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ABSTRACT
P-wave seismic anisotropy is of growing concern to the exploration industry. The
transmissional effects through dipping anisotropic strata, such as shales, cause substantial
depth and lateral positioning errors when imaging subsurface targets. Using anisotropic
physical models the limitations of conventional isotropic migration routines were
determined to be significant. In addition, these models were used to validate both

anisotropic depth migration routines and an anisotropic, numerical raytracer.

In order to include anisotropy in these processes, one must be able to quantify the
anisotropy using two parameters, € and 8. These parameters were determined from
headwave velocity measurements on anisotropic strata, in the parallel-, perpendicular-
and 45°-to-bedding directions. This new method was developed using refraction seismic
techniques to measure the necessary velocities in the Wapiabi Formation shales, the
Brazeau Group interbedded sandstones and shales, the Cardium Formation sandstones
and the Palliser Formation limestones. The Wapiabi Formation and Brazeau Group rocks
were determined to be anisotropic with €=0.231+0.05, 8=-0.051+0.07 and €=0.11+0.04,
6=0.4210.06, respectively. The sandstones and limestones of the Cardium and Palliser

formations were both determined to be isotropic, in these studies.

In a complementary experiment, a new procedure using vertical seismic profiling (VSP)
techniques was developed to measure the anisotropic headwave velocities. Using a
multi-offset source configuration on an appropriately dipping, uniform panel of
anisotropic strata, the required velocities were measured directly and modelled. In this
study, the geologic model was modelled using an anisotropic raytracer, developed for the
experiment. The anisotropy was successfully modelled using anisotropic parameters

based on the refraction seismic results.
With a firm idea of the anisotropic parameters from the aforementioned studies, these

parameters were then used in the anisotropic depth migration of a real dataset from the

Alberta Foothills. The final anisotropic section demonstrated several improvements over

i



the isotropic section. This anisotropic section is considered to be more accurate, in terms
of depth and lateral position of reflectors, and thus a more complete solution than the

isotropic result.

In conclusion, seismic velocity anisotropy can seriously affect the imaging of subsurface
play targets and every effort should be made to take these effects into account using

anisotropic processing routines.
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CHAPTER 1 INTRODUCTION

1.1 Introduction

Seismic anisotropy is the variation of the velocity of seismic waves, with direction,
through a medium. This is true for both compressional (P-waves) as well as shear (S-
waves). This dissertation is primarily concemned with P-wave anisotropy. It is known
that the main causes of seismic anisotropy are due to aligned mineral grains, aligned
cracks, aligned crystals and periodic thin layering [Helbig, 1994]. The simplest form of
anisotropy is referred to as transverse isotropy (TI) where all directions perpendicular to
the axis of symmetry are equivalent or isotropic [Helbig, 1994]. When the axis of
symmetry is normal to the free surface, the material is considered to have vertical
transverse isotropy (VTI) [Crampin, 1986]. It is known that the majority of sedimentary
basins are composed, primarily, of shales and are also the main location of hydrocarbon
reserves [Schoenberg, 1994; Sayers, 1994; Homby et al., 1994]. Hence, the anisotropy
due to the periodic thin layering of shales is very important and needs to be studied.
Seismic anisotropy will affect time-to-depth conversions of seismic data which, in turn,
will result in incorrect images of subsurface structures. This misrepresentation can
seriously alter the location of interpreted exploration targets. Therefore, by studying
seismic anisotropy, one can better assess a play target, thereby reducing the risks and

costs involved.

Banik (1984) discovered a strong correlation between the presence of shales and
measured velocity anisotropy. It has since been shown that shales exhibit TI, with a
symmetry axis perpendicular-to-bedding, when probed with wavelengths that are longer
than the thickness of the layers [Postma, 195S; Backus, 1962; Levin, 1979; Schoenberg,
1994; Johnston and Christensen, 1995]. Hence, shales exhibit an intrinsic anisotropy,
resulting from the fine layering of the minerals, and the difference between the fast and
slow velocities can be as much as 30% [Backus, 1962; Berryman, 1979; Levin, 1979;
Jones and Wang, 1981; Banik, 1984; Gaiser, 1990; Sayers, 1994; Homby et al., 1994;

Kebaili and Schmitt, 1996]. Extrinsic anisotropy is a result of alternating layers of



2
isotropic or anisotropic media, with the layering of these materials being less than the

wavelength of the probing seismic wave. Both intrinsic and extrinsic anisotropy is
considered to exist in interbedded shales and sandstones in the Rocky Mountain Foothills,
where folding and thrusting further compound the problem. No longer are the
stratigraphic horizons horizontal, but are thrusted, often at steep angles, to the surface.
These dipping layers are expected to induce changes in slowness and result in velocity
anomalies in seismic data [Crampin, 1977; Gaiser, 1990]. The difference between the
perpendicular-to- and parallel-to-bedding, hence the respective fast and slow, velocities is
significant, increasing with the degree of anisotropy. This variation in velocity is
assumed to have a significant effect on the traveltimes to the horizons below dipping

clastic sequences, resulting in an apparent velocity anomaly in the seismic data.

1.2 Anisotropic P-wave Propagation

In order to understand and model geometric P-wave raypaths through any 2-D model, in
the presence of elliptical and anelliptical anisotropy, some general theory must be
established. Snell’s law and both phase and group angles need to be considered across
each interface [Crampin, 1977; Chapman and Pratt, 1992, Pratt and Chapman, 1992;
Keith and Crampin, 1977a; Berryman, 1979; Gaiser, 1990; Dellinger and Vernik, 1994;
Vestrum, 1994; Slawinski, 1995]. Computation of both reflection and transmission
coefficients at anisotropic boundaries has previously been considered; however, none has
considered interfaces that were not normal to the interface [Daley and Hron, 1977, Keith
and Crampin, 1977a,b; Levin, 1978; Byun, 1982; Gaiser, 1990; Slawinski et al., 1995].
An elliptical wavefront solution, the simplest anisotropy assumption, was first considered
to determine whether a complete, general anisotropic solution could be obtained for all
ray angles. Also a solution that allows the major and minor axes of the ellipse to be

oriented arbitrarily in 2-D space with respect to the interface, was developed.

1.2.1 Elliptical Anisotropy Solution
In this section, the relationship between the phase, v(8), and group, V(¢), velocities are

derived, as well as the critical angle, under the assumption of elliptical anisotropy and a



3
general rotation of the symmetry axis of the incident and refracted media. The basis of the

elliptical solution was a combination of equations derived by Levin (1978) and Byun

(1982) for an elliptically anisotropic medium. In this type of medium, a wavefront will

be elliptical, and the equation of the phase velocity surface is given by [Byun, 1982],
v?(0) = v cos’ (@) + v} sin* () (1.1)

where, v, is the vertical or perpendicular-to-bedding velocity, v, is the horizontal or
parallel-to-bedding velocity and the phase angle, 6, is measured from the slow velocity
axis. In this thesis, the terms v,,, and vy, are sometimes used to describe v, and v, ,
respectively, in order to generalize the theory for dipping TI media. The phase velocity,
v(6), refers to the velocity of the seismic wavefront in a direction parallel to the wavefront
normal. In contrast, the group or ray velocity, V(¢), is the velocity of the wave surface, in
a direction radially outward from a point source in the anisotropic medium (Figure 1.1)

[Winterstein, 1990; Thomsen, 1986].

~,

wavefront

ray ./

[ 4 wave vector

Figure 1.1. Diagram illustrating the difference between phase angle (8) and
group or ray angle (¢) for the VTI case [adapted from Thomsen (1986)].

The relationship between phase and group velocity is given by [Byun, 1982],

v(0)
V(o)

= cos(¢ —0) (1.2)
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where V(¢) and ¢ relate to the group velocity surface and v(6) and 0 relate to the phase

velocity surface.

Also given by Byun (1982) is,
tan(g) = (% ) tan(8) . (13)

The group velocity surface is derived by the following procedure. Squaring equation (1.2)
gives,

v3(0) =V (p)cos> (¢ —0) = V2 (¢)[cos(¢)cos(@) +sin(¢)sin(@) ] (1.2")

Equating equations (1.1) and (1.2°),
V2(¢)|cos® (9)cos2(8) + 2 cos(¢) cos(8) sin(@) sin(8) +sin > (§) sin*(9) | = v} cos>(8) + v} sin>(9)

Multiplication by (%052 ; 0)) yields,

V2 (@)|cos? (9) + 2sin(@) cos(@) tan(@) +sin’ (§) tan>(@) ]=v? + v tan*(8)

Substituting for tan(@) from equation (1.3) results in,

2 4 -2 4 o2
v2(¢)[cos2(¢) + 25in(¢)cos(¢){——-———v" sin@) } +sin2(¢){———v“ sin_(9) H =vZ 4y {——-—”" Sn “”}

v: cos(9) v, cos* (@) v, cos’(9)

Multiplication by (v} cos?(#)) yields,

V2@)|v: cos® (@) + 2v2v? sin® (@) cos® (@) + v? sin® (@) |=vv} cos? () + viv} sin® (@)

Rearranging gives,

V2(@)lvZ cos?(g) + vZsin2(@)f = viv2[vZ cos?(@) + v2 sin(9)]



Therefore,
v? — vai
@ = icos @ +visin’@)]
or,
1 ___sin2(¢)+cosz(¢) (1.4)
Vig) Vi v

which is the equation for the group velocity surface.

Figure 1.2 illustrates a ray being transmitted through an interface. All angles are
measured counterclockwise positive and angle direction is important. Angles ¢ and 0 are
the ray (group) and phase angles, respectively, and are measured from the slow velocity
axis of the ellipse, vow, Or, in other words, the axis of symmetry of the medium. If the
axis of symmetry is rotated from the normal of the interface, the rotated angle %, is
measured from the interface normal. When y # O, the interface is not parallel to the fast
velocity axis, or shale laminations, which is often the case in folded and faulted

environments. This allows for a general elliptical solution to be obtained.

In order to develop the general elliptical numerical raytracer described in Chapter 2, the
following relationships must be established. Note that all equations are valid in both the
incident and refracted media and the angle definitions for each medium is given in Figure

1.2.

In the incident medium, the ray incident propagation angle, &, and rotation angle of the
symmetry axis, %, are known. Hence, from Figure 1.2, the ray incident and refracted
propagation angles are described by:

a =¢ +7. (1.5)
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The horizontal slowness, or ray parameter p, which is conserved across an interface
according to Snell’s Law, is defined as,

sin(0)

p= (1.6)
v
for the isotropic case (i.e. @ =¢, and y =0). This becomes,
_sin(@+y) (1.7)

v(0)

for the anisotropic case. Note that the phase velocity is dependent upon 8 and the rotation

angle of the symmetry axis (§) is also included.

jewiou

.
-
.z
.
2
.

N

inadent
refracted

&
.

[

Figure 1.2. Generalized angle definition for a ray being transmitted through an interface.
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Now, by expanding equation (1.7), the ray parameter may then be expressed as a function

of vertical and horizontal velocities, v, and v, respectively, phase velocity, 6, and axis
rotation angle, 7,

p= sin(@) cos(y) + cos(8)sin(y)
\/vvz cos’(0) + v} sin’(0)

Multiplying the numerator and denominator of the previous equation by (%os(o))

yields,

_sin(y) + cos(y)tan(9) (1.8)
p= \/ 2 2 2 .
v, +v, tan°(0)

which is the ray parameter in terms of v,, v, axis rotation angle, yand phase angle, 6.

Substituting for tan(@) from equation (1.3) yields,

v

: tan(¢)J

Vi
\/vf +v§{:—:tan2(¢)J
h

Multiplying the numerator and denominator by Je2 gives,

sin(y) + cos(y)l:
p =

p= v;? sin(y) + v;> cos(y) tan(¢)

(1.9)
v +v; tan’(9)

which is the ray parameter in terms of v,, v,, axis rotation angle, yand ray angle, ¢. This
allows for the calculation of the ray parameter in the incident medium, directly from

given information.
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Since the ray parameter is conserved across the interface, it is necessary to obtain the
refracted ray angle, ¢, in terms of the ray parameter, p, in order to calculate the refracted
ray propagation angle, a. Rearranging equation (1.4) results in,

1
V(¢)cos(¢)

= V2 + v, tan’ (@) (1.4")

Substituting equation (1.4’) into equation (1.9),

p = V(¢)|v;2 sin(y) cos(@) + v;* cos(y) sin(¢) (1.10)

Squaring equation (1.9),

» v sin?(y) +2v;?v,” sin(y)cos(y) tan(@) + v, cos’(y)tan’ (¢)
- v.? +v,” tan*(9)

Cross-multiplying and rearranging yields,

p2vt+ pv;tan®(@) = v  sin®(y) + 2v?v;? sin(y) cos(y) tan() + v, cos* (y) tan* (@)

Hence,

(pzv;z —-v; cos?® (}'))tan2 @) - (v} sin(y)cos(y))tan(cp) + (pzv;Z —v ' sin? (y)): 0

Using the quadratic formula to solve for tan(¢) yields,

2v;2v;2 sin(y)cos(y) £ \/4v;4v;4 sin 2(y)cosz(}') -4 2\1;2 - v;4 cos? (y)x;zv;z - ;;4 sin 2 (7))
tan(¢) = 072 v cos? )
vy —Vp cos r)

Multiplying the numerator and denominator by v v, yields,

v} sin(y)cos(y) £ pv; Jvf cos?(y) +visini(y)—(pv,v,)
vi(p?v —cos(y))

tan(¢) =



Therefore,

tan(¢) = vy \sin(y)cos(y) £ pyJvZ cos*(y) + v} sin®(y) - (pv,v, |
vy J p’v} —cos’(y)

v

(1.11)

which is the ray angle, ¢, in terms of the ray parameter, p, axis rotation angle, ¥, v,, and
vy. This allows for the calculation of the refracted ray angle, ¢, and hence the ray

refracted propagation angle, a, using the known parameters of the refracted medium.

Note that for a normal ray, p=0, equation (1.11) reduces to,

tan(@) = { :" )tan(y) .

The refracted phase angle, 6, may also be described in terms of the refracted medium’s

parameters. Squaring equation (1.8) and rearranging gives,

szvz + pzvz tan’ @)= sinz(y) + 2sin(y)cos(y)tan(6) + cos’ (y)tan 2 (2))

Hence,

( pzvf — cos? (7)) tan” (@) + (=2 sin(y) cos(¥)) tan(6) +(p2v:' ~sin’(¥)) =0

Using the quadratic formula to solve for tan(8) yields,

2sin(y)cos(y) £ J4 sin z (7) cos2 )— 4(p2v: —cos2 (y)szvf —~sin 2(}'))

@)= 2(p2v'2l —cosl(y))

Multiplying and rearranging results in,

2
sin(y)cos(y) + p\/ vvz cos2 () + v: sin 2 (7)- (pv vv)

(" o)

tan(@) =
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which is the phase angle, 6, in terms of the ray parameter, p, axis rotation angle, ¥, v,, and

Vh.

Note that substitution of equation (1.12) into equation (1.11) yields,

2
tan(¢) = ( %z— )m(e) . (1.3)

For completeness, the phase incident and refracted propagation angles are defined as,

B=60+7 (1.13)
as in Figure 1.2.

Note that equation (1.7) becomes,

_ sin(B) _ (1.14)
v(0)

P

for the anisotropic case. Critical refraction must also be considered, which occurs when,

6. Zsin"(%) (1.15)

for the isotropic case. v, and v, refer to the incident and refracted phase velocities,

respectively. For the elliptically anisotropic case, critical refraction occurs when,

lv,f sin2(7)+vfcosz(y)—(pv,,vv)2J<0. (1.16)

1.2.2 Anelliptical Anisotropy Solution

For weakly anisotropic media, the following Thomsen (1986) equations can be used:

Cu"Cn _VYaT VW (1.17)
2c5;, 14

E

v
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5 ((_‘13-4'-C44)2-(C33—C.;.;)2 =4{Vi—l]—(v_h— ] (1.18)
2c53(C33 —€y) vy Vv

where c;; are the elastic stiffness coefficients and v,, vys and v, are the perpendicular-to-,
45°-to- and parallel-to- bedding phase velocities, respectively. An anisotropic medium is
considered weakly anisotropic when the difference between the bedding-normal and
bedding-perpendicular velocities is less than 20% [Thomsen, 1986]. Also, for an
anisotropic medium to be considered elliptically anisotropic, the parameters € and 8 must
be equal [Thomsen, 1986]. However, this is only a mathematical simplification as € and

O usually differ in actual rock samples [Thomsen, 1986; Tsvankin and Thomsen, 1994].

It is worthy to note that the percentage (%) anisotropy is calculated as follows, throughout
this thesis:

V, =V,

%100 % (1.19)

% anisotropy =
Vi

Using Thomsen (1986) notation, the phase velocity is given by,

v(@) =, (1+8sin’(@)cos*(8) + £sin*(9)) . (1.20)

where a, =v_. The relationship between the group and phase angles is,

tan(¢) = tan(@)[1 + 26 + 4(¢ — 8)sin*(8) . (1.21)

The ray velocity can be obtained by,
V(@) =a,(1+8sin’(¢)cos’(¢) +€esin’(9)). (1.22)

1.3 Measuring € and &
In order to use the Thomsen (1986) notation for computing the propagation of P-waves
through anisotropic media, one must have knowledge about the values of both € and 8.

Obtaining accurate values for these parameters has been widely investigated, mainly
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through the investigation of nonhyperbolic moveout, from surface seismic data, in

homogeneous, flat lying layers. Tsvankin and Thomsen (1994) first investigated the
relationship between anisotropy and (non)hyperbolic moveout in seismic data. Note also
that the hyperbolic moveout equation is strictly valid only for a reflector below an
homogeneous isotropic or elliptically anisotropic layer. Tsvankin and Thomsen (1994)
determined that the presence of anisotropy resulted in nonhyperbolic moveout, even in an
homogeneous layer, and that for P-waves, the relative magnitude of deviations from
hyperbolic moveout increases with increasing le- 8. They also discovered that the
short-spread moveout velocity is not equal to the rms velocity, even for horizontal layers,
in the presence of anisotropy. Thus the P-wave moveout from horizontal reflectors is
insufficient to recover the VTI parameters, even when using long offsets [Tsvankin and
Thomsen, 1994; Alkhalifah and Tsvankin, 1995]. As a result, the process of inverting for
the anisotropic parameters is complicated using surface seismic data. It was also shown
that the vertical S-wave velocity has a minimal effect on the P-wave traveltimes. This
allows for the P-wave traveltimes to then be characterized by only three independent
parameters: vertical P-wave velocity (v,), € and & [Tsvankin and Thomsen, 1994,

Alkhalifah and Tsvankin, 1995; Tsvankin, 1996 and 1997].

Alkhalifah and Tsvankin (1995) have developed an inversion routine, using modified
equations from Tsvankin (1995), which provides sufficient information to perform time
processing steps. These include DMO, pre- and post-stack time migration but not depth
migration. The time-to-depth conversion requires an accurate knowledge of the vertical
P-wave velocity, which cannot be determined from the P-wave NMO velocities alone
[Tsvankin and Thomsen, 1994; Alkhalifah and Tsvankin, 1995]. Unfortunately, this
inversion routine is only valid for a homogeneous, TI medium above a moderately
dipping reflector (<50-60°). In addition, this process yields only the vertical P-wave
NMO velocities and an effective anisotropic parameter 1, which is defined by Alkhalifah
and Tsvankin (1995) as follows:

=£—6
1-26

n (1.23)
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This parameter, 7, is an indication of the deviation from ellipticity of a material.
However, in order to obtain the individual values of v,, € and 9§, required for depth
processing routines, one must have additional external information, such as well logs,

cross well information or a check shot survey.

When working in a complexly structured environment, such as the Rocky Mountain Fold
and Thrust Belt, one does not encounter flat-lying structures very often. Generally, the
rocks are often folded and thrusted to steep dip angles, which may or may not outcrop at
surface. With this in mind, the process of obtaining the anisotropic parameters from
surface seismic data is not feasible, particularly when the wavelength of structures is
significantly less than the seismic recording aperture. An additional problem is that the
rock formations in the Southern Alberta Foothills may possess varying degrees of
anisotropy, as a result of both intrinsic (e.g. Wapiabi and Blackstone shales) and extrinsic
(e.g. Lower Brazeau/Belly River interbedded shales and sandstones) properties. See
Figure 1.3 for stratigraphic column of the southern Rocky Mountain Foothills. This may
result in lateral inhomogeneity in anisotropic parameters as well as velocity in the
subsurface, especially when these formations are folded and thrusted. In these
environments, the optimal approach to subsurface imaging is pre-stack depth migration,
but this process requires prior knowledge of the anisotropic parameters of various

formations.

1.4 Structure and Objectives of Thesis

The majority of work published to date does not adequately address the problem of
reflection seismic imaging in anisotropic media with a tilted symmetry axis. Most of the
examples published-to-date describe horizontally layered media with a vertical symmetry
axis (VTI), or vertically aligned cracks with a horizontal symmetry axis (HTI), and
virtually nothing with intermediate dip angles [for example, Tsvankin, 1997]. Thus the
focus of this dissertation is to address the tilted symmetry axis problem of the complexly
structured environment, in the pre-stack depth migration domain. This includes the

development of both refraction seismic and VSP field techniques to determine the
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individual anisotropic parameters necessary for the depth migration process. These
experimental techniques have not been previously employed for the determination of

anisotropic parameters of rocks at a seismic wavelength scale.

Two physical models, representative of structures found in the foothills of central Alberta
and incorporating anisotropic material were used to demonstrate the ‘pull-up’ effects of
anisotropy due to steeply dipping shales. These physical models are extremely useful for
assessing the effects of anisotropy on seismic images since the velocities, anisotropic
parameters, dip angles, and the exact location and geometry of the thrust sheets are
known a priori. The objective of the experiments with physical models was to determine
if the effects of anisotropy, particularly transverse isotropy, would significantly affect
isotropic migration results. Initially, numerical analysis was undertaken on these model
data, described in Chapter 2, to assess the magnitude of the anisotropic effects of dipping

strata, which can affect traveltimes significantly.

Pre-stack depth migration was then performed on both physical model datasets, and these
results are described in Chapter 3 using both isotropic and anisotropic velocity models.
The first physical model dataset was examined using the isotropic, pre-stack depth
migration (PSDM) routine at Amoco Canada, in the summer of 1996. This was done to
assess the limitations of the isotropic PSDM. To evaluate the differences between
isotropic and anisotropic PSDM, both physical model datasets were subsequently

analyzed using the software provided by Kelman Technologies Inc., in the spring of 1998.

Current metheds of time-to-depth conversion of P-wave seismic data do not address the
traveltime and velocity distortions caused by seismic anisotropy, especially in areas of
complex geological structure. The first step in addressing this problem is to know which
rock units are anisotropic and to quantify their anisotropic parameters.  This
quantification can be done using laboratory studies on core and outcrop samples;
however, this can be very difficult, particularly when examining the notoriously

anisotropic rock type of shales. Also, it is difficult to mimic the in situ conditions in the
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laboratory and, secondly, the friable shale samples also tend to break apart under the

saturated conditions necessary to determine their anisotropic parameters. Hence, in situ
measurements of the rocks are preferred since they give a more robust characterization of
their properties. In this thesis, refraction seismic techniques have been developed, in
Chapter 4, to measure anisotropic parameters of shales and other clastic sequences, in
situ. By laying out seismic lines parallel, perpendicular and at 45° to the local strike
directions, the Thomsen (1986) anisotropic parameters, € and & have been determined
from the bedding-parallel, bedding-perpendicular and intermediate (45° azimuth)
velocities. These refraction techniques were developed and applied in seven different
field experiments, measuring the velocity variations in the Wapiabi, Cardium and Palliser

formations as well as rocks of the Brazeau Group (Figure 1.3).

VSP technology has been previously considered for the determination of velocity
anisotropy in rocks; however, these methods are limited to dips lcss than 5° [Kebaili and
Schmit, 1996; Sayers, 1997; MacBeth, 1998]. Therefore, with this limitation, these
applications are not appropriate in moderate to steep dip environments, such as in the
Foothills of the Rocky Mountain Fold and Thrust Belt. In Chapter S, a new approach to
using VSP technology to determine the anisotropic parameters is developed and tested in
an Alberta Foothills well. To calculate the anisotropic parameters, € and 9, in the
presence of moderate to steep dips, accurate determinations of the bedding-normal,
bedding-perpendicular and 45° velocities are required. Using multi-offset VSP
technology, these velocities were determined from the first arrival information through a
thick homogeneous, moderately dipping (30-60°), uniformly dipping panel of rocks and a

multi-offset source configuration.

In Chapter 6, the migration of an Alberta Foothills surface seismic dataset is described
and processed using anisotropic pre-stack depth migration. This required a geologically
controlled velocity model, and the anisotropic parameters determined from the refraction
(Chapter 4) and VSP (Chapter 5) surveys. Anisotropic depth migration was used to

provide an optimally imaged depth section.
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1.5 Geology and Study Areas

This thesis involved several field sites in southern Alberta where experiments were
undertaken. A stratigraphic column of formations in the foothills of southern Alberta is
shown in Figure 1.3. The main geologic formations of interest belong to the Devonian,
Mississippian and Upper Cretaceous periods. The Mississippian rocks are the oldest and
deepest rocks involved in structural deformation in the areas studied, most of which were
in the Triangle Zone, a structural feature at the leading edge of the fold and thrust belt
[Lawton et al., 1994; Gordy et al., 1977]. The top of the Paleozoic strata, which are
comprised mainly of carbonate rocks, is a major marker of interest in seismic data as this
is the boundary between the overlying clastic rocks and the underlying carbonate rocks. It
1s in this seismic reflector that the effects of anisotropy in the overlying sediments are
evident. The Mississippian rocks overlie the Devonian Exshaw and Palliser Formations
and Fairholme Group. The Exshaw Formation is a black shale which is often a major
glide horizon in the southern Alberta foothills [Slotboom, 1992]. The Palliser Formation
and Fairholme Group are mainly composed of carbonate rocks. In strata of Mesozoic
age, Alberta Group rocks, comprising the Wapiabi, Cardium and Blackstone formations,
are of greatest interest in this study. The Blackstone and Wapiabi formations are marine
shales and are both important detachment horizons [Slotboom, 1992]. They range in
thickness from 300-450 m and exhibit intrinsic anisotropic properties. Between these
formations lies the Cardium Formation, which is composed mainly of sandstones and
conglomerates [Slotboom, 1992]. Above the Alberta Group lie the interbedded
sandstones and shales of the Belly River Formation of the Brazeau Group (Figure 1.3).
This formation is also of interest due to the extrinsic anisotropic properties of the

interbedded layers.

The locations of the various surveys are shown on a map of Alberta, Canada, shown in
Figure 1.4. Refraction seismic surveys were undertaken at sites near Jumpingpound

Creek, Longview, Seebe, and Exshaw. The VSP survey was performed at Wildcat Hills.
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Figure 1.4. Map of Alberta indicating the field survey areas examined in this dissertation. Seven
refraction surveys were performed in various locations near Jumpingpound Creek, Longview and
Seebe/Exshaw. The VSP survey was performed at Wildcat Hills.
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CHAPTER 2 PHYSICAL AND NUMERICAL MODELLING THROUGH

ANISOTROPIC MEDIA

2.1 Introduction

Physical models, representative of structures found in the foothills of central Alberta and
incorporating anisotropic material, e.g. phenolic laminate, were used to demonstrate the
pull-up effects of anisotropy due to steeply dipping shales. These physical models are
extremely useful for assessing effects of anisotropy on seismic reflectors below dipping
strata since the velocities, anisotropic parameters, dip angles, and the exact location and
geometry of the thrust sheets are known a priori. By studying physical models, it is also
easier to predict and understand the results obtained in the field. Also, this allowed for
the determination of the effects of anisotropy, particularly transverse isotropy, and

whether they significantly affect isotropic migration results.

Initial work involved the development of a numerical raytracer to predict the traveltimes
of primary waves, or P-waves, through these physical models. The purpose of this work
was to numerically model geometric P-wave raypaths though any 2-D model, in the
presence of elliptical or anelliptical anisotropy. The raytracing program was then tested
by two different physical models, to determine the stability of the subroutine written for

the general elliptically anisotropic case with a variable symmetry axis.

2.2 Principles of the Traveltime Raytracing Program

The numerical raytracer was modified to calculate traveltimes from reflectors within an
arbitrary 2D model, incorporating non-vertical symmetry axes. To run the raytracing
program, a model file is required, which contains all of the reflector and interface

information, including all rotational angles, or ¥’s, for each interface between media,

either or both of which may be anisotropic. Another file, containing the acquisition
geometry information of the sources and receivers, is also needed. Once these files have
been created, the raytracing program then begins with the starting shot, as defined by the

geometry file. A fan of rays is emitted into the model, each of which honours anisotropic
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Snell’s law across each interface and calculates the group velocity through each layer. At

this point, the starting receiver is activated, searching for rays that straddle it. An iterative
process is used to determine the ray, which emerges within the capture radius of this
receiver. The traveltime for the ray, or rays, is calculated and the process continues for
the following receiver. This process is repeated for each receiver defined in the geometry
file, after which, the next shot is considered. Once all of the shots have been completed,
an output file of the traveltimes is generated. The raytracer was developed to initially
model elliptically anisotropic media and later extended to raytrace through anelliptic TI

media.

2.3 Testing the Elliptical Anisotropy Subroutine

A Fortran subroutine was written to compute the raypath, the associated velocities and the
traveltimes through general anisotropic media. Refer to Figure 1.2 for all angle
definitions. This subroutine computes the incoming ray angle (¢;) upon an interface from
the ray incident propagation angle (o), (equation 1.5) and uses the ray parameter and
equation 1.9 to calculate the refracted angle (¢,) from equation 1.11. The refracted
propagation angle (c¢) and associated ray velocities were then calculated using equations
1.5 and 1.4, respectively. The rotational angles of the axis of symmetry, y’s, must be
defined, for each anisotropic interface of the model, before the calculations can be made.
Note that the rotational angle of an isotropic medium is zero. Initially, the elliptical
anisotropy code was tested alone using user-defined input angles, after which it was
inserted, as a subroutine, into the raytracing program. The code for this subroutine is

presented in Appendix I.

The following conditions, to constrain all of the required angles, were found to be

sufficient for a general solution of rays impinging on an interface: Ia,.| <90°;¢, <90°;

B, and B <0 or, B, and B >0; and, |a,|<90°. Since the phase angle, 8, is always

less than the ray angle, in elliptically anisotropic media the condition that -90°<¢, <90°



21

was sufficient to constrain 6,. The fact that 8, and ¢, are calculated via an arctangent
function, results in, 8, and @, , also being constrained to +90°. However, a constraint on

a, is still needed since it must be between + 90° for the ray to be physically valid.

Sometimes o, was refracted towards the interface normal and, for other cases, away from

it. This is one of the important reasons for using the elliptical anisotropy equations, since,
the isotropic models do not result in this phenomenon. This minor change in the angles
can have a significant effect on the raypaths and traveltimes through the models. It is also
noted that the phase angles were always closer to the slow velocity axis than the ray
angles. In some models the phase angles are very different from the ray angles, which
can have a significant affect on the P-wave traveltimes, compared with isotropic
raytracing programs, in which both the phase and the ray angles are always equal. One
solution that was non-intuitive was that a negativee; resulted in a positivea, (Figure
2.1). In this particular case, with a moderately large ¥ and a small negative ray incident
propagation angle (a,), resuited in a slightly positive phase incident propagation angle
(). As it is the phase angle that is refracted according to Snell’s law, Both the phase and
ray refracted angles are also positive. Thus it looks as though the propagating ray refracts
back onto itself in the refracted medium, hence on the same side of the interface normal,

which is counterintuitive.

2.4 Development of the Anelliptical Anisotropy Subroutine

There are two main problems with the anelliptical solution. Firstly, the phase incident
angle, 6;, cannot be determined explicitly from the ray incident angle, ¢;, using equation
1.21; thereby, complicating the calculation of the ray parameter, p, at the first interface.
By assuming a thin isotropic layer at the top of the model, such that @ and ¢ are equal,
this non-explicit conversion may be eliminated. Secondly, once the ray parameter has
been calculated at the interface from the incident parameters, the refracted phase angle,
6, cannot be explicitly determined from the calculated ray parameter, p, using equation

1.7. Hence, the refracted phase angle values have to be determined iteratively. Initially
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this was achieved by a spreadsheet, which calculated all the possible ray parameters,

between O and 90°, using equation (1.7), incorporating all possible %’s. Thus, from the
incident medium ray parameter, the refracted phase propagation angle, 8, and associated
velocity could be determined from the corresponding ray parameter, calculated in the
spreadsheet. From this value the refracted phase angle, 6,, ray angle (¢,) and velocity
could be calculated. At which time the refracted ray propagation angle, a,, could be

determined from equation (1.5).

incident
refracted

\\
i
i
b

(03
B

Figure 2.1. Diagram depicting a ray, propagating at an angle (a), impinging on
an interface in the incident medium and being refracted back towards the
direction of origin in the refracted medium.

It is important to note that all angles were measured with respect to the slow axis of the
assumed pseudo-ellipse: the direction perpendicular to the laminations of the phenolic.
Hence ¢ and 6 are measured with respect to the slow velocity axis of the pseudo-ellipse
and vy is measured from the interface normal, counterclockwise positive, as shown in
Figure 1.1. Also note that the phase angles and velocities were calculated across the
interfaces where the ray angles and velocities were then calculated. This procedure was

also incorporated into the raytracing code.
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2.5 Physical Modelling
P-wave transducers, vertically polarized with respect to the horizontal plane, were used as
both sources and receivers in the acquisition of the two physical model datasets. The
transducers are flat-faced and cylindrical, with an active element 12.6 mm in diameter
[Cheadle et al., 1991]. When acquiring the data, the contact faces are coupled to the
models. The source transducer is driven with a square wave tuned to produce a
broadband wavelet with a central frequency of 300 kHz [Cheadle et al., 1991]. The
transducers are moved across the model and traces are recorded sequentially and stored
on disk, in SEG-Y format. The models are built from materials, such as solid laminates
and Plexiglass, which are glued together. Distance and time scaling factors of 1:10 000

are typically used. The details of each model survey are presented in the sections below.

A consideration as to whether group or phase velocities were measured, also had to be
taken into account [Keith and Crampin, 1977a; Berryman, 1979; Gaiser, 1990; Dellinger
and Vemik, 1994; Vestrum, 1994; Slawinski et al., 1995]. It was determined that the
group velocity was measured in these models since the ray length is very much greater

than the diameter of the transducers (20cm vs. 1cm).

2.6 Physical Model 1

A 1:10 000 scale model of an anisotropic thrust sheet was constructed in the physical
modelling lab of the Department of Geology and Geophysics at the University of Calgary.
The model mimics structures found in the central Alberta Foothills (Figure 2.2). Phenolic
laminate, consisting of layers of cloth which have been glued together with epoxy, was
used as the anisotropic material because it has well understood elastic properties [Cheadle
et al.,, 1991]. A simulated thrust sheet was constructed from the laminate, with
corresponding slow and fast velocities of Vow = 2925 m/s and Vg, = 3365 m/s, and the
Thomsen (1986) anisotropic parameters were 6 = 0.081 and & = 0.150 [Cheadle et al.,
1991]. The geometry is a good representation of structures found in the Southern Alberta
Foothills. The surrounding isotropic medium was made of Plexiglass, which has a

measured velocity of 2740 m/s. The marker of interest was the reflection from the
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horizontal, aluminum base of the model, at approximately 2 km depth (scaled), below the
thrust sheet. The scaled line length is 5160 m.

Horizontal Distance (m)
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i“‘:' 920 T o .
> >
£ 1410 1 .;,b}}‘\y enolic .
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Figure 2.2. Diagram of first physical model built for the FRP. The reflector of
interest is the flat aluminum base of the model at 1940 m (scaled).

The results of the 2-D, zero-offset, ultrasonic survey across the model show an apparent
structure in this basal reflector, with an amplitude of approximately 100 ms (Figure 2.3).
The trace spacing of the zero-offset data is 10 m. By modelling the data, isotropically,
using the slow velocity of the phenolic material, the effects of the larger volume of faster
material in the thrust sheet, in comparison to the slower velocity of the Plexiglass, could
be determined. It was decided that half of the time anomaly, present in the data, was due
to these isotropic effects and that the residual anomaly, due solely to anisotropy, was 50
ms. This represents a residual depth structure of approximately 100 m, in this case,
which is the magnitude of structures that are considered prospects in the foothills. Hence
the effects of anisotropy due to steeply dipping clastics are represented and significant in
the seismic data obtained from the physical model. The data gap in the basal reflector of

this model is due to critical refraction of rays along the bottom of the steepest dipping

block of phenolic.

The results of using zero-offset raytracing to calculate the traveltimes to the flat, basal

reflector from model 1 are shown in Figure 2.4. Calculated traveltimes agreed to within
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+10 ms of those observed (scaled) from the physical modelling experiment. As shown in
Figure 2.4, the results agree exceptionally well with the seismic data, displaying a2 100 ms
anomaly in the basal horizon. The gaps in the data from the raytracer correspond to
shadow zones where there are no geometric raypaths. Diffractions were not included in

the traveltime modelling.

[ ]

Figure 2.3. Zero-offset data from the ultrasonic survey performed on the first
physical model. Note the pull-up (~100 ms) in the basal reflector located at
approximately 1400 ms.
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Figure 2.4. Results of raytracing of model 1. Note the 100ms velocity anomaly
predicted, which is the same as that in the raw data. Note that the horizontal
scale is slightly different from the raw data, as the origin for the raytracing was
taken at a slightly different location than the recorded data.

Multi-offset data were also collected over this model and records were combined from

forward and reverse passes over the model into 86 shot gathers, at 60 m intervals. The
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source-receiver offsets were 200-2000 m and the receiver interval was 20 m. The

processing of these data is discussed in Chapter 3.

2.7 Physical Model 2

Another 1:10 000 scale model of an anisotropic thrust sheet was constructed in the
physical modeling laboratory (Figure 2.5). The model is comprised completely of
phenolic laminate, with alternating layers of linen, such that traveltime anomalies from
reflectors at the base of the model could be attributed solely to the anisotropic effects of
the variably dipping layers in the model. The velocities of this material were assumed to

be Vow = 2925 m/s and Vg = 3365 m/s, respectively, and 6 = 0.081 and € = 0.150,
similar to those of model 1 [Cheadle et al., 1991; Thomsen, 1986]. The resulting
percentage anisotropy (equation 1.19) is then 13%. The phenolic hanging wall thrust
sheet consists of four segments of increasing dip, from 0° to 67.5°. The footwall, flat
layers are also made of the same material. The marker of interest was again the reflection
from the horizontal base of the model, at approximately 2 km depth (scaled), below the

thrust sheet. This model did not have an aluminum base to it. The scaled line length is

5320 m.

7.0 km

2.06 km

Figure 2.5. Diagram of second physical model built for the FRP. The reflector
of interest is the base of the model at 2050 m (scaled).

The 2-D, zero-offset, ultrasonic survey data are shown in Figure 2.6. The trace spacing of

the zero-offset data is 10 m. The amount of pull-up is less than 100 ms since the
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surrounding isotropic material had been replaced with the higher velocity phenolic

laminate, compared with lower velocity Plexiglass in mode!l 1. Hence the velocity
contrast is less compared to the first model, resulting in a smaller velocity anomaly, but

one which is caused entirely by velocity anisotropy.

Teapw)

Figure 2.6. Resultant data from the ultrasonic survey performed on the second
physical model. Note the pull-up (~50 ms) in the basal reflector located at
approximately 1450 ms.

Figure 2.7, shows the results from model 2. The predicted results of this model are as
expected, considering the results from model 1, and match observed values within =10
ms. The amount of pull-up is less than 100 ms since the surrounding isotropic material
had been replaced with the higher velocity phenolic laminate. Hence the average ray

velocity contrast is less, resulting in a smaller velocity anomaly.

Again multi-offset data were combined from forward and reverse passes over the model
into 134 shot gathers, at 40 m intervals. Source-receiver offsets were 200-2000 m with a

receiver interval of 20 m. These data are also discussed in Chapter 3.

2.8 Discussion
By assuming elliptical anisotropy in this study, the first order issues arising from the
anisotropy could be addressed, simply and easily. This allowed for a simple application

to a complicated problem and, thus, a good starting place for the analysis of anisotropy in
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seismic data. Also, with the use of zero-offset data, the problem of moveout due to
varying € and & values, is eliminated. Hence, the elliptical solution is considered valid,
for first-order effects, in this situation. This is not the case, such as in the following

chapters, where multi-channel data were used.

Model 2

Distance (m)
o 1000 2000 3000 4000 5000 60G0 7000 agot
800 - 1

1000 3
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1400 eu——— — TR

1600 &

TWTT (me)

1800 $

2000

Figure 2.7. Results of the elliptical raytracing on model 2. Note the similarity to
the results from model 1, except with a smaller velocity anomaly. Again the
horizontal scale is different from the raw data due to a shift in the origin from the
recorded data.

The raytracing code was well constrained and the numerical modelling results indicate
that a general, elliptical, raytracing solution had been found. The results for each
comparison model were as expected and the correlation to the actual data was
exceptionally good, within £10 ms. Thus the elliptical assumption was a reasonable

solution for the zero-offset data.
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CHAPTER 3 DEPTH MIGRATION OF PHYSICAL MODEL DATA

3.1 Introduction

Pre-stack depth migration was undertaken on muiti-channel data collected over the two
physical models, as described in Chapter 2, using both isotropic and anisotropic velocity
models. The isotropic solution was examined at Amoco Canada as a summer project in
1996, using their in-house pre-stack depth migration code. A good understanding of the
limitations of isotropic migration code ensued. The anisotropic solution was then
pursued in conjunction with Kelman Technologies Inc. in the spring of 1998. The
difference between isotropic and anisotropic migrations is that the traveltime generator
for the anisotropic, Kirchhoff, pre-stack depth migration was developed such that
anisotropic group velocities were used to propagate the wavefronts for traveltime
computation [Vestrum et al.,, 1999]. In the isotropic case, a point on the wavefront
propagates normal to the wavefront using the local velocity. In the anisotropic case, a
point on the wavefront propagates radially outwards from the sourcepoint at the group

velocity, which may be oblique to the wavefront normal [Vestrum et al., 1999].

One of the methods used, in this dissertation, to determine the validity of migration
velocities was to look at the common image gathers (CIGs). A CIG is a display of pre-
stack migration traces versus the source-receiver offset corresponding to a fixed reflector
point [Zhu et al., 1998]. The migration moveout effects are prominent on CIGs and allow
for effective velocity analysis, as a result. Zhu et al. (1998) give a detailed analysis of the
mathematical relationships between high and low migration velocities and the pre- and
post-stack migrated seismic section. Essentially, a high migration velocity, with respect
to the ‘true’ velocity, will produce a ‘frown’ on the CIG and the migrated depth of the
event will be too large. Whereas, a low migration velocity, with respect to the ‘true’
velocity, will produce a ‘smile’ on the CIG and the migration depth will be too shallow.
If the migration velocity is equal to the true velocity, the image will be at the correct

depth and event on the CIG will show no residual moveout.
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3.2 Amoco Pre-Stack Depth Migration - Model 1
Data from model 1 (Figures 2.1 and 2.2) were pre-stack depth migrated using code made
available by Amoco Canada. The model data were initially processed with a spiking
deconvolution and a SO0 ms AGC. The data were then migrated to determine if the
anomaly present in the basal aluminum marker could be eliminated using isotropic
velocities only. Hence, the objective was to determine whether assigning appropriate
isotropic velocities could minimize the depth anomaly caused by anisotropic components
of the model. Several velocity models were tested and two are discussed here. The best
solution was considered to be the one that gave the closest representation of the physical
model in terms of reflector image and location in depth. Figure 3.1 shows the result of
using only the fast velocity for the anisotropic thrust sheet. The depth anomaly has been
eliminated from the basal reflector, but the reflector is located 100 m too deep under the
thrust sheet, as known from the physical model. Also, the CIGs are over-corrected (i.e.
smiling) under the thrust sheet, indicating that this migration velocity is too low and that
it should be higher (Figure 3.2). Nevertheless, this would further compound the

migration error if higher velocities were used.

The second isotropic depth migration is a result of using a vertical velocity gradient
within the thrust sheet, decreasing from the fast velocity to the slow velocity of the
phenolic at the bottom of the thrust sheet. This is designed to approximate the anisotropy
in the phenolic material, through use of isotropic velocities, with faster velocities at the
top of the thrust sheet where the beds are almost vertical, decreasing in velocity to where
the beds are flat lying at the base of the thrust sheet. The result of isotropic depth
migration using this velocity model is shown in Figure 3.3. This section shows that the
depth anomaly has been eliminated, for the most part, while maintaining the correct depth
to the reflector. However, again the gathers indicate that the migration velocity of the
thrust sheet is too low (Figure 3.4), since the events are over-corrected. Hence, the
discrepancies in reflector location and gather shape indicate that anisotropy cannot be

properly accounted for using the isotropic, pre-stack depth migration.
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Figure 3.1. Isotropic, pre-stack depth migrated section of model 1 using a constant, fast velocity
in the thrust sheet. Note that the basal reflector is located too deep under the thrust sheet
(Amoco software).

Figure 3.2. A sampling of depth gathers, evenly distributed across the model, resulting from the
migration in Figure 3.1. Note that the gathers indicate that the migration velocities used are too
low under the thrust sheet (third from left) and too high in the Plexiglass section (second and
third from right).
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Figure 3.3. Isotropic, pre-stack depth migrated section of model 1 using a vertical velocity
gradient in the thrust sheet. Note that the basal reflector is located at the correct depth under the
thrust sheet; however, some residual structure is present in this reflector (Amoco software).

Figure 3.4. A sampling of depth gathers, evenly distributed across the model, resulting from the
migration in Figure 3.3. Note the distorted nature of the gathers, especially under the thrust sheet
(second, third and fourth gathers from left), which indicate that the migration velocity used was
too low. Again the second and third gathers from the right demonstrate that the migration
velocity in the Plexiglass was too fast.
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3.3 Kelman Pre-Stack Depth Migration - Model 1

The purpose of this part of the study was to duplicate the results of the Amoco
experiment and then to use the model data to test the anisotropic depth migration code.
The physical model 1 data were processed as follows: mute; pre-stack depth migration
(isotropic and anisotropic); scale; and filter (bandpass Ormsby 8-12, 50-60 Hz). The data
were first migrated isotropically, with a velocity model built using the constant fast
velocity of the thrust sheet and its actual spatial location for the migration, similar to that
done for the Amoco study. As before, the objective was to eliminate the anomaly in the
basal reflector and to obtain the correct depth image of the reflector. The results of this
migration are shown in Figure 3.5 and the associated CIGs in Figure 3.6 (near offsets on
the right and far offsets on the left of each CIG). The continuity of the basal reflector is
good; however, again it is located too far in depth under the thrust sheet, compared to
Figures 3.1 and 3.2. In addition, the gathers in this location indicate that the migration
velocity is too low, due to the ‘smiling” image on the CIGs, and should be increased. In
doing so, the reflector would be pushed even farther in depth, which is incorrect. This

result is the same as was determined in the Amoco study.

The second isotropic velocity model used a horizontal velocity gradient in the thrust
sheet, grading from the fast velocity of the phenolic in the top right comer of the thrust to
the slow velocity in the flat lying phenolic in the bottom left. This was done in attempt to
account for the anisotropy of the phenolic material. Note that this model is slightly
different from the Amoco study in that this velocity model used a horizontal velocity
gradient and the Amoco model used a vertical velocity gradient. The result is a correctly
placed reflector, under the thrust sheet, but the continuity of the reflector is somewhat
compromised (Figure 3.7). This is a similar result to that found in the Amoco study
(Figure 3.3). Again, events in the CIGs are smiling, which indicates that, although the
reflector is correctly located in depth, a higher migration velocity should have been used
to correctly migrate the data (Figure 3.8, compared with Figure 3.4). This would also be

incorrect, according to the known physical model. Again, the results of the Kelman study
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Figure 3.5. Isotropic, pre-stack depth migrated section of model 1 using a constant, fast velocity
in the thrust sheet. The arrow indicates the true depth position of the basal reflector. Note that

the basal reflector is located too deep under the thrust sheet (Kelman software).
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Figure 3.6. A sampling of depth gathers, evenly distributed across the model, resulting from the
migration in Figure 3.5. Note that the near offsets are at the right side of each gather and the far
offsets at the left. The basal reflector gathers located under the thrust sheet are over-corrected,

demonstrating the need for a faster migration velocity.
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Figure 3.7. Isotropic, pre-stack depth migrated section of model 1 using a horizontal velocity
gradient in the thrust sheet. Note that the basal reflector, at arrow, is located at the correct depth
beneath the thrust sheet; however, some residual structure is present in this reflector (Kelman

software).

-
e

l-lnl-!

-----

Figure 3.8. A sampling of depth gathers, evenly distributed across the model, resulting from the
migration in Figure 3.7. Note the distorted nature of the basal reflector in the gathers, especially
under the thrust sheet, which indicate that the migration velocity used was too low.
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were successful in duplicating the results of the Amoco study, further indicating that

isotropic velocities are insufficient to migrate data collected over an anisotropic model.

The only way to eliminate the discrepancy between correct depth and residual moveout
on image gathers is to use anisotropic pre-stack depth migration. By using the correct
velocity model, and all the correct parameters (g, 8 and dip) from the physical model, one
obtains a correct depth image of the original model (Figure 3.9) which is supported by the
associated CIGs (Figure 3.10). Reflector continuity is maintained, it is correctly located
in depth and events within the CIG are flattened. Hence, all the discrepancies from the
isotropic depth migration process have been eliminated. It should be noted that the small
amount of residual moveout in the CIG is associated with the velocity model building
process. The migration velocity model is built in time. However, the structural geometry
of the model, is measured in depth, and the conversion from depth to time in the velocity
model building process introduces small irregularities into the velocity model and,
subsequently, in the migration. In conventional migration, the depth model is not known,

thus the velocity model must be built deterministically.

3.4 Kelman Pre-Stack Depth Migration - Model 2

Data from physical model 2 (Figures 2.4 and 2.5) were processed using a mute, pre-stack
depth migration (isotropic and anisotropic), scale and filter (bandpass Ormsby 8-12, 50-
60 Hz). Apgain, for comparison purposes this model dataset was first processed
isotropically, using a gradient velocity model, in order to attempt to eliminate the
anomaly in the reflector from the base of the model. The base of the thrust was defined
and a horizontal velocity gradient was applied to the dipping part of the thrust: grading
from the fast velocity of the phenolic in the top right corner to the slow velocity of the
phenolic in the flat-lying layers, in the bottom left. The resultant isotropic depth
migration is comparable to the results of the first model (Figure 3.11). The basal reflector
is located correctly in depth, with some minor structure present; however, the CIGs
exhibit considerable residual moveout which indicates that a higher velocity should have

been used to properly migrate the data (Figure 3.12). It is also interesting to note that the
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Figure 3.9. Anisotropic, pre-stack depth migrated section of model 1 using the correct
parameters of the physical model. Note that the arrowed basal reflector is located at the correct
depth beneath the thrust sheet and the residual structure in the reflector of interest has been
eliminated (Kelman software).
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Figure 3.10. A sampling of depth gathers, evenly distributed across the model, resulting from the
migration in Figure 3.9. The minor residual moveout present in the basal reflector gathers is
attributed to the velocity model building process.
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Figure 3.11. Isotropic, pre-stack depth migrated section of model 2 using a horizontal velocity
gradient in the thrust sheet. Arrow indicates the true depth location of the basal reflector. Note
that the basal reflector (trough) is located at the correct depth beneath the thrust sheet; however,
some residual structure is present in this reflector (Kelman software).
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Figure 3.12. A sampling of depth gathers, evenly distributed across the model, resulting from the
migration in Figure 3.11. Note the distorted moveout of the basal reflector in the gathers,
especially under the thrust sheet, which indicate that the migration velocity used was too low.
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CIGs also exhibit considerable moveout in the shallow, flat lying reflectors, on the edges
of the model at approximately 1 km scaled depth. The CIGs are also over-corrected in
this region, demonstrating that a higher migration velocity is necessary to properly
migrate the data. This is incorrect according to the model geometry, which also indicates
that the isotropic velocities are insufficient to migrate even the flat lying geology in the

anisotropic model.

The continuity of the basal reflector is compromised because model 2 does not have an
aluminum base. Since the model! is sitting on a tabletop, thus going from a high velocity
medium to a slow velocity medium, there is a negative impedance contrast at the base of
the model. Also, there is a multiple which destructively interferes with the basal
reflector, resulting from the horizontal seam, about halfway down the model, at
approximately 1 km scaled depth. Thus the basal reflector is very strong in the middle of

the section and weak at the edges (Figure 3.11).

Data from the second model were then migrated incorporating the known anisotropic
parameters into the velocity model. This velocity mode! consisted of the definition of the
thrust base, the actual parameters of the model (slow P-wave velocity, € and &) and a
continuous definition of dip through the thrust sheet and across the model. No
distinctions were made between the different blocks of dipping phenolic as the thrust
sheet was modelled as having continuous, smooth curvature in the velocity model. After
migration, the basal reflector is correctly located in depth, although it is severely distorted
(Figure 3.13). The gathers are comparably distorted as well (Figure 3.14). Given that the
input velocity model linearly interpolates the dips between defined values, whereas the
actual model has distinctly dipping sections, the results are not surprising. This result

illustrates the sensitivity of the depth migration to the geometry model.

In the final anisotropic velocity model, each distinct, dipping section of phenolic was
correctly located, with appropriate dip as well as all the correct parameters of the physical

model. The result, after migration, is a correct depth section with good reflector
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Figure 3.13. Anisotropic, pre-stack depth migrated section of model 2 using a continuous dip
definition (no distinctly dipping sections) in the thrust sheet. Note that the arrowed basal
reflector is located at the correct depth beneath the thrust sheet; however, there is an excessive
amount of residual structure present in the basal reflector (Kelman software).
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Figure 3.14. A sampling of depth gathers, evenly distributed across the model, resulting from the
migration in Figure 3.13. Note the distorted nature of the basal reflector gathers, which indicate
that the dips were not assigned accurately.
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continuity (Figure 3.15), correct reflector depth and flattened events on the CIGs (Figure

3.16). Again the gathers show some minor residual moveout due to small depth-time
conversion errors, as was noted in the results of the first physical model (Figures 3.9 and
3.10). Thus, the same sensitivity to the model building process is also present in the

second physical model data.

3.5 Discussion

Physical models are very useful for the study of seismic anisotropy. Since all the
necessary parameters of the model can be determined, the seismic data collected over the
models are ideal for the testing of processing software, in particular, migration routines.
In this study, it has been demonstrated that isotropic, pre-stack depth migration is limited
in its ability to correctly migrate seismic data collected over anisotropic physical models,
as it leads to discrepancies between the correct reflector depth and the residual moveout
in image gathers. The testing completed in this study indicates that conventional pre-
stack depth migration is not able to properly compensate for the effects of TI, and the
results verify that anisotropic effects cannot be accounted for using isotropic velocities.
Therefore, anisotropic, pre-stack depth migration is required to properly process seismic
data from these models and, in general, data from foothills environments where

anisotropic strata exist.
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Figure 3.15. Anisotropic, pre-stack depth migrated section of model 2 using distinctly dipping
sections in the thrust sheet. Note that the basal reflector, at arrow, is located at the correct depth
under the thrust sheet and the residual structure has been eliminated (Kelman software).
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Figure 3.16. A sampling of depth gathers, evenly distributed across the model, resulting from the
migration in Figure 3.15. The residual structure present in the basal reflector gathers is attributed

to the velocity model building process.
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CHAPTER 4 REFRACTION SEISMIC EXPERIMENTS

4.1 Introduction

Clearly, there is a need to determine the anisotropic parameters of rocks in a field
experiment, where the bulk response of the rocks can be assessed on the scale of several
seismic wavelengths, for direct application to the analysis of reflection seismic data. The
approach taken in this study was to undertake a multiazimuth refraction seismic
experiment in an area where the rocks of interest outcrop at surface and the strata have a
uniform, steep dip, preferably vertical. This structural geometry is relatively common in
fold-thrust belts. By laying out seismic lines parallel, perpendicular and at 45° to the
local strike directions (Figure 4.1), the Thomsen (1986) anisotropic parameters, € and 6
can be determined using equations 1.17 and 1.18 (Chapter 1). For instance, for vertically
dipping strata, the measured velocities along the local dip and strike directions are the
bedding-normal and bedding-parallel velocities respectively, equivalent to the vertical
and horizontal velocities described by Thomsen (1986) for the VTI case. These
parameters were obtained by measurement of headwave velocities along the seismic lines,
which were of sufficient length to ensure that the refractor velocities measured are from
rocks that are below the near-surface weathered layer. A similar, successful study was
undertaken previously by Gendzwill (1993) except that he evaluated anisotropic effects

caused by vertical fractures rather than vertical bedding.

Seven multi-azimuthal refraction seismic field studies were performed over a period of
three years, 1996-98, on shales of the Wapiabi Formation, interbedded shales and
sandstones of the Brazeau Group, Palliser Formation limestones and sandstones of the
Cardium Formation. These formations are tabulated in Figure 1.3. These surveys were
executed in various locations along the foothills of the Rocky Mountain Fold and Thrust
Belt in southern Alberta, Canada (Figure 1.4), after careful consideration of surface
geology through the study of both maps and air photos. The Wapiabi shales are strongly
suspected of possessing velocity anisotropy, as are the shales and sandstones of the

Brazeau Group. Rocks of the Palliser Formation, which are composed primarily of
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limestones, are not expected to exhibit intninsic anisotropy, as do shales, but they may

exhibit anisotropy due to fracture orientation. The same is true for the sandstones of the

Cardium Formation.
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Figure 4.1. Schematic diagram showing the layout of the refraction seismic lines
to determine the bedding-parallel, bedding-perpendicular and 45° azimuth
velocities.

The first survey was conducted in 1996 at Jumpingpound Creek (Figure 1.4, location 1)
with measurements on the steeply dipping shales of the Wapiabi Formation. The second
group of surveys incorporated four locations west of Longview (Figure 1.4, location 2), in
1997 and 1998, and measured the anisotropy of the steeply dipping rocks of the Wapiabi
Formation, Brazeau Group and Cardium Formation. The third set of experiments
investigated the strata of the Palliser and the shallowly dipping Wapiabi formations at

two locations near Seebe and Exshaw, respectively (Figure 1.4, location 3), in 1998.

4.2 Data Acquisition
Refraction seismic data were acquired according to the parameters given in Table 4.1.

The specific geometries for each location are described in the appropriate sections, later
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in this chapter. The source used was a Bison Elastic Wave Generator (EWG Model 3)

owned and operated by the University of Calgary and was used in all of the refraction
surveys for anisotropic parameter studies in this thesis project. It is a weight drop source,
utilizing a 270 kg hammer, which is accelerated onto the ground by gravity, assisted by
pre-tensioned elastic bands. An aluminum strike plate laid on the ground below the
hammer was necessary to enhance energy coupling and was used in the 1998 surveys.
Two different instrument systems were used during the surveys. A 24-bit, 96 channel
Bison system operating at 0.25 ms sampling interval and a record length of 0.5 s was used
for the 1996-97 surveys and a 24-bit, 60-channel Bison system operating at 0.125 ms
sample interval and a record length of 0.25 s was used in the 1998 surveys. A transducer
mounted on the EWG sources triggered the instruments for the 1996-97 surveys;
however, a more reliable switch closure between the hammer and strike plate was
developed and used for the 1998 surveys. The data were recorded directly onto hard disk
in SEG-2 format and later copied to either a tape or a high density removable disk.
Typically, two to three hammer impacts were summed at each source location to provide
optimum signal to noise ratio for the first arrivals. At each shotpoint, the source hammer
was offset approximately 1.5-2 m perpendicular to the line direction. Data quality was

generally very good with clear first arrivals pickable over the full recording aperture.

4.3 Data Analysis

4.3.1 Geometry

The geometry file for each survey location was buiit in ProMax establishing the source
and receiver locations in Cartesian co-ordinates. The SEG-Y seismic files were imported
into ProMax and the following necessary information for each line was set up: number of
traces per receiver for each shot; number of shots; and field file number for each shot.
The geometry information was also maintained in a spreadsheet in order to produce a

basemap, including bearings, at each survey location.
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Table 4.1. Survey parameters of refraction seismic lines

Location/ Line ' Azimuth | Length # . Receiver |  Shot !
Formation ) | (m)  Receivers ; Interval @ Interval |
| ! ' _m - m
" Jumpingpound Strike 157 | 285 ? 96 : 3 : 6 ;
. Creek'96/ | Dip 67 | 380 96 4 8 !
Wapiabi | 45° % 112 | 380 96 4 8 i
. Longview ‘97/ |  Strike 161 ! 188 i 48 4 12 f
Wapiabi ~ Dip . 71 | 188 48 4 12
. 45° 116 | 188 48 4 12
Longview ‘97/ |  Strike 155 284 : 72 4 18
Brazeau Gp. ! Dip : 65 : 284 72 4 18
‘ 45° : 110 284 : 72 4 18
Longview ‘98/ |  Strike 160 | 236 60 3 48
BrazecauGp. |  Dip : 70 236 60 3 48
. 45° 25
* Longview ‘98/ Strike 170 236 ; 60 4 48
Cardium Dip 80 i 236 : 60 4 48
. 45° 35 1 236 60 4 48
Seebe ‘98/ | Strike ' 166 | 95 20 5 10
Wapiabi ; Dip 76 95 20 5 10
i 45° : 121 95 20 5 10
Exshaw ‘98/ : Strike 150 ;
Palliser .  Dip 60 ! 95 : 20 5 10
- 45° 105 ,
4.3.2 First Break Picking

Initially bad traces were removed from each shot record. The first breaks were picked for
the first shot record after which the automatic first break picker was initialized. To run
the automatic picker in ProMax, a time gate was defined. This was the window within
which the neural network picker picked the first breaks. To assess the accuracy of the
automatic picker, the first shot record was repicked and the new picks appeared over the
original picks. The picks were considered to be precise to £2 ms and the neural network
picker then proceeded to pick the first breaks from all the records within the dataset. Any
bad picks were then edited manually. The result was a fairly straight lines of picks,
diverging from the shot point. The first break data obtained in ProMax were transferred

to a spreadsheet for further analysis.
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4.3.3 Velocity Analysis
For inline shots and receivers at each of the survey sites, refractor velocities were
generally determined using a ‘minus-time’ analysis, developed by Hagedoom (1959) and
described, in detail, by Reynolds (1997). In this method, the traveltime data from forward
and reverse seismic records are used, hence, requiring a fixed receiver spread with a shot
at each end. The minus-time is defined as the time recorded at a receiver from shot A on
the forward record (T sr), minus the time recorded at the same receiver from shot B on the
reverse record (Tggr), minus the total shot-to-shot traveltime of the record (Tag). Hence

the minus-time (T") can be described, as follows:

T =T, T —Tyy (4.1)

The minus-time is a mathematical formulation, which eliminates any static effects of both
surface and refractor topography from the data. A reliable velocity of the refractor can
then be calculated as twice the inverse slope of the minus-time vs. distance graph. At
some locations, variations from the minus-time analysis were required and details are

provided in the appropriate sections.

4.4 Jumpingpound Creek ‘96 - Wapiabi Formation

Rocks of the Wapiabi Formation are of Cretaceous age (Alberta Group) and are fine-
grained, black, marine shales up to 300m thick, with millimeter scale laminations. The
first survey site was at Jumpingpound Creek, approximately 30 km west of Calgary
(Figure 4.2). At this location, shales of the Wapiabi Formation dip to the east at a
constant angle of about 70° and form part of the eastern flank of the triangle zone in this
region [Slotboom et al., 1996]. Here, the regional strike direction is 157°. Figure 4.3 is a
photograph of an outcrop of Wapiabi shales immediately along strike from the field
survey site. A diagram showing the layout of seismic lines occupied during the survey is
given in Figure 4.4. Line lengths were dictated essentially by the available aperture at the
site, which was located on a flat floodplain, and generally were longer in the dip direction
than in the strike direction (Table 4.1). Each line was recorded by a fixed spread of 96
single, 28 Hz geophones.
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Figure 4.2. Location map of the seven refraction survey experiments, performed
in southemm Alberta: 1-Jumpingpound Creek '96 (Wapiabi); 2-Longview ‘97
(Wapiabi); 3-Longview 97 (Brazeau); 4-Longview '98 (Brazeau); S-Longview
'98 (Cardium); 6-Seebe '98 (Wapiabi); 7-Exshaw "98 (Palliser). Base map after
Gem Trek Publishing, 1995.

In order to provide data redundancy and allow for detailed static corrections for the
surficial weathering layer at the Jumpingpound Creek location, shotpoints were occupied
at every second receiver location along the fixed receiver spread for each line. At each
shotpoint, the source hammer was skidded 1.5 m perpendicular to the line direction. The

program resulted in 49 records being obtained for each line.
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Figure 4.3. Photograph of outcropping shales of the Wapiabi Formation at the Jumpingpound
Creek location. Note the 60-70° dip of the shales, as indicated by the white horizons in the
picture. The refraction survey was performed on the flat floodplain in the foreground.

Figure 4.4. Diagram indicating the layout of the refraction seismic survey lines at the
Jumpingpound Creek '96, Wapiabi location. Strike line is oriented at 157°.
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4.4.1 Refractor Velocity Analysis
Data quality was good with clear first arrivals pickable over the full recording aperture.
A plot of the first break picks from the strike line at Jumpingpound Creek is shown in
Figure 4.5, with short-wavelength distortions in the curve interpreted to be due to
variations in thickness and velocity of the surface layer. This layer is interpreted to be
approximately 2 m thick and is composed of reworked glacial sediments and alluvial
sands and gravels deposited by Jumpingpound Creek. Traveltimes to the receivers closest
to the shot indicate the velocity of this layer at surface is approximately 120 m/s. A
minus-time analysis was attempted at this site but the data did not lie on a straight line,
indicating turning rays in the shallow depths. In this case, an alternate analysis of the data
had to be performed. By applying shot and receiver statics to the data, the low velocity
surface layer was effectively reduced from the first break data. Figure 4.6 is a
representative first break plot with the static corrections applied. It can be seen from this
graph that there were two segments to each record. The segment closest to the shot
location is curved, indicating that turning rays needed to be incorporated into the velocity
analysis, using a process described by Lawton (1993). By curve-fitting the data and
assuming a linear velocity function, v(z)= v,+kz, the velocity gradient, k, was found to be
largest in the strike direction with a value of 35 s, whereas in the dip direction, the
gradient is lower with a value of 20 s'. The velocity gradient is attributed to weathering
of the shales, which extends to a depth of approximately 100 m, as calculated from the
raw data plots. At far offsets, the traveltime-distance data became linear with offset,
indicating that the base of the weathering layer had been reached. Velocity analysis for
anisotropic parameter determination used the data from these longer source-receiver

offsets.

4.4.2 Results

As expected, the dip line exhibits a slower velocity than both the strike (fastest) and 45°
(intermediate) lines and these velocities are summarized in Table 4.2. The errors in the
velocities were determined using the procedure of maximum/minimum slopes.

Subsequently, the errors in the anisotropic parameters were determined from the
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calculated error in the velocities, using standard error propagation methods for sums and
products. The anisotropic parameters for these deeper shales were calculated using the
Thomsen (1986) equations from Chapter 1 (equations 1.17 and 1.18) and are summarized
in Table 4.2. The bedding-normal and bedding-parallel velocities have been generalized
in order to account for the dip of the strata. Note also that the phase and group velocities
are equal in both the bedding-normal and bedding-parallel directions. Furthermore, it
was determined that the small error in the 45° azimuthal velocity, due to the difference

between the phase and group angles, is within the calculated error in é (Table 4.2).

Time (ms)

—— 48

Distance

Figure 4.5. Raw first break data for the strike line at Jumpingpound Creek.
Only every third record was plotted for clarity.

The calculated velocities for this formation are slightly slower than the sonic velocity
values obtained from well logs in the area. This is thought to be a result of weathering of
the sediments in this location, perhaps due to the proximity to Jumpingpound Creek. The
weathering of these rocks is suspected to cause the curved nature of the minus-time data,
implying a near surface velocity gradient, thus requiring a turning ray analysis of the data.
Nevertheless, the weathering of the rocks has been consistent in the three velocity

directions, thus the calculated anisotropic parameters are expected to be representative of
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this formation. The parameter values also lie within the stated limits established by

Thomsen (1986).

Time (ms)

-48

Distance

Figure 4.6. First break data for the strike line at Jumpingpound Creek with the
source and receiver weathering statics applied. Only every third record was
plotted for clarity. .

Table 4.2. Summary of velocities calculated from first break data for the shales at the
Jumpingpound Creek location.

Location/ Velocity (+100 m/s) | Anisotropic Parameters
Formation i Strike Dip ; 45° | £ : 8 '
. 2900 : 0.1430.05 | 0.00+0.08

Jumpingpound | 3200 2800
Creek "96 /Wapiabi |

4.5 Longview ’97 — Wapiabi Formation

The second survey site was located immediately west of highway 541, approximately 20
km west of Longview, Alberta (Figure 4.2). The terrain at this location was variable with
one minor creek that cut across the dip line. At this site, the shales of the Wapiabi
Formation dip west at a relatively constant angle generally greater than 80°. The regional
strike of the shales at this location is 161°. Figure 4.7 is a photograph of the sub-vertical

shales of this location, as seen in outcrop in Flat Creek, which is located immediately
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adjacent to the survey site. Each line was recorded by a fixed spread of 48 single, 28 Hz

geophones with a group interval of 4 m (Table 4.1). Figure 4.8 indicates the seismic line
layout for this site. The weathering layer was determined to be considerably thinner
(<1m) than at Jumpingpound Creek and S records/line were adequate for reliable
headwave velocity analysis. At each shotpoint, the source hammer was skidded 2 m

perpendicular to the line direction.

Figure 4.7. Photograph of the Wapiabi shale outcrop in Flat Creek, immediately
south of the Longview "97 refraction survey site.

4.5.1 Results

At offsets greater than the crossover distance, the first break data plotted on straight lines
(Figure 4.9), with some short-wavelength scatter, indicating that there is no vertical
velocity gradient in these shales. The approach taken here for velocity analysis was a
reciprocal method using ‘minus-times’ as described by Hagedoorn (1959). Minus-time
versus distance graphs for all three linzs are given in Figure 4.10. Except for a few noisy
data points, the data lay on straight lines indicating that a velocity gradient was not

present at this location. The velocities were calculated as twice the inverse slope of each
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line and are tabulated in Table 4.3. The anisotropic parameters were calculated using

equations 1.17 and 1.18, from Chapter 1, and are also contained in Table 4.3. Again, the
errors in the velocities were determined using the procedure of maximum/minimum
slopes, as was discussed previously. Subsequently, the errors in the anisotropic
parameters were statistically determined from the calculated error in the velocities, again
using standard error propagation methods for sums and products. The calculated
velocities at this location are close to the values typically recorded on sonic logs through
the Wapiabi Formation. Hence, the lack of velocity gradient, combined with the higher
velocities and greater degree of anisotropy measured, suggests that the shales at this
location are less weathered and possibly less deformed than those shales at the
Jumpingpound Creek location. The calculated anisotropic parameters are within the range
of values published by Thomsen (1986) and € is slightly higher than the value at the

Jumpingpound Creek location.
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Figure 4.9. Raw first break data of the strike line at the Longview '97, Wapiabi
location.
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Figure 4.10. Minus-time analysis for the Longview '97, Wapiabi location. Note
that the data for each azimuth lie on well-defined straight lines (exciuding the
endpoints), which have different slopes, allowing for accurate determination of
the refractor velocities.

Table 4.3. Summary of velocities calculated from first break data for the shales at the Longview

location.
Location/ Velocity (100 m/s) . Anisotropic Parameters
Formation | Swike | Dip | 45° 3 3
Longview '97 3800 3100 3200 . 0234005 | -0.05+0.07

/Wapiabi ;

4.6 Longview 97 — Brazeau Group

The third survey was located west of highway 541, approximately 20 km west of
Longview, Alberta (Figure 4.2). The site was an open field, with no significant
topography, on the Eadie Ranch, approximately 2 km south of the Flat Creek bridge. In
the outcrop along the Highwood River immediately south of this site, rocks of the Belly
River Formation dip west at a constant angle of approximately 75°. Figure 4.11 is a
photograph of the outcropping Brazeau Group shales and sandstones in the area. The

regional strike in this location is 155°. Each line was recorded by a fixed spread of 72
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single, 28 Hz geophones with a group interval of 4 m. Figure 4.8 indicates the seismic

line layout for this site.

Figure 4.11. Photo of Brazeau Group rocks near the Longview ‘97 and '98
survey sites, looking southeast.

4.6.1 Results

The first break picks of these data are represented by an example in Figure 4.12. During
the minus-time analysis it became apparent that there was a discontinuity in the data
(Figure 4.13). The minus-time analysis of the Belly River data reveals a break in the
slope of data on both the dip and 45° lines. This has been interpreted as a change in
lithology across the refractor, resulting in two different refractor velocities. One possible
explanation for this is that the Belly River/Wapiabi contact was not mapped properly on
the geologic map of the area. The refraction data show a distinct fast to slow velocity
break along the refractor, in the dip direction, 150 m west of where the geologic contact is
mapped. This is feasible for wavefronts travelling through the fast Wapiabi Formation to
the contact, then through the slower Belly River Formation past the contact. The strike

line does not demonstrate a break in slope, indicating that it lies wholly within one
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formation. Re-evaluation of the survey confirms that the strike line probably lies within
the Belly River Formation but is within 50 m of the contact. The 45° line also shows a
break in slope but it is less distinct than on the dip line and is located approximately at the
intersection of the strike line. Taking this information into account, the velocities of the
Belly River Formation were calculated and the results are tabulated in Table 4.4, although
they are considered to be tentative. The percentage anisotropy was calculated to be 18%
(equation 1.19) and the anisotropic parameters were calculated to be € = 0.21+0.05 and
6 = 0.50+0.08 (equations 1.1.7 and 1.18). The calculated value of & is considered
anomalous, since it is rare to have & significantly larger than € [Thomsen, 1986]. It is
possible that this experiment was compromised by the change in lithology along the dip

line.
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Figure 4.12. Raw first break data of the strike line at the Longview '97, Brazeau
Group (Belly River) location.
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Figure 4.13. Sample minus-time analysis for the Longview '97, Brazeau Group
(Belly River) location. Note that the refractor data have a break in slope in the
dip line, at approximately 190m, indicating a change in lithology along that line.

Table 4.4. Summary of velocities calculated from first break data for the interbedded shales and
sandstones at the Longview location.

Location/ ! Velocity (£100 m/s) | Anisotropic Parameters

Formation '  Strike | Dip s 45° i 3 )
Longview'97 = 3200 | 2600 | 3100 | 0.21+005 @ 0.50+0.08
/Brazeau Gp. | i f

4.7 Longview ’98 - Brazeau Group

The second Brazeau Group survey was performed immediately west of highway 541,
approximately 15 km west of Longview, Alberta (Figure 4.2). The site was an open field
on the ranch owned by Mr. Bill Bews, immediately north of the first road south of the
Sullivan Creek bridge (Figure 4.14). The field had minor topography and a small, soggy
depression in the northwest comer, which affected the last 10 geophones of the strike
line. At this location, rocks of the Belly River Formation (Alberta Group) dip west at a
constant angle of approximately 70°. The regional strike, at this location, was 160°. The
strike and dip lines were recorded by a fixed spread of 60 single, 28 Hz geophones with a

group interval of 4 m (Figure 4.14). The 45° velocity was determined by recording four
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offline shots into the fixed spread of the dip line (Figure 4.15). Survey parameters for

each line are summarized in Table 4.1.

Figure 4.14. Diagram indicating the layout of the Longview '98 refraction
seismic surveys. The survey areas are highlighted with rectangles.

4.7.1 Refractor Velocity Analysis

A plot of the raw first break data, for the strike line, are shown in Figure (4.16). The data
from both the strike and dip lines were analyzed using a minus-time analysis. The minus-
time plots for each line are given in Figure 4.17, from which the strike and dip velocities
were computed (Table 4.5). Since a 45° line was not laid out due to physical access
limitations, the 45° velocity had to be calculated using a combination of plus and delay
times, from the strike and dip lines. As defined by Hagedoorn (1959) the plus time (7))
is defined as,

T =T, +Tge —Top 4.2)



where: T,, is the time to a particular receiver on the forward record, from shot A.

T, 1s the time to the same receiver on the reverse record, from shot B, and

T,; is the total travel time from shot A to shot B.

Figure 4.15. Basemap indicating shot and receiver locations for the second
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Longview '98, Brazeau Group survey.

The delay time of a receiver (8, ) is defined as,

5, = T,%

“4.3)
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For example, consider a shot 60 m from the receiver line (i.e. at receiver 24 on the strike

line) and receiver 22 in the dip line (Figure 4.15). The delay time of the shot (§,) at 60 m
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can then be estimated by the plus-time at the corresponding receiver on the strike line

(receiver 24),
5, = %T,;, @.4)

where: T, is the plus-time at the corresponding receiver located 60 m from the dip line

(i.e. receiver 24 on the strike line).

Time (ms)

10 -
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Distance (m)

Figure 4.16. Raw shot record from strike line at the Longview "98 survey.

The 45° velocity can then be calculated from,

Xgo_ 2
rz 4.5)
(Tr22 - 6:w - 8r22 )

Vis =

where: T,,, is the time from the shot at 60 m to receiver 22, and

X ¢0_.2> 1s the distance between the shot at 60 m and receiver 22.
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Figure 4.17a. Minus-time results from the strike line at the Longview '98,
Brazeau Group location.
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Figure 4.17b. Minus-time results from the dip line at the Longview '98, Brazeau
Group location.

The above calculations can be repeated for shot 96m ‘north’ to receiver 36 to obtain an

additional estimate of v,,, at this location. The location 132 m ‘north’ to receiver 48 was
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not adequate to provide an accurate estimate of v,;, due to the soggy depression in the
northwest comer of the field. The average 45° velocity was then calculated between the
shot at receiver 24 (strike line) and receiver 22 (dip line) as well as the shot at receiver 36

(strike line) and receiver 34 (dip line). The geometry is displayed in Figure 4.15.

4.7.2 Results

The minus-time analysis was robust for these data (Figure 4.17). Except for a few noisy
receivers, all data lay on well-defined line segments. There is a definite break in slope in
the minus-time data from the dip line, indicating a transition from a fast velocity medium
to a slower velocity medium. This change is interpreted to be the contact between the
Brazeau Group and Alberta Group rocks. The azimuthal velocities of the Belly River
Formation were calculated and tabulated in Table 4.5. There is a minor surface
weathering layer present on the east side of the field. The velocity anisotropy was
calculated to be 10% (equation 1.19) and the anisotropic parameters were determined to
be € = 0.11 and 8 = 0.42 (equations 1.17 and 1.18). Again these values indicate a large
value of & for this formation, which substantiates the values calculated from the Brazeau
‘97 survey. These values indicate that the anisotropic wavefronts through the Brazeau
Group are very different from those through the Wapiabi Formation. As different as

these parameters may be, they are still within the Thomsen (1986) values.

Table 4.5. Summary of velocities calculated from first break data for the Longview - Brazeau
Group location.

Location/ z Velocity (+100 m/s) __Anisotropic Parameters _

Formation  Strike Dip 45° 3 ’1 8
Longview '98 4200 3800 5 4300 - 0.11:0.04 ' 0.42+0.06
/Brazeau Gp. ' 5 é 5

4.8 Longview ’98 - Cardium Formation

This survey was performed immediately east of highway 541, approximately 15 km west
of Longview, Alberta (Figure 4.2). The site was an open field on the ranch owned by Mr.
Joe Bews, immediately south of the Sullivan Creek bridge (Figure 4.14). No significant
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topography was present. At this location, rocks of the Cardium formation (Alberta

Group) have near-vertical dips, as indicated by the photograph in Figure 4.18. The
regional strike was measured to be 170°. Each line was recorded by a fixed spread of 60
single, 28 Hz geophones with a geophone interval of 4 m (Figure 4.14). Survey

parameters for each line are summarized in Table 4.1.

Figure 4.18. Photo of Cardium outcrop at the Sullivan Creek Bridge, Longview,
Alberta, looking northwest.

4.8.1 Results

Figure 4.19 represents the raw data for the strike line in this location. The minus-time
plots for each line are given in Figures 4.20a,b,c. These data indicate a few noisy
receivers and a thick weathering layer in the west side of the field. The velocities were
calculated, excluding the weathering layer, and tabulated in Table 4.6. As all three
velocities are quite similar, within the error limits, these rocks are interpreted to not

exhibit any significant velocity anisotropy.
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Figure 4.19. Raw shot record for strike line at the Longview 98, Cardium location.
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Figure 4.20a. Minus-time results from the strike line at the Cardium location.
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Figure 4.20b. Minus-time results from the dip line at the Cardium location.
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Figure 4.20c. Minus-time results from the 45° azimuth line at the Cardium location.
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Table 4.6. Summary of velocities calculated from first break data for the Longview - Cardium
Formation location.

Location/ Velocity (£100 m/s) - Anisotropic Parameters
Formation | Strike | Dip 45° : € 5

Longview "98 | 3300 ! 3300 3200 5 0 0
/Cardium ﬁ

4.9 Seebe ’98 - Wapiabi Formation

This survey was performed at the Lafarge Shale Quarry just outside of Seebe, Alberta,
approximately 80 km west of Calgary (Figure 4.2). The refraction survey was performed
on the floor of the shale quarry, where shales of the Wapiabi Formation (Alberta Group)
dip west at a constant angle of approximately 17° (Figure 4.21). The regional strike in
this location is 166°. Three lines of data were acquired, in the strike, dip and 45°
directions (Figure 4.22). Each line was recorded by a fixed spread of 20, three-
component geophones, with a group interval of S m. The geophones were also buried, in
order to increase coupling and decrease wind noise. Survey parameters for each line are

summarized in Table 4.1.

Figure 4.21. Photo of the outcrop in the shale quarry at Seebe, Alberta, looking north.
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Figure 4.22. Basemap indicating shot and receiver locations for the Seebe "98,
Wapiabi shale survey.

4.9.1 Results

The raw data for the strike line are depicted in Figure 4.23. The minus-time plots for
each line are given in Figures 4.24a,b,c. Robust velocities were obtained at this site,
using this method. Except for a few noisy receivers, the data lay on a straight line and the
computed velocities are tabulated in Table 4.7. There is virtually no surface weathering
layer present since the survey was undertaken on the recently excavated quarry floor. The
velocity anisotropy was calculated to be 19% (equation 1.19). It should be noted that
since the dips in this location are rather shallow, an accurate measurement of the slow
velocity (i.e. bedding-perpendicular velocity) of the shales is not possible, thus the VTI
anisotropic parameters for these shales cannot be calculated. However, since a definite
velocity variation with azimuth is measured, at this location, there may be an additional
azimuthal anisotropy influence due to an external variable, such as fracturing.
Groundwater studies by Lafarge personnel indicate open fractures parallel to strike in the
quarry [Lafarge, 1998]. Therefore a combination of both intrinsic and extrinsic
anisotropy was being measured. In this case, the calculated anisotropic parameters would

not be truly representative of either the intrinsic or extrinsic values of the anisotropy, only
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a combination of both influences. Since the two factors cannot be separated, these results

cannot be compared with the other Wapiabi Formation results obtained in other surveys.
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Figure 4.23. Raw shot record from strike line of Seebe '98 survey.
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Figure 4.24a. Minus-time results from the strike line at the Seebe *98, Wapiabi
shale location.
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Figure 4.24b.

Minus-time results from the dip line at the Seebe *98, Wapiabi shale location.
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Figure 4.24c.

location.

Minus-time results from the 45° azimuth line at the Seebe '98, Wapiabi shale
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Table 4.7. Summary of velocities calculated from first break data for the Seebe - Wapiabi
Formation location.

Location/ Velocity (3100 m/s)
Formation Strike Dip : 45°
Seebe 98 /Wapiabi ' 3100 ! 2600 : 2700

A second experiment was undertaken at this location, attempting to estimate the slow
velocity of the shales. A hydrophone cable was lowered into two shallow wells, to a
maximum of 60 m, in a VSP experiment. The first well was located along the north edge
of the shale quarry and the other along the south edge. Data from several offset shots
were acquired by the hydrophones but the results were inconclusive, as it was very
difficult to determine first arrival traveltimes. Coupling of the hydrophones in the water-

filled well appeared to be a problem.

4.10 Exshaw 98 - Palliser Formation

This survey was performed at the Lafarge Limestone Quarry at Exshaw, Alberta,
approximately 90 km west of Calgary (Figure 4.2). At this location, limestones of the
Palliser Formation (Devonian) dip west at angles generally between 50-55°, with a
regional strike of 150° (Figure 4.25). Being that the limestone is resistant and the floor of
the quarry is without a surficial layer of loose material, this survey was designed slightly
differently than the others. A line of 20, three-component geophones was laid out in the
dip direction with a geophone interval of S m. The geophones were cemented to the floor
of the quarry using lime mud, and were also covered with earth to increase coupling with
the limestone and to decrease wind noise. Three-component geophones were used to
enable reliable picking of the first breaks. In the absence of a surficial weathering layer,
the first arriving P-wave energy was often recorded with greater amplitude on the
horizontal components than on the vertical component of the geophone. Data were then
recorded into the fixed spread of geophones, with both inline and offline shots, as shown
in Figure 4.26. Only one receiver line was established due to the difficulty of coupling

the geophones to the cement floor of the quarry.




Figure 4.25. Photo of the Palliser limestone outcrop at the Exshaw quarry, looking north.
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Figure 4.26. Basemap indicating the shot and receiver locations of the Exshaw 98, Palliser

Formation survey.
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4.10.1 Refractor Velocity Analysis

Raw data from the dip line are shown in Figure 4.27. The minus-time analysis record for
the dip line is given in Figure 4.28, and yielded a velocity of 3000100 m/s. Since the
receiver line was not moved from the dip direction, further analysis of the data was
necessary to extract the strike and 45° velocities. For the strike velocity, a common
receiver gather was assembled, for receiver 11, since the offline shots were located
directly crossline with this receiver (Figure 4.26). From this gather, a weighted average
strike velocity was directly determined, using inverse slopes, from the first break data

from shots both north and south of the dip line (Figure 4.29).
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Figure 4.27. Raw shot record for the dip line at the Exshaw '98 survey.

For the 45° azimuth velocity, a combination of plus and delay times was again used
(equations 4.2 and 4.3). For example, consider a shot 30 m north of the receiver line and
receiver 11 in the strike line, which is 30 m from the shot line, in this location (Figure

4.26). The delay time of the shot (§, ), at 30 m north, is defined as,

5: .= T30~ _8rll - Xm/ (4.6)
0N Vy
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where: T,,, is the time from the shot at 30 m north to receiver 11.

o

X, is the distance between the shot at 30 m north and receiver 11, and

, is the delay time computed at receiver 1 1.

rl

v, is the velocity calculated from the CRG, north of the receiver line.
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Figure 4.28. Minus-time results from the dip line at the Palliser Formation
location.

The 45° velocity can then be calculated from,

X30~- 17
Ve = 4 4.7)
* (Tn "6:,0,, _6r17)

r

where: T, is the time from the shot at 30 m north to receiver 17.
Xion_,17 18 the distance between the shot at 30 m north and receiver 17.

The above calculations were also repeated for shot 40N/receiver 3, shot 30S/receiver 17

and shot 40S/receiver 3 to obtain an average estimate of v, , at this location.
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Figure 4.29a. First break traveitimes from a common receiver gather of the shots located north of
the receiver line at the Palliser Formation location.
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Figure 4.29b. First break traveltimes of a common receiver gather of the shots located south of
the receiver line at the Palliser Formation location.
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4.10.2 Results

The minus-time analysis worked well for the dip line data (Figure 4.28), as the data lay on
a straight line. The dip line velocity was easily calculated and tabulated in Table 4.8.
The strike and 45° line velocities were calculated, as above, and are also tabulated in
Table 4.8. These velocities show that the same velocity (3000+100 m/s) was calculated
along all three directions. There is virtually no surface weathering layer present. As all
three velocities are the same, within the error limits, these rocks do not exhibit any
velocity anisotropy. The velocities calculated for this limestone are lower than one would
expect. These limestones are at surface, thus are not under any overburden or pore
pressure, and the low velocities are attributed to extensive fracturing, either natural or
induced during quarry blasts. In the quarry outcrops, there appeared to be no consistent

fracture direction.

Table 4.8. Summary of velocities calculated from first break data for the Exshaw - Palliser
Formation location.

Location/ | Velocity (100 m/s) ; Anisotropic Parameters
Formation ¢ Strike Dip ! 45° : € : ]
Exshaw 98 : 3000 ; 3000 3000 f 0 0

[Palliser : 3 :

4.11 Discussion

The results of these surveys indicate conclusively that refraction seismic methods can be
used to successfully measure velocity anisotropy, in situ, at locations where uniform
panels of steeply dipping strata outcrop. The data show that there was a significant
surface weathering layer in the Jumpingpound Creek survey location and that turning rays
were also present. The other surveys did not show any of these effects. The Longview
Wapiabi site shows generally higher velocities and a greater degree of anisotropy, thus a
larger € value, than that found in the Jumpingpound Creek Wapiabi survey. The
difference is attributed to a change in the composition of the shales and a greater degree

of penetrative strain at the Jumpingpound Creek location, compared with the Longview
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location. The & values calculated from the two surveys are comparable within the

calculated errors for the parameters (0.00+0.08 and -0.05+0.07).

The data from the first Longview Brazeau Group site indicate that the Belly
River/Wapiabi contact was not located where it is predicted from geologic maps, thereby
rendering the results from this particular survey somewhat inconclusive. However, the
indication was that the Belly River Formation is anisotropic, similar to the Wapiabi
Formation, and that further study of this formation is necessary to properly quantify its
anisotropic parameters. The results of the second Brazeau Group survey indicate that
these rocks are also anisotropic, which was implied in the first survey. These two surveys
both indicate that a 8 value higher than € best describes the wave propagation through this
formation. Again the 8 values calculated from the two sites are comparable within the
errors associated with the parameters (0.50+0.08 and 0.42+0.06). On the other hand, the
calculated € from the Longview '98 Brazeau Group survey (0.21+0.05) was significantly
less than the Longview 97 survey (0.11+0.04). The second survey is considered to be
more accurate than the first, since the first acquisition survey crossed the
Wapiabi/Brazeau Group boundary. Thus the velocities obtained are considered to be

more reliable, in the second survey, as are the calculated anisotropic parameters.

This study shows that rocks of the Palliser and the Cardium Formations do not exhibit
significant velocity anisotropy. In both surveys, the same velocity was measured along all
three azimuths, within the error of the experiment, indicating that the rocks are isotropic.
The results from the Wapiabi Formation, shale quarry at Seebe indicate a strong presence
of anisotropy; however, without a reliable measurement of the slow velocity, one cannot
calculate the exact intrinsic anisotropic parameters. The 20% anisotropy present in these
shallow dipping Wapiabi shales, is attributed more to an azimuthal anisotropy arising
from aligned fractures in the shales, than to the intrinsic layer induced anisotropy of the
shales themselves. Since the fracture orientation was not taken into account when the

survey was designed, an accurate measure of the extrinsic anisotropy cannot be
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ascertained either. Hence these values cannot be directly compared with the results from

the previous Wapiabi Formation surveys at Jumpingpound Creek and Longview.

The anisotropic parameters, particularly § for the Brazeau Group rocks, appear to be very
different from those of the Wapiabi Formation, thus, the P-wave propagation through
each formation is quite different, indicating a need to characterize each formation
separately. One potential problem arises from the interbedded nature of the Brazeau
Group rocks, hindering an accurate assessment of the strike velocity. Due to the layering
of the formation, a refraction line in the strike direction could lay entirely in a sandstone
or shale layer, not to mention, along a shale/sandstone interface. @ As such, a
representative velocity cannot be obtained without averaging over several values, which
was not done in the two refraction experiments on this formation. In addition, the effects
of the interbedded nature are more difficult to ascertain in the 45° azimuth velocity as the
propagating energy probably travels longer and farther in the faster material (i.e.
sandstones), than in the slower (i.e. shales); thereby, skewing the 45° velocity closer to
the fast, or strike, velocity of the formation. This is a potential reason for the high 8
values calculated in these refraction studies. Nonetheless, the calculated anisotropic
parameters for the rocks of the Brazeau Group and the Wapiabi Formation also lie within
the range of values for shales as presented by Thomsen (1986) and Vernik and Liu
(1997).
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CHAPTER S VSP EXPERIMENT

5.1 Introduction

Refraction methods were used successfully to measure the anisotropic parameters of
rocks in various locations southern Alberta as well as for different rock types (Chapter 4).
By laying out seismic lines parallel, perpendicular and at 45° to the local strike directions,
the Thomsen (1986) anisotropic parameters, € and d were determined from the bedding-

parallel, bedding-perpendicular and intermediate (45° azimuth) velocities (Chapter 4).

Vertical Seismic Profiling (VSP) became a popular seismic technique in the early 1980’s
since it provides a direct relationship between surface seismic data and well infermation.
This relationship helps to remove the ambiguities in interpretations and non-uniqueness
in the inverse process. VSP’s also give complementary information, such as interval
velocity and zero-phase reflectivity [Stewart and Disiena, 1989]. Zero-offset VSP’s, or
check shot surveys, are used to find the relationship between interval velocity and depth
through analysis of the first break data. Multi-offset-VSP’s use several stationary land
shot locations for imaging purposes, using reflected wave information [Gilpatrick and
Fouquet, 1989]. Multi-offset surveys are capable of looking ahead of the drill bit,
imaging around the borehole, estimating the physical parameters of the rocks, identifying
both primary and P-S converted waves, estimating the time-to-depth curve as well as
imaging target areas [Cassell, 1984; Slawinski and Parkin, 1996]. This thesis develops a
new application of the VSP method by combining zero-offset and multi-offset surveys in
an area where the well intersects a uniformly dipping panel of strata. The purpose is to

obtain the Thomsen (1986) anisotropic parameters of these rocks at depth.

VSP technology has been considered previously for the determination of velocity
anisotropy in rocks; however, these methods are limited to dips less than 5° [Kebaili and
Schmitt, 1996; Sayers, 1997; MacBeth, 1998]. Therefore, with this limitation, these
applications are not suitable in moderate to steep dip environments, such as in the

foothills of the Rocky Mountain Fold and Thrust Belt.
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5.2 Design of Experiment

To calculate the anisotropic parameters, € and &, in the presence of moderate to steep
dips, accurate determinations of the bedding-normal, bedding-perpendicular and 45°
velocities were required. Using multi-offset VSP technology, these velocities can be
determined from the first arrival information through a moderately dipping (30-60°),
uniformly dipping panel of rocks and a multi-offset source configuration, as shown
schematically in Figure 5.1. In developing the procedure for this method, the choice of a
suitable well had to be made carefully, as there are several factors that had to be
considered. The well must penetrate a sufficiently thick, relatively uniform panel of
moderately dipping strata (ideally 45°) and it should have no deviation through the rock
panel, although minimal deviation in the dip direction is acceptable. To accommodate
the need for multiple shot locations, it was required that there be appropriate access, in
both the updip and downdip directions from the well, in order to obtain bedding-normal
and bedding-parallel velocities to the depths of interest (Figure 5.1). Maximum offset

distances of shotpoints from the well should be approximately equal to the well depth.
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Figure S.1. Sample design of a multi-offset VSP for a 2km thick package of
shales dipping at 45°.

5.3 Location
For this study, Petro-Canada Resources of Calgary, Canada, provided access to a well in

which to perform this experiment. The well, 11-10-28-6WS, was located ~80 km
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northwest of Calgary, Alberta, in the Wildcat Hills area (Figure 1.4, location 4). The well

intersected a 2 km panel of marine shales and some sandstones, dipping at approximately
40° to the southwest, and had only 5° deviation between the surface and the base of the

shale panel. The strata are of Cretaceous age.

5.4 Geology

A geologic map of the area encompassing the well is shown in Figure 5.2 and contains
clastics of the Brazeau and Alberta Group (Figure 1.3). Surface dips vary from 25° to 50°
and three thrust faults were mapped, trending NW-SE, verging eastwards. A geologic
cross-section through the well was constructed, based on all available geological and
geophysical data. A 3D volume of seismic data was available in the area and was used to
constrain the subsurface geology in both the strike and dip directions. Unfortunately, the
shallow data were of poor quality and did not yield any additional information to the
geologic structure at the well site. However, a high-quality 2D seismic dip line, located
approximately 800 m along strike from the well, provided a robust interpretation of the
subsurface structural geometry from the near surface to the maximum depth of interest,
over the full VSP shot aperture. The seismic section is shown in Figure 5.3. Gamma ray
log, sonic log, dip meter (Figure 5.4) and geologic formation top information were
available from both the VSP well as well as from a nearby well, located 2 km further to
the west (downdip) of the VSP well. A few other wells in the area also provided some
geologic information to be considered in the model building process; however, the
geologic model was based mainly on the information from the two primary wells, surface
geology and the interpreted 2D and 3D seismic data. The final interpreted geologic cross-

section through the VSP well is shown in Figure 5.5.

As can be seen by Figure 5.5, the sub-surface geology in this area is more complicated
than was initially anticipated. Ideally only a uniform, single panel of shales would
dominate the geology; however, this was not the case. The main stratigraphic units
identified in the seismic section were; Viking, Blackstone, Cardium, Wapiabi, and Belly

River. The Wapiabi and Blackstone formations are known to consist of marine shales
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Figure 5.2. Surface geology map of area around the VSP survey (adapted from Ollerenshaw,
1972). The well and shotpoint locations are indicated as well as the Wapiabi (K.p), Cardium

(K) and Brazeau Group (K,,) Formations.

Tims {4)

Figure 5.3. 2D seismic section that was interpreted to develop the geologic model for the
raytracing analysis. The approximate location of the well is indicated by the black line.
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Figure 5.5. Geologic model derived from the interpretation of the 2D seismic
data. This interpretation was also constrained by 3D seismic data, surface
geology and well information. Five formations are present in the model: Belly
River, Wapiabi, Cardium, Blackstone and Viking. The well is indicated by the
black line.

and the Belly River Formation is a combination of shales and sandstones. There are three
main structural zones in the interpreted section. In the west, a fairly uniform panel of
rocks is thrusted to the surface. The main thrust occurs in the Blackstone Formation and
a small amount of Blackstone shale is brought to the surface immediately north of the
well. This is conformably overlain by the Cardium, Wapiabi and Belly River formations.
The dips in this region are approximately 30° at depth, to 60° at the surface. In the
central region, another thrust sheet predominates. This thrust occurs in the Cardium Zone
and has many splays associated with it. Consequently, the Cardium Formation is highly
deformed, as well as thickened in this region. Above the Cardium Formation lie the
Wapiabi and Belly River formations, dipping at angles of 30° to 60°. The eastern region

is interpreted to be an anticline that is cored with Wapiabi shales. Small amounts of
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Belly River Formation are exposed, at surface, on the flanks of the anticline. The dips on

the eastern flank of the anticline, as indicated by the surface geology, are as high as 50°.
At depth, it is interpreted that the Cardium Formation follows the general shape of the
anticlinal structure, as does the Blackstone Formation. The actual structure at depth
cannot be confirmed due to the lack of well data in this region. It is known that at least
two thrusts carrying Viking Formation rocks are present at the base of the well, as the top
sheet is penetrated by the well. The second sheet is easily identified by the seismic data,
located immediately below the first sheet. The significant amount of sandstone present in

the section was unanticipated and had to be accounted for in the analysis of the data.

5.5 Data Acquisition

A map view of the well and source points used in the experiment is shown in Figure 5.6.
Data from five offset locations were acquired in the dip direction, away from the well,
with 3 shotpoints in the downdip direction (WO, W1 and W2 in Figure 5.6) and 2
shotpoints in the updip direction (E1 and E2 in Figure 5.6). The maximum offset of the
shotpoints was approximately equal to the depth to the base of the shale formations
intersected in the well. A minimum of five shotpoints was determined to provide
sufficient data redundancy to estimate the bedding-parallel, bedding-perpendicular and
45°-to-bedding velocities of the 2 km thick clastic package (Figure 5.5). An old seismic
line, which traversed the area in the dip direction just south of the well, provided access
to the five offset locations (Figure 5.6). Two zero-offset source locations (Zero and EO in
Figure 5.6) were necessary to provide adequate zero-offset imaging. Problems with tube
waves arose at the source location immediately adjacent to the wellhead, thus the source
had to be offset slightly (EO) to account for this. The source used for the experiment was
a single Mertz HD-18 vertical vibrator using an 8 — 80 Hz linear sweep over 12 seconds.
Three sweeps were summed at each shotpoint for each tool level. The VSP tool used was
Schlumberger’s S-level, 3-component tool with a geophone interval of 15m. Data were
collected over tool depths from ~600 m to ~2000 m in the well, with a standard tool
interval of 150 m. At shots E1, E2 and W1, the tool interval was reduced to 75 m in

order to acquire data for use by Petro-Canada, in part for imaging purposes.
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Figure 5.6. Plan view of the VSP survey.

5.6 Data Processing

Preprocessing of the data involved only data rotation into x, y and z coordinates with
respect to the acquisition plane. Figures 5.7a-f show the data from the z component,
windowed over the direct arrivals, displayed with a SO0 ms agc applied. These displays
show the high quality of the data from each shot location. The first-break times for each
shot location were picked and exported to a spreadsheet, which was used for the main
processing of the data. All raw and processed data, from all shot locations, are contained
in Appendix II. Firstly the absolute x, y, and z coordinates of all the receiver locations
were determined from the deviation survey of the well. The distances from each shot
location to each receiver was then calculated as well as the bearing angle (from north) and
inclination angle (from surface to receiver). For the five offset shot locations, located
both northeast and southwest of the well, the distances and times from the shots to the
receivers were projected into the plane of the shots so that a 2-dimensional traveltime
analysis could be undertaken. In order to project the well into the line of the VSP shots,

several relations need to be developed in order to make the transformation.
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Figure S.7a. VSP data from shot E2 after rotation.
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The required variables are defined as follows and are related in Figure 5.8:

b)

h - is the horizontal distance on the surface from the shotpoint to the well.

h’ - is the projected horizontal distance from the shotpoint to the repositioned

well.
0 - is the transformation angle between the h and h’ planes.
d - is the distance from the shotpoint to the receiver in the well.

d’ - is the projected distance from the shotpoint to the repositioned well.

91

z - is the vertical depth of the receiver in the well. Note that this value is the same

in both the actual and transformed planes.
I - is the angle between h and d in the untransformed plane (h).

I’ - is the transformed angle between h’ and d’.

a) P

v

y v
z z
Figure 5.8. For transformation from the a) h plane to the h’ plane (plan view),

one must consider the relation between each of the variables in both the b) h
plane (side view) and c) h’ plane (side view).



From Figure 5.8a:
h'=hcos8

In the h plane (Figure 5.8b):
h=dcosl

and,

z=htan/ .

In the transformed plane (h’) (Figure 5.8c):

h'=d'cosl’

and,

z=h'tan/".

Equating equations 5.3 and 5.5,

htanl =h'tanl’

Substituting in equation 5.1,

htan/ = hcos@tan [’

Therefore,

The projected distance (d’) is then, from equations 5.4 and 5.1,
h'" _ hcos@

d' =
coslI' cosl'

5.1

(5.2)

(5.3)

5.4

(5.5)

(5.6)
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Therefore, substituting in equation 5.2,

_ d cos I cos@ . (5.7)
cosl’

dl

Similarly, the projected traveltime (t’) is,

= tcos /I cos@ . (5.8)
cosl'

Equations 5.7 and 5.8 were used to calculate the transformed, or projected, distances and
traveltimes for the 5 offset shot locations (E2, E1, W0, W1 and W2), in Appendix II.
This allowed for the adjustment of the observed traveltimes, such that they could be

compared to the 2D forward modelling results.

Source static corrections were evaluated from the 2D seismic line, which intersected all
of the VSP offset shotpoints, immediately south of the well (Figure 5.6). Unfortunately,
there was a bulk shift applied to the data, which could not be precisely determined due to
the age of the data. As such, the exact shot statics could not be applied; however, the
variation in source statics was determined to be less than +10 ms. This was used to

quantify the accuracy to which the final modelling could be undertaken.

5.7 Data Analysis

The structural model was digitized and imported into a general TI anisotropic raytracing
package that was developed for the analysis (Figure 5.5). This program traced rays
through polygons of the model from a shotpoint to each receiver location in the well.
Within each polygon, values of bedding-perpendicular velocity (v,), €, 8 and the bedding
dip were specified by the user. These parameters were adjusted iteratively until the
modelled ray (group) traveltimes agreed with the observed traveltimes to within +10 ms.

The structural model was not changed during the analysis.
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The initial velocity model was constrained using interval velocities, determined from well

data, as well as refractor velocities determined through a minus-time analysis
[Hagedoorn, 1959]. Interval velocity analysis from the zero-offset source location
yielded average velocities of each formation at 40°-to-bedding, as seen in Table 5.1. The
2D seismic line, immediately south of the well, was used to calculate the refractor
velocities through a minus-time analysis of first arrival traveltimes. The procedure was
similar to that used in the refraction surveys (Chapter 4). The calculated refractor
velocities were used to constrain the velocities of the outcropping rock units at each shot

location.

Table 5.1. Average interval velocity of each formation, determined at 40°-to-
bedding from the zero-offset source location (EO).

Formation Average Interval Velocity (m/s)
Belly River 4100
Wapiabi 4000
Cardium 4100

Blackstone 4000

The starting anisotropic parameters used in the initial model were taken from the
refraction survey results, described in Chapter 4. Initially only the Wapiabi and Belly
River formations were modelled as being anisotropic, although, eventually the Blackstone
Formation was also made anisotropic. The anisotropic parameters for this formation
were assumed to be similar to those of the Wapiabi Formation. The dips assigned to
these anisotropic bodies were projected from the dip meter data in the well (Figure 5.4).
Once the initial model was built, the raytracing was performed. Rays from each of the
offset shot locations were used to calculate the traveltime to each receiver location. The
zero offset shots were not used directly in the raytracing since their raypaths are
intuitively straightforward. The input parameters were adjusted independently, for each
iteration of the raytracer, starting with the formation velocities and finishing with the
anisotropic parameters. The model parameters were modified iteratively until the

computed traveltimes matched the observed values within + 10 ms, for all records.
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5.8 Results
The final anisotropic velocity model is presented in Figure 5.9 and the parameters used
are listed in Table 5.2. The average values of € and 8 for each anisotropic formation are
typical and within the range defined by Thomsen (1986) and the refraction surveys of
Chapter 4. In this case, modelling the Blackstone Formation with a & value greater than &,
best fit the data, which is not typical of shales [Thomsen, 1986]. This was not expected
since this formation is more similar in geology to the Wapiabi Formation than the Belly
River Formation. Again this indicates that each anisotropic formation must be quantified
individually in order to correctly account for velocity anisotropy in seismic data
processing. It is also noted that the Wapiabi velocities, used in the modelling, varied
depending on the depth of the Formation. The velocities in the near surface were slightly
slower than the velocities at depth, which are attributed to either a weathering gradient at

the surface or a compaction gradient at depth.

ELEAIIN

Figure 5.9. This is the final anisotropic velocity model which best fit the
observed data during the raytracing procedure. The colours represent velocity,
with blue being slowest and red being fastest. The polygon parameters are
defined in Table 5.2.
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Figure 5.10 depicts a sampling of the rays for each offset shot location. This is not a

unique solution, as the input parameters could be altered in many permutations to model
the observed data. However, the model shown in Figure 5.9 is an adequate solution given
the geologic and geophysical constraints on the data. To complete the study, the
anisotropic parameters were set to zero in this model and the traveltimes were
recalculated. This provided an isotropic solution to compare with both the observed and

anisotropic values.

Table 5.2. Parameters used in the final anisotropic model, applied in the
raytracing procedure (Figure 5.9).

Formation |Velocity| Dip € Fe)
(m/s) C)

BRI 3600 -30 0.11 032
BR2 3700 -45 0.11 0.32
BR3 3500 -40 0.11 0.32
BR4 3700 40 0.11 0.32
WPI 3700 -30 0.10 0.07
wpP2 3600 -50 0.10 0.07
wP3 3400 -60 0.10 0.07
WwP4 3900 -20 0.10 0.07
WPS 3700 -40 0.10 0.07
WP6 3700 -60 0.10 0.07
wP7 3600 -40 0.10 0.07
WP8 3600 40 0.10 0.07
CDl1 4300

CcD2 4300

CD3 4300

CD4 4300

BKI 4000 45 0.05 0.10
BK2 4100 -40 0.05 0.10
BK3 4100 25 0.05 0.10
BK4 4100 -40 0.05 0.10
BKS 4100 -35 0.05 0.10
VK1 4500

VK2 4500

The traveltimes from each shot location, observed, anisotropic and isotropic, were plotted
against receiver elevation (Figure 5.10). From these plots, it is evident that the raytracing

process successfully modelled the observed traveltimes to within 10 ms. The eastern
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Figure 5.10a. Sample raytracing example from shot E2.
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Figure 5.10b. Sample raytracing example from shot E1.
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Figure 5.10c. Sample raytracing example from shot W0O. Note the shadow zones for the third
through sixth receiver locations down the well. This is due to the sharp edges of the polygons as
well as the defined parameters therein.
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Figure 5.10d. Sample raytracing example from shot W1.
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Figure 5.10e. Sample raytracing example from shot W2.

shots were modelled more closely by the anisotropic solution than the isotropic solution,
whereas the difference between the solutions for the western shots is considerably less.
This is expected since the eastern raypaths are parallel to the bedding of the shales and the
western shots are perpendicular-to-bedding. Since the isotropic solution assumes the
perpendicular-to-bedding velocity for the formation, the error will be small when the
raypaths also tend to be perpendicular-to-bedding. The error will be larger when the
raypaths are parallel-to-bedding, as seen in Figures 5.11a and 5.11b.

The computed traveltimes were then used to calculate the velocities for each raypath,
assuming straight raypaths, and the velocities were then plotted against elevation (Figure
5.12). Note that the observed velocities from the eastern shotpoints are faster than those
from the western shotpoints. This is because the raypaths from the eastern shots are
approximately parallel-to-bedding (i.e. travelling at the fast velocity of the strata),

whereas the western raypaths are more perpendicular-to-bedding. It can also be seen that
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Figure 5.11a. Traveltime vs. Elevation plots for shot E2, comparing the observed data to both
the isotropic and anisotropic solutions.
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Figure 5.11b. Traveltime vs. Elevation plots for shot E1, comparing the observed data to both
the isotropic and anisotropic solutions. Note the lack of data in the isotropic solution, due to the
shadow zones present in the raytracing model.
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Figure 5.11c. Traveltime vs. Elevation plots for shot WO, comparing the observed data to both
the isotropic and anisotropic solutions.
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Figure 5.11d. Traveltime vs. Elevation plots for shot W1, comparing the observed data to both
the isotropic and anisotropic solutions.
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Figure 5.11e. Traveltime vs. Elevation plots for shot W2, comparing the observed data to both
the isotropic and anisotropic solutions.
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Figure 5.12a. Velocity vs. Elevation plots for shot E2, comparing the observed data to both the
isotropic and anisotropic solutions.
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Figure 5.12b. Velocity vs. Elevation plots for shot E1, comparing the observed data to both the
isotropic and anisotropic solutions.
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Figure 5.12c. Velocity vs. Elevation plots for shot WO, comparing the observed data to both the
isotropic and anisotropic solutions.
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Figure 5.12d. Velocity vs. Elevation plots for shot W1, comparing the observed data to both the
isotropic and anisotropic solutions.
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Figure 5.12e. Velocity vs. Elevation plots for shot W2, comparing the observed data to both the
isotropic and anisotropic solutions.
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the velocities have a larger error associated with them, in general. This is due to the

propagation of the error in the traveltimes. It was determined in the refraction surveys
that a 10 ms error in the first break picks resulted in approximately +100 m/s error in the
velocity, for typical ray lengths used in these experiments. This further propagates into
an order of magnitude error in the calculated anisotropic parameters, especially 8. It is

the same for these VSP calculations.

5.9 Discussion

The results of this survey indicate that the anisotropy can be forward modelled in this
VSP experiment. This is also an indication that the geological interpretation was well
constrained by the available geologic and geophysical data. Minor alterations to the
geologic interpretation may be valid; however, it is doubtful that the differences in the
modelled traveltimes would be significant. The observed traveltimes were modelled to a
precision of +£10 ms which is within the realm of accuracy possible for this experiment.
The error in the observed traveltimes is associated with the first break picking; whereas
the error in the calculated traveltimes is a resuit of a variation in shot statics and minor

variations in the geologic model.

The anisotropic solution gave a more complete representation of the subsurface than the
isotropic solution. The isotropic solution was not comparable in the parallel-to-bedding
direction. The Blackstone Formation velocity used in these models is higher than
predicted from the sonic data. It is expected that this formation is somewhat fractured at
the well location but is more uniform away from the well, resulting in the faster

modelling velocity.

The anisotropic parameters used in the anisotropic model were consistent with those
obtained from the refraction surveys, within the margin of error. These parameters were
also constant within each of the anisotropic formations, whether at surface or at depth.

This indicates that the anisotropic parameters are not depth dependent and are not
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affected by any compaction gradient. Thus, the anisotropic parameters obtained from

surface methods are applicable at depth and are valid in the depth migration process.

Due to the complicated structural geology at this location, the anisotropic parameters
could not be determined by direct traveltime inversion assuming straight raypaths.
However, the anisotropy was modelled successfully using the forward modelling
techniques. Nevertheless, it is expected that the anisotropic parameters could be directly
determined from the data if the geology were sufficiently simple, such as a 2 km, uniform
panel of shales. Hence, this experiment is expected to provide another method to
measure velocity anisotropy, in situ, where steeply dipping strata outcrop. This, in turn,
allows for the accurate determination of the anisotropic parameters for use in depth

migration routines.
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CHAPTER 6 ANISOTROPIC DEPTH MIGRATION OF A CANADIAN

ROCKY MOUNTAIN FOOTHILLS DATASET

6.1 Introduction

The physical modelling showed that dipping anisotropic strata will cause problems for
time-to-depth conversion of seismic data when isotropic velocities are assumed during
depth migration. Anomalies seen in time data can be removed effectively from the model
data using anisotropic depth migration, if the anisotropic parameters are known and the
correct geometric velocity model is used. The refraction and VSP surveys, described in
Chapters 4 and 5, demonstrate that geologic formations, comprising a significant amount
of clastic strata, will be anisotropic. The differences in velocity were measured and the
Thomsen (1986) anisotropic parameters calculated for several formations in the Alberta
Foothills. This allows for extra information to be included in the time-to-depth
conversion of anisotropic data. The final step in this thesis is to evaluate anisotropic

depth migration by the processing of a real dataset.

A modemn dataset from the Canadian Rocky Mountain Foothills was graciously donated
for the purpose of analysis; however, the donor and exact location cannot be published
due to the confidential nature of the data. Anisotropy was suspected to be present. A
geologic interpretation of the pre-stack time migrated section was necessary to identify
the main velocity contrasts and the anisotropic formations, in order to build the velocity
model for the anisotropic depth migration. Equipped with a geologically controlled
velocity model, and the anisotropic parameters determined from the refraction surveys,
the anisotropic depth migration was tested. The Kelman Technologies Inc. Kirchhoff

migration algorithm was used, as described in Chapter 3.

The objective of depth migration of the data, including anisotropic effects, was to
determine the most coherent and correct depth section result that could be obtained.
Kelman Technologies Inc. had provided a pre-stack time migrated section; however, the

image contained time structural anomalies, which were interpreted to be caused by
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seismic velocity anisotropy in overlying, dipping clastic rocks. Also, there was no depth
control for the line. Anisotropic depth migration was used to provide an optimally

imaged depth section to compare with isotropic depth migration.

6.2 Interpretation

The stratigraphy of the study area is summarized in Figure 1.3. The main stratigraphic
units identified in the seismic data were; Cambrian, Devonian, Mississippian,
Kootenay/Fernie, Blairmore, Blackstone, Cardium, Wapiabi, Belly River and Bearpaw/St.
Mary River/Willow Creek. The Wapiabi and Blackstone formations are known to consist
of marine shales and the Belly River Formation is an interbedded sequence of shales and
sandstones. The refraction surveys have shown that these formations are anisotropic and
require the assignment of anisotropic parameters in the migration process. As such,
particular attention was made to these units in the interpretation. Data from two wells,
located off the southwest end of the section, were available and were considered in the
interpretation. The surface geology was also used to constrain the location of faults and

formation boundaries at the surface, across the section [Stockmal,1996].

A time migrated section of the data is presented in Figure 6.1 and is approximately 20 km
in length. The group interval was 20 m, the crooked line CDP spacing is 10 m and the
nominal fold is 60. The shot interval was variable but the average shot interval was 100
m. These data were processed using surface consistent deconvolution, refraction statics,
residual statics, pre-stack migration velocity analysis, mute, pre-stack time migration and
filter (4-8, 40-50 Hz). The data quality is good but there are few reflectors in the upper
portion of the section. The Paleozoic section is well defined and there is one major
reflector that runs part way across the middle section, from the southwest to the triangle
zone, at a time of approximately 1800 ms. There is virtually no coherent reflectivity in
the triangle zone. There is evidence of steeply dipping strata in the upper, central portion
of the section, immediately west of the triangle zone. The eastward dips of reflectors on
the eastern flank of the triangle zone, are also evident. The interpretation of this time

section is presented in Figure 6.2. In the interpretation, the section can be broken into
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three main regions: a region dominated by west-dipping reflectors; a region at the east
end of the section incorporating the triangle zone and east-dipping events; and a lower
region with essentially flat, coherent events below the overlying dipping sections. The
upper west region of the section is dominated by lower to middle Cretaceous sediments,
which have been thrusted steeply to the surface. These formations are the west dipping
strata that form the western edge of the triangle zone and the hinterland. The upper
eastern portion of the data contains the triangle zone structure and the gently dipping
foreland structures of the Upper Brazeau and Tertiary strata. These strata dip mainly to
the east. While the Mesozoic strata have been substantially folded and faulted, the deeper
autochthonous Paleozoic and older basement strata are structurally undeformed. There
are two locations in the basement Paleozoic strata, labelled ‘A’ and ‘B’, in Figure 6.1,
where positive time structures are present. These occur below steeply dipping strata that

outcrop at surface west of, and at, the triangle zone, respectively.

The west region extends from the edge of the section in the SW, to the western boundary
of the triangle zone. There are two major, lower detachments located in this region. The
upper of the two detachments runs through the base of the Blairmore, or top Kootenay
strata, and carries all the surficial, middle and lower Cretaceous rock units. These rocks
are highly faulted by several, west dipping, steep splays off the main detachment. As a
result, the rocks are also steeply dipping to the west, some almost vertically dipping, as
confirmned by the surface geology. This shallowest detachment is interpreted to
eventually thrust to the surface as a major fault. The deeper detachment runs through the
Blairmore unit, above the Paleozoic section. The rocks carried on this second detachment
are interpreted to be the rocks which make up the core of the triangle zone. These consist
primarily of rocks of the Belly River and Wapiabi formations, with smaller amounts of

Blairmore Group strata.

The NE portion of the section contains the core of the triangle zone as well as a major
eastward dipping fault, which carries the foreland dipping strata on the east side of the

triangle zone. This fault is a major backthrust that brings the Bearpaw, St. Mary River
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and Willow Creek formations to surface. A second east-dipping backthrust is also

present in this region and converges to the first fault, at depth. In the core of the triangle
zone, it has been interpreted that the rocks carried above the deep detachment of the
middle region have been rotated to steep angles, which dip to the west, due to the
compression of the underlying antiformal stack. Below the Upper Cretaceous/Tertiary
strata, riding on the major backthrust in this region, several east-verging horses
containing Belly River and Wapiabi strata have also been interpreted. These units have

not been rotated to steep dip angles, as is the case in the core of the triangle zone.

6.3 Anisotropic Pre-Stack Depth Migration

Once the interpretation of the time migrated seismic section was completed, the
interpretation was digitized into a velocity model builder. All the main horizons and
major velocity contrast boundaries were included (Figure 6.2). The velocities assigned to
each section, in the first migration model, were based on sonic log information provided
by the two wells used in the interpretation of the seismic data. An initial value of € =
0.10 was assigned to all the Wapiabi shale locations, which was determined from the
refraction surveys (Chapter 4). 9, set to 0.025, remained constant throughout the initial
depth migrations and was subsequently investigated in the final series of migrations. The
dip was assigned based on the reflectors in the data. The depth migration routine used in
the processing is the same as that used and described in Chapter 3. The results of this
initial migration are shown in Figure 6.3. The image produced was not as coherent as the
original time section (Figure 6.1). This is not unexpected since depth migration is more

sensitive to migration velocities than is time migration.

Once an initial result was produced, an iterative process was then developed to improve
the migrated image (Table 6.1). A velocity analysis tool was first used to refine the
velocities, which allows the user to scan through several migrated sections, each with
slightly different migration parameters applied. In this case, each section is migrated
using a percentage of the current model velocities, typically 90 - 110%, in 2% increments.

The velocity panel is then picked according to reflector continuity at the top and bottom
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of each velocity zone. These velocity zones do not change location in time, but they do
have different depths after depth migration using each of the interpreted velocity models.
The depth changes for each horizon are reflected in changes in the interpreted interval
velocity in the model. The interpreted velocities were then assigned in the velocity
builder and the migration was rerun. Secondly, the updated migrated section was used to
further refine the velocities by evaluating the common image gathers (CIG) [Zhu et al.,
1998; Chapter 3]. The velocity model builder allowed for the gathers to be recalculated
based on any velocity changes in the model. This meant that the velocities could be
modified, according to whether the gather indicated that the velocity was too high or too
low [Zhu et al., 1998]. Again the velocity model was updated and the migration rerun.
The final result, after changes to the interval velocities and gathers, is shown in Figure

6.4. There is substantial improvement to the section, from the first iteration (Figure 6.3).

Table 6.1. Methodology used to produce final ADM section.

Step Procedure

Time migrated section
Interpretation
Velocity model (time), assigning initial v,, € and &
Velocity model (depth)
Depth migration
Iterate over v,

Check CIG (smiles and frowns) (back 1o 4)
Check velocity boundaries (back to 4)
Iterate over €
Itcrate over &

Final section

NSOV NAUA WN~

It was decided that Figure 6.4 was the best anisotropic depth migrated image that could be
obtained using the original geometric interpretation. Since the migrated image had been
improved through several iterations, it was evident that some of the original horizon
boundaries, from the initial geometric interpretation, had changed. As such, modification
of the geologic model was deemed necessary. Using the velocity model builder, it was
possible to make the necessary adjustments to the time horizons in order to match the

data more correctly. The migration was then updated and the previous steps repeated.
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The velocity analysis tool was again used and the interval velocities were updated. Then

the common image gathers were scrutinized [Zhu et al., 1998] and the velocities were
updated again. The results of these changes are seen in Figure 6.5 and, once again,

improvement to the image was obtained as compared to the section in Figure 6.4.

After the optimal migrated section was obtained, additional iterations were undertaken to
examine the effects of the anisotropic parameters in the migration process. The velocity
analysis tool was again used to independently increase and decrease the values of € and 8
in the portions of the velocity model interpreted to be Wapiabi shales. Final anisotropic
parameters of € = 0.12 and & = -0.03 were chosen based on the values that best focussed
the migrated image. These parameters were updated in the velocity model builder and the
whole section was fine-tuned, again using the velocity analysis tool. The final result is
depicted in Figure 6.6. The section has been greatly improved over the previous results
(Figures 6.3-6.5) and it is comparable to the original time section (Figure 6.1) in terms of
image quality and overall signal-to-noise ratio. In addition, for comparison, the
anisotropic parameters were set to zero in the velocity model and the data were migrated

using an isotropic velocity model (Figure 6.7).

6.4 Comparison of Migrated Sections

In order to assess the effectiveness of the anisotropic depth migration (ADM), the final
anisotropic depth image was compared to both the isotropic depth (IDM) and time
migrated sections. In Figure 6.8, CDP's 151-351 were compared. It can be seen that
there is a time discontinuity in the Paleozoic portion of the section, at ~2500 ms, which
may be interpreted as a normal fault. However this structure is not present in the ADM
section. Therefore this interpreted basement fault is probably not a real structure, but
rather a manifestation of the steeply dipping strata, constituting part of the triangle zone,

in the shallow part of the section.

From CDP's 401-601 (Figure 6.9), it is seen that the depth images, both isotropic and

anisotropic, are very similar. Some new reflectors have been imaged in these depth
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Figure 6.5. Anisotropic depth migrated section, using updated interpretational model.
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Figure 6.7. Final isotropic depth migrated section.
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Figure 6.8. Comparison of migrated sections: at left is the pre-stack time migration; in the
centre is the isotropic depth migrated section (IDM); and at right is the optimal anisotropic depth
migrated section (ADM). The fault interpreted in the time section is not present in the ADM
section; hence, it is considered to be a time anomaly. The ADM section also gives a more
ccatinuous, hence more interpretable, image of these deeper reflectors than the IDM section.
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Figure 6.9. Comparison of migrated sections: at left is the pre-stack time migration; in the
centre is the isotropic depth migrated section (IDM); and at right is the optimal anisotropic depth
migrated section (ADM). The two depth images are very similar in this section of the data. The
structures are not complicated in this area and thus the anisotropy does not significantly affect

the results.
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sections that were not seen in the time section. The similarity between the two depth

images results from the relatively unstructured nature and gentle dips of the strata in this

arca.

In the triangle zone, CDP's 651-851, the ADM section has more reflectors than the time
section and better continuity of reflectors than in the IDM section (Figure 6.10). The
structural complexity of the triangle zone, in addition to the anisotropy, is best treated by

the ADM.

In the presence of steeply dipping reflectors, CDP's 851-1101, the isotropic and
anisotropic depth images give better dip images in the shallow part of the section;
however, it compromises the basement structures at depth, as a direct consequence
(Figure 6.11). Since imaging these dips in the near surface was one focus during the
depth migrations, the assignment of short wavelength structure and dips in the shallow
portion of the section complicated the migration velocity model in the near surface. The
addition of structural complexity in the near surface velocity model thus complicates the
imaging of deeper structures, resulting in the near surface, dipping strata being imaged
better than the deeper strata, in both migrated sections (IDM and ADM). In addition, the
deeper reflectors in the ADM section are imaged slightly better than in the IDM section,

since the overmigration of the deeper reflectors in the ADM section is less pronounced.

Figure 6.12, CDP's 1101-1301, indicates that different depth locations of the Paleozoic
strata, between the IDM and ADM sections, occur under steeply dipping surface
reflectors. The IDM section places the Mississippian reflector shallower in depth than in
the ADM section, as expected, since the rotation of the strata is not taken into account in
the IDM result. As such, the migration velocities are too low, placing the reflector
shallower in depth in the final image. Unfortunately, there were no wells on the line
directly to evaluate the tie to the migrated data. Judging from the modelling results in

Chapter 3; however, the ADM result is considered to be the more correct image.
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Figure 6.10. Comparison of migrated sections: at left is the pre-stack time migration; in the
centre is the isotropic depth migrated section (IDM); and at right is the optimal anisotropic depth
migrated section (ADM). In this section, the ADM brings out more reflectors than the time
section and better continuity of these reflectors than the isotropic solution.
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Figure 6.11. Comparison of migrated sections: at left is the pre-stack time migration; in the
centre is the isotropic depth migrated section (IDM); and at right is the optimal anisotropic depth
migrated section (ADM). The depth migrations give better dip information in the shallow
portion of the section, however, they complicate the basement structures, as a direct result. As
well, the ADM section is not as overmigrated as the IDM section, in the highlighted area.
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Figure 6.12. Comparison of migrated sections: at left is the pre-stack time migration; in the
centre is the isotropic depth migrated section (IDM); and at right is the optimal anisotropic depth
migrated section (ADM). Note the different depth location of the Mississippian reflector
between the isotropic and ADM solutions. The steeply dipping strata in the near surface
seriously affect the isotropic migration.
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In the location of CDP's 1401-1601, in Figure 6.13, the time discontinuity of the

Mississippian reflector has been enhanced in the ADM section. Since this structure
remains in the depth section, it is considered a real structure, such as a duplex involving
Fernie strata, and not a manifestation of the processing algorithms. In addition, the ADM
section displays better continuity in the shallow reflectors than both the IDM and time

sections.

In the relatively flat-lying reflectors found at CDP's 1701-1901, the three sections are
comparable (Figure 6.14). Since no anisotropy was considered in this portion of the data
and the structures are not complicated, the three migrations are expected to be similar in

terms of image quality.

Due to the complexity of the section, it is doubtful whether any further major
improvements can be made to the anisotropic depth image, at this time. In the future,
with better control of the anisotropic parameters and refined migration processes, it will

be possible to improve on this final image.

6.5 Discussion

Anisotropic depth migration is an effective tool in areas of steeply dipping anisotropic
strata. Depth migration is preferred to time migration since the ultimate goal must be
comparable to a geologic cross-section. Depth migration of this data resulted in better
imaging of the dipping reflectors in the shallow portion of the section; however, often at
thc expense of the quality of the image of the deeper reflectors. If less detail is
incorporated in the shallow portions of the velocity model, a better image of the deeper
reflectors may be obtained. Hence, the focus of the migration needs to be determined

before the data are migrated.

Anisotropic depth migration yields a more complete image than the isotropic image. The
incorporation of anisotropy into the migration code adjusts for the lateral and depth

mispositioning errors often found if the data were migrated isotropically. This was seen
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Figure 6.13. Comparison of migrated sections: at left is the pre-stack time migration; in the
centre is the isotropic depth migrated section (IDM); and at right is the optimal anisotropic depth
migrated section (ADM). The time structure present in the time data is also present in the ADM
section. This may be a real subsurface structure, such as a duplex involving Fernie strata. Note
also that the ADM image is more continuous than the [DM image. Also, the shallow portion of
the section shows better continuity in the ADM section, than in both the IDM and time sections.
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Figure 6.14. Comparison of migrated sections: at left is the pre-stack time migration; in the
centre is the isotropic depth migrated section (IDM); and at night is the optimal anisotropic depth
migrated section (ADM). In this section of the data, the strata are relatively flat lying and no
anisotropy has been assigned to the structures. This results in all three images being similar.
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in Figure 6.12 where the depth of the Mississippian reflector was located too shallow in

depth in the isotropic image. In Figure 6.13, the apparent time structure was also better
imaged with the anisotropic result than with the isotropic result. This reinforces the idea

that the structure may be real.

The complexity of the section, at present, seems to hinder the resolution of the overall
anisotropic image. With better acquisition and migration routines as well as better
knowledge of the anisotropic parameters of rocks in the area, more improvement could be

expected.
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CHAPTER 7 CONCLUSIONS

7.1 Conclusions

One of the important contributions of this thesis is the demonstrated evidence of
traveltime anomalies, in time recorded data, which are due to seismic velocity anisotropy.
Traveltime anomalies were identified in the seismic data from two physical models
containing dipping anisotropic layers and these anomalies could be successfully predicted
using numerical modelling techniques (Chapter 2), a result considered to be significant.
The close correlation between the model data and the predicted results indicates that a
general anisotropic raytracer has been successfully developed. The depth migration of
these model data, discussed in Chapter 3, has demonstrated that isotropic pre-stack depth
migration is limited in its ability to correctly migrate data from these anisotropic physical
models, as it leads to discrepancies and conflicts between the correct reflector depth and
the residual moveout in image gathers. In order to account for these discrepancies
correctly, anisotropic depth migration routines need to be used. However, prior
knowledge of the anisotropic parameters and geometry of the velocity model is necessary

for this process.

Measuring the anisotropic parameters of rocks is not an easy task. In this thesis, two new
methods were developed, that allow for the in situ measurement of seismic velocities at
various angles through bedding, from which the anisotropic parameters can be computed.
These methods have not previously been considered by other researchers. By measuring
the velocity of rocks in situ, a more accurate determination of these parameters is
possible, instead of attempting to recreate these conditions in the laboratory, which is
difficult. In addition, these methods allow for measurements using true seismic
wavelengths, instead of high frequencies (i.e. short wavelengths), which are necessary for
laboratory measurements. By using refraction techniques, developed in Chapter 4, the
anisotropic parameters of steeply dipping rock formations were determined. In Chapter S,
VSP methods were extended to measure the anisotropic parameters of moderately dipping

strata. Both of these methods were successful and can be performed in the Alberta
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Foothills, in order to quantify the anisotropy of various anisotropic rock units. This
allows for the accurate determination of the anisotropic parameters for use in depth

migration routines.

Anisotropic pre-stack depth migration (ADM) methodologies were developed and tested
using both synthetic data as well as a real dataset from the Alberta Foothills. The two
physical model datasets were migrated using ADM techniques, presented in Chapter 3,
which successfully eliminated the traveltime anomalies from the final depth sections. In
Chapter 6, it was demonstrated that ADM is an effective tool in the processing of real
seismic data, especially in the presence of steeply dipping strata. The depth migrated data
offered a more robust section than the time migrated data and thus, yielded a more
complete image of the subsurface. Also, the inclusion of anisotropic velocity models in
the pre-stack depth migration process does not further complicate the problem, but allows
for improved focussing of the final section through an iterative process of varying
individual parameters. The key to using ADM successfully is the development of the
velocity model. The assignment of the various parameters, such as perpendicular-to-
bedding velocity, dip and anisotropic parameters, as well as the geologic boundaries, is
very important to the ADM process. Variation of these parameters, within geologic and
well log constraints as developed in Chapter 6, allowed for a complete and accurate depth

migrated image to be produced.

This thesis has yielded a deeper understanding of the effects of seismic velocity
anisotropy on seismic imaging and has developed new methods to predict and
compensate for these effects. ADM is necessary for the correct processing of seismic
data recorded over anisotropic strata but it requires more input parameters than
conventional processing. By incorporating the anisotropic parameters, determined
through in situ techniques, into processing routines, velocity anomalies and other depth
and lateral mispositioning errors due to anisotropy, can be mitigated in the seismic data.

Consequently, the correct positioning of exploration targets, both laterally as well as in
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depth, can be achieved, particularly in structurally complex areas. As a result, a more

accurate depth image of the subsurface exploration target can be obtained.
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APPENDIX I ELLIPTICAL RAYTRACING SUBROUTINE

implicit real (a-z)

integer medl, med2

pi = 4.0 * atan(1.0)
print *,' Enter incident medium (iso = 1l,aniso = 2): '
read (5, *) medl
print *,' Enter refractive medium (iso = 1,aniso = 2): '
read (5, *) med2
if (medl .eq. 1) then
print *,' The incident medium is isotropic.'’
else if (medl .eqg. 2) then
print *,' The incident medium is anisotropic.’
else i1f (medl .ne. 1 .and. medl .ne. 2) cthen .
print *,' Please enter incident medium (iso = l,aniso = 2):°’
read (5, ) medl
end if
if (med2 .eq. 1) then
print *,' The refractive medium is isotropic.’
else 1f (med2 .eqg. 2) then
rint *,' The refractive medium is anisotropic.’
else if (med2 .ne. 1 .and. med2 .ne. 2) then
princ *,' Please enter refractive medium (iso = 1l,aniso = 2):°'

read (5, *) med2

end if



viso = 274

viast 33

vsilow = 29

phnirl = al

1f (medl .

Incident ray angle (deg)
alphal

Incident gamma (deg) =
gammal

Refracted gamma (deg) =

gamma?l

0.0

65.0

for phi > 90.0 or phi <

alphal * pi/180
gammal * pi/180

gamma?2 * pi/180

pharl - gammarl

eqg. 1) then
phirl * 180.0/pi
= viso

sin(phirl) / rayvell

else if (medl .eq. 2) then

if (phi

ri .ltc. -pi / 2) then

gammarl = gammarl - pi

elseif

phirl = alpharl - gammarl

(phirl .gt. pi / 2) then

gammarl = gammarl + pi

- 90.0
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endiéf

phil = phirl * 180 / pi

tanphs = (vslow**2 / vfast**2) * tan(phirl)
phsrl = atan{(tanphs)

betarl = pnsrl + gammarl

phsl = phsrxl * 180.0 / pi

betal = betari * 180 / pi

rvell = (sin(pniri)**2 / vfast**2) + (cos(phirl)**2 / vslow**2)
rayvell = sgrt(l / rvell)

raypnum = (sin(gammarl) / vslow**2) +

((cos{gammarl) * tan(phirl)) / vfast**2)
raypdenom = sqrt(l / (vslow**2) + (tan(phirl)**2 / vfast**2))
rayp = raypnum / raypdenom
se if (medl .ne. 1 .and. medl .ne. 2) then

print *, 'Incident medium was not entered.'

crit = abs(rayp * rayvell)

if (crit .gt. 1) then
print *,'Incident Angle is past critical’
print *, 'Ray Parameter =',rayp

print *, 'Incident Angle =',alphal

print *, 'Incident Ray Velocity =',rayvell
else
phir2 = asin(rayp * rayvel2)

phi2 = phir2 * 180.0 / pi

print *,'Ray Parameter =', rayp
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print *, 'Incident Angle
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=',alphal

print *, 'Incident Ray Velocity =',6rayvell

print *, 'Refracted Angle =',phi2

print *, 'Refracted Ray Velocity =',6 rayvel2

if (med2 .eg. 2) then

sin(gammar2) * cos(gammar?)

(vslow**2 * cos(gammar2)**2 =+

viasc**2 * sin(gammar2)**2 - (rayp * vslow * vfastg)**2)

(nrum2 .lc. 0) then

print *, ‘Incident Angle

else

is past critical-"

print *, 'Ray Parameter =',rayp

print *, 'Incident Angle =',alphal

print *, 'Incident Ray Velocity =',rayvell

num2 = sqgrt (num2)

phsdenom = (rayp**2 * vfast**2) - cos(gammar2)**2
tanphs2a = (numl + rayp * num?2) / phsdenom
ctanphs2b = (numl - rayp * num?2) / phsdenom
phaser2a = atan(tanphs2a)

phaser2b = atan(tanphs2b)

betar2 = phaser?lb + gammar2

if(betar2.gt.pi/2) then

betar2 = betar2 - pi
elseif (betar2.1t.-pi/2)

betar2 = betar2 + pi
endif

if (betarli .gt. 0 .and.

then

gammar?2 = gammar2 + pi

betar?2 = phaser2b + gammar2



numl

num?2

sin(gammar2) * cos{gammar?2)

(vslow**2 * cos(gammar?)**2 +

viast**2 * sin(gammar2) **2 -

num2 = sgrt(num2)

eiseif (betarl .lt. 0 .and. betar2 .gt. 0)
garmar? = gammar2 - pi
betar?2 = phaser?2b + gammar?2
numl = sin(gammar2) * cos(gammar2)
num2 = (vslow**2 * cos(gammar2)**2 -

vfast**2 * sin(gammar2)**2 - (rayp

num2 = sqgrt(num2)

endif

phase2a = phaser2a * 180 / pi

phase2b = phaser2b * 180 / pi

beta2 = betar2 * 180 / pi

denom = (vslow**2 / vfast**2) *

((rayp**2 * vfast**2)

tanphi2a

tanpni2b

nhir2a =

'0

phir2b =
alphar2a

alphar2b

a

(numl + rayp * num2)

(numl - rayp * num?2)

tan(tanphi2a)

atan(tanphi2b)

phir2a + gammar?2

phir2b + gammar?2

if (alphar2b .gt. pi / 2) then

alphar2b = alphar2b - pi

elseif (alphar2b .lt. -pi / 2)

(rayp * vslow * vfast)**2)

/ denom

/ denom

print *, 'Refracted alpha out of range

then

(>+90) "

then

* vslow * vfastc)**2)

- cos(gammar2) **2)
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alphar?2b = alphar2b + pi

print *,'Refracted alpha out of range

endif

alpnaz2

alphal2b = alphar2b * 180.0 / pi

phi2a
phiZ2b

gamma?2

rvel2

a = alphar2a * 180.0 / pi

= phir2a * 180.0 / pi
= phir2b * 180.0 / pi

= gammar2 * 180 /pi

= (sin(phir2b)**2 / vfast**2) -+

(cos(phir2b)**2 / vslow**2)

rayvel

2 = sqrt(l / rvell)

.

*, 'Ray Parameter =',rayp

*, 'Incident Gamma =',gammal

*, 'Incident Angle =',alphal

*, 'Incident Phi =',phil

*, 'Incident Phase =',phsl

*, 'Incident Beta =',betal

*, 'Incident Ray Velocity =',rayvell
*, 'Refracted Gamma =',b gamma2l2

*, 'Refracted Angle (a) =',alphala
*, 'Refracted Phase (a) =',phasela
*, 'Refracted Phi (a) =',6phi2a

*, 'Refracted Angle (b) =',alphalb
*, 'Refracted Phi (b) =',phi2b

*, 'Refracted Phase (b) =',6 phase2b
*, 'Refracted Beta (b) =',beta2

*, 'Refracted Ray Velocity =', rayvel2
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else if (med2 .ne. 1 .and. med2 .ne. 2) then

print *, 'Refractive medium was not entered.'’

end if

end
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APPENDIX 11 VSP DATA
The following table contains all the data acquired from the VSP experiment. This
includes the transformation of the well into the plane of the shots for the 2D analysis of
the data. Note that the transformation was not performed on the data from the two zero-
offset shot locations (EO and Zero). The headings for the accompanying table are as

follows:

Column A - Source location.

Column B - Source elevation (m).

Column C - Source northing direction (m).

Column D - Source easting direction (m).

Column E - Field file identification number (FFID).

Column F - Measured depth of receiver in well (m).

Column G - Total vertical depth of receiver in well (m).

Column H - Total vertical depth to receiver with respect to kellybushing (m). Factor z
from Figure 5.8.

Column I - Receiver northing direction (m).

Column J - Recelver easting direction (m).

Column K - First arrival times (ms) from experiment.

Column L - Horizontal distance from shotpoint to well (m). Factor h from Figure 5.8.

Column M - Total distance between shotpoint and receiver location in well (m). Factor d
from Figure 5.8.

Column N - Calculated velocity from shotpoint to receiver in well, assuming straight
raypaths (m/s).

Column O - Bearing direction between source location and well (°).

Column P - Transformation angle between h and h’ planes (°). Factor 8 from Figure 5.8.

Column Q - Transformed horizontal distance from shotpoint to well (m). Factor h’ from
Figure 5.8.

Column R - Transformed total distance between shotpoint and receiver in well (m).

Factor d’ from Figure 5.8.
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Column S - Inclination angle (°). Factor I from Figure 5.8.

Column T - Transformed inclination angle (radians). Factor I’ from Figure 5.8.

Column U - Transformed first arrival times (ms). Factor t’ from Figure 5.8.
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