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ABSTRACT 

When investments are at least partially irreversible or unexpandable, the firm's ability to 

respond to changing future conditions is often curtailed. This thesis examines such 

irreversibilities and unexpandabilities in the context of abatement capital where future taxes 

on emissions are unknown. A two factor extension of Abel, Dixit, Eberly, and Pindyck's 

(1995) model of investment under uncertainty is used to evaluate the effects of changes in 

the various prices of capital and Pigouvian tax rates on the incentives to invest in the two 

factors. Additionally, the influences of changes in the distribution of future taxes are 

examined. A particularly striking implication of the results is that, under certain 

assumptions concerning abatement technology, increases in present or expected future 

emissions taxes may paradoxically increase the present production of emissions. 
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I 

CHAPTER ONE 

1. INTRODUCTION 

1.1 Introductory Discussion 

Firm level investment decisions are sensitive to a multitude of direct and indirect factors 

pertaining to the prevailing market conditions, tax regimes, strategic values, and the 

underlying characteristics of the investment opportunities and their respective magnitudes. 

Another dimension of complexity is added when one considers the level of certainty, or 

more appropriately, the absence of certainty regarding many of these factors. In many 

cases, if conditions turn for the worse, large capital investments cannot simply be undone. 

For that matter, if conditions turn for the better, it is often costly to expand. Were it the 

case that investments could be easily undone or expanded, uncertainty would not be 

problematic since the firm would be able to costlessly react to whatever conditions 

prevailed. This notion of a curtailed ability to react to future conditions once an investment 

has been made must be internalized by the firm when making the investment decision in the 

first place. 

Of particular interest are the implications of uncertainty regarding government policy. 

Regulations change, taxes increase and decrease, and laws are modified, often in ways 

which are unanticipated by firms. Moreover, future policies can have a bearing on current 

decisions, particularly if those decisions are partly irreversible or unexpandable. This 

thesis examines the incentives to invest and the effects of a specific type of policy 

uncertainty - uncertainty over future taxation of an externality, or bi-product1 of 

production. In general, firms have control over two factors which influence the production 

of an externality - a production factor and abatement capital. The production factor may be 

any input or combination of inputs used in the production of the firms primary good - for 

1These 'bi-products' have several more common names in the literature. Another euphemism is non-
market goods. More familiar terms include pollution, emissions, and effluents. I will use all of these 
terms interchangeably. 



2 

example, labour, machines, and other equipment. An increase in the use of this equipment, 

while increasing production of the primary product, will also increase production of the 

externality. Abatement capital is equipment like scrubbers, filters, and treatment facilities 

which mitigate the effects of production capital in the generation of, say, pollution.2 In 

many cases, investment in this sort of equipment is at least partially irreversible. Once the 

abatement capital is installed it can be very costly to remove. Additionally, much of this 

equipment is highly specific to the plant in which it is employed, implying a reduction in its 

value to prospective buyers. Also, once the capital is installed it may be difficult or costly 

to install more (not unlike adding RAM to an existing computer), making the capital 

investment at least partially unexpandable. 

Given these characteristics of abatement capital investment and the uncertainty surrounding 

future taxation, the firm must consider that the taxes on emissions which make investment 

in abatement capital optimal today , may change in the future. So, in a dynamic 

framework, how does the firm respond to uncertainty over future taxes when making its 

investment decisions? Put another way, how does the firm decide upon the appropriate 

tradeoffs between production capital and abatement capital, and between today's optimal 

decision for abatement capital and what may be optimal in the future? 

The purpose of this thesis is to investigate precisely these issues. Toward this end, a two 

factor version of Abel et al's (1995) two-period model of investment under uncertainty is 

employed. The model is then used to evaluate firm level behaviour in response to 

emissions taxation and uncertainty concerning future taxation. 

2 The current aggregate level of investment in pollution abatement equipment is not trivial. Rutledge and 
Leonard (1992) estimate that spending for pollution abatement in the United States was $81 billion in 1990 
(1987 dollars). 
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In order to set up and evaluate such a model, some level of understanding concerning both 

the nature of Pigouvian taxation and the investment behaviour of firms affected by the 

Pigouvian correction are required. Accordingly, the following two sections respectively 

explore the current theory and relevant literature pertaining to environmental regulation 

(specifically the effects of Pigouvian taxation) and investment behaviour. 

1.2 Externalities, Pigouvian Corrections, Abatement, and Related Literature 

It has long, if not widely, been recognized by economists and policy makers alike that 

some production bi-products have very real and adverse effects on their recipients. 

Coupled with this recognition is a set of policy prescriptions designed to mitigate the 

damaging effects of industrial production. In general, the goal of the policy maker is to 

strike a balance between the good of the industries and the good of the entities affected by 

industrial production. This is no easy task since some of the effects of pollution are largely 

quantitative, such as health related absenteeism and additional costs on water treatment, 

while others are qualitative, such as a reduction of wildlife population and loss of amenity 

value. Nevertheless, policy makers have embarked on many and varied remedial schemes 

with the hopes that the end results will be Pareto improving. 

One such policy is a Pigouvian tax.3 In somewhat broader terms, the firm is imposing an 

externality on the recipients of pollution. Since the firm does not internalize the full effect 

of the production of pollution, it will tend to produce a level which is more than what is 

implied by social optimality. A Pigouvian tax is designed to restore optimality by pricing 

the effects of pollution external to the firm and forcing their internalization by the firm. 

Since a cost is imposed for production of the externality, one would expect less to be 

produced a priori. 

30ther terms for this type of tax include, corrective tax, emissions tax, pollution tax, or excise tax on 
emissions. 
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There are a number of issues with respect to the value of optimal corrective taxes which 

will not be discussed here other than to say that the optimal tax depends to some extent on 

the tastes and preferences of the recipients of pollution. As these tastes may change over 

time, so too may the optimal level of taxation. This is one of the economic factors which 

contributes to the uncertainty of future taxes. Another may reside with the effects which 

stock pollutants may have. If the emission is of the type that accumulates over time, (for 

instance, greenhouse gases or heavy metals in riverbeds) a stock will form. If 'marginal 

damage' from pollution is increasing in the stock of pollution, taxes may increase over 

time. If, on the other hand, the marginal damage is decreasing in the stock (e.g. a lake can 

only become so dead), then taxes may decrease over time. There are of course other 

factors contributing to the uncertainty of future Pigouvian taxes such as political 

motivations. Nevertheless, the key notion for the purpose of this analysis is that there are 

several factors contributing to the uncertainty surrounding future Pigouvian taxes. 

A number of studies have been performed which evaluate the effectiveness of corrective 

taxes in achieving the goal of efficiency. For instance, Hartwick (1990) uses a general 

equilibrium model to show that the introduction of a Pigouvian tax may result in a social 

optimum with a higher than initial level of pollution. The model is a two factor, two good, 

two person model. The intuition behind this result is that a corrective tax drives up the 

relative price of the good which generates the pollution as well as the factor prices. The 

agents in the economy each own one of the factors of production and the revenues from the 

corrective taxes are paid to each of them. Therefore, if one of the agents has a strong taste 

for the good which causes pollution, and her income increases as a result of a higher price 

for that good, she will consume more - thus pollution increases. Hartwick points out that 

the results depend upon the agents each having different preferences over the two goods 

and having incomes which are supplied by different factors. I would further point out that 

the results depend upon his method for introducing the tax. In his model the tax was not 
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applied to the pollution directly, rather taxes were applied to the inputs of the production 

process which causes the pollution. 

Kohn ( 1988) discusses several concepts which are central to this analysis. In particular, he 

uses a general equilibrium model to examine the effects of abatement on plant scale. His 

economy has two industries producing two goods in perfectly competitive environments 

where the output of one good generates emissions which adversely affect the production of 

the other good. Abatement is modeled as a percentage of total emissions and is a function 

of abatement inputs as well as the level of production. Kohn identifies two separable 

effects which cause abatement to influence the average scale of a firm. The first is an input 

effect. Kohn explains that the added costs of inputs used in abatement are comparable to an 

increase in fixed costs. Given that average cost curves are U-shaped, an increase in these 

abatement costs effectively increases the minimum efficient scale, thus increasing plant 

size. The other effect is what Kohn calls an output effect. This effect depends on whether 

the percentage reduction of emission from abatement is increasing or decreasing in the scale 

of the plant. He shows that if there are positive scale effects for abatement, then the 

efficient plant scale is further increased. If, however, there are negative scale effects, the 

input and output effects are in opposition. The model is then considered in the presence of 

Pigouvian taxes as well as quota-style controls. Again, the input effect increases the 

minimum efficient scale of the firm. The input effect may be accentuated or diminished by 

the output effect which functions in response to the average Pigouvian tax per unit of 

output. 

Some studies have empirically searched for an hypothesized reduction in productivity 

resulting from the imposition of environmental regulation. In particular, Conrad and 

Morrison (1989) compared the impacts of abatement investment on productivity changes in 

Canada, The United States, and Germany. Their model used the shadow values from the 
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constraints on emissions production to value the abatement effort. Their overall conclusion 

was that investment in abatement capital has depressed productivity growth in the three 

countries, but most notably in North America. Further, these productivity slowdowns 

were not as severe as previously expected. 

These varying methodological frameworks provide an interesting context by which to 

compare the results from the model in this thesis. The next section continues the 

background discussion by exploring the investment literature. 

1.3 Theories of Investment and the Irreversible Investment Literature 

The traditional or neoclassical models of investment tend to belie many of the complexities 

inherent to actual investment decisions. The neoclassical approach to investment valuation 

dictates a standard protocol for evaluating investment opportunities. This approach 

prescribes evaluating the present value of the expected flow of revenues (or benefits) net of 

the present value of the expected flow of expenditures (or costs). The end result is termed 

the net present value, or more appropriately, the expected net present value. If this value is 

positive and of greater magnitude than that of competing investment opportunities, the 

decision should be made to invest. If investment is continuous, investment should be 

undertaken until the value of the last incremental unit of investment is equal to its unit or 

incremental cost. That is, invest to the point where marginal benefit equals marginal cost. 

Such an approach, however, does not internalize the effects which the arrival of new 

information may have. The tidy world of neoclassical investment theory does not account 

for the many vagaries often faced by firms in practice. For instance, consider a firm which 

has decided to construct a plant (based on its positive expected net present value). Some 

time after the plant has been producing profitably, the price of one of the major inputs, for 

which there is no substitute, increases substantially. Management will then have to use this 
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new information to make production decisions concerning a plant which was built on the 

assumption that expectations correctly and sufficiently characterized the future. In this 

example the expected flow of expenditures were not realized. This arrival of new 

information is not explicitly accounted for in the typical net present value calculations. As 

such, when one considers the vast number of variables which behave stochastically such as 

input prices, commodity prices, interest rates, inflation, and taxes, it should come as no 

surprise that the neoclassical paradigm is increasingly considered a poor abstraction of the 

reality of investment decisions. 

Given the above illustration it may be useful to outline the circumstances under which the 

net present value rule may be considered an appropriate analytical tool for evaluating 

investment opportunities. Dixit and Pindyck (1994) indicate that one of two implicit 

assumptions must be satisfied for the net present value (NPV) approach to be valid. First, 

the investment is reversible. That is, should actual earnings be lower than expected, the 

initial cost of the investment can be fully recovered. Second, if the investment is 

irreversible, then the opportunity to invest must be a now or never proposition. In other 

words, there is no opportunity to wait for new information. Dixit and Pindyck have shown 

that when the above assumptions are not satisfied (and in many situations they are not), the 

ability to delay an irreversible investment can profoundly affect the investment decision. 

The reason is that a firm with an opportunity to invest can be described as holding an 

option analogous to a financial call option - it has the right but not the obligation to invest in 

some project at any time, now or in the future. When the firm makes the decision to invest, 

it is exercising the option and foregoing any possibility of waiting for new information 

which may have affected the desirability of the investment. Exercising, or killing, an 

option implies the relinquishment of an asset (the value of the option), hence represents a 

cost which must be included as a cost of the investment. The NPV rule, therefore, may be 

modified in such a way as to incorporate the value of the lost option. The new rule would 
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then be to invest when the net present value exceeds zero by an amount no less than the 

value of keeping the opportunity to invest alive. As such, in the presence of irreversibility 

and uncertainty, a firm may optimally delay an investment which has a positive NPV. 

In the same manner that sunk costs provide the investing firm with a real option analogous 

to a call option, sunk benefits provide an option analogous to a put option. Notice that the 

existence of sunk costs allows for (in fact, necessitates) a situation where investment is 

suboptimal in the presence of a positive NPV. By symmetry, the existence of sunk 

benefits implies a scenario where it may be advisable to invest even though the net present 

value of the project is negative. This point is supported by Pindyck (1993) and by Dixit 

and Pindyck ( 1994) with an example in environmental policy (interestingly enough). They 

showed that sunk benefits may exist where environmental damage is irreversible. The 

argument is quite lucid. The real costs of a species extinction is uncertain but the extinction 

itself is permanent or irreversible. It may therefore be optimal to incur costs to preserve the 

species and allow new information to arrive concerning its value even though the present 

value of the investment in preservation is negative.4 In other words, allowing extinction 

today kills the option of allowing extinction in the future. 

The notion of sunk costs has material importance to the model outlined in this thesis and 

merits some discussion. Capital investments may be considered irreversible for several 

reasons. The first is capital specificity. There are varying degrees to which the level of 

aggregation of this specificity is applied. For example, marketing and advertising costs are 

completely sunk but investments in office furniture are not since it is readily resalable. 

Even if an entire plant were for sale, other firms are likely to be subject to the same market 

conditions which induced the original firm to want to sell it in the first place. In other 

words, the most that another firm would be willing to pay for the plant is its NPV less its 

4-Value" here does not imply strictly commercial value. Rather it implies amenity value, commercial 
value as well as the marginal value of a diversified ecosystem. 



9 

option value, but the operating plant is worth its NPV to the present owner so it is not 

likely to sell - hence the investment is sunk. The second reason for irreversibility is the 

'lemons effect', or more formally, an adverse selection effect. The selling firm has 

information about the quality of a specific piece of capital but the purchasing firm only has 

information concerning the average value. As such, the purchasing firm is unlikely to be 

willing to pay the full value of a relatively high quality unit of capital. 

Much of the literature examining irreversible investment under uncertainty employs 

continuous time models which presume that key parameters follow specified stochastic 

processes. The tools of stochastic calculus and dynamic programming are then applied to 

solve a sort of optimal timing problem. 

Abel et al (1995) provide an alternative framework for analyzing investment behaviour in 

this environment. They present a simple two-period, one factor model which may be 

analyzed using more standard and accessible techniques. Moreover, as opposed to the 

models explored by Dixit and Pindyck (1994), Abel et al's model does not necessarily 

impose complete irreversibility. On the contrary, the firm can disinvest but the resale price 

of capital may be less than its acquisition price which makes reversibility a costly decision. 

Similarly, the firm may expand in later periods but the future cost of capital may be higher 

than its current acquisition price, making expansion costly. As a result, once uncertainty 

over future returns is considered, their model accounts for a richer set of options. The 

notion of expandability in future periods implies a call option - the right but not the 

obligation to invest in the future. When the firm installs capital which it may later resell, 

even though it may be costly, it has acquired a put option - the right but not the obligation 

to disinvest in the future. The internalization of both options in the model shows that 

options need not always serve to delay investment. 
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Their model also provides two distinct but equivalent ways of interpreting its features: 

option pricing theory, where both options are examined separately; and, q-theory, where q 

summarizes the incentives to invest. They demonstrate that the difference between their 

model and the standard naive NPV rule is simply that the NPV assumes that expectations 

will be correct. That is, once the investment is made, it cannot be altered. Conveniently, 

their model does not depend on the evaluation of option values to illustrate the differences 

between it and the naive NPV rule, although, approaching the model from this perspective 

does add some interesting insights. 

1.4 Overview of the Thesis 

Having provided some background for investment theory and externalities we may now 

proceed with the thrust of this disquisition. Chapter two presents a two period, two factor 

model of investment under uncertainty motivated by Abel et al's (1995) model. The key 

difference from their model, however, is that a second factor, abatement capital, is 

introduced. This complicates the model but highlights the important interplay between 

abatement and production capital discussed earlier. A second and substantive difference is 

in the source of uncertainty. Whereas Abel et al model uncertainty in gross returns, my 

model introduces policy uncertainty - specifically, uncertainty regarding the future level of 

emissions taxation. 

Chapter three explores some of the comparative statics of the model. Here it is shown that 

while the incentive to invest is decreasing in its own price, there exists ambiguity, or 

technology dependence, concerning the cross price effects (e.g. the effect that an increase 

in the cost of production capital has on the incentive to invest in abatement equipment). 

Another interesting result which arises from this analysis is that an increase in the first 

period Pigouvian tax has technology dependent influences on the incentives to invest in 

both types of capital. Moreover, these findings, in particular, are consistent with those of 
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Kohn (1988). The presence of increasing scale properties in abatement has an increasing 

effect on the scale of the firm. This has further implications for the effectiveness of 

corrective policies. However, we show here that in the absence of scale properties in 

abatement, the introduction of a Pigouvian tax decreases the scale of the firm, which is 

inconsistent with Kohn's findings. The implications of changes in the distribution of 

future taxes are also examined and it is shown that increases in expected taxes increase the 

incentive to invest in abatement capital but the corresponding effect on production capital is 

ambiguous: The chapter closes with a discussion of policy implications. 

Lastly, a summation of the methodology, model, and results are provided in chapter four. 

The results obtained in the previous chapters will be discussed and their relative importance 

to policy makers explored. The chapter finishes off with a discussion of areas of potential 

research which could build upon the framework established here. 
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CHAPTER TWO  

2. MODELING INVESTMENT UNDER UNCERTAINTY 

This chapter presents a two factor extension of the basic model presented in Abel et al 

(1995) where the two factors are production and abatement capital. Section 2.1 discusses 

the model in general terms as well as some of the intuitive motivations for its design. The 

second period optimizing behaviour of the firm is explored in section 2.2. Section 2.3 

examines the decisions facing the firm in the first period, some of which have substantive 

implications for second period returns. The chapter closes with section 2.4 which provides 

a summary and some concluding remarks. 

2.1 General Presentation of the Model 

In this chapter a two-period pollution flow model is developed where the firm must make 

investment decisions for a single production factor, which is simply referred to as either the 

production factor or production capital, and a pollution abatement factor, which is 

conveniently referred to as abatement capital5. The firm must make investment decisions 

over both of these factors in both periods. A Pigouvian tax is applied against the firm's 

production of a non-market good. The expenditure on taxes may be mitigated either by 

substituting away from the production factor or by employing more abatement equipment. 

The decisions are further complicated by assuming that the stock of abatement capital is 

only partially reversible and expandable, both to arbitrary degrees. This is characterized by 

a resale price on abatement capital which is no greater than the original purchase price and a 

future purchase price which is no less than the original purchase price. Lastly, there is 

uncertainty over the second period taxation level. It is implicitly assumed in the extreme 

cases that the non-market good may be banned (the unit tax is infinitely large) or infinitely 

subsidized (the unit tax is infinitely negative). 

5For the convenience of the reader, a complete description of all the variables and functions is included in 
Appendix A. 
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In the first period, the firm installs its production factor, K1, at unit cost b, and its 

abatement capital, A1, at unit cost c. First period returns, R(K1), are a function of the 

production factor only. A Pigouvian tax, r1, is applied to the production of some non-

market good (generally this externality will be some kind of pollutant). Production of the 

externality is a function of both production factor investment and abatement capital 

investment, h(K,A), where h is strictly increasing in K and decreasing in A. Hence, in 

the first period the firm will pay taxes equal to h(K1,A1). No ex ante restrictions are 

being placed on the convexities or concavities of the externality production function. 

The second period is very similar to the first. Once the stochastic second period tax, , is 

realized the firm may adjust the first period production factor level to its optimal second 

period level, K2, and earn gross returns R(K2). The cost of purchasing more of the 

production factor is assumed to equal the resale price and the first period purchase price, b. 

That is, the production factor is fully expandable and reversible. Partial reversibility and 

expandability are modeled via the second period purchase and resale prices of abatement 

capital. It is assumed that the firm may purchase additional abatement capital at the unit 

price c11 ≥ c, making expansion costly. Further, the firm may sell any amount of its 

abatement capital for the unit price CL ≤ c, making reversibility costly. The model is 

flexible so as to allow any arbitrary degree of irreversibility and expandability. Once the 

optimal values of the two factors are determined the firm will be assessed the appropriate 

tax payment, ;h(K2,A2). Notice that the production technologies for the primary and 

external goods are not time dependent. That is, there is no innovation or technology 

adoption in the model. 

Since the model is solved recursively, the following section will examine the period two 

optimizing decisions for the firm. 
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2.2 Second Period Optimizing Behaviour 

It should be clear that second period returns must be evaluated in each of three possible 

regimes, the appropriateness of each depends on the realized level of the second period tax. 

First, the firm may find that second period taxes are relatively low. Arrival of this 'good 

news' means that the firm may find it optimal to sell some of its abatement capital (and 

produce more pollution), even at the potentially lower resale price. The flip side is that the 

firm might find second period taxes to be high relative to expectations. This 'bad news' 

may mean that the firm can reduce its costs by purchasing more abatement capital, even at 

the possibly higher purchase price. The last case is where second period tax is such that it 

is optimal to neither purchase nor sell abatement capital. Under such a scenario the stock of 

abatement capital remains fixed at its first period level, A1. 

This section is devoted to evaluating the second period optimizing behaviour of the firm. 

First, each of the above three scenarios will be individually assessed. After having 

assessed the possible scenarios, a criteria will be established which outlines the 

circumstances under which it is appropriate to buy, sell, or simply maintain the level of 

abatement capital. This will fully characterize the firm's second period optimal decisions. 

To begin, suppose that the level of the second period tax is such that the firm finds it 

optimal to purchase more abatement capital. In this case, the second period levels of the 

production factor and abatement equipment are determined by solving the following 

problem: 

MAX{R(K2) - b(K2 - K1) - c11 (A2 - A1) - r2h(K2,A2)}. 
K2 ,A2 

(1) 
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This expression is the second period net returns to the firm given that it is optimal to 

purchase additional abatement equipment. They consist of the gross returns from the 

production factor less (plus) the cost (receipts) from increasing (decreasing) employment in 

the production factor, less the cost of expanding the stock of abatement equipment above its 

first period level, and less the taxation on externality production. The first order conditions 

for maximizing returns are, 

R'(K) = b+ r2hK(K,A), and 

—rZhA(K,A) = c.. 

Necessary condition ( la) tells us that the production factor should be adjusted such that its 

marginal returns equals its marginal (unit) cost plus the tax cost of its marginal effect on 

externality production. Condition ( lb) has also been written with the marginal benefits on 

the left hand side (LHS) and the marginal costs on the right hand side (RHS). This 

condition indicates that abatement capital should be added to the point where the tax savings 

from the marginal reduction of externality production equals its unit cost. 

The three sufficient conditions are, 

)-12hKK(K,A)<O, (ic) R"(K  

<0, and (id) 

- ZhKK (K;,)] [_ 2h,(K;,)] - [_ 2h(K;,)]2 > 0. (le) [R"(K;)  

These conditions place certain restrictions on the technologies in the model which are not 

independent of each other. For instance, from ( ic) we notice that we may model increasing 

returns to scale from the production factor. However, this requires that production of the 

externality be convex in K. That is, it must be the case that R"(K) < 2hKK(K,A). So if 
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R-(K) >0, then hKK (K;, A;) > 0, as long as we confine ourselves to the case where taxes 

are positive. Further, if taxes are zero, then a solution requires that there are decreasing 

returns to scale in primary production. It may also be observed in ( id) that a solution 

requires that production of the externality is strictly convex in A. This is intuitively 

appealing since it permits the negation of the possibility of purchasing enough abatement 

equipment to drive externality production below zero. 

Conditions ( la) and (lb) comprise two equations in two unknowns and as such, a general 

solution may be obtained. The general forms of the solution will be K = K2 ( r2, b, c11) and 

A; = A2(1.2,b,cH ). 

Now suppose that second period taxes were such that the firm found it optimal to disinvest 

in abatement capital. Maximizing second period net returns requires that the firm solve (2). 

MAX{R(K2) - b(K2 - K1) + cL(AI - A2) - ;h(K2,A2)} 
K2, A2 

(2) 

Now instead of incurring a unit cost, ell, for adding abatement capital, the firm receives a 

unit price, CL, for disinvesting in it. The necessary conditions for maximizing returns are, 

and (2a) 

CL = ;hA(K2,A2). (2b) 

The optimal level of capital is still determined by the same condition as in (la). Condition 

(2b) may be interpreted in two equivalent ways. First, it could read that abatement capital 

must be chosen such that the marginal tax savings equals its opportunity cost. Second, 

abatement capital may be sold until the tax value from the ensuing increase in externality 

production just equals its resale price. 
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The sufficient conditions are the same as those presented in ( ic) through ( le) - a well 

behaved system requires that they be satisfied whether buying or selling additional 

abatement capital. 

The solution for problem (2) may be generally represented as K = K2('r2,b,cL) and 

A = A2(r2,b,cL). These are the same functional 'reduced form' representations as those 

given when the firm further invests in abatement capital except that they are evaluated at the 

resale price of abatement equipment instead of its purchase price. 

The last of the three regimes which must be evaluated is the case where it is neither optimal 

to buy nor sell abatement equipment. In such cases the production factor is the only choice 

variable since the stock of abatement capital will be taken as given at A1. Thus the problem 

for the firm is to, 

1vI,X{R(K2) - b(K2 - K1) - 'z2h(K2, A1)}. (3) 

This is identical to the previous two instances except that A2 A1. The first order condition 

for maximizing net returns is, 

R'(K)= b+ ). (3a) 

Again, this is almost identical to (1 a) and (2a) with the important difference that the stock of 

abatement capital is treated exogenously. This means that the only tool available to the firm 

for reducing its tax expenditures is to alter its employment of the production factor. 
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The sufficient condition for maximization is given in (3b). As in (3a), the only difference 

between (3b) and ( ic) or (2c) is that it is evaluated at the first period's level of abatement 

stock. 

2hKK(K;,Al) <0 (3b) R"(K;)—  

The solution to this maximization problem is somewhat different than in the previous two 

scenarios. The optimal level of the production factor when abatement capital is fixed will 

be given by K = k2(;,A1,b).6 While the level of abatement stock must be considered 

when choosing production capital, the resale or purchase prices of abatement equipment are 

no longer relevant. 

The next step in the analysis is to consider when it is optimal to expand, reverse or simply 

maintain the first period level of investment in abatement capital. In other words, when and 

under what circumstances are the previous three scenarios relevant? As suggested earlier, 

for given resale and purchase prices of abatement capital (CL and c,1), the decision hinges 

upon the realized value of the second period Pigouvian tax, r2. This portion of the 

analysis is not unlike the notion of trigger values as in Dixit and Pindyck (1994). 

However, unlike trigger prices in the irreversible investment literature, there are two trigger 

prices in this model since it is permitted to reverse investment as well as expand it. Using 

first order conditions ( lb), (2b), and the solution to (3), define two critical values of the 

second period Pigouvian tax, and t2' as follows, 

—vhA(k2(v,Al,b),Al)=cL, and —1'hA(k2(1',AI,b),Al)=cH, (4) 

which may be written in their reduced forms, r2L = 'v(Al,b,cL) and r' = 

6The lower case "k" signifies that this is a different function than those relevant to the cases where 
abatement capital is endogenous. 
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These are the values of the tax where it becomes optimal to sell or purchase abatement 

capital, even at their respective costly prices7. Recall that CH ≥ c ≥ CL. Using these critical 

values of r2, we may now characterize the firm's behaviour under different tax regimes. If 

<it, it becomes optimal to sell abatement capital until the tax value of the marginal 

increase in pollution production just equals the resale price, as in (2b). Similarly, when 

;> r2H the firm would be optimizing by purchasing abatement capital until the value of the 

tax savings from the marginal reduction in emissions was equal to the purchase price, as in 

(1 b). When r' ≥ r2 ≥ TL 2 it is neither optimal to purchase nor sell abatement equipment 

because its marginal tax savings is greater than its resale price yet lower than the purchase 

price, so A2= A1 within this range. 

Figure 1 shows the general relationship between the marginal tax savings from abatement 

capital and second period Pigouvian taxes. The heavy line tracks this general function, 

- ;hA (K, A;). Notice that for values of ; < TL the marginal value of abatement capital 

will always be set equal to the resale price and for values of v2> r2m, the level of abatement 

capital will be chosen such that its marginal tax savings equal the purchase price but for 

values of ; between these points the marginal valuation will drift upward since adjustment 

of the abatement stock is not optimal. 

7The assumption that U1 is greater than r2L places an implicit restricting assumption on h,.K(). It must 

h(.)  
mean that —V2hA(K2,AI) is increasing in '2' which requires that hAK ()> 

where k2 (.) < 0. So hAK () is restricted only to the extent that it cannot be 'too negative'. Muloney and 

Yandle (1984) find hAK (.) to be negative in practice. Indeed, it is difficult to imagine a technology where 
hAK () > 0. This would indicate that a given stock of abatement capital will reduce emission by a greater 
amount on a small plant than on a large plant. This may be the case where small amounts of investment 
in abatement capital are not mechanically efficient. For instance, smaller effluent filters may not have any 
effect on larger discharge pipes. However, such systems could always be divided and dealt with in parallel. 
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FIGURE 1: The Marginal Tax Savings from Abatement Capital 

- r2hA(•) 

CH 

CL 

—2hA(K;, A1) 
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With an understanding of the firm's optimizing decisions for the second period, it is now 

appropriate to use this information and move backward tothe first period. Second period 

values will simply be evaluated at their optimal levels. 

2.3 First Period Optimizing Behaviour 

This section explores the firm's first period investment decisions. The full model is 

presented and the optimal solutions are obtained. The section closes with an intuitive 

discussion of some of the preliminary results. 

The overall objective of the firm is to maximize its total net returns which are the sum of the 

first and second period net returns. In the first period, decisions concerning the production 

and abatement factors are made with the understanding that the investment choice for 
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abatement capital may have large implications for second period returns - due to the 

combined effects of a stochastic second period tax and partial irreversibility and 

unexpandability. Moreover, the firm "understands" that whatever its first period decisions, 

it will respond optimally in the second period given the realization of the second period tax 

parameter, ;, which is unknown in the first period. With this understanding, total net 

returns maybe expressed as V(K1 , A1), where, 

V(K1,A1)=R(K1)—bK1—cA1—r1h(K1,A1) 

+ [R(K2('r2,b,cL)) - b(KZ('r2,b,cL) - K1) + cL(AI - A2(r2,b,cL))IdF(r2) 

5 f2 (Al .bcL) [ h(K ( bc) A(;,b,cL))]dF(;) 

Iif Ai,2 (A, th1)[RQc(;'-,)) - b(k2(r2,A1,b) — K1) - ;h(k2(r2,A1,b),A1)]dF(r2) +5 
(b,c)  

(5) 

+ 5 (A1 b c,, [R(K2(;,b,c)) - b(KZ(;,b,CH) - K1) - c11 (A2(;,b,CH) - A1)]dF(;) 
J4') 

(A1 , b,cj, )[ ;h(K2( 2' b, c11 ), A2 ( 2 , b, c11))]dF( 2) 

The objective function given in (5) is simply the sum of first period net returns and second 

period expected net returns where the second period returns are calculated in each of the 

three regimes: r2 < ; r2H 2 and; r2 > r211 . F(;) is the cumulative probability 

density function for r2 and S is a discount factor. Notice the production factor is 

completely expandable and reversible in each of the three regimes. When r2 < z, second 

period net returns are generated such that both the production factor and abatement capital 

are endogenous and evaluated at the resale price of the abatement capital. The same applies 

to the case where r2> r' except that the optimal levels of the two factors are evaluated at 

the purchase price of abatement equipment. When z' ; ≥ 'v it is neither optimal to buy 

nor sell abatement capital so the stock of abatement equipment is fixed at its first period 

level. Further, the optimal level of the production factor is a function of first period 
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abatement capital, among other exogenous variables. With investment modeled in this 

manner, the first period investment decisions have implications for the value of the firm far 

beyond the first period net returns. 

The necessary conditions for optimization are8, 

VK(KI,Al)R(Kl)—(l(5)b lhK(1CI,4l)_0, and (5a) 

A,*) = —c — ,rhA(K,*, A,*) + i5cLF(TL2(A,*, b, cL)) + 3c. [1 — F(T2H(A,*, b, c,,, ))] 

(5b) 

Li7 (n ,b,c,,) 
_8(Al.bCL) r2hA(kZ(r2,A,b),A)dF(;) = 0. 

Condition (5a) may be re-written as, 

R'(K)=(1— 5)b+ rlhK( ). (5a') 

The interpretation of condition (5a') is fairly straight forward. The term on the LHS is the 

first period marginal gross returns from employing K1 which must be balanced by the 

marginal costs represented on the RHS. The first term on the RHS is the purchase price of 

K1 net of its discounted value from the second period. The second term on the RHS is the 

marginal Pigouvian tax cost from employing the factor. Specifically, it is the marginal 

increase in the production of the externality from employing K1 times the cost of that extra 

production, which is simply the marginal tax rate. 

8From (5) the reader may note that the limits of integration are themselves functions of the first period 
abatement factor, A1. As such there are differential effects on theses limits when evaluating for the optimal 
level of A1. While it is true that Leibniz's Rule is the appropriate method of differentiation under such 
circumstances, appendix B shows that no qualitative or quantitative breaches are committed if these 
differential effects are ignored. Appendix C shows the derivation of (5b). 
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Next, condition (5b) may be rearranged to get, 

— 'rlhA(K, 
* 

1)— oJ L(Abct) r2hA(k2(r2,A,b),A)dF('r2) + ScLF(1 

+SCH [1 - F(r'(A, b, c11 ))] = c. 

)) 
(5b') 

The first term on the LHS is the first period marginal tax savings realized from investing in 

abatement capital in period 1. Similarly, the second LHS term may be interpreted as the 

expected present value of the marginal tax savings which are realized when 'r ≤ r2 :5 'r' 

times the probability that in fact r2L ≤ 'r2 ≤ r2H, which is the probability that abatement 

capital is neither purchased nor sold. The third LHS term is the marginal expected present 

resale value of the equipment times the probability that r2<  ', which is the probability 

that abatement capital is sold. The last LHS term is also a marginal benefit because it is the 

present marginal value of abatement capital which no longer has to be purchased at the 

higher price, cE, (because it was already purchased in period 1). This benefit is realized on 

the probability that ;> i'. The RHS term is the immediate and direct marginal cost of 

abatement capital in period one. 

Close inspection of (5b) reveals an interesting feature of partially irreversible and 

unexpandable investment models in that the shape of the distribution of future taxes is 

irrelevant above r' and below TL2 . This implies that probability mass could be shifted 

away from a point just above t to a point of much larger taxation (i.e. if bad news arrives 

it will be very bad) and this will have no impact on the incentive to invest. However, the 

distribution of taxes between the critical points is of interest to the firm. Abel et al (1995) 

noted that this is a simple extension of Bernanke's (1983) "bad-news principle" to what 

they call a "Goldilocks principle" - the only region of the probability distribution that affects 

the incentive to invest is the middle part where news is neither "too hot" nor "too cold". 
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The second order sufficient conditions are provided in (5c) through (5e). 

VKK(Kl,Al) = R(K1*) - IhKK(K,A) <0, 

v(K,A)= — rlhM(K,A) 

(5c) 

(5d) 

—8 J + hM (k2('r2 A;b)A;)]]dF(;) <0, 

and 

VKK (Kl,AI)VM (Kl,Al) -[vA (K;,A;)]2 >0, (5e) 

where VAK (K1* , A) = — 1hAK (K, A). The general solution to the model will be of the 

form, K = Kl(r,b,c,cL,cH) and A = AI('v,b,c,cL,cH). As before, there are relatively 

few restrictions on the technology behind externality production. In fact, the only second 

order derivative which has been sign restricted is JiM (•) > 0, (i.e. production of the 

externality is convex in A). There are still no restrictions on the scale properties of the 

production technology, however there is an interdependency between these properties and 

the convexity or concavity of externality production in K, such that hKK () < R'  

Further, note that hAK (.) is restricted in magnitude only9. Verifying this claim requires 

evaluating k24 (r2,A,b). From (3a), implicitly differentiating Ic2 with respect to A, we 

find that 

R"(k2(r2,A,b))— 2hKK (kZ(2,A;,b),A;)]. 

Now hAK 0 cannot be ' too positive' either. 
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From (3b), the denominator is unambiguously negative and VM (K,A) (equation (5d) 

reduces to, 

i' (A ,b,c )1 { ;h, (K, A )]2 

—lhM(K,A)-8 5 ( ,b,c )L [R"(K;) - 2/2KK (K;, A,* )] + zhM (K'Al*) 
dF(;)<O. (5d') 

As is readily observable, the only non-negative term in (5d') is the term involving h,(). 

However, only its magnitude and not its sign is restricted. In other words, the abatement 

economies to plant scale are irrelevant to the investment decision (in production or 

abatement capital) and only the magnitude of the value is important. (5d) and (5d') also 

reiterate the restriction that a solution requires JiM () > 0. 

2.4 Concluding Remarks 

This chapter has outlined and presented a two factor version of Abel et al's (1995) two 

period model of investment under uncertainty. The two factor model differs from their 

model in several ways. First, here the production factor is presumed to be totally reversible 

and expandable. Second, the additional second factor is not a production factor, rather it is 

abatement capital. It is this second factor which is partially irreversible and expandable. 

The firm's second period optimizing behaviour was discussed in the context of three 

different scenarios. The first was where the second period Pigouvian tax was high enough 

to warrant purchasing more abatement capital, even at the higher price. The second 

scenario was where taxes were low enough that it was optimal to sell abatement capital, 

even at the lower price. The last regime was where taxes were such that it was neither 

optimal to purchase nor sell abatement capital. These results were used to define critical 

values of the second period tax above and below which changes in the first period stock of 

abatement capital would occur. Working recursively, the first period investment decisions 
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were explored internalizing the second period optimizing behaviour. Lastly, some of the 

restrictions on technologies were discussed. It was shown that the model is not very 

demanding or particular in terms of these technologies. 

Chapter 3 will build on the work in this chapter as various comparative static results and 

ambiguities are evaluated. Many of these ambiguities will arise because of the lack of ex 

ante restrictions placed on the model. 



27 

CHAPTER THREE 

3. COMPARATIVE STATICS 

This chapter explores and assesses the effects and implications of changes in various 

exogenous factors. Of specific interest are the incentives to invest in production and 

abatement capital and how they may be altered as a result of movements in first and second 

period prices, present and expected future taxes, and changes in the level of uncertainty 

regarding future taxes. 

Chapter three is organized as follows: section 3.1 examines the comparative static effects 

on the incentives to invest from changes in the costs of investment, changes in the cost of 

reversibility and expansion, and changes in first period taxation level; section 3.2 explores 

the nature of distributional shifts concerning future taxes and the resulting implications on 

the incentives to invest; section 3.3 uses the results from the previous two sections to 

evaluate some possible implications for policy design, and; section 3.4 completes the 

chapter with some concluding remarks. 

3.1 Investment Costs, Resale prices, and Tax Rates 

This section seeks to gain understanding into the functional relationships between various 

prices and taxes and the incentives to invest. This will be accomplished by taking a linear 

approximation of the model evaluated in the neighbourhood of the optimum. Each 

comparative static result will be evaluated in turn. The nature and relevance of different 

technologies will then be discussed and tested on the model. 

For convenience, a linear approximation of the model is taken in the neighbourhood of the 

optimum and represented in matrix notation below 10. 

10Again, see appendix C for the application of Leibniz's rule. 
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[VKK (•) VAK (.)1[dK 
[VAK (.) VM()J[dAl I 2  

(1-6) db+  ' 1 
L ;hAK(.)k2fr(.)dF(2)] [O]dc + [ oF()jdCL 

+[[ F()]]dcH + I hK(.)]d 

(6) 

Let = [H], where VAK () = — lhAK(Kl ,A1) and condition (5e) ensures that [VKK(-) 

AK AA J 

I Hj> 0. Equations (7) to (16) show the comparative static results along with their 

respective signs. Each set of comparative statics will be discussed in an attempt to shed 

some light on the intuition behind the analytic results. We begin first in (7) and (8) with the 

comparative static effects of the cost of the production factor. 

dK 

db 

dA 

db 

(1— (5) VM ()+ i:lh,tK (.)SJ ;hAK (.)kZb (.)dP(;) 
 <0 

IHI 
(7) 

(1— (5)r1h,()+ VKK()5f ;hAK(.)k2b(.)dF(r2) >=< o as hAK () >=< 0 (8) 

HI 

The evaluation of (7) and (8) depends on our ability to sign k2b(). Using equation (3a) we 

find that '2b () = [R" (.) - 1  < 0• Therefore, an increase in the cost of production 

capital will decrease the incentive to invest in it. However, an increase in the cost of the 

production factor has an ambiguous effect on the incentive to invest in abatement capital. 

Here we find the first evidence of a cross-price ambiguity. The result in (8) shows that this 

ambiguity arises from the absence of restrictions on the sign of hAK (.). That is, the effect 

on the incentive to invest in abatement capital is technology dependent in that it is the sign 

of hAK() which determines if decreases in K1 and increases in A1 are substitute or 

complimentary strategies. By inspection, if we assume that the technology indicates that 
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abatement capital mitigates pollution to a lesser degree for higher levels of production factor 

employment (hAK (•) > 0), then increases in the cost of the production factor will increase 

the incentive to invest in abatement capital. This is because an increase in b decreases the 

incentive to invest in production capital, so, all else being equal, the stock of production 

capital decreases in both periods. This reduction in the production factor increases the 

marginal effect of abatement capital on pollution. Hence to optimize via satisfying equation 

(5b), the firm must increase investment in abatement capital (recall that h(.) is convex in 

A). 

Figure 2 illustrates this phenomenon. As production capital is reduced from K° to K', the 

marginal abatement curve shifts downward since hAK (•) > 0. In order to maintain 

optimizing conditions analogous to ( lb), (2b), and more to the point, (5b), the firm must 

invest in more abatement capital as implied by the move from A° to A'. 
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FIGURE 2: Optimizing Abatement Capital 
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Had we chosen to assume that hAK () <0, the corresponding shifts in the curves from 

figure 2 would simply have occurred in the opposite direction. In such a case, an increase 

in the cost of production capital would effectively decrease the first period abatement capital 

stock. 

Equations (9) and (10) show the comparative static effects of the first period cost of 

abatement capital. 

dK = >=< 0 as hflK (•) >=< 0 (9) 
dc IHI 

(10) 
dc IHI 
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Equation (10) demonstrates an intuitively appealing result - increases in the initial cost of 

abatement capital result in decreases in the initial employment of that capital. However, 

once again from (9) we find that the corresponding effect on production capital investment 

is technology dependent. That is, there is ambiguity in the cross-price effect. If we 

confine ourselves to the case where first period taxes are greater than zero and we further 

assume that h,..1 (.)> 0, then increases in the initial cost of abatement capital will increase 

the incentive to invest in production capital. This process may be clarified by reexamining 

equation (5a'), reproduced here for convenience. 

R'(K) = (1— (5)b + 'rlhK(K,A) (5a') 

Still assuming that hAK ()> 0, we know that an increase in the initial cost of the abatement 

factor will decrease its first period employment. This will effectively decrease the tax value 

of the marginal effect of production capital on the externality production (the second term 

on the RHS of (5a')). The response is a decrease in the value of the RHS of (5a') which 

lowers the optimal level of the first period marginal returns. This implies an increase in the 

incentive to invest in the production factor. Conversely, if the sensitivity of externality 

production to the production factor is decreasing in A, then, as before, an increase in the 

first period cost of abatement capital will decrease the incentive to invest in abatement 

capital, but this decrease in abatement capital investment will increase the value of the RHS 

of (5a'). The net effect of this is a reduction of the incentive to invest in the production 

factor. 

The following set of comparative statics evaluates the effects of changes in the second 

period purchase and resale prices of abatement capital. 



—VKK()8F(r) >0 

dcL IHI 

= - >0 
dc11 IHI 

dKI — lhAK()8F(v) >=< 0 as 

dcL IH 

— 1 hAK ()5[1—F()] >=< 0 as hAK ()<=> O 

HI dcH 

hAK() <=> 0 

Equation (11) indicates that an increase in the second period resale price of abatement 

capital will amplify the incentive to invest in first period abatement capital. The reasoning 

behind this result is that an increase in CL reflects a decrease in the degree of irreversibility 

of abatement capital. That is, the cost or penalty for investing in 'too much' abatement 

capital is diminished should future taxes evolve such that ; < vt. Notice too how this 

result characterizes one of the claims from the irreversible investment literature - the 

presence of sunk costs, or irreversibilities, will delay investment. As CL decreases, the 

investment becomes 'more irreversible' the result is that investment will be delayed until it 

is determined to be necessary in the second period. Similarly, an increase in the future 

purchase price of abatement equipment results in an increase in the incentive to invest in 

abatement equipment, as is shown in ( 12). The logic is similar as well. Increasing the 

future purchase price effectively decreases the degree of expandability. That is, if the 

future purchase price of abatement capital increases, the firm will be motivated to purchase 

more abatement capital to avoid the additional cost or penalty of purchasing more in the 

second period at the now higher C11 should taxes evolve such that r2 > 

Future purchase and resale price changes have similar effects on production capital as the 

case where the first period price of abatement capital changes. Again, if hAK () > 0, then 
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any change in an exogenous variable which increases the incentive to invest in abatement 

capital will correspondingly decrease the incentive to invest in production capital. On a 

slightly more intuitive level, if hAK (.)> 0, then the sensitivity of pollution production is 

increasing in A - meaning that a unit increase in production capital contributes a greater 

amount to the production of the externality at higher levels of abatement capital than at 

lower levels. As such, if future price changes increase the investment level in first period 

abatement capital, then production capital will decrease because its marginal contribution to 

the externality production has increased. Therefore, if hAK () < 0 then an increase in either 

the second period resale or purchase price of abatement capital will correspondingly 

increase the incentive to invest in production capital. 

The last set of comparative statics in this section examines the changes in the incentives to 

invest arising from changes in the first period Pigouvian tax rate. Equations (15) and ( 16) 

quantify these resulting effects. 

hK (•)VM (•)+ ;hAK()hA(•) >=< 0 as hAK()<=> —hK()VAA() 

dv1 IHI 

dA = hA(•)VKK (•)+ rlhAK(.)hK() >=< 0 as hAK () hAQVKK() 
dr1 1111 

(15) 

(16) 

The ambiguous results shown here are the result of a synergy between the investment 

decisions. This synergy is driven by the ubiquitous hAK () term. Included in (15) and ( 16) 

are the respective critical values for hAK (). These values suggest that if h,(.) is positive, 

or at least not 'too negative', increases in the first period Pigouvian tax rate will decrease 

the incentive to invest in the production factor and increase the incentive to invest in 

abatement capital. These ambiguities will be the focus of the discussion in section 3.3. 

Notice that these findings are at least partially consistent with the findings of Kohn (1988). 

That is, if there are sufficient increasing scales in abatement (hAK (•) <0), then Pigouvian 
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taxation will increase the scale of the firm. If, however, there are decreasing scales in 

abatement (hAK (.) >0) then Pigouvian taxation will decrease the scale of the firm. 

However Kohn noted that in the absence of scale properties, Pigouvian corrections would 

increase the scale of the firm. If we set hAK (.) = 0, however, this model finds quite the 

opposite result - the introduction of a Pigouvian correction will decrease the scale of the 

firm. 

Table 1 offers a convenient summary of the comparative static results under the two 

competing assumptions concerning the emissions production technology. 

TABLE 1: Summary of Comparative Static Results 

hAK(•)>0 hAK(.)<0 

dK1* dA  dK  dA  

db neg. pos. neg. neg. 

dc pos. neg. neg. neg. 

dcL neg. pos. p05. pos. 

dc,, neg. pos. pos. p05. 

d'r, neg. p05. ambiguous ambiguous 

This section has evaluated the comparative static effects of changes in the first period 

Pigouvian tax as well as various capital prices. In general terms, an increase in the first 

period price of a given type of capital decreases the incentive to invest in that capital 

unambiguously. Further, if hAK (.) > 0, then an increase in the first period purchase price 

of a given type of capital increases the incentive to invest in the other type of capital. If 

linK (•) <0, then the opposite is true - the incentive to invest in the other type of capital will 

decrease. The more interesting of the results in this section is the ambiguous nature of the 
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effect of an increase in the first period Pigouvian tax. This will be addressed in more detail 

in section 3.3. 

3.2 The Distribution of Future Taxes and the Incentive to Invest 

This section analyses the effects that changes in the distribution of future taxes may have on 

the incentives to invest in current capital. Specifically, we will evaluate the effects of shifts 

in the cumulative distribution function, F('r2). Of interest here are the effects that both the 

expected value of the future tax rate and the degree of uncertainty have on the incentives to 

invest. 

In order to proceed, we will assume that future tax rates are distributed normal with mean u 

and variance cr2 Let 

F(;,p,a) = 

where, 

1 _( 2_/L) / 2 

f(;)= e (17) 

This distribution will be used in the next two subsections where the effects of changes in 

expected future taxes and the degree of uncertainty will be examined separately. 

3.2.1 Expected Future Taxation 

This subsection explores the effects of a first order shift in the distribution of future taxes 

on the incentives to invest. Before beginning the evaluation of the comparative statics, it 

will prove useful to evaluate the partial derivatives of the distribution and cumulative 

distribution functions with respect to 4u. First we begin with f, (). 
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(;—ii) _( vz_ /1)21 
e /202 

3 2 7r f1(•)= F(.)= 

It should be evident that f, () > 0 for all points where r2>,4, f (•) < 0 for all points 

where V2 <au, and f,2 (•) = 0 if ; = u. This is illustrated in figure 4 with a discrete first 

order shift in a normal distribution. 

FIGURE 3: A First Order Shift in a Normal Probability Density Function 

/1 

This foreshadows a potential problem in that the sign of given comparative static may be 

sensitive to the relative positions of v', ', with respect to ji. 

Now consider F, (•) To evaluate this derivative, we simply note that an increase in the 

expected future tax simply implies a rightward shift of the cumulative distribution function, 

as is shown in figure 4. 
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FIGURE 4: A First Order Shift in a Cumulative Distribution Function 

A 
F(r2) 

1 

Notice that the rightward shift decreases the probability of observing a lesser value for all 

points in the distribution. This implies that F (•) <0 for all values of r2. 

As in the previous section, we take a linear approximation of the model and conveniently 

represent it in matrix notation as in (18). 

F V7 () VAK ()][dKl - 

[VAK (.) VM (.)jLdAl* - 

[,[f"2 2hA()f(•)d; 

The comparative static expressions are as follows, 

(18) 

dA  = vKKos[S ;hA ()f(•)d;≥ 0, and (19) 

d,u IHI 
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It 
dK lhAK(.)S[j ;hA(•)f,L()d; CLF/(,1L, 

[2  ≥=≤0 as, 
dy IHI 

hAK () <=> 0. (20) 

This subsection will continue by first examining the comparative statics to the ends of 

understanding the full qualitative effects on the incentives to invest. That is, we will 

determine whether an increase in expected future taxes increases the incentive to invest in 

the two types of capital. Second, the individual terms in ( 19) and (20) will be evaluated for 

their respective individual effects on the incentives to invest. 

Casual inspection of the numerators of ( 19) and (20) reveal few clues concerning their 

respective signs. We see that each equation contains potentially offsetting terms which 

make the expression difficult to evaluate. A lesson from Abel et al (1995) and Hirshleifer 

and Riley ( 1992) may be instructive here. They discussed the problem of a first order shift 

in terms of stochastic dominance. A similar type of analysis will be performed here. 

Consider the first order conditions outlined in ( lb) and (2b). The first condition indicates 

that irrespective of the value of r2 above ' , —;h,) = c11. Similarly, irrespective of 

the value of r2 below z, —'r2h4() CL. Recalling figure 1 may be instructive to this 

analysis as it maps - ;hA (K, A1) against ;, clearly showing these important 

relationships. Figure 1 unambiguously shows that - ;hA (K, A1) is non decreasing in r2, 

and, moreover, that it is increasing monotonically over the range rL to z'. The graph 

from figure 1 is slightly modified in figure 5 by the superimposition of the function f (). 
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FIGURE 5: The Effects of a First Order Shift 

What may be noticed here is that — v'2hA() is a non decreasing function of r; constant 

above v' and below v, and increasing in the interval between the two critical points. 

This means that irrespective of the mean of r2, the area under this graph to the left of the 

mean will be smaller than the area under the graph to the right of the mean. Let B(;) be 

the function depicted by the dark dashed line in figure 6." Now (19) may be written, 

VKK(.)o[_JB(V2)fP(V2)drZ] 

du IHI 
(19') 

This may now be signed non-negative because B(r2) is non-decreasing in r2, and because 

f() is a symmetric distribution, hence so is Indeed, f() is symmetric in the sense 

that the negative portion of the function below its mean is precisely equal and opposite to 

the positive portion above its mean. So even though f () flips signs at the mean from 

1 1See appendix D for a proof of the appropriateness of using the composite function B(;). 
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negative to positive, the portion of VKK(.)8[—$ B(;)f,1(r2)d;] above the mean must be 

of no lesser magnitude than portion below the mean (because B(;) is non-decreasing in 

2). Put differently, 

VKK (.)(5[.-f12 B(r2)f, (; )dr2] < VKK (.)o[_J,' B(r2 )f/L (;)d.r2] 

for all M. Again, this may be verified visually by inspection of figure 5. The "sum" of 

B( r2 )f (;) will be greater than zero regardless of where the mean lies with respect to 

and r2H . Hence the net effect of an increase in expected future taxes is an increase in the 

employment of abatement capital today. 

This particular analysis clearly demonstrates the nesting of the fully reversible and 

expandable case. Notice that if CL = CH = c, then = t' and the effect of a change in 

expectations on the incentive to invest in abatement capital is zero. This is an intuitively 

appealing result since, in this case, the firm may costlessly adjust the stock of abatement 

capital to accommodate future taxes regardless of expectations. However, with the 

irreversible and unexpandable case, the firm will have limited opportunity to respond to 

changes in tax regimes as they appear. 

Turning to equation (20), it should be noted that the effect of a first order shift of the 

distribution of future taxes will trivially yield the same qualitative results as the incentive to 

invest in abatement capital if h, (.) < 0, (that is, investment in production capital will 

increase), and the opposing result if h, (.)> 0. This effect may have policy implications 

which will be explored in the following section. 
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With an understanding of the overall effect of an increase in expected taxes, it may be 

instructive to explore the individual terms comprising this overall effect. This subsection 

proceeds by discussing the individual effects of the terms in ( 19) and (20) and the intuition 

which may be gleaned from them. 

In ( 19) consider first the following term inside the brackets, -VKKScLF,(r',/1, a) < 0. 

This term is unambiguously less than zero. Increasing the expected future tax rate 

decreases the probability that taxes will evolve in such a way as to be lower than z. This 

is readily verifiable using figure 4. Recall that when realized taxes are less than this critical 

value, the firm will sell some amount of its abatement equipment at the price CL. This 

ability to sell capital represents some degree of reversibility in the event of a 'good state'. 

When the expected tax rate increases, though, the probability that taxes will evolve such 

that the firm may sell some of its capital decreases. This represents a probabilistic 

reduction in the marginal benefits of investing in first period abatement capital since the 

firm's odds of recouping some of that investment are diminished. 

Still in (19) consider the third term inside the brackets, VKK  (r' 2 ,u, a) > 0. This term 

is unambiguously greater than zero. While it was the case that an increase in the expected 

value of future taxes decreased the probability of observing a tax rate less than z, it 

increases the probability of observing a tax rate greater than r. That is, it has become 

more likely that future taxes will be high enough to warrant purchasing additional 

abatement capital. Recall though that it is more costly to purchase abatement capital in the 

second period than in the first - it is costly to expand. Understanding this, the firm 

preemptively purchases more abatement capital at the lower first period price, avoiding the 

higher second period price. In short, since the likelihood of being penalized for carrying 

insufficient abatement equipment in the second period has increased, the incentive to invest 

in it today increases. 
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The sign of the first term in the brackets of (19), VKK (5J r2hA ()f4 (.)d'r2 is not as 

straight forward as the previous two. If the mean or expected value of the future tax lies 

between the two limits of the integral, then f,1() changes sign from negative to positive as 

it passes across the mean. If we impose the restrictive assumption that the mean of future 

taxes were greater than r', then the sign of this term would unambiguously be less than 

zero, and the effect of this term would be to reduce the incentive to invest in abatement 

capital. Formally, if E(;) ≥ r' ≥ T2L then f (•) < 0 for all values of r2 between the limits 

of the integral. VKK () and ; hA (.) are less than zero for all values of r2. Hence 

VKK(.)5f 'r2hA()f,L(.)d; would be less than zero. More intuitively, the effect of this 

term on the incentive to invest is negative because probability is being reassigned away 

from it. Put differently, the probability of ; evolving such that TL, ≤; ≤ v' has 

diminished. As such, the firm is placing less weight on the relevance of the first term to the 

analysis. This should not be interpreted to mean that if E(v2) ≥ z' ≥ i, then an increase 

in expected taxes will decrease the incentive to invest in abatement capital. On the contrary, 

more weight in probability has shifted to the likelihood that realized ; will be greater than 

r' which means that VKKSCH F ( r' ,j.t, cr) (representing an increase in the incentive to 

invest) will be large enough to overpower the remaining two negative terms, as was shown 

above. Again, the disincentive to invest as a result of the VKK (.)5J' r2hA (.)f (.)dr2 term 

arises not because of a direct disincentive, but because of a decrease in the probability that it 

is relevant to future profits. 

Now consider the case where E(l2) < ;L ≤ 'r'. In this scenario f, (.) is strictly greater 

than zero in the range r2L to r2H . As a result, the term VKK (f 2hA (.)f (.)d; is greater 
than zero implying that its effect is to increase the incentive to invest in abatement capital 

given an increase in expected taxes. This term embodies the probabilistic marginal tax 

savings from investing in abatement capital which are achieved if v 5 'r'. Since the 
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probability of ≤ r2 ≤ now increases with an increase in expected taxes, the relevance 

of this term to the analysis is augmented. 

The last case to consider is where v ≤ E(r2) ≤ Here we have to recognize that when 

we integrate across ;, f, (•) will change its sign from negative to positive. Evaluating 

;hA (•)f (.)d; now requires a clearer understanding of the product of the VKK (.)oJ  

functions inside the integral. By using figure 5 and isolating the region spanned between 

TL2 and ii', these individual effects may be illustrated more clearly. We can build on 

figure 5 by mapping the function VKK (.) S'r2h4 (.)f () (which is equal to the function 

B(r2)f/i ('r2) evaluated over the same span) directly onto ;, where VKK () and S are 

constant in V2. Figure 6 shows this complete relationship. 

FIGURE 6: The Product of Functions 

A 
VKK(•) S'V2hA(.)f/i (.) 

f(.) >0 

L 

f/i(.) <0 

V 

E(r) 
H 
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For the time being we will confine ourselves to the special case where the limits of 

integration are equidistant from the mean, as is the case in figure 6. That is 

- E('r2) = E(r2) - z. Even at a casual glance the reader will notice that the area above 

the zero line outweighs the area below it. This implies that VKK () L V2hA (.)f, (.)d; >0. 

This is, in fact, the case for all E( 2) such that z ≤ E(;) ≤  If E(;) is greater 

than the midpoint of the two limits then the resulting sign on the term is ambiguous. These 

claims hinge crucially on two aspects of the model. The first is that - r2hA (K, A1) is non-

decreasing in 'r2. This means that - r2hA (K, A1) will be greater when evaluated at 

than it will when evaluated at vi, further implying that 

'I 

J;2) r2hA( -j E(v2) ;hA (K, A1 ) iz2. 

This simply means that if the mean is the midpoint between T2 and c', then, referring to 

figure 5, the area of the graph between the midpoint and r' is greater than the area of the 

graph between TL2 and the midpoint. This is reflected in figure 6, where 

VKK()6r2hA()fP() evaluated at v' is greater in absolute value than when evaluated at 

The second aspect of the model which is crucial to the claims is that the distribution is 

symmetric. This means that 

f"-," (2 ) f(.)d J; 2) f/I (.)d; when i' —E(r2)= E(;)— r. 

This implies that the probability is not weighing more heavily on one side of the mean than 

the other over the range r2L to z'. However, the results of this subsection are general only 

to the extent that they apply to symmetric distributions. Overall, the economic 
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interpretation is quite simple. As before, if the mean is no greater than the midpoint of 'r 

and T2H, then an increase in the expected value of the distribution will increase the 

likelihood that the first term in brackets in ( 19) is relevant to the firm. That is, the higher 

will be the probability that r2 will be between 'r and ', hence more weight will be 

assigned to that term in the comparative static. 

In summation, while separating the three terms in the numerators of comparative static 

equations (19) and (20), provided no clues concerning the overall signs of the comparative 

static results, several observations may be made about each term and its contribution to the 

incentive to invest. One such observation is that the —VKKScLF, (TL,, it, a) term will always 

mitigate the incentive to invest when the expected future tax increases. Conversely, the 

VKK6CHFII ('r' , ji, a) term will always increase the incentive to invest when the expected 

future tax increases. We also noted that, if the expected future tax is no greater than the 

midpoint between 'v and then the VKK (.)Sj ; hA ()f (.)d; term will increase the 

incentive to invest unambiguously. However, if the expected future tax were between the 

midpoint of r2L and and r2H , then nothing could be said in general concerning the 

term's individual effect on the incentive to invest. Lastly, if the expected future tax were 

greaterthan r2', then the term had a negative impact on the incentive to invest in abatement 

capital. 

Using the notion of stochastic dominance, it was demonstrated that where irreversibilities 

and unexpandabilities exist, the effect of an increase in future expected taxes increases the 

incentive to invest in abatement capital. Further, where abatement capital is fully reversible 

and expandable, a change in future expected taxes has no effect on the incentive to invest in 

either production or abatement capital. 
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The next subsection continues this analysis by examining the effects which uncertainty 

have on the incentive to invest. 

3.22 The Degree of Uncertainty over Future Taxes - A Mean Preserving Spread 

This subsection explores the effects of a second order shift (or mean preserving spread) in 

the distribution of future taxes. The notion of a mean preserving spread implies that the 

expected future tax rate remains constant while probability is reassigned to more extreme 

values. The result is a general decrease in the probability of observing a second period tax 

near its expected value. 

As in the previous subsection, the partial derivatives of the probability density function and 

cumulative probability functions will be evaluated. The partial derivative of the density 

function with respect to a is, 12 

r 2 

a2  ii  z_)2 

0L o2i e 2a 
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FIGURE 7: A Second Order Shift in a Normal Probability Density Function 

(iu)2>a2 

Given that we are exploring a symmetric distribution, it must be the case that Fa(•)> 0 for 

all v2 <u, and Fa(•) < 0 for all ; > u. This is a characteristic of symmetric distributions 

which is easily verifiable in figure 8. 

FIGURE 8: A Second Order Shift in a Cumulative Distribution Function 
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We now take a linear approximation of the model and evaluate it in the neighbourhood of 

the optimum. This is represented in matrix notation in (21). 

[VKK(.) VAK(.)1[dKj - 

[VAK (.) VM()][dAl 

[s[I" 0 da 
zhA ()fa()d; - cLF a) ; HF( 

The comparative static expressions are given in (22) and (23) below. 

= VJ( (.)5[f 2hA(.)f)d z - CLFO(2 , ji, a) +c,, Fa( 2' /1, cr)] 
 >=< 0, and (22) 

da HI 

= lhAK (.)6[J ;hA(.)f()d; - CLFa(,, a) 11F(' ,, a)] 
 >=<O. (23) 

da 1111 

Unlike first order shifts, the effects of second order shifts are ambiguous in terms of their 

effects on either type of capital. As such, this section will proceed by first examining the 

individual effects of the terms in (22) and (23). Having examined the individual terms, 

they will be evaluated on aggregate to gain insights as to why the derivatives are not 

'signable'. 

Beginning with (22), consider the second term inside the brackets, 

-vKK (.)ôcLFC('r,/1, a). This term will be greater than zero if t < j, and less than zero 

if > u. The economic reasoning is as follows: if 'r < ii then the probability that v 

will evolve such that its realized value is less than will increase as the variance 

increases. That is, more probability is being allocated to the more extreme values for r2. 
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This means that the firm recognizes that there is a correspondingly greater probability that 

'good news' will arrive such that it may sell some amount of its first period abatement 

capital. This ability to sell abatement capital is a benefit of owning it so the firm's  incentive 
to invest has increased. If, on the other hand, z were greater than the expected value of 

the future tax, then a second order shift in the distribution of future taxes would decrease 

the probability that r2 will be realized with a value less than z. This marginal reduction 

in the probability of 'good news' arriving will signal to the firm to exercise more caution in 

its first period investment decisions since the probability of a future reversal has 

diminished. Hence, the incentive to invest in abatement capital will decrease. Curiously, if 

v is the expected future tax, then a second order shift will effect no change (via this term) 

in the incentive to invest since the probability that r2 will be less than v will be 0.5 for all 

variances of the distribution. 

Now turn to the third term in brackets in (22), VKK (.)5cHFO(z4' , u, a). It should be clear 

that if r' > u then this term will be greater than zero, increasing the incentive to purchase 

abatement capital. Conversely, if v' < ia, then a second order shift in the distribution of 

future taxes will decrease the incentive to invest in abatement capital. If r' > ,u, then the 

probability of r2 evolving such that it is greater than r' is increasing in a. The firm then 

must take into consideration that the probability of 'bad news' arriving has increased, 

meaning that it is more likely that the firm will require a higher level of abatement capital in 

the second period. However, purchasing abatement capital is more expensive in the second 

period than in the first, so the firm's incentive is to increase its investment in abatement 

equipment in the first period. If r2H < Ji, though the probability of requiring more 

abatement capital in the second period is diminished so the firm will have less incentive to 

invest. Lastly, as with the second term in brackets, if z' = 4u there will no change in the 

probability of requiring additional capital in the second period so the term does not 

'influence' the investment decisions. 
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Analyzing the first term in brackets, VKK(.)SJ 'r2hA()f(,.()d; requires further 

investigation into the properties of symmetric distributions. Specifically, the following 

properties will be useful. 

L f(;,a)d;≤0 if O≤'r'—#≤aor —a≤—i≤O or ≤#≤', hence f 

VKK (.)8f ;hA()f()d; ≤0; 

zhA()fa()dz ≥ 0, and VKK(.)S5  

(;,a)d;>=<0ifz—≤  and —a<v'—<0or 

—i≥cand a > i- 4u>0,hence 

VKK(.)5f ;hA(.)f(•)d2 >=< 0 

As has been shown, these properties may be used directly to sign 

VKK(.)of,2 r2hA(•)ffJ (•)d'r2 for all possible combinations of T2L and Again, the 

economic rationale is quite simple. The critical points for r and t2' given in the above 

properties are the points where the probability of the future tax evolving such that it is 

between 'r and r' is either increasing, decreasing, or ambiguous. So if the probability is 

decreasing, the relevance of the term to the firm is diminishing and less weight will be 

placed on it. If the probability is increasing, the relevance of the term is increasing and 

correspondingly more weight is given to it in the analysis. 
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Examining each term separately provides some insights to the various forces shaping a 

firm's decision, but it provides little help in determining the overall effect of a change in the 

level of uncertainty on investment decisions. Figure 9 presents a familiar graph which 

clarifies this overall effect in terms of the function B(r2). 

FIGURE 9: The Effects of a Second Order Shift 

B(r2) 

11 

-00 

f2) 

00 

As the functions are represented in figure 9, the positions of 'r2 and r' relative to the 

mean depict the case where the sign of Ida is ambiguous. To see this, recall that the 

area under f, (,r2,) below the zero line is equal to the two areas in the tails above the zero 

line. As drawn, it is unclear whether the area above the graph outweighs or is outweighed 

by the area below the graph. However, it is clear that if the mean is greater than rH, then 

an increase in uncertainty decreases the incentive to invest in abatement capital. So it would 

appear as though if a 'bad state' were anticipated, an increase in uncertainty is cause for 

optimism. Conceptually, the resulting increase in the probability of 'very bad news' (near 

the right tail) is perfectly offset by the reduction in the probability of 'fairly bad news', 

while the corresponding increase in the probability of 'good news' reduces the firm's 

incentive to invest. If, however, the expected tax is less than z, then an increase in 
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uncertainty influences the firm to purchase more capital. The reasoning is similar, there is a 

zero sum increase in the probability of 'good news' but a net increase in the probability of 

bad news. So the firm will respond by investing in more abatement capital. This is simply 

a characteristic of the Goldilocks principle - the distribution of good news or bad news is of 

no concern to the firm. 

As before it may be noted that, trivially, the comparative static effect of a second order shift 

in the distribution of future taxes will have the same qualitative effect on production capital 

if h, (-) < 0, and the opposing effect if hAK ( S)> 0. 

This subsection explored the various forces which influence the overall investment 

decisions when the uncertainty over future taxes increases. Each of these forces, 

represented by the individual terms in equations (22) and (23), have qualitative effects 

which are sensitive to the proximities and precise locations of the critical points, and 

r', with respect to the expected future tax rate. As such, the terms were exhaustively 

examined, exploring all of the possible scenarios which could confront the firm. The 

discussion then turned to the overall effect of changes in uncertainty on the incentive to 

invest in the various types of capital. It was shown that if the expected tax rate did not 

reside in the range spanned by T2L and r', then the comparative static effects could be 

signed. Specifically, if expected taxes are greater than the critical point at which the firm 

will begin to purchase more abatement capital, then the firm will respond to an increase in 

the level of uncertainty by decreasing its investment in abatement capital. If, on the other 

hand, expected taxes are lower than the critical point at which the firm will begin selling 

abatement capital, the firm will respond to an increase in the level of uncertainty by 

increasing its investment in abatement capital. It was also noted that if h () < 0, then the 

corresponding effects on the incentive to invest in production capital will be qualitatively 

the same as the effect on the incentive to invest in abatement capital. If, however, 
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hAK (.) > 0, then the opposite is true. While this conclusion is trivial in terms of the present 

analysis, it has potentially large implications for policy. The following section examines 

this as well as other policy implications. 

3.3 Implications of Comparative Static Results to Broad Policy Objectives 

This section explores the effects of various policy changes in terms of the effectiveness of 

those changes in meeting its objectives. Specifically, we will examine the effects these 

policy changes have on the production of the externality. For example, policy makers or 

regulators presumably wish to curb the production of pollution. It is standard doctrine to 

believe that increasing the taxes on emissions will reduce the production of those 

emissions. The present analysis will suggest that the policy makers should be aware of the 

potential for counter intuitive responses to such policies. 

We begin first by exploring the effect which an increase in the first period Pigouvian tax 

has on the production of pollution. This effect may be characterized by the following 

comparative static, 

dh(K,A) L 
 - —+h4( )  

dr1 dr, dr1 
(24) 

* * 

The sign of this derivative will be unambiguously negative if U   <0 and - i- > 0. That 
dr1 dç 

is, if the optimal response to an ex ante increase in the first period tax is to decrease 

employment in the production factor and increase investment in abatement capital, then the 

overall effect will be a reduction in the production of the externality. If either production 

factor investment increases or abatement capital investment decreases as an optimal 

response to increased taxes, however, then the net effect on the production of pollution is 

ambiguous. In the limit, if both investment in production capital increases and investment 
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in abatement capital decreases, then the result of an increase in Pigouvian taxation will 

unambiguously increase production of the externality! 

From (15) and (16) we know that, 

dKI =  OVAA  'rlhAK (•)hA (•) (1 c h..J.'<=> -hK(.)VM(•) and 
di IH I - -..- .-Iu', - 

dAI = h(•)V,() + chAK (•)hK(•) >=< 0 as hAK() >=< —hA (.)VKK (•) • 

d'r1 IHI 

Not surprisingly, the results of the comparative static depend on the sign and magnitude of 

hAK ()' or rather, the technology of the externality production. Formally, the effect of an 

increase in the first period Pigouvian tax on the production of the externality depends upon 

hAK ('), in the following manner. 

dh(.) AK()> MAX{  hKOVM() —hA(.)VKK(•)1 <O.if h 
dr1 v1h4(.) ' 'r1h(•) 

dh(.) —>0 if h(•) < MINI  hQV,() -hA(.)VKK (•)  and 
d 1 1h() ' lhK(•) ,  

dh() 
>=< 0, otherwise. 

dr1 

More to the point, if we substitute the partial effects directly into (24) we may achieve a 

more precise critical value for h (•). 

dh(K, A) - V, (•)hK (.)2 + VKK (•)hA Q2 +2 rlhAK ()hK (•)hA ()  
d'r1 IHI 

From this expression, it can be shown that, 

(24') 
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dh(•) >=< 0 as h —1 [hK(.)VM (.) +  
d 1 AK() <=> 2; L h(•) hK(•) 

(25) 

which is exactly the average of the two critical points given above. This implies that one of 

production capital or abatement capital may be responding 'normally' to the increase in 

taxes, while the other is responding in a counterintuitive direction. For example, if 

abatement capital increases in response to an increase in the first period tax, and production 

capital also increases, it may be that overall pollution will increase as well. That is, the 

increase in production capital does more to increase pollution than the increase in abatement 

capital does to mitigate it. Intuitively, if taxes are increased, then the firm may wish to 

respond by increasing its investment in abatement capital. Assuming that hAK () is 

negative, however, the sensitivity of pollution production to the level of production capital 

has declined. That is, one of the marginal costs of employing production capital has 

decreased, so the firm will respond by increasing investment in the production factor. In 

some cases this increase in the production factor will more than offset the mitigating effect 

of the increase in abatement capital. The end result is that the firm, by optimizing, has 

paradoxically increased the production of some externality in response to an increase in its 

taxation. 

Therefore, and in general, if h (.) is positive, or at least not 'too negative', then increases 

in the first period level of Pigouvian taxation will have the desired and intuitive appealing 

effect of reducing the amount of emission in the first period. If, however, hAK() is 'too 

negative', then the amount of pollution generated will be increasing in the tax. Further, it 

may be noticed that the operational definition of 'too negative' depends in part on the initial 

level of the tax itself. From (25) it is apparent that if the tax is very small, the critical value 

of hAK() is very negative. Conversely, if the tax is very large, the critical value of hAK () is 

not very negative. However, this sensitivity to the level of the tax may be at least partially 
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offset by the firm's optimizing behaviour (i.e. hA (), hK (.), VM (.),, etc. are all functions of 

A strategy which policy makers may wish to use is simply to threaten the imposition of 

tougher future regulation in order to encourage behaviour more consistent with certain 

objectives. In the context of this model, the threat would be in the form of higher future 

taxation. If the threat is at least partially credible, this may have the effect of increasing the 

expected level of future taxation. To evaluate the effect of an increase in expected future 

taxes use equations ( 19), (20), and (24) along with the function B(i.2) to arrive at the 

following comparative static, 

dh(K,A) = [hA(.)VKK(.)+ 'rIhK(.)hAK(.)1SL-B(;)f('rZ)d;  >=< 0, as, (26) 

dp JHJ 

-hA (.)VKK 0hn () <> 

Here we see that the required conditions for an increase in expected future taxes to increase 

pollution maybe slightly less imposing. By examining ( 16) we find that this critical value 

for hAK (•) is the same critical value at which increases in first period taxes decreases 

investment in the abatement factor. Therefore, if hAK () is low enough that increases in 

decrease investment in the abatement factor, but not so low that increases in v increase 

pollution overall, then increases in expected future taxes will increase pollution 

unambiguously. 

In this section we used the model to explore some of the policy implications of the firm's 

optimizing behaviour. In the analysis we found that the effect of increased taxes or 

increases in expected taxes on the production of the externality is technology dependent. 

That is, it depends on the value of hAK (). The implications for policy is quite clear - 
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establishing policy without a clear understanding of the technologies involved may be 

counter productive to the policy objectives 

3.4 Concluding Remarks 

The goal set out in this chapter was to evaluate some of the model's more relevant 

comparative statics. Section 3.1 began by ascertaining the effects of changes in various 

capital costs, resale costs, and first period taxes on the incentives to invest in both 

production and abatement capital. Many ambiguities were found, particularly in cross price 

effects and most notably in the effects of increases in first period taxes. These ambiguities 

were found to be a result of the function linK (•). This implies that many of the comparative 

static results are technology dependent. 

Section 3.2 examined the effects of first and second order distributional shifts on the 

incentives to invest. In particular, it was found that changes in expected taxes increased the 

incentive to invest in first period abatement capital. The corresponding effect on production 

capital was found to be dependent on technology. The effects of second order shifts were 

also explored. These effects are ambiguous in general but, under certain circumstances, 

may be signed as having either a positive or negative influence on the incentive to invest in 

abatement capital. Again, the influence on production capital is technology dependent. 

The implications for policy and achieving policy objectives were discussed in section 3.3. 

Here it was found that increases in first period taxes may or may not influence the firm to 

decrease its production of pollution. In fact, under certain technologies, it may actually 

increase pollution. It was also shown that increases in expected future taxes may also have 

the counter intuitive result of increasing the current production of emissions. Moreover, 

the conditions for this event were weaker than those required for first period taxes to 

increase pollution. 



58 

CHAPTER FOUR 

4. SUMMATION AND CONCLUSION 

4.1 Overview and Summary of Results 

This thesis has used a two period model of investment under uncertainty to investigate the 

influences of Pigouvian taxation on the incentives to invest. Uncertainty was introduced 

into the model in the form of unknown future taxes. While the present tax was known with 

certainty, the firm only had distributional information regarding second period taxes. 

Investment decision were made over two types of capital, production capital and investment 

capital. Production capital could be purchased and sold in the second period for the same 

price as in the first period, making it fully reversible and expandable. Arbitrary levels of 

irreversibility and unexpandability were imposed for abatement capital - the second period 

purchase price of abatement capital was no lower than the original purchase price which 

was no greater than the second period resale price. The irreversibility and unexpandability 

implied two critical values of the future tax above which it would become optimal to 

purchase more abatement capital, below which it would become optimal to sell, and for 

values in between it would be optimal to do neither. This way of modeling investment 

explicitly internalizes the implications of first period investment decisions on second period 

returns. 

Chapter two established the optimality conditions in the model. It was noted that a solution 

required several assumptions concerning the pollution generating technology. In particular, 

it was found that the production of pollution must be convex in abatement equipment - 

meaning that an additional unit of abatement capital abates more pollution when the stock of 

abatement capital is small than when it is large. Chapter two also showed that the scale 

properties of abatement technology, whether increasing or decreasing, were restricted in 
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magnitude. Overall though, the model proved to be quite flexible in terms of both 

production and abatement technologies. 

Chapter two also discussed Abel et al's (1995) extension of Bernanke's (1983) "bad-news 

principle". The distribution of future taxation above and below the critical points is 

irrelevant to the firm's investment decisions. In other words, even if the firm knows that 

when high taxes are realized, they will be very high, investment decisions will not be 

influenced.' This provides the context for Abel et al's (1995) "Goldilocks principle" - the 

only news of interest is that which is neither too hot nor too cold. 

Comparative statics were investigated in chapter three. The first section examined the 

effects on the incentives to invest in the two types of capital from changes in the first period 

tax rate and the various investment costs. It was found in general that the incentive to 

invest in capital was decreasing in its own first period price but there were ambiguous, or 

technology dependent, cross price effects. In particular, these cross price effects change 

qualitatively depending on whether there exist increasing or decreasing scale properties in 

abatement technology. 

Changes in the degrees of irreversibility and unexpandability were characterized by 

examining the effects of changes in the second period purchase and resale prices of 

abatement capital. Increases in the resale price of abatement equipment reflects a decrease 

in the degree of irreversibility of investment. Since the cost of 'over investing' is 

diminished, the effect is to increase the incentive purchase abatement capital in the first 

period. Similarly, increases in the future purchase price of abatement equipment increases 

the degree of unexpandability. This provides the firm with an additional incentive to invest 

in abatement capital in the first period to avoid an increased penalty should taxes be high 

enough to warrant purchasing additional abatement equipment. As with first period prices, 
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the cross price effects are characterized by a dependence on the scale properties of 

abatement capital. 

The influences which first period tax levels have on the incentives to invest were also 

examined. It was found that these influences were ambiguous for both types of capital, 

again sensitive to the scale properties of abatement. The implication of this finding is that if 

there exist substantial increasing returns to scale in abatement equipment, increases in the 

first period Pigouvian tax will paradoxically increase the firm's production of pollution. 

Thus it would bode well for policy makers to have an intimate understanding of current 

abatement technologies. 

The distributional effects of second period taxes were also explored in a comparative static 

analysis. Here it was shown that an increase in expected taxes increased the incentive to 

invest in first period abatement capital irrespective of the expected future tax. This increase 

in the incentive to invest is comprised of several competing incentives, each of which was 

explored. Again, the influence on the incentive to invest in production capital was found to 

be technology dependent. An implication of these findings is that if increasing present 

taxes decreases investment in abatement capital, then, irrespective of whether it increases 

the production of first period pollution, an increase in expected future taxes will 

unambiguously increase first period pollution. 

The effects of an increase in the variance of future taxes were also examined. Here we 

found that the influence on the incentives to invest is ambiguous. In particular, if expected 

future taxes are no less than the critical value of the tax at which the finn purchases .more 

abatement capital, then the effect is to reduce the incentive to invest in abatement capital. 

Conversely, if ' good news' is expected, then an increase in the variance of expected taxes 

increases the firm's incentive to invest in abatement capital. This is an application of the 
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Goldilocks principle of irreversible and unexpandable investment. Again, the influence on 

the incentive to invest in production capital is dependent on the abatement technology. 

4.2 Suggestions for Future Research 

This section explores some of the avenues for research which may build upon the insights 

and understandings gained in this thesis. Some of these imply greater departures from this 

model than others. 

One such avenue would be to remove some of the investment freedom the firm enjoys in 

production capital. That is, remove the assumption that it is completely expandable and 

reversible and treat it in a similar manner to abatement capital. However, this may require 

an additional layer of uncertainty, rendering the model intractable. 

It may prove interesting to infuse some short-run supply characteristics into the costs of 

abatement capital. For instance, if taxes evolve such that they are higher than expected, the 

cost of purchasing additional abatement capital may increase with the ensuing increase in 

demand. The net effect of this is to endogenize the future purchase and resale prices of 

abatement capital as functions of the future Pigouvian tax. 

Another avenue for research explores the regulatory alternatives available to the policy 

makers. Indeed, a Pigouvian tax is not the only tool which may be used to correct for the 

inefficiencies of externality production. For example, regulation may come in the form of 

'command and control' - quotas on the generation of pollution. Indeed, this may provide 

some valuable insights into the policies currently in practice. In many cases, future quotas 

are uncertain, while expectations and the degree of uncertainty may be well defined. If we 

model non-compliance and penalties, how then will a finn respond to such uncertainty? 
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We may find that firms will produce at levels above or below their present quotas due to the 

nature of investment decisions under uncertainty and irreversibility/unexpandability. 

An alternative to quotas is to examine the effects on the incentives to invest when the firm 

must enter into an emissions market to purchase emissions permits. Given that many asset 

prices have been shown to contain random elements in their price evolution, it would seem 

that the framework in this model would lend itself to such a policy analysis. Allowing the 

firm to bank permits may have additional implications for investment strategy. 

Abel et a! (1995) showed how their model may be interpreted to show the respective values 

of the put and call options associated with investment. Such an analysis, while equivalent 

to the approach used here, may provide some additional insights into the investment 

strategies discussed in this thesis. 

Yet another area which could benefit from research is that of the policy maker's derivation 

of the optimal tax. Most research in optimal tax policy does not recognize the effects of 

uncertainty and irreversibility on firm level investment decisions. Internalizing these 

factors may yield some important results, both in application and academically. Indeed this 

framework could be generalized to accommodate research into general optimal tax theory. 

What may be found is that another dimension of optimal tax policy is required given the 

role which uncertainty has been shown to have in investment decisions. 
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APPENDIX A  

TABLES OF VARIABLES AND FUNCTIONS 

TABLE 2: Description of Variables  

Variable Description and Alternative Names 

A, 

b 

C 

Cu 

CL 

K, 

Tj 

The stock of abatement capital in period t - also called abatement 

equipment and abatement factor. 

The purchase and resale price of the production factor in both periods. 

The unit cost of abatement capital in the first period. 

The purchase price of abatement capital in the second period. 

The resale price of abatement equipment in the second period. 

The stock of the production factor in period t - also called production 

capital. 

The first period Pigouvian tax rate to be applied to the production of the 

non market good (or externality). 

The second period Pigouvian tax rate. The tax is stochastic and is not 

known until the second period. 

This is the determined critical tax rate at which it becomes optimal to begin 

purchasing additional abatement capital. 

This is the determined critical tax rate at which it becomes optimal to begin 

selling extraneous abatement capital. 

The variance of the distribution of future Pigouvian tax rates. 

The expected value, or mean, of the future Pigouvian tax rate - also 

written E(;). 

A discount factor. 
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TABLE 3: Description of Functions 

Function Description 

R(.) 

h(•) 

A1() 

A2(.) 

F(.) 

f(.) 

K1(.) 

k2(.) 

K2(.) 

The time invariant gross returns from employing the production factor. 

The time invariant externality production function, increasing in 

production capital and decreasing in abatement capital. 

A 'reduced form' function characterizing the optimal first period stock of 

abatement capital as a function of the exogenous variables. 

A 'reduced form' function characterizing the optimal second period stock 

of abatement capital as a function of the exogenous variables. 

The critical tax where it becomes optimal to sell abatement capital as a 

function of several exogenous variables and first period abatement capital. 

The critical tax where it becomes optimal to purchase abatement capital as 

a function of several exogenous variables and first period abatement 

capital. 

The cumulative distribution function for second period taxes. 

The probability density function for second period taxes 

A 'reduced form' equation characterizing the optimal stock of the first 

period production factor as a function of exogenous variables. 

The function characterizing the optimal second period stock of the 

production factor if abatement capital is held constant at first period levels. 

The function describing the optimal second period stock of production 

capital where second period abatement capital levels are endogenous.  
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APPENDIX B  

THE APPLICATION OF LEIBNIZ'S RULE 

We may formally write Leibniz's as follows: 

b(s) 

Given, g(a,b,$)= Jh(s,x)dx,then (Bi) 
a(s) 

b(s) 

ag(a,b,$) = —h(s,a)a'(s) + h(s,b)b'(s) + j  
ds ds a(s) 

Consider the integration from negative infinity to infinity, using this rule. 

a(s) b(s) 

G(a,b,$)= fh(s,x)dx= fh(s,x)cix+ Jh(s,x)dx+ Jh(s,x)dx. (B3) 
a(s) b(s) 

(B2) 

Employing Leibniz's rule yields, 

dg(a, b, s) = h(s, a)a'(s) + a(s) ah(s,x)dx  — h(s, a)a'(s) + h(s, b)b'(s) 
ds 

+T  dh(s,x)dx  - h(s,b)b'(s)+   
as $ ds 

a(s) b(s) 

Which may be rewritten, 

ag(a,b,$) = dh(s,x) + b)  ah(s,x) +   
ds j dX   ds ds 

a(s)  b(s) 

(B4) 

(B5) 
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This is precisely the problem in the present analysis. The applicability of the rule depends 

upon the following features of the model. First, 

A2('r(Al,b,cj,b,cL) = A1 = 

k2('r(Al,b,cL),AI,b) = K2(r(Al,b,cL),b,cL), and 

k2( ,r (Ai,b,c11),Ai,b) = KZ('r'(AI,b,cH ),b,cJ,). 

This implies that, like the example of Leibniz's rule given above in (B4) to (B5), the values 

of the functions on either side of the limits z and 'r' are equal. Thus the differential 

effects on the limits of integration cancel out on either side. So while the differential effects 

are present, their effects may be ignored. 
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APPENDIX C  

THE ABATEMENT CAPITAL FIRST ORDER CONDITION 

The objective function is shown for convenience. 

V(K1,A1)=R(K1)—bK1--cA1—r1h(K1,A1) 

+ s$ [R(KZ( 2,b,cL)) - b(K2(;,b,cL) - K1) + cL(Al - A2(Z,b,cL))]dF(;) 

8S (Al,b,cL) 
- [Zh(K2 ;,b,cL),( 2,b,cL))iIdF(;) 

+8 T" 
4 (A1 , b,cL) 

[R(KZ( 2,b,cH ))_b(K2(;,b,cH)_Kl)— cH(A2(2,bcH) — Al)}dF(;) 
4' (A, ,b,c11 ) 

_sj; (A ,b,c,,)[2h(K2( '2' b, CH), A2( r2, b, CH ))]dF(z2). 

VA(K,A) may be expressed (ignoring Leibniz's rule), 

VA (Kr, A) = cA1 - rlhA (K1, A1) + 8cLF() + Sc,, {i - F( .r')] 

(A1,b,c) RR'(K*)— b -    ;hK(K,Al)Jk2A ('r2lAl,b) - ;hA(KAl)]dF(;) = 0 

Equation (3a) asserts that as a condition of maximization, R'(K;) = b + 2hK(K:, 

(Cl) reduces to (5b), 

VA(Kl,AI) = —c - lhA(K,A) + 8cLF(r(A,b,cL)) + Sc,,[l— F(v' (Ab,cH))] 

-8$ 4' (t , b,c11 ) 
L(A.b) ;hA(k2(r2,A,b),A)dF(;) = 0CL 

(5) 

(Cl) 
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In effect, we can ignore the changes brought about in k2() by changes in A1, because  

is already being evaluated optimally. This is an application of the Envelope Theorem. 
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APPENDIX D 

THE VALIDITY OF THE COMPOSITE FUNCTION 

Take the negative of the heavy line (which we call B(;))from figure 6 and integrate across 

its probability density function: 

= -J cLf('r2)d'r2 + JL r2hA(•)f(v2)d; - f cf(r2)dr2 (Dl) 

Simplify, 

—fB('r2)f('r2)d'r2 = f, ;hA(.)f(r2)d; - cLF(r) - dll[l - F(1')] 

Last, take the derivative with respect to the mean of the distribution. 

_JB( 2)f(;)d 2 =f ;hA(.)f,(2)d; —CLF/()+dHF/L(;) 

Once again, this is precisely the three terms found in the brackets of ( 19). 

(D2) 
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