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ABSTRACT 

In 2015 the National Spinal Cord Injury Association of Canada reported that 30,000 

Canadians suffer from paralysis in two or more limbs. In many cases this takes away the 

fundamental ability to walk. Walking, an intricate sensorimotor task, involves the interactions of 

both dynamic and balancing neurological processes. Brain computer interfaces (BCIs) are 

attempting to bridge the gap that will allow persons with compromised mobility to interact with 

the world via control of prosthetic devices that can ‘act’ by using solely neural input (i.e. 

thoughts). The goal of this thesis was to aid in the development of a BCI for lower limb 

locomotion by identifying similarities and differences between cortical activity associated with 

executed and imagined left and right lower limb movements using electroencephalogram (EEG) 

and functional magnetic resonance imaging (fMRI). Data from 16 participants showed that it was 

possible to differentiate between right versus left executed and imagined thought processes for 

lower limb locomotion using solely information from an EEG, and that these patterns of brain 

activity were generalizable across time points and trials. It was also found, through the use of 

fMRI, that areas of brain activation in executed and imagined conditions were similar for some 

areas but showed unique activation areas as well. A novel paradigm to co-register EEG and 

fMRI data was developed that can easily be utilized in other contexts. Finally, using EEG and 

fMRI data allowed for an efficient model to use in a machine learning paradigm that successfully 

predicted left versus right lower limb movement. This research adds to the existing body of 

knowledge in understanding psychomotor brain activity associated with thought coordination 

processes involved in the task of walking in normal persons represented by algorithmic patterns.  
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“I would rather have questions that can’t be answered than answers that can’t be questioned.” 
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“When you have exhausted all possibilities, remember this; you haven’t.” 
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“Chaos: When the present predicts the future, but the approximate present does not 
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CHAPTER 1: THESIS INTRODUCTION 

1.1 Overview and Statement of Problem 

Walking is fundamental for a healthy quality of life. Spinal cord injury (SCI) and 

neurodegenerative diseases such as Parkinson’s disease (PD), amyotrophic lateral sclerosis 

(ALS), and multiple sclerosis (MS), can render a person paraplegic. The healthcare and 

economic costs associated with paraplegia are staggering, from the initial injury through the 

weeks and months of rehabilitation, if it is even possible. While neurodegenerative diseases are 

typically associated with deterioration of central and peripheral neural pathways, in SCI these 

pathways remain essentially intact, although there is degradation of spinal neuronal activity over 

the long term if neuronal activity is not maintained [1], highlighting the need for training after 

injury. Thus, hope remains for those with compromised mobility to regain the ability to walk if 

these connections can be repaired or circumvented. Stem cell therapy offers one alternative for 

repairing the spinal cord in some cases. In other cases, brain-computer interfaces (BCIs) may 

provide a means to circumvent the injured site by providing thought control of muscle groups or 

exoskeletons [2],[3]. The current research focuses on BCI development. 

Figure 1.1 shows an overview of how a BCI operates. The first stages in the development 

of an effective BCI are to acquire and process brain activity data, and these are the focal areas of 

the current research project. Maximizing the success of a lower limb BCI requires that accurate 

data are acquired and the most efficient way of processing those data is determined. To get to this 

point, however, a better understanding of the brain’s involvement in human locomotion is needed.  
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Figure 1.1 Overview of a Brain-Computer Interface and Focal Area of Current Research 

Normal walking is an intricate task involving the integration of sensorimotor and 

cognitive neurological processes [4], [5]. Research on these processes is limited, due in part to 

difficulties associated with acquiring brain signals during locomotion [6]. To date, two modalities 

have been primarily used to study walking and other lower limb movements: 

electroencephalography (EEG) and functional magnetic resonance imaging (fMRI). EEG has 

been used to study and identify areas of cortical activity involved in lower limb movements 

[7],[8]. In addition, EEG has been used in the design of a BCI system to control robotic hands 

during a grasping task [9]. Indeed, several classification algorithms have successfully been 

developed in the design of EEG-based BCIs [10]. The addition of fMRI data to our collective 

understanding has led to more comprehensive models of the network architecture associated with 

hand grasping tasks [11],[12],[13]. However, BCIs for the lower limbs using data acquired from 

these methodologies have not been investigated fully. This represents a major research gap.   

FMRI data collection during lower limb movement is non-trivial, as fMRI requires 

participants to lie in a supine position within a physically restrictive space that doesn’t readily 

allow leg movements to mimic walking. Thus, research in this area has been more recent and 
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confined primarily to describing the brain activation patterns associated with simple lower limb 

movements such as ankle dorsiflexion [14],[15],[16]. Some studies have used devices located 

immediately outside the fMRI scanner that allow the participant to simulate walking, such as a 

robotic assisted stepper [17] or a rolling cylinder [18]; however, these technologies have seen 

limited usage and do not account for some of the intricate properties of walking, such as knee 

joint kinematics and the influence of gravity on the stepping motion.  

As an alternative to executed walking, some fMRI studies have asked participants to 

imagine themselves walking (imagined walking) as a proxy for executed walking [19], [20], 

because it is believed that imagined and executed actions, including walking, share similar neural 

substrates [21]. Most fMRI studies using imagined tasks, however, have been confined to upper 

limb movements [22],[23]; this is also the case for the majority of the body of work done with 

EEG [24]. The development of an effective BCI for lower limb movements greatly depends on 

establishing that imagined lower limb movements have a similar cortical signature to that of 

executed movements. Of equal importance are the stimuli used to facilitate the imagination of 

lower limb movement. These have been varied and include task memorization [25], instruction to 

imagine [26], presentation of a fixation cross followed by a visual word instruction [22], and 

flashing lights [23], generally without rationale.  

It is clear then that the development of BCIs for use in lower-limb movements remains in 

its infancy. For example, EEG-driven BCIs have been used to control an avatar in virtual 

environments (forward, left, right movements) [27], [28]. Others have used robot-assisted [29], 

[30] or non-robot assisted BCIs on a training treadmill [29]. Modelling the neural activity 

associated with the components of the walking sequence (e.g., alternating left and right 

movements of the hip, knee, and ankle) in more detail may improve the design of such devices.  
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This project contributes to the BCI development process insofar as it aims to increase the 

fidelity of the input process through accurate feature extraction and translation for lower limb 

movement and classification. All of these considerations provided the impetus for this current 

research project as well as the methodology used therein.  

1.2 Goals of the Thesis and Thesis Structure  

The goal of this thesis was to aid in the development of a BCI for lower limb locomotion. Within 

the goal it was important to accurately determine the similarity and differences between cortical 

activity associated with executed and imagined left and right lower limb movements, while 

observing two different visual stimuli, using EEG and fMRI. Second, information from both 

technologies was used to better understand the spatial and temporal aspects of imagined and 

executed walking. And lastly these data were used to predict activity associated with left versus 

right lower limb movement. This information is anticipated to be useful in a machine learning 

context that will assist in the long-term development of a lower limb BCI. The background, 

specific hypotheses, and rationales for them, associated with this goal will be described in the 

next chapter.   

The thesis is divided into 10 chapters. The current chapter, Chapter 1, provides an 

overview that: a) provides a brief, compelling rationale for the work, b) places the work in the 

context of extant research, c) outlines the goals of the thesis, and d) describes how the project 

will be presented. 

Chapter 2 is an introduction to the current understanding of the neuromotor control 

mechanisms underlying walking, as well as a review of EEG and fMRI and their use to date in 
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studies of locomotion. An overview of machine learning, including the various types and what 

applications these might have will provide context as to the approach used in the current study.  

Chapter 3 details a pilot study of three healthy participants to compare the kinematics of 

upright walking relative to lower limb locomotion executed in a supine position in the MR 

scanner. In addition, this chapter quantified the amount of head motion that occurs during supine 

locomotion that would need to be addressed in neuroimaging.  

Chapter 4 describes the iterative design and development of an MRI-compatible device to 

allow participants to move the lower body extremities while inside the MR scanner, 

appropriately restricting head motion and accurately mimicking lower limb kinematics during 

stepping.  

Chapter 5 describes the data collection methodology (participants and procedures) 

common to all of the experiments of the subsequent chapters.  

Chapters 6-9 present the results of the studies conducted for this thesis. Each of the four 

chapters is devoted to the four specific hypotheses that are developed in Chapter 2. 

Chapter 6 describes the main EEG findings, including the isolation of executed and 

imagined walking EEG brain activity patterns that permit differentiation between right and left 

leg movements and an assessment of the reliability of the EEG data.  

Chapter 7 describes the main fMRI findings, including the differences between executed 

and imagined movements, with computer-generated versus neutral visual stimuli, and the visual 

pathways associated with this difference. 
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Chapter 8 outlines a novel way to integrate EEG with fMRI data that were collected 

during the computer-generated stimulus walking condition.  

Chapter 9 describes predictive models developed using machine learning of EEG 

parameters, and how the model changes by introducing relevant fMRI parameters.  

Chapter 10 summarizes the thesis work, identifies limitations, and suggests future 

avenues of research.  

1.3 My Role and the Contributions of Others  

My contribution to this research project was as lead investigator responsible for project 

formation, experimental design and project planning. I conducted the EEG data collection and 

analysis, designed and collected the fMRI data, developed customized software required for 

stimuli and analysis, designed necessary hardware that did not previously exist, performed 

statistical analyses and was lead author on manuscripts. 

 Many individuals contributed to this body of work. Dr. Janet Ronsky and Dr. Bradley 

Goodyear and supervisory committee members, Dr. Naweed Syed and Dr. Nils Forkert, were 

responsible for guidance in planning and conducting the studies. Dan Pittman aided in fMRI data 

collection, as well as troubleshooting and fabrication of mechanical designs. A research assistant 

student (summer 2017), Calin Gaina Ghiroaga, participated in the data collection. Peter Byrne 

was also responsible for some of the fabrication of machined parts. Dr. Bradley Goodyear and 

Dr. Janet Ronsky assisted in manuscript editing and journal selection for this body of work.  
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1.4 Publication of Findings Generated from Thesis 

Two abstracts and one presentation have resulted from this research thus far. The abstracts were 

presented at the Organization for Human Brain Mapping (OHBM) conference proceedings in 

Singapore, June 2018. These were generated from the isolation of right and left stepping (Chapter 

6) and the generalizability-theory analysis with respect to EEG (Chapter 6). A paper based on 

Chapter 3, on control of head movement during lower limb movement will be presented at the 

Biennial Meeting of the Canadian Society for Biomechanics in Halifax, August 2018. 

Abstract 1: 

A. Kline, D. Pittman, C. Ghiroaga, B. Goodyear, J. Ronsky, “Isolating Right and Left Stepping in 

EEG”, 24th Annual Meeting of the Organization for Human Brain Mapping, Singapore, June 

2018. 

Abstract 2: 

A. Kline, D. Pittman, C. Ghiroaga, B. Goodyear, J. Ronsky, “Generalizability Theory: 

Demonstrating the Process and its Utility with EEG Measurements”, 24th Annual Meeting of the 

Organization for Human Brain Mapping, Singapore, June 2018. 

Presentation: 

A. Kline, P. Zandiyeh, T. Bugajski, B. Goodyear, J. Ronsky, “Controlling Head Movement 

During Lower Limb Locomotion to Understand Neuromotor Control”, 20th Biennial Meeting of 

the Canadian Society for Biomechanics, Halifax, Canada, August 2018. 
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CHAPTER 2: BACKGROUND AND HYPOTHESES 

This chapter reviews the brain’s involvement in walking, followed by a description of the 

methodologies used in this research: electroencephalography (EEG), magnetic resonance imaging 

(MRI), functional magnetic resonance imaging (fMRI) and machine learning. In addition, the 

literature associated with motor imagery and mirror neurons is presented. Finally, the extant 

literature in these areas relevant for this project are described, leading to the research hypotheses. 

2.1 Reciprocal Inhibition and Walking 

Walking is a sensorimotor task that involves the coordinated flexion and extension of muscles of 

the hips, legs and feet. At the simple motor level, this coordination is accomplished by reciprocal 

inhibition of neurons controlling the flexor muscles on one side of a joint, such as the muscles of 

the hamstrings for the knee, contract, causing flexion, while simultaneously the neurons 

controlling the extensor muscles on the other side of the joint are inhibited allowing for stretching 

(quadricep). Then the opposite occurs, in that those muscles that were flexed now relax and 

extend, while the extensors fire and flex. This alternating sequence is integral for smooth 

repetitive movements like walking [31]. 

Over a hundred years ago, Brown [32] stated that “acts of progression”, such as 

mammalian walking, are automatic, in that there is an integration of reflex movements that follow 

each other smoothly and successively. What was particularly interesting about this concept was 

that neither descending nor sensory input was needed to generate a stepping motion. While this 

idea was revolutionary at the time, by the latter part of the 20th century it was commonly accepted 

that rhythmic movements are generated by the central nervous system and do not require sensory 

feedback for their execution [33]. Brown’s model, called “reciprocal inhibition” or “half-center”, 
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suggested there were opposing paired centers in the spinal cord – one that excited flexors and 

inhibited extensors, and another that excited extensors and inhibited flexors [31]. These centers 

would mutually inhibit each other so as to generate the flexor-extensor rhythm, where the 

rhythmic output was modulated by sensory and proprioceptive input. 

Brown’s work went largely unnoticed for several decades, while the prevailing theory of 

locomotion at that time was to attribute its rhythmic nature to reflexes and sensory input generated 

through motion itself [31]. Lundberg in the 1960s revived Brown’s earlier hypotheses, and by the 

end of the century, building on Brown’s early work, it became well established that the basic 

pattern of alternating flexion and extension in mammalian locomotion was produced by spinal 

central pattern generators (CPGs) [34]. 

There has been extensive study of CPGs in invertebrates and some animals, but very little 

in mammals; of particular importance is how the CPG integrates descending commands and 

incorporates sensory feedback [35]. For example, supraspinal control in walking is needed to 

change direction or avoid obstacles, and has been observed via enhanced EEG activity [36]. 

Mental imagery studies using fMRI suggest that supraspinal locomotor cortical commands 

originate in the supplementary motor cortices and are conveyed to the basal ganglia to brainstem 

locomotor centers located in the pontomesencephalic tegmentun [37], [38]. Further, with 

increasing age there is an increase in multisenstory cortical activation control during imagined 

walking that is consistent with reduced reciprocal inhibitory sensory interaction; while subcortical 

areas are similarly activated in younger individuals [39]. This has been suggested as a 

compensatory strategy due to peripheral sensory decline with age.  

The current neuro-motor paradigm regarding walking is that supraspinal inputs interact 

with CPGs to produce the final motoric output [5]. A review article of how humans walk provides 
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a summary of this paradigm [40], where it is a combination of CPGs, input from the cortex where 

feedback is received through muscles, joints, skin and the visual system. A remarkable degree of 

precision and coordination of muscles and joints is needed to lift the distal portion of the foot 

sufficiently above the ground to avoid stumbling, but no more than is necessary (energetically 

efficient). The interplay of these numerous muscles and joints to deliver a coordinated task is 

extremely complex, given that the possible number of combinations is almost infinite. This poses 

a computing problem for the brain to handle all of this information. It has been suggested that the 

brain reduces this computational load by controlling only the position of the joints, leaving the 

musculature some degree of flexibility in coordination. The primary feature of the muscular 

activity (flexors/extensors) is that it needs to be scaled to each other. Neuronal networks in the 

central nervous system have been proposed that generate, coordinate, and control these muscle 

movements [41].  

Three systems in the central nervous system have been proposed to detail the controlled 

movement associated with walking [40]. One that has been described in detail already is that of 

the CPG. This network, located in the spinal cord, is capable of generating a basic locomotor 

rhythm even in the absence of supraspinal or sensory input. A second control system resides in the 

sensory feedback system with three unique roles: 1) driving the active motoneurons, 2) 

contributing to corrective reflexes when confronted with perturbations, and 3) providing error 

signals (differences between intended and actually executed movement, essential in skill 

development). Finally, motor cortex plays a role in control of walking. Various studies using brain 

imaging and electrophysiological evidence indicate that motor cortex contributes to the activation 

of muscles through direct monosynaptic projections to the spinal motoneurons. These 

monosynaptic projections in mammals are formed, in part, from the axons of descending systems 
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in the brain and are characterized by their high conduction velocity [42]. With higher levels of 

encephalization of the nervous system, the number of these direct connections between the brain 

and spinal motoneurons increases, with most of them shifting to motor cortex. As a result, unlike 

the cat, which can walk over flat ground after a lesion of motor cortex, primates cannot [40]. 

Figure 2.1 highlights how human bipedal walking integrates spinal neuronal activity with sensory 

feedback and motor commands originating in the brain. While the CPG system and sensory 

feedback systems are important in and of themselves, the present study is confined primarily to 

the role of brain signals associated with both executed and imagined conscious movement. 
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Figure 2.1 Overview of the central nervous system controlling locomotion, a combination of 

CPG, alternating flexor and extensor neurons while feedback is provided via skin, muscles 

and joints back to the spinal cord as well as cortex. 

2.2 Imagined Walking 

The results of this project are to be ultimately used to help guide the creation of BCIs for 

individuals with compromised mobility of the legs. That is, although patients cannot perform a 

lower limb movement, they can imagine the action.  
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The assumption with imagined movement studies is that neural activity associated with 

imagined movements is similar to that of the movement if it was executed. By the mid-1990s, 

there was converging evidence that motor imagery and actual motor control share neural 

mechanisms and processes [21], [43]. This seems to be a tenable assumption and it is based 

primarily on the notion of a mirroring motor system.  

Mirror neurons (visiomotor neurons) discharge not only when an individual performs an 

action, but also when observing the same behaviour in another individual. This system is also 

fundamental in the imitation of action [44]. Although observing someone else perform an action 

and imagining the action are different, premotor and posterior parietal cortices have been shown 

to exhibit similar activation patterns [45]. The inferior parietal lobule, precentral gyrus and 

inferior frontal gyrus are also involved in imagined motion [44]. Recent electrocorticography 

evidence in humans also strongly supports the notion of a mirror neuron system; gamma band 

neural activity (from MEG) was observed during a grasping task within parietal areas, the inferior 

frontal gyrus, motor and somatosensory cortices [46].   

Given the purpose of the current research and the foundation on which motor imagery is 

based, including an imagined motor task condition is a plausible methodological approach. The 

current research utilized observation of a visual stimulus that mimics actual human lower limb 

movement as well as a neutral stimulus. Consistent with the mirror neuron system theory, the data 

from the more realistic simulus is likely to perform more robustly.  
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2.3 Electroencephalography (EEG) 

2.3.1 Basic Principles 

The electrochemical activity of neurons in the brain (e.g., action potentials, neurotransmitter 

release, intracellular/extracellular exchange of ions) generates small voltages fluctuations. 

Electroencephalography (EEG) is a noninvasive technology that uses scalp electrodes to non-

invasively record these voltages [47]. That is, EEG electrodes can detect the transmission of 

electrical impulses between neurons in two ways: the direct connection between one neuron and 

the next via linker proteins (electrical synapse), and the diffusion of neurotransmitters across a 

synapse (chemical transmission synapse). In a chemical transmission synapse, neurotransmitters 

are released from the synaptic terminals of the pre-synaptic neuron. Acetylcholine is an excitatory 

neurotransmitter that binds to the dendrites of the post-synaptic neuron. Upon binding, sodium 

gates are opened, initiating the depolarization of the post-synaptic neuron, changing the voltage 

from -70 mV to approximately +30 mV [48],[49]. This results in an action potential that is then 

transmitted along the length of the neuron’s axon. When the action potential reaches the synaptic 

terminals of the post-synaptic neuron, it stimulates the release of neurotransmitters, and the 

process repeats itself as the signal continues on to the next neuron. EEG, however, does not detect 

the voltage fluctuation of an individual neuron. Rather, EEG is sensitive to voltages generated by 

millions of pyramidal neurons, whose long finger-like projections are oriented perpendicular to 

the cortical surface (Figure 2.2). This specific geometry allows for the summing of voltages to 

generate a signal detectable by EEG [47].   
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Figure 2.2 Pyramidal neuron with the voltage potential lines shown in with the dashed black 

lines where they are oriented perpendicular to the cortical surface. 

The positioning of EEG electrodes on the scalp follow a standardized layout called the 10-

20 International System (Figure 2.3), where each electrode is separated by 10% or 20% of the 

circumference of the skull. The letters ‘F’ (frontal), ‘T’ (temporal), ‘P’ (parietal) and ‘O’ 

(occipital) indicate the lobe of the brain from where the signal originates, and is recorded via an 

EEG sensor. Any sensor that falls along the midline of the body (sagittal plane) is denoted with a 

‘z’, and locations with odd number subscripts are located on the left hemisphere while those with 

even numbers are on the right. Medical grade EEG caps contain between 64 and 128 electrodes.  
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Figure 2.3 The 10-20 EEG electrode set up and brain model from a top down view. 

At resting state levels of cortical activity, pyramidal cells are synchronized and the EEG 

shows wide slow wave complexes. During cortical stimulation, the pyramidal cells become 

desynchronized, resulting in waves of higher frequency and lower amplitude. These waves are 

biorhythmical and are influenced both by age and the environment. This can result in amplitude 

variation of signals ranging from 10-100 μV [50]. This amplitude is approximately one one-

hundredth of that seen in an electrocardiogram (ECG), which measures voltage fluctuations due to 

heart contractions. There are five main frequency bands used to classify EEG signals: delta, theta, 

alpha, beta and gamma (Table 2.1).  
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Table 2.1 EEG frequency bands and their associated functions [51] 

Band 
Frequency range 

(Hz) 
Associated Functions 

Delta 0.5 – 4.0 Adult slow wave sleep 

Theta 4.0 – 8.0 Drowsiness or arousal 

Alpha 8.0 – 13.0 Relaxed, thinking, reflection 

Beta 14 – 30 Alert, active thinking, concentration 

Gamma 30 – 45 
Short term memory, multiple sensory 

processing 

       

2.3.2 EEG in Lower Limb Studies 

EEG has demonstrated that many cortical areas are involved in the gait cycle when walking on a 

treadmill (e.g., anterior cingulate cortex, dorsal anterior cingulate cortex, posterior parietal lobe, 

sensorimotor cortex) [52], as evidenced by changes in alpha, beta and gamma frequencies of the 

EEG signal. A study of lower limb movement, where participants lay on a table and were assisted 

in flexing the ankle, knee and hip, demonstrated increased EEG activity in the alpha and beta 

frequencies within the primary motor, premotor, supplementary motor, cingulate, primary 

somatosensory and somatosensory association cortices [8]. EEG has also been used to accurately 

decode the kinematics of the hip, knee and ankle joints when walking [7]. 

Not just the motor areas of the brain are important when executing movement. Language 

processing centers of the brain also have been found to modulate motor processes [53]. Action 

words such as ‘write’ or ‘throw’ briefly presented visually on a screen, but too short to be 

consciously perceived, elicit readiness potentials (RPs) - a peak in EEG signals associated with 

motor preparation. This has implications for imagined and executed movement as to where in the 
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brain to expect activation both in EEG and fMRI, as well as the effects different stimuli have on 

motor movement (e.g., visual, auditory).  

Although alpha and beta frequency bands are most commonly studied because they are 

linked to active thinking and fluctuate the most during external stimuli [50], one study using 

robots to assist in gait training (passive walking) during rehabilitation observed modulation of the 

gamma band along the central midline in relation to the phases of the gait cycle, while gamma and 

beta bands were suppressed when active (robot assisted) and passive walking were compared 

[54]. A similar pattern was observed comparing walking to standing [55].  

EEG has also been used in motor imagery studies. EEG patterns associated with 

imagining left and right hand movements were found to be similar to those observed during 

planning the movements [24]. When subjects imagine different types of motor movements (hand, 

tongue, foot), systematic variations in EEG signals are observed from sensorimotor areas [56]. 

Another motor imagery study of hand, foot and tongue movements also showed activation of 

cortex similar to that of actual motion; however, this was most prominent for hand movements 

leading to the conclusion that “…EEG phenomena may be utilized in a multi-class brain-

computer interface (BCI) operated simply by motor imagery [57].” 

Given the predominance of hand movements in EEG imagery studies, it is not surprising 

that much of BCI development has focused on the upper limbs. These have included BCIs for 

finger movement [58] and classifying left and right hand using motor imagery [59]. More 

complex BCIs based on EEG signals have been designed that: 1) focus on discriminating rest, 

imagined grasp, and imagined elbow movement [60]; 2) control of both hands in a grasping 

movement [9]; and 3) integration of motoric feedback to assist in lifting and drinking a glass of 

water [3].  
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EEG-based BCI for lower limbs is more complex, but some progress has been made. For 

example, one study developed a classifier for left hand, right hand or right foot [61].  One of these 

included the classification of walking versus non-walking (forward and backward) and for 

imagined walking versus non-imagined walking (forward and backward) [62]. The use of a BCI 

in driving the right leg of an avatar on a treadmill using information from the left leg movement 

showed significant movement correspondence at the hip, knee, and ankle joints [28]. Participants 

have been able to idle/walk an avatar, and to make stops at predetermined places using kinematic 

imagery within a virtual environment significantly better than chance [27].   

The use of robot-assistance in perturbed-balance training [63] is another lower limb BCI 

example.  Specifically, a stroke patient walked on a treadmill with a robot that interfaced at the 

person’s pelvis. Perturbing pushes to the pelvis by the robotic device assisted in training the 

individual to counteract the perturbations. A BCI system that significantly classified robot-

assisted active and passive walking from non-walking was successful in healthy and stroke 

patients [29].  A BCI system that assists in over ground walking has also been developed [30] and 

used successfully by one participant, but is very cumbersome and so its adoption is unlikely. 

Research that will allow streamlining such a system will be important to continue this line of 

inquiry.  

There are several limitations to the use of EEG in studying lower limb neural activity.  

Specifically, the EEG data do not possess the spatial resolution necessary to accurately localize 

or resolve activity to single gyrus or sulcus, on the order of cm3. In addition, because EEG 

cannot accurately probe the activity of subcortical brain regions, data are based primarily from 

activity located near the surface of the skull, first centerimeter of brain tissue [8]. This is of 

unique concern for accurate assessment of lower limb motor activity because the leg area of 
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motor cortex is deeply and medially located (1-4cm deep), as well as vertical in its orientation 

[64]. Because of this it is also difficult to distinguish left and right leg movements due to the 

minor spatial distance between the left and right hemispheres [8]. The fundamental advantage of 

EEG methodology is that it captures neural responses rapidly, so it has excellent temporal 

resolution (in milliseconds) in monitoring neural activation. On the other hand, fMRI provides 

excellent spatial resolution of all areas of the brain (on the order of millimeters).  

2.4 Magnetic Resonance Imaging (MRI) 

2.4.1 Basic Principles 

Magnetic resonance imaging (MRI) is a non-invasive imaging modality that makes use of the fact 

that some nuclei are charged particles that possess an inherent spin (the origin of this spin can be 

described quantum mechanically but is beyond the scope of this thesis). For purposes of this 

discussion, the description will be limited to the hydrogen nucleus, as it is the most abundant in 

the human body and is thus used in the vast majority of MR imaging applications, including those 

used in this thesis. As a result of spin, a small magnetic moment is generated along its axis. When 

no external magnetic field is present, the magnetic moments of hydrogen nuclei are randomly 

oriented, and thus sum to zero. However, when placed in an external magnetic field, some of 

these moments (or spins, as is often used in the literature) will orient themselves either parallel or 

antiparallel to the external field. In actuality, the alignment is off-axis from the external field (the 

existence of these two discrete states can also be described using quantum mechanics that is 

beyond the scope of the thesis). As a result, the external field applies a torque on the magnetic 

moments, causing the spins to rotate (“precess”) about the axis of the external field (Figure 2.4, 
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left) [65]. The frequency () at which a spin precesses about the magnetic field is referred to as 

the precessional frequency (or Larmor frequency) (Eq. 2.1):  

𝜔 =  𝛾𝐵𝑜            (2.1) 

where () is the nucleus-specific gyromagnetic ratio and Bo is the external magnetic field strength 

(in Tesla).  

 

 

Figure 2.4 A parallel spin and an antiparallel spin in an external magnetic field, B0 (left). 

The parallel state is the lower energy of the two, and thus there is a slight excess of spins in 

this state relative to the antiparallel state, giving rise to a net magnetization, M0 (right). 

At equilibrium, there is a slight excess of spins in the parallel state relative to the 

antiparallel state. Thus, the net magnetization, MO, is non-zero and aligned along the direction of 

the external magnetic field. For the purposes of imaging, a secondary magnetic field, a 

radiofrequency (RF) pulse, B1, is often applied in a direction perpendicular to B0, pulling MO 

away from the direction of B0 (as a result of forcing spins into the higher-energy antiparallel 

state). After this secondary magnetic field is released, the spins gradually return to equilibrium 

(Figure 2.5). 
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Figure 2.5 Application of a 90 degree RF pulse to the net magnetization in equilibrium 

(oriented with the external magnetic field) and the recovery of the net magnetization after 

the RF pulse is released. 

 The rate of this return to equilibrium differs for spins in different tissues [65] and thus acts 

as a source of contrast between tissue types in MRI (called T1 contrast, where T1 is a time 

constant that characterizes the rate of return to equilibrium along the longitudinal axis – parallel to 

direction of external field). Another source of contrast in MRI is based on the fact that hydrogen 

nuclei in different tissue types and chemical environments experience slightly different Larmor 

frequencies because of the proximity of neighboring spins that either add to or subtract from the 

main magnetic field. The result of these differing Larmor frequencies is a rapid decay of signal 

due to dephasing. This decay occurs at different rates in different tissues and is thus a form of 

contrast (called T2 contrast, where T2 is the time constant that characterizes the rate of signal 

decay in the transverse plane) [65] (Figure 2.6). 
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Figure 2.6 Diagram of time constants T1 and T2 in the longitudinal and transverse planes, 

where T1 is characterized by 63% of the longitudinal magnetization having returned to 

equilibrium, and T2 is charaterized by 37% of the remaining magnetization in the 

transverse plane while it returns to equilibrium.  

 MRI thus involves the disturbance of net magnetization equilibrium using an RF pulse, 

and then a recording of the generated signal (i.e., amount of magnetization in the plane 

perpendicular to the main magnetic field) as it simultaneously decays due to dephasing and 

returns to equilibrium. What is actually recorded is a voltage induced in a coil loop as the 

magnetic flux generated by the rotating magnetization passes through the loop (i.e., Faraday 

induction). 

 It takes a number of RF pulses and subsequent signal recordings to generate the data 

necessary to obtain an MR image. The repetition time (TR) is how frequently the RF pulses are 

applied (in milliseconds) and the echo time (TE) is the time at which the peak of the signal is 

recorded relative to the application of the RF pulse (in milliseconds). Thus, the magnitude of MR 

signal present is determined by the density of spins present and is represented by S in Equation 

2.2, where equilibrium is represented by (So). 

𝑆 = 𝑆0(1 − 𝑒−𝑇𝑅 𝑇1⁄ )𝑒−𝑇𝐸 𝑇2⁄       (2.2) 
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TR determines the amount of T1 contrast because is related to how many spins are allowed to 

relax (return to equilibrium) between RF pulses. TE determines the amount of T2 contrast because 

it is related to how much the MR signal is allowed to dephase before it is collected.  

There are additional sources of dephasing caused by spatial inhomogeneities of the 

magnetic field, leading to a more rapid decay of the signal, characterized by a time constant T2*. 

Certain types of MR imaging can refocus this dephasing to regain a signal amplitude that is 

governed by T2. Other types keep this extra dephasing, as it contains information on important 

sources of magnetic field distortion like iron, which can indicate inflammation or can also 

quantify neural activity. This process is further described when introducing functional MRI [65].  

 For each RF pulse, a different combination of magnetic field gradients (i.e., linear 

alterations in Bo in specific directions) is used to alter the phase and frequency of the recorded 

signals so that it can be spatially localized. The signal that is collected is digitized and stored until 

all the necessary data are collected. An inverse two-dimensional Fourier transform is then applied 

to reconstruct the MR image [65], converting the information from k-space (Fourier space, where 

frequency is encoded along ‘x’ and phase is encoded along ‘y’) to image space. This process is 

applied iteratively on a stack of MR images. 

 To generate 3D information slice selection occurs to elect where in the 3D volume data 

will be acquired from, giving rise to voxels (volume pixels), and therefore a 3D matrix of data, 

where each element is represented by the MR signal present.  
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2.5 Functional MRI (fMRI) 

2.5.1 Basic Principles 

Functional magnetic resonance imaging (fMRI) is a non-invasive imaging technique that detects 

the fluctuations in the blood oxygenation level dependent (BOLD) response and is an indirect 

measure of neural activity, as oxygenated blood is delivered to neural cells via the hemoglobin 

macromolecule of red blood cells. Although oxygen is extracted during increased neural activity, 

there is actually an over-compensatory increase in oxygenated blood to the area (via increased 

blood flow and blood volume) [66].  

Oxygenated hemoglobin is diamagnetic (has zero magnetic moment and disperses the 

magnetic field), whereas deoxygenated hemoglobin changes the susceptibility in the magnetic 

field because it is paramagnetic (i.e., concentrates magnetic field). The presence of paramagnetic 

deoxygenated hemoglobin thus distorts the local magnetic field experienced by the hydrogen 

nuclei of water molecules. fMRI utilizes the T2* contrast described earlier, as it is sensitive to 

field inhomogeneities caused by deoxygenated hemoglobin. Because of the increase in blood flow 

and volume, the result of increased neural activity is a decrease in the local concentration of 

deoxygenated hemoglobin and thus an MR signal increase. The timing of these mechanisms is 

characterized by the hemodynamic response function (HRF) (Figure 2.7).  
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Figure 2.7 Hemodynamic response function. This models the expected BOLD response 

(ratio of deoxyhemoglobin to oxyhemoglobin) for a voxel and represents an indirect 

measure of neuronal activity via metabolic activity. 

 

Typically, the spatial resolution of an fMRI image is about 3 mm on each side (x, y and z) 

of a voxel (3D pixel) [67]. This permits the localization of brain activity on the order of 

millimeters. The anatomical location of brain activity is typically evaluated through the use of 

standard brain atlases, such as the Brodmann’s areas (BA) or Harvard-Oxford Atlas. For the 

purposes of this dissertation, the Harvard-Oxford Atlas will be used to ascribe structural locations 

to functional MRI results. The Harvard-Oxford atlas consists of subdivisions of the brain, based 

first on left versus right hemisphere and then divided into 48 cortical regions and 21 subcortical 

structural areas. These are registered to the MNI152 standard brain, which can be combined 

across subjects to provide a population probability map for each label [68].   

FMRI signals, however, can fluctuate for reasons other than neuronal activity [67], and 

fMRI is also very sensitive to head movement artifacts. Any head movement greater than the 

dimension of a voxel (~3 mm) causes the signal to become distorted. This has proven to be an 

issue when using experimental tasks that require participant movement, such as leg bending or 

straightening. Thus, studies to understand motor movement have been largely restricted to using 
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finger and hand tasks, as they have little to no effect on head movement [69], (with the exception 

of patient investigations such as motor stroke or tremor). 

2.5.2 fMRI Studies of  Lower Limb Movements 

fMRI studies of lower limb movement have been somewhat limited due to the difficulty in 

obtaining data from participants in a restricted space as well as effectively dealing with the 

problem of head movement. In one study of assisted movement and visually-stimulated 

movement [14], areas of the brain that were activated included primary somatosensory and motor 

areas, and cingulate cortex. Robotic assisted and active multi-joint movements also showed 

activation in sensorimotor cortex, anterior vermis of the cerebellum and the right supramarginal 

gyrus [17]. Passively generated knee movements in infants showed activation in the sensorimotor 

areas [70]. One study assessed the activation of different brain regions when participants engaged 

in variations of robotic controlled locomotion, all of which showed a similar response in the 

primary sensorimotor network, frontal cortex, insula and cingulate cortex, and some cerebellar 

areas [15]. Another study measured the torque of ankle dorsiflexion, ankle plantarflexion, and 

knee extension using a specially designed testing apparatus [16]. All three tasks showed activation 

in primary motor cortex, premotor cortex, supplementary motor area, secondary somatosensory 

cortex, putamen, thalamus and cerebellum. In another knee extension study, the effects of patellar 

taping on proprioception were assessed [71]. In the non-patellar tap condition (control), there was 

activation in the medial supplementary motor area, cingulate motor area, basal ganglion, 

thalamus, and medial primary sensorimotor cortex. 

 Like EEG, fMRI has also utilized imagery tasks. Most of these have been in the upper 

limbs, but a few have examined lower limb imagined tasks. An early study using imagined and 

executed hand motor tasks found that both similarly activated primary motor cortex, primary 



 28 

somatosensory cortex, and premotor areas [23]. Similar neural substrates for executed and 

imagined hand movements have also been demonstrated in another study [72], including premotor 

cortex, primary motor cortex, and supplementary motor area. In a more recent study, participants 

observed a series of video clips of an individual executing a hand movement, standing and 

walking. They were then asked to mentally imitate the movements. Activation patterns for the 

tasks of hand movement, standing and walking were significantly different from each other [5]; 

cortical areas involved in imaginary walking included sensorimotor areas, bilateral precentral 

gyrus, left dorsal premotor and cingulate motor area. Another study examined visual imagery 

versus kinesthetic imagery using a finger movement task [25]. The primary motor-related areas 

were similarly activated for both conditions. However, visual imagery activated primarily the 

occipital and superior parietal lobes, while kinematic imagery showed more activation in pre-

motor structures, inferior parietal lobe, dorsolateral prefrontal area, cingulate nucleus, putamen 

and the cerebellum (lobule IV, Crus I, and Lobe VIIb). 

A study that assessed skilled versus novice motor imaging using a high-jumping task 

found that novices used more occipital and parietal areas when imagining the task, while the 

skilled high jumpers activated more of the pre-motor cortex and cerebellum [73]. It was 

concluded that imagery of a skilled task takes time; that is, in order to use an internal perspective 

(i.e., motoric), one must have well established motor representations of the skill, otherwise an 

external (i.e., visual) perspective is used. One study used a rolling cylinder at the base of the feet 

outside the MR scanner to mimic walking [18]. The purposes were to assess if the 

observation/execution matching system would be activated for walking, and if these activations 

would be moderated by the spatial context of the walking task (i.e., an open versus a narrow 

space). The results showed activations in the dorsal premotor area, supplementary motor area, and 
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posterior parietal lobe for both executed and observed walking. Occipital-temporal areas and 

middle temporal gyrus were activated in the narrow space condition. The authors suggested the 

need for the latter activation when walking in a more narrowed space. 

Together the findings thus far suggest that executed and imagined lower limb movements 

are likely to engage similar neural activation patterns, although some differences may be 

expected.  

2.6 Combining EEG and fMRI Data  

It has been pointed out that the EEG has excellent temporal resolution and fMRI provides 

excellent spatial resolution. The effective use of both has been a source of interest by the research 

community. MR-compatible EEG technology is now available to permit the simultaneous 

collection of EEG and fMRI data. This requires non-ferromagnetic electrodes and wires for EEG. 

To date, much of the reported research in this area has focused on epilepsy [74], imagined tasks 

[75], or simple tasks such as eye-open/eye-closed [76] or hand-grip [13]. While the combination 

of EEG and fMRI has been used to study brain activity in response to hand movements [11], it 

has not been used for the study of lower limb movements. 

A particularly useful review article summarizes the integration of EEG and fMRI data, 

discussing four primary approaches for doing so [77]. The first two are asymmetrical in that one 

modality is used to guide the analysis of the other (fMRI-informed EEG and EEG-informed 

fMRI) and thus the data do not have to be collected simultaneously, while the other two do not put 

either EEG or fMRI in a preeminent role (neurogenerative modeling, multimodal data fusion) and 

the data are collected simultaneously. 

In fMRI-informed EEG, the paths of currents to the scalp are identified and an algorithm 

can be applied to find the optimal constellation of neural generators that best explain the scalp 
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potential field. In essence the fMRI data identify the locations and the EEG-derived information 

provides the time course of the neural event. This has been used in studies of visual stimulation 

[78],[79], auditory stimulation [80] as well as sleep, epilepsy, and cognition [81]. 

In EEG informed fMRI, it is assumed that EEG fluctuations are correlated over time with 

fluctuations observed in the fMRI signal. The analysis of voxel activation in fMRI does not only 

include the primary predictor of the timing of stimulus onset and offset, it also includes as another 

predictor(s), extracted EEG features (e.g., alpha signal), assuming this will allow for a better 

model fit to the data. This approach appears to be most useful in revealing functional networks 

that are identified at the single trial level. Studies using this approach have focused on epilepsy 

[82], decision-making [83], and hand grip [13]. 

Neurogenerative modeling specifies the physiological processes that give rise to EEG 

fMRI data. Based on computations of a given model, brain states can be reconstructed from 

simultaneous EEG-fMRI recordings that best explain the observed data. A key component in this 

process is the ability to properly model the biophysical processes that underlie both the EEG and 

fMRI signals. Given the computational intensity of this approach, it has been used mostly to 

model activity in small areas of the brain and is useful in testing hypotheses regarding 

physiological mechanisms and biophysical properties underlying EEG and fMRI signals. One 

study using this approach was based on auditory stimulation [84]. 

Multimodal data fusion uses the data generated from both EEG and fMRI to pinpoint 

temporal and spatial aspects of a task. For example, fMRI statistical maps and EEG data are 

merged into a single matrix and subjected to joint independent component analysis (ICA).  The 

application of this approach is somewhat new, and there are currently a variety of mathematical 

approaches suggested to accomplish the merging [85],[86]. There is as of yet no clear 
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determination of which algorithms are to be used under what circumstances. Studies using this 

approach have focused on working memory [87] semantic processing [88], and auditory stimuli 

[89]. 

One article concluded that: “When one is primarily interested in the neural generators of 

scalp EEG phenomena, fMRI-informed EEG is the method of choice. This approach is founded on 

well-established methods for EEG source reconstruction, and so constitutes the most direct 

technique for assessing related research questions” [77]. Due to the relatively new process of 

using fMRI to assess lower limb movement in general, and the non-existence of literature on 

combining EEG with fMRI for lower limb movement, as well as the research question of interest 

for this study, the fMRI informed EEG approach was the analytical method of choice in the 

current project.  

2.7 Machine Learning 

Machine learning is a discipline that combines mathematics, statistics and computer science 

within a particular facet or domain of knowledge, as a means of improving performance on a task 

without being explicitly programmed to do so. Typically, this requires a large initial dataset that is 

“mined” in order to discover relationships within the data that will enhance the ability to 

accurately predict an outcome given new data [90].  

Approaches to machine learning fall into two broad categories: unsupervised and 

supervised. Unsupervised, as the name would suggest, is used when the nature of the data mining 

is exploratory and the outputs remain unspecified (are unknown). This allows the creation of 

algorithms that will determine what data are important and how many ‘bins’ into which to classify 

the data; some unsupervised algorithms, however, allow the user to select the number of bins. For 

example, using a large number of facial images, an unsupervised machine learning algorithm 
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demonstrated it is possible to train a face detector without having to label images as containing a 

face or not [91]. This study simulated neurons that classified unlabeled data, such as that of a baby 

learning to group types of faces together simply by seeing many of them.    

Supervised machine learning is used when the outcomes are known, the data can be 

labelled, and the classifiers can be trained with the associated classification. For example, data of 

past temperatures and co-occurring weather conditions provide a storehouse of information. Using 

the information about current weather conditions could predict a future temperature. Supervised 

machine learning can be broken down further, depending on whether the nature of the outcome is 

continuous or discrete. The weather example is a continuous outcome. A discrete outcome would 

be whether an event occurred or not (e.g., a tornado) [90]. 

Depending on the nature of the machine learning task, clustering (unsupervised) or 

regression/classification (supervised) techniques are used. Some of these are support vector 

machines (SVMs), linear discriminate analysis (LDA), k-means, forests, k-medeiods, linear or 

polynomial regression, and neural networks [90]. This hierarchical schematic is summarized in 

Figure 2.8, and showcases some of the methods available. 
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Figure 2.8 Overview of how machine learning is broken down first into supervised and 

unsupervised, and subsequently into regression, classification and clustering. From there, a 

few examples that fall within each of these classes are provided. 

Machine learning protocols can be evaluated as to their efficacy on a number of 

dimensions. These include, but are not limited to: memory usage, speed of classification, accuracy 

of classification, and transparency of the algorithm. Table 2.2 provides a summary of how these 

can be evaluated for a two-class classification problem [92]. For regression, evaluation 

alternatives often include mean square error (MSE) or root mean square error (RMSE) [92].  

Table 2.2 An example of a 2-class confusion matrix for evaluating a classification modality 

of machine learning 

Confusion Matrix Predicted Negative Predicted Positive 

Actual Negative True negative (TN) False Positive (FP) 

Actual Positive False negative (FN) True positive (TP) 

 



 34 

The complexity of the data, which includes the number of predictors, and complexity of 

the interactions of the predictors, will also determine the type of machine learning technique used. 

Best practice is to begin with simple classifiers, as they are computationally efficient, while 

maintaining their interpretability [90]. Assuming classification is high with these simpler 

techniques, they should be employed. However, if these techniques provide poor results, more 

complicated systems such as artificial neural networks may be used.  

Artificial neural networks (often referred to simply as neural networks) are comprised of 

artificial neurons (AN) that are based on the anatomy and physiology of biological neurons (BN). 

As described earlier in this chapter, biological neurons can be divided into three main sections: 

information input (dendrites), information processing (neuron nucleus) and information output 

(axon).  The dendrites receive multiple inputs from a host of other neurons, some of which may 

be excitatory and some inhibitory. These inputs are summed, and then exhibit an ‘all-or-none’ 

response; if the amplitude reaches a sufficient threshold, depolarization will occur and the signal 

will continue to be passed to the following neuron, and if not it stops [93]. Paralleling this, an 

artificial neuron has multiple inputs (predictors) from other artificial ‘neurons’ or inputs that are 

summed together, passed through a threshold function (using either a tangential or sigmoid 

activation function), multiplied by a weight, and then passed/not passed to subsequent ‘neurons’ 

in the network. This ultimately leads to an outcome [90].  

Machine learning has been used in concert with brain activity in several studies. Examples 

include its use in lie detection [94], emotional state classification [95], pattern recognition and line 

orientation classifications [96], and clinical psychological discriminations [97]. These have been 

focused on mental activity rather than physical action. 
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In the current research project, data from EEG and fMRI will be used to predict lower 

limb movement outcomes in a supervised fashion. That is, these data serve as predictors and the 

outcome is the correct classification of left versus right lower limb movement. Activity patterns 

associated with left and right lower limb movements during these tasks will contribute to future 

projects that develop BCIs to generate lower limb movements from imagined walking brain 

activity patterns. However, several cautions must be kept in mind with respect to the 

implementation of the proposed approach [98]: decoding the data is a difficult analytic process 

due to the unfavourable signal to noise ratio (SNR) in EEG, voluminous nature, and potential 

unreliability of the data. Inattention to these issues may result in spurious findings and nonsensical 

interpretation.  

 2.8 Hypotheses  

For the purposes of this research an indirect pathway (one that circumvents the spinal cord and the 

control of CPGs) will be used during concious control of stepping. The reviewed literature and 

methodological considerations presented in this chapter give rise to the following hypotheses for 

the current research project:  

Hypothesis 1: EEG data will demonstrate brain activity patterns that distinguish left from right leg 

movements for both imagined and executed conditions; this effect is expected to be  particularly 

strong for the computer generated image based stimuli conditions. 

Hypothesis 2: fMRI will identify areas of the brain that are differentially activated for lower limb 

movement across experimental conditions. Specifically, activation of the sensory motor areas is 

expected across all conditions. In the executed condition, areas of the cerebellum and basal 

ganglia will be activated. In the imagined condition, greater activation of the occipital, parietal 

and frontal lobes is expected. In addition, the CGI condition is expected to be a more robust 
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predictor and elicit a ventral visual pathway. Due to the sluggish response time of hemodynamic 

activity, differentiation between left and right knee extension is not anticipated.  

Hypothesis 3: A computational approach exists that successfully allows accurate mapping of the 

spatial brain activity (fMRI) in relation to the temporal receptors (EEG electrodes) associated with 

lower limb movement. 

Hypothesis 4: A pattern identification algorithm can be identified (using fMRI-informed EEG) 

that classifies left and right leg movement based on brain activity patterns from imagined lower 

limb movement significantly above chance classification. 

Prior to conducting the study proper, two tasks needed to be accomplished. The first was a 

pilot study that illustrates a proof-of-concept to support the utilization of supine-generated data to 

test the hypotheses. This is presented in the next chapter. The second task was to design a device 

that would allow the data to be captured appropriately. This will be presented in Chapter 4. 
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CHAPTER 3: THE COMPARABILITY OF LEG MOVEMENT KINEMATICS DURING 

TYPICAL WALKING AND DURING SIMULATED WALKING IN A SUPINE POSITION 

3.1 Introduction 

Walking is fundamental to a healthy quality of life in humans, as it is both a means of exercise 

and a mode of transportation. The execution of normal walking is an intricate sensorimotor task 

involving the interactions of both dynamic and balancing neurological processes [6]. To study 

this interplay appropriately, concurrently gathered data from body movement and brain activity 

needs to occur. One way to do this is to utilize fMRI technology. However, current fMRI 

technology requires subjects to be in supine position within a spatially restrictive environment 

during data collection. Thus, a clear understanding of the comparability of supinely-generated 

walking movements and normal walking is required.  

Little work has been done to investigate supine leg movement biomechanics and how 

these relate to those of upright walking. Studies that have been conducted to date use a variety of 

methodologies and show mixed results with most research on the biomechanics of supine 

movement has been as it pertains to applications involving weightless exercise (i.e., space 

travel/zero gravity) [99].  In another study the focus was on metabolic and kinetic features of 

supine walking in comparison to supine locomotion, not kinematic signatures, or the usefulness 

of supine locomotion in rehabilitation [100]. 

Thus, one purpose of this study was to compare supine knee flexion/extension with that 

during executed walking. The expectation was that supine leg movements would mimic a portion 

of an individual’s natural gait cycle. The findings will help to determine the veracity of the 

assumption that neurological data collected in an fMRI scanner from supine leg movements will 

provide comparable neurological data to that of normal walking by mimicking stepping.  
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A second purpose was to assess the magnitude of head movement with respect to the 

trunk. Given the sensitivity of fMRI-gathered data to noise from head movements [101], the 

degree of head movement was quantified during the walking and supine motion tasks. No efforts 

were made to hold the head in a fixed position, as the purpose was to simply describe the extent 

to which this might be an issue. 

3.2 Methods  

3.2.1 Marker Setup 

Three healthy, male subjects (aged 19-24) took part in this pilot study. Thirty-five reflective 

markers constructed in the Clinical Movement Assessment Labortory (Foothills, HRIC3C48A) 

were used to define the lower body segments (i.e., left and right hip, knee and ankle joint centers 

and segments). Upper body markers were placed on each acromion, on the proximal and distal 

portions of the sternum, and on cervical vertebrae 7. The head was defined with four markers: on 

the right and left sides of the glabella, and on the left and right parietal bones. Figure 3.1 below 

displays the anatomical locations (left) and how these reflective markers appear in the software 

post-data collection (right).    
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Figure 3.1 Marker setup displaying the anatomical landmarks and the corresponding 

reflection seen by the motion analysis cameras when a participant is lying down, where A) 

notes the markers during a neutral trials and B) highlights the markers used during 

kinematic trials where the medial ankle and knee markers have been removed.  

3.2.2 Data Collection 

Kinematic data pertaining to head motion and knee rotations in 3 planes were collected with 

eight Kestrel Motion Analysis (Motion Analysis Corporation™, Santa Rosa, CA) 

photogrammetric cameras at 120 Hz. Five trials for each of two conditions were performed and 

recorded, with rest breaks for the subject between trials. The two conditions were: normal 

walking gait (5 trials) and supine (on a physio training table) knee flexions/extensions, 

alternating between left and right knees for 5 flexions/extensions of each leg. In addition, 5 rates 
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of supine knee flexion/extension (40, 50, 60, 70, and 90/min) were tested with this paradigm.  

The head translation was recorded for each trial to ascertain the effect the rate of movement 

might have on controlling head motion. A towel and a foam cushion were used to support the 

head and neck during the supine condition. 

Before kinematic trials, the joint and axis centers of the knee, ankle, hip, chest and head, 

were defined. For the knee, the joint center was taken as the midpoint between two reflective 

markers placed on either side of each knee in the jont space. The resulting center was located in 

the joint space between the distal end of the femoral epicondyles and the intercondylar 

eminences of the proximal tibia. The ankle joint center was taken as the midpoint between 

reflective markers on the left and right malleoli. Joint centers for each hip were calculated using 

Tylkowski’s approach [102]:  11% of the inter-ASIS distance medially, 12% distally, and 21% 

posteriorly from each given anterior superior iliac spine (ASIS). 

3.2.3 Data Processing and Analysis 

The software program Cortex (Motion Analysis™, Santa Rosa, CA) was used to track kinematic 

data, which entailed labelling markers in reference to their anatomical landmarks and 

interpolating for frames where markers were missing from view for the duration of the 

acquisition file. Files were saved in .trc file format and imported into Matlab 2017b 

(Mathworks®, Natick, MA), where data were low-passed filtered at 5 Hz to remove high-

frequency noise, where the movement of interest occurred at 0.8-1.4 Hz. 

Coordinate systems for the ankles, knees, hips, head and chest were defined using an 

Euler coordinate system. Figure 3.2 shows two coordinate systems: one before and one after a 

rotation about the point ‘O’. An Euler coordinate system was selected as it made the 
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determination of the rotation matrix more streamlined. Euler coordinate systems are notable for 

the orthogonality of their axes (x,y,z). These coordinate systems were determined locally (on 

anatomical references) via determination of a mechanical axis. In the case of either thigh, the 

mechanical or ‘z’ axis was oriented vertically (superiorly) by using the vector from the hip joint 

center (femoral head) to the knee joint center, and in the shank from the ankle joint center to 

knee joint center. Ankle and knee axes were defined as the vector along the length of the medial 

and lateral markers on either side of the knee and ankle (oriented laterally for each joint). The 

cross product of the mechanical or ‘z’ axis with the joint axis resulted in an orthogonal ‘y’ axis, 

oriented laterally for each knee. Using cross products of the y-axis with the z-axis, the final 

orthogonal ‘x’ axis was determined and oriented anteriorly for the femoral and tibial reference 

vectors. Each axis (x,y,z) for each segment was then normalized with respect to itself.  

To initiate the generation of the head and chest coordinate systems, the four markers 

placed on the head defined the joint center by taking an average of the four points locations. The 

joint center imbedded in the chest was defined by averaging the right and left acromion markers, 

and the proximal and distal sternum markers. Hip joint centers were used to determine a pelvis 

center (i.e., midway between the hip joint centers).  This served as a reference point to define the 

z-axis of the chest (vector between chest center and pelvis center) and the distance between head 

joint center and chest joint center to define the z-axis of the head. The frontal axis of the head 

was defined using the two markers on the front (anterior) side of the head. The frontal axis of the 

chest was determined using the right and left acromion locations. Again, the cross products of 

each z-axis with their respective frontal axes were taken to define local y-axes and subsequently 

the cross products of the z-axes with the y-axes were calculated to determine x-axes. These 

operations led to the definition of the right and left femoral and tibial coordinate systems, and 



 42 

head and chest Euler based coordinate systems. To highlight the orthogonality of an Euler 

system, Figure 3.2 below shows two coordinate systems, one rotated to indicated a change of 

reference frame.  

 

Figure 3.2 Euler coordinate system, where the original axes are orthogonal to one anther (i, 

j and k), and after undergoing a rotation, maintain their orthogonality and become the new 

axes i’, j’ and k’.  

The rotation matrix was computed using the Challis method, using equations 3.1-3.16 to 

compute the rotation, translation and scale factor [103].        

�̅� =
1

1
∑ 𝑥𝑖

𝑛
𝑖=1                                  (3.1) 

�̅� =
1

1
∑ 𝑦𝑖

𝑛
𝑖=1                       (3.2) 

Equation 3.1 above showcases the mean segment point in the static (neutral) condition 

(single frame) to obtain a 3-dimensional average point to defining the segment. Equation 3.2 

utilizes the same approach except that the ‘y’ condition is captured during a dynamic trial, and so 

is associated with as many frames as are present in the tracked and filtered file. 
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xi
' = xi - x                    (3.3)                       

yi
' = yi - y                        (3.4)                  

By taking each marker (xi) and subtracting from it the averaged (x,y,z) point, a vector is 

determined from the averaged point to the marker point (Eq., 3.3 and 3.4). The marker ‘n’ 

represents the number of markers used to define the segment.   

[𝐶] =
1

𝑛
∑ (𝑦𝑖 − �̅�)(𝑥𝑖 − �̅�)𝑛

𝑖=1         (3.5)        

Variable [C] is a cross dispersion matrix (also known as the correlation matrix) [103]. 

The Single Value Decomposition of matrix [C] can be computed from Equation 3.5. The matrix 

[W] will contain the singular values of matrix [C], while the total number of singular values will 

indicate the rank of [C], [103]. Using the orthogonal matrices [U] and [V]T the rotation matrix 

[R] can be calculated (Equation 3.7). However adding an additional component (identity matrix 

with derivative of [U][V]T) ensures that when describing rigid body rotation [R] its determinant 

doesn’t yield -1, but instead +1. 

[C]= [U][W ][V ]T                                 (3.6) 

[R]= [U][V]T                                         (3.7) 

[𝑅] = [𝑈] [
1 0 0
0 1 0
0 0 det([𝑈] ∙ [𝑉]𝑇)

]       (3.8) 

According to Challis [103], a scale factor ‘s’ can be computed that indicates the 

reliability of the assumption that the human body acts as rigid segments during motion. To do so 

the standard deviation associated with the initial condition (static/neutral trial) is calculated, 
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again accommodating for the number of markers present on the segment. This can be seen in 

Equation 3.9 while Equation 3.10 highlights the derivation of the scale factor. Using the trace 

function of the dot product of the transpose of the rotation matrix [R]T the correlation matrix [C] 

can be computed.                  

    𝜎𝑥
2 =

1

𝑛
∑ (𝑥𝑖 − �̅�)2𝑛

𝑖=1          (3.9)          

    𝑠 =  
1

𝜎𝑥
2 𝑡𝑟([𝑅]𝑇 ∙ [𝐶])           (3.10) 

Bringing the variables (s) and [R] together with the average of the segment markers from 

the neutral to the dynamic the variable ‘v’ is calculated (Equation 3.11). This represents the 

vector displacement or translation of the body in 3D space. The 3 variables; v, s and [R] 

represent the displacement, accommodation for rigidity assumption and the rotation of a 

segment, allowing for definition of dynamic positions with accuracy.    

𝑣 = �̅� − 𝑠 ∙ [𝑅] ∙ �̅�                           (3.11) 

Calculating knee angles was based on Ramakrishnan’s method [104]. Theta 1 (1) 

represents flexion extension, with flexion being designated in the positive direction, theta 2 (2) 

for adduction (+) and abduction (-) and theta 3 (3) for internal (+) and external (-) rotation. The 

equations 3.12-3.15 are based on elements of the rotation matrix [R] (Equation. 3.12), as well as 

being dependent upon the calculation of 2. When calculating Euler rotation angles (1,2, 3) it 

is critical to calculate the largest angle first (flexion) then adduction and internal/external rotation 

[104].           
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   𝑅 = [
𝐼′ ∙ 𝐼 𝐼′ ∙ 𝐽 𝐼′ ∙ 𝐾
𝐽′ ∙ 𝐼 𝐽′ ∙ 𝐽 𝐽′ ∙ 𝐾
𝐾′ ∙ 𝐼 𝐾′ ∙ 𝐽 𝐾′ ∙ 𝐾

]       (3.12)      

    𝜃1 = arcsin (𝐾′ ∙ 𝐼/cos (𝜃2))      (3.13) 

     𝜃2 = arcsin (−𝐾′ ∙ 𝐽)      (3.14)  

𝜃3 = arcsin (𝐼′ ∙ 𝐽/cos (𝜃2))                     (3.15) 

Also, this value must be rotated from the global coordinate system (0,0,0) in order to 

place these values in the local knee coordinate system. This can be done by calculating a rotation 

matrix of the global coordinate system (3x3) identity matrix to the vectors located on the shank. 

This rotation matrix is then multiplied with the angular velocity and acceleration. However, 

because this yields a value in radians, it was then converted to degrees by multiplying using 

180/.  

Pearson correlation coefficients were calculated to compare normal walking knee flexion 

with supine knee flexion over a normalized time period for a single stride. Head translation in 3D 

space was determined by performing a maximum value minus minimum value in the global 

coordinate system during supine movement. An ANOVA was used to test for for differential 

effects of direction on head movement. Follow-up t-tests were used to specify the effects.  

3.3 Results 

To orient the reader, ‘normalized time’ describes a percentage of one cycle of gait (0-100), 

where ‘0’ denotes heel strike, followed by stance phase (10-40%) and finally swing phase from 

(40-100%), where the cycle would repeat again. Figure 3.3 showcases this for knee flexion 

during upright walking with a supplementary figure as to the rigid body mechanics behind it.  
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Figure 3.3 Example of one cycle of knee flexion. The top portion of this figure alludes to the 

degree of knee flexion occurring in each point of the gait cycle from, heel strike, to stance 

phase, swing phase and heel strike again, with 0 knee flexion occurring at full knee 

extension. 

Results are separated into the following sections: Knee flexion for the walking and supine 

locomotion conditions; Head rotational motion associated with supine movement (as the 

experimental tasks used in this thesis requires head motion control); and Head movement 

globally and with respect to chest. Each graph displays one full cycle of knee movement 
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normalized from heel strike (or beginning of movement) (t=0) through stance and swing phase to 

heel strike again (or end of movement) at (t=100).  

3.4.1 Knee Flexion During Walking and Supine Locomotion 

Results of right knee flexion for the 5 walking trials on a per subject basis. Maximum 

knee flexion was 74 during walking and occurred at approximately 75% (i.e., t = 75) of the 

stride, while maximum knee flexion in the supine condition was 58 and occurred at 

approximately 50% (t = 50) of the stride. Upon further visual inspection it can be noted that 

walking has a small peak at t = 15 (Figures 3.4-3.6). 

 

Figure 3.4 Walking and supine knee flexion (measured in degrees) for participant 1, for 5 

trials 
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Figure 3.5 Walking and supine knee flexion (measured in degrees) for participant 2, for 5 

trials 

 

Figure 3.6 Walking and supine knee flexion (measured in degrees) for participant 3, for 5 

trials 
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In order to accurately depict the correlation values, enough data had to be sampled from 

the supine condition in order for the swing and stances phases to line up during a normalized 

time plot, this entailed including more data points in the normalized time along the x axis at the 

beginning of each supine trial. Walking and supine knee flexion exhibited a strong association (r 

= 0.9152) (Figure 3.7). As can be seen from this graph, the largest difference is the absence of 

stance phase (time 0-50) from a supine locomotion condition. 

 

Figure 3.7 An averaged knee flexion for upright walking and supine locomotion plotted 

together over normalized time. 

 

3.4.2 Head Motion During Supine Locomotion 

Head flexion (pitch) during supine locomotion was calculated for 3 participants (Figure 3.8). The 

pitch of the head varied approximately 3 within a given trial with respect to the chest. 
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Figure 3.8 Head flexion during supine locomotion over normalized time for 3 participants, 

A) participant 1 B) participant 2, C) participant 3 for 5 trials. 
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To investigate how pitch in the head paired with flexion of the knee joint during supine 

phases the plot in Figure 3.9 was created. There was almost no rotation around the axis of 

rotation correlated with the single plane of movement (supine locomotion).  

 

Figure 3.9 Head flexion (blue) during normalized time of a supine knee flexion (orange). 

This plot is averaged over all 15 knee and head flexion trials across 3 participants (error 

bars indicate the standard deviation of the mean). 

Table 3.1 shows the average maximum head displacement in a global (lab) coordinate 

system over all trials of knee flexions in the supine position with standard error across trials 

represented by ‘+/-’. Maximum head displacement exceeded 2 mm in all directions and for all 

rates of movement (Table 3.1). These were averaged across the 5 supine trials and 3 participants. 
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The x-axis (oriented parallel to the length of the body) had the largest displacement (5.86 mm). 

The y-axis displacement was second largest (4.27 mm) and is associated with the movement of 

the head in left and right directions. The displacement along the global z-axis (pointed vertically 

up from ground) was 2.48 mm.  

An ANOVA revealed a significant effect of direction on head displacement (F(2,4) = 

27.0, p < 0.01). Follow-up t-tests revealed that movement in the z direction (superior-inferior) 

was significantly greater than in the y direction (p < 0.05) and the x direction (p < 0.05), where 

the z axis is oriented parallel to the length of the body.  

Table 3.1 Average head displacement during supine knee flexion movements 

Flexion rate (steps per min) Z (mm) Y (mm) X (mm) 

40 7.2 +/- 0.4 3.0 +/- 1.0 2.1 +/- 0.6 

50 4.0 +/- 0.6 2.9 +/- 0.1 2.2 +/- 0.2 

60 5.6 +/- 0.8 4.4 +/- 0.8 2.9 +/- 0.6 

70 8.0 +/- 1.2 3.9 +/- 0.4 3.6 +/- 0.2 

90 7.0 +/- 1.3 6.4 +/- 4.2 4.6 +/- 2.3 

 

Head movement with respect to chest displacement was investigated to determine 

displacement between the two body segments over time. The graph shown in Figure 3.10 is 

plotted across the 15 trials (across 3 participants) during supine locomotion at 50 steps per 

minute. All values overlap one another at a value of 0, and are of the magnitude (1x10-5 mm). 

This value is negligible as photogrammetry errors are associated with approximately 1 millimeter 

of error when determining marker locations.  



 53 

 
Figure 3.10 Head translation with respect to chest. 

3.4 Discussion 

This study demonstrated there is similarity between knee flexions occurring during upright 

walking and supine stepping but that measures are needed to align the knee flexion kinematics 

over time. The need to address head movement was also highlighted. Minimizing such 

movement to under 2 mm is essential to reduce the ‘noise’ in fMRI data, and left unchecked is 

more likely to be up to 5-6 mm. In addition, despite the lack of stance phase during a supine 

stepping task, the correlation between knee flexion during supine and walking locomotion 

remains high during swing phase.  
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3.5 Limitations 

This study had several limitations. The calculation of the knee and hip joint centers were 

somewhat subjective. Tylkowski’s method is cited as being more accurate than Andriacchi’s; 

however, it is still associated with approximately 1.90 cm of discrepancy from true radiographic 

hip joint center [102]. A combination of Tylkowski’s and Andriacchi’s method is superior than 

either one alone. This combined approach uses Tylkowski’s frontal plane proportions and 

Andriacchi’s sagittal plane ones, generating hip center results within 1.07 cm of the true 

radiographic hip joint center [102].  

3.6 Conclusion 

The findings support the contention that the head and torso act as a rigid unit during supine knee 

flexion.  Thus, constraining the torso will most likely limit head motion as both move as a single 

unit (Figure 3.10). The biokinematics of supine knee flexion strongly mimics walking knee 

flexion, supporting the rationale of using fMRI neurological data that are based on supine knee 

flexion. Results also demonstrated the need for head restraint via restraining the torso to enable 

to collection of locomotion data in the MR scanner.   

To keep the coordinate definition consistent across tasks, the marker on cervical 

vertebrae 7 was excluded in the determination of the chest coordinate system for all movement 

conditions. This is because it was hidden from the cameras during the supine condition. 

Normalizing the data during walking, standing and supine movements allowed for direct 

comparisons between conditions. It is critical to select a full cycle of movement from the middle 

of each trial, as aliasing of the filter can cause distortions of the data at the beginning and at the 

end of any given set of data and the eight Kestrel Motionanalysis™ cameras produced the most 
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accurate marker location data in the middle of the capture volume. This is because each marker 

was located to maximize its ability to be seen by as many cameras as possible. This ensured 

reliable data were collected.  

Lastly, these data were collected on a small (N=3) sample of young, healthy male 

subjects and limits the generalizability of the findings to older or female populations.  

Based on the results, and in light of the constraints of the MR scanner, a specially-

designed MR-compatible rig was built to facilitate supine knee flexion.  This process is 

described in the next chapter. 
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CHAPTER 4: AN MR-COMPATIBLE APPARATUS FOR SIMULATED STEPPING 

4.1 Introduction 

Human locomotion (walking) has long been studied kinematically by biomechanists typically 

using electroencephalography (EEG) and neurologically by neuroscientists typically using 

functional magnetic resonance imaging (fMRI). Locomotion research using fMRI frequently is 

limited to ankle dorsiflexion data gathered while subjects are in the MRI scanner [105]. This 

limitation is due to study participants being required to lie in a supine position in the MR 

scanner. Another problem with fMRI methodology is that most MR scanners have a 3D voxel 

size of approximately 27mm3. Consequently, the MRI is very sensitive to movement artifacts 

resulting from human participant body motion [101], [106]. Head movement in any direction 

exceeding the size of a voxel (~1-3mm) is enough to introduce sufficient error artifacts rendering 

the MR data unusable. Despite these drawbacks, researchers are drawn to fMRI as a 

methodological technique, given that it results in high spatial resolution of deep and superficial 

brain activity data.  

Some early research designs were created to allow for lower limb movement inside the 

MR scanner. However, walking incorporates movement in the lower body at the hip, knee and 

ankle, and these extant designs only allowed for knee motion. Therefore, extrapolation of the 

kinematic similarity to walking was less than ideal.  

Raymer, et al. in 2006 developed an ankle exercise device that was MR compatible 

[107]. However, this design fell quite short, as it was only designed for ankle flexion and 

dorsiflexion. In addition, it was only designed for use with a single leg. Several years later in 

2011, Ghomi, et al. [108] designed a lower body locomotion device. It, too, was only useful for a 
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single leg; however, this time a pulley weight was included to simulate gravity. More recently, 

Hollnagel, et al. in 2011 [109] created a bipedal device that allowed for hip, knee and ankle 

movement (as occurs during normal walking); however, their design incorporated several 

pneumatic pressurized cylinders to offer resistance, which is costly, and no quantification of how 

well it simulates upright walking was provided. 

To address these issues a new device was created to allow controlled lower leg 

flexion/extension movement (hip, knee and ankle) that mimics stepping while the participant is 

in the MR scanner that keeps head motion to a minimum. This device is henceforth referred to as 

Locomotion Acquisition for Magnetic Resonance Imaging (LAMRI).  

4.2 Methods 

In designing an MR-compatible stepping simulator to study the brain’s involvement in 

locomotion, several design criteria and constraints were established. These included physical 

dimension, materials, how well it simulates walking and how head motion is controlled.  

4.2.1 Physical dimensions 

The physical dimensions of the MR scanner can be seen in Figure 4.1. The two most relevant 

dimensions are the width of the scanner bed (without bumpers) and the length of the table. In 

addition, although not depicted here, the MR scanner bed is concave with a radius of 1.5 m.  
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Figure 4.1 MR scanner bed dimensions 

4.2.2 Materials 

Construction is limited to non-ferromagnetic components and the overall design should be 

lightweight for ease of transport on and off the MR scanner bed. To address these parameters, it 

was decided to use aluminum, wood, polyeurathane and brass. Pine was used for the backboard 

as it is light, durable and strong. The pedals and pulleys were made of Lexan, due to its very low 

coefficient of friction for both the pulley–rope and pedal-board interfaces, with brass rod and 

nylon bolts. Aluminum was used for the pulley mounts, with brass counter-sunk screws. Ribs 

were incorporated on the backside of the wooden board to provide a stable base and to distribute 

participants’ weight across the entire board due to the concavity of the MR bed.  

4.2.3 Limiting Head Motion and Simulating Walking 

To limit head motion, it was decided to include torso restraints to limit the movement of the 

chest that would, in turn, minimize the movement of the head translating in the direction of the 
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motion. Also, so that participants could ‘brace’ themselves against the movement of their torso, 

the design incorporated modular handholds (to accommodate various arm lengths). Several slits 

at the top half of the board allowed straps to be fed through to restrain movement of the upper 

body and head. Such straps criss-cross the body and go around the abdomen. To simulate the 

force of gravity experienced when walking, the pedals that slide within a near frictionless track 

were connected to pulleys with weights attached. Because the force of gravity for each 

participant would be specific to their own unique mass, a weighting system based on the 

participant’s anthropometric data was needed.  

Based on these specifications, a computer-aided design (CAD) of the MR rig including 

the board, pedals, and pulley system was created (Figure 4.2). The constructed rig is shown in 

Figure 4.3. A rope was fastened to the end of the base plate and the groove of the pulley placed 

at 90-degree angles. This was done so that the weight tied to the end of the rope would be equal 

to that of gravity as experienced by the participant. Modular weights were applied, based on the 

anthropomorphic characteristics of the participant, using weights made of salt (contained within 

a fabric bag), incremented in 1kg units, and attached  to the pulley system. Specifically, leg 

segment mass (thigh and shank) was calculated as a percentage of total mass based on 

anthropometric data for ‘normal’ individuals, equating to 17 % body weight for each leg [110]. 

Figure 4.4 shows a close up of the CAD design (left) and the actual design (right) of the pulley 

system for applying tension to the participants’ legs via a simulated gravity weight. 
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Figure 4.2 CAD design of LAMRI including dimensions to assist with scale. This figure 

shows the pulley system, response button holders to time stamp stepping and hand holds for 

participants. 

 

Figure 4.3 MR compatible board. The tape measure in the picture denotes (2 ft) for scale. 
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Figure 4.4 Rig pedal from the end view. This highlights the pulley mechanisms and the foot 

pedal in conjunction with the response button holder. 

To record the timing of the participant’s stepping (frequency, time of stepping versus 

stimulus, etc.), response button pads were incorporated into the design. These are usually hand 

held non-magnetic, non-electric fiber optic response buttons. However, these needed to be 

adapted for use in this study so lower limb movement could be time stamped into the 

neurological data collection. Figure 4.5 shows a close-up of the button pad holder from the CAD 

diagram (left), and Figure 4.5 (right) shows the actual response button pads that were 

incorporated into the design. 
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Figure 4.5 Response button pad incorporated for time stamping data in EEGs  

Recall that participants alternate between flexion and extension of the knee joint. Upon 

flexion, the foot pedal slides past the spring-loaded depressor (towards the end of the board 

where the participants head is), releasing the response button. When the participant extends their 

leg back down and returns to a neutral position, it presses the spring loaded mechanism and 

depresses the response button. This design also provided individual left versus right time stamps 

so that differentiation during executed movement could be accurately identified for analysis. 

This is an important aspect of the design for stepping research, as it allows for the control and 

measurement of stepping speed. Figure 4.6 shows the MR compatible rig as it was used in the 

MR scanner. 
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Figure 4.6 MR compatible rig in MR scanner with participant positioned in stepping 

movement 

Once the rig was completed, the final design was pilot-tested to measure head motion of 

the participants, quantifying translations along the x, y and z axes. It was also important to 

establish the degree of similarity between the knee kinematics of supine stepping using LAMRI 

with upright walking in the Clinical Movement Assessment Laboratory (University of Calgary, 

HRIC3C48A), and follow up with testing head motion while participants were in the MR 

scanner.  

Pilot testing of the LAMRI consisted of having three healthy participants perform supine 

stepping alternating right and left leg movement at a rate of 50 steps per minute (approximately 

half the speed of walking), where they followed along with a metronome, performing 5 trials of 

supine stepping, both with and without the rig. Head translation was recorded using 8 Kestrel 
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motion analysis cameras where movement was tracked using 4 reflective head markers (using 

the methodology explained in Chapter 3), where the 4 points on the head were averaged and 

head displacement was recorded relative to a global coordinate system (GCS). Absolute head 

movement was compared between the “without rig” and “with rig” conditions using paired 

sample t-tests.  

 Limiting head motion was then validated by implementing the LAMRI at the Seaman 

Family MR Center (Foothills Hospital) where head movement was estimated from FSL [111] 

translations. Any motion exceeding 3mm during a functional scan of 6 minutes where participants 

followed along with a stimulus alternating at 50 steps/minute would indicate the rig was not 

working. 

4.3 Results 

Head movement using the LAMRI was less than 3 mm in every direction (x,y,z) at a 

significance level of (p<0.05), and was considered acceptable when the rig was implemented 

(Table 4.1).  Paired sample t-tests revealed a significant reduction in head translation for all three 

axes when using the rig at the Clinical Movement Assessment Laboratory. 

Table 4.1 Head Translation During Supine Movement, (*) denotes significantly different 

(p<0.05) between conditions. 

Condition Z (mm) Y (mm) X (mm) 

Without Rig 4.0  0.6 2.9  0.1 2.2  0.2 

With Rig 1.3  0.4 * 0.7  0.5* 0.3  0.2* 
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Head translations over the course of the fMRI portion of the experiment, in the x (anterior-

posterior), y (left-right), and z (superior-inferior) directions, for the three participants performing 

the supine knee flexion movements using the MR-compatible rig are shown in Figure 4.7 and 

ranged from -1.5 to 2mm from the origin.  

 

Figure 4.7 Head translations of the 3 participants, A) Head translation of participant 1, B) 

Head translation of participant 2, C) Head translation of participant 3, while performing 

stepping movments in the supine position using the MR-compatible rig, estimated from 

FSL. 
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Again, no head translation exceeding 3mm was present from the FSL estimated 

movements. 

Supine knee flexion (where the participant used the LAMRI) is compared to upright 

walking in Figure 4.8. The maximum knee flexion angle and its location within the stride for 

supine leg movements with the rig more closely matched those for upright walking than for 

supine leg movement without the rig (t = ~60-70).  

 

Figure 4.8 Knee flexion angle over the course of a A) stride for upright walking and B) 

supine leg movements using the MR compatible device across 5 trials.  

4.4 Discussion 

A MR-compatible rig was constructed to permit simulated walking while lying inside an MR 

scanner. The design significantly reduced head movement during stepping tasks, and the stride 

closely resembled that of natural upright walking.    

The MR rig was intentionally designed to be modular so it could be adjusted for people 

of different heights and weights. The rig allows for hip, knee and ankle flexion/extension; thus, it 

can be used to assess all three actions associated with stepping. This design offers a relatively 
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inexpensive means to study lower body flexion/extension mimicking stepping and a component 

of locomotion using fMRI.  

The next chapter describes the overall methods used to collect EEG and fMRI data during 

stepping tasks performed using the MR-compatible rig.  
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CHAPTER 5: MAIN STUDY METHODOLOGY 

5.1 Methods 

5.1.1 Participants 

Sixteen healthy, right-handed males between the ages of 19 and 31 years (mean = 24.7, SD = 

3.31), with no history of knee or hip injury or neurological deficiency participated in the study, 

similar to that of most published EEG fMRI technologies to analyze motor movements 

[11],[13],[18],[20],[79],[83]. This was done for two reasons. One was to methodologically 

control for sources of variance (e.g., age, gender).  Given the paucity of studies, and thus current 

understanding, of brain activity resulting from lower limb movement under varying conditions is 

not well-known this was deemed a prudent approach. Second, young males (in the 15-29 year 

old categories) are the demographic group most likely to suffer from traumatic spinal cord injury 

[112], and so most likely to benefit from findings of the current research.  

The study was approved by the University of Calgary’s Conjoint Health Research Ethics 

Board (Ethics ID: REB15-1473). All participants provided written inform consent and passed 

MR safety screening. Participants were asked to indicate their dominant leg (i.e., the leg they use 

to kick a soccer ball) and their body weight (in order to calculate the appropriate amount of 

weight to attach to the MR-compatible rig pulleys) (Appendix A).  

5.1.2 Sessions and Data Collection 

Participants took part in three sessions during which they performed walking movements using 

the MR-compatible rig: 1) Baseline EEG; 2) EEG at one week; and (3) simultaneous EEG/fMRI 

at two weeks.  
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Sessions 1 and 2 were conducted at the Clinical Movement Assessment Lab (Foothills, 

HRIC3C48A). Participants were fitted with a 64-electrode EEG headcap (Compumedics 

Neuroscan, Charlotte, SC). The location of electrodes followed the conventional 10-20 electrode 

international placement system. EEG data were collected continuously during the tasks 

(described below) at a rate of 1 kHz. The participant lay on the MR-compatible rig, their feet 

were strapped to the pedals, and the appropriate weights were attached to the pulleys. The 

participant was positioned so that a video display could be viewed (Figure 5.1). Video stimuli 

(described below) were projected onto the screen using a TV monitor during time points 1 and 2, 

and a projector during time point 3, where the participants used a mirror in order to see the visual 

stimulus. This was done in an attempt to keep the set up as consistent as possible across all 3 data 

collection time points. 

 

Figure 5.1 Participant lying in a supine position on the MR- compatible rig while viewing a 

video display.  
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Session 3 was conducted at the Seaman Family MR Research Centre. Participants were 

fitted with an MR-compatible 64-electrode EEG headcap with Ag-AgCl electrodes (Maglink RT; 

Compumedics NeuroScan). EEG was collected continuously at a rate of 10 kHz, to allow for 

removal of MR gradient-induced artifacts during simultaneous fMRI. MR data were collected 

using a 3 Tesla Discovery 750 MR scanner equipped with a 12-channel head array coil (GE 

Healthcare, Waukesha, WI). The MR-compatible rig was placed on the MR scanner bed, and 

participants lay on the rig in a supine position. The head coil for brain imaging was positioned 

over the participant’s head and the EEG cables were led out the back opening of the coil, secured 

to the scanner bed, and attached to the EEG recording system. The participant’s head was 

comfortably immobilized within the head coil using compressible foam cushions. An angled 

mirror secured to the head coil was positioned above the eyes to permit viewing of a video 

screen positioned at the back of the MR scanner. Video stimuli (described below) were projected 

onto the screen using a projector located at the back of the MR scanner (Silent Vision, Avotec 

Inc., Stuart, FL).  

MR imaging first consisted of a localizer scan (0.5 min) to prescribe slice locations for all 

subsequent scans. A T1-weighted high-resolution structural brain scan (5 min) was then obtained 

for anatomical registration of the EEG and fMRI data. Next, fMRI data were collected using a 

T2*-weighted echo planar imaging (EPI) sequence (matrix size = 64x64; field of view – 24x24 

cm; 32 slices; 0.2-mm gap between slices; echo time = 30 ms; volume repetition time – 2000 ms; 

189 total volumes) [113]. 
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5.1.3 Visual Stimuli 

Two different visual stimuli were presented to assess their possible differential effects on the 

ability to isolate the right versus left leg movements in both the executed and imagined walking 

conditions. One visual stimulus was of a custom computer-generated image (CGI) of a human 

walking generated in Daz 3D (Daz Productions Inc., Salt Lake City, Utah, U.S.) (Figure 5.2), 

and the other stimulus was a circle that switched colors between green and blue (Figure 5.3). 

 

Figure 5.2 CGI stimulus of a human. The stimulus was animated such that the legs moved in 

a walking fashion at the prescribed pace of 50 steps/min. 

 

Figure 5.3 Green (left) and blue (right) circle stimuli. Colors alternated at the prescribed 

rate of 50 steps/min. 
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5.1.4 Executed and Imagined Walking Tasks 

The video stimuli were presented in a ‘block’ format, alternating between rest and task blocks 

(Figure 5.4). A rest block lasted 18 seconds at which time participants were instructed to breathe 

and blink normally while maintaining visual focus on a fixation cross. A task block consisted of 

an 18-second display of the stepping task condition. In total there were 20 blocks each of rest and 

task. The length of visual stimulus presentation remained the same at all 3 time points. 

 

Figure 5.4 Sample of block design of the stepping task, where each rest and active block 

lasted 18 seconds.  

In the executed stepping condition, participants were instructed to follow along and 

execute stepping in time with the visual stimulus, which was set to 50 steps per minute, which is 

approximately half of normal walking speed [114]. The slower rate helped to reduce head 

motion. As described in Chapter 4, the timing of stepping movements was recorded using the 

MR-rig response pads (Lumina LS-PAIR, Cedrus Corp., San Pedro, CA). In the imagined 
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stepping condition, the same visual stimuli were used. Participants were instructed to imagine the 

feeling of moving their legs (kinesthetic visualization) from a first-person perspective.  

The tasks were performed in the following order for all participants: Blue-green 

Executed, Blue-green Imagined, CGI Executed and CGI Imagined. On average, total time for 

sessions 1 and 2 was 50 minutes, and 90 minutes for session 3. All data were collected between 

May and October 2017. 

 

5.2 Next Steps 

The results of the studies, that combined make up this dissertation, are presented in the following 

four chapters. Each of the chapters is devoted to determining the viability of the four hypotheses 

that together move to realize the goal of this research project.  

 

 



 74 

CHAPTER 6: DIFFERENTIATING THE CORTICAL CONTRIBUTIONS OF RIGHT 

AND LEFT STEPPING MOVEMENTS USING ELECTROENCEPHALOGRAPHY 

6.1 Introduction 

The purpose of this chapter is to assess hypothesis 1: EEG data will demonstrate brain activity 

patterns that distinguish left from right leg movements for both imagined and executed 

conditions; this effect is expected to be particularly strong for the computer generated image 

based stimuli conditions. Given the paucity of literature on lower limb movement, support for 

this hypothesis will help in achieving the goal of creating a BCI capable of assisting in lower 

limb locomotion.  

Neuromotor control of walking has been studied using several methods, including 

decoding of intra-limb and inter-limb kinematics from EEG data [7], isolation of gait-related 

movement artifacts in EEG data [115], and distinguishing areas of activation in the brain 

between executed and imagined walking [116]. A study to distinguish between left and right 

steps for both executed and imagined walking has not yet been performed, which has important 

implications to enable BCIs to control individual limbs, and is the focus of this chapter. 

Three EEG frequency bands have been found to be most commonly associated with 

lower limb locomotion: alpha (8 – 12 Hz), beta (12 – 30 Hz), and gamma (30-45 Hz) [52]. While 

EEG data are typically collected from 64 electrodes, the electrodes of focal interest for this study 

were the C1 and C2 electrodes. They are located on top of the head and in proximity to where the 

leg area of the primary motor cortex is located. The hypothesis of this study was that it would be 

possible to differentiate left and right steps using EEG frequency data, specifically collected 
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from the C1 and C2 electrodes, for both executed and imagined stepping. Furthermore, it was 

expected that the CGI stimulus would be more successful.  

It was also important to determine the generalizability of the findings. The use of 

generalizability theory is becoming more prevalent in a number of research areas including 

center of pressure data collected with a force platform [117], ankle-complex laxity measures 

[118], electromyogram (EMG) power measures [119], and EEG interpretation [120]. This 

approach allows for a better understanding of the reliability of the data and sources of variance 

for generalizability purposes than does the simpler test-retest approach often used in EEG 

research [121],  [122], [123], [124], [125].  

6.2 Methods 

The subjects, experimental setup and data collection were described in Chapter 5. The EEG data 

collected at time points 1 and 2 were used.    

6.2.1 EEG Analysis  

EEG data from the C1 and C2 electrodes were analyzed using customized software developed in 

Matlab (Mathworks, Natick, MA). Data were DC offset corrected, bandpass filtered between 5 

and 55 Hz, and referenced to the global average of all 64 channels. Epochs of data were 

generated based on the timing of the visual stimuli onset/offset for each individual ‘step’ (200ms 

prior to stimulus and 823ms after stimulus). Because the visual stimulus altered every 1.5 

seconds, it was important not to have overlap in the data from the ‘left’ and ‘right’ conditions. 

Therefore, a usable time frame of 1.024 seconds could be encapsulated within alternating 1.5 

second durations. This time frame was also computationally efficient for performing a Fourier 

transform [126] (Figure 6.1).  
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Figure 6.1 Visual representation of epoching right (R) and left (L) stepping and the baseline 

fixation cross (F) condition that occurred within the software on a per channel basis. 

 

 Once a discrete Fourier transform (DFT) was performed on these ‘left’, ‘right’ and 

‘baseline – fixation cross’ epochs, summations of the spectral power over established EEG bands 

(alpha, beta and gamma) were performed. Left and right spectral data were normalized with 

respect to corresponding spectral data during the baseline fixation cross condition (keeping the 

epoch time constant) (Figure 6.2).  
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Figure 6.2 EEG Processing Pipeline; EEG data is imported, band pass filtered between 5 

and 55 Hz, re-referenced to a global average of all 64 electrode channels, converted to 

spectral data via Fourier transform and summed over alpha, beta and gamma bands 

respectively. 

 

The General Estimating Equations (GEE) routine in IBM® SPSS® (International 

Business Machines Corporation, Endicott, NY, U.S.) was used to assess the predictive utility of 

the C1 and C2 electrode data, using the alpha, beta and gamma frequency bands, in 

differentiating right from left stepping. Data for these bands were collapsed across time points. 

Each electrode and frequency band for each of the four conditions was run separately. GEE is an 

iterative approach that estimates the associations between predictors and criterion when the data 

represent repeated trials nested within individual participants. GEE was introduced as an 

extension of generalized linear models (GLM), that estimates the marginal expected outcome for 

binary outcomes while accounting for the correlation among repeated observations within 

participants [127].  
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GEE coefficients estimate population average models, also known as marginal models. 

These coefficients estimate the average response over the population. The coefficient estimates 

for binary outcomes in this study can be interpreted as the change in log odds ratios of the 

outcome for a unit change in the predictor across all of the participants. The estimates generated 

account for the non-independence of the observations when generating the variability estimates 

of the coefficients [128]. 

In this study, the working correlation matrix was specified as unstructured, as there is 

likely to be non-independence in the repeated measurements. An unstructured matrix is the most 

general and imposes no constraints on the matrix; each element is estimated uniquely. This 

results in the best possible model fit. In addition, robust estimation was specified as it provides 

consistent estimators of the covariance matrix of the predictor estimates, even if the working 

correlation matrix is unspecified [129]. 

Because GEE model parameters are estimated using quasi-likelihood procedures, there is 

no associated likelihood underlying the model. The Wald test, which is distributed as a chi-

square, with the degrees of freedom equal to the difference in the number of predictors in the full 

(one predictor) and reduced (no predictors) models [129], is used to assess significance of the 

predictors. 

6.2.2 Generalizability of the EEG Data 

The reliability of the EEG data was assessed using generalizability analyses across three 

facets: time points (N=2), trials (N=60), and subjects (N=16). This was done for each of the left 

and right legs under each of the four experimental conditions. The generalizability coefficient is 

similar to the intra-class correlation coefficient (ICC). However, the ICC is subsumed under 
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generalizability theory; it is the case where there are only two facets: typically, participants and 

measurements [130].  

There are two variations on the G-coefficient. The first is a relative G-coefficient, which 

reflects how well measures maintain their relative rank order. This is also sometimes referred to 

as the ‘consistency index’. The absolute G-coefficient, in addition to consistency in rank order, 

incorporates agreement on the elevation levels of the measures. This is sometimes referred to as 

the ‘agreement index’, ‘index of dependability’, or ‘phi coefficient’. It has been suggested that 

values less than 0.50 are poor, between 0.50 - 0.75 are acceptable, between 0.75 - 0.90 are 

moderate, and greater than 0.90 are excellent [131]. In addition to the generalizability coefficient 

generated, the analysis produces information on the variance components themselves. These are 

of interest because it highlights from which facet, or facets, the most variance in the data set 

arises. 

IBM® SPSS® was also used to run the generalizability analyses. However, specialized 

syntax developed specifically to do so was employed [132]. To run the program, characteristics of 

the data were input (fully crossed and completely balanced), and all effects were set to be random. 

6.3 Results 

Sample phase plots for right and left imagined stepping data for one participant in EEG 

electrodes are presented (Figure 6.3 and 6.4). These data were collected under the CGI imagined 

condition and represent the data collapsed across time points 1 and 2.  
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Figure 6.3 Traces during a right step for electrodes C1 and C2, averaged over 120 epochs 

(across time points 1 and 2), over an interval of 200 ms before the stimulus and 823 ms after 

the stimulus during the CGI imagined stimulus for a single participant. 

 

Figure 6.4 Traces of during a left step for electrodes C1 and C2, averaged over 120 epochs 

(across time points 1 and 2), over an interval of 200 ms before the stimulus and 823 ms after 

the stimulus during the CGI imagined stimulus for a single participant. 

 

The results of the analysis to determine which electrodes/frequencies/conditions 

distinguished between left and right stepping movements are presented in Tables 6.1 and 6.2. 

The tables show: 1) the electrode and frequency band being assessed; 2) the B-value, or 

coefficient, associated with each analysis; 3) the Wald value of each coefficient; 4) the 

significance of each Wald value; and the average depolarization values across participants and 

trials for the left and right lower limb movements. For the CGI stimulus (Table 6.1), only the 

beta band of the C1 electrode and the alpha band of the C2 electrode successfully distinguished 

between executed left and right stepping movements. However, for imagined stepping 

movements, with the exception of the gamma band of the C2 electrode, all frequency bands for 
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each electrode successfully distinguished left and right stepping movements. For the alternating 

blue-green circle stimulus (Table 6.2), only the beta bands of the C1 and C2 electrodes 

successfully distinguished between executed left and right stepping movements for executed 

movements, while no electrodes/frequencies were successful for imagined movements.   

Table 6.1 EEG Differentiation of Right and Left Stepping Using the CGI Stimulus  

Electrode 

and Band 

B-value Wald Significance 

(p < .05)* 

Mean Frequency 

Left +/- (SE) 

Mean Frequency 

Right +/- (SE) 

 

Executed 

C1 Alpha 5.582E-12 .005 .943 239 +/- 16 241 +/- 16 

C1 Beta 9.355E-11 3.825 .050* 852 +/- 23 797 +/- 22 

C1 Gamma 3.413E-11 .173 .678 9 +/- 13 14 +/- 11 

C2 Alpha 9.540E-11 4.026 .045* 311 +/- 19 273 +/- 18 

C2 Beta 7.329E-11 1.625 .202 690 +/- 19 657 +/- 21 

C2 Gamma 1.635E-11 .148 .700 -25 +/- 15 -30 +/- 17 

Imagined 

C1 Alpha 1.908E-10 14.892 .000* 170 +/- 18 96 +/- 19 

C1 Beta 1.007E-10 8.498 .004* 245 +/- 17 205 +/- 20 

C1 Gamma 2.003E-10 7.108 .008* 72 +/- 8 57 +/- 9 

C2 Alpha 1.772E-10 12.120 .000* 246 +/- 18 176 +/- 19 

C2 Beta 8.694E-11 5.571 .018* 317 +/- 20 275 +/- 21 

C2 Gamma 7.410E-11 1.503 .220 72 +/- 9 64 +/- 10 
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Table 6.2 EEG Differentiation of Right and Left Stepping Using the Alternating Blue-green 

Stimulus  

Electrode 

and Band 

B-value Wald Significance 

(p < .05)* 

Mean Frequency 

Left +/- (SE) 

Mean Frequency 

Right +/- (SE) 

 

Executed 

C1 Alpha 6.873E-11 1.504 .220 65 +/- 17 89 +/- 18 

C1 Beta 1.114E-10 4.783 .029* 629 +/- 22 690 +/- 22 

C1 Gamma 2.205E-11 1.054 .305 224 +/- 20 234 +/- 20 

C2 Alpha 6.685E-11 .676 .411 67 +/- 16 86 +/- 16 

C2 Beta 1.393E-10 7.348 .007* 575 +/- 18 629 +/- 18 

C2 Gamma 2.667E-13 .007 .934 414 +/- 39 415 +/- 39 

Imagined 

C1 Alpha 2.318E-11 .140 .708 89 +/- 17 97 +/- 17 

C1 Beta 7.794E-12 .027 .870 178 +/- 19 181 +/- 20 

C1 Gamma 9.340E-11 .801 .371 36 +/- 8 30 +/- 7 

C2 Alpha 2.338E-11 .330 .566 3 +/- 17 11 +/- 17 

C2 Beta 6.301E-11 1.073 .300 168+/- 19 143 +/- 19 

C2 Gamma 2.649E-11 .120 .729 21 +/- 9 23 +/- 7 

 

Figures 6.5 – 6.8 show the spectral plots for all 4 conditions at electrodes C1 and C2 for the 3 

frequency bands of interest (alpha, beta, gamma), brought over from the results in Table 6.1 and 

6.2.  
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Figure 6.5 Plots of EEG frequency band data for electrodes C1 and C2 for left and right 

executed stepping during the CGI stimulus, where significance is denoted (* p<0.05). 

 

 

Figure 6.6 Plots of EEG frequency band data for electrodes C1 and C2 for left and right 

imagined stepping during the CGI stimulus, where significance is denoted (* p<0.05). 

 

Figure 6.7 Plots of EEG frequency band data for electrodes C1 and C2 for left and right 

executed stepping during the blue-green stimulus, where significance is denoted (* p<0.05). 
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Figure 6.8 Plots of EEG frequency band data for electrodes C1 and C2 for left and right 

imagined stepping during the blue-green stimulus, where significance is denoted (* p<0.05). 

 

The generalizability results of the EEG data that were used to distinguish left from right 

stepping movements are shown in Tables 6.3-6.6. These values denote how reliable the data are 

specific to each facet (time, trial, participant). The tables are organized by stimulus condition 

(CGI and blue-green) and electrode (C1 and C2). Each table indicates the G-coefficient and the 

Phi-coefficient associated with the left and right limb movements for executed and imagined 

conditions. In addition, the variances associated with the three facets of the generalizability 

analyses are reported: for time point, for trials, and subjects. Results were reliable across time 

points and trials (within subjects) where the majority of the ascribed variance is due to between 

subject variance (0-90.4%). 
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Table 6.3 Generalizability Findings for the CGI Executed and Imagined Conditions for Left 

and Right Leg at the C1 Electrode 

CGI Condition G 

coeff. 

Phi 

coeff. 

Var. due to 

Time Point 

Var. due 

to Trials 

Var. due 

to Ss 

Executed 

C1 Alpha Left CGI Executed .473 .472 .000 .015 .125 

C1 Alpha Right CGI Executed .718 .712 .003 .045 .162 

C1 Beta Left CGI Executed .648 .647 .000 .014 .235 

C1 Beta Right CGI Executed .720 .718 .000 .065 .254 

C1 Gamma Left CGI Executed .000 .000 .000 .000 .000 

C1 Gamma Right CGI Executed .000 .000 .001 .004 .000 

Imagined 

C1 Alpha Left CGI Imagined .949 .934 .008 .000 .245 

C1 Alpha Right CGI Imagined .843 .800 .017 .016 .141 

C1 Beta Left CGI Imagined .559 .558 .000 .006 .086 

C1 Beta Right CGI Imagined .481 .480 .000 .016 .062 

C1 Gamma Left CGI Imagined .524 .524 .000 .003 .137 

C1 Gamma Right CGI Imagined .595 .593 .001 .010 .144 
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Table 6.4 Generalizability Findings for the CGI Executed and Imagined Conditions for Left 

and Right Leg at the C2 Electrode 

CGI Condition G 

coeff. 

Phi 

coeff. 

Var. due to 

Time Point 

Var. due 

to Trials 

Var. 

due to 

Ss 

Executed 

C2 Alpha Left CGI Executed .719 .719 .000 .010 .242 

C2 Alpha Right CGI Executed .732 .731 .000 .033 .201 

C2 Beta Left CGI Executed .525 .491 .036 .013 .139 

C2 Beta Right CGI Executed .712 .657 .040 .088 .185 

C2 Gamma Left CGI Executed .000 .000 .004 .000 .000 

C2 Gamma Right CGI Executed .033 .032 .005 .000 .002 

Imagined 

C2 Alpha Left CGI Imagined .793 .792 .000 .016 .198 

C2 Alpha Right CGI Imagined .763 .761 .000 .026 .146 

C2 Beta Left CGI Imagined .714 .713 .000 .023 .144 

C2 Beta Right CGI Imagined .731 .728 .000 .031 .131 

C2 Gamma Left CGI Imagined .000 .000 .000 .011 .000 

C2 Gamma Right CGI Imagined .000 .000 .000 .017 .000 

 

 

 

 

 

 

 

 

 

 

 



 87 

Table 6.5 Generalizability Findings for the Blue-green Executed and Imagined Conditions 

for Left and Right Leg at the C1 Electrode 

BG Condition G 

coeff. 

Phi 

coeff. 

Var. due to 

Time Point 

Var. due 

to Trials 

Var. 

due to 

Ss 

Executed 

C1 Alpha Left BG Executed .689 .671 .013 .000 .174 

C1 Alpha Right BG Executed .685 .681 .004 .003 .189 

C1 Beta Left BG Executed .706 .688 .016 .003 .223 

C1 Beta Right BG Executed .673 .666 .007 .009 .248 

C1 Gamma Left BG Executed .000 .000 .000 .000 .000 

C1 Gamma Right BG Executed .000 .000 .000 .001 .000 

Imagined 

C1 Alpha Left BG Imagined .011 .011 .000 .000 .001 

C1 Alpha Right BG Imagined .000 .000 .000 .010 .000 

C1 Beta Left BG Imagined .637 .626 .003 .014 .072 

C1 Beta Right BG Imagined .562 .561 .000 .016 .061 

C1 Gamma Left BG Imagined .357 .342 .009 .013 .039 

C1 Gamma Right BG Imagined .298 .298 .000 .005 .041 
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Table 6.6 Generalizability Findings for the Blue-green Executed and Imagined Conditions 

for Left and Right Leg at the C2 Electrode 

BG Condition G 

coeff. 

Phi 

coeff. 

Var. due to 

Time Point 

Var. due 

to Trials 

Var. 

due to 

Ss 

Executed 

C2 Alpha Left BG Executed .714 .713 .000 .015 .158 

C2 Alpha Right BG Executed .599 .598 .000 .011 .138 

C2 Beta Left BG Executed .554 .548 .003 .050 .122 

C2 Beta Right BG Executed .493 .489 .003 .018 .138 

C2 Gamma Left BG Executed .000 .000 .000 .000 .000 

C2 Gamma Right BG Executed .000 .000 .000 .000 .000 

Imagined 

C2 Alpha Left BG Imagined .361 .358 .000 .013 .024 

C2 Alpha Right BG Imagined .000 .000 .000 .016 .000 

C2 Beta Left BG Imagined .768 .688 .026 .039 .089 

C2 Beta Right BG Imagined .716 .666 .020 .036 .099 

C2 Gamma Left BG Imagined .659 .572 .043 .018 .904 

C2 Gamma Right BG Imagined .695 .644 .031 .011 .141 

 

6.4 Discussion 

The hypothesis of this study was that it would be possible to differentiate left and right steps 

using EEG frequency data, specifically collected from the C1 and C2 electrodes, for both 

executed and imagined stepping; it was expected that the CGI stimulus would be more 

successful. The hypothesis was partially supported. The significant results for isolating right 

from left stepping were found at both the C1 and C2 electrodes, suggesting both are important 

sources of information for isolating right from left stepping. Most of the significant results were 
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obtained at the alpha and beta frequencies. This is likely because these are the two EEG bands 

most closely linked to executed walking [133], [134]. However, there was one significant result 

at the gamma frequency. Many of the significant results occurred in the imagined condition. For 

those individuals with compromised mobility (i.e., unable to execute stepping movements), this 

finding is particularly exciting, as imagined data from such individuals would be all that is 

available for an individually-generated brain computer interface (BCI). 

As expected, the CGI condition was more successful in distinguishing left and right 

stepping movements than the blue-green condition. One possible explanation for this finding is 

that the CGI character stimulus acts similarly to that of a mirror neuron where a person can ‘see’ 

the act of walking [44]. Although the blue-green visual stimulus cued for right-left leg change at 

the same rate as the CGI, it lacked any anthropomorphic quality. Given that the purpose of 

including these two quite different visual stimuli was to test the potential influence of mirror 

neurons associated with the stimulus, the results suggest that this is an important characteristic to 

induce significant differences in brain activation of lower limb locomotion.  

Another CGI and blue-green difference was found in the depolarization levels (Table 6.1 

and 6.2). Excitatory firing in EEG is marked by an increase in the depolarization of the signal 

coupled with desynchronization, and is indicative of strong activation in the brain. For the 

significant results in the CGI condition, there was more depolarization for the left leg than for the 

right leg. However, for the significant results in the blue-green condition, there was more 

depolarization for the right leg than for the left leg. This is a somewhat paradoxical finding and 

one that might be pursued in future research. This may be the result of the blue-green condition 

being a neutral one, so is manifested as more inhibitory or at the very least non-excitatory [135], 
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or perhaps this is result of the projection through the geniculostriate complex to the primary 

visual cortex [136]. 

Data that are not reliable are not able to predict other variables. Classical reliability 

theory assumes that the upper limit of validity - the relationship between a predictor and criterion 

- is the square root of the reliability of the variables involved [137]. The results of the current 

study showed that the generalizability coefficients were generally higher for the CGI conditions 

than for the blue-green conditions, suggesting that a simple stimulus, such as blue-green color 

alternation, does not generate data that is particularly reliable at differentiating left and right 

stepping movements. It is also notable that the coefficients for the CGI imagined condition were 

generally higher than for the CGI executed condition. There was very little variance due to the 

effects of time points (0% - 6.55%) or across trials (0% - 4.3%). Thus, collapsing across time 

points to assess the predictive utility of the data was justified.  

6.5 Limitations 

Limitations of this work include that the sample consisted of young, healthy, male subjects. 

However, this may be characteristic of the demographics for which lower limb BCI development 

might be of most use [138]. Only the C1 and C2 electrodes were investigated in this study. The 

assessment of additional electrodes in an attempt generate more features that are capable of 

distinguishing left and right leg lifts in both executed and imagined conditions is a possible 

avenue of future research.  Finally, the frequency that the participants were presented with the 

stimulus (50 steps/min) is about half the frequency of normal walking. The ability to differentiate 

right from left stepping may decrease with an increased stepping pace if EEG sampling remains 

unchanged. This would need to be taken into consideration with future research. 
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6.6 Future Work 

To evaluate the generalizability of these results, further work will need to be done testing other 

demographic groups. Future work could also entail bringing the analysis to an online system for 

real-time classification of stepping movements. One aspect of participant differentiation is their 

leg dominance. A total of 13 participants in this study were right-foot and the other three 

identified themselves as left foot dominant. However, when this factor was included in the 

analyses it did not account for any of the differences observed. This may very well be due to the 

small sample of left-dominant individuals and may be of interest to pursue in future research. 

6.7 Conclusion 

These results demonstrate that it is possible to differentiate left from right low limb movements 

using EEG data collected from the C1 and C2 electrodes. This was particularly true in the case in 

the imagined walking condition using the CGI stimulus, thus providing partial support for 

Hypothesis 1: EEG data will demonstrate brain activity patterns that distinguish left from right 

leg movements in both imagined and executed lower limb movement; this effect is expected to 

be particularly strong for the computer-generated image-based stimuli conditions.  

The findings have important implications for studying lower limb movement with the 

end-goal of creating a BCI to assist those individuals with compromised mobility in that it 

demonstrates it is possible to isolate left from right lower limb movement solely with imagined 

EEG data. While this chapter focused on EEG data, which has excellent temporal resolution, to 

isolate left and right stepping, the next chapter takes up the challenge of identifying the locations 

in the brain that are activated when lower limb stepping occurs. 
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CHAPTER 7: DIFFERENTIATING THE BRAIN’S INVOLVEMENT IN EXECUTED AND 

IMAGING STEPPING USING FMRI  

7.1 Introduction 

The purpose of this chapter is to address hypothesis 2: fMRI will identify areas of the brain that 

are differentially activated for lower limb movement across experimental conditions. 

Specifically, activation of the sensory motor areas is expected across all conditions. In the 

executed condition, areas of the cerebellum and basal ganglia will be activated. In the imagined 

condition, greater activation of the occipital, parietal and frontal lobes is expected. Due to the 

sluggish response time of hemodynamic activity, differentiation between left and right knee 

extension is not anticipated.  The degree to which this hypothesis is supported will determine 

how useful fMRI data may be in refining the input information that would go into lower limb 

BCI development. 

Very few studies have used fMRI to investigate brain mechanisms governing executed 

lower limb movements; most have been limited to hand or arm movements or ankle flexion. This 

is due primarily to excessive head motion during task execution that leads to signal artifact.  

Some preliminary studies, however, have demonstrated limited success. One study using 

executed knee extensions observed activation of the primary and supplementary motor cortices, 

sensorimotor cortex, and the basal ganglia [71]. Newton, et al. 2008 found for multi-joint lower 

limb movements, there was activity in the primary sensorimotor cortex, paracentral lobule and 

secondary motor areas [16]. De Almeida, et al. 2015 reported activation for manually-facilitated 

multi-joint lower limb movements within the primary and secondary somatosensory areas as well 

as other motor areas [14].  Jaeger, et al. 2014 also reported activation of the sensorimotor areas, 
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cerebellar vermis, and putmen, for multi-joint lower limb movements [17]. In addition to motor 

regions, linguistic and auditory areas of the brain are activated even when carrying out such tasks 

[53].  

The purpose of this study was to use fMRI to identify the areas in the brain activated 

during lower limb motion. The unique contribution of the current study to the extant literature is 

the inclusion of both executed and imagined task conditions for lower limb movements. It has 

been well-documented that imagined and executed actions share similar neural mechanisms [21], 

[24], [139], including several fMRI-based studies of finger movement [23], [25].  To date, there 

have been no studies that have utilized two different types of visual stimuli to cue lower limb 

movement, as  a means to determine differential effects of cue.  

Unlike EEG, fMRI does not possess the temporal resolution necessary to isolate right and 

left leg movements during natural stepping; fMRI sampling frequency is typically on the order of 

2-3 seconds, and hemodynamic activity takes about six seconds to reach its maximum level. 

Despite these limitations, the excellent spatial resolution of fMRI (~5 mm) and its ability to 

measure brain activity throughout the entire brain, provide the opportunity to assist the 

interpretation of EEG findings as well as inform EEG on the observed differences between 

executed and imagined movements for both types of visual cues.   

7.2 Methods 

7.2.1  Data Collection 

The subjects, experimental setup and data collection were described in Chapter 5. The data 

collected at time point 3 were used in this chapter’s results. 
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7.2.2.  Data Processing 

fMRI data underwent standard pre-processing, including brain extraction, motion correction, 

intensity normalization, slice-timing correction, anatomical registration and 6-mm Gaussian 

kernel spatial smoothing using image analysis software (FSL; http://www.fmrib.ox.ac.uk/fsl/). 

To permit group comparisons, individuals’ images were registered to anatomical images and 

subsequently to the Montreal Neurological Institute’s (MNI) standard brain template using FSL’s 

linear registration tool [111],[140] (Appendix B). Each participant’s fMRI images then 

underwent temporal independent component analysis (ICA), as implemented in MELODIC 

(Multivariate Exploratory Linear Optimized Decomposition into Independent Components; part 

of FSL). Resulting temporal components were examined to identify those associated with 

movement artifacts (ring shaped artifacts), white matter artifacts, and cardiac artifacts, which 

were then regressed out of the fMRI data, using regfilt (part of FSL’s command line tools). 

7.2.3 Functional Activation Modelling 

A general linear model (GLM) was used to determine the voxels of the brain (~80,000) aligned 

with the model of activation and regions of the brain using FSL’s FEAT program. First, a 

functional activation model that represented the task design was generated. Recall that this was a 

block design (square wave) based on the timing of the visual stimuli (‘on’ or ‘off’). Because the 

shape of the BOLD hemodynamic response function (HRF) is known (as described in Chapter 

2), and the on/off cycle of the experiment was also known, the model was generated by the HRF 

with the block sequence timing of the visual stimulus (Figure 7.1). Thus, a graphical 

representation of expected brain activation was modelled. The GLM can be represented as: 

𝑌 = 𝑋𝛽 + 𝜖            (7.1) 
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where (Y) corresponds to a vector representing a voxel’s time course, (X) is a vector of the 

experimental ‘on/off’ predictor over that same time course, () is the slope parameter or effect 

associated with the predictor, and epsilon () is a vector representing error in the data that cannot 

be accounted for in the model.  

 

 

Figure 7.1 A model for on/off voxel activation over time for a single voxel.  

For each voxel, the parameter in the model was estimated for each run of the tasks. 

Higher-level mixed-model analyses, as implemented in FSL, were then performed to obtain 

significant activity over the 16 participants for each task. Values for this group analysis were 

converted to Z-scores for ease of statistical interpretation. To control for Type-I error, given the 

large number of voxels subjected to the GLM, a cluster-wise approach was used as a multiple 

comparison correction. This is because brain activity tends to occur in clusters. Each map was 

thresholded at an individual voxel value of Z=2.3, and corrected for multiple comparisons using 
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a false discovery rate (FDR) threshold of 0.05, corresponding to a cluster volume of greater than 

350 voxels, as determined by AlphaSim (part of the AFNI software package, 

http://afni.nimh.nih.gov/afni). 

7.2.4  Atlas Overlay 

Areas of functional activity determined from the analyses were overlaid into the Harvard-Oxford 

cortical and subcortical structure atlas [68]. This atlas consists of labelled anatomical regions to 

permit identification of significantly activated clusters (Figure 7.2).  

 

Figure 7.2 Harvard-Oxford brain atlas used to ascribe functional clusters to particular 

structural areas of the brain.  

 

7.2.5  Between-Task Comparisons 

The final process was to determine if there were differences in voxel activation between the four 

different task conditions. FSL’s higher level analysis tool was used to do this. Paired-sample t-

tests were carried out to compare the voxel activations for the different conditions. Contrasts of 

interest were; 1) CGI imagined versus CGI executed, 2) CGI imagined versus blue-green 

http://afni.nimh.nih.gov/afni)
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imagined, 3) CGI executed versus blue-green executed, and 4) blue-green imagined versus blue-

green executed. The contrasting process essentially subtracts the activated voxels in one 

condition from that of the other condition, leaving only the activated voxels that are different 

between the conditions. Again, a cluster threshold of p < 0.05 was applied to determine statistical 

significance. The model for contrasting conditions can be seen in Figure 7.3.  

 

Figure 7.3 Example of a paired-t test setup within FSL for between-task or between-stimuli 

conditions. Participants are represented in columns 2 to 16, while the contrast between 

conditions is encoded in black and white over all the participants in the first column. 

7.3 Results 

7.3.1  Functional Activations for the Four Task Conditions 

Brain regions significantly activated by each of the four task conditions are summarized in 

Tables 7.1 – 7.4. Brain maps of these regions are shown in Figures 7.4 – 7.7 as ‘heat maps’ of 



 98 

the activated clusters corresponding to the individual voxel Z-scores within the clusters. These 

denote areas of the brain that are active during the activity relative to the baseline (fixation cross 

condition).  

Table 7.1 Brain regions significantly activated during (p < 0.05) executed leg movements 

with the CGI stimulus, where the Z slice is in the upper left corner of Figure 7.4. 

Z (slices) Harvard-Oxford Label  

22-27 right planum temporale 

10-18 bilateral medial cerebellum 

28-39 
bilateral primary motor (leg area) and 

supplementary motor cortex 

 

 

Figure 7.4 Group maps of brain regions exhibiting significant activity during CGI-executed 

leg movements, color-coded in red-to-yellow heat maps where red = 2.3 and yellow > 4.7. 

Images are shown in radiological convention (i.e., right is on the left). 
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Table 7.2 Brain regions significantly activated during (p < 0.05) imagined leg movements 

with the CGI stimulus, where the Z slice is in the upper left corner of Figure 7.5. 

Z (slices) Harvard-Oxford Label  

10-14 bilateral lateral cerebellum 

17-24 bilateral pallidum and putamen 

20-27 bilateral secondary motor area 

28-35 left superior parietal lobule 

15-22 bilateral lateral occipital cortex 

24-39 bilateral supplementary motor and premotor cortices 

 

 

Figure 7.5 Group maps of brain regions exhibiting significant activity during CGI-imagined 

leg movements, color-coded in red-to-yellow heat maps where red = 2.3 and yellow > 5.9. 

Images are shown in radiological convention (i.e., right is on the left). 
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Table 7.3 Brain regions significantly activated during (p < 0.05) executed leg movements 

with the blue/green stimulus, where the Z slice is in the upper left corner of Figure 7.6. 

Z (slices) Harvard-Oxford Label  

18-25 bilateral insular cortex 

22-26 bilateral secondary motor area 

9-19 bilateral medial cerebellum 

26-39 
bilateral primary motor (leg area) and 

supplementary motor area 

 

 

  

 

Figure 7.6 Group maps of brain regions exhibiting significant activity during blue/green-

executed leg movements, color-coded in red-to-yellow heat maps where red = 2.3 and yellow 

> 5.3. Images are shown in radiological convention (i.e., right is on the left). 
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Table 7.4 Brain regions significantly activated during (p < 0.05) imagined leg movements 

with the blue/green stimulus, where the Z slice is in the upper left corner of Figure 7.7. 

Z (slices) Harvard-Oxford Label  

4-12 right lateral cerebellum 

17-23 bilateral insular cortex 

17-23 bilateral pallidum and putamen 

25-33 bilateral secondary motor area 

25-32 Bilateral superior parietal lobule 

26-39 
bilateral supplementary motor and premotor 

cortices 

 

 

Figure 7.7 Group maps of brain regions exhibiting significant activity during blue/green-

imagined leg movements, color-coded in red-to-yellow heat maps where red = 2.3 and yellow 

> 4.7. Images are shown in radiological convention (i.e., right is on the left). 
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7.3.2  Task Comparisons  

Brain region activity levels that were significantly different between tasks are summarized in 

Tables 7.5 – 7.11. These regions denote areas of the brain being active that are unique to the task 

but different from its contrasted partner in an (A-B) and (B-A) fashion. Maps of these regions are 

shown in Figures 7.8 – 7.15.  

Table 7.5 Brain regions whose activity was significantly greater (p < 0.05) during CGI-

executed movements than during CGI-imagined movements, where the Z slice is in the 

upper left corner of Figure 7.8. 

Z (slices) Harvard-Oxford Label 

10-18 bilateral medial cerebellum 

30-39 bilateral primary motor (leg area) cortex 
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Figure 7.8 Group maps of brain regions exhibiting significantly greater activity during CGI-

executed leg movements than during CGI-imagined leg movements, color-coded in red-to-

yellow heat maps where red = 2.3 and yellow > 4.7. Images are shown in radiological 

convention (i.e., right is on the left). 
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Table 7.6 Brain regions whose activity was significantly greater (p < 0.05) during CGI-

imagined movements than during CGI-executed movements, where the Z slice is in the 

upper left corner of Figure 7.9. 

Z (slices) Harvard-Oxford Label 

4-15 Right lateral cerebellum 

16-20 Right temporal pole 

16-23 Right lingual gyrus 

14-20 Left inferior frontal gyrus 

15-25 Bilateral lateral occipital cortex 

23-30  Posterior cingulate cortex 

29-37 Bilateral premotor cortex 

 29-34 Bilateral superior parietal lobule 

 20-23 Anterior cingulate cortex 

 31-36 Bilateral somatosensory cortex 
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Figure 7.9 Group maps of brain regions exhibiting significantly greater activity during CGI-

imagined leg movements than during CGI-executed leg movements, color-coded in red-to-

yellow heat maps where red = 2.3 and yellow > 4.7. Images are shown in radiological 

convention (i.e., right is on the left). 

 

Table 7.7 Brain regions whose activity was significantly greater (p < 0.05) during 

blue/green-executed movements than during blue/green-imagined movements, where the Z 

slice is in the upper left corner of Figure 7.10. 

Z (slices) Harvard-Oxford Label 

5-19 bilateral medial cerebellum 

21-26 bilateral secondary motor area 

27-40 bilateral primary motor (leg area) cortex 
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Figure 7.10 Group maps of brain regions exhibiting significantly greater activity during 

blue/green-executed leg movements than during blue/green-imagined leg movements, color-

coded in red-to-yellow heat maps where red = 2.3 and yellow > 4.7. Images are shown in 

radiological convention (i.e., right is on the left). 
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Table 7.8 Brain regions whose activity was significantly greater (p < 0.05) during 

blue/green-imagined movements than during blue/green-executed movements, where the Z 

slice is in the upper left corner of Figure 7.11. 

Z (slices) Harvard-Oxford Label 

 4-12 Right lateral cerebellum 

 31-37 Bilateral supplementary motor area 

 29-31 Bilateral anterior cingulate cortex 

 29-32  Bilateral supramarginal gyrus 

 28-34 Bilateral precentral gyrus 

 15-20 Left frontal pole 

 

 

Figure 7.11 Group maps of brain regions exhibiting significantly greater activity during 

blue/green-imagined leg movements than during blue/green executed leg movements, color-

coded in red-to-yellow heat maps where red = 2.3 and yellow > 4.7. Images are shown in r 

radiological convention (i.e., right is on the left). 
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Table 7.9 Brain regions whose activity was significantly greater (p < 0.05) during 

blue/green-executed movements than during CGI-executed movements, where the Z slice is 

in the upper left corner of Figure 7.12. 

Z (slices) Harvard-Oxford Label  

 16-21 Right temporal pole 

15-33 Bilateral primary visual cortex 

 

Figure 7.12 Group maps of brain regions exhibiting significantly greater activity during 

blue/green-executed leg movements than during CGI-executed leg movements, color-coded 

in red-to-yellow heat maps where red = 2.3 and yellow > 4.7. Images are shown in 

radiological convention (i.e., right is on the left). 
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Table 7.10 Brain regions whose activity was significantly greater (p < 0.05) during CGI-

executed movements than during blue/green-executed movements, where the Z slice is in the 

upper left corner of Figure 7.13. 

Z (slices) Harvard-Oxford Label 

14-22 Bilateral lateral occipital cortex 

 

Figure 7.13 Group maps of brain regions exhibiting significantly greater activity during 

CGI-executed leg movements than during blue/green-executed leg movements, color-coded 

in red-to-yellow heat maps where red = 2.3 and yellow > 4.7. Images are shown in 

radiological convention (i.e., right is on the left). 
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Table 7.11 Brain regions whose activity was significantly greater (p < 0.05) during 

blue/green-imagined movements than during CGI-imagined movements. 

Z (slices) Harvard-Oxford Label 

15-32 Bilateral primary visual cortex 

 

 

Figure 7.14 Group maps of brain regions exhibiting significantly greater activity during 

blue/green imagined leg movements than during CGI imagined leg movements, color-coded 

in red-to-yellow heat maps where red = 2.3 and yellow > 4.7. Images are shown in 

radiological convention (i.e., right is on the left) 
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Table 7.12 Brain regions whose activity was significantly greater (p < 0.05) during CGI-

imagined movements than during blue/green-imagined movements. 

Z (slices) Harvard-Oxford Label 

12-24 Bilateral lateral occipital cortex 

31-37 
Bilateral superior parietal lobule and 

postcentral gyrus 

 

 

Figure 7.15 Group maps of brain regions exhibiting significantly greater activity during 

CGI imagined leg movements than during blue/green imagined leg movements, color-coded 

in red-to-yellow heat maps where red = 2.3 and yellow > 4.7. Images are shown in 

radiological convention (i.e., right is on the left). 
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7.4 Discussion 

The results of this study supported hypothesis 2 associated with the utility of fMRI to identify 

areas of the brain that would be differentially activated for lower limb movement across the four 

experimental conditions. This study was designed to accurately represent the activation patterns 

associated with lower limb movements across participants for the four experimental tasks. This 

task was accomplished using a carefully designed methodology and a multi-step analytical 

procedure. A second purpose was to determine if there were differences in the activation patterns 

between the four tasks. Again, the procedures used for assessing contrasts in the study allowed 

for these differences to be highlighted.  

Consistent with the extant literature and methodological approach used, the current study 

showed that various sensory, motor and visual areas of the brain were activated. In addition, 

other temporal and parietal areas were also activated. Interpretation of these activations is a 

somewhat more speculative task due to the novelty of the study. However, with that caveat, 

discussion of these areas for each experimental condition is provided next.  

7.4.1  CGI Executed 

During the executed CGI task most of the activation occurred in the primary and supplementary 

motor areas. This is a reasonable finding because motor execution and control would be needed 

for the task for which these areas are responsible.  The additional activation at the medial 

cerebellum was also not unexpected, as the actual execution of the motor task occurred in this 

condition. Interestingly, there was activation in the right planum temporale area. This finding is 

consistent with reactions to coherent (repetitive) visual motion [141]. Given the type of visual 

stimulus, the current study supports these areas as being important in visual motion perception.  
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7.4.2 CGI Imagined 

The highest activation in CGI imagined condition was in areas associated with movement control 

(premotor, motor and supplementary motor cortices and secondary motor area). Both the 

pallidum and putamen were activated bilaterally. They are located in the basal ganglia, are 

associated with regulation of movement [142], and have been established as important during the 

initiation of executed tasks in cats [143]. These areas would likely be activated in an imagined 

condition where the participant could be on the ‘verge’ of movement.  The activation of the 

lateral cerebellum is consistent with findings on executed versus imagined hand movements as 

this area is thought to inhibit execution of movement [144]. 

Visual areas were also activated, specifically activation of the lateral occipital cortex in both 

left and right hemispheres indicates that shape/object recognition was being triggered [145]. This 

is likely due to the visual stimulus of the CGI with its unique shape and movement being 

important in carrying out this imagined task.  

Finally, Wolpert, et al. 1998 [146] make a compelling case, using a single-subject study, that 

the superior parietal lobe is involved in the integration of sensory input and motor output, 

providing an internal representation of body state. The finding of activation in this area is 

consistent with the task presented to participants in the current study. He also argues [147] for 

this integration approach in building neural network and motor computational models. 

 

7.4.3 Blue-green Executed 

In the blue-green executed condition, as with the CGI executed condition, most of the activation 

occurred in the motor areas (primary motor leg area, supplementary and secondary motor areas). 
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Again, similar to the CGI condition, there was activation in the medial cerebellum due to the 

actual movement in this condition. Activation of the area that gives meaning to bodily states, 

including motor control (left and right insular cortex) [148] suggests the need for proprioceptive 

awareness for this task.  

7.4.4 Blue-green Imagined 

The blue-green imagined task was dominated by the activation of motor control areas 

(supplementary motor, premotor, and secondary motor cortices). It was also very similar to the 

CGI imagined task in terms of areas activated. There was activation of the right lateral 

cerebellum, as a possible inhibitor to the execution of movement [144], and bilaterally of the 

pallidum and putamen which also is associated with regulation of movement [142]. As in the 

CGI imagined task, there was also recruitment of the superior parietal areas to integrate sensory 

input and motor output [146]. Similar to the executed blue-green task, the bilateral activation of 

the insular cortex suggests the need for proprioceptive bodily meaning for this task [148]. 

7.4.5 Executed and Imagined Task Contrasts 

Not surprisingly, the CGI executed task showed more activation in movement execution 

including the leg area of primary motor cortex and the medial cerebellum [72] relative to the CGI 

imagined task.  The CGI imagined task relative to the CGI executed task showed many areas of 

differential activation. From a motor perspective, the somatosensory cortex and premotor cortex 

were activated relative to the executed condition rather than the actual motor output areas. The 

lateral cerebellum that is involved in inhibiting execution of movement was also activated in the 

imagined versus executed CGI condition [72]. 



 115 

In addition, several visual areas were activated including the: 1) right lingual gyrus that 

has been implicated in color vision perception [149] and face perception [150]; 2) left inferior 

frontal gyrus that plays a role in selective visual attention [151]; and 3) lateral occipital cortex 

associated with object recognition [145]. More cognitive functional areas were also activated. 

These included the posterior cingulate cortex that serves an evaluative function in monitoring 

sensory events [152] and the superior parietal areas that integrates sensory input and motor 

output [146]. Interestingly, two areas associated with emotions, the temporal pole (activated 

when processing social and emotional cues) [153] and the anterior cingulate cortex (related to 

emotional control of motor outputs) [152] were also activated. 

For the blue-green tasks, the executed version relative to the imagined version showed 

more activation in motor areas (primary motor for the leg area, secondary motor area, and medial 

cerebellum). In contrast the blue-green imagined relative to the blue-green executed condition, 

showed right lateral cerebellum (that inhibits execution of movement [72], and bilateral 

supplementary motor area activity). There was also activation of the anterior cingulate cortex 

(related to emotional control of motor outputs) [152]. These findings are consistent with the CGI 

executed and imagined differences. There were some additional differences however, unique to 

this comparison. The left frontal pole that is linked to monitoring of task outcomes [154] was 

activated as was the precentral gyrus (motor control)  and the supramarginal gyrus 

(proprioception [155]). 

Overall, the executed tasks were notable by their additional activation of motor areas 

relative to the imagined tasks.  The imagined tasks recruited several additional visual, 

proprioceptive, cognitive, and emotional areas relative to the executed tasks. This is not 
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surprising, as the task requires more effort to imagine oneself executing the task at a particular 

pace. 

7.4.6 CGI and Blue-green Task Contrasts 

The differences for the CGI and blue-green executed tasks were primarily in activations in 

different visual areas. The blue-green executed task showed higher activation than the CGI 

executed task in central vision (primary visual cortex). This contrast also showed activation of 

the cluster of the temporal pole (social and emotional cue processing) [153]. The CGI executed 

task showed higher levels of activation for object recognition (lateral occipital cortex) [145] 

relative to the Blue-green executed task.  

The blue-green imagined task relative to the CGI imagined task showed more activation 

in primary visual cortex, while the CGI relative to the Blue-green imagined task showed more 

activation in the lateral occipital cortex (object recognition), a finding similar to that of the 

executed task comparison. There was also a cluster associated with sensory activation 

(postcentral gyrus) and integration of sensory input and motor output [146] in the CGI imagined 

relative to the blue-green imagined tasks. Given the complexity of the stimulus in the CGI 

executed condition relative to the blue-green condition, it was not surprising that there was more 

activation for recognition and less for basic visual processing.   

Contrasts between the CGI condition and blue-green condition showed that blue-green 

activation was located predominantly in the primary visual cortex, while the information unique 

to the CGI condition was more temporal (ventral) in activation. This finding supports the two-

stream model of visual processing, commonly referred to as the ‘what’ and ‘where’ pathways  

[156]. The dorsal pathway (parietal) is more responsible for where in space the object is, whereas 



 117 

the ventral pathway is more responsible for object recognition. The more interesting and 

relatable CGI stimulus evoked a strong ventral pathway. This visually based finding was 

consistent across the contrasts performed between the two visual cues during executed and 

imagined tasks, providing support for this contention, given it occurs whether or not the 

participant is actually moving. The two pathways are presented in Figure 7.16.  

 

Figure 7.16 Representation of dual-stream theory. Where visual activity moves from the 

primary visual cortex (red) to dorsal (yellow) and ventral (orange). 

7.5 Limitations  

This portion of the study, while it provides fMRI-based insights into lower-limb stepping 

movementwas conducted at a slow pace (~50 steps per minutes), which is about half the average 

speed of walking (~90-100 steps per minute). Therefore, these results may not generalize to the 

dispersion and amplitude of brain activation that would be observed with faster locomotion. A 

second limitation was that data associated with just the left or just the right movements were not 

separable. As was noted earlier, this is due to the fact that the metabolic response to the task was 

much slower than that of the task frequency. This issue is a methodological concern that would 
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need to be addressed using a much slower pace than actual walking. Third, two different visual 

stimuli were used to pace the participants, one a natural-looking figure of a person walking (CGI), 

and the other a more neutral stimuli (alternating blue-green circles). Several of the activated areas 

were likely due to these particular stimuli and thus would not be replicable under different 

conditions. It would be interesting to assess possible activation differences using visual, auditory, 

or no external stimuli.  

Fourth, because there was not a second trial for the fMRI task at time 3, these data were 

not subjected to a reliability analysis. It has been shown that the overall reliability of fMRI data 

(cluster overlap) using the intraclass correlation (ICC) coefficient is roughly 0.50 [157], [158]. A 

study of the reliability of MRI functional connectivity using generalizability theory reports 

somewhat lower values (on the order of .30) [159]. Reliability of the data can be improved by 

increasing the length of the run, task training in advance of undergoing the MR scan, increasing 

the number of subjects and task trials to improve power, with most fMRI studies reviewed for 

reliability using fewer than 10 participants [158]. The current study employed several of the 

suggestions that should improve the assumed reliability of the data, including two training 

sessions, a large number of task repetitions (N = 60) and collapsing the data across a relatively 

large number of participants (N = 16). 

Finally, the task was performed with the participants in a supine position. Thus, the 

activation of brain areas responsible for the maintenance of upright posture and balance were not 

captured in the data. However, to adequately address this issue, the MR scanner would need to 

be perpendicular to the ground such that participants are able to stand while they locomote.  
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7.6 Future Work 

Interesting results that warrant following up with subsequent studies include the results 

associated with the unilateral visual-temporal activation during fMRI on the left hemisphere of 

the brain, as well as the unilateral activation of the right rostral prefrontal cortex to ascertain the 

nature of these activations as either a product of visualization or cognitive processing. Using 

different stimuli modalities (e.g., visual, auditory, tactile) or even no stimuli at all to pace 

participants, answers to these questions might be uncovered.  

7.7 Conclusion  

This work adds to the body of knowledge insofar as it isolates the differences and similarities 

between imagined and executed lower limb movements. In addition, this demonstrates the effects 

of using two quite different types of visual stimuli to complete the same task. These data can be 

used in the development of a brain-computer interface (BCI). More specifically, they can be used 

to inform where partial volume captures can be obtained that are highly correlated with brain 

activation, particularly during imagined locomotion. As such, the results presented in this chapter 

continue to push toward the overarching goal of the research project in facilitating the 

development of an efficient and effective lower limb BCI. 

 The findings from data collected separately using only EEG and then only fMRI on lower 

limb executed and imagined stepping were presented in the last two chapters. In order to 

capitalize on the strengths of each technological approach however, the information contained in 

each needs to be integrated. This integration is expected to assist in determining the most useful 

data for the input stage of BCI development. A process developed to do so is presented in the next 

chapter.  
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CHAPTER 8: FMRI INFORMED EEG FOR THE COMPUTER-GENERATED 

IMAGE TASKS 

8.1 Introduction  

The purpose of this chapter was to assess hypothesis 3: A computational approach exists that 

successfully allows accurate mapping of the spatial brain activity (fMRI) in relation to the 

temporal receptors (EEG electrodes) associated with lower limb movement. To do so, the use of 

an fMRI informed EEG procedure was implemented [77].  The goals of this chapter were to: 1) 

co-register the 64 EEG electrodes with respect to fMRI data and 2) determine the magnitude of 

an expected link between clusters of activated voxels and each electrode. This information was 

then used in a machine learning exercise that will help in the eventual creation of a brain 

computer interface (BCI) for lower limb movement (Chapter 9).  

EEG and fMRI are two technologies that are capable of measuring brain activity. They 

are, however, measurements of two fundamentally different aspects of brain activity. fMRI is an 

indirect and metabolic measure of neuronal activity that can spatially be resolved to within 

millimeters [160] at all levels from deep brain to cortical structures. This makes it particularly 

effective at detecting where in the brain activity is taking place. EEG, on the other hand, is a 

direct measure of electrical activity that is captured at the scalp with spatial resolution in the cm3 

range [161]. It is precisely tied to the timing of neural activity. While deep brain activity adds to 

a summing of neurons as it radiates toward the cortical surface, it is cortical surface activation 

that dominates the detectable EEG signal. For this reason, fMRI and EEG are complementary 

technologies that can aid in creating a fulsome temporal and spatial model for understanding 

neural activity when carrying out tasks, including that of locomotion.  
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The data from the computer-generated image (CGI) conditions were selected to 

undertake this process. The CGI data performed much better in the predictive utility of left/right 

and showed higher generalizability relative to the blue-green condition (Chapter 6). In addition, 

the data from the imagined CGI condition would also be the most useful to translate for use to 

those with compromised lower limb mobility. 

8.2 Methods 

8.2.1  Data Collection 

For a detailed explanation of how data were acquired please see Chapter 5. This chapter makes 

use of the concurrently-gathered fMRI and EEG data collected at time point 3 for the CGI 

executed and imagined conditions.  

8.2.2  Data Processing 

Recall that once the fMRI data were processed, significant clusters were established based on 

amplitude of activation and correlation with the GLM described in Chapter 7. The Harvard-

Oxford Atlas locations of these significant clusters were also recorded. Because these clusters 

exist in 3D space within a standard MR image (MNI 2 mm), sets of (x, y, z) coordinates define 

each voxel in each cluster. 

The EEG data, however, are captured in a different 3D space. Specifically, neural sources 

of the electrical signals are picked up by 64 different EEG electrodes that are wrapped around the 

participant’s head in a cap. The unique EEG electrode locations, and their relationships to each 

other, are provided for each cap by the manufacturer.  
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A. EEG Electrodes Mapped from Standard Brain Space to fMRI Space 

As a result of these differences between the various 3D spaces, to tightly couple where 

the EEG electrodes sit in a 3D volume with respect to the hemodynamic activation observed in 

the fMRI data, several steps were undertaken. Figure 8.1 outlines these transformations and each 

one will be described in turn. 

 

Figure 8.1 Flowchart overview of the process used to co-register EEG electrodes in 3-

dimensional fMRI space 

Step 1, as displayed in Figure 8.1, was to correctly identify and localize the EEG 

electrodes in the structural (no task) T1 weighted MRI scans. To do so the scans for each 

participant were loaded into Amira (Zuse Institute, Berlin) software and the EEG electrodes on 

these structural MRI scans showed up as artifacts (‘bumps’) on the surface of the skull. The user 

of the Amira software manually then ‘draws’ boundaries around the artifacts, a process called 
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segmentation. Segmentation of the EEG electrodes in multiple planes, for a single structural MR 

slice is shown in Figure 8.2.  

 

Figure 8.2 Segmentation of the EEG electrodes in the transverse, sagittal and frontal planes 

of one slice of the structural MR in Amira software for one participant 

By iterating this process in multiple planes (frontal, sagittal and transverse) across all 

slices, a series of 2D image segments were generated. These data can only be exported as a stack 

of 2D binary, tagged image file format (tiff) images where the background is black (=0), and the 

electrodes are white (=1) (i.e., grey-scale). Step 2 in the process was the exportation of these 

segmented EEG electrode results. 

Step 3 was to generate a 3D model of the EEG electrodes by interpolating across the 

multiple 2D images. To do so, the centroids for each of the EEG electrodes needed to be 

computed. Using the data across the 2D images the 3D centroid-based map required three 

separate equations, one for each of x, y, and z, for each EEG electrode using Equation 8.1: 

𝐶𝑥 =
∑ 𝐶𝑖𝑥∗𝐴𝑖

∑ 𝐴𝑖
, 𝐶𝑦 =

∑ 𝐶𝑖𝑦∗𝐴𝑖

∑ 𝐴𝑖
, 𝐶𝑧 =

∑ 𝐶𝑖𝑧∗𝐴𝑖

∑ 𝐴𝑖
             (8.1) 
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Using the equations, a 3D centroid representing the center of each EEG electrode was 

calculated. Cn are the centroids in a given plane, where the individual electrodes are broken into 

sets of smaller shapes (Xn), and (Ai) is the area of the smaller shapes comprising the whole shape. 

This varies on an electrode basis, provided the segmentation varies. 

By applying these equations to the stack of tiff files, the center of each EEG electrode 

was established in the same space in which the structural MRI was collected. This resulted in a 

64-point ‘cloud’ representing the EEG electrodes using Matlab 2017b (Mathworks, MA, USA). 

This procedure was carried out for each subject separately, as each one was associated with the 

data from his unique structural MRI scan. The point cloud was fitted with a mesh to highlight the 

3D nature of this space. Figure 8.3 shows an example of one participant’s 3D 64-point EEG-cap 

cloud.  

 

Figure 8.3 Example of a Maglink 64 electrode EEG cap showing the locations of electrodes 

relative to one another in x, y, z space and fitted with a surface mesh 

Recall that the structural MRI space (no task), functional MRI data (task-based) space, 

and MNI 2 mm standard brain space all have unique frames of reference. Thus, Step 4 required a 
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co-registration process to align the structurally-mapped EEG electrodes to a standard fMRI space 

(MNI 2 mm).  This meant that two more transformation matrices were required. This is similar to 

the step carried out in Chapter 7 to register the participant level functional scans into standard 

MNI 2 mm space using affine transformation. Specifically, the software program FSL [111] was 

used to calculate the 4x4 transformation matrices used and included parameters for the shear, 

scaling, rotation and translation necessary to register the data between the various spaces.  

The affine transformation is shown in Equation 8.2, where tx, ty and tz represent 

translations in each of the three directions, b is a scale factor and the amalgamation of sin(𝜃) and 

cos(𝜃) are responsible for rotation in each of the three planes. This transforms the set of 3D 

coordinates (x, y, z) associated with the 64 EEG electrodes into new space (x’, y’, z’). 

[

𝑥′

𝑦′

𝑧′

1

] = [

cos(𝜃) 𝑏 ∙ − sin(𝜃)
sin(𝜃) cos(𝜃)

    
sin(𝜃) 𝑡𝑥

− sin(𝜃) 𝑡𝑦

− sin(𝜃) sin(𝜃)
0 0

    
cos(𝜃)             𝑡𝑧

0             1

] ∗ [

𝑥
𝑦
𝑧
1

]   (8.2) 

After the EEG electrode coordinates were ascertained for each individual, they were 

averaged to generate a single EEG electrode coordinate system in which the fMRI group-level 

data could be imported.  

B. EEG and fMRI Data in a Single Standard Brain Space 

The stack of 2D fMRI data from the CGI conditions was then imported into this same 3D 

space. Once in the same space, participants’ locations of metabolic activity were rendered using 

Matlab 2017b (Mathworks, MA, USA) as point clouds, keeping the z-stat (amplitude) of each 

voxel within each cluster intact. Figures 8.4 and 8.5 show these metabolic point clouds in 3D 

space for the clusters associated with brain activity for the imagined and executed CGI 



 126 

conditions.  Panel A in the figures show the clusters, their locations, and numbers while Panel B 

in the figures show overlay of the EEG electrode locations. A close-up view of a sample cluster 

and three EEG electrodes (C1, C4, and P4) are shown in Figure 8.6. 

 

 

Figure 8.4 A) fMRI clusters from the CGI imagined condition, labelled 1 through 7; B) EEG 

locations overlaid on the fMRI clusters from the CGI imagined condition 

 

Figure 8.5 A) fMRI clusters from the CGI executed condition, labelled 1 through 3; B) EEG 

locations overlaid on the fMRI clusters from the CGI executed condition 



 127 

 

Figure 8.6 Close-up of a mock up section of Figures 8.4 and 8.5 showing the distance vectors 

between electrodes C1, C4, and P1 and a cluster of voxels (with their z-stat scores – higher 

numbers indicating higher activation) 

C. Strength of Relationship Between Clusters and EEG Electrodes 

At this point the group-level EEG electrode and fMRI data for the CGI imagined 

condition were in the same standard brain space with the correct distances of each electrode to 

the activated voxels in each cluster correctly determined. The next step in the fMRI informed 

EEG process was to model how effectively the neural activity in each cluster is likely to be 

‘picked up’ by the 64 EEG electrodes. This information, then, can be used to determine the most 

appropriate weighting approach when creating a brain-computer interface (BCI) linking EEG 

activity to lower limb imagined or executed movement. 
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 The expected activity level in the electrodes is based on both the distance from the voxel 

as well as the magnitude of its signal. Therefore, a customized equation that addressed both of 

these dimensions was developed that weighted the proximity of clusters to each electrode in 3D 

space. This was accomplished by first calculating the absolute distance between each voxel and 

each electrode for a given cluster (dve). Equation 8.4 is the mathematical model used to generate 

the distances between the two sets of 3D points.  

dve = √(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2    (8.4) 

Variable (dve) denotes the Euclidean distance between each electrode and each voxel. 

Variables (x2, y2, z2) represent each electrode’s location and (x1, y1, z1) represent each voxel’s 

location.  By using the inverse square of this distance, voxels that are closer to the electrode were 

more highly weighted.  

An adjustment for voxel activation level was then incorporated. Voxel activation levels 

are reflected in their z-stat score. This information was also included in the equation such that if 

an electrode had a high activation but was further away, it was accounted for in the weight. 

Conversely, if an electrode had a small z-stat score but was closer this would also be accounted 

for in the equation. Equation 8.5 was used to generate these adjusted weights where (zstat) 

represents the z-stat score of the voxel, (dve) is the distance between each voxel (v) and electrode 

(e) summed over the number of voxels in each cluster (n) and finally (Pw) is the proximity 

weighting.  

P𝑤 = ∑ 𝑧𝑠𝑡𝑎𝑡 ∗
1

(dve)2
𝑛
𝑖=1      (8.5) 
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These proximity weights were summed over the total number of voxels in the cluster. In 

order for this proximity score to be useful in the creation of the BCI, the Pw scores were 

normalized to range from ~0 to ~1. The reason for the ‘approximate 0’ and ‘approximate 1’ is 

that in a sigmoid weighting function (as is used in machine learning and described in the next 

chapter), weights range from ~0 to ~1 because the function asymptotes as it approaches 0 and 1. 

Pw scores were normalized by inserting them into Eq. 8.6, where PN is the normalized weighting 

value of Pw.  

𝑃𝑁 =
(0.999−0.001)∗(𝑃𝑤−min (𝑃𝑤))

max(𝑃𝑤)−min(𝑃𝑤)
+ min (𝑃𝑤)    (8.6) 

PN values take into account the Pw maxima and Pw minima in the entire data set (across 

electrodes). Therefore, they represent not only a simple rank-ordering magnitude system, but if a 

cluster is very close to the surface (close to several electrodes) this would represent a ‘global 

maximum’ and deeper brain activations a ‘global minimum’, and every weighting is based on the 

cohort of clusters, not simply within a cluster. These weights were calculated on a per cluster 

basis. Summing the activation levels over the total number of clusters on a per electrode basis 

should provide an overall likelihood of electrode activation associated with a given task.  

8.3 Results 

The resulting PN values are recorded for use in an electrode selection tool (Tables 8.1 and 

8.2). They show the weighting of each EEG electrode relative to each of the significant clusters 

in the CGI imagined and CGI executed conditions, as well as the sum across all clusters in the 

final column. Where the weighting would suggest an importance of each electrode relative to the 

hemodynamic response with a higher weighting denoting a higher likelihood of importance. For 

the imagined task FCZ, FC3, FC5, and FC1 all had summed values above 1.0.  
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Table 8.1 Weighting of EEG electrodes on an fMRI cluster-wise basis for CGI Imagined 

condition 

EEG 

Electrode 

Cluster 

1 

Cluster 

2 

Cluster 

3 

Cluster 

4 

Cluster 

5 

Cluster 

6 

Cluster 

7 
Summation 

CZ 0.04 0.05 0.01 0.01 0.01 0.06 0.54 0.72 

CPZ 0.05 0.05 0.01 0.00 0.01 0.07 0.26 0.45 

C1 0.05 0.04 0.01 0.01 0.00 0.10 0.54 0.76 

CP1 0.06 0.05 0.01 0.00 0.00 0.12 0.31 0.55 

CP2 0.04 0.07 0.01 0.00 0.01 0.04 0.24 0.40 

FC1 0.04 0.04 0.02 0.01 0.00 0.07 1.00 1.17 

C2 0.04 0.06 0.01 0.01 0.01 0.04 0.44 0.61 

PZ 0.05 0.06 0.01 0.00 0.01 0.06 0.19 0.38 

FZ 0.03 0.03 0.01 0.01 0.01 0.03 0.65 0.76 

FC2 0.03 0.05 0.01 0.01 0.01 0.03 0.71 0.86 

P1 0.07 0.05 0.01 0.00 0.00 0.11 0.22 0.46 

P2 0.04 0.08 0.01 0.00 0.01 0.04 0.18 0.35 

F1 0.03 0.03 0.02 0.01 0.00 0.04 0.74 0.88 

F2 0.02 0.04 0.01 0.01 0.01 0.02 0.58 0.70 

CP3 0.08 0.04 0.01 0.00 0.00 0.22 0.32 0.69 

C3 0.07 0.04 0.02 0.00 0.00 0.17 0.48 0.78 

PO3 0.08 0.06 0.01 0.00 0.00 0.10 0.17 0.43 

FC3 0.05 0.03 0.02 0.01 0.00 0.10 0.82 1.03 

CP4 0.03 0.09 0.01 0.01 0.02 0.03 0.21 0.40 

FC4 0.03 0.06 0.01 0.01 0.02 0.02 0.54 0.70 

POZ 0.06 0.07 0.01 0.00 0.01 0.06 0.16 0.36 

C4 0.03 0.08 0.01 0.01 0.03 0.03 0.34 0.52 

PO4 0.05 0.09 0.01 0.00 0.01 0.04 0.14 0.34 

P4 0.04 0.11 0.01 0.00 0.02 0.03 0.17 0.37 

AFZ 0.02 0.03 0.02 0.01 0.00 0.02 0.36 0.45 

F3 0.04 0.03 0.03 0.01 0.00 0.05 0.74 0.89 

F4 0.02 0.04 0.01 0.01 0.01 0.02 0.51 0.64 

AF4 0.02 0.03 0.01 0.01 0.01 0.01 0.32 0.42 

AF3 0.03 0.02 0.02 0.01 0.00 0.03 0.40 0.51 

F5 0.04 0.03 0.03 0.01 0.00 0.05 0.70 0.87 

FC5 0.07 0.03 0.03 0.01 0.00 0.10 0.86 1.10 

C5 0.10 0.03 0.02 0.00 0.00 0.21 0.38 0.75 

F6 0.02 0.05 0.01 0.02 0.02 0.01 0.43 0.56 

FP2 0.02 0.03 0.01 0.01 0.01 0.01 0.26 0.35 
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CP5 0.15 0.04 0.02 0.00 0.00 0.30 0.25 0.76 

P5 0.18 0.04 0.01 0.00 0.00 0.22 0.18 0.64 

C6 0.03 0.12 0.01 0.01 0.06 0.02 0.26 0.51 

FP1 0.02 0.02 0.02 0.01 0.00 0.02 0.27 0.37 

CP6 0.03 0.16 0.01 0.01 0.05 0.02 0.17 0.45 

AF8 0.02 0.04 0.01 0.02 0.01 0.01 0.29 0.40 

A7 0.03 0.02 0.03 0.01 0.00 0.03 0.36 0.49 

FC7 0.02 0.08 0.01 0.02 0.04 0.02 0.42 0.61 

FPZ 0.02 0.02 0.02 0.01 0.00 0.01 0.22 0.30 

PO5 0.25 0.06 0.01 0.00 0.00 0.14 0.14 0.60 

O1 0.19 0.07 0.01 0.00 0.00 0.09 0.12 0.48 

O2 0.06 0.18 0.00 0.00 0.01 0.03 0.11 0.40 

F8 0.02 0.06 0.01 0.02 0.03 0.01 0.33 0.47 

F7 0.05 0.03 0.04 0.01 0.00 0.05 0.43 0.60 

PO6 0.05 0.27 0.01 0.00 0.02 0.02 0.12 0.49 

OZ 0.13 0.13 0.01 0.00 0.01 0.04 0.10 0.42 

FT7 0.08 0.03 0.04 0.01 0.00 0.08 0.39 0.63 

PO7 0.54 0.06 0.01 0.00 0.00 0.11 0.12 0.84 

TP7 0.35 0.04 0.02 0.00 0.00 0.21 0.17 0.80 

T7 0.16 0.03 0.03 0.00 0.00 0.17 0.25 0.65 

PO8 0.05 0.44 0.01 0.00 0.02 0.02 0.10 0.64 

TP8 0.03 0.28 0.01 0.01 0.11 0.02 0.14 0.59 

P8 0.04 0.44 0.01 0.01 0.05 0.02 0.12 0.67 

P7 0.63 0.05 0.02 0.00 0.00 0.14 0.13 0.97 

FT8 0.02 0.09 0.01 0.02 0.06 0.01 0.28 0.50 

T8 0.03 0.16 0.01 0.02 0.17 0.01 0.20 0.61 

P6 0.04 0.23 0.01 0.01 0.04 0.02 0.15 0.49 

P3 0.11 0.05 0.01 0.00 0.00 0.21 0.21 0.59 

FCZ 0.03 0.04 0.01 0.01 0.01 0.04 0.90 1.05 
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Table 8.2 Weighting of EEG electrodes on an fMRI cluster-wise basis for CGI Executed 

condition 

EEG 

Electrode 
Cluster 1 Cluster 2 Cluster 3 Summation 

CZ 0.01 0.01 1 1.02 

CPZ 0.01 0.01 0.57 0.59 

C1 0.01 0.01 0.88 0.9 

CP1 0.01 0.01 0.67 0.68 

CP2 0.01 0.01 0.42 0.45 

FC1 0.01 0.01 0.81 0.82 

C2 0.01 0.02 0.75 0.78 

PZ 0.01 0.01 0.39 0.41 

FZ 0.01 0.01 0.38 0.4 

FC2 0.01 0.01 0.59 0.61 

P1 0.01 0 0.43 0.45 

P2 0.01 0.01 0.31 0.33 

F1 0.01 0 0.4 0.41 

F2 0.01 0.01 0.33 0.36 

CP3 0.01 0 0.49 0.51 

C3 0.01 0 0.49 0.5 

PO3 0.02 0 0.31 0.33 

FC3 0.01 0 0.45 0.47 

CP4 0.01 0.02 0.29 0.33 

FC4 0.01 0.03 0.33 0.37 

POZ 0.01 0.01 0.29 0.31 

C4 0.01 0.03 0.36 0.4 

PO4 0.01 0.01 0.24 0.27 

P4 0.01 0.02 0.24 0.28 

AFZ 0.01 0 0.2 0.21 

F3 0.01 0 0.31 0.33 

F4 0.01 0.02 0.25 0.28 

AF4 0.01 0.01 0.17 0.19 

AF3 0.01 0 0.19 0.2 

F5 0.01 0 0.22 0.24 

FC5 0.02 0 0.25 0.27 

C5 0.02 0 0.25 0.27 

F6 0.01 0.02 0.17 0.21 

FP2 0.01 0.01 0.14 0.15 

CP5 0.02 0 0.24 0.26 
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P5 0.02 0 0.22 0.24 

C6 0.02 0.07 0.2 0.29 

FP1 0.01 0 0.14 0.15 

CP6 0.02 0.05 0.18 0.25 

AF8 0.01 0.01 0.14 0.16 

A7 0.01 0 0.16 0.17 

FC7 0.01 0.05 0.2 0.26 

FPZ 0.01 0 0.12 0.13 

PO5 0.02 0 0.18 0.21 

O1 0.02 0 0.17 0.19 

O2 0.02 0.01 0.14 0.18 

F8 0.01 0.02 0.13 0.17 

F7 0.01 0 0.15 0.17 

PO6 0.02 0.02 0.15 0.19 

OZ 0.03 0.01 0.13 0.16 

FT7 0.02 0 0.15 0.17 

PO7 0.03 0 0.14 0.17 

TP7 0.03 0 0.14 0.17 

T7 0.02 0 0.15 0.17 

PO8 0.03 0.02 0.12 0.16 

TP8 0.02 0.07 0.12 0.21 

P8 0.03 0.04 0.12 0.18 

P7 0.03 0 0.13 0.16 

FT8 0.02 0.05 0.13 0.2 

T8 0.02 0.12 0.13 0.27 

P6 0.02 0.03 0.18 0.24 

P3 0.02 0 0.33 0.35 

FCZ 0.01 0.01 0.83 0.85 

 

8.4 Discussion 

Hypothesis 3 was supported in that a computational approach was designed that successfully 

allows accurate mapping of the spatial brain activity (fMRI) in relation to the temporal receptors 

(EEG electrodes) associated with lower limb movement.  This approach was used for both the 

imagined and executed CGI condition data. 
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As can be seen in the second last column of Table 8.1 for the imagined condition, cluster 

7 has many highly weighted electrodes, most of which correspond to the supplementary motor 

cortex and precentral gyrus.  

The smaller number of clusters activated during the executed task (see Table 8.2) 

rendered a value of above 1.0 for only one electrode at CZ. For the executed task, electrodes CZ, 

C1, FC1, and FCZ ranked highest across electrodes. These would be the 4 EEG electrodes most 

likely to be associated with the BOLD response. Interestingly, C1 was one of the electrodes used 

in Chapter 6 (isolating left and right movements with a GEE), selected from the literature due to 

its expected association with lower limb movement based on the extant literature. Left 

hemisphere electrodes dominated the results of the EEG electrodes selected. This is a direct 

result of the brain activity in those areas as per the GLM via the fMRI results from Chapter 7, 

where left hemispheric activity was higher as it is associated with temporal pacing.   

The purpose in identifying the 4 top ranking electrodes is that the subsequent chapter 

(Chapter 9) tests and compares the classification rates using a machine learning paradigm to 

isolate right and left imagined stepping. To avoid using too many predictors, and to keep the 

number of predictors constant when comparing literature-cited electrodes with those established 

from the proximity to BOLD responses, data from 4 electrodes was deemed a reasonable 

number.  

Although the methodology outlined in the current chapter was developed and used for the 

data set for this thesis, it can easily be adjusted and used for other spatial-temporal tasks in which 

EEG and fMRI are data are collected simultaneously. An advantage of this method is that the 

outcomes can be generated on a per-subject basis or on a group (average) fMRI activation basis. 
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Performing this computation on an individual level may lead to unique electrodes selected for 

use that may or may not be different from the group results. 

 Often in the presence of epileptic events it is pertinent to find the origin of the seizures in 

the brain for pre-surgical planning [162]. However, this method is highly erroneous and subject to 

a priori parameters used and manually selected by the user. Therefore, this currently proposed 

method   merges fMRI and EEG so that  a weighting schematic for 3D source localization can 

potentially be improved (Appendix C). This could be followed up by future studies where EEG 

and fMRI data are collected simultaneously. 

The development of the unique paradigm described in this chapter that generates a 3D 

map integrating EEG electrode and fMRI data of brain activity associated with imagined and 

executed lower limb movement is included as a novel contribution for co-registering EEG and 

fMRI in this thesis. It follows a reasoned logic and can be readily adopted by others. 

8.5 Limitations 

An assumption of this work was that proximity can be calculated using simple Euclidean 

distance, but given the human brain is highly convoluted this may be an oversimplification. 

8.6 Future Work 

Further work could be carried out to determine how this weighting approach based on proximity 

of electrodes to fMRI clusters explains the hemodynamic activity (fMRI) as it correlates with the 

electrical activity (EEG). A comparison could be made using 3D source localization from EEG, 

where the signal strength of the electrical activity is used to triangulate the current source via a 

dipole. Using this paradigm, this normally very ill-defined measure of source localization could 
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be represented by the number of dipoles as clusters, as well as the expected starting point in the 

3D space as informed from the fMRI. The mathematical resolution and degree of overlap in the 

3-dimensional areas of activation could be determined.  

To address the convolutional nature of the human cortex, using Mahalanobis distances 

rather than Euclidean distances, may be attempted. To do so would require the extraction of the 

appropriate data from the structural MRIs. Finally, the normalized weights could be pre-allocated 

in a machine learning paradigm and thus perhaps work to resolve the initialization of the 

predictors neuronal weights.  

8.7 Conclusion 

This is a novel method of co-registering EEG electrodes (electrical activity) with respect to fMRI 

data (hemodynamic activity). Although only performed for the CGI imagined and executed 

conditions, this technique could be applied to other EEG-fMRI data sets to determine the 

likelihood of electrodes picking up on the neural activation associated with hemodynamic 

activity.  

Arriving at the point of being able to link fMRI activity to EEG electrodes for any task 

has important implications, as it drives the decisions regarding the EEG data that should be 

investigated for specific tasks in BCI development. In the context of the goals of the current 

research, using information garnered from lower limb fMRI to guide the most effective data as it 

is generated via EEG will ensure efficiency in BCI development and use. 

 The final results for this dissertation are presented in the next chapter. In it, a machine 

learning paradigm is used to determine how well EEG data can classify left and right stepping. 
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CHAPTER 9: THE INTERPRETATION OF BRAIN ACTIVITY USING MACHINE 

LEARNING 

9.1 Introduction 

The purpose of this chapter is to address hypothesis 4: A pattern identification algorithm can be 

identified that classifies left and right leg movement based on brain activity patterns from 

imagined lower limb movement significantly better than chance; this algorithm will be optimized 

by using fMRI informed EEG. This portion of the study uses machine learning and ties directly 

into the development of a lower limb Brain-Computer Interface (BCI).  

There are several phases associated with the development of a BCI (Figure 9.1). The first 

is to acquire and accurately interpret brain activity. To do so effectively is contingent on the 

modality for acquiring brain activity - EEG or fMRI, for example. Up to this point in the 

dissertation, the focus has been on these data acquisition techniques. The next phase includes the 

algorithms developed and used to classify subsets of that brain activity. The focus of the present 

chapter is associated with the development of such algorithms.  

 

Figure 9.1 Overview of a Brain-Computer Interface 
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The final phase of BCI development is the control mechanism, which involves Boolean 

logic for controlling external devices such as actuators or cursors [163],[164]. While this last 

phase of BCI development will not be addressed in the current project, it is a natural extension 

and will be pursued in future research.  

Non-invasive BCIs are used in multiple contexts including, but not limited to: helping 

individuals interact with social media, assisting individuals with mobility constraints with robotic 

devices, facilitating product design, and allowing performance of hands free gaming [165]. A 

recent study has shown it is possible to build a BCI that unlocks a prosthetic knee to allow for 

increased lower limb mobility [166]. BCIs that have been concerned with isolating imagined 

motor control (for those with paraplegia and quadriplegia) have centered on hand grasping tasks 

[167]. Some of these upper limb studies are able to differentiate between right and left hands 

[168].  

This is no small feat, as there is a significant amount of cross talk in the EEG signals seen 

by electrodes covering the motor cortex. This issue becomes salient via a figure that diagrams a 

coronal slice of a cortical homunculus (Figure 9.2). It provides a map that shows which areas of 

sensorimotor cortex are responsible for which areas of the body. What is notable is that there is 

very little spatial difference between left and right lower limbs, and the lower limbs are more 

deeply located. Thus, while there is growing knowledge about upper limb left and right 

movements, BCIs focused on using EEG data for lower limb left and right classification face a 

unique and difficult challenge as signals arise from areas with very little spatial difference and 

the signal to noise ratio (SNR) is low. This study extends the extant literature regarding neural 

activity in the lower limb area by predicting left versus right leg movement from imagined data. 
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Figure 9.2 Cortical homunculus (coronal slice), where leg areas occur within the 

longitudinal fissure of the brain 

 

The interface between the neurological input and the interpretation of that data for BCI 

development is the focus of this study and relies on the discipline of machine learning. One 

aspect of human learning has long been characterized as reinforcement-based, where the 

knowledge of results is fundamental [169].  That is, actions that are followed by positive 

outcomes are more likely to be repeated, whereas actions followed by negative outcomes are not 

[170]. Machine learning operates similarly to this characteristic in that reinforcement is used to 

train an autonomous system where the reinforcement is based on correct versus incorrect 

classification [171]. There have been recent machine learning studies that use EEG data for 

motor/imagery classification. For example, it has been used to: discriminate between rest, 

imaginary grasp movements, and imaginary elbow movements of the same limb [60]; classify 

imagined motor movements of the left hand, right hand, foot and tongue [56]; and classify left 

versus right hand movement [172]. The current study adds to this new and important area of 

research that can be used to create a lower limb BCI. 
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Machine Learning is an ever-growing field that encompasses many varied learning 

methods that were discussed in Chapter 2. Selecting the type of learning methodology to use is 

not a straightforward task, as it is outcome driven rather than theoretically driven. That is, 

depending on the idiosyncratic nature of the task and the particular interest of the user, quite 

different approaches might be taken. One needs to be clear as to what outcome, or outcomes, of 

the learning protocol is most relevant. Not surprisingly, then the evaluation of machine learning 

methods is multifaceted [173] and includes outcomes such as predictive accuracy, speed of 

training necessary, speed of classification, memory usage, and interpretability. For example, a 

support vector machine (SVM) for a simple binary classification will score well on memory 

usage, training speed and interpretability. However, if the classification becomes too 

multifaceted with many interacting variables, predictive accuracy may go down. Conversely, 

artificial neural networks (ANNs) tend to do well with variables in which interaction effects are 

present, but their interpretability may be quite low. For the purposes of this dissertation, due to 

the high number of predictors, the degree of correlation and complexity of the task being 

predicted, an ANN approach was selected, and classification accuracy was the relevant outcome. 

ANNs are comprised of an architecture of artificial neurons (ANs). Figure 9.3 shows the 

similarity between the manner in which biological neurons (BNs) intake, process, and output 

information and that used by ANs. 

 

Figure 9.3 A) Biological neuron (BN) and B) an artificial neuron (AN). 
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Both ANs and BNs take input information, evaluate whether its level reaches a threshold, 

and based on the level reached, decides whether or not to move the information along. BNs 

exhibit an ‘all or none’ threshold based response for impulse propagation [49]. If the neuron has 

cumulatively received enough input from surrounding neurons, an action potential will take 

place and the signal will be passed through that neuron and onto its neighboring downstream 

neurons. A similar process occurs in ANs. Data provide inputs that are weighted and summed 

over the inputs, and then fed through an activation function (thresholding function) that 

determines how much and the character of the signal that is passed on to the next level AN. It is 

the culmination of the signals across multiple neurons that create both biological neural networks 

(BNNs) and artificial neural networks (ANNs). An example of an ANN with the data input, 

flowing through a hidden layer, and culminating in a classification into one of two outcomes is 

shown in Figure 9.4. 

 

Figure 9.4 Simple ANN, with 5 input neurons (green layer), 1 hidden layer (blue) and a 

binary output layer (yellow). 

 

In a supervised ANN methodology, the number of possible outputs is contingent on how 

many end-classifications exist. For binary outcomes, the number of classifications would be two. 

As with BNNs, ANNs are powerful because they are capable of learning. Supervised learning 
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occurs when the predicted output can be compared to a ground truth (expected output) and thus 

the degree of error can be determined (expected – predicted). The goal of the ANN is to minimize 

this error. A system such as this learns by using a weighting scheme adopted in the forward 

calculation of the output, obtaining the error, and then feeding the error back through the network. 

This is known as backpropagation (gradient descent optimization). The ANN will then update the 

weights. This iterative forward and backward calculation occurs over a selected number of 

training trials (epochs) with the goal of minimizing the error, or cost associated with a non-convex 

minimization. Thus, an ANN ‘learns’ by updating the weight (slopes) and bias (intercept) terms, 

which are determined by calculating the partial derivatives of the cost function selected.  

This introduction has served as a brief overview of the machine learning process for an 

ANN. There were two ANNs tested in this study that correspond to the two decision levels of the 

flowchart presented in Figure 9.5. First was to determine how well the system separated out active 

or resting brain activity. Because the data were collected in a block design as described in Chapter 

5, data for the ‘rest’ condition were acquired during the fixation cross. The data associated with 

each step (right and left) were grouped together into the ‘active’ brain activity. The second level 

decision point was the classification between left and right. The next section details the 

methodology used. 
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Figure 9.5 Flow chart for determining right or left lower limb movement using the CGI 

imagined EEG data. 

 

9.2 Methods 

9.2.1 Data Set Utilized 

Please refer to Chapter 5 for a detailed explanation of data collection and experimental 

paradigm. Because there was extremely little variance due to trials (see Chapter 6) the data set 

for this study consisted of the time point 1 and time point 2 EEG data. The alpha, beta and 

gamma frequencies for each of four electrodes (C1, C2, PO3 and PO4) were selected to use in 

the machine learning paradigm. C1 and C2, above the sensorimotor cortex, have been shown to 

be important in lower limb movement [174],[175]. This research project also found significant 

left-right differentiation using the data from the C1 and C2 electrodes (Chapter 6). In addition to 
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the motor areas, the visual and parietal areas of the brain were expected to be important in left 

versus right classification. PO3 and PO4 are in the parietal/occipital areas of the brain and have 

been shown to be activated in visual tasks [176] and imagery tasks [177] particularly at the 

gamma frequency [178]. The fMRI data from this research project (Chapter 7) also suggested 

that these areas of the brain and their corresponding electrodes would be appropriate for use in 

the machine learning paradigm. It was determined that since each electrode has three frequency 

bands associated with it, limiting the number of electrodes to 4 for the machine learning process 

would be appropriate for this research project. This provides information based on 12 input 

features. 

9.2.2  Software Program and Activation Function 

The software platform Python was used to generate the ANN, implementing both the Tensorflow 

(Google Brain Team) and NumPy toolboxes (Community Project). Data were imported into 

Python and shuffled, where left and right stepping data points were randomized so there were no 

effects of training order. This was particularly important as the right and left stepping alternated 

systematically across the time series of data. Thus, the ANN was forced to create a classification 

that was not contingent on knowing the previous data point, retaining predictor independence.  

A sigmoid activation function was implemented for the input layer of the ANN, while the 

hidden layers used a rectified linear unit (ReLU) activation function, and finally a softmax 

function was used in the final output layer. This was done to mimic biological neural function 

more closely. Biological neuron activity is characterized by a leaky integrate and fire (LIF) 

model [179]. Cortical neurons are rarely at their full saturation, so only as many neurons fire as 

are needed to carry out a specific task. This means that many of their activations levels remain 

close to 0 [180],[181]. Thus, biological neurons encode information in a sparse and distributed 
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way [182]. Following this logic, using a sigmoid function the AN will fire when the function 

reaches 0.5. This is implausible from a biological standpoint (as this would correspond to half 

saturation). In addition, this has a negative effect on gradient based optimization [183], [184]. 

Instead of the more traditional sigmoid activation function, a ReLU function was used for the 

hidden layer ANs, keeping more of the weights towards 0, unless they were highly excitatory 

(see Figure 9.6). This models the BN more closely, and this sparse firing leads to mathematical 

advantages [185]. When information is presented in a sparse format, differentiation becomes 

easier.  

 

Figure 9.6 Graphical representation of the sigmoid activation function (red) and ReLU 

activation function (blue). 

 The softmax function is a generalization of the sigmoid function, and can be 

implemented for a binary classification (or a multiclass classification) at the output layer to bring 

the output values to be between 0 and 1. In this study it is a probability distribution, with values 

above 0.5 being more likely to belong to one class and those below 0.5 being more likely to 

belong to the other class. Error was calculated using the mean square error (MSE) between 
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predicted and expected values (Eq. 9.1), where 𝑦�̂� is the predicted value and 𝑦𝑖 is the observed 

value, where (i) denoted each observed value, and (n) the number of training epochs used.  

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖 − 𝑦�̂�)

2𝑛
𝑖=1     (9.1) 

Through the backpropagation process, weights and combinatorial rules (e.g., interactions) 

associated with the ANs change, calculated via partial derivatives of the cost function, to 

minimize the MSE, and through this process the ANN ‘learns’. If learning is slow, it simply 

means the derivatives are small. To avoid learning slow down, a cross-entropy function was 

implemented (Eq. 9.2) where C is the cost function, n is the number of training examples (batch 

size), y is the desired output, and a is the output from the neuron.  

𝐶 =  −
1

𝑛
∑[𝑦 ln 𝑎 + (1 − 𝑦) ln(1 − 𝑎)]   (9.2) 

A cross-entropy function is suitable for this task because it is non-negative and tends 

toward zero as the neuron gets better at computing the desired output during training. However, 

unlike the traditional sigmoid (quadratic function) cost function, it avoids learning slow down 

[186]. Biases (intercepts) are used to shift the activation function in phase.  

9.2.3  Setting the Architecture and Hyperparameters 

Several parameters must be specified prior to analysis for ANN training architectures and the 

learning algorithms associated with them. For example, neural network machine learning 

requires the specification of the number of hidden layers, the number of nodes (neurons) on each 

hidden layer, the number of epochs to train to train through, and the learning rate [187]. These 

parameters are termed ‘hyperparameters’ and the values they take on have not been formally 

evaluated [188]. In fact, this issue makes the data analysis procedure for machine learning 

somewhat arbitrary in that selecting an effective combination of hyperparameter values is 
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challenging [187]. The main concern with the parameters is to avoid having values that may 

under fit the data, lowering the classification accuracy, while also avoiding values that over fit 

the model. While various efforts have been made to automate the selection process (e.g., 

landmarking, use of values based on prior literature, random search), manual search is still very 

common and it is suggested that hyperparameters values be selected tried on a small sample data 

set to eliminate unpromising combinations early on and instead fine-tune more promising ones 

[187]. This was the approach taken in the current study given the paucity of extant literature in 

this area to provide more obvious guidance. 

The data from one subject, who was randomly selected, was used to determine the most 

appropriate hyperparameter values. A 3-fold cross-validation was performed, where the 

participant’s left versus right imagined EEG data was run through the network, changing one 

hyperparameter at a time, to generate the finalized network. Data for all analyses were split into a 

training set and a holdout (test) set to validate the classification rates. While it was also possible to 

use the ‘leave one out cross-validation’ approach (LOOCV), the training/holdout technique was 

adopted because the LOOCV tends to overfit the data, particularly when the model is complex 

and the sample size is relatively small [189]. The percent of data used for training varies widely 

across studies, from 50% [190] to 80% [168], [191] to 90% [177]. There were 120 trials for each 

right and left leg imagined movement per participant. The data were split into an 80% training set 

comprised of 96 training examples, and the 20% test set comprised of 24 examples for each leg, 

for each participant. Since the data were randomized when they were imported into the machine 

learning program, the 80%/20% split was always random. 

The number of neurons for the input, output, and hidden layers as well as the number of 

hidden layers form the architecture of the ANN. Given that there were 12 input features, the 
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number of neurons at the input layer is set at 13 (number of input features plus one for the 

constant). The output layer was set to the number of classes (in this case 2). Simple machine 

learning examples are common in the literature, but classification systems for motor imagery 

tasks using EEG are not. However, one that used extreme machine learning utilized four hidden 

layers [192]. Multiple hidden layers allows for non-linear combinations of the data [193]. It was 

anticipated that the machine learning model for this research would be somewhat complex, and 

thus required more than a single hidden layer.  

The number of neurons (sometimes called nodes) within the hidden layers were selected 

based on some rules of thumb [194]: 1) 2/3 the size of the input layer, plus the size of the output 

layer (2/3 of 13 + 2 = 10.7); 2) less than twice of the number of neurons in input layer (less than 

26); 3) between the input layer size and the output layer size. Since it is appropriate to have the 

same number of neurons in each hidden layer [195], each of them had 10 neurons in the initial 

architecture. Thus, the initial network consisted of 13 input neurons, 3 hidden layers (with 10 

neurons in each), and 1 output layer with 2 neurons, using a learning rate of 0.03 [188], with 

1000 epochs. 

The learning rate in machine learning controls the magnitude of the adjustments of the 

weights as the iterations occur. Large learning rates are on the order of 0.1, while others can be 

extremely small (e.g., .0001). The larger the learning rate, the faster the learning, (i.e., the slopes 

change faster), but the most optimal weighting might be missed. The smaller the learning rate, 

the slower the learning, which can be time consuming. Keeping the network the same, the 

learning rate was altered beginning at 0.03, and reducing it by 0.01 at a time. In this study an 

optimal learning rate was identified as being .03. Smaller values (.02 and .01) provided a poorer 

and poorer fit (Table 9.1).  
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Table 9.1 Effect of learning rate on training accuracy 

Learning rate () Training set accuracy (%) 

0.03 86.5 ± 5.1 

0.02 78.8 ± 1.4 

0.01 71.6 ± 4.6 

 

Therefore, the learning rate was kept at 0.03, while the other hyperparameters were 

adjusted. As mentioned, 3 hidden layers were initially utilized. Stepping down to 2 hidden layers 

provided a better fit but only 1 hidden layer provided a poorer fit (see Table 9.2).  Therefore, the 

network was adjusted to have 2 hidden layers instead of the initial 3.  

Table 9.2 Effect of number of hidden layers on training accuracy 

Number of hidden layers Training set accuracy (%) 

1 84.6 ± 7.8 

2 89.4 ± 1.2 

3 86.5 ± 5.1 

  

To simplify the model for computation efficiency, the use of 10 neurons per hidden layer 

was driven down to 8 hidden neurons. This provided a marked improvement so it was simplified 

again to 6 hidden neurons, but this provided a poorer fit. Therefore, it was determined that eight 

neurons, gave the best accuracy (Table 9.3). 

Table 9.3 Effect of number of neurons in each hidden layer on training accuracy 

Number of hidden neurons Training set accuracy 

10 89.4 ± 1.2 

8 93.4 ± 2.6 

6 88.2 ± 3.4 

 

Lastly, the number of epochs also was set. One epoch indicates the number of full 

training cycles (one forward and one backward pass) on the training set. Given the large model, 
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1000 epochs were used initially and provided a good fit. Decreasing the epochs to 750 and 500 

showed a decrease in fit. At about ~950 there was a plateau in the fit. Thus, 1000 epochs was 

settled on as the most useful hyperparameter for this study (Table 9.4). The final ANN 

architecture that was used in the analyses is shown in Figure 9.7. 

Table 9.4 Effect of number of training epochs on training accuracy  

Number of training epochs Training set accuracy 

1000 93.4 ± 2.6 

750 93.3 ± 2.4 

500 83.3 ± 4.2 

 

 

Figure 9.7 Final network architecture, with input neurons in green, hidden layers in blue, 

and output layer in yellow. 
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9.2.4 Analysis Process 

First the analyses were conducted for the active versus rest decision point in the flowchart. The 

data from the entire group of 16 individuals were analyzed together using the EEG predictors with 

the outcome of “rest” (baseline, at the fixation cross) versus “activation” (both left and right EEG 

data). As was determined in the repeatability study (Chapter 6), the largest source of main effect 

variance was due to the variation between participants (~15-25%). Therefore, it was decided to 

test the viability of the ANN using individually-trained data and compare the results to the 

grouped data. A similar approach was used to assess the left versus right classification. The 

analysis was conducted first at the group level, and then at the individual level. Figure 9.8 shows 

an example of training graphs for the group and for an individual, where hyperparameters were 

kept constant.  

 

Figure 9.8 An example of group training (left) and individual training (right) where 

accuracy is plotted against the number of training iterations for differentiating right and 

left imagined stepping from electrodes C1, C2, PO3, PO4. 

 

To assess if the classification accuracies for right versus left imagined stepping data from 

the electrodes that were selected based on prior EEG research (C1, C2, PO3, PO4) were different 

than those using an fMRI informed selection of alternative electrodes, both sets of data were 
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tested on the same network. Four electrodes were selected to maintain the same number of 

electrodes and architecture. Several options existed as to which four electrodes to select, based on 

various ways to conceptualize what might be most relevant. For the purposes of this thesis, the 

ones with the highest calculated proximity values summed across all clusters using the process 

outlined in Chapter 8 was used. This approach was taken as a reasonable first step, as it was 

assumed that these electrodes would be likely to carry the most information. It resulted in 

electrodes FC1, FCZ, FC3, FC5 being selected. Other options for selection of input features do 

exist and will be discussed later in this document. 

Chi-square (2) tests were used to assess classification accuracy significance and are based 

on the number of classification trials in the testing runs. For the active/passive test runs there were 

1536 testing classification trials (48 active and 48 rest for each of 16 participants) and for the 

left/right test runs there were 768 testing classification trials (24 left and 24 right for each of 16 

participants). Chi-square (2) tests were also used to assess classification accuracy differences. 

9.3 Results 

9.3.1  Classification Accuracy of Test Trials 

The first set of analyses use the data from electrodes C1, C2, PO3, and PO4. The classification 

results of the group-level analysis for the ‘rest’ versus ‘active’ are presented in Table 9.5. The 

overall weighted correct classification average for this analysis was 71.35% (average of binary 

classifications) and is significantly better than chance (2=280, p<.0001), where the range of 

values is listed next to the classification rates. 
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Table 9.5 Confusion matrix for group classification of active thought versus rest thought 

using electrodes C1, C2, PO3, and PO4. 

Confusion Matrix True Rest (%) True Active (%) 

Predicted Rest (%) 70.4 ± 8.2 (n=541) 27.7 ± 7.6 (n=213) 

Predicted Active (%) 29.6 ± 8.2 (n=227)  72.3 ± 7.6 (n=555) 

 

The classification results of the aggregated individual-level analyses for the ‘rest’ versus ‘active’ 

are presented in Table 9.6. The overall weighted correct classification average for this analysis 

was 97.65% and is significantly better than chance (2=1396, p<.0001). The individually-trained 

overall average correct classification was significantly better than that of the group-trained by 

 (2=376, p<0001). 

Table 9.6 Confusion matrix for active thought versus rest thought using electrodes C1, C2, 

PO3, and PO4 performed within participants, and averaged across all 16 participants where 

each person’s data was trained individually. 

Confusion Matrix True Rest (%) True Active (%) 

Predicted Rest (%) 97.1 ± 1.3 (n=746) 1.8 ± 0.5 (n=14) 

Predicted Active (%) 2.9 ± 1.3 (n=22) 98.2 ± 0.5 (n=754) 

 

The classification results of the group-level analysis for the ‘left’ versus ‘right’ are presented in 

Table 9.7. The overall weighted correct classification average for this analysis was 49.32% and is 

no different from chance (2=.13, p=.72). 

Table 9.7 Confusion matrix for group classification for imagined left and imagined right 

stepping using electrodes C1, C2, PO3, and PO4. 

Confusion Matrix True Left (%) True Right (%) 

Predicted Left (%) 50.4 ± 2.1 (n=194) 51.8 ± 1.8 (n=199) 

Predicted Right (%) 49.6 ± 2.1 (n=190) 48.2 ± 1.8 (n=185) 

 

The classification results of the aggregated individual-level analyses for the ‘left’ versus ‘right’ 

are presented in Table 9.8. The overall weighted correct classification average for this analysis 
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was 88.16%, is significantly better than chance (2=444, p<.0001), and is about 39% better than 

that using the group trained data. 

 

Table 9.8 Confusion matrix for individual classification for imagined left and imagined right 

stepping using electrodes C1, C2, PO3, and PO4 performed within participants, and 

averaged across all 16 participants where each person’s data was trained individually 

  

 

 

Given the low level of classification at the group level, the analyses from the electrodes using the 

fMRI informed EEG were only conducted at the individual-level.  Tables 9.9 and 9.10 show the 

classification results using data from the FC1, FCZ, FC3, and F5 electrodes for the active/rest and 

left/right, respectively. The overall weighted correct classification average for the active/rest runs 

was 96.75% and is significantly better than chance (2=1343, p<.0001). In comparison to the 

active/rest overall classification accuracy using the information from the C1, C2, PO3 and PO4 

electrodes (97.65%), there was no difference (2=2.22, p=.14). 

Table 9.9 Confusion matrix for fMRI informed EEG selected electrodes (FC1, FCZ, FC3, 

F5) for active thought versus rest thought performed within participants, and averaged 

across all 16 participants where each person’s data was trained individually. 

Confusion Matrix True Active (%) True Rest (%) 

Predicted Active (%) 96.4 ± 3.6 (n=740) 2.9 ± 2.5 (n=22) 

Predicted Rest (%) 3.4 ± 3.6 (n=28) 97.1 ± 2.5 (n=746) 

 

The overall weighted correct classification average for the left/right analysis was 79.79% and is 

significantly better than chance (2=276, p<.0001). However, contrary to expectations, it was 

significantly lower in comparison to the left/right overall classification accuracy using the 

information from the C1, C2, PO3 and PO4 electrodes, which was 88.16% (2=16.9, p<.0001). 

Confusion Matrix True Left (%) True Right (%) 

Predicted Left (%) 87.1 ± 5.6 (n=334) 16.9 ± 4.7 (n=42) 

Predicted Right (%) 12.9 ± 5.6 (n=50) 89.2 ± 4.7 (n=342) 
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Table 9.10 Confusion matrix for fMRI informed EEG selected electrodes (FC1, FCZ, FC3, 

FC5) for imagined left and imagined right stepping performed within participants, and 

averaged across all 16 participants where each person’s data was trained individually. 

 

 

 

 

9.3.2  Classification Accuracy of Training Trials 

The highest accuracy for any individual was 95.8% during the training trials for differentiating 

‘right’ compared to ‘left’ using data from C1, C2, PO3, and PO4 electrodes. Given that this is a 

binary classifier for imagined left versus right lower limb movement, this is an excellent level of 

classification. For the same number of predictors, the group level analysis was a much poorer 

predictor a classification accuracy of 57.4% during the training to differentiate ‘right’ from ‘left’ 

using the data from the C1, C2, PO3, and PO4 electrodes. The holdout classification values 

(testing classifications) were somewhat lower, which was expected, given that the training trial 

values capitalize on the error variance of the data. 

9.3.3 Additional Analyses 

Given that the fMRI selected electrodes did not outperform those selected by the literature, post-

hoc analyses were performed to ascertain the most effective electrodes in classifying left versus 

right movement. This was done in the Python environment using Tensorflow and the ReliefF 

toolboxes. Implementing a relief algorithm capable of identifying feature importance in a set of 

training data was conducted using a set of 192 predictors (64 electrodes, each with alpha, beta and 

gamma as separate predictors). The data were first split to create a randomized test set (80%) of 

the total number of trials across participants. Next, a feature importance scoring system was 

Confusion Matrix Predicted Left (%) Predicted Right (%) 

True Left (%) 78.7 ± 7.1 (n=302) 18.8 ± 3.6 (n=72) 

True Right (%) 21.3 ± 7.1 (n=82) 81.2 ± 3.6 (n=312) 
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calculated based on the test data set and the labels (right and left) associated with these trials. This 

algorithm was run three separate times to generate a mean and standard deviation within the tests 

and to keep analyses consistent, the top four predictors were identified. They are presented in 

Table 9.11 in descending order of importance (left to right) with the electrode and the associated 

frequency band. Most predictors selected were a combination of EEG literature selected 

electrodes and fMRI informed EEG selected electrdoes (PO3, PO4, FC5, FCZ, FC1).  

Table 9.11 Top Four Predictors selected for BCI use by ReliefF algorithm from 192 

predictors 

Trial Number 
Predictor 1 

Selected 

Predictor 2 

Selected 

Predictor 3 

Selected 

Predictor 4 

Selected 

1 FCZ gamma FC5 beta PO3 beta P7 beta 

2 FCZ gamma FC1 gamma FC5 beta C1 alpha 

3 PO4 beta FC5 beta PO3 beta FC1 gamma 

 

9.4 Discussion 

The findings of the machine learning studies partially supported Hypothesis 4: A pattern 

identification algorithm can be identified that classifies left and right leg movement based on 

brain activity patterns from imagined lower limb movement significantly better than chance; this 

algorithm will be optimized by using fMRI informed EEG. The EEG alpha, beta and gamma 

frequency data from the C1, C2, PO3 and PO4 electrodes were able to effectively classify active 

versus rest (98%) activation of the lower limb as well as well as left versus right (88%) imagined 

movement. This classification accuracy compares favorably with other attempts to use EEG for 

BCI development that differentiates left/right imagined hand movements 70% [172], 86% [56]. 

Given that these rates are for upper limb movements, the 88% correct classification for lower 

limb obtained here rates as quite good. 
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Interestingly, while this high classification accuracy was observed for the individually-

trained data, it was not similar for the group-level trained data analysis. At the group level these 

classifications were reduced to 71% for active/rest and 49% for left/right. These results suggest 

that while a network may be trained on group level data and refined for an individual user, it may 

be more effective to  simply train the network on a per-subject basis to start with. This 

conclusion would be consistent with the findings from Chapter 6 that indicated 20-25% of the 

variance of the EEG data at the C1 and C2 electrodes was ascribed to participants, while it 

remained relatively consistent across time points and trials. This finding of individual variability 

is consistent with that of a study of three individuals classifying different types of imagined 

motor activity [56]. The researchers found that overall classification accuracy of the grouped 

data was much lower (71%) than the individually-trained accuracy rates (88%). 

There was no significant difference in the classification accuracy using electrodes 

suggested by the fMRI informed EEG process conducted at the individual level for active versus 

rest (97%). However, while the overall classification accuracy using electrodes suggested by the 

fMRI informed EEG process for left/right was significantly different from chance and quite high 

(80%), this value represents a significant decrease in comparison to the left/right classification 

accuracy using the data from the C1, C2, PO3 and PO4 electrodes.  While a variety of predictors 

could have been tested, those suggested by the highest average proximity weights across clusters 

from Chapter 8 (FC1, FCZ, FC3, FC5) were selected. These provided a similarly accurate 

classification for the active/rest categories, but a less accurate prediction of right versus left 

imagined stepping for the same number of predictors, when compared to electrodes that had been 

suggested by the extant literature, including findings from the present research project, used 

when studying imagined locomotion with EEG (C1, C2). Given that the electrodes suggested 
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with the fMRI informed EEG were all in the frontal cortex, these results are not surprising. The 

large number of voxels associated with cluster 7 (Chapter 7) as well as the short distance 

between those voxels and the scalp, would render them most likely to be activated during this 

task. However, as has been suggested in a review of BCI development research, many cortical 

areas participate in motor imagery control along with subcortical, brainstem and spinal cord 

circuits [196]. It is argued that BCI effectiveness can be improved by recording signals from 

multiple cortical areas and using the most appropriate algorithms to combine them for movement 

control. The current research substantiates these claims.  

From the post-hoc analyses performed, it can be seen that the most important features as 

selected by the ReliefF algorithm were actually a combination of fMRI-based and literature- 

selected electrodes. This suggests that not all the predictors (i.e., all frequency bands) used in the 

fMRI-based and literature-selected analyses were necessarily important in the prediction of right 

and left stepping. These additional nuisance predictors could have been driving the predictive 

accuracy down. It also argues for adopting an approach that capitalizes on the interplay between 

theory and empirical data analyses in BCI development where fMRI informed EEG and 

literature information are taken in conjunction with new machine learning tools such as the 

ReliefF algorithm are used. 

9.5 Limitations 

While neural networks offer a robust and integrative method of interpreting predictors for the 

purposes of classification, they are costly both from a computational memory usage standpoint as 

well as a temporal one. Neural networks are also inherently ‘black—box’ in their reproducibility 

and transparency to both users and those who implement them.  
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The lack of support for improvement in classification using the 4 fMRI informed EEG 

electrodes does not lead to the conclusion that the fMRI-EEG co-registration procedure did not 

yield any advantages. The possible combinations and number of input features was extremely 

large, and the selection of different electrodes might very well have lead to different outcomes. 

This will be discussed further in future research.  

9.6 Future Work 

Continuing this BCI work would mean moving this network to a real-time situation. This 

is a reason to keep the number of predictors to a low enough level to classify appropriately 

without introducing unnecessary computational complexity. This would be done to allow the 

processing lag from data acquisition, to data processing, to control mechanism to be as short as 

possible. To be useful BCIs need to make few errors and provide commands quickly. BCIs using 

steady-state visually evoked potentials operate at an acceptable performance level with an 80% 

classification rate (using 4 classes) and can provide a new command every 200 ms [197]. 

However, the paucity of current research does not allow for such a level of responsiveness for 

lower limb robotic sytems, with a recent review [198] reporting several-second delays, that they 

term a challenge that “…should not be neglected”. An acceptable level of performance for 

stepping would allow for normal walking to occur (100 steps/min). 

An alternative way to approach the selection of input features would be to select the 

frequency data from a single electrode (and perhaps only at one frequency), then add features 

one at a time, modifying the ANN architecture as needed. The FFT process would be extremely 

time-consuming, and should use as small a window as possible to extract reliable feature data.   
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 Data were randomized in their order of right and left to try to isolate for independence of 

order effects, however, as walking occurs in an alternation of right and left, a feedback system 

could be incorporated to aid in the classification of the next step. This may increase the accuracy 

of the overall network.  

In addition, hyperparameters were adjusted one at a time, however a more fulsome 

approach may have been to use a genetic algorithm in order to account for how changing one 

hyperparameter affects others. This could be followed up on to see how it compares to the 

finalized network presented here. 

Another area of future research would be to utilize the fMRI information to assist in 

electrode selection differently than was used in the current study. Part of the problem in selecting 

the electrodes arose due to the slow response time for the BOLD activity. It was not possible 

with the methodological paradigm used, to separate left from right movement with the fMRI 

outcomes. This was evident in the high classification accuracy at the rest/active decision point 

while there was a substantial decrease in classification accuracy at the left/right decision point 

using the electrodes suggested by the overall proximity data.  A more in-depth analysis of the 

fMRI data that would allow for the left/right separation might shed some light on this issue and 

provide guidance for future work.  

Another approach would be to use electrodes close to the clusters that were associated 

most highly with the differences between executed and imagined brain activity. It is also possible 

to differentially weight the various input features, which also might have an effect on the 

outcome. These are just a few of the possible ways to explore this rich data set in such ways that 

would contribute to determining the most effective and efficient input parameters for machine 

learning. 
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At a broader machine-learning level, the field is relatively new and its followers come 

from many different disciplines to utilize its functions. This has posed some research issues for 

the machine learning developers. As was noted earlier, hyperparameter specifications must be 

carried out in advance of the analysis. It is an area of current research [188], [199], [200], but 

needs refinement for the process to become more streamlined and clarified. In addition, as 

researchers publish in their area of expertise, indicating their hyperparameter values will help 

others to utilize that extant literature in the future. 

Another issue in need of more research is that of interpretation. For example, the machine 

learning architecture specified in the machine learning model had two hidden layers. Most 

quantitative data classification problems can be solved with one or two hidden layers [195]. 

Deep learning typically uses more than two hidden layers and is more useful with data sets with 

multiple dimensions such as speech recognition [201] or image analysis [186]. As the data 

analysis moves forward through the hierarchy of hidden layers, it becomes more complex with 

non-linear transformations of the data [193]. Once the classification problem is solved, there is 

no standard method to visualize the weights to enhance the interpretability of the findings [193] 

– thus what occurs within the analysis remains largely a ‘black-box’. There are efforts underway 

to improve on this [193],[202], but it remains an area in need of research. 

This leads to the final research issue and that is the importance of theory. Machine 

learning is excellent at mining large sets of data, handling numerous predictors, and combining 

them in ways that enhance decision-making. As such, it has tremendous potential to assist in 

health-related activities including prognosis estimation, image interpretation, and diagnostic 

accuracy [203]. However, it does not deal with issues of causality and understanding. It takes 

years before replicable findings using similar sets of data are published to fully understand an 
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area of research interest. In its usual plodding fashion, study by study, science will be able to not 

only predict, but to understand phenomena. It is in this manner that BCI development for lower 

limbs will most effectively move forward. 

9.7 Conclusions 

Despite the inherient difficulties in building a BCI for isolating right versus left imagined 

locomotion tasks due to the location of motor cortex dedicated to lower limb movement, and thus 

the lack of spatial separation of signals within the EEG, the current study showed excellent left 

versus right classification using an ANN machine learning model. This study contributes to this 

extant literature, because much of work in this area has used SVM [172],[56],[60] rather than an 

NN approach. The present study showed that reliable, selected EEG imagined data applied to a 

network can be trained effectively to classify left and right lower limb movement using 

individual-level data. As this is the starting point for BCI development, these findings are both 

interesting and important for future research.   
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CHAPTER 10: REVIEW OF FINDINGS, SIGNIFICANCE, LIMITATIONS,  FUTURE 

WORK, AND CONCLUSION 

10.1. Introduction 

This chapter summarizes the research associated with this project. It includes a reiteration of the 

pilot work involved in setting up the formal study, a review of the hypotheses and the level of 

support found for them, limitations of the research, significance of the findings, finally future 

research directions, and concluding statements. 

There were two primary goals of this research program. One was to determine the 

similarities and differences between cortical activity associated with executed and imagined left 

and right lower limb movement, while observing two different visual stimuli, using the two 

technologies of EEG and fMRI. Achieving this goal has contributed to a better understanding of 

the spatial and temporal neural activity involved in imagined and executed stepping movements. 

The second goal was to use these data to predict left versus right lower limb movement in a 

machine learning context. Meeting this goal provides useful information that will assist in the 

development of a BCI that controls lower limb movement.  

10.2 Pilot Work 

Studying lower limb movement using EEG and fMRI posed some unique and immediate 

methodological challenges that were handled in the pilot work of this study. Specifically, two 

issues were addressed. The first was to determine whether or not supine-generated lower limb 

movement was an appropriate methodology to utilize when studying this phenomenon. The 

results demonstrated that the kinematics of supine-generated knee flexion/extension mimic those 

of normal stepping, and thus gathering such data in a MR scanner would provide useful 
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information regarding lower limb movement. It was also revealed that head movement with 

respect to the trunk is potentially a large source of error. This finding indicated a need for an 

intervention that would control this movement when gathering fMRI data. Thus, a second task of 

the pilot work was to design a device that would allow the data to be captured appropriately 

within the confines and unique environment of the MR scanner. The Locomotion Apparatus for 

Magnetic Resonance Imaging (LAMRI) was created that allowed for controlled lower leg 

movement at the hip, knee and ankle while the participant was in the MR scanner. The LAMRI 

design also simulates gravity, provides a time-stamp for the left and right leg movements, keeps 

head motion to a minimum, is lightweight, and relatively inexpensive.  

10.3 Support for Hypotheses 

Following the pilot work, the study proper was conducted. It entailed collecting data at three time 

points for 16 participants. EEG data were collected at time points 1 and 2, and EEG and fMRI 

data were collected at time point 3. Each time point was separated by about two weeks. 

 Hypothesis 1, that EEG data is able to distinguish left from right leg movements in both 

imagined and executed conditions, and that the effect was expected to be particularly strong in the 

CGI conditions was supported, as it was less neutral than the blue-green condition, meaning the 

CGI stimulus should be used for training over the blue-green one as it is a more robust predictor. 

The C1 and C2 electrodes were selected due to their representation of the leg areas of 

sensorimotor cortext, and their utility in being able to separate left from right movement is 

consistent with findings that these electrodes have been linked to the lower limb motion of 

pedaling [174]. In the imagined CGI condition, significantly higher levels of depolarization for 

the left lower limb relative to the right, were observed for the alpha, beta and gamma frequencies 

at the C1 electrode, and at the alpha and beta frequencies at the C2 electrode.  
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It was also found that the reliability coefficients of the CGI data were higher than in the BG 

conditions; particularly for the imagined CGI condition. These findings contributed to the 

decision to use the EEG data from the CGI imagined condition for use in machine learning, where 

in a supposed BCI, a person could interface with something like Google Glass (Google Inc., 

MountainView, California, U.S.). 

Hypothesis 2 that fMRI data will allow for the identification of areas of the brain that are 

activated during lower limb movement was supported. The executed task findings from the 

current study are consistent with those that have used fMRI to examine lower limb motion [14]; 

[17], which found that many areas of the brain, most prominently those associated with 

sensorimotor activity, were activated. Like other imagined motor activity studies, the findings 

from this study showed that the occipital and parietal areas of the brain are also activated 

[25],[73]. This study found that while there were similarities across the experimental conditions 

in that the sensorimotor areas were always activated, differences between the conditions were 

also observed. These are briefly described next. 

During the CGI and and blue-green executed movement conditions, activation occurred 

primarily in the motor execution and control areas. Activation was highest in the CGI and blue-

green imagined conditions in areas associated with movement control, inhibition of movement,  

integration of sensory input and motor output.  

The CGI executed task showed more activation in movement execution relative to the 

CGI imagined task, as did the blue-green executed task relative to the blue-green imagined task. 

The CGI and blue-green imagined tasks relative to the CGI and blue-green executed tasks 

showed more activation in movement control and integration, visual areas, and emotional control 

of movement.  
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The differences for the CGI and blue-green executed and imagined tasks were primarily 

in the activation of different visual areas. The CGI relative to the blue-green activated areas were 

associated with object recognition while the blue-green showed basic visual processing 

activation.  

Hypothesis 3 stated that it would be possible to develop a computational approach to 

accurately map spatial brain activity (fMRI) in relation to temporal receptors (EEG electrodes) 

associated with lower limb movement. This hypothesis was supported. A novel approach was 

used to co-register the 64 EEG electrodes with respect to the fMRI data and then determine the 

magnitude of the linkages between clusters of activated voxels and each electrode. While some 

attempts to link EEG to fMRI data have been successful, these have been focused on identifying 

both the spatial and temporal location of neural activity for auditory tasks [84], visual tasks 

[78],[89], cognitive tasks [83],[87],[204],[205], epileptic events [82], and hand motions 

[13],[206],[207], rather than utilizing the information gained to develop more efficient inputs to 

BCI development.  

Data from the CGI imagined and executed conditions were used to demonstrate the 

process. Results tabulated the linkages (ranging from 0 – 1, with 1 being the highest) between 

voxel clusters and electrodes. It was anticipated that using this electrode linkage information 

would improve the effectiveness of a machine learning algorithm to isolate right and left 

stepping. 

Hypothesis 4, that a pattern identification algorithm can be identified (using fMRI 

informed EEG) that classifies left versus right lower limb movement significantly above chance 

based on neural activity patterns from imagined lower limb movement, was supported. Training 

predictions between right and left stepping were >90% and the validation testing of this was 
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>85%. However, the information from the electrode linkage provided by the fMRI informed EEG 

process did not improve accurary.  

10.4 Limitations 

Several limitations of this research were noted throughout the document. This section 

reiterates the most salient of them. First, data for the pilot work as well as the study proper were 

based on participants who were male, young, and healthy. The reason for doing so was that only 

a relatively small sample was possible, given the resource intensity of the project. By 

methodologically controlling some of the possible data variation due to demographic differences, 

the internal validity of the data was ensured. This, of course, comes at the expense of 

generalizing the findings; however, as has been noted, the demographic group for which lower 

limb BCI development might be of most use is that of young males [112], [138]. 

 Second, all data were collected while participants were in a supine position. Upright 

walking does include tasks other than joint motion and  flexing/extending of the lower limbs. 

However, due to the contraints of the MR scanner, participants were required to be in a supine 

position. To ensure comparability between the EEG and fMRI data, as well as providing training 

for the fMRI data collection point, participants engaged in the EEG-only data collection points 

also in supine position.  

Third, the frequency that the participants were presented with the stimulus (50 steps/min) 

was about half the frequency of normal walking. This was done to allow for differentiation of 

right versus left stepping, and decrease movement in the MR scanner.  

Not all available features from EEG were tested for the machine learning classifier. There 

exist electrodes with their associated frequency bands that went unanalyzed and untried in the 

development of this classifier. As well as the generation of new measurements from a cohort of 
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signal processing tools could have been used, but for computation simplicity it was decided to 

stick with spectral information, as this is how EEG is most often reported with regards to its 

power within particular frequency bands associated with particular tasks (sleeping, active 

thought, eyes closed etc.). Alternative ways to utilize the fMRI informed EEG linkage process 

were not explored in this particular study and will provide ample opportunity for future research. 

All of the limitations that have been cited provide opportunities for future research 

directions that will be taken up shortly. 

10.5 Significance 

Despite the limitations noted, this research has provided a number of significant findings for 

research in the area of lower limb movement. First, it was demonstrated that it is a reasonable 

approach to study lower limb movement while subjects are in a supine position because the 

kinematic signatures of supine versus upright lower limb motion are similar. Because it is not 

possible to study lower limb movement using fMRI technology unless participants are in a 

supine position or the scanner is oriented vertically, this assumption needed to be verified. 

Second, a lightweight, low-cost device, the LAMRI, was developed for use in the MR scanner. 

The design allows for the simulation of gravity for lower limb multi-joint motion, provides a 

time-stamp for the movement, and ensures minimal head movement. All of these characteristics 

enhance the possibility of collecting lower limb movement data using fMRI in the future using 

the LAMRI, which has been a barrier up to this point. 

 The findings that left versus right lower limb movement can be isolated utilizing the alpha, 

beta, and gamma frequencies at electrodes C1 and C2 are of particular import in that while EEG 

had been used to study lower limb movements, the detection of left versus right differences had 

not to this point been achieved. The fact that the effects were most robust for the imagined 
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condition is important insofar as the detection of left versus right movement is needed to build a 

BCI that will hold promise in assisting those with lower limb mobility issues. 

It was demonstrated that using the LAMRI, lower limb movement that simulates executed 

walking as well as imagined walking can effectively be collected using fMRI technology. Areas 

of the brain that were anticipated to be activated across conditions (i.e., sensorimotor), were, 

indeed activated. Executed conditions activated areas of motor movement, while more of the 

visual and cognitive areas were activated duing the imagined conditions.  

The unique paradigm developed to generate a spatial map of brain activity associated 

with imagined walking and its weighted linkages to EEG electrodes can be used in BCI 

development. The process outlined can be easily followed and used in a variety of contexts other 

than that in the current study. 

 While some brain-computer interfaces utilize fMRI as a data acquisition tool may not be 

optimal from both logistic and financial points of view as MRI is expensive to acquire and the 

hardware is not portable. In addition the temporal resolution is so poor from an HRF, that lag time 

for a control mechanism would be on the order of (>10 seconds). However this is beneficial for 

the future of BCI development as they can be developed and implemented more cheaply using an 

fMRI informed EEG data to supplement information acquire with EEG.   

This thesis also highlights the importance of training a BCI on an individual basis. 

Accuracy rates were nearly 40% different between group and individual level training for 

isolating right and left imagined brain activity.  

10.6 Future Work – Based on Collected Data 

Several research projects present themselves that extend the findings of the current study. More 

EEG features that might distinguish these activations, such as wavelet spectrums, and 
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topographical activation intensity maps could be used to differential left/right stepping. These 

new features may or may not be beneficial to the assessed classification process. 

Second would be to extend the BCI development process to include the use of an end 

device. That is, to extend the BCI model in creating a feed forward algorithm that would be able 

to mobilize a robotic device that uses left and right stepping to engage in forward motion. This 

process has actually started. A proof of concept bipedal robot (ROBBi) has been designed and 

testing has begun on completing this algorithm as an off-line brain-computer interface.  

Another is to possibly analyze the EEG data collected simultaneously with the fMRI data 

at time 3. Doing so might allow for the differentiation of left and right stepping. This would 

require a multi-modal data fusion methodology. The various methodologies that have been 

proposed strongly differ on the basis of their physiological assumptions, the type of prior 

information required, and exactly how to treat various ICAs [77]. The complexity and newness of 

the analytic protocols suggest that to actually conduct this research would be a lengthy process. 

The integration of the fMRI and EEG electrodes data into a 3D image, and the assessment 

of their linkages was carried out for only the CGI data. This was done as it is the most relevant for 

BCI development. However, it would be interesting to subject the data from the other conditions 

from this study to a similar process, examining similarities and differences regarding the linkage 

patterns. 

Finally, another study could use an EEG informed fMRI approach to integrate the data 

(i.e, predicting fMRI activation after training based on solely EEG information). The weighting 

approach described in the current research relates the expected hemodynamic activity (fMRI) 

associated with electrical activity (EEG). The signal strength of the electrical activity can 

currently be used to triangulate the current source via a dipole using 3D source localization from 
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the EEG. Using this paradigm, this normally very ill-defined measure of source localization could 

be represented by the number of dipoles as clusters, as well as the expected starting point in the 

3D space as informed from the fMRI. The mathematical resolution and degree of overlap in the 3-

D areas of activation could then be determined. A proof-of-concept for this process can be made 

from the current data set. However, the data set from this study is a relatively small one, and this 

paradigm might prove more effective if trained on a larger data set and one in which it would 

have more impact (e.g., epilepsy). For those who suffer from epilepsy and in which medication is 

not working, surgical removal of the brain location becomes an advisable option. However, in 

surgical planning, locating the source of epileptic peaks is difficult to define in 3D space using 

only EEG. Using EEG informed fMRI would address this important issue.  

  

10.7 Future Work – New Directions 

After each individual study presented in this thesis, possible future research areas were described 

and will not be reviewed in this section. Instead, broader implications for future studies based on 

the methodology adopted are described. 

Extending the research by using participants from different demographic groups would 

increase the external validity of the findings. The degree to which the findings can be replicated 

with females and those of varying ages would increase the confidence of understanding the 

neural activations observed in the current study for lower limb executed and imagined 

movement. Another important group on which to collect similar data are those with 

compromised lower limb mobility. A review of animal and human cerebral plasticity, the 

potential of the brain to re-organize after damage (such as that from a spinal cord injury), shows 

promise primarily in animal models, and to some degree for upper limb function in humans [208], 
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particularly those with incomplete spinal cord injury [209]. This reorganization is likely due to 

synaptic plasticity in pre-existing circuits and the formation of new cirucuits. Such a re-

organization of the sensory-motor cortex has implications for the findings of the current study 

insofar as EEG signals may differ in both strength and location from individuals with spinal cord 

injury. Obviously only the imagined condition would be relevant for such individuals, but this 

seems like a logical next step in ensuring that any BCI development process is built on the 

proper foundational information.  

The CGI created for this study seemed to work well as a visual stimulus that allowed 

participants to keep pace when executing the task and to visualize oneself doing the task in the 

imagined conditions. No control (i.e., non-stimulus) condition was used in this study. It would be 

interesting to determine any differences between a CGI and no-stimulus condition. There would 

likely be less visual areas stimulated in the no-stimulus condition, and thus provide a “less noisy” 

set of data. However, the task might be more difficult to carry out by simply asking participants 

to ‘think about’ themselves walking with no visual cues to assist. Similarly, other types of cues 

(auditory or tactile) could be assessed as to their utility. In a similar vein, creating a heads-up 

display – perhaps in a set of glasses - that would carry the CGI stimulus would be an interesting 

avenue of future research. 

The finalized network from Chapter 9 works to find a global minimum. Establishing a 

global minimum is preceded by the weighting or lack thereof in each neuron for each predictor. 

While it is customary to initialize these weights randomly, pertaining to the activation function 

selected (tangent function range -1 to 1 or the sigmoid function range 0 to 1), there exist 

alternative methods for pre-allocation of weights. An alternative presented here is to use the 

weighting scheme developed in the previous chapter (Chapter 8) in which weights for EEG 
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predictors were correlated with how well they represent the underlying hemodynamic activity. 

The purpose of testing these various schematics is to investigate whether or not using fMRI 

information provide a difference in how quickly the algorithm employed by the network 

converges. 

The effect of pace variation was not studied. The pace of the task used was about half that 

of normal walking. Speeding up the task to that of normal walking might actually decrease the 

cognitive load, given that it would mimic a more natural gait. However, this would likely 

decrease the capability of differentiating right from left leg movement in the EEG data. The pace 

might also be slowed even further, thus allowing for even more differentiation. The effect of 

pace on the findings remains an empirical question yet to be answered.  

This study used the neuroimaging techniques of EEG and fMRI to study lower limb 

movements. Other techniques such as: 1) diffuse optical imaging (DOI); event related optical 

signal (EROS); near infrared spectroscopy (NIRS); magnetoencephalography (MEG); Positron 

emission tomography (PET); and single-photon emission computed tomography (SPECT) offer 

other possible data acquisition options. Some require the use of radioactive material (PET and 

SPECT) while others are very costly (MEG), so would not likely be useful. However, it may be 

possible that one or more of these techniques might be useful in future research on lower limb 

movement, depending on the research question. 

10.8 Conclusion 

The research conducted for this thesis adds to the existing body of knowledge in understanding 

psychomotor brain activity; specifically, that associated with thought coordination processes 

involved in the task of walking in normal persons represented by algorithmic patterns. Given 

how few studies there are of lower limb movement in fMRI this study is groundbreaking. The 
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degree of complementary and supplementary information derived the non-invasive techniques of 

EEG and fMRI during such a complex task will also help guide future research. The two most 

salient features of this research that are unique and novel are: left versus right differentiation 

using an indirect pathway approach and the merging of temporal and spatial resolution of brain 

activity (where and when). 

Anticipated benefits to those affected by neurological disease or injury are tremendous in 

scope, including prosthetic devices that can ‘act’ by using solely neural input (i.e., thoughts). 

However, in order to accurately build models that compensate for deviations from a ‘normal 

brain’ we must first fully comprehend the cognitive processes that occur when carrying out tasks 

in a normal brain. The expectation is that the findings will add to the extant literature and 

eventually be used to assist those with compromised motor systems. For example, patients after 

anterior cruciate ligament (ACL) reconstruction compared with healthy normal individuals 

exhibited different EEG patterns while carrying out a knee angle reproduction task. Specifically, 

brain activity demonstrated significantly higher frontal theta-power in both limbs of the ACL 

group relative to the control group [210].  

Knowing EEG and fMRI results based on normal subject brain patterns will help to 

assess deviations from them, including the extent to which it is neurologically or 

musculoskeletally controlled. The arithmetic relationships between executed and imagined brain 

activation can be used to develop more effective deep brain stimulators. Developing a real time 

fMRI and EEG pattern recognition algorithm for imagined limb movement will aid in the 

creation of real time devices that will assist motor movements for those with compromised 

mobility.  
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APPENDIX A: SAMPLE MRI SCREENING FORM 

                          

Functional Connectivity in Lower Limb Movement Using EEG and fMRI: Understanding 

Locomotion to Design a BCI Questionnaire 

First Name: _____________________________  Last Name: _________ 

Age: ________ 

Weight (lbs):  _______________ 

Email: ________________________________ 

Telephone Number: ______________________________ 

Do you suffer from any previous or existing neurological conditions: (E.g. Epilepsy, brain 

lesions, strokes etc.)? 

Do you have any existing knee ailments: (E.g. surgery, ligament strains/ruptures, meniscus tears 

etc.)? 

Do you have any of the following (please mark)? If you do you will not be permitted to 

participate in the study. 

Item Yes No 

Bone pins/screws/plates   

Joint replacements   

Pacemaker   

Recent tattoos   

        

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

For researcher use: 

Subject ID #: _________________________ 

Principal Investigator:   Dr. Janet Ronsky     

Student Investigator:   Adrienne Kline 



 198 

APPENDIX B: REGISTRATION OF MRI DATA 

 Functional scans underwent slice timing correction. Because slices were collected in an 

interleaved fashion, it was necessary to perform a linear sinc interpolation between every other 

slice. These scans were then registered to structural scans on a per participant basis. Specifically, 

each of the four functional runs unerwent a boundry based registration (BBR) process where the 

individual voxel values served to isolate changes in boundaries (white and grey matter, brain and 

skull, skull and air) to register to each person’s T1 MRI. This was accomplished with the FLIRT 

graphic user interface (GUI) in FSL. This information was then, in turn, registered to standard 

image space (i.e., atlas space). Registration to non-linear group average (MNI152 2mm brain) 

used an affine transformation with 12 degrees of freedom (3 translations, 3 rotations, 3 shear, 3 

scales). Cost functions for both of these registrations were done using ordinary least squares.  
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APPENDIX C: PREDICTING FMRI FROM EEG 

This thesis has demonstrated the strength in merging EEG and fMRI to understand brain 

function and the current capabilities of machine learning to explore the complex connections 

between electrical activity and hemodynamic activity. As such, something I wish to follow up on 

is implementing machine learning on a simultaneous fMRI and EEG data set, and determine 

using a Generative Adversarial Network (GAN) the accuracy of this model in predicting fMRI 

based solely on EEG data. The data from the current study is a relatively small set, but this 

paradigm could be more effective if trained on a larger data set and one in which it would have 

more impact (i.e., the field of epilepsy). For those who suffer from epilepsy and for whom 

medication is not working, surgical removal of the brain location becomes an advisable option. 

However, in surgical planning, locating the source of epileptic peaks is hard to define in 3D 

space using only EEG, due to the ill-defined nature of EEG-3D source localization.  

 A more useful approach in localizing the source of epileptic peaks would combine fMRI 

and EEG data. Using a cascade of convolutional networks, implementation of a Laplacian 

pyramid architecture to generate fMRI data in a coarse to fine fashion would simplify the fMRI 

data into a single 2D image (comprised of all available slices). A variety of network architectures 

would need to be tested for this, where the final model would be decided on based on both manual 

inspection (image output) and heuristics (minimization of the ℓ2 error in pixel space).  

 Given the number of predictors present in fMRI, a large training set would be required in 

order to pursue this approach (i.e., on the order of hundreds). Given the current study is comprised 

of only 16 data sets, and generating fMRI for a healthy population is low yielding, the plan would 

be to make this a future area of research for a project that focuses on epilepsy.  

 


