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Abstract 

Delivery drones are a disruptive technology that is spurring logistics system change, such as the adoption 

of urban micro-fulfilment centres (MFCs). In this paper, we develop and implement a two-stage continuum 

approximation (CA) model of this disruptive system in a geographic information system (GIS). The model 

includes common CA techniques at a local level to minimise cost, and then these local solutions are used 

in a second stage regional location-allocation multiple knapsack problem. We then compare the drone MFC 

system to a traditional delivery-by-truck system and investigate potential cost or emissions savings by 

adjusting time-window demand, logistical sprawl, electric truck alternatives, and MFC emissions. 

Furthermore, we conduct a sensitivity analysis to show that uncertainty in demand and effective storage 

density both significantly influence the number of MFCs selected and benchmark our model against 

commercial solvers. This methodology may also be further developed and applied to other new delivery 

vehicle modes. 

 

Keywords: Drone-based Delivery; Geographic Information System; Micro-Fulfilment; Continuum 

Approximation; Inventory 
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1. Introduction 

Urban logistics, supply chains, and freight transportation worldwide are being disrupted by new technology 

and changing customer expectations. One such technology is delivery drones. Researchers estimate that 

current drone technology is advanced enough that drone delivery systems could economically service about 

30% of the world’s urbanized population (Aurambout, Gkoumas, and Ciuffo 2019), and which investment 

industries estimate is valued in 2020 between one and two billion USD globally. In North America, at least 

four large retail firms that have e-commerce presence, Amazon, Walmart, London Drugs, and CVS, are 

pursuing drone delivery as a delivery option for their customers. In this introduction, we will first cover the 

state of the industry, then we will outline the objective of this report and our contributions.  

1.1. State of the Industry 

Over the last several years, many online retail companies have stated their interest in drone delivery. 

Amazon was an early proponent, which, according to their own promotional material online, has been 

designing and developing their own drone and delivery system to complement their already growing logistic 

service capabilities since 2013. Furthermore, Alphabet (the parent company of Google) is conducting trial 

drone delivery service, called Wing, which has been in operation in the USA, Australia, and Finland, since 

2019. In 2020, a pharmacy chain (CVS) paired with a major logistics service provider (UPS) to deliver 

prescription medicine in Florida via drone delivery. Other major supermarket chains such as Walmart and 

London Drugs, have declared similar business pairings with new drone delivery service companies, such 

as Flytrex and Indro Robotics, respectively. This phenomenon is occurring worldwide as, for example, 

JD.com showcases its drone delivery in China since 2020, and Swiss Post is currently delivering mail from 

three locations in Switzerland.  

 

With the rise of e-commerce, planners and managers can no longer assume a traditional supply chain from 

factory to warehouse to store, but rather a fast direct-to-home delivery option from a warehouse is often 

now expected in developed economies (Perboli et al. 2021). Moreover, today delivery is more frequently 

performed by the seller themselves, and not a third-party logistics supplier, as the seller seeks greater control 

over their customer experience and cost savings. Sellers, such as Amazon, Walmart, and JD, enter the 

logistics market with different motivations and committed to less logistics-only infrastructure than 

dedicated logistics service providers. These new entrants to the market are thus more interested in adopting 

emerging technologies, such as drones, than traditional third-party logistics companies. This new 

perspective changes costs and supply chain structures. Thus, new models are required to understand the 

changing business environment and to incorporate new transport technologies. 

 

‘Seller and service provider’ (SSP) is the term given to companies that both sell goods and operate logistical 

services to make deliveries. Separate companies traditionally handled these two services: sellers utilized 

the services of a logistic service provider (LSP), such as a national postal service, to deliver their goods to 

their customers. This arrangement may continue for many years in rural areas where demand density cannot 

support multiple LSPs. The total cost perspective of SSPs compared to LSPs is different as they not only 

have to consider the logistic costs of vehicles and processing facilities but also of inventory costs, such as 

capital interest and opportunity costs. Therefore, the logistical systems of SSPs have different costs to 

consider and different business values than traditional LSPs. 
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Drones and other autonomous delivery vehicles are attractive to these Seller and Service Providers (SSPs) 

due to the public’s perceived eco-friendliness of drones (battery-electric powered), and due to drone’s 

ability to deliver in short time windows. According to the Canada Post E-commerce Survey in 2020, 

consumers are also increasingly influenced and aware of the environmental impacts of their shopping 

behaviour; for example, over half of Canadians are frustrated with excessive packaging, and over 40% of 

consumers report shopping with retailers who support an eco-friendly agenda. Drones may have further 

environmental sustainability benefits when they are paired with advances in micro-fulfilment centre (MFC) 

warehousing technology promise to address both the transportation emissions issue of urban freight and 

reduce packaging requirements. In a TED talk, the CEO of Attabotics, a company that designs and 

manufacturers MFC inventory storage systems, described how MFC technology can reduce packaging; 

drones and modern MFC conveyor systems carry individual packages, and these items require less 

protection than if they were packed tightly among many other parcels in a traditional delivery van. However, 

some items that require packaging due to their nature, such as food, may not benefit from this effect. In 

addition, due to the COVID-19 pandemic that struck the world in 2019, contactless drop-offs are desirable, 

which makes robotic drone delivery more attractive than traditional human delivery. 

 

SSPs, such as Amazon, Walmart, and JD, enter the logistics market with different motivations than 

traditional Logistics Service Providers (LSPs) which make the above benefits of drones even more 

appealing. SSPs are committed to less logistics-only infrastructure than LSPs and so these new entrants to 

the market are more interested and able to adopt emerging technologies, such as drones. This new 

perspective changes costs and supply chain structures. Therefore, new models are required to understand 

this changing business environment and to incorporate drone delivery. 

1.2. Study Objectives and Contributions 

Our objective is to develop a model that can solve a multi-facility location-allocation with inventory 

problem that can be understood by local stakeholders and used as a planning and discussion tool by local 

area planners and elected decision makers. Furthermore, we wish the model to be easily extended to 

incorporate other autonomous delivery modes, and other research questions, by future work.  

 

Assuming the proposed benefits of a delivery-by-drone system appeal to an SSP, we consider how they 

may implement such a system to serve an urban residential community that regularly demands a variety of 

drone-transportable goods. In our scenario, the SSP wishes to deliver both standard and expedited packages. 

Expedited packages could be clothing, footwear, grocery items, electronics, books, health products, office 

supplies, jewellery, or other items that the SSP decides. The SSP controls which products are offered for 

this expedited delivery; Chen et al. (2021) given heuristics for choosing which products may be profitable 

for expedited delivery. We do not consider emergency medical items, such as defibrillators or blood. We 

assume that the last-mile delivery is performed by the item seller who also operates the MFCs. Previously, 

delivery was the exclusive domain of light trucks and human delivery drivers, but, given advancements in 

robotics, we consider that it is possible, safe, and legal for these items to be delivered autonomously via 

drones.  

 

No previous study has considered a cost-optimised location-allocation for an urban delivery-by-drone 

system or examined the externalities resulting from a profit-seeking SSP perspective. Furthermore, the 

estimated costs of the two-stage method used to construct the location-allocation solution are for the first 
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time compared to a GIS estimate of the solution’s costs; the comparison validates the two-stage method for 

this case study and shows the method performs similarly to conventional continuum approximation (CA) 

techniques. Further development of CA techniques into integrated strategic models allows for future 

adaptations and extensions of the work, such as in truck-drone hybrids and sidewalk autonomous delivery 

robots. Adapting existing strategic decision making models for use with emerging technologies in this 

manner is a research gap as identified by Boysen et al. (2020). 

 

In this report  we will present a literature review, a description of the two-stage methodology, and a case 

study with sensitivity analysis. We will cover literature on drone delivery services, micro-fulfilment centres, 

and CA location-allocation modelling. We begin the methodology section with a description of the 

modelled system and its boundaries. We detail the first stage where transportation and inventory costs 

(among others) are modelled via CA. We then outline a description of the second stage where the allocation 

heuristic is implemented in a geographic information system (GIS), that is expanded upon in Appendix C. 

We will show how, by formulating the second stage as a multiple knapsack problem, we can both more 

easily facilitate design discussions typical of municipal or industry decision making, and facilitate the use 

of more efficient solver algorithms, than a traditional multi-facility location-allocation formulation. We will 

then present a case study and conduct a sensitivity analysis that identifies quantifiable barriers to 

implementing an urban delivery-by-drone system. In the case study, we also scrutinise the belief that drones 

would be a lower emissions alternative to current truck delivery. Finally, we will discuss the report’s 

findings and present conclusions. 

2. Literature Review 

In the following thematic literature review we first outline previous studies and literature reviews that 

investigated drone delivery systems. This section builds the research questions that still exist in the field. 

We then describe works that developed similar CA location-allocation models to demonstrate the 

applicability of this methodology to the problem. We then give a definition and description of micro-

fulfilment centres alongside recent literature reviews and industry surveys to present an understanding of 

this facility type. Finally, we describe in further depth works that introduced the specific two-stage model 

extended in this work and highlight the gaps that our work addresses. 

2.1. Drone Delivery Service 

In this report, the term ‘drone’ is used to refer to an airborne vehicle that can carry a payload and has a 

degree of autonomous self-control. Other terms for this same type of vehicle are ‘uncrewed aerial vehicle’ 

(UAV) and ‘remotely piloted aircraft system’ (RPAS). The term ‘UAV traffic management’ (UTM) is 

widely used to describe an air traffic management system that is capable of jointly coordinating multiple 

drones with existing multiple manned aircraft. It is assumed here that such a UTM system is available. 

 

The study of drone delivery has gained increasing attention in literature as the technology has shown 

promise in industry. Moshref-Javadi and Winkenbach (2021) provide a broad literature review on drone 

delivery models. They find that most studies use either heuristic or mathematical programming methods, 

which aim to minimise system travel distance or financial system cost. They conclude that there is a severe 

lack of integrated problem studies, where topics such as inventory management or costs are considered. 

The authors also identify that few multi-facility problems have been adequately addressed for drone 
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delivery and they recommend that these multiple depot problems should be investigated further as, they 

argue, they are more likely to be what the logistical system that is implemented in the real world than single 

facility systems. 

 

At an operational level, there are studies that investigate the optimisation of individual drone flight paths; 

Coutinho et al. (2018) provides a review of these studies. Moreover, hybrid truck and drone systems (known 

as “horsefly systems”) at a tactical and operational level have been extensively studied, by authors such as 

Salama and Srinivas (2020). These, and other works, are covered by literature reviews of Rojas Viloria et 

al. (2020) and Macrina et al. (2020). Such horsefly systems but are out of the scope of our current paper. 

Our report covers an integrated multi-facility location-allocation problem for urban delivery-by-drone 

direct from MFCs.  

 

At the tactical level, choosing drones based on battery capacity or weight capacity is also a trade-off, and 

an optimisation problem that influences drone fleet size requirements has been explored (Dorling et al. 

2017). Dorling et al. (2017) conclude that ‘hot-swapping’ of batteries is more cost and time effective and 

requires a smaller fleet size than intermittent recharging. Shen et al. (2021) confirm the effectiveness of 

battery swapping although they highlight the additional capital investment required. This battery swap 

technique has been assumed in many later studies, such as Chauhan et al. (2019), Arenzana at el. (2020), 

and Schermer et al. (2020).  

 

At a strategic level, drones require infrastructure (e.g., launch locations) to support their effective 

deployment, and so many related facility location studies exist in literature. Some studies consider delivery 

and response for disaster relief. Chowdhury et al. (2017) utilised a CA and GIS model to estimate optimal 

inventory levels and emergency response logistics locations for three counties in the southern United States 

of America (U.S.). MacKle et al. (2020) investigated a similar medical response drone system, one 

specifically designed for long-term facilities that serve cardiac arrest patients across Northern Ireland. This 

study also used GIS, but it complemented GIS with a genetic algorithm to evaluate the financial costs and 

estimated lifesaving benefits of the proposed drone system.  

 

Other studies have investigated location and drone network designs for non-emergency medical scenarios. 

Kim et al. (2017) considered the drone delivery of regular prescription medication to patients’ homes in a 

rural area using a bi-level integer programming model. Arenzana et al. (2020) also used a programming 

method, but they looked at the inter-hospital case of blood delivery in the city of London, United Kingdom, 

where congestion makes drone delivery both a faster and cheaper solution than the current road ambulance 

inter-hospital delivery network. Both studies also included a fleet size estimate for the drones, which added 

to the modelling complexity and limited the problem size to under ten locations.  

 

Chen et al (2021) investigated cost-optimal drone delivery fleet size for only one MFC location using 

heuristic solving methods. These authors found that SSPs can profit from having a large fleet of drones to 

deliver high-value items with short wait times and that consolidating even just two packages per drone per 

trip can increase profits by over 50%. However, Moon et al. (2020) investigated a similar location-routing 

problem for multi-compartment last-mile delivery which could be applied to a multi-capacity drone system; 

as their case study accounted for an added cost to operate the larger and more complex multi-compartment 

vehicles, they found that this added capacity was often not justified and led to increased system cost.  
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Hong et al. (2017) showed how the drone battery swap station location problem could be analysed in GIS 

and how this method allowed for modelling of obstacles and non-Euclidean pathing. Asadi et al. (2021) 

conducted a detailed analysis of these replacement and recharging strategies at such battery stations to find 

that a policy of always swapping for fully charged batteries when replenishing the battery stations inventory 

was the best strategy, for a majority of cases.  

 

Yet other studies have examined package delivery drone systems with various logistical structures. In a 

case study of Seattle, U.S., Shavarani et al. (2018) proposed a heuristic solution to determine an optimal 

arrangement of MFC locations and supporting drone recharge stations to completely replace Amazon’s 

current van delivery system. Cokyasar at al. (2021) also developed and applied a heuristic programming 

method in a Chicago case study; the method located battery-swapping stations and allocated discrete 

demand points to the stations and allowed for a parallel truck and drone system, where some areas of the 

city were served by trucks and other areas were served by drones to achieve a low cost system – we also 

investigate such parallel systems in our case study.  

 

In a statedly unique study, Baloch and Gzara (2020) investigated a drone delivery versus local grocery store 

delivery problem expressed as a multi-nominal logit market share model that they solve using mixed integer 

algorithmic solver that interchanges between solving a master problem (MFC location) and sub-problem 

(customer allocation). These authors find that, in their case study of New York City, that current regulations 

on the ratio of drone remote operators to drones controlled and the technological capability of drones to 

deliver to dense urban areas are barriers to drone delivery profitability. Baloch and Gzara also varied 

customer sensitivity to price, time, and an “inherent attractiveness” of drones to find several instances where 

drone delivery may be profitable in a range or urban and sub-urban scenarios. Although these authors 

consider a profit-maximising model, their cost function only includes a piece-wise fixed cost per facility 

and a fixed cost per delivery whereas our work considers these costs in continuous space plus inventory 

costs. 

 

Most studies only investigate financial costs as their objective metric, but some investigate carbon 

emissions. Goodchild and Toy (2018) used GIS to compare the emission intensity of truck and drone 

delivery systems in Seattle; they adjusted the energy efficiency of the drones in a sensitivity analysis to 

understand what drone characteristics were required if lower emissions were desired. Stolaroff et al. (2018) 

included emissions of both vehicles and warehouses in a comparison of drone delivery systems that used 

MFCs and systems that used traditional van and electric van delivery. Furthermore, Figliozzi (2017) 

investigated lifecycle emissions of replacing a truck fleet with a drone system using only the CA method 

and determined that a drone system would result in fewer emissions. Figliozzi (2020) also compared truck 

and drone delivery system emissions under different operational requirements of a system, such as logistical 

sprawl distance and time windows. Figliozzi (2020) showed that delivery time windows did not affect 

energy consumption per customer of a delivery drone system, but delivery time windows did affect trucks, 

with shorter time windows decreasing truck efficiency. These studies found several scenarios in which 

drones were the most emissions efficient option, but none found that drones were always best, thus showing 

that the strategic decisions made before the operational ones significantly affected the environmental impact 

of delivery drones. However, these authors did not consider the total financial costs of a system or inventory 
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factors, so they could not state the cost changes incurred in the reduced emissions scenarios and thus could 

not state if profit-seeking companies would pursue these options without external incentive or regulation. 

 

There are further criticisms of using drones for delivery that may prove a barrier for deployment, such as 

privacy, security, safety, environmental, social, and employment implications. Interested readers are 

encouraged to see Chung et al. (2020) for further discussion on these topics. For our case study we assume 

that these barriers are overcome. 

2.2. Micro-Fulfilment Centres (MFC) 

Urban logistics centres are a topic of growing interest in the urban freight literature and industry practice. 

Terminology is still not well defined nor agreed upon in the literature (Gunes and Goodchild 2021), but 

generally, and in this report, the term ‘micro-fulfilment centre’ (MFC) is used to refer to locations that have 

deliberate short-to-medium term inventory storage and are owned and operated by one company. ‘Micro-

hubs’ may also be used, but this term may carry connotations of shared use. MFCs are like urban 

consolidation centres (UCCs), and the two types of centres share many transferrable insights, which have 

been explored in the literature. However, UCCs generally have no deliberate storage and are intended to 

reduce delivery vehicle volume into city centres, which can include municipally organised, owned, and 

even operated facilities, so work that examines inventory considerations is required to understand MFCs 

specifically (Urban Freight Lab 2020).  

 

Although many UCC and MFC initiatives have been implemented in recent decades, especially in Europe, 

most have failed; a simulation study by Heeswijk et al. (2019) suggests initiatives fail because such facilities 

require not just one policy or motivating actor, but rather multiple concurrent policies must be implemented 

for a UCC facility to be sustainable beyond government subsidy. Another study by Lemardelé et al. (2021), 

which investigated drone delivery from UCCs, highlighted a conflict between the motivations of private 

companies to minimise cost and a municipal government’s motivation to reduce freight related externalities 

(such as emissions), a conflict that further strains and weakens UCC initiatives. The impacts from urban 

logistic facilities affect many stakeholder groups so a model that can include the many risks and costs is 

needed to determine a sustainable business model. 

 

A literature review by Björklund and Johansson (2018) shows that while many practitioners and 

municipalities believe there are great societal and environmental benefits that could be gained from 

implementing UCC initiatives, there is relatively little academic work on the subject. They conclude this 

lack of knowledge leads to the observed number of failed pilot projects worldwide. This critical knowledge 

gap is compounded by the dominance of the current state of practice that utilises low-cost industrial land 

and increases logistic sprawl; a lack of real-world industry practice limits the growth of new knowledge to 

only modelling studies and the lack of knowledge limits industry acceptance and effective deployment of 

UCCs. 

 

Interest in UCCs and MFCs has grown recently due to new last mile technologies, such as drones. However, 

MFCs do not depend on any advanced technology; there are current MFC trials around the world that use 

cargo-bicycles (Rosenberg et al. 2021). Furthermore, although companies have expressed for many years 

an interest to take the technology into the city, current trials of drone delivery are exclusive to rural areas. 
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Many academic studies on urban delivery drones have so far not considered financial costs, including 

inventory costs, nor have they included the wider strategic decision-making implications of MFCs 

(deliberate multi-day storage). Rather, many studies focus on UCC models (simple cross-docking and 

temporary storage) and although some findings are transferrable to MFCs, some findings are not. For 

instance, Stolaroff et al. (2018) do not evaluate the financial cost of the studied urban drone delivery system, 

and so the cost of adopting such a system, and whether an SSP may be motivated to implement such a 

system, are unknown. Although Shavarani et al. (2018) consider the unit transportation cost and facility 

opening cost, they do not consider the variable sizing costs of each facility, inventory costs, nor upstream 

logistic costs that an SSP must consider. Lemardelé et al. (2021) evaluate launching drones from UCCs, 

but they do not consider stored inventory nor variable sizing of facility costs. Figliozzi (2020) evaluates 

only emissions; furthermore, he does not consider the impacts of multiple facilities in an urban area nor 

inventory at the facilities. There is a research gap in the literature, and therefore, there is a lack of 

understanding of the holistic costs of an urban drone delivery system using MFC locations as proposed by 

industry.  

2.3. Continuum Approximation Location-Allocation Modelling 

With respect to CA facility location problems, Newell (1973) developed the convex optimisation method 

and demonstrated how to minimise analytically the combined transportation and warehouse set-up costs. 

Erlenkotter (1989) accounted for economies of scale in the objective cost functions and introduced three 

new distance metrics that have various benefits. Building on this work, Rutten et al. (2001) added further 

cost terms, including inventory stock, and tailored the cost function for a specific case involving trucks in 

a Manhattan grid. Additional works over the decades are covered in literature reviews by Langevin et al. 

(1996) and Ansari et al. (2018). Ultimately, these analytical approaches provide the first stage of 

understanding a location-allocation problem and give estimates of the number of facilities, size of facilities, 

and the magnitude of the catchment areas.  

 

The analytical outputs can be used in several ways to complete the allocation portion of the location-

allocation problem. The information can be used directly to inform decision making and design, as 

originally recommended and intended by the classical authors. The results can be rounded to an integer 

amount and used to inform a separate programming solution, such as utilising inbuilt-to-GIS commercial 

location-allocation solvers. The information can be kept in continuous space, using the method from 

Ouyang and Daganzo (2006) which allows for the planning of optimally staged openings of several facilities 

in a region over a time horizon (Wang, Lim, and Ouyang 2017), or the information can be converted to a 

discrete equivalent as in the two-stage method.  

 

The two-stage method has been applied to different logistical problems. Wirasinghe and Waters (1983) first 

introduced variable facility costs in their model that determined the optimal locations of waste transfer 

stations. The model then determined the optimal number of facilities using a CA method, information that 

was then that integrated in a discrete heuristic, location-allocation model. Waters et al. (1986) used the same 

method, a CA model combined with a discrete location-allocation model, to show how the optimal locations 

of bus garages changed depending on whether the authors included local air quality in the CA objective 

function or not. Wijeratne and Wirasinghe (1986) proposed a different second stage, as the authors used the 

optimal number of facilities per analytical zone to group communities together heuristically to form 

catchment areas for fire stations. Wirasinghe and Vandebona (1999) applied this same second stage 
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heuristic grouping approach to the location-allocation planning of a subway station network. Their 

analytical model accounted for user walking distance, station opening and variable station size costs. After 

the location-allocation was complete Wirasinghe and Vandebona then utilised a minimal spanning tree 

algorithm to design the optimal network link design. However, none of these works validated the estimated 

costs in the analytical stage nor the final solution costs after the allocation stage. Moreover, the authors did 

not present a methodology on how to collect these communities together systematically nor did they 

evaluate different heuristically created solutions. 

 

A more recent use of the two-stage approach, which expanded the method to include inventory costs, was 

developed by Tsao et al. (2012). The authors examined the whole of the U.S. in a numerical example to 

demonstrate their approach. They divided the country into many small, equally sized areas that could each 

be assumed to have a uniform demand. Then, they applied the optimisation methods shown by Newell 

(1973) to determine optimal numbers of warehouses within these areas. In this instance, the sum of the 

facilities across these areas then formed the national solution, and they used the case study to investigate 

iterations of inventory considerations. Tsao et al. (2012) found an almost 12% reduction in total system 

cost using this two-stage divisive method compared with assigning the whole country a uniform average 

demand density. The authors, however, did not validate their final solution as they did not compare their 

estimated values for transportation costs in the optimisation process with the estimated transportation costs 

arising from their final solution. Furthermore, they did not further allocate demand points to the facilities; 

rather, they left this step for a future stage. Both points are addressed in the current work. 

 

Chowdhury et al. (2017) used a similar two-stage method in a drone delivery system for a disaster relief 

study of the south coast of the U.S. The authors described a ‘grid-couple-cover’ approach that was 

implemented using a ‘trial-and-error’ method. This method was used to create a raster-like grid over the 

study area. There is not enough information on the trial-and-error method as described to replicate the study. 

Furthermore, the described approach may lose data precision; since every grid square must be of the same 

geographical size, the data must be gathered for known grid sizes or interpolated for these exact sized areas, 

which limits the accurate use of past data. By allowing for arbitrarily sized and irregularly shaped areas to 

form the solution, the method we develop allows for existing data to be more easily used to design systems. 

Furthermore, similar to Tsao et al. (2012), Chowdhury et al. (2017) did not compare their estimates used to 

construct their location allocation solution with true costs likely resulting from implementing that solution, 

and thus, they did not validate their method. Moreover, neither set of authors compare their two-stage CA 

methods with a discrete method, such as that produced by an in-built solver to a GIS software. In summary, 

our review of the literature agrees with the results of Ansari et al. (2018), that there are few studies which 

utilize a CA method to model location-allocation with inventory problems in recent years, which we 

attribute to the success of discrete and heurticial methods. However, that there has been little attention to 

the specific area of CA integrated models motivates us to investigate the approach as a research gap, as 

suggested by Ansari et al. (2018).  

2.4. Research Gaps 

To address the research gaps identified in the literature review, we present a two-stage CA and algorithm 

allocation method that has the following features: 

 

1. It can solve a multi-facility location-allocation problem for urban delivery-by-drone;  
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2. It is an integrated model that accounts for inventory costs present in MFCs; 

3. It can be implemented in common commercial GIS software;  

4. It is internally validated in the case study to a standard as previously accepted CA works; 

5. It can be extended to account for parallel or hybrid delivery systems where trucks, drones, sidewalk 

robots, cargo-bikes, and other modes are deployed from one location.  

 

We then apply this model to a case study to validate the method and explore delivery-by-drone MFCs as 

an urban logistics solution. We estimate emissions, costs, and inventory factors as previous studies have 

done and, by considering the strategic problem, are able to make novel insights into the issue.  

3. Methodology 

In this section, we formulate the problem, including notation and some assumptions, and introduce the CA 

modelling method used to solve it. We then determine and compare the analytical expressions that are used 

to evaluate the two modes, drone and truck, including transportation and inventory costs. We present the 

objective cost function for the drone system and how it is optimised with respect to the number of MFCs is 

detailed, and finally we show the algorithm for allocating communities in the location-allocation second 

stage. 

3.1. Problem Formulation 

In this section, we present the system boundaries and define the system variables. Please see Appendix A 

for these variables and notation in a convenient table format.  

 

Consider an SSP that desires to implement a multi-commodity delivery-by-drone system in a city. Consider 

also that the local and national regulations allow these flight operations, and that cost minimisation while 

serving the entire city is the aim of the SSP; what logistical and engineering factors must they include when 

they determine their infrastructure network?  

 

The SSP aims to offer their service to every community (subscript C) within the municipal region (subscript 

R) by using MFCs (subscript U). The SSP wishes to know the best number of MFCs (N), and the location-

allocation arrangement of the MFCs to minimise their total annual operating costs (CDrone). Each 

community area (AC) within the regional area (AR) must be allocated to an MFC and thus be within one 

MFC catchment area (AU). 

 

The city’s adult population demands a typical number of packages per unit area per unit time, which is the 

mean regional demand density (μR). The SSP meets this demand with regional cycle stock (Wα,R) held across 

all MFCs in the region [subscript ordering is where variable subscripts are first, followed by applicable area 

subscripting second, e.g., Wα,R is cycle stock (α) in the region (R)]. Although the SSP has good demand 

prediction models, future observed demand is uncertain, and so the SSP also holds a regional safety stock 

(Wβ,R) related to the standard deviation of regional demand density (σR). A portion of both stocks are stored 

locally at each MFC for use within each service area in an arborescent supply chain structure. Each MFC 

has capacity for the combined MFC cycle stock (Wα,U) and MFC safety stock (Wβ,U). The former stock is 

held to meet catchment expected demand density (μU), and the later meets the variation in demand related 

to the catchment standard deviation in demand density (σU). The sum of these two stocks prescribes the 
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total capacity per MFC (WU), which may be different between MFCs. The sum of total capacities across 

all MFCs in the region forms the regional capacity (WR). 

 

Considering inventory costs, the average wholesale value (u) of the various commodities per delivery to be 

stored in the MFC must be paid by the SSP before they receive deliveries to the MFCs; they receive these 

deliveries at a fixed resupply frequency (E) from a regional warehouse outside of the city boundaries. The 

distance from this regional warehouse to a community is the community logistical sprawl (dc). While in 

storage, packages can be stored at an effective storage density (m), which includes the need for walkways, 

sorting areas, item sizes, and the mix of standard and expedited packages; empirically, effective storage 

density is the observed number of packages sold in the resupply time frame divided by the total area of the 

storage facility. After being stored for a time, when a package is demanded, it is loaded onto a drone and 

flown to the customer at an average speed and following a path that can be modelled according to a 

configuration factor (φ). The drone then returns, having not travelled further than its maximum flight range 

(MFR). Only one customer is serviced per dispatch of a drone meaning that changing time-windows does 

not affect the total last-mile distance travelled given that we assume an adequate drone fleet size to always 

serve demand.   

 

These outlined operations come at a cost. The cost of each MFC is separated into a fixed annual cost per 

facility (Cf) and a linear annual cost per square meter of storage space per facility (Cs); this cost must be 

either leased or its purchase financed at a yearly rate. To fill the MFC, the SSP must pay for each delivery 

(Cd) to each MFC, either paid to a third-party supplier or managed themselves. Typically, while packages 

are in storage, their wholesale cost has been paid by the SSP, but the packages have not yet been bought by 

a customer. This unmet cost is covered by the SSP, which, incurs an inventory holding cost rate (Ch). Other 

financing methods, such as a seller providing a platform on which others sell goods, and they only facilitate 

the transaction, (known as “drop shipping”) can avoid this cost, but we do not consider these options. Once 

bought, outbound delivery begins. The drone operation has costs of electricity, equipment, and remote pilot 

wages that can be expressed as a last mile cost per kilometre (Cl).  

 

For the comparison to the traditional truck delivery system, we consider the truck travel cost (Ct), which 

includes the cost of fuel, capital expenditure, driver wages, maintenance, and all other operating expenses 

expressed as a cost per kilometre travelled. Unlike drones, trucks have a truck package capacity (C), and 

the number of deliveries they can make per time-window is linearly affected by the number of time-windows 

per day (T) set by the SSP. 

 

All above operations constitute the total operating cost of the urban consolidation centre delivery-by-drone 

system that the SSP wishes to consider. This total cost forms the objective function to be minimised. It is 

assumed revenue and demand are independent of MFC operations and structure, and so minimising cost is 

equal to maximising profit. The costs of this operation will be compared to the costs of a traditional 

delivery-by-truck system, formulated following CA methods outlined by Daganzo (2005). 

 

3.2. Solution Method 

A CA cost optimisation model is solved for each community in the region, and the sum of the communities’ 

costs and resulting output parameters form the expected design parameters for a second stage allocation 
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where the communities are either collected or broken up into service areas for the final design. This method 

leverages the benefits of CA models while using a framework to introduce an explicit spatial term that can 

implement the method and provide solutions in a discrete allocation environment, as recommended by 

Ansari et al. (2018). 

 

This two-stage method is like that used in logistic systems by Chowdhury et al. (2017) and Tsao et al. 

(2012). While they developed clusters of regularly sized discrete parcel units large enough to contain greater 

than one facility according to the first stage of the CA optimisation, our method preserves the lowest level 

of demand data availability, and the second stage is a clustering informed by the values recommended by 

the first stage of optimisation.  

 

The two-stage method is useful because it can estimate optimal solutions for areas of high spatially varying 

demand, areas not suitable for conventional CA methods, while also accounting for many costs not easily 

optimised holistically in discrete methods simultaneously or in commercial GIS software. The two-stage 

method has not yet been applied to an urban goods delivery problem.  

3.3. Delivery-by-Drone System Objective Function 

We describe the two most significant terms of the system objective cost function, last mile distance and 

stock, before we present the resulting objective function and discuss the remaining terms. 

3.3.1. Last-mile Transportation Distance 

A fundamental aspect of CA modelling is estimating the last mile transportation distances using analytical 

expressions, which neglect the complexities of underlying routing and touring specifics. Accordingly, 

assumptions pertaining to delivery operations must be made.  

 

First, we assume that drones operate at a constant rate with little non-operational time besides that normally 

expected, such as mandated flight restrictions during night-time hours.; we consider a ten-hour operational 

delivery day. The near constant use of the drones may be achieved by jointly scheduling standard and 

expedited packages dynamically using an operational heuristic or program. Furthermore, we assume that 

delivery time-windows for the items can be effectively managed by this scheduling so that time-windows 

do not impact the delivery cost and that there is a large enough drone fleet to meet the demand. Given these 

assumptions of constant drone use, the transportation cost term can be determined from drone speed, 

purchase cost, battery recharging cost, and remote pilot wage cost as the assumption separates these costs 

from delivery time-windows, and the unknown dwell time that occurs due to business practices and day-

to-day demand. Thus, the last mile transportation cost is assumed to be directly and linearly related to the 

expected daily transportation distance flown by the drones. 

 

The daily distance is calculated using a geometric methodology. In this report, we approximate the service 

area as hexagonal and approximate routing across a Euclidean plane following the A60 metric proposed by 

Erlenkotter (1989). This seminal work has since been applied by many authors in the area of logistics, such 

as Bouchery et al. (2020). Figure 1 shows the approximation; dotted lines show maximal diameters, and 

the dashed lines show example travel paths according to the metric. Travel is permitted along any of the six 

axes of the maximal diameters, in a similar manner to a Manhattan grid. This metric results in the edges of 

the service area being a uniform distance via the metric from the centre (Erlenkotter 1989). This assumption 
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is a reasonable approximation of a drone flight path given relaxed regulations, yet it still accounts for 

detours to avoid no-fly zones. Moreover, uniform hexagonal service areas may tesselate together to cover 

a community completely, and so they more accurately reflect the partition of a region into catchment areas.  

 

 

Figure 1: A60 Distance Metric (Erlenkotter 1989) 

 

 
𝐿𝐷𝑟𝑜𝑛𝑒,𝑈 =  2. 𝜑. 𝜇𝐶 . √𝐴𝑈

3 ;  𝜑 = 0.414 
(1) 

 

The transportation distance, shown in (1), is the expected annual drone delivery distance per MFC (note, 

subscript “U”). We determined this transportation distance as the expected number of deliveries per unit 

area (μC), multiplied by the service catchment area of an MFC, multiplied by two for a return trip, multiplied 

by the average distance per delivery (φ) for the given distance metric and assumed catchment shape, 

multiplied by the square root of the service area (Newell 1973).  

 

Erlenkotter (1989) shows that it is a feature of the A60 metric that any point on the perimeter of a hexagon 

is an equal distance from the centre when using the metric. Consequently, we estimate the maximum 

distance a drone would be required to fly in one delivery as twice the circumradius of the hexagon is. We 

can set this estimate equal to the maximum flight range of the drones to find an upper bound to the size of 

an MFC catchment area, which gives (2). 

 

 

𝑀𝐹𝑅 ≥  2. √
2. 𝐴𝑈

3. √3
  ≅ 1.24. √𝐴𝑈  (2) 

 

However, as we do not yet know the allocation of the MFCs, or even the number of MFCs, we cannot 

determine (1) or (2) from typically available community level data. So, to determine the transportation 

distance for a community we multiply the distance per MFC by the number of MFCs we expect in the 

community and expand the MFC catchment area to be expressed as a function of the known community 

area. The MFC catchment is the community area (AC) divided by the number of facilities in that community 

(NC). These steps result in the last-mile transportation distance of the drone system per community 

estimated as follows: 
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 𝐿𝐷𝑟𝑜𝑛𝑒,𝐶 =  𝐿𝐷𝑟𝑜𝑛𝑒,𝑈 . 𝑁𝐶  

=  2. 𝜑. 𝜇𝐶 . √𝐴𝑈
3 . 𝑁𝐶 ;  𝐴𝑈 =

𝐴𝐶

𝑁𝐶
 

=  2. 𝜑. 𝜇𝐶 . √(
𝐴𝐶

𝑁𝐶
)

3

 . 𝑁𝐶  

𝐿𝐷𝑟𝑜𝑛𝑒,𝐶 =  
2. 𝜑. 𝜇𝐶 . √𝐴𝐶

3

√𝑁𝐶

 ;  𝜑 = 0.414 

(3) 

3.3.2. Cycle and Safety Stocks 

The first and second term of (4) show how cycle and safety stocks are estimated in the model, respectively. 

Cycle stock is the expected demand density of the community multiplied by the area of the community. 

Cycle stock includes both standard packages and expedited packages. Standard and expedited packages 

could be separated into two cycle stocks if data is available in future studies. This expected demand density 

can be simple and related to population density, as in this report’s case study, or it could be more complex 

and include various socio-economic or customer specific data if available and sufficiently significant in a 

demand prediction model (Unnikrishnan and Figliozzi 2020; Wang and Zhou 2015). The variation in this 

demand, captured by the standard deviation in demand density, can also be estimated by such demand 

models. Inventory planners can then utilise this estimate of variance to hold safety stock according to the 

relative costs of stock-out events (having too little inventory to service a spike in demand) and the costs of 

holding inventory (Axsäter 2006). This study’s example utilises national sales data to estimate this variation 

(Aston et al. 2020). The relative cost and the company specific attitudes to risk are accounted for by the 

inventory stock-out factor (β).  

 

 𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝑆𝑡𝑜𝑐𝑘 𝑝𝑒𝑟 𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦 =  𝐴𝐶 . 𝜇𝐶 + 𝛽. 𝜎𝐶 . 𝐴𝐶 . √𝑁𝐶  (4) 

 

Finally, community safety stock is related to the square root of the number of facilities, as described first 

by Schwarz (1981), applied recently by Pham et al. (2020), and further investigated by Oeser (2019). 

Equation (4) assumes an arborescent distribution system, meaning that no trans-shipments between MFCs 

are considered, i.e., each community is only served by one MFC. The rise in stock requirement is related 

to the implications of the central limit theorem; as more customers are collected into a catchment, the co-

efficient of variation becomes smaller; so, inversely, if a community is partitioned into more catchments, 

and the number of customers per catchment decreases, then the co-efficient of variation will increase and 

each MFC will require relatively more safety stock than cycle stock to maintain the same stock-out factor. 

This constraint of an arborescent network that does not allow for trans-shipments may be relaxed in future 

works because, in practice, neighbouring MFCs may deliver across catchment areas in a stock-out event. 

The current model assumes a conservative approach, which equalises the stock-out probability between 

truck and drone systems for comparison.  

3.3.3. Cost Functions 

Equation (5) shows the objective cost function that is to be optimised for each community in the first stage 

of the model. 
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𝐶𝐷𝑟𝑜𝑛𝑒,𝐶 =  𝐶𝑑 . 𝐸. 𝑁𝐶 + 𝐶𝑙.
2. 𝜑. 𝜇𝐶 . √𝐴𝐶

3

√𝑁𝐶

+ 𝐶𝑓 . 𝑁𝐶 + 𝐶𝑠. (
𝐴𝐶 . 𝜇𝐶

𝐸. 𝑚
+

𝛽. 𝜎𝐶 . 𝐴𝐶 . √𝑁𝐶

𝐸. 𝑚
)

+ 𝐶ℎ . (
𝑢. 𝐴𝐶 . 𝜇𝐶

2. 𝐸
+

𝑢. 𝛽. 𝜎𝐶 . 𝐴𝐶 . √𝑁𝐶

𝐸
) 

(5) 

 

The first term captures the cost of regular deliveries to the MFC; it is the number of resupply trips multiplied 

by the unit cost of these trips. The regional warehouse where these resupply trips originate from is the 

furthest “up” the supply chain these costs will go as it is of interest to compare the drone delivery system 

to an alternative, traditional, delivery-by-truck system, and the distributions from the regional warehouse 

are the first substantial difference to be noted. The second term captures the expected transportation distance 

of the drones. The configuration factor φ may be taken from Erlenkotter (1989) to represent a given distance 

metric and catchment shape.  

 

The third term captures the sum of fixed costs across all MFCs in the community. The fourth and fifth terms 

capture sizing costs; the former determines the storage space required for the cycle stock, and the latter 

determines the storage space for the safety stock. The sixth and seventh terms capture the holding costs of 

inventory, and, like storage costs, the former determines costs resulting from cycle stock, and the latter 

determines costs resulting from safety stock.  

 

Once the optimisation is conducted, the resulting number of MFCs can be input back into this equation to 

determine the operating cost of the system in the community.  

3.4. Traditional Truck System Objective Function 

To compare the proposed drone system to a traditional delivery system, we use an estimate of transportation 

distance covered by a truck system. Truck delivery distance is estimated as per Daganzo (2005) and adjusted 

to include the number of time windows per day (T) in which the SSP offers expedited packages to be 

delivered. We assume that the trucks deliver proportionally fewer packages in a shorter time window; for 

instance, if a ten-hour day is partitioned into two time windows, then half of the packages delivered in ten 

hours is delivered in each five-hour window. This proportional effect of the time windows assumption 

means that the number of time windows per day linearly affects the first term of (6), the number of depot-

to-service area haul trips required. Secondly, the time window also affects the second term of (6), the local 

touring distance. Delivery points in each time window are proportionally less dense than in a single, daily, 

window. There are proportionally more of these local tours per day although each individual tour is shorter.  

 

 
𝐿𝑇𝑟𝑢𝑐𝑘 =  

2. 𝑑. 𝐴. 𝜇. 𝑇

𝐶
+ 𝑘. 𝐴. √𝜇. 𝑇 (6) 

 

Other estimates of touring distance are available, such as Figliozzi (2008), but we do not consider these 

because the parameters that require sample data for regression were not available for the study area. 

Furthermore, local tours could be made more efficient if the split of standard and expedited deliveries, and 

the split’s resulting effect on touring performance, is known, but this data is also not available for the case 

study.  
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𝐶𝑇𝑟𝑢𝑐𝑘,𝐶 =  𝐶𝑡. (

2. 𝑑. 𝐴𝐶 . 𝜇𝐶 . 𝑇

𝐶
+ 𝑘. 𝐴𝐶 . √𝜇𝐶 . 𝑇) + 𝐶𝑓 + 𝐶𝑠. (

𝐴𝐶 . 𝜇𝐶

𝐸. 𝑚
+

𝛽. 𝜎𝐶 . 𝐴𝐶

𝐸. 𝑚
)

+ 𝐶ℎ. (
𝑢. 𝐴𝐶 . 𝜇𝐶

2. 𝐸
+

𝑢. 𝛽. 𝜎𝐶 . 𝐴𝐶

𝐸
) 

(7) 

 

Equation (7) shows the objective cost function used to compare a traditional delivery by truck and a drone 

delivery system. The first term is the transportation distance, determined as described earlier. The remaining 

three terms are the costs associated with operating and maintaining a larger regional warehouse than would 

be needed with the MFC drone system. These costs are mathematically  similar to those in (5) but with one 

fixed warehouse location (conceptually adding to the size of the regional warehouse). Given this 

formulation, our model implies that the delivery-by-drone system always incurs more warehousing and 

inventory costs than the traditional truck system does.  

 

If the cost of a delivery-by-drone system is less than the cost of an existing traditional direct-delivery truck 

system, then drones are a viable and preferable last mile delivery option for the SSP. Even if the cost is 

greater, the intangible benefits of an eco-friendly brand, providing novelty to customers, and providing 

expedited delivery, may still make the delivery-by-drone system preferable.  

3.5. Stage One: Community Optimisation 

To minimise the delivery-by-drone system cost, (5), we determine the value for NC that sets the first 

derivative of the function to zero, as in (8). However, this function is not convex, and so numerical, 

graphical, or heuristic analysis must be used. Later, in the case study, we choose to discretize (8) by 

evaluating the function over many values of NC (implemented in Excel) to determine an approximate 

solution to a reasonable degree of accuracy. 

 

 

𝜕𝐶𝑇,𝐶

𝜕𝑁𝑐
=  𝐶𝑑 . 𝐸 −  𝐶𝑙 .

𝜑. 𝜇𝐶 . √𝐴𝐶
3

√𝑁𝐶
3

+ 𝐶𝑓 +
𝐶𝑠. 𝛽. 𝜎𝐶 . 𝐴𝐶

2. 𝐸. 𝑚. √𝑁𝐶

+ 
𝐶ℎ. 𝑢. 𝛽. 𝜎𝐶 . 𝐴𝐶

2. 𝐸. √𝑁𝐶

= 0 (8) 

 

In Appendix B, we also show a graphical solution to (8), aided by the rearrangement of the terms as shown 

in (8a). This rearrangement is convenient as we isolate the two different powers of NC so that the terms can 

be graphed and compared easily.  

 

 

𝐶𝑑 . 𝐸 + 𝐶𝑓 +
𝐶𝑠. 𝛽. 𝜎𝐶 . 𝐴𝐶

2. 𝐸. 𝑚. √𝑁𝐶

+ 
𝐶ℎ. 𝑢. 𝛽. 𝜎𝐶 . 𝐴𝐶

2. 𝐸. √𝑁𝐶

= 𝐶𝑙 .
𝜑. 𝜇𝐶 . √𝐴𝐶

3

√𝑁𝐶
3

 (8a) 

 

For a deterministic demand (σc equals zero), (8) gives a familiar equation from Newell (1973) as shown in 

(8b), in which Cd.E adds to the fixed cost per facility. Assuming deterministic demand gives a closed form 

upper-bound, which is closer to the solution when the resupply frequency is high, when demand is 

predictable, and if the cost of goods, cost of shelf space, and cost of holding inventory are low. A graphical 
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solution method that shows the upper bounding effect is in Appendix A. The upper bound is not used 

further, and the solution to (8a) is used in the second stage of the method. 

 

 

𝐶𝑑 . 𝐸 +  𝐶𝑓 = 𝐶𝑙 .
𝜑. 𝜇𝐶 . √𝐴𝐶

3

√𝑁𝐶
3

 (8b) 

 

 

𝑁𝐶,𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 = 𝐴𝐶 . (
𝐶𝑙 . 𝜑. 𝜇𝐶 .

𝐶𝑑 . 𝐸 +  𝐶𝑓
)

2
3

 
(8c) 

 

With the number of MFCs determined after solving (8a), other outputs of the model can be determined 

using (4). No optimisation is conducted on the truck system as all the considered parameters monotonically 

affect the total system cost.  

3.6. Stage Two: The Allocation and Location Problem 

Although stage one has determined estimates for the number of MFCs required and other parameters, we 

have not yet utilised any spatial knowledge of the region. In stage two, the optimal number of MFC per 

community is used as an input weight parameter for a spatially-adapted multiple knapsack optimisation 

problem (Church and Murray 2008) and series of single facility location problems. This stage is in place of 

the clustering step in Tsao et al. (2012) and Chowdhury et al. (2017) as our method preserves more spatially-

varying demand data. We show how to determine the optimal collection of communities for each MFC 

catchment area to solve the regional location allocation problem and then how to determine the locations 

of the MFCs within these catchment areas.  

 

We highlight that this stage could be solved in several different ways, most interestingly is that it could be 

solved near manually in a stakeholder-led discussion. Although we present an algorithmic process and 

mathematically exact objective, by separating the problem into two stages then this second stage can be 

easily presented as a puzzle for discussion; the objectives of compact catchments and one MFC per 

catchment (as suggested by the sum of NC values) are simple enough to observe on a map and calculate 

respectively that many stakeholders could understand and attempt their own solutions. We suggest that this 

stakeholder method would complement the following algorithmic method in a true decision situation.  

 

3.6.1. The Multiple Knapsack Allocation Problem 

Although the multiple knapsack problem is a conventionally NP-hard problem, modern heuristics can solve 

instances of thousands of items (communities) and over a hundred knapsacks (MFCs) in a reasonable 

amount of time (Dell’Amico et al. 2019). Joint location-allocation models, however, typically solve smaller 

instances of less than one thousand demand points and less than ten facilities because they also must 

compute transportation routing costs for each considered solution combination (Daskin and Tucker 2018). 

In other word, there exist more efficient optimization algorithms for multiple knapsack problems than there 

exist optimization algorithms for multi-facility location-allocation problems. Therefore, our motivation to 
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investigate the two-stage method which can approximate a multi-facility location-allocation problem to a 

multiple knapsack problem, especially when the problem is large.  

 

The typically a-spatial knapsack problem requires a spatial constraint or objective to model a location-

allocation problem. This spatial constraint can be formulated in several different ways to enforce varying 

degrees of strictness to meet the desired catchment characteristics (Church and Murray 2008). In this report, 

we use two objectives, catchment perimeter and closeness to MFC unity, in a bi-objective method. 

Furthermore, we enforce that every community must be allocated to a catchment area.  

 

This problem and solution method can be further extended to a method that determines optimal sections of 

the city to serve given a constraint on MFC number, budget, or to maximise profit. Moreover, it is possible 

that profit be assigned to each community or to relax the constraint that all communities must be served, to 

investigate maximum profit scenarios rather than cost minimization. This allocation problem could also be 

formulated and solved in other ways if desired. For instance, it may be formulated as a modified covering 

problem and solved using other discrete optimisation techniques, among other approaches (Daskin 2013). 

We choose to employ an algorithm method, like Hong et al. (2017), that uses a greedy algorithm 

supplemented by local interchanges that preserve the spatial contiguity of the catchment areas. Table 1 

shows the notation that we use in the multiple knapsack allocation problem. 

 

Table 1: Multiple Knapsack Problem Notation 

Notation Value Description 

PU,j Perimeter of Catchment j Perimeter of the catchment area in 

kilometres 

PC,i Perimeter of Community i Perimeter of the community in 

kilometres 

PC,i,h Perimeter of Community i that neighbours 

Community h.  

Equals 0 when communities are not 

neighbours.  

Neighbouring edge. Perimeter of the 

community in kilometres 

gi,h Equals 1 when communities i and h are in 

the same catchment.  

Equals 0 otherwise. 

Binary variable denoting whether two 

communities are allocated to the same 

MFC catchment.  

𝑁𝐶,𝑖
∗

 Optimal Number of MFCs in Community 

i. 

Solution to (8b) in Community i 

𝑁𝑅
∗

 Optimal Number of MFCs in Region In real number form 

𝑁𝑅
∗̃ Rounded Optimal Number of MFCs in 

Region 

Rounded to the nearest integer. This is 

“the number of MFCs”.  

𝑁𝑈,𝑗
∗

 Optimal number of MFCs for Catchment 

j. 

In real number form 

𝑈𝑖,𝑗  Equals 1 when Community i is allocated 

to Catchment j.  

Equals 0 otherwise.  

Binary variable showing if Catchment j 

contains Community i. 
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We determine the perimeter of a catchment area (PU,j) by calculating the sum of the perimeters of the 

communities allocated to the catchment (PC,i) and subtracting the internal neighbouring edges. An internal 

neighbouring edge is the amount of a community’s perimeter that neighbours another community’s (PC,i,h) 

when both communities are allocated to the same catchment (gi,h = 1).   

 

 
𝑃𝑈,𝑗  =  ∑ 𝑃𝐶,𝑖

𝑛

𝑖=1

− ∑ 𝑔𝑖,ℎ . 𝑃𝐶,𝑖,ℎ

𝑛

𝑖=1

 (9) 

 

Equation (9) allows us to evaluate the total perimeter of each community for a given MFC allocation. We 

then aim to minimize this total perimeter as this objective makes the catchment areas as compact as possible 

and, thus, transportation as efficient as possible, as shown in (10). 

 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑠𝑒 ∑ 𝑃𝑈,𝑗

�̃�𝑅
∗

𝑗=1

 (10) 

 

The second objective of the bi-objective model (11) is to partition the region into MFC catchment zones 

(subscript label j) such that the sum of the optimal MFCs in all allocated communities (11c) is as close to 

an even split as possible of the total non-integer number of MFCs required (11b). The number of MFCs for 

the region is the sum of the MFCs required for each community, first as a real number as in (11a), and 

second, rounded to the nearest integer as in (11b). This objective, and its related definitions, can be modified 

if a boundary MFC is desired to be presently underutilised to allow for future increased demand. The 

optimal number of MFCs in a catchment is the sum of the optimal number of MFCs in the communities 

that are allocated to the catchment. We do this by using a binary categorical variable (Ui,j) as in (11c). 

 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑠𝑒 ∑ (𝑁𝑈,𝑗
∗ −

𝑁𝑅
∗

�̃�𝑅
∗)

2�̃�𝑅
∗

𝑗=1

 (11) 

 

𝑁𝑅
∗ =  ∑ 𝑁𝐶,𝑖

∗

𝑛

𝑖=1

 (11a) 𝑁𝑅
∗̃ =  ⌊

1

2
+ ∑ 𝑁𝐶,𝑖

∗

𝑛

𝑖=1

⌋ (11b) 𝑁𝑈,𝑗
∗ =  ∑(𝑈𝑖,𝑗. 𝑁𝐶,𝑖

∗ ) (11c) 

 

We implemented and solved this stage in a desktop GIS using a greedy algorithm method supplemented by 

local interchanges, like Hong et al. (2017), so that we preserve the spatial contiguity of the catchment areas. 

See the supplementary information for further information on the algorithm followed. We also add 

constraints so that all variables are restricted to non-negative real values. See Appendix C for a description 

of the algorithm used. The next step in the allocation-location process is to determine the optimal MFC 

locations within the catchment areas. 

3.6.2. The Series of MFC Location Problems 

With the MFC catchment areas allocated, the location problem becomes a series of independent location 

problems. The objective is to minimise the transportation distance to and from all demand points in the 
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region. In addition, the assumption of uniform demand within each community may even be relaxed to find 

a locally optimal solution for MFC location within a catchment.  

 

The location may be optimised using any number of solution methods to find the optimal location, but 

ultimately the decision may be quite restricted by the availability of appropriate space within the catchment 

area. With the aid of heuristics, the optimal discrete choice may be manually identifiable (especially when 

given only one MFC catchment area and a finite choice of locations) or the choice may require subjective 

input of intangible factors of the area. Several discrete optimisation techniques are also available, well 

known, and available in commercial GIS packages to solve single facility location problems (Daskin 2013; 

Church and Murray 2008). We use the “Mean Center” tool in ArcMAP in the case study. 

4. Case Study 

Now that the method has been described, a future drone delivery system, as potentially deployable by an e-

commerce retailer (e-retailer) either in close partnership with a drone company or their own developed 

delivery-by-drone system, is investigated in the city of Calgary. We assume that an Unmanned Aerial 

System Traffic Management system has been developed and implemented so that the intended operations 

are legal and safe. The resulting delivery-by-drone system is then compared to a traditional delivery-by-

truck system in terms of both cost and expected operational emissions. Finally, a sensitivity analysis is 

conducted on some estimated parameters, and their significance is discussed. The following results are 

displayed using Esri ArcMAP version 10.7.1 using 2016 geographical and census data made available by 

Statistics Canada. 

4.1. Summary of Parameters 

Table 2 shows a summary of the input variables for the numerical example. See Appendix D for a full 

explanation. 

 

Population density, community area, and logistical sprawl distance vary per community. Additionally, 

demand uncertainty at the community level is considered unknown. This level of detail in the data may be 

available to the e-retailer or other sellers as is assumed in Tsao et al. (2012), but as this data is not available 

in our study area, we use an approximation, (12). This relationship between regional and community level 

demands, demand variations, and areas is required to maintain the assumption of arborescent network 

design and maintenance of the stock-out factor (Schwarz 1981). This formulation also preserves the 

expected linear scaling of the optimal MFC number in a community area. For example, if a community area 

is twice as large as another, and all other parameters are the same for both areas, the larger community area 

will have twice the number of MFCs as the smaller one. 

 

 
𝜎𝐶 =  𝜎𝑅 .

𝜇𝐶 . √𝐴𝑅

𝜇𝑅 . √𝐴𝐶

 (12) 
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Table 2: Case Study Default Parameters 

Parameter Notation Value Units Source 

Mean Demand Density µ  

(µR = µC) 

4.95 * 

pop. 

density 

deliveries per square 

kilometre per year 

(Unnikrishnan and 

Figliozzi 2020) 

Variability in Demand σ 0.32 * 

pop. 

density 

deliveries per square 

kilometre per year 

(Aston et al. 2020) 

Last Mile Delivery 

Cost 

Cl $0.325 CAD per kilometre (Figliozzi 2018) 

Fixed Facility Cost Cf $90,000 CAD per MFC Estimated from local data, 

see Appendix D. 

Shelf Cost Cs $180  CAD per square meter Estimated from local data, 

see Appendix D. 

Resupply Delivery 

Cost 

Cd $1,100 CAD per resupply per 

MFC 

Estimated from local data, 

see Appendix D. 

Inventory Holding 

Cost 

Ch.u $7 CAD per safety stock 

unit per year 

(Rutten, van Laarhoven, 

and Vos 2001) 

Truck Travel Cost Ct $1.47 CAD per kilometre American Transportation 

Research Institute 2019 

Trucking Report 

Configuration Factor φ 0.414 unitless (Erlenkotter 1989) 

Routing Parameter k 0.82 unitless (Daganzo 2005) 

Stock-out Factor β 2 unitless (Axsäter 2006) 

Truck Package 

Capacity 

C 200 daily deliveries per truck 

tour 

(Figliozzi 2008) 

Resupply frequency E 72 resupplies per year Estimated – sensitivity 

analysis conducted 

Effective Storage 

Density 

m 20 deliveries per square 

meter 

Estimated – sensitivity 

analysis conducted, see 

Appendix D. 

Maximum Flight Rage MFR 24 kilometres Amazon self-reported 

technical specification. 

 

4.2. Initial Classical Analysis 

For a baseline understanding of the study area, a classical analysis is first conducted as if the whole region 

is one community that has slowly varying parameters.  
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Table 3: Regional Uniform Demand Results 

Region Area 

(AR; km2) 

Adult 

Population 

Regional Demand 

Density (μR; 

packages/km2/year) 

N* CDrone,R CTruck,R 

481 995,010 10,242 18.3 $11,351,877 $3,872,742 

 

This preliminary analysis is also used to set the default resupply frequency. As shown in (5), this rate will 

have a minimiser for the objective cost. Table 3 shows a cost comparison of the truck and drone systems; 

as shown, the traditional system is almost three times cheaper. On a per item basis, costs are $2.30 and 

$0.79 for the drone and truck systems, respectively.  

 

Consider a few different scenarios from the baseline. First, logistical sprawl in Calgary is relatively short 

at an average of only 23 km. The regional warehouse for this study is in Balzac, about 5 km north of the 

Calgary city limits, because it is the location of similar existing e-retailer facilities. If we consider a regional 

warehouse in the same Balzac location was to support a delivery-by-drone system in the city of Red Deer 

(a smaller city about 100 km north of Calgary) then the sprawl distance would increase, and the cost 

estimate for the truck system overtakes the drone equivalent: $2.36 for the truck versus $2.30 for the drone. 

The expected cost of the drone delivery does not change in the Red Deer scenario as we assume a 

conservatively high value for the cost to resupply the MFCs which is independent of the logistical sprawl 

(see Appendix section D.4). 

 

Next, we consider changes to the time windows parameter for the city of Calgary. Imposing time-windows 

to the deliveries only affects the truck system as we assume the drone deliveries are fast enough, and the 

standard and expedited deliveries are planned well enough, to always meet the given time-windows. We 

experimented with the model using different time-windows between one and ten and find that if the truck 

system offers five two-hour time windows in a day, then the cost per item estimate for the truck increases 

to $2.42, which is above the estimate for the drone system ($2.30). This preliminary analysis agrees with 

intuition and previous research that these two situations, satellite cities that have large logistical sprawl 

from the regional hub and in the case of rapid delivery demands, are where the drone plus MFC system will 

be cost competitive with traditional truck delivery. Furthermore, in section 4.4, we show how the two-stage 

method can assist in further understanding the time window case.  

4.3. Two-stage Method Location-Allocation 

There are 202 residential communities in the city of Calgary as of the 2016 census. Table 4 shows a sample 

of the results from applying the community optimization stage of the two-stage method to the relevant 

community level data to determine the optimal number of MFCs; the table also includes a comparison of 

the optimal costs for the drone and truck systems. The first column lists the community number, from 1 to 

the total number, 201. We excluded one community from the case study due to it being non-contiguous 

with the other 201.  

 

The second column shows the community area, which we determined as the geodesic area of the community 

using ArcMap Desktop 10.7.1. We also used ArcMap Desktop 10.7.1 to determine the perimeters of the 

communities and their neighbours using the “Polygon Neighbours” tool. We obtained population data for 



University of Calgary 

J. S. Lamb  25 

each community from the 2016 census (Statistics Canada, 2016a). Demand density is the population 

density, calculated from population number and area, multiplied by the mean demand parameter, which is 

packages per year per person. We calculated the optimal number of MFCs by solving (8) for each 

community by evaluating the function over many values of NC (implemented in Excel, version 2110, Build 

16.0.14527.20234, 64-bit) to determine an approximate solution to a resolution of +/-0.005 MFC units per 

community. This numerical method confirmed that the optimizing value of number of MFCs was a cost 

minimizer.  Note that the second stage of the method, where communities are grouped into catchment areas, 

is most easily conducted when the optimal number of MFCs is lower than one, indeed when it is lower than 

one-half on average, for each community. The total cost for the drone and truck systems is then calculated 

using (5) and (7), respectively.  

 

Table 4: Example Community Optimal MFC Number Results 

Community 

(i) 

Community 

Area (AC,i; 

km2) 

Adult 

Population 

Demand 

Density 

(μC; 

packages/

km2/year) 

Optimal 

Number of 

MFC per 

Community 

(Ni*C) 

Total Drone 

System Cost 

per 

Community 

(CDrone,C) 

Total Truck 

System Cost 

per 

Community 

(CTruck,C) 

1 6.34  19,775   15,446   0.310  $201,848 $53,374 

2 2.95  19,945   33,514   0.229  $167,227 $61,778 

3 4.65  16,405   17,475   0.245  $162,059 $74,717 

… … … … … … … 

n = 201 0.37 255 3,392 0.007 $4,014 $1,265 

Region (R) 481 995,010  17.47 $11,013,855 $3,689,137 

 

The final row, Region, is the sum of the community values and represents the regional value result of the 

two-stage method. For instance, the optimal number of MFCs for the region is the sum of the optimal 

number in the communities (17.47) as per (11a). Rounded to an integer this is 17 as per (11b), one lower 

than recommended by the classical method, which is 18 (rounded down from 18.3). Furthermore, total 

system cost for the region is calculated similarly, by summation of the community cost estimates. The cost 

of the baseline drone system is predicted to be $11,013,855 CAD and the truck system to be $3,689,137 

CAD, which is within 3% and 5% of the classical method, respectively. The total cost is later investigated 

in a sensitivity analysis by adjusting the input parameters.  

 

We then solved the second stage of the two-stage method, the multiple knapsack problem by implementing 

the allocation algorithm (as described in Appendix C) in ArcMap Desktop 10.7.1. using an Intel i7-9750H 

CPU @ 2.60 GHz, 64-bit, 16GB RAM computer. ArcMap was also used to evaluate the objective functions 

during the solution process. Figure 2 shows the resulting location-allocation solution, with MFC catchment 

areas outlined in thick lines and neighbouring catchments textured, in four different patterns, to visually 

distinguish them.  

 

We determined the optimal locations of each MFC within the catchments (circles with a centre dot) using 

the “Mean Centre” tool in ArcMap, with the demand of each community as a weight. We then obtained the 

drone transportation distances in ArcMap by: first estimating an average travel distance from each 
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community to its allocated MFC using the “Point Distance” tool from the centre of each community to the 

MFC; multiplying by the annual package demand of the community; multiplying by two for a round trip. 

We also calculated the maximum distance any drone in the region would be required to fly by using the 

“Construct Points” and then the “Point Distance” tools in ArcMap to evaluate the maximum distance from 

the MFCs to their respective boundaries. We found that the maximum distance from an MFC to the 

perimeter of the allocated catchment found was 11.153km, 22.306km for a return journey, which is less 

than the maximum flight range (24km) of the drones and so the location-allocation solution is feasible. 

 

The allocation also allowed us to determine the cycle and safety stock required at each MFC, and the related 

MFC size and cost. For truck travel distance, we selected the location of the regional warehouse (a hollow 

cross) as the current real-world location of an existing Amazon fulfilment centre. We then determined the 

logistical sprawl distance from this regional warehouse to each community along road network by using 

the ArcMap “Make OD Cost Matrix Layer” tool. 

 

The location-allocation solution shown in Figure 2 has objective function values of 1,459 km and 0.015 

from the functions (10) and (10a), respectively. The transportation distance estimate of 20,470,629 km 

compared to 20,880,871 km estimated by ArcMap is approximately 2% lower, which is within a typically 

accepted range when using a CA method. Similarly, the estimated safety stock of 1,969 packages is about 

6% higher than the GIS implemented result of 1,856 packages. 

 

Figure 2 shows the catchment areas of MFCs 5 and 6 that span over Fish Creek Provincial Park. As it is 

legal for drones to fly over park areas, we labelled communities apposing one another over the park as 

contiguous in the data preparation stage. Some of these apposing communities, however, are not connected 

directly by road infrastructure, so models of other modes of transportation may consider these areas as 

disconnected during the allocation stage. Such modelling decisions are to be made on a case-by-case basis 

depending on the local conditions and modellers judgement. 
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Figure 2: Two-stage Model Location-Allocation Result 

4.3.1. Benchmarking 

It is important to consider the performance of our two-stage method when compared with commercially 

available methods. Hence, we performed a location-allocation optimization in ArcMAP using the Spatial 

Analyst extension.  

 

For the 510 potential MFC locations, we used the geometric centres of every industrial and commercial 

zone in the city, sourced from publicly available data online provided by the City of Calgary. The 201 

demand points were represented by the geometric centres of every community, weighted by their respective 

demand determined as in the two-stage method. We set up the drone travel network by creating a layer 

using the “XY to Line” tool which directly connected every demand point to every facility point. The 

ArcMAP commercial solver cannot account for financial cost, so we set the objective to minimize the sum 

of the weighted distances from each selected MFC to the allocated communities. This gives a location-

allocation solution we considered as near-optimal for last-mile transportation distance, and as a benchmark 

for cost comparison.  

 

Figure 3 shows the resulting location-allocation solution of the commercial solver for the case of seventeen 

MFCs.  
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Figure 3: Commercial Solver Location-Allocation Result 

 

Table 5 shows the last mile distance and the estimated annual cost of operating the delivery-by-drone system 

for the respective location-allocation solutions. As commercial solvers typically require the number of 

facilities to be an input parameter for the analysis, we also performed the commercial solver analysis for 

eighteen MFCs, as might have been done if the classical method were used to determine the input number 

of MFCs.  

 

Table 5: Benchmarking of Methods 
 

Method Last Mile Distance 

(kilometers)  

Total Annual Cost 

($CAD per year) 

Classical Method, 

N = 18 

Classical Estimate 21,081,391 (9%) $11,352,526 (5%.) 

Implemented Location-

Allocation Costs 

21,431,849 (11%) $11,467,057 (6%) 

Commercial Solver 19,338,333 (ref.) $10,787,306 (ref.) 

Two-Stage Method, 

N = 17 

Two-stage Estimate 20,470,629 (3%) $11,014,678 (2%) 

Implemented Location-

Allocation Costs 

20,880,871 (5%) $11,111,678 (3%) 

Commercial Solver 19,929,300 (ref.) $10,790,430 (ref.) 
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From these results, we can see that the two-stage method better estimates the benchmarks from the 

commercial solver, the last-mile transportation distance and the total annual cost of the system, than the 

classical method does. Taking the commercial solver solutions as benchmarks, we can see that the classical 

analysis overestimates the last mile distance by 9% in the initial estimate, and overestimates by 11% when 

the solution is implemented into a location-allocation. Whereas the two-stage method does still 

overestimate the last-mile distance of the benchmark, it does so by only 3% and 5% for the a-spatial 

estimate, and the implemented estimate respectively. The result is similar for the total system annual costs.  

 

Although the two-stage method does not produce a lower total cost solution than the commercial solver for 

our dataset, this is due to the specific cost parameters of this scenario as the last-mile transportation distance 

represents over half of the total system cost in every scenario. We expect that the two-stage method would 

produce good solutions across a wider variety of cost variables than the commercial solver, given that the 

solver minimizes only transportation cost whereas the two-stage method accounts for inventory costs. 

Indeed, we expect there may be scenarios, with high holding costs, where the two-stage method produces 

a lower-cost solution than a commercial solver. We expect future work to examine the effectiveness of the 

two-stage method in a wider variety of scenarios.  

 

4.3.2. Operating Emissions 

Some companies are concerned about the environmental impact of delivery-by-drone systems, and 

therefore, it is important to evaluate the systems for carbon emissions, shown in Table 6. The vehicle energy 

per kilometre parameter in Table 6 is from Figliozzi (2017, 2020), and this parameter is also within the 

range of parameters as studied by Goodchild and Toy (2018). The carbon dioxide emissions per energy 

parameter uses emissions per fuel estimates published by the Government of Canada in 2017 adjusted for 

the portion of fuel currently used in the Alberta energy grid, as published by the Alberta Electric Systems 

Operator in the 2019 report. We assume that diesel and electric trucks cost the same and conduct routes in 

the same manner (same routes, capacity, transportation distance) as we assume that electric trucks will only 

be adopted when they perform similar in cost and routing to the incumbent diesel vehicles; this assumption 

could be altered and investigated by further studies.  

 

Table 6: Energy Usage by Vehicle Type 

Parameter Distance Energy per 

km 

Emissions Per 

Energy 

Emissions per km Emissions 

Units km Wh/km kg/Wh kg/km metric tons 

Drone  20,470,62

9  

21.6  0.000201 0.004  88.8 

Diesel Trucks 1,831,658  1016 0.000270 0.274  502.5 

Electric Truck 1,831,658  205  0.000201 0.041  75.4 

 

The results support the common assumption that drones are less carbon intensive compared to diesel trucks, 

even in an urban setting. However, the significantly higher total fleet travel distance of the drones caused 

by their one-package payload capacity ultimately makes the drone system more emissions intensive than a 

potential future of electrically powered trucks on the same energy network. Use of multi-capacity drones 
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may be able to reduce the total distance travelled (Chen, Hu, and Solak 2021). Our findings are consistent 

with Figliozzi (2020) and Goodchild and Toy (2018). 

 

Absent from Table 6, however, are the energy requirements of the MFCs in the drone system, as discussed 

by Stolaroff et al. (2018). This value can be estimated for Alberta using information from a commercial 

building survey from 2013 published by Natural Resources Canada, and the square meterage required for 

the storage of goods is determined by the two-stage model. The total drone, diesel truck, and electric truck 

system emissions in tons of carbon dioxide, including warehouse emissions, is 392.1, 702.7, and 275.7, 

respectively. These results show that warehousing emissions are a significant factor to consider. 

 

4.4. Mixed Drone and Truck System by Time Windows 

Another advantage of the developed two-stage model is that a dual system (trucks and MFCs with drones 

working simultaneously but serving different parts of the same city) can be easily visualised and estimates 

of optimal systems can be created quickly. The classical analysis suggests that with five, two-hour time 

windows, the drone-only system is more cost effective than the truck equivalent. However, the classical 

analysis can only suggest a binary switch for the entire city. The two-stage method is a partitioning process 

and can help answer the following questions: can part of the city be served by drone and others by truck? 

and how may the build order of this eventual system be rolled out considering gradually improving time-

window offerings to customers? Table 7,Figure 4, and Figure 5 show the two-stage method’s answers to 

these questions. For different delivery window lengths (fractions of a ten-hour delivery day), the optimal 

cost of drone and truck delivery systems can be estimated and compared. 

 

Table 7: MFCs by Time Windows 

Number of 

Time Windows 

1 2 3 4 5 6 7 8 9 

Window 

Length 

(minutes) 

600 300 200 150 120 100 85 75 65 

Number of 

Drone MFCs 

0 0 1 4 9 12 15 15 17 

MFCs Added   6 4, 5, 7 8, 9, 

10, 11, 

12 

3, 16, 

17 

2, 13, 

15 

 1, 14 

 

This analysis assumes that the transportation effectiveness of the drone system is unaffected by the time 

windows due to the effective mixing of standard and expedited packages (see section 3.3.1), but the truck 

delivery system is affected in terms of delivering fewer parcels per vehicle per tour. An MFC is added and 

worthwhile when the cost estimate of the catchment is lower for the drone system than the truck system. 

This analysis also only considers the earlier determined catchments, but new catchment areas, determined 

using the allocation algorithm, could be created when examining a specific time-window scenario.  
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Figure 4: Drone, Truck, and Mixed System Costs by Number of Time Windows 

Figure 5 shows mixed mode solution for the 150-minute time window problem. The same 

catchment areas that were regionally optimal for a full delivery-by-drone system (from Figure 2) 

are shown in bold black lines again. These catchment areas are served by one MFC each, which 

are numbered and represented by white circles with centre dots. Cross-hatched catchments are 

served by drones, and the non-hatched catchments are served by trucks. Moreover, the colour-

coding of the communities (outlined with thin grey lines) reflects the difference in estimated cost 

between the two modes per expected package demanded by that community, according to the 

legend in the figure. Figure 3 also shows that the e-retailer regional hub is located to the north of 

the city, above and between catchments 1 and 14. The logistical sprawl distance from the hub to 

the south of the city is the most significant factor in raising the cost of expedited deliveries as the 

trucks must make this haul multiple times per day, increasing with increasing numbers of time 

windows.  
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Figure 5: 100-Minute Time Windows Location-Allocation 

 

4.5. Sensitivity Analysis 

We considered three logistical parameters of interest to examine by sensitivity analysis: effective storage 

density, uncertainty in demand, and resupply frequency. These parameters show the three main 

relationships that parameters have with the decision variable in (8) and the system cost in (5). Figure 6 

shows a linear relationship; Figure 8 is a reciprocal function, and Figure 7 is a convex function that is the 

union of the linear and reciprocal functions. The figures show the last mile cost (drone distance), the MFC 

costs (sum of fixed, resupply, and storage costs), the holding cost (related to inventory), the sum of these 

costs for total system cost and the related optimal number of MFCs, both rounded (𝑁𝑅
∗̃) and as the 

determined CA number (𝑁𝑅
∗). These three figures are representative of how any single variable may affect 

the number of MFCs in the two-stage method and are expected when examining the system cost and 

derivative equations as in (5) and (8). 
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Figure 6: Regional Uncertainty in User Demand 

 

 

Figure 7: Resupply Frequency 

 

𝑁𝑅
∗ 𝑁𝑅

∗̃ 

𝑁𝑅
∗ 𝑁𝑅

∗̃ 



University of Calgary 

J. S. Lamb  34 

 

Figure 8: Effective Storage Density 

 

Of these three parameters, demand uncertainty is the parameter that the seller has the least influence over 

as it is a function of customer behaviour. This factor is shown to near linearly relate to higher optimal drone 

MFC system cost as less knowledge of customer demand leads to larger safety stock inventory, which leads 

to increases in both storage space and inventory holding costs. Alternatively, the seller may accept more 

frequent stock outs and accept the associated indirect costs to branding and customer loyalty. To avoid 

either increased stock costs or indirect customer costs, our analysis andv Figure 6 suggests that decreasing 

the number of MFCs is appropriate (Geoffrion 1979). Although decreasing the number of MFCs will 

increase last-mile transportation costs, this action will also create larger catchment areas, which will 

aggregate more demand. This lower increase in uncertainty in demand helps contain the increase in total 

safety stock required in the region, thereby preventing super-linear increases in inventory holding costs. 

Our results show that the increased holding costs avoided by decreasing the number of MFCs is greater 

than the trade-off increase in last-mile transportation costs for decreasing the number of MFCs, therefore 

making decreasing MFCs the correct choice in response to higher demand uncertainty. 

 

Figure 6 can also inform how much effort and resources should be put towards reducing demand 

uncertainty. For example, the seller could issue a customer survey with the expectation that this survey will 

reduce demand uncertainty (the standard deviation in predicted user demand) by 0.2 packages per person 

per year. Figure 6 suggests that this reduced uncertainty could save approximately $500,000 CAD per year 

in system cost. This cost is saved because the reduced uncertainty, as provided by the survey, allows for 

the opening of two more MFCs and a more than commensurate reduction in transportation costs. Thus, such 

a survey may be a positive investment if the survey and the resulting non-recurring implementation work 

associated with it, could be conducted for less than the expected amount saved. 

 

Figure 7 shows the resupply frequency, which also affects order quantity. Within realistic operational 

ranges, the system cost is relatively flat, which suggests that other tactical or operational constraints should 

be considered to determine the resupply frequency between deliveries once weekly (52) and once every 

three days (152), the system cost does not increase or decrease by more than 3%. However, over this same 

range, the number of MFCs to facilitate this system cost changes significantly, 19 to 15. Consequently. this 

analysis suggests that an effective strategy could be to establish 19 MFCs with have fewer deliveries (once 

𝑁𝑅
∗ 𝑁𝑅

∗̃ 
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weekly) at the start of a multi-year plan, and then the seller should expect to increase the resupply frequency 

over time to accommodate demand growth. This strategy allows for longer-term growth whilst still 

achieving a near optimal estimated cost in the short-term. 

 

Figure 8 shows that changes in effective storage density above 15 packages per square meter do not result 

in any changes in the number of MFCs. The system cost savings approach a limit of about 8% beyond this 

effective storage density. Moreover, effective storage densities above some value will become unreasonable 

given minimum commercial building lot size, demand, and resupply frequency. This ‘cut-off’ value, 15 

packages per square meter in this case study, however, is affected by the per area shelf space cost, and it is 

clear by examining the cost function in (5) that a higher shelf space cost leads to a higher storage density 

cut-off value. Consequently, we define the cut-off value as when decreases in shelving cost become 

insignificant. This relationship is linear, there is also an effective shelf cost per item (Cs/m) cut-off value. 

Our case study and analysis suggest that delivery-by-drone systems with an inventory management strategy 

and rental market combination that can support an effective shelf cost above 0.09 CAD per item are 

insensitive to further decreases in rental cost or increases in effective storage density.  

 

Effective storage density is achieved by: accurate prediction of demand at a time scale relative to resupply 

frequency, measured in days; small item sizes; efficient rack placement; improved warehousing technology; 

and good inventory management. If these densities cannot be achieved, then the effective storage density 

factor is significant because it is the only parameter that results in MFC numbers below ten and even as low 

as one or two MFCs, an unfeasible MFC arrangement for current drone technology. Thus, confidence in 

selling goods stocked in MFCs and achieving a high effective storage density are initial, but not continuing, 

barriers for companies using a delivery-by-drone system. Furthermore, an effective storage density above 

a certain range (above 15 in this case) is effectively wasted as the optimal system, as estimated by the first 

stage in the CA, is likely below the minimal lot size of commercial space to rent or buy and thus cannot be 

realised. The SSP may instead increase the variety of items offered for expedited delivery until this 

threshold of effective storage density is reached as this will likely garner more sales, and more profit, from 

their customers. Understanding the relationship shown by Figure 8 is important to not over or under offer 

the range of expedited delivery packages.  

5. Conclusion 

Urban goods delivery has been dominated by fossil fuel powered, human driven trucks and customer-

attracting physical retail stores of various sizes for the history of modern retail. With the advent of disruptive 

technologies, such as drones and e-commerce, and the adoption of disruptive business practices, such as 

seller and service providers and micro-fulfilment centres, the traditional structure of urban retail logistics 

will change. 

 

Multiple recent literature reviews on urban logistics facilities and urban delivery-by-drone have shown the 

research gaps that this report addresses. Moshref-Javadi and Winkenbach (2021) support research looking 

at multi-facility location problems and integrated facility problems that consider inventory management 

and costs. Boysen et al. (2020) agree with this conclusion, adding that recent studies on emerging delivery 

technologies have focused largely on routing problems, and that strategic problems of location-allocation 

and fleet composition remain a valid task for future research. Ansari et al. (2018) conclude that CA models 

are uniquely positioned to be extended and used to solve these integrated and strategic problems. The 
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present work solves an integrated location-allocation problem that includes inventory by applying a CA 

approach that can be further modified to account for different delivery modes in the future.  

 

This report has shown that, for the example seller and service provider studied, a micro-fulfilment centre 

delivery-by-drone system for typical packages is not yet justifiable on a pure cost effectiveness basis but 

may be in the future given advances in technology, regulations, and/or implementation of short time-

window delivery. We have also shown that the mix of expedited and standard packages the seller will offer 

is an essential factor for success of a delivery-by-drone and MFC system, and conversely this mix of goods 

can be a critical barrier if managed incorrectly. This mix of goods affects both drone utilisation efficiency 

outside of MFCs and effective storage density within each MFC, a factor that determines the size of the 

MFCs needed. If these challenges are overcome, a cost-optimal drone system can be a lower emissions 

alternative to a traditional diesel truck system but not lower than a future electric van system.  

 

Furthermore, decision makers in this field need adaptable tools, such as CA models, that will aid in the 

understanding of these new logistical structures. Within a city, however, the common first assumption of 

uniform demand density that many CA models make is often invalid due to spatially distributed socio-

economic factors. We have shown that CA methods can be used to understand this coming urban disruption 

while acknowledging non-uniform demand density space; in addition, CA methods can be used to build 

allocation maps in a methodological way with commercially available software using this two-stage 

method. This report has shown that this two-stage method estimates transportation distance and inventory 

to a similar accuracy as classical single uniform demand approximation methods and thus the insights of 

CA methods at a local level will approximately hold for cost-optimal regional level solutions. The two-

stage methodology could also be expanded at the first stage to include multi-capacity vehicle routing, such 

as sidewalk robots or local delivery vans, or multi-modal depots.  

5.1. Future Work 

First, the transportation cost parameter considered in the analysis assumes that multiple drones may be 

controlled beyond a visual line of sight by a single operator. This technological and regulatory environment 

is still a few years away at the time of writing. Without this development, the MFC and drone system cannot 

be cost competitive with trucks in even the best-case scenarios for the drones. The model also assumes fair 

flying weather at all times. We compared typical drone characteristics and historical Calgary weather data 

and found this was a good assumption because there were fewer than three days a year on average in the 

past ten years of data likely to disrupt drone flight operations. Moreover, we assumed drones work nearly 

constantly over their daily routine, meaning that they were delivering standard parcels, in-between time-

sensitive deliveries. This intermixing of expedited and standard deliveries requires effective operational 

algorithms which have yet to be developed and are of interest for future study. 

 

Second, a barrier to entry, effective storage density, is identified. Offering a larger variety of items for 

expedited service reduces effective storage density and offering fewer items conversely will increase the 

density. However, low effective storage density increases the size of MFCs required and thus increases 

system costs. For a given SSP, the challenge is to maintain the effective storage density above a minimal 

value (15 in the example) by improving their predictions or changing the mix of expedited and standard 

packages offered. Investigating how to meet this challenge is a topic for future study. Furthermore, relaxing 
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the assumption of an arborescent network is likely to affect how effective storage density affects and is 

affected by the rest of the system, and is also of interest for future study. 

 

Finally, if this system overcomes these challenges, there is potential for carbon emissions savings compared 

to the traditional diesel delivery truck system. However, these savings are vastly reduced, and potentially 

completely nullified, when considering the energy demands of the MFCs needed. In the study area of 

Alberta, Canada, where electricity generation still utilises coal power stations and building heating 

requirements throughout the year are substantial, the energy impacts of the MFCs is shown to be significant. 

In these instances, drones supported by an MFC system may be a less effective emissions alternative 

compared to electric delivery vans. Timely delivery is the main driver behind the adoption of a drone 

system, without short time-window constraints, and this study suggests that the consolidation efficiencies 

of electric vans will make them the lower emissions choice. Therefore, it would be interesting if future 

work could expand on some of these aspects, such as including emissions in the objective cost function for 

the cost optimization stage.  

 

Further to the parameter and model environment areas of future work stated above, future modelling efforts 

can incorporate more complex CA optimisation in step one, such as the analysis of a multi-mode MFC. As 

the two-stage method separates determination of an optimal number of facilities, allocation of communities 

to catchment areas, and location of final communities into separate problems, each stage can be more 

complex than if they were considered simultaneously. Future work may also provide improved and 

automated allocation procedures for the multi-knapsack allocation problem leveraging the Python 

programming capabilities of ArcMap or comparable languages for other GIS software, such as R or QGIS. 

 

Further modelling expansions of this study may also include a multi-modal autonomous delivery system, 

accounting for sidewalk delivery robots, multi-capacity drones, electric vans, traditional vehicles, horsefly 

systems, and joint systems where these modes operate in parallel. Modelling and optimisation of a system 

over time, as done by Wang et al. (2017), is another avenue for further work for which CA paired with GIS 

is uniquely suited. Finally, it is possible and of interest to account for emissions in the objective function 

of the first stage in the two-stage model directly. In this manner, emissions pricing policies may be modelled 

alongside existing logistical costs. Emissions alone could be considered, and an emissions optimised system 

and an economically optimised system could be compared to understand complementary features and 

opportunities for system improvement.  

 

 Acknowledgements: 

The authors would like to thank the following parties for their support of this work. Firstly, to the 

Natural Sciences and Engineering Research Council (NSERC) of Canada for their financial support 

via the Discovery grant program and through the Collaborative Research and Training Experience 

(CREATE) Program. I also wish to thank my supervisors, Professor Chan Wirasinghe and 

Professor Nigel Waters, for their help and advice over these years. Thanks also go to Professor Lina 

Kattan, the director of the Integrated Infrastructure for Sustainable Cities (IISC) CREATE program 

for her mentorship and funding support. Further financial thanks go to the Government of Alberta 

for their support through the Alberta Graduate Excellence Scholarship (AEGS). Furthermore, the 

authors gratefully acknowledge the technical support and advice pertaining to the Geographic 

Information System components of the project from Renna Truong, of the Spatial And Numeric 



University of Calgary 

J. S. Lamb  38 

Data Services (SANDS) at the University of Calgary. Finally, the authors also gratefully 

acknowledge and thank the four anonymous journal reviewers for their insightful and helpful 

comments. 

 

Declaration of Conflicts of Interests: 

 None 



University of Calgary 

J. S. Lamb  39 

References 

Ansari, Sina, Mehmet Başdere, Xiaopeng Li, Yanfeng Ouyang, and Karen Smilowitz. 2018. 

“Advancements in Continuous Approximation Models for Logistics and Transportation Systems: 

1996–2016.” Transportation Research Part B: Methodological. Pergamon. 

doi:10.1016/j.trb.2017.09.019. 

Aurambout, Jean Philippe, Konstantinos Gkoumas, and Biagio Ciuffo. 2019. “Last Mile Delivery by 

Drones: An Estimation of Viable Market Potential and Access to Citizens across European Cities.” 

European Transport Research Review 11 (1). European Transport Research Review. 

doi:10.1186/s12544-019-0368-2. 

Arenzana, Alejandra Otero, Jose Javier, and Escribano Macias. 2020. “Design of Hospital Delivery 

Networks Using Unmanned Aerial Vehicles.” Transportation Research Record. 

doi:10.1177/0361198120915891. 

Aston, Jason, Owen Vipond, Kyle Virgin, and Omar Youssouf. 2020. “Retail E-Commerce and COVID-

19: How Online Shopping Opened Doors While Many Were Closing.” Statistics Canada. 

https://www150.statcan.gc.ca/n1/pub/45-28-0001/2020001/article/00064-eng.htm. 

Axsäter, Sven. 2006. Inventory Control - Second Edition. 2nd ed. Lund. https://link-springer-

com.ezproxy.lib.ucalgary.ca/content/pdf/10.1007%2F0-387-33331-2.pdf. 

Baloch, Gohram, and Fatma Gzara. 2020. “Strategic Network Design for Parcel Delivery with Drones under 

Competition.” Transportation Science 54 (1): 204–28. doi:10.1287/trsc.2019.0928. 

Björklund, Maria, and Henrik Johansson. 2018. “Urban Consolidation Centre – a Literature Review, 

Categorisation, and a Future Research Agenda.” International Journal of Physical Distribution and 

Logistics Management 48 (8): 745–64. doi:10.1108/IJPDLM-01-2017-0050. 

Bouchery, Yann, Johan Woxenius, and Jan C. Fransoo. 2020. “Identifying the Market Areas of Port-

Centric Logistics and Hinterland Intermodal Transportation.” European Journal of Operational 

Research 285 (2). Elsevier B.V.: 599–611. doi:10.1016/j.ejor.2020.02.015. 

Boysen, Nils, Stefan Fedtke, and Stefan Schwerdfeger. 2020. “Last-Mile Delivery Concepts: A Survey 

from an Operational Research Perspective.” OR Spectrum 43 (1). Springer Berlin Heidelberg: 1–58. 

doi:10.1007/s00291-020-00607-8. 

Chauhan, Darshan, Avinash Unnikrishnan, and Miguel Figliozzi. 2019. “Maximum Coverage Capacitated 

Facility Location Problem with Range Constrained Drones.” Transportation Research Part C: 

Emerging Technologies 99 (May 2018). Elsevier: 1–18. doi:10.1016/j.trc.2018.12.001. 

Chen, Heng, Zhangchen Hu, and Senay Solak. 2021. “Improved Delivery Policies for Future Drone-Based 

Delivery Systems.” European Journal of Operational Research 294 (3). Elsevier B.V.: 1181–1201. 

doi:10.1016/j.ejor.2021.02.039. 

Chowdhury, Sudipta, Adindu Emelogu, Mohammad Marufuzzaman, Sarah G. Nurre, and Linkan Bian. 

2017. “Drones for Disaster Response and Relief Operations: A Continuous Approximation Model.” 

International Journal of Production Economics 188 (October 2016). Elsevier B.V.: 167–84. 

doi:10.1016/j.ijpe.2017.03.024. 

Chung, Sung Hoon, Bhawesh Sah, and Jinkun Lee. 2020. “Optimization for Drone and Drone-Truck 

Combined Operations: A Review of the State of the Art and Future Directions.” Computers and 

Operations Research 123. Elsevier Ltd: 105004. doi:10.1016/j.cor.2020.105004. 

Church, Richard L., and Alan T. Murray. 2008. Business Site Selection, Location Analysis and GIS. 

Business Site Selection, Location Analysis and GIS. Wiley. doi:10.1002/9780470432761. 



University of Calgary 

J. S. Lamb  40 

Cokyasar, Taner, Wenquan Dong, Mingzhou Jin, and İsmail Ömer Verbas. 2021. “Designing a Drone 

Delivery Network with Automated Battery Swapping Machines.” Computers and Operations 

Research 129. doi:10.1016/j.cor.2020.105177. 

Coutinho, Walton Pereira, Maria Battarra, and Jörg Fliege. 2018. “The Unmanned Aerial Vehicle Routing 

and Trajectory Optimisation Problem, a Taxonomic Review.” Computers and Industrial 

Engineering 120 (June 2017). Elsevier: 116–28. doi:10.1016/j.cie.2018.04.037. 

Daganzo, Carlos F. 2005. Logistics Systems Analysis. 4th ed. New York: Springer Berlin Heidelberg. 

Daskin, Mark S. 2013. Network and Discrete Location Models, Algorithms, and Applications. Ann Arbor. 

Daskin, Mark S., and Emily L. Tucker. 2018. “The Trade-off between the Median and Range of Assigned 

Demand in Facility Location Models.” International Journal of Production Research 56 (1–2). 

Taylor & Francis: 97–119. doi:10.1080/00207543.2017.1401751. 

Dell’Amico, Mauro, Maxence Delorme, Manuel Iori, and Silvano Martello. 2019. “Mathematical Models 

and Decomposition Methods for the Multiple Knapsack Problem.” European Journal of 

Operational Research 274 (3). Elsevier B.V.: 886–99. doi:10.1016/j.ejor.2018.10.043. 

Dorling, Kevin, Jordan Heinrichs, Geoffrey G. Messier, and Sebastian Magierowski. 2017. “Vehicle 

Routing Problems for Drone Delivery.” IEEE Transactions on Systems, Man, and Cybernetics: 

Systems 47 (1): 70–85. doi:10.1109/TSMC.2016.2582745. 

Erlenkotter, Donald. 1989. “The General Optimal Market Area Model.” Annals of Operations Research 

18 (1). Baltzer Science Publishers, Baarn/Kluwer Academic Publishers: 43–70. 

doi:10.1007/BF02097795. 

Figliozzi, Miguel A. 2008. “Planning Approximations to the Average Length of Vehicle Routing 

Problems with Varying Customer Demands and Routing Constraints.” Transportation Research 

Record 765 (2089): 1–8. doi:10.3141/2089-01. 

Figliozzi, Miguel A. 2017. “Lifecycle Modeling and Assessment of Unmanned Aerial Vehicles (Drones) 

CO2e Emissions.” Transportation Research Part D: Transport and Environment 57: 251–61. 

doi:10.1016/j.trd.2017.09.011. 

Figliozzi, Miguel A. 2018. “Modeling the Sustainability of Small Unmanned Aerial Vehicles 

Technologies.” 

Figliozzi, Miguel A. 2020. “Carbon Emissions Reductions in Last Mile and Grocery Deliveries Utilizing 

Autonomous Vehicles.” Transportation Research Part D. 85. 

Geoffrion, Arthur M. 1979. “Making Better Use of Optimization Capability in Distribution System 

Planning.” AIIE Transactions 11 (2): 96–108. doi:10.1080/05695557908974448. 

Goodchild, Anne, and Jordan Toy. 2018. “Delivery by Drone: An Evaluation of Unmanned Aerial 

Vehicle Technology in Reducing CO2 Emissions in the Delivery Service Industry.” Transportation 

Research Part D: Transport and Environment 61 (June). Pergamon: 58–67. 

doi:10.1016/j.trd.2017.02.017. 

Gunes, Seyma, and Anne Goodchild. 2021. “Characteristics of a Successful Microhub: Taking Public and 

Private Stakeholders’ Perspective into Account.” In Volvo Research and Educational Foundations 

Conference. 

Hong, Insu, Michael Kuby, and Alan Murray. 2017. “A Deviation Flow Refueling Location Model for 

Continuous Space: A Commercial Drone Delivery System for Urban Areas.” Advances in 

Geographic Information Science, 125–32. doi:10.1007/978-3-319-22786-3_12. 

Kim, Seon Jin, Gino J. Lim, Jaeyoung Cho, and Murray J. Côté. 2017. “Drone-Aided Healthcare Services 



University of Calgary 

J. S. Lamb  41 

for Patients with Chronic Diseases in Rural Areas.” Journal of Intelligent and Robotic Systems: 

Theory and Applications 88 (1): 163–80. doi:10.1007/s10846-017-0548-z. 

Langevin, André, Pontien Mbaraga, and James F. Campbell. 1996. “Continuous Approximation Models 

in Freight Distribution: An Overview.” Transportation Research Part B: Methodological 30 (3 

PART B): 163–88. doi:10.1016/0191-2615(95)00035-6. 

Lemardelé, Clément, Miquel Estrada, Laia Pagès, and Mónika Bachofner. 2021. “Potentialities of Drones 

and Ground Autonomous Delivery Devices for Last-Mile Logistics.” Transportation Research Part 

E: Logistics and Transportation Review 149 (March): 102325. doi:10.1016/j.tre.2021.102325. 

MacKle, Conor, Raymond Bond, Hannah Torney, Ronan McBride, James McLaughlin, Dewar Finlay, 

Pardis Biglarbeigi, Rob Brisk, Adam Harvey, and David McEneaney. 2020. “A Data-Driven 

Simulator for the Strategic Positioning of Aerial Ambulance Drones Reaching Out-of-Hospital 

Cardiac Arrests: A Genetic Algorithmic Approach.” IEEE Journal of Translational Engineering in 

Health and Medicine 8 (May). doi:10.1109/JTEHM.2020.2987008. 

Macrina, Giusy, Luigi Di Puglia Pugliese, Francesca Guerriero, and Gilbert Laporte. 2020. “Drone-Aided 

Routing: A Literature Review.” Transportation Research Part C: Emerging Technologies 120 

(February). Elsevier Ltd: 102762. doi:10.1016/j.trc.2020.102762. 

Moon, Ilkyeong, Said Salhi, and Xuehao Feng. 2020. “The Location-Routing Problem with Multi-

Compartment and Multi-Trip: Formulation and Heuristic Approaches.” Transportmetrica A: 

Transport Science 16 (3): 501–28. doi:10.1080/23249935.2020.1720036. 

Moshref-Javadi, Mohammad, and Matthias Winkenbach. 2021. “Applications and Research Avenues for 

Drone-Based Models in Logistics: A Classification and Review.” Expert Systems with Applications 

177 (March). Elsevier Ltd: 114854. doi:10.1016/j.eswa.2021.114854. 

Newell, Gordon F. 1973. “Scheduling, Location, Transportation, and Continuum Mechanics: Some 

Simple Approximations to Optimization Problems.” SIAM Journal on Applied Mathematics 25 (3): 

346–60. doi:10.1137/0125037. 

Oeser, Gerald. 2019. “What’s the Penalty for Using the Square Root Law of Inventory Centralisation?” 

International Journal of Retail and Distribution Management 47 (3): 292–310. doi:10.1108/IJRDM-

05-2017-0108. 

Ouyang, Yanfeng, and Carlos F. Daganzo. 2006. “Discretization and Validation of the Continuum 

Approximation Scheme for Terminal System Design.” Transportation Science 40 (1): 89–98. 

doi:10.1287/trsc.1040.0110. 

Perboli, Guido, Luce Brotcorne, Maria Elena Bruni, and Mariangela Rosano. 2021. “A New Model for 

Last-Mile Delivery and Satellite Depots Management: The Impact of the on-Demand Economy.” 

Transportation Research Part E: Logistics and Transportation Review 145 (November 2020). 

Elsevier Ltd: 102184. doi:10.1016/j.tre.2020.102184. 

Pham, Thi Ngan, Albert Tan, and Alvin Ang. 2020. “Determining Safety Stock for an Omni-Channel 

Environment.” International Journal of Information Systems and Supply Chain Management 13 (2): 

59–76. doi:10.4018/IJISSCM.2020040104. 

Rojas Viloria, Daniela, Elyn L. Solano-Charris, Andrés Muñoz-Villamizar, and Jairo R. Montoya-Torres. 

2020. “Unmanned Aerial Vehicles/Drones in Vehicle Routing Problems: A Literature Review.” 

International Transactions in Operational Research 0: 1–32. doi:10.1111/itor.12783. 

Rosenberg, Leonardo N., Noemie Balouka, Yale T. Herer, Eglantina Dani, Paco Gasparin, Kerstin 

Dobers, David Rüdiger, Pete Pättiniemi, Peter Portheine, and Sonja van Uden. 2021. “Introducing 

the Shared Micro-Depot Network for Last-Mile Logistics.” Sustainability (Switzerland) 13 (4): 1–

21. doi:10.3390/su13042067. 



University of Calgary 

J. S. Lamb  42 

Rutten, W.G.M.M., P.J.M. van Laarhoven, and B. Vos. 2001. “An Extension of the GOMA Model for 

Determining the Optimal Number of Depots.” IIE Transactions 33 (11). Kluwer Academic 

Publishers: 1031–36. doi:10.1023/A:1010998620314. 

Salama, Mohamed, and Sharan Srinivas. 2020. “Joint Optimization of Customer Location Clustering and 

Drone-Based Routing for Last-Mile Deliveries.” Transportation Research Part C: Emerging 

Technologies 114 (July 2019). Elsevier: 620–42. doi:10.1016/j.trc.2020.01.019. 

Schermer, Daniel, Mahdi Moeini, and Oliver Wendt. 2020. “The Drone-Assisted Traveling Salesman 

Problem with Robot Stations.” Proceedings of the 53rd Hawaii International Conference on System 

Sciences 3: 1308–17. doi:10.24251/hicss.2020.161. 

Schwarz, Leroy B. 1981. “Physical Distribution: The Analysis of Inventory and Location.” AIIE 

Transactions 13 (2): 138–50. doi:10.1080/05695558108974546. 

Shavarani, Seyed Mahdi, Mazyar Ghadiri Nejad, Farhood Rismanchian, and Gokhan Izbirak. 2018. 

“Application of Hierarchical Facility Location Problem for Optimization of a Drone Delivery 

System: A Case Study of Amazon Prime Air in the City of San Francisco.” International Journal of 

Advanced Manufacturing Technology 95 (9–12): 3141–53. doi:10.1007/s00170-017-1363-1. 

Shen, Yaohan, Xianhao Xu, Bipan Zou, and Hongwei Wang. 2021. “Operating Policies in Multi-

Warehouse Drone Delivery Systems.” International Journal of Production Research 59 (7). Taylor 

& Francis: 2140–56. doi:10.1080/00207543.2020.1756509. 

Sheth, Manali, Polina Butrina, Anne Goodchild, and Edward McCormack. 2019. “Measuring Delivery 

Route Cost Trade-Offs between Electric-Assist Cargo Bicycles and Delivery Trucks in Dense Urban 

Areas.” European Transport Research Review 11 (1). European Transport Research Review. 

doi:10.1186/s12544-019-0349-5. 

Statistics Canada 2016 Census Data Tables. (Spatial And Numerical Data Services, University of Calgary 

(Distributor), accessed October 01, 2020). https://www12.statcan.gc.ca/census-

recensement/2016/dp-pd/dt-td/Rp-

eng.cfm?LANG=E&APATH=3&DETAIL=0&DIM=0&FL=A&FREE=0&GC=0&GID=0&GK=0

&GRP=1&PID=109525&PRID=0&PTYPE=109445&S=0&SHOWALL=0&SUB=0&Temporal=2

016&THEME=115&VID=0&VNAMEE=&VNAMEF=. 

Stolaroff, Joshuah K., Constantine Samaras, Emma R. O’Neill, Alia Lubers, Alexandra S. Mitchell, and 

Daniel Ceperley. 2018. “Energy Use and Life Cycle Greenhouse Gas Emissions of Drones for 

Commercial Package Delivery.” Nature Communications 9 (1). Springer US: 1–13. 

doi:10.1038/s41467-017-02411-5. 

Tsao, Yu Chung, and Jye Chyi Lu. 2012. “A Supply Chain Network Design Considering Transportation 

Cost Discounts.” Transportation Research Part E: Logistics and Transportation Review 48 (2): 

401–14. doi:10.1016/j.tre.2011.10.004. 

Tsao, Yu Chung, Divya Mangotra, Jye Chyi Lu, and Ming Dong. 2012. “A Continuous Approximation 

Approach for the Integrated Facility-Inventory Allocation Problem.” European Journal of 

Operational Research 222 (2): 216–28. doi:10.1016/j.ejor.2012.04.033. 

Unnikrishnan, Avinash, and Miguel A Figliozzi. 2020. “A Study of the Impact of COVID-19 on Home 

Delivery Purchases and Expenditures.” Working Paper, Portland State University  

Urban Freight Lab. 2020. “Common MicroHub Research Project: Research Scan.” Seattle. 

https://depts.washington.edu/sctlctr/sites/default/files/research_pub_files/SCTL-Microhub-

Research-Scan.pdf. 

Van Heeswijk, Wouter, Rune Larsen, and Allan Larsen. 2019. “An Urban Consolidation Center in the 

City of Copenhagen: A Simulation Study.” International Journal of Sustainable Transportation 13 



University of Calgary 

J. S. Lamb  43 

(9). Taylor and Francis Ltd.: 675–91. doi:10.1080/15568318.2018.1503380. 

Wang, Xiaokun Cara, and Yiwei Zhou. 2015. “Deliveries to Residential Units: A Rising Form of Freight 

Transportation in the U.S.” Transportation Research Part C: Emerging Technologies 58. Elsevier 

Ltd: 46–55. doi:10.1016/j.trc.2015.07.004. 

Wang, Xin, Michael K. Lim, and Yanfeng Ouyang. 2017. “A Continuum Approximation Approach to the 

Dynamic Facility Location Problem in a Growing Market.” Transportation Science 51 (1): 343–57. 

doi:10.1287/trsc.2015.0649. 

Waters, N. M., S. C. Wirasinghe, A. Babalola, and K. E.D. Marion. 1986. “Location of Bus Garages.” 

Journal of Advanced Transportation 20 (2): 133–50. doi:10.1002/atr.5670200204. 

Wijeratne, A., and S. C. Wirasinghe. 1986. “Estimation of the Number of Fire Stations and Their 

Allocated Areas to Minimize Fire Service and Property Damage Costs.” Civil Engineering Systems 

3 (1): 2–6. doi:10.1080/02630258608970417. 

Wirasinghe, S C, and U Vandebona. 1999. “Planning of Subway Transit Systems.” In The 14th 

International Symposium on Transportation and Traffic Theory, edited by Avishai (Avi) Ceder, 

759–77. Jerusalem. 

Wirasinghe, S C, and N. M. Waters. 1983. “An Approximate Procedure for Determining the Number, 

Capacities and Locations of Solid Waste Transfer-Stations in an Urban Region.” European Journal 

of Operational Research 12 (1): 105–11. doi:10.1016/0377-2217(83)90185-6. 

 

  



University of Calgary 

J. S. Lamb  44 

Appendix A. Stage One Notation 

Cost Parameters Notation Name Description 

Cf Fixed Facility Cost Basic cost per MFC 

Cs Storage Space Cost Cost per square meter of storage space in 

MFC 

Cd Resupply Delivery Cost Cost for a resupply of the MFC 

Ch Inventory Holding Cost Cost of holding one unit of capital cost 

per year 

Cl Last mile drone cost Cost per kilometre of drone movement 

Ct Truck last mile cost Cost per kilometre of truck movement 

 

Variables Notation Name Description 

N Number of MFCs Number of MFCs 

E Resupply Frequency Annual number of truck deliveries from 

the regional warehouse to the MFC. 

 

Logistical Parameters 

Notation 

Name Units 

µ Mean Demand Density Packages per area per year 

σ Standard Deviation of 

Demand Density 

Packages per area per year 

A Area Square kilometres 

φ Configuration Factor Unitless 

m Effective Storage Density Packages per square meter 

C Truck Capacity Packages per truck 

d Logistical Sprawl Kilometres 

T Delivery Time Window Number of time windows per workday 

k Touring Co-efficient Unitless 

u Wholesale Value Unit cost 

β Inventory Stock-out Factor Unitless 

MFR Maximum Flight Rage Kilometres 

 

Model Outputs Notation Name Units 

Wα Cycle Stock Number of packages 

Wβ Safety Stock Number of packages 

LDrone Annual Drone Distance Kilometres per year 

LTruck Annual Truck Distance Kilometres per year 

 

Subscript Zones 

C Communities 

U Service Catchments  

R Region 
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Appendix B. Graphical Solution for Objective Function Optimisation 

Figure 8 shows the graphical solution for the regionally uniform scenario. The left-hand sides (LHS) of 

equations (8a) and (8b) are similar when the number of facilities is large. 8a LHS is always larger than 8b 

LHS. Consequently, 8b provides an upper bound for when the right-hand side (RHS) of 8a crosses the 

LHS of 8a. 

 

Figure 9: Graphical Solution 
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Appendix C. Allocation Algorithm 

The greedy search algorithm employed in the city of Calgary example is a branch and bound algorithm. An 

overview of the processes is shown in Figure 10 and described in Table 8.  

 

 

Figure 10: Allocation Algorithm Overview 

 

Table 8: Allocation Algorithm 

Initial Allocation Process 

1. For each catchment area, 1 to 𝑁𝑅
∗̃: 

a. SEED: Select the community with the fewest neighbours as a starting community for a new 

catchment area. 

i. If multiple communities with equal value, then choose one of these at random. 

b. BRANCH and BOUND: Add into the catchment area the neighbour community of this 

starting community that has the largest N* value, that does not increase the sum of the 

catchment’s N* values above 
𝑁𝑅

∗

�̃�𝑅
∗ .  

c. Repeat step 1b until there are no more neighbours of the starting community remaining or 

until none remaining can satisfy the objective function constraint. 

d. Repeat steps 1b and 1c with the community after the starting community in place of the 

starting community, until no neighbours of the catchment can be added within the objective 

function constraint. 

 

Reallocation Process 

2. ALLOCATE ORPHANS: Randomly allocate all unallocated communities from the initial allocation 

to a catchment that the community is a neighbour of. For unallocated communities without allocated 

neighbours, allocate all communities that can be allocated first then repeat until all communities have 

been allocated. 

3. SWAP BOUNDARY COMMUNITIES: Select the catchment area contributing most to the objective 

function. For all communities at the border with another catchment, evaluate the effect of swapping 

that community with the other catchment on the objective function. Swap the community that most 

lowers the objective value. 

4. Repeat step 3 until no swaps of any community between any two catchment areas can improve the 

objective function. 
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Appendix D. Parameter Values 

D.1 Demand 

A seller and service provider (SSP) likely has an estimate of future demand for their products within a 

region using data from previous years and forecasts several years into the future for this demand. They may 

even have a model that predicts demand for a community based upon the socio-demographic data available 

to them. By multiplying the expected demand per person with the known and non-uniform population 

density across a city, one can calculate the mean and standard deviation for demand density for each 

community.  

 

To estimate this demand for the e-retailer in the example, this study combines data from Canada Post, an 

academic prevalence of e-commerce shopping survey, and an industry estimate of an existing similar 

company’s (Amazon) market share. The average number of e-commerce deliveries per e-commerce 

shopper in Canada is 16.6 according to a Canada Post survey. A study by Unnikrishnan and Figliozzi (2020) 

found similar results and that 6.8% of adults do not use online retailers at all, and so this number should be 

discounted from the analysis. We then assume market share equates to share of deliveries and that Amazon 

accounts for 40% of the e-commerce market. Finally, Amazon stated in their application to the Federal 

Aviation Administration that their drones could carry 80% of the items they sell. Combined, this gives an 

average delivery rate of 4.95 deliveries per adult per year. Clearly, no adult orders fractions of packages, 

and this number is an average of a range of values of individual customers’ ordering behaviour. Canada 

Post categorises online shoppers into six groups: from one-time and occasional shoppers (who order 1 and 

2-6 packages annually, respectively) to hyper and hyper-elite shoppers (who order an average of 25-to-40 

and 40+ packages annually, respectively).  

 

We analysed e-commerce sales data from January 2016 to February 2020 to determine an estimate for the 

uncertainty in demand by fitting a normal distribution and accounting for an exponential growth trend over 

time, we found the standard deviation to be 6.42%, translating to 0.32 deliveries per person per year when 

applied to the previous average. This demand uncertainty is not equivalent to expedited delivery packages 

and could be entirely composed of standard packages.  

 

 

Figure 11: E-commerce Retail Sales Trend 
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D.2 Drone Last Mile Delivery Costs 

A foremost cost to consider in a drone system model is the cost per unit distance to operate the drones. A 

reliable industry estimate for the cost per kilometre or flight hour for a delivery drone is currently not yet 

available due to the novel, uncertain, and often proprietary nature of the technology. A report by Figliozzi 

(2018), however, proposed two values, an optimistic regulatory and pessimistic regulatory environment, 

resulting in estimates of $14.98 USD and $67.64 USD per flight hour, respectively. These estimates include 

discounted purchase cost, battery replacement cost, electricity cost, and staffing cost. The latter of these 

costs is the most significant and most uncertain variable, and thus the cause of the wide range of costs 

between the considered scenarios; an operator overseeing many drones or only one depends on local 

regulations that can significantly affect cost. In this analysis, we assume the optimistic scenario. 

Furthermore, given that we assume effective use of drones over time windows, we assume that flight time 

is directly proportional to flight distance, also implying that take-off and hover times are negligible or 

accounted for in the average travel speed. We assume drone average travel speed to be 60 km/h, and we 

assume a USD to CAD conversation rate of 1.3 to give the value of $0.325 CAD per kilometre. 

 

D.3 Fixed Facility and Shelf Cost 

Fixed and shelf costs are discussed together as they are best understood by examining some sample data. 

Figure 12 shows annual rent data for industrial units in the city of Calgary from a search conducted in 

March 2020 using an online retail platform, Spacelist. We found 202 industrial units available for rent in 

the city at the time of the search that were both suitable for conversion into a MFC and under 2000 square 

meters, a case-specific arbitrary maximum that we selected based on observation of the unsuitability of 

units above this size for conversion.  

 

The linear relationship fit to the Calgary data, as seen in Figure 7, gives an annual cost per square meter of 

nearly $120 CAD (estimate slope) with a constant annual levy (y-intercept) of nearly $18,000 CAD. This 

trend line fits the data with an R2 value of 0.7433. Expensive outliers tend to be downtown real estate 

options and cheaper outliers tend to be in industrial estates; the fixed facility cost varies per community, 

but we found that this cost does not significantly affect the results, and so it was not included in the main 

analysis. The levy forms a term of the fixed facility cost, with per MFC personnel wages, per MFC 

administration costs, and other such charges constituting the rest of the MFC fixed cost. The former per 

area cost comprises the heating, lighting, security, and other per square area charges that constitute the 

remainder of the unit shelf cost. 

 

The second part of the fixed facility cost is personnel and administration costs required for each MFC, 

regardless of size. These costs can be difficult to estimate without knowledge of the specific company being 

modelled due to the variability between companies’ salaries and operations. However, a North American 

industry report published by Warehousing and Fulfilment online suggests costs to be in the region of 

$70,000 CAD per year for employee salaries, which gives a total fixed cost of approximately $90,000 CAD 

per year per MFC. 

 



University of Calgary 

J. S. Lamb  49 

 

Figure 12: Yearly Rental Cost versus Property Area in Calgary Area, March 2020 

 

The remainder of the shelving cost is comprised of utility costs such as heating, lighting, and water. These 

costs are similarly difficult to estimate accurately without knowledge of the company to be modelled, but 

the same industry report suggests that multiplying the unit area cost by 50% is a reasonable estimate. Thus, 

the shelf cost used in the example is $180 CAD per square meter per year. 

 

A sensitivity analysis was performed using these parameters, but we found that the parameters affected the 

solution in a manner expected from previous research, and so we did not include them in the discussion. 

Increasing the fixed facility cost decreased the number of MFCs and increasing the shelf cost also decreased 

the number of MFCs, conditional on the effective storage density of the goods as discussed.  

 

D.4 Resupply Delivery Costs 

The resupply costs include costs associated with a delivery from the regional warehouse hub to the MFCs. 

These costs include the wage of the driver, fuel, the discounted ownership of the delivery vehicle, and 

wages of MFC unloading dock workers. 

 

For this example, the SSP operates the resupply fleet themselves. To determine cost, we assume driver 

wage is approximately one-quarter of the operating cost of each delivery. This assumption is based on a 

report by the American Transportation Research Institute (ATRI). Based on an online search, we estimate 

that the latest average wage for a delivery driver in Calgary is $25 CAD per hour; thus, the daily wage is 

$200 and the daily operating cost of the truck $600, with one delivery possible per day. The driver is 

assumed to assist two SSP employees with unloading the items into the MFC; the SSP employees cost $300 

per day, which is a little above the current Alberta minimum wage for eight hours of labour per worker for 

simplicity. The unloading employees would likely be assigned to a different MFC each day, meeting the 

delivery driver as they resupply a different MFC every few weeks (the inverse of delivery rate). If the 

internal handling of goods within the MFC and drone loading can be automated in the future, then this 
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regular resupply delivery may be the only human intervention in the system besides maintenance. 

Considering these factors, we use a total resupply delivery cost of $1100 per delivery per MFC. 

 

This cost is of interest when determining the resupply frequency (E) because the resupply frequency affects 

the relative significance of the shelf and holding cost terms in (5). However, once the resupply frequency 

is determined, the cost is directly proportional to the number of MFCs, and it effectively becomes an added 

fixed facility cost; it also affects the optimal number of MFCs in the same manner.  

 

D.5 Inventory Costs 

The cost to hold inventory is typically dominated by the interest rate charged by a bank and other factors, 

such as refrigeration, or inventory shrinkage depending on the item characteristics (Axsäter 2006). This 

example uses an inventory cost rate of 20% of item cost per year. Furthermore, the value of the goods sold 

by this SSP is assumed to be $35 CAD, as this amount is the average spent on an e-commerce retail purchase 

according to Canada Post. This amount results in an inventory cost of $7 CAD per item per year. 

 

The SSP is assumed to be moderately risk averse and wishes to avoid stock outs in 95% of all demand 

scenarios, and thus they accept a stock-out factor of two, which relates to this risk tolerance. See Schwarz 

(1981) and Axsäter (2006) for further discussion of this factor.  

 

D.6 Truck Last Mile Delivery Costs 

Cost per kilometre for a traditional truck delivery system is taken from a report by the ATRI and adjusted 

to Canadian dollars and kilometres. This report accounts for vehicle capital costs, maintenance costs, 

insurance costs, driver wages, and benefits, and has been used by previous researchers for similar estimation 

purposes (Sheth et al. 2019). The ATRI report estimates the average speed of delivery trucks to be 

approximately 64 km/h, which is likely higher than an urban delivery truck’s true average speed, and so the 

cost per kilometre is a low conservative estimate, which is consistent with the conservative estimate for 

drone costs. 

 

Finally, given shorter time windows, different sizes of trucks may be preferrable and thus affect the assumed 

unit cost. This study assumes that only one size of truck is available to the supplier although different costs 

related to the necessary capacity can be included if that data were available. 

 


