429' 143' 1431' 179' 1433' 717' 287' 359' 1437' 719' 

-561 -7 -559 -279 -557 -139 -111 -277 -553 -69 -551 -11 -549 -137 -547 -273 -109 

1439' 18' 1441' 721' 1443' 361' 289' 723' 1447' 181' 1449' 29' 1451' 363' 1453' 727' 291' 

-34 -543 -271 -541 -27 -539 -269 -537 -67 -107 -267 -533 -133 -531 -53 -529 -33 

91' 1457' 729' 1459' 73' 1461' 731' 1463' 183'293' 733' 1467' 367' 1469' 147' 1471' 92' 

-527 -263 -21 -131 -523 -261 -521 -13 -519 -259 -517 -129 -103 -257 -513 -32 -511 

1473' 737' 59' 369' 1477' 739' 1479' 37' 1481' 741' 1483' 371' 297' 743' 1487' 93' 1489' 

-51 -509 -127 -507 -253 -101 -63 -503. -251 -501 -1 

149' 1491' 373' 1493' 747' 299' 187' 1497' 749' 1499' 3 
>plot([seq(E[X[i],Y(i]],[-X[i],-Y[i]]], 

[ > 
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