The worm that turned:
A social use of computer viruses

fan H. Witten Harold Thimbleby
Computer Science Computing Science
Calgary University ~ Stirling University

Calgary Stirling
T2N 1N4 FK9 4LA
Canada Scotland

July 31, 1989

& m
Computer viruses have become the bane of personal computers. But can similar
mechanisms be used to spread new information and update old information for the
benefit of users?

A virus is a piece of computer program that attaches itself to other programs, incorporating itself
into them so that as well as performing their intended function they surreptitiously do other things.
Programs so corrupted seek others to which to attach the virus, and so the “infection” spreads.

Although first developed on multi-user computer systems with shared disc facilities, viruses
can spread in a personal computer environment where users share floppy discs or other removable
storage media. Inserting an infected disc into the system invisibly infects the system itself, and
other, “clean,” floppy discs inserted later on become contaminated too. The whole operation is
performed invisibly—and indeed users only discover the signs much later, long after damage is
done and countless floppy discs have become riddled with the pest. In practice it is very hard to
guard against infection, for people quite naturally want to share with others their information and .
the programs they write.

Viruses spread rapidly, and are an antisocial menace. But they do point out an effective
way of spreading information between personal computer users, without requiring any special
communication equipment or update procedures. The medium is floppy disc: the mechanism is
social. A benign virus—for which we have invented the term “Liveware” to emphasize its more
positive connotations—can exploit the same mechanism to spread useful information. Liveware
silently updates itself whenever a floppy disc is inserted into the computer. It relies on cooperative
computers to act as carriers of information. Unlike a real virus, it does not act without the consent
of the computer user; it does not spread from program to program; it allows itself to be deleted
without trace. In short, it remains under control.

Liveware allows a group of users to share widely distributed information almost as eflectively
as if they had a common database. There are many structures that support shared informa-
tion services (hypertexts, filestores, bulletin boards), with many important applications rang-
ing from airline reservation systems through city tourist guides to hobbyist newsletters and net-
worked electronic noticeboards. In contrast to Liveware, these information sources are centralized,
transaction-oriented, proprietary—and therefore expensive! Their information resides on a single
machine or installation that requires a large support infrastructure. There are carefully prescribed
procedures for accessing and updating the information. Someone has a financial stake in the ser-
vice, and will naturally want to exploit or protect their investment.

The value of the information itself should not be confused with the value of the system that
supports it. One of the growing paradoxes of computing technology is that many individuals
now operate personal computers whose power rivals that of large installations, yet without the
infrastructure of support that traditionally accompanies such systems. Such individuals have the
technical resources to make excellent use of shared information—if only there was a good enough
way to maintain it. Liveware provides precisely such a mechanism.

In contrast to mainframe machines with controlled clients, Liveware just assumes small comput-
ers with the ability to read and write on low-cost portable media such as floppy discs. Information
1s communicated by users passing discs amongst each other. Although they will be aware that they
are acting as carriers of information, they need take no explicit action to ensure that transmission
takes place—apart from inserting floppy discs into disc drives while using the system. We assume
that the network is connected socially in a rich enough way to provide as much information flow
as is required to maintain appropriate currency of each person’s database. A testament to the
power of social networks is provided by the success and rapidity which has been observed for the
transmission of computer viruses, and indeed the extreme difficulty of avoiding infection!

While it is hard to make many guarantees about the flow of information, the fact that infor-
mation distribution in Liveware is completely under user control bestows a number of advantages.
The mechanism—social connectivity—underlies much of our non-computer information gathering
activity anyway. After becoming enmeshed in a social group, one can expect as a matter of course
to be in regular first- or second-hand contact with the most useful sources of information. Liveware
takes advantage of the fact that individuals often travel to their colleagues from time to time, and
can easily carry discs with them. Users are motivated since the Liveware method means that as
they share their own information, they will automatically pick up new information contributed
by other people. The low overhead for both transmission and reception of information makes it
easy to get updates from appropriate sources, either as needed or on a regular basis. Users can
gauge the currency of their information and, if necessary, personally request an update directly
from the information’s owner. Finally, social mechanisms and conventions (legal, technical, etc.)
can be imposed on the information flow where necessary to ensure guaranteed currency.

The mechanism of Liveware is an automatic instrument that propagates new information and
handles technicalities such as version control and integrity. We have embedded it in a hypertext
system that permits users to browse through screenfuls or “cards” of information, linked together in
arbitrary ways. The card is the basic unit, and for Liveware to operate correctly each one requires
additional information which is hidden during normal use. This information enables Liveware to
work automatically and is normally of no interest to the user. It includes the signature of the
card’s owner, an identification code which distinguishes the card from others belonging to that
person, and a time stamp which records when the card was last modified (or originally created).
Normally the signature is the owner’s actual name together with a secret password supplied by
him, encrypted so that others cannot read it back.

It is necessary that some cards be nominated as “controller” of the hypertext. As well as
containing the program that supports the Liveware mechanism itself, these perform some other
functions. For example, they declare the name and purpose of the database and may identify some
person who is responsible for its entire operation, and to whom users may direct enquiries. That
person may be empowered to introduce new owners into the Liveware, and to reset passwords
for owners who have forgotten them. He or she may also be able to remove information and
eliminate owners. When a database is first designed, the facilities that its controller is to provide
are specified too.

A user is “enlivened” with a particular Liveware database simply by giving him a copy of
it. From then on, his database will be updated automatically whenever the opportunity arises.
However, there is no permanent effect: to rid himself of it he simply deletes all copies in the normal
way and no trace will remain. {This is quite unlike a virus.)

The essence of Liveware is that information is merged from separate versions of the database
whenever possible. updating cards that are obsolete and introducing new ones. Whenever a
Liveware database is entered, the system searches the computer’s disc drives for other versions of
the same database. If any are found, a merge is performed. This operation examines each card in

turn, updating it if a more recent card with the same signature and identification code appears in
the other version. Cards which appear in one version but not the other are copied. After merging,
both versions of the database are identical. The activity occurs quite automatically and invisibly,
without the user’s intervention.

Users may make slips and accidentally corrupt the database. Many accidents delete informa-
tion, which Liveware is well set up to restore through the normal merging procedure. Indeed.
a sufficiently large community of Liveware users can protect each other from disasters like disc
crashes. Thus if our disc dies on us, destroying our Liveware, we have only to take a blank disc
to a friend whom we recently visited to get an up-to-date version. Other accidents introduce
new—but trivial!—information, through mistakenly typing over someone else’s entry, for exam-
ple. Since Liveware is intended to propagate new information, it is certainly very important to
protect against accidental changes, particularly since they may be more recent than—and hence
overwrite—genuine updates made elsewhere.

So, to make things safe, when a user wants to add or update information, he must “log in” to
the Liveware by supplying a secret password. This identifies him as the owner of some or all of the
cards. Once logged in, the user may change information he owns, and the Liveware mechanism
takes note of any changes. It is not possible to implement a really secure log-in mechanism on a
personal computer without hardware support. Determined hackers could overcome any security
system that might be devised. In the loosely distributed system that supports Liveware, they can
have all the uninterrupted time they need, and work completely unobserved. Anyway, as a last
resort, they could re-implement an exact look-alike system (a so-called Trojan Horse) without
a great deal of difficulty, and it is quite impossible to prevent this. Under these circumstances,
Liveware can do no more than provide the appearance of security. That is sufficient to protect
databases against accidents, and perhaps against the idly curious. Given human nature, or rather
certain inescapable manifestations of it, it is an unfortunate fact that for large-scale applications,
hardware implementations of security will be necessary.

Perhaps the most unusual aspect of Liveware is the intertwining of social and technical issues
that it stimulates. It effectively requires the imposition of a certain social etiquette. Specifically:

Owners are responsible for their own cards.
Owners are not to change other owners’ cards.
Owners are known publicly by their names.

This is normal information ownership: what’s ours is ours, what’s yours is yours, and we all know
who’s who. These rules apply even when information is not personal: they ensure that precisely
one person Is responsible for each card and that there is no possibility of a card being updated at
different times unless the last update is required by the actual owner. The final rule is required
because information owners may join the same Liveware in different places and times: there must
be a naming convention to avoid any later conflict with ownership.

Liveware cannot work correctly if this convention is flaunted. It is assumed that when two
cards with identical identification meet (during merging), then the one with the most recent time
stamp can supersede the other. This assumption is not correct if gratuitous updates can be made
at a later time than real updates, for instance if we correct a spelling mistake in a card of yours,
but at a time after you most recently updated that card. When these two cards meet, our minor
correction would replace whatever corrections you had made.

It is worth emphasizing that the rules of information ownership may, in practice, be irritatingly
restrictive. For example, it is not permissible to personalise cards by introducing notes, doodling,
reformatting, correcting spelling, or whatever. One’s own version of the database is public in-
formation, for it may be transmitted directly to others, and not just a private copy. And the
consequences of altering someone else’s card are not simply that the interference will be transmit-
ted to others, but—much worse—that his updates elsewhere may be superseded and lost. The
reason for this situation is that the time stamp is the maximum update time for all the information
on one card; it therefore cannot distinguish one change from another on the same card.

There are various options for handling the registration of new information contributors. The
simplest is to allow anyone to register himself as a new owner, and choose a password at the same

time. This gives free access to all, but runs the risk of pollution of the database by unwanted
information. At the other extreme is a centralised policy where new contributors must be regis-
tered by a person responsible for the Liveware database, who also gives them initial passwords.
Numerous more elaborate schemes are possible: existing owners may be empowered to introduce
new ones, or several may have to collaborate to propose a new one. In this case the Liveware may
enforce collaboration in a single interactive session, or permit nominations to be stored on cards
owned by the proposers so that the process may be distributed in time and place. If the process
is distributed, the nominee could take his Liveware disc round potential proposers until he has
collected the requisite number of nominations. Moreover, each owner’s heritage may be stored to
allow limits to be placed on the number of introductions that owners may participate in. All of
these possibilities are quite simple to implement; the chief problem is in deciding which scheme is
suitable for any particular purpose. It is an intriguing thought that Liveware highlights live issues
of democratic process—and also provides a forum for their precise formulation and assessment.

An information owner may wish to delete part of a Liveware database. This is difficult, since
the Liveware may already be widely distributed. There are several possible mechanisms. The first,
which has the advantage of being extremely simple, allows a user to withdraw information so far
as he is concerned, but does not address the persistence of the information elsewhere. A card can
be declared “dormant,” and dormancy propagates in the normal way, a record of the card being
retained to prevent it being reinstated by future merging from other versions of the database.
The second mechanism is to make information “self destruct” when it passes its expiry date,
ensuring that cards disappear autonomously no matter how widely the database is distributed.
However, here the need for removal must be anticipated when the information is created. The
third mechanism is to chase a card that has been distributed by an “anti-card” that destroys it
on meeting. This requires Liveware to record the recipients of information in order to distribute
anti-cards correctly.

Overall, then, Liveware is an effective mechanism to support the distribution of computer
information by social means. It has surprisingly wide applicability—especially considering the
simplicity of the idea—whenever people need to share information using informal distribution
channels. Although originally conceived for use in situations where information changes slowly
and users are not overly concerned with getting the most up-to-date versions, it can be used more
generally because users can gauge the currency of their information and impose additional social
conventions on the information flow. An important special case is when there is only one user:
Liveware is ideal for backing up personal files and for sharing one’s information between several
workplaces. Another application is to support news or mail networks. If you know somebody who
knows somebody ... who is witnessing news (and every intermediary has computers or can pass
on discs), then you have an opportunity to keep up to date with that news. Just how “up to
date” depends on social factors such as connectivity of the network and willingness of people to
allow their computers to act as carriers. Liveware can manage news arriving in pieces via different
routes, possibly out of order, possibly with losses.

Although we have used the metaphor of viruses to characterise the autonomous, invisible, merge
operation that is at the heart of Liveware, the scheme, being benign, is nowhere near as virulent as
it might be. A computer virus attaches copies of itself to other programs indiscriminately, seeking
to spread itself as widely as possible regardless of the users’ wishes. Liveware respects the right
of the user to his computer and does not undermine his authority over it.

Ian Witten is with the Department of Computer Science, University of Calgary, Canada, and
during the Summer of 1989 was supported by the Science and Engineering Research Council as a
Visiting Fellow at Stirling. Harold Thimbleby is a Professor of Information Technology at Stirling
University, Scotland.

A%

iruses and other nasty programs

The term “virus” is a popular catch-all for many kinds of malicious software. A “logic bomb” or
“time bomb” is a destructive program activated by a certain combination of circumstances, or an a
certain date. A “Trojan horse” is any bug inserted into a computer program that takes advantage
of the trusted status of its host by surreptitiously performing unintended functions. A “worm” is
a robust kind of distributed program that invades workstations on a network: it consists of several
processes or “segments” that keep in touch through the network; when one is lost (for example,
by a workstation being rebooted), the others conspire to replace it on another processor—they
search for an idle workstation, load it with a copy of themselves, and start it up.

Viruses attach copies of themselves to other programs. They work by altering disc files that
contain the compiled version of otherwise harmless programs. When an infected program is in-
voked, it seeks other programs stored in files which it can change, and infects them by modifying
the files to include a copy of the virus code and inserting an instruction to branch to that code
at the old program’s starting point. After doing its work, the virus quickly starts up the original
program so that the user is unaware of its intervention.

The idea of a maliciously self-propagating computer program originated in Gerrold’s 1972 novel
When Harlie Was One, in which a program called telephone numbers at random until it found
other computers into which it could spread. Worms were also presaged in science fiction, by
Brunner’s 1975 novel The Shockwave Rider. The first actual virus program seems to have been
created in 1983, as the result of a discussion in a computer security seminar, and described at the
AFIPS Computer Security Conference the following year. In 1984 Thompson in his Turing Award
Lecture showed how a self-replicating bug can infest a compiler or other language processor.

Virus attacks were not reported until a few years thereafter, and so far have been more in the
nature of electronic vandalism than serious subversion. One of the first occurred in late 1987, when
over a two-month period a virus quietly insinuated itself into IBM PC programs in a Jerusalem
university. It was noticed because it caused programs to grow longer (due to a bug, it repeatedly
re-infected files). Once discovered, it was analyzed and an antidote devised. It was designed to
slow processors down on certain Fridays, and to erase all files on Friday 13 May.

At about the same time another PC virus invaded LeHigh University, while a much-publicized
“chain letter” Christmas message spread itself by self-replication, clogging the BITNET network—
it was eradicated by a massive network shutdown. Early 1988 saw a relatively harmless Macintosh
virus designed to distribute a “message of peace,” and a number of other viruses for personal
computers. By that time talk about viruses had invaded the news media.

Late in 1988 a worm program was inserted into the American Internet computer network. It
exploited several security flaws in SUN and VAX systems running Unix to spread itself from
system to system. Although discovered within a few hours, it required a huge effort (estimated at
50,000 man-hours) by programmers at affected sites to counteract and eliminate the worm over a
period of weeks. Again, it was unmasked by a bug (a bug in a bug!): under some circumstances

it replicated itself so fast that it seriously slowed down the infected host.
e ——

M
Hypertext

“If Emma takes the parcel home, go to page 34; if Emma decides to open il here and now, go
1o page 14" ... a sentence from a ‘branching story’ of the sort that is becoming very popular in
childrens’ detective stories. and was once very popular for ‘programmed learning texts.’

The same idea works nicely on a computer, but instead of paper pages, we have screens or
cards (like 3 x 5 card-index cards) and instead of the reader turning to page so-and-so, there are
‘buttons’ that can be pressed, and the computer ‘turns the page.’ This is the basic idea behind
hypertext: bits of text and pictures linked together in routes that depend entirely on the way the
reader takes the story.

Stories and programmed learning are far from the only ways of using hypertext. First, since
each ‘page’ of the hypertext is on the computer it can do anytking a computer can do. Secondly,
pages or cards can contain text, pictures and even sound effects as well. In a programmed learning
text ‘buttons’ are always the same bit of ‘If you think the answer is 5 turn to page 1234,

but in Hypertext the button can be a picture, perhaps a real button like Q o anything else.
The pictures of Liveware in the article give other examples of buttons; one is a magnifying glass,
suggesting (we hope) ‘press this and take a closer look,” which is what it does.

Two examples:

e The BBC in conjunction with Apple Computer have produced a hypertext document designed
for teaching about nature conservancy. The BBC Ecodisc is a large simulation of a nature reserve
that allows students to get a feel for what running a nature reserve involves. They can take walks
around the reserve, as they press buttons on a map of the reserve they are taken from place to
place. On a card talking about the wood, for instance, the student can press a button to have a
closer look at the flowers, and he will see a photograph of the flower in summer, or whatever time
of year it is. Or they can stop to listen to the sounds, perhaps a particular sort of bird calling. At
any point, the user can consult experts, that is every card has a button that brings up an expert’s
prerecorded film—in sound and colour—discussing some interesting feature of the habitat.

¢ Glasgow Online is a different sort of hypertext to help tourists to Glasgow find tourist attrac-
tions. Some pages are maps of Glasgow, containing lots of buttons covering each site of interest,
like cinemas or museums: other pages are indexes, so that a tourist could find information about,
say, accommodation. shops, places of worship, or leisure activities. On pressing the ‘accommo-
dation’ button, the user would be taken to a further page asking him to choose between hotels,
guest houses, self-catering. hostels or camping facilities. On pressing one of those buttons, he gets,
for instance, hotels listed by name, and then he can find out more about each hotel, for instance

where it is on the map.
e ——————— = S i

Liveware terminology

To underline the more positive social connotations of Liveware as opposed to viruses, it is necessary
to use new terms for concepts otherwise known as infection and perpetration. Here are some terms
used in the article.

e Liveware — A hypertext (or other) database that updates itself autonomously whenever
the occasion arises

e Enliven — To inoculate a person’s computer with a Liveware database

o [nformation owner — an owner of one or more cards in the database, and the only person
permitted to change them

o Database owner — the person responsible for the Liveware database as a whole. He is not
empowered to alter information belonging to others

e Signature — a code identifying an owner, including his full name and perhaps an encrypted
secret password that only he can generate

e Livestamp — the Liveware information recorded on each card: signature, identification
code, and time stamp

o Merge — the joining of two Liveware databases together so that both contain the most
recent information.

—_ — — __ — ——— — ___————— — ——————— _ ————— — ——— ————————
An example of Liveware

A pilot Liveware hypertext database has been implemented which stores information on research
workers in Scotland who are interested in human-computer interaction. Setting it up in the con-
ventional way would have required soliciting information from everyone, encouraging them to
respond, collating data, and presenting it. It seemed that a far more effective way would be to
distribute as much of the information processing as possible. Instead of a paper questionnaire, an
outline database could be distributed on disc. Interested people would fill in their details—doing
their own data entry—perhaps copying their part of the database on to further colleagues. Com-
pleted databases (that is, locally completed) would be returned for central, automated collation.
We supposed that respondents would be further encouraged, since if they filled in and returned
their database, they would receive a complete collated database in return. It was a short step from
this practical application of distributed databases to also distribute the collation process itself,
and a virus-like mechanism was suggested.

The purpose of the database is to supply information on each person registered in it. It provides
a card for each person that records his or her name, address, phone number and email address,
and a list of one-line phrases describing research interests. A complete list of people’s interests
is automatically collected together on a separate card. Clicking on a line of this index takes you
to the card of the first person who has declared that interest; repeated clicking cycles through all
relevant people’s cards.

The front card includes a list of people represented {collected automatically on entry to the
stack by examining all cards in it); clicking on a line will go to that person’s card. The ‘Add a new
person’ button allows new owners to register; they enter a dialogue that solicits their name and
initial password, and a card is created which they can fill in. Also included on the first card is a
list of versions of this stack. Other cards include information and help about the Liveware system
itself, and a summary of the social conventions discussed earlier.

The database is implemented in the Apple HyperCard system, and the merge operation that
is at the centre of the Liveware idea is written entirely in HyperTalk, a programming language
provided with HyperCard. As the system locates new versions of the stack on disc, or as the
user adds new versions manually to the list, they are used to update the current database and,
conversely, it is used to update them.

Each card has an owner name and password, and the ‘Liveware’ button at the top left of each
card gives controlled access to this hidden information, showing the owner and allowing one to log
in or change the password. Passwords are used to impose a degree of integrity on the information.
They are encrypted on entry by an encryption facility that is built in to HyperCard, and stored
(invisibly) on each card in encrypted form. The same password is stored on all cards that belong
to a given owner, so that cards are self-contained and can be treated independently during the

merge operation.
- ___ _______________ ___ ______ . _________|

SULELEETELEUEEETTLTE

Department of Psychotagy
Glasgow University
Glesgow

steve®psy.glasgow
041 339 8855 ext. 5485

minimal manuals

{conic interfaces

user interface performance measuremant
direct menipulation

infarmstion flow theory

Figure 1: Information on a person in the Scottish HCI Database. The main part of the database
consists of many cards of this form. Note the ‘Liveware’ button at the top left.

People’'s interests.

deptive systems
utonomy
ommunication systems for the disabled
omputer based learning
onversations] snaysis and dialogus design
esign methodologies
telogue design
falogue Specification
fract mantpulstion
iscourse structures
1stributed cognition
motions in interaction with systems
xpert System interfeces
ormal methods applisd to HCI
ormal specificetion of interaction
ormal Techniques
i

Figure 2: The list of research interests in the Scottish HCI Database. This collects all research
interests mentioned in the database. Clicking on one takes you to the card of a person with that
interest.

The worm that turned:
A social use of computer viruses

lan H. Witten Harold Thimbleby
Computer Science Computing Science
Calgary University Stirling University

Calgary Stirling
T2N 1N4 FK9 4LA
Canada Scotland

July 31, 1989

——
Computer viruses have become the bane of personal computers. But can similar
mechanisms be used to spread new information and update old information for the
benefit of users?

A virus is a piece of computer program that attaches itself to other programs, incorporating itself
into them so that as well as performing their intended function they surreptitiously do other things.
Programs so corrupted seek others to which to attach the virus, and so the “infection” spreads.

Although first developed on multi-user computer systems with shared disc facilities, viruses
can spread in a personal computer environment where users share floppy discs or other removable
storage media. Inserting an infected disc into the system invisibly infects the system itself, and
other, “clean,” floppy discs inserted later on become contaminated too. The whole operation is
performed invisibly—and indeed users only discover the signs much later, long after damage is
done and countless floppy discs have become riddled with the pest. In practice it is very hard to
guard against infection, for people quite naturally want to share with others their information and .
the programs they write.

Viruses spread rapidly, and are an antisocial menace. But they do point out an effective
way of spreading information between personal computer users, without requiring any special
communication equipment or update procedures. The medium is floppy disc: the mechanism is
social. A benign virus—for which we have invented the term “Liveware” to emphasize its more
positive connotations—can exploit the same mechanism to spread useful information. Liveware
silently updates itself whenever a floppy disc is inserted into the computer. It relies on cooperative
computers to act as carriers of information. Unlike a real virus, it does not act without the consent
of the computer user; it does not spread from program to program; it allows itself to be deleted
without trace. In short, it remains under control.

Liveware allows a group of users to share widely distributed information almost as effectively
as if they had a common database. There are many structures that support shared informa-
tion services (hypertexts, filestores, bulletin boards), with many important applications rang-
ing from airline reservation systems through city tourist guides to hobbyist newsletters and net-
worked electronic noticeboards. In contrast to Liveware, these information sources are centralized,
transaction-oriented, proprietary—and therefore expensive! Their information resides on a single
machine or installation that requires a large support infrastructure. There are carefully prescribed
procedures for accessing and updating the information. Someone has a financial stake in the ser-
vice, and will naturally want to exploit or protect their investment.

The value of the information itself should not be confused with the value of the system that
supports it. One of the growing paradoxes of computing technology is that many individuals
now operate personal computers whose power rivals that of large installations, yet without the
infrastructure of support that traditionally accompanies such systems. Such individuals have the
technical resources to make excellent use of shared information—if only there was a good enough
way to maintain it. Liveware provides precisely such a mechanism.

In contrast to mainframe machines with controlled clients, Liveware just assumes small comput-
ers with the ability to read and write on low-cost portable media such as floppy discs. Information
is communicated by users passing discs amongst each other. Although they will be aware that they
are acting as carriers of information, they need take no explicit action to ensure that transmission
takes place—apart from inserting floppy discs into disc drives while using the system. We assume
that the network is connected socially in a rich enough way to provide as much information flow
as is required to maintain appropriate currency of each person’s database. A testament to the
power of social networks is provided by the success and rapidity which has been observed for the
transmission of computer viruses, and indeed the extreme difficulty of avoiding infection!

While it is hard to make many guarantees about the flow of information, the fact that infor-
mation distribution in Liveware is completely under user control bestows a number of advantages.
The mechanism—social connectivity—underlies much of our non-computer information gathering
activity anyway. After becoming enmeshed in a social group, one can expect as a matter of course
to be in regular first- or second-hand contact with the most useful sources of information. Liveware
takes advantage of the fact that individuals often travel to their colleagues from time to time, and
can easily carry discs with them. Users are motivated since the Liveware method means that as
they share their own information, they will automatically pick up new information contributed
by other people. The low overhead for both transmission and reception of information makes it
easy to get updates from appropriate sources, either as needed or on a regular basis. Users can
gauge the currency of their information and, if necessary, personally request an update directly
from the information’s owner. Finally, social mechanisms and conventions (legal, technical, etc.)
can be imposed on the information flow where necessary to ensure guaranteed currency.

The mechanism of Liveware is an automatic instrument that propagates new information and
handles technicalities such as version control and integrity. We have embedded it in a hypertext
system that permits users to browse through screenfuls or “cards” of information, linked together in
arbitrary ways. The card is the basic unit, and for Liveware to operate correctly each one requires
additional information which is hidden during normal use. This information enables Liveware to
work automatically and is normally of no interest to the user. It includes the signature of the
card’s owner, an identification code which distinguishes the card from others belonging to that
person, and a time stamp which records when the card was last modified (or originally created).
Normally the signature is the owner’s actual name together with a secret password supplied by
him, encrypted so that others cannot read it back.

It is necessary that some cards be nominated as “controlier” of the hypertext. As well as
containing the program that supports the Liveware mechanism itself, these perform some other
functions. For example, they declare the name and purpose of the database and may identify some
person who is responsible for its entire operation, and to whom users may direct enquiries. That
person may be empowered to introduce new owners into the Liveware, and to reset passwords
for owners who have forgotten them. He or she may also be able to remove information and
eliminate owners. When a database is first designed, the facilities that its controller is to provide
are specified too.

A user is “enlivened” with a particular Liveware database simply by giving him a copy of
it. From then on, his database will be updated automatically whenever the opportunity arises.
However, there is no permanent effect: to rid himself of it he simply deletes all copies in the normal
way and no trace will remain. (This is quite unlike a virus.)

The essence of Liveware is that information is merged from separate versions of the database
whenever possible. updating cards that are obsolete and introducing new ones. Whenever a
Liveware database is entered, the system searches the computer’s disc drives for other versions of
the same database. If any are found, a merge is performed. This operation examines each card in

turn, updating it if a more recent card with the same signature and identification code appears in
the other version. Cards which appear in one version but not the other are copied. After merging,
both versions of the database are identical. The activity occurs quite automatically and invisibly,
without the user’s intervention.

Users may make slips and accidentally corrupt the database. Many accidents delete informa-
tion, which Liveware is well set up to restore through the normal merging procedure. Indeed.
a sufficiently large community of Liveware users can protect each other from disasters like disc
crashes. Thus if our disc dies on us, destroying our Liveware, we have only to take a blank disc
to a friend whom we recently visited to get an up-to-date version. Other accidents introduce
new—but trivial!—information, through mistakenly typing over someone else’s entry, for exam-
ple. Since Liveware is intended to propagate new information, it is certainly very important to
protect against accidental changes, particularly since they may be more recent than—and hence
overwrite—genuine updates made elsewhere.

So, to make things safe, when a user wants to add or update information, he must “log in” to
the Liveware by supplying a secret password. This identifies him as the owner of some or all of the
cards. Once logged in, the user may change information he owns, and the Liveware mechanism
takes note of any changes. It is not possible to implement a really secure log-in mechanism on a
personal computer without hardware support. Determined hackers could overcome any security
system that might be devised. In the loosely distributed system that supports Liveware, they can
have all the uninterrupted time they need, and work completely unobserved. Anyway, as a last
resort, they could re-implement an exact look-alike system (a so-called Trojan Horse) without
a great deal of difficulty, and it is quite impossible to prevent this. Under these circumstances,
Liveware can do no more than provide the appearance of security. That is sufficient to protect
databases against accidents, and perhaps against the idly curious. Given human nature, or rather
certain inescapable manifestations of it, it is an unfortunate fact that for large-scale applications,
hardware implementations of security will be necessary.

Perhaps the most unusual aspect of Liveware is the intertwining of social and technical issues
that it stimulates. It effectively requires the imposition of a certain social etiquette. Specifically:

Owners are responsible for their own cards.
Owners are not to change other owners’ cards.
Owners are known publicly by their names.

This is normal information ownership: what’s ours is ours, what’s yours is yours, and we all know
who’s who. These rules apply even when information is not personal: they ensure that precisely
one person is responsible for each card and that there is no possibility of a card being updated at
different times unless the last update is required by the actual owner. The final rule is required
because information owners may join the same Liveware in different places and times: there must
be a naming convention to avoid any later conflict with ownership.

Liveware cannot work correctly if this convention is flaunted. It is assumed that when two
cards with identical identification meet (during merging), then the one with the most recent time
stamp can supersede the other. This assumption is not correct if gratuitous updates can be made
at a later time than real updates, for instance if we correct a spelling mistake in a card of yours,
but at a time after you most recently updated that card. When these two cards meet, our minor
correction would replace whatever corrections you had made.

It is worth emphasizing that the rules of information ownership may, in practice, be irritatingly
restrictive. For example, it is not permissible to personalise cards by introducing notes, doodling,
reformatting, correcting spelling, or whatever. One’s own version of the database is public in-
formation, for it may be transmitted directly to others, and not just a private copy. And the
consequences of altering someone else’s card are not simply that the interference will be transmit-
ted to others, but—much worse—that his updates elsewhere may be superseded and lost. The
reason for this situation is that the time stamp is the maximum update time for all the information
on one card; it therefore cannot distinguish one change from another on the same card.

There are various options for handling the registration of new information contributors. The
simplest is to allow anyone to register himself as a new owner, and choose a password at the same

time. This gives free access to all, but runs the risk of pollution of the database by unwanted
information. At the other extreme is a centralised policy where new contributors must be regis-
tered by a person responsible for the Liveware database, who also gives them initial passwords.
Numerous more elaborate schemes are possible: existing owners may be empowered to introduce
new ones, or several may have to collaborate to propose a new one. In this case the Liveware may
enforce collaboration in a single interactive session, or permit nominations to be stored on cards
owned by the proposers so that the process may be distributed in time and place. If the process
is distributed, the nominee could take his Liveware disc round potential proposers until he has
collected the requisite number of nominations. Moreover, each owner’s heritage may be stored to
allow limits to be placed on the number of introductions that owners may participate in. All of
these possibilities are quite simple to implement; the chief problem is in deciding which scheme is
suitable for any particular purpose. It is an intriguing thought that Liveware highlights live issues
of democratic process—and also provides a forum for their precise formulation and assessment.

An information owner may wish to delete part of a Liveware database. This is difficult, since
the Liveware may already be widely distributed. There are several possible mechanisms. The first,
which has the advantage of being extremely simple, allows a user to withdraw information so far
as he is concerned, but does not address the persistence of the information elsewhere. A card can
be declared “dormant,” and dormancy propagates in the normal way, a record of the card being
retained to prevent it being reinstated by future merging from other versions of the database.
The second mechanism is to make information “self destruct” when it passes its expiry date,
ensuring that cards disappear autonomously no matter how widely the database is distributed.
However, here the need for removal must be anticipated when the information is created. The
third mechanism is to chase a card that has been distributed by an “anti-card” that destroys it
on meeting. This requires Liveware to record the recipients of information in order to distribute
anti-cards correctly.

Overall, then, Liveware is an effective mechanism to support the distribution of computer
information by social means. It has surprisingly wide applicability—especially considering the
simplicity of the idea—whenever people need to share information using informal distribution
channels. Although originally conceived for use in situations where information changes slowly
and users are not overly concerned with getting the most up-to-date versions, it can be used more
generally because users can gauge the currency of their information and impose additional social
conventions on the information flow. An important special case is when there is only one user:
Liveware is ideal for backing up personal files and for sharing one’s information between several
workplaces. Another application is to support news or mail networks. If you know somebody who
knows somebody ... who is witnessing news (and every intermediary has computers or can pass
on discs), then you have an opportunity to keep up to date with that news. Just how “up to
date” depends on social factors such as connectivity of the network and willingness of people to
allow their computers to act as carriers. Liveware can manage news arriving in pieces via different
routes, possibly out of order, possibly with losses.

Although we have used the metaphor of viruses to characterise the autonomous, invisible, merge
operation that is at the heart of Liveware, the scheme, being benign, is nowhere near as virulent as
it might be. A computer virus attaches copies of itself to other programs indiscriminately, seeking
to spread itself as widely as possible regardless of the users’ wishes. Liveware respects the right
of the user to his computer and does not undermine his authority over it.

Ian Witten is with the Department of Computer Science. University of Calgary, Canada. and
during the Summer of 1989 was supported by the Science and Engineering Research Council as a
Visiting Fellow at Stirling. Harold Thimbleby is a Professor of Information Technology at Stirling
University, Scotland.

%
Viruses and other nasty programs

The term “virus” is a popular catch-all for many kinds of malicious software. A “logic bomb” or
“time bomb” is a destructive program activated by a certain combination of circumstances, or an a
certain date. A “Trojan horse” is any bug inserted into a computer program that takes advantage
of the trusted status of its host by surreptitiously performing unintended functions. A “worm” is
a robust kind of distributed program that invades workstations on a network: it consists of several
processes or “segments” that keep in touch through the network; when one is lost (for example,
by a workstation being rebooted), the others conspire to replace it on another processor—they
search for an idle workstation, load it with a copy of themselves, and start it up.

Viruses attach copies of themselves to other programs. They work by altering disc files that
contain the compiled version of otherwise harmless programs. When an infected program is in-
voked, it seeks other programs stored in files which it can change, and infects them by modifying
the files to include a copy of the virus code and inserting an instruction to branch to that code
at the old program’s starting point. After doing its work, the virus quickly starts up the original
program so that the user is unaware of its intervention.

The idea of a maliciously self-propagating computer program originated in Gerrold’s 1972 novel
When Harlte Was One, in which a program called telephone numbers at random until it found
other computers into which it could spread. Worms were also presaged in science fiction, by
Brunner’s 1975 novel The Shockwave Rider. The first actual virus program seems to have been
created in 1983, as the result of a discussion in a computer security seminar, and described at the
AFIPS Computer Security Conference the following year. In 1984 Thompson in his Turing Award
Lecture showed how a self-replicating bug can infest a compiler or other language processor.

Virus attacks were not reported until a few years thereafter, and so far have been more in the
nature of electronic vandalism than serious subversion. One of the first occurred in late 1987, when
over a two-month period a virus quietly insinuated itself into IBM PC programs in a Jerusalem
university. It was noticed because it caused programs to grow longer (due to a bug, it repeatedly
re-infected files). Once discovered, it was analyzed and an antidote devised. It was designed to
slow processors down on certain Fridays, and to erase all files on Friday 13 May.

At about the same time another PC virus invaded LeHigh University, while a much-publicized
“chain letter” Christmas message spread itself by self-replication, clogging the BITNET network—
it was eradicated by a massive network shutdown. Early 1988 saw a relatively harmless Macintosh
virus designed to distribute a “message of peace,” and a number of other viruses for personal
computers. By that time talk about viruses had invaded the news media.

Late in 1988 a worm program was inserted into the American Internet computer network. It
exploited several security flaws in SUN and VAX systems running Unix to spread itself from
system to system. Although discovered within a few hours, it required a huge effort (estimated at
50,000 man-hours) by programmers at affected sites to counteract and eliminate the worm over a
period of weeks. Again, it was unmasked by a bug (a bug in a bug!): under some circumstances

it replicated itself so fast that it seriously slowed down the infected host.
. ________|

%
Hypertext

“If Emma takes the parcel home, go to page 34; if Emma decides to open il here and now, go
to page 14”7 ... a sentence from a ‘branching story’ of the sort that is becoming very popular in
childrens’ detective stories. and was once very popular for ‘programmed learning texts.’

The same idea works nicely on a computer, but instead of paper pages, we have screens or
cards (like 3 x 5 card-index cards) and instead of the reader turning to page so-and-so, there are
‘buttons’ that can be pressed, and the computer ‘turns the page.’ This is the basic idea behind
hypertext: bits of text and pictures linked together in routes that depend entirely on the way the
reader takes the story.

Stories and programmed learning are far from the only ways of using hypertext. First, since
each ‘page’ of the hypertext is on the computer it can do anything a computer can do. Secondly,
pages or cards can contain text, pictures and even sound effects as well. In a programmed learning
text ‘buttons’ are always the same bit of ‘If you think the answer is 5 turn to page 1234,

but in Hypertext the button can be a picture, perhaps a real button like Q o anything else.
The pictures of Liveware in the article give other examples of buttons; one is a magnifying glass,
suggesting (we hope) ‘press this and take a closer look,” which is what it does.

Two examples:

e The BBC in conjunction with Apple Computer have produced a hypertext document designed
for teaching about nature conservancy. The BBC Ecodisc is a large simulation of a nature reserve
that allows students to get a feel for what running a nature reserve involves. They can take walks
around the reserve, as they press buttons on a map of the reserve they are taken from place to
place. On a card talking about the wood, for instance, the student can press a button to have a
closer look at the flowers, and he will see a photograph of the flower in summer, or whatever time
of year it is. Or they can stop to listen to the sounds, perhaps a particular sort of bird calling. At
any point, the user can consult experts, that is every card has a button that brings up an expert’s
prerecorded film—in sound and colour—discussing some interesting feature of the habitat.

o Glasgow Online is a different sort of hypertext to help tourists to Glasgow find tourist attrac-
tions. Some pages are maps of Glasgow, containing lots of buttons covering each site of interest,
like cinemas or museums: other pages are indexes, so that a tourist could find information about,
say, accommodation, shops, places of worship, or leisure activities. On pressing the ‘accommo-
dation’ button, the user would be taken to a further page asking him to choose between hotels,
guest houses, self-catering, hostels or camping facilities. On pressing one of those buttons, he gets,
for instance, hotels listed by name, and then he can find out more about each hotel, for instance

where it is on the map.
 _ ————

Liveware terminology

To underline the more positive social connotations of Liveware as opposed to viruses, it is necessary
to use new terms for concepts otherwise known as infection and perpetration. Here are some terms
used in the article.

o Liveware — A hypertext (or other) database that updates itself autonomously whenever
the occasion arises

e FEnliven — To inoculate a person’s computer with a Liveware database

e Information owner — an owner of one or more cards in the database, and the only person
permitted to change them

o Database owner — the person responsible for the Liveware database as a whole. He is not
empowered to alter information belonging to others

o Signature — a code identifying an owner, including his full name and perhaps an encrypted
secret password that only he can generate

o Livestamp — the Liveware information recorded on each card: signature, identification
code, and time stamp

o Merge — the joining of two Liveware databases together so that both contain the most
recent information.

An example of Liveware

A pilot Liveware hypertext database has been implemented which stores information on research
workers in Scotland who are interested in human-computer interaction. Setting it up in the con-
ventional way would have required soliciting information from everyone, encouraging them to
respond, collating data, and presenting it. It seemed that a far more effective way would be to
distribute as much of the information processing as possible. Instead of a paper questionnaire, an
outline database could be distributed on disc. Interested people would fill in their details—doing
their own data entry—perhaps copying their part of the database on to further colleagues. Com-
pleted databases (that is, locally completed) would be returned for central, automated collation.
We supposed that respondents would be further encouraged, since if they filled in and returned
their database, they would receive a complete collated database in return. It was a short step from
this practical application of distributed databases to also distribute the collation process itself,
and a virus-like mechanism was suggested.

The purpose of the database is to supply information on each person registered in it. It provides
a card for each person that records his or her name, address, phone number and email address,
and a list of one-line phrases describing research interests. A complete list of people’s interests
is automatically collected together on a separate card. Clicking on a line of this index takes you
to the card of the first person who has declared that interest; repeated clicking cycles through all
relevant people’s cards.

The front card includes a list of people represented (collected automatically on entry to the
stack by examining all cards in it); clicking on a line will go to that person’s card. The ‘Add a new
person’ button allows new owners to register; they enter a dialogue that solicits their name and
initial password, and a card is created which they can fill in. Also included on the first card is a
list of versions of this stack. Other cards include information and help about the Liveware system
itself, and a summary of the social conventions discussed earlier.

The database is implemented in the Apple HyperCard system, and the merge operation that
is at the centre of the Liveware idea is written entirely in HyperTalk, a programming language
provided with HyperCard. As the system locates new versions of the stack on disc, or as the
user adds new versions manually to the list, they are used to update the current database and,
conversely, it is used to update them.

Each card has an owner name and password, and the ‘Liveware’ button at the top left of each
card gives controlled access to this hidden information, showing the owner and allowing one to log
in or change the password. Passwords are used to impose a degree of integrity on the information.
They are encrypted on entry by an encryption facility that is built in to HyperCard, and stored
(invisibly) on each card in encrypted form. The same password is stored on all cards that belong
to a given owner, so that cards are self-contained and can be treated independently during the

merge operation.
s S e —

Depariment of Psychology
:| Glasgow University
lesgow

' stevedpsy.glasgow
041 339 8855 ext. 5485

Interests | minimal menusls

it 1conic tnterfeces

user interface performance meassurement
direct manipulation

information flow theory

Figure 1: Information on a person in the Scottish HCI Database. The main part of the database
consists of many cards of this form. Note the ‘Liveware’ button at the top left.

(Livewere) People's interests.

optive s
autonomy
Communication systems for the disebled
Computer besed learning
Conversational snaysis end dislogue design
design methodologies
Dialogue destgn
Dislcgue Specification
direct manipulstion
Discourse structures
Distributed cognition
Emotions in {nteraction with systems
Expert System Interfaces
Formal methods applied to HCI
formal specification of interaction
Formal Techniques

W

- FESEEEEEE S Is e

Figure 2: The list of research interests in the Scottish HCI Database. This collects all research
interests mentioned in the database. Clicking on one takes you to the card of a person with that
interest.

11:26 13/7/89

Yersions [Here's another version ... |
Qisk 100:Work Uve Ware: Lvewars L I

Make a copy I

Figure 3: The front card of the Scottish HCI Database. Clicking on a person’s name takes you
to his card. The ‘Versions’ field shows where versions of this database have been found in the
computer system. The ‘Make a copy’ button at the bottom is provided to make it easy to copy
the database for someone else.

10

