
A Lightweight Approach to Technical Risk Estimation
via Probabilistic Impact Analysis

Robert J. Walker, Reid Holmes, Ian Hedgeland
Department of Computer Science

University of Calgary
Calgary, Alberta, Canada

{rwalker, rtholmes, ianh}@cpsc.ucalgary.ca

Puneet Kapur, Andrew Smith
Chartwell Technology Inc.
Calgary, Alberta, Canada

{pkapur, asmith}@chartwelltech.com

Technical report 2006-817-10

2 February 2006

ABSTRACT
An evolutionary development approach is increasingly common-
place in industry but presents increased difficulties in risk manage-
ment, for both technical and organizational reasons. In this con-
text, technical risk is the product of the probability of a technical
event and the cost of that event. This paper presents a technique
for more objectively assessing and communicating technical risk in
an evolutionary development setting that (1) operates atop weakly-
estimated knowledge of the changes to be made, (2) analyzes the
past change history and current structure of a system to estimate
the probability of change propagation, and (3) can be discussed
vertically within an organization both with development staff and
high-level management. A tool realizing this technique has been
developed for the Eclipse IDE.

1. INTRODUCTION
Making good decisions is key to successful development, yet re-
mains a difficult task in an evolutionary development setting. Many
organizations struggle to consider both “managerial” and “tech-
nical” factors on an objective basis. “Managerial” factors that
must be considered include predictions of market forces, conflict-
ing stakeholder interests, and budgetary constraints [32]; “techni-
cal” factors include the ease with which proposed extensions can be
accommodated by the current software structure [4]. The organi-
zational difficulties arise from the fact that those with the decision
making roles typically have the least access to detailed technical
knowledge [4, 30], while those with the detailed technical knowl-
edge have the least ability to influence decisions about the direction
of development [25]. To bridge this gap, a means for assessing the
technical risk of proposed changes is needed that can be audited,
for the sake of objectivity, and can serve as the basis for vertical
communication within an organization.

Some authors emphasize the risk of introducing flaws into soft-
ware [17] or causing the failure of a software project [4]. While
these are clearly significant threats, we wish to consider the risk of
any modification task in a more general sense: the risk of an event
is defined as the product of the probability of the event and the
cost of the event should it happen. Thus, we can see that even un-
likely events with very high costs can result in unacceptably high
risks. We expect that an analyst must have at least an approxi-
mate sense of key points within a software system that are likely to
change. The task then becomes one of determining to what extent

these key changes are likely to cause other changes in a cascading
sequence: probabilistic change impact analysis. A variety of ap-
proaches to change impact analysis have been proposed in the past,
but none is appropriate to our context. Many of these techniques
expect to be provided with implementations of the initial changes
in order to perform their analyses [19, 12, 3]; this is not practi-
cable at an early planning stage. Other change impact techniques
exist that try to support decision-making at early phases; some of
these expect complete and accurate documentation to be available
for analysis [34], others require detailed grammars to be specified
as an input to the analysis [18], and still others depend solely on
the qualitative judgment of a set of experts [14, 28]. None of these
techniques copes well with the assessment and communication of
technical risk within an evolutionary development and within an
organization in which decision making tends to be separated from
detailed, technical knowledge.

Instead, we propose a decision support technique (1) that sup-
ports simple entry and update by an analyst of even weakly-
estimated knowledge of likely changes, (2) that automatically per-
forms change impact estimation based on such “educated guesses,”
and (3) that can be used as a basis for vertical communication
within an organization. Our technique works from three inputs:
a structural dependence graph that is automatically extracted from
a software project; change history data for that project that is au-
tomatically extracted from a CVS repository; and an indication by
an analyst of the key components where a proposed feature is ex-
pected to result in a definite change. The technique then uses the
structural dependence graph and change history data to estimate the
probability that these definite changes will propagate to the rest of
the system. Our algorithms are defined in such a way that chang-
ing the indication of the definite changes is simple and the results
recomputed in real time. The technique has been implemented as a
plugin to the Eclipse IDE and deployed to our industrial collabora-
tors for an initial evaluation.

The remainder of the paper is structured as follows. Section 2
describes our concrete tool implemented as an Eclipse plugin. Sec-
tion 3 outlines the data extraction steps used to drive the technical
risk estimation algorithms. Section 4 describes and analyzes the
theoretical model on which our technique is based. An prelimi-
nary, informal industrial evaluation has been performed and is de-
scribed in Section 5. An analysis of the potential weaknesses of this
approach, future work, and remaining issues are discussed in Sec-

tion 6. Section 7 considers related work. The contributions of this
paper are a theoretical model for lightweight, probabilistic change
impact estimation and a discussion of how this model can be used
for decision-support in an industrial context.

2. THE TRE TOOL
Technical risk estimation is a process of specifying starting points
for changes and estimating the likely propagation of those changes
to the rest of the system. We have implemented a tool, named TRE,
to support this process as a plugin to the Eclipse integrated develop-
ment environment. The TRE tool analyzes structural dependencies
between Java files within a project, plus historical data from a CVS
repository regarding old versions of those files, to perform its es-
timations. Analysis is performed at the granularity of types; we
consider alternatives in Section 6.

Four steps are needed to perform technical risk estimation:
(1) extraction of dependency structure from the project source;
(2) extraction of change history data from a CVS repository;
(3) creating a conditional probability (CP) graph model (or load-
ing an existing CP graph model); and (4) interacting with the CP
graph model to make technical risk estimates. The first three steps
are supported via Eclipse wizards; Figure 1 shows an example.

Extraction of dependency structure operates on one or more
Eclipse projects residing in the workspace, as specified by the an-
alyst. Currently, dependency analysis is performed only on Java
files. The result of this extraction is an XML file representing the
dependency graph for the types declared within the project. Depen-
dencies on types external to the project are noted as such. External
types are considered immutable for the purposes of technical risk
estimation. Our interpretation of “dependency” is explained further
in Section 3.1.

Extraction of change history data operates on a module in the
CVS repositories that the workspace records (these can be viewed
and modified via the standard CVS Repositories view of Eclipse).
The result of this extraction is an XML file representing the inferred
atomic change sets that have occurred in the repository or reposito-
ries specified by the analyst. The inference process performed by
the tool is described in Section 3.2.

A CP graph model can be generated from any structural depen-
dency graph and any change history data. The CP graph is effec-
tively a structural dependency graph annotated with probabilities
on the dependency edges; each of these represents the conditional
probability that a change to the target node will result in a change
to the source node. The way in which these conditional probabili-
ties are computed is described in Section 3.3. The CP graph is also
written to an XML file; this file may be reloaded at later times to
continue analysis.

Finally, the technical risk graph model may be used to estimate
the risk of performing proposed changes to a project. The analyst
indicates which types declared in the project will be the seed points
for change. TRE then estimates the technical risk by propagating
these seed points through the remainder of the CP graph according
to the conditional probabilities annotating the dependencies. De-
tails of the algorithms used are described in Section 4. The risk
of changing a type is defined as the product of the probability of
changing that type and the cost of changing that type. The total
risk of a proposed change is the sum of the risks of changing all
the types in the project. Currently, the cost of changing any one
type is defined uniformly as 1 for the sake of simplicity. Various
alternatives are possible; we consider this issue further in Section 6.

An Eclipse perspective has been implemented to simplify the an-
alyst’s interaction with the TRE tool during technical risk estima-
tion. In Figure 2, we see an analysis being performed on a risk

Figure 1: The Eclipse wizard used to select CVS projects for
extracting change history data. Here, change history data
is about to be extracted from the org.eclipse.jdt.core
project.

graph representing a portion oforg.eclipse.jdt.core . The
perspective provides two views: on the left is theRisk Graph Nodes
view, and on the right is theTechnical Risk Resultsview. Four but-
tons are present on the tool bar for the Risk Graph Nodes view:
Extract Structure, Extract History, Create CP Graph, andSelect
CP Graph. The first three correspond to the first three steps in the
process described above; the fourth allows an existing CP graph to
be reloaded.

The final, interactive step of the technical risk estima-
tion process proceeds as the analyst selects or unselects the
types displayed in the Risk Graph Nodes view. In the
example, we see thatorg.eclipse.jdt.core.IField and
org.eclipse.jdt.core.IMethod have been selected by the an-
alyst. The computation performed by the tool is displayed both in
the Technical Risk Results view and on the status line. In the Tech-
nical Risk Results view is a list of the types in the project along
with the risk of that type changing and the uncertainty in that risk
calculation. The types are sorted and coloured according to the cal-
culated risk: the most intense red (resp. darkest grey in a greyscale
rendering) and the highest risk is at the top, shading to white and
the lowest risk at the bottom. Note that the risk of the selected types
changing is currently defined as 1, and so these appear at the top of
the list.

3. DATA PREPARATION
Issues involving the design of the basic data extraction and prepa-
ration steps of the tool are considered in this section. We begin
with structural dependency extraction in Section 3.1, continue with
change history data extraction in Section 3.2, and end with the con-
struction of a simple conditional probability model annotating the
structural dependencies in Section 3.3.

3.1 Structural Dependency Extraction
To perform structural dependency extraction, TRE begins by re-
questing that an AST be constructed for the selected project(s). A
subclass oforg.eclipse.jdt.core.jdom.ASTVisitor deter-
mines dependencies by visiting the nodes in this AST. TypeA is
considered dependent on typesomepkg.B if and only if: (a) the

Figure 2: Technical Risk Perspective in Eclipse, showing interaction involving technical risk estimation on JDT core.

nameB (or somepkg.B) is explicitly mentioned byA and this defi-
nitely resolves to typesomepkg.B ; or (b) A contains an expression
that definitely resolves to typesomepkg.B and the result of this
expression is used within a larger expression, e.g., the result type
of a method invocation resolves tosomepkg.B and this is used as
the prefix to another method invocation. Other definitions of de-
pendency could have been chosen [24]; this one was convenient.

A structural dependency graphS = (T, D) is defined as the
result of this process, whereT is the set of types declared within
the selected project(s) andD is the set of dependencies between
types as described above. Self-dependencies are ignored. More
formally,

D ⊆ T × T \ {(t, t)|t ∈ T}. (1)

3.2 Change History Extraction
To perform change history extraction, TRE traverses
the specified module within a CVS repository. For
each file, the log entries are retrieved (instances of
org.eclipse.team.internal.ccvs.core.ILogEntry),
and information on the author, comment, and timestamp stored for
the file revision are recorded.

Atomic change sets are inferred by comparing log entry data.
Two files that share the same author and comment, and where the
timestamps of adjacent check-ins differ by less than three min-
utes [16], are considered members of the same atomic change set.

The change history is then recorded as an XML file consisting
of a sequence of atomic change sets recording the author and com-
ment, and the earliest of the timestamps, plus the set of files that
were modified.

3.3 CP Graph Construction
To construct a conditional probability (CP) graph, the structural
dependency graph is initially annotated with data from the change

history. The number of revisionsvi to each typeti is recorded
at each node in the structural dependency graph. For each edge
ei,j = (ti, tj) in the graph, the number of times thatti and tj

occur in the same atomic change set (notedvij = vji) is recorded
at that edge. The conditional probabilities of a change propagating
across each edgeei,j may then be calculated as:

Pr(ti|tj)|ei,j ≈ vij/vi. (2)

To deal with the discreteness of the data and its occasional poor
quality, the results of Equation 2 must be adjusted. This equation
makes two assumptions: (1) thatvi ≥ vij ; and (2) thatvi > 0. If
either is false, the result will be an invalid probability, so the result
must be clamped to fall within the unit interval[0, 1].

To deal with sparse data, we track an interval of conditional prob-
abilities. In the case of few or no revisions, both the numerator and
denominator can be 0; nothing can then be said other than that the
probability of a change propagating across an edge is somewhere
between 0 and 1. Similarly, we wish to account for the difference in
quality between evaluating, e.g.,1/10 and100/1000; while each
would result in a calculated conditional probability of0.1, our con-
fidence in the latter would be much stronger. We borrow a simple
approach involved in estimating the accuracy of physical measure-
ments: we consider the error in the numerator and denominator to
be±0.5. The results are again clamped to the unit interval.

Combining these adjustments, we arrive at the following equa-
tions:

Pr
min

(ti|tj)|ei,j = (3){
0 if vi = vj = 0,

max
{

0,
vij − 0.5
vi + 0.5

}
otherwise;

Pr
max

(ti|tj)|ei,j = (4){
1 if vi = 0,

min
{

1,
vij + 0.5
vi − 0.5

}
otherwise.

(Continuing our simple example, 1/10 would result in a conditional
probability range [0.048,0.158] while 100/1000 would result in a
conditional probability range [0.099,0.101]).

The conditional probability graphG is then recorded in an XML
file as a structural dependency graphS = (T, D) annotated with
the conditional probability intervals for each edge, computed ac-
cording to Equations 3 and 4. More formally,

G = (S, πC : D 7→ I), where (5)

I = {[m, n]|m ≥ 0 ∧ n ≤ 1 ∧m ≤ n}. (6)

4. THEORETICAL MODEL
In this section, we consider details of the algorithms underlying
the TRE tool and their formal basis. The technical risk estimation
step proceeds from a set of types marked as seed points for change
by the analyst. The probability of these types changing is defined
as 1, although the algorithms below could make use of any constant
probabilities attached to these seeds.

In Section 4.1, we describe how the probabilistic change impact
can be computed from a conditional probability graph and a set of
seed types to provide a probabilistic change impact model. In Sec-
tion 4.2, the final step of estimating the technical risk is considered.

4.1 Probabilistic Change Impact Analysis
Assume that each modification to a type is due either to an immedi-
ate modification (i.e., the type is in the seed set) or to a propagation
across a sequence of direct dependencies stemming from such an
immediate modification.

Begin with a conditional probability graphG as defined in Sec-
tion 3.3. Let∆0 ⊆ T be a set representing the seed types that the
analyst assumes will be immediately modified. We wish to deter-
mine the probable change impact to the remainder of the types in
the project, i.e., for every typet ∈ T , we wish to determine the
probability thatt will be modified given that every type in∆0 is
modified. We can consider this task to involve the construction of
a fuzzy set∆ = (T, µ) whereµ : T 7→ [0, 1] is a membership
function indicating the probability that each type will change [36].

From the definition of conditional probability we have that

Pr(t1 ∩ t2 ∩ t3) = Pr(t1|t2 ∩ t3) · Pr(t2|t3) · Pr(t3)

for any three typest1, t2, t3. We have the assumption that a modifi-
cation to a givent can occur only either becauset ∈ ∆0 (in which
case this probability is1) or because a type upon whicht depends
has changed. There must exist a path throughG from some typeδ
in ∆0 to t for t to have changed. For every pathδ, t1, t2, . . . , tn, t,
the probability thatt must change is:

Pr

(
t ∩ δ ∩

n⋂
i=1

ti

)
=

Pr

(
t

∣∣∣∣∣δ ∩
n⋂

i=1

ti

)
· Pr

(
t1

∣∣∣∣∣δ ∩
n⋂

i=2

ti

)

· Pr

(
t2

∣∣∣∣∣δ ∩
n⋂

i=3

ti

)
· . . . · Pr (tn|δ) · Pr (δ) .

This equation simplifies significantly because a given type in the
path will change only if its predecessor changes; hence, each inter-

section collapses to the type at the destination of the path:

Pr (t) |δ =

Pr (t|t1) ·Πn−1
i=1 Pr (ti|ti+1) · Pr (tn|δ) · Pr (δ) . (7)

There may be more than one path that leads fromδ to t, and there
may be many types in∆0 from which paths lead tot. Each path
itself yields a fuzzy setΘi indicating the probability that a change
to its start will propagate to parts on that path. The fuzzy set∆
that we are interested in determining is simply the union over every
Θi that is yielded from a path beginning at some element of∆0.
We consider the probability thatt will change to be the maximum
of the probabilities calculated along all possible paths from a part
in ∆0 to t, which is consistent with the standard definition of the
union of fuzzy sets [36].

We can see that the probability of a change propagating from a
source types to a target typet is analogous to finding the longest
path between two vertices in a graph. Because the probability will
either remain constant or decrease at each step, infinite paths due to
cycles do not cause us difficulties. We proceed with a variation on
a modified Dijkstra’s algorithm [6]. In this variation, probability is
analogous to a reciprocal of distance, requiring the calculation of
maxima to replace minima,0 to replace∞, etc. In the following
algorithm,G is a conditional probability graph as defined in Equa-
tion 5, ands ∈ T is a distinguished source type; the output is a
functionρs : T 7→ I. The lower bounďρs and upper bound̂ρs of
ρs for each value ofT will be calculated separately. Furthermore,
we defineDt = {q|(q, t) ∈ D} be the types directly dependent on
typet.

CHANGE-PROBABILITY(G, s)

1 for every type t ∈ T
2 ρ̌s(t) := 1, W := T
3 for q ∈ T \ {t}
4 ρ̌s(q) := 0
5 while W 6= ∅
6 find some w ∈ W such that ρ̌s(w) is maximal
7 W := W \ {w}
8 for v ∈ W ∩Dw

9 ρ̌s(v) := max{ρ̌s(v), ρ̌s(w)× Prmin(v|w)}
10 for every type t ∈ T
11 ρ̂s(t) := 1, W := T
12 for q ∈ T \ {t}
13 ρ̂s(q) := 0
14 while W 6= ∅
15 find some w ∈ W such that ρ̂s(w) is maximal
16 W := W \ {w}
17 for v ∈ W ∩Dw

18 ρ̂s(v) := max{ρ̂s(v), ρ̂s(w)× Prmax(v|w)}.

The proof thatCHANGE-PROBABILITY computes the proba-
bility that f will change given thats will change is largely identical
to that for Dijkstra’s algorithm. The direction of inequalities is re-
versed, and the sums are replaced with products, which does not
alter the argument. Thus,ρs(f) represents the maximum product
of the input conditional probabilities (for a lower bound traversal
or for an upper bound traversal) over any path froms to f . Given
this and thatPr(s) = 1, ρs(f) = Pr(f)|s by Equation 7.

An implementation of Dijkstra’s algorithm that uses an unsorted
working set has running time inO(|T |2); a more rational prior-
ity queue implementation based on Fibonacci heaps reduces this to
O(|T | log(|T |)+ |D|) [5]. The changes introduced byCHANGE-
PROBABILITY do not alter these arguments.

Because, in general, we will want to know the probability of
changing each type given that some set of source types will change,
we can consider some alternatives. Our first choice, and the
one that we have chosen to implement, repeats the computation
of CHANGE-PROBABILITY for each of the typesδ ∈ ∆0.
We could choose to pre-computeCHANGE-PROBABILITY for
eachδ, running in total timeO(|T |2 log(|T |) + |T ||D|) for the
Fibonacci heap implementation. For cases of large|T |, this can
impact interactive speeds when most of these computations will
never be used. Instead, we compute each only on demand, and
cache the results. The best choice is likely to run a background pro-
cess that uses spare cycles to compute other paths when the analyst
has not asked for a specific∆0 to be computed. Other alternatives
for computing all-pairs shortest paths include the Floyd-Warshall
algorithm [9] with a running time inΘ(|T |3), and Johnson’s al-
gorithm [13] with a running time inO(|T |2 log(|T |) + |T ||D|);
neither of these represent an improvement over the repeated use of
CHANGE-PROBABILITY.

We define arisk graphR to be a structural dependence graph
augmented with the change propagation probability functionsρs

for all s ∈ T :

R = ((T, D), {ρs : T 7→ I|s ∈ T}). (8)

Attempting to access one of these functions that has not been
cached results in its computation.

For a given risk graphR and seed set∆0, our task is now to
determine the fuzzy set(∆, µ) representing the probability that a
change will spread from the seed set. The membership functionµ
must also be computed with lower (µ̌) and upper (̂µ) bounds, for
each type. The algorithm below provides this step.

FUZZY-CHANGE-SET(R, ∆0)

1 ∆ := T
2 for every type t ∈ T
3 find some maximal ρ̌δ(t) ∈ {ρ̌d(t)|d ∈ ∆0}
4 µ̌(t) := ρ̌δ(t)
5 find some maximal ρ̂δ(t) ∈ {ρ̂d(t)|d ∈ ∆0}
6 µ̂(t) := ρ̂δ(t)

For an unordered set{ρs(t)|s ∈ T}, lines 3 and 5 inFUZZY-
CHANGE-SET require running time inO(|T |) while the for-loop
in line 2 iterates through every type in the graph. An alternative
is to store them in a Fibonacci heap, where lines 3 and 5 could
each be performed inO(1). (Each of the|T | runs ofCHANGE-
PROBABILITY would result in a separate value that would re-
quire storage; inserting these into Fibonacci heaps for retrieval
of maxima at lines 3 and 5 ofFUZZY-CHANGE-SET would re-
quireO(|T |) running time which would not alter the complexity of
CHANGE-PROBABILITY should this be added as a final step.)
The storage ofµ(t) at lines 4 and 6 could be performed as an
unsorted set, resulting in a constant running time if such storage
would suffice for later purposes. In fact, there is no reason to keepµ
in an order different thanT itself, so performing the for-loop in the
order in whichT is stored permits us to avoid needing to sortµ,
and lines 4 and 6 would remain with a constant running time. The
total running time forFUZZY-CHANGE-SET would thus be in
O(|T |2) for the unordered set implementation, orO(|T |) for the
Fibonacci heap implementation.

4.2 Estimation of Technical Risk
If we can assume that there exists a cost-of-change functionκ :
T 7→ <+ that is independent of paths through the risk graph,

and given the fuzzy set(∆, µ), we can compute the total techni-
cal riskτ of performing a change∆0 as:

τ |∆0 =
∑
t∈T

κ(t) · µ(t)|∆0 . (9)

Ignoring the cost of calculatingκ, Equation 9 consists of a simple
sum of products. The functionsµ andκ can each be recorded in
a set sorted in the same order asT , thus yieldingO(1) lookup
times. The total running time to compute Equation 9 will thus be
in O(|T |). As a starting point, we have used the simplistic notion
thatκ ≡ 1; we consider more realistic options in Section 6.

5. PRELIMINARY EVALUATION
As a preliminary step in evaluating the efficacy of the approach, a
study was undertaken by our industrial partners on the use of the
tool to plan change tasks on their codebase. This study is neces-
sarily informal at this stage, as (un)usability issues inherent with a
prototype can easily mask effects of (un)usefulness. For the sake
of better understanding how our partners would approach the use
of the TRE tool, they were given the freedom to conduct the study
in a manner that made sense to them.

The tool was assessed by a team of four individuals: one in
a technical decision making role with little current knowledge of
the fine-grained code structure; one in a technical lead role involv-
ing small-scale design and implementation decisions; and two key
front-line developers. This team considered a variety of tasks: three
code optimizations, three bug fixes, and three changed require-
ments; specific details of the tasks are hidden to protect intellectual
property of our industrial partners. For each task, the team was first
asked to give an estimate of the risk involved, in terms of likely
number of files that would need modification. They then used the
TRE tool to estimate the risk. And finally, the actual number of
files that were modified were compared against the estimates. The
team was given a written explanation of the operation of the TRE
tool, and encouraged to discuss it as a group.

A serious issue was raised by the team: the granularity at which
the tool expects its input is too fine-grained for individuals with
technical decision making roles but who do not develop code on
a daily basis. People in such roles understand the software at an
abstract level, often architectural. But such knowledge is difficult
to manually translate into a selection of a set of files. Without the
ability to formulate a very coarse model, downwards communica-
tion within an organization will not be facilitated by the tool. Fortu-
nately, improving this situation can be achieved through better user
interface and workflow design that we discuss further in Section 6.

The team summarized their view of the TRE tool thus: “The tool
seems to be most useful with certain types of changes. For bug fixes
and requirement changes the results using the tool seem reasonably
close. However for optimizations it was not very useful and seems
to over-estimate the changes required.”

The data that they collected and reported is summarized in Ta-
ble 1. When asked for more detail regarding what these num-
bers mean, they explained the process that they used: the team-
estimated risk represents how many files they considered likely to
change, while the tool-estimated risk were how many files had a
50% or greater probability of changing.

In two of the three optimization tasks, the actual change corre-
sponded to the range of technical risk reported; in the third case,
our interpretation is that the current structural dependency model
did not account for a propagation either due to a subtle relationship
(such as those that Ying and colleagues [35] consider) or due to one
that a better model could account for, e.g., the need to propagate an
interface change through the type hierarchy. For bug fix task 1, the

Task Team-est. Tool-est. Actual
risk risk change

Optimization 1 5–10 10–17 10
Optimization 2 2–4 2–13 5
Optimization 3 3–5 1 4
Bug fix 1 1–2 1–2 2
Bug fix 2 11 11 14
Bug fix 3 3 1 3
Changed requirements 1 1–2 11–31 2
Changed requirements 2 1–2 1 3
Changed requirements 3 1–2 5–9 2

Table 1: Data reported by the industrial team for their change
tasks.

tool appears to have performed well; however, for bug fix tasks 2
and 3, the tool reportedly underestimated the risk. The report for
bug fix task 2 may be a data entry error, since the tool in its present
form is unlikely not to report a range of risks. For changed require-
ments tasks 1 and 3, the tool seems to have overestimated the risk;
task 2 seems to be suffering from the same structural dependency
model issues discussed above.

Despite what seems to objectively be slightly worse performance
for the bug fix tasks and much worse for the changed requirements
tasks, the team considered the tool more useful for the bug fix tasks
and the changed requirements tasks than for the optimization tasks.
One conjecture is that the summary data does not fully represent
the reality of the situation, e.g., perhaps the correlation of the tool-
estimated risks and the actual changes is coincidence and the in-
dividual files reported as risky do not correspond to the ones that
actually require change. This conjecture must be confirmed or re-
futed in a future, more controlled study.

The team gravitated towards their natural tendency to threshold
the information and treat even a 50–50 chance of change as a pre-
diction of a definite file change and to disregard any lower prob-
abilities; in some circumstances, this will not provide an accurate
interpretation of the estimated risk. Also, whenever the change his-
tory contains no data, we are able to provide no real information on
the probability of change propagation (i.e., 0.5±0.5). This seems
to have been an especially troublesome artifact, but without data,
no analysis of the change history can be performed.

Ultimately, usability issues did limit the evaluation of the use-
fulness of the approach. Nevertheless, at least three lessons can be
taken from this exercise: (1) the detailed risk data needs to be re-
ported in a fashion that takes people’s tendency to threshold into
better account, and that deals with uncertainty more clearly; (2) a
more iterative approach to building these models and communicat-
ing their contents upwards and downwards through an organization
is needed, where those with less detailed knowledge can view the
data at a more abstract level; and (3) a more comprehensive struc-
tural dependency model is needed.

6. DISCUSSION AND FUTURE WORK
As a result of our preliminary evaluation and of our original plans,
a number of extensions and issues remained to be considered and
possibly realized in our tool implementation. We summarize these
in the following subsections: Section 6.1 considers the difficul-
ties inherent in evaluating the probabilistic results of the theoretical
model, and the need for furtherin situ study; Section 6.2 considers
the potential sources of error in the data extraction and modelling
which might be better addressed; and issues surrounding workflow
and organizational communication are discussed in Section 6.3.

6.1 Evaluation of model and tool
Currently, the model and tool we have described make a number of
assumptions that may be violated in the real world. Our preliminary
evaluation suggests that issues that we had considered to be minor
points of usability would actually be too severe for the tool to be
adopted in the manner intended. An iterative approach toin situ
evaluation will continue to be necessary to ensure that additional
such points do not intrude in future.

Aside from such practical issues, the question as to whether the
model that underlies the tool produces results that are accurate re-
mains unanswered. The TRE tool reports the technical risk of a
proposed change task as the combination of the probability that
a change will propagate to a given type and the cost of changing
that type should the propagation occur. Its probabilistic predictions
are valid only for a single trial; while one might expect that a set of
predictions will become very inaccurate after only a few trials, test-
ing convergence to a probability will require a very large number
of trials. Similarly, strict correlation between a thresholded prob-
abilistic prediction (e.g., a prediction above 50% means that the
file is predicted to definitely change) and actual outcomes would
be incorrect: improbable events will occasionally happen and very
likely events occasionally will not. Instead, we have determined a
means for correlating the actual profile of a large number of indi-
vidual probabilistic predictions and single trials with a theoretical
profile. In this manner, we hope to vary some of the assumptions
of the TRE model, such as the form of the structural dependency
model, and compare the results of these variations quantitatively.
We are in the process of implementing the infrastructure to collect
the data for such evaluations. Details of the theory behind it are left
until results from its application can also be reported.

6.2 Sources of error
A number of issues in the way we collect and model data are po-
tential sources of error within our analyses.

An often reported issue is that of the presence of transformations
within the codebase, ranging from the renaming of types to large-
scale refactorings. We are in the process of applying the technique
of origin analysis [10] as a means to better combine data arising be-
fore and after such transformations. A finer-grained representation
of structural dependencies combined with origin analysis is likely
to improve the accuracy of our predictions.

Such transformations are but one impediment to the larger issue
of inferring causality that our model ultimately involves. While
one can determine atomic change sets either because the repository
system supports them explicitly or they can be inferred, approaches
(including ours) that depend on atomic change sets as the basis for
causality inference are at the mercy of the repository commit style
applied by the developers of a given project. For example, are entire
feature sets committed at once or are individual files checked in
on a rather ad hoc basis? Instead, a stronger model for recovering
causality is needed. Utilizing data from change request repositories
to bridge the gaps between atomic change sets is one possibility
(e.g., [8, 31]).

Of particular interest to our industrial partners is the ability to
cope with software that involves multiple languages. Our current
approach for extracting structural dependencies would need to sup-
port specific combinations of languages to understand how they in-
teract. If the number of languages to be simultaneously supported
is small and invariant, the brute force method of providing syntac-
tic and semantic analysis support is likely practicable. However, in
situations where configuration details effectively result in a prolif-
eration of small, special purpose languages, the cost of providing
such support becomes prohibitive. Lightweight approaches involv-

ing lexical analysis [20] or island grammars [18] must be consid-
ered as a more practicable solution.

Our current assumption that the cost of changing any given file
is constant (and “1”) regardless of any other factors is clearly un-
realistic, but serves as a simple starting point. Utilizing data on the
size of changes or the error rates connected with previous changes
(e.g., [17, 31, 22]) are more sophisticated approaches that we will
investigate in future.

6.3 Workflow and organizational issues
A number of issues involving workflow and usability of the tool
have arisen, some of which are straightforward to address while
others are not.

It is clear that the input required by the tool at present is too fine-
grained to support its use by people with only abstract knowledge
of the system under study. On the other hand, an even finer-grained
input could be useful where more specific information is known.
The theoretical model that we have described in this work does
not require that seed points be specified at the granularity of types.
Coarser-grained input could be supported by providing a tree-based
view that collapses types into packages, for example, or that other-
wise provides some form of architectural clustering (e.g., reflexion
models [21]). Likewise, the change history data could be analyzed
at a finer-granularity to allow input at the method- and field-level
when desired.

The issue then becomes one of how to interpret seed markings
at coarse granularities in terms of the underlying fine-granularity
model. Two options would seem worth pursuing. Marking a
coarse-grained item (such as a package) could be treated as equiva-
lent to marking each of its individual constituent types (or meth-
ods). This could interact with organizational workflow in such
a way that the technical decision maker’s initial estimates of risk
would be consistently higher than those of the front-line develop-
ers. What the social and organizational implications of such a phe-
nomenon might be remains unclear. Alternatively, a fraction of the
probability could be assigned to each of the underlying fine-grained
items; note that Equation 7 remains valid for probabilities of seed
points other than 1.

Other issues of practical importance include the ability to collect
the data incrementally as changes happen over time, better user in-
terface controls to adjust the way the results are displayed (e.g.,
sliders for adjusting thresholds of interest and of pessimism), basic
search functionality in the user interface, and the ability to mark
nodes with probabilities other than 1 (e.g., to specify “this is guar-
anteed not to change”). Differentiating the kind of change would
also allow the model to propagate different kinds of change in dif-
ferent fashion. The details of such categorizations, the effect on the
theoretical model, and the practicality of asking for additional input
need to be considered further.

7. RELATED WORK
Various previous work has considered the meaning of “technical
risk” and how it should be managed. Technical risk has been seen
as a serious factor in industrial development for decades (e.g., [7]),
where improved tools and process were often seen as the key means
to mitigate it. Initially, technical risk was often equated with the
risk that the proposed technology to be used in a development effort
would not actually support the application, and so that development
effort would fail (e.g., [2, 4]). Later, technical risk was generalized
to aspects of managing technical personnel and technical projects
(e.g., [30]), and a continued emphasis on process quality as the
means of mitigation. This move towards separation of managerial
decisions and technical decisions has been seen as emphasizing the

organizational gulf between decision makers and technical person-
nel [4]. More recent work attempts to provide questionnaires to
guide assessment of risk (e.g., [14]) or to leverage and combine the
opinions of experts [27, 28]. The TRE tool is seen as providing
input to the release planning process as envisioned by Saliu and
Ruhe [28].

Various authors have considered which risk factors are most se-
rious in software development, often based on surveys of project
managers’ opinions [26, 32]. Others have attempted more objec-
tive, quantitative approaches [23]. Still others provide survey based
approaches to evaluate the risk in a given project

A large body of work emphasizes the risk of introducing defects
into software as it is modified. Belady and Lehman provide a very
early attempt at doing this quantitatively [1]. Mockus and Weiss
provide a probabilistic model of software failures due to a vari-
ety of factors including developer experience and change propa-
gation [17]; Schneidewind [29] provides an alternative model. A
large body of work by Zeller and colleagues focusses on failure
prediction based on historical data (e.g., [31, 22]).

Dependence analysis worked from a strong theoretic basis [11],
and has long been seen as important in software modification [15].
Formal undecidability lead to approximate change impact analysis
techniques [19, 12, 3]. However, all these techniques require de-
tailed implementations as input. In contrast, Turver and colleagues
define a technique for early change impact analysis [34]; unfor-
tunately, it assumes complete and accurate documentation that is
rarely available in the development setting that we consider. Moo-
nen has proposed a lightweight impact analysis technique based on
the creation of island grammars to describe the syntactic cues that
an analyst seeks [18]; however, this approach remains too detailed
for the needs of early decision support.

Many approaches try to evaluate the quality of designs based
on quantitative measures. Tsantalis and colleagues most recently
consider how such quantitative approaches can predict change [33].

Most significant for this workshop are the large number of ap-
proaches that use historical data to guide change tasks. Both Ying
and colleagues [35] and Zimmermann and colleagues [37] consider
how frequent patterns in past change propagation can be used to
guide developers in propagating changes that they might otherwise
miss. They use thresholding to filter suggestions that are unlikely
to be important; in contrast, we must consider the presence of low
probability/high cost events in evaluating risk. The approach we
have presented in this paper is largely complementary to these,
lying at the opposite end of the spectrum between coarse-grained
planning and fine-grained implementation.

8. CONCLUSION
We have described a theoretical model for technical risk estimation
and its concrete realization as the TRE tool. TRE has been designed
to help organizations make more informed decisions about the risks
associated with modifying software elements within their chang-
ing systems. By providing an abstract view about the potential
costs of a particular change to managers, and more concrete data to
developers, the tool facilitates communication between these two
groups. Through supporting the decision making process, TRE al-
lows organizations to ground their development plans both in the
structural nature of their source code and the past development his-
tory that the system has undergone.

Although preliminary evaluation has shown a need to improve
the tool in specific ways to support this vertical communication
between management and developers, we believe that most of
these issues can be addressed by small improvements in workflow-
support and usability.

Ultimately we see the TRE tool as being complementary to many
of the approaches that have come out of the repository mining com-
munity in recent years. Our work extends these approaches to pro-
vide an objective foundation for making decisions at various lev-
els of industrial organizations about the technical risk of software
modifications.

9. ACKNOWLEDGMENTS
The authors wish to thank Stefania Bertazzon for comments on a
draft of this paper. This work was supported in part by the Na-
tional Science and Engineering Research Council and in part by
Chartwell Technology Inc.

10. REFERENCES
[1] L. A. Belady and M. M. Lehman. A model of large program

development.IBM Systems J., 15(3):225–252, 1976.
[2] B. I. Blum. Three paradigms for developing information

systems. InProc. Int’l Conf. Softw. Eng., pages 534–543,
1984.

[3] S. Bohner. Software change impacts: An evolving
perspective. InProc. Int’l Conf. Softw. Maintenance, pages
263–271, 2002.

[4] C. Chittister and Y. Y. Haimes. Assessment and management
of software technical risk.IEEE Trans. Systems, Man and
Cybernetics, 24(2):187–202, 1994.

[5] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.Introduction
to Algorithms. McGraw-Hill, 1992.

[6] E. W. Dijkstra. A note on two problems in connection with
graphs.Numerische Mathematik, 1:169–271, 1959.

[7] H. Fischer. Computer system simulation of an on-line
interactive command and control system. InProc. Winter
Simulation Conf., pages 333–340, 1971.

[8] M. Fischer, M. Pinzger, and H. Gall. Populating a release
history database from version control and bug tracking
systems. InProc. Int’l Conf. Softw. Maintenance, pages
23–32, 2003.

[9] R. W. Floyd. Algorithm 97 (shortest path).Commun. ACM,
5(6):345, 1962.

[10] M. W. Godfrey and L. Zou. Using origin analysis to detect
merging and splitting of source code entities.IEEE Trans.
Softw. Eng., 31(2):166–181, 2005.

[11] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing
using dependence graphs.ACM Trans. Program. Lang. Sys.,
12(1):26–60, Jan. 1990.

[12] M. Hutchins and K. Gallagher. Improving visual impact
analysis. InProc. Int’l Conf. Softw. Maintenance, pages
294–303, 1998.

[13] D. B. Johnson. Efficient algorithms for shortest paths in
sparse networks.J. ACM, 24(1):1–13, 1977.

[14] J. Kontio, G. Getto, and D. Landes. Experiences in
improving risk management processes using the concepts of
the Riskit method. InProc. ACM SIGSOFT Int’l Symp.
Foundations Softw. Eng., pages 163–174, 1998.

[15] J. P. Loyall and S. A. Mathisen. Using dependence analysis
to support the software maintenance process. InProc. Conf.
Softw. Maintenance, pages 282–291, 1993.

[16] A. Mockus, R. T. Fielding, and J. Herbsleb. Two case studies
of open source software development: Apache and Mozilla.
ACM Trans. Softw. Eng. Method., 11(3):1–38, 2002.

[17] A. Mockus and D. M. Weiss. Predicting risk of software
changes.Bell Labs Technical J., 5(2):169–180, 2000.

[18] L. Moonen. Lightweight impact analysis using island
grammars. InProc. Int’l Wkshp. Program Comprehension,
pages 219–228, 2002.

[19] M. Moriconi and T. C. Winkler. Approximate reasoning
about the semantic effects of program changes.IEEE Trans.
Softw. Eng., 16(9):980–992, 1990.

[20] G. C. Murphy and D. Notkin. Lightweight lexical source
model extraction.ACM Trans. Softw. Eng. Method.,
5(3):262–292, 1996.

[21] G. C. Murphy, D. Notkin, and K. Sullivan. Software
reflexion models: Bridging the gap between source and
high-level models. InProc. ACM SIGSOFT Symp.
Foundations Softw. Eng., pages 18–28, 1995.

[22] N. Nagappan, T. Ball, and A. Zeller. Mining metrics to
predict component failures. InProc. Int’l Conf. Softw. Eng.,
2006. To appear.

[23] D. E. Neumann. An enhanced neural network technique for
software risk analysis.IEEE Trans. Softw. Eng.,
28(9):904–912, 2002.

[24] A. Podgurski and L. Clarke. A formal model of program
dependences and its implications for software testing,
debugging, and maintenance.IEEE Trans. Softw. Eng.,
16(9):965–979, 1990.

[25] K. S. Rajeswari and R. N. Anantharaman. Development of
an instrument to measure stress among software
professionals: Factor analytic study. InProc. SIGMIS Conf.
Computer Personnel Research, pages 34–43, 2003.

[26] J. Ropponen and K. Lyytinen. Components of software
development risk: How to address them? A project manager
survey.IEEE Trans. Softw. Eng., 26(2):98–112, 2000.

[27] G. Ruhe and D. Greer. Quantitative studies in software
release planning under risk and resource constraints. InProc.
IEEE Int’l Symp. Empirical Softw. Eng., pages 1–10, 2003.

[28] O. Saliu and G. Ruhe. Software release planning for evolving
systems.Innovations in Systems and Softw. Eng., 1(2), 2005.
To appear.

[29] N. F. Schneidewind. Predicting risk as a function of risk
factors.Innovations in Systems and Softw. Eng., 1(1):63–70,
2005.

[30] S. A. Sherer. The three dimensions of software risk:
Technical, organizational, and environmental. InProc.
Hawaii Int’l Conf. Systems Science, pages 369–378, 1995.

[31] J. Śliwerski, T. Zimmermann, and A. Zeller. When do
changes induce fixes? InProc. Int’l Wkshp. Mining Software
Repositories, pages 24–28, 2005.

[32] A. Tiwana and M. Keil. The one-minute risk assessment tool.
Commun. ACM, 47(11):73–77, 2004.

[33] N. Tsantalis, A. Chatzigeorgiou, and G. Stephanides.
Predicting the probability of change in object-oriented
systems.IEEE Trans. Softw. Eng., 31(7):601–614, 2005.

[34] R. J. Turver and M. Munro. An early impact analysis
technique for software maintenance.J. Softw. Maintenance:
Res. and Pract., 6:35–52, 1994.

[35] A. T. T. Ying, G. C. Murphy, R. Ng, and M. C. Chu-Carroll.
Predicting source code changes by mining change history.
IEEE Trans. Softw. Eng., 30(9):574–586, 2004.

[36] L. A. Zadeh. Fuzzy sets.Information and Control,
8(3):338–353, 1965.

[37] T. Zimmermann, P. Weißgerber, S. Diehl, and A. Zeller.
Mining version histories to guide software changes.IEEE
Trans. Softw. Eng., 31(6):429–445, 2005.

