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ABSTRACT 

There is a class of practical optimal filtering problems for which algebraic 

solutions can be obtained. This class is Butterworth signals and is defined as follows. 

The desired signal is white noise passed through a filter whose poles are the roots of 

an nth order Butterworth polynomial; and the additive noise is white. The algebraic 

solution for the optimal filter and for the filter's performance of this class of problem 

and its graphical interpretation on a Bode plot provides considerable useful insight into 

the general optimal filtering problem. Suboptimal filters are investigated with respect 

to: (1) the performance degradation which occurs by using a simplier or reduced-order 

filter; and (2) the sensitivity of the optimal filter to variations in its parameters. 

We consider series compensation for a fixed plant, which has pole-zero-excess of 

at least 3, and which has a saturation nonlinearity at its input. We present a major 

simplification in design technique for the traditional approach to series compensation. 

We extend the preceding results to derive a specific very fast very simple graphical 

technique for the best system considering the saturation nonlinearity. 

By assuming one very specific but realistic fixed plant, we are able to obtain an 

algebraic solution for the LQ regulator. This specific solution and the regulator 

performance provided considerable insight into the general solution and the trade off 

between the speed of response and control effort. A new application for the LQ 

output regulator is presented, in which the LQ regulator is used as the desired system 

for the series compensation problem, with a saturation nonlinearity. 

In 
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CHAPTER 1 

INTRODUCTION 

This thesis is concerned with three main problems. They are the optimal filter 

problem, the classical series compensation problem, and the linear quadratic (LOJ 

regulator problem. Although solutions to the optimization problem have been well 

developed, algebraic solutions are rare. Algebraic solutions are much more useful than 

numerical solutions in understanding the problem. One of our major concerns is to 

provide insight to the optimal filter and the LQ regulator. Another goal is to study the 

achievable performance limitation due to a saturation nonlinearity at the input of a 

fixed plant, and hence to investigate the "best" control systems possible. 

1.1. Basic Problems 

The optimal filter problem can be simply stated as: "given the spectral 

characteristic of an additive combination of random signal and noise, what is the 

optimal linear operation to separate the signal from the noise subject to the minimum 

mean-square error criterion?". In 1942, Wiener obtained a solution in frequency 

domain, and his solution became known as the Wiener filter. In 1961, Kalman 

approached the same problem in time domain, and his solution is commonly known as 

the Kalman filter. Note that both Wiener and Kalman filters are minimum mean-

square error estimators, but their structures are different from each other. 

The classical series compensation problem is to make a complex dynamic system 

with negative feedback perform satisfactorily, and to meet specifications. The 

traditional approach is to present several methods such as root locus, Bode plots, 
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Nyquist charts, Nichols charts, etc. 

The LQ regulator problem is to minimize the performance index which is a 

measurement of error and control effort. The technique used to solve the LQ regulator 

problem are very closely related to the technique used to solve the optimal filter 

problem. In fact, Kalman cast the problem as a so-called "dual-problem". The LQ 

regulator is also commonly known as the Kalman regulator. 

The problems considered tend to be very computationally intensive. Extensive 

use is made of the new concept of computer algebra software programs. We use one 

called MACSYMA [1]. 

1.2. Objectives of the Thesis 

Different approaches to solve the optimal filter and optimal control problems have 

already been developed in the past four decades. This thesis is not intended to give 

new approaches to solve the optimization problem. One objective of this thesis is to 

derive algebraic solutions for the optimal filter problem for a class of signals, and to 

provide new insight to the Wiener filter and its performance. 

In conventional control theory, the traditional approaches to series compensation 

are trial-and-error procedures, rather lengthy, and somewhat arbitrary. Another 

objective is to present a major simplification in design techniques for the traditional 

approach to series compensation. The real problem in control systems design is the' 

trade off between speed of response, and control effort or how hard we drive the fixed 

plant. Another objective is to derive the algebraic solution of the LQ regulator, 

problem for a very specific but realistic fixed plant. This solution illustrates the 
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fundamental nature of the trade off, and provides insight to the general LQ regulator 

solution. 

In a realistic plant, there is a limit to the achievable performance. This limit 

involves the third pole in the fixed plant and the saturation nonlinearity (± L) at its 

input. The last objective is to design the best system, which minimizes the system 

error considering a saturation nonlinearity, for a stochastic (random) input using the 

series compensation approach and the optimal control approach. 

1.3. Outline of the Thesis 

This chapter gave a brief introduction of the main ideas in this thesis. Chapter 2 

presents the algebraic closed-loop solutions for Wiener and Kalman filters, and for 

their performance for a class of signals. Performance of suboptimal filters are also 

investigated. Sensitivity analysis of the optimal filter is studied as well in Chapter 2. 

Chapter 3 presents a very simple very fast graphical technique to the classical series 

compensation problem with practical specifications for realistic plants. We also extend 

this technique to derive the best solution, which minimizes the system error 

considering the saturation nonlinearity at the input of the fixed plant, for a random 

input. Design examples are given for a real servo motor system to illustrate the 

application of this technique. Chapter 4 presents the algebraic closed-loop solution of 

the LQ output regulator for a specific fixed plant. The best design of the LQ output 

regulator for this plant considering a saturation nonlinearity at its input for a random 

input is also presented. Chapter 6 indicates possible limitations on the design 

technique, and recommends what could be further researched. 



CHAPTER 2 

ALGEBRAIC SOLUTIONS FOR WIENER AND KALMAN FILTERS 

AND FOR THEIR PERFORMANCE FOR A CLASS OF SIGNALS 

2.1. Introduction 

Algebraic solutions for Wiener and Kalman filters are rare. Algebraic or explicit 

closed-form solutions are given for Wiener and Kalman filters, and also for their 

performance, for a class of problems. This class is Butterworth signals, defined below. 

Algebraic solutions are much more useful than numerical solutions, in understanding a 

problem as a filter designer, or in learning the subject as a student. Considerable 

attention is given to the performance of optimal filters. Also important is the 

considerable insight that these algebraic solutions and their graphical presentation on a 

Bode plot provide into the general filter problem: i.e. the simple relationship which 

exists between the given data, the optimal filter, and the optimal filter's performance. 

The engineering aspects of the optimal filtering problem are emphasized in this 

chapter. 

Butterworth signals of order n are defined to be the output when zero mean white 

noise passed through a low-pass filter whose poles are the roots of an nh order 

Butterworth polynomial. Butterworth polynomials B (s), and Butterworth filters 

H(s) = 1 IB, (s), are well known [2]. Table 2.1 gives the coefficients 13k of 

Butterworth polynomials for n = 1 to 4 in a form suitable for computer algebra. The 

basic equations for Butterworth polynomials and coefficients are summarized below 
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Ba(s) = 00 + Pis + + + Onsn (2.la) 

B (s) B (-s) = 1 + (-s 2)1z (2.1 b) 

where for k = 0, 1, , n 

00 = 1, n-k = (2.lc) 

k+1 = 1½ cos (kit / 2n) / sin ((k + 1)ir / 2n) . (2.1d) 

Fig. 2.la presents the poles of Butterworth signals for n = 1 to 4. For the optimal 

filter problem considered in this chapter, the filter input is a desired Butterworth signal 

and an additive undesired zero mean white noise. 

Some recent books on the now classical problem of optimal filtering include 

Kailath [3] and Brown [4]. Butterworth signals occur in various applications, and have 

been studied by Van Trees [5] in connection with communication systems, and by 

Lindsay [6] in connection with phase-locked-loops. 

Butterworth signals are easily obtained in the laboratory. Pass the output of a 

white noise generator through an active filter' with Butterworth poles of n = 1, 2, 3, 4 

or 8. The most important characteristic of Butterworth signals is that algebraic 

solutions, for the optimal filter and its performance, can be obtained for any order of 

signal, n. For general signals, algebraic solutions for Wiener filters are limited to first 

or second order signals, and algebraic solutions for Kalman filters are limited to a first 

order signal. Note that for general random signals, the optimal filter and its 

1. Hewlett Packard HP3722A, and Rockland 1000F and 1042F. 
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performance are very similar to that for a "corresponding" Butterworth signal of the 

same order. 

The solution to the causal Wiener filter problem, shown in Fig. 2.lb, is well-

known [3]-[4]. The given data are the power spectral densities (PSD) of the signal 

and the noise, (s) and S,m (s). The PSD of the filter input is 

Sr, (s) = S (s) + S, (s). The optimal filter which minimizes the expectation E () of 

the error-squared, ae2 = E [e2(t)) = mm., is given by 

W(s)=  +1  

S (s) 
rr 

where 

S (s) 
rr + 

(2.2) 

+ 

S (s) = the left-half s-plane (LHP) poles and zeros, and square root of the 
XX 

constant of the PSD S, (s), the factored spectrum. S(s) = [S(s) 1* . 

[][] = [] , where [i is known as superscript plus. 

[]+ = the LHP poles of the partial fraction expansion of [], the physical 

realizability operator. []+ + []_ = [] , where []+ is known as subscript 

plus. 

The optimal filter is easier to interpret in terms of G(s) than W(s), see Fig. 2.lb. 

G(s)=  W(s)  
l—W(s) (2.3) 

The performance of the filter is given by the PSD of the error, which consists of the 
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error due to the signal, plus the error due to the noise, 

See (s) = Ses (s) + Sen (s) 

+ + 

S (s) [1— WWI S (s), 
es ss 

+ + 

S (s)=W(s)S (s). 
en nn 

(2.4a) 

(2.4b) 

(2.4c) 

Rms values for these errors are calculated as shown in Appendix E of Newton [7]. 

When the noise is white, S, (s) = b 2, a considerable simplification occurs, which 

is not well-known, and which we call the white noise theorem. These are the Yovits-

Jackson formulas as extended by Snyder [8]. 

G(s)=[S35 (s)/b2+l]_ 1, (2.5) 

W(s)=G(s)/[ l+G(s)] 

The error of the optimal filter is given by 

e2=Ete2(t)} =b2 1im sW(s). 
S —*oo (2.6) 

2.2. Wiener Filters 

An algebraic solution is derived for Wiener filters and for their performance, for 

Butterworth signals of any order n, 1 ≤ n < oo. The principal results of this section 

are given eqns. (2.8a), (2.8b), (2.9b), (2.10), (2.11), and (2.13), and by Fig. 2.2. 

Notation is simplified by using: ( 1) normalized frequency A. = s Iv, where v is the 

dominant break frequency; and (2) generalized n1fi order Butterworth polynomials, 
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which are defined by 

B(a,$)B(a,—s)a2 +(_s2)FZ (2.7) 

where a is real constant. Compare this with (2.lb). 

The given data for this problem are the factored PSD's of the nth order 

Butterworth signal and of the white noise, 

+ bd + 
S (?) = , S (?) = b , (2.8a) 
ss B(l,i) nn 

where the "signal-to-noise ratio" is defined as 

SNR = d = SSS  ]1/2, (2.8b) 

an easily identifiable characteristic of the given data. The factored PSD of the filter 

input is given by 

+ bB (a, 2) 
S (2k) =   
rr B(1,7t.) 

a = (d2 + i)1/2fl 

(2.9a) 

(2.9b) 

where a is approximately equal to the crossover frequency coc, where 

S SS (j o ) I = IS nn I an obviously critical point, which on Bode plot is a = d 1/n• See 

Fig. 2.2. 

The Wiener filter, which is derived below, is given by 

W(?)= 
B (a, X) 

B (a, X.) - B (1, A.) 

(2.10) 
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The performance of the Wiener filter is given by the rms value of the error divided by 

the rrns value of the signal, or the rms error-to-signal ratio (ESR), 

12n(a ill2 
ESR = -s-- = — P /  . (2.11) 

d 

This is plotted in Fig. 2.3 for Butterworth signals with n = 1, 2, 3, 4, and 8. 

Derivation of (2.9)-(2.11). The white noise theorem (2.5)-(2.6) and generalized 

Butterworth polynomial (2.7) are used. 

• 
Given: S + (A) = bd  , S 0,)=b   , = s / v 

ss B(1,A) nn 

Then: 

G (A) = [s3 (A) / b2 + i] + - i 

d2  + 

=[l+_2fl + 1] 2 =d2 +i 

- [a2n + (_ 2)n A)  1 — A) —B(1, A) - 

— B(1, . - B(1,X) - D 

W(A.)= 
- N  - B (a, A) - B(1, ?) 

1 + G(X) - D ± N - B (a, A) 

e2 = E(e2(t)} = b2 lim vXW(A) = b2v1(a - 1) 

00 
s Ets(t)}=f5 5(f)df=5  00 b2d2  

-00 1 + (2irf/v)2' 
df, x=2irf/v 
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b2d2v00 1 b2d2v 7E  

=' '0 1 +X 2n R 2n sin ( / 2n) 

From (2.ld), 

01 = l/sin(ir/2n) 

= b2d2vf31/2n 

ESR = i: e 2s2 11/2 = [2n (a - 1) ] 1/2  

Three points should be noted. 

d 

(1) The corresponding PSD for this given data are: 

b2d2  
SSS  = , S 00  = b2 , A. = s /v . 

(_? 2) (2.12) 1 + 1z 

(2) The optimal open-loop system (Fig. 2.lb) is 

G(A.)= 
B(1, A.) 

B(a, A.) — B(1, A.) 

(2.13) 

+ 

Note that the poles of the G (A.) are the poles of S (A.) 
ss 

(3) The optimal filter's performance can be approximated by its asymptotes as 

follows, 

ESR= 
1 , d<<1 

(2n)1  
d>> 1 

d1 - 1/2n 
(2.14) 

It is useful to consider a specific example. Consider a third order Butterworth 

signal, n = 3. In this case we have 
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+  bd  + 
S (A.)= , S ()L)=b., )L=s/v, 
ss 1+2A.+2A.2 +A.3 nn 

b2d2  
SSS (A.) = 1 - A.6 ,m (A.) = 

a = (d2 + 1)1/6, d = SNR 

W(X) 
= (a3 - 1) + 2(a2 - 1)A. + 2(a -  

a3 2a2A. + 2aA.2 + 2,3 

G(A.)=  
1 + 2A. + 27,2 + 

ESR= 
'3s 

'ue -  [6 ((d2 + 1)1/6 - 1) ]1/2 

1 , d<<1 

d516 
d>> 1 

For d ≥ 16 (good performance), a z d 1/3 

d B2(1, 'IA./(X) 

B3(1, A.) 

(2.15) 

+ + 

A Bode plot of the given data S (A.) and S (A.) normalized by the white noise 
ss an 

+ 

S nn (A.) = b, and of the optimal W (A.) and G (A.) is given in Fig. 2.2. Notice the simple 

+ 
graphical relationship between the normalized factored given data, S (X) /b, and the 

ss 
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optimal filters W (?.) and G (A.). This is very important. 

The performance of the optimal filter is important. First, for low signal-to-noise 

ratios, SNR = d << 1, the filter's maximum gain for any order is 

W (0) = (ct'1 - 1)/ct'1 = d2 / 2, which rapidly approaches zero. Second, there should 

be some lower bound on acceptable performance of the filter. A priori, a limit of 

ESR :5 0.25 would appear reasonable. Table 2.2 presents the values of SNR = d, for 

ESR of 0.25 and 0.50, for Butterworth filters of orders n = 1, 2, 3, 4, and 8. Note that 

most of the literature refers to d2, but that d is more directly related to the optimal 

system and its performance. 

A simulation study aids in the interpretation of the filters performance as 

measured by its ESR. Consider a first order Butterworth signal n = 1. Let d = 10, 

v = 2ir 31.62 radls, b = 3.162x10 for f ≤ 25.60 kHz. The given data are 

+ bd + 
S (s) = , S (s) = b ; (2.16) 

l+s/v nn 

and the optimal filter is, 

(a— 1)/ct  
W(s)= 

l+s/ctv 

Fig. 2.4a presents the noise n (t); and Fig. 2.4b presents the signal s (t) and the filter 

output y (t). These figures are presented because, they do not exist in the literature, 

and they give the engineer a physical feeling for the problem. The author was 

surprised at how acceptable an ESR = 0.5 was. The theoretical ESR is 0.4254, and 

the measured ESR is 0.4105. In this rather pessimistic example the optimal filter 

performs surprisingly well. On the basis of this we will assume that an ESR of 0.5 is 
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acceptable in many cases. 

As a rule of thumb we can summarize the results of Table 2.2 as follows. For 

reasonable performance 

n=1 d≥7 

(2.17) 
n  d≥4 

Most examples in textbooks have simplified the numbers for tutorial reasons, and this - 

results in a SNR = d between 1 and 2 which results in a filter with a poor 

performance. 

An engineering interpretation of these results for optimal filters, see Fig. 2.2, is 

as follows. We are considering low-pass signals and white noise, and spectra refers to 

the factored PSD. The frequency where the spectra of the signal and noise are equal, 

crossover frequency (ct), is obviously important. The behavior of the optimum filter in 

this region is examined in Sec. 2.4 on suboptimal filters. For frequencies where the 

spectra of the signal is much greater than the spectra of the noise, the optimal filter 

does the best it can to pass the signal, w hich is W (s) 1 and G (s) S + (s)1b. For 
ss 

frequencies where the spectra of the noise is greater than the spectra of the signal, the 

optimal filter cuts off as 1/s or with a -1 slope. In this case the optimal filter does 

the minimum it can do to make the error due to noise finite. It does the minimum 

because the pole-zero-excess (PZR) of the filter translates into a phase lag, and this 

acts as a pure time delay which increases the error due to the signal rapidly. 

Results for a low-pass signal in colored noise, which represent a significant 

extension, have been presented in {9-1O}. The basic difference is that error due to the 
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+ + 

noise, S en (s) = W (s ) S (s), cuts off as 1 / s or with a -1 slope, instead of W (s). 
nn 

2.3. Kalman Filters 

Algebraic solutions are presented for Kalman filters for Butterworth signals of 

orders, 1 ≤ n ≤ 4. This involves the solution of an algebraic Riccati equation. Note 

that, after solving a first order numerical optimal state estimation problem (Kalman 

filter) example 8.2-1, Sage and White [11] state that: "As is readily apparent, the effect 

involved in solving this simple Riccati equation is such as to suggest that the analytical 

solution of a Riccati equation of higher order than the first would be prohibitive." 

Wiener and Kalman filters are different solutions to the same problem. The 

performance for Kalman filters is the same as for the corresponding Wiener filters. 

It is assumed that the given data has been experimently measured with an 

appropriate signal processing computer system2. In this situation we usually do not 

know the appropriate physical variables. Therefore phase variables are assumed. If 

the physical variables are known, the conversion of these results is routine, equate the 

Kalman G (A.) to the Wiener G (A.). 

The solution to the Kalman filter problem is well-known. In this chapter we 

follow the notation of Brown [4] and Sage and Melsa [12]. The Kalman filter problem 

and its conventional solution is shown in Fig. 2.5. Note that the optimal filter is the 

given data with: (1) a unity feedback loop added; and (2) the given g replaced by the 

2. HP 5423A Digital Signal Analyzer or a B&K 2032 Dual Channel Signal 
Analyzer. 
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optimal gain vector Ic. 

The message model is: 

1 (t)=FX(t)+&w(t) (2.18) 

y(t)=hTx(t) . 

The observation model is: 

Z (t) = y (t) + v (t) 

The priori statistics for the zero-mean inputs are 

E[w(t)w(t)]=Q(t - t) 

E[ v (t) v (t)] = R 6(t  

E[w(t)v(t) 1=0. 

The problem is to find the optimal minimum-error-variance filter and gain algorithm, 

i.e. Kalman filter. 

The well-known solution to this problem is as follows. 

(1) Solve the algebraic Riccati equation for the symmetric matrices P which satisfy 

FP + pp.T....p_lTp +& Q&T 0 

(2) Select the one matrix P which is positive definite. 

(3) The optimal gain vector is 

k = PhR 1. 

(2.19) 

(2.20) 



16 

(4) The optimal filter, see Fig. 2.5, is 

I(t)=FI(t)+ke(t) 

9(t) = hT(t) 

e (t) = z (t) — 9 (t) 

(2.21) 

Expressed mathematically, this problem is a subset of a larger problem which has 

been studied by Gohberg, Lancaster and Rodman [ 13] among others. They would 

express this subset as follows. "Our primary concern is the analysis of real symmetric 

solutions X of the Riccati equation of the form 

XDX — XA _ A*X -c =0. 

This equation will be considered under the assumptions that A, C, D are nxn matrices 

with real entries with C hermitian, and D positive definite." 

For Butterworth signals of order 1 through 4, the Kalman filter solution is 

presented below. 

(1) The Kalman filter for first order Butterworth signals, n = 1, is as follows. 

The given data is 

i(t)= —vx(t) + VW(t) 

Y  = x(t) 

z(t)=y(t)+v(t) 

E [ w (t) w (T) ] = b2d2 6(t - t), d2 = a2 - 1 

(2.22) 
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E[v(t)v(t)}=b(t —'r) 

The optimal gain is 

k = (a - l)v, 

and the error covariance is 

P = b2v((x-- 1). 

(2) The Kalman filter for second order Butterworth signals, n = 2, is as follows. 

The given data is 

1] + 0 (t) 11 1 = i: V Lvi x(t) 2 w(t) (2.23) L-v2 -  

y(t)= [ lO]x(t) 

z (t) = Y(t)+ v(t) 

E[w(t)w(t)]=b2d2 (t - iv), d2=a4— 1. 

E[v(t)v(t)]=b 2 (t —t) 

The optimal gain vector is 

kT = [i((x - l)v, ((X - l)2v2 j 

and the error covariance matrix is 

p11 p12 

P12 P22 
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p11 =b2v 'I((x-1) 

p12 =b2v2 (a— i)2 

p22=b 3 ((X_i)(a2 _a+i). 

(3) The Kalman filter for third order Butterworth signals, n = 3, is as follows. 

The given data is 

0 1 01 

0 0 1 x(t)+I 0 w(r) 

—v3 —2v2 —2vj L 3 - 

y(t)= [ iOO]x(t) 

z  = y(t) + V  

E{w(t)w(t)]=b2d2 (t_t), d2=a6—i. 

E[ v(t)v(t) ] = b2 6(t - 

The optimal gain vector is 

k= 

2(a - 1)v 

2((x - 1)2v2 

(a— i)(a2 -3(x+ i)v3 

and the error covariance matrix is 

p11 p12 p13 

P12 P22 P23 

P13 p23 P33 -

(2.24) 
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p11 =b2v 2(a-1) 

p12 =b2v22(a-1)2 

pi3=b 3 (a_1)[a2_3a+1] 

P22 =b2v3 (a— 1)[3a2- 5a+3] 

P23 = b2v42(a - 1) 

P33 = b2v52(a— 1)[a4 - 3a3 + 5a2— 3cx+ 1]. 

(4) The Kalman filter for fourth order Butterworth signals, n = 4, is as follows. 

The given data is 

0 1 0 

o 0 1 0 

o 0 0 1 

-V4 —31v3 —32v2 — 31v 

0 

0 

0 

y(t)= [ 1000]x(t) 

z(t) = y(t) + v(t) 

E[ w(t)w('c) I = b2d2 (t - 'r), d2 = a8 - 1 

E[ v(r)v(r) I = b2 (t _ ,C) 

The optimal gain vector is 

W  (2.25) 
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k= 

(a- 1)131v 

((% - 1)2!32v2 

(a- 1)(a2 -('i+ 1)(X+ 1)131v3 

(a- 1)2(a2-2('J+ 1)a+ 1)v4 

and the error covariance matrix is 

p11 p12 p13 p14 

P12 P22 P23 P24 

P13 p23 p33 p34 

p14 p24 p34 p44 

p11 =b2v31(a- 1) 

P12 = b2v232((x - 1)2 

p13 =b2v3f31(cx- 1)[a2-(1+ 1)a+1] 

p14 =b2v4 (a- 1)2[a2- 2(J+ 1)a+ 1] 

p22 =b2v3f1(J+ 1)(a- 1)[a2- (2I- 1)a+ 1] 

p23 =b2v4 (2+3)(a-1)4 

p24 = bv5f31(a- (2-02  3)a3+(3-si+ (2-02  1] 

P33 = b2v531(i+ 1)(a- 1)[a4- (2I+ 1)a3 + (2I+ 3)a2-

(2'J+ 1)a+ 1] 

p34 =b2v6 ('I+2)(a- 1)2[a2 -('J+ 1)a+ 112 
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P44 = b2v731((x - 1)[ (X6 - (21 + 3)a5 + (6I + 9)cx4 - (8/ + 13)a3 + 

(6'J2 + 9)a2 - (2I + 3)a + 1]. 

Using MACSYMA [1], it is easy to verify that the error covariance matrix P: (a) 

is positive definite, (b) satisfies the Riccati equation (2.19), and (c) yields J. 

MACSYMA can directly solve for n = 2 and 3 using "algsys", but not for n = 4. The 

n = 4 case was solved as follows. The optimal gain vector was determined from the 

Wiener G (X). With k known, the Riccati equation becomes linear, where by 

symmetry 4 of the 10 elements are known. This solution is clearly still not easy. 

Fig. 2.6 compares the block diagrams for the Wiener and Kalman filters for n = 3 

in terms of normalized frequency X. The optimal gain vector supplies the zeros 

required in the optimal filter. This figure is very useful in visualizing the problem and 

the solution. 

2.4. Suboptimal Filters 

The results of this section require the evaluation of (2.4) to obtain mean-square 

values as given in Appendix E of Newton [7], which was accomplished using 

MACSYMA. The first question is: "How much performance degradation will occur by 

using a simplier or reduced-order filter?" The optimal filter W() has n—i zeros and n 

poles which are very close together, separated by approximately 421 Is this little 

"wiggle" in W(k), which is exaggerated in Fig. 2.2, necessary? As suboptimal filter 1, 

we consider a first order filter with the correct asymptotes, which is shown in 

Fig. 2.7a, 
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k 
W 1(x) =  l+kA./c , k = (aFz - l)/&z , c = 31(ct - 1) . (2.26) 

Fig. 2.8 presents the rms error of the suboptimal filter 1 divided by the rms error of 

the optimal filter, as a function of SNR = d, for Butterworth signals of orders n = 2, 3 

and 4. Recall that for d ≤ 1, the optimal filter rapidly approaches zero. For 

reasonable values of d, equation (2.17), the optimal filter performs significantly better. 

The small "wiggle" in W(X) is necessary. Note Fig. 2.2, and that this is easier to see 

in terms of G (A.) than W (A.). 

The second question is: "how sensitive is the optimal filter to incorrect values of 

its parameters?" We consider two cases. As suboptimal filter 2, we consider the 

correct form of the open-loop filter with an incorrect high frequency asymptote, x, as 

shown in Fig. 2.7b. In an optimal filter, x = 1. 

J3,  (a, A.Ix) — B(1, A. /x) 

G 2 B(l, A./x) . (2.27) 

(a' - 1) + ... + 1(a - 

1+"+(X/x)'t 

Fig. 2.9 presents the rms error of the suboptimal filter 2, divided by the rms error of 

the optimal filter, as a function of normalized break frequency x, for Butterworth 

signals of orders n = 1 and 2. 

As suboptimal filter 3, we consider the correct form of the open-loop filter with 

an incorrect low-frequency asymptote, x, see Fig. 2.7c. 
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B (a, ).) - B (1, ) 
G3(A)—  B(x,A) 

(an l)+ ... +I3l(a_1)),—1 

(2.28) 

xn + ... +?-n 

Fig. 2.10 presents the rms error of the suboptimal filter 3, divided by the rms error of 

the optimal filter, as a function of normalized break frequency x, for Butterworth 

signals of orders n = 1 and 2. 

Note Fig. 2.10, and that the actual G3(k) may have a much higher gain than that 

of optimal G0 (2k), at low frequencies where the spectra of the signal is larger than the 

spectra of the noise, with little degradation in performance. This is important in real 

world applications. For example, consider a data record with a low SNR, it is best to 

estimate the desired signal optimistically. This is illustrated by suboptimal filter 4, 

Fig. 2.7d, 

- B(a, X) - B(1, 2) 

G4(?)-  B_1(1,) 

(a'1 1)+ '"+ f1(a— 1)fl1 

(2.29) 

Table 2.3 presents, for d = 10, the rms error of the suboptimal filter G4(X), divided by 

the rms error of the optimal filter, for Butterworth signals of orders n = 1, 2, and 3. 

2.5. Conclusions 

Algebraic solutions are given for a useful practical class of problems. Wiener 

filters are given for Butterworth signals of any order 1 ≤ n < 0°. Kalman filters are 
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given for Butterworth signals of orders 1 ≤ n ≤ 4. A graphical approach yields a great 

deal of insight into the problem. That is, a Bode plot of the normalized factored 

• + 

spectra, S  b and S (%) lb = 1, is directly related to the optimal open-loop filter 
ss nn 

G (2k) and to W(A), see Fig. 2.2. 

Van Trees has obtained an algebraic solution for the Wiener filter's performance, 

but not for the Wiener filter. Van Trees also presented numerical solutions for Kalman 

filters. In this chapter, a much simpler algebraic solution is presented for the optimal 

filter, and for its performance, and these are shown to be directly related. Compare 

(2.8)-(2.11) with (153)-(156) of [5]; and compare (2.22)-(2.25) with Figs. 6.42-6.44 of 

[5]. 

The performance of the filters is examined in Fig. 2.3. The appropriate criteria 

for these filters performance is the rms error divided by the rms signal or "error-to-

signal ratio" ESR. The "signal-to-noise ratio" SNR = d for reasonable performance is 

shown to be much larger than usually assumed. The simulation shown in Fig. 2.4 aids 

in the interpretation of these results. It shows that a rather low ESR = 0.5 yields 

results which would be acceptable in many applications. Suboptimal filters are also 

examined. The computer algebra programs used in this thesis are presented in [14]. 
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TABLE 2.1 
Butterworth coefficients 

13 14 
1 
2 
3 
4 

1 
1 
1 
1 

1 

2 
1 
2 

2+I 
1 

1 

TABLE 2.2 

SNR = d required achieve an ESR of 0.25 and 0.50, 
n = 1, 2, 3, 4, and 8. 

ESR 
Order 0.25 0.50 
n d d 
1 30.984 6.928 
2 12.888 4.113 
3 10.791 3.669 
4 9.993 3.488 
8 9.013 3.254 

TABLE 2.3 
Increase in rms error for suboptimal filter 

n Increase in ESR 

1 
2 
3 

1.0246 
1.0685 
1.0940 
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n=1 

1 

n=3 n=4 

n (t) 

S (r) \Y< r(t) 

(a) 

W(s) 

L  

n (t) 

- r(r) 
  G(s) 

Y (r) 

 I 

(b) 

Fig. 2.1 Terminology. (a) Poles of Butterworth signals. (b) The Wiener filter 
problem, the optimal filter W(s), and the Wiener open-loop filter G(s). 
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log mag 

0.1 
 > 
log 

Fig. 2.2 Bode plots for an optimal filter, with n = 3 and d = 16. The factored given 

data are normalized by the white noise b, and the optimal filters are W(X) 
and G ().). Notice the simple graphical relationship between the given data 
and the optimal filters W(X) and G (A.). 



Fig. 2.3 The optimal filters performance. ESR versus SNR for n = 1, 2, 3, 4, and 8. 
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(b) The input signal s(t), and the filter output y(t). 
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Fig. 2.5 The Kalman filter problem. (a) The message and observation model. (b) The optimal filter. 
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Fig. 2.6 Comparison of Wiener and Kalman filters, for third order Butterworth 
signals (n=3), in terms of normalized frequency 7 (?. = s /v). 
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Fig. 2.7 Bode plots for suboptimal filters. (a) Suboptimal filter W1. (b) 

Suboptimal open-loop filter G2- (c) Suboptimal open-loop filter G3- (d) 
Suboptimal open-loop filter G4. 
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Fig. 2.9 Increase in rms error for the suboptimal filter G2(?). 
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CHAPTER 3 

A NEW APPROACH TO SERIES COMPENSATION OF CONTROL SYSTEMS 

3.1. Introduction 

A first undergraduate course in control systems has been a basic part of the 

curriculum of almost all electrical engineering departments for the last four decades. 

An excellent traditional text is Melsa and Schultz [ 15], a recent text with the popular 

accompanying software is Sinha [16], and an example of a recent paper which 

attempts to improve these techniques is [17]. These courses assume single-input 

single-output fixed plants. To simplify the discussion, we also assume that the fixed 

plant is minimum-phase. The most interesting part of these courses is compensation, 

or how to make complex dynamic systems using negative feedback perform 

satisfactorily. There are two approaches: series compensation; and state variable 

compensation. In this chapter, we consider series compensation. The extension of 

these results to state variable compensation is routine, after we have chosen a desired 

system, see [15] Chap. 9. 

The traditional approach to series compensation is to present several methods 

such as: root locus, Bode plots, Nyquist charts, Nichols charts, etc. These traditional 

approaches are trial—and—error procedures, rather lengthy, and somewhat arbitrary. 

There is a problem with the traditional approach. There is a limit to the performance 

which can be obtained by any real physical plant, which is ignored by the traditional 

approach. This limit ,involves both the third order pole in the fixed plant, and the 

saturation nonlinearity (±L) at its input. This is the problem we consider. 
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Optimization theory, Wiener or Kalman, for compensation of control systems, 

involves the minimization of system error, subject to a constraint on control effort. 

Minimization of system error involves the maximization of the speed of response and 

the maximization of the quality of response. The constraint on the control effort is 

required by the saturation nonlinearity at the input to the fixed plant. However, in 

neither Wiener or Kalman theory is any guidance presented on how to select the 

constraint. We present a specific solution to this problem. 

Fig. 3.1 presents the series compensation problem considered in this thesis. It 

presents the basic block diagram where the fixed plant P (s) has at least a pole-zero-

excess (PZE) of 3, and the saturation nonlinearity (±L) which is at the input to the 

fixed plant. The series compensation is KF (s). Fig. 3.1 also presents the definitions 

of the open-loop system in a unity-feedback configuration G (s), and of the closed-loop 

system W(s), 

G(s)=U(s)P(s), W(s)= G(s)  
1+G(s) (3.1) 

An outline of the chapter is as follows. In the remainder of this introduction we 

introduce two basic concepts. First, we present a new approach to the use of Bode 

plots. Second, we present a new approach to what constitutes a realistic fixed. plant. 

In Sec. 3.2, we present new significant results for the problem of system specifications. 

The most important of these results are as follows. First and most important is that, 

the quality of response, which is given by the percent overshoot, is inversely 

proportional to a new concept, the required horizontal symmetrical ((X, 1 / a) Band of 

Minus One Slope (BMOS) around magnitude = 1. Second, the speed of response, 
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which is given by the time delay (td), is inversely proportional to the crossover 

frequency (co,). In Sec. 3.3 we use the preceding results, to present a simple new 

procedure for series compensation which is considerably more than an order of 

magnitude faster than traditional methods. In Sec. 3.4 we extend the preceding results 

to consider the real problem of series compensation, and one the literature does not 

consider, and that is the, saturation nonlinearity at the input to the fixed plant. 

3.1.1. Bode Plots 

In this thesis, Bode plot denotes a straight line Bode magnitude plot. The 

efficient use of Bode plots is very important in this chapter. Horizontal and vertical 

scales are assumed to equal, so that slope retains its conventional meaning, and slope 

is also proportional to the PZE at that frequency. We use "engineering paper" with a 

scale of 1 in. = a factor of 10. 

Another very important concept, which is shown in Fig. 3.2, is the algebraic Bode 

plot relationship (ABPR) between any two points (a, A) and (b, B) which are 

connected by a slope of -k, 

Aak = Bbk . 
(3.2) 

Note that on a Bode plot we indicate the actual value, but plot it as its logarithm. 

This relationship is important for two reasons. First, consider numerical 

problems, such as Examples 1 through 3 in the Sec. 3.3. We can use a simple 

graphical design procedure, which yields a great deal of insight into the problem, but 

which has a rather low precision. We can then repeat these calculations using 

ABPR (3.2) using a pocket calculator, and obtain any degree of precision we require, 
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but with little insight. Having solved the problem two very different ways, we have an 

efficient self-checking procedure. Second, consider algebraic problems, such as 

Examples 4 through 6 in Sec. 3.4. As long as we have an inequality ordering of the 

roots, we can obtain an algebraic solution using a Bode plot and the ABPR (3.2). This 

is very useful. 

3.1.2. Fixed Plants 

Introductory control textbooks assume linear systems. Many of their examples 

assume second-order fixed plants. This is not a realistic problem formulation because, 

given a linear second-order fixed plant and series compensation, one can achieve any 

set of specifications that one can conceive of, and this is not true of real fixed plants. 

A realistic fixed plant is defined as one with a pole-zero-excess of at least 3, and 

a saturation nonlinearity (±L) at its input. Note that zeros, while impbrtant, are 

somewhat rare in fixed plants. Fourth and higher order poles are ignored, on the basis 

that the third-order pole, and the saturation nonlinearity almost always limit the 

performance which is achievable, and this is the problem which we shall consider. 

For a numerical example we use our undergraduate control systems laboratory 

unit, a Feedback Limited Model 150, as identified by an HP 5423A Digital Signal 

Analyzer, 

k  1.25  
= 

s(l + s/a)(l +slb) s(l+s/4fJO)(1+s/160) (3.3) 

The actual numbers vary somewhat with the actual operating conditions, and a 

simplified typical set is used here. 
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The most important results in this chapter are: ( 1) Figs. 3.6, 3.7, and 3.8 which 

present new results for the specification problem; (2) Examples 1, 2, and 3 which 

greatly simplify traditional series compensation, and (3) Example 6 which is ' the 

recommended approach to series compensation with a saturation nonlinearity for a 

system with a random input. 

3.2. Advances in Specifications 

The specification problem is to relate a description of how we want the system to 

behave, which is given by time-domain specifications on the system output y (t), to a 

description of how we want to design the system, which is given by frequency-domain 

specifications on the open-loop transfer function G (s). We present some significant 

advances. 

Basic specifications are as follows. Time domain specifications on system output 

y (t) to a unit step are: (1) a quality of response specification which is given by the 

percent overshoot (P0); and (2) a speed of response specification which is given by 

the time delay (td). These are illustrated in Fig. 3.3& Frequency domain 

specifications on the open-loop system G (s) are: (1) crossover frequency (() which 

is given by I G (j o) I = 1; and (2) phase margin (PM) which is given by 

PM = 180° - Arg. G (j o) which is easy to calculate. These are illustrated in 

Fig. 3.3b. 

The traditional approach to relate specifications on y (t) and G (s) is to consider a 

unit-numerator second-order system because it is analytically tractable, see Fig. 3.4a, 
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W(s)=  1  G(s)=  
1 + 2ts Icon + (s /)2 ' s(1 + S /2o) (3.4) 

The classic presentation of this approach is given in [ 18]. However, Fig. 3.4a is not 

what a well compensated system usually looks like, it usually looks like Fig. 3.4b, e.g. 

see Melsa and Schultz [15] Chap. 10. We consider the more realistic problem below. 

3.2.1. A Realistic Compensated System 

Consider the problem of maximizing the phase margin for the -2, -1, -2 

configuration given in Fig. 3.5a, where 

G(s) = bo(1+s/b) 
  , b<c, 
2(j + S1 C) 

PM = tan'(co Ib) - tan'(o Ic); and 

d  daPM = 0 , yields U) = 

(3.5) 

the geometric mean, or on a log scale the mid-point. Notation is simplified by 

introducing the parameter alpha ((x), 

c / Coc = coc lb = (c lb) 112 a , (3.6) 

PM = tan1((x) -. tan-1(l Ia) 

Recall that horizontal and vertical scales are equal. Therefore, PM is maximized by 

providing a horizontal symmetrical (a, 1/ (x) Band of Minus One Slope (BMOS) about 

mag. = 1, as shown in Fig. 3.5b. This is an important concept. 
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Reconsider Fig. 3.4b, a -1, -2,-i, -2, -3 configuration assuming that b = 1 / a and 

c = a to maximize PM. The poles at a and d have a relatively small influence on 

the above, but are required for a realistic problem. In real problems the poles at a and 

d are not necessarily symmetric with respect to cot; however we shall assume that 

they are, a = o If3 and d = coc in order to retain a simple relation for the PM 

(3.6). An actual PM calculation should correct for this assumption. 

To further simplify notation, we use the normalized frequency, 2 = s 

Therefore, as the system which we will use to relate specifications on y (t) to 

specifications on G(X) we have 

Q(7) 13(1+ax)  

see Fig. 3.6; and 

PM = 900 - _1(3) + tan 1(a) - tan- 1(1/a)- tan-' (1 

tan1(!3) + tair'(1/!3) = 900 

PM = tan 1(a) - tan 1(i / a), 

tan-' (cc) + tan 1(1/a) = 900 

a = tan ((PM + 900)12) . 

(3.7) 

(3.8) 

To obtain a computer solution we must somehow fix 0. For a "typical" case we 

assume that J3 = a2, which results in G2(A,), see Fig. 3.6, 
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G2(A.)=  a(1+aX)  

?.(1 + a2A.)(1 + / a)(1 + A,/ a2) (3.9) 

In addition, we consider the two extreme cases which are: (1) = oo, which results in 

G1(%), 

G1(2)= (l+czA.)  

aX2 ( 1+ )L/a) 

and (2) P = a, which results in G3(X), 

-  1  

G3(X) - X(1 + X/ a)2 

Again see Fig. 3.6. In all three cases, we still have 

(3.10) 

(3.11) 

a = tan ((PM + 90°)/2). 

G2(X) is a much more realistic system for series compensation than the traditional 

second-order system (3.4). The problem now is to relate the specifications on y (t) to 

specifications on G2(X). 

The solution to this still computationally intensive problem, has been obtained 

using MACSYMA [1]. Fig. 3.7 presents phase margin plus percent overshoot, 

PM + P0, as a function alpha, for 2 ≤ a ≤ 5, for the typical case = a2 and for the 

two extreme cases, 0 = oo and P = a. This shows that 

PM + PO = 74° (3.12) 

is a good approximation. Fig. 3.8 presents time delay, td, as function of a for 

2 ≤ a ≤ 5 for the same three cases. This shows that 
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td = 0.9 '° (3.13) 

is a useful approximation. 

To summarize, a realistic compensated system for traditional series compensation 

is 

G0 (2.)=   
2 (l + ?)(l + 2./a)(1 +  

which has one zero and four poles; and we have computed simple design formulas to 

relate given specifications on y (t), to design specifications on G (s). These are as 

follows. (1) Given a desired percent overshoot, a quality of response specification, we 

can determine the required phase margin by 

PM = 740 —P0. 

The required PM is obtained by providing a required horizontal symmetrical (a, 11 (x) 

band of -1 slope (BMOS) about mag. = 1. The parameter a is given by 

a= tan ((PM +90°)I2). 

Briefly, a is inversely proportional to P0. (2) Given a desired time delay. (td), a 

speed of response specification, we can determine the required crossover frequency 

(Coc  by 

= O.9 /td . 

Briefly, coc is inversely proportional to td. Sec. 3.3 presents three examples which 

illustrate the use of these formulas. 
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3.2.2. Control Effort 

Another important problem is control effort, or how hard we drive the fixed plant. 

For deterministic signals, the default assumption is a unit step, and we are concerned 

with the maximum value of the input to the fixed plant or max. u (t). An easily 

obtained estimate of max. u (t) is given by 

u(0+) ≤ max. u(t) (3.14) 

where the equality is often valid. The value for u (0+) can be obtained by the initial 

value theorem 

u(0+)= urn s KF(s)  1 =KF(oo), (3.15) 
s—oo 1+KF(s)P(s) s 

because P (s) has a pole-zero-excess of 3. Note that this is a specification on how 

much the high-frequency asymptote (HFA) at (o = 1 may be increased. 

3.2.3. The Best Compensated System 

We now reconsider the entire series compensation problem, and inquire "what is 

the best we can do?". Our basic problem is a trade off between speed of response and 

control effort. We know the follows. The quality of the response is given by alpha a, 

that is by the required horizontal symmetrical (a, 1 / a) band of - 1 slope, at mag. = 1 

(BMOS), which we assume is fixed. The speed of response td is inversely 

proportional to crossover frequency coc so co,. should be maximized. The control 

effort is approximated by the high-frequency asymptote (HFA) at co = 1 or the 

allowable increase in gain at high frequencies. If we assume that HFA is fixed by the 

saturation nonlinearity, and consider G G2(A.), and G3(A.), it is obvious that oi is 



47 

maximized by G3(2). Therefore, the best compensated system is 

=   

A.(1 + 

where from previous MACSYMA calculations we have 

PM- 66°— PQ, 

x= tan((PM + 900)/2) ,and 

"l/td 

This will be used in Sec. 3.4. 

(3.16) 

(3.17) 

(3.18) 

3.3. Simplification of Traditional Series Compensation 

Given: the fixed plant P(s) in Bode plot form (3.3), and the following 

specifications. 

(1) Steady-state error. 

Add enough gain (K) to satisfy the traditional steady-state velocity error 

specification (e), or velocity-error constant (Kr), 

Kk = Kv = lIeST ,. 

(2) Quality of response, or percent overshoot. 

Modify the open-loop system G (s) to obtain the required horizontal symmetrical 

(a, 1 / a) band of -1 slope (BMOS) about mag. = 1. Given a required percent 

overshoot, we can approximately determine a required phase margin, which 

translates into a required horizontal symmetrical (a, 1/a) band of -1 slope 
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(BMOS) about mag. = 1; 

PM = 740 — P0, 

a — tan((PM +90°)12). 

(3) A third specification, which is one of the following. 

(a) Lag compensation. 

Drop the highest frequency existing section of -1 slope into the required 

horizontal symmetrical (a, 1 / a) band of -1 slope (BMOS) about mag. = 1. 

See Example 1. 

(b) Lead compensation. 

Bend an existing section of -2 slope in the required horizontal symmetrical 

(a, I/ a) band of -1 slope BMOS) about mag. = 1 into a -1 slope. See 

Example 2. 

(c) Speed of response, or time delay td. 

Crossover frequency coc is approximately inversely proportional to time delay. 

COC O.9O/t 

Start with coc and using the required horizontal symmetrical (a, 1 / (x) band of 

-1 slope (BMOS) about mag. = 1, work backward to obtain a lag-lead 

network. The required series compensation is the difference between .what we 

have P (s), and what we want Gd (s) = KF (s )P (s). See Example 3. 
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3.3.1. Example 1, Lag Network 

Given: the fixed plant, 

P(s)= 1.25  
s (1 + s/4.O0)(1 + s/160.) 

and the specifications: 

(1) steady state velocity error (e5 ) = 2.5% 

(2) P0 12% , (3) lag network. 

Solution. 

(1) Kv = 1 /e3 = 40= LFA = 1.25 K, K = 32.0, plot KP (s). 

(2) PM z 740 - P0 = 62°, 

a—tan((PM+90°)/2)_- 4.00, 

= horizontal symmetrical (cc, 1/a) band of -1 slope (BMOS) about mag. = 1. 

(3) For lag network, drop the highest frequency existing section of -1 slope into the 

required band. 

(4) Draw the Bode plot, Fig. 3.9. Check by using ABPR (3.2) and pocket calculator. 

Note, all steps are shown. 

a = 4.00, coc= = 1.00, a = 4/ a2  = 0.250, 

= B (b)2 and B (b)1 = 40(1)1, 

a a 2 = 40.ob , b = 0.00625, 

32.0(b)1 = A (a)1, A = 0.800 = u(0+). 
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(5) The lag compensation is 

KF(s) = 32.0 (1 + S /0.250)  
(1 + s / 0.00625) 

td = O.9O/co = 0.900 S. 

u (0+) = KF (oo) = 0.800 = estimate of control effort. 

Note that this is about a 10 minute procedure to this point. 

(6) As a check, simulate on a personal computer using one of the many control 

software packages which are available (such as MatrixX/PC). The step response 

y (t) and control effort u(t) are shown in Fig. 3.10. See Table 3.1. 

3.3.2. Example 2, Lead Network 

Given: the fixed plant, 

1.25  

s (1 + s/4.00)(1 + s/160.) 

and the specifications: 

(1) essv = 2.5%, (2) P0 = 12%, (3) lead network. 

Solution. 

(1) K = 1 / essv = 40=LFA = 1.25K,K = 32.0, plot KP (s). 

(2) PM 740 - P0 = 620, 

a = tan((PM + 900 ) / 2) 

= horizontal symmetrical (a, 1 Ia) band of - i slope (BMOS) about mag. = 1. 
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(3) For lead network, bend a existing section of -2 slope into the required band. 

(4) Draw the Bode plot, Fig. 3.11. Check by using ABPR (3.2) and pocket calculator. 

ct=4.00, 40(1)l=A(4)l and A(4)2=a(a)2 

40(4)= a(a)2, a = 6.32, 

w=aa=25.3, b=aa2=101., 

32(a) 1 = u (0-i-) (b )_1 , u (0-i-) = 512. 

(5) The lead compensation is 

KF(s) = 32.0 (1 + s /6.32)  
(1+s/101.) 

= 0.0356 s. 

U (0+) = KF (co) = 512. = estimate of control effort. 

(6) As a check, simulate. This not included, see Example 1, and Table 3.1. 

3.33. Example 3, Lag-lead Network 

Given: the fixed plant, 

P(s)=  1.25  
s (1 + s/4.0O)(1 + s/160.) 

and the specifications: 

(1) eSSV = 2.5%, (2) P0 z 12%, (3) td = 0.180 s. 

Solution. 

(1) Kv = 1le = 40 = LFA = 1.25K, K = 32.0, plot KP(s). 
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(2) PM = 740 - P0 = 62°, 

CL=tan((PM +9O0)/2)4.00, 

= horizontal symmetrical (a, 1/a) band of -1 slope (BMOS) about mag. = 1. 

(3) The speed of response or time delay specification requires a lag-lead network. 

= O•9O/t = 

Start with coc, and provide the required band of -1 slope. 

(4) Draw the Bode plot, Fig. 3.12. Check by using ABPR (3.2) and pocket calculator. 

a=4.0O, a = coc a=2O.O, b =co/a=1.25, 

a(b)2=C(c)2 and C(c)1=K(1)1 

ab2 =40c, c=0.156. 

(5) The lag-lead compensation is 

KF(s) = 32.0 (1 + s /1.25)(1 + s /4.00)  
(1 + s /0.156)(1 + s /20.0) 

td = 0.90 / O)c = 0.180 s. 

U (0+) = KF (oo) = 20.0 = estimate of control effort. 

(6) As a check, simulate. See Table 3.1. 

3.4. Design for a Saturation Nonlinearity 

3.4.1. Introduction 

The real problem in series compensation is the trade off between speed of 

response, and control effort or how hard we drive the fixed plant. This is rarely 
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treated. However, consideration of Wiener optimal controls, or of Kalman optimal or 

linear quadratic (LOJ regulators, clearly demonstrates the fundamental nature of this 

trade off. 

In practice the fixed plant always contains one or more variables, which are 

subject to a saturation nonlinearity (±L), and which limit system performance. We 

assume that there is only one variable which has a saturation nonlinearity and that it is 

the input to plant, to simplify the presentation. 

In Example 4 we consider the default specification which is a step input, and the 

specification that we should maximize the speed of response, subject to the constraint 

that the system operates in its linear region. This is not a particularly good 

specification, only a frequently encountered one. There is much to argue for dual-

mode control, particularly in this age of microprocessors. The main purpose of 

Example 4 is to provide a logical transition from the traditional approach to series 

compensation to the best approach which considers the saturation nonlinearity (±L). 

The main concepts here are as follows. ( 1) When trying to constrain control effort, we 

are de1ing with the allowable increase in gain at high frequencies or increase in the 

high-frequency asymptote (HFA). This is very different from the traditional steady-

state error specification which is a specification on the low-frequency asymptote 

(LFA). (2) Given the above, and that we are trying to maximize speed of response, 

and that we have a choice between G G2(A.), G3(7.) from Sec. 3.2, the obvious 

best choice is G3(2). We note that an optimal system for the given problem may 

perform a little better, and usually have a very similar structure, with damping ratio 

0.5 rather than = 1.0. 
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Sec. 3.4.3 presents a very brief review of random signals, and of the calculation 

of mean-square values. It presents Booton's method [ 19] for handling a saturation 

nonlinearity with a random input, and an approximation to it. It also presents 

Streets' [20] simple approximate method for calculation of mean-square values. 

In Example 5 we consider a random input, the default being S +(s) = e Is, and we 
r 

calculate the exact value for the mean-square value of the input to the fixed plant iy 2 

and set it equal to Booton's value to obtain the best compensation. This procedure 

requires some careful normalization to achieve reasonable simple results. 

In Example 6 we reconsider Example 5 in very general terms which include an 

arbitrary: fixed plant, factored PSD of the random input, and desired system. This is 

accomplished by the calculation of an approximate value for the mean-square value of 

the input to the fixed plant. Again we set this equal to Booton's value. This is the 

best solution to series compensation for a saturation nonlinearity with a random input. 

3.4.2. Example 4, Step Input, Linear Operation Constraint 

Given: the fixed plant, 

k 

s(1+s/a)(1+s/b) 

with nominal values: k = 1.25, a = 4.00, b = 160.; and the following specifications. 

(1) A saturation nonlinearity ±L; nominal: L = 13. 

(2) Maximize the system performance, subject to the constraint that the system 

operates in a linear mode for a step input r(t) = e u(r); nominal: e = 1. 
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(3) Speed of response; minimize time delay td. 

(4) Quality of response; percent overshoot = 12%. 

Solution. 

(1) u (0+) = KF (oo) is an easily obtained estimate of max. u (t), which we wish to 

limit, u (0+) ≤ max. u (r) = L. As a first try let K = L = 13. K k = 16.3, 

HFA = K k a b = 1.04x104. Plot KP(s) in Fig. 3.13. 

(2) To maximize speed of response (minimize td) with a saturation nonlinearity, The 

desired system from Sec. 3.2.3 is G 3(2k) = Gd (k)' 

Gd(?) =   

7(1 + 

PM=66°—PO, tdl.1/o)c. 

(3) PM = 540, cc =tan((PM +90°))/2 = '1T= 3.16. 

(4) Find c in ? = s / c such that Gd () agrees with KP (s) at high frequencies, 

HFA = c3a2 = K k a b, c = 10.1, ac = 32.0. Plot GA) in Fig. 3.13. 

(5) The required series compensation is 

KF(s) = Gd(?) =(c/k) (1+s/a)(1+s/b)  

P(s) (1+s/ccc)2 

(1+S/4.0O)(1+s/160.)  
= 8.11 

(1 + s /32.0)2 
nominal. 

(6) However, simulation gives max. u (t) = 26.3 instead of 13.0. We have 

encountered a problem where u (0+) < max. u (t). We need to reduce 
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MF = max. KF(s), see Fig. 3.13, 

(c /k)(a) 1 = (MF)(ac) 1, MF = c2a/ak = 64.5. 

(7) Second try. 

MF = (13.0/26.3) 64.5 = 31.9, c = (MFak la) 112 = 7.10, ac = 22.5. 

Simulation gives max. U (t) = 13.4. See Table 3.2. 

The required series compensation is 

KF(s) = 5.68 (1+s/4.00)(1+s/l6çj)  

(1 + s /22.5)2 

td 1•11° = 0.155 s. 

3.4.3. Random Signals and a Saturation Constraint 

A Gaussian random signal [4] is mathematically described by its power spectral 

density (PSD), S (s). A PSD can be easily measured by modern signal processing 

computer systems such as a HP 5423A or a B&K 2032. An important concept is the 

+ 

factored or superscript plus PSD, S (s), which consists of the left-half s-plane poles 
x 

and zeros, and the square-root of the constant, of the PSD. The input-output relation 

for a minimum-phase system H (s) with a random signal input x (t) and an output y (t) 

is 

± + 

S (s)=H(s)S (s). 
Y x (3.19) 

Note the similarity to the input-output relation for deterministic signals 



57 

Y(s)H(s)X(s). 

The mean-square value for a random signal y = E [x2} is best calculated by use 

of standard tables. A abbreviated table is given on p. 126 of [4], and the complete 

table is given in Newton, et. al. [7]. 

where 

2 2j + 1 + 

S(s)S(—s)ds, 
27ci _joo x x 

5(s) = c(s) = CO + CIS + ... + Cfl_lSfll 

X d(s) d0+d1s+"•+ds' 

Using normalized frequency 2L = s /v, a useful simplification occurs, 

(3.20a) 

(3.20b) 

(3.21) 

The effect of a saturation nonlinearity on a control system with a random input, 

Fig. 3.14, which is a very important design consideration has been analyzed by Booton 

[19]. He derived an equivalent linear gain, 

K1 = erf(L/'.J5c) 

where the error function is defined by 

erf(x) _=.5 e_t2dt. 

(3.22) 

This is difficult to handle. Consideration of Taylor series shows that an approximation 

for K1 is 
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Kia = 1 

= i3JiLi; , 

(3.23) 

Fig. 3.15 presents a log-log plot of K1 and Kia, which demonstrates that Kia is a good 

approximation to K1. Note that for au > the rms value of the saturation 

nonlinearity output is constant, 

ui = Kla  = LE L. (3.24) 

Considering the above, we present the following best design procedure for control 

systems with a random input, and a saturation nonlinearity. ( 1) Assume the system is 

linear. (2) Calculate the rms value of the input to the fixed plant, cs.. (3) Set it equal 

to Booton's value, au, = '1L. This will be illustrated in Examples 5 and 6. 

A very useful graphical approximation for calculating mean-square input has been 

presented in [20]. Briefly summarized the procedure is as follows. ( 1) Draw a Bode 

+ 

plot of the factored PSD, S (s). (2) Determine a line with a -1/2 slope w hich is 
X 

+ 

tangent to or a least upper bound (LUB) to S (s). (3) In an appropriate band of - 1/2 
X 

+ 
slope directly below the LUB, use the exact expression for S (s), below that simplify 

+ 

the expression for S (s). Obviously, the wider the band of - 1/2 slope, the better the 
x 

results. This procedure is presented in detail in [20], and it will be illustrated in 

Example 6. 
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3.4.4. Example 5, Random Input, Exact Rms Value Constraint 

Note, three key steps are required to make the answer for the exact evaluation of 

the mean-square value o2 reasonably simple. 

Given: the fixed plant (as before) is in the following generalized form. Key step 1 is 

to define P (s) in terms of the geometric mean of its poles, where for two real poles 

w = 2zw = a + b, 

P(s)=   
s(s 2 +2zws + w2) 

with nominal values: Ic = 1.25, w = 25.3, z = 3.24; and the following specifications. 

(1) A saturation nonlinearity ±L, nominal: L = 13. 

(2) The factored power spectral density of the random input, nominal: e = 1. 

S(s)=1. 

(3) Determine a good approximation for best series compensation to minimize the 

mean-square error of the system for the preceding specifications, using Booton's 

value for a saturation nonlinearity, and an exact evaluation of the mean-square 

value of the input to the fixed plant. 

Solution. 

(1) The basic approach is as follows. 

Calculate the exact value of mean-square value of the input to the linear fixed 

plant au 2, and set it equal Booton's value for a saturation nonlinearity, 

= (2 / t) L2, to determine the series compensation. 
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(2) To maximize speed of response (minimize td) with a saturation nonlinearity, the 

desired system from Sec. 3.2.3 is G3(X) = Gd(?), 

GdQ)   = , A.=s/c. 
X(1 + 

(3) Key step 2 is to define c in terms of w defined above, c = vw, where v is the 

variable to be determined. 

a2v3w3  
Wd(s)= 3 

S + 2avws2 + a2v 2W 2S + a2v 3w3 

Key step 3 is to introduce a new normalized frequency ? = s / w. Thus we have, 

kiw 

a2v3 

Wd W = + 2av 2 + a2v 2 + a2v3 

e/w 

(4) The factored power spectral density of the input to the linear fixed plant is 

+ Wd(?) + 

S(2.)=  SQL) 
U P()L) r 

= (a2v 3e 1k) 1 + 2z ? + 

a2v3 +a2v22+2av? 2 +2,3 

(5) The exact mean-square value of 
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+ 

S()=  
X (do +d1 +d22L2+d3?.3) 

is given by standard tables as 

E{x2} 2 v 1(S(2)) 

= vk2 
[c22d0d1 + (c12— 2c0c2)d0d3 + c02d2d3] 

2d0d3(—d0d3 + d1d2) 

For this problem we have 

U 
2 =  e2aw  {a3v5 + 2(2z2 - 1)av 3 + 2v I 

k22(2a—l) 

(6) Setting this equal to Booton's value, a, 2 = (2/ic)L2, yields, 

a3v5 + 2(2z2 - 1)av3 + 2v - (2kL, / e )2(2a - 1) / (Icaw) = 0. (3.25) 

Solving this 5th order polynomial for nominal values yields v = 0.540, and 

c = vw = 13.7. 

(7) The required series compensation is 

=(c/k) KF(s)= Gd(?) 1 + 2zs 1w + (s lw)2  

P(s) (1-i-s/ca)2 

= 17.0 (l+s/4.00)(1+s/160)  

(1 + s /43.0)2 
nominal. 

(8) Extensive computer simulations for Example 5 and 6 are presented in Figs. 3.16 

and 3.17. Fig. 3.16 presents the rms value of the system error as a function of 

normalized frequency, v. Fig. 3.17 presents the ims value of the saturation 
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nonlinearity limited input to the fixed plant, for the same conditions. The 

computer algebra software MACSYMA is used to obtain two theoretical results: 

Booton's exact value (3.22); and Booton's approx. value (3.23). The minimum 

for Booton's exact theoretical solution is v = 0.794 or c = vw = 20.1. Note, we 

are operating on a broad minimum as is usual in optimal solutions. The 

approximate solution for Example 5 is v = 0.540 or c = 13.7. The more 

approximate solution for Example 6 is v = 0.727 or c = 18.4. Both of these are 

shown to be excellent approximations, which are on the conservative side. In 

addition simulation studies have been conducted on an actual system, our 

undergraduate servo lab. This has been done for three values: (a) linear or 

v = 0.282; (b) partially nonlinear, the design value of Example 5 or v = 0.540; 

and (c) totally nonlinear, or v = 1.12. The experimental verification of the theory 

is very good for 5 of the 6 points. The discrepancy of the experimental data for 

system error for v = 1.12 is probably due to an inadequacy in our simulation of 

KF (s). This problem is being investigated. However, Booton's theoretical 

results and our experimental results from a real physical system agree quite well. 

3.4.5. Example 6, Random Input, Approximate Rms Value Constraint 

Given: the fixed plant, 

s(1+s/a)(l±s/b) 

with nominal values: k = 1.25, a = 4.00, b = 160.. Saturation nonlinearity (±L), 

nominal: L = 13.0. Factored power spectral density of the random input, 

nominal: e = 1.00, f = 2.00. 
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+ 

S(s)= elf  
1+slf' f<a. 

Find: Series compensation using Booton's value, and approximate evaluation of the 

mean-square value, y2. 

Solution. 

From Sec. 3.2, the desired system which maximizes the speed of response 

(minimizes td) while constraining control effort is given by 

1  
= %= s/c , or 

Gd() X(1+Xla)2 

Wd(X) = nominal: a = 

We factor the 3rd order polynomial, and let w, = 1.478 c, = 0.5778, g = 3.095. 

Thus, 

Wd (s) = 
[1+2slw+(s/w)2](1+s/gw) 

1 

where w,, is to be determined. Note the high-frequency asymptote 

limWd (' J ,.J(- S)   = Jim Gd(A). 
S—>oQ ?-400 

A reasonable engineering assumption is that the desired system's crossover frequency 

w,, occurs where the fixed plant has a slope of -2, a < wn <b. The input to the 

fixed plant is 
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+ Wd(s) + 
S(s)=  S(s) 
U P(s) r 

(e/fk)  s(1+s/a)(1+s/b)  =  
(l+s/f){1+2s/w +(siw)2](1+sigw) (3.26) 

or in terms of nominal values, 

S (s) = 0.400 
U (1 + s /2.00)[1 + 2Cs iw, + (s /w)2](1 + s /gw) 

+  s(l+S/4.00)(1+s/160.) 
(3.27) 

Fig. 3.18 is an algebraic Bode plot of (3.26). For tutorial purposes, this is drawn to 

scale for the nominal values (3.27), and the solution of Example 5. We do not wish to 

+ 

evaluate an 14 by hand, so we seek a simpler good approximation to S (s). We draw 
U 

+ 

a line with -1/2 slope which is tangent to S (s). In the band, immediately below this 

line we use the exact expression, but below this band we approximate freely to 

simplify the expression, 

+   S (s)=(e/fk)  s(s/a)(1)  

ua (s/f)[1+2s/w +(s/w)2](1) 

See Fig. 3.18, and note that we have an algebraic problem formulation which is valid 

for any set of parameters which satisfy the inequality ordering of roots, 

f <a < w, <big. Simplifying, and defining a new normalized frequency, 

?=s/w,we obtain, 

S + = k-- vv / ak (0+ X) 
ua - (1+2X+ 2) 

The mean-square value of 
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+ k(c V  +c1?.) 
S()=   A.=siv 
X d0+d1X+d2?2 

is given by standard tables as 

E(x2}=X2=vJ2(s + ())= vk2C0d2+d1d0 
X 2d0d1d2 

For this problem, we have 

Setting this equal to Booton's value (2Rt)L2, we obtain 

wn = 
(3.28) 

an approximate algebraic solution. Substituting nominal values for this example, we 

obtain wn = 18.4. Comparison with the computer simulations presented in Fig. 3.16 

and 3.17 for Example 5 shows that Example 6 is a good approximation to Example 5. 

In addition (3.28) has the advantage that it clearly shows what the important trade-offs 

are. Note that this simple graphical but algebraic procedure will work for any given: 

fixed plant, saturation nonlinearity, factored PSD of a random input, and desired 

system. This makes it a very useful design tool. This is the recommended design. 

procedure. 

3.5. Conclusions 

We have considered series compensation for a realistic fixed plant, which is 

defined as a fixed plant with poles-zero-excess of at least 3, and which has saturation 
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nonlinearity (±L) which is usually at its input. Extensive use had been made of a 

computer algebra software program called MACSYMA. 

First, we have presented a major simplification in design techniques for the 

traditional approach to series compensation. Series compensation is the most 

interesting part of a traditional first undergraduate course in control. We have 

presented a specific, very fast, easily understood Bode plot technique for traditional 

series compensation, which makes the presentation of this subject in current textbooks 

obsolete. 

Second, we have presented a solution for the real problem of compensation, 

which is the trade off between speed of response and control effort. Our approach is 

based on: Booton's linearized gain for a saturation nonlinearity with a random input; 

and Streets' technique for approximate evaluation of mean-square values. We have 

presented a specific, very fast, easily understood Bode plot technique for the solution 

of this problem. Computer simulations verify our approach. Because optimal control 

problems typically have a broad minimum, our approximations which tend to be 

conservative appear to be very good. 

We have given a specific solution for a frequently encountered real problem in 

control systems. Traditional courses in control systems do not solve this problem. 

Optimal control theory can provide a little better performance, if the desigiier only 

knew how to pick the control effort constraint. The one we use is Booton's value. 

The choice is simple, either: ( 1) we don't know; or (2) we will use a perhaps less than 

perfect solution. 
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TABLE 3.1 
This table illustrates three points. ( 1) That the approximations used in the design for 
P0, td and u (0+) are useful engineering approximations. (2) That the estimate of 

control effort u (0+) is inversely proportional to the square of the speed of response for 
the cases considered. (3) That u (0+) = max. u (t) is often a reasonable estimate of 
max. u(t). 

Approximation P0 td U (0+) td u (0+) 
Lag 12 0.900 0.800 0.648 
Lag-lead 12 0.180 20.0 0.648 
Lead 12 0.0356 512. 0.649 
Simulation P0 td u (0+) max. u (r) 
Lag 16.9 0.792 0.800 0.808 
Lag-lead 15.3 0.162 20.0 20.0 
Lead 8.33 0.0370 511. 511. 

TABLE 3.2 
Example 5, the solution for a saturation constraint for a random input using Booton's 
value, is very different than the solutions given in Examples 1 through 4. However, 
Example 5 is the best solution. 

P0 td max. u(t) 

step 
lau 

random 
Specifications 12.0 mm. 13.0 10.4 

Ex. 1 Lag 16.9 0.792 0.808 0.717 
Ex. 2 Lag-lead 15.3 0.162 20.0 3.62 
Ex. 3 Lead 8.33 0.0370 511. 38.6 
Ex. 4 Saturation, step 10.4 0.158 13.4 4.08 
Ex. 5 Saturation, random 10.3 0.0827 48.0 10.4 



r(t) 
KF(s) 

u(t) 
P(s) 

Fig. 3.1 The realistic series compensation problem considered. P(s) has FZE ≥ 3, 
and saturation constraint nonlinearity (±L) at its input. 
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Fig. 3.2 The algebraic Bode plot relationship (ABPR) between any two points (a, A) 
and (b, B) which are connected by a slope of -k. 
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Fig. 3.3 (a) Basic specifications (specs). Time domain specs. P0 = percent 
overshoot, a quality of response spec. td = time delay, a speed of response 

spec. (b) Frequency domain specs. LFA = low frequency asymptote; 
COC = crossover frequency; BMOS = the horizontal symmetrical (a, 1 / a) 

band of a -1 slope at mag. = 1; and HFA = high frequency .asymptote. 
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Fig. 3.4 Systems used to relate time domain specs on y(t) to frequency domain specs 
on G(s). (a) Traditional. (b) This Chapter, 

.G(s) 

log mag log mag 

C 

-2 

(a) (b) 

Fig. 3.5 The maximize phase margin problem. (a) The problem. (b) The solution. 
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log (IO) 

Fig. 3.6 The compensated systems which are used to relate time domain specs on 
y(t), to frequency domain specs on G(s). 
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Fig. 3.7 MACSYMA results for phase margin plus percent overshoot as a function 

of alpha for 2 ≤ a ≤ 5. This shows that P0 + PM = 74°. 



Fig. 3.8 MACSYMA results for time delay as a function of alpha for 2:5t, a ≤ 5. 

This shows that td = 0.9 /co. 
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Fig. 3.9 Example 1, design procedure for a lag network. 
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Fig. 3.10. Example 1, computer simulation of step response and control effort. 
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Fig. 3.11 Example 2, design procedure for a lead network. 
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Fig. 3.12 Example 3, design procedure for a lag-lead network. 
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Fig. 3.13 Example 4, design procedure for a saturation constraint for a unit step. 
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Fig. 3.14 Booton's analysis for a control system with a random input. (a) Actual 
nonlinear system. (b) Linearized model. 
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Fig. 3.15 Booton's equivalent gain K1, and an approximation to it Kia. 



Fig. 3.16 Simulation results for Examples 5 and 6. Rms error versus the normalized 
frequency v where c = vw. 



Fig. 3.17 Continuation of Fig. 3.16. Rms value of the limited input to the fixed plant 
versus normalized frequency v. 
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Fig. 3.18 Example 6, desin procedure for the approximate evaluation of the mean-
square value, cy • 



CHAPTER 4 

AN ALGEBRAIC SOLUTION FOR A LQ REGULATOR FOR 

A TYPICAL THIRD-ORDER MOTOR 

4.1. Introduction 

Algebraic solutions for linear-quadratic (LQ) or Kalman regulators are very rare. 

We consider the single-input single-output (SISO) LQ output regulator problem. By 

assuming one very specific but realistic fixed plant, we are able to obtain an algebraic 

solution for the LQ output regulator. This specific solution provides considerable 

insight into the general solution. The fixed plant is presented below. 

A typical motor consists of an integrator and two real or complex poles 

P(s)=  kab  
s(s+a)(s+b) ,0. 

kc2 

S [2 + 2tcs + 

The transitional case (a = b = c , = 1) is 

kc2  

S  + 

Notation is simplified by introducing normalized frequency, and ignoring k, 

1  
X=s/c. 

2().+ 1)2 

In state-variable form 

(4.1) 

1(t) = A x (t) + b u (t) (4.2) 
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y(t)=cTx(t) , 

this is, 

0 1 0 '- 0 
o —1 1 , = 0 ' = [1 0 01 . (4.3) 
00—i 

1 1 



85 

4.2. Review of LQ Regulator 

Consider the SISO fixed plant (4.2), and the performance index to be minimized 

00 
PI=f [xTr)2x(t) + u(t)P u(t)] dt (4.4) 

where Q is symmetric non-negative definite and P is positive definite. The well 

known solution to this problem is as follows. 

(1) Solve the algebraic Riccati equation [22] for symmetric matrices R which satisfy 

AJ&+RA_RbP 1bTR+O. (4.5) 

(2) Select the one matrix R which is positive definite. 

(3) The optimal gain vector is 

k=RbP 1, 

and the optimal control is given by a linear constant feedback control law 

(4.6) 

There are two problems with This solution. (1) The critically important problem of 

quadratic weight Q and P) selection is invariably one of trial and error iteration [23]. 

(2) The solution of the algebraic Riccati equation is invariably numerical. 

We consider the LQ output regulator problem where 

2 .cT , andP = 1/p2 (4.7) 

where 1/p2 is a Lagrangian multiplier which determines the trade-off between control 

effort and speed of response. The performance index to be minimized is 
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00 

P1 = f0 [y2(t) + ( l/p2) u2(r)] dt (4.8) 

Schultz and Melsa [21] have presented a simple solution to this problem which is 

summarized as follows, 

W(s)= y(s) =  PP (S)  

r(s) [1 + p2P(—s)P(s) } (4.9) 

where 

= the left half s-plane poles and zeros of [] and the square root of the 

constant. This is known as spectrum factorization or the superscript plus 

operation. 

4.3. Solution for LQ Regulator 

Given the fixed plant (4.3), and letting p = - 1), we have 

100 

000 

000 

The solution of (4.5) is given by 

where 

R= 

r11 r12 r13 

r12 r22 r23 

r13 r23 r33 

Ti1 = (2a2 - 1)/[a(a2 

r12 =(2a— l)/[a(x2— 1)] 

1  

- 1)2 (4.10) 

(4.11) 
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An analytical solution using Schultz and Melsa's solution (4.9), and the fixed 

plant (4.1) is 

W(A.)= PP  
[1+ p2P(—?)P(X) ] 

[1+p2P(—X)P(?)ff= [- 6+24-72+p2] 

The key step is to let p = cz(ct2 - 1) > 0, where a ≥ 1 

+ 2? - + p2] [(.42 + a2) (2L4 + (a2 - 2)A.2 + (a2 - 1)2)](4.14a) 

= (2 + (x)[ X2 + aX + (a2 - 1) } (4.14b) 

W(2)=  
(2 + a) [ 2 + + (a2  

(4.15) 

Using Mason's rule, the closed-loop transfer function of the LQ regulator as shown in 

Fig. 4.1 is 

W(7)=  K  
(4.16) 

Equating coefficients of (4.15) to (4.16), we obtain (4.12b). 

Understanding of the LQ regulator is aided by plotting its root locus, see Sec. 8.5 

in [21]. The root locus relation, 1 ± K N(s)ID (s) = 0, can be written as 

Im{D(s)N*(s)}I =0 
S +J (t) (4.17) 

to obtain an analytical solution. ' For the fixed plant (4.1), the Bode plot of the LQ 

regulator is a straight line and a hyperbola, 
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r13 = 1I[a(a2— 1)] 

r22 = (3cx - 1)/[cz(a2 - 1)(a + 1)] 

r23  1)((x+ 1)] 

r33 =2/[cx2((t2— 1)((x+ 1)] 

The optimal gain vector for the regulator is 

kT = [a(a2 - 1), 2a(a2 - 1) 2(a2 - 1)  cx 1 
+l '• a+1 

For the control problem shown in Fig. 4.1 we have 

K=a(a2_1)kT = 2 2[l, a+1' 

(4.12a) 

(4.12b) 

Using MACSYMA it is easy to verify: that (4.10) and (4.11) satisfy (4.5), that 

(4.11) is positive definite, and that (4.6) yields (4.12a). 

The direct solution of (4.5) given (4.10) using "algsys" in MACSYMA fails. 

However, if we multiply Q, P, and R by p, which does not change the problem, then 

MACSYMA yields (4.13), and (4.12a). 

2x2 —1 2a— 1 1 

2a-1 3a— 1 2  
a+1 a+l 

1 2 2  
a+1 a(a+1) 

(4.13) 

Note that the denominator of (4.13) is much simplier than that of (4.11). Computer 

algebra occasionally requires a little help from the user. 
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02 
co=O;   = 1. 

(c /I)2 C2 
(4.18) 

We plot the root locus of P (s )P (—s), for negative values of gain because the pole-

zero-excess is odd1 and we consider only the LHP loci, see Fig. 4.2. The root locus 

for I the LQ regulator is easy to sketch for the general case where the motor has an 

integrator and two real or complex poles. However, a simple analytic expression 

exists only for the transitional case. 

4.4. Performance of LQ Regulator 

The desired closed-loop system Wd (X) (4.15) is given in term of a ≥ 1. This 

algebraic solution enables us to make some conclusions about reasonable values for a. 

A Wd(2) with three real poles is too slow, therefore a > 2iJ = 1.155. A Wd(A.) 

which has a bandwidth BW = (a2 - 1)1/2 = 1, which is the frequency where the phase 

of the fixed plant equals _1800, is a high performance system. We will consider 

a = F2 = 1.414 as our center line design 

Wd(A)=  
(%+')[2.2--ñA.+ 11 (4.19) 

For values a> the control effort problem must be examined carefully. The actual 

selection of a is most effectively accomplished by appropriate trade off curves which 

are given in Fig. 4.3 and discussed below. 

To evaluate the system's performance for a deterministic input, we assume a unit 

step unit r (s) = its; and we calculate: (1) the percent overshoot (P0), (2) the time 

delay (td) of time to achieve 50% of the final value, and (3) the control effort. For 
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this problem shown in Fig. 4.1, the control effort is given by 

max. u (t) = u (0+) = K . (4.20) 

MACSYMA is used to calculate P0 and td, by using the inverse Laplace transform 

and Newton's method for finding one real root of f(x) = 0. The results are presented 

in Fig. 4.3. 

It is also useful to evaluate the systems performance for a stochastic input. To 

simplify the presentation, we assume that the stochastic input is white noise passed 

through an integrator, and that it has a factored power spectral density (PSD) of 

+ 

S (s)=1. 
rr S (4.21) 

In this case the control effort is given by the rms value of the input to the fixed plant 

cY. 

An introduction to the stochastic signals and the calculation of mean-square 

values has been given in Sec.. 3.4.3. 

We wish to calculate the mean-square value of the input to the fixed plant from 

+ 

S (2k) = WW  S(A,), ?. S/C 
uu 

1+ 2A.+ 2? 

a(a2— 1) + (2a2 - 1)A, + 2czX2 +2? 

Using standard tables, see Sec. 3.4.3, this is 

= e2 cx(a2 - 1)(2a4 - a2 + 1)  

U 2(3a-1) 

The rms value (YU is shown in. Fig. 4.3. 

(4.22) 

(4.23) 
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An asymptotic approximation for a>> 1 for this problem is given by P = i&, 

and p = a3. This solution is given by the dashed lines in Fig. 4.3. 

Fig. 4.3 presents a practical engineering approach, trade-off curves for the 

important specifications, for the selection of the critical parameter a. To summarize, 

optimality guarantees stability and a good speed of response. The basic trade off is as 

follows. For a deterministic signal the control effort tends to increase as the cube of 

an improvement in the speed of response. For the more probable stochastic input the 

control effort tends to increase as the 2.5 power of the improvement in the speed of 

response. This is a drastic trade off. 

4.5. An Application 

Physical control systems frequently have a stochastic input r(t), and a saturation 

nonlinearity at the input to the fixed plant P (s). We want to, design a control system 

with the highest possible performance under these conditions. That is, we want to 

minimize the rms system error to a stochastic input considering the saturation 

nonlinearity. 

In Sec. 4.4 a linear fixed plant was assumed and the rms value of the input to the 

fixed plant as function of alpha, ; (a) was calculated. However, the selection of the 

best value for au or a would involve a trial and error procedure using a digital 

computer simulation of a continuous system with a stochastic input and 'a saturation 

nonlinearity. A simple specific design procedure for this problem would be valuable 

even if it was approximate. 



92 

LQ regulators are optimal for the deterministic signals and they treat the trade off 

between speed of response and control effort. A new application of LQ regulator is as 

the desired system for series or state-variable compensation where the system has a 

stochastic input and a saturation nonlinearity. 

A saturation nonlinearity is a difficult problem to analyze. Booton [19] has 

presented an approximation for a saturation nonlinearity with a stochastic input, which 

has been presented in Sec. 3.4.3. A simplified approximate design procedure using 

Booton's approximation has also been presented there, as is used below. 

We set the mean-square value of the input to the linear fixed plant (4.23) equal to 

Booton's value (3.24) 

= a(a - 1)(2a4 - + 1) = 

2(3a2— 1) it 
(4.24) 

For a simple example, we choose e = 1, c = 1 and L = 5. Therefore we have to 

factor the 7th order polynomial 

2ma7 - 3ira5 + 2ira3 - 300a2 - ica + 100 = 0 (4.25) 

looking for one real root a> 1. The result is a = 2.27. 

The optimal solution which considers the saturation nonlinearity is a = 2.27. The 

desired open-loop system, calculated from (4.15), is 

Wd () a(a2 -  1) , = s/c . (4.26) 
Gd W = 1 - Wd () = [2 + 2a + (2a2 - 1)] 

The series compensation is 
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KF(A.) = G A.) =Wot2 - 1) (A. + 1)2 

P (A.) A.2 + 2aX + (2a2 - 1) 
(4.27) 

A Bode plot of KF (A) is shown in Fig. 4.6, which uses the ABPR presented in 

Chap. 3. The state-variable compensation is given by Fig. 4.1 and (4.12b). 

For the example considered in this section we present in Fig. 4.4 the rms value of 

the system error: ( 1) as calculated by MACSYMA using Booton's approximation 

(3.22); (2) as calculated by MACSYMA using our approximation (3.23); and (3) as 

calculated by a continuous system simulation software package called Enhanced Desire 

[24]. Fig. 4.4 demonstrates that: (1) Booton's approximation (3.22) is valid, and yields 

a broad minimum; and (2) that our design procedure yields excellent although slightly 

conservative results. 

4.6. Conclusions 

A very specific but realistic fixed plant has been assumed. An algebraic solution 

has been obtained for the structure of the LQ output regulator. Numerical analysis 

yields a complete set of trade off curves for the LQ output regulator's performance. 

This total solution for a very specific problem yields considerable insight into the. 

general LQ output regulator problem. 

A new application of LQ output regulators is presented, which is as the desired 

system for series or state-variable compensation where the system has a stochastic 

input and a saturation nonlinearity. A simple specific design procedure is presented 

which is based on 'Booton's approximation for a saturation nonlinearity. Simulation 

verifies this procedure is 'valid. 



U(t) 1 x(t ) 

3 

X20 
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Fig. 4.1 The LQ regulator 

1 x1(t)=yQ) 
A 

Fig. 4.2 Root locus of the LQ regulator 
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Fig. 4.3 Complete set of trade off curves for the LQ regulator. 



Fig. 4.4 Rms error of. the LQ regulator with the saturation nonlinearity for a stochastic input. 



Fig. 4.5 Rms control effort of the LQ regulator with the saturation nonlinearity for a stochastic input. 
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Fig. 4.6 Bode plot of the series compensation KF (?), considering the saturation 
nonlinearity and which uses the A.M. 



CHAPTER 5 

CONCLUSIONS 

5.1. Conclusions 

We have presented a major simplification in design techniques for the traditional 

approach to series compensation. Series compensation is the most interesting part of a 

traditional first undergraduate course in control. We have presented a specific, very 

fast, easily understood Bode plot technique for traditional series compensation, which 

makes the presentation of this subject in current textbooks obsolete. We have 

presented a solution for the real problem of compensation, which is the trade off 

between speed of response and control effort. Our approach is based on: Booton's 

linearized gain for a saturation nonlinearity with a random input; and Streets' 

technique for approximate evaluation of mean-square values. We have presented a 

specific, very fast, easily understood Bode plot technique for the solution of this 

problem. Computer simulations verify our approach. Because optimal control 

problems typically have a broad minimum, our approximations which tend to be 

conservative appear to be very good. 

The only major limitation of this work is the single-input single-output (SISO) 

assumption. However, a thorough understanding of the SISO problem is a significant 

asset when working with multiple-input multiple-output (M.IlvIO) problems. The 

assumption that the fixed plant is minimum phase was made to simplify the 

presentation. The use of both Bode magnitude and phase plots handles RHP poles and 

zeros, and a pure .time delay can be handled by a 2-pole 2-zero Pade' approximation. 



100 

The assumption that the saturation nonlinearity is at the input to the fixed plant was 

made to simplify the presentation. If the saturation nonlinearity is on an internal 

variable of the fixed plant, redefining the fixed plant and compensation will solve this 

problem. The assumption that random processes we consider are stationary from 

minus infinity to infinity is inherent in our use of random data theory and of modern 

signal processing computer systems. This assumption is sometimes criticized as being 

unrealistic. However, one 10 minute portion of an undergraduate DSP lab. clearly 

demonstrates that the system identification of drastically changing system can be 

accomplished in two record lengths, and that this criticism is totally invalid. 

5.2. Suggestions for Further Research 

In extending the results of this research, it is a good idea to program our series 

compensation design technique on a popular personal computer using existed software 

simulation packages, e.g. an IBM PC/AT and MatrixX/PC. This program should first 

allow an user to define the fixed plant, the saturation nonlinearity (±L) at the input of 

the fixed plant, and the system input PSD. It then solves the series compensation 

problem for the given fixed plant considering the saturation nonlinearity. That is, it 

finds the parameters of the system when the rms value of input to the fixed plant 

equals Booton's value assuming that the system is linear. The algorithm is as follows. 

(1) Define the fixed plant. (2) Estimate the unknown parameter, c, of the desired 

compensated system (3.16) through iterations. A good first guess for c is (3.28). 

(3) The last step is to analyze the performance of the compensated system for the user 

specified input PSD, and for a deterministic step input. This program will definitely 
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enable an user, who might not be very familiar with our series compensation design 

technique, to solve the real problem of compensation which is the trade off between 

speed of response and control effort very easily. 
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