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Abstract

Distributed data base (DDB) systems are a relatively new idea. Although
there has been much discussion about DDBs, many problems regarding DDBs
still are not very well understood. In general, a DDB system is a piece (or

pieces) of complicated software.

DDB systems have become technologically feasible only since the
availability of inter-machine communication technology. Before the release of
4.2 BSD UNIXT, theré was no facility in the UNIX operating system that could
provide inter-machine communication. For this reason, it was not possible to
construct a DDB system on a network of UNIX systems without substantially

modifying the UNIX operating system itself.

In this research, we demonstrate a DDB system by actually building a
DDB system in a local area network environment. The DDB system employs
only those facilities provided by the 4.2 BSD UNIX. No modification to the
UNIX operating system is required. This provides us with an opportunity to
illustrate a practical DDB system in a local area network environment using

the underlying operating system facilities.

In addition, an important aspect of this research is to investigate a few

issues concerning DDBs. In particular, we study the following issues:

T unx is a trademark of Bell Laboratories.
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data replication,

site autonomy,

site recovery,

inter-site communication,
query processing,
concurrency control.

As part of the result of this research, a front end system called FREDI was
developed. FREDI can couple with a number of INGRES systems and function
as a DDB system. INGRES is a relational data-base system developed from
1973 to 1983 at the University of California at Berkeley. Using INGRES frees
us from being concerned with the trivial issues of a data-base system, such as
data storage problems or data indexing problems. A front-end approach was
used because of its generality and because it would allow us to better
concentrate on issues regarding data distribution. FREDI supports data
replication but not data partition, and accepts a super set of QUEL as its

query language.

Our discussion in this thesis will be limited to DDBs based on the
relational model, because of the model’s simplicity, popularity, and the fact

that INGRES happens to be a relational data-base system.

‘The development of FREDI demonstrates that it is possible to construct a
DDB system using a front-end approach that is easy to use, provides much
site autonomy, gives good performance to ‘‘single-site operations” and
reasonable performance to “multi-site operations”, and tolerates single site

failures.

- v -
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CHAPTER 1

INTRODUCTION

Although the idea of distributed computing has been around for many years,
it was not until the mid-1970’s that distributed data-base (DDB) systems were
economically and technologically feasible. Since then, although there has been
much talk about DDBs, only a handful of systems have actually been
developed. Currently, many of the problems regarding DDBs still are not very
well understood. So far, the majority of the developed DDB systems are still
at the experimental stage and none has been released commercially. Two of

these systems: SDD-1 and R (pronounced “R star’’), are described briefly in

chapter 2.

Since the mid-1970’s, the cost of many mini- and micro-computers has
dropped to a level where they are affordable to a wide variety of
organizations. Meanwhile, the introduction of better and less expensive local
area networks (LANs) and data communication common carriers also
encourages the development of distributed systems. In the United States,
package switching networks such as Telenet, TYMNET and ARPANET [Mart81;
Tech80], and similar developments in Canada such as Datapac (Datapac 1000
for short message transmissions, and Datapac 1500 for general data
communications) [Mcgl78] and Dataroute, provide reliable and inexpensive
communication media for both high volume and low volume data

communication requirements.



1.1. WHAT IS A DISTRIBUTED DATA BASE SYSTEM?

We shall briefly define the meaning of a DDB. To date, there has not been a
general consensus of what the definition of a DDB should be. Date attempts

to define 2 DDB system as the following [Date83]:

A distributed database is a database that is not stored in its entirety at a
single physical location, but rather is spread across a network of locations
that are geographically dispersed and connected via communication links.

Date however points out that the above definition may not be precise. The
term ‘‘geographically dispersed” to most people generally means machines
that are at least a few miles apart from each other, but in reality in certain
extreme cases two machines that are conceptually considered geographically

dispersed may physically be in the same room.
Based on the difference in the the access rates between ‘“local” and
“remote’ data, Date adds the following to supplement the definition [Date83]:

A database is “distributed” if it can be divided into distinct pieces, such
that for a given user access to some of those pieces is very much slower than
access to others.

In the rest of our discussion we shall use the terms site and node

interchangeably to refer to a physical machine within a DDB system.

1.2. WHY DISTRIBUTED DATA BASES?
There are five main reasons for DDBs:

(1) Performance and storage capacity.

A centralized system has an upper limit in performance and storage
capability. In a distributed system, more machines can be added as the

needs require.



(2) Total failure resilience.
When a centralized system fails, the complete system fails. When a
machine in a distributed system fails, other machines still continue to
function. In cases where data are replicated, the system might still be
able to provide full access to all of the data after a machine had failed.
Otherwise, tile system continues to provide services in a degraded mode.

(8) Sovereignty of data.
Computer end users are becoming more and more geographically
dispersed. A DDB system can allow a division or a branch of an
organization to maintain their data locally.

(4) Flexibility.
A DDB system allows rapid reconfiguration When the application
requirements change. Machines can be added, enhanced, and removed

when desired. The risk of obsolescence is lowered.

(6) Sharing of data between machines.
Sharing of data is intrinsic in computer systems. However, data sharing
between centralized systems is often very clumsy. In a DDB system, data
on all participating machines are organized in an integrated, coordinated

fashion.

Badal [Bada79] summarizes the reasons as follows:

Many large, geographically distributed organizations find a centralized data-
base system non-responsive or too costly, or both. Military and computer
control systems require the reliability and the availability that centralized
data-base systems cannot provide. Moreover, the centralized database
system does not allow system extensibility and modularity anywhere near
the degree characteristic of distributed data-base systems.



1.3. FACTORS REGARDING DISTRIBUTION

Although distributing a data-base may provide answers to some of the

problems encountered in centralized systems, new factors regarding data

distribution are introduced. A good DDB system is usually highly modular

and therefore is very flexible and very easy to re-organize. However, a badly

designed system can become so complex that it may be impossible to control

and maintain, and the performance may even be unacceptable.

The following are the major factors concerning distributing a data-base

on a network of machines:

(1)

(2)

Data communication requirements.

The involvement of data communication is inevitable in any distributed
system. There are four main aspects regarding data communication:

e communication cost,

¢ data transfer rate,

e propagation delay,

e network reliability.

Data consistency and integrity control.

Strict enforcement of consistency and integrity controls is required in
systems where replicated data are maintained to ensure that all units of
data agree with each other. In multi-user systems, updates to data items

have to be tightly controlled to avoid “surprises’’.

Duplication of effort.
The same effort may have to be made repeatedly in different sites.
Security breaches.

A DDB system is subject to more security exposure than a centralized



one. It is also more difficult to enforce security controls in a distributed
environment. To prevent unauthorized access of data, careful planning
and tight control of data are required. Security measures, such as
deployment of data encryption schemes, may be used to increase the

degree of security in data transmission.

Exactly how the above factors affect the design and the performance of
DDB systems still is not very well understood. To gain a better

understanding, it is important that more research be done.

1.4. PURPOSE OF THIS THESIS

DDB systems have become technologically possible only since the availability
of data communication technology. In the history of the UNIX! operating
system, before the release of 4.2 BSD UNIX there was no UNIX facility that
could easily provide inter-machine communication. For this reason, unless the
operating system was modified substantially, it was not possible to build a

DDB system on a network of UNIX systems.

In this research, we have taken advantage of the inter-machine
communication facilities provided by the 4.2 BSD UNIX and have built a DDB
system on a network of UNIX systems. We have demonstrated the
development of a practical DDB system that employs only the facilities
provided by the operating system. There has been no modification of the UNIX
system. This provides us with an opportunity to study the design and the

implementation of a DDB system in a local area network environment.

t UNIX is a trademark of Bell Laboratories.



In addition, an important aspect of this research is to investigate some of
the issues associated with distributing a data-base system. In particular, the

following issues are explored:

data replication,

site autonomy,

site recovery,

inter-site communication,
query processing,
concurrency control.

The above issues are not all independent. To support data replication, for

example, also directly involves other issues.

As part of the result of this research, a front end system named FREDI
(FRont End for Distributing the INGRES system) was developed. FREDI can
couple with a number of INGRES systems and function as a DDB system.
INGRES is a relational data-base system. By taking advantage of some of the
facilities provided by INGRES, it is possible to concentrate our attention on
issues of distributing the data-base system. INGRES was chosen because: 1) it

is available on UNIX, 2) it is a well developed data-base system.

The prototype FREDI was developed on a network of four machines at the
Department of Computer Science, the University of Calgary. Each of these

machines is a vaxi-11 /780, and is connected together by a ring-type network.

Each is running a 4.2 BSD UNIX operating system.

FREDI is a homogeneous DDB system in that it couples only with INGRES.

T VX is a trademark of Digital Equipment Corporation.



Our discussion will be limited to DDBs using the relational model only,
because of the model’s simplicity, popularity, and the fact that INGRES is a

relational data-base.



CHAPTER 2

BACKGROUNDS

This chapter provides necessary background materials. We first discuss the
logical architectures of DDB systems, followed by a case study of two research
DDB developments: SDD-1 and R". Finally, an overview of INGRES is

presented.

2.1. LOGICAL ARCHITECTURE OF DDB SYSTEMS

In a conventional data-base system, a user refers to a logical record. The
data-base management‘system (DBMS) derives the requested data from the
physz:cal records. In a DDB system the same idea also applies, but now the
data might actually be stored in a remote machine and the system might have

to find it.

Regardless of how a DDB is constructed, the following basic questions
arise: How are the data organized? Where are the data located? Where and
how is the mapping between logical organization and physical organization

performed?

2.1.1. Front-End Versus Integrated Systems

According to the architecture of the system, DDB systems can be loosely
categorized into: 1) integrated systems and 2) front-end systems [Yus85].
In a front-end system all actual data updates and retrievals are processed by
independent data-base system(s). In an integrated system there is no such

clear distinction.



Comparing two hypothetical DDB systems side-by-side, functionally
equivalent otherwise, one an integrated system and the other a front-end
system, an observer is likely to find that the integrated system can provide
faster services, and allows easier global controls of data and possibly

communication resources [Haas82].

In contrast, the front-end system is more likely to provide higher site
autonomy [Haas82]. Furthermore, the front-end system concept makes it
possible to form a DDB system from a‘number of pre-existing DBMSs. These
pre-eXisting DBMSs can simply “plug-in”’ to the front end system. This is

important to many organizations, particularly to those that cannot afford to

Site A Site B
DBMS DBMS
i )

I I
I I
1 !
Front- Front-
End End
T T
I I
I I
I I
I I
} !
NETWORK

Figure 2.1: The Front-End System Concept.
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abandon the data-base systems that are already in use.

From a different perspective, one can regard front-end systems as loosely

coupled systems, and integrated systems as tightly coupled systems [Haas82).

In the rest of our discussion we shall consider front-end systems only, for

the following reasons:

(1) To develop an integrated system from scratch would require very serious
effort. It would not have been worthwhile to develop an integrated

system for the purpose of this research.

(2) To modify an existing data-base system would also involve too much

effort, and has potential legal problems.

(8) An important aspect of this research is to investigate issues concerning
data distribution (e.g. data replication, site autonomy, etc.), which can be

achieved with a front end system.

(4) Front end systems appear to be quite general.

2.1.2, Logical DDB Components

In a typical front-end DDB system, a piece of software (the front end — in
this context is known as network or global data manager) is added to a
conventional DBMS (in this context the DBMS is known as local data
manager) to tackle problems associated with distribution — directory,

network interface, conflict avoidance, etec.

The local data manager manages data at its own location and has no
awareness of data at other locations or of any issues related to data
distribution. The global data manager cannot itself access the data, but relies

on the local data manager to read and write the data. It handles all data
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distribution issues.

The set of data forming the DDB is stored in a number of nodes of which
the network is composed. According to their functions, some or all of the
following components (each may not exist as a separate process or entity) may

be found in a single DDB node [Adib78; Ston76; Spac80]:

the local data-base,

the local data-base management system (the local DBMS),

the distributed ezecutive,

the translation function,

the commaunication adaptation module (the network handler), and
the user process (or the user interface).

The relationships between these components in a hypothetical DDB node

is illustrated in Figure 2.2.

When a user or a user program issues a request for data, the input query
is ﬁrst analyzed by the translation functiqn. The distributed executive must
then coordinate the processing and response to the user request. Local DBMSs
are responsible for retrieving data at local data-bases. Finally, the distributed

executive must synthesize all the local retrievals and present to the user or

the user process the global response.

The network handler in Figure 2.2 represents a collection of processes
and possibly some physical facilities which are necessary to interconnect the
nodes. It maintains the knowledge of the physical location of each node, the
physical path connections between nodes (at least theoretically), and the

protocols to be used in sending messages between nodes.
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User Process

I t

| |

! |

|

Translation [

Function |

|

I I

| |

! I
Distributed —_ Local —_ Local

Executive — DBMS +—— | Data Base

| t

I l

l |

Network Handler

T
|
I
|

|
|
|
{
NETWORK

Figure 2.2: Relationships Between DDB Components.

2.1.3. Homogeneous versus Heterogeneous Distribution

If all of the local DBMSs in a DDB environment are identical or of the same

family, the distributed system is homogeneous. The DDB system is

otherwise said to be a heterogeneous one [Date83; Draf80]. Booth explains

why a heterogeneous DDB is occasionally desirable [Boot79]:
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Probably the most common reason for using unlike computers is that an
existing centralized computer system requires expansion. One means of
expansion i1s to acquire a number of minicomputers, place them in point-of-

transaction locations, and distribute some of the processing and some of the
data-base(s) to those locations.

Even if the minicomputers are acquired from the same vendor who supplied
the central processor, they may not be identical to that computer. Often
there are good business and/or technical reasons for acquiring the minis from
a different vendor, and in that case the likelihood of difference is greater.

A heterogeneous system is likely to be composed of a wide variety of
local DBMSs, computers from different manufacturers, and/or computers that
use different communication protocols. Consequently, a heterogeneous DDB

system is likely to be much more complicated than a homogeneous one.

A very common solution to a heterogeneous DDB is to construct a
translator at each node. Each of these translators is capable of interpreting
back and forth the language (both syntactically and semantically) used by the
local DBMS and the language used by the DDB system.

We shall consider only homogeneous DDBs, because:

(1) With a homogeneous system, we can concentrate better on issues
regarding data distribution. With respect to the objectives of this
research, the serious effort that would be required to construct the
translators would not have been worthwhile. However, the construction
of such translators that could enable different DBMSs to “‘talk” to each

other could in itself be a very interesting, but different, project.

(2) The 4.2 BSD UNIX provides readily available inter-machine

communication facilities.

A number of discussions on heterogeneous DDBs can be found in various

writings [Adib78; Boot79; Date83; Draf80; Katz79; Spac80; Takis0; Yu85].
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NDBMS

User + > DBMS +~———1— Network

Figure 2.3: CODASYL’s NDBMS.

2.1.4. CODASYL’s DDB Proposal

Because of its conceptual simplicity and its flexibility to allow participation of
pre-existing data-bases, the front-end concept described is preferred by many
designers. It is interesting to note that using a similar idea, the CODASYL
committee has proposed an extension to their DBMS architecture to enable
data distribution of their systems [Mart81]. A new software layer, called
NDBMS (Network Data Base Management System), is added to the original
CODASYL DBMS (Data Base Management System) structure to perform the
network data manager functions. The NDBMS performs the network data
management functions. The DBMS manages the local data and has no

awareness of any other node.

Quoting from Martin, the NDBMS functions include the following
[Mart81]:

o Intercept a user request and determine which nodes to send it to for
processing. The majority of user requests should use local data and not
require the NDBMS. These may go to the local DBMS directly or bhe passed
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to it by the NDBMS.

e Access the network directory (which may possibly be remote) for the above
purpose.

o If the target data are on multiple nodes, coordinate the use of these nodes.
e Manage the communication between its node and DBMS’s in other nodes.

o If the data-bases are heterogeneous, provide the necessary translation.

There are three possible kinds of nodes in the environment envisioned by

the CODASYL committee [Mart81]:

e A user node without a data-base, for example, a minicomputer or intelligent
terminal.

e A conventional data-base system without the NDBMS or any cognizance of
data distribution.

o A full-function distributed data-base node with the NDBMS.

2.2. OTHER DDB SYSTEMS IN DEVELOPMENT

It is profitable to examine other DDB systems in development. We shall
describe two here. They are: SDD-1 from Computer Corporation of America,

and R (pronounced “R Star”) from IBM,

2.2.1. SDD-1

The Computer Corporation of America claims to have built the world’s first
working DDB system — the SDD-1 (System for Distributed Data-bases).
SDD-1 runs on a collection of DEC PDP-10st. It employs ARPANET as its
communication network and can also employ X.25 packet-switching networks.
It provides full location, fragmentation, and replication transparency. Its

query optimizer makes extensive use of the semijoin operations [Date83;

T IBM is a trademark of International Business Machines.
! DEC and PDP are trademarks of Digital Equipment Corporation.
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Date86; Yu85].

SDD-1 assumes CPU cost is negligible; its query optimizer minimizes only
the communication cost involved in a query. This is because the data transfer
rates of both ARPANET and X.25 are relatively slow and both networks are

relatively expensive to use.

SDD-1 was designed for naval command and control applications. It is
desig.ned to permit a large amount of replicated data, so as to lessen the
amount of data needed to be transmitted across sites during data accesses and
to increase the availability and survivability of the information resource,

particularly when under military attack. The price for this, obviously, is the

high cost of data updates.

SDD-1 updates all copies of the data object immediately; the notion of
primary copy does not apply. Concurrency control is based on timestamping,
rather than locking, in order to reduce the message overhead. Recovery is
based on a four-phase commit protocol [Date86], rather than the more
commonly known two-phase commit protocol [Date86]. The intent is to make

the process more resilient to a failure at the coordinator site.

The treatment of the data catalog in SDD-1 is rather unusual: the
catalog is treated just as if it were ordinary user data. The catalog can be
arbitrarily fragmented, and the fragments can be arbitrarily replicated and
distributed. Since the system has no prior knowledge about the location of
any piece of the catalog, a high-level catalog, called the directory locator, is
maintained to provide the information. A copy of the directory locator is

stored at every site.
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SDD-1 handles local issues and distributed issues separately in different
modules: The DM (Data Module) has the functions of a conventional single
site _DBMS and has no cognizance of distribution | problems. The TM
(Transaction Module) determines the access strategy for handling distributed
data operations efficiently; it does not access the data directly. One TM and
up to three DMs can reside at each site. Any node can fail, and the system

continues to function. New nodes can be added freely.

No information about the performance of SDD-1 is available.

2.2.2. R

The R'T project began in early 1979 at the IBM San Jose Research
Laboratory. R"is an experimental distributed data-base version of the System
R relational data-base manager. The design and implementation of R" were

guided by three objectives [Haas82; Lind85; Yost85]:

(1) distribution transparency (i.e. easy to use),
(2) site autonomy,
(8) good (execution) performance.

R" supports the Structured Query Language (SQL). Applications that use
R" may be written in PL/1, System/370 Assembly Language, or COBOL, by
embedding “EXEC SQL" statements which define the data-base requests. A
modified version of QMF (Query Management Facility) allows TSO (Time
Sharing Option) to make interactive queries. In the current prototype
implementation, the granularity of data distribution is a single table (i.e. a

relation).

T_The star in R~ comes from the Kleene Star operator defined by R" = (, R, RR, RRR,
RRRR, . . . ). It denotes zero or more occurrences of R [Lind80b; Lind80c].
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The R prototype system is executed within a CICS/VS (Customer
Information Control System) system running on the IBM MVS operating
system. It consists of multiple cooperating copies of System R. To achieve the
distribution transparency objective, R provides location transparency; end-
users can use SQL just as they do in SQL/DS or DB2 [Yost85]. The current
version, however, does not support fragmentation or replication, and therefore
no fragmentation or replication transparency either. Consequently, the

question of update propagation does not arise.

In order to provide an alternative to true data replication, a new kind of
object, called snapshot, is invented in R". A snapshot is a stored data-base
object. It contains a recent copy of some other object(s) which is refreshed
periodically by R'. Tt is a read-only object. The definition of a snapshot is in
the form of an arbitrary SQL SELECT query [Date86; Date83; Lind85;
Yost85].

To achieve the site autonomy objective, each site in an R system 1is
entirely self-sufficient; it does not rely on any form of central service. No site
has global knowledge about what operations are taking place at other sites
and individual sites will continue to function despite site and/or
communication failures [Yost85]. Deadlock detection, recovery, locking,
catalog management, and compilation are all performed either locally or in a

decentralized manner. No service is centralized.

One of the tools to achieve good performance in R is compilation. In
R*, SQL statements are compiled into low level programs called access
modules. Portions of an access module are stored at each site involved with

the execution of a query. During compilation, data-base object names are
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resolved, access paths are determined, authorization rights are validated, and
access plans are distributed to all involved data-base sites. The early binding
makes it unnecessary to repeat these time consuming operations each time the
application program is actually executed. Since the code was generated at
compile time, each site already knows what it should do at execution time.
Consequently, the control messages required at execution time are very short:
“starbup”, “stop”, “‘commit”, etc. When an access module is created, its
dependencies on certain objects are recorded in a system catalog. If one of the
depended-upon objects is dropped or its access path is changed, the access
module is immediately made invalid and will be automatically recompiled

next time it is invoked [Dani82).

Query optimization is performed globally by exhaustive search. The
query optimizer minimizes a cost which is a weighted sum of both messages

and local processing.

R" also allows users to physically relocate a table (i.e. a relation). By
placing all the needed data in his local system, a user can avoid the overhead
of using the communication system when his application is executed.

Alternatively, a user can create a snapshot of data.
R" consists of four primary sub-systems [Dani82; Haas82]:

(1) The storage sub-system is concerned with the actual storage and
retrieval of data, which are represented as relatively low level objects at

a single site.

(2) The data communication component provides message passing

services.
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(3) The transaction manager coordinates the implementation of multi-site

transactions.

(4) A data-base language processor translates programs expressed in

SQL to operations provided by the communication and storage system.

Intersite communication between R sites is via the CICS Inter System
Communication (ISC) facility. CICS-ISC, in turn, makes use of the Virtual
Telecommunication Access Method (VTAM) supported by the operating
system kernel. VTAM itself is an implementation of the IBM Systems
Network Architecture (SNA) communication protocols. Besides providing the
facilities to establish and communicate over virtual circuits between processes
at different sites, VTAM/SNA also provides support for detecting the loss of
communication between sites. The network protocols will notify the end
points of the virtual circuit of any process, processor, switching node, or
communication line failures. Thanks to this capability, the requesting site is
informed when an awaited response will not be forthcoming due to a site

failure or a link failure; time out is not needed and is not used in R

In R*, there exist two kinds of object names: print-name and system-
wide name. Every object has a unique system-wide name, a four-tuple
identifier, of the form:

<CREATOR_SITE>@<CREATOR_NAME>.<OBJECT_NAME>@< OBJECT_BIRTH_SITE>

The <CREATOR_SITE> and <OBJECT_BIRTH_SITE> components of
the system-wide name are R" data-base site names whose uniqueness is
guaranteed by measures taken outside of R <CREATOR_NAME> is a

user name which is unique at a particular site.
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A print-name is a simple unqualified name that users normally use to
refer to an object. It is either the <OBJECT_NAME> component of the
system-wide name, or a synonym for that system-wide name. R" resolves
print-names using synonym tables for each user and name completion

defaults.

At each site, a local catalog entry for each object for which it is the birth
site is maintained. Each site also maintains a local entry for each object for
which it is the current site. Any inquiry about an object is first directed to its
birth site. If the current site of an object is different from its birth site, the
entry of the catalog at the object’s birth site will point to the object’s current
site. Any object can be located in at most two remote accesses [Dani82;

Date86|.

R*, therefore, does not truly support location transparency per se. When
a print-name is given, R simply performs a table lookup for the
corresponding system-wide name. It acts very similarly to an “alias’ naming
system. At the beginning, the user still has to know at which site the data
object was born, the name of the creator, and the site where the creator is

located.

It is interesting that at the early stage of the R project, both data
replication and data partition were under consideration [Bert83; Dani82;
Haas82]. However, the prototype R supports neither data replication nor

data partition [Date86; Lind85; Yost85]. The reasons behind this decision
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perhaps may best be explained by Lindsay [Lind85]:

Data partitioning and replication are both quite complex problems with
serious implications for query optimization and execution strategies. The
distributed query optimization and execution facilities are near the limits of
manageable complexity. The implementation of snapshots, a limited form of
replication, brought us even closer to the complexity limit barrier. While we
feel that partitioned and replicated data are important and useful features of
a distributed data-base management system, we realized that a major effort
would be required to implement such support.

2.3. AN OVERVIEW OF INGRES

Before the discussion of the development of FREDI (FRont End for
Distributing the INGRES system), it is valuable to have a close look at the

underlying INGRES system. This section highlights some of the important

aspects of INGRES.

INGRES (INteractive Graphics and Retrieval System) [Ston76] is a
relational data-base system developed to run within the UNIX operating
system environment. A significant portion of the system is written in the
programming language C. The parser for input commands is generated with
the help of YACC [Ston76]. The primary query language is QUEL (QUEry
Language). Actual retrieval of data is done with the help of the AMI (Access
Method Interface) language [Ston76].

2.3.1. The Basic INGRES Process Structure

The INGRES process structure constitutes four processes, each carrying out
different tasks. Processes are initiated by means of a sequence of UNIX
operations called fork and exec [Ston76]. The operation fork “splits’’ the core
image of a program into two copies, while exec ‘“overlays” the existing
program with a new -one [Kern78; Kern84]. Communication between

processes is achieved by a message passing mechanism in UNIX called pipe. A
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pipe is a single directional communication. Information written by one process
at one end of the pipe can be picked up by a second process at the other end
[Kern84; Ston76; UNIX84]. A pictorial representation of the INGRES process

structure is shown in Figure 2.4.

In INGRES, each process can communicate only with the adjacent
processes [Ston76]. The corollary of this is the simple control flow within the
INGRES processes. Commands are passed between processes in one direction

only, while results and error messages are passed in the opposite direction.

Also, it follows from the use of pipes that all four processes are fully
synchronized. This implies that no parallel processing is taking place. At any
one time, only one of the four processes can be in action — the other three

remain idle.

pipe pipe pipe
—_— — —_—
—_— A B C
user process process process process
1 2 3 4
— pipe pipe pipe
e — S
User D parser E decom~— F utilities
Interface poéition

Figure 2.4: INGRES Process Structure (After [Ston76)).
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2.3.2. Interface to INGRES

There are two ways a user can communicate with INGRES. He can either: 1)
employ the interactive terminal monitor provided by INGRES and issue QUEL
statements interactively, or 2) with the aid of the EQUEL (Embedded QUEL
interface to C) pre-compiler [Wood79], embed QUEL statements in a C

program to provide his own interface. The interactive terminal monitor or

STEP 1: equel sourcefile.q

sourcefile.q —— EQUEL —— sourcefile.c
pre-compiler

o Output from this step is in sourcefile.c.

STEP 2: cc sourcefile.c -lq

EQUEL
object
library

sourcefile.c —— C —— a.0ut
compiler

o The -lg option requests the use of EQUEL object library.
o Output from this step is in a.out.

Figure 2.5: Interfacing INGRES Using a User Supplied C Program.
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the user supplied C program is represented as process 1 in Figure 2.4.

The interactive terminal monitor provides the user with a convenient
means to communicate with INGRES. It maintains a workspace (a temporary
work-file) which contains the would-be QUEL commands entered by the user.
The user is free to edit the contents of the workspace. When the user is
satisfied with the editing of the workspace, he signals INGRES (by issuing the
go command) to exgcute the queries he has entered. When this occurs, the
contents of the workspace are passed down to the next process (process 2 —

the command analyzer) as a stream of characters through pipe A.

Should a user decide to supply his own C program, he first pre-compiles
the program with the EQUEL pre-compiler, then compiles the output with the

C compiler. An outline of this procedure is found in Figure 2.5.

It should be mentioned that there is no performance gain using a
program constructed with the aid of EQUEL versus invoking INGRES
interactively. Queries from the program are still interpreted as if they were ad
hoc statements. Parsing and finding an execution strategy are done at run

time, interaction by interaction [Ston76).

2.3.3. Command Parsing, Integrity and Concurrency Control
Process 2 contains four main components:

(1) alexical analyzer;

(2) a parser (generated with the help of YACC);
(8) concurrency control routines

(4) query modification routines.

When the would-be QUEL commands arrive at process 2, they are

immediately analyzed by the lexical analyzer and the parser. If everything in
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the query is legal, a tree structure representation of the query is passed to the
next process (process 3) through pipe B. If errors are detected in the input
stream, error messages are passed back to process 1 through pipe D, and no

further action will be taken by process 2.

Whenever necessary, integrity constraints are imposed on queries at this
time. The integrity control routines impose integrity constraints by actually
augmenting the QUEL commands. The required integrity control information
is stored in the data-base in the VIEW, the INTEGRITY, and the PROTECTION
system relations. As an example, suppose that a user, who is allowed to access
information about only those employees who are making less than $30,000 a
year, has issued the following queries:

range of e is employee
retrieve (e.all) where e.name="Brown”

The queries will be modified as this:
range of e is employee
retrieve (e.all) where e.name=‘Brown”

and e.salary < 30000

Notice that the required qualification(s) is ANDed onto the user’s interaction.

The concurrency control routines are responsible for the control of data
consiétency in the data-base in a multi-user system. The purpose is to ensure

the serializability1L

of transactions. In the current INGRES implementation, a
single QUEL command is defined as an atomic unit or a transaction. This

implies that data consistency is guaranteed within a single QUEL statement.

To support a single QUEL statement as an atomic unit is relatively

simple., according to Stonebraker [Ston76], one of the INGRES designers. It

T1f a number of transactions that are executed concurrently are serializable, this means
the the final result would be the same as if the transactions are executed one after the other,
one at a time, in some order [Adib78; Date83; Lann80; Mart81].
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can be achieved by physical locks on data items, pages, tuples, domains,
relations, etc. Alternately, it can also be achieved by predicate locks.
Currently, it is done by physical locks on domains of a relation. Deadlocks
are prevented rather than detected: this is done by not allowing an interaction

to proceed to process 3 until it can lock all required resources.

The possibility of supporting scopes other than a single QUEL statement
as an atomic unit has also been considered. The analysis is as follows: If
something smaller than a QUEL statement is chosen as an atomic unit, then
the result from the execution of two QUEL statements may not be repeatable.
This is obviously undesirable. For something larger than a single QUEL

statement, there are three alternatives:
(1) A collection of QUEL statements with no intervening C code.

(2) A collection of QUEL statements with C code but no system calls (such as

fork and exec).

(3) Any arbitrary EQUEL program.

Stonebraker [Ston76] expresses that choice 3) would be impossible to
implement. If transaction T2 is forked from transaction T1, and both T1 and
T2 are running concurrently, it is possible that the update in T2 may conflict
with the update in T1. Prior to the fork, there is no way to tell the conflict
between T1 and T2, since the form of update in T2 is not known in advance.
Choice 2) is achievable, but it would be very complex to do so. The
concurrency control routines would be very difficult to write. Moreover, it
would be difficult to enforce in the EQUEL translator unless the translator

parsed the entire C language. Choice 1) can be implemented relatively easily,



28

but Stonebraker maintains that due to the lack of requests from users, it has

not been implemented.

2.3.4. Query Processing

Query commands in QUEL include four commands: RETRIEVE, REPLACE,
DELETE, and APPEND. Process 3 is essential to the processing of these

commands.

Any update command (REPLACE, DELETE, or APPEND) is first turned into
a RETRIEVE command in order to isolate the tuples to be changed. Copies of
modified tuples are stored in a temporary spool, and the actual update is
deferred to be processed by the deferred update processor in process 4.
Other commands, such as CREATE, DESTROY etc. are classified as utility

commands and are simply passed along to process 4 without any processing.

The evaluation of a query is achieved by alternating between the

following procedures [Ston76; Wong76]:

(1) The reduction procedure decomposes a query invol%ring more than one
variable into a sequence of sub-queries, each with one or no variable in
common. Partial results are accumulated until the entire query is
evaluated.

To explain this, the author borrows the example given by Wong
[Wong76]. Consider a data-base with three relations:
Supplier (Snum, Sname, City)

Parts (Pnum, Pname, Size)
Supply (Snum, Pnum, Quantity)
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-and a Query Q:

range of (S, P, Y) is (Supplier, Parts, Supply)
retrieve (S.Sname) where
(S.City = ‘New York’)
and  (P.Pname = ‘Bolt’)
and  (P.Size = 20)
and  (Y.Snum = S.Snum)
and  (Y.Pnum = P.Pnum)
and  (Y.Quanity > 200)

The first detachment might be a restriction on Parts in Q being

replaced by:
Q1

range of P is Parts
retrieve into Partsl (P.Pnum) where
(P.Pname="Bolt’)
and  (P.Size==20)

Q:
range of (S, P, Y) is (Supplier, Partsl, Supply)
retrieve (S.Sname) where
(S.City="New York’)

and  (Y.Snum=S.Snum)
and  (Y.Pnum=P.Pnum)
and (Y.Quantity >200)
Note that the variable P.Pnum is common to both Q1 and Q’. When 2
query is detached, there may or may not be such a variable common to
both subqueries. The same detachment procedure is carried out
repeatedly to each sub-query until each sub-query contains only one or
two variables in the qualification part; in which case the sub-query/query

is in the “non-reducible” form [Wong76].

The tuple substitution step replaces a query involving two variables with
a set of queries by replacing one of the variables with all its possible

values. To illustrate this, the author again borrows another example
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given by Wong [Wong76]. Consider the query:

Q: retrieve (S.Sname) where (Y.Snum==3.Snum)

Suppose that at this point Y.Snum is the projection:

Snum

101
107
203
Then, successive substitution of Y yields:
Q(101): retrieve (S.Sname) where (S.Snum==101)

Q(107): retrieve (S.Sname) where (S.Snum==107)
Q(203): retrieve (S.Sname) where (S.Snum==203)

(8) Any query that involves only one variable is handled by the One
Variable Query Processor (the OVQP). The OVQP module is
concerned solely with the efficient accessing of tuples from a single
relation given a particular one-variable query. It therefore handles queries
such as:

retrieve (S.Sname) where (S.Snum=101)
retrieve (P.Pnum) where (P.Pname="‘Bolt’) and (P.Size==20)

The reason for using this algorithm is to restrict the size of the cross-product
space needed to be searched [Jark84; Ston76; Wong76]. Effective execution of
the above procedures is extremely crucial to the overall performance of system

query processing.

2.3.5. Deferred Update and Utility Command Support

Process 4 in Figure 2.4 is comprised of two components: utility command

supporting routines and deferred update routines.
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As previously discussed, any update to the data-base is handled by first
writing the tuples to be added, changed, or modified into a temporary file
before any actual physical updating is done. Upon the completion of process
3, the deferred update processor in process 4 becomes active, and performs
the actual modifications requested and any updates to secondary indices
which may be required as a final step in processing. Data integrity and the
ease of control flow are among the main reasons for choosing the deferred

update strategy [Ston76].

To explain how the deferred update procedure works, it is appropriate to

quote Stonebraker [Ston76]:

The deferred update file provides a log of updates to be made. Recovery is
provided upon system crash by the RESTORE command. In this case the
deferred update routine is requested to destroy the temporary file if it has
not yet started processing it. If it has begun processing, it reprocesses the
entired update file in such a way that the effect is the same as if it were
processed exactly once from start to finish.

Hence the update is “backed out” if deferred updating has not yet
begun; otherwise 1t is processed to conclusion.

Stonebraker [Ston76] also points out that despite its conceptual and

procedural simplicity, deferred update is a very expensive operation.

The utility command supporting routines are organized into several
overlay programs. Required overlays are brought into the memory as needed.
This is due to the fact that during the development of INGRES, there was not
enough memory in the machine to hold all of the utility command supporting
routines. Most of the utility supporting routines update or read the system
relations by making AMI (Access Method Interface) calls. This section of the

process is concerned with the support of commands such as CREATE, COPY,



32

PRINT, etc. The contents of the utility supporting routines are otherwise

trivial, and require no further elaboration.



CHAPTER 3

GENERAL DESIGN AND STRUCTURE OF FREDI

FREDI (FRont End for Distributing the INGRES system) is the front-end
system developed for this research. FREDI can couple with a number of
INGRES systems and function as a DDB system. It was developed on the
network of four VAX-11/780’s at the Department of Computer Science. Each
VAX is running a 4.2 BSD UNIX operating system. The network is a ring-type
network. INGRES is employed because it is a good data-base system and

because of its availability on the UNIX operating system.

This chapter presents an overview to the design and the basic process

structure of FREDIL

3.1. DESIGN OBJECTIVES

The first objective of this research is to build a DDB system that will be
practical to use. In this regard we have to be concerned with how easily a user
will adapt to the DDB system, as well as the performance of the DDB system.
The second objective of this research is to investigate the following issues due

to data distribution:

data replication,

site autonomy,

site recovery,

inter-site communication,
query processing,
concurrency control.

33
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With respect to the second objective, the DDB system must be flexible,
modular, and relatively easy to change so that it can be used as a testing

ground.

Influenced by the above, the basic design of FREDI has five objectives:

e Ease of use.
FREDI should provide the user with a ‘“single system image”. An INGRES
user should be able to use FREDI right away without necessarily having

an awareness of data distribution.

e  Site autonomy.
Each site should be self-sufficient. When a site fails, the only effect it
should have on the DDB system is that the data in the failed site become

inaccessible. The operation of other sites should not be otherwise

affected.

e Response time.
Most prototype DDB systems have a reputation of being slow; therefore
it may be difficult to expect a “miracle” from FREDI. However, since
FREDI is an interactive system, its response time should be at least within

a tolerable limit.

o  Site failure resilience.
It is desirable that a DDB system should not be affected by site failures.
FREDI should provide a degree of site failure tolerance. Data should

continue to be available even after a site or some sites have failed.

e  Modularity.
FREDI should be highly modular. Old commands should be -easily

enhanced and new commands should be easily added. If desired, a new
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query processing strategy should be able to be employed without

substantially changing the complete system.

3.2. A GENERAL DESCRIPTION OF FREDI

From the users’ point of view, it might appear that a DDB system should
support as many features as possible, and should give the users as much
freedom as possible. However, in practice this may not be desirable. The
more features a DDB system supports, and/or the more freedom a DDB

system grants to the users, the more complex the DDB system becomes.

On the other hand, if a DDB system supports too few features and/or is

too restrictive, the DDB system would not be very useful.

An important key to a good and viable DDB system therefore is to seek

the right balance between the support of features and system complexity.

During the development of FREDI, many features and design alternatives
were considered, and admittedly some of the decisions have been difficult. The
direct result of these decisions is the external model of FREDI. It is

summarized as follows:

e  Relationship between FREDI and INGRES.
FREDI acts as a front end to INGRES. When a user “logs-on’’ to FREDI, he
“logs-on’’ to the particular FREDI DDB he specifies. In general, a FREDI
DDB X is composed of the local INGRES data-bases Xl, X2, ce e Xn,
located at sites Sl, Sl’ Ce ey Sn, respectively,. each with the INGRES
data-base name X.
In fact, the data-base system that FREDI couples with does not have

to be a genuine INGRES system. With appropriate minor adjustments,
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FREDI can (at least theoretically) couple with any data-base system as
long as the primary query language of the data-base system is QUEL.
All actual retrievals and updates to the data in the local data-bases

are handled by INGRES; FREDI handles only issues regarding distribution.

Choice of query language.

The query language of FREDI is QUEL. This is consistent because the
query language of INGRES is QUEL. Although other languages such as
SQL [Date86] are also possible, adapting another query language would

make FREDI more complicated to implement and may not be desirable.

Granularity of data distribution.

The granularity of data distribution in FREDI is a single relation. In a
" relational environment, this is an obvious logical choice to preserve
simplicity.

Data replication.

Generally, there are two reasons for data replication: 1) performance, and
2) data availability/survivability. The support of data replication in
FREDI is mainly for the latter reason. There are two reasons for this
decision: 1) FREDI should be site failure resilient. 2) In a local area
network environment, such as the one at the Department of Computer
Science, the notion of a ‘“‘near-by” site generally does not apply.
Furthermore, it has been shown that to locate the nearest copy of the
requested data in a multi-site environment is an NP-complete problem
[Herv79, Yu84]; it is a complicated problem. The development of an
algorithm that will identify the nearest site in a network will necessitate

separate research.
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To preserve simplicity, FREDI allows a maximum of only two copies

for every relation. This provides single-site failure tolerance.

Data fragmentation (data partition).

Although data fragmentation is an interesting form of data distribution,
FREDI does not support data fragmentation. This is because of the
enormous complexity that can be introduced. As Lindsay [Lind85] points

out, support of data fragmentation requires very serious design and

implementation effort.

Notion of primary copy.

The notion of primary copy [Ston77; Ston80b; Date83] applies in FREDI.
When a relation has two stored representations, one of the copies is
designated as the primary copy, and the other as the secondary copy.
Any data update is directed to the primary copy at the first instance.
Data retrieve is directed to the local copy if there is one, otherwise it is
directed to the primary copy. If one of the copies becomes unavailable,
data reference is directed to the other copy (either primary or secondary)

for both data update and data retrieval.

Location and replication transparency.
FREDI provides both location transparency and replication transparency.
There are two reasons behind the support of these features: 1) One of
our objectives is to provide the user with a “single system image”. 2) A
DDB system that provides location transparency and/or replication
transparency is more flexible and more general.
There is no need for fragmentation transparency because there is no

data fragmentation in FREDI.



38

e  Site autonomy and site recovery.
It is always desirable that a DDB site should be highly autonomous.
Each FREDI site is self-sufficient. The failure of one site does not
interfere with the operations in other sites. When a “down” site
recovers, the recovering site automatically reconciles the data in its local
data-base and the data in other “up’’ sites.
We shall assume only “clean’ crashes (not the ones considered to be

Byzantine f ailuresT).

e  Network partition.
FREDI cannot cope with network partition. In any distributed system, it
is impossible to distinguish a link failure from a remote site failure
automatically. When a site cannot be reached, FREDI always assumes a

site failure.

e  Concurrency control and unit of a transaction.
As a multi-user system, FREDI guarantees data consistency within a single
user issued QUEL statement. In effect, one QUEL statement is defined as
an atomic unit or a transaction. This is a consistent and obvious
choice since one QUEL statement is defined as an atomic unit in INGRES.
FREDI uses logical locks for concurrency control. Deadlock is prevented:
the processing of an input command will not be executed unless the locks

on all of the required resources can be acquired.

TA clean failure means a detectable failure. When it occurs, the site simply stops
running. If a Byzantine failure occurs, the site continues to run after the crash, but performs
incorrect actions [Bern84].
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3.3. PROCESS STRUCTURE

A significant portion of FREDI is written in the programing language C. This is
because C is the primary host programing language in UNIX. Some routines
are constructed with the assistance of EQUEL. YACC is employed to assist the
construction of parsing routines. LEX is used to assist the construction of the

user interface — the interactive terminal monitor.

All inter-process communications between FREDI processes are provided
by a 4.2 BSD UNIX facility call socket. The communicating processes may be
on the same machine, or they may be on different machines. Sockets are also
used to provide communication between FREDI and INGRES. Due to the data
communication requirement, FREDI therefore requires each participating site

to run a 4.2 BSD UNIX or compatible operating system.

The source listing for the complete prototype FREDI is over 10,500 lines.
There are altogether seven (7) distinct FREDI processes. The names and the

sizes of these processes are listed in Table 3.1.

Name of Process Size of Process (in kilobytes)
interactive terminal monitor 41
input-analyzer/utility-processor 79
query-processor 68
three-way message relay process 32
network handler 59
slave process 46
lock-server 34

Table 3.1: Names and Sizes of all FREDI Processes
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In addition to the seven processes, there is a utility process called
setupddb, for setting up an INGRES data-base so that it can be used as a
FREDI local data-base. The size of this process is about 31 kilobytes. This

process is provided for convenience only.

FREDI operates under a master-slave model. We shall refer to the site
where the query is originated as the master site, and each remote site as a
slave site. In effect, the site where the user logs on is the master site. The

master site takes full control of all distributed actions, while a slave site

USER
T
I
!

FREDI

components
Master
Site
FREDI < > FREDI
components components
Slave Slave
Site Site

Figure 3.1: A Three Site Example of the Master-Slave Model.
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merely acts passively as instructed by the master site. Compared to a model
where all sites are equivalent, the master-slave model offers very high
centralized control. This seems to be desirable because centralized control

appears to be very straightforward.

Network Handler
System
Process : Lock Server
Group
System Slave Server
7 Interactive terminal monitor
FREDI
T Input-analyzer/Utility-processor
At the
T Master —— Query-processor
Site
— three-way message relay process
— “Master” User Slave Server
User
Process
Group
At the
*——— Slave —— “Slave’ User Slave Server
Site

Figure 3.2: FREDI Process Hierarchy.
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According to their roles and their volatility in memory, FREDI processes

can be divided into two groups:

(1) system process group (created only at site start-up time), and
(2) user process group (created dynamically as needed).

For each DDB, a system process group remains active at each
participating machine at all times, whereas an appropriate user process group
is created at each site each time a user “enters” FREDL All user process
groups (one at each site) that belong to the user are destroyed when the user
leaves FREDL In other words, for each DDB at any time, each site has only
one system process group but may have many user process groups —

depending on the number of users that are using the DDB at the time.

3.3.1. The System Process Group

Each system process group is initiated at the site start-up time! at each site,

and remains active until the site crashes.

A system process group is shared among users. Each system process

group is composed of the following three processes:

(1) A network handler.
(2) A system slave server.
(3) A lock server.

The network handler is initiated first among the three processes. The
lock server and the system slave server are initiated by a series of fork and

exec operations, originated at the network handler.

T In order that FREDI be (re)started automatically whenever UNIX is rebooted, FREDI must
be arranged as part of INGRES. This can be done, but requires special arrangements. As it
stands, FREDI requires a manual (re)start.
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The network handler contains four subsystems:

The communication subsystem is responsible for relaying messages

between local user process groups and remote network handlers.

The wuser slave server initiator starts up a slave server process upon

request.

The reliability subsystem continuously monitors remote sites for failures.

When a remote site failure is detected, it records this fact in the DDB

system user user user
slave process process process
server group group . . o group
1 2 n
T T T
network handler lock
server

)
I
|
1l
.To Network

Figure 3.3: FREDI System Process Group Processes.
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directory at the local site.

(4) The recovery subsystem is responsible for performing any recovery

actions to the content of the local data-base during recovery time.

Since these subsystems have many functions in common, it makes sense

to combine them in a single process.

The system slave server is a “passive’” process. It is essential to the
reconciliation of the content of the local data-base at a failed site and the
local data-bases at other sites when the failed site recovers. It should be
pointed out that a system slave server process and a user slave server process

are identical processes.

The lock server is vital to the concurrency control of the data-base; in
particular, it performs ‘‘test-and-set” operations — it logically locks and
unlocks a relation on request. For each local data-base there is one lock

server.

3.3.2. The User Process Group
User process groups can be sub-divided into two kinds:

(1) master user process group;
(2) slave user process group.

Every time a user enters FREDI, a master process group is created at the
site where the user logs on (the master site). Corresponding to this master

process group, a slave process group is created at each active remote site (the

slave sites).
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3.3.2.1. At the Master Site

Each master user process group contains the following collection of processes:

(1) An interactive terminal monitor.

(2) An input-analyzer/utility-processor.
(3) A query-processor.

(4) A three-way message relay process.
(5) A “master” user slave server.

The relationship between the processes within a master user process

group is illustrated in Figure 3.4.

The interactive terminal monitor is the process first created when a new
master process group is invoked. After the interactive monitor finishes the
status check (existence of the DDB, locating the necessary system information,
ete.), through a series of fork and ezec operations, the rest of the processes are

then created, one at a time.

The interactive terminal monitor is constructed with the aid of LEX.
It buffers the user input in a temporary file, and allows the user to edit the

content of the buffer.

The input-analyzer /utility-processor is constructed with the help of
YACC. When there is user input arriving from the interactive terminal
monitor, the input is analyzed for any syntactical errors. If an error is found,
a message indicating this fact is sent back to the interactive terminal monitor
and no further action occurs. In this case, the rest of the input in the input

stream is also disregarded.

On the other hand, if a statement is considered syntactically correct, the

statement is identified as a utility command (such as CREATE, PRINT, etc.) or
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a query command (either RETRIEVE, APPEND, DELETE, or REPLACE). If the
statement is a query command, it is passed onto the query-processor for
further processing. If the statement is a utility command, the appropriate
utility routine(s) is invoked. The routine(s) checks for semantic correctness of
the command and eventually performs the required actions if everything is

correct.

The query-processor is also constructed with the aid of YACC. When a
query command is passed down from the input-analyzer/utility-processor, the
query-processor checks for the command’s semantic correctness. If no error is
found, the appropriate query processing routine(s) is invoked to perform

whatever the query command requires.

The input-analyzer/utility-processor and the query-processor could have
been built as a single process. In terms of execution efficiency this might be
better since a query command would not have to be parsed twice. However,
separating them into independent processes has one important advantage:
since the query-processor is built independently, query processing strategy can
be enhanced or even changed completely without any change in the rest of

FREDL

Because of their special roles in actually coordinating the distributed
actions required, we shall indistinctly refer to both the input-analyzer/utility-
processor and the query-processor as the distributed action coordinator in

the rest of this thesis.

The existence of the “master’” user slave server enables instructions
issued by the distributed action coordinator to be executed locally as if they

were instructions to be executed at a remote site. We shall explain what this
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means in further detail when we explain ‘“Monolithic View of Sites” in section

3.6.

The three-way message relay process “relays’” messages between the
network handler, the master user slave server, and the distributed action
coordinator (i.e. either the input-analyzer/utility-processor or the ~query—
processor). It recognizes from which of the three processes a message comes
when the message is intercepted. Using this information, and by “peeking” at
the content of the message, the three-way message relay processor determines
which one of the three processes should receive the message. The message is
then routed to the appropriate process. The three-way message relay process
is also part of the system that enables the distributed action coordinator to

have a ‘“‘monolithic view of sites’.

3.3.2.2. At the Slave Site

At each slave site, the slave user process group constitutes only one process —
the “slave’” user slave server. Each one is dedicated to a corresponding

master user process group.

3.3.3. Responsibilities of a Slave Server

The following are the services that a slave server provides (remember that the
system slave server, the “master’” user slave server, and the ‘‘slave’ user slave

server are identical processes):

(1) Submit one or more given QUEL statements to the local INGRES and run
them. If instructed, the results from the INGRES execution of these QUEL

statements are also forwarded back to the requestor.
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Figure 3.5: User Process Group at Slave Site.

Receive the incoming (raw) data from the network and store the data in
the system temporary file (a temporary file with a guaranteed unique file

name).

Send the content of the system temporary file to the slave server at a

specified remote site.

Copy the content of a specified file to the system temporary file, and vice

versa.

Invoke the local lock server to lock or unlock a specified local relation.
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(6) Retrieve the names and the attributes of the domains of a specified local
relation from the local INGRES data directory, and forward the result to

the requestor.

The fact that a slave server is placed in every site and that a QUEL
statement can be submitted to the local INGRES through a slave server is very
useful. During the query processing tirﬁe, all the master site (this implies the
distributed action coordinator) needs to do is to formulate the appropriate
QUEL statements, send them to the correct sites, and run them at the local

INGRESes.

Since 2 slaver server knows what its responsibilities are, the messages
passing to and from it can be expressed at a very high semantic level —
instead of shipping the complete procedure which indicates how things should
be done, only the instruction indicating what needs to be done is transmitted,
such as: “run that QUEL statement”, “lock that relation”. Consequently, the

sizes of the messages are generally very short.

3.3.4. Cost of Idle Processes

Although it is extremely likely that many of the processes in a FREDI system
will remain idle most of the time, one should remember that an idle process
does not contribute much cost. In a virtual memory operating system, such as

UNIX, an idle process is likely to reside on disks.

3.4. USER INTERFACE

I'REDI provides its own interactive terminal monitor for an user interface.
However, there is no way for a user to provide his own C program as an

interface to FREDI If it were desirable to achieve such an objective, it could
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Command |Abbreviations Meaning

append a append input to the current workspace

clear ¢ clear the terminal screen

ed e edit the current workspace using the user’s
default text editor

emacs em edit the current workspace using the UNIX
text editor emacs

fred f edit the current workspace using the UNIX
text editor fred

g0 g execute content of the current workspace

reset r clear the current workspace

shell sh, s escape to default shell

print p print content of the current workspace

write W copy the current workspace to a file

Table 3.2: A List of the Supported Monitor Commands

be accomplished by constructing a pre-compiler like that of EQUEL and

provide a library of necessary C subroutines to accompany it.

FREDI's interactive terminal monitor behaves very similarly to the one
provided by INGRES. This is desirable because a regular INGRES user will
probably feel very comfortable with FREDI. Since some INGRES monitor
commands are time consuming and/or difficult to implement, only the most
often used subset of INGRES monitor commands are incorporated in FREDL
Hence, the following monitor commands are omitted: lst, eval, time, date,
chdir, include, read, branch, and mark. On the other hand, three new
commands: emacs, fred, and clear, are added to make input editing easier in
FREDI. It is interesting how easily these convenient features can be
incorporated into the interactive terminal monitor. A list of the FREDI

supported monitor commands is tabulated in Table 3.2.
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3.5. QUERY PROCESSING STRATEGY

FREDI does not attempt to optimize the execution of a query. In fact, its

query execution planning strategy is rather simple. It works as follows:

(1)

(3)
(4)

(5)

Before any action is being carried out for a query, FREDI first determines
the target site of the query — the site where FREDI thinks the ezecution

of the query should actually take place.

FREDI creates an image relation for each required relation that does not
have a stored representation (either the primary or the secondary copy)
in the target site. This involves shipping the contents of the required
relations to the target site and making copies of these relations at the

target site.
The query is executed at the target site.

If this is an update, and the relation to be updated is replicated, the
secondary copy of the relation is updated accordingly. This is done either
by sending all the changes of the relation to the secondary site, or by

sending a complete copy of the relation to the secondary site.

All the “image relations” are destroyed.

Although the query processing strategy used by FREDI is simple, it does

have the advantage of handling complex queries rather easily because it takes

advantage of all the query processing power of INGRES. Some QUEL features,

such as aggregates, may be very difficult to support if the queries are handled

in a truly distributed fashion. Furthermore, substantially more control

messages would be required if queries were handled in a distributed fashion.
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Unlike R*, queries in FREDI are processed within a single phase, rather
than separated into “compile’” and “run-time” phases. It may be appropriate

to say that queries in FREDI are interpreted.

In R*, the basic idea is to get as much work done as possible during
compile time, so as to reduce the amount of work needed to be done during
run-time. This is feasible only because the majority of the SQL statements
expected are to be expressed as embedded SQL statements in host language
programs written in PL/1, COBOL, and assembly language. Perhaps for this
reason, there is therefore no mention of the performance of R" when SQL
statements are issued interactively through QMF (Query Management
facility).

Compared to R*, the processing of queries in FREDI is handled in a very
centralized manner. All verification of the existence and the availability of
the resources required is carried out at the master site, with the only
exception being the verification of the existence of a UNIX file at a remote site.
During the time distributed actions are taking place, even though the
distributed actions may be carried out at different remote sites, the master
site still maintains a tight control on the progress of these actions. This
fundamental manner of handling queries is desirable because very high site
autonomy can be obtained this way. Admittedly, the master site may be
considered to have lost its site autonomy momentarily during the period when
distributed actions are carried out, since the execution at the master site
depends on the execution at another site. However, this seems to be inevitable

in any distributed system.
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3.6. MONOLITHIC VIEW OF SITES

According to the FREDI architecture just described, for every “user’ there is a

slave server at every site (i.e. at both master and slave sites).

The existence of a slave server at every site, and the three-way message
relay process at the master site, enables the distributed action coordinator to
maintain a monolithic view of sites when it coordinates distributed actions. By
“monolithic view” we mean that as far as the distributed action coordinator

is concerned, any site is a remote site — including the local site (i.e. the

Virtual Control Site
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Figure 3.6: Monolithic View of Sites.
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master site). A distributed operation is always considered to be carried out
“remotely’’, whether the operation is actually being performed locally or at a

genuine remote site.

The notion of local site is important during query optimization time.
However, it is sometimes an undesirable complication to maintain a view that
distinguishes a local operation from a remote operation during the time
distributed actions are being carried out. If the “local site” notion is
maintained, then every time the distributed action coordinator issues a
distributed operation, it has to check if the operation is a local or a remote
one. Any remote operation is forwarded to the slave server at the appropriate
remote site, but a local operation must otherwise be taken care of by the
distributed action coordinator itself. One can easily imagine the
complications that can arise when a file is needed to be transported from site
A to site B, when either site can be the local site, or when neither one is the

local site.

In FRED], the distributed action coordinator is logically being placed in a
virtual control site when the distributed actions are being carried out. This is
very handy. The distributed action coordinator simply issues “action
instructions” to appropriate ‘‘remote” sites (including the master site), and
monitors the progress of these distributed actions, without actually involving
itself in a single action. Consequently, the basic procedure to carry out
distributed actions is very simple: 1) Send an “instruction’ to the site-n user
slave server (can be master or slave), 2) Wait for the “complete” reply from
the site-n user slave server, 3) Repeat step 1 and step 2 until all required

distributed actions are completed. The virtual control site, of course, is only
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an imaginary site (j.e. an abstraction), and therefore no distributed action is

needed to be performed there.

3.7. DATA DIRECTORY

FREDI's data directory contains information concerning the location or
locations of where a relation is physically stored, the current availability
status of the relation, and the names and the attributes of the domains of the

relation.

FREDI's data directory is stored as INGRES user relations. This has two
advantages. First, users may query the system data directory using the same
query language that is used for other relations. Second, the data directory
may be maintained by the same recovery and storage facilities as the rest of

the data in the system.

The cost for storing the data directory as user relations is perhaps slower
response time. Every reference to the FREDI data directory is an INGRES query

operation; each takes about one second to complete.

The data directory is also fully replicated — each site maintains its own
copy. Fully replicating the data directory at each site provides very high site
autonomy, but at the expense of higher overhead during updates to the data
directory. However, since in FREDI it is expected that the content of the data
directory should be relatively stable, the site autonomy benefit seems to

outweigh the extra cost required to update the data directory.

3.8. PARALLELISM

FREDI does not utilize parallelism during query processing time. The only time

FREDI performs in parallel is when the copies of the data directory are
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updated at every site, such as in CREATE, BACKUP, or DESTROY operations.

The reasons why parallelism is not utilized during query processing time

are:

(1) To be able to utilize any parallelism during query processing time, an
immediate prerequisite is the availability of a very elaborate and
sophisticated parser or analyzer that can analyze the input queries to
figure out what to do. Preferably the parser is recursive and is able to
generate the intermediate parallel action steps for the input queries
recursively.

However, parsers generated with the assistance of YACC are non-

1.

recursive', and therefore using such a parser to generate the necessary
intermediate parallel action steps for the input queries may be difficult.
The following illustrates some of the difficulties: A RETRIEVE statement is
sub-divided by the parser into two or more smaller RETRIEVE statements,
which are to be executed in parallel. However, it is possible that some or
all of these RETRIEVE statements generated can be sub-divided into finer
granularities. To be able to figure this out, the same parser that parses
the original RETRIEVE statement must be called for to parse each of the
sub-divided RETRIEVE statements. In this case, recursion of the parser is
required; an attribute that a parser generated with the aid of YACC does
not possess.

Although a recursive-descent parser may be constructed using C,

such a parser would be very complex and would require serious

implementation effort.

ta parser generated with the aid of YACC uses LALR parsing method to parse input.
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(2) The research community is still in search of a query processing strategy
that will utilize parallelism well. The research on processing queries in
parallel is still in its infancy. The problem of processing queries in
parallel is an interesting but complex one, and the investigation of it
should be done in separate research. Some pilot works in this area have
been done by Apers, Hevner, and Yao [Aper83], Daniels et al [Dani82,
Hevner and Yao [Hevn79], Yu and Chang [Yu84], and Yu et al [Yu85].

(8) It is much harder for a central control site to have a tight control on the
progress of distributed operations if they are to be carried out in parallel

at different sites.

3.9. MODIFICATIONS TO QUEL

Since QUEL was not originally designed for distributed environments, it is
necessary to somewhat modify the original QUEL in order to adapt it to a
distributed environment. Some of the original QUEL commands have to be
altered semantically and/or syntactically, and some new ones have to be
added. All the changes are upward compatible with the original QUEL: Query
statements formatted according to the original syntax of QUEL are acceptable
to FREDL. The design of these commands has been very carefully considered
and the existence of each one is extremely vital to the usability of a DDB
system. The following is a summary of all the changes (note: each optional

parameter is enclosed by a pair of braces “{ }"):
e  The modified syntax of the copy command:

copy relname (domnamel = format {, domname2 = format})
direction “filename” {at sitename}
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With the “‘at sitename” parameter, it is possible to specify at which site
the target file is/should be located. If this option is omitted, the master
site (i.e. the site where the user is) is assumed. The location of the target

file can be at any site, and has no relation to the location of where the

relation is stored.

If the target file cannot be created or cannot be found, it is

considered to be an execution error.

The modified syntax of the create command:

create relname {at sitename}
(domnamel = format {, domname2 = format})

Again, with the ‘‘at sitename” parameter, it is possible to specify at
which site the new relation is to be situated. And again, if this parameter
is missing, the master site is assumed. The name of the new relation
must not already exist within the FREDI DDB. The created copy of the

relation is considered to be the primary copy of the relation.

The modified destroy command:

destroy relname

The destroy command destroys the specified relation regardless of
whether the relation is replicated or not. The entries describing the
relation in the FREDI data directory are also deleted. To simplify the
complexity of the site recovery procedure, if a relation is replicated, the
relation can be destroyed only when both of its stored representations are

accessible.
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The modified help command:

help {relname}

This is a distributed extension of the INGRES help command. If the
command is issued without a relation name, the information returned
includes the names of all the relations in the FREDI DDB, and the

locations of their stored representations (primary and secondary).

If a particular relation is specified, then the information about that
relation is listed. The information includes all of the relation’s domains’
names, the domains’ attributes, and where the primary copy and the
secondary copy of the relation are stored. If the specified relation does
not exist in the FREDI DDB domain, it is considered to be an execution

E€rror.

Syntax of the new command move:

move relname {(primary-or-backup)} to sitename

Since FREDI supports data replication, the “(primary-or-backup)”
parameter specifies which copy of the relation (relname) is to be moved.
If this optional parameter is omitted, the primary copy is assumed. The
move must not result in a situation such that both the primary and the
secondary copy of the relation will end up in the same site. It is a
semantic error if a user tries to do so. The ‘“to sitename’” parameter

specifies the destination.
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Syntax of the new command backup:

backup relname {at sitename}

The “‘at sitename’ parameter specifies where the secondary copy of the
relation should be located. If it is omitted, the master site is assumed.
FREDI currently allows only one secondary copy for each relation. The
backup operation must not result in both the primary copy and the
secondary copy of the relation being in the same site. It is considered to

be a semantic error if a user tries to do so.

Syntax of the new command unbackup:

unbackup relname

This command removes the secondary copy of a relation. If the relation
does not have a secondary copy, no action will be performed by FREDI,
and it is not considered to be an error. To simplify site recovery
procedures, for a replicated relation, this command can be executed only
when both the site holding the primary copy and the site holding the

secondary copy are connected and operational.

Syntax of the new command switch_primary:
switch_primary relname

If a relation has two stored representations, then after this command the
old primary copy will become the secondary copy, and the old secondary
copy will become the new primary copy. There will be no effect if the

relation does not have a secondary copy, and in such a case it is not
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considered to be an error in any way.

e  The modified syntax of the retrieve command:

retrieve {{into} relname {at sitename}} (target_list)
{where qual}

This is basically a distributed extension to the original retrieve

command as defined in INGRES.

If the “retrieve into” option is used, one can also optionally specify
where (i.e. at which site) the result relation should be stored. If the “at
sitename’ parameter is omitted, the master site is assumed. The new

relation must not already exist within the FREDI DDB.

e Syntax of the new command upsite

upsite

The response to this command is a list of the names of the sites that are

currently connected and operational.

One should notice that the above commands do not require the user to
know where a relation is stored or if it is replicated. Here we demonstrate
how location transparency and replication transparency can be expressed in a

query language.

3.10. USAGE RESTRICTIONS

If a FREDI DDB relation is replicated, FREDI cannot guarantee data integrity

of the relation if a user tries to update any of the representations of the
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relation directly through INGRES. It is likely that the two copies of the

relation will not be identical after the change.

FREDI maintains its own data directory in each local (INGRES) data-base
as regular user relations. It is important that the integrity of this information

be maintained. FREDI cannot function properly if such information is

corrupted.

One also should not by-pass FREDI to create or destroy relations in a
local data-base. Such a change cannot be reflected in FREDI's data directory.

It is very important that FREDI's data directory has an accurate description of

the current state of the DDB.

As the environment stands, one simple way to prevent the above from
happening is to assign the owner of all the relations in each local INGRES
data-base to be a single user, say, the FREDI system itself or a particular

person such as the data-base administrator (DBA).



CHAPTER 4

INTER-PROCESS COMMUNICATION IN A DDB

General speaking, there are two kinds of inter-process communications: 1)
communication between processes in the same machine, and 2)

communication between processes in distinet machines.

Some DDB systems assume the existence of an inter-process
communication environment. One example is R". Since R" runs within a
CICS environment, both local and remote inter-process communications are
provided by CICS. An R process can send a message to any other R process
through CICS. As far as R is concerned, the responsibility of inter-process
communication is simply delegated to CICS. Once a message is handed over

to CICS, the rest of the communication detail is of no concern to R per se.

However, in most situations a well established communication
environment does not exist. It is more realistic for the DDB system to set up

a communication environment of its own.

4.1. DESIGN CONSIDERATIONS

One should recognize that a DDB using a local area network (LAN) and a
DDB using a long-haul network are very different. Usually, a long-haul

network is more expensive and slower, but a LAN is less expensive and faster.

In order to make our discussion general enough but also descriptive of
the communication model used by FREDI , we shall assume that when a user

“logs on” to the DDB system, data in multiple sites are likely to be needed.

64
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Secondly, we shall also assume that a connection established between process
A and process B, and a connection established between process B and process
C, does not imply that process A can communicate with process C.
Communication connections are not generally transitive. Finally, we shall
also assume all of the generic attributes of a LAN environment: the network
at the Department of Computer Science is a typical LAN. These attributes

include:

e Cost to transmit a byte of data from one site to any other site is

relatively low compared to that of a long-haul network, say, ARPANET.

e  Transmission rate is relatively high, in the order of 10 kilobytes per

second.
e Propagation delay is negligible.

o Network is reliable. The network guarantees delivery of data (except
when the destination site is down). The network also guarantees the data

delivered are unrepeated and uncorrupted.
e  Cost of an idle connection is very low.

¢ Broadcasting capability is not assumed. Although most LANs have
broadcasting capability, the capability generally is not available to
normal users; the network at the Department of Computer Science is an

example.

Typically, in a very concise way, a communication session between two
processes, A and B, can be described as the following: When process A wants
to communicate with process B, process A nitiates a connection. Process A

goes into a wast state. When process B is ready, it accepts the request, and a
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connection (a virtual link, or a virtual circuit) is established. Process A
proceeds to send data to process B, and vice versa. The connection may be
idle intermittently during this period. When one or both of the processes
decide that the connection is no longer needed, the connection is
disconnected. In UNIX, a communication session between two processes follows

the above pattern.

4.1.1. When Should an Inter-Site Connection Be Made?

An immediate question concerning inter-site connections in a DDB
environment is: When should connections between DDB sites be made?

Without going into any fine detail, three different approaches are suggested:

(1) A connection between two sites is made only when it is needed. Once the
“transaction” is over, all connections are relinquished. We shall refer to

this as the ad-hoc strategy.

(2) All the connections between all the sites are made in advance — before
or at the time the user “logs on” on to the DDB system. We shall refer

to this as the full-connection strategy.

(8) A mixture of 1) and 2). Connections are made at the user log-on time
only between those sites whose names appear in a given per-user profile.
Connections to other sites are made only when they are needed. Once
the connections to a site are made, they may be retained until the user
logs out, or they may be relinquished when they are considered to be no
longer needed. The user may explicitly specify that the connections to a
particular site be relinquished. Alternatively, the usefulness of the

connections to a site may be determined by the length of time passed
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since any of the connections were last used. We shall refer to this as the

prediction strategy.

If remote access is frequent, the ad-hoc strategy is likely to suffer from
poor response time. Establishing a connection is often time consuming and
sometimes expensive; in UNIX, for example, it takes one or two seconds of
elapsed time to establish a connection between two processes using sockets.
Also, the control of distributed actions is likely to be very complicated since it
is difficult to keep track of which connections were established. It is difficult
for site A to learn about the connection status between site B and site C
when the connection between them can be created and destroyed dynamically.
Nevertheless, when the cost for occupying a link outweighs other factors, this

approach may be appropriate.

The full-connection strategy is very straightforward, although a

connection may lie idle most of the time.

‘'The prediction strategy appears to be very flexible. Generally, a user
should be able to predict in advance approximately the set of data he wants,
and unnecessary connections may therefore be avoided. The cost of the
flexibility is the increase in system complexity; for example, a “remote site”

must be able to establish slave process(es) dynamically.

From the above evaluation, it seems that full-connection and prediction
strategies are appropriate to a LAN environment. Even in 2 long-haul
network such as ARPANET, where the cost depends only on the amount of
data transmitted, full-connection and prediction strategies should also be

considered. In FREDI, full connection strategy was chosen because it is
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straightforward to implement, and because FREDI operates in a LAN

environment.

4.1.2. How Should Inter-Site Connections Be Shared?

In a multi-user distributed system, there are two obvious approaches to the

sharing of communication resources among users:
(1) Each user has his own (conceptual) communication links between sites.

(2) All users share the same set of links between sites.

Ad-hoc and prediction connection strategies limit the option to choice 1),

while full-connection strategy allows both choices.

Choice 1) has two potential drawbacks: a) It is possible that a huge
number of connections will be needed. b) More seriously and detrimentally, it
is possible that each user may have a different view as to the current status of

the network.

In contrast, choice 2) needs only a fixed number of connections and

provides each user with the same view to the current status of the network.

Another advantage of choice 2) is that it allows the DDB system to have
more "‘system control” at each site. If all users are sharing the same set of
site connections, it is simpler to implement procedures that will act upon the

failure of a remote site, as well as site recovery procedures.

At first glance, one may suspect that it may cause a bottleneck if the
communication link is shared by all DDB users. However, one should not
worry about this because: 1) In most computer networks, a machine can only

take in or send out a single stream of data through the network. More than
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one conceptual connection between two sites will not solve the traffic
congestion problems, if physically there can only be a single stream of data
passing between the two sites. 2) Even if a machine can genuinely send and
receive multiple streams of data through the network in parallel (which is
rare), the number of data streams will usually be very small, such as 2,4, 0or 8

streams. Users soon still have to share the same set of physical data streams.
At the Department of Computer Science, the network is a ring-type

network. It uses a token passing mechanism. Consequently, at any one time,

only a single machine can send data through the network.

In light of the above, we conclude that in a DDB system it makes more

sense for all users to share the same set of connections between DDB sites.

4.2, COMMUNICATION IMPLEMENTATION IN FREDI

FREDI uses a 4.2 BSD UNIX facility called socket to provide all interprocess
communication: sockets are used to provide communication between FREDI
processes at the same site and at different sites, and between a FREDI process

and INGRES.

The other alternatives that can provide inter-process communication in
4.2 BSD UNIX are facilities called pipe and pseudo-terminal. However, sockets

are chosen over these facilities because:
(1) These facilities cannot provide inter-site communication.
(2) A pipe connection can only provide uni-directional communication.

(8) There are only a limited number of pairs of pseudo-terminals available in
each system; at the Department of Computer Science each machine has

only 32 pairs. Pseudo-terminals are also used by many UNIX applications;



70

competition of resources may occur.

With respect to the FREDI process structure as described in chapter 3,

there are three aspects of inter-process communication:

(1) Communication between all of the FREDI processes but not including the

network handler.

(2) Communication between a (master or slave) user process group and a

network handler.

(8) Communication between the network handlers on separate sites.

The first aspect is about local communication (i.e. communication
between processes within the same site). The second and the third aspects are
about inter-site communication, and are related to each other: they are
concerned about how a message, when issued by one of the local user process
groups, is sent to the user process group’s counterpart in a specified remote

site.

4.2.1. Socket: The Communication Facility Used
This section provides information about sockets.

In the 4.2 BSD UNIX, the concept of a socket is introduced to enable
processes to communicate with each other; these processes may be on the
same machine or on different machines. In previous versions of the UNIX
system, the only system-provided function for inter-process communications
was a pipe, and no readily available facility was provided for inter-machine
communication. During those periods, without modifying the original UNIX

operating system and adding some “local” facilities to the operating system,
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there was no way for a process on one machine to communicate with a
process on another machine. For this reason, using just the facilities provided
by UNIX, it was not be possible to construct a DDB system on a number of

UNIX systems before the release of 4.2 BSD UNIX.

Whereas a pipe connection is only a wuni-directional communication link,
a socket .connection is a bi-directional communication link. It is also
interesting that in 4.2 BSD UNIX pipes are actually implemented internally as a
pair of connected stream sockets [Leff83]. In effect, the socket, rather than

the pipe, is the inter-process communication primitive in 4.2 BSD UNIX.

Employing UNIX terminology, it is said to be within the UNIX domain
when sockets are used to provide communication between processes residing
on the same machine. When sockets are used to provide communication
between processes on separate machines, it is said to be within the internet
domain. A UNIX domain socket may be identified by a UNIX directory name'.

An internet domain socket may be identified by a ‘“‘port number”.

The communication model that FREDI employs falls into the client/server
model [Leff83]. The general structures of a server process and a client process

are illustrated in Pseudo-Code Listing 4.1 and 4.2, respectively.

It should be mentioned that on the server’s side, when a “servér socket”’
accepts a new “client connection”, the ‘“‘server socket” is duplicated — a new
socket with the same attributes as the original one is created. Communication
with the newly accepted client is through the new socket, and the original
socket can be used to accept more clients. This way, a server can be the

server of many clients at the same time. This is how the network handler in

1 4.2 BSD UNIX restricts the dir