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Abstract

The design automation community is confronted with new challenges every technology

node. Many of the challenges are borne out of issues relating to scale, be it the very

small or the very large. For example, the extremely large scale of the number of

instances in modern designs creates challenges in effectively exploring vast solution

spaces in reasonable amounts of time. At the other end of the scale spectrum, the

extremely small scale of features created by modern lithography processes are highly

susceptible to process variations which affect performance and yield. This thesis deals

with the development of methods for solving scale-borne problems in the physical

design of integrated circuits.

This thesis addresses challenges faced in two important phases of physical design:

placement and clock network synthesis. The importance of these two phases is reflected

in the fact that they have been the subject of five out of the last seven ACM/IEEE

International Symposium on Physical Design (ISPD) contests. The number of instances

and the size of the solution space in performing placement are truly immense. A proven

linear-time clustering algorithm is proposed to deal with the explosion of problem sizes

being encountered. Several extensions to the algorithm are proposed to further improve

the quality of results.

The number of instances in clock network design is also growing at a rapid pace.

In order to cope with this challenge, a generic framework to parallelize algorithms

that perform the main stages of clock network synthesis is proposed. Theorems are

provided to prove asymptotically optimal speedup when the framework is applied to

several classes of algorithms. Another challenge addressed regarding clock network

synthesis is that of variation. A method is proposed for handling variations in lengths

and widths of buffers and interconnects, that arise from the manufacturing process.
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Chapter 1

Introduction

Very large-scale integration (VLSI) is the process of bringing together thousands of

electronic components to create an integrated circuit. In VLSI, the physical design of

circuits refers to the process of generating a layout for a circuit from its logic description

to be used in fabrication. A typical input to the physical design process is a circuit

netlist represented as a hypergraph, where the vertices represent circuit components,

or cells, and the hyperedges represent the wires, or nets, that connect the cells. The

number of nets that connect to a cell, is the degree of the cell, and the number of cells

that a net connects, is the degree of the net.

The physical design process can be broken down in three major steps: floorplanning,

placement and routing. In floorplanning, size, shape and locations of the main blocks

of the circuit are decided. During placement, the locations of the cells of each main

block are determined, while the nets are routed as part of the routing step.

The design automation community is confronted with new challenges every time

manufacturing technology advances, or every technology node. Many of the challenges

are borne out of issues relating to scale, be it the very small or the very large [1].

For example, the extremely large scale of the number of instances in modern designs

creates challenges in effectively exploring vast solution spaces in reasonable amounts

of time. At the other end of the scale spectrum, the extremely small scale of features

created by modern lithography processes are highly susceptible to process variations

which affect performance and yield. This thesis deals with the development of methods

for solving scale-borne problems in the physical design of integrated circuits.

The main objective of placement is to reduce the amount of wires needed to connect
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the cells. In order to achieve this objective, cells that are highly connected need to be

placed close to each other. Therefore, the main goal in a clustering algorithm used in

placement is to identify and group highly connected cells into a new cell, which will

be referred to as a cluster. This cluster represents the original cells in the coarsened

circuit as a single cell. All nets that connect only to cells contained in a cluster are

taken out of the hypergraph representing the coarsened circuit. Once the size of the

hypergraph has been reduced to a size that the placer can easily handle, the placer

assigns a region on the circuit to each cluster. This process is usually referred to as

global placement. After placing all clusters, a local placement algorithm is used to

find the exact locations of the cells within each cluster in the region assigned to that

cluster.

An important step of physical design which happens after placement or after routing

is the synthesis of a clock network. The clock network distributes the oscillating clock

signal which is used to time operations as data flows through a circuit. Clock networks

must be carefully designed so that the clock signal arrives at nearly the same time to all

circuit elements receiving the signal. The larger the discrepancy in clock signal arrival

times, the slower the circuit needs to operate to avoid violating timing constraints.

Due to the large number of elements receiving the clock signal and the nanometer

scale of modern technology nodes, the problem of designing a clock network can be

very complicated.

1.1 Thesis Overview

This thesis addresses challenges faced in two important phases of physical design: place-

ment and clock network synthesis. The importance of these two phases is reflected in

the fact that they have been the subject of five out of the last seven IBM Research

and Intel Research sponsored ACM/IEEE International Symposium on Physical De-
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sign (ISPD) contests [2]. The number of instances and the size of the solution space

in performing placement are truly immense. Two clustering algorithms and an unclus-

tering algorithm are proposed to deal with the explosion of problem sizes. Highlights

of the algorithm include:

• Proven linear-time complexity,

• Improved performance by several measures over other state-of-the-art clustering

algorithms,

• Demonstrated to benefit several existing placers.

The number of instances in clock network design is also growing at a rapid pace.

In order to cope with this challenge, a generic framework to parallelize algorithms that

perform the main stages of clock network synthesis is proposed. The framework is

shown to exhibit linear speedup in each stage when applied to several popular algo-

rithms. Features of the proposed parallelization technique include:

• Proven linear speedup,

• Application to existing algorithms without change,

• Easy implementation.

Another challenge addressed regarding clock network synthesis is that of variation.

A method is proposed for handling variations in lengths and widths of buffers and

interconnect, that arise from the manufacturing process. The problem is formulated as

a convex mathematical program to minimize area under given timing constraints and

an ellipsoidal variation model. Merits of the proposed method include:

• Obtaining a globally optimal solution,
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• Handling various delay models,

• Incorporating spatially-correlated variations.

1.2 Thesis Organization

The remainder of this thesis is divided into three remaining parts:

• Part II is titled Clustering for Placement Problems. Within it are two chapters,

the first is Chapter 2 which reviews clustering in the context of circuit placement

and discusses concepts required to understand the contributions made in the fol-

lowing chapter. The second chapter in Part II is Chapter 3. In Chapter 3, a

clustering technique is proposed based upon a technique for solving large-scale

systems of equations. Furthermore, an extension of the clustering technique and

an unclustering technique geared towards obtaining the best placement results

possible are also proposed.

• Part III is titled Clock Tree Synthesis problems and contains three chapters. In

Chapter 4, background material for the following chapters in Part III are pre-

sented. The material includes a review of the main aspects of clock tree design

as well as an overview of parallel computing concepts and two particular math-

ematical optimization techniques. The first contributions of Part III are given

in Chapter 5 where a framework is proposed for parallelizing different classes of

algorithms used in designing clock trees. In Chapter 6, a novel formulation of

the clock tree buffers sizing problem is proposed. The formulation is extended to

consider process variations to provide solutions which are robust to changes in

ideal parameter values.

• Part IV is titled End Matter and includes Chapter 7 which concludes the thesis.
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Also included is Appendix A which proves a variety of results used in the work

in Chapter 5. Finally, a list of references is provided in the Bibliography.
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Part II

Clustering for Placement Problems
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Chapter 2

Background Material for Part II

2.1 Introduction

Digital circuits have doubled their size every 18 months for the last 50 years, as pre-

dicted by Moore [3]. Today’s algorithms for the physical design of circuits need to be

able to handle the large scale and the complexity of the designs. Many physical design

problems are shown to be NP-hard [4] and cannot be solved optimally in reasonable

amounts of time. Hence, heuristics with low computational complexity are needed to

provide high quality solutions.

One of the techniques used to increase the efficiency of the placement step of the

physical design is to coarsen the hypergraph representing a circuit in several stages

using heuristics, which are usually referred to as clustering algorithms. The clustering

algorithms used are based on finding small groups of cells with high connectivity and

putting each of them in a cluster. This scheme has proven effective, to a large extent,

as there is a high correlation between the cells’ connectivity and the lengths of the nets

that connect them [5, 6]. Hence, by clustering cells that are close to one another, the

lengths of the nets between them, and hence the total wire length, will be reduced.

However, these clustering techniques have two major limitations: they only consider

local connections when forming clusters and they do not actually use any measure of

net lengths to measure the quality of clusters. In this thesis, a new clustering algorithm

is proposed, which considers local and global pictures of the circuit for clustering using

a mathematical modeling technique called algebraic multigrid [7] in a creative way. In

addition, a pre-placement length estimation is used to measure the quality of clusters

and directly reduce the lengths of the nets. The proposed approach requires knowledge
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and application of several different mathematical fields: clustering, AMG and estima-

tion. The background material relevant to these fields are briefly discussed in the

rest of this chapter. The remainder of this chapter is organized as follows: In Section

2.2, a review of existing clustering algorithms is given. The background relevant to

AMG techniques is reviewed in Section 2.3. In Section 2.4 existing length estimation

techniques are reviewed. Finally, a summary of the chapter is given in Section 2.5.

2.2 Clustering Background

Clustering is usually employed while solving large-scale problems encountered in to-

day’s designs to speed up the design process and improve the solution quality. In

essence, clustering is a classification technique that partitions the input space into

groups according to certain metrics. The output generated by clustering may again be

used as an input to a clustering. Each application of clustering can be thought of as

a level in a multilevel clustering paradigm. An illustration of multilevel clustering is

presented in Figure 2.1. A set of points is given as input in Figure 2.1(a). One level of

(a) Input (b) First level (c) Second level

Figure 2.1: Abstract representation of multilevel clustering.

clustering is performed and the generated clusters are surrounded by dashed lines in

Figure 2.1(b). Points that were clustered together in the first level are joined together

to form larger points seen as input for the second level in Figure 2.1(c). Note that

points that are not clustered with other points persist in the output of the clustering.
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In this thesis, clustering algorithms designed for the placement stage of physical

design are studied. In the context of placement, all clustering algorithms include the

following: an abstract circuit representation, a clustering heuristic and a cluster quality

metric. Each of these will be briefly discussed in the following sections.

2.2.1 Abstract Circuit Representation

In clustering algorithms, a circuit can be represented by either a hypergraph, multi-

graph or graph [8]. In Figures 2.2(a) to 2.2(d), an example of a circuit schematic along

with its hypergraph, multigraph and graph representations are shown, respectively. In

the representations, cells are represented by squares and nets are represented by solid

lines. In the hypergraph representation, each net is represented by a hyperedge that

(a) Circuit schematic

1 2 3
(b) Hypergraph representation

1 2 3
(c) Multigraph representation

1 2 3
(d) Graph representation

Figure 2.2: An example of a circuit schematic, and its hypergraph, multigraph and
graph representations.

connects two or more cells. A multigraph representation converts each hyperedge to

a set of edges forming a complete graph of the vertices connected by the hyperedge.

Because the edges in a multigraph do not always represent entire nets, inaccuracies

can arise in such representations [5]. A graph representation combines parallel edges in

a multigraph to further simplify the circuit representation. The simplicity of a graph

is often desired during clustering, but further inaccuracies can be introduced that can

detract from the quality of the clustering technique [5]. Many graph or hypergraph

representations have an associated weight for each edge or hyperedge [5]. The weight
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should reflect the goal of clustering and can partially account for inaccuracies in a

graph or multigraph representation.

2.2.2 Existing Clustering Algorithms Used in Physical Design

During the past decade, numerous clustering algorithms have been proposed for the

placement stage of physical design [5,9–16]. In clustering algorithms, groups of highly

connected cells are sought. The reason for this, is because such groups of cells should

be placed close together by a placer to reduce wire length. In many algorithms [5,9,10,

13, 14], to find highly connected cells, a cell that does not already belong to a cluster

is designated as a seed cell. A new cluster is grown using the seed cell. Cells that are

directly connected to this seed cell are examined and if they pass certain criteria, they

are added to the cluster. The criteria usually involve a measure of connectivity. If no

suitable cell exists that can be grouped with the seed cell, then the seed cell loses its

seed status. Cells are examined as seed cells to form clusters until the circuit size is

reduced to a desirable size or all cells have been examined. Other algorithms consider

nets as seeds for clustering [9, 11, 12, 15].

In [9], edge coarsening, hyperedge coarsening, and modified hyperedge coarsening

were introduced. In edge coarsening, a cell is randomly assigned as a seed and its

connectivity with all of its unclustered neighbors is computed. A cluster is formed

with the seed cell and its most highly connected unclustered neighbor. In hyperedge

coarsening, a hyperedge is chosen randomly. If the hyperedge does not contain cells that

already belong to another cluster, its cells are clustered together. Modified hyperedge

coarsening is based on the same procedure as hyperedge coarsening with the difference

that hyperedges containing clustered cells can still be considered for further clustering.

Hyperedge and modified hyperedge coarsening use seed nets instead of seed cells to

form clusters.
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FirstChoice clustering is proposed in [10]. In FirstChoice, seed cells are chosen

randomly, and can be clustered with any neighbor cell even though it may already

belong to a cluster. In [11] and [12], two variations of edge coarsening, called heavy-

edge matching and PinEC, are presented. In heavy-edge matching [11], a connectivity

measure for pairs of cells is calculated based on the areas of the cells and the degrees of

the hyperedges that connect them. Then, pairs of cells with the highest connectivity

measure are clustered. PinEC [12] is a modification to the heavy-edge matching where

nets of degree two are given higher weights.

A clustering technique, edge separability, is presented in [13]. In this technique, the

netlist is first converted into its corresponding graph. All the cells in the graph are

considered as seed cells and a computationally-efficient approximation of the maximum

flows between each cell and all of its neighbour cells are computed. Subsequently, pairs

of cells with the highest approximate flow are clustered.

In [14], a two-phase improvement algorithm, called fine granularity clustering (FGC),

is presented. Clusters are initially formed by randomly assigning seed cells and greed-

ily moving all neighbouring cells into the seed cell cluster until the cluster reaches an

upper bound size. In the first phase of improvements, cells are moved out of clusters

into neighbouring clusters if it results in more nets being included within a single clus-

ter. In the second phase of improvements, groups of two or three cells, as opposed

to individual cells, are moved between clusters to increase the number of nets within

clusters.

Another technique called best-choice is presented in [5]. In best-choice, clustering

scores are first calculated for each cell and all its neighbours. Then, all pairs of cells are

placed into a priority queue according to their scores. Pairs of cells with the highest

score are clustered and the priority queue is updated. Best-choice has been successfully

used in the clustering stage of placers such as mPL6 [17].
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In Net Cluster [15], groups of neighboring cells that have more connections between

themselves than with other cells are formed. The constructed clusters are then used

as guidelines to determine the best set of nets or groups of cells that are supposed to

be clustered. Net Cluster has been applied as a preprocessing step for placement.

A clustering technique called SafeChoice is introduced in [16]. This clustering is

based on the principle that the quality of placement should not be degraded by any

cluster formation. A priority queue of pairs of cells to be clustered is formed, and the

clustering is automatically stopped when clustering can result in longer net lengths.

The main commonality between these algorithms is that they use connectivity be-

tween cells as the main measure for clustering cells. One of the main differences in

existing clustering algorithms explained above is how seed cells are chosen and what

criteria are used for determining the connectivity between cells. For example, consider

the circuit abstraction in Figure 2.3. If the size of the circuit depicted in Figure 2.3

needs to be reduced by about 60%, choosing cells ②, ⑤, and ⑦ as seed cells and forming

clusters: C1 = {②: ①, ③, ④}, C2 = {⑤: ⑥}, and C3 = {⑦: ⑧, ⑨}, results in the best

clustering solution. This is due to the fact that the number of nets between the clusters

is minimized and the number of nets entirely inside clusters is maximized. However,

321

4 5 6

7 8

9

Figure 2.3: A circuit to be clustered and example clusters encircled with solid lines.

even in this simple example, it might not be very obvious which cells need to be chosen

as seed cells and which cells need to be grouped with them.
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2.2.3 Clustering Performance Metrics

There are several metrics that can be used to measure the quality of a clustering

algorithm. The most relevant metrics for clustering are: (i) the quality of the clusters

that are produced, such as the number of nets that are totally inside the resulting

clusters, (ii) the characteristics of the clustered circuit, and (iii) final placement results.

In the rest of this section, specific techniques or formulae to quantify the metrics that

are most commonly used in clustering are discussed.

Rent’s Rule (RE): Rent’s rule measures the quality of a cluster, Ci, and is expressed

as a relation between the number of pins, or net terminals, external to Ci belonging to

nets connecting to one or more cells in Ci, nCi
e , and the number of cells in Ci, nCi

c :

nCi
e = nCi

p × (nc
Ci)re(Ci),

where nCi

p is the average number of pins per cell, and re(Ci) is the Rent exponent.

The Rent exponent can be used as a quality measure to indicate the connectiv-

ity within a cluster. A loosely connected cluster would have a Rent exponent value

near unity, the maximum. A highly connected cluster on the other hand will have a

smaller, possibly negative, Rent exponent. According to [18], the Rent exponent can

be approximated by:

re(Ci) ≈ 1 +
ln(nCi

e /nCi
pc

)

ln(nCi
c )

,

where nCi
pc

is the total number of pins in Ci.

The Rent exponent, RE(·), for a given clustering solution {C1, C2, ..., Ck} with k

clusters is:

RE(C1, C2, ..., Ck) =

∑k
i=1 re(Ci)

k
,

which is equal to the average of all the Rent exponents.

Absorption (AB): For a given clustering solution, the absorption cost function cal-

culates the number of nets that are absorbed by a cluster [19], or connect only to cells
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in a single cluster. A good clustering algorithm can maximize the number of nets ab-

sorbed. Absorption cost measures the quality of clusters that are produced. A formal

definition of absorption cost, ab(·), can be expressed as follows [19]:

ab(Ci) =
∑

{h∈H|h∩Ci 6=∅}

|h ∩ Ci| − 1

|h| − 1
,

where h is a net that has at least one cell in cluster Ci, and H is the set of nets in

the circuit. For a given clustering solution, {C1, C2, ..., Ck}, with k clusters, the total

absorption cost, AB(·), is equal to the summation of all the absorption weights:

AB(C1, C2, ..., Ck) =
k

∑

i=1

ab(Ci).

Cell and Net Clustering Ratios: Cell Clustering Ratio (CCR) is the ratio of cells in

a circuit after the clustering, nl+1
c , to the total number of cells, nl

c:

CCR =
nl+1

c

nl
c

.

Net Clustering Ratio (NCR) is the ratio of nets in a circuit after the clustering, nl+1
n ,

to the total number of nets, nl
n:

NCR =
nl+1

n

nl
n

.

Cell and net clustering ratios show some of the characteristics of the clustered circuit.

The NCR should be as low as possible to make the connectivity of clustered circuit

less complex.

Final Placement Results: In the context of circuit placement for physical design,

one method to measure the quality of a clustering solution is to obtain placement solu-

tions with and without clustering the circuit and compare placement quality measures,

such as the total half-perimeter, or half bounding box, wire length and total runtime,

between the two placement solutions. Because the quality of placement solutions given

by placers is good, improvements in wire length of a few percent are respectable.
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2.3 Algebraic Multigrid

AMG is a technique to efficiently solve large, sparse systems of linear equations, Af = b

[7, 20–23]. In AMG, to solve Af = b, a multilevel scheme consisting of three stages is

used: restriction or coarsening, direct solution, and interpolation. The coarsening stage

is performed in several levels. At each level, the size of the problem is reduced from

a finer problem to a coarser problem. At each level the approximate solution to the

coarsened problem is improved. During the direct solution stage, the coarsest problem

is solved exactly. In the interpolation stage, the solution of a smaller problem is used

to update the approximate solution of a larger problem. A multilevel AMG scheme is

illustrated in Figure 2.4. In this Figure, in each level, l, of coarsening, a restriction

Relax A v = b00 0

Level 1
Reduced SystemSet r   r − A e

1 1 1 1

1 1 1
Relax A e = r

Reduced System
Level L

Relax A e = r1 1 1
e   e   (W ) e+
1 1

1
2 T 2

Correct v   v + e0 0 0

Relax A v = b00 0

1
0

1
0

T
A = W A (W )

1 0

Level 0
Initial System

Restriction

r = W r1 1 0
0

L

e   (W ) e
0

0
1 1T

Set r = b − A v0 0 0 0

Direct

e = (A ) r
−1L L

Interpolation

Figure 2.4: A multilevel AMG scheme.

matrix, Wl+1
l , is calculated. To reduce the size of the equation matrix at level l, Al,

is pre-multiplied by Wl+1
l and post-multiplied by (Wl+1

l )T , the interpolation matrix,

and the equation matrix at level l + 1 is Al+1 = Wl+1
l Al(Wl+1

l )T [7]. Matrix Al+1 has

lower dimensions than Al. At the coarsest level, L, an exact solution to eL is found,

i.e., eL = (AL)−1rL as shown in this figure.

The efficiency of AMG in finding a solution to Af = b is due to solving the residual
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equation, Ae = r, where e is the error in the approximation v of f , and r is the residual,

r = b−Av. The basic idea is that during the coarsening the components of the error, e,

which can be removed with low computational cost in each level are eliminated and only

components of the error which cannot be easily removed are passed to the next level.

In the coarsest level, only the components of the error that have high computational

cost are present, and an exact solution methodology can be used to solve for the error

efficiently. In the interpolation stage the error is propagated to the finer levels using

the appropriate interpolation matrix. Finally using the calculated error in the finest

level, l = 0, the solution approximation v is updated: v0 ← v0 + e0. In the proposed

clustering algorithm only the coarsening stage of AMG is used. Therefore, this step is

described in further detail.

Each element in the solution vector f is referred to as a point, pi. From the set of all

pl
i at level l, the points that are selected to represent the problem at the coarser level

are called C-points. The set of points which are not selected are known as F-points

since they exist only in the finer level. To find C-points at each level, first the notion

of strong dependence is introduced, [21]. A point pl
i is said to strongly depend on pl

j if,

for a given θ ∈ (0, 1]

∣

∣al
i,j

∣

∣ ≥ θ ×max
k 6=i

{∣

∣al
i,k

∣

∣

}

, k = 1, ..., |P l|. (2.1)

where, al
i,j is the (i, j)th element of Al, and |P l| is the number of points in level l.

To select C-points and F-points, two selection criteria are considered:

Criterion 1: For each F-point, pl
i, the points that it strongly depends on should either

be C-points, or strongly depend on a C-point.

Criterion 2: No C-point should strongly depend on another C-point.

These two criteria may not be mutually satisfiable, so the first criterion is enforced

and the second is only violated when necessary [7]. With the C-points and F-points
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selected, the interpolation matrix for moving from level l + 1 to l,
(

Wl+1
l

)T
is defined

using the elements of the matrix Al, and the matrix Al+1 is recalculated. The output

at the end of each coarsening step, l, is a set of 2-tuples {Al+1,Wl+1
l }.

There are several different design decisions that need to be made implementing

an AMG algorithm. As examples, the parameter θ which determines the definition

of strong dependence, the exact method for selecting C-points and F-points, and the

formulae for populating entries of the interpolation matrix all need to be decided. The

implementation issues relevant to the algorithms developed in this thesis are further

discussed as they arise in Chapter 3.

2.4 Length Estimation Background

Estimating the lengths of nets before the placement of their pins are known is very

hard problem as the length of nets can depend on several factors. Several a-priori

length estimation techniques, e.g. [24–27], have been proposed that try to estimate

the length of individual nets. Older techniques such as [28–33] can only estimate the

average length of a set of nets or the distributions of net lengths. As this thesis is only

concerned with finding individual lengths, only these techniques are discussed in this

chapter.

In [27], a variable referred to as the Intrinsic Shortest Path Length (ISPL) is devel-

oped and used to estimate the individual net lengths. Although the estimation results

obtained using this technique are exceptional, this approach is not very useful for mod-

ern mixed-size circuits since it only considers cells with unit area and nets with degree

two.

Different properties of nets and cells are modelled by several variables in [24]. These

variables are then used to make a third-order polynomial model for length estimation.

The estimation results are well-correlated for relatively small circuits that only include
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standard cells. However, none of these variables considers the effects of macro blocks on

net lengths and so the estimation results for mixed-size circuits are unreliable. In [26],

this technique is further studied using a quadratic polynomial. Three new variables are

proposed to account for the effects of macro blocks. The estimation results for modern

mixed-size circuits show around 10% improvement over those obtained using [24].

Some applications of a-priori net length estimation techniques are introduced in

[14,25,34]. A variable called Mutual Contraction, is proposed and used for net length

estimation, in [14, 34]. This variable is then used in placement. The estimated net

lengths are utilized to quantify the quality of potential clusters.

In [35], another application of pre-placement length estimation is proposed where

the negative effects of clustering are corrected based on the estimation results. The

technique also adjusts its estimates according to the placer performing the placement.

2.5 Summary

In this chapter, mathematical techniques and background material related to the clus-

tering algorithm proposed in Chapter 3 are discussed. An overview of the existing

clustering algorithms for placement and the metrics to measure the efficiency of them

are reviewed.

In addition, AMG and a-priori length estimation techniques that are not directly

related to clustering but are used in the proposed clustering algorithm are described

and relevant prior works in these areas are discussed.
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Chapter 3

AMG-Based Clustering Techniques

3.1 Introduction

In this chapter, two AMG-based clustering techniques are proposed and implemented1.

In the first proposed technique, the AMG coarsening step is used to identify the most

connected cells based on the connectivity matrix of a circuit and cluster them. In

the second technique, the first proposed AMG-based clustering technique is improved

by using estimated lengths of the nets instead of the connectivity matrix for defining

which cells should be clustered together. The final contribution of this chapter is to

implement a length-driven unclustering technique.

This chapter is organized as follows: In Section 3.2, the proposed connectivity-based

AMG clustering is discussed. In Section 3.4, the proposed length-based AMG clustering

is extended to a length-based clustering technique. The length-driven unclustering

technique is discussed in Section 3.4.2. Numerical results and analysis of experiments

using the proposed techniques are given in Section 3.3. A summary of the chapter is

given in Section 3.6.

3.2 Connectivity-based AMG Clustering

In this section, an AMG-based clustering algorithm is proposed. The algorithm is

designed to use the AMG coarsening step to identify cells that will perform best as

seed cells. The interpolation matrix weights are used as a score for measuring the

1Portions of the work presented in this chapter are taken from [36, 37]. S. Martin and J. Aguado
contributed to the work by bringing multigrid to attention. A. Farshidi contributed by generating
pre-placement net length estimates.
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connectivity of each seed cell and its non-seed neighbours. Clusters are formed by

joining non-seed cells to their seed cells which they most strongly depend on. The

main features of the proposed algorithm are as follows:

• Defining seed cell status based on circuit connectivity,

• Using AMG interpolation matrix for weighing connections,

• Providing a global perspective for clustering,

• Linear-time complexity,

• High flexibility to adapt to clustering requirements.

3.2.1 The Proposed AMGC Algorithm

The inputs to the proposed clustering algorithm are the circuit netlist and AMG pa-

rameters that control how much a circuit needs to be clustered. The output of the

algorithm is the clustered circuit which is then used for placement. The proposed

AMGC algorithm consists of four main steps, which are presented in Figure 3.1. In the

Algorithm AMGC: AMG-based clustering
Input: Circuit netlist, AMG parameters
Output: Clustered circuit
1. Matrix construction using the circuit netlist
2. AMG coarsening on the constructed matrix
3. Cluster seed cell and score assignment
4. Final cluster formation

Figure 3.1: The high-level flow of the AMGC algorithm.

following sections, each step is described in detail. In addition, implementation details

and discussion of the proposed algorithm are presented.
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Step 1: Matrix Construction Using the Circuit Netlist

The first step of the algorithm is to find an efficient representation of a netlist using

a matrix. It is shown in [7] that for best AMG performance the matrix should be a

symmetric, positive-definite M-matrix. An M-matrix is a symmetric, positive-definite

matrix with positive diagonal and non-positive off-diagonal elements. In the proposed

AMG-based clustering technique, to produce such a matrix, a modified connectivity

matrix, A0, is constructed. The elements of A0 are determined as follows: Consider

two cells, i and j, which are treated as points in AMG, and let Hi,j be the set of nets,

hk, that contain both cells i and j. Then, element a0
i,j is calculated as:

a0
i,j =



































∑

hk∈Hi,j

− c (i, j, hk) , i 6= j, Hi,j 6= ∅
∑

hk∈Hi,i

∑

l∈hk,
l6=i

c (i, l, hk) , i = j, Hi,i 6= ∅

0, Hi,j = ∅,

(3.1)

where c(·, ·, ·) represents the weight of the connection between two cells of a net. In

the context of clustering, the weight is normally set to be equal to:

c(i, j, hk) =
1

|hk|

where |hk| denotes the degree of net hk. Using the formulation in (3.1), any off-

diagonal element of the modified connectivity matrix is equal to the negative sum of

the connection weights between cells i and j and any diagonal element is equal to

the sum of all the connection weights with i. This means that A0 is a diagonally

dominant matrix with positive diagonal elements and negative off diagonal elements.

Although an M-matrix is highly desirable for AMG, A0 is positive semidefinite. The

vector of all ones is in the null space of A0. In the context of circuit clustering, where

no system of equations is being solved, this is not an issue. Other desired properties

of the connectivity matrix construction proposed in (3.1) are that it handles multi-
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terminal nets and multiple connections between cells without having to change a netlist

hypergraph into a graph model which can introduce further inaccuracies.

Step 2: AMG Coarsening on the Constructed Matrix

Once the connectivity matrix A0 has been constructed, it is used in the context of

AMG to find seed cells and potential clusters. It is proposed to use the C-points

determined by the AMG coarsening process as seed cells and form clusters based on

the connectivity of F-points with different C-points.

A customized version of AMG coarsening is developed to find C-points and F-

points. The developed method is based on the classical method by Stüben [20], but it

is customized to consider cell areas in C-point assignment. The inputs of the algorithm

are the set of cells, P 0, and the connectivity matrix, A0.

Each step is briefly described as follows:

• Step 1: The C-point set, C0, and F-point set, F 0, are initialized to empty sets

and λi, a measure of desirability of p0
i to be selected as a C-point, is calculated

for each point. λi is equal to the number of cells that strongly depend on p0
i .

• Step 2: The smallest cell with the largest λ is chosen as a C-point based on

selection criterion 2 mentioned in Section 2.3.

• Step 3a: All of the cells that strongly depend on cell i become F-points.

• Step 3b: The cells that the new F-points strongly depend on are promoted by

incrementing their λ values in accordance with C-point selection criterion 1 in

Section 2.3.

• Step 4: The cells that the newest C-point strongly depends on are demoted by

reducing their λ values.
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• Step 5: The algorithm is finished when all cells have been assigned to set C0 or

F 0.

The algorithm is multilevel in nature, so superscript 0 can be replaced by l since it is

applied at each level in Algorithm AMGC. The high-level description of the C-point

selection algorithm, called Algorithm CP, is given in Figure 3.2.

Algorithm CP: C-point selection
Input: A set of points P l, connectivity matrix Al

Output: Sets C l of C-points and F l of F-points such
that C l ∩ F l = ∅ and C l ∪ F l = P l

1. C l = ∅, F l = ∅, and calculate λi, i = 1, ..., |P l|
2. Choose the minimum area point pl

i ∈ P l with
maximal λ, set C l = C l ∪ {pl

i}, and P l = P l − {pl
i}

3. ∀pl
j ∈ P l that strongly depend on pl

i

3a. F l = F l ∪ {pl
j}, and P l = P l − {pl

j}
3b. ∀pl

k ∈ P l that pl
j strongly depends on, λk = λk + 1

4. ∀pl
j ∈ P l that pl

i strongly depends on, λj = λj − 1
5. Exit if P l == ∅ or else go to 2.

Figure 3.2: C-point selection algorithm.

By using the area information to select the smallest cell, which is a modification of

the algorithm in [21], clusters of smaller area are more likely to be formed. The effect

of this will be discussed more in Section 3.2.1, when more clustering details are given.

The circuit in Figure 3.3(a) is presented to illustrate how Algorithm CP, Figure

3.2, works.

The table in Figure 3.3(b) contains the initial λ value for each cell using θ = 0. The

minimum area cell with maximal λ, cell 2 in this example, is the first selected C-cell

in Step 2 of Algorithm CP to become a C-point. The cells which strongly depend

on cell 2: cells 1, 3, and 4, are considered in Step 3 to perform Steps 3a and 3b.

These cells become F-points in Step 3a and the λ value for cells which any of them
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(a) Initial circuit

cell 1 2 3 4 5 6 7 8 9

λ 1 3 1 2 2 2 3 2 2

(b) λ values for (a)
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(c) Circuit after selecting the first C-point

cell 1 2 3 4 5 6 7 8 9

λ - - - - 3 2 3 2 2

(d) λ values for (c)
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4 5 6

7 8

9

(e) Final C-point selection

Figure 3.3: C-point selection example using Algorithm CP. Shaded cells have been
considered by the algorithm and cells with thick borders are selected C-points. In this
example θ = 0.

strongly depends on, cell 5 in the example, is incremented by one. The result of the

first iteration is shown in Figure 3.3(c) and the new λ values are given in Figure 3.3(d).

Cell 7 is the next selected C-point and finally cell 5 is selected in the third iteration.

The resulting circuit with C-points highlighted is shown in Figure 3.3(e).

Step 3: Cluster Seed Cell and Score Assignment

After the connectivity matrix has been reduced and the C-points have been identified,

all C-points become seed cells to be used for clustering.

The F-points of the circuit are considered to be clustered with the C-points. It

is proposed to model the strength of dependence of an F-point on a C-point for this

scheme using the AMG interpolation matrix (Wl+1
l )T . C-points interpolate directly

from themselves, so their row has only one non-zero entry; a one in the column of the

C-point. The interpolation coefficients for a point pl
i ∈ F l, ωl

i,j, is calculated using the
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following equation from [21]:

ωl
i,j = −

al
i,j +

∑

pl
m∈F l

i

s





al
i,mal

m,j
P

pl
k
∈Cl

i

al
m,k





al
i,i +

∑

pl
n∈F l

i

w

al
i,n

where al
i,j is the (i, j)th element in Al and the following sets classify the connections

of pl
i:

• C l
i is the set of C-points pl

i strongly depends on,

• F l
i
s

is the set of F-points pl
i strongly depends on, and

• F l
i
w

is the set of points pl
i connects to but does not strongly depend on.

This equation is the commonly used equation for calculating interpolation weights in

AMG and is especially efficient for M-matrices. Note that no divisions by zero can

occur because of the adherence to C-point selection criterion 1 in Section 2.3, and the

construction of matrix Al.

An example of an interpolation matrix and a graph showing the interpolation

weights of each F-point to neighboring C-points is given in Figure 3.4. In this ex-

ample, F-points 1 and 3 only connect to C-point 2 and therefore have an interpolation

weight of one. C-point 2 interpolates from itself and also has an interpolation weight

of one shown in the interpolation matrix. F-point 4 connects to C-points 2 and 5 and

has equal interpolation weight to each. Similarly, F-point 6 connects to two C-points

but more interpolates more strongly from 5.

Step 4: Final Cluster Formation

To finalize the cluster formation all F-points are visited. Each F-point is tentatively

clustered to the C-point that has the highest interpolation weight coefficient, ω. Using

this technique, the order in which the F-points are visited is not important and no
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(b) Pictorial representation

Figure 3.4: Example showing the interpolation weights of F-points to neighboring
C-points in matrix and graph form with interpolation weights annotating edges.

priority queue is needed. The number of C-points that an F-point connects to is

guaranteed to be at least one by the construction of Algorithm CP. However, if the

maximum weight is small, the cluster may not be desirable. Because of this, if the

maximum interpolation weight is not greater than a threshold, ωmin the F-point is not

clustered. Choosing ωmin near one will limit the number of cells that are clustered, but

only the best quality clusters are formed.

After the tentative clusters have been formed, the total area of each cluster is

checked to be lower than a maximum allowable area for clusters (1% of the circuit

area), or else the cluster is not formed. As will be explained, this is to avoid a problem

with white space allocation, i.e. space not occupied by cells, during placement of the

clustered circuit. Macro cells are usually the reason for a cluster to exceed the maximum
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allowable area. When a standard cell is clustered with a macro, it is physically placed

alongside the macro. During the placement stage the resulting cell must be rectangular

and this leaves a large amount of whitespace within the clustered cell because of the

large differences in the height of the macro and the standard cell. The placer is unaware

of the internal organization of the cluster and is forced to remove overlaps that are

artificial in a design that has inflated density which can lead to suboptimal results.

Performing the aforementioned cluster formation algorithm on the circuit given in

Figure 3.4, results in the clusters shown in Figure 3.5. For example, consider F-point

4 which is connected to C-points 2 and 5 with interpolation weight of 0.5. This tie is

broken by choosing the minimum area seed, which is 2.
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Figure 3.5: Example of the cluster formation showing the seed cells that non-seeds
cluster with.

3.2.2 Complexity Analysis

Theorem 3.2.1. The AMGC algorithm has O(N) (linear) time complexity, where N

is the number of pins in the circuit.

Proof. Since each step in Algorithm AMG is completed apart from other steps, if each

step is proven to have linear-time complexity it follows that the entire algorithm has

linear-time complexity.

1. The matrix construction algorithm in Section 3.2.1 involves calculating a weight

between each pair of cells. However, the number of pairs of cells that are directly

connected is far fewer than the total number of pairs of cells in the circuit. Using
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a sparse matrix representation, only those directly connected pairs affect the

asymptotic complexity. Observe that the number of directly connected pairs of

cells is at most equal to:

∑

hk∈H

(|hk|
2

)

≤
∑

hk∈H

(|hmax|
2

)

(3.2a)

= |H|
(|hmax|

2

)

∈ O(N) (3.2b)

where H is the set of all nets and |hmax| = max
hk∈H

{|hk|} is the maximum degree

of a net. The right-hand side of (3.2a) follows from the definition of maximum.

In (3.2b), the sum is converted into a product which is in O(N) because the

number of nets is on the order of the number of cells for practical designs and
(

|hmax|
2

)

∈ O(1) because |hmax| is independent of the number of cells in the design.

2. Algorithm CP is of linear-time complexity with an efficient implementation. The

strong dependence sets for each cell i can be generated in O(N) time. The most

connections that a cell can have is (|hmax| − 1)×|cmax|, where |cmax| is the maxi-

mum degree of a cell. (|hmax| − 1)× |cmax| ∈ O(1) with the practical assumption

that |cmax| is independent of the number of cells in the design, the construction

of all sets is O(N). The steps of the algorithm can be performed in O(N) [38].

The addition of selecting the minimum area point in Step 2 of Algorithm CP

does not affect the asymptotic complexity.

3. The number of F-points is trivially O(N). The number of connections any F-

point may have is at most (|hmax| − 1) × |cmax| ∈ O(1). The scoring process is

thusly O(N)×O(1) ∈ O(N).

4. The maximum interpolation weight of an F-point can be found in O((|hmax| − 1)×

|cmax|) ∈ O(1) operations. Therefore, finding the maximum for each F-point is
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O(N). The tentative clusters can be stored in a single pass of all cells. Because

the number of clusters is O(N) and summing the areas of cells in a cluster is

O((|hmax| − 1)× |cmax|) ∈ O(1), the total complexity is O(N).

As each step in the algorithm is O(N) the algorithm is itself O(N).

Experimental results demonstrating the effectiveness of the AMGC algorithm are

presented in Section 3.3. In particular, analysis of cluster structure is given in Section

3.3.1. The performance of AMGC using various measures is given in Section 3.3.2.

3.3 AMGC Experimental Results and Analysis

In this section, several experiments are carried out to verify the efficacy of the proposed

AMGC algorithm. These experiments are performed using the ICCAD04 benchmark

circuits [39] released by IBM. The detailed statistics of these circuits are given in Table

3.1.

In Columns 2 and 3 of this table the number of nets and cells of each circuit are

given, respectively. In Columns 4 and 5, maximum net degree, |hmax| and maximum

cell degree, |cmax| are given. From Columns 4 and 5, it can be observed, as suggested

in Section 3.2.2, that the values for |hmax| and |cmax| do not increase as the number of

nets and cells increase.

The rest of this section is organized as follows: the effects of the circuit structure on

the proposed AMGC algorithm are analyzed in detail. The analysis of the structure of

clusters and the effectiveness of the proposed clustering using various evaluation tech-

niques is shown in Section 3.3.1. Results of experiments measuring the performance of

AMGC in terms of clustering metrics, runtime complexity, and placement performance

are presented in Section 3.3.2
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Table 3.1: Statistics of ICCAD04 Benchmarks.

Circuit # nets # cells |hmax| |cmax|
ibm01 14,111 12,752 42 39
ibm02 19,584 19,601 134 69
ibm03 27,401 23,136 55 100
ibm04 31,970 27,507 46 425
ibm05 28,446 29,347 17 9
ibm06 34,826 32,498 35 91
ibm07 48,117 45,926 25 98
ibm08 50,513 51,309 75 1165
ibm09 60,962 53,395 39 173
ibm10 75,196 69,429 41 137
ibm11 81,454 70,558 24 174
ibm12 77,240 71,076 28 473
ibm13 99,666 84,199 24 180
ibm14 152,772 147,605 33 270
ibm15 186,608 161,570 33 306
ibm16 190,048 183,484 40 177
ibm17 189,581 185,495 36 81
ibm18 201,920 210,613 66 97

3.3.1 Cluster Structure Analysis

In this section, the results of a set of experiments are presented that show the relation-

ship between AMGC and the structure of the benchmark circuits, and the proposed

AMG-based clustering technique is used to gain insight into the structure of the cir-

cuits.

In Table 3.2, some of the characteristics of AMGC when applied to the ICCAD04

benchmarks are given and are discussed to gain insight into the structure of the circuits.

In the first set of columns, Columns 2 to 5, of this table specific AMGC statistics, when

θ = 0.8 are given. In Column 2 of this table, the percentage of C-points after one level

of AMG-based reduction in each circuit is given. On average, around 43% of the cells

in a circuit are identified as C-points. The circuits with the highest percentage of

C-points are ibm02, ibm08, and the circuit with the lowest percentage of C-points is

ibm05. Both ibm02 and ibm08 circuits have a large number of cells and nets with
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Table 3.2: Results of AMGC for ICCAD04 circuits using θ = 0.8.
F-point C-point Cluster Stats

Clustering stats Interpolants Interpolations ωmin = 0 ωmin = 1
Circuit % C-p % CCR % NCR % NNZ Ave Max Std Ave Max Std Ave Max Ave Max

ibm01 39 39.8 61.9 0.03 1.4 36 1.5 3.6 30 1.8 3 21 2.8 10
ibm02 46 46.6 66 0.03 2.5 91 6.2 5.5 56 3.6 2.9 33 2.7 13
ibm03 43 43.9 63.4 0.02 1.6 52 2 3.8 58 2.7 3.1 21 2.9 22
ibm04 43 43.7 66 0.01 1.5 63 1.5 3.5 213 3.1 3.1 19 3.2 20
ibm05 33 34.5 44.2 0.01 1.1 34 0.7 3.4 15 1.3 3.3 15 3.1 17
ibm06 42 42.8 63 0.01 1.4 39 1.5 3.4 60 1.8 3.1 21 2.8 12
ibm07 45 45.2 67.5 0.01 1.7 36 2.1 3.9 70 2.3 3 15 2.8 11
ibm08 49 49.3 68.8 0.01 2.6 80 4.1 5.2 316 4.3 3 31 2.6 12
ibm09 43 43.3 65.3 0.01 1.6 44 1.8 3.7 87 2.7 3.1 22 3 19
ibm10 45 45.2 65.2 0.01 1.7 40 2.2 3.7 112 2.8 2.8 44 2.7 42
ibm11 41 41.5 66.5 0.01 1.6 32 1.6 3.8 127 2.8 3.3 25 3.1 25
ibm12 45 46.2 68.3 0.01 1.8 41 2.2 4 403 4.9 3 18 2.8 14
ibm13 41 41.8 65.8 <0.01 1.7 34 2 4 140 3.1 3.2 40 3 39
ibm14 44 44 65.1 <0.01 1.6 33 1.7 3.6 186 2.9 3 185 2.8 103
ibm15 44 43.9 68.6 <0.01 1.7 43 2.2 3.9 288 3 3.1 141 2.9 102
ibm16 44 44.6 65.9 <0.01 1.7 39 2.2 3.9 160 2.6 3 76 2.8 65
ibm17 45 45.2 68.5 <0.01 1.9 46 2.6 4.3 74 2.3 3.1 56 2.8 45
ibm18 43 42.6 65.3 <0.01 2.1 60 3.3 5 51 3.5 3.1 28 2.8 17

Overall 43.1 43.6 64.7 0.01 1.74 91 2.3 4.02 403 2.8 3.1 185 2.9 103

high degree, but on the other hand, ibm05 is a very homogeneous circuit and has no

macro-cells or cells with degree higher than 10. Therefore, there are far fewer points

in ibm05 that can be used as C-points.

In Columns 3 and 4 of the table, the cell clustering ratio (CCR) and the net clus-

tering ratio (NCR) are given, when the minimum interpolation weight required for an

F-point to be considered for clustering, ωmin, is zero. CCR and NCR show the reduc-

tion in the number of cells and nets in the clustered circuit. From these columns it can

be seen that even though NCR is on average 21.1% higher than CCR, the clustering

algorithm is still successful at reducing the number of nets in the circuits. In Column 5

of the table, the percentages of non-zero elements in the interpolation matrix are given.

From this table, it can be seen that over 99.97% of the elements of the interpolation

matrix are zero. This result is important as it shows how sparse the matrices used for

AMG are.

In the second set of columns of Table 3.2, Columns 6 to 8, statistics related to F-
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points and the number of their interpolants are given. An interpolant for an F-point is

a C-point that the F-point connects to, i.e. a non-zero entry in the interpolation matrix

corresponding to the connection between the F-point and C-point. For all circuits the

minimum number of interpolants for an F-point, i.e. strong C-point dependencies, is

equal to one and hence the minimum was not shown in this table. On average for

all circuits, each F-point is interpolated from less than two, 1.74, C-points. Circuits

ibm02 and ibm08 have the highest average interpolants and circuit ibm05 has the

lowest average. The maximum number of interpolants for an F-point is 91 for ibm02.

In Figure 3.6 the histograms for the weights for F-points in the interpolation matrix for

circuits, ibm02, ibm05 and ibm10 are shown. In these figures, the abscissa is the value
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Figure 3.6: Histograms of F-point weights (non-zeros only) in the interpolation matrix.

of the interpolant in the matrix, and the ordinate is the percentage of the occurrence of
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the value. Note that the range of the ordinates are different to show the details of each

graph. In ibm02, there are a large number of nets with high degree, therefore, there

are many F-points with loose connections to C-points, as shown in Figure 3.6(a). In

comparison, in Figure 3.6(b), the histogram of the values of interpolants for the F-points

in ibm05 is shown. As it can be seen, more than 70% of the F-points strongly depend on

only one C-point, and most of the rest of the F-points have equal connection weights

with two C-points. In Figure 3.6(c), a more typical circuit, ibm10, is shown where

around 25% of the F-points are strongly depend on only one C-point and another 25%

depend equally on two C-points. This information on the typical values of interpolants

can help the clustering algorithm decide which cells should be given priority to be

clustered and how much the circuit can be reduced while maintaining the structure of

the circuit. For cases where F-points depend equally to multiple C-points, three tie-

breaking methods were investigated: minimum area, minimum degree, and maximum

degree of the corresponding C-points. These methods were chosen because they all

preserve the linear runtime complexity. To evaluate them, the number of unresolved

ties, i.e. F-points that remained tied after attempting to break the tie using one of

the methods, and placement solution quality are considered. All techniques can break

the ties more than 80% of the time on average, with minimum area breaking the most

ties in 12 of the 18 benchmarks. In the placement results tie-breaking using minimum

area performs best on average and hence is chosen for the proposed technique. This

result matches intuition, which would suggest that keeping clusters smaller allows more

solution space to be explored while placing the clustered circuit.

In the third set of columns of Table 3.2, Columns 9 to 11, statistics related to C-point

interpolations are given. In all circuits, the minimum number of F-points for a C-point

is one. On average for all circuits, each C-point has four F-point interpolations, with

again ibm02 and ibm08 having the highest average C-point interpolations and ibm05
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having the lowest average, maximum and standard deviation. This again shows that

ibm05 is a very homogeneous circuit, with not much difference between C-points and

F-points or any strong point of connection. However, ibm02 and ibm08 are circuits

with a lot more variety and C-points that are very distinct and are strong points of

connections between different cells.

In last set of columns in Table 3.2, statistics on the clusters, average number of

cells in a cluster and maximum number of cells in a cluster, are given. The two values

ωmin = 0 and ωmin = 1 are the extreme cases for the minimum required interpolation

weight for an F-point to interpolate from a strongly depended upon C-point. The

average number of cells in a cluster is high for ibm05 since most of the F-points in

ibm05 belong to a C-point and there are very few F-points that have loose connection

to C-points. Also, since there are no macro blocks in the circuit, all clusters are

acceptable since they do not pass the maximum cluster area limit, which is 1% of the

total cell area. It can be seen that when ωmin is set to one, the average number of cells

in a cluster decreases because F-points without a unity interpolant are not considered

for clustering. However, the clustering is still effective in this extreme case because

many points do possess only a single interpolant.

To be able to better show the cluster sizes, a histogram of the number of cells in

clusters for ibm01 is shown in Figure 3.7. From this figure, it can be seen that most

of the clusters formed have one to three cells, where one cell means the cell is not

clustered. This means that only a few C-points have maximal interpolation weights

for more than two F-points and confirms the idea that most clusters should be made

of only a few cells.

In Figure 3.8, the effects on CCR and clustering time as θ varies for the circuit

ibm01 are illustrated. It can be seen from Figure 3.8(a) that the method is effective

at coarsening the circuit for all values of θ. For this circuit the minimum CCR is
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Figure 3.7: A histogram showing the number of cells in each cluster for ibm01 with
θ=0.8 and ωmin = 0.

close to 0.4 which means that the circuit is reduced to almost 40% of its original size.

Furthermore, the time generally decreases as θ increases for all connection weights,

as shown in Figure 3.8(b). Considering that clustering should be performed quickly

and reduce circuit sizes significantly, a value of θ greater than 0.6 is most appropriate.

These trends are consistent across other benchmarks. In the implementation, θ was

set to 0.8 to require near maximal connection weight for a point to be considered as a

strong dependence and to reduce runtime.

Finally, more insights are obtained by observing the properties of the interpolation

matrix at each level in a six-level coarsening process. In Table 3.3, an example for

ibm01 is given. The number of rows, Column 2, shows the number of points in a level

Table 3.3: Properties of the interpolation matrix, Wl
l−1

T
, with θ=0.8 for ibm01 in a

multilevel coarsening.
Number Number NNZ Density Average

Level of rows of cols NNZ/row

1 12506 4910 17793 <0.001 1.4
2 4910 2092 6525 0.001 1.3
3 2092 827 2636 0.002 1.3
4 827 299 943 0.004 1.1
5 299 121 339 0.009 1.1
6 121 48 127 0.022 1

and the number of C-points is equal to the number of columns and is given in Column 3.
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Figure 3.8: The effect on CCR and time when θ varies for ibm01 using different weights.

The coarsening reduces the matrix by approximately 60% in each level, which provides

much smaller problems after only a few levels. The number of non-zeros (NNZ) show

a similar significant reduction. The density shown in Column 5, which equals NNZ

divided by the number of elements in the matrix, increases with each level but the

average number of NNZ per row, Column 6, remains relatively constant.

3.3.2 Performance of AMGC

To be able to evaluate the effectiveness of the proposed AMGC algorithm, a comparison

of cluster performance metrics between the AMGC technique and existing clustering

methods is given in Section 3.3.2. In Section 3.3.2, the linear-time complexity is verified.

In addition, the effectiveness of the proposed AMGC technique in the context of circuit

placement is illustrated in Section 3.3.2.
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Clustering Performance Metrics Results

In this section, the performance of the proposed AMGC technique compared to existing

techniques is evaluated using the direct clustering metrics discussed in Section 2.2.3.

First, a comparison between the proposed clustering method using θ = 0.8 and heavy-

edge matching (HEM) [11] and best-choice (BC) [5] is presented in Table 3.4. Both

techniques are cell-based, as is the proposed clustering algorithm. BC is used since

it is a very high quality clustering algorithm and has been used extensively during

placement. HEM randomly selects seed cells, distinguishing it from BC.

Table 3.4: Comparison between the clustering metrics obtained with AMGC and
state-of-the-art methods: best-choice (BC) and Heavy edge matching (HEM).

AMGC HEM Comparison BC Comparison
CCR NCR AB RE NCR AB RE NCR AB RE

Circuit (%) (%) (%∆) (%∆) (%∆) (%∆) (%∆) (%∆)

ibm01 40 62 6622 0.26 24 65 2 8 8 12

ibm02 47 66 8162 0.22 16 35 15 2 0 20

ibm03 44 63 11791 0.25 21 65 12 10 18 20

ibm04 44 66 13032 0.25 20 57 14 8 12 21

ibm05 35 44 17257 0.38 42 88 -51 18 11 -37
ibm06 43 63 15548 0.31 22 56 -6 6 5 3

ibm07 45 67 19418 0.26 16 38 10 1 0 17

ibm08 49 69 19400 0.25 13 25 4 -2 -7 7

ibm09 43 65 25917 0.29 21 62 1 10 17 11

ibm10 45 65 32187 0.23 18 41 12 5 4 20

ibm11 42 67 35646 0.28 22 77 7 11 22 16

ibm12 46 68 29783 0.25 16 37 11 5 2 19

ibm13 42 66 41928 0.29 22 68 3 10 16 11

ibm14 44 65 65814 0.27 18 43 6 3 2 13

ibm15 44 69 74845 0.28 18 59 3 7 11 12

ibm16 45 66 81022 0.26 18 41 8 3 0 17

ibm17 45 68 74618 0.27 16 38 3 4 1 11

ibm18 43 65 91105 0.25 20 42 5 3 -1 13

Avg. 43 65 - 0.27 20 52 3 6 7 11

In Table 3.4, Columns 2 to 4 show the values for NCR, AB and RE obtained using

the proposed AMGC technique. In Columns 5 to 10, comparisons of the above values

when HEM and BC are used are given. The columns are labeled with %∆, which are

the percentage improvement calculated by subtracting the value using HEM or BC from
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the AMGC value and dividing by the value obtained used HEM or BC. Values in bold

signify that AMGC outperformed the existing method. Positive numbers represent

improvements with this system. The average values are given in the final row of the

table. It can be seen that the proposed method improves all scores, on average and in

most cases, when compared to the existing methods.

Linear-Time Complexity Verification

In this section, it is verified that the runtime of the clustering algorithm is linear

in the number of pins for circuits in the ICCAD04 benchmark suite. A plot of the

runtime, which is the time to perform all of the steps in Algorithm AMG, versus the

number of pins in each circuit is shown in Figure 3.9. The data is well-fitted with a
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Figure 3.9: Normalized runtime of Algorithm AMGC versus number of pins in each
circuit.

line generated using ordinary least-squares fitting. Deviations can be seen due to the

varying maximum cell and net degrees for each circuit, which are important parameters

in proving the linear-time complexity. The maximum deviation is for circuit ibm08

which has just over 2× 105 pins. ibm08 is also the circuit with the largest maximum

cell degree, as seen in Table 3.1.
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Placement Performance

In this section, the results of an experiment using the state-of-the-art placer mPL6 [40]

and HEM, BC, and the proposed AMGC algorithm are given. In the experiment, first

the placer mPL6 is used to perform placement without clustering on the ICCAD04

benchmark circuits in order to obtain a baseline result. Then, each clustering technique

is used to cluster the circuits, and the clustered circuit is placed using mPL6. Finally,

mPL6 is used to place the unclustered circuit which is mapped from the placement

of the clustered circuit. The results are presented in Table 3.5. In Columns 2 and 3

the total half-perimeter wire length (WL) and runtime of the placement using mPL6

without clustering are given. In Columns 4 to 9 the results using mPL6 with HEM,

BC, and the proposed clustering algorithm are compared to the baseline in percentage

improvement. On average, the largest improvement in wire length is 1.97% using the

proposed clustering algorithm, which is a significant improvement considering that

the results without clustering are good to begin with. The number of circuits with

improvement in wire length are 11, 9, and 12, for HEM, BC, and the proposed AMGC

algorithm, respectively. In addition, the proposed clustering algorithm improves all of

the six largest circuits, where clustering is required the most. The circuits that had

poorest results in terms of wire length include ibm02, ibm05, and ibm08 which have

been identified as circuits with specific properties in the previous sections.

The performance of Net Cluster [15] was also compared to AMG. In these experi-

ments AMGC showed an average improvement of 1.97% over Net Cluster’s 1.53%. The

reason for not including the details of Net Cluster is as follows: In Net Cluster the Cell

Clustering Ratio (CCR) could not be set. The algorithm stops when it cannot find

any more “natural clusters” or clusters with more nets inside the cluster than cut by

it. The number of natural clusters is far less than the number of clusters formed using

the AMG-based technique. Including Net Cluster would have meant that the CCR for
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Table 3.5: Placement wire length and runtime results for AMGC and comparison with
other clustering techniques. In all these experiments mPL6 was used as the default
placer.

(a) HPWL

No Clustering HEM BC AMGC : θ = 0.8, ωmin = 0

Circuit (×105) % Comp % Comp % Comp

ibm01 24 5.9 7.1 5.7

ibm02 52 -6.3 -1.6 -9.9
ibm03 82 2.2 6.1 5.8

ibm04 109 0.4 -1.3 -1.9
ibm05 93 -5.4 -5.3 -5.4
ibm06 88 10 12.5 11.9

ibm07 124 1.4 -0.1 2.2

ibm08 211 -2.7 -2.9 -2.9
ibm09 189 5.1 -2 3.7

ibm10 363 1.9 1.7 2.1

ibm11 243 -2.6 -4.6 -1.8
ibm12 461 -5 -5.9 -4.2
ibm13 324 -1.2 0.3 1.7

ibm14 824 6.9 7.4 7.4

ibm15 1001 -7.5 -3.3 1.7

ibm16 931 2.5 2.4 2.6

ibm17 1144 5.7 5.9 4.9

ibm18 885 11.6 12 12

Average - 1.27 1.57 1.97

(b) Runtime

No Clustering HEM BC AMGC : θ = 0.8, ωmin = 0

Circuit (s) % Comp % Comp % Comp

ibm01 150 -20 -20 -14
ibm02 324 -39 -41 -38
ibm03 281 -67 -52 -85
ibm04 344 -40 -28 -31
ibm05 232 -45 -29 -22
ibm06 475 -62 -32 -49
ibm07 488 -51 -43 -49
ibm08 1468 -29 -44 -26
ibm09 1134 -26 -26 -24
ibm10 1762 -45 -49 -45
ibm11 1501 -15 -1 -4
ibm12 2009 -41 -57 -36
ibm13 1456 -28 -26 -23
ibm14 2547 -39 -33 -29
ibm15 4208 -48 -26 -23
ibm16 5821 -33 -35 -26
ibm17 3025 -52 -53 -59
ibm18 3672 -47 -49 -49

Average - -40.4 -35.8 -35.1
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each circuit would have to be set to match the CCR for Net Cluster, hence, placement

results obtained from Net Cluster were omitted from Table 3.5.

It should also be mentioned that the structure of the circuits in the ICCAD04 suite

are very different. The sizes and number of cells vary greatly in these circuits, for

example, in ibm05 all cells have area less than 0.02% of the total area, but in ibm04

which is very similar in size to ibm05, close to 14% of cells have area more than 0.02%

of the total area. There are great differences in the degree of nets of each circuit. For

example, the highest net degree in ibm02 is 134 where in ibm05 it is 17. These vast

differences greatly affect the placement and hence the clustering results. Better results

for each circuit can be obtained by tuning the parameters for AMG. The tuning can be

done in two ways, one is based on trial and error to see what parameters works best for

each circuit. Even though this technique can show improvement in the final results, it

will not enhance the knowledge of how clustering should be performed and will make

comparisons with other techniques, such as best-choice, unfair. Future research in this

area will include the study of the global and local properties of a circuit that can be

obtained through the AMG process and how these properties affect placement. Then,

use the results of the study to devise an adaptive AMGC technique.

Using the proposed framework of clustering, placement and legalization, uncluster-

ing and further placement and legalization, results in an increase of 35% to 40% in

total runtime for all three clustering methods as shown in columns 5, 7 and 9. This

runtime increase is because the placement problem has to be solved twice: once for the

clustered circuit and then again when the circuit is unclustered. The runtime will be

reduced when the clustering technique is fully integrated with a placer. It should also

be mentioned that the proposed AMGC algorithm finishes marginally faster than the

other techniques.
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3.4 Length-Driven Multilevel AMG Clustering Framework

The main objective of the placement phase in the physical design of circuits is to

reduce the total wire length of the circuit. Clustering algorithms are normally used

during placement to improve the total wire length and runtime. However, clustering is

performed based on circuit connectivity and not the wire length. In this section, the

proposed AMGC algorithm in Section 3.2 is modified to perform clustering based on

estimated wire lengths. The novelty of the algorithm is in using the estimated lengths

instead of connectivities in determining the best cells to be clustered.

3.4.1 Length Estimation-Based AMG Clustering Algorithm

The proposed algorithm has four stages similar to the four stages as the algorithm

AMGC given in Figure 3.1: matrix construction, AMG-based coarsening, cluster seed

cell and score assignment, and final cluster formation. In addition, Step 0 is added

to the algorithm during which an individual pre-placement length estimation is per-

formed. The steps of Algorithm AMGC-LE are summarized in Figure 3.10, and further

explained in the following sections.

Algorithm AMGC-LE: AMG-based clustering with length estimation
Input: Circuit netlist, AMG parameters
Output: Clustered circuit
0. Pre-placement individual net length estimation
1. Proximity matrix construction using the netlist and estimated lengths
2. AMG-based coarsening on the proximity matrix
3. Cluster seed cell and score assignment
4. Final cluster formation

Figure 3.10: The high-level flow of the AMGC-LE clustering algorithm.
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Step 0: Pre-Placement Length Estimation

One of the main contributions of this thesis is to use the pre-placement length estima-

tion for clustering. In an estimation technique, first a set of model parameters needs to

be calculated. In this work, the parameters used or developed in [26] are employed as

these have been shown to be a comprehensive set of parameters that are well-suited to

the mixed-size circuits used today. These parameters include local net characteristics,

such as the half perimeter of the cells of each net, and global characteristics, such as

the number of degree-two nets in the design.

Once the model parameters have been selected, an estimation technique should be

used to fit the parameters into a model. The model parameters in [26] are used to fit

a quadratic model. Any terms of the resulting model which have small coefficients,

ineffective terms, are pruned from the model. The remaining terms, effective terms,

are used to make the estimation model and calculate the length estimates.

It is worth noting that any other individual net length estimation technique could

be used in this step. The model in [26] is selected as it includes several factors such as

macro cells but is independent of the placer to be used allowing for broader application

of this work.

To better illustrate the algorithm flow, a small example circuit is presented in Figure

3.11. In this figure, the nets are annotated with the estimated lengths. The estimated

lengths are found using a simplified version of the technique in [26]. Due to the small

size of the example circuit, only the variables associated with the cell dimensions and

net degree are used. These lengths will be used in the following sections to perform

clustering using the proposed AMGC-LE algorithm.

Step 1: Proximity Matrix Construction Using Circuit Netlist and Estimated Lengths

To perform AMG-based clustering, a circuit’s netlist should be represented using a

matrix. In Algorithm AMGC, this matrix is the connectivity matrix of the circuit
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Figure 3.11: An example circuit with nets annotated with estimated lengths. The
dimensions of all cells are 2× 2 except cells 4, 7 and 9 that are 4× 2 and cell 5 which
is 4× 4.

which shows the total number of weighted connections between two cells. In this

section, a new matrix, called the proximity matrix, P0, is designed which shows how

close two cells are estimated to be in the final placement. This proximity matrix is

then used for the AMGC-LE clustering instead of the connectivity matrix.

The rows and columns of P0 represent the cells of the circuit. The element p0
i,j shows

the proximity between cell i and cell j. Each p0
i,j is determined as follows: consider

two cells, i and j, which are treated as points in AMG, and let Hi,j be the set of nets,

hk, that contain both cells i and j. Then, element p0
i,j is calculated as

p0
i,j =































∑

hk∈Hi,j

− il (hk) , i 6= j, Hi,j 6= ∅,
∑

hk∈Hi,i

il (hk) , i = j,

0, otherwise,

(3.3)

where il(·) represents the inverse of the estimated length of a net and is defined as

il (hk) =
1

lest (hk)

where lest (hk) denotes the estimated length of a net. The inverse of the estimate is used

because nets whose estimated lengths are small have a high proximity and vice versa.

Using the formulation in (3.3), any non-zero off-diagonal element of the proximity

matrix is equal to the negative sum of the inverses of the estimated lengths of nets

between i and j and any diagonal element is equal to the sum of all the inverses of
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nets connected to i. Multi-terminal nets and multiple connections between cells are

handled by (3.3).

As an example, the proximity matrix for the example circuit in Figure 3.11 is given

in Figure 3.12. For any two cells i and j that are not connected, the p0
i,j entry is

equal to zero. For any two cells that are connected, the p0
i,j entry is equal to the

negative sum of the inverse of estimated lengths of the nets connecting them. As an

example, cells 5 and 6 are connected by two nets each with estimated length of six.

Therefore, p0
5,6 = −

(

1
6

+ 1
6

)

= −1
3
. Finally, the diagonal elements are the negative

sum of the off-diagonal elements in the corresponding row of the matrix. For example,

p0
5,5 = −

(

p0
5,4 + p0

5,6

)

= −
(

−1
7
− 1

3

)

= 10
21

.
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Figure 3.12: Proximity matrix of the example circuit in Figure 3.11.

Step 2: AMG-Based Coarsening on the Proximity Matrix

Once the proximity matrix P0 has been constructed, the same coarsening Algorithm

AMGC described in Section 3.2.1 is used to reduce P0 and construct P1 and the asso-

ciated restriction matrix W1
0. The coarsening can be loosely thought of as a heuristic

for selecting a maximally independent subset of cells which are the most significant

in P0. The significance of each cell is measured by the number of cells that strongly
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connect to it. A parameter, θ ∈ (0, 1], is used in the definition of the strength of a

connection. Cell i is strongly connected to cell j if

∣

∣pl
i,j

∣

∣ ≥ θ ×max
k 6=i

{∣

∣pl
i,k

∣

∣

}

, k = 1, . . . , C l, (3.4)

where pl
i,j is the (i, j)th element of Pl, and C l is the number of cells in level l. The

relationship between the parameter θ and the amount coarsening performed is complex.

If θ is close to one, more aggressive coarsening will be performed. However, more

aggressive coarsening can overly simplify the reduced matrix and the associated reduced

circuit. An interpretation of the strength of connection criterion in the context of the

proposed proximity matrix is that if a cell is in several nets with small estimated length

it is likely to be a part of the reduced circuit.

Step 3: Cluster Seed Cell and Score Assignment

This step is similar to Step 3 of Algorithm AMGC. After coarsening the proximity

matrix, the cells that are selected to form the reduced circuit become seed cells used for

clustering. The cells which are not selected to form the reduced circuit are considered

to be clustered with the selected seed cells. The entries of the AMG interpolation

matrix (Wl+1
l )T are used to rank each seed cell that a non-selected cell connects to.

A large entry in the interpolation matrix means the seed cell is representative of the

non-selected cell in the reduced circuit.

The selected seed cells for the example in Figure 3.11 are cells 2, 5, and 7. Therefore,

the interpolation matrix has three columns, one for each seed cell with the first column

corresponding to cell 2, etc. The number of rows is nine, which is the total number of

cells and row 1 corresponds to cell 1, etc. The interpolation matrix is shown in Figure

3.13(a). Each seed cell interpolates from itself directly, so entries w2,1, w5,2 and w7,3

are all one, where wi,j is the (i, j)th element of (W1
0)

T
. The other non-zero entries

represent the interpolation weight of non-selected cells to seed cells. As an example,
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cell 4 is connected to seed cells 2 and 5. The interpolation weights of cell 4 with seed

cells 2 and 5 are given by entries w4,1 = 7
12

and w4,2 = 5
12

, respectively. To better

visualize the seed cell and cluster score assignment using the interpolation matrix, a

pictorial representation of (W1
0)

T
is presented in Figure 3.13(b). In this figure, the

seed cells are shown with a bold border. Each non-selected cell has an interpolation

weight to the seed cells that they connect to. These interpolation weights annotate

arrows pointing from non-selected cells to seed cells in Figure 3.13(b).

(W1
0)

T =
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(b) Pictorial representation

Figure 3.13: The interpolation matrix shown in matrix form and pictorial form for
the example circuit in Figure 3.11. In the pictorial representation, the selected seed
cells are shown in bold and arrows are annotated with the interpolation weights of
non-selected cells.

Note that the interpolation weights are different from the weights in the example

in Section 3.2. For example, the weight between cell 4 and seed cells 2 and 5 were

equal in the previous example, but in AMGC-LE, it is found out that cell 4 has more

proximity to seed cell 2.
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Step 4: Final Cluster Formation

The final step of Algorithm AMGC-LE is to cluster non-selected cells to the seed cell

which they interpolate from most strongly. In Step 4 of AMGC-LE, a cluster is finalized

as long as the area of the cluster is not greater than five times the average standard

cell area and its interpolation weight is more than 0.9. The cluster area is restricted

to prevent the formation of macro-sized clusters which require special treatment in

placement algorithms. The interpolation weight threshold is set high to ensure that

only the best quality clusters are formed. Each cluster meeting the constraints is given

a physical shape in the clustered circuit with a height equal to the maximum height

of all of its cells and a width equal to the sum of the widths of its cells. There are

differences in the maximum area and interpolation weight thresholds compared to Step

4 of Algorithm AMGC. The main reason for the changes is to support the length-driven

unclustering proposed in the following section that complements AMGC-LE.

The final clusters for the example in Figure 3.11 are shown with dashed lines in

Figure 3.14. The clusters are formed by clustering each non-selected cell with the seed

cell with which it has the maximum interpolation weight.
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Figure 3.14: The final clusters for the example circuit in Figure 3.11 shown with dashed
lines.

3.4.2 Length-Driven Unclustering Technique

A clustering algorithm alone is not enough to ensure success of a clustering algorithm

used for placement. Just as important is the algorithm for unclustering, or determining
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the locations of cells within a cluster after the cluster’s location has been determined.

The description of this step is rarely mentioned in the literature of clustering algo-

rithms.

In this work, a length-driven unclustering algorithm is proposed. The main ben-

efit of using the proposed technique is that a legal solution is preserved after unclus-

tering. Global placement algorithms often produce legal solutions before performing

detailed placement. A new unclustering technique which preserves the legality of the

globally-placed solution improves the runtime in multilevel placement. With the le-

gality restriction, the problem of unclustering reduces to ordering the cluster’s cells.

The proposed technique finds the ordering by solving a relaxed length-driven mini-

mization and using the result to determine the ordering of the cells. In addition, the

combination of preserving legality and restricting cluster areas means that the row in

which the unclustered cells will be placed is also preserved. Consequently, the vertical

components of the lengths can be ignored. This helps to reduce the disruption in the

wire length before and after unclustering which is a significant problem for multilevel

placement as discussed in [41].

The locations of cells, fCi
, in cluster Ci are determined by minimizing the quadratic

matrix length objective

fT
Ci

UfCi
+ tT fCi

+ v, (3.5)

where U is a weighted connectivity matrix between the cells of the cluster, i.e. i, j ∈ Ci,

and is defined as

ui,j =































∑

hk∈Hi,j

− 1
|hk|

, i 6= j, Hi,j 6= ∅,
∑

hk∈Hi,i

1
|hk|

, i = j,

0, otherwise,

(3.6)

where |hk| is the degree of net hk, i.e. the number of cells in hk. The vector t contains

the weighted horizontal cell locations of cells outside of the cluster that each clustered
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cell connects to, i.e. i ∈ Ci and j /∈ Ci defined as

ti =















∑

hk∈Hi,j

− fj

|hk|
, i 6= j, Hi,j 6= ∅,

0, otherwise,

(3.7)

where fj is the location of the cell or the cluster that a cell belongs to. The scalar v

represents the length of all the nets not involving the cells in Ci and can be ignored.

The resulting system of linear equations is solved using a direct Gaussian elimination

method. Because the number of cells in a cluster is small, usually three or less, meth-

ods which are more efficient for solving large linear systems are not required. After

minimizing (3.5), the cells are inserted into the area occupied by the cluster in the

order of their locations in fCi
. An illustration of the length-driven unclustering is given

in Figure 3.15. In Figure 3.15(a), a clustered placement is given. The highlighted

cluster is the focus of the example and contains three cells (not shown in 3.15(a)). The

cluster is connected to three other cells via degree-two nets, shown by dashed lines

in the illustration. The cells contained in the cluster are shown in shades of grey in

Figure 3.15(b). The three external connections as well as the two internal connections

are used to determine the non-zero values in the matrix U. In this example all of the

values for |hk| are equal to 2, the degree of each net. The locations of the cells not

in the cluster, shown in white, are used in forming the vector t. The locations of the

cluster’s cells in Figure 3.15(b) are determined by minimizing (3.5). These locations

are used to determine the order of the cells inside of the cluster’s area to complete the

unclustering, illustrated in Figure 3.15(c). Because the unclustered cells remain inside

of the cluster’s area, the placement remains legal.

This technique does not take advantage of the locations of already unclustered cells

as it iterates through the clusters. However, this also means that the technique is

not sensitive to the order in which the clusters are visited. Furthermore, because the

clusters are restricted to have an area of less than five times the average standard cell
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(a) Clustered Placement

(b) Locations of the cluster’s cells de-
termined by minimizing (3.5)

(c) Final ordering of the cluster’s cells

Figure 3.15: An illustration of the length-driven unclustering technique.

area, the additional benefit of using the locations of already unclustered cells and a

good ordering of the clusters is expected to be small.

3.5 AMGC-LE Experimental Results and Analysis

This section benchmarks the performance of the two proposed length-driven algorithms,

AMGC-LE and length-driven unclustering. The AMGC-LE algorithm is designed to

improve upon the placement performance of AMGC. The length-driven unclustering

proposed in Section 3.4.2 is also designed to accomplish improved placement results.

Therefore, all of the experiments performed in this section are comparing against sev-

eral state-of-the-art academic placers. In comparison to the experimental placement
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setup of the last section, some of the underlying parameters of AMGC-LE are config-

ured differently. The choices made are explained before each experiment is performed.

This is to allow a more aggressive clustering which can translate into better placement

results in terms of wire length and runtime.

The ICCAD04 benchmarks are used for performing placement experiments, and

in additiona, the ISPD05 benchmark suite [42] is used to show the scalability of the

AMGC-LE algorithm and the proposed length-driven unclustering. The combination of

the two length-driven techniques and the legality-preserving nature of the unclustering

make a combination capable of dealing with such formidable benchmarks. The statistics

of these benchmark circuits are presented in Table 3.6 and in the same format as Table

3.1. The benchmark circuit bigblue4 is not included in the experiments due to the

memory limitations of the testing platform.

Table 3.6: Statistics of ISPD05 Benchmarks.

Circuit # nets # cells |hmax| |cmax|
adaptec1 221,142 211,447 2,271 448
adaptec2 266,009 255,023 1,935 620
adaptec3 466,758 451,650 3,713 1224
adaptec4 515,951 496,045 3,974 416
bigblue1 284,479 278,164 2,621 388
bigblue2 577,235 557,866 11,869 119
bigblue3 1,123,170 1,096,812 7,623 1692

This section is organized as follows: placement experiments using AMGC-LE are

first presented in Section 3.5.1. In Section 3.5.2, results of the same placement experi-

ments are given using the proposed length-driven unclustering. Finally, a comparison

of AMGC-LE with and without using length-driven unclustering to existing clustering

techniques is presented in Section 3.5.3.
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3.5.1 Placement Performance of AMGC-LE

To evaluate the proposed AMGC-LE algorithm, its effectiveness in the context of mul-

tilevel circuit placement using multiple placers is illustrated. The experiments are per-

formed using three high-quality academic placers: Capo 10.5 [43], Fastplace 3.0 [44],

and mPL6 [40]. Fastplace and mPL are analytical placers and have clustering algo-

rithms embedded inside their placement algorithms. To better evaluate the perfor-

mance of the proposed technique, the internal clustering of these placers are disabled

in the clustering experiments. If the internal clustering is enabled, it will not be clear if

the proposed clustering technique or the internal clustering is the cause of any benefits.

Comparisons of the proposed technique with existing clustering techniques, including

the technique used internally by Fastplace 3.0 and mPL6, are presented in Section

3.5.3. Capo is a partitioning-based placer and does not use internal clustering. Capo

is, however, non-deterministic so the average of ten runs of each experiment are re-

ported when results for Capo are given. The experiments are performed on a 64-bit

dual core AMD Opteron system running Linux with 8GB of RAM. In addition, the

parameter θ in (3.4) is set to 0.1 in the experiments as well as ωmin being set to 0.9.

This combination allows many strong connections to be exposed, low θ, while only the

strongest clusters are formed, high ωmin.

Wire length and runtime results of the experiment are presented in Table 3.7(a)

and (b), respectively. In both tables, Column 1 identifies the circuit that is placed.

Columns 2-4, 5-7, and 8-10 show the results for Capo, Fastplace, and mPL, respectively.

Each placer is used in three modes: baseline without clustering, one-level AMGC-LE

clustering with length-driven unclustering, and two-level AMGC-LE clustering with

length-driven unclustering. The columns showing one- and two-level AMGC-LE are

given in terms of the percentage improvement over the baseline. In this representation,

positive percentages represent improvements.
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Table 3.7: Placement wire length and runtime results comparing one- and two-level
AMGC-LE clustering with length-driven unclustering to baseline placements without
using clustering with three placers on the ICCAD04 benchmark suite.

(a) HPWL

Capo Fastplace mPL
AMGC-LE AMGC-LE AMGC-LE

Circuit Baseline 1Lvl 2Lvl Baseline 1Lvl 2Lvl Baseline 1Lvl 2Lvl
(×105) (%) (%) (×105) (%) (%) (×105) (%) (%)

ibm01 25 3.1 6.4 24 -1.8 1.3 24 4.6 4.2

ibm02 51 4.4 5.4 54 3.1 4.6 52 1.3 1.1

ibm03 77 1.8 9.8 80 5.1 6.8 82 -7.0 -3.6
ibm04 93 14.8 15.7 86 7.9 7.7 109 -5.7 -4.4
ibm05 103 1.1 2.1 101 0.7 0.5 93 -5.2 -5.1
ibm06 67 0.6 3.8 99 38.1 33.9 88 5.8 2.7

ibm07 126 9.3 11.9 123 7.4 12.2 124 -3.1 -4.0
ibm08 137 7.9 8.1 147 -4.1 10.1 211 4.7 4.2

ibm09 145 4.4 6.6 155 8.6 8.0 189 2.9 1.7

ibm10 318 4.0 4.9 362 10.8 12.2 363 2.0 1.8

ibm11 210 4.1 7.0 225 11.0 10.1 243 -0.1 -2.6
ibm12 413 10.9 14.5 410 11.4 14.4 461 -1.1 1.1

ibm13 266 3.4 7.6 273 12.1 11.8 324 -0.4 1.1

ibm14 392 2.6 4.0 478 14.5 21.7 824 6.5 6.6

ibm15 544 6.1 5.6 577 8.6 12.2 1001 -2.9 -5.0
ibm16 629 5.6 6.4 680 11.5 11.5 931 6.7 5.7

ibm17 737 2.7 3.8 810 9.3 12.2 1144 7.5 7.2

ibm18 458 2.1 3.3 574 19.0 19.8 885 11.0 10.7

Average - 4.9 7.1 - 9.6 11.7 - 1.5 1.3

(b) Runtime

Capo Fastplace mPL
AMGC-LE AMGC-LE AMGC-LE

Circuit Baseline 1Lvl 2Lvl Baseline 1Lvl 2Lvl Baseline 1Lvl 2Lvl
(s) (%) (%) (s) (%) (%) (s) (%) (%)

ibm01 193 -3 -75 26 -5 -62 109 -69 -152
ibm02 329 -24 -112 46 -14 -72 236 -91 -171
ibm03 487 -21 -105 46 -20 -82 221 -108 -210
ibm04 512 -23 -110 51 -17 -90 250 -87 -195
ibm05 411 -25 -124 36 -35 -81 174 -118 -183
ibm06 580 -19 -115 96 29 -6 390 -83 -197
ibm07 920 -21 -105 96 -9 -82 387 -100 -198
ibm08 941 -20 -121 99 -31 -158 1109 -105 -197
ibm09 1198 -29 -119 122 -6 -66 898 -136 -221
ibm10 1868 -12 -120 286 4 -62 1450 -126 -210
ibm11 1834 -30 -121 135 -66 -139 1084 -84 -193
ibm12 1996 -22 -124 282 -12 -52 1517 -115 -222
ibm13 2387 -16 -120 239 -43 -118 1235 -110 -218
ibm14 3327 -29 -129 530 -42 -121 2189 -93 -213
ibm15 5781 -30 -142 624 -57 -197 3969 -101 -247
ibm16 4917 -35 -132 722 -75 -217 5457 -57 -118
ibm17 5286 -31 -135 1133 -33 -101 2788 -131 -228
ibm18 4215 -39 -142 1589 3 -57 3106 -125 -257

Average - -24 -119 - -24 -98 - -102 -202
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The results in Table 3.7(a) show that AMGC-LE is effective at improving wire

length on average for all placers using one or two levels of clustering. A maximum

improvement of 38.1% is achieved using one-level AMGC-LE and Fastplace. Using

one-level AMGC-LE, every circuit for Capo, 16 circuits for Fastplace, and 10 circuits

for mPL have improved wire length when compared to the baseline. When two-level

AMGC-LE is used, every circuit for Capo and Fastplace, and 12 circuits for mPL are

improved.

The runtime results show that using the one-level scheme for mPL and the two-

level scheme for all placers double the total runtime. For a placer, such as Fastplace,

the increase in runtime may be more acceptable because it requires much less time

than other placers. However, the increases for Capo and particularly for mPL are

more prominent. It should be noted that mPL does not offer an option to perform

only detailed placement requiring full global and detailed placement to be performed

between each level, which accounts for the significant increases compared to the other

two placers. The experiment performed in the following section will illustrate how to

improve the runtime results while maintaining, and even improving, the wire length

results.

Upon comparing the results using AMGC-LE with mPL to the results using AMGC

in section 3.3.2, it can be seen that the wire length for some benchmarks has decreased

while some have increased. This can partly be explained by the fact that the length

estimates produced by the technique in [26] have the poorest correlation when using

mPL [35]. In [35], a predictor-corrector clustering framework based on length estima-

tion is developed. The application of this framework resulted in major improvements

in wire length in the final placement results. The same framework can be applied

to AMGC-LE as it is a length-based algorithm. Further analysis comparing the two

techniques are given in Section 3.5.3.
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An interesting result arising from the experiment is that the placements resulting

from using the AMGC-LE framework are more correlated with the length estimates

than the baseline placements. The correlation improvement is small, with a maximum

improvement of 6% for Capo using two-level AMGC-LE, but does suggest that the

estimates are directing the placement.

In order to assess the scalability of the proposed clustering and unclustering algo-

rithms, the same experiments are performed on the ISPD05 circuits. These circuits

are bigger than the ICCAD04 benchmarks and have significantly larger maximum net

degree. The results are tabulated in Table 3.8. The version of Capo used in the ex-

Table 3.8: Placement wire length and runtime results comparing one- and two-level
AMGC-LE clustering with length-driven unclustering to baseline placements without
using clustering with three placers on the ISPD05 benchmark suite.

(a) HPWL

Capo Fastplace mPL
AMGC-LE AMGC-LE AMGC-LE

Circuit Baseline 1Lvl 2Lvl Baseline 1Lvl 2Lvl Baseline 1Lvl 2Lvl
(×106) (%) (%) (×106) (%) (%) (×106) (%) (%)

adaptec1 91 1.5 2.3 87 8.6 8.7 81 -1.1 -1.1
adaptec2 120 14.2 14.5 108 4.0 9.6 97 -0.1 -0.1
adaptec3 254 6.4 5.7 287 15.4 17.2 224 0.6 0.6

adaptec4 - - - 230 8.6 12.7 195 -0.5 -0.5
bigblue1 114 4.0 3.3 107 5.5 7.8 101 0.0 0.0

bigblue2 167 2.7 2.3 181 8.5 12.3 152 -0.3 -0.3
bigblue3 439 3.6 6.4 663 37.0 40.1 492 1.7 1.7

Average - 5.4 5.7 - 12.5 15.5 - 0.0 0.0

(b) Runtime

Capo Fastplace mPL
AMGC-LE AMGC-LE AMGC-LE

Circuit Baseline 1Lvl 2Lvl Baseline 1Lvl 2Lvl Baseline 1Lvl 2Lvl
(×102s) (%) (%) (×102s) (%) (%) (×102s) (%) (%)

adaptec1 30 -24 -73 5 -79 -109 18 -80 -109
adaptec2 44 2 -49 13 -15 -4 17 -134 -211
adaptec3 81 -32 -107 28 -136 -77 65 -89 -135
adaptec4 - - - 21 -208 -184 45 -258 -199
bigblue1 54 11 -36 6 -158 -141 18 -128 -173
bigblue2 92 -64 -100 23 -299 -278 49 -235 -286
bigblue3 254 -24 -49 139 -45 -78 123 -323 -365

Average - -22 -69 - -134 -125 - -178 -211
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periment could not place the adaptec4 benchmark on the test platform so its entries

in Table 3.8 are not included. In general, the results resemble those of Table 3.7 with

Capo and Fastplace obtaining significant wire length improvement for both one- and

two-level AMGC-LE. Meanwhile, only a negligible average improvement is achieved

by mPL. The runtime increases for all placers with mPL having the largest increase

in runtime, which is not surprising given that mPL must perform global placement

in addition to detailed placement at each level. Capo has a more modest increase in

runtime compared to the other two placers, on average. In this case, the placements

for mPL are nearly identical whether one or two levels of AMGC-LE clustering are

performed. This means that the effects of the second level of clustering are almost

entirely removed by performing global placement on the unclustered circuit.

3.5.2 Length-Driven Unclustering as a Detailed Placer

In this section, the same multilevel experiments are performed with the difference of not

performing any placement apart from placing the bottommost clustered circuit. The

circuit is placed at the bottom level using the global and detailed placement functions

of each placer (if the two are distinguished). As a result, the placement at the bottom

level is legal, i.e. free from overlaps. To improve upon the runtime results given in

the previous section, it is proposed to use the length-driven unclustering technique as

the only refinement between levels. The placement will preserve its legality using the

technique mentioned in Section 3.4.2. The results of this experiment are given in Table

3.9.

The format of the Tables 3.9(a) and (b) is the same as Table 3.7. It can be seen that

all placers’ wire lengths are improved on average using either one- or two-level AMGC-

LE. The best wire length improvement is again for Fastplace with one-level AMGC-LE

on ibm06 with a 35.8% improvement. Using one-level AMGC-LE 16, 15, and 14 circuits
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Table 3.9: Placement wire length and runtime results comparing one- and two-level
AMGC-LE clustering with length-driven unclustering without detailed placement to
baseline placements with three placers on the ICCAD04 benchmark suite.

(a) HPWL

Capo Fastplace mPL
AMGC-LE AMGC-LE AMGC-LE

Circuit Baseline 1Lvl 2Lvl Baseline 1Lvl 2Lvl Baseline 1Lvl 2Lvl
(×105) (%) (%) (×105) (%) (%) (×105) (%) (%)

ibm01 25 -1.0 -1.7 24 -7.7 -4.9 24 -3.2 -3.4
ibm02 51 1.6 1.2 54 1.3 2.5 52 -3.8 -3.8
ibm03 77 4.2 4.6 80 1.3 3.4 82 5.0 5.1

ibm04 93 10.6 10.4 86 4.0 4.7 109 11.3 15.9

ibm05 103 0.3 -1.1 101 -1.9 -2.7 93 -10.1 -13.4
ibm06 67 1.3 0.3 99 35.8 31.1 88 15.4 17.1

ibm07 126 10.2 9.9 123 3.3 7.0 124 -4.4 1.2

ibm08 137 2.6 1.9 147 -3.0 3.3 211 13.0 20.0

ibm09 145 0.6 1.5 155 4.3 3.9 189 11.9 15.9

ibm10 318 -1.0 -0.5 362 7.4 9.0 363 3.2 5.7

ibm11 210 1.9 1.9 225 7.6 6.3 243 4.3 4.1

ibm12 413 9.6 9.6 410 7.4 10.4 461 6.4 6.9

ibm13 266 3.3 3.4 273 7.7 7.3 324 9.7 14.3

ibm14 392 2.4 1.0 478 11.5 18.4 824 30.0 35.2

ibm15 544 2.6 -0.1 577 5.0 8.6 1001 23.3 23.4

ibm16 629 5.1 2.5 680 8.5 7.9 931 16.8 21.8

ibm17 737 1.9 1.2 810 7.0 9.0 1144 13.0 21.5

ibm18 458 0.9 0.0 574 15.3 15.8 885 18.8 28.9

Average - 3.2 2.6 - 6.4 7.8 - 8.9 12.0

(b) Runtime

Capo Fastplace mPL
AMGC-LE AMGC-LE AMGC-LE

Circuit Baseline 1Lvl 2Lvl Baseline 1Lvl 2Lvl Baseline 1Lvl 2Lvl
(s) (%) (%) (s) (%) (%) (s) (%) (%)

ibm01 193 16 12 26 -12 -22 109 47 54
ibm02 329 -8 2 46 1 -28 236 27 38
ibm03 487 -5 5 46 -16 -36 221 10 32
ibm04 512 -1 -4 51 -13 -42 250 39 40
ibm05 411 -1 -1 36 -29 -63 174 -2 32
ibm06 580 12 5 96 34 15 390 39 51
ibm07 920 7 8 96 -8 -57 387 28 35
ibm08 941 6 -11 99 -22 -110 1109 62 67
ibm09 1198 -8 1 122 -3 -42 898 55 62
ibm10 1868 3 -3 286 8 -11 1450 8 38
ibm11 1834 -1 -5 135 -64 -94 1084 56 56
ibm12 1996 -1 -7 282 -3 -17 1517 29 39
ibm13 2387 -7 -6 239 -32 -81 1235 54 56
ibm14 3327 -2 -14 530 -51 -125 2189 27 49
ibm15 5781 0 -22 624 -38 -188 3969 32 43
ibm16 4917 -4 -11 722 -58 -167 5457 50 53
ibm17 5286 -4 -26 1133 -40 -84 2788 3 12
ibm18 4215 -8 -36 1589 2 -43 3106 2 14

Average - 0 -6 - -19 -66 - 32 43
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improve for Capo, Fastplace, and mPL, respectively. Improvement is observed in 14,

16, and 15 circuits for Capo, Fastplace, and mPL, respectively, when using two-level

AMGC-LE. When compared to the results in Section 3.5, the average wire length for

Capo and Fastplace degrades while mPL significantly improves. This improvement is

because mPL has no option to perform just detailed placement. It performs global and

detailed placement using the clustered placement as the starting point. During this

process, the clusters become dispersed. Therefore, when the proposed length-driven

unclustering is used as a detailed placer, the benefits of clustering and length-driven

unclustering are preserved.

The runtime results show significant improvements over the results in Section 3.5.

When compared to the baseline, Capo is not significantly changed while Fastplace is

degraded by 19% and 66% for one- and two-level AMGC-LE. The increases in runtime

for Fastplace may be tolerated because of its comparatively low runtimes. However,

mPL runtimes are improved significantly with more improvement seen with two-level

AMGC-LE, nearly cutting the average runtime by half.

In order to assess the scalability of the proposed length-driven unclustering as a

detailed placer, the same experiments are performed on the ISPD05 circuits. The re-

sults are tabulated in Table 3.10. The results follow similar trends as those of Table

3.9. All placers achieve wire length improvements and significantly improved running

times compared to the results of Table 3.8 which are obtained by using each placers’

detailed placement algorithm in between clustering levels. In this case, Capo achieves

an overall runtime improvement compared to the baseline with 3.6% and 2.4% aver-

age improvements in wire length when performing one and two levels of AMGC-LE

clustering, respectively. mPL achieves substantial improvements in wire length with

modest increases in average running time. Finally, for Fastplace, significant average

wire length improvements are observed for both one and two levels of AMGC-LE clus-
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Table 3.10: Placement wire length and runtime results comparing one- and two-level
AMGC-LE clustering with length-driven unclustering without detailed placement to
baseline placements with three placers on the ISPD05 benchmark suite.

(a) HPWL

Capo Fastplace mPL
AMGC-LE AMGC-LE AMGC-LE

Circuit Baseline 1Lvl 2Lvl Baseline 1Lvl 2Lvl Baseline 1Lvl 2Lvl
(×106) (%) (%) (×106) (%) (%) (×106) (%) (%)

adaptec1 91 -1.4 -2.7 87 1.8 -1.6 81 5.3 3.1

adaptec2 120 12.6 10.8 108 -0.2 3.6 97 13.7 12.9

adaptec3 254 4.0 2.0 287 12.0 10.8 224 16.4 15.3

adaptec4 - - - 230 4.9 7.4 195 8.0 7.6

bigblue1 114 1.1 0.1 107 -1.7 -2.6 101 -0.4 -2.3
bigblue2 167 1.0 -0.4 181 0.8 2.0 152 3.2 1.6

bigblue3 439 4.3 4.6 663 35.7 37.6 492 30.4 29.1

Average - 3.6 2.4 - 7.6 8.2 - 10.9 9.6

(b) Runtime

Capo Fastplace mPL
AMGC-LE AMGC-LE AMGC-LE

Circuit Baseline 1Lvl 2Lvl Baseline 1Lvl 2Lvl Baseline 1Lvl 2Lvl
(×102s) (%) (%) (×102s) (%) (%) (×102s) (%) (%)

adaptec1 30 21 17 5 -61 -65 18 32 3
adaptec2 44 34 41 13 -14 10 17 -34 -59
adaptec3 81 19 29 28 -47 -73 65 -22 16
adaptec4 - - - 21 -203 -195 45 -59 -52
bigblue1 54 39 42 6 -95 -74 18 -2 -36
bigblue2 92 -2 -16 23 -128 -114 49 -71 -91
bigblue3 254 11 -4 139 -29 -68 123 -90 -75

Average - 20 18 - -82 -83 - -35 -42
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tering, while the runtime has degraded which is acceptable considering the relatively

low runtimes of Fastplace.

In the end, the circuit designers can decide which of the placement flows presented

in Sections 3.5 and 3.5.2 is preferred for their application. Both improve wire length

but to varying degrees depending on the choice of placer. When using a placer like

Capo or Fastplace, the best wire length is obtained by an increase in runtime, while

mPL achieves the best results with the fast detailed placement flow. If runtime is the

most urgent concern, the proposed scheme of using length-driven unclustering as a

detailed placer is the best option.

3.5.3 Comparison to Existing Clustering Algorithms

The proposed AMGC-LE clustering algorithm with length-driven unclustering is com-

pared to other existing clustering algorithms in this section. Each technique is evalu-

ated in terms of after placement wire length and total runtime using the mPL6 placer

[40]. The clustering algorithms compared to are heavy-edge matching (HEM) [11],

best-choice (BC) [5], and the AMG clustering (AMGC) algorithm in Section 3.2. It is

worth mentioning that best-choice is the clustering algorithm used internally by Fast-

place 3.0 and mPL6. Placement is first performed without any clustering to establish

a baseline. Then, each of the algorithms is used to produce a clustered circuit which is

placed by mPL. The clustered placement is then unclustered and detailed placement is

performed by mPL or by using length-driven unclustering as a detailed placer. Results

of the experiment are given in Table 3.11.

The percentage improvement for AMGC-LE in a regular clustered placement flow,

as described in Section 3.5, is given under the subheading Regular. The column labeled

Fast Detailed refers to the results using only length-driven unclustering as a detailed

placer, described in Section 3.5.2. In terms of wire length, the regular AMGC-LE
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Table 3.11: Placement wire length and runtime results comparing one-level of existing
clustering algorithms and AMGC-LE with and without length-driven unclustering to
baseline placements with mPL6 on the ICCAD04 benchmark suite.

(a) HPWL

AMGC-LE 1Lvl
Circuit Baseline HEM BC AMGC Regular Fast Detailed

(×106) (%) (%) (%) (%) (%)

ibm01 2.4 5.9 7.1 5.7 4.6 -3.2
ibm02 5.2 -6.3 -1.6 -9.9 1.3 -3.8
ibm03 8.2 2.2 6.1 5.8 -7 5
ibm04 10.9 0.4 -1.3 -1.9 -5.7 11.3
ibm05 9.3 -5.4 -5.3 -5.4 -5.2 -10.1
ibm06 8.8 10 12.5 11.9 5.8 15.4
ibm07 12.4 1.4 -0.1 2.2 -3.1 -4.4
ibm08 21.1 -2.7 -2.9 -2.9 4.7 13
ibm09 18.9 5.1 -2 3.7 2.9 11.9
ibm10 36.3 1.9 1.7 2.1 2 3.2
ibm11 24.3 -2.6 -4.6 -1.8 -0.1 4.3
ibm12 46.1 -5 -5.9 -4.2 -1.1 6.4
ibm13 32.4 -1.2 0.3 1.7 -0.4 9.7
ibm14 82.4 6.9 7.4 7.4 6.5 30
ibm15 100.1 -7.5 -3.3 1.7 -2.9 23.3
ibm16 93.1 2.5 2.4 2.6 6.7 16.8
ibm17 114.4 5.7 5.9 4.9 7.5 13
ibm18 88.5 11.6 12 12 11 18.8

Average - 1.2 1.5 1.9 1.5 8.9

(b) Runtime

AMGC-LE 1Lvl
Circuit Baseline HEM BC AMGC Regular Fast Detailed

(s) (%) (%) (%) (%) (%)

ibm01 150 -20 -20 -14 -69 47
ibm02 324 -39 -41 -38 -91 27
ibm03 281 -67 -52 -85 -108 10
ibm04 344 -40 -28 -31 -87 39
ibm05 232 -45 -29 -22 -118 -2
ibm06 475 -62 -32 -49 -83 39
ibm07 488 -51 -43 -49 -100 28
ibm08 1468 -29 -44 -26 -105 62
ibm09 1134 -26 -26 -24 -136 55
ibm10 1762 -45 -49 -45 -126 8
ibm11 1501 -15 -1 -4 -84 56
ibm12 2009 -41 -57 -36 -115 29
ibm13 1456 -28 -26 -23 -110 54
ibm14 2547 -39 -33 -29 -93 27
ibm15 4208 -48 -26 -23 -101 32
ibm16 5821 -33 -35 -26 -57 50
ibm17 3025 -52 -53 -59 -131 3
ibm18 3672 -47 -49 -49 -125 2

Average - -40 -36 -35 -102 31
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scheme is competitive with the existing algorithms performing better in some circuits

and worse in others. On the other hand, the runtime for regular AMGC-LE degrades

more than the other clustering techniques. This is because the runtime includes the

time to perform pre-placement length estimation and the algorithm is implemented in

the MATLAB environment [45]. Therefore, the runtime could be more competitive if

the procedure were implemented in a more efficient way. However, the fast detailed

variant of AMGC-LE is a clear winner in terms of average wire length and runtime

improvement.

3.6 Summary

In this chapter, two clustering algorithms based on AMG are proposed. The first

proposed algorithm uses AMG and circuit connectivity matrix for cluster formation.

Furthermore, the complexity of the proposed algorithm is analyzed and proven to

have linear-time complexity. The new algorithm is tested to illustrate its efficiency,

scalability, quality, and empirical verification of the linear-time complexity.

The second AMG-based clustering technique uses length estimates instead of circuit

connectivity to produce clustering solutions. The results obtained from this clustering

are shown to directly reduce the wire length of a circuit.

Finally, a physical unclustering technique is proposed with the benefits of reducing

wire length and preserving legality. Because of its legality-preserving nature, the tech-

nique eliminates the need to use detailed placement between levels in the framework.

These techniques are shown to be effective in reducing wire length and can also be used

to benefit runtime.
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Part III

Clock Tree Synthesis Problems
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Chapter 4

Background Material for Part III

4.1 Introduction

High-performance circuits make use of a signal to synchronize the flow of data through

the circuit. This signal is called a clock. One of the most important components of a

high-performance circuit is the clock tree. The clock tree is the network responsible

for propagating the clock signal from the clock source, generated by an oscillator, to

the clock input of all of the synchronous elements in a circuit, e.g. flip-flops, referred

to as clock sinks. The clock tree affects the performance of the circuit in several

ways. First, the maximum frequency of the circuit is limited by the clock skew, the

maximum difference in arrival times of the clock signal at the clock sinks. Second, the

clock tree is a major consumer of power in a circuit, up to 50% [46], because it is a

large network that charges and discharges every clock period. The design of the clock

tree is complicated in modern designs by the increasing scale of the number of sinks in

designs. Furthermore, as manufacturing processes continue to scale down the feature

sizes of fabricated circuit elements, the effect of process variations become critical.

This chapter presents material relevant to the contributions proposed in Chapters

5 and 6. Both chapters have the design of clock trees, or clock tree synthesis (CTS), in

common. The main stages of CTS are described in Section 4.2. In Section 4.3, extra

attention is given to the topic of buffer sizing for CTS, which is the problem dealt

with in Chapter 6. The work in Chapter 5 requires knowledge on the topic of parallel

computing. Relevant material on the topic of parallel computing is given in Section

4.4. Optimization techniques used in Chapter 6 are presented in Sections 4.5, namely,

geometric programming and robust optimization.
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4.2 Clock Tree Synthesis

The input to a CTS flow is a clock problem instance which defines the locations of

the clock source, s0, and clock sinks, s1, . . . , sN , along with the input capacitance

of each sink. The output is a network which can distribute the clock signal from

the source to the sinks. Clock tree synthesis is typically performed in three steps:

topology generation, tree embedding, and buffer insertion [47]. In topology generation,

a topology tree is generated with the clock sinks as leaves and clock source as the

root. It is common for the topology tree to be binary and intermediate nodes, known

as Steiner nodes, are created during this step. Minimizing the expected amount of

wire needed to turn the topology into a physical route is usually the goal of topology

generation. In tree embedding, the topology tree is routed on the layout area. The

route aims to reduce skew and wire length in the process. In buffer insertion, buffers

are added into the route to ensure that the clock signal has desirably short transition

times. Excessive buffering causes the power to be unacceptable, so a compromise is

required. The location of the buffers is an important consideration, but so too is the

size of the buffers being placed. The topic of buffer sizing is explained in further detail

in Section 4.3. Each step is represented pictorially in Figure 4.1.

s1

s2

s3

s4s5

s0

(a) Clock problem in-
stance

s3 s4 s5s2s1

s0

(b) Clock topology tree

s1

s2

s3

s4s5

s0

(c) Embedded clock
tree

s1

s2

s3

s4s5

s0

(d) Buffered clock tree

Figure 4.1: Steps in performing CTS on a given problem instance.
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4.2.1 Topology Generation

Methods for topology generation can be classified as top-down, i.e. partitioning, or

bottom-up, i.e. clustering. The method of means and medians (MMM) creates a

topology tree by recursively partitioning the sinks based on their median location,

alternating between x- and y-coordinates [48]. MMM is used in many algorithms for

performing clock tree synthesis of 3D circuits, e.g. [49, 50]. This balances the number

of sinks between partitions with the hope of reducing wire length, but the balanced

bipartition (BB) technique proposed in [51] attempts to balance the capacitance in

each partition. The effect of balancing the capacitance is that the delay to the sinks in

each level of the topology tree is more balanced as well. This leads to lower clock skew.

A commonly used clustering method (CL) proposed in [52] forms a nearest-neighbor

graph on the sinks and forms clusters of pairs of sinks with minimum distance between

them. This process is repeated with the newly-formed set of clusters until a single

cluster contains all of the sinks and the topology tree is complete.

4.2.2 Tree Embedding

The second half of MMM defines how to perform embedding in a bottom-up fashion

by connecting siblings in the topology tree with a straight wire. At the next level up

in the tree, new wires connect pairs of existing wires at the mean, or the middle, of

the existing wires. By far the most common technique for embedding is an approach

which balances the estimated delays of subtrees being merged, e.g. [51, 53]. These

techniques are collectively called zero skew techniques. The techniques also work in

a bottom-up fashion but instead of connecting to the middle of wires a connection

is made where the delays to the sinks of each subtree are equal. The idea can be

intuitively understood by considering two sibling subtrees with different delays to their

sinks. When connecting the two subtrees, the signal should enter closer to the slower
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of the two subtrees. By performing a top-down step before the zero skew merging, the

techniques can achieve minimum wire length with respect to the delay model being

considered. If this additional planning step is taken, the method is called a deferred-

merge-embed (DME) method.

4.2.3 Buffer Insertion

After embedding the tree, buffers need to be added to satisfy transition time require-

ments. One method is to determine how much capacitive load a buffer can drive until a

constraint is violated, which can be calculated off-line by simulation, and insert buffers

whenever that limit is reached [54]. This technique can be performed in bottom-up or

top-down fashion. So long as the tree is balanced, the number of buffers along each

path will be balanced maintaining low skew.

Another method requires a set of candidate buffer locations and uses dynamic

programming to obtain a buffered tree with minimum delay, e.g. [55, 56]. This tends

to minimize skew as a side effect [54].

4.3 Clock Tree Buffer Sizing

Buffer insertion is required in clock trees to prevent signal degradation and satisfy

slew constraints. The performance of the network can be further optimized by sizing

the buffers in the clock tree. The process technology provides a library of available

buffers with varying properties, such as inverting or non-inverting, minimum buffer

sizes, resistance and capacitance. In a typical buffer sizing problem, the number and

locations of buffers are set, and the widths and lengths of buffers are determined while

minimizing maximum delay, skew, or power.

The problem of buffer sizing has been studied for general signal nets [57] and closed

form solutions for optimal buffer and wire sizing are available for a single wire segment
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[58]. However, these solutions are aimed at minimizing maximum delay, not skew or

power. In addition, the solutions can be only applied to a single segment and not an

entire tree.

As mentioned in Section 4.2.3, a dynamic programming method, known as van

Ginneken’s algorithm has been proposed in [56], which for a given routing tree and

set of candidate buffer locations, will find the optimal buffer sizes to minimize the

maximum delay over the tree. Extensions of the algorithm have included slew and

power constraints while maintaining optimality [59]. These methods can only hope

to maintain an acceptable skew value but offer no direct control. Works presented

in [60, 61] attempt to perform buffer insertion in the presence of blockages, regions

where buffers are not allowed.

As power consumption in a clock tree is the most important factor, a buffer sizing

formulation that minimizes the power, subject to clock skew constraints is discussed.

Accurate calculations of total power of a network is very complicated and requires

specialized programs, such as SPICE [62]. However, it is known that buffer area is well

correlated with the power consumption [57]. Hence, buffer sizing to minimize power

while maintaining skew can be expressed mathematically as:

min . Area(x) =
∑

b⊲∈B

xwb⊲
xlb⊲

s.t. max{di(x)− dj(x)} ≤ tskew, ∀i, j ∈ S, i 6= j

xlb⊲
≥ lmin, b⊲ ∈ B

xwb⊲
≥ wmin, b⊲ ∈ B

where, [xwb⊲
, xlb⊲

] are the width and length of buffer b⊲ belonging to the set of all

buffers, B, in the clock tree, x is the vector representing the buffer widths and lengths

of all the buffers in the clock tree and Area(x) is the total area of the buffers. di(x)

is the delay from source to clock sink i in the set of all sinks S. Target clock skew

is represented by tskew, and lmin and wmin are the minimum length and width of a
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buffer. This formulation is not convex because of the skew constraints because of the

subtraction and the form of the delay terms. Hence, the quality of the obtained solution

is very susceptible to the choice of the initial solution and the methodology used for

solving the problem.

4.3.1 Variation-Aware Techniques

When circuits are fabricated, the manufacturing process introduces defects. Such de-

fects are referred to as process variations. Process variations are unavoidable and

undeniable at current technology nodes. Fabricating circuits considering only nominal

values can lead to a large percentage of dies failing to meet timing specifications. A se-

quential linear programming technique for sizing buffers and wires considering skew and

power supply variation using first order Taylor expansion is proposed in [63]. In [64],

process variations are considered in the buffer and wire sizing problem which is formu-

lated as a power-constrained skew minimization problem. Sequential programming is

then employed to solve the robust optimization problem. However, the buffer and wire

sizes are continuous variables and the results after discretization are not reported. In

addition, only an elementary model is used for delay calculations and accurate SPICE

simulation results are not available.

In [65], the effects of supply voltage variations are considered by treating the delay

of each path as a random variable. The proposed technique achieves a fine trade-off

between robustness and power efficiency where the capacitance of the resulting clock

network increases by not more than 60%, and the clock tree is still twice as efficient in

power compared to a clock mesh structure. In [66], a technique is proposed to produce

robust clock trees by budgeting the power consumption between the top and bottom

level trees. The empirical results show that this technique is more efficient in decreasing

power consumption and runtime when compared to the existing cross link techniques.
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However, this technique only considers the effects of variations in supply voltage and

does not account for the variations in sizes of buffers and wires.

4.4 Parallel Computing

4.4.1 Introduction

The landscape in computing has moved from uniprocessor machines to workstations

with two or more cores. This shift is a result of pressure on the computer hardware

industry to sustain the exponential performance increases predicted by Moore’s Law

[3]. The traditional techniques of scaling feature sizes, clock frequencies, and supply

voltages are no longer practical for generating the required performance gains [1]. This

is because they introduce new problems that had negligible effects before but prove to

be debilitating now. A sampling of the main problems being encountered are leakage

and total power dissipation, diminishing supply-to-threshold voltage of transistors, and

inadequate cooling [67].

The most common configuration of multi-core processors is the symmetric multi-

processor (SMP) system. SMP refers to an architecture where the operating system

controls multiple identical processors and a shared main memory [68]. In order to har-

ness the computational power of SMP systems, work must be performed in parallel.

Often this involves rewriting existing code so that several tasks can be performed at the

same time or can involve redesigning algorithms altogether when there is no clear way

to parallelize what exists. The prospect of rewriting a large base of code creates inertia

in adopting parallel computing practices. Programmers must shoulder the burden with

the limited success of compilers capable of automatically parallelizing programs [69].

The success of a parallel algorithm depends upon being able to divide the work

into pieces which can be performed simultaneously [68]. Some problems do not lend to

parallel solutions but if a parallel solution is available there are several aspects which
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affect the resulting performance. The next section covers main issues in parallelization

that are relevant to the contributions made in this thesis.

4.4.2 Implementation Considerations

Allocating a unit of work to be assigned to a processor is referred to as spawning a

thread. Having threads run in parallel creates new issues when compared to sequential,

or single thread, programs. Key issues that arise are as follows [70]:

• Race condition: When it is possible for two threads to write or read-and-write

from the same data location a race condition exists. Left unchecked, race condi-

tions result in unpredictable program behaviour because results of computation

are order-dependent.

• Critical sections: Lines of code which could potentially cause race conditions

are called critical sections. Identifying them is key to preventing races.

• Synchronization primitives: Mechanisms for ensuring only a single thread

enters a critical section at any given time are known as synchronization primi-

tives. An example is a lock which enforces mutual exclusion by requiring a thread

to obtain the lock’s only key before entering and returning the key upon exiting

the critical section. However, threads can be synchronized for reasons other than

accessing data, for example if all threads must wait for the slowest one to com-

plete. The primitive used to enforce this behaviour is referred to as a barrier.

Synchronization primitives restrict the amount of work that threads can perform.

They should be used only when necessary for that reason.

• Load balance: Another aspect that affects performance is the relative balance

of the work performed by each thread. If one thread has much more work than
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the others, the benefit of working in parallel is limited. Ideally each thread would

be working throughout the entire process. How evenly the work is distributed is

called the load balance.

• Scheduling: It is possible for more threads to exist than their are processors to

compute with. In such situations, the order that threads are executed can affect

performance. For example, if the work is not balanced, allowing the thread with

the most work to execute last, is a poor work schedule. Furthermore the problem

of scheduling work onto P processors is NP-complete [71].

As these issues illustrate, care must be taken in designing and implementing parallel

algorithms.

4.4.3 Analysis of Parallel Algorithms

Several metrics exist for measuring the performance of parallel algorithms. The one

emphasized in this chapter is speedup. The speedup measures the ratio of a serial exe-

cution compared to a parallel one. In this work, the number of processors is considered

fixed and between 2 and 16, which is common in workstations nowadays. Speedups

which increase in direct proportion to the number of processors are said to be linear.

The best possible speedup that can be achieved is P , the number of processors, ig-

noring the effects of memory hierarchies that may produce speedups in excess of P .

Such speedup is said to be ideal. Linear speedup may be achieved but not ideal linear

speedup. For example, if doubling the number of processors results in running time

decreases less than a factor of two.

There are theoretical limits on speedups that can be achieved. Amdahl’s Law [72]

bounds the maximum speedup that can be achieved solving a problem of fixed size
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with some number of processors. It can be stated as

Speedup =
1

(Fraction of Serial Work) + Fraction of Parallel Work
P

.

Roughly speaking, the speedup that can be achieved is limited by the amount of

work that cannot be parallelized. In the modern era of CTS, problem sizes are very

large and the serial work is small compared to the parallel work. For the modest

amount of processors considered in this work, the maximum theoretical speedup is

not a limitation. Another famous theoretical limit is Gustafson’s Law [73]. Gustafson

points out that if the fraction of serial work reduces as problem size increases, the

speedup can increase. The law can be expressed as

Speedup = P − (Fraction of Serial Work)(P − 1).

Another insight is that increasing the total amount of work may result in greater

speedup so long as the serial part is reduced.

The traditional methods of analyzing the complexity of algorithms involve bounding

the function for the work performed by an algorithm with a simpler function. The same

technique can be used for analyzing parallel algorithms by introducing a variable for

the number of processors. Although these bounds can be used in analyzing space

complexity, they are used in analyzing time complexity in this work. The bound can

be an upper bound, lower bound, or one which simultaneously bounds from above and

below asymptotically. Three useful notations for describing complexity are [74]:

• Big O notation is used to express an upper bound on the complexity of an algo-

rithm. Formally, a function f(N) is Big O of g(N), expressed f(N) ∈ O(g(N)),

if

∃c ∈ R, N0 ∈ Z with c > 0 such that f(N) ≤ cg(N), ∀N > N0.
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• Big Omega notation is used to express a lower bound. A function f(N) is said

to be Big Omega of g(N), expressed f(N) ∈ Ω(g(N)), if

∃c ∈ R, N0 ∈ Z with c > 0 such that f(N) ≥ cg(N), ∀N > N0.

• Big Theta notation expresses a bound from above and below. A function f(N)

is said to be Big Theta of g(N), expressed f(N) ∈ Θ(g(N)), if

∃c1, c2,∈ R, N0 ∈ Z with c1, c2 > 0 such that c1g(N) ≤ f(N) ≤ c2g(N), ∀N > N0.

Some examples are 2N lg(N) + N ∈ O(N2), N lg2(N) ∈ Ω(N lg(N)), and 2N4 +

1000N3 + 10 ∈ Θ(N4). As an example of the complexity of a parallel algorithm,

consider an algorithm that is linear in problem size but has linear speedup in the

number of processors, P . The complexity of such an algorithm can be expressed as

Θ
(

N
P

)

and the speedup can be expressed as Θ(P ).

In the context of CTS, many of the algorithms are recursive in nature. That is,

an algorithm which depends on the solution of smaller versions of the same problem.

When the problem size is small enough the solution can be obtained directly; these are

the so-called base cases. For CTS algorithms, recursive algorithms are binary because

the current solution depends upon the solution of two smaller problems. Conceptually,

the work performed by a recursive algorithm can be drawn as a recursion tree. The

root of the recursion tree is the initial call to the recursive function. Each level in

the tree after level zero, shows the recursive calls from the level before. The leaves

represent when the base cases are reached. Each node in the tree has a cost associated

with it, which represents the work of the associated function call. An illustration of a

recursion tree for an algorithm that performs N2 work and sends problems of half the

original size to two children is shown in Figure 4.2. The initial problem size is eight in

the illustration.
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Figure 4.2: Illustration of a N2 recursion tree generated by passing subproblems of half
the original size to two children with initial problem size of eight.

Usually, it is easier to analyze the complexity of a single function call versus the

overall complexity of the recursion tree. A useful theorem for obtaining the overall

complexity of certain classes of recursive functions is called the Master Theorem [8].

The Master Theorem is applicable for solving recurrences of the form:

T (N) = aT

(

N

b

)

+ w(N),

where T (·) is a recursive function defined on non-negative integers, a ≥ 1, b > 1, and

w(·) is expresses the work done at each node. As is conventionally done, the base cases

are not shown in the recurrence and are assumed to be O(1) complexity. The floor of

N
b

is implicitly taken to ensure integer problem size. The Master Theorem has three

cases:

1. If w(N) ∈ O(N logb(a)−ǫ) for some ǫ > 0, then T (N) ∈ Θ
(

N logb(a)
)

,

2. If w(N) ∈ Θ(N logb(a)), then T (N) ∈ Θ
(

N logb(a) lg(N)
)

,

3. If w(N) ∈ Ω(N logb(a)+ǫ) for some ǫ > 0 and if a × w
(

N
b

)

≤ k × w(N) for some

constant k < 1 and N sufficiently large, then T (N) ∈ Θ(w(N)).

Even when the recurrence being analyzed satisfies the earlier mentioned restrictions,
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the Master Theorem cannot always be applied. The additional restrictions in Cases 1

and 3 must be respected. For example, in Case 1, the condition on ǫ ensures that w(N)

is not just smaller than N logb(a) but polynomially smaller, i.e. smaller by a factor N ǫ.

As an example of applying the Master Theorem, the work performed by the algo-

rithm illustrated in Figure 4.2 satisfies the recurrence

T (N) = 2T

(

N

2

)

+ N2.

In this case N logb(a) is N log2(2) = N1 and w(N) = N2 ∈ Ω(N). Since the restrictions in

case 3 are met with ǫ < 1, and k > 0.5, the recurrence T (N) ∈ Θ (N2).

4.5 Optimization Techniques used for CTS

The contributions made in Chapter 6 utilize two concepts from mathematical opti-

mization: Geometric programming and robust optimization. An overview of each is

respectively presented in Sections 4.5.1 and 4.5.2.

4.5.1 Geometric Programming

Geometric programming (GP) involves optimizing a specific kind of optimization prob-

lems which are not initially convex but can be transformed into convex problems. A

GP is an optimization problem in the general form:

min . h0(z)

s.t. hi(z) ≤ 1, i = 1, ..., p (4.1)

mi(z) = 1, i = 1, ..., g

where z ∈ R
q is the nominal value of the variables, m1(z), . . . ,mg(z) are monomials, and

h0(z), h1(z), . . . , hp(z) are posynomials. A monomial is a generic function m(·) : R
q →

R of the form of m(z) = αza1

1 za2

2 · · · zaq
q where, α > 0 and the exponents, a1, . . . , aq ∈ R,
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are real. A posynomial is a summation of monomials where all the coefficients of the

summation are positive. An example of a GP problem is given below:

min .
z1√
z2

+ z1.5
3

s.t. z1 + 4.2z5
2 ≤ z0.3

3

z1z2 = z4
3

Which in GP format is written as:

min . z1z
−0.5
2 + z1.5

3

s.t. z1z
−0.3
3 + 4.2z5

2z
−0.3
3 ≤ 1

z1z2z
−4
3 = 1

The problem formulated in (4.1) is not convex in general, but can be transformed

into a convex problem. By defining a change of variables yi = log(zi) and β = log α,

the generic monomial is rewritten as: m(y) = eβea1y1 · · · eanyn = eaT y+β. Similarly, for

a posynomial hi(·), the transformed function has the form
∑Ji

j=1 eaT
ijy+βij , where Ji is

the number of monomials in posynomial hi(·), and aij ∈ R
q, i = 1, . . . , m contain the

posynomial exponents. The optimization problem associated with the transformation

has the form:

min .
∑J0

j=1 eaT
0jy+β0j

s.t.
∑Ji

j=1 eaT
ijy+βij ≤ 1, i = 1, . . . , p,

emT
i y+βi = 1, i = 1, . . . , g,

where, mi ∈ R
q contain the equality constraint coefficients. This form of optimization

can be transformed into a convex problem by taking the logarithm resulting in:

min . lse(A0y + β0) (4.2)

s.t. lse(Aiy + βi) ≤ 0, i = 1, . . . , p,

Gy + β = 0

79



where, lse(·) is the log-sum-exp function: lse(y) = log(ey1 + ... + eyJ ). GPs in convex

form can be solved using non-linear convex optimization techniques [75].

It has been shown that the problem of minimizing logic gate area while meeting

maximum delay with process variation affecting the width and length of gates can be

formulated as a geometric program [57]. However, the same technique is not applicable

to clock network design where clock skew is an additional concern.

4.5.2 Robust Optimization

In many stages of physical design, an optimization problem is solved, where a certain

objective such as area, power, wire length or skew is minimized. The parameters and

the variables of the optimization models are normally considered to be determinis-

tic. However, there can be inherent uncertainties in the parameters or variables. For

example, the length of a gate might be nominally assigned 45nm, but, during the fab-

rication, the actual length can measure 20% lower or higher (between 36 to 54nm).

Major sources of uncertainty include process variations, measurement errors, uncer-

tainties about future decisions, and partial access to information. Examples of typical

uncertainties in physical design are supply voltage variations, manufacturing process

variation and effects of thermal noise. In traditional optimization techniques, these

uncertainties are ignored and only nominal solutions are obtained. These nominally

optimal solutions can be very sensitive to variation in parameters and can even cause

infeasibility in practice [76].

Robust optimization (RO) techniques [76, 77] try to obtain a balanced solution

considering all uncertainties. A robust solution is an optimized solution when a set

of uncertainties is considered. In the simplest form, a robust solution can be thought

of as resistant to uncertainties. Hence, a robust solution can look inferior if directly

compared to an individual nominally optimal solution obtained under the assumption
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of perfect conditions. However, when simulations that include uncertainty such as

Monte Carlo simulations or measurements of fabricated designs are performed, the

robust solution will show its superiority.

The first step in producing a robust solution to a problem using robust optimization

is to identify and model the uncertainties in the system. The source of uncertainty

gives rise to different uncertainty sets. For example, if the uncertainties are due to

variations in the supply voltage, they may be unknown but bounded. In other cases,

such as uncertainty arising from manufacturing defects, a distribution may be known.

The second step is to integrate uncertainties into the optimization problem. An

optimization problem that does not include uncertainty can be written as:

min . f0(z)

s.t. fi(z) ≤ 0, i = 1, ..., p

gi(z) = 0, i = 1, ..., g

where z represents the decision variables. A robust problem with uncertainties in the

constraints can be written as:

min . f0(z)

s.t. f̃i(z,u) ≤ 0, u ∈ U, i = 1, ..., p

gi(z) = 0, i = 1, ..., g

where u is an uncertainty vector contained in the uncertainty set U and the inequality

constraint functions f̃i include the uncertainty vector as input. Because the constraints

must be satisfied for every u in the uncertainty set, the problem is optimized for the

worst-case of uncertainties.

The formulation of certain objective and uncertain inequality constraints is most

common in robust optimization [77]. However, the case of uncertainty in the objective
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can be written as:

min . max
u∈U

f̃0(z,u)

s.t. f̃i(z,u) ≤ 0, u ∈ U, i = 1, ..., p

gi(z) = 0, i = 1, ..., g

The solution of this problem minimizes the maximum of the objective f̃0(z,u) over all

possible values of uncertainty u.

The final step in robust optimization is finding a solution. Although the uncertainty

set being considered may produce a problem that is not computationally tractable,

there are many practical cases that produce optimization problems that can be ef-

ficiently solved. In these tractable cases, solvers implementing state-of-the-art algo-

rithms are available to find the robust solution to a given problem [78]. In some other

cases where the problem is not tractable, it may be possible to efficiently compute a

robust feasible, but not necessarily optimal solution [77].

Stochastic optimization techniques have been used in applications where uncer-

tainty exists. However, a requirement to use stochastic optimization is to confine the

variations to a probabilistic model. In robust optimization, the uncertainty model is a

set, and the solution is optimal considering all members of the set. Hence, robust opti-

mization can be easier to solve and more effective if a design must perform well under

all realizations of uncertainty. Robust optimization can also be used when the nature

of uncertainty is not probabilistic, or a distribution is not available, not accurately

known, or known but leading to intractable computational models.

Robust optimization has been used in the context of gate sizing in the physical

design field. A method using robust optimization to perform gate sizing over multiple

design corner cases is presented in [79]. For this problem, the uncertainty is modeled

by a set of corners. Each corner assigns values to environmental parameters and pro-

cess parameters, such as temperature and threshold voltage, respectively. Equations
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representing the delays of the circuit are derived for each corner. By replicating the

constraints for each corner in the optimization problem, the uncertainty is accounted

for. The resulting gate sizing solution is the best that can be achieved for all corners.

Another gate sizing application of robust optimization is in [57]. In this work, the

uncertainty is in the size of gates after manufacturing. The uncertainty is modeled using

ellipsoidal uncertainty sets and can include intra-die correlations in manufacturing

defects, which affect the resulting gate sizes.

A technique for yield optimization under process variation is discussed in [80].

In this work, a joint design-time and post-silicon minimization on parametric yield

loss using adjustable robust optimization is discussed. Uncertainties in gate sizes and

threshold voltages are dealt with while minimizing leakage power.

4.6 Summary

In this chapter, background material related to the proposed clock tree synthesis algo-

rithms are discussed. An overview of the importance of the clock tree in a synchronous

circuit and the main stages of CTS are discussed. A review of buffer sizing methods

to improve the performance of clock trees is also given.

The use of parallel computing in solving large-scale problems is highly desirable.

Several important aspects of parallel computing are presented.

Finally, geometric programming and robust optimization are explained as powerful

mathematical tools in combating problems of scale.
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Chapter 5

Parallel Clock Network Synthesis

5.1 Introduction

Circuit sizes have continued to grow at exponential rates over the past decades [3].

This growth is the cause of many of the challenges encountered during the process

of laying out circuits today [81]. A less explored way of overcoming the challenges

is to harness the proportionately growing computation power by working in parallel.

Although not all problems involved in the physical design of circuits lend themselves

to efficient parallel solutions, there are important problems that do. As will be shown

in this chapter, several steps in CTS can be parallelized.1

CTS has been singled out as a step of utmost importance in recent years, as evi-

denced by the 2009 and 2010 industry-sponsored contests on their design during the

ACM/IEEE International Symposium on Physical Design [82, 83]. As today’s circuit

sizes are exceeding millions of elements, working in parallel is becoming a necessity [46].

There have been a myriad of algorithms developed for CTS [46, 47]. However, the

notion of parallel algorithms for CTS has been almost entirely overlooked. The work

in [84] explores the problem of tree embedding in parallel, but does not consider the

requirement of adding buffers to the network, which is essential in modern designs. It

is also not a generic approach useful for different algorithms as the framework proposed

in this chapter.

The main contributions of this chapter are as follows:

• Proposing a generic parallelization framework applicable to many CTS algo-

1With the assumption that the target machine has a modest number, P , of homogeneous processors
and shared memory, as is common in workstations.
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rithms,

• Proving asymptotic optimality of the framework,

• Developing parallel versions of common CTS algorithms,

• Discussing implementation details that improve speedup.

The remainder of this chapter is organized as follows: In Section 5.2, the generic

framework that can be used to parallelize CTS algorithms is proposed. For each main

step of CTS, commonly used algorithms are parallelized using the proposed framework

and experimental validation are given in Sections 5.3.1-5.3.3. Finally, conclusions and

future directions for the work are discussed in Section 5.4.

5.2 The Proposed Parallelization Framework

Many algorithms used for performing clock tree topology generation, embedding, and

buffer insertion are recursive. Usually, the work performed at each step of the recursion

involves only the attributes of a single node, and possibly its immediate children.

Because of this, siblings in the recursion tree are independent. The independence of

subtrees generated by the recursion is the key in the development of the proposed

parallelization framework for CTS algorithms.

5.2.1 Overview of the Proposed Framework

To gain the intuition behind the parallelization framework, consider a recursion tree

which is balanced, i.e. a binary tree with N nodes and height ⌈lg (N)⌉. Assuming that

the work performed at each node in the tree involves only the node’s attributes and its

children’s, any two nodes at the same depth in the tree can be computed in parallel.

Furthermore, any subtrees rooted at nodes which are at the same depth in the tree can
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be computed in parallel. The proposed framework consists of two phases:

1. Performing work serially until the target depth is reached,

2. Performing the work of subtrees rooted at nodes at and below the target depth

in parallel.

The target depth is chosen as ⌊lg (P )⌋, where P is the number of processors available

for computation. Setting the target depth at this level allows each processor to work

on an independent subtree.

An illustration of the work performed in each phase is given in Figure 5.1. The

Phase 2

Phase 1

Figure 5.1: Illustration of the parallelism used in the proposed framework with a target
depth of two.

target depth is two in the figure, allowing four processors to work in parallel. In Phase

1, the work at depth zero and one are dealt with serially. In Phase 2, the work at

depth two and below is dealt with in parallel by different processors. The work of each

processor is highlighted by a dashed box. Similarly, if the target depth is chosen to be

one, Phase 1 work would be a single node and 2 processors could work in parallel on

work of depth greater than zero.
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Function(node,{arguments})
1. work before recursing

2. Function(node->lChild,{left child arguments})
3. Function(node->rChild,{right child arguments})

Figure 5.2: Generic top-down, binary recursive function pseudocode.

PFunction(node,{arguments},depth)
1. work before recursing

2. depth=depth+1

3. if depth==⌊lg (P )⌋ // Start Phase 2

4. spawn Function(node->lChild,{left child arguments})
5. spawn Function(node->rChild,{right child arguments})
6. else // Continue Phase 1

7. PFunction(node->lChild,{left child arguments},depth)
8. PFunction(node->rChild,{right child arguments},depth)

Figure 5.3: Pseudocode of the proposed CTS parallelization framework applied to the
generic function in Figure 5.2.

The proposed framework is applied to recursive functions that perform work on

the attributes of a node and possibly attributes of its immediate children. If only

the node’s attributes are required, a top-down algorithm is most appropriate. If the

attributes of the children are required, a bottom-up algorithm is necessary. A generic

top-down, binary recursive function is given in Figure 5.2 with base cases excluded. The

Function takes a node and a set of arguments as inputs. Work done in Step 1 involves

the node and the arguments. The last two steps recurse on the node’s left and right

children, lChild and rChild, and their associated arguments, which may come from

the current arguments or have been computed in Step 1. In the algorithms considered

in this thesis, the arguments are not shared and as such do not require the use of

locks around critical sections in the code. Pseudocode for the proposed parallelization

framework applied to the generic recursive function in Figure 5.2 is presented in Figure

5.3. The depth in the recursion tree is now passed as an argument. In Step 3, a test of
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whether the target depth has been reached is performed. If the target depth has been

reached, Phase 2 begins by spawning new threads with the serial Function accepting

node’s children as arguments in Steps 4 and 5. Otherwise, the Phase 1 work continues

with calls made in Steps 7 and 8. A thread barrier synchronization statement needs to

be executed after all instances of PFunction finish to ensure all work is complete before

the program proceeds. For bottom-up algorithms, the same synchronization statement

needs to be executed and then the work in Phase 1 can be completed.

5.2.2 Complexity Analysis of the Proposed Framework

In this section it is shown that linear speedup can be achieved by applying the pro-

posed parallelization framework to algorithms meeting certain requirements. The re-

quirements to ensure asymptotic linear speedup are:

• The algorithm to which the proposed framework is applied is O
(

N lg2 N
)

,

• The recursion tree is balanced.

The requirements are met by many algorithms in the CTS domain, so the applicability

of the proposed framework is broad.

Due to the large problem sizes, N , encountered in modern CTS, common algo-

rithms perform constant-time Θ(1) or linear Θ(N) work at each node. Algorithms

that perform Θ (N lg (N)) work and are also used occasionally. Assuming the recur-

sion tree is balanced, the Master Theorem, explained in Section 4.4.3, can be applied

with a = 2, b = 2 to determine the overall complexity of such algorithms by assigning

w(N) appropriately. For the case of w(N) = Θ(1) the overall complexity is Θ(N).

For the case of w(N) = Θ(N) the overall complexity is Θ(N lg(N)). In fact, these

results hold even when the tree is not balanced. The only requirement is that the

larger of the two problem sizes reduces geometrically. This can be seen by applying
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the Master Theorem with 1 < b < 2. The Master Theorem cannot be applied in

this case when w(N) = Θ(N lg(N)) because N lg(N) is not polynomially larger than

N logb(a) = N log2(2) = N . However, the overall complexity is derived in Appendix A.1.

The result of the derivation is that the overall complexity is Θ
(

N lg2(N)
)

.

The following theorem proves that the proposed parallelization framework is asymp-

totically optimal in the speedup achieved for algorithms of complexity Θ(N lg2(N)) or

lower.

Theorem 5.2.1. The asymptotic speedup achieved by using the proposed parallelization

framework is optimal, i.e. linear in P , for balanced recursion trees when applied to

O
(

N lg2(N)
)

algorithms.

Proof. Without loss of generality assume that N and P are powers of two. The as-

sumption on P can be made because the proposed framework uses only powers of

two processors for Phase 2 work. The speedup can be calculated as the ratio of the

total work to the sum of the work performed during Phase 1 and the work of a sin-

gle Phase 2 subtree. From the proof of Theorem A.1.1, the total amount of work

without any parallel processing is bounded by cN
2

lg(N)(lg(N) + 1) for some c ∈ R.

The result from Theorem A.1.1 permits the assumption that N be a power of two

as explained therein Appendix A.1. The amount of work in a Phase 2 subtree is

cN
2P

lg
(

N
P

) (

lg
(

N
P

)

+ 1
)

, by the proof of Theorem A.1.1. The amount of work in Phase

1 is cN lg(P )
(

lg(N)− lg(P )−1
2

)

which is obtained by truncating the series in the proof
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of Theorem A.1.1 at i = lg(P )− 1. The speedup is then

cN
2

lg(N)(lg(N) + 1)

cN lg(P )
(

lg(N)− lg(P )−1
2

)

+ cN
2P

lg
(

N
P

) (

lg
(

N
P

)

+ 1
)

=
P lg(N)(lg(N) + 1)

2P lg(P )
(

lg(N)− lg(P )−1
2

)

+ lg
(

N
P

) (

lg
(

N
P

)

+ 1
)

=
P

(

lg2(N) + lg(N)
)

2P lg(P ) lg(N)− P lg2(P ) + P lg(P ) + (lg(N)− lg(P )) (lg(N)− lg(P ) + 1)

=
P

(

lg2(N) + lg(N)
)

2(P − 1) lg(P ) lg(N)− (P − 1) lg2(P ) + (P − 1) lg(P ) + lg2(N) + lg(N)

=
P

(

lg2(N) + lg(N)
)

(P − 1) lg(P ) (2 lg(N)− lg(P ) + 1) + lg2(N) + lg(N)

=
P

(

lg2(N) + lg(N)
)

lg2(N) + lg(N)(2(P − 1) lg(P ) + 1)− (P − 1) lg(P ) (lg(P )− 1)

= O(P ),

where the last step follows because the lg2(N) terms asymptotically dominate the

numerator and denominator, keeping in mind that P is fixed. The constant hidden

by the Big O notation can be chosen arbitrarily close to one implying the speedup

approaches the ideal value of P .

5.2.3 Practical Considerations

Highly Unbalanced Recursion Trees

The restriction that the recursion tree be balanced in Theorem 5.2.1 is a mathematical

convenience. Although CTS topology generation algorithms tend to generate well-

balanced trees, it is still possible to achieve optimal asymptotic speedup without a

strictly balanced tree. In fact, the tree can be near degenerate. Consider applying the

proposed framework to the recursion tree depicted in Figure 5.4 with target depth of

one, i.e. P = 2. In this case, although the tree is extremely unbalanced because the

depth of two leaves can be arbitrarily lower than the depth of the other leaves, the total

work of each Phase 2 subtree is equal. As a result, the asymptotic speedup approaches
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Phase 1

Phase 2

Figure 5.4: A degenerate recursion tree in which optimal asymptotic speedup is
achieved by applying the the proposed framework with a target depth of one.

the ideal of P . It is with this looser interpretation of balance, i.e. balanced total work

of Phase 2 subtrees, that asymptotically optimal speedup can be achieved.

The recursion tree in Figure 5.4 can also be used to illustrate a limitation of the pro-

posed framework for trees that are highly unbalanced. Consider applying the proposed

framework with target depth of two, i.e. four processors. In this case two subtrees

have only a single node of work to perform. The speedup that could be achieved would

approach two, rather than an ideal speedup of four. This behaviour of flat or decreas-

ing speedup is unlikely to occur in the target application where the size of the trees is

large and are designed with balance in mind. However, this phenomenon can explain

inconsistent speedup scaling as processors are added when solving the same problem.

The asymptotic result of Theorem 5.2.1 does require an assumption on the value of

P . However, for it to be relevant to problems of practical sizes it is useful to assume

P is modest, between 2 and 16. The larger the problem, the closer the speedup will

be to approaching the ideal value of P . Furthermore, the lower the complexity of the

work performed at each node in the recursion tree, the sooner the speedup will achieve

an ideal value. Roughly speaking, if the work at each node is O(1) it will achieve
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a speedup higher than if the work were O(N). Lemmas A.3.1 and A.2.1 are special

cases of Theorem 5.2.1 when the work performed at each node is Θ(N) and Θ(1),

respectively. Their proofs include equations for speedup, as the proof of Theorem 5.2.1

does, which support both the ideas of approaching ideal speedup if problem sizes are

increased and if the complexity of the work is decreased.

In Section 5.2.2 it is proven that the proposed framework is successful in achieving

linear speedup in some cases. A natural question is when it is not successful in achieving

linear speedup. Lemma A.4.1 proves that when the work at each node is Ω (N2) the

speedup achieved by the proposed framework is bounded above by a constant. By using

the Master Theorem, it can be shown that recursive algorithms performing Ω (N2) work

at each node are Ω (N2) complexity overall.

Parallelization of Phase 1

One extension of the proposed framework is to allow nodes in Phase 1 to be scheduled

in parallel. This has no effect for P < 4. Asymptotically, ideal linear scaling in P

has been proven for algorithms of complexity O
(

N lg2(N)
)

. However, when P ≥

4, there is potential for improving speedup of problems with sizes not large enough

to achieve ideal scaling. The strategy of allowing parallel execution during Phase

1 introduces scheduling conflicts and extra overheads which can derail attempts at

increasing speedup [85]. By not allowing parallel execution in Phase 1, the optimal

work schedule of assigning each Phase 2 subtree to unique processors is obvious and

processors do not need to perform context switches. In Section 5.3, the effectiveness of

the proposed framework on CTS algorithms is shown.

It is also worth mentioning that allowing parallel processing in Phase 1 can not

achieve linear speedup for Θ (N2) algorithms. To improve the speedup for Ω (N2)

algorithms, a non-generic technique must be used, if such a technique is possible for

a particular algorithm. However, Ω (N2) algorithms are out of favor because their
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PMMMTopo(set sinks, direction coord, int depth)

1. find median of sinks in coord

2. partition sinks into upperSinks and lowerSinks by the median

3. if depth==⌊lg(P )⌋
4. spawn MMMTopo(lowerSinks,!coord)

5. spawn MMMTopo(upperSinks,!coord)

6. else

7. PMMMTopo(lowerSinks,!coord,depth+1)

8. PMMMTopo(upperSinks,!coord,depth+1)

Figure 5.5: Pseudocode for performing parallel MMM topology generation.

running times become prohibitive for large problems. Great strengths of the proposed

framework are that it is generic in application, it does not require modifying the work

performed by the underlying algorithm, and it can achieve ideal speedup for recursive

algorithms with O(N lg2(N)) complexity.

5.3 Validation of the Proposed Framework

5.3.1 Proposed Parallel Topology Generation

Consider MMM partitioning explained in Section 4.2.1 which, given N sinks, recur-

sively selects the median of each partition in alternating coordinates. In a partitioning

algorithm, parallelism is easy to come by as each generated partition is independent of

the others. The proposed approach to capture the parallelism is to find the median us-

ing an optimal Θ(N), or linear-time, algorithm [86] and work in parallel once there is a

partition for every processor.2 This results in an algorithm which is Θ
(

N
P

log(N
P

)
)

, com-

pared to Θ(N log(N)) originally. Asymptotic linear speedup is guaranteed by Lemma

A.3.1, which states that linear speedup is achieved for recursive Θ(N) work, because

partitioning by the median ensures a balanced tree. A simplified pseudocode listing of

the parallel algorithm ignoring base cases is provided in Figure 5.5. In the pseudocode,

2A linear-time median is provided in the C++ Standard Template Library.
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a variable of type direction can represent two possible values, horizontal and vertical.

The operation ! on a direction alternates the direction. The median of the current

set of sinks is found in Step 1 and the sinks are divided into two partitions based

upon the median in Step 2. Once the target depth of ⌊lg(P )⌋ has been reached in Step

3, Phase 2 threads are spawned with a non-parallel version called MMMTopo to avoid

the conditionals. Otherwise, the depth is incremented and Phase 1 work continues in

Steps 7-8. In practical implementations, the topology node needs to be instantiated

and left and right children assigned. Furthermore, a synchronization command needs

to be executed before performing further CTS steps as explained in Section 5.2. Ap-

plying the framework only affects execution time and does not change the output of

the algorithm.

The parallelization framework can also be used to parallelize the BB algorithm

explained in Section 4.2.1. The resulting time-complexity is Θ
(

N
P

lg2
(

N
P

))

compared

to Θ(N lg2(N)) in the non-parallel version.

In contrast to partitioning, commonly used clustering algorithms do not create in-

dependent subproblems. As a result the parallelism that can be exploited in clustering

algorithms is at the data-level and not the task-level. Although they can be parallelized,

the speedup from complexity analyses do not improve as much as in partitioning [84].

Experimental Validation

In this section the performance of an implementation of the proposed parallel algorithm

presented in Figure 5.5 is evaluated. The algorithms proposed in this chapter are

implemented in C/C++ using OpenMP tasks [87] and compiled using Intel compiler

version 12.0.3. Implementations of the parallel partitioning algorithms only required

adding a small number of additional lines of code to the serial versions using OpenMP

tasks. In the proposed algorithm, no threads share work, nor do they get assigned work

more than once. For OpenMP implementations in particular, using such a deterministic
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work schedule avoids crippling overheads and poor task schedules [85].

Experiments are performed on a Linux server with Intel Xeon cores running at

2.67GHz and 74GB of RAM. Circuits used in the experiments are based on the circuits

in the ISPD 2010 contest benchmarks [83] and range in size 1000 sinks (C1) to 150000

(C7).3 The benchmarks have been modified to include more sinks distributed over the

circuit area and varying sink capacitances to be more representative of problems seen

in industry [46]. The benchmark specifications are given in Table 5.1.

Table 5.1: Specification of Benchmarks used in Validating Parallel CTS Algorithms.

Height Width Number Total sink Varying
Name (mm) (mm) of sinks capacitance (nF) sink capacitance

C1 8.0 8.0 1000 14 X

C2 13.0 7.0 2000 27 X

C3 3.1 0.5 4000 53 X

C4 2.1 2.7 8000 105 X

C5 2.3 2.5 15000 180 X

C6 1.9 0.9 15000 180 X

C7 2.5 1.4 150000 1624 X

Parallel Method of Means and Medians The running times obtained by executing

PMMMTopo using two, four, and eight processors and a single processor running a serial

version (P = 1) are presented in Table 5.2. To better interpret the results, the speedups

Table 5.2: Running times with varying number of processors using PMMMTopo in Figure
5.5.

Running Time (s×10−3)
Circuit P = 1 P = 2 P = 4 P = 8

C1 6.8 4.7 3.5 1.9
C2 11.4 8.4 5.8 3.6
C3 23.6 15.4 11.3 6.7
C4 41.7 31.2 22.1 9.8
C5 72.4 39.2 24.1 16.9
C6 71.6 51.0 31.3 19.3
C7 789.4 460.5 314.4 191.3

obtained by executing PMMMTopo using two, four, and eight processors compared to a

3Circuits available at http://people.ucalgary.ca/∼lmrakai/parallelBenchmarks.tgz
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single processor running a serial version are shown in Figure 5.6. Linear speedup can

Figure 5.6: Speedups obtained by using PMMMTopo in Figure 5.5.

be observed as eight threads roughly doubles the speedup of four, and four roughly

doubles the speedup of two threads. Ideal linear speedup, i.e. speedup equal to P , is

not achieved in part because the Phase 1 work done before generating parallel tasks

involves the largest partitions. As the problem sizes grow, the proportion of work

performed in Phase 2 overtakes that of Phase 1 allowing asymptotic ideal speedup.

Several other uncontrollable factors also restrict the potential speedup, such as the

time taken to dispatch threads, processor communication delays, the CPU utilization

of the machine during the experiment, and hierarchical memory effects, i.e. caching

and paging.

Parallel Balanced Bipartition The same experiment as partitioning with parallel

MMM is performed using a parallel version of BB. The running times are presented

in Table 5.3 and associated speedups are illustrated in Figure 5.7. The complexity

of the BB algorithm is on the cusp of what algorithms can achieve linear speedup,

i.e. Θ(N lg2(N)), and the speedups obtained are less than what is achieved the lower

complexity MMM algorithm. Appreciable speedup is achieved with P = 2, but the

benefit of using four or eight is less appreciable except for the largest test case, C7.

Although there is no clear indication of linear speedup in this experiment, the upward
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Table 5.3: Running times with varying number of processors using a parallel BB algo-
rithm.

Running Time (s×10−3)
Circuit P = 1 P = 2 P = 4 P = 8

C1 275.9 188.2 145.8 140.4
C2 833.9 556.0 499.4 466.1
C3 3204.6 2121.2 1910.1 1790.5
C4 11264.8 7393.8 6665.9 6227.6
C5 44309.1 29489.1 26117.8 23352.3
C6 44341.9 29548.0 26035.6 23122.2
C7 516908.3 290483.1 212415.4 157530.7

Figure 5.7: Speedups obtained by using parallel BB.
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PMMMEmbed(topologyNode∗ node, int depth)

1. if depth==⌊lg(P )⌋
2. spawn MMMEmbed(node->left)

3. spawn MMMEmbed(node->right)

4. synch

5. else

6. PMMMEmbed(node->left, depth+1)

7. PMMMEmbed(node->right, depth+1)

8. set node’s location as mean of its children’s

Figure 5.8: Simplified pseudocode listing for performing parallel MMM tree embedding.

trend in speedup suggests the following conclusion. As problem sizes continue to grow,

so too will the benefit of applying the proposed framework to Θ(N lg2(N)) algorithms.

The trees generated by BB are also not as well-balanced as with MMM, but the problem

size is the main limiting factor in this experiment.

5.3.2 Proposed Parallel Tree Embedding

With a given topology tree, the routing can be performed in parallel across independent

subtrees in the topology tree. For MMM, the parallel version of the algorithm requires

minimal modifications and results in linear speedup of the algorithm, i.e. Θ
(

N
P

)

. A

simplified listing of the pseudocode is given in Figure 5.8. The statements regarding

practical implementations mentioned in Section 5.3.1 also hold for this algorithm. The

embedding phase of MMM is bottom-up, so a synchronization statement is required

within the function because both subtrees must be completed before their parent can

proceed. When more than two processors are available, all but two processors are idle

at any time. This can be remedied by having one function to dispatch all the Phase 2

parallel jobs, lines 1-3 and 5-7, a synch over all threads, and another function to work

on the Phase 1 work.

Zero skew embedding algorithms can be parallelized to achieve linear speedup using
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the same method by performing a zero skew merge instead of a mean computation in

line 8.

The method of assigning subtrees to processors is most useful when the topology tree

is balanced, which is guaranteed for MMM and pair-wise clustering algorithms. The

BB algorithm is not ideally balanced but under realistic assumptions [51] is balanced

enough for the linear speedup worst-case bound. For pathologic cases where the trees

are of Θ(N) height, there is little parallelism that can be exploited.

Experimental Validation

Parallel Method of Means and Medians The running times of embedding using

PMMMEmbed with input topology trees generated by MMM on the circuits presented

in Table 5.1 are shown in Table 5.4. The associated speedups are shown in Figure

Table 5.4: Running times with varying number of processors using PMMMEmbed in Figure
5.8.

Running Time (s×10−3)
Circuit P = 1 P = 2 P = 4 P = 8

C1 0.8 0.5 0.3 0.1
C2 1.5 0.9 0.5 0.3
C3 3.0 1.6 1.0 0.5
C4 3.2 1.7 0.9 0.6
C5 6.3 3.4 2.0 1.1
C6 6.3 3.1 1.8 0.9
C7 104.8 46.7 27.8 15.9

5.9. Linear speedup can be observed. Since the overall complexity of MMM for tree

embedding is Θ(N), near ideal speedups can be observed even for the smallest problems

in the benchmark suite. Super linear speedup is achieved with P = 2 for benchmark

C7. A speedup of greater than two can be attributed to memory hierarchy/caching

effects. When more processors are utilized the total amount of cache memory available

increases which allows for super linear speedups to be observed.

Parallel Deferred-Merge-Embed The same experiment is performed using a par-
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Figure 5.9: Speedups obtained by using PMMMEmbed in Figure 5.8.

allel version of a DME algorithm with input topology trees generated by the BB al-

gorithm. The running times are presented in Table 5.5 and associated speedups are

illustrated in Figure 5.10. In this experiment, the speedups achieved are closer to ideal

Table 5.5: Running times with varying number of processors using a parallel DME
algorithm.

Running Time (s×10−3)
Circuit P = 1 P = 2 P = 4 P = 8

C1 0.4 0.2 0.1 0.1
C2 0.5 0.4 0.2 0.1
C3 1.3 0.7 0.5 0.3
C4 3.7 1.8 1.0 0.6
C5 5.3 3.6 1.5 0.9
C6 5.7 3.0 1.8 1.1
C7 119.5 65.5 32.7 17.5

than in Section 5.3.1 because work at each tree node is constant-time, Θ(1), compared

to Θ(N). The speedup obtained is generally less than the speedup obtained with the

parallel MMM embedding. This can be attributed to the fact that the topology trees

generated by BB are not as well-balanced as those generated by MMM.
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Figure 5.10: Speedups obtained by using parallel DME.

PGreedyBuff(embeddedNode∗ node, int depth)

1. if depth==⌊lg(P )⌋
2. spawn GreedyBuff(node->left)

3. spawn GreedyBuff(node->right)

4. synch

4. else

5. PGreedyBuff(node->left,depth+1)

6. PGreedyBuff(node->right,depth+1)

7. node->load=node->left.load+node->right.load

8. buffer node’s wire segment

9. node->load=remaining unbuffered capacitance

Figure 5.11: Simplified pseudocode listing for performing parallel greedy, bottom-up
buffer insertion.

5.3.3 Proposed Parallel Buffer Insertion

For greedy bottom-up or top-down procedures for buffer insertion, since the tree is given

at this step, both procedures can be parallelized in similar fashion. The difference is

in whether recursive calls are made at the top or bottom of the function, respectively.

A simplified listing of the pseudocode is given in Figure 5.11. Lines 7-8 insert a buffer

whenever the capacitive limit is reached along a wire segment. The remaining wire

capacitance that is unbuffered plus the last buffer’s input capacitance is set as the

node’s remaining load in line 9. This algorithm leads to a linear speedup, i.e. Θ
(

N
P

)

,
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so long as the tree is not degenerate.

Dynamic programming approaches for buffer insertion can also be parallelized. The

approaches consist of two phases: one bottom-up where candidate buffering solutions

are propagated up the tree. The other is top-down where the best solution is known and

the candidate that generated it is chosen at each node. Because of the independence of

subtrees, assigning each subtree to a processor in each phase, it is possible to achieve

the asymptotic linear speedup bound for non-degenerate trees.

Experimental Validation

Parallel Greedy Buffering The running times of performing buffer insertion with

PGreedyBuff on a tree generated and embedded using MMM on the circuits presented

in Table 5.1 are presented in Table 5.6. The associated speedups are presented in Fig-

Table 5.6: Running times with varying number of processors using PGreedyBuff in
Figure 5.11.

Running Time (s×10−3)
Circuit P = 1 P = 2 P = 4 P = 8

C1 3.5 2.0 1.4 0.8
C2 6.1 3.4 2.0 1.0
C3 7.7 5.3 3.8 2.0
C4 12.5 6.9 3.9 2.4
C5 20.6 11.2 6.8 4.0
C6 20.6 11.4 8.1 4.7
C7 254.0 142.7 84.1 57.5

ure 5.12. Speedups observed are linear but fall short of ideal values. This is because

the amount of work done at each node in the tree, i.e. the number of buffers inserted,

can vary. The number of buffers is a function of the length of wire, but is bounded

above by a constant maintaining Θ(1) complexity. Nevertheless, the amount of work

for each thread can be unbalanced.
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Figure 5.12: Speedups obtained by using PGreedyBuff in Figure 5.11.

5.4 Summary

In this chapter, a parallelization framework suitable for speeding up common CTS al-

gorithms was proposed. Several algorithms used in CTS were parallelized and bench-

marked. The experiments illustrate that linear speedup can be achieved in practice.

Since the algorithms are used in state-of-the-art academic tools, the impact of the work

is broadly applicable.
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Chapter 6

Variation-Aware Clock Tree Buffer Sizing

6.1 Introduction

Buffers are an integral part of a clock network added to maintain the signal integrity.

The goal of the buffer insertion step is to insert buffers to meet the slew constraints

with an appropriate safety margin. In this step, it is desirable to keep the increase in

power consumption of the network as small as possible, while maintaining low skew.

The buffers are sized to optimize the performance of the network, i.e. power con-

sumption or skew. However, the current buffer sizing formulations result in optimiza-

tion problems which are hard to solve. In addition, under process variation, the sizes

of these buffers can vary greatly, affecting the predictability of the performance and

lowering the yield of the network.

In this chapter, a GP formulation for buffer sizing is proposed. Using GP tech-

niques [88], the non-convex and highly non-linear buffer sizing formulation is trans-

formed into a series of convex optimization problems that can be solved quickly and

efficiently. Then, robust optimization techniques are used to model variation in the

problem formulation and produce the best solution under process variation. In the

proposed algorithm, spatial correlation of process variations are considered instead of

the worst-case variation scenarios, resulting in more area-efficient designs with mini-

mal degradation in quality. In addition, the proposed framework is flexible and can be

extended to handle variations in other parameters, such as the wire widths. The major

contributions of this chapter are:

• Developing a novel formulation of the clock network buffer sizing problem that
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converts a highly non-linear, non-convex problem into a series of convex problems

that can be efficiently solved.

• Proposing to use robust optimization techniques to include process variations in

the formulation.

• Applying a more accurate process variation model using spatial correlation in-

stead of the worst-case variation scenario.

• Flexibility to extend the process variation model to other parameters such as

wire widths.

• Offering designers the ability to optimally trade area for skew.

The rest of this chapter is organized as follows: In Section 6.2, the proposed GP

model and the robust buffer sizing solution are discussed. The proposed model is

examined and validated by several experiments in Section 6.3. A summary of the

chapter is provided in Section 6.4.

6.2 Buffer Sizing Under Variation

In this section, a new formulation for buffer sizing of clock networks under variation

using GP and robust optimization is presented. The advantage of the proposed GP

formulation is that the problem can be solved using convex optimization techniques,

where all local optima are global optima. Hence, finding a global optimum can be

done more efficiently and in lower runtime. Once a nominal solution is obtained using

the GP formulation, it is proposed to include process variations and formulate a new

GP problem which includes uncertain parameters representing the variations in buffer
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sizes. A problem with data uncertainty, does not have a unique optimum solution,

but has a range of solutions that can happen based on where the actual parameters

measure. An optimal solution to a problem with uncertainty is called a robust solution

which in essence is a solution that compromises the set of problems created due to

uncertainty. In this chapter, a robust formulation based on worst-case ellipsoidal robust

optimization for considering variations is solved. The variations are considered to be

spatially-correlated to agree with manufacturing data [57]. Other variations can also

be modelled in the robust solution. The experimental results show that when the clock

network power is calculated using SPICE, there is a dramatic decrease in the total

power.

6.2.1 Algorithm Outline

The inputs to the proposed algorithm are tskew and a clock network including buffers,

sinks and net segments. The algorithm performs buffer sizing for this clock network

with the objective of minimizing the buffer area, or in essence power, while meeting

tskew under process variation in lengths and widths of the buffers. The skew and power

are calculated using SPICE during network validation. The output of the algorithm is

a clock network sized under variation.

The proposed algorithm, as shown in Figure 6.1, includes two major phases. In the

first phase, Optimal Nominal Sizing, the non-convex buffer sizing problem formulation

presented in (6.1) is relaxed into a sequence of convex GP problems. Convex opti-

mization techniques are used to solve large-scale problems in low runtime and obtain a

global optimum. The sequence of relaxed GP problems are solved until tskew is reached

and nominal values of buffer sizes are obtained.

Once tskew is reached, the covariance matrix, Σ, is obtained and Algorithm Network

Validation, Figure 6.2, is used to add spatially-correlated defects to buffer sizes and
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Algorithm: Variation-Aware Buffer Sizing
Input: Clock network, tskew
Output: Optimal buffer sizes under variation
Phase 1. Optimal Nominal Sizing

1.a Perform GP relaxation
1.b While tskew not reached

Solve GP
1.c Calculate covariance matrix
1.d Calculate average skew using

Algorithm Network Validation
Phase 2. Variation-Aware Sizing

2.a Formulate Robust GP (RGP)
2.b While tskew not reached

Solve robust GP
2.c Calculate average skew of the robust network

using Algorithm Network Validation

Figure 6.1: Outline of the variation-aware buffer sizing algorithm.

recalculate skew and measure power using SPICE. The covariance matrix, Σ, represents

the intra-die correlation between buffer size variations, e.g. if two buffers are located

close to each other, the variation in their sizes will be closer than the buffers that

are located at a distance. Σ is calculated using a grid-based model similar to the

one described in [89]. As there is significant uncertainty in the variation and defects

introduced by the fabrication process, Monte Carlo simulation is used to introduce

defects and extract timing information.

Algorithm: Network Validation
Input: Clock network, covariance matrix Σ
Output: Skew distribution
while # simulations < max simulations required

Introduce spatially-correlated defects
Extract timing information using SPICE

end

Figure 6.2: Network validation algorithm
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In Phase 2 of the proposed algorithm, Variation-Aware Sizing, the nominally-sized

network from Phase 1 is used as an initial solution. The covariance matrix is obtained

and used in Algorithm Network Validation to represent uncertainty and a GP which

considers spatially-correlated process variations is formulated. The resulting problem

is called a Robust GP (RGP) formulation which is solved using RO techniques until

tskew is reached. Each one of the phases of the algorithm are described in detail in the

following sections.

6.2.2 Phase 1: Optimal Nominal Sizing

The formulation in (6.1) is non-convex. In this section, techniques to transform it into

a series of convex programming problems in GP format are proposed.

Proposed GP Relaxation

The buffer sizing formulation with the objective of minimizing total power/area under

skew constraints given in Section 4.3 is repeated here for convenience:

min . Area(x) =
∑

b⊲∈B

xwb⊲
xlb⊲

(6.1)

s.t. max{di(x)− dj(x)} ≤ tskew, ∀i, j ∈ S, i 6= j (6.2)

xlb⊲
≥ lmin, b⊲ ∈ B (6.3)

xwb⊲
≥ wmin, b⊲ ∈ B (6.4)

where, [xwb⊲
, xlb⊲

] are the width and length of buffer b⊲ belonging to the set of all

buffers, B, in the clock tree, x is the vector representing the buffer widths and lengths

of all the buffers in the clock tree and Area(x) is the total area of the buffers. di(x)

is the delay from source to clock sink i in the set of all sinks S. Target clock skew is

represented by tskew, and lmin and wmin are the minimum length and width of a buffer.

Each one of the objectives and constraint functions need to be verified as posynomials

to be able to use GP. If a function is not posynomial, then proper transformations or
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relaxations are performed to express it as a posynomial.

In this section, techniques to relax the buffer sizing problem (6.1) to GP format are

proposed.

Objective function (6.1): The objective,
∑

b⊲∈B xwb⊲
xlb⊲

, is the sum of buffer areas

which is already a posynomial.

Minimum length (6.3) and minimum width (6.4): The minimum length, lmin ≤

xlb⊲
, and minimum width, wmin ≤ xwb⊲

, constraints can be easily transformed by

rewriting them as lminxlb⊲

−1 ≤ 1, b⊲ ∈ B and wminxwb⊲

−1 ≤ 1, b⊲ ∈ B.

Skew Constraints (6.2): Each skew constraint, max{di(x)− dj(x)} ≤ tskew ∀si ∈ S,

involves a delay calculation, maximum operator, and negative coefficients. Each one of

the mentioned operations must be changed or relaxed to conform (6.2) to a posynomial

format. The proposed techniques for changing these operations are explained in the

following.

Delay Calculations: In order to accurately calculate delay, SPICE needs to be used.

However, using SPICE is not practical when solving large-scale optimization problems

because the runtime becomes prohibitive. The Elmore delay model used in [57] which

gives a reasonable approximation for the delay and is a posynomial is used in this

chapter. More accurate delay models can be used as long as they are posynomials,

such as [90]. All delay calculations are finally verified using SPICE when experiments

are performed.

For an RC tree, the Elmore delay is the summation of the resistance of each seg-

ment times the downstream capacitance. When a buffer is inserted in an RC tree,

it isolates the upstream and downstream capacitances. A buffer b⊲

i is modeled as

an input capacitance, cb⊲

i ,in, output resistance, rb⊲

i
, and an intrinsic buffer delay, db⊲

i
,

which is the product of buffer’s output resistance and output capacitance, cb⊲

i ,out, i.e.

db⊲

i
= rb⊲

i
cb⊲

i ,out. In terms of the length and width of b⊲

i , xl
b⊲

i

and xw
b⊲

i

, the resistance
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and capacitances of b⊲

i are:

rb⊲

i
= γ1

xl
b⊲

i

xw
b⊲

i

, cb⊲

i
= γ2xl

b⊲

i

xw
b⊲

i

+ γ3

where γ1, γ2, γ3 are technology dependent parameters which are always positive. Hence,

the expressions for resistance and capacitance are posynomials.
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Figure 6.3: An example of a buffered tree segment and its equivalent RC network.

In Figure 6.3, a buffered tree segment and its equivalent RC network are shown.

As an example, the delay from the input of b⊲

1 to the input of b⊲

2 is given by:

db⊲

1

+ rb⊲

1

Db⊲

1

+ ri1Di1 + ri2Di2 ,

where Di denotes the capacitance downstream of the resistance of element i. Since

the resistance and capacitance of buffers and wires are posynomial functions of buffer

lengths and widths and the expression for sink delay is formed by multiplication and

addition, the Elmore delay is a posynomial. In the rest of this chapter, the Elmore

delay approximation is shown with d(·), and refers to a posynomial. It should be noted

that the wire width may be treated as a variable and the delay remains a posynomial

in the length and width of buffers and width of wires. The addition of minimum wire

width constraints and including wire area in the objective creates a formulation to

simultaneously size buffers and wires. However, buffer sizing is the focus of this thesis.
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Negative coefficients: To eliminate the negative coefficient of (6.2), the skew constraint

is first relaxed by replacing dj(x) with the minimum sink delay, dmin. As di(x) −

dmin ≥ di(x) − dj(x), this relaxation does not affect feasibility. This relaxation may

be large for some sinks. However, as will be discussed in Section 6.2.2, it is used in an

iterative scheme and dmin is updated in each iteration. Therefore, the target skew is

eventually reached. Both sides of the relaxed constraint are added by dmin that leads

to max{di(x)} ≤ tskew + dmin.

Maximum operator: The maximum operator in the skew constraint is replaced with

µ ≤ tskew + dmin, and a set of constraints di(x) ≤ µ, ∀si ∈ S, where µ is a dummy

variable.

All the new constraints are monomial constraints and together act as the maximum

operator. The resulting problem is an optimization problem in the standard GP format:

(GP ) min . Area(x) =
∑

b⊲∈B xwb⊲
xlb⊲

s.t. (tskew + dmin)
−1 µ ≤ 1

di(x)µ−1 ≤ 1, ∀i ∈ S

lminx
−1
lb⊲
≤ 1, b⊲ ∈ B

wminx
−1
wb⊲
≤ 1, b⊲ ∈ B

(6.5)

Iterative GP Solution

Since the skew constraints di(x)− dj(x) ≤ tskew are relaxed to di(x)− dmin ≤ tskew, the

calculated minimum delay may not be the optimal solution. To solve this problem, it

is proposed to solve the GP problem iteratively by calculating dmin at each iteration

and replacing with the new solution if the current skew is more than the target skew.

Algorithm Network Validation is used to validate the solution, once a nominal

value has been obtained using the proposed GP model. The delay including process

variations of up to ±20% of the nominal values for lengths and ±25% for widths, is

obtained using Monte Carlo simulations and the skew is calculated using delays from
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SPICE.

If the GP becomes infeasible, zero skew algorithms, such as [51], can be used to

initialize the network and any tskew of interest can be achieved. If a zero skew network is

made up of only minimum size buffers, GP will not modify the network and Phase 1 can

be skipped. The nominally-sized networks are observed to meet the slew constraints

of 100ps set out in the ISPD contests [82, 83]. Hence, slew constraints were excluded

from the GP formulation in this chapter. Posynomial models for slew constraints, for

example [91], can be included in the GP.

6.2.3 Phase 2: Variation-Aware Sizing

The buffer sizing problem in (6.1) or in GP format of (6.5) is a deterministic opti-

mization problem. However, once process variations are included in the formulation,

variables and parameters of the problem can become non-deterministic. This means

the optimal solution of (6.5) can become suboptimal. RO techniques have been suc-

cessfully applied to problems where variability in the values of parameters exist [77].

The robust version of (6.5) for the buffer sizing problem is formulated in convex form

as:

min . lse(A0x + b0) (6.6)

s.t. lse(Aix̃ + bi) ≤ 0, i = 1, . . . , m

where, x̃ ∈ U is the vector of uncertain variables that belongs to the uncertainty set

U , representing the uncertainty in the buffer sizes. As robust optimization typically

is performed to ensure feasibility under uncertainty [77], the objective function is not

modified to consider variations. In this problem in particular, meeting the skew con-

straints is the most important part of the problem, so the variations are not considered

in the area objective. To be able to solve the uncertain problem, a worst-case robust
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GP in the following form is solved by using the supremum function sup:

min . lse(A0x + b0) (6.7)

s.t. sup
x̃∈U

lse(Aix̃ + bi) ≤ 0, i = 1, . . . , m

where, the supremum value of the constraints for all uncertain values is bounded by

0. To solve this problem using existing optimization techniques, an uncertainty model

needs to be developed so that the uncertain variables can be replaced in the formulation.

The proposed robust GP problem is formulated and solved using the model in (6.7)

and the ellipsoid uncertainty model: U = {u + Σ1/2d | ||d||2 ≤ 1, d ∈ R
2|B|}, where,

u is the nominal value of the variables, Σ is the covariance matrix of variations in

length and width, and d is constrained to have norm less than one. By capturing the

spatially-correlated variations in lengths and widths in the covariance matrix, area can

be saved. This is because buffers are not sized according to an unrealistic worst-case

scenario where all individual worst variations occur at the same time.

The variation in the lengths and widths of the buffers in the boundary constraints,

lminx
−1
lb⊲
≤ 1, b⊲ ∈ B and wminx

−1
wb⊲
≤ 1, b⊲ ∈ B, are normally introduced as part

of the manufacturing process, so variation does not need to be considered for these

constraints. The skew constraints need to be modified to include variations. First,

the skew constraints are combined to eliminate the dummy variable µ, then the vari-

able x̃ is replaced by: x̃ = x + δx. The new skew constraints are: di(x + δx) ≤

(tskew + dmin) , ∀i ∈ S where, dmin is the infimum of the random variable related to the

minimum delay. The delay function di(x+δx) is approximated using first order Taylor

series: di(x + δx) = di(x) + ∇T
x di(x)δx. This approximation is an affine model with

di(x) representing the nominal value and ∇T
x di(x)δx representing the variation. The

variational term, ∇T
x di(x)δx, describes how small changes in the lengths and width will

affect the delay. Substituting the Taylor series approximation, the constraint becomes:

di(x) +∇T
x di(x)δx ≤ (tskew + dmin) , ∀i ∈ S (6.8)
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In order to solve the robust GP including the new skew constraints (6.8), the worst-case,

i.e. sup, of the constraint should be considered.

The uncertainty vector, δx is bounded within the ellipsoid defined by the covariance

matrix: δx = Σ1/2z, ||z|| ≤ 1. The covariance matrix, Σ, represents the intra-die

correlation between buffer size variations, e.g. if two buffers are located close to each

other, the variation in their sizes will be closer than the buffers that are located at a

distance. Σ is calculated using a grid-based model similar to the one described in [89].

The term ∇T
x di(x) is split into positive terms, φ1, and negative terms, φ2. Hence, the

variational term, ∇T
x di(x)δx, is equal to:

φT
1 Σ1/2z + φT

2 Σ1/2z, ||z|| ≤ 1.

Only the maximum variational term is of importance, and φT
1 Σ1/2z + φT

2 Σ1/2z,

||z|| ≤ 1 is replaced by

max
‖z‖≤1

(< Σ1/2φ1, z > + < Σ1/2φ2, z >), (6.9)

where < a, b > is the inner product of a and b. The inequality constraint becomes:

di(x) + max
‖z‖≤1

(< Σ1/2φ1, z > + < Σ1/2φ2, z >) ≤ tskew + dmin

To remove the max operator, robust variables ρ1 and ρ2 are defined as:

ρ1 = ||Σ1/2φ1||, and ρ2 = ||Σ1/2φ2||,

hence

φT
1 Σφ1ρ

−2
1 ≤ 1, and φT

2 Σφ2ρ
−2
2 ≤ 1.

Using ||z|| ≤ 1, the constraint will become

max
‖z‖≤1

(

< Σ1/2φ1, z > + < Σ1/2φ2, z >
)

≤ max
‖z‖≤1

(

||Σ1/2φ1|| ||z||+ ||Σ1/2φ2|| ||z||
)

≤
(

||Σ1/2φ1||+ ||Σ1/2φ2||
)

= ρ1 + ρ2,
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where the first inequality uses the Cauchy-Schwarz inequality < c,d >≤ ||c|| ||d||.

Using the above equations, the constraints of (6.5) considering the process variations

in the buffer sizes can be reformulated using the following three constraints (6.11) to

(6.13):

(RGP ) min . Area(x) =
∑

b⊲∈B

xwb⊲
xlb⊲

(6.10)

s.t. di(x)− dmin + ρ1i
+ ρ2i

≤ tskew, ∀i ∈ S (6.11)

φT
1i
Σφ1i

ρ−2
1i
≤ 1, ∀i ∈ S (6.12)

φT
2i
Σφ2i

ρ−2
2i
≤ 1, ∀i ∈ S (6.13)

lminx
−1
lb⊲
≤ 1, b⊲ ∈ B (6.14)

wminx
−1
wb⊲
≤ 1, b⊲ ∈ B (6.15)

This problem is still exclusively made of posynomials and monomials and is a standard

form GP.

The solutions obtained by RGP and GP need to be discretized in order to be

manufactured. This is because the available buffers generally come from a standard

cell library. Standard cells cannot be scaled arbitrarily; instead only integer multiples

of the smallest buffer are allowed. The discretization technique used in this work is to

round the continuous values for buffer sizes down to the nearest integer. This strategy

aligns with the objective of minimizing area but can negatively impact skew. The

impact will be observed in the results of experiments presented in Section 6.3.

6.3 Experimental Results

To show the validity of the proposed algorithms, networks from the 2009 ISPD clock

network synthesis (CNS) contest [82] are used because the networks are publicly avail-

able, in contrast to the 2010 ISPD contest. Details of the benchmarks used in the

experiments are given in Table 6.1. From left to right, the columns tabulate the circuit
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Circuit Height (mm) Width (mm) Sink cap. (pF) |S| |B|
11 11 11 4.2 121 3536
12 8 13 4.1 117 3472
21 13 12 3.6 117 3568
22 12 5 3.4 91 2112
nb1 3 2 5.9 330 1264
31 17 17 9.6 273 7760
32 17 17 6.7 190 5904

Table 6.1: Details of the benchmarks used for experimentation.

names, height and width of the chip, total clock sink capacitance, number of sinks,

and number of buffers in the input network. The number of buffers are calculated as

the equivalent number of minimum size buffers. For example, if a buffer is four times

wider than a minimum buffer of the corresponding type, it counts as four buffers. The

process used is 45nm and the technology files are the same as used in the ISPD CNS

contest. All experiments are performed on 2.8GHz Intel Pentium 4 processor with 1GB

of memory. The algorithms are implemented in C++ and GPs are solved using Mosek

6.0 [78]. tskew of all the optimization problems is set to be 1ps. All power and skew

calculations are measured directly from Ngspice 24 [62]. Ngspice power measurements

are SPICE accurate, i.e. include switching, short circuit, and leakage power. Since

short circuit power is included, slew also impacts the power. It should be mentioned

that in the experiments, the skew constraints in (6.5) are met after solving a single GP.

6.3.1 Performance of GP and RGP

In the first set of experiments, results tabulated in Table 6.2, the area obtained from

solving (6.5) and (6.10), average skew of the Monte Carlo simulations, and the power

calculations from Ngspice are compared to the results of the input network. The delay

is calculated under process variation using a Monte Carlo simulations. The variations

in buffer width and length are set to 25% and 20% of the nominal values, respectively.

When performing Monte Carlo simulations, the number of simulations is 20 times
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the number of buffers in the network. In Table 6.2(a), the buffer area for the input,

nominally-sized, GP, in continuous, Cont., and discrete, Disc., buffer sizes and the

robust solution, RGP, in continuous, Cont., and discrete, Disc., buffer sizes are given,

respectively. In Table 6.2(b), the average skew results are given in the same order

as columns of Table 6.2(a). To obtain the discrete results, the values obtained from

solving GP and RGP are rounded down to the closest available discrete buffer size,

and Ngspice is used to recalculate the skew to ensure feasibility. More sophisticated

schemes where additional bounds are placed on buffer sizes in GP at each iteration

to obtain final integer values can be developed as part of the future work. The power

calculated using Ngspice for the input network and the improvement in the power after

using GP and RGP are shown in Table 6.2(c). In Table 6.2(d), the runtime for the GP

and RGP are given.

The objective of the buffer sizing, area and therefore power, are substantially re-

duced for all the test cases and in both continuous and discrete solutions. On average,

the area is reduced by 75% for GP and 51% for RGP while the power is reduced by 61%

for GP and 37% for RGP. In comparison with the nominally-sized GP network, the

robust network has more area and power but lower skew. This means that the nominal

GP solution is over-optimizing the area and power because it does not consider the

variations.

On average, obtaining a robust network requires nine times more running time

compared to the nominal network alone.

The average skew calculated using Ngspice for continuous GP increases slightly

compared to the input while continuous RGP beats the input network by 14ps, on

average. However, with the discrete sizes, both GP and RGP have higher average skews

than the input network, on average. This is because the proposed GP and RGP are

able to achieve the target skew using the approximate delay model with much smaller
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buffers. This results in reduced area and power for the networks. These smaller buffers

are more susceptible to the variations and the skew increases. It can be seen from the

results that the circuits with the largest area decrease have the largest skew increase.

For example, the most noticeable improvement in area and power happens for circuit

nb1 with a decrease of 90% in area and 83% power reduction in GP solution and 75%

area and 70% power reduction in RGP. The same happens for the other two circuits

with relatively low skew, i.e. 21 and 22. The proposed model has the flexibility to deal

with the problem of increase in the average skew by employing better delay models

and increasing robustness.

The power of RGP and considering variation in the formulation can also be demon-

strated by circuit nb1. When RGP is solved, the skew is reduced from 115 to 45ps.

Other interesting results happen for circuits 11, 12, 31 and 32 in the continuous-sized

and circuit 31 for the discrete-sized solutions, where using the GP/RGP formulation

results in reduction of all categories: area, average skew and power. Special attention

should be given to circuit 31 which is the hardest circuit to design: Using our proposed

RGP has resulted in significant power reduction while there is no change in skew. The

results in Table 6.2 suggest a trade-off between area/power and the skew, where reduc-

tion in area/power results in higher skew. These results also suggest that considering

variations and using the proposed RGP model can result in optimal solutions where

area, power and skew are all reduced. This is due to considering variations during the

optimization process, as the optimized solution is obtained considering that the gate

sizes can in reality be smaller than nominal values, i.e. higher skew. Finally, it should

be mentioned that the average skew for RGP in continuous sized circuits is improved

over the input circuits, on average. Therefore, better discretization methods will be

developed so that this reduction in skew will become sustainable.
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6.3.2 Trade-Off Analysis

The curve shown in Figure 6.4 is the Pareto optimal trade-off curve between area and

tskew for a small network with two buffers and two sinks, but the ideas apply to the

larger circuits. For this circuit, a skew of about 6.15ps is not achievable as the curve
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Figure 6.4: An illustration of the optimal area-tskew trade-off for a small network.

grows asymptotically on the left side. Also, setting tskew greater than 7.7ps makes

the skew constraint inactive since 7.7ps can be achieved with less area than it takes

to achieve a higher skew. A clock network designer can trace out such an optimal

trade-off curve and decide upon the most appropriate design.

6.3.3 Robustness of RGP

Finally, to show the power of the robust solution, the distribution of the skew for each

Monte Carlo run for the nominal and robust network considering spatial correlations

are presented in Figure 6.5. For this comparison, the network for ispd09f11 is sized

nominally (black) and sized considering variations (grey). When the nominal network

is used, the skew is distributed between 39ps to 56ps, which means that the solution

can be infeasible. However, for the robust network, the skew ranges around 24ps to

35ps, which is a much more robust circuit.
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Figure 6.5: The Monte Carlo skew distributions for the nominally-sized network (black)
and the robust network (grey).

6.4 Summary

In this chapter, it is shown that by using geometric programming, a globally optimal

solution for buffer sizing problem can be obtained in an acceptable amount of runtime.

In addition, a robust model is proposed that can consider the variation in the sizes

of the buffers. The proposed techniques are based on state-of-the-art optimization

techniques and the experimental results obtained from SPICE show improvement. By

using the proposed GP formulations, designers can trace out optimal trade-off curves

to decide on the most appropriate design.

For future work, a technique will be developed to discretize the buffer sizes with

minimal disruption to skew. Also, the robust model can be developed as a multi-

objective optimization problem with the objectives of minimizing the skew and the

area simultaneously. Finally, the model can be extended to include other variations,

such as wire width variations, to allow for even more robust designs.
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Table 6.2: Comparison of input networks and the resulting nominally-sized networks
and robust networks.

(a) Area

Area (µm2)
Circuit

Input
GP RGP

Cont. Disc. Cont. Disc.

11 536 162 146 341 327
12 527 96 82 174 159
21 541 180 164 288 262
22 320 101 92 191 180
nb1 192 19 17 50 48
31 1177 387 350 705 669
32 895 204 177 421 395

Ave. 598 164 147 310 291

(b) Average Skew

Average Skew (ps)
Circuit

Input
GP RGP

Cont. Disc. Cont. Disc.

11 48 47 75 29 65
12 91 83 162 72 121
21 51 60 77 54 86
22 27 46 66 38 60
nb1 25 115 129 45 47
31 228 195 176 179 230
32 143 109 200 101 132

Ave. 88 94 126 74 106

(c) Power

Power Power Improvement

Circuit (µW) GP RGP
Input Cont. Disc. Cont. Disc.

11 19668 48% 50% 18% 19%
12 19685 70% 71% 42% 43%
21 20631 44% 46% 23% 24%
22 12125 51% 52% 24% 25%
nb1 5234 82% 83% 70% 70%
31 42976 58% 60% 38% 39%
32 33392 64% 65% 37% 38%

Ave. 21959 60% 61% 36% 37%

(d) Runtime

Runtime
Circuit (s)

GP RGP

11 20 167
12 53 372
21 41 289
22 25 116
nb1 33 304
31 204 1924
32 229 2270

Ave. 86 777
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Part IV

End Matter
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Chapter 7

Conclusions

The importance of solving scale-borne problems in physical design is paramount. This

thesis investigates two important problems in the area: clustering for circuit placement

and clock network synthesis.

The scale-borne problem in circuit placement is the ever-increasing number of in-

stances which make exploration of vast solution spaces challenging. Clustering is an

effective way to deal with this problem. By clustering a netlist, the circuit size is effec-

tively reduced but this alone will not improve the solution quality of placement. The

cells in a cluster must be tightly connected implying that they belong near one another

in the final placement. The AMGC technique proposed in this thesis is based upon

AMG, which has been applied with great success in other contexts where large-scale

problems arise. AMGC is shown to provide better cluster solutions than state-of-the-

art clustering algorithms. To further improve upon AMGC, a length-driven extension,

AMGC-LE, is proposed. AMGC-LE makes use of individual net length estimation tech-

niques to provide guidance during the clustering. A length-driven unclustering tech-

nique is also proposed to improve the solution quality. Due to the legality-preserving

nature of the unclustering technique, it is possible to avoid placement and legalization

at all but the coarsest level. AMGC has several benefits including:

• Proven linear-time complexity,

• Improved performance by several measures over other state-of-the-art clustering

algorithms,

• Improvement of several existing placers.
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Two of the scale-borne problems in the area of CTS are: the large scale of the

number of clock sinks and the variations arising from the small scale of the features

manufactured in making modern circuits. To cope with the large-scale problem of the

design size, a technique is proposed to perform CTS in parallel. The nature of many

common CTS algorithms is to work on one branch at a time. Since each branch as

an independent subproblem, there are no conflicts in performing the work on several

branches in parallel. A parallelization framework is proposed to exploit this property.

The framework is applied to several popular CTS algorithms and linear speedup is

observed. Theoretical limits of the technique are also derived. The larger the problem

size and the lower the asymptotic complexity of the original algorithm, the larger the

observed speedup will be. Some of the advantages of the proposed framework include:

• Proven linear asymptotic speedup,

• Application to existing algorithms for each of the main stages of CTS without

change,

• Easy implementation.

To deal with the problem of variations, a novel formulation of the clock tree buffer

sizing problem is proposed. By a series of transformations, the original non-convex

problem is formulated as a GP that can be solved using convex optimization techniques.

The formulation can be extended to simultaneously perform wire sizing. In order to

size buffers to be robust to variations, the formulation an ellipsoidal uncertainty set is

defined. The uncertainty includes spatial correlations in the process variations which

provides better solutions than a similar correlation-unaware technique. The worst-

case uncertainty is guarded against in the proposed robust formulation. By solving

the robust formulation the solutions obtained are comparable to the input networks

in terms of skew, but provide substantial savings in terms of power and area. The
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skew distributions obtained from simulating the robust networks not only show lower

average skew but also lower deviation. The formulations can be used in design scenarios

because it allows area and skew to be optimally traded off.

• Obtaining a globally optimal solution,

• Handling various delay models, and

• Incorporating spatially-correlated variations.

In conclusion, innovation is required to address the problems of scale that continue

to complicate the process of physical design. This thesis proposes several methods for

solving modern, scale-borne problems in VLSI physical design. The major contribu-

tions of this thesis are:

• Development of an AMG-based clustering technique,

• Design of the first length estimation-based clustering technique for placement,

• Development of a length-based unclustering algorithm,

• Development of a parallel framework for CTS algorithms,

• Implementation of clock tree buffer sizing as a GP,

• Design and implementation of a robust solution methodology for the clock tree

buffer sizing problem.
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Appendix A

Complexity Results

A.1 Asymptotic Complexity of Balanced, Recursive Θ(N lg(N)) Work

Theorem A.1.1. The time complexity of balanced recursive functions performing

Θ(N lg(N)) work at each node is Θ
(

N lg2(N)
)

.

Proof. Without loss of generality, the problem size, N , can be assumed to be a power

of two. By the definition of Θ(N lg(N)), ∃c ∈ R such that cN lg(N) bounds the work

at each node from above ∀N ≥ N0, for some N0 ∈ Z. The sum of work performed at
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each level is

c

(

N lg(N) + 2

(

N

2
lg(

N

2
)

)

+ 4

(

N

4
lg(

N

4
)

)

+ . . . + 2lg(N)

(

N

2lg(N)
lg(

N

2lg(N)
)

))

= c

lg(N)
∑

i=0

2i

(

N

2i
lg(

N

2i
)

)

= c

lg(N)
∑

i=0

N lg(
N

2i
)

= cN

lg(N)
∑

i=0

lg(
N

2i
)

= cN

lg(N)
∑

i=0

lg(N)− cN

lg(N)
∑

i=0

lg(2i)

= cN(lg(N) + 1) lg(N)− cN

lg(N)
∑

i=0

i

= cN(lg(N) + 1) lg(N)− cN

(

lg(N)(lg(N) + 1)

2

)

= cN lg(N)

(

(lg(N) + 1)−
(

(lg(N) + 1)

2

))

= cN lg(N)

(

(lg(N) + 1)

2

)

= O
(

N lg2(N)
)

Furthermore, because the work at each node is Θ(N lg(N)), the same analysis follows

by selecting a constant that bounds the work from below. Thus, the time complexity

of the algorithm is Θ
(

N lg2(N)
)

. Asymptotic results using recursion trees where the

problem size is reduced by a constant factor at each level, in this case two, hold by

taking floors and ceiling [8]. This allows the assumption that N is a power of two.

A.2 Asymptotic Speedup of Balanced, Recursive Θ(1) Work

Lemma A.2.1. The asymptotic speedup using the parallelization framework proposed

in Section 5.2 is optimal, i.e. linear in the number of processors P , when the work

performed at each node is Θ(1)
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Proof. Without loss of generality assume that N and P are powers of two. The speedup

can be calculated as the ratio of the total work to the sum of the work performed during

Phase 1 and the work of a single Phase 2 subtree. The total amount of work without

any parallel processing is bounded by

c (1 + 2 + 4 + . . . + lg(N))

= c

lg(N)
∑

i=0

2i

= c

(

2lg(N)+1 − 1

2− 1

)

= c(2N − 1),

for some c ∈ R. The amount of work in a Phase 2 subtree is 2cN
P
− 1, by substituting

N
P

for N in the total work equation. The amount of work in Phase 1 is c(P − 1) which

is obtained by truncating the total work series at i = lg(P )− 1. The speedup is then

c(2N − 1)

c(P − 1) + 2cN
P
− 1

P (2N − 1)

P (P − 1) + 2N − P

P (2N − 1)

2N + P (P − 2)

= O(P ),

where the last step follows because the 2N terms asymptotically dominate the nu-

merator and denominator. The constant hidden by the Big O notation can be chosen

arbitrarily close to one implying the speedup approaches the ideal value of P .

A.3 Asymptotic Speedup of Balanced, Recursive Θ(N) Work

Lemma A.3.1. The asymptotic speedup using the parallelization framework proposed

in Section 5.2 is optimal, i.e. linear in the number of processors P , when the work

performed at each node is Θ(N)
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Proof. Without loss of generality assume that N and P are powers of two. The speedup

can be calculated as the ratio of the total work to the sum of the work performed during

Phase 1 and the work of a single Phase 2 subtree. The total amount of work without

any parallel processing is bounded by

c

(

N + 2

(

N

2

)

+ 4

(

N

4

)

+ . . . + 2lg(N)

(

N

2lg(N)

))

= c

lg(N)
∑

i=0

2i

(

N

2i

)

= c

lg(N)
∑

i=0

N

= cN(lg(N) + 1),

for some c ∈ R. The amount of work in a Phase 2 subtree is cN
P

(

lg
(

N
P

)

+ 1
)

, by

substituting N
P

for N in the total work equation. The amount of work in Phase 1 is

cN lg(P ) which is obtained by truncating the total work series at i = lg(P )− 1. The

speedup is then

cN(lg(N) + 1)

cN lg(P ) + cN
P

(

lg
(

N
P

)

+ 1
)

=
P (lg(N) + 1)

P lg(P ) +
(

lg
(

N
P

)

+ 1
)

=
P (lg(N) + 1)

P lg(P ) + lg(N)− lg(P ) + 1

=
P (lg(N) + 1)

lg(N) + 1 + (P − 1) lg(P )

= O(P ),

where the last step follows because the lg(N) terms asymptotically dominate the nu-

merator and denominator. The constant hidden by the Big O notation can be chosen

arbitrarily close to one implying the speedup approaches the ideal value of P .
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A.4 Asymptotic Speedup of Balanced, Recursive Ω
(

N2
)

Work

Lemma A.4.1. The asymptotic speedup using the parallelization framework proposed

in Section 5.2 is sub-optimal when the work performed at each node is Ω (N2)

Proof. Without loss of generality assume that N and P are powers of two. The speedup

can be calculated as the ratio of the total work to the sum of the work performed during

Phase 1 and the work of a single Phase 2 subtree. The total amount of work without

any parallel processing is bounded by

c

(

N2 + 2

(

N2

22

)

+ 4

(

N2

42

)

+ . . . + 2lg(N)

(

N2

22 lg(N)

))

= c

lg(N)
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2i
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22i
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= cN2
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i=0

2−i
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1− 2−1

)

= cN2
(

2− 2− lg(N)
)

= cN2

(

2− 1

N

)

,

for some c ∈ R. The amount of work in a Phase 2 subtree is cN2

P 2

(

2− P
N

)

, by substitut-

ing N
P

for N in the total work equation. The amount of work in Phase 1 is 2cN2
(

1− 1
P

)

which is obtained by truncating the total work series at i = lg(P )− 1. The speedup is

then

cN2
(

2− 1
N

)

2cN2
(

1− 1
P

)

+ cN2

P 2

(

2− P
N

)

=
P 2
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2P 2
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=
P 2

(

1− 1
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P (P − 1) + 1− P
2N

= O

(

P 2

P 2 − (P − 1)

)

,
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where the last step follows because the terms involving N asymptotically vanish. The

asymptotic speedup is decreasing for P > 2.
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[21] J. Ruge and K. Stüben, Multigrid Methods, S. F. McCormick, Ed. SIAM, Philadel-

phia, 1987, chpt. 4 Algebraic Multigrid.

[22] A. Brandt, “Algebraic multigrid theory: The symmetric case,” Applied Mathe-

matics and Computation, vol. 19, no. 1-4, pp. 23–56, 1986.

[23] Q. Chang, Y. Wong, and Z. Li, “New interpolation formulas of using geometric

assumptions in the algebraic multigrid method,” Applied Mathematics and Com-

putation, vol. 50, no. 2-3, pp. 223–254, 1992.

[24] S. Bodapati and F. Najm, “Prelayout estimation of individual wire lengths,”

Trans. on VLSI, vol. 9, no. 6, pp. 943–958, 2001.

[25] A. Farshidi, L. Behjat, L. Rakai, and B. Fathi, “A pre-placement individual net

length estimation model and an application for modern circuits,” Integration,

vol. 44, no. 2, pp. 111–122, 2011.

[26] B. Fathi, L. Behjat, and L. Rakai, “A pre-placement net length estimation tech-

nique for mixed-size circuits,” in Proc. of SLIP, 2009, pp. 45–52.

[27] A. Kahng and S. Reda, “Intrinsic shortest path length: a new, accurate a priori

wirelength estimator,” in Proc. of ICCAD, vol. 2005, 2005, pp. 173–180.

[28] W. Donath, “Placement and average interconnection lengths of computer logic,”

Trans. on CAS, vol. 26, no. 4, pp. 272–277, 1979.

[29] ——, “Wire length distribution for placements of computer logic,” IBM Journal

of R&D, vol. 25, no. 3, pp. 152–155, 1981.

134



[30] M. Feuer, “Connectivity of random logic,” Trans. on Computers, vol. C-31, no. 1,

pp. 29–33, 1982.

[31] T. Hamada, C. Cheng, and P. Chau, “A wire length estimation technique utilizing

neighborhood density equations,” Trans. on CAD, vol. 15, pp. 912–922, 1996.

[32] H. Heineken and W. Maly, “Standard cell interconnect length prediction from

structural circuit attributes,” in Proc. of CICC, 1996, pp. 167–170.

[33] M. Pedram and B. Preas, “Interconnection length estimation for optimized stan-

dard cell layouts,” in Proc. of ICCD, 1989, pp. 390–393.

[34] Q. Liu, B. Hu, and M. Marek-Sadowska, “Wire length prediction in constraint

driven placement,” in Proc. of SLIP, 2003, pp. 99–105.

[35] A. Farshidi, L. Behjat, L. Rakai, and B. Fathi, “A pre-placement individual net

length estimation model and an application for modern circuits,” Integration,

vol. 44, no. 2, pp. 111–122, 2011.

[36] L. Rakai, L. Behjat, S. Martin, and J. Aguado, “An algebraic multigrid-based

algorithm for circuit clustering,” Applied Mathematics and Computation, vol. 218,

no. 9, pp. 5202–5216, 2012.

[37] L. Rakai, A. Farshidi, L. Behjat, and D. Westwick, “A new length-based algebraic

multigrid clustering algorithm,” VLSI Design, vol. 2012, 2012.

[38] Q. Chang, Y. Wong, and H. Fu, “On the algebraic multigrid method,” Journal of

Computational Physics, vol. 125, no. 14, pp. 279–292, 1996.

[39] S. Adya, S. Chaturvedi, J. Roy, D. Papa, and I. Markov, “Unification of parti-

tioning, floorplanning and placement,” in Proc. of ICCAD, 2004, pp. 550–557.

135



[40] T. Chan, J. Cong, M. Romesis, J. Shinnerl, K. Sze, and M. Xie, “mPL6: Enhanced

multilevel mixed-size placement,” in Proc. of ISPD, 2006, pp. 212–214.

[41] A. Kahng and Q. Wang, “Implementation and extensibility of an analytic placer,”

Trans. on CAD, vol. 24, no. 5, pp. 734–747, 2005.

[42] G. Nam, C. Alpert, P. Villarrubia, B. Winter, and M. Yildiz, “The ISPD 2005

placement contest and benchmark suite,” in Proc. of ISPD, 2005, pp. 216–219.

[43] J. Roy and I. Markov, Partitioning-driven Techniques for VLSI Placement, ser.

Handbook of Algorithms for VLSI Physical Design Automation, C. Alpert,

D. Mehta, and S. Sapatnekar, Eds. CRC Press, 2008.

[44] N. Viswanathan, M. Pan, and C. Chu, “Fastplace 3.0: A fast multilevel quadratic

placement algorithm with placement congestion control,” in Proc. of ASPDAC,

2007.

[45] (2011) Matlab: Version 2011a. [Online]. Available: http://www.mathworks.com/

[46] Q. Zhu, High-Speed Clock Network Design. Boston: Kluwer Academic Publishers,

2003.

[47] A. Kahng, J. Lienig, I. Markov, and J. Hu, VLSI Physical Design: From Graph

Partitioning to Timing Closure. Springer, 2011.

[48] M. Jackson, A. Srinivasan, and E. Kuh, “Clock routing for high-performance ics,”

in Proc. of DAC, 1990, pp. 573–579.

[49] T. Kim and T. Kim, “Clock tree embedding for 3D ICs,” in Proc. of ASPDAC,

2010, pp. 486–491.

[50] J. Minz, X. Zhao, and S. Lim, “Buffered clock tree synthesis for 3D ICs under

thermal variations,” in Proc. of ASPDAC, 2008, pp. 504–509.

136



[51] T. Chao, Y. Hsu, J. Ho, K. Boese, and A. Kahng, “Zero skew clock routing with

minimum wirelength,” Trans. on CAS, vol. 39, no. 11, pp. 799–814, 1992.

[52] M. Edahiro, “A clustering-based optimization algorithm in zero-skew routings,”

in Proc. of DAC, 1993, pp. 612–616.

[53] R. Tsay, “Exact zero skew,” in Proc. of ICCAD, 1991, pp. 336–339.

[54] D. Lee and I. Markov, “CONTANGO: Integrated optimization of soc clock net-

works,” VLSI Design, pp. 1–12, 2011.

[55] W. Shi and Z. Li, “A fast algorithm for optimal buffer insertion,” Trans. on CAD,

vol. 24, no. 6, pp. 879–891, 2005.

[56] L. Van Ginneken, “Buffer placement in distributed RC-tree networks for minimal

elmore delay,” in Proc. of ISCAS, 1990, pp. 865–868.

[57] J. Singh, V. Nookala, Z. Luo, and S. Sapatnekar, “Robust gate sizing by geometric

programming,” in Proc. of DAC, 2005, pp. 315–320.

[58] C. Chu and D. Wong, “Closed form solution to simultaneous buffer insertion/sizing

and wire sizing,” Trans. on DAES, vol. 6, no. 6, pp. 343–371, 2001.

[59] J. Lillis, C. Cheng, and T. Lin, “Optimal wire sizing and buffer insertion for low

power and a generalized delay model,” in Proc. of ICCAD, 1995, pp. 138–143.

[60] A. Jagannathan, S. Hur, and J. Lillis, “A fast algorithm for context-aware buffer

insertion,” in Proc. of DAC, 2000, pp. 368–373.

[61] M. Lai and D. Wong, “Maze routing with buffer insertion and wiresizing,” in Proc.

of DAC, 2000, pp. 374–378.

[62] Ngspice 24. http://ngspice.sourceforge.net/.

137



[63] K. Wang, Y. Ran, H. Jiang, and M. Marek-Sadowska, “General skew constrained

clock network sizing based on sequential linear programming,” Trans. on CAD,

vol. 24, no. 5, pp. 773–782, 2005.

[64] M. Guthaus, D. Sylvester, and R. Brown, “Clock buffer and wire sizing using

sequential programming,” in Proc. of DAC, 2006, pp. 1041–1046.

[65] D. Lee and I. Markov, “Multilevel tree fusion for robust clock networks,” in Proc.

of ICCAD, 2011, pp. 632–639.

[66] Y. Chang, C. Wang, and H. Chen, “On construction low power and robust clock

tree via slew budgeting,” in Proc. of ISPD, 2012, pp. 129–136.

[67] B. Wong, A. Mittal, Y. Cao, and G. Starr, Nano-CMOS Circuit and Physical

Design, 1st ed. Wiley-Interscience, 2004.

[68] N. Matloff, Programming on Parallel Machines. University of Calfornia, Davis,

2011.

[69] J. Shen and M. Lipasti, Modern Processor Design: Fundamentals of Superscalar

Processors. McGraw-Hill Professional, 2005.

[70] A. Tanenbaum, Modern Operating Systems, 2nd ed. Pearson Prentice Hall, 2007.

[71] H. El-Rewini and T. Lewis, “Scheduling parallel program tasks onto arbitrary

target machines,” Journal of Parallel and Distributed Computing, vol. 9, no. 2,

pp. 138–153, 1990.

[72] G. Amdahl, “Validity of the single processor approach to achieving large-scale

computing capabilities,” in Proc. of AFIPS, 1967, pp. 483–485.

[73] J. Gustafson, “Reevaluating Amdahl’s Law,” Communications of the ACM,

vol. 31, no. 5, pp. 532–533, 1988.

138



[74] D. Knuth, The Art of Computer Programming, 3rd ed. Addison-Wesley, 1997,

vol. Volume 1: Fundamental Algorithms.

[75] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press,

2004.

[76] A. Ben-Tal and A. Nemirovski, “Robust solutions of linear programming problems

contaminated with uncertain data,” Mathematical Programming, vol. 88, pp. 411–

424, 2000.

[77] D. Bertsimas, D. Brown, and C. Caramanis, “Theory and applications of robust

optimization,” SIAM Review, vol. 53, pp. 464–501, 2011.

[78] Mosek 6.0. http://www.mosek.com.

[79] S. Boyd, S. Kim, D. Patil, and M. Horowitz, “Digital circuit optimization via

geometric programming,” Operations Research, vol. 53, pp. 899–932, 2005.

[80] M. Mani, A. Singh, and M. Orshanksy, “Joint design-time and post-silicon mini-

mization on parametric yield loss using adjustable robust optimization,” in Proc.

of ICCAD, 2006, pp. 19–26.

[81] J. Yan and C. Chu, “DeFer: Deferred decision making enabled fixed-outline floor-

planning algorithm,” Trans. on CAD, vol. 29, no. 3, pp. 367–381, 2010.

[82] ISPD 2009 clock network synthesis contest. ACM.

http://ispd.cc/contests/09/ispd09cts.html.

[83] ISPD 2010 high performance clock network synthesis contest. ACM.

http://archive.sigda.org/ispd/contests/10/ispd10cns.html.

[84] Z. Xing and P. Banerjee, “A parallel algorithm for zero skew clock tree routing,”

in Proc. of ISPD, 1998, pp. 118–123.

139



[85] S. Olivier and J. Prins, “Evaluating OpenMP 3.0 run time systems on unbalanced

task graphs,” in Proc. of IWOMP, 2009, pp. 63–78.

[86] M. Blum, R. Floyd, V. Pratt, R. Rivest, and R. Tarjan, “Time bounds for selec-

tion,” JCSS, vol. 7, pp. 448–461, 1973.

[87] The OpenMP API specification for parallel programming.

http://www.openmp.org.

[88] S. Boyd and S. Kim, “Geometric programming for circuit optimization,” in Proc.

of ISPD, 2005, pp. 44–46.

[89] H. Chang and S. Sapatnekar, “Statistical timing analysis considering spatial cor-

relations using a single pert-like traversal,” in Proc. of ICCAD, 2003, pp. 621–625.

[90] K. Kasamsetty, M. Ketkar, and S. Sapatnekar, “A new class of convex functions

for delay modeling and its application to the transistor sizing problem,” Trans.

on CAD, vol. 19, no. 7, pp. 779–788, 2000.

[91] H. Bakoglu, Circuits, Interconnections, and Packaging for VLSI. Addison–

Wesley, 1990.

140


