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Abstract 

Distributed data base (DDB) systems are a relatively new idea. Although 

there has been much discussion about DDBs, many problems regarding DDBs 

still are not very well understood. In general, a DDB system is a piece (or 

pieces) of complicated software. 

DDB systems have become technologically feasible only since the 

availability of inter-machine communication technology. Before the release of 

4.2 BSD UNIX, there was no facility in the UNIX operating system that could 

provide inter-machine communication. For this reason, it was not possible to 

construct a DDB system on a network of UNIX systems without substantially 

modifying the UNIX operating system itself. 

In this research, we demonstrate a DDB system by actually building a 

DDB system in a local area network environment. The DDB system employs 

only those facilities provided by the 4.2 BSD UNIX. No modification to the 

UNIX operating system is required. This provides us with an opportunity to 

illustrate a practical DDB system in a local area network environment using 

the underlying operating system facilities. 

In addition, an important aspect of this research is to investigate a few 

issues concerning DDBs. In particular, we study the following issues: 

UNIX is a trademark of Bell Laboratories. 



• data replication, 
• site autonomy, 

• site recovery, 
• inter-site communication, 

• query processing, 

• concurrency control. 

As part of the result of this research, a front end system called FREDI was 

developed. FREDI can couple with a number of INGRES systems and function 

as a DDB system. INGRES is a relational data-base system developed from 

1973 to 1983 at the University of California at Berkeley. Using INGRES frees 

us from being concerned with the trivial issues of a data-base system, such as 

data storage problems or data indexing problems. A front-end approach was 

used because of its generality and because it would allow us to better 

concentrate on issues regarding data distribution. FREDI supports data 

replication but not data partition, and accepts a super set of QTJEL as its 

query language. 

Our discussion in this thesis will be limited to DDBs based on the 

relational model, because of the model's simplicity, popularity, and the fact 

that INGRES happens to be a relational data-base system. 

The development of FREDI demonstrates that it is possible to construct a 

DDB system using a front-end approach that is easy to use, provides much 

site autonomy, gives good performance to "single-site operations" and 

reasonable performance to "multi-site operations", and tolerates single site 

failures. 

- iv -
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CHAPTER 1 

INTRODUCTION 

Although the idea of distributed computing has been around for many years, 

it was not until the mid-1970's that distributed data-base (DDB) systems were 

economically and technologically feasible. Since then, although there has been 

much talk about DDBs, only a handful of systems have actually been 

developed. Currently, many of the problems regarding DDBs still are not very 

well understood. So far, the majority of the developed DDB systems are still 

at the experimental stage and none has been released commercially. Two of 

these systems: SDD-1 and R* (pronounced "R star"), are described briefly in 

chapter 2. 

Since the mid-1970's, the cost of many mini- and micro-computers has 

dropped to a level where they are affordable to a wide variety of 

organizations. Meanwhile, the introduction of better and less expensive local 

area networks (LANs) and data communication common carriers also 

encourages the development of distributed systems. In the United States, 

package switching networks such as Telenet, TYMNET and ARPANET [Mart81; 

Tech80], and similar developments in Canada such as Datapac (Datapac 1000 

for short message transmissions, and Datapac 1500 for general data 

communications) [Mcgl78] and Dataroute, provide reliable and inexpensive 

communication media for both high volume and low volume data 

communication requirements. 

1 
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1.1. WHAT IS A DISTRIBUTED DATA BASE SYSTEM? 

We shall briefly define the meaning of a DDB. To date, there has not been a 

general consensus of what the definition of a DDB should be. Date attempts 

to define a DDB system as the following [Date83]: 

A distributed database is a database that is not stored in its entirety at a 
single physical location, but rather is spread across a network of locations 
that are geographically dispersed and connected via communication links. 

Date however points out that the above definition may not be precise. The 

term "geographically dispersed" to most people generally means machines 

that are at least a few miles apart from each other, but in reality in certain 

extreme cases two machines that are conceptually considered geographically 

dispei'sed may physically be in the same room. 

Based on the difference in the the access rates between "local" and 

"remote" data, Date adds the following to supplement the definition [Date83]: 

A database is "distributed" if it can be divided into distinct pieces, such 
that for a given user access to some of those pieces is very mUch slower than 
access to others. 

In the rest of our discussion we shall use the terms site and node 

interchangeably to refer to a physical machine within a DDB system. 

1.2. WHY DISTRIBUTED DATABASES? 

There are five main reasons for DDBs: 

(1) Performance and storage capacity. 

A centralized system has an upper limit in performance and storage 

capability. In a distributed system, more machines can be added as the 

needs require. 
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(2) Total failure resilience. 

When a centralized system fails, the complete system fails. When a 

machine in a distributed system fails, other machines still continue to 

function. In cases where data are replicated, the system might still be 

able to provide full access to all of the data after a machine had failed. 

Otherwise, the system continues to provide services in a degraded mode. 

(3) Sovereignty of data. 

Computer end users are becoming more and more geographically 

dispersed. A DDB system can allow a division or a branch of an 

organization to maintain their data locally. 

(4) Flexibility. 

A DDB system allows rapid reconfiguration when the application 

requirements change. Machines can be added, enhanced, and removed 

when desired. The risk of obsolescence is lowered. 

Sharing of data between machines. 

Sharing of data is intrinsic in computer systems. However, data sharing 

between centralized systems is often very clumsy. In a DDB system, data 

on all participating machines are organized in an integrated, coordinated 

fashion. 

(5) 

Badal [Bada79] summarizes the reasons as follows: 

Many large, geographically distributed organizations find a centralized data-
base system non-responsive or too costly, or both. Military and computer 
control systems require the reliability and the availability that centralized 
data-base systems cannot provide. Moreover, the centralized database 
system does not allow system extensibility and modularity anywhere near 
the degree characteristic of distributed data-base systems. 



4 

1.3. FACTORS REGARDING DISTRIBUTION 

Although distributing a data-base may provide answers to some of the 

problems encountered in centralized systems, new factors regarding data 

distribution are introduced. A good DDB system is usually highly modular 

and therefore is very flexible and very easy to re-organize. However, a badly 

designed system can become so complex that it may be impossible to control 

and maintain, and the performance may even be unacceptable. 

The following are the major factors concerning distributing a data-base 

on a network of machines: 

(1) Data communication requirements. 

The involvement of data communication is inevitable in any distributed 

system. There are four main aspects regarding data communication: 

• communication cost, 

• data transfer rate, 

• propagation delay, 

• network reliability. 

(2) Data consistency and integrity control. 

Strict enforcement of consistency and integrity controls is required in 

systems where replicated data are maintained to ensure that all units of 

data agree with each other. In multi-user systems, updates to data items 

have to be tightly controlled to avoid "surprises". 

(3) Duplication of effort. 

The same effort may have to be made repeatedly in different sites. 

(4) Security breaches. 

A DDB system is subject to more security exposure than a centralized 
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one. It is also more difficult to enforce security controls in a distributed 

environment. To prevent unauthorized access of data, careful planning 

and tight control of data are required. Security measures, such as 

deployment of data encryption schemes, may be used to increase the 

degree of security in data transmission. 

Exactly how the above factors affect the design and the performance of 

DDB systems still is not very well understood. To gain a better 

understanding, it is important that more research be done. 

1.4. PURPOSE OF THIS THESIS 

DDB systems have become technologically possible only since the availability 

of data communication technology. In the history of the UNIX operating 

system, before the release of 4.2 BSD UNIX there was no UNIX facility that 

could easily provide inter-machine communication. For this reason, unless the 

operating system was modified substantially, it was not possible to build a 

DDB system on a network of UNIX systems. 

In this research, we have taken advantage of the inter-machine 

communication facilities provided by the 4.2 BSD UNIX and have built a DDB 

system on a network of UNIX systems. We have demonstrated the 

development of a practical DDB system that employs only the facilities 

provided by the operating system. There has been no modification of the UNIX 

system. This provides us with an opportunity to study the design and the 

implementation of a DDB system in a local area network environment. 

UNIX is a trademark of Bell Laboratories. 
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In addition, an important aspect of this research is to investigate some of 

the issues associated with distributing a data-base system. In particular, the 

following issues are explored: 

• data replication, 

• site autonomy, 

• site recovery, 

• inter-site communication, 

• query processing, 

• concurrency control. 

The above issues are not all independent. To support data replication, for 

example, also directly involves other issues. 

As part of the result of this research, a front end system named FREDI 

(FRont End for Distributing the INGRES system) was developed. FREDI can 

couple with a number of INGRES systems and function as a DDB system. 

INGRES is a relational data-base system. By taking advantage of some of the 

facilities provided by INGRES, it is possible to concentrate our attention on 

issues of distributing the data-base system. INGRES was chosen because: 1) it 

is available on UNIX, 2) it is a well developed data-base system. 

The prototype FREDI was developed on a network of four machines at the 

Department of Computer Science, the University of Calgary. Each of these 

machines is a VAX-11/780, and is connected together by a ring-type network. 

Each is running a 4.2 BSD UNIX operating system. 

FREDI is a homogeneous DDB system in that it couples only with INGRES. 

VAX is a trademark of Digital Equipment Corporation. 
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Our discussion will be limited to DDBs using the relational model only, 

because of the model's simplicity, popularity, and the fact that INGRES is a 

relational data-base. 



CHAPTER 2 

BACKGROUNDS 

This chapter provides necessary background materials. We first discuss the 

logical architectures of DDB systems, followed by a case study of two research 

DDB developments: SDD-1 and R*. Finally, an overview of INGRES is 

presented. 

2.1. LOGICAL ARCHITECTURE OF DDB SYSTEMS 

In a conventional data-base system, a user refers to a logical record. The 

data-base management system (DBMS) derives the requested data from the 

physical records. In a DDB system the same idea also applies, but now the 

data might actually be stored in a remote machine and the system might have 

to find it. 

Regardless of how a DDB is constructed, the following basic questions 

arise: How are the data organized? Where are the data located? Where and 

how is the mapping between logical organization and physical organization 

performed? 

2.1.1. Front-End Versus Integrated Systems 

According to the architecture of the system, DDB systems can be loosely 

categorized into: 1) integrated systems and 2) front-end systems [Yu85]. 

In a front-end system all actual data updates and retrievals are processed by 

independent data-base system(s). In an integrated system there is no such 

clear distinction. 

8 
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Comparing two hypothetical DDB systems side-by-side, functionally 

equivalent otherwise, one an integrated system and the other a front-end 

system, an observer is likely to find that the integrated system can provide 

faster services, and allows easier global controls of data and possibly 

communication resources [Haas82]. 

In contrast, the front-end system is more likely to provide higher site 

autonomy [Haas82]. Furthermore, the front-end system concept makes it 

possible to form a DDB system from a number of pre-existing DBMSs. These 

pre-ecisting DBMSs can simply "plug-in" to the front end system. This is 

important to many organizations, particularly to those that cannot afford to 

Site A 

DBMS 

I 

Front-
End 

I 

Site B 

DBMS 

Front-
End 

I 

NETWORK 

Figure 2.1: The Front-End System Concept. 
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abandon the data-base systems that are already in use. 

From a different perspective, one can regard front-end systems as loosely 

coupled systems, and integrated systems as tightly coupled systems [Haas82]. 

In the rest of our discussion we shall consider front-end systems only, for 

the following reasons: 

(1) To develop an integrated system from scratch would require very serious 

effort. It would not have been worthwhile to develop an integrated 

system for the purpose of this research. 

(2) To modify an existing data-base system would also involve too much 

effort, and has potential legal problems. 

(3) An important aspect of this research is to investigate issues concerning 

data distribution (e.g. data replication, site autonomy, etc.), which can be 

achieved with a front end system. 

(4) Front end systems appear to be quite general. 

2.1.2. Logical DDB Components 

In a typical front-end DDB system, a piece of software (the front end - in 

this context is known as network or global data manager) is added to a 

conventional DBMS (in this context the DBMS is known as local data 

manager) to tackle problems associated with distribution - directory, 

network interface, conflict avoidance, etc. 

The local data manager manages data at its own location and has no 

awareness of data at other locations or of any issues related to data 

distribution. The global data manager cannot itself access the data, but relies 

on the local data manager to read and write the data. It handles all data 
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distribution issues. 

The set of data forming the DDB is stored in a number of nodes of which 

the network is composed. According to their functions, some or all of the 

following components (each may not exist as a separate process or entity) may 

be found in a single DDB node [Adib78; Ston76; Spac8O]: 

• the local data-base, 

• the local data-base management system (the local DBMS), 

• the distributed executive, 

• the translation function, 

• the communication adaptation module (the network handler), and 
• the user process (or the user interface). 

The relationships between these components in a hypothetical DDB node 

is illustrated in Figure 2.2. 

When a user or a user program issues a request for data, the input query 

is first analyzed by the translation function. The distributed executive must 

then coordinate the processing and response to the user request. Local DBMSs 

are responsible for retrieving data at local data-bases. Finally, the distributed 

executive must synthesize all the local retrievals and present to the user or 

the user process the global response. 

The network handler in Figure 2.2 represents a collection of processes 

and possibly some physical facilities which are necessary to interconnect the 

nodes. It maintains the knowledge of the physical location of each node, the 

physical path connections between nodes (at least theoretically), and the 

protocols to be used in sending messages between nodes. 
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User Process 

I 

I 

Translation 
Function 

I 

Distributed 
Executive 

I 

Network Handler 

I 

I I 

Local 
DBMS 

NETWORK 

--* 

4--

Local 
Data Base 

Figure 2.2: Relationships Between DDB Components. 

2.1.3. Homogeneous versus Heterogeneous Distribution 

If all of the local DBMSs in a DDB environment are identical or of the same 

family, the distributed system is homogeneous. The DDB system is 

otherwise said to be a heterogeneous one [Date83; Draf8O]. Booth explains 

why a heterogeneous DDB is occasionally desirable [Boot79]: 
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Probably the most common reason for using unlike computers is that an 
existing centralized computer system requires expansion. One means of 
expansion is to acquire a number of minicomputers, place them in point-of-
transaction locations, and distribute some of the processing and some of the 
data-base(s) to those locations. 

Even if the minicomputers are acquired from the same vendor who supplied 
the central processor, they may not be identical to that computer. Often 
there are good business and/or technical reasons for acquiring the minis from 
a different vendor, and in that case the likelihood of difference is greater. 

A heterogeneous system is likely to be composed of a wide variety of 

local DBMSs, computers from different manufacturers, and/or computers that 

use different communication protocols. Consequently, a heterogeneous DDB 

system is likely to be much more complicated than a homogeneous one. 

A very common solution to a heterogeneous DDB is to construct a 

translator at each node. Each of these translators is capable of interpreting 

back and forth the language (both syntactically and semantically) used by the 

local DBMS and the language used by the DDB system. 

We shall consider only homogeneous DDBs, because: 

(1) With a homogeneous system, we can concentrate better on issues 

regarding data distribution. With respect to the objectives of this 

research, the serious effort that would be required to construct the 

translators would not have been worthwhile. However, the construction 

of such translators that could enable different DBMSs to "talk" to each 

other could in itself be a very interesting, but different, project. 

(2) The 4.2 BSD UNIX provides readily available inter-machine 

communication facilities. 

A number of discussions on heterogeneous DDBs can be found in various 

writings [Adib78; Boot7; Date83; Draf8O; Katz79; Spac8O; Taki8O; Yu85]. 
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User 

NDBMS 

DBMS   Network 

Figure 2.3: CODASYL's NDBMS. 

2.1.4. CODASYL's DDB Proposal 

Because of its conceptual simplicity and its flexibility to allow participation of 

pre-existing data-bases, the front-end concept described is preferred by many 

designers. It is interesting to note that using a similar idea, the CODASYL 

committee has proposed an extension to their DBMS architecture to enable 

data distribution of their systems [Mart81]. A new software layer, called 

NDBMS (Network Data Base Management System), is added to the original 

CODASYL DBMS (Data Base Management System) structure to perform the 

network data manager functions. The NDBMS performs the network data 

management functions. The DBMS manages the local data and has no 

awareness of any other node. 

Quoting from Martin, the NDBMS functions include the following 

[Mart81]: 

• Intercept a user request and determine which nodes to send it to for 
processing. The majority of user requests should use local data and not 
require the NDBMS. These may go to the local DBMS directly or be passed 
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to it by the NDBMS. 

• Access the network directory (which may possibly be remote) for the above 
purpose. 

• If the target data are on multiple nodes, coordinate the use of these nodes. 

• Manage the communication between its node and DBMS's in other nodes. 

• If the data-bases are heterogeneous, provide the necessary translation. 

There are three possible kinds of nodes in the environment envisioned by 

the CODASYL committee [Mart81]: 

• A user node without a data-base, for example, a minicomputer or intelligent 
terminal. 

• A conventional data-base system without the NDBMS or any cognizance of 
data distribution. 

• A full-function distributed data-base node with the NDBMS. 

2.2. OTHER DDB SYSTEMS IN DEVELOPMENT 

It is profitable to examine other DDB systems in development. We shall 

describe two here. They are: SDD-1 from Computer Corporation of America, 

and R* (pronounced "R Star") from IBM. 

2.2.1. SDD-1 

The Computer Corporation of America claims to have built the world's first 

working DDB system - the SDD-1 (System for Distributed Data-bases). 

SDD-1 runs on a collection of DEC PDP-1Os. It employs ARPANET as its 

communication network and can also employ X.25 packet-switching networks. 

It provides full location, fragmentation, and replication transparency. Its 

query optimizer makes extensive use of the semijoin operations [Date83; 

IBM is a trademark of International Business Machines. 
DEC and PDP are trademarks of Digital Equipment Corporation. 
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Date86; Yu85]. 

SDD-1 assumes CPU cost is negligible; its query optimizer minimizes only 

the communication cost involved in a query. This is because the data transfer 

rates of both ARPANET and X.25 are relatively slow and both networks are 

relatively expensive to use. 

SDD-1 was designed for naval command and control applications. It is 

designed to permit a large amount of replicated data, so as to lessen the 

amount of data needed to be transmitted across sites during data accesses and 

to increase the availability and survivability of the information resource, 

particularly when under military attack. The price for this, obviously, is the 

high cost of data updates. 

SDD-1 updates all copies of the data object immediately; the notion of 

primary copy does not apply. Concurrency control is based on timestamping, 

rather than locking, in order to reduce the message overhead. Recovery is 

based on a four-phase commit protocol [Date86], rather than the more 

commonly known two-phase commit protocol [Date86J. The intent is to make 

the process more resilient to a failure at the coordinator site. 

The treatment of the data catalog in SDD-1 is rather unusual: the 

catalog is treated just as if it were ordinary user data. The catalog can be 

arbitrarily fragmented, and the fragments can be arbitrarily replicated and 

distributed. Since the system has no prior knowledge about the location of 

any piece of the catalog, a high-level catalog, called the directory locator, is 

maintained to provide the information. A copy of the directory locator is 

stored at every site. 



17 

SDD-1 handles local issues and distributed issues separately in different 

modules: The DM (Data Module) has the functions of a conventional single 

site DBMS and has no cognizance of distribution problems. The TM 

(Transaction Module) determines the access strategy for handling distributed 

data operations efficiently; it does not access the data directly. One TM and 

up to three DMs can reside at each site. Any node can fail, and the system 

continues to function. New nodes can be added freely. 

No information about the performance of SDD-1 is available. 

2.2.2. 

The R*t project began in early 1979 at the IBM San Jose Research 

Laboratory. R* is an experimental distributed data-base version of the System 

R relational data-base manager. The design and implementation of R* were 

guided by three' objectives [Haas82; Lind85; Yost85]: 

(1) 
(2) 

(3) 

distribution transparency (i.e. easy to use), 
site autonomy, 

good (execution) performance. 

supports the Structured Query Language (SQL). Applications that use 

R* may be written in PL/1, System/370 Assembly Language, or COBOL, by 

embedding "EXEC SQL" statements which define the data-base requests. A 

modified version of QMF (Query Management Facility) allows TSO (Time 

Sharing Option) to make interactive queries. In the current prototype 

implementation, the granularity of data distribution is a single table (i.e. a 

relation). 

t. The star in R* comes from the Kleene Star operator defined by R* = ( , R, RR, RRR, 
RRRR, . . . ). It denotes zero or more occurrences of R [Lind8Ob; Lind8Oc]. 
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The R* prototype system is executed within a COS/VS (Customer 

Information Control System) system running on the IBM MVS operating 

system. It consists of multiple cooperating copies of System R. To achieve the 

distribution transparency objective, R* provides location transparency; end-

users can use SQL just as they do in SQL/DS or DB2 [Yost85]. The current 

version, however, does not support fragmentation or replication, and therefore 

no fragmentation or replication transparency either. 

question of update propagation does not arise. 

In order to provide an alternative to true data replication, a new kind of 

object, called snapshot, is invented in R*. A snapshot is a stored data-base 

object. It contains a recent copy of some other object(s) which is refreshed 

periodically by R*. It is a read-only object. The definition of a snapshot is in 

the form of an arbitrary SQL SELECT query [Date86; Date83; Lind85; 

Yost85]. 

To achieve the site autonomy objective, 

Consequently, the 

each site in an R* system is 

entirely self-sufficient; it does not rely on any form of central service. No site 

has global knowledge about what operations are taking place at other sites 

and individual sites will continue to function despite site and/or 

communication failures [Yost85]. Deadlock detection, recovery, locking, 

catalog management, and compilation are all performed either locally or in a 

decentralized manner. No service is centralized. 

One of the tools to achieve good performance in R* is compilation. In 

R*, SQL statements are compiled into low level programs called access 

modules. Portions of an access module are stored at each site involved with 

the execution of a query. During compilation, data-base object names are 
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resolved, access paths are determined, authorization rights are validated, and 

access plans are distributed to all involved data-base sites. The early binding 

makes it unnecessary to repeat these time consuming operations each time the 

application program is actually executed. Since the code was generated at 

compile time, each site already knows what it should do at execution time. 

Consequently, the control messages required at execution time are very short: 

"startup", "stop", "commit", etc. When an access module is created, its 

dependencies on certain objects are recorded in a system catalog. If one of the 

depended-upon objects is dropped or its access path is changed, the access 

module is immediately made invalid and will be automatically recompiled 

next time it is invoked [Dani82]. 

Query optimization is performed globally by exhaustive search. The 

query optimizer minimizes a cost which is a weighted sum of both messages 

and local processing. 

R also allows users to physically relocate a table (i.e. a relation). By 

placing all the needed data in his local system, a user can avoid the overhead 

of using the communication system when his application is executed. 

Alternatively, a user can create a snapshot of data. 

R* consists of four primary sub-systems Dani82; Haas82]: 

(1) The storage sub-system is concerned with the actual storage and 

retrieval of data, which are represented as relatively low level objects at 

a single site. 

(2) The data communication component provides message passing 

services. 
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(3) The transaction manager coordinates the implementation of multi-site 

transactions. 

(4) A data-base language processor translates programs expressed in 

SQL to operations provided by the communication and storage system. 

Intersite communication between R* sites is via the CICS Inter System 

Communication (ISC) facility. CICS-ISC, in turn, makes use of the Virtual 

Telecommunication Access Method (VTAM) supported by the operating 

system kernel. VTAM itself is an implementation of the IBM Systems 

Network Architecture (SNA) communication protocols. Besides providing the 

facilities to establish and communicate over virtual circuits between processes 

at different sites, VTA.M/SNA also provides support for detecting the loss of 

communication between sites. The network protocols will notify the end 

points of the virtual circuit of any process, processor, switching node, or 

communication line failures. Thanks to this capability, the requesting site is 

informed when an awaited response will not be forthcoming due to a site 

failure or a link failure; time out is not needed and is not used in R*. 

In R*, there exist two kinds of object names: print-name and system-

wide name. Every object has a unique system-wide name, a four-tuple 

identifier, of the form: 

<CREATOR_SITE> © <CREATOR_NAME>. < OBJECT_NAME> © <OBJECT_BIRTH_SITE> 

The <CREATOR_SITE> and <OBJECT_BIRTH_SITE> components of 

the system-wide name are R* data-base site names whose uniqueness is 

guaranteed by measures taken outside of R*. <CREATOR_NAME> is a 

user name which is unique at a particular site. 
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A print-name is a simple unqualified name that users normally use to 

refer to an object. It is either the <OBJECT_NAME> component of the 

system-wide name, or a synonym for that system-wide name. R* resolves 

print-names using synonym tables for each user and name completion 

defaults. 

At each site, a local catalog entry for each object for which it is the birth 

site is maintained. Each site also maintains a local entry for each object for 

which it is the current site. Any inquiry about an object is first directed to its 

birth site. If the current site of an object is different from its birth site, the 

entry of the catalog at the object's birth site will point to the object's current 

site. Any object can be located in at most two remote accesses [Dani82; 

Date86}. 

R*, therefore, does not truly support location transparency per se. When 

a print-name is given, R* simply performs a table lookup for the 

corresponding system-wide name. It acts very similarly to an "alias" naming 

system. At the beginning, the user still has to know at which site the data 

object was born, the name of the creator, and the site where the creator is 

located. 

It is interesting that at the early stage of the R* project, both data 

replication and data partition were under consideration [Bert83; Dani82; 

Haas82]. However, the prototype R* supports neither data replication nor 

data partition [Date86; Lind85; Yost85]. The reasons behind this decision 
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perhaps may best be explained by Lindsay [Lind85]: 

Data partitioning and replication are both quite complex problems with 
serious implications for query optimization and execution strategies. The 
distributed query optimization and execution facilities are near the limits of 
manageable complexity. The implementation of snapshots, a limited form of 
replication, brought us even closer to the complexity limit harrier. While we 
feel that partitioned and replicated data are important and useful features of 
a distributed data-base management system, we realized that a major effort 
would be required to implement such support. 

2.3. AN OVERVIEW OF INGRES 

Before the discussion of the development of FREDI (FRont End for 

Distributing the INGRES system), it is valuable to have a close look at the 

underlying INGRES system. This section highlights some of the important 

aspects of INGRES. 

INGRES (INteractive Graphics and Retrieval System) [Ston76] is a 

relational data-base system developed to run within the UNIX operating 

system environment. A significant portion of the system is written in the 

programming language C. The parser for input commands is generated with 

the help of YAGO [Ston76]. The primary query language is QUEL (QUEry 

Language). Actual retrieval of data is done with the help of the AMI (Access 

Method Interface) language [Ston76]. 

2.3.1. The Basic INGRES Process Structure 

The INGRES process structure constitutes four processes, each carrying out 

different tasks. Processes are initiated by means of a sequence of UNIX 

operations called fork and exec [Ston76]. The operation fork "splits" the core 

image of a program into two copies, while exec "overlays" the existing 

program with a new - one [Kern78; IKern84]. Communication between 

processes is achieved by a message passing mechanism in UNIX called pipe. A 
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pipe is a single directional communication. Information written by one process 

at one end of the pipe can be picked up by a second process at the other end 

[Kern84; Ston76; UNIX84]. A pictorial representation of the INGRES process 

structure is shown in Figure 2.4. 

In INGRES, each process can communicate only with the adjacent 

processes [Ston76]. The corollary of this is the simple control flow within the 

INGRES processes. Commands are passed between processes in one direction 

only, while results and error messages are passed in the opposite direction. 

Also, it follows from the use of pipes that all four processes are fully 

synchronized. This implies that no parallel processing is taking place. At any 

one time, only one of the four processes can be in action - the other three 

remain idle. 

pipe   pipe   pipe 

user process 
1 

User 

Interface 

---4 ---4 ---4 

A B C 
process process process 

2 3 4 
pipe pipe pipe 

4-- 4-- 4--

D parser E decom— F utilities 

position 

Figure 2.4: INGRES Process Structure (After [Ston76]). 
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2.3.2. Interface to INGRES 

There are two ways a user can communicate with INGRES. He can either: 1) 

employ the interactive terminal monitor provided by INGRES and issue QTJEL 

statements interactively, or 2) with the aid of the EQUEL (Embedded QUEL 

interface to C) pre-compiler [Wood79], embed QTJEL statements in a C 

program to provide his own interface. The interactive terminal monitor or 

STEP 1: equel sourcefile.q 

sourcefile.q -- EQUEL 
pre-compiler 

• Output from this step is in sourcefile.c. 

STEP 2: cc sourcefile.c —lq 

sourcefile.c --* 

EQUEL 

object 
library 

a 
compiler 

sourcefile,c 

a.out 

• The —lq option requests the use of EQUEL object library. 
• Output from this step is in a. out. 

Figure 2.5: Interfacing INGRES Using a User Supplied C Program. 



25 

the user supplied C program is represented as process 1 in Figure 2.4. 

The interactive terminal monitor provides the user with a convenient 

means to communicate with INGRES. It maintains a workspace (a temporary 

work-file) which contains the would-be QIJEL commands entered by the user. 

The user is free to edit the contents of the workspace. When the user is 

satisfied with the editing of the workspace, he signals INGRES (by issuing the 

go command) to execute the queries he has entered. When this occurs, the 

contents of the workspace are passed down to the next process (process 2 - 

the command analyzer) as a stream of characters through pipe A. 

Should a user decide to supply his own C program, he first pre-compiles 

the program with the EQUEL pre-compiler, then compiles the output with the 

C compiler. An outline of this procedure is found in Figure 2.5. 

It should be mentioned that there is no performance gain using a 

program constructed with the aid of EQUEL versus invoking INGRES 

interactively. Queries from the program are still interpreted as if they were ad 

hoc statements. Parsing and finding an execution strategy are done at run 

time, interaction by interaction [Ston76]. 

2.3.3. Command Parsing, Integrity and Concurrency Control 

Process 2 contains four main components: 

(1) a lexical analyzer; 

(2) a parser (generated with the help of YACO); 

(3) concurrency control routines 

(4) query modification routines. 

When the would-be QUEL commands arrive at process 2, they are 

immediately analyzed by the lexical analyzer and the parser. If everything in 



26 

the query is legal, a tree structure representation of the query is passed to the 

next process (process 3) through pipe B. If errors are detected in the input 

stream, error messages are passed hack to process 1 through pipe D, and no 

further action will be taken by process 2. 

Whenever necessary, integrity constraints are imposed on queries at this 

time. The integrity control routines impose integrity constraints by actually 

augmenting the QUEL commands. The required integrity control information 

is stored in the data-base in the VIEW, the INTEGRITY, and the PROTECTION 

system relations. As an example, suppose that a user, who is allowed to access 

information about only those employees who are making less than $30,000 a 

year, has issued the following queries: 

range of e is employee 
retrieve (e.all) where e.name="Brown" 

The queries will be modified as this: 

range of e is employee 
retrieve (e.all) where e.name="Brown" 

and e.salary<30000 

Notice that the required qualification(s) is ANDed onto the user's interaction. 

The concurrency control routines are responsible for the control of data 

consistency in the data-base in a multi-user system. The purpose is to ensure 

the serializabilityt of transactions. In the current INGRES implementation, a 

single QUEL command is defined as an atomic unit or a transaction. This 

implies that data consistency is guaranteed within a single QUEL statement. 

To support a single QUEL statement as an atomic unit is relatively 

simple., according to Stonebraker [Ston76], one of the INGRES designers. It 

If a number of transactions that are executed concurrently are serializable, this means 
the the final result would be the same as if the transactions are executed one after the other, 
one at a time, in some order [Adib78; Date83; Lann8O; Mart81]. 
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can be achieved by physical locks on data items, pages, tuples, domains, 

relations, etc. Alternately, it can also be achieved by predicate locks. 

Currently, it is done by physical locks on domains of a relation. Deadlocks 

are prevented rather than detected: this is done by not allowing an interaction 

to proceed to process 3 until it can lock all required resources. 

The possibility of supporting scopes other than a single QUEL statement 

as an atomic unit has also been considered. The analysis is as follows: If 

something smaller than a QUEL statement is chosen as an atomic unit, then 

the result from the execution of two QUEL statements may not be repeatable. 

This is obviously undesirable. For something larger than a single QUEL 

statement, there are three alternatives: 

(1) A collection of QUEL statements with no intervening C code. 

(2) A collection of QUEL statements with C code but no system calls (such as 

fork and exec). 

(3) Any arbitrary EQUEL program. 

Stonebraker [Ston76] expresses that choice 3) would be impossible to 

implement. If transaction T2 is forked from transaction Ti, and both Ti and 

T2 are running concurrently, it is possible that the update in T2 may conflict 

with the update in Ti. Prior to the fork, there is no way to tell the conflict 

between Ti and T2, since the form of update in T2 is not known in advance. 

Choice 2) is achievable, but it would be very complex to do so. The 

concurrency control routines would be very difficult to write. Moreover, it 

would be difficult to enforce in the EQUEL translator unless the translator 

parsed the entire C language. Choice i) can he implemented relatively easily, 
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but Stonebraker maintains that due to the lack of requests from users, it has 

not been implemented. 

2.3.4. Query Processing 

Query commands in QUEL include four commands: RETRIEVE, REPLACE, 

DELETE, and APPEND. Process 3 is essential to the processing of these 

commands. 

Any update command (REPLACE, DELETE, or APPEND) is first turned into 

a RETRIEVE command in order to isolate the tuples to be changed. Copies of 

modified tuples are stored in a temporary spool, and the actual update is 

deferred to be processed by the deferred update processor in process 4. 

Other commands, such as CREATE, DESTROY etc. are classified as utility 

commands and are simply passed along to process 4 without any processing. 

The evaluation of a query is achieved by alternating between the 

following procedures [Ston7t3; Wong76]: 

(1) The reduction procedure decomposes a query involving more than one 

variable into a sequence of sub-queries, each with one or no variable in 

common. Partial results are accumulated until the entire query is 

evaluated. 

To explain this, the author borrows the example given by Wong 

Wong76]. Consider a data-base with three relations: 

Supplier (Snum, Sname, City) 
Parts (Pnum, Pname, Size) 
Supply (Snum, Pnum, Quantity) 
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and a Query Q: 

range of (S, P, Y) is (Supplier, Parts, Supply) 
retrieve (S.Sname) where 

(S. City = 'New York') 
and (P.Pname = 'Bolt') 
and (P.Size = 20) 
and (Y.Snum = S.Snum) 
and (Y.Pnum = P.Pnum) 
and (Y.Quanity > 200) 

The first detachment might be a restriction on Parts in Q being 

replaced by: 

Qi: 
range of P is Parts 
retrieve into Partsl (P.Pnum) where 

(P .Pname='Bolt') 
and (P.Size=20) 

Q': 
range of (5, P, Y) is (Supplier, Partsl, Supply) 
retrieve (S.Sname) where 

(S.Oity='New York') 
and (Y.Snum=S.Snum) 
and (Y.Pnum=P.Pnum) 
and (Y. Quantity> 200) 

Note that the variable P.Pnum is common to both Qi and Q'. When a 

query is detached, there may or may not be such a variable common to 

both subqueries. The same detachment procedure is carried out 

repeatedly to each sub-query until each sub-query contains only one or 

two variables in the qualification part; in which case the sub-query/query 

is in the "non-reducible" form [Wong76]. 

(2) The tiiple substitution step replaces a query involving two variables with 

a set of queries by replacing one of the variables with all its possible 

values. To illustrate this, the author again borrows another example 
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given by Wong [Wong76]. Consider the query: 

Q: retrieve (S.Sname) where (Y.Snum=S.Snum) 

Suppose that at this point Y.Snum is the projection: 

Snum 

101 
107 
203 

Then, successive substitution of Y yields: 

Q(101): retrieve (S.Sname) where (S.Snum=101) 
Q(107): retrieve (S.Sname) where (S.Snum=107) 
Q(203): retrieve (S.Sname) where (S.Snum=203) 

(3) Any query that involves only one variable is handled by the One 

Variable Query Processor (the OVQP). The OVQP module is 

concerned solely with the efficient accessing of tuples from a single 

relation given a particular one-variable query. It therefore handles queries 

such as: 

retrieve (S.Sname) where (S.Snum=101) 
retrieve (P.Pnum) where (P.Pname=cBoIt) and (P.Size=20) 

The reason for using this algorithm is to restrict the size of the cross-product 

space needed to be searched [Jark84; Ston76; Wong76]. Effective execution of 

the above procedures is extremely crucial to the overall performance of system 

query processing. 

2.3.5. Deferred Update and Utility Command Support 

Process 4 in Figure 2.4 is comprised of two components: utility command 

supporting routines and deferred update routines. 
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As previously discussed, any update to the data-base is handled by first 

writing the tuples to be added, changed, or modified into a temporary file 

before any actual physical updating is done. Upon the completion of process 

3, the deferred update processor in process 4 becomes active, and performs 

the actual modifications requested and any updates to secondary indices 

which may be required as a final step in processing. Data integrity and the 

ease of control flow are among the main reasons for choosing the deferred 

update strategy [Ston76]. 

To explain how the deferred update procedure works, it is appropriate to 

quote Stonebraker [Ston76]: 

The deferred update file provides a log of updates to be, made. Recovery is 
provided upon system crash by the RESTORE command. In this case the 
deferred update routine is requested to destroy the temporary file if it has 
not yet started processing it. If it has begun processing, it reprocesses the 
entired update file in such a way that the effect is the same as if it were 
processed exactly once from start to finish. 

Hence the update is "backed out" if deferred updating has not yet 
begun; otherwise it is processed to conclusion. 

Stonebraker [Ston76] also points out that despite its conceptual and 

procedural simplicity, deferred update is a very expensive operation. 

The utility command supporting routines are organized into several 

overlay programs. Required overlays are brought into the memory as needed. 

This is due to the fact that during the development of INGRES, there was not 

enough memory in the machine to hold all of the utility command supporting 

routines. Most of the utility supporting routines update or read the system 

relations by making AIvII (Access Method Interface) calls. This section of the 

process is concerned with the support of commands such as CREATE, COPY, 
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PRINT, etc. The contents of the utility supporting routines are otherwise 

trivial, and require no further elaboration. 



CHAPTER 3 

GENERAL DESIGN AND STRUCTURE OF FREDI 

FREDI (FRont End for Distributing the INGRES system) is the front-end 

system developed for this research. FREDI can couple with a number of 

INGRES systems and function as a DDB system. It was developed on the 

network of four VAX-11/780's at the Department of Computer Science. Each 

VAX is running a 4.2 BSD UNIX operating system. The network is a ring-type 

network. INGRES is employed because it is a good data-base system and 

because of its availability on the UNIX operating system. 

This chapter presents an overview to the design and the basic process 

structure of FREDI. 

3.1. DESIGN OBJECTIVES 

The first objective of this research is to build a DDB system that will be 

practical to use. In this regard we have to be concerned with how easily a user 

will adapt to the DDB system, as well as the performance of the DDB system. 

The second objective of this research is to investigate the following issues due 

to data distribution: 

• data replication, 

• site autonomy, 

• site recovery, 

• inter-site communication, 

• query processing, 

• concurrency control. 

33 
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With respect to the second objective, the DDB system must be flexible, 

modular, and relatively easy to change so that it can be used as a testing 

ground. 

Influenced by the above, the basic design of FREDI has five objectives: 

• Ease of use. 

FREDI should provide the user with a "single system image". An INGRES 

user should be able to use FREDI right away without necessarily having 

an awareness of data distribution. 

• Site autonomy. 

Each site should be self-sufficient. When a site fails, the only effect it 

should have on the DDB system is that the data in the failed site become 

inaccessible. The operation of other sites should not be otherwise 

affected. 

• Response time. 

Most prototype DDB systems have a reputation of being slow; therefore 

it may be difficult to expect a "miracle" from FREDI. However, since 

FREDI is an interactive system, its response time should be at least within 

a tolerable limit. 

• Site failure resilience. 

It is desirable that a DDB system should not be affected by site failures. 

FREDI should provide a degree of site failure tolerance. Data should 

continue to be available even after a site or some sites have failed. 

• Modularity. 

FREDI should be highly modular. Old commands should be easily 

enhanced and new commands should be easily added. If desired, a new 
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query processing strategy should be able to be employed without 

substantially changing the complete system. 

3.2. A GENERAL DESCRIPTION OF FREDI 

From the users' point of view, it might appear that a DDB system should 

support as many features as possible, and should give the users as much 

freedom as possible. However, in practice this may not be desirable. The 

more features a DDB system supports, and/or the more freedom a DDB 

system grants to the users, the more complex the DDB system becomes. 

On the other hand, if a DDB system supports too few features and/or is 

too restrictive, the DDB system would not be very useful. 

An important key to a good and viable DDB system therefore is to seek 

the right balance between the support of features and system complexity. 

During the development of FREDI, many features and design alternatives 

were considered, and admittedly some of the decisions have been difficult. The 

direct result of these decisions is the external model of FREDI. It is 

summarized as follows: 

Relationship between FREDI and INGRES. 

FREDI acts as a front end to INGRES. When a user "logs-on" to FREDI, he 

"logs-on" to the particular FREDI DDB he specifies. In general, a FREDI 

DDB X is composed of the local INGRES data-bases X 1, X 2, . . . , 

X W 

located at sites S ' S1, . . . , S, respectively,, each with the INGRES 

data-base name X. 

In fact, the data-base system that FREDI couples with does not have 

to be a genuine INGRES system. With appropriate minor adjustments, 
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FREDI can (at least theoretically) couple with any data-base system as 

long as the primary query language of the data-base system is QIJEL. 

All actual retrievals and updates to the data in the local data-bases 

are handled by INGRES; FREDI handles only issues regarding distribution. 

• Choice of query language. 

The query language of FREDI is QUEL. This is consistent because the 

query language of INGRES is QTJEL. Although other languages such as 

SQL [Date86] are also possible, adapting another query language would 

make FREDI more complicated to implement and may not be desirable. 

• Granularity of data distribution. 

The granularity of data distribution in FREDI is a single relation. In a 

relational environment, this is an obvious logical choice to preserve 

simplicity. 

• Data replication. 

Generally, there are two reasons for data replication: 1) performance, and 

2) data availability/survivabilIty. The support of data replication in 

FREDI is mainly for the latter reason. There are two reasons for this 

decision: 1) FREDI should be site failure resilient. 2) In a local area 

network environment, such as the one at the Department of Computer 

Science, the notion of a "near-by" site generally does not apply. 

Furthermore, it has been shown that to locate the nearest copy of the 

requested data in a multi-site environment is an NP-complete problem 

[Herv7O, Yu84]; it is a complicated problem. The development of an 

algorithm that will identify the nearest site in a network will necessitate 

separate research. 
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To preserve simplicity, FREDI allows a maximum of only two copies 

for every relation. This provides single-site failure tolerance. 

• Data fragmentation (data partition). 

Although data fragmentation is an interesting form of data distribution, 

FREDI does not support data fragmentation. This is because of the 

enormous complexity that can be introduced. As Lindsay [Lind85] points 

out, support of data fragmentation requires very serious design and 

implementation effort. 

• Notion of primary copy. 

The notion of primary copy [Ston77; Ston8Ob; Date83] applies in FREDI. 

When a relation has two stored representations, one of the copies is 

designated as the primary copy, and the other as the secondary copy. 

Any data update is directed to the primary copy at the first instance. 

Data retrieve is directed to the local copy if there is one, otherwise it is 

directed to the primary copy. If one of the copies becomes unavailable, 

data reference is directed to the other copy (either primary or secondary) 

for both data update and data retrieval. 

• Location and replication transparency. 

FREDI provides both location transparency and replication transparency. 

There are two reasons behind the support of these features: 1) One of 

our objectives is to provide the user with a "single system image". 2) A 

DDB system that provides location transparency and/or replication 

transparency is more flexible and more general. 

• There is no need for fragmentation transparency because there is no 

data fragmentation in FREDI. 
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• Site autonomy and site recovery. 

It is always desirable that a DDB site should be highly autonomous. 

Each FREDI site is self-sufficient. The failure of one site does not 

interfere with the operations in other sites. When a "down" site 

recovers, the recovering site automatically reconciles the data in its local 

data-base and the data in other "up" sites. 

We shall assume only "clean" crashes (not the ones considered to be 

Byzantine failurest). 

• Network partition. 

FREDI cannot cope with network partition. In any distributed system, it 

is impossible to distinguish a link failure from a remote site failure 

automatically. When a site cannot be reached, FREDI always assumes a 

site failure. 

• Concurrency control and unit of a transaction. 

As a multi-user system, FREDI guarantees data consistency within a single 

user issued QUEL statement. In effect, one QIJEL statement is defined as 

an atomic unit or a transaction. This is a consistent and obvious 

choice since one QTJEL statement is defined as an atomic unit in INGRES. 

FREDI uses logical locks for concurrency control. Deadlock is prevented: 

the processing of an input command will not be executed unless the locks 

bn all of the required resources can be acquired. 

clean failure means a detectable failure. When it occurs, the site simply stops 
running. If a Byzantine failure occurs, the site continues to run after the crash, but performs 
incorrect actions [Bern84]. 
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3.3. PROCESS STRUCTURE 

A significant portion of FREDI is written in the programing language C. This is 

because C is the primary host programing language in UNIX. Some routines 

are constructed with the assistance of EQUEL. YACO is employed to assist the 

construction of parsing routines. LEX is used to assist the construction of the 

user interface - the interactive terminal monitor. 

All inter-process communications between FREDI processes are provided 

by a 4.2 BSD UNIX facility call socket. The communicating processes may be 

on the same machine, or they may be on different machines. Sockets are also 

used to provide communication between FREDI and INGRES. Due to the data 

communication requirement, FREDI therefore requires each participating site 

to run a 4.2 BSD UNiX or compatible operating system. 

The source listing for the complete prototype FREDI is over 10,500 lines. 

There are altogether seven (7) distinct FREDI processes. The names and the 

sizes of these processes are listed in Table 3.1. 

Name of Process Size of Process (in kilobytes) 

interactive terminal monitor 41 
input-analyzer/utility-processor 79 
query-processor 68 
three-way message relay process 32 
network handler 59 
slave process 46 
lock-server 34 

Table 3.1: Names and Sizes of all FREDI Processes 
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In addition to the seven processes, there is a utility process called 

setupddb, for setting up an. INGRES data-base so that it can be used as a 

FREDI local data-base. The size of this process is about 31 kilobytes. This 

process is provided for convenience only. 

FREDI operates under a master-slave model. We shall refer to the site 

where the query is originated as the master site, and each remote site as a 

slave site. In effect, the site where the user logs on is the master site. The 

master site takes full control of all distributed actions, while a slave site 
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Figure 3.1: A Three Site Example of the Master-Slave Model. 
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merely acts passively as instructed by the master site. Compared to a model 

where all sites are equivalent, the master-slave model offers very high 

centralized control. This seems to be desirable because centralized control 

appears to be very straightforward. 

FREDI 
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Interactive terminal monitor 
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three-way message relay process 

"Master" User Slave Server 

"Slave" User Slave Server 

Figure 3.2: FREDI Process Hierarchy. 
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According to their roles and their volatility in memory, FREDI processes 

can be divided into two groups: 

(1) system process group (created only at site start-up time), and 

(2) user process group (created dynamically as needed). 

For each DDB, a system process group remains active at each 

participating machine at all times, whereas an appropriate user process group 

is created at each site each time a user "enters" FREDI. All user process 

groups (one at each site) that belong to the user are destroyed when the user 

leaves FRED!. In other words, for each DDB at any time, each site has only 

one system process group but may have many user process groups - 

depending on the number of users that are using the DDB at the time. 

3.3.1. The System Process Group 

Each system process group is initiated at the site start-up timet at each site, 

and remains active until the site crashes. 

A system process group is shared among users. Each system process 

group is composed of the following three processes: 

(1) A network handler. 

(2) A system slave server. 

(3) A lock server. 

The network handler is initiated first among the three processes. The 

lock server and the system slave server are initiated by a series of fork and 

exec operations, originated at the network handler. 

In order that FREDI be (re)started automatically whenever UNIX is rebooted, FREDI must 
be arranged as part of INGRES. This can be done, but requires special arrangements. As it 
stands, FREDI requires a manual (re)start. 
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The network handler contains four subsystems: 

(1) The communication subsystem is responsible for relaying messages 

between local user process groups and remote network handlers. 

(2) The user slave server initiator starts up a slave server process upon 

request. 

(3) The reliability subsystem continuously monitors remote sites for failures. 

When a remote site failure, is detected, it records this fact in the DDB 
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Figure 3.3: FREDI System Process Group Processes. 
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directory at the local site. 

(4) The recovery subsystem is responsible for performing any recovery 

actions to the content of the local data-base during recovery time. 

Since these subsystems have many functions in common, it makes sense 

to combine them in a single process. 

The system slave server is a "passive" process. It is essential to the 

reconciliation of the content of the local data-base at a failed site and the 

local data-bases at other sites when the failed site recovers. It should be 

pointed out that a system slave server process and a user slave server process 

are identical processes. 

The lock server is vital to the concurrency control of the data-base; in 

particular, it performs "test-and-set" operations - it logically locks and 

unlocks a relation on request. For each local data-base there is one lock 

server. 

3.3.2. The User Process Group 

User process groups can be sub-divided into two kinds: 

(1) master user process group; 

(2) slave user process group. 

Every time a user enters FREDI, a master process group is created at the 

site where the user logs on (the master site). Corresponding to this master 

process group, a slave process group is created at each active remote site (the 

slave sites). 
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3.3.2.1. At the Master Site 

Each master user process group contains the following collection of processes: 

(1) An interactive terminal monitor. 

(2) An input-analyzer/utility-processor. 

(3) A query-processor. 

(4) A three-way message relay process. 

(5) A "master" user slave server. 

The relationship between the processes within a master user process 

group is illustrated in Figure 3.4. 

The interactive terminal monitor is the process first created when a new 

master process group is invoked. After the interactive monitor finishes the 

status check (existence of the DDB, locating the necessary system information, 

etc.), through a series of fork and exec operations, the rest of the processes are 

then created, one at a time. 

The interactive terminal monitor is constructed with the aid of LEX. 

It buffers the user input in a temporary file, and allows the user to edit the 

content of the buffer. 

The input-analyzer/utility-processor is constructed with the help of 

YACO. When there is user input arriving from the interactive terminal 

monitor, the input is analyzed for any syntactical errors. If an error is found, 

a message indicating this fact is sent back to the interactive terminal monitor 

and no further action occurs. In this case, the rest of the input in the input 

stream is also disregarded. 

On the other hand, if a statement is considered syntactically correct, the 

statement is identified as a utility command (such as CREATE, PRINT, etc.) or 
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a query command (either RETRIEVE, APPEND, DELETE, or REPLACE). If the 

statement is a query command, it is passed onto the query-processor for 

further processing. If the statement is a utility command, the appropriate 

utility routine(s) is invoked. The routine(s) checks for semantic correctness of 

the command and eventually performs the required actions if everything is 

correct. 

The query-processor is also constructed with the aid of YACC. When a 

query command is passed down from the input-analyzer/utility-processor, the 

query-processor checks for the command's semantic correctness. If no error is 

found, the appropriate query processing routine(s) is invoked to perform 

whatever the query command requires. 

The input-analyzer/utility-processor and the query-processor could have 

been built as a single process. In terms of execution efficiency this might be 

better since a query command would not have to be parsed twice. However, 

separating them into independent processes has one important advantage: 

since the query-processor is built independently, query processing strategy can 

be enhanced or even changed completely without any change in the rest of 

FREDI. 

Because of their special roles in actually coordinating the distributed 

actions required, we shall indistinctly refer to both the input-analyzer/utility-

processor and the query-processor as the distributed action coordinator in 

the rest of this thesis. 

The existence of the "master" user slave server enables instructions 

issued by the distributed action coordinator to be executed locally as if they 

were instructions to be executed at a remote site. We shall explain what this 
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means in further detail when we explain "Monolithic View of Sites" in section 

3.6. 

The three-way message relay process "relays" messages between the 

network handler, the master user slave server, and the distributed action 

coordinator (i.e. either the input-analyzer/utility-processor or the query-

processor). It recognizes from which of the three processes a message comes 

when the message is intercepted. Using this information, and by "peeking" at 

the content of the message, the three-way message relay processor determines 

which one of the three processes should receive the message. The message is 

then routed to the appropriate process. The three-way message relay process 

is also part of the system that enables the distributed action coordinator to 

have a "monolithic view of sites". 

3.3.2.2. At the Slave Site 

At each slave site, the slave user process group constitutes only one process - 

the "slave" user slave server. Each one is dedicated to a corresponding 

master user process group. 

3.3.3. Responsibilities of a Slave Server 

The following are the services that a slave server provides (remember that the 

system slave server, the "master" user slave server, and the "slave" user slave 

server are identical processes): 

(1) Submit one or more given QTJEL statements to the local INGRES and run 

them. If instructed, the results from the INGRES execution of these QUEL 

statements are also forwarded back to the requestor. 
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(2) Receive the incoming (raw) data from the network and store the data in 

the system temporary file (a temporary file with a guaranteed unique file 

name). 

(3) Send the content of the system temporary file to the slave server at a 

specified remote site. 

(4) Copy the content of a specified file to the system temporary file, and vice 

versa. 

(5) Invoke the local lock server to lock or unlock a specified local relation. 
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(6) Retrieve the names and the attributes of the domains of a specified local 

relation from the local INGRES data directory, and forward the result to 

the requestor. 

The fact that a slave server is placed in every site and that a QUEL 

statement can be submitted to the local INGRES through a slave server is very 

useful. During the query processing time, all the master site (this implies the 

distributed action coordinator) needs to do is to formulate the appropriate 

QUEL statements, send them to the correct sites, and run them at the local 

INGRESes. 

Since a slaver server knows what its responsibilities are, the messages 

passing to and from it can be expressed at a very high semantic level - 

instead of shipping the complete procedure which indicates how things should 

be done, only the instruction indicating what needs to be done is transmitted, 

such as: "run that QUEL statement", "lock that relation". Consequently, the 

sizes of the messages are generally very short. 

3.3.4. Cost of Idle Processes 

Although it is extremely likely that many of the processes in a FREDI system 

will remain idle most of the time, one should remember that an idle process 

does not contribute much cost. In a virtual memory operating system, such as 

UNDC, an idle process is likely to reside on disks. 

3.4. USER INTERFACE 

FREDI provides its own interactive terminal monitor for an user interface. 

However, there is no way for a user to provide his own C program as an 

interface to FREDI. If it were desirable to achieve such an objective, it could 
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Command Abbreviations Meaning 

append a append input to the current workspace 
clear c clear the terminal screen 
ed e edit the current workspace using the user's 

default text editor 
emacs em edit the current workspace using the UNIX 

text editor emacs 
fred f edit the current workspace using the UNIX 

text editor fred 
go g execute content of the current workspace 
reset r clear the current workspace 
shell sh, s escape to default shell 
print p print content of the current workspace 
write w copy the current workspace to a file 

Table 3.2: A List of the Supported Monitor Commands 

be accomplished by constructing a pre-compiler like that of EQUEL and 

provide a library of necessary C subroutines to accompany it. 

FREDI's interactive terminal monitor behaves very similarly to the one 

provided by INGRES. This is desirable because a regular INGRES user will 

probably feel very comfortable with FREDI. Since some INGRES monitor 

commands are time consuming and/or difficult to implement, only the most 

often used subset of INGRES monitor commands are incorporated in FREDI. 

Hence, the following monitor commands are omitted: list, eval, time, date, 

chdir, include, read, branch, and mark. On the other hand, three new 

commands: emacs, fred, and clear, are added to make input editing easier in 

FREDI. It is interesting how easily these convenient features can be 

incorporated into the interactive terminal monitor. A list of the FREDI 

supported monitor commands is tabulated in Table 3.2. 
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3.5. QUERY PROCESSING STRATEGY 

FREDI does not attempt to optimize the execution of a query. In fact, its 

query execution planning strategy is rather simple. It works as follows: 

(1) Before any action is being carried out for a query, FREDI first determines 

the target site of the query - the site where FREDI thinks the execution 

of the query should actually take place. 

(2) FREDI creates an image relation for each required relation that does not 

have a stored representation (either the primary or the secondary copy) 

in the target site. This involves shipping the contents of the required 

relations to the target site and making copies of these relations at the 

target site. 

The query is executed at the target site. 

If this is an update, and the relation to be updated is replicated, the 

secondary copy of the relation is updated accordingly. This is done either 

by sending all the changes of the relation to the secondary site, or by 

sending a complete copy of the relation to the secondary site. 

All the "image relations" are destroyed. 

(3) 

(4) 

(5) 

Although the query processing strategy used by FREDI is simple, it does 

have the advantage of handling complex queries rather easily because it takes 

advantage of all the query processing power of INGRES. Some QUEL features, 

such as aggregates, may be very difficult to support if the queries are handled 

in a truly distributed fashion. Furthermore, substantially more control 

messages would be required if queries were handled in a distributed fashion. 
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Unlike R*, queries in FREDI are processed within a single phase, rather 

than separated into "compile" and "run-time" phases. It may be appropriate 

to say that queries in FREDI are interpreted. 

In R*, the basic idea is to get as much work done as possible during 

compile time, so as to reduce the amount of work needed to be done during 

run-time. This is feasible only because the majority of the SQL statements 

expected are to be expressed as embedded SQL statements in host language 

programs written in PL/l, COBOL, and assembly language. Perhaps for this 

reason, there is therefore no mention of the performance of R* when SQL 

statements are issued interactively through QMF (Query Management 

facility). 

Compared to R*, the processing of queries in FREDI is handled in a very 

centralized manner. All verification of the existence and the availability of 

the resources required is carried out at the master site, with the only 

exception being the verification of the existence of a UNIX file at a remote site. 

During the time distributed actions are taking place, even though the 

distributed actions may be carried out at different remote sites, the master 

site still maintains a tight control on the progress of these actions. This 

fundamental manner of handling queries is desirable because very high site 

autonomy can be obtained this way. Admittedly, the master site may be 

considered to have lost its site autonomy momentarily during the period when 

distributed actions are carried out, since the execution at the master site 

depends on the execution at another site. However, this seems to be inevitable 

in any distributed system. 
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3.6. MONOLITHIC VIEW OF SITES 

According to the FREDI architecture just described, for every "user" there is a 

slave server at every site (i.e. at both master and slave sites). 

The existence of a slave server at every site, and the three-way message 

relay process at the master site, enables the distributed action coordinator to 

maintain a monolithic view of sites when it coordinates distributed actions. By 

"monolithic view" we mean that as far as the distributed action coordinator 

is concerned, any site is a remote site - including the local site (i.e. the 
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master site). A distributed operation is always considered to be carried out 

"remotely", whether the operation is actually being performed locally or at a 

genuine remote site. 

The notion of local site is important during query optimization time. 

However, it is sometimes an undesirable complication to maintain a view that 

distinguishes a local operation from a remote operation during the time 

distributed actions are being carried out. If the "local site" notion is 

maintained, then every time the distributed action coordinator issues a 

distributed operation, it has to check if the operation is a local or a remote 

one. Any remote operation is forwarded to the slave server at the appropriate 

remote site, but a local operation must otherwise be taken care of by the 

distributed action coordinator itself. One can easily imagine the 

complications that can arise when a file is needed to be transported from site 

A to site B, when either site can be the local site, or when neither one is the 

local site. 

In FREDI, the distributed action coordinator is logically being placed in a 

virtual control site when the distributed actions are being carried out. This is 

very handy. The distributed action coordinator simply issues "action 

instructions" to appropriate "remote" sites (including the master site), and 

monitors the progress of these distributed actions, without actually involving 

itself in a single action. Consequently, the basic procedure to carry out 

distributed actions is very simple: 1) Send an "instruction" to the site-n user 

slave server (can be master or slave), 2) Wait for the "complete" reply from 

the site-n user slave server, 3) Repeat step 1 and step 2 until all required 

distributed actions are completed. The virtual control site, of course, is only 
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an imaginary site (i.e. an abstraction), and therefore no distributed action is 

needed to be performed there. 

3.7. DATA DIRECTORY 

FREDI's data directory contains information concerning the location or 

locations of where a relation is physically stored, the current availability 

status of the relation, and the names and the attributes of the domains of the 

relation. 

FREDI's data directory is stored as INGRES user relations. This has two 

advantages. First, users may query the system data directory using the same 

query language that is used for other relations. Second, the data directory 

may be maintained by the same recovery and storage facilities as the rest of 

the data in the system. 

The cost for storing the data directory as user relations is perhaps slower 

response time. Every reference to the FREDI data directory is an INGRES query 

operation; each takes about one second to complete. 

The data directory is also fully replicated - each site maintains its own 

copy. Fully replicating the data directory at each site provides very high site 

autonomy, but at the expense of higher overhead during updates to the data 

directory. However, since in FREDI it is expected that the content of the data 

directory should be relatively stable, the site autonomy benefit seems to 

outweigh the extra cost required to update the data directory. 

3.8. PARALLELISM 

FREDI does not utilize parallelism during query processing time. The only time 

FREDI performs in parallel is when the copies of the data directory are 
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updated at every site, such as in CREATE, BACKUP, or DESTROY operations. 

The reasons why parallelism is not utilized during query processing time 

are: 

(1) To be able to utilize any parallelism during query processing time, an 

immediate prerequisite is the availability of a very elaborate and 

sophisticated parser or analyzer that can analyze the input queries to 

figure out what to do. Preferably the parser is recursive and is able to 

generate the intermediate parallel action steps for the input queries 

recursively. 

However, parsers generated with the assistance of YACO are non-

recursive, and therefore using such a parser to generate the necessary 

intermediate parallel action steps for the input queries may be difficult. 

The following illustrates some of the difficulties: A RETRIEVE statement is 

sub-divided by the parser into two or more smaller RETRIEVE statements, 

which are to be executed in parallel. However, it is possible that some or 

all of these RETRIEVE statements generated can be sub-divided into finer 

granularities. To be able to figure this out, the same parser that parses 

the original RETRIEVE statement must be called for to parse each of the 

sub-divided RETRIEVE statements. In this case, recursion of the parser is 

required; an attribute that a parser generated with the aid of YACO does 

pot possess. 

Although a recursive-descent parser may be constructed using C, 

such a parser would be very complex and would require serious 

implementation effort. 

A parser generated with the aid of YACC uses LAI1R parsing method to parse input. 
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(2) The research community is still in search of a query processing strategy 

that will utilize parallelism well. The research on processing queries in 

parallel is still in its infancy. The problem of processing queries in 

parallel is an interesting but complex one, and the investigation of it 

should be done in separate research. Some pilot works in this area have 

been done by Apers, Hevner, and Yao [Aper83], Daniels et al [Dani82], 

Hevner and Yao [Hevn79], Yu and Chang [Yu84], and Yu et al EYu85]. 

(3) It is much harder for a central control site to have a tight control on the 

progress of distributed operations if they are to be carried out in parallel 

at different sites. 

3.9. MODIFICATIONS TO QUEL 

Since QUEL was not originally designed for distributed environments, it is 

necessary to somewhat modify the original QUEL in order to adapt it to a 

distributed environment. Some of the original QUEL commands have to be 

altered semantically and/or syntactically, and some new ones have to be 

added. All the changes are upward compatible with the original QUEL: Query 

statements formatted according to the original syntax of QUEL are acceptable 

to FREDI. The design of these commands has been very carefully considered 

and the existence of each one is extremely vital to the usability of a DDB 

system. The following is a summary of all the changes (note: each optional 

parameter is enclosed by a pair of braces "{ }"): 

. The modified syntax of the copy command: 

copy relname (domnamel = format {, domname2 = format}) 
direction "filename" {at sitename} 
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With the "at sitename" parameter, it is possible to specify at which site 

the target file is/should be located. If this option is omitted, the master 

site (i.e. the site where the user is) is assumed. The location of the target 

file can be at any site, and has no relation to the location of where the 

relation is stored. 

If the target file cannot he created or cannot he found, it is 

considered to be an execution error. 

• The modified syntax of the create command: 

create relname {at sitename} 
(domnamel == format {, domname2 = format}) 

Again, with the "at sitename" parameter, it is possible to specify at 

which site the new relation is to be situated. And again, if this parameter 

is missing, the master site is assumed. The name of the new relation 

must not already exist within the FREDI DDB. The created copy of the 

relation is considered to be the primary copy of the relation. 

• The modified destroy command: 

destroy relname 

The destroy command destroys the specified relation regardless of 

whether the relation is replicated or not. The entries describing the 

relation in the FREDI data directory are also deleted. To simplify the 

complexity of the site recovery procedure, if a relation is replicated, the 

relation can be destroyed only when both of its stored representations are 

accessible. 



60 

. The modified help command: 

help {relname} 

This is a distributed extension of the INGRES help command. If the 

command is issued without a relation name, the information returned 

includes the names of all the relations in the FREDI DDB, and the 

locations of their stored representations (primary and secondary). 

If a particular relation is specified, then the information about that 

relation is listed. The information includes all of the relation's domains' 

names, the domains' attributes, and where the primary copy and the 

secondary copy of the relation are stored. If the specified relation does 

not exist in the FREDI DDB domain, it is considered to be an execution 

error. 

Syntax of the new command move: 

move relname {(primary-or-backup)} to sitename 

Since FREDI supports data replication, the "(primary-or-backup)" 

parameter specifies which copy of the relation (relname) is to be moved. 

If this optional parameter is omitted, the primary copy is assumed. The 

move must not result in a situation such that both the primary and the 

secondary copy of the relation will end up in the same site. It is a 

semantic error if a user tries to do so. The "to sitename" parameter 

specifies the destination. 
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Syntax of the new command backup: 

backup relname {at sitename} 

The "at sitename" parameter specifies where the secondary copy of the 

relation should be located. If it is omitted, the master site is assumed. 

FREDI currently allows only one secondary copy for each relation. The 

backup operation must not result in both the primary copy and the 

secondary copy of the relation being in the same site. It is considered to 

be a semantic error if a user tries to do so. 

Syntax of the new command unbackup: 

unbackup relname 

This command removes the secondary copy of a relation. If the relation 

does not have a secondary copy, no action will be performed by FREDI, 

and it is not considered to be an error. To simplify site recovery 

procedures, for a replicated relation, this command can be executed only 

when both the site holding the primary copy and the site holding the 

secondary copy are connected and operational. 

• Syntax of the new command switch—primary: 

switch—primary relname 

If a relation has two stored representations, then after this command the 

old primary copy will become the secondary copy, and the old secondary 

copy will become the new primary copy. There will be no effect if the 

relation does not have a secondary copy, and in such a case it is not 
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considered to be an error in any way. 

. The modified syntax of the retrieve command: 

retrieve {{into} relname {at sitename}} (target—list) 
{where qual} 

This is basically a distributed extension to the original retrieve 

command as defined in INGRES. 

If the "retrieve into" option is used, one can also optionally specify 

where (i.e. at which site) the result relation should be stored. If the "at 

sitename" parameter is omitted, the master site is assumed. The new 

relation must not already exist within the FREDI DDB. 

. Syntax of the new command upsite 

upsite 

The response to this command is a list of the names of the sites that are 

currently connected and operational. 

One should notice that the above commands do not require the user to 

know where a relation is stored or if it is replicated. Here we demonstrate 

how location transparency and replication transparency can be expressed in a 

query language. 

3.10. USAGE RESTRICTIONS 

If a FREDI DDB relation is replicated, FREDI cannot guarantee data integrity 

of the relation if a user tries to update any of the representations of the 
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relation directly through INGRES. It is likely that the two copies of the 

relation will not be identical after the change. 

FREDI maintains its own data directory in each local (INGRES) data-base 

as regular user relations. It is important that the integrity of this information 

be maintained. FREDI cannot function properly if such information is 

corrupted. 

One also should not by-pass FREDI to create or destroy relations in a 

local data-base. Such a change cannot be reflected in FREDI's data directory. 

It is very important that FREDI's data directory has an accurate description of 

the current state of the DDB. 

As the environment stands, one simple way to prevent the above from 

happening is to assign the owner of all the relations in each local INGRES 

data-base to be a single user, say, the FREDI system itself or a particular 

person such as the data-base administrator (DBA). 



CHAPTER 4 

INTER-PROCESS COMMUNICATION IN A DDB 

General speaking, there are two kinds of inter-process communications: 1) 

communication between processes in the same machine, and 2) 

communication between processes in distinct machines. 

Some DDB systems assume the existence of an inter-process 

communication environment. One example is R*. Since R* runs within a 

CICS environment, both local and remote inter-process communications are 

provided by CICS. An R* process can send a message to any other R* process 

through CICS. As far as R* is concerned, the responsibility of inter-process 

communication is simply delegated to CICS. Once a message is handed over 

to CICS, the rest of the communication detail is of no concern to R* per se. 

However, in most situations a well established communication 

environment does not exist. It is more realistic for the DDB system to set up 

a communication environment of its own. 

4.1. DESIGN CONSIDERATIONS 

One should recognize that a DDB using a local area network (LAN) and a 

DDB using a long-haul network are very different. Usually, a long-haul 

network is more expensive and slower, but a LAN is less expensive and faster. 

In order to make our discussion general enough but also descriptive of 

the communication model used by FREDI , we shall assume that when a user 

"logs on" to the DDB system, data in multiple sites are likely to be needed. 

64 
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Secondly, we shall also assume that a connection established between process 

A and process B, and a connection established between process B and process 

C, does not imply that process A can communicate with process C. 

Communication connections are not generally transitive. Finally, we shall 

also assume all of the generic attributes of a LAN environment: the network 

at the Department of Computer Science is a typical LAN. These attributes 

include: 

• Cost to transmit a byte of data from one site to any other site is 

relatively low compared to that of a long-haul network, say, ARPANET. 

• Transmission rate is relatively high, in the order of 10 kilobytes per 

second. 

• Propagation delay is negligible. 

• Network is reliable. The network guarantees delivery of data (except 

when the destination site is down). The network also guarantees the data 

delivered are unrepeated and uncorrupted. 

• Cost of an idle connection is very low. 

• Broadcasting capability is not assumed. Although most LANs have 

broadcasting capability, the capability generally is not available to 

normal users; the network at the Department of Computer Science is an 

example. 

Typically, in a very concise way, a communication session between two 

processes, A and B, can be described as the following: When process A wants 

to communicate with process B, process A initiates a connection. Process A 

goes into a wait state. When process B is ready, it accepts the request, and a 
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connection (a virtual link, or a virtual circuit) is established. Process A 

proceeds to send data to process B, and vice versa. The connection may be 

idle intermittently during this period. When one or both of the processes 

decide that the connection is no longer needed, the connection is 

disconnected. In UNIX, a communication session between two processes follows 

the above pattern. 

4.1.1. When Should an Inter-Site Connection Be Made? 

An immediate question concerning inter-site connections in a DDB 

environment is: When should connections between DDB sites be made? 

Without going into any fine detail, three different approaches are suggested: 

(1) A connection between two sites is made only when it is needed. Once the 

"transaction" is over, all connections are relinquished. We shall refer to 

this as the ad-hoc strategy. 

(2) All the connections between all the sites are made in advance - before 

or at the time the user "logs on" on to the DDB system. We shall refer 

to this as the full-connection strategy. 

(3) A mixture of 1) and 2). Connections are made at the user log-on time 

only between those sites whose names appear in a given per-user profile. 

Connections to other sites are made only when they are needed. Once 

the connections to a site are made, they may be retained until the user 

logs out, or they may be relinquished when they are considered to be no 

longer needed. The user may explicitly specify that the connections to a 

particular site be relinquished. Alternatively, the usefulness of the 

connections to a site may be determined by the length of time passed 
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since any of the connections were last used. We shall refer to this as the 

prediction strategy. 

If remote access is frequent, the ad-hoc strategy is likely to suffer from 

poor response time. Establishing a connection is often time consuming and 

sometimes expensive; in UNIX, for example, it takes one or two seconds of 

elapsed time to establish a connection between two processes using sockets. 

Also, the control of distributed actions is likely to be very complicated since it 

is difficult to keep track of which connections were established. It is difficult 

for site A to learn about the connection status between site B and site C 

when the connection between them can be created and destroyed dynamically. 

Nevertheless, when the cost for occupying a link outweighs other factors, this 

approach may be appropriate. 

The full-connection strategy is very straightforward, although a 

connection may lie idle most of the time. 

The prediction strategy appears to be very flexible. Generally, a user 

should be able to predict in advance approximately the set of data he wants, 

and unnecessary connections may therefore be avoided. The cost of the 

flexibility is the increase in system complexity; for example, a "remote site" 

must be able to establish slave process(es) dynamically. 

From the above evaluation, it seems that full-connection and prediction 

strategies are appropriate to a LAN environment. Even in a long-haul 

network such as ARPANET, where the cost depends only on the amount of 

data transmitted, full-connection and prediction strategies should also be 

considered. In FREDI, full connection strategy was chosen because it is 
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straightforward to implement, and because FREDI operates in a LAN 

environment. 

4.1.2. How Should Inter-Site Connections Be Shared? 

In a multi-user distributed system, there are two obvious approaches to the 

sharing of communication resources among users: 

(1) Each user has his own (conceptual) communication links between sites. 

(2) All users share the same set of links between sites. 

Ad-hoc and prediction connection strategies limit the option to choice 1), 

while full-connection strategy allows both choices. 

Choice 1) has two potential drawbacks: a) It is possible that a huge 

number of connections will be needed. b) More seriously and detrimentally, it 

is possible that each user may have a different view as to the current status of 

the network. 

In contrast, choice 2) needs only a fixed number of connections and 

provides each user with the same view to the current status of the network. 

Another advantage of choice 2) is that it allows the DDB system to have 

more "system control" at each site. If all users are sharing the same set of 

site connections, it is simpler to implement procedures that will act upon the 

failure of a remote site, as well as site recovery procedures. 

At first glance, one may suspect that it may cause a bottleneck if the 

communication link is shared by all DDB users. However, one should not 

worry about this because: 1) In most computer networks, a machine can only 

take in or send out a single stream of data through the network. More than 
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one conceptual connection between two sites will not solve the traffic 

congestion problems, if physically there can only be a single stream of data 

passing between the two sites. 2) Even if a machine can genuinely send and 

receive multiple streams of data through the network in parallel (which is 

rare), the number of data streams will usually be very small, such as 2, 4, or 8 

streams. Users soon still have to share the same set of physical data streams. 

At the Department of Computer Science, the network is a ring-type 

network. It uses a token passing mechanism. Consequently, at any one time, 

only a single machine can send data through the network. 

In light of the above, we conclude that in a DDB system it makes more 

sense for all users to share the same set of connections between DDB sites. 

4.2. COMMUNICATION IMPLEMENTATION IN FREDI 

FREDI uses a 4.2 BSD UNIX facility called socket to provide all interprocess 

communication: sockets are used to provide communication between FREDI 

processes at the same site and at different sites, and between a FREDI process 

and INGRES. 

The other alternatives that can provide inter-process communication in 

4.2 BSD UNIX are facilities called pipe and pseudo- terminal. However, sockets 

are chosen over these facilities because: 

(1) These facilities cannot provide inter-site communication. 

(2) A pipe connection can only provide uni-directional communication. 

(3) There are only a limited number of pairs of pseudo-terminals available in 

each system; at the Department of Computer Science each machine has 

only 32 pairs. Pseudo-terminals are also used by many UNIX applications; 
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competition of resources may occur. 

With respect to the FREDI process structure as described in chapter 3, 

there are three aspects of inter-process communication: 

(1) Communication between all of the FREDI processes but not including the 

network handler. 

(2) Communication between a (master or slave) user process group and a 

network handler. 

(3) Communication between the network handlers on separate sites. 

The first aspect is about local communication (i.e. communication 

between processes within the same site). The second and the third aspects are 

about inter-site communication, and are related to each other: they are 

concerned about how a message, when issued by one of the local user process 

groups, is sent to the user process group's counterpart in a specified remote 

site. 

4.2.1. Socket: The Communication Facility Used 

This section provides information about sockets. 

In the 4.2 BSD UNIX, the concept of a socket is introduced to enable 

processes to communicate with each other; these processes may be on the 

same machine or on different machines. In previous versions of the UNIX 

system, the only system-provided function for inter-process communications 

was a pipe, and no readily available facility was provided for inter-machine 

communication. During those periods, without modifying the original UNIX 

operating system and adding some "local" facilities to the operating system, 
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there was no way for a process on one machine to communicate with a 

process on another machine. For this reason, using just the facilities provided 

by UNIX, it was not be possible to construct a DDB system on a number of 

UNIX systems before the release of 4.2 BSD UNIX. 

Whereas a pipe connection is only a uni-directional communication link, 

a socket connection is a bi-directional communication link. It is also 

interesting that in 4.2 BSD UNIX pipes are actually implemented internally as a 

pair of connected stream sockets [Leff83]. In effect, the socket, rather than 

the pipe, is the inter-process communication primitive in 4.2 BSD UNIX. 

Employing UNIX terminology, it is said to be within the UNIX domain 

when sockets are used to provide communication between processes residing 

on the same machine. When sockets are used to provide communication 

between processes on separate machines, it is said to be within the internet 

domain. A UNIX domain socket may be identified by a UNIX directory name. 

An Internet domain socket may be identified by a "port number". 

The communication model that FREDI employs falls into the client/server 

model [Leff83]. The general structures of a server process and a client process 

are illustrated in Pseudo-Code Listing 4.1 and 4.2, respectively. 

It should be mentioned that on the server's side, when a "server socket" 

accepts a new "client connection", the "server socket" is duplicated - a new 

socket with the same attributes as the original one is created. Communication 

with the newly accepted client is through the new socket, and the original 

socket can be used to accept more clients. This way, a server can be the 

server of many clients at the same time. This is how the network handler in 

t 4.2 BSD UNIX restricts the directory name to be a character string of no longer than 13 
characters - the 13 character content plus a null byte. 
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main() 

{ 
/ * create a socket s using the socket primitive */ 
s is the created socket */ 

s = socket(information describing the socket nature); 

/* bind an address to the socket: */ 
/* bind an Internet address if within internet domain */ 
/* bind a directory name if within UNIX domain */ 
/* once bound, s is identified by the address */ 
select_a_unique_address_or_directoryQ; 
bind(s, the unique address/directory); 

/* indicate the willingness to accept connections / 
listen(maximum number of pending connections); 

for(;;) 

{ 

} 
} 

s can be used to accept clients repeatedly */ 

/* accept a new connection */ 
/* rendezvous occurs 
/* socket s is duplicated */ 

= accept(s, information about the client) 

/* new.s is the connected socket to the client */ 

/* communication to the client can begin (using new—s) / 
/ * rendezvous occurs on all reads from a connected socket */ 

. 

more—process; 
S 

S 

S 

Pseudo-Code Listing 4.1: Typical Structure of a Server Process Using Sockets 
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FREDI can serve many user process groups at the same time. 

UNIX treats a connected socket almost like a regular file descriptor, with 

one significant difference - in blocking mode (a UNIX attribute) rendezvous 

occurs on all reads on connected sockets. In other words, in blocking mode, if 

a process tries to read a connected socket that currently has nothing to be 

read, control of the process is suspended until there is something ready to be 

read. In contrast, when a process tries to read an opened file that has nothing 

to be read, the number zero (0) is returned to the call to indicate the end-of-

main( 
{ 
/ create a socket using the socket primitive */ 
s = socketO; 

/ connect to the target server 
/ server's address has to be known before hand */ 
set up the server's addressO; 
connect(s, the server's address); 

/ transmission of data using the socket can begin */ 
/ rendezvous occurs on all reads through the socket */ 

/* proceed to the rest of the program */ 
. 

moreprocess; 

S 

} 

Pseudo-Code Listing 4.2: Typical Structure of a Client Process Using Sockets 
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file condition, and execution of the process continues. This has two results: 1) 

Sockets can be used for process synchronization. FREDI takes advantage of 

this property and uses it for process synchronization. 2) There is no way to 

send a true end-of-file signal through a socket connection. In FREDI, the end-

of-message signal is indicated by a sequence of special characters. 

Because UNIX limits the number of file descriptors that a process can 

open, it also limits the number of clients that a server can serve. In 4.2 BSD 

UNIX, this number is set at 20. Consequently, according to the architecture of 

FREDI as described, this also limits the maximum number of users the a FREDI 

system can serve: each network handler in FREDI can serve only a limited 

number of user process groups. However, if it were desirable to serve a larger 

number of users, the following could be done: When the number of users 

served by a network handler reaches its limit, a new set of connections 

between sites are created, and a new network handler is created at each site. 

Half of the users are served by the new set of connections, and half of the 

users are still served by the old set of connections 

4.2.2. Local Communication 

The discussion of the communication between all FREDI processes but not 

including the network handler can be concentrated on three areas: 

(1) Communication between processes within a master user process group. 

(2) Communication between slave servers and a lock server. 

(3) Communication between FREDI processes and INGRES. 

Communication between the processes within a master user process 

group is provided by two UNIX domain sockets. One is between the 
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interactive terminal monitor and the input-analyzer/utility- processor, 

and the other is between the input-analyzer/utility-process and the 

query-processor. The names that bind to these sockets are randomly 

generated and each is guaranteed unique by measures taken within FREDI. 

Each socket is used to provide bi-directional communication as well as process 

synchronization. 

A slave server can communicate to the local lock server by connecting to 

the lock server's UNIX domain socket. The lock server's socket is bound to a 

pre-selected name which is publicly known by other processes. 

Two methods are used by FREDI processes to communicate with INGRES. 

In the first method , the EQUEL pre-compiler is utilized. It is used when a 

query can be pre-formulated and the result of the query is needed by the 

invoking FREDI process. Communication between a process and INGRES is 

truly established when the process "enters INGRES" (using ingres dbname 

command). At this time, pipest are established between the invoking process 

and INGRES for the communication purpose. 

In the second method, FREDI communicates with INGRES through a UNIX 

domain socket. In this case, queries are formulated under ad-hoc conditions 

and the content of the result from each query execution is of no concern to 

the execution of FREDI. Through the connected socket, INGRES actually 

thinks the input is coming interactively. This is desirable because commands 

to INGRES in this way can be formulated unrestrictedly. 

Actually, three pipes are created: One to pass data to INGRES, one to pass data from 
INGRES, and one to pass termination conditions from INGRES. 
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4.2.3. Inter-site Communication 

Inter-site communication in FREDI is 

issued by a user process group (in this 

action coordinator or a slave server), 

process group in a specified remote site 

concerned with how a nie.ssage, when 

context we imply either the distributed 

is delivered to the corresponding user 

The network handler plays a very important role in the inter-site 

group 1 +--.-+ 

group 2 +----+ 

group 3 •-----.-* 

group I +----+ 

group n 4---+ 

group 1 ----+ 

group 2 ----

group 3 ----* 

group I 

group n -----. 

Site A 

Network 

Handler 

Network 

Handler 

Site 0 

Site B 

Network 

Handler 

group 1 
group 2 
group 3 

S 

group i 
S 

+-----* group n 

Figure 4.1: User Process to User Process Inter-site Communication. 
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communication aspect. In many ways, one may conceive of the network 

handler as a telephone switch-board. This concept is illustrated by Figure 4.1. 

When (user process) group i in site A wants to send a message to its 

counterpart (i.e. group i) in site B, it first forwards the message to the 

network handler in site A. The network handler in site A receives the 

message, identifies which group the message belongs to, tags this information 

onto the message, and forwards the message to the network handler in site B. 

Upon receiving the message, the network handler at site B identifies who 

(which local user process group) the message belongs to, and finds that it 

belongs to group i, using the tagged information. Removing the tagged 

information, the network handler forwards the message to group i. Group i 

receives the message. 

Each network handler has two permanent sockets: an internet domain 

socket and a UNIX domain socket. The purpose of the internet domain socket 

is to accept connections from network handlers at other sites. The port 

number of the internet domain socket of each network handler (one at each 

site) must be unique across the network. These port numberst must be chosen 

manually in advance during "system configuration" time. The purpose of the 

UNIX domain socket is to accept connections from newly created user process 

groups. Every time a new master user process group is created, the three-

way message relay process of the group connects to the local network 

handler. The name of the UNIX socket needs to be unique only within the 

site. It also must be chosen manually in advance during "system 

configuration" time. 

t In the 4.2 BSD UNIX those ports numbered 0 through 1023 are reserved for UNIX 
applications (such as riogin, rwho, ruptinze, etc.). 
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In order to shorten the length and to increase the semantic level of the 

messages that flow between a user process group and network handler, and 

between two network handlers situated in different sites, it is necessary to 

format the messages in a fixed way. 

Due to the difficulties in choosing appropriate and descriptive names, we 

shall (inaccurately and arbitrarily) refer to the format of the messages that are 

passed between a user process group and a network handler as local-phase 

message format, and the format of the messages that are passed between 

network handlers as remote-phase message format. 

4.2.3.1. Local-Phase Message Format 

The local-phase message format is a set of rules that govern the flow of 

data between a user process group and a network handler. We shall 

NC I {OA} I {DA} I {LC} I Information 

Note: A pair of braces ("{}") indicates an optional item. 

IF I 

NO = Network Control 
OA Origin Address 
DA = Destination Address 
LO = Local Control 
F =Flag 

Figure 4.2: Local-Phase Message Format. 
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(arbitrarily) use the term block to refer to the vehicle for carrying messages 

between a user process group and a network handler. Because data 

transmission through sockets is byte oriented, it may therefore be appropriate 

to say that a block is also byte oriented. The various fields that comprise a 

block are as follows: 

NO 
OA 
DA 
LC 
I 
F 

Network Control 
Origin Address 
Destination Address 
Local Control 
Information 
Flag 

The network control (NC) field is a one byte field. It identifies the type 

of message the block contains. The network control field can be: 

macro symbol meaning 

B_USERJVISG 
B.$IT&RQST 
B$ITEJJIST 
BJISCONN 

user message 
remote site survival information request 
remote site survival information reply 
disconnect the socket connection 

For a user message (B—USER—MSG), the network handler processes the 

block as follows: If the block just arrived from a user process group, the 

network handler assembles the message as part of a frame, and sends the 

frame to the appropriate remote site (i.e. the network handler at the remote 

site). If the block was just received as part of a frame delivered from a remote 

site, the network handler sends the complete block to the appropriate user 

process group according to the information that is attached as part of the 

frame received. We shall discuss frames shortly. 

When a user process group sends a block to the network handler 

indicating that the survival information (BSITERQST) about remote sites 



80 

is needed, the network handler replies with a block (B—SITE—LIST) containing 

a list of all of the currently operational sites. The network handler maintains 

the knowledge on the survival of all the remote sites. 

If the network handler receives the disconnect request (B..DISCONN), it 

closes down the socket connection connected to the user process group in 

question. 

The origin address (OA) field, the destination address (DA) field, and the 

local control (LO) field are present in a block only when the network control 

(NC) field identifies the block as a user message. 

The origin address field identifies the site from which the block is 

originated. 

The destination address field identifies the site to which the block is 

heading. 

The local control field identifies to the recipient user process group what 

type of user message the block contains. It can be one of: 

macro symbol meaning 

BL—QUEL QUEL statement s 
BL_QTJELR QUEL statement s , result of the execution wanted 
BLJATTR attributes of the domains of a local relation wanted 
BL_CMD special command, such as to lock and unlock a local 

relation, to read data from a file, etc. 
BL—DATA raw data 
BL—REPLY done reply (from slave server). 

These are "instructional messages" from one slave server to another slave 

server, from a distributed action to a slave server, or vice versa. The first 

four can only be issued by a distributed coordinator (i.e. either the input-

analyzer/utility-processor or the query-processor). BL—DATA can only 
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be issued by a slave server to another slave server, and BL—REPLY can be 

issued by a slave server to the distributed coordinator. These messages 

correspond to the responsibilities performed by a slave server. We have 

discussed the responsibilities of a slave server in chapter 3. 

The flag field indicates the end-of-block. It is a two byte field, and is 

(arbitrarily) designated to be two consecutive "]" characters (i.e. 1]). This is 

necessary because a socket cannot deliver an end-of-file signal. In order that a 

"]" character can be delivered as data in the I-field (information field), the 

byte stuffing technique is used [Hous7; Tech8O]. Every "]" character is 

represented as the "11 77 ][" pattern in the I-field. 

4.2.3.2. Network-Phase Message Format 

The network-phase message format is a set of rules that govern the flow 

of data between network handlers. We shall (again, arbitrarily) refer to the 

vehicle for carrying messages between network handlers as a frame. A frame 

is also byte oriented. It has the general format as illustrated in Figure 4.3. 

IC I {PL} I Information I F I 

C = Control 
PL = Process Label 
F =Flag 

Figure 4.3: Network-Phase Frame Format. 
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The various fields that comprise the frame are as follows: 

C 
FL 
I 
F 

Control 
Process Label 
Information 
Flag 

The control (C) field is a one byte field. It specifies what type of message 

the frame contains. The control field can be: 

macro symbol 

F_USERJASG 
F_CREAT_SLAV 
FBU_THERE 
FJM_HERE 

meaning 

user message 
create a new slave server 
"are you there" enquiry 
"I am here" reply 

If the control field indicates F_USER_MSG, the information field 

contains one block of user information. 

If the control field indicates F_CREATE_.SLAV, the recipient network 

handler is requested to create a new slave server at that site. 

If a network handler receives a FBUTHERE request, it replies with a 

frame indicating F_TM_HERE, to indicate the site's survival. 

The flag identifies the end of frame. It is a two-byte field. The flag is 

(once again, arbitrary) chosen to be two consecutive "}" chracters (i.e.  

A "}" character in the I-field is represented as  

Note that no synchronization flag is necessary. The appearance of a flag 

automatically implies the beginning of the next frame. 

4.2.4. Detection of a Failed Site 

On some networks, detection of a site failure is provided as an internal 

feature (e.g. the early ARPANET NCP protocol and SNA's virtual circuit 
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protocol [Bern84]). Others do not (e.g., the current ARPANET TCP/IP protocol 

Bern84]). At the network at the Department of Computer Science, such as 

feature is not provided by the network. 

At the network at the Department of Computer Science, sometimes when 

the remote end of an internet domain socket connection is disconnected 

(because of the other end of the connection being closed, the remote process 

crashing, or even the remote site crashing), the following may be observed at 

the local end: The SELECT system call in UNIX will report that the socket in 

question has some data ready to be read, but the READ system call will report 

the socket has nothing (i.e. zero byte) ready to be read. In this case, the read 

also will not suspend the control of the process (remember that rendezvous 

normally occurs on a read to a socket). However, it should be pointed out 

again that the above response is not guaranteed to happen every time an 

internet domain socket connection is disconnected at the remote end. 

Although FREDI takes advantage of the above special behavior of UNIX to 

detect failure of a remote site, a high level time out is also needed to remedy 

the fact that the behavior does not occur consistently. High level time out is 

not satisfactory, but is workable. 

Time out in a distributed environment is always considered a very 

difficult thing to do. It is often very hard to estimate the length of time a 

remote site needs to issue a reply message. In FREDI, this problem is alleviated 

slightly because inter-site messages are sent from the network handler at the 

source site to the network handler at the destination site. Since no network 

handler is responsible for any kind of computational purpose, there is no need 

to worry that a network handler would be too busy to reply to an "are you 
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alive" enquiry message. In this respect, one may find it reasonable to expect 

a reply to be responded within a relatively short period of time, such as 

within a few seconds. 



CHAPTER 5 

PERFORMANCE OF FREDI 

5.1. RESPONSE TIME OF FREDI 

One of the major objectives of FREDI is reasonable response time. Table 5.1 

shows some sample results of FREDI's response time. These results are 

included here only to provide an indication of FREDI's performance, and 

should not be used as benchmarks. 

Whether the performance of a DDB system is acceptable or not clearly 

depends on the nature of the applications involved; in many non-critical 

applications using small to medium databases (e.g. relations with less than 

4,000 tuples), response times of less than 60 seconds may be acceptable. 

Using these admittedly vague criteria and the numbers as shown in table 5.1 

as a guideline, the performance of FREDI can be considered to be acceptable - 

each command was completed within seconds, rather than minutes or even 

hours. The results in table 5.1 were obtained while the machines and the 

network were under light load. The load average on each machine did not 

exceed 5 - there were less than 5 jobs on the job queue in the operating 

system. The network data transmission rate was about 15 to 25 kilobytes per 

second. The same command was run three times and the real elapsed time of 

each run was taken. The median of the three figures obtained for each 

command was included in the table. It was noted that the deviation of the 

three figures obtained was no more than four seconds in all cases. For this 

reason, the median of each of the three figures in each case would have been 

85 
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very close, if not identical, to the average of the figures. 

In general, for "single-site operations" FREDI offers performance 

comparable to that of INGRES. By "single-site operations" we mean 

operations that do not require shipping of any relations from one site to 

another. Furthermore, there seems to be no noticeable difference in response 

time between remote "single-site operations" and local "single-site 

Command Real Elapsed Time 
(in seconds) 

Remarks 

print < 1.0 • local relation 
• almost instantaneous 

print 5.0 • remote relation 
• small relation, less than 50 tuples 

print 36.0 • remote relation 
• large relation, 4,000 tuples, 

each tuple is 20 bytes wide 
print 27 • remote relation 

• large relation, 2,000 tuples, 
each tuple is 20 bytes wide 

move 6.0 • small relation, less than 50 tuples 
move 35.0 • large relation, 4,000 tuples, 

each tuple is 20 bytes wide 
move 25.0 • large relation, 2,000 tuples, 

each tuple is 20 bytes wide 
retrieve 19.0 • multi-site retrieve 

• 3 relations shipped 
• small relations, each less than 

50 tuples. 
retrieve 36.0 • multi-site retrieve 

• 1 relation shipped 
• large relation, 4,000 tuples, 

each tuple is 20 bytes wide 
retrieve 21.0 • multi-site retrieve 

• 1 relation shipped 
• large relation, 2,000 tuples, 

each tuple is 20 bytes wide 

Table 5.1: Some Sample Figures of FREDI's Response Time 



87 

operations". This is probably because the control messages involved in a 

remote "single-site operations" are so short that they do not contribute any 

significant overhead. 

For "multi-site operations", when the sizes of the relations involved are 

small, such as 50 tuples each, shipping of one extra relation seems to add 

roughly another 4 to 6 seconds to the response time. 

When the relations involved are large, such as in the order of 1,000 

tuples each, the sizes of the relations have a significant impact on the final 

response time. It is, however, difficult to measure exactly how the sizes of the 

relations affect the response time, since both the load of the machines and the 

load of the network are important factors which fluctuate from time to time. 

Hence, the length of time it takes to execute one command on one occasion 

and the length of time it takes to execute the same command using the same 

data and the same machines on another occasion can be very much different. 

In spite of the dependency on the network load and the machine load, to 

give an estimate how different sizes of a relation affect the response time, the 

following was observed: In one test, execution of a command that needed to 

ship an 80,000 byte relation across sites took about 36 seconds to complete. 

While the machines and the network were under almost the same load, the 

same command took about 21 seconds to complete, when a 40,000 bytes 

relation was shipped. During the test, the network was offering around 20 

kilobytes per second of transmission rate, and the load average on each 

machine was about 2.5. 



88 

5.2. SOURCES OF FREDI OVERHEAD 

There are three factors that could affect FREDI's performance (in terms of 

response time): 

(1) 

(2) 

(3) 

The overhead contributed directly by FREDI processes. 

The network overhead - the time it takes to ship the required data 

across sites through .the network. 

The overhead it takes to execute a single QUEL statement in INGRES. 

It is believed that the overhead generated directly by FREDI processes is 

small. The fact that for "single-site operations" FREDI offers a performance 

comparable to that of INGRES may prove this point. 

From observation, it has been found that generally the network at the 

Department of Computer Science offers a data transmission rate ranging from 

10 kilobytes to 30 kilobytes, according to the current traffic load of the 

network. Occasionally, the network can even offer a data transmission rate of 

well over 30 kilobytes. This is typical in a local area network. Based on these 

observations, we can conclude that when the amount of data shipped across 

sites is less than in the order of 10 kilobytes, the overhead due to network 

usage would be very small. When the amount of data involved is in the order 

of 10 kilobytes, one might expect every 20 kilobytes of data will add an 

average of about one second to the response time. Furthermore, since the 

control messages required by FREDI are generally short - about 30 bytes to 

50 bytes each, the network overhead due to control messages is almost 

negligible. 
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The third factor, the overhead directly from INGRES, seems to have a lot 

of effect on the performance of FREDI. The effect of INGRES performance to 

FREDI "single-site operations" is obvious and needs no further explanation. To 

explain how INGRES affects FREDI "multi-site operations", it is appropriate to 

explain how a relation is shipped from one site to another site. In FREDI, the 

shipping of a relation from site A to site B involves the following steps: 

(1) Site A: Issue an appropriate COPY INTO command to INGRES, and copy 

the target relation into a temporary file. 

(2) Site A: Send the content of the temporary file to site B through the 

network. 

(3) Site B: Receive the data from the network, and store the data in a 

temporary file (not to be confused with the temporary file at site A). 

(4) Master Site (can be site A, site B, or a third site C): Issue an appropriate 

RETRIEVE command to INGRES, and interrogate the FREDI data directory 

to find out the descriptive information (such as the names of the 

domains, types of domains, etc.) about the target relation. 

(5) Site B: Issue an appropriate CREATE command to INGRES, and create the 

new relation. 

(6) Site B: Issue an appropriate COPY FROM command, and copy the content 

of the temporary file into the newly created relation. 

As one may see, to make an image of a relation at another site actually 

involves four INGRES QIJEL statements: a COPY INTO, a simple RETRIEVE, a 

CREATE, and a COPY FROM. From observation, when the machine is under 

light load and the amount of data involved is very little (such as a 50 tuple 
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relation), it takes about one to two seconds to execute each of the above 

commands in INGRES. The length of time increases as the amount of data 

involved increases. One can quickly see that to make an image of a small 

relation at another site could take as much as 6 seconds of INGRES execution 

time, and longer or much longer for a larger relation. The shipping of the data 

itself therefore may not be very time consuming per se, but the four INGRES 

operations that constitute the shipping procedure contribute significantly to 

the delay in response time. Referring to table 5.1 again, it makes sense that 

the multi-site RETRIEVE command that involves shipping of three small 

relations takes about 19 seconds to execute. 

5.3. SUGGESTED WAYS TO IMPROVE PERFORMANCE 

Three ways are suggested that may improve FREDI's performance: 

(1) Query optimization. 

FREDI does not attempt to optimize the way it handles queries. FREDI 

processes all queries using the same method: Ship all the required 

relations to the "target" site, and perform all the necessary 

"computation" there. 

It has been shown that when the relations in the DDB are not very 

big (such as less than 50 tuples each), the main contributor of overhead 

in FREDI is the number of relations that are needed to be shipped across 

sites. Using this basic idea as a guideline, an immediate improved version 

of the above query processing strategy would be: 1) Select the site X 

where it is storing the majority of the number of the required relations. 

2) Ship all other required relations to site X. 3) Perform the necessary 

"computation" at site X. 4) Ship the result of the "computation" from 
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site X to the "target" site, and perform any final steps that may be 

required. If site X is the same as the "target" site, this final step may be 

omitted. 

When the sizes of the relations in the DDB are large, the local 

processing overhead as well as the network usage overhead become 

significant. Query optimization in this case should be aimed at two 

directions: 1) Restricting the amount of data shipped across sites. 2) 

Taking advantage of parallelism. These two aspects are related to each 

other. To increase parallelism in most cases means that more data are 

needed to be shipped across sites. At this stage, the research community 

is still in search of a good algorithm that will restrict the amount of data 

shipped across sites and utilize parallelism well at the same time. 

Furthermore, one must realize that to derive such a query processing 

strategy requires very serious effort. 

(2) Storage of data directories. 

In FREDI, data directories are stored as user relations in INGRES. As 

pointed out, a simple RETRIEVE command in INGRES sometimes takes 

almost over a second to execute. Since data directories are being 

interrogated very often by FREDI, FREDI response time would probably be 

improved if FREDI were to store its data directories as UNIX files. 

However, storing the data directory as user relations still seems to be 

easier to manage and also more general and flexible. 

INGRES capability. 

FREDI actually does not require all of the facilities provided by INGRES. A 

smaller version of INGRES that contains only what is required by FREDI 
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would probably be faster than the full version of INGRES. If FREDI were 

coupled with this subset INGRES, it might improve somewhat the 

performance of FREDI. 



CHAPTER 6 

DATA DISTRIBUTION IN A DDB 

The way data and data directories are distributed in a DDB system has a very 

serious and direct effect on the complexity of the DDB. In this chapter, we 

shall discuss how different forms of data distribution affect the complexity of 

a DDB system. 

6.1. DATA DIRECTORY IN A DDB SYSTEM 

The data directory (or simply directory), sometimes referred to as data 

dictionary, or system catalog, contains information describing how user 

data are stored in the DDB. In general, the information stored includes the 

location or locations where a relation is physically stored, its cardinality, and 

the names of domains. For each domain, further information is also provided 

such as data type, high and low domain value, and domain cardinality. In 

addition, sometimes information such as security controls, data integrity 

controls, and statistical information is also included [Chu79, Brac8O]. 

Data directory systems can be classified into the following basic 

categories [Chu79]: 

(1) Centralized. 

Directory information is stored in only one of the DDB nodes. 

(2) Multiple Masters. 

When DDB nodes are clustered into groups (i.e. star network), it is 

sometimes effective to provide a master directory to serve each cluster. 
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(3) Localized (or Fully Partitioned). 

Each node contains directory information for only the data stored at that 

node. 

A major drawback of such a directory system is that it has high 

communication cost and requires high search time for non-local data. For 

a DDB of n nodes, it requires an average of (n - 1) / 2 directory queries 

to locate the information about non-local data. However, if each node 

contains a routing table which routes the query to another node rather 

than returning the negative query reply to the sender, the expected total 

communication cost may be greatly reduced (by a factor of e, 0 < e < 1), 
particularly if the routing table takes into consideration the probability 

of finding the data in the the directory. 

(4) Distributed (or Fully Replicated). 

Each node contains the complete information about the DDB. 

6.2. FORMS OF DATA DISTRIBUTION 

In relational environments, data can be distributed in one of the following 

forms: 

replication, 

horizontal partition, 

vertical partition, 

a mixture of any of the above, 

no replication, no horizontal partition, and no vertical partition. 

Replication means that copies of the same data are stored at different 

sites. Updates are propagated to all replicas synchronously. Replicated data 

can be used to provide higher availability and/or faster response for read 
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operations, but at the expense of requiring more overhead for updates. 

Vertical partition means storing a relation with different projections of 

the relation at different sites. Correlation domains are maintained at each site 

to allow the complete relation to be reconstructed. 

Horizontal partition refers to partitioning a relation and storing each 

portion of the relation in a different site according to distribution criteria 

ORIGINAL 

RELATION 

after 

---p 

partitioned 

SUB-1 SUB-2 

6.1A: Vertical partition 

ORIGINAL 

RELATION 

after 

---p 

partitioned 

SUB-3 

SUB-1 

SUB-2 

SUB-3 

6.113: Horizontal partition 

Figure 6.1: Vertical and Horizontal Partitions of a Relation. 
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based on the values of specified domains. Updates to a partitioned relation 

may therefore cause tuples to move from one site to another. 

The main purpose of both vertical partition and horizontal partition is to 

store the data close to where they are most often used, and thus (hopefully) 

lessen the overall access overhead to these data. Figure 6.1 illustrates both 

vertical and horizontal partitions. 

In practice, to support data distribution at a granularity finer than a 

relation is problematic. Furthermore, to support more than one of replication, 

horizontal partition and vertical partition will likely increase the system 

complexity astronomically. 

6.3. DATA DISTRIBUTION IN FREDI 

FREDI supports data replication only, for the following reasons: 

(1) Among the three alternatives of replication, horizontal partition and 

vertical partition, replication seems generically to be more important and 

is also more appropriate in a local-area network environment such as the 

one at the Department of Computer Science. Date [Date83] points out 

that a "true" DDB system should support at least some degree of data 

replication. In a local area network environment, the network usually 

has a high data transmission rate and is very reliable. In contrast, some 

of the machines occasionally do go down for a variety of reasons. It is 

therefore a good environment for illustrating the data availability 

problem. 

(2) Both horizontal partition and vertical partition require the granularity of 

data distribution to be finer than a relation, which would make the data 
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directory extremely difficult to design and manage. In addition, query 

processing in this case would be very complex. 

In a FREDI DDB, the unit of data distribution is a relation. Each relation 

can have up to two copies of data representation. The notion of primary 

copy applies: the first copy is treated as the primary copy, and the other 

optional copy as the secondary copy. The two copies must be stored in 

separate sites. 

If a relation has only one data representation, then any accesses and 

updates to the relation obviously have to refer to that copy. If that copy is 

not available, the relation is not available. 

If a relation has two copies of representations, unless there is a copy of 

the relation locally, data references are always made to the primary copy if 

both copies are available. All updates to the relation are made to the primary 

copy first, and then to the secondary copy. 

The obvious way to handle site failures is to ignore failed sites [Bern84}. 

When a site holding one of the two copies is not available, the system applies 

the update to the available copy and ignores the copy at the "down" site. 

6.4. FREDI'S DATA DIRECTORY SYSTEM 

FREDI's data directory consists of two INGRES relations. It is fully replicated. 

Storing the data directory as INGRES relations has the following 

advantages: 

(1) The organization of the directory can be easily enhanced if such a need 

arises. 
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(2) During site recovery time, an up-to-date data directory can be shipped in 

from another site as if the data directory were user relations. No special 

recovery data transfer step is required. 

Users can examine underlying contents of the data directory if they want (3) 

to. 

The drawbacks of storing the directory as INGRES relations are: 

(1) Since a RETRIEVE to an INGRES relation is relatively slow (about one 

second), the frequent references to the data directory can slow down the 

performance of FREDI. 

(2) The data directory may be exposed to more security problems. 

The directory is fully replicated for the following reasons: 

(1) To avoid the failure of the directory itself, 

(2) To achieve the site autonomy objective, 

(3) To avoid making the directory a source of bottleneck. 

The names of the two relations that constitute a data directory are 

D.RELATION and DJ.TTRffiUTE. 

The relation DJELATION contains the necessary descriptive information 

to locate all the copies and the current availability status of each relation in 

the DDB. It contains all the required information to provide location and 

replication transparencies. This information is checked by FREDI to confirm 

the existence and the availability of the needed relation before the actions for 
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each query are carried out. An example of the D_RELATION looks like the 

following: 

relid primary secondary final 
employee 
projects 
dept 
parts 
salary 
address 

vaxa 
vaxa 
vaxb 
vaxb 
vaxc 
vaxd 

vaxc 

vaxc 
vaxd 
vaxb 

vaxc 
vaxb 

The domains in the relation DJUILATION contain the following information: 

relid 
The names of the relations. 

primary 
The name of the site holding the primary copy of each DDB relation. 

secondary 
The name of the site holding the secondary copy of each relation. If a 
relation does not have a secondary copy, this entry is empty. 

final 
The name of the site holding the "final copy" of each relation. There 
will be an entry to this domain only if the relation has two data 
representations, and currently one or both of the data representations are 
not available. The above example displays the entries to the domain 
when the site "vaxd" is down. 

The relation DATTRffiUTE contains the lower level "format" information 

about the domains of all of the FREDI DDB relations. In fact, the 

DATTRffiUTE relation is really the union of the local INGRES ATTRIBUTE 

relation at all of the DDB sites. The ATTRIBUTE relation is part of INGRES's 

data directory. 
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The existence of a copy of DJTTRJBUTE at each site makes the low level 

descriptive information about any user DDB relation available locally. This 

significantly enhances the site-autonomy objective; during the time an input 

query is parsed, the FREDI master site is completely self sufficient and no 

inter-site data transmission is necessary. This eliminates the inconvenience of 

making a remote request every time detailed information about a remote 

relation is required. An example of the DATTRffiUTE looks like the following: 

attrelid attname attfrmt attfrml 
salary name c 12 
salary salary i 4 
employee name c 12 
employee position c 12 
employee empid i 2 
address name c 12 
address street c 20 
address city c 12 
address code c 7 

The domains in the D.ATTRmUTE contain the following information: 

attrelid 
The name of the relation the domain belongs to. 

attname 
The name of the domain. 

attfrmt 
The type of the attribute (i.e. binary or character). 

attfrml 
The length of the domain (in bytes). 

If any statistical information, such as the number of tuples of each 

relation, is desired (due to a more elaborate query processing method being 
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used, etc.) to be maintained by the directory, this information may be added 

as new domains to the D_RELATION relation. Rather than updating these 

statistical domains immediately every time the questioned relation is altered, 

it is suggested that they be updated periodically instead. How often this 

statistical information should be updated should be proportional to how 

dynamic are the relations in question. This would be a usage problem, rather 

than a DDB design problem. In this case, the DDB system should enable the 

users to specify how often the statistical information should be updated, using 

a syntax such as the following: 

updatetat sale—order every 2 hours 

If the user did not specify the frequency of update, a default time value, such 

as every 24 hours, should be set to update the statistical information. 

Fully replicating the data directory will inevitably involve more overhead 

during directory updates. However, if site autonomy is a very high priority, 

there seems to be no obvious alternative to fully replicating the data 

directory. Fortunately, with a close look at the content of FREDI's data 

directory, one will discover that the content of the data directory should be 

fairly stable. Even if some statistical information is incorporated as part of 

the data directory, if this information is updated periodically as just 

described, rather than updated perpetually, the data directory should still 

remain fairly stable. 

6.5. SITE RECOVERY IN FREDI 

When a crashed site A in a FREDI environment recovers, it must assume that 

the copy of the data directory stored at site A is obsolete; it no longer reflects 
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the current condition of the DDB or the network. While site A was out of 

service, new relations may have been created, old relations may have been 

destroyed, crashed sites may have become operational again, and operational 

sites may have crashed, etc. Therefore, the first step to site recovery is to 

ship in a fresh copy of the data directory from an operational site to site A. 

Since all operational sites store an identical (current) copy of the data 

directory, any operational site can supply site A with a copy of the current 

data directory. The choice of the supplier site is simple: it can either be 

chosen by random or by some kind of ordering of sites. 

However, one should be cautious of the following: At all times, within a 

FREDI system, at least one site must survive in order that the data directory 

be kept up to date. Since the data directory is fully replicated, as long as one 

site survives, the last copy of the data directory is preserved. If at one time all 

sites in the system have crashed, it would be impossible to tell which site is 

holding the last version of the data directory. 

Once site A has acquired a current copy of the data directory, it 

examines the data directory and can now carry on to perform recovery on 

user data. 

To explain how user relations are recovered, let us assume that relation 

X has representations in both site A and site B. When site A is detected 

failed, FREDI marks in its data directory (at all operational sites) that the 

remaining copy at site B is the final copy of relation X. From now on, all 

updates to relation X are directed to the final copy (at site B). The final copy 

is the most up-to-date. When site A recovers, it copies the value of relation 

X from the final copy (at site B). When this is done, the recovery manager at 
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site A removes the final copy marker of relation X in the data directory (at 

all sites). 

If however, when site A recovers, it discovers that site B is down, and 

therefore the final copy of relation X is not available, it must defer the 

recovery of relation X until site B is up again. Since the final copy is most 

up-to-date, it must not risk losing the changes made to relation X during the 

time when site A is down. In this case relation X will remain unavailable 

until site B recovers. 

The idea of the scheme described was inspired by Bernstein and 

Goodman [Bern84]. It works best when there are two copies. When there are 

more than two copies, it is much more complex to keep track of which site (or 

sites) holding a copy of the relation failed last, and therefore more complex to 

determine which copy is the final copy. Using the basic idea of "final copy", 

to tolerate n-site failures, the system needs only n+1 copies. Consequently, 

FREDI is capable of tolerating single-site failures. 

It should be mentioned that site recovery is necessary only because data 

are replicated. The purpose of site recovery is to bring replicated data to a 

consistent state. If the data are not replicated, no site recovery is necessary. 

To deal with situations where a site crashes during the middle of an update to 

a relation, it would be mainly the responsibility of the local data manager at 

that site rather than the responsibility of the DDB system. The local data 

manager must in this case guarantee either to run every local update to 

completion, or not to perform the update at all. In FREDI, this responsibility 

lies within INGRES. Referring to section 2.3.5, the deferred update mechanism 

in INGRES should probably handle this quite well. As a matter of fact, even if 
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it wants to, there is no way for a DDB system at the front end level to 

guarantee the completion of a local update during a site failure. Fortunately, 

thanks to the simple syntax in QUEL, every QUEL statement can update at 

most only one relation. Furthermore, a site failure during the middle of a local 

update does not occur very often. 

6.6. UPDATE PROPAGATION PROBLEM IN FREDI 

When a relation has two stored representations, an update to the relation is 

always first directed to the primary copy, and then to the secondary copy. 

When there is no site failure, the operation is very simple. 

One may wonder what might happen if during an update to a replicated 

relation either the primary site or the secondary site of the relation crashes 

before the update can be completed at both sites. Let us assume the following 

situation: The primary copy of the relation X is stored at site A, and the 

secondary copy is stored in site B. An update is required to be performed on 

relation X. A site failure can occur in the following four scenarios: 

(1) During the update to the primary copy, site A fails. When this occurs, 

the transaction cannot proceed to update the secondary copy of X, 

because it never gets a "complete" message from site A. The net effect in 

this case would be as if the update had never started. The transaction is 

lost. 

At first glance, one may think that it may be possible to perform a 

time out on site A. The transaction should move on to update the copy 

of X at site B if site A does not reply, so that the update will not be 

lost. However, this is not as simple as it may appear, for the following 

reasons: 
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First, time out on a remote update is very difficult. It is extremely 

difficult (if possible at all) to predict how long it will take for the remote 

site to complete the required update. 

Second, a transaction acquires its knowledge on the survival status of 

all the sites at the beginning of the transaction. For it to find out that 

the copy of X at site B has changed its status and has became the final 

copy after the transaction has already started, the transaction has to 

perpetually monitor the survival status of all sites. This can be done, 

but is very expensive. Since it is rare that a site crashes in the middle of 

a transaction, this effort does not seem to be worthwhile. 

Third, locking of relations would also be a problem. Since a lock on a 

relation is acquired at either the primary site or the final site (whichever 

one applies under the circumstances) of the relation at the beginning of 

the transaction, when site A crashes and site B becomes the final site of 

X, the lock on X is lost at that moment. In order to update relation X at 

site B, a new lock must be acquired at site B again. However, if things 

are allowed to proceed this way, the serializability of transactions cannot 

be guaranteed. Also, deadlocks between transactions can happen (FREDI 

prevents the occurrence of deadlocks by not allowing a transaction to 

begin until it has acquired the locks on all required relations). 

(2) During the update to the primary copy, site B fails. In this case, the 

update to the primary copy of X will still run to completion. When site 

B recovers, the recovery routines copy the value of X from site A to site 

B. The update to X eventually applies to both the primary copy and the 

secondary copy of X. 
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(3) Update to the primary copy is completed, but during the update to the 

secondary copy, site A fails. In this situation, update to the secondary 

copy of X will still run to completion. 

(4) Update to the primary copy is completed, but during the update to the 

secondary copy, site B fails, and the update to the secondary copy 

cannot run to completion. When site B recovers, the recovery routines 

copy the value of X from site A to site B. The update eventually applies 

to both copies of X. 

Therefore, an update to a replicated relation will either eventually be 

applied to both the primary copy and the secondary copy of the relation, or 

the update will not be applied at all. The copies of a relation will not be in an 

inconsistent state. 

6.7. CONCURRENCY CONTROL IN FREDI 

FREDI uses locking, rather than timestamping, for concurrency control. This is 

for the following reasons: 

(1) Locking appears to be more straight forward to implement. 

(2) Message overhead due to locking is not an extremely important factor in 

a local area network environment. 

(3) It is cumbersome to need to attach a clock reading to each data object 

(i.e an INGRES relation). 

(4) To synchronize all the clock readings across all sites would require a 

special algorithm. Clock synchronization is needed in most timestamping 

schemes. 
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(5) A timestamping scheme may occasionally require rollback of a 

transaction. The prototype FREDI is not equipped to perform any 

rollback of transactions. In fact, it is extremely difficult to design a DDB 

system at the front-end level that could perform any rollback of 

transactions. 

Since it is not possible to apply a physical lock to a relation, logical lock 

is used instead. For relations that have only a single representation, all locks 

are handled by the lock server at the site where the relation resides. For 

relations that have two stored representatives, all locks are directed to the 

primary site if both copies are available, and to the "final" site (either 

primary site or secondary site) if one of the two copies is not available. 

Therefore, locking in FREDI is handled in a distributed fashion. The 

centralized locking scheme is not used because it is prone to the the failure of 

the central control site as well as the possibility of a bottleneck. 

The locking status of the relations at each site is maintained by a local 

relation called DiOOK. Thus, there is one DJJOOK relation at each site. Each 

D.JJOOK relation maintains only the locking status of the user relations at that 

site. 

Except for the local lock server, no other process should have direct 

access to DJJOOK. D..WoOK has three domains: reljd is the name of the 

relation being locked, piabel registers who (which user process group) owns 

the lock (plabel stands for "process label"), and type registers what type of 
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lock (read or write) is granted. An example of the D...LOOK relation looks like 

the following: 

reLid 
employee 
salary 
projects 
parts 
managers 
depts 
customers 
projects 

plabel type 
3 r 
3 w 
7 r 
7 r 
3 r 
2 w 
3 r 
4 r 

S 

S 

S 

Only the names of those relations that are currently locked appear in the 

relation D.JJOOK. 

When a request for locking a relation arrives, the lock server first checks 

the DJJOCK relation to see if the request can be honored. If it can, the lock 

server process adjusts the DJJOOK relation to reflect the change, and returns a 

message to the requestor to indicate that the operation has been completed. 

Otherwise, a message indicating that the request cannot be completed is 

returned to the requestor. The lock server may be considered to perform 

"test-and-set" operations. It determines if a lock should be granted by 

following these rules: 

• If a user process group requests a read (shared) lock on a relation, and a 

write (exclusive) lock on that relation has not been granted to another 

user process group, grant the lock. 

• If a user process group requests a write lock on a relation, and neither a 

read lock nor a write lock has been granted to another user process 
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group, grant the lock. 

Deny the request otherwise. 

According to the query processing strategy of the prototype FREDI, there 

is no need to enable a read lock to be upgraded to a write lock, or a write 

lock to be downgraded to a read lock. The correct locks are requested before 

the actionsfor the current query are carried out. No further lock is required 

once the actions for the query have been started. 

Deadlocks in the prototype FREDI are avoided. Since it is very difficult for 

a front-end level DDB system to perform rollback of transactions, other 

methods to deal with deadlock do not seem to be appropriate in FREDI. The 

basic idea is that a transaction cannot proceed until it has locked all the 

required relations. Once a lock on a relation cannot be granted, the 

transaction must relinquish all the locks it has already obtained, and try to 

lock all of the required relations again after a random period of time. The 

locking of relations for a transaction therefore follows these steps: 

(1) Form a queue that contains all the names of the relations that are needed 

for this transaction. 

(2) Pop the next name off the queue. If the queue is empty, all the locks 

needed have been acquired. Otherwise, the name obtained is the name of 

"the relation in question". 

(3) Request an appropriate lock for the relation in question. 

(4) If the lock for the relation in question can be obtained, go to step 2. 

(5) If the lock for the relation in question cannot be obtained, release all the 

locks already acquired. Re-form the queue so that it contains all the 
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names of the relations that are needed for this transaction. Wait a 

random period of time (such as one, two, or three seconds). Go to step 2. 

6.8. TRANSACTION SCOPE AND COMMIT PROTOCOL 

In FREDI, commit protocol such as two-phase commit is not needed. 

Recall that a single QTJEL statement is defined as a single transaction. On 

close observation, one will discover that among all QUEL statements there is 

no single statement that can update more than a single relation at a time. 

Commit protocols are needed when different data in more than one site are 

needed to be updated within a single transaction. Since there is no need to 

update more than one relation within a single transaction in FREDI, there is no 

need for a commit protocol. 



CHAPTER 7 

CONCLUSION 

The development of FREDI demonstrates that it is possible to construct a DDB 

system using a front-end approach. FREDI is easy to use, provides much site 

autonomy, gives good performance to single site operations and reasonable 

performance to multi-site operations, and tolerates single site failures. 

In the development of FREDI, we have also explored many design issues 

about DDB system in general. 

The subject of DDB systems is still very new, and many issues do not 

have a "correct" solution. During the development of FREDI, particularly in 

the early stages, looking for the appropriate solution was occasionally like 

"searching in the dark". Fortunately, many problems became much clearer 

and better understood as FREDI started to take shape. Even so, FREDI had to 

be re-written from scratch several times during the early course of this 

research. 

There are a few issues that we either have not touched at all, or have not 

explored very deeply. Possible avenues of further research include: 

(1) Security and authorization. 

FREDI may be extended as a vehicle for research in issues regarding data 

security, data authorization, user and remote site authentication in DDB 

environments. 

(2) View management. 

FREDI does not support view. View management in DDB systems 

111 



112 

(3) 

[B ert83] is not as simple as it first appears. Future research could add 

the support of view to FREDI. 

Data partitions. 

FREDI supports neither horizontal partition nor vertical partition for the 

reasons we have explained. While the support of horizontal partition 

and/or vertical partition would require very serious effort, both kinds of 

partitions are nevertheless interesting forms of data distribution, and 

merit further study. 

(4) Query optimization. 

The prototype FREDI does not use a fancy algorithm for query processing 

nor does it handle queries in a truly distributed fashion. This is 

acceptable only in a local area network environment where data 

communication cost and data communication delay are not significant 

factors. Nevertheless, future research in query optimization may employ 

FREDI as a testing ground. 

(5) Parallelism. 

The prototype FREDI does not utilize parallelism very much. Although it 

is much harder to control parallel distributed operations than sequential 

distributed operation, parallelism is undeniably an obvious way to 

improve performance of a DDB system. 

In this research we have shown that a DDB system can be a practical 

vehicle for information management. It is therefore obvious that DDB systems 

have a bright future. 
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