THE UNIVERSITY OF CALGARY

Automated Support for a Custom Personal Software Development Process

by

Dale Couprie.

A THESIS
SUBMITTED TO THE FACULTY OF GRADUATE STUDIES
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF MASTER OF SCIENCE.

DEPARTMENT OF COMPUTER SCIENCE

CALGARY, ALBERTA

SEPTEMBER, 1998

Copyright Dale Couprie, 1998

i+l

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Waellington Street
Ottawa ON K1A ON4

Bibliothéque nationale
du Canada

Acquisitions et)
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
Our file Notra référence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant 4 la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette theése sous
paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.
The author retains ownership of the L’auteur conserve la propriété du

copyn'ght in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canada

0-612-34952-7

Abstract.

The Personal Software Process is a software development process that allows the
individual to apply industrial level discipline to his or her practice. It is taught through a
course at post-secondary institutions as well as selected companies.

While the PSP methods are helpful, many students are discouraged from using
PSP. Its detailed record keeping carries a high overhead cost. In addition, software
development tasks like requirements and documentation are not covered in PSP.

It is believed that the cost to perform PSP can be reduced through providing
automated support for PSP activities. It is also believed that the PSP can become a basis
for developing a custom personal software process.

The investigation focuses on the development and implementation of PSP
Manager. It supports the PSP data collection activities and allows the user to adjust the

default PSP to confirm to his software development practices.

iii

Table of Contents.

ADPIOVAL PAGE...conriimriieeieeeteee ettt ettt il
ADSITACE. ...eoevveeeeeceeerceeeeeeerecesesceesessnsseseessssesssssn s e naesberssasassrre s ses s e s s esssneserssearssasrsnsensasns iii
Table Of CONLEMLS. «..corenieiiiiiiieeeeeee e e et et s se e e e e s e s e e n e s e s e s e s emaenas iv
LISt Of TabIES. .eveeeeeeecieeceeiitrtictteteeieeeee e e ettt e sen s e e e cne e s e e s s s s sne s sessnneees Xxii
LSt Of FIGUIES. ccevererienrinricteirenecncce s ne e st escsaessssseseene et s e st nesne e Xiii
List Of Abbreviations and Nomenclature.oee e, Xiv
Chapter 1. Aim and ODBJECHVES.cmmrmrriiieieieeetee ettt sttt sens 1
1.1. About the Personal SOftware PTOCESS.ccovieeeierimeiiieee ettt ceeene 1
L2, AN coeeeeeeieeteeeeeeeteeeeesseeressecaesnee e esnas s ssanssses s s s nesanessess s s sss s e s ner s aeenssnaessmsassnssssassans 2
1.3, OBJECLIVES. woeemereiiiiiiiiii et e e e sttt ettt st sttt 3
1.4, Key TaSKS. «ecooeeieiimirececn ettt ettt et s e 4
1.5, SUITIMAIY . ..uevieeeremerieiiesinsnietesternsesraneessas e sessst st s st s enesssts s sesasn s s sme e anesnersuasasinns 4
1.6. TheSIS StIUCIUIE. .ccocunereiircreeereeaceeeeersissresreneeeee s rasneerrernnse s e ssnseseaeaseaseesenssssnsnsereanses 5
Chapter 2. A Review of the Personal Software Process. ...o.oowueeeeecnceeiieciicicinne, 6
2.1. The Objectives Of the PSP. ... 7
2.2. The Structure 0f the PSP.coo ettt 7
2.2.1. MOUIVALIONS. .ceeeeeernieeeeeerceeceecennneesreses e re s e ae e se s s s e e e s e sbsaee s e s stensssanssaseen 7
2.2.2. SHUCKHUTE. «ooeeeereeeeeeereeseeeeeennteeesensesesesssessesessasssssressissssesssnsssnssssssnsssessssnnsnsssserans 8
2.2.2.1. The Phases 0f PSP. ...ttt 8
2.2.2.2. PSP Plan SUITIMATY. ...cccoceerrereerreeriiirineientieeisssessseersesesssssssessnsssscsssasssenns 8
2.2.2.3. PSPO: The Baseline Personal Process..........ccocooiiniiininiiiininnciccneenens 9
2.2.2.4. PSPO.1: SOftWare SiZe. ..ccceceerreeciiiiiiiniirtcietie s eeies e e ae e 12
2.2.2.5. PSP1. Size EStmMAation. ...ccccceevutimrimermirrmertreeeneeeceeerteeneeecssee s ssste s e snens 13
2.2.2.6. PSP1.1. Tasks and Scheduling.......ccccccceeeurrmciiccmininncreeeiriineeneeeeenene 14
2.2.2.7. PSP2. Defect PreVEntion.cccoveiieiiniiiniinieiiiiciceeteeeee e re e 15
2.2.2.8. PSP2.1. Design Completeness.ccvermeemrirreereeerrceenereeecnieeeseeneneesesenas 16

v

2.2.2.9. PSP3. Cyclical DeveloOpment.ccccccomimimmnincierineieeceneeeeseeeereneesneens 16

2.2.3. Coverage of the Capability Maturity Model Key Process Areas................... 17
2.3, The COSt Of PSP.... et et ecstee e s sss s se s e e na s s s ss e s s esnneas 18
2.4. The Benefits Of PSP eeeceeecr ettt enreesne e s e ess s eeesaessnes 19
2.5. The Current Impact Of PSP.........o e 20

2.5.1. Improvements noted in the PSP Course.cuoommmieeeereene 20

2.5.2. Applying PSP Methods to Undergraduate Courses.ccooeemeeeermencnncencencnne 22

2.5.3. Industrial Application Of PSP.......coo it 22
2.6. Why develop automated support for the PSP? ... 23
2.7. PSP Automated SUPPOLL.coouereeierieenecreceicreenseeerceeeenesnesessasseesae s eesse e ssnesssessness 24

2.7.1. PSPLOOL 0.6. ..ttt ettt s e 24

2.7.2. TIMEIOE. «eeeeeeeeeieteeeeee ettt e ettt b e e s st 25

2.7.3. TIMITUE. cecoeeeeeieieteeeiecreteee e eseee e e e eteesstsesssasessersessssn s n s e s s sessass sanns s smsessnennncen 26

2.7.4. PSP StUAIO.c.eeeeeeiceieeeeeceetee e eeeeeescesaeesstsesressesees s e e a s ee s e s e s b ae s ae s neen 26
2.8. Current research I PSP.oo ettt e 27

2.8.1. Team SOftWAre PrOCESS. «....coeeeeeceriercceciiiiiice et rte s s s et 27

2.8.2. One Person Project.o urieeieeeeceeececeniinee ettt st e 28
2.9, SUIMMATY: ..eeeeereiecenceneeenseeioee e seneesse s st e s s sesas e assess s s asasssasesasasnses s mnesnsnsasnesnnees 28

Chapter 3. Critical AnalysiS Of PSP. ..ot 29
3.1. The PSP FramewWoOrK.cccueeeeeeieieieiceeriieniieriieeente et sne e es e s snae 29

3.2.1. PSP AdVANTAZES. ...ocoveeeeeerereeceeeceeentiereeinsiesteseretenessraessaen s e saessnsesssesnaens 30

3.2.2. PSP DiSadVANLAZES.cccererverereecneererreeisirierneessesssisssessessssmesasassassssessesseessnes 31
3.3. Customizing the PSP to a Personal leVel.........oceiiiine 34

3.3.1. The customization Of Phases.cccoeeerimiruiiieriimieeee e 35

3.3.2. The customization Of defects.......cccervoeiiiinieieeee et 35

3.3.3. The customization of software size measurement............ccoceerveerrereccerenneennnes 35

3.3.4. The customization of CheCKIIStS.ccccuriimimrmimrieeee e 36
3.4. Research on PSP Benefits......cccceercrieniiinimiiniiieeienteeeeete et sse et 36

3.4.1. The effectiveness of the PSP COUTISE. ...uuuuummmeeieeeeeeeeereeerrerraseeanneeereneaseneases 36

3.4.2. Introduction of PSP methods into the undergraduate program.ccceeueeeee 37
3.5. PSP Automated SUPPOLL.cceeeriereeereecerecrieenteeeteeesseetssesseeessesesssnsesessssssnssesssasns 39
3.5.1. PSPLOOI0.G. ...ttt e s s 39
3.5.2. TIMEIOZ. «eveeeeeieeereieceeeeeeeecreete et nses e st nsse s en e s se s s s as s s e s snesemensnes 40
3.5.3. TIIIHE. «oerieieeeeeceteeeie et ceeeenceemsescee e sen e sessassesseensrcssae e s n s beassaassansnasaneas 41
3.5.4. PSP StUAIO..cueeeeeeieteeeieierisreeececreceeceesessesneres s esessae e a e e s e s s en e aens 41
3.6, SUIMIMATY ...couveeeieeeeerenreeseeseeseeane e ssessesest e e sensnerersssesan s be s se s seessnsssasesae corssennes 42
Chapter 4: Requirements ANalySis.........ccocoemrmeeerieiencniereneneeet et 43
4.]. ASSUIMPLIOIS. -ooueeeecrceireecrecesteseesceeernesssessersseresssesesersesse s s sasssasss et snensssanssssnsnns 43
4.2. Personal Process Design (Phases).cceeeeeiereeiemnininiiiienrrerceieseeesesecennecenanes 44
4.2.1. Use Cases for Phase Defimition.cccceeeeeeonininiimiinneeeessteecseessesenccsccenecnnes 44
4.2.1.1. Use Case: User defines new phase..........oomeiiiiecoeeneneiceinceeccneeennns 45
4.2.1.2. Use Case: User no longer needs existing phase.cccoeecoeeereiecinecncnnne. 45
4.2.1.3. Use Case: User renames a Phase. ..o 45
4.2.1.4. Use Case: User finds need to reorder phases.cooeeeeerrmmneerccnecnncnceens 46
4.2.2. The requirements for Phase Management.cooveieiireiinniccnnniiiennens 46
4.3, TIIMUIE. cverereeeererensemeereeseeseseeseseseessanstsessrersssesrensse s e sereesessasassasssssessesarssssssensssenes 46
4.3.1. Use Cases for the TIMET.coceeemreerreniiniiiieeiriieccrreneee e nss s e s e see s eseeesenne 47
4.3.1.1. Use Case: User selects task to WOk on. ..o 47
4.3.1.2. Use Case: User performs a task.ccooooomiiirimenneieeeeen s 47
4.3.1.3. Use Case: User is INtEITUPLEd.ccooverremrnieriiiiiiecieeeeeeeeeeccencs e 48
4.3.1.4. Use Case: User is ready for the next task.oooeveemmeciennccniiiieeinene 48
4.3.1.5. Use Case: User requires corrections in Time Recording Log.........c.......... 48
4.3.2. Requirements for TIMNG.c.ccocveeuiirmrmmiereieteenteie sttt 48
B4, DEIECES. coieeeeeeeeeeeeerceeeeeeesereeer et seeee s cssnersns e ra s e ss e ae e s s b ar e s s s s e e s e e s s s e s st s e s e s e e 49
4.4.1. Use Cases for Defect TYPES. «.ccveeeueremrrirrmrieiirnetetitene e eresssass e e seese e cnessaens 49
4.4.1.1. Use Case: User identifies new defect type......coccvcvveeririmeeniieminecccececcnncees 49

vi

4.4.1.2. Use Case: User requires a specialization of an existing defect type........... 50

4.4.1.3. Use Case: User wants a different wording of a specific defect type.......... 50
4.4.1.4. Use Case: User no longer requires a specific defect type.ccooeeeeeneee. 50
4.4.2. Requirements for Defect Type Management.coooiniiiininniinenee. 51
4.4.3. Use Cases for the Defect Recording Log. ...eeveemmmeemmemieeeeeee 51
4.43.1. Use Case: User finds defect.ccooommrmmmremmemeeeeeieee e 51
4.4.3.2. Use Case: User edits defect........comemimmmmeiieeieeeereee e 52
4.4.3.3 Use Case: User adds a defect in €ITOr.ooemremiemieeeeeeeee s 52
4.4.4. Requirements for Defect Management.ocoooeeeenirnieincncinciiccinnneceiees 52
4.5, MELTICS. ceeeeeeeereereeeeeeereeeereiesrreeeseeeeaeesasesnssssnsaer s s sas s sesnsasessastassasasasaasesasanneasonnss 53
4.5.1. Use Cases for PSP MEtTICS. ..c.ceeeeeereimmmrrrmrrneceeeeececnte et eec e nnens 54
4.5.1.1. Use Case: User selects metrics list for VIEWING.c.oovemreeeeienieecnicceenenee. 54
4.5.1.2. Use Case: User identifies new metric for the metrics list........ccccoeeeeeecene.. 55
4.5.1.3. Use Case: User has no need for an existing MetriC......c.c.cceeerrrerererenrerenenns 55
4.5.1.4. Use Case: User has new definition for a metric.......cceoeeveeiemeencerenneeeene. 55
4.5.1.5. Use Case: User sets value or formula for metric.oooeeeeemreniinnnenne 55
4.6.1.6. Use Case: User changes official SIZ€ MELTIC.oovervemiemeiieeeenecieceeeeeeneen 55
4.5.2. Requirements for User Metric Management.ccoeeveiemniiiiininniennnnnens 55
B.6. ISSUES. eueeeeeeeeeeeerreeeeeeeesesteessareeesaasssssssnseanssessrsnssnssaesessbrresessssnssnaaeasssnsssasnssasantionseenes 56
4.6.1. Use Cases fOr ISSUES.cuecuveeemieererercrctesreerr et e teeas e s s s sas s asessssenes 57
4.6.1.1. Use Case: User identifies ISSUE. ...eccoeeeermmerrriminiiiiiicieeeieenreeeteesereeeseenane 57
4.6.1.2 Use Case: [SSU€E 1S TeSOLVEM. ..evreuureiieiierieeecieteeeieeiere e 57
4.6.1.3 Use Case: User modifies documentation of iSSU€........ccoeuveeceeerieereeniennnnne. 57
4.6.1.4. Use Case: An issue turned out to be a2 NON-iSsue.ceeveeeereeienieevencnnence. 58
4.6.2. Requirements for the Issue Recording LOg. ...c.coucoeeeimrcniiiiiiniiiinns 58
4. 7. REVIEWS. coceeeeeeiereereeeereeeceesseseeassaseseassesssnsssseerssnsaasssnsassssaasnssasssssnssnsssnssntassesessanes 58
4.7.1. Use Cases for ChECKIIStS.cccueeerereeeercricrnnnerernieeeeetneerennee e rnssseesnncenees 59
4.7.1.1. Use Case: User modifies a CheCklist. ...c..oomiiimmmmreieeeeenee 59

vii

4.7.1.2. Use Case: The use of a checkliSt il @ FEVIEWeeeeieoneeeeeeeeeeeeeeenenn 60

4.7.2. Requirements for CheckIists.coeiemiimimiimceieececccecnene 60
4.8, TESt CASES. ...cormreerierniieeeiieeeieicees e ees e s st e e e s e s s s e s s n e es 60
4.8.1. Use Cases for Test Report Template.cooeeveiioniiniiieeeeceeeeeeeeceeeene 60
4.8.1.1. Use Case: User Defines Test Case.cuccvermrmrrccuccrinnnceeenececcnansecnne 61
4.8.1.2. Use Case: User Modifies List of Test Cases......cooceveeereeerceercceecerrcccenenacs 61
4.8.1.3. Use Case: User Performs Existing Test Case.cccceeeemeeeceerreeeenienenieennnnes 61
4.8.2. Requirements for Test Case Management.cocoeoeeeiniricieinecneieneneennenes 62
R I o (o] =1 £ T OO OO 62
4.9.1. Use Cases for the PSP Project........ccoooiiiceicccccenieceees 62
4.9.1.1. Use Case: A new project is started.ccceeceeeeeeeeenereenrecrsceieeceeesecenceenens 62
4.9.1.2. Use Case: User performs work on @ project.cecceeeeeceeereenncneeccreecnennees 63
4.9.1.3. Use Case: Project is completed.ccoooueeeiiriiineinierireictineceeeeneereecneneens 63
4.9.1.4. Use Case: User makes estimates of time and defects.cccooeececrieninnnnines 63
4.9.1.5. Use Case: Project is abandoned.cccoeeemmireeccricceeeceeceeeeeereeiceaees 64
4.9.2. Requirements for the PSP Project. ... 64
4.10. Process Improvement Proposals..........ccoeemmmememieeeeeceeee e 65
4.10.1. Use Cases for PIP FOIMS.....coceuiiiiiiiiceeie e 65
4.10.1.1. Use Case: A new problem is found...........ccooveeiieoreoeninnernrcccinereeerneenceene 65
4.10.1.2. Use Case: A new solution is found for an existing problem.................... 66
4.10.1.3. Use Case: Problem is SOIVEd........cccoemmiieiniiiiinieieeeceeneecneeeeneeennes 66
4.10.2. Requirements for PIP fOrms. ...c...cocccciruiiiiiirniiiiieetecceerecceeeenees 66
4.11. Programmer Profile. ...t 66
4.12.1. Use Cases for the Programmer Profile.ccccooooiionioniieieiieceereeeeeenenee 67
4.11.1.1. Use Case: User proceeds with PSP work........coocooiioiiiiiiiiiiiiiiinneees 67
4.11.1.2. Use Case: User requests saving of his data.......ccccocceeeeeeereccrienennicennneee. 68
4.11.1.3. Use Case: User has change in his environment.c.ccceccceeieeeeeennencennnne 68
4.11.2. Requirements for the Programmer Profile. ... 68

viil

4.12. Additional functional reqUIrEMENLS.cccceoeueerireinmreerinnirenrcnerreeeesereeeneneses 69

4.12.1. Publication of forms, spreadsheets........c.cccoeeceerecreeccreeneereereccrerrerececeeeenns 69
4.12.2. Design CONSAINLS. «....ceeceeiereereereieeeeceescreeeessteeeesemeereneestassnessesssnsasssases 69
4.13. SUIMMAIY...oeiecieeetreereeerierereeeseecseasesseessessssesseeneesmesssossarssssssssncasstsssssnsesssssasssses 70
Chapter 5. DESIZM. cc.ueeeeireeeeeiereeeeteeee e te e e e e s e e saresesesssbessssasssessessesssssssssasesssranenen 71
5.1. The Programmer Class. ..o ettt eeces s sseesesaese s e e e 71
5.2. The PSPPIrOF@CE Class .t cnene e ceeeseseeseseeessnnsssseas 73
5.3, The TAimME L ClaSS. cooeieeeeeeceeeee ettt cee e e e sans st s s n e eees 74
5S4, MEtriCS DESIEIN. .uoiieiiinieiieeeeceeeeee et ee s e e et se b cssens e s ss e s r s aean 76
5.5. Design of the Spreadsheet. ..o e 77
5.6. User INterface IayOUL........ueeeemeieeeeeeeeeeeccecteesotee et eseseesseessesasessssssvssssnns 78
5.7, SUINIMATLY.....eeeceeieeeeee et ree e ee e e e sssst et ra e s e s seseraesae s e e e s srannnssae s s asses 84
Chapter 6. IMPIEMENALION.cocuieieeieieeieecerceeecreicrtereerres e ss et e ses s e san e es s aeens 85
6.1, The LISt CIASSES. ..ueirneeireeeieecteeeeceeetc e eeceee e eteesesee e ar s s rn e e as s s e s e b e s e s e e e eens 85
6.1.1. PSPPhaseNameList / PSPPhaseName. ...einineeceeneeeenens 88
6.1.2. TimeRecordingLog / TimeRecordingLogEntry. ... 88
6.1.3. DefectTypeList / DefeCtTYPe. eeieieecee et cseeee e 89
6.1.4. DefectRecordinglog / PSPDefecCt. .. 89
6.1.5. Checklist Management.c.ccccereerecrereeennrciereeeerereentecrereeeesareessesseseeenes 90
6.1.6. IssueRecordingLog / ISSUE. .ccciimerriiiiieereeeeninssssssessenees 90
6.1.7. TestCaseList / TeStCaSEe. et eeeene 91
6.1.8. PIPLASE / PIP. coiirriieririceceeereeseeeereeseseecctessssssssnnreesssssesssssssssassanssnsssases 91
6.2. The DeltaTime Class. ...ttt st s e s e e e 91
6.3. The creation of @ NEW PTOJECL.evvveeiiierieceeecriritierttee ettt e s e e 91
6.4. Conversion of a PSPProject into a PastProject. .. inncceeeecennns 92
6.5. Building the Plan SUMMATY.....c..ccccceeeimererinniiieiietee e ae e 92
6.6. PUDIISHIMEG. «ecoreiierieecirectet ettt sess e e ee e e e e e naee 93
6.7. Saving the Programmer Profile to disk......c...ccoomiinnieee 94

ix

Chapter 7. Evaluation of the implementation. ...t 96
7.1. Fulfillment of the rEqQUITEMENLS.cccveeenemecereecteeierenrecretesaeerneeesenese s sesaeesscsseeas 96
7.1.1. Phase ManagemenL........ccccooueimmiiieieeceeinianteemneerstetsssceaesnenoeee s sscssssssssssosensns 97
7.1.2. Timing FEQUITEIMENLS.coceerremrneeereememceisieineeries it encesneenseresasassseessssneeess 97
7.1.3. Defect Type Management RequIrements.cccccooeicreuceccreccccernresssserneeeeens 98
7.1.4. The Defect Recording Log Requirements.........coccovivuieiriicicncnnneceennsenesen. 98
7.1.5. User Metric management reqUITEIMENLS.ccorveerrmrriiircrsuseenreessesesessssssssensns 98
7.1.6. Issue Recording REQUITEMENLS.coeereeeeenncrrrceenicieeceeeeecreeeececresseesnsneeas 99
7.1.7. Requirements fOr TEVIEWS........cccvceererveirreierienneeneseetcseeessenecenseen s snsesensneens 100
7.1.8. Test Case REQUITEMENLS.ccceoeeeerceeenecreceesenierreeacecneseserennesenemeesassssnses 100
7.1.9. PSP Project ReEQUIEMENLS.......cccoreerememiiriiniinceeeiccictessceee e s eesaeeenns 100
7.1.10. Process Improvement Proposal (PIP) requirements............ccccceceeveeeecueeerennens 101
7.1.11. The Programmer Profile Requirements.........cccooemimioieiccineiiniinenreeecieeeenes 101
7.1.12. Miscellaneous RequIrements..........cccoeeeeceeeremirnecinicenneeecrceeneeeeceereereeeeses 102
7.2. Meeting the SEI framework.cccooviiiimmimee e 102
7.2.1. End-USer CUStOIMUZALION.cuirmrrereereceeceersaeiasiieesaeenstisessncssseseessssosnnnsesessssnnes 103
7.2.2. Statements 0N Data PIIVACY -cccceveeeeeerrceererresriecrincetesseeessncessssecoscnsssessesees 103
7.2.3. Duplication of Data.cccceuivieninerinimriece e 103
7.2.4. Users can operate in any phase they think is appropriate.........ccccccceeurrrernnne. 104
7.2.5. ON-lNE RelP. et 105
7.2.6. Header infOrmation.co.ceeeecceecrnccnminiinnceiciciiice et sec e srse e 105
7.2.7. Availability of the Log forms........ccceereeeiecriinirreeereeeeeeccee e 105
7.2.8. Phase and Time Recording..........cceeceeiiriiiiiiniiiniiicctecieeere e 106
7.2.9. Project PIanming.ccocceeceueeierececiiiemeieecein e aesss e s sesne e 106
7.2.10. Enhanced ISSUES.ccccomieiireieerecceneeirticietiee it cteesseee s e e e nasaee e e 107
7.2.11. High Level DESIZN. ..ottt 107
7.2.12. DEVEIOPIMENL. w...oeritiiiercerctreetiects e e e ser st et sssesan s e aeaeesssnanees 108

X

T.2.13. POSEIMOTEEIML. oo ceceeeeeieeeeeceeeeeeeeeeemessssssessessassnssssssssrassssssnnnnsasssnnrresmansssmmes 109

7.2.14. Summary of SEI ReqUIrements.............cccoeveierriemmenmieeeeeeeeerie e cecceecenens 110

7.3. Comparison to the other PSP Support TOOIS. ...uvvemeereeeee e 110
7.3.1. Comparison tO PSPLOOL.c..ceueeeeieecirreeire et 111
7.3.2. Comparison to TIMElOG......cccoeurreerereriirrniieieeeeeee et cenccecsenes 112
7.3.3. Comparison to PSP Studio.coeoeeeiiiieeeeee e 112

7.4. Problems: Data QUAlItY. c.ocoveeeeeeeeeeceeeeeeeeeeeiceniercce e e et s 113
7.5, SUIMHMALY....ceemeeemeeeretreeetereeseteaesaseeseestescesseeeseesesssereenasssersesssseasensesmassassa eessssatesanss 115
Chapter 8. Conclusion and Future Directions of WOrk. ... 116
8.1. Fulfillment of the Key tasks.ccceeueeeeeeeeeeeeiercniiimiiecenie e e ee e 116
8.2. Fulfillment of the OBJECHIVES.ccceereeeeeeceereiienenieerieeeeene e ee et sae s seesee e neeee 119
8.3. Fulfillment Of the @M.coeeeueeeiceieeieceeeceeete e e e e s e 120
8.4. Future directions 0f WOIK.......ccceveeieeeeieciiiiiccee et 120
8.4.1. PSP RESEAICH.eeeeeeiieeeeeeeeccccceccieee et e e eeanee 120
8.4.2. Introduction into INAUSLYooeeremeeireeiieiceeeceeee e 121
8.4.3. The future of PSP Automated SUppOTt.......cooveiimerimemeeieieeetiec et 122

8.5, SUIMMAIY.....veceeeeeeeecrieireeeereertereeesesaeesseeaeeseeeaseessesstesasnsssressenssrsasssaste s s snesassnensass 123
R OTEIICES .. eeeeeeeeeeeeeee ettt ettt et e er e e e e e sne s ssn e e e s e e s e me s e s e s e aa rmnsae s anees 124
Appendix A. Contents of the Default Programmer Profile........ccooviiiniiniicinnnnnee 128
ALl PRASES. ..ottt et e et s e e e s e s s eet s enne 128
A.2. Phase MELTICS.ceuirreeiereriertiereeteneteeeneetsessneesrssrnee s s saessee s s sesnns s e snssssnn e snarasenas 128
A.3. Programmer Defined METTiCs.cc.oeeuremeeociiiiiiiee e 129
AL DEfECt TYPES. coveeermeiereeerieiirrcecerciecesretsesr s reserese e e saa s s s ss e beseanesaesessn ssmesaenenasesenns 130
A.5 Design Review ChecklISt........oooiviiiiireciiiiiieereceee et e 131
A.6 Code Review Check LISt.ooeieiimvcireiiiiteiereeete e caeee e e 132
Appendix B. Design of the Spreadsheet Reports.oooieeniimeiirieei e 133

Xi

List Of Tables.

Table 1. The basic phases 0f PSP ... neees 9
Table 2. Sample Plan Summary Table for Time......c..ccocveemmiincniiieeceeeeeeeeeeeeeeeee 10
Table 3. Sample Time Recording Log.....ccoeeiecrieieciecieitetceniereercser e e aees 10
Table 4. Sample Defect Recording Log. ...t 11
Table 5. Defect Type Standard.c.coceeereccecrceecnniisiiii ettt seeeseas 11
Table 6. PSP Coverage of the Key Process Areas of CMM.cmrenncninccnceenees 18
Table 7. Column Layout for Excel Worksheets.......c.ccoccovueveinmineceeeeeeceeceeee 78
Table 8. File Menu CONLENLS. ... ccceeevremrereecererscieseeceaesesirssrsssessesmssessessssersssrssssessssessssens 80
Table 9. Project Menu IayOuL.ccoeeirereeennereeeeeeeesireiee e e st s e s e s ee s seneeeaas 81
Table 10. Menu commands for the Logs sub-menu of the Process menu. 82
Table 11. Process Menu LayOult........ccccooiieiicieireceeereieniecenrseeenenese e ee e ssessssesenens 82
Table 12. List classes and the instances they handle. ..o 86
Table 13. Additional list classes in PSP Manager.cccoccreceeuinicrsenneernvennnenerieeeceeans 87
Table 14. File naming Standards.cccocevcerecieerennirciieneceec e e s s 93
Table 15. PSP Manager’s instant access to Log Data. ... 106
Table 16. Metrics Plan for PSP.....o. ettt e 129
Table 17. The PSP Metrics Plan (continued)........cccceeveeevrnvivreicmnnnrecninecceeceecnenens 130
Table 18. PSP Career REPOTL. ..ocoeeueeeeeiececrcrentceieenie et sa e s sees 134
Table 19. PSP Project Plan SUmMMATY.......ccccceceeeierieciiiiiieiteceeceeccctvee e sennee e 135

xii

List Of Figures.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.

Graphical representation of PROBE.........coooiieee 14
Use case diagram for phase management.cooveeieemmmnennieeiceeeeeceeeee 45
Use case diagram for timing.ccccceeceeeeeierreemrnrerieeseseeeintee e eees e seeesesseesnnees 47
Use case diagram for defect type management.oceomeeiinnieiinreneeennenen. 50
Use Case Diagram for Defect Recording Log. ...couveeeemeemncmieieeeeeeceeee 52
Use case diagram for the user metric LSt ..o reeeeeeimneeeeeeeeeecneee 54
Use case diagram for [ssue management.oooeemmeeeiniemmiinieeeceenenee 57
Use case diagram for Checklists......c.coeeveieruimrmeminieee e 59
Use case diagram for Test Case Management.cooeeeeirinmeieenieenieecniccenncns 61
Use case diagram for PSP Project management.........cccoeerioeniinnienecccnnne 63
Use case diagram for PIP form management.cccceoermnnccnccneciccncncnnnne 65
Use case diagram for the Programmer profile. ... 67
The Programmer Profile.cccoooeriimiiimieee e 72
The PSP Project and its relationships.cooeeemeeeemeeemeee s 73
The relationship of times with phases.oooeeieniieeni e 75
State Diagram Of TIMET.ccoooirecrieiieciermeeeeieree et 75
Design of the PSP Metrics Plan......ccouooeeeeieiieeeeeeceeecnea 76
PSP Manager’s main WildOW.c.ccocerceeeeimrmnienenesneisneeeieieesee st eeenes 79
List Manager for Test Cases.ccoucveemeercrrienrrmerrreeesieniitee e s eeaee 83
Checklist relationships in PSP Manager..........cccovvereinmeieceiereecereeececeenens 90
Plan SUMMAry WINAOW.......ccueeeererrcereermseesnnerreeenserssessseesirssessesesssessssnssessnes 92

xiii

List Of Abbreviations and Nomenclature.

COQ: Cost of Quality.

CR: Code Review.

CMM': Capability Maturity Model.
DR: Design Review.

DRL: Defect Removal Leverage.
[PD: Institute for Program Structure and Data Organization.
KLOC: One thousand lines of code.
LOC: Lines of Code.

PROBE: Proxy Based Estimation.
PIP: Process Improvement Proposal.
PSP: Personal Software Process.
SEI: Software Engineering Institute.
TSP: Team Software Process.

' CMM, PSP, TSP, “Capability Maturity Model”, “Personal Software Process”, and

“Team Software Process” are service marks of Carnegie Mellon University.

X1v

Chapter 1. Aim and Objectives.

This thesis covers the motivation, design and implementation of an automated tool to
provide automated support for a custom software development process. The tool will
support the Personal Software Process (Humphrey, 1995a) while allowing the user to
make modifications such that it fits his or her practice. The purpose of the tool is to
reduce the overhead cost of performing the data collection and calculations required by
the Personal Software Process, which can be executed with pen, paper forms and a
calculator.

The availability of automated support would provide three benefits. First,
automation would make data collection and calculation more efficient. Timing data
could be collected through an automatic timer, allowing for automatic computation of
time spent on the task. The automated tool can perform all calculations required by the
Personal Software Process faster than doing each form by hand. Similarly, the automated
tool can bring up any of the forms on request, as opposed to searching through papers to
find a required form. Second, redundancy can be reduced. The tool can store each data
item in one place and access it when it is required. This eliminates the need to copy data
by hand between forms or from a form to a spreadsheet. Third, the tool can operate
transparent to the project in the same multitasking environment as the project
development environment. This transparency allows the user to switch between the tool

and the development environment as opposed to going to the side to record data.

1.1. About the Personal Software Process.

The purpose of the Personal Software Process, developed by Watts Humphrey, is to
introduce discipline to the individual software engineer. It does so through pointing out

ones strengths and weaknesses through statistical measurements of one's work.

2

PSP consists of a series of scripts, forms, metrics, and methods that are used to
collect software performance data. It is implemented in seven incremental levels. The
next level consists of all methods in the current level plus one or two new features. Its
structure is as follows:

e PSP 0: Establishment of a performance baseline.

e PSP 0.1: Software size measurement.

e PSP 1: Software size estimation, including the PROBE regression method.

e PSP 1.1: Resource, task and schedule planning.

e PSP 2: Defect prevention through code and design reviews.

e PSP 2.1: Quality assurance through design completeness.

e PSP 3: Cyclical development.

1.2. Aim.

The following statement is set as the aim of the thesis.
e Aim: To provide a software tool that implements automated support for the
execution of a customized personal software development process using the
Personal Software Process as a baseline in developing such a custom process.

PSP provides a structured set of tasks that are based on practices that have been
successfully used in the software industry. In addition, it provides a metrics plan that
involves the collection of time, defect, and software size data. The metrics plan requires
detailed record keeping and calculation so problems in the process can be pinpointed.
PSP is traditionally executed by hand using paper forms.

The derivation of this aim is based on problems that discourage programmers
from using PSP. Given the intense record keeping of PSP, hand execution carries a high
overhead cost. Through automated support, it is believed that the overhead cost of
executing PSP can be reduced. In addition, hand execution of PSP forces the user to stop

his programming task to record data. If automated support is provided, it can run on the

3
same machine as his development environment, making data collection transparent to the
task at hand.

Another problem with PSP is that it assumes the programmer is given a stable
problem statement and is asked to develop and implement the sofiware to solve the
problem. In real life, this is uncommon. The software development life cycle covers risk
management, formal specification, requirements, development, implementation,
documentation and follow-up. During the software life cycle, changes in the problem
statement can happen at any time. In addition, each software developer has different
preferences, problems and practices. If automated support for PSP is provided, the user
can make adjustments to the PSP such that his practices, strengths, and weaknesses are

addressed.

1.3. Objectives.

To fulfill this aim, the following objectives must be fulfilled:
e Objective 1. To provide a tool that provides automated support for the
Personal Software Process.

¢ Objective 2. To provide mechanisms that allow a user to adapt the tool to his

or her personal software development process.

e Objective 3. To make the components of this software tool (except the

spreadsheet component) portable between operating system environments.

If PSP is to be used as the baseline to develop one’s customized personal process,
the software tool must provide support for the PSP as documented by Humphrey. Once
automated support is developed for the PSP, functionality can be added to the tool to
make changes to the process based on personal needs.

In order for the tool to be effective, it needs to be conveniently available. The tool
is most convenient if it runs in a multitasking environment. With the recent developments
in the Internet and Java technology, the development of applications that can be ported

between operating systems is easier. Since many operating systems are still in use, one

4
can see why it is important to make the tool work on any operating system. This is

possible if a portable application is developed.

1.4. Key Tasks.

However, the development of a tool will not of itself fulfill the aim and objectives. Four
key tasks are defined.

e Key Task 1: The problems and challenges of the PSP must be identified such

that the motivation to implement automated support for PSP is recognized.

e Key Task 2: Strengths and weaknesses of current PSP support tools must be

identified.

e Key Task 3: The newly developed tool should overcome shortcomings of the

existing PSP support tools.

e Key Task 4: The effectiveness of using the tool to execute the PSP process

must be determined.

The need and demand for PSP automated support must be identified through an
analysis of the literature available on the PSP. If there are any existing PSP automated
support tools, they must be evaluated to identify strengths and weaknesses. The
evaluations can also be used to identify use cases and requirements for the tool to be
developed in this thesis. Finally, the completed software tool must be subject to a user

study such that its effectiveness in executing PSP can be evaluated.

1.5. Summary.

This chapter provided the aims, objectives and key tasks of this thesis. Given the
existence of a disciplined individual-level software process in the PSP, it makes sense to
derive a customized personal process based on the principles of the PSP. Thus, the thesis

and its accompanying tool will use the PSP as a baseline.

1.6. Thesis Structure.

Chapter 2 provides a detailed description of the Personal Software Process framework,
standards, costs and benefits. The chapter consists of how the PSP fulfills the key
practice areas of the Capability Maturity Model. The chapter also discusses its costs,
benefits, and impact. Four tools that provide automated support for PSP are also
discussed.

Chapter 3 provides a critical review of the Personal Software Process, including
its advantages and disadvantages. It includes some critical remarks on the research done
on the impact of PSP as well as reviews of the four automated PSP support tools
introduced in Chapter 2.

Chapter 4 contains the resuits of the requirements for a customizable PSP support
tool. The requirements are elicited using a use case analysis.

Chapter 5 provides an overview of the design of the tool. It includes a layout for
the PSP user’s profile as well as a design for the spreadsheets and reports that will be
produced by the tool. It wraps up with the design of the user interface and menu layout.

Chapter 6 provides an implementation level view of the tool’s operation. Of
particular interest are the lists of collected data, their manipulation, and the queries that
are performed on each list. Chapter 6 also includes how time spans are stored, how a
project is created, and the persistency of the user’s profile.

Chapter 7 provides an evaluation and critical review of the completed tool. The
evaluation includes a tracing back to the requirements, key tasks, objectives and aim.

Chapter 8 provides a conclusion to the work and provides directions for future
research for both the PSP and automated support development.

The thesis contains two appendices. Appendix A consists of the requirements for
a programmer profile to allow the tool to support the actual PSP while appendix B shows

the layouts of the PSP project and career spreadsheet reports.

6

Chapter 2. A Review of the Personal Software Process.

Watts Humphrey of the Software Engineering Institute developed the Personal Software
Process (PSP). It is geared specifically to the individual software engineer, allowing him
to apply an industrial level discipline to his software development skills.

PSP is introduced with a course consisting of fifteen lectures, ten programming
assignments, and five reports (Humphrey, 1995a). The course is effectively taught at the
graduate level. It is also effectively taught in industry provided the management shows
their support (Humphrey, 1995b).

While PSP can be enacted as a software process, it is best when it serves as a
framework for building discipline into one's software development practice. The
engineer starts with this framework and makes adjustments to suit his own personal
needs, practices and common mistakes.

This chapter will document the incremental structure of the Personal Software
Process. It will also include a description of each of the PSP forms and their applicability
in the software development process. The costs, benefits, and impact of the PSP will also
be documented. The relationship between the PSP and the Software Engineering
Institute’s Capability Maturity Model (CMM) is also investigated in this chapter. [t was
found that not all of the key practice areas of the CMM could be applied at the personal
level.

The chapter wraps up with an investigation of four software tools that can be used
to provide automated support for the execution of PSP. Each of the tools has its benefits
and limitations. These tools will serve as a foundation for the development of a software

tool to support a custom personal software process.

2.1. The Objectives of the PSP.

Evidence has been recorded that the PSP is an effective process for software development
(Hayes and Over, 1997). It was derived from principles proven in the software industry
(Humphrey, 1995a). The following are objectives of the PSP.
e The definition, measurement and tracking of work will help software
engineers become more understanding of what they do.
e The PSP provides a defined process structure and measurable criteria,
providing feedback to the software engineer.
e The feedback is explicit, supporting continuous process improvement.

e The defined process structure of the PSP can improve working efficiency.

2.2. The Structure of the PSP.

2.2.1. Motivations.

Watts Humphrey (Humphrey, 1996a) identified a gap between an individual's small
projects and the corporation's large-scale projects when it comes to the Capability
Maturity Model (CMM). They could not see how the CMM could apply to small
projects.

CMM applies to all sizes of projects, however guidance for small projects needed
to be more detailed. This brought about the need to bridge this gap between
organizations and individuals. Humphrey conducted an investigation into how individual
engineers and small organizations could apply the CMM Key Process Areas was
conducted. The investigation resulted in the methods used in PSP (Humphrey, 1996a).
They cover 12 of the 18 key process areas. The initial reaction to the PSP was positive.
Experienced engineers realized that the PSP methods helped them in their work
environment (Humphrey, 1996b).

8

The PSP also addresses a gap between university training and the software
engineering industry. Post secondary education in computer science covers concrete
"product” topics like programming languages, digital logic, algorithms, and graphics.
These topics would be considered the "meat and potatoes” of software engineering. It is
also noted that university has a focus on individual contribution and that many academic
projects are small by industry standards (Hilburn and Towhidnejad, 1997). The industry
expects new software engineering graduates to know about teamwork, process, quality
and large-scale projects. These skills include the negotiation of requirements, planning,
estimation of cost, and quality assurance. Of these skills, only the negotiation of

requirements is not covered in the PSP (Hilburn and Towhidnejad, 1997).

2.2.2. Structure.

The PSP can be performed in any one of seven different levels (Humphrey, 1995a). A
baseline measurement is done at level PSPO with Each subsequent level adding software

development activities, forms and metrics.

2.2.2.1. The Phases of PSP.

Shown in Table 1 are the basic phases in the PSP. A phase is defined as a task element in
a software process. The PSP proceedings fit the waterfall model for software
development, where tasks are done in a specific order with no repeating. In the real
world, the waterfall model is not effective (Humphrey, 1989). Through the cyclical
development process in PSP level 3 (Humphrey, 1995a), the more effective incremental

life cycle can be implemented.

2.2.2.2. PSP Plan Summary.
The cover form for the PSP is the Project Plan Summary, which summarizes the data
collected during the project. The nature of the data collection allows time and defect

statistics to be organized by phase as in Table 2. The plan summary also includes data on

9

software size as well as additional metrics computed from the time and size data. Since

there are changes in the metrics plan at each level of PSP, there is a separate Plan

Summary form for each level.

.Phase Name

Purpose -

A strategy for developing the program is made, including time, cost, and

Planning
resource estimates. A schedule for the project is also created.

Design A "blueprint” of the software is drafted in a specified format (e. g. UML
diagrams).

Design Review | The design document is reviewed against a checklist of design guidelines. Any
defects found are recorded and fixed.

Code The software is implemented in a development environment.

Code Review

The code is inspected against a checklist of coding guidelines. Any defects

found are recorded and fixed.

Compile The code is compiled, fixing and recording all defects.
Test Tests are performed on the compiled code, fixing and recording all defects.
Post-Mortem When all the test cases have succeeded, this phase is used for reporting and

summarizing process data collected during the project.

Table 1. The basic phases of PSP

2.2.2.3. PSP0O: The Baseline Personal Process.

The PSPO process allows users to gather data on their own work such that they gain a

quantitative understanding of their work. Since the use of PSPO will set a benchmark for

improvement, it is important to follow the process closely. PSP forces the programmer to

restrain himself and learn based on what data is retrieved from the process (Humphrey,

1995).

10

Estimated Time Actual Time In Time To Date To Date (%)

in Phase (min) Phase (min)

Planning 13 18 119 11.28
Design 35 41 237 22.46
Code 33 37 218 20.66
Compile 15 14 99 9.38

Test 28 38 199 18.86
Post Mortem | 30 32 183 17.35
Total 154 166 1055 100.0

Table 2. Sample Plan Summary Table for Time.

The Plan Summary Form for PSP0 contains three tables for time in Phase, Defects
Injected by Phase, and Defects Removed by Phase. Filling in these three components is
done through the aid of two key PSP forms.

Date Start | Stop | Interruption | Time Elapsed | Phase Comments
Time (min) | (min)
July 8,98 | 3:14 |3:53 |0 39 Planning
July 8,98 | 3:53 | 4:48 | 16 39 Design Fire alarm.

Table 3. Sample Time Recording Log

The Time Recording Log (shown in Table 3) provides a strict guideline for the
recording of time spent in a project. It is essential to track interruption time as time spent
in disruption is time lost and should not be counted as time on the task. Time may be
tracked using any timepiece. The Time Recording Log uses minutes for precision.

The Defect Recording Log (shown in Table 4) provides a standard for collecting

defect data that is equally as strict as time recording. A defect is defined as an error that

11
was introduced (injected) in one phase and removed in a later phase. An error such as
typographical error that is immediately corrected as it happens is not a defect. Each

defect found constitutes one entry in the defect recording log.

Date Defect | Defect | Phase Phase Fix Description
No. type injected | removed | Time
July 12,98 |1 20 Code Compile |2 Missing brackets.
July 13,98 |2 50 Code Test 14 Incorrect parameter.
July 13,98 |3 50 Code Test 6 Found while fixing
defect 2- incorrect
parameter.

Table 4. Sample Defect Recording Log.

Type Number Defect Type Name

Documentation
20 Syntax
30 Build, Package (change management)
40 Assignment (limits, declarations)
50 Interface (procedure calls, parameters, [/O)
60 Checking
70 Data
80 Function (loops, logic, recursion)
90 System (configuration, memory)
100 Environment.

Table 5. Defect Type Standard.

If a second defect is found while fixing the first defect, it can be acknowledged as
shown in the last entry of Table 4. The definition of the phase in which a defect was

injected is subjective. However it is up to the user to determine the phase in which the

12
defect originated. The phase of removal for a given defect is the phase in which it is
found and fixed. When code changes are required to fix a defect in the test phase, the
time spent editing and compiling the changed code is counted as testing time. The type
of a defect is selected from the Defect Type Standard (shown as Table 5). Defect types

can be further sub typed to match a user's most problematic areas.

2.2.2.4. PSP0.1: Software Size.

PSPO.1 introduces the concept of software size. Logical Lines of Code is used as the unit
of measurement. This allows the user to divide the code into various size categories. The
PSP provides a coding standard that allocates one logical line of code per physical line in
the file.

In the Plan Summary, the total time estimate is divided among the phases based
on the Programmer's historical time spent in the phases. The planning phase also consists
of an educated guess of the software size. The following software size categories are
introduced:

e Base: If the program is to be written from scratch, this metric is zero. If an
existing program is being modified, it is set to the measured size of the
existing program.

o Deleted: Lines of code that are removed from the base program are tallied.

e Modified: Lines of code that are changed in the base program are tallied.

e Reused: The PSP defines reused code as code written by the programmer in a
previous project that is used in the current project. Code that is part of a
standard library such as input and output calls are not counted. Each reused
module is measured separately.

o Added: New lines of code are counted as added code. To compute the
amount of new code, measure the total size of the program, subtracting the
base and reused lines of code, and add the number of deleted lines (to account

for the lines of code that were replaced).

13

e New and changed: This is the sum of the modified and added code. It is the

official software size metric for PSP because development time is focused on
developing these lines of code (Humphrey, 1995a). Base and reused code is
already developed and ready for use.

e Total: The total size of the final program is measured using a software

measurement tool.

e New Reusable: Any newly created module that may be reused in a future

project is measured.

The Process Improvement Proposal (PIP) form is introduced in PSP0.1 to allow
the user to track problems with his personal process. The form documents a problem and
its proposed solution. Each problem is assigned a unique [D. Programmers are not
required to find an immediate solution to a process problem, but recording problems on a

form increases programmer awareness of the problem.

2.2.2.5. PSP1. Size Estimation.

PSP1 formalizes the estimation of the size of the program. It introduces PROBE
(Humphrey, 1995a), which is an algorithmic based method for the estimation of size.
PROBE analyzes the historical database and looks for a trend in the relationship between
estimated and actual size. It assumes that past performance is indicative of future
performance. If the historical database shows that the final project size is traditionally
higher than the programmer’s original estimate by some percentage, PROBE (graphically
shown in Figure 1) allows the user to enlarge his original estimate by that percentage. It
uses a linear regression analysis (Leabo, 1968) on the relationship between the estimated
size and the actual size. The equation of the best-fit line is used to convert an initial
estimate to a projected estimate. Through the use of the Student’s T distribution (Leabo,
1968), a bound on the error of estimation can be placed for a given confidence level. If
the linear relationship between data points is weak, PROBE will provide a result with a

high range of error.

14

Best fit line
y=axtb
180 - .
160 1
s 140 - R R *>
S 120 - Pru.]ected size .
% 100 EStimate)
N
§ 80 1
ju
< 40 -
2: 1 Original size estimate (x)
/ 20 40 60 80 100 120
Estimated Size (KLOC)

Figure 1. Graphical representation of PROBE.

PROBE stands for Proxy Based Estimation. A proxy is a substitute measurement
unit that can be related to the actual measurement unit used in measuring the size of the
final product (Humphrey, 1995a). Since lines of code is difficult to visualize early on in
the project, programmers may opt to estimate size in function points or the number of
objects.

PSP1 also introduces the Test Report Template. Each template represents one test
case that consists of identifier number, objective, inputs, expected outputs, and actual
outputs. A productivity metric is also introduced, measured as Lines of Code Per Hour

(Humphrey 1995a).

2.2.2.6. PSP1.1. Tasks and Scheduling.

PSP1.1 provides scheduling and tracking facilities. A ratio called Cost Performance
Index (Humphrey, 1995a) is added, which is the ratio of planned time to actual time. The
programmer’s goal is to have a CPI slightly above 1. A CPI below 1 indicates the
programmer has a delay problem while a CPI well above 1 implies plans are too

pessimistic.

15

Two key forms are introduced. The Task Planning Template allows a project to

be divided into tasks (usually PSP phases). Each task has a description and is ullocated
some time. Two key metrics called planned value and earned value are introduced in the
task template. Each task is assigned a planned time. A planned value for a task is
computed as the percentage of the planned time for the project. Planned Value
accumulates as tasks are added. As tasks are completed, the planned value for that task is
added onto the current earned value for the project. No earned value is accumulated until
the task is complete. The companion to the task template is the Schedule Planning
Template, which is organized by the day. The programmer uses this template to plan
tasks and estimates the earned value of project tasks to be completed every day. Tracking
the project is done daily by comparing the expected earned value to the actual earned

value.

2.2.2.7. PSP2. Defect Prevention.

The later in the process a defect is found, the higher the cost for its repair (Humphrey,
1997). For example the compiler could miss a simple coding mistake that propagates to a
challenging defect in the testing phase. That same defect would take a minute to fix in a
review. The concept of reviews encourages programmers to find and fix defects before
going on to the next phase of development. A small amount of time budgeted to reviews
can lead to significant savings at testing time (Humphrey, 1997).

Design and code reviews are introduced as new PSP phases because they are
significant tasks apart from development. A checklist accompanies each review. The
PSP provides standard checklists for the code and design reviews. However,
programmers are encouraged to extend and change checklists such that they match one's
strengths and weaknesses.

PSP2 introduces two metrics. Yield is defined as the percentage of the total
product defects that were removed before or during the code review phase. Its purpose is

to measure the effectiveness of code and design reviews. The second metric is called

16
Defect Removal Leverage and it measures the ratio of defect removal rates for two
phases. Its purpose is to show the programmer the higher efficiency of finding defects in

review phases than testing.

2.2.2.8. PSP2.1. Design Completeness.
PSP 2.1 requires the developer address design completeness and consistency. It
introduces four design templates: operational scenarios, state specifications, logic
specifications, and functional specifications. These templates serve as guidelines for the
different components of a software design document and prove useful in a design review.
The Cost of Quality (COQ) metric introduced in PSP2.1 is defined as the
percentage of the development time spent evaluating the software product for defects
(Humphrey 1995a). It is divided into two levels. The Appraisal COQ covers the time
spent appraising the product through design and code reviews. The Failure COQ covers
the time spent during the compile and testing phase. The Failure COQ metric is named as
such because defects found in compile and testing are found as a result of compilation

and program failures respectively.

2.2.2.9. PSP3. Cyclical Development.
Most large-scale projects cannot be practically done using the waterfall or V shaped life
cycle that the PSP is based on. While the PSP can be fitted as part of the spiral life cycle
(Scacchi, 1987), PSP must be adjusted to support the incremental life cycle. PSP3 is
designed to address the incremental life cycle by subdividing the project into components
that can be performed using PSP2.1. The opening cycle consists of developing a base
program, and each subsequent cycle produces a major enhancement to the product from
the previous cycle.

PSP3 divides design into high and detailed levels, with review phases at both
levels. The high level design is normally performed once, while detailed design happens

every cycle.

17

Project design issues will be disregarded unless they are documented. For this
reason, PSP3 introduces the Issue Tracking Log. These design issues should not be
confused with process problems. Each issue has an identifier, a date found, a phase in

which it was found, a description, a date of resolution, and a description of its resolution.

2.2.3. Coverage of the Capability Maturity Model Key Process Areas.

The Capability Maturity Model (CMM) (Paulk, Curtis, Chrissis, and Weber, 1993)
provides a framework of five maturity levels and 18 key process areas for continuous
improvement in the software process. Improvements in these steps do not require
extraordinary breakthroughs. A series of small adjustments and changes tend to be
effective in improving a company's software process.

Humphrey used the CMM as a foundation for defining the PSP (Humphrey
1995b). He started through identifying 12 of the 18 CMM key process areas that could
be applied at an individual level. Table 6 shows how the PSP supports the CMM Key
Practice Areas. However not all CMM Key Process areas can be applied to the PSP. For
the following six Key Process Areas, it is difficult to prove they would be effective using
small programs (Humphrey, 1996a).

e Requirements Management.

e Subcontract Management.

e Quality Assurance.

e Training.

e Inter group Coordination.

The definition of a small program is subjective as the threshold for engineers may
vary from 1,000 to 10,000 lines of code.

Humphrey says configuration management cannot be demonstrated at an
individual level (Humphrey, 1995a). However, it is up to the individual programmer to

implement his own strategy for configuration and version management.

18
Key Process Area. Applicability in PSP.

Software Project Planning. Starting at PSPO.1.

Repeatable.

2. Software Project Tracking. Task Planning and Schedule Planning Templates.
Repeatable.

3. Defined. [Peer Reviews. Individual code and design reviews (PSP2).

3. Defined. [Software Product Engineering. [Test Reports (PSP1).

3. Defined. [Integrated Software Issue tracking (PSP3).
Management.

3. Defined. [Software Process Definition |All PSP steps are defined and documented.

3. Defined. [Software Process Focus PIP (PSPO.1).

4. Managed. |Quality Management. Reviews (PSP2), design completeness (PSP2.1).

4. Managed. |[Quantitative Process Software metrics starting in PSPO.1.
Management.

5. OptimizingDefect Prevention. Reviews (PSP2), data analysis, checklist

enhancements.

5. Optimizing[Technology Change IAutomated support, test reports (PSP1).

Management.

5. OptimizingProcess Change Management. |[PIP (PSPO.1)

Table 6. PSP Coverage of the Key Process Areas of CMM.

2.3. The Cost of PSP.

Applying the PSP to a practice has a significant cost and a high degree of commitment
(Humphrey, 1995a). First, it takes time to learn and apply its methods. Learning PSP can
take up to four months. The course work for PSP will take an average of 130 man-hours
(Humphrey, 1995a). After you have learned the process methods, it still will take time to

collect and analyze data. As process improvements are implemented, they will take time

19
to get used to. The time spent applying PSP will vary depending on the tools you are
using to apply the methods. In the case of pen and paper, it can take a minute to log each
time entry and each defect. When the project is finished, it can take up to an hour to
gather all the data together and compute your performance metrics (Humphrey, 1995a).

Secondly, PSP can be challenging on your emotion. Many expect an instant
improvement from PSP, but it does not work that way. While people who are new to
software process generally see increased productivity, the engineer with a stable method
who learns PSP will experience a decrease in productivity (Hayes and Over, 1997).

Finally, PSP brings a risk of conflicting with one's self image. One must

recognize his or her strengths and should never dwell on his or her weaknesses.

2.4. The Benefits of PSP.

While the PSP has a number of costs, a large number of benefits can be realized when
one's personal process has been stabilized (Humphrey, 1995a). They are listed as
follows:

e The programmer gains an appreciation of his strengths and weaknesses that
show in PSP data.

e The programmer may interpolate collected data such that ideas for process
improvement can be derived.

e A programmer can resist an unreasonable pressure through discussion of the
anticipated size of the problem and relating it to his or her historical
productivity.

o The organized completion of a project gives a programmer a sense of personal
accomplishment.

e Since the programmer has a repeatable, consistent and stable process he will

received an increased confidence from his team membership.

20
2.5. The Current Impact of PSP.

The PSP is a relatively new technology, however it is making an impact. Those taking
the PSP course are noting improvements. In addition, its methods are being applied to

both industry and undergraduate studies.

2.5.1. Improvements noted in the PSP Course.

As engineers proceed through the PSP course (Humphrey, 1995a), they produce analyses
on their progress. Many students appreciated the improvements the course brought to
their software development process. Two experiments were performed.

Hayes and Over analyzed improvements of students as they made progress in the
PSP course. The findings were filed in a technical report with the Software Engineering
Institute (Hayes and Over, 1997). They performed an analysis of defect density,
estimation accuracy, defect yields and productivity across the three PSP phases. The data
used in the report was collected from 298 students in 23 groups.

Hayes and Over tested the null hypothesis that there was no improvement in a
specific metric against the alternative that there was an improvement. The statistical
confidences in the Hayes and Over report were communicated through the probability of
a Type I eror. A Type I error (Leabo, 1968) occurs when it was concluded an
improvement was made in a data value when in fact there was no improvement in that
data value. The following analyses were performed:

e A statistically significant reduction in overall defect density was noticed as the

students proceeded through the course. This reduction was most noticeable as
the students made the transition from PSPO to PSP1 (p < 0.0005).

e The students recorded improvements in their size estimates. The

improvement was most notable at PSP level 1 when the PROBE method for

size estimation was introduced (p = 0.041).

21
The students recorded improvements in their time estimates. The
improvement was most notable at PSP level (p < 0.0005).
Students noticed an improvement in the location of defects (yield) before the
first compile. However, students did not show any improvement in this
measurement until the introduction of code and design reviews at PSP2 (p <
0.0005).
Hayes and Over could not conclude that student productivity increased
through the PSP course. However, they also could not conclude that
executing PSP caused a loss in productivity. Productivity showed minor

fluctuations between the PSPO, PSP1, and PSP2 levels.

Humphrey also wrote a report on improvements noted in the PSP course (Humphrey,

1995b).

His analysis covered 104 students in eight groups. Humphrey noticed the

following impacts.

Humphrey noted a significant improvement in defect density (p < 0.005),
backing the findings of Hayes and Over.

Defect yield improved significantly as engineers proceeded through the course
time. As with Hayes and Over, no significant improvement was made until
code and design reviews were introduced in PSP2.

Humphrey found that inexperienced programmers had an improvement in
their productivity as their defect rates were reduced. Similarly, experienced
programmers showed a decline in productivity, as they had to add the extra
overhead of doing tasks required by PSP. Humphrey concluded that
maximizing productivity is not of itself a benefit to an engineer. While the
PSP tasks take time, proper performance of the PSP tasks lead to higher

quality products and lower test time.

22
2.5.2. Applying PSP Methods to Undergraduate Courses.

Universities are introducing PSP methods in their undergraduate academic program
(Hilburn and Towhidnejad, 1997; Williams, 1997; Bagert, 1997). The university
believed that using the methods of PSP would allow students to develop the foundation
for disciplined software development, which is being sought by the industry (Hilburn and
Towhidnejad, 1997). Hilburn believes that the PSP practices need to be introduced into
the program at the beginning of the program, otherwise students would develop poor
programming habits.

Concepts like time management can be introduced at the first year and continue
throughout the program (Hilburn and Towhidnejad, 1997). Defect recording and
prevention was also covered (Williams, 1997). The methods brought a mixed reaction
from students. Students recognized that the concepts would benefit them at both the
academic and professional level. However, they did not like continuous recording of
common defects such as typing errors. (Williams, 1997).

A common interest among the three authors was the demand for automated
support (Williams, 1997; Hilburn and Towhidnejad, 1997, Bagert, 1997). The PSP
involves a high level of record keeping and involves a lot of data as well as calculations
(SEIL, 1996). This additional overhead is not well accepted by students and can provide
students with a bad impression about both the PSP and software engineering (Hilburn and
Towhidnejad, 1997).

2.5.3. Industrial Application of PSP.

Three companies have participated in the Software Engineering Institute's PSP industrial
introduction strategy. Currently, experience data from the companies are not available.
However, engineers have found that the PSP approach is useful for their work
(Humphrey, 1995b).

If the PSP is to be successfully introduced into an industrial environment, it must

involve a full commitment from the entire company (Humphrey, 1995a). It should

23
include a dedicated instructor and resources. The involvement of the management is
paramount. They need to motivate the engineers to do the PSP work (Humphrey, 1995a).

If one is a solo user of PSP in a corporation, he will be challenged to remain
consistent. He should not discuss PSP with colleagues until he is comfortable in his
process. He may be subject to persecution from peers regardless of his experience
record. Other colleagues may feel threatened if his performance is better than they are. If

little change is noted, he may be subject to ridicule. (Humphrey, 1995a).

2.6. Why develop automated support for the PSP?

The author notices four important drawbacks to the pen and paper approach to maintain
PSP data.
e Using pen and paper to execute PSP is tedious.
e The human is naturally error prone.
e Paper forms are "straight jacketed" as they do not allow the user much room to
deviate from the prescribed process.
e A correction in one form will force the recalculation of many fields, which
takes a lot of time by hand.
These drawbacks can be alleviated if the process could be automated. Through the use of
a PSP support tool the following benefits can be realized:
e The collection of timing and defect data would be simplified.
e The calculations required by the PSP are computed quickly.
e Data forms can be accessed on demand.
e It would be unnecessary to duplicate data, making data consistent between
forms.
e Historical data would be stored conveniently for analysis.
e An automated guidance on the task sequence could be easily followed.

e Mistakes can be easily corrected through editing facilities.

24

o The precision of project data is limited to the computing power of the

platform.

e A user could easily customize the PSP to his own practice.

Automated support would improve efficiency during development if timing is
automated. Efficiency would be noticeably improved in the finishing stage of a project
where performance data is calculated and posted. However, a poorly developed tool
would be an inconvenience to its users (Humphrey 1995b). A PSP support tool should be
transparent with respect to the task at hand such that engineers can focus on their

products instead of their process (Williams, 1997).

2.7. PSP Automated Support.

The remainder of this review is a summary of the PSP tools currently available.

2.7.1. psptool 0.6.

psptool 0.6 (Wolesley, 1997) is a platform independent TCL-TK script written by
Andrew Wolesley. It provides an implementation of PSP 2.1. The tool features a main
control panel, which manages the project plan summary, creates bug instances, and tracks
time.

The tool implements timing using a start-stop button. Time is measured in
seconds. The accumulated time in the current phase is shown and can be edited. A time
log entry is made and the time resets to zero whenever the phase is changed. The state of
the timer does not change when the phase is changed. If it is running, it will stay
running. The user may work in any phase at any time.

The tool supports the standard defect types and allows the users to create their
own defect types. Many defects can be outstanding at the same time. When the timer is
running, the time collected by the timer will also accumulate in each outstanding defect

as that defect's repair time.

25

The Plan Summary window can be summoned at any time. Size estimates can be

edited at the planning phase and the official software size can be edited at the post-
mortem phase. Otherwise, the plan summary is read only. The window automatically

updates as time and defect entries are added.

2.7.2. Timelog.

Timelog (Clemens, 1997) is a Java based implementation of the PSP Time Recording
Log, written by Christoph Clemens as part of a Masters thesis. [t implements all the
standard components of the PSP Time Recording Log. In addition, it calculated the
"Time In Phase" metric required by PSP. However, it does not automatically create time
recording log entries as the timer is started and stopped. Both the Start and Stop time
fields feature a "now" button which sets that field to the current time. [t is up to the user
to determine that the times and phases are properly set before explicitly adding the entry
to the time log. There is also an interruption field that is toggled through a pause button.

The proper procedure for creating a time entry in this tool is as follows:

e Press "Now" by the Start field to get the current starting time.

e Execute your task.

e If disrupted, press the Pause button by the interrupt field. A pop up window

tracks the interruption time. Press OK when the disruption is over.
e When finished the task, press "Now" by the Stop field to get the stopping
time.

e Select a phase and write in your comments.

e Press "Add" to add the time log to the entry.

There is always one éntry in the list that is highlighted. There are two important
reasons for this. All entries added are added after this highlighted entry. This feature
also gives the user the power to carry on from his last entry. A "continue" button

associated with the start time fills the field with the finishing time of the highlighted
entry.

26
Timelog supports the addition, deletion and renaming of phase names. In

addition, the user may maintain more than one list of phases.

2.7.3. Timmie.

Timmie (Institute for Program Structures and Data Organization, 1997) is a time tracking
tool available through the IPD Group at the University of Karlsruhe. It is a program that
tracks time spent on different projects. It is a Java derivation from the UNIX application
Titrax (Institute for Program Structures and Data Organization, 1997). Timmie supports
sub-projects by separating the main project name from its sub-project name with a
period. While this is not specifically a PSP tool, it can be manipulated to support the PSP
by naming one project in the name of each PSP phase. Timmie can also track events in
each project.

Timing is automatic and many projects can be managed. When the window is
active, all current projects are shown and time automatically accumulates for the project
that is highlighted.

Timmie comes with a Perl script called accumtimmie, which sums up time spent
on certain projects from its log files. It requires a command line call with project names
(PSP phase names in our case) and a time span to produce a report on the total time spent

during the time span on the projects specified.

2.7.4. PSP Studio.

PSP Studio (Henry, 1997) was developed in 1997 as a project of the Department of
Computer Science at East Tennessee State University. It runs on the Microsoft Windows
platform and is driven using the database management system SQL Anywhere. While
there are some cosmetic bugs with PSP Studio, this product supports more PSP tasks than
the other PSP support tools. It is specifically designed for use with the PSP course.

The most noticeable attribute of PSP Studio is how it can be adapted to perform

the PSP at any of the levels. It can support PSP at level 0 as well as at level 3. When

27
PSP Studio supports PSP below level 3, the tasks, features, and forms implemented at the
higher levels never interfere.

PSP Studio uses tab-set navigation to categorize the forms. Log forms cover the
time, defect and issue data collection. Each of the logs can be edited. Templates cover
task planning, schedule planning, design templates, and size estimation. Summaries
include the Plan Summary for a specific level of the PSP. In PSP level 3, a Cycle
Summary form is also implemented. Checklists are available for the design review and
code review phase. They start out as blank. PSP Studio implements only one P/P form.
It consists of a list of numbered problems. Solutions and notes can be connected to
problems through the identification numbers. In addition, space is allocated for
standards, including a user’s coding standard, counting standard, and the defect type
standard. The defect type standard can be modified. Finally, PSP Studio provides the

task scripts that provide on line help.

2.8. Current research in PSP.

The PSP has two major research projects in progress at this time. In both cases, only the

framework of the research can be defined because the research is still in progress.

2.8.1. Team Software Process.

Watts Humphrey is now working on a process called the Team Software Process (TSP)

(Humphrey, 1998). The TSP applies CMM principles and PSP methods to a team based

software project. It is designed to allow a team of PSP trained engineers through the

team building steps of goal management, role definition, planning, and risk management.
The TSP was developed with five objectives in mind (Humphrey, 1998):

e Build self-directed teams who plan and track their work, establish goals, and

own their own processes and plans. These can be pure software teams or

integrated product teams of 2 to 20 PSP-trained engineers.

28
e Show managers how to coach and motivate their teams and how to help them
sustain peak performance.
e Accelerate software process improvement by making CMM Level 5 behavior
normal and expected.
e Provide improvement guidance to high-maturity organizations.
e Facilitate university teaching of industrial-grade team skills.
There is inadequate data available to demonstrate the effectiveness of the TSP,
however results obtained in the current testing show how the process helps teams work

more effectively.

2.8.2. One Person Project.

Earlier in this chapter it was found that the PSP could not support every key practice area
in the CMM. The objective of the One-Person Project process (Frankovich, 1997) is to
create a process that would provide coverage for these key practice areas. The One-
Person Project will be developed through supplementing the existing PSP practices with
additional phases and tasks that can cover the CMM activities not already covered under
PSP. The project is a thesis being developed as a joint project between the University of

Calgary and Advanced Information Systems in Peoria, Illinois.

2.9. Summary:

This chapter has outlined the Personal Software Process, developed at the Software
Engineering Institute by Watts Humphrey. This review included the process framework,
its motivations, and how it can be used to bridge the gap between the academic
environment and the software industry.

Chapter 3 provides a critical analysis of the PSP, including its structure, impact,

and the automated support available for it.

Chapter 3. Critical Analysis of PSP.

In Chapter 2, it was found that the Personal Software Process (Humphrey, 1995a)
provides many benefits that would help a programmer. However, it was found that the
receipt of these benefits has a significant cost.

[t was also noted that not every engineer would gain benefits from using the PSP
as documented in the book “A Discipline for Software Engineering” (Humphrey, 1995a).
However PSP provides an excellent framework for the development of a custom personal
software process.

This chapter will provide a critical analysis of the Personal Software Process
(PSP). The investigation and analysis covers three components. First, the advantages
and disadvantages of the PSP will be investigated. An analysis will then be given on the
current research into the benefits of PSP. Third, advantages and disadvantages of the four
tools documented in Chapter 2 will be discussed.

Through the investigation of advantages and disadvantages, it can be supported
that the need that the PSP must be customized to one’s own practice. Secondly, the
analysis of the current PSP automated support can be utilized towards the requirements

phase to support a customized PSP software tool.

3.1. The PSP Framework.

A software process is a series of detailed steps that one follows in order to produce a
software product. No two software processes are alike, and each has its own advantages
and disadvantages. The PSP consists of a number of activities that have their strengths

and weaknesses.

30
3.2.1. PSP Advantages.

Probably the most distinct advantage of using the PSP forms would have to be its strict
standards for logging time. The Time Recording Log supplied for PSP provides the ideal
template for recording time spent in the project. There are fields to log the exact starting
time and ending time, making the time spent in each phase easily computed. PSP also
forces one to track interruption time (Humphrey, 1995a), allowing one to determine how
much of his time was actually spent working. With the comment field, one can track the
causes of interruptions.

The Defect Recording Log also follows a strict standard. It makes the user
account for every defect, whether it is a typographical error or a logical error found in the
test phase. With each defect being assigned a unique identifier, this allows the PSP to
support the multiple defect problem (Humphrey, 1995a). The multiple defect problem
occurs if a second defect is found in the process of fixing a defect. Since PSP requires a
repair time for each defect, allowing for an analysis of the relationship between fix time
and the phase of defect removal (Humphrey, 1995a). It is generally found that the longer
the life of a defect, the longer the time required fixing it.

The Process Improvement Proposal (PIP) is a powerful tool. While the form
gives the impression a solution is needed immediately, it is not. However, it forces the
programmer to think about it.

The Test Report Template introduced in PSP 1 is an equally powerful tool. It
gives the user the leverage to determine test cases in the development phases. When it is
time to perform the test phase, the test cases are ready to run. This supports the V-shaped
software development model where test cases are developed as early as the design phase.

The Task and Schedule Planning features introduced in PSP 1.1 provide the user a
complete set of tools for planning. The Task template forces the user to decompose the
project (each PSP phase usually constitutes one task) and estimate the time for each task
independently. The Schedule template allows the user to allocate tasks to each working

day. Through planned and earned value project tracking is supported. It approaches

31
tracking conservatively as no earned value is accumulated until the task is officially
finished. Computing the planned and earned values based on the tasks' planned times is
consistent and unbiased.

The reviews introduced in PSP 2 are an integral part of a defect awareness and
prevention strategy. It should be appreciated how the PSP encourages us to adjust review
checklists to accommodate common problems. The "yield" metric provides a powerful
determination of the effectiveness of one's review practice.

The following metrics in PSP are found to be useful:

e Defects density (Defects per KLOC): This measure of defect denmsity is
straightforward and is a good measure of product quality and is commonly used in
industry.

e Reuse Percentage: The PSP defines code as reused if the programmer wrote it in
a previous project. Code from standard language libraries and templates are not
considered as reused code. While engineers may have different notions on
software reuse, this metric provides a significant effect on the amount of effort put
in a program. The higher the reuse percentage the lower the effort.

e Defect removal leverage: Taking the ratio of defect removal rates of a review
phase compared to a test phase provides an appreciation of how effective the

phase serve in the removal of defects as compared to the testing phase.

3.2.2. PSP Disadvantages.

The PSP has several disadvantages that may deter people from using it.

There is one missing component in the Time Recording Log. It does not force the
user to put a time stamp at the start and end of each interruption. The user simply
estimates the amount of time he was interrupted. This estimate can be subjective.
Therefore, it is a good idea for the engineer to implement the extra time stamps to

compute interruption time.

32

PSP uses Logical Lines of Code as a size measurement standard. Lines of code
may be easy to count, but there is no clear definition on what constitutes a line of code.
There are many ways to count lines of code, including the number of physical lines, the
number of method calls, the number of semi colons, or the number of non-comment lines
of code. Regardless of how lines of code are counted, a consistent standard must be
adopted (Humphrey, 1995a). It should be realized that the lines of code measurement is
not practical for some technologies (object oriented code). It is also difficult to visualize
lines of code at the early stages of a project.

The way that PSP categorizes lines of code is subject to debate. While most of
the size categories are self explanatory, the concept of reuse brings the possibility of bias
between engineers. PSP provides a narrow definition for reuse. It defines reused code as
unmodified code from one program that is used in another. Theoretically, there is much
more software reuse than we think when a software product is written. For example, we
reuse classes in the java.lang package in every Java program. Since the sizes of
external libraries are constant, they are not counted.

The code counted as reused in PSP is considered to be internally reused code.
PSP does not count the reuse of standard components and libraries supplied to software
engineers from external sources. However, external reuse is important. Even though
externally reused code is static in size, it is impossible to count the lines of code of
externally reused components. A metric that is more suitable for external reuse
measurement in PSP is External Reuse Frequency (Succi and Benedicenti, 1997) which
measures the proportion of total references in the code that refer to reused components
that were supplied by external libraries.

The linear regression baseline for PROBE makes it a powerful estimation tool.
However is ineffective if the historical data points have little or no linear correlation
(scattered all over the space of a scatter diagram). While a best-fit line can be drawn for
any set of data points, a high error will result in the projected estimate unless there is a

statistically significant correlation.

33

While the design templates introduced in PSP 2.1 provide a good guideline for
program design, they would be redundant for many engineers. In industry, engineers may
already have external software design tools that are specific to their practice. These tools
may make one or more the design templates in PSP 2.1 redundant. Tools such as
Rational Rose and GDPro provide functionality to design and generate software code. In
the case Rational Rose, it supports state diagrams.

The same principle applies to the PSP task and scheduling templates. Many
engineers have external task planning tools like Microsoft Project and Microsoft
Schedule. This would make the Task Planning and Schedule Planning templates in PSP
1.1 redundant.

The cyclical framework found in PSP 3 provides the proper framework for the
incremental development of programs. However, the Cycle Summary template
(Humphrey, 1995a) does not support the cycling of planning, high level design or post
mortem activities. There are three reasons why these activities should also be cycled:

e A completed increment must be measured and productivity data for the increment
should be accumnulated.

e Adjustments in the plans for the next increment may be necessary depending on
happenings during the development of the first increment.

e Some programmers may complete only a subset of the PSP activities in the same
cycle. This will lead to a quantity of phase and cycle combinations having zero
time on the Time Recording Log.

In addition, some components of the PSP metrics plan have weaknesses. While
"Yield" is a powerful metric in measuring the effectiveness of reviews, it can be
confusing. In the case of a program with few defects, a found or missed defect can
seriously alter this metric. It must be taken in accordance with the product. A low yield
may not always imply that many defects are slipping through the review. Another
drawback is that the view of a component of code as reusable is subjective, which

introduces bias into the metric of “new reusable”.

34

Meanwhile the notion of productivity is also varied among programmers. The
PSP measures productivity by dividing new and changed lines of code by the project
time. This notion of productivity can be considered weak. It assumes there is no cost to
reuse code, but time must be spent sizing and importing the reused components. In the
same way, it also does not account for the cost of identifying lines of code that are
actually removed from a base program. It is also noted that PSP seems to assume a linear
relationship between size and effort, where in real life the relationship is found to be
exponential as per the COCOMO model (Boehm, 1981).

In general, following the PSP exactly will not be feasible for most engineers given
the technology and environment they are subject to. The PSP should be treated as a
baseline for the development of quality software development practices. Each of its
methods should be adjusted to one's own technology, practice, strengths, and weaknesses
(Humphrey 1995b).

It should also be noted that the PSP is geared specifically towards the
development of software. It lacks the budgeting of time that is spent eliciting
requirements. PSP assumes that a programmer knows the requirements for the software
that he is producing. Eliciting requirements is a key task that could be considered a phase
in PSP. The same case can be said for post-development activities such as

documentation.

3.3. Customizing the PSP to a Personal level.

Humphrey says, “defined personal processes should conveniently fit the individual skills
and preferences of each software engineer” (Humphrey, 1995a). With any change,
execution of the PSP on paper may require significant adjustments to the forms as the
change provides a ripple effect through the entire process. Changes to the PSP can

happen in four ways.

35

3.3.1. The customization of phases.

The PSP provides eight basic phases for software development (Humphrey, 1995a).
These phases cover the basic tasks for developing a software product. However, these
eight phases may not be adequate for larger scale projects. The following cases provide
examples that would require a change to the basic phase list.

e The individual software engineer may wish to add a phase specifically for the
non-production stages such as risk management, requirements negotiation and
formal specification.

e In a development environment like IBM’s Visual Age for Java, the code is
automatically compiled as it is saved. This makes the compiling phase
unnecessary.

¢ Design phases can be divided into several levels of design as in PSP 3 (high
level and detailed level design).

3.3.2. The customization of defects.

The PSP provides a defect type standard. PSP uses defect types to sort defects by their
causes. Each user has his or her view of what a defect is. A user may develop additional
defect types that reflect his practice. The user may also sub-type defect types to reflect
his most common problems. In fact, some programmers do not recognize syntax errors

as defects.

3.3.3. The customization of software size measurement.

Not all developers prefer to use lines of code for initial estimates. Some would prefer to
use function points, the number of object classes, or the number of requirements as the
unit of measurement. In addition, the final software size may be measured in a different
unit than that of the estimate. Effective use of this strategy would require a mathematical

model that links the two distinct measurement units together.

36
Also, not all developers wish to measure their performance against "new and
changed" lines of code. Some may prefer to use total LOC, or may use a totally different

sizing method.

3.3.4. The customization of checklists.

As in the case of defects, each user has his or her preferences for what points must a
software design document or code block be inspected against. Most users wish to base
their checklists on the mistakes they have done in the past.

A problem that is commonplace can be added as a check item. Similarly, a check

item that has become a non-issue for a programmer could be removed from the checklist.

3.4. Research on PSP Benefits.

As was mentioned in Chapter 2, Humphrey noted many benefits of using the PSP.
However, in order for these benefits to be proven true, they have to be identified through
user studies. This section evaluates the effectiveness and validity of the research that has
been conducted with the PSP. Two types of research were evaluated: the effects of taking
the PSP course and the effects of implementing PSP methods into the undergraduate

computer science program starting in the first year.

3.4.1. The effectiveness of the PSP course.

The following pattern is noticed whenever a statistical study of the impact of PSP is
undertaken.
e The estimation process was found to be statistically unstable until level 1. When
the PROBE method was introduced, estimations became more consistent.
e The pre compile defect yield was found to be very low until code and design
reviews were introduced in level 2.
This pattern is simply to be expected because of the incremental nature of how

PSP is taught in the course (Humphrey, 1995a). Humphrey could have dealt the entire set

37
of PSP methods at the same time, however the seven level incremental approach used in
the course (Humphrey, 1995a) makes the most sense. If all the methods were introduced
at the same time, students would feel overwhelmed by the sudden increase in the
workload. The incremental approach allows an engineer to make a smooth transition of
improving his personal process by leamning one method at a time.

While PROBE appeared to help the estimation process at the course level, it may
not be practical when it is applied for a large program. Lederer and Prasad conducted an
investigation into estimation error for different size estimation bases (Lederer and Prasad,
1998). They concluded that the use of algorithmic estimation methods like PROBE does
not of itself increase estimation accuracy. It was found that such methods are not
guaranteed to improve accuracy. A key factor may be that algorithmic methods do not
provide adequate coverage of key influences (e. g. change) in setting estimates.
Researchers require further understanding of how a particular method can improve
estimation accuracy.

The most interesting find by Lederer and Prasad was that inaccuracy in estimates
was reduced only when the estimators were held accountable. Therefore, estimation
accuracy should be included in a performance review and personnel who produce

consistently accurate estimates should be suitably rewarded.

3.4.2. Introduction of PSP methods into the undergraduate program.

Reports were published on two experiences involving introduction of the PSP methods in
the first year of an undergraduate program. Embry Riddle Aeronautical University in
Daytona Beach, Florida (Hilburn and Towhidnejad, 1997) and the University of Utah
(Williams, 1997) initially used the same strategy in introducing the methods into their
first year courses. Time management, scheduling, and planning would be taught as part
of the first half course. Defect management, and size estimation would be taught as part

of the second half course.

38

Both universities made mistakes in administering time management in the first
half course. They administered the course in a way such that the students were not
encouraged to do the tasks. In these cases, time management and logging is not the
priority of freshman students. The concern of the first year student is getting assignments
done as well as learning to use the technology supplied to them. Since these students find
little reward in the short term from logging their time usage, they find the task a liability.

The institutions learned from this mistake and adjusted their strategies such that
students would realize the benefits. For example, the University of Utah successfully
moved defect logging to the first half course while moving time logging to the second
half course (Williams, 1997). Defect logging and prevention would raise a higher interest
from students. Students expect to be removing defects during programming
assignments. The defect management aspect of PSP would make students excited since
they would encounter less frustration in compiling and testing.

If PSP activities are applied in a first year course, they should be fully covered
within the first few lectures of the semester, such that data collection is done right away.
However, to reduce the already heavy course load faced by first year students, PSP time
logging should be done at a high level. The framework of course activities should be
timed as opposed to every discrete task. (Hilburn and Towhidnejad, 1997).

To encourage students to do the tasks, the actual PSP tasks must count towards
the student's grade. While the PSP related portion of the grade should be small, it should
be large enough such that doing the activities makes the difference between A and A-.

Williams (1997), Hilburn (1997), and Bagert (1997) recommended the
development of automated support to support the PSP activities. Such automated support
should be easy to use and able to run on the same technology in which programming is
implemented.

The text "Introduction to the Personal Software Process" (Humphrey, 1997)
serves as an ideal companion text for the first year courses. It provides a detailed

foundation of the PSP methods and the reason they are there. While cyclical

39
development is not covered in the text (Williams, 1997), the guidelines for such

development are there.

3.5. PSP Automated Support.

There are four PSP support tools currently available. In evaluating the effectiveness of
each tool, the following questions will be covered:

e Would this tool save time in executing PSP?

e Would it be transparent to the task at hand?

e What degree of user customization is supported?

e What components of PSP does this tool cover?

3.5.1. psptool0.6.

Andrew Wolesley created this TCL-TK script to implement the PSP time and defect
tracking (Wolesley, 1997).

This tool would save time in executing the time and defect collection portions of
the PSP. First, the "Run-Pause” button combined with automatic creation of Time
recording log entries makes time recording simple. Secondly, the "bug" button allows
defects to be brought up at any time. Defect fix times are accumulated automatically as
the timer runs. The tool supports end user customization through the addition of new
defect types. It is platform independent within the limits of the TCL-TK language.

While this tool has benefits, there are many drawbacks that make this tool
undesirable for use. The first main problem is only a subset of the PSP activities are
supported. Critical components of the PSP like checklists are not supported even though
review phases are included in the phase list. Another problem is that interruptions are not
explicitly timed. Itis important to know the amount of time lost to interruptions.

The time estimation component could use some attention. All planning estimates

are based on the software size estimate and the "To date" percentage fields from previous

40
programs. The user cannot manually adjust these estimates for a problem outside of his
domain knowledge.

A critical problem with psptool is the high cost of making a mistake. First, there
is no facility to edit incorrect time and defect entries. They can be edited only through an
explicit opening and manipulation of the project file. Second, finished projects cannot be
reopened. Finally, if a new project is created under an old project name the old project

files are lost.

3.5.2. Timelog.

As specified by its name, Timelog (Clemens, 1997) specifically implements the PSP
Time Recording Log. It does an excellent job. This tool has potential to serve as a base
for expansion into the other PSP data collection areas.

The tool has a number of excellent benefits. First, it is platform independent
within the limitations of Java. Second, it can support multiple processes. PSPO is
automatically created when the system is installed. New processes (lists of phase names)
can be created. As new projects are created, the user is asked to choose the process he
can use. In addition, Timelog supports the editing of any entry in the log.

However, Timelog has the same problem with psptool as it only supports the
Time Recording Log component of the PSP. It does not support any other PSP related
task such as defect logging.

The edit facility would be improved if it were cleaned up when the entry is added
to the Time Recording Log. This may confuse the user. Also, making a mistake in
editing a time entry can be frustrating. If a user manually edits a time field and breaches
the format, the old time is restored.

The author carries one more comment on Timelog. If the start time is "ahead of"
the stop time, the tool automatically assumes that midnight has passed when computing a
delta time. He is assuming that the user will not leave the application running over

several days.

41

3.5.3. Timmie.

The use of Timmie (Institute for Program Structures and Data Organization, 1997) is
simple. All that has to be done is highlighting the current phase of the work. Time is
automatically accumulated in that phase. Events for each of the phases can be logged by
double clicking on the phase name. Time stamps can be added allowing the user to add
comments and log defects. Interruptions can be logged, however, the event window for
that project must be open for the interruption to show on the event log. Otherwise the
interruption is ignored.

Timmie was not specifically designed to support PSP. Like Timelog, Timmie
does not support any other component of the PSP. Only a brief time summary may be
generated through the use of the Perl script "accumtimmie”. This script uses a command
line interface whose parameters are not easily remembered.

Even though defects can be logged through the event window, there is no formal
mechanism or script that can be used to generate a formal PSP Time or Defect Recording
Log.

Timmie does not support printing, however the format of the text based project

files can be dumped to a printer.

3.5.4. PSP Studio.

The current version of PSP Studio (Henry, 1997) is a very promising tool that supports
the Software Engineering Institute's specification for PSP automated support. PSP Studio
supports all seven levels of the PSP, along with its forms and templates. Edit facilities
exist for every form.

This project has been geared the instructors and students who are involved in the
PSP training course. It would be impractical for industry to use it. A major problem is
that it will run only in the Windows environment, and many firms do not use a PC based

environment.

42

The author found it very annoying that the design and code review checklists
started as empty. In one way, this is OK as the user may define a checklist based on his
specific problems. On the other hand, having a standard set of items in these checklists
would provide the user help in defining his checklists.

There are a couple of cosmetic problems that force the user to go out of the way to
do simple tasks. First, PSP Studio forces the user to move to the appropriate form to
perform an action on it. While a toolbar is available, only basic file functions are
supported. It is essential to expand the toolbar to support common PSP tasks such as
timing. The second problem is the layout of the forms. The forms are organized using
two levels of tabs, which the author found difficult to navigate. The forms would be

better organized in a tree layout.

3.6. Summary.

This report has outlined the advantages and shortcomings of the Personal Software
Process developed by Watts Humphrey. The report included the advantages and
shortcomings of the PSP framework, the research into the PSP, and a list of tools used to
automate PSP data collection.

The review of the PSP and the currently available software tools will provide help
in the requirements elicitation in Chapter 4, as well as the design (Chapter 5) and

implementation (Chapter 6) of automated support for the user-changeable PSP.

43

Chapter 4: Requirements Analysis.

This chapter is dedicated to the elicitation of the requirements for the PSP support tool.
This tool shall be known as PSP Manager. It has been decided to examine use cases in
this investigation.

The requirements document starts off with a number of assumptions and
definitions. In developing requirements, each component of the PSP will be investigated
separately. A series of use cases will be converted into a list of requirements for that
component to be successfully implemented. After each component has been investigated,
additional general requirements will be developed such that the tool requirements are
complete.

Since customization of the tool to one’s personal process is a major objective of
this project, emphasis will be placed on identifying use cases and requirements that will
help in the fulfiliment of this objective.

For the purpose of this requirements elicitation, the term publish refers to

converting PSP data into a user readable format that can be printed.

4.1. Assumptions.

The following assumptions have been made in the elicitation of the requirements.

e It is assumed that the users of the PSP Manager have an understanding of PSP.

e It is assumed that external software development tools are available for the
purpose of software design and implementation.

e It is assumed that external tools are available for the purpose of task and
schedule management.

e It is assumed that the programmer has access to a software tool for the purpose
of software size measurement and that the result will be entered as the official

size metric of the project.

e [t is assumed that a task cannot be interrupted unless it is in progress.

e It is assumed that each problem in a PIP form is associated with one solution.

e It is assumed that the time span for one entry in the Time Recording Log will
be no longer than 48 hours.

e [t is assumed Microsoft Excel is the external spreadsheet package.

e [t is assumed that the programmer has the facilities to perform a backup and
restoration of the programmer profile.

e [t is assumed that the programmer will use the security features of his
computer or network to protect his user data.

e It is assumed that only one project will be worked on at a time and that users

may switch between projects through the normal open and close operations.

4.2. Personal Process Design (Phases).

A phase is defined as a structured task of the software process (Humphrey, 1995a). A
process consists of several phases with each phase having a unique name. The PSP
phases are structured in an order that is natural in the development process. However, the
tool should be structured such that the user can run in any phase he feels comfortable with
(SEI, 1998).

The Software Engineering Institute recommends that a user be able to rename the
development phases (SEI, 1998). It is also beneficial for a user if he could add, delete, or
reorder the process phases to define a customized process.

To implement PSP at level 3, the phases are repeated in order a specified quantity
of times. Each iteration of the phase list constitutes one PSP cycle (Humphrey, 1995a).

The cycles are numbered in order from one to the number of cycles planned.

4.2.1. Use Cases for Phase Definition.

The user can customize the phase list to his process by adding, renaming, deleting, and

reordering the phases. Since the ordering of the PSP phases is important, the phase

45
names must be stored in a list that emphasizes order. The user interface that allows the
user to manipulate the phase list must account for the prcper order. This interface can be

requested at any time. Phase definition requires the four use cases in Figure 2.

4.2.1.1. Use Case: User defines new phase.
If a phase is to be added to the list, the user first requests for the list of phases. He then
requests that a new phase be added under the name identified by him. An error condition

occurs if the name of the new phase already exists in the list.

4.2.1.2. Use Case: User no longer needs existing phase.
If a phase is no longer needed, the user requests the list of phases. He then selects the

phase and request that it be deleted from the list.

Programmer

User defines newphase - User renames a phase
User no longer needs existing phase User finds need to reorder phases

Figure 2. Use case diagram for phase management.
4.2.1.3. Use Case: User renames a Phase.
To rename a phase, the user selects the phase to be renamed and types in the new name.

The new name of the phase must not exist elsewhere in the list.

46
4.2.1.4. Use Case: User finds need to reorder phases.
The ordering of the phase list implies the order in which they will be done. While
accessing the user’s phase list, the user may select a phase and request that it be moved to
a new position in the list. The first phase in the list cannot be moved earlier in the order

and similarly the last phase cannot be moved later in the order.

4.2.2. The requirements for Phase Management.

Based on these four use cases, the following requirements are derived:

Requirement 4.2.2.1. PSP Manager shall maintain an ordered list of PSP phases.

Requirement 4.2.2.2. PSP Manager shall ensure the phases in a phase list are
uniquely named.

Requirement 4.2.2.3. PSP Manager shall provide a user interface that lists the
available PSP phases in the order of completion.

Requirement 4.2.2.4. PSP Manager shall allow the user to add a phase to the list.

Requirement 4.2.2.5. PSP Manager shall allow the user to delete a phase from
the list.

Requirement 4.2.2.6. PSP Manager shall allow the user to rename a phase in the
list.

Requirement 4.2.2.7. PSP Manager shall allow the user to move a phase towards
the front of the list.

Requirement 4.2.2.8. PSP Manager shall allow the user to move a phase towards

the end of the list.

4.3. Timing.

Time management is the most important component of data collection in the software
development process. It is the most frequently performed activity in the process. The

PSP script states that every use of time on a project phase must be logged. PSP also

47
requires that interruption time be tracked. If disruption time is not tracked, the user does

not get an accurate use of time actually spent in the phase (Humphrey, 1995a).

4.3.1. Use Cases for the Timer.

Five use cases are required for the creation of time recording log entries as shown in

Figure 3.
Programmer
User selects task to work on
User requires corrections in Time
Recording Log
User performs task User is ready for the next task.
User is interrupted

Figure 3. Use case diagram for timing.

4.3.1.1. Use Case: User selects task to work on.

The user may request the timer to operate in the phase of his or her choice. The user
selects the phase and requests the timer to switch to that phase. If the task is changed
when the timer is running, an entry is created for the previous task and the timer

continues running.

4.3.1.2. Use Case: User performs a task.

Before starting the task, the user selects the appropriate PSP phase and cycle number to
operate in and starts the timer. The user proceeds with his task. If a worker should be
interrupted before he can start the timer, a facility is available to edit the time recording

log entry such that the disruption can be accounted for. The user stops the timer when his

48
task is done. A new entry is added to the time recording log based on the amount of time

spent in the phase

4.3.1.3. Use Case: User is interrupted.

Many external factors such as phone calls and unexpected company can cause work to be
interrupted. The user stops the timer when this happens. When the interruption is over,
the user requests the timer to resume. The amount of disruption time is computed and

added to the accumulated disruption time for the current task.

4.3.1.4. Use Case: User is ready for the next task.
When the user is done a task and wants to carry on to the next, he can request the timer to
set the next phase as current. An error condition occurs if the current phase is the last

phase of the last cycle.

4.3.1.5. Use Case: User requires corrections in Time Recording Log.

The user may request the Time Recording Log at any time in the project such that
corrections can be made. An entry may be corrected by selecting that entry and asking
that it be edited. If an extraneous entry is in the Time Recording Log, the user may select

it and request its deletion.

4.3.2. Requirements for Timing.

Based on the use cases for timing, the timer for the PSP Manager must fulfill the
following requirements.
Requirement 4.3.2.1. The PSP Manager timer shall automatically create the
Time Recording Log for the current project.
Requirement 4.3.2.2. Each Time Recording Log entry shall consist of a starting

time, an ending time, an amount of time lost to interruption, the actual amount

49

of time spent in the task, the appropriate phase name, the cycle number and a
user comment.

Requirement 4.3.2.3. The PSP Manager timer shall support the accumulation of
interruption time over multiple interruptions in the same task.

Requirement 4.3.2.4. PSP Manager shall allow the user to access to the project’s
Time Recording Log at any time in the project.

Requirement 4.3.2.5. PSP Manager shall allow the user to edit entries in the
Time Recording Log.

Requirement 4.3.2.6. PSP Manager shall allow the user to delete entries in the

Time Recording Log.

4.4. Defects.

Defect management requires the management of a list of general defect types and a list of

project specific defects (Defect Recording Log).

4.4.1. Use Cases for Defect Types.

The User shall be automatically supplied with the ten defect types defined by Humphrey.
A user may customize a defect type list to his process by either defining a new defect
type or through deriving a subtype of an existing defect type. The four use cases in

Figure 4 are required to manage the list of defect types.

4.4.1.1. Use Case: User identifies new defect type.
The user can access the list of defect types and request that a new type be added to the
list. An identification string for the new defect type is automatically created and the user

enters a description of the defect.

50

Programmer
User requifes a specialization of an .
existing defect type User no longer requires a specific
: ‘. defect type
User wants a different wording of 2 User identifies new defect type

specific defect type

Figure 4. Use case diagram for defect type management.

4.4.1.2. Use Case: User requires a specialization of an existing defect type.

Sometimes a user has a problem with a certain defect that is related to an existing defect
type. In this case, the user can select the problematic defect type and request a new defect
type as its sub-type. The identification number of the new defect type is created from its
super-type while the user enters its description. Sub-types of defects can be sub-typed

many levels.

4.4.1.3. Use Case: User wants a different wording of a specific defect type.
The user may select any defect type and request it to be edited. This allows the user to

change the wording such that he has a better understanding of a defect type.

4.4.1.4. Use Case: User no longer requires a specific defect type.
If a defect type is not a problem, the user may select that defect type and request it to be
deleted.

51
4.4.2. Requirements for Defect Type Management.

The four use cases for defect type management lead to five requirements.

Requirement 4.4.2.1. PSP Manager shall provide functionality to allow the user
access to a user’s defect types at any time.

Requirement 4.4.2.2. PSP Manager shall provide functionality to allow the user
to delete defect types.

Requirement 4.4.2.3. PSP Manager shall provide functionality to allow the user
to rename defect types.

Requirement 4.4.2.4. PSP Manager shall provide functionality to allow the user
to create a new independent defect type.

Requirement 4.4.2.5. PSP Manager shall provide functionality to allow the user

to create a subtype of an existing defect type.

4.4.3. Use Cases for the Defect Recording Log.

There are three use cases in the development of the Defect Recording Log as documented

in Figure 5.

4.4.3.1. Use Case: User finds defect.

When a new defect is found, the user requests to see the Defect Recording Log. He then
asks for a new defect to be defined. The program responds by providing the edit facility
such that the user can edit it. The user attempts to fix the defect. When the defect is
fixed, he marks the defect as fixed. If the defect cannot be immediately fixed, he can
mark it as unfixed and reopen it later on. The time to fix the defect is automatically

recorded.

52
4.4.3.2. Use Case: User edits defect.

The user may select any defect from the Defect Recording Log and request it to be edited.
If the defect is still outstanding, the user should attempt to fix it and the fix time for the

defect will accumulate.

4.4.3.3 Use Case: User adds a defect in error.
If a defect was erroneously introduced, the user may select it and request it to be deleted

from the log.

Programmer

User finds defect 7 User adds a defect in error

User edits defect

Figure 5. Use Case Diagram for Defect Recording Log.

4.4.4. Requirements for Defect Management.

The four use cases define six requirements to complete the implementation of the Defect
Recording Log.
Requirement 4.4.4.1. PSP Manager shall provide functionality to allow the user
access to the project’s Defect Recording Log at any time in the project.
Requirement 4.4.4.2. Each defect shall consist of an identification number, a

date in which it was found, a phase of injection, a phase of removal, a defect

53
type from the programmer’s list of defect types, a fix time, and a field for a
programmer comment.
Requirement 4.4.4.3. PSP Manager shall allow the user to add a defect to the
Defect Recording Log.
Requirement 4.4.4.4. PSP Manager shall allow the user to delete a defect from
the Defect Recording Log.
Requirement 4.4.4.5. PSP Manager shall allow the user to edit a defect in the
Defect Recording Log.
Requirement 4.4.4.6. The edit facility for defects shall allow the user to mark a

defect as fixed, save a defect details without fixing, or discard the changes

4.5. Metrics.

The metrics of PSP can be divided into three categories:

o User defined raw metrics have names and values explicitly defined by the

user. The most important metric whose source is the user is software size.

o User defined computed metrics have names explicitly defined by the user.

Their values must be computed from existing PSP data.

o Cumulative metrics have a phase name associated with their values. They are

computed through queries to the time and defect recording logs.

A project requires both a planned value and actual value for each user-defined
metric. PSP data and formulae for user defined metrics shall be collected from the user
by PSP Manager. At the request of the user, the Manager will produce a text file that can
be converted to a spreadsheet in Microsoft Excel.

In allowing the user to support a custom personal process, such user shall be
permitted to make changes to the metrics plan provided by PSP such that it complies with

his practice.

4.5.1. Use Cases for PSP Metrics.

54

The PSP Manager requires the management three categories of metrics (project plan,

project actual and career “to date”). Since the definition of software size is user

dependent, it is placed in the list of user metrics. One of the metrics in the user metric list

is marked as the “official size metric”.

In Figure 6, six use cases are defined to manage the list of user metrics.

Programmer
User selects metrics list to view o .
User changes official size metric
. . User defines value or formula for a
User identifies a new metric for the metric

metrics list

User has new definition for a metric

User has no need for an existing
metric

Figure 6. Use case diagram for the user metric list.

4.5.1.1. Use Case: User selects metrics list for viewing.

The user has access to three metrics lists. The master list is the list of metrics

automatically assigned to the new projects as they are created. There are two project

specific metrics lists: one for the estimates and one for the actual metrics list.

55
4.5.1.2. Use Case: User identifies new metric for the metrics list.
The user may request a new metric in the metrics list. It may be added at either a project
or a process level. The program opens the edit facility to allow the user to assign the new

metric a name and data type.

4.5.1.3. Use Case: User has no need for an existing metric.
The user can select a metric from a metrics list and request its deletion. The official size
metric cannot be deleted. It may be necessary to update the spreadsheet formulae to

accommodate this change.

4.5.1.4. Use Case: User has new definition for a metric.
The user may select a metric in the list and request its specifications be edited. In editing
a metric specification, one can modify the metric’s name, its measurement unit, its type

(time, real or integer) and its source (user supplied or spreadsheet formula).

4.5.1.5. Use Case: User sets value or formula for metric.
The user may select a metric in the list and request its value be edited. Either the metric’s
formula or value can be edited depending on its type. The current value of the metric is

presented in the proper format for the type of data that it stores.

4.6.1.6. Use Case: User changes official size metric.
The user can select a metric in the list and request it to be marked as the “official size
metric”. [t may be necessary to change some spreadsheet formulae in the other metrics to

accommodate this change.

4.5.2. Requirements for User Metric Management.

The six use cases defined in Section 4.5.2 lead to eleven requirements for implementing

the user managed metrics lists of PSP.

56

Requirement 4.5.2.1. PSP Manager shall provide access to the overall user
metric list at all times.

Requirement 4.5.2.2. PSP Manager shall provide access to the project specific
list of estimated user metric values while the current project is open.

Requirement 4.5.2.3. PSP Manager shall provide access to the project specific
list of actual user metric values while the current project is open.

Requirement 4.5.2.4. PSP Manager shall implement metrics that support time
span, integer, and real number data.

Requirement 4.5.2.5. PSP Manager shall provide functionality to allow the user
to change the name and type of a user defined metric.

Requirement 4.5.2.6. PSP Manager shall provide functionality to allow the user
to change the value of a user defined metric.

Requirement 4.5.2.7. PSP Manager shall automatically create the data based
metrics as they are required.

Requirement 4.5.2.8. PSP Manager shall publish the user metric list with the
data based metrics as a text file that can be understood as a spreadsheet by
Microsoft Excel.

Requirement 4.5.2.9. PSP Manager shall mark one of the user metrics as the
official size metric.

Requirement 4.5.2.10. PSP Manager shall provide the user the ability to switch
the official size metric.

Requirement 4.5.2.11. PSP Manager shall not allow the official size metric to
be deleted.

4.6. Issues.

Responsible design requires the documentation and the resolution of issues. Issues are

managed at a project level. Each project may create zero, one or many issues.

The Issue Recording Log consists of a list of issues and belongs to one project.

57

4.6.1. Use Cases for Issues.

Figure 7 documents four use cases required to manage the [ssue Recording Log.

Programmer

Anissue tumedouttobe a
NOrHssue

User identifies Issue

Issue is resolved

User modifies documentation of
issue

Figure 7. Use case diagram for Issue management.

4.6.1.1. Use Case: User identifies issue.

If a project level issue is found, the user must request the Issue Recording Log to record
it. He or she then requests a new issue to be added to the log. When the edit facility
opens on the new issue, the user enters its documentation. It is normal that a new issue is

not resolved immediately, so the user can file it by marking it as unresolved.

4.6.1.2 Use Case: Issue is resolved.
When an issue is resolved, the user requests the Issue Recording Log, selects the affected
issue and edits it. Documentation is added on how the issue was resolved before the user

marks it as resolved.

4.6.1.3 Use Case: User modifies documentation of issue.
The user can reopen an issue at any time by requesting the Issue Recording Log, selecting

an issue and editing it, regardless of whether the issue is resolved.

58
4.6.1.4. Use Case: An issue turned out to be a non-issue.
The user may request the Issue Recording Log, select an issue that was not really an

issue, and request it be deleted.

4.6.2. Requirements for the Issue Recording Log.

Six requirements for the Issue Recording Log are elicited.
Requirement 4.6.1.1. PSP Manager shall provide functionality to allow the
user access to the project’s Issue Recording Log at any time in the project.
Requirement 4.6.1.2. An issue shall consist of an identification number, the
date it was found, a phase in which it was found, a problem description, a date
in which the issue was resolved, a description of the resolution, and the phase
in which the issue was resolved.

Requirement 4.6.1.3. PSP Manager shall allow the user to add an issue to the
Issue Recording Log.

Requirement 4.6.1.4. PSP Manager shall allow the user to delete an issue
from the Issue Recording Log.

Requirement 4.6.1.5. PSP Manager shall allow the user to edit an issue in the
Issue Recording Log.

Requirement 4.6.1.6. PSP Manager shall allow the user to mark an issue as

either resolved or outstanding.

4.7. Reviews.

PSP involves two types of reviews: a design review and a code review. However, the
work products produced by any phase may be subject to a review. A review is a formal
process complete with checklists (Humphrey, 1989).

In PSP, each review phase has a different checklist with different items.
Automated support for a custom personal process should allow the user to create a review

checklist and associate it with any phase. PSP supplies a design review checklist and a

59
code review checklist (Humphrey, 1995a), however each user can customize his checklist

to his own practice.

4.7.1. Use Cases for Checklists.

Each phase is associated with one checklist. The ability to alter the checklists will allow
the user to customize the checklists to frequent problems with his process. New (empty)
checklists are added as new phases are introduced. Two use cases are documented as per

Figure 8.

Programmer

. . The use of a checklistin a review.
User modifies a checklist

Figure 8. Use case diagram for Checklists.

4.7.1.1. Use Case: User modifies a checklist.

Checklists can be modified through the addition, deletion, and renaming of check items.
Before the user can modify a checklist, he must supply the phase name that represents the
checklist that he wants.

When a new criterion is identified, it can be converted to a check item by
requesting a new item to be added to it, followed by entering the description of the new
check item. Similarly, the user can select a check item in any checklist and edit it such
that a new description of the check item can be entered. If a check item in a particular

checklist is no longer useful, the user can select that check item and request its deletion.

60

4.7.1.2. Use Case: The use of a checklist in a review.
At review time, the user selects the checklist to be used and requests that it be
published. The published checklist is opened in a window, which is used to conduct the

review.

4.7.2. Requirements for Checklists.

For the implementation of checklists, six requirements were elicited.

Requirement 4.7.2.1. PSP Manager shall provide functionality to allow the user
access to the user’s checklists at any time.

Requirement 4.7.2.2. PSP Manager shall ensure a checklist can be maintained for
every phase in the user’s personal process.

Requirement 4.7.2.3. PSP Manager shall allow the user to add a check item to a
checklist.

Requirement 4.7.2.4. PSP Manager shall allow the user to delete a check item
from a checklist.

Requirement 4.7.2.5. PSP Manager shall allow the user to edit a check item in a
checklist.

Requirement 4.7.2.6. PSP Manager shall allow the publishing of a checklist for

its use in an inspection.

4.8. Test Cases.

Each project has infinitely many test cases, so a product cannot be fully tested. Each

project requires a set of standard test cases.

4.8.1. Use Cases for Test Report Template.

Shown as Figure 9 are three use cases required for Test Case management.

61

Programmer

User Defines TestCase User Performs existing test case

User Modifies list of Test Cases

Figure 9. Use case diagram for Test Case Management.

4.8.1.1. Use Case: User Defines Test Case.

When a test case is identified, the user requests the log of test cases and requests for a
new test case to be added to the list. He defines the test case with inputs and expected
results. If the test case has been executed, the results of the test are recorded and the test

1s marked as successful or unsuccessful.

4.8.1.2. Use Case: User Modifies List of Test Cases.
The user may modify a test case by selecting the affected test case and requesting an edit
on it. If a test case is found to bz meaningless, the user may select that test case and

request it to be deleted.

4.8.1.3. Use Case: User Performs Existing Test Case.
The user can executes a previously incomplete test case by selecting the affected case and
requesting it to be edited. When the test is complete, he fills in the actual outputs and

marks the test as successful or unsuccessful.

62

4.8.2. Requirements for Test Case Management.

Five requirements were elicited to implement management of the test reports.

Requirement 4.8.2.1. PSP Manager shall provide functionality to allow the user
access to the test cases of the current project at any time while the project is
open.

Requirement 4.8.2.2. Each test case shall consist of a description or objective, a
list of inputs, a list of expected outputs, a list of actual outputs, and a state to
determine whether the test is pending, successful, or not successful.

Requirement 4.8.2.3. PSP Manager shall allow the user to add a test case to a
project.

Requirement 4.8.2.4. PSP Manager shall allow the user to delete a test case
from a project.

Requirement 4.8.2.5. PSP Manager shall allow the user to edit a test case in a

project.

4.9 Projects.

A project is defined as a program that is written using PSP. Each project has a name, a
user assigned identification string, a description, and an owner. Each project contains the
PSP data pertaining to that program. A programmer may have many outstanding projects

but works on one project at a time.

4.9.1. Use Cases for the PSP Project.

Five use cases are defined as shown in Figure 10.

4.9.1.1. Use Case: A new project is started.
The user can request a new project by opening the list of projects and requesting a new
project be started. The new is built based on the process defined in the programmer

profile.

63
4.9.1.2. Use Case: User performs work on a project.
The user starts work on a project by selecting the affected project and opening it as the
current project. The timer is adjusted to work for the phase list of this project. When
work is finished on the project, the project is closed. When the project is closed, the

timer must be checked to assure the last time recording log entry is recorded.

Programmer

User makes estimates of Time and
User performs work on project Defects

L User finishes project.
A new project is started.

Project is abandoned

Figure 10. Use case diagram for PSP Project management

4.9.1.3. Use Case: Project is completed.
When the program is completed, the user assures all user supplied metrics are entered
before marking the project as “finished”. The project is moved into the programmer’s

historical database.

4.9.1.4. Use Case: User makes estimates of time and defects.
The user can request the Plan Summary such that he can enter time and defect estimates.
These estimates are sorted by phase. The current values of the actual metrics being

estimated are made available such that a comparison can be made.

64
4.9.1.5. Use Case: Project is abandoned.
If a project is discontinued, the user may request its deletion from the list of outstanding
projects. If the user wants the project work to count in his historical database, he

proceeds as if he was finishing the project.

4.9.2. Requirements for the PSP Project.

Ten requirements are elicited for the storage of PSP data for one project.

Requirement 4.9.2.1. The Project shall contain a Time Recording Log.

Requirement 4.9.2.2. The Project shall contain a Defect Recording Log.

Requirement 4.9.2.3. The Project shall contain an Issue Recording Log.

Requirement 4.9.2.4. The Project shall contain a list of Test Cases.

Requirement 4.9.2.5. The Project shall contain estimated and actual values for
all metrics.

Requirement 4.9.2.6. PSP Manager shall provide functionality to allow the user
access to the Project Plan Summary the current project at any time while the
project is open.

Requirement 4.9.2.7. The Plan Summary actual time and defect statistics shall
be built from the contents of the PSP Project logs and user metrics.

Requirement 4.9.2.8. PSP Manager shall provide current up to date values for
the actual elapsed time and defects encountered in each phase.

Requirement 4.9.2.9. The Project shall not be added to a user’s historical data
until it is declared finished.

Requirement 4.9.2.10. A finished project shall be read only such that the

purposes of creating its documentation can be fulfilled.

65

4.10. Process Improvement Proposals.

It is essential that the PIP be made available at any time, whether or not a project is
opened. This is because PIP forms are independent of the current list of projects. A

programmer may accumulate many PIP documents in a career.

4.10.1. Use Cases for PIP Forms.

Programmer

A new problem is found Problem is solved

A solution is found for an existing
problem

Figure 11. Use case diagram for PIP form management.

The user maintains one list of PIP forms with each instance of a PIP form representing
one problem with a possible solution. The PIP forms for a user are managed as per a list,

requiring three use cases as documented in Figure 11.

4.10.1.1. Use Case: A new problem is found.

When a process problem is found, the user can request the list of PIP forms and request
that a new form to be added to the list. The user edits the PIP to define the new problem.
If a solution is known, it is also added. A field is also available for comments. The
addition of a PIP document complements a change in the process phase list, checklists,

defect types or metrics list.

66

4.10.1.2. Use Case: A new solution is found for an existing problem.
The user can request the list of PIP forms, select a particular form and request it be edited

such that the solution can be documented.

4.10.1.3. Use Case: Problem is solved.
When the problem is solved, the user can request that the applicable PIP form be deleted
from the list.

4.10.2. Requirements for PIP forms.

Five requirements were elicited for managing the PIP forms.

Requirement 4.10.2.1. PSP Manager shall provide functionality to allow the
user access to his Process Improvement Proposals at any time.

Requirement 4.10.2.2. Each PIP form shall consist of a problem, a possible
solution, and a programmer comnment.

Requirement 4.10.2.3. PSP Manager shall allow the user to add a PIP at
anytime.

Requirement 4.10.2.4. PSP Manager shall allow the user to delete a PIP at
anytime.

Requirement 4.10.2.5. PSP Manager shall allow the user to edit a PIP at

anytime.

4.11. Programmer Profile.

Each programmer has a name, programming environment (language), and a supervisor.
He also has his own programming habits and will maintain his phase names, defect types,
metrics plan, checklists. In addition, the programmer has a list of outstanding projects as

well as his historical projects. This data combines to create a programmer profile.

67
When a user starts up PSP Manager for the first time, PSP Manager will
automatically create a programmer profile for him, based on the PSP (Humphrey, 1995a).

Appendix A documents the requirements for this profile.

4.12.1. Use Cases for the Programmer Profile.

The three use cases shown in Figure 12 are required for accessing the Programmer.

Programmer

User proceeds with PSP work User has a change in his
. environment

User requests saving of his data

Figure 12. Use case diagram for the Programmer profile.

4.11.1.1. Use Case: User proceeds with PSP work.
The user starts up the PSP Manager when he is ready to start PSP work. If many users
use the same machine, each selects his own PSP directory to identify himself. If a
programmer profile is not found, PSP Manager assumes a new user has signed on and
will create one. If a profile is found but cannot be loaded, a message is issued back to the
user such that the profile can be fixed or restored from backup.

The user is then clear to do work on his projects. When his PSP work is done, he
shuts down the tool. When the tool is closed, the current project is closed and the

programmer profile is saved to disk.

68
4.11.1.2. Use Case: User requests saving of his data.
Even though saving can be done automatically throughout run time, the user can request
his PSP data be saved. This option minimizes the loss of data in event of an accidental

failure.

4.11.1.3. Use Case: User has change in his environment.
The programmer’s may request that his or her name, supervisor or language may be
changed because of marriage, a change in personnel, or a change in technology

respectively.

4.11.2. Requirements for the Programmer Profile.

Seven requirements must be fulfilled to implement the programmer’s profile.

Requirement 4.11.2.1. PSP Manager shall maintain a Programmer Profile for
the user.

Requirement 4.11.2.2. The Programmer Profile shall include the programmer’s
current and finished projects.

Requirement 4.11.2.3. The Programmer Profile shall include the programmer’s
process phases, checklists, and defect types.

Requirement 4.11.2.4. The Programmer Profile shall include the programmer’s
process improvement proposals.

Requirement 4.11.2.5. The Programmer Profile shall include the programmer’s
career “to date” time and defect metrics.

Requirement 4.11.2.6. The Programmer Profile shall include the programmer’s
career to date user metrics.

Requirement 4.11.2.7. The Programmer Profile shall include the programmer’s

name, programming environment, and supervisor (if applicable).

69

4.12. Additional functional requirements.

The following requirements are additional requirements that were not elicited from use
case analysis, but must be included such that the proper operation of PSP Manager is

achieved.

4.12.1. Publication of forms, spreadsheets.

The Software Engineering Institute (SEI, 1996) insists that all personal process data is
private unless its owner provides permission to access it. Access to PSP forms is best
done through the publication of results. Each of the PSP forms can be published in a user
readable format.

Requirement 4.12.1.1. For the plan summary and career report, PSP Manager
shall create the reports to be compatible with the Microsoft Excel spreadsheet
package.

Requirement 4.12.1.2. The following forms shall be published as user readable
text files:

e Time Recording Log

e Defect Recording Log

e [ssues

e Process Improvement Proposals
e Test Report Templates

e Checklists.

4.12.2. Design Constraints.

The following requirement is a constraint that shall restrict the design and
implementation strategy for PSP Manager. This requirement is such that the objective of
platform independence can be fulfilled.

Requirement 4.12.2.1. With the exception of the spreadsheet component, PSP

Manager shall operate as a platform independent application.

70

4.13. Summary.

This chapter has documented the requirements of the PSP Manager, a tool that will
provide automated support for the Personal Software Process. Additional requirements
were derived such that the user can customize the tool to support his or her specific
personal software process.

The requirements were elicited through the use of use case scenarios. Many of the
use cases were based on the review and analysis of the PSP support tools documented in
Chapters 2 and 3 (Clemens, 1997, Henry, 1997, Wolesley, 1997).

The requirements elicited in this chapter will be the basis for the design and
implementation of the PSP Manager in chapters 5 and 6. Each requirement has been
uniquely numbered such that they can be traced and accounted for in the evaluation of the

completed product.

71

Chapter 5. Design.

This chapter will describe the design strategy of PSP Manager based on the requirements
elicited in Chapter 4.

To help in making the tool transparent to the task at hand, it must operate on the
same machine as an aside to the programmer’s development environment. Therefore, it
has been decided to use Java as the development language such that platform
independence (Requirement 4.13.2.1) can be supported. Java applications run through
the dynamic loading of classes into a virtual machine (Flanagan, 1997), which is
available for multiple computer environments including PC, Macintosh, and UNIX. Java
classes and the programmer’s profile can be moved between platforms if necessary.

The balance of this chapter is devoted to the design of and the relationship
between the PSP Manager classes. The design chapter will use a top down approach.
The programmer profile will be shown first. The chapter will also include the design of
the PSP Project, the timing strategy, the design of metrics, and the layout of the
spreadsheets. The remaining components of the PSP Manager will be described in a
more precise detail during the implementation description in the next chapter.

While the actual user interface is not covered in the requirements, the chapter will

conclude with a layout of the user interface for the PSP Manager’s main window.

5.1. The Programmer class.

The programmer profile contains everything pertaining to its user. This includes the
user’s projects, career performance metrics, and process data. The class Programmer
will represent the programmer profile (Requirement 4.12.2.1). The Programmer has three
attributes: name, supervisor, and programming language (Requirement 4.12.2.7). If a
programmer uses many programming languages, it is best to maintain a profile for each

language since process data is directly affected by language.

72

timeToDate~
- ; T PSPProject
PhaseVector /defectslnjectedToDate\ ST cumentProjects_,,.———l——
_eseveed — rojecs
—= <l
“JefoctsRemovedToDate™ ™ _— L T)
~ P pastProjects
L ,,,Programmeri T
7 riserame TSEG \ - PastProject |
userMeirl:csm/Dale ,” language : String N _“.
/-" / supenvisor : Sting)
ya —
- s A phases
UserMetric defectTypeList 7 -
S —— S J AN
s ; N
/
s ; N
s ;
P i‘:s AN
) / P/ P N
CheckList . PSPPhaseName |
DefectType T3 —— : ;

1 1!

Figure 13. The Programmer Profile.

The programmer can gain access to projects that are outstanding as well as
completed (Requirement 4.12.2.2). The class PSPProject shall represent a project
while a completed project will be represented under the class PastProject, which
implements queries on the data of a completed project.

The programmer’s defect types, phase names and checklists are stored in the
programmer profile (Requirement 4.12.2.3). The class DefectType stores the defect
type information. A phase name in PSP will be stored in the class PSPPhaseName.
The class CheckList represents a list of items against which a completed work product
must be reviewed. A Process Improvement Proposal will be stored as an instance of the
class PIP (Requirement 4.12.2.4).

The Metrics Plan of PSP requires two classes. The class PhaseVector
represents a list of metrics where each value is tied to an instance of PSPPhaseName.

Measurements of time, defects injected, and defects removed are sorted by phase. The

73
profile stores three instances of PhaseVector to store the “To Date” metrics of time
elapsed, defects injected, and defects removed (Requirement 4.12.2.5). This brings the
potential of problems when phase names are changed. At the project level,
PhaseVector instances are automatically updated as project phase lists are updated.
When projects are finished, the changed phases show up in the career report undesirably.
Phase name changes may also require changes in the formulae used in the spreadsheets.

For metrics not sorted by phase, the class UserMetric is used for this purpose.
The user can define a name, measurement unit, value and formula for this type of metric.
The programmer maintains a list of UserMet ric instances as the programmer’s metrics

plan (Requirement 4.12.2.6).

5.2. The PSPProject class

timeRecordingLog plannedTime
actualTime 1
_ 1 . PhaseVector
'ﬁmeRecordingLogEntry) 1 actualDefectsin 1 :?;;_iw‘ ’_ —
- - 1 . 1 1 . 1.
PSPProject plannedDefectsin
‘programiD : Stang ¢
PSPDefect defectRecardingLog projectName : String 1 plannedDefectsOut
- ’ -~ 'descnption : Stnng 1
T .numcycles :int actualDefectsQut

1

availableDefectTypes .
PhaseVaiue

1

Defect Type actualUserMetncs

— issueRecordinglog availablePhases

plannedUserMetrics

Issue PSPPhéseName

UserMelric

Figure 14. The PSP Project and its relationships.

The structure of the PSP Project is shown as Figure 14. The project consists of many
time recording log entries, defects, and issues (Requirements 4.10.2.1, 4.10.2.2, and

4.10.2.3). An entry in the Time Recording Log will be stored in the class

74

TimeRecordingLogEntry. [Each defect shall be stored as an instance of
PSPDefect. Each issue shall be stored as an instance of Issue.

The project maintains a pair of instances of each metric in the metric plan

(Requirement 4.9.3.4). Time and defect data are stored in the PhaseVector class

while the user metrics are managed as a list of instances of UserMetric.

5.3. The Timer class.

The class PSPPhase is a specialization of PSPPhaseName. Its purpose is to support
PSP3 through appending a cycle number to the PSP phase name.

The class Timer will be given the responsibility to build the project’s time
recording log. A Project’s Time Recording Log is stored as an instance of
TimeRecordingLog.

The Timer does not have access directly to the list of phases, but is provided with
an instance of PSPPhaseManager. The timer can query the phase manager for the
starting phase, ending phase, the phase after a particular phase, or a phase before a

particular phase.

TimeRecordingLog
timelog

" Timer

1 1 TimeRecordingLogEntry

1
manager

PSPPhaseManager

) . . 1
PSPPhaseName PSPPhase |

75
Figure 15. The relationship of times with phases.

The programmer may be working, idle, or interrupted. This leads to timer states

of running, stopped, and interrupted respectively. The state diagram for the timer is

shown in Figure 15.

Instances of TimeRecordingLogEntry can be created in two possible state

transitions (Requirement 4.4.2.1). When the state changes from “running” to “stopped”,

this implies the end of a task and the time must be recorded. An entry is also added when

a “change phase” transition happens when the timer is in the “running” state. Here, the

timer does an implicit stop and start sequence. If a programmer is disrupted many times

in the same task, the timer will accumulate disruption time (Requirement 4.4.2.3).

open project

ChangePhase ChangePhase
h 4 Start Timer Y Interrupted o
> Stopped Running Disrupted
<<
Stop Timer —_— Disruption ends
close project

V

@

Figure 16. State Diagram of Timer.

The methods that are required for the Timer are shown below.

start ().

stop (): An instance of TimeRecordingLogEntry is added to the Time
Recording Log when the timer is stopped.

disrupt ().

enddisrupt().

nextPhase(): The next phase is queried from the phase manager and a

call us made to changePhase with this phase as its argument..

76
e changePhase (PSPPhase): If the timer is running, an instance of
TimeRecordingLogEntry is created for the current phase before the
phase is changed and the timer restarted for the new phase.
e getCurrentPhase () returns the current phase that the timer is set at.

e getState () tells whether the timer is running, stopped or interrupted.

5.4. Metrics Design.

Figure 16 shows the design for implementing the PSP Metrics Plan. This design is based
on the fact that we have two distinct types of metrics that are calculated in the PSP. First,
there are phase-related metrics, which are collected from the Time and Defect Recording
Logs. Secondly there are user-defined metrics, which may or may not be computed from

the phase-related metrics.

Metric
&pvalue
&stype

Sset()

Sget()
QgetAsTime()
SsetType()
QgetType()

UserMetric PhaseValue
&ymetricname : String '@pPhase : PSPPhaseName-
&punits : String P
é&yformuia : String - R

&yspreadsheetRow : int

&official : boolean
- . LSS
PhaseVector

dsummation():

Figure 17. Design of the PSP Metrics Plan.

77

The base class for the metrics plan will be called Metric. Each instance of
Metric has a numeric value that may be a real number, an integer, or an elapsed time
(Requirement 4.6.2.4).

The class UserMetric extends the Metric class by applying a user defined
name and measurement unit (Lines of Code) to a metric value. A UserMetric instance
may contain a spreadsheet formula instead of a value. The PSP Manager will
automatically assign a spreadsheet row to each UserMetric instance.

The class PhaseValue connects an instance of PSPPhaseName (a process
phase) to a metric value. PhaseValue instances collect either time or defect counts.
Each PhaseValue belongs to a PhaseVector. The instances of PhaseVector are

built directly from the list of available phases.

5.5. Design of the spreadsheet.

PSP Manager is required to publish reports that can be converted to a Microsoft Excel
spreadsheet (Requirement 4.11.3.1). It was decided to use Microsoft Excel as the default
spreadsheet package.

PSP Manager will produce two spreadsheet reports. There is a project plan
summary and another for a career report. Appendix B shows the layout of the
spreadsheets that will be developed by PSP Manager. The tool will allocate the first eight
rows of the spreadsheet for the header of the program. Row 9 will be saved for the total
time and defects. The actual metric values will start in row 10. Table 7 displays the
usage of the columns for the Project Plan Summary spreadsheet.

The ordering of the phases in the spreadsheet will be the same as in the project’s
phase name list. The row number for a phase is calculated by taking the position of that
phase in the order and adding nine to that number. Therefore the maximum number of
rows in the spreadsheet will be the higher of:

e the number of phases plus nine.

e the highest assigned spreadsheet row in the user’s metric list.

78

Column Column Usage Column Usage

letter. = Project Plan Summary Career Report

A User Metric titles User Metric titles
B Planned values of User Metrics Career values for user metrics
C Actual values of User Metrics kept blank
D kept blank kept blank
E PSP Phase names PSP Phase names
F Estimated Time in Phase Total career time spent in each phase.
G Actual Time in Phase Percentage of time spent in each phase
H Estimated Defects Injected by Total Defects Injected in each phase.
Phase
I Actual Defects Injected by Phase Percentage of total Defects Injected in
each phase
J Estimated Defects Removed by Total Defects Removed for each phase.
Phase
K Actual Defects Removed by Phase | Percentage of total Defects Removed in
phase

Table 7. Column Layout for Excel Worksheets.

5.6. User Interface layout.

This section shows the main window of PSP Manager followed by a documentation of
the menu items. This will be followed by a look at the Test Case window. It follows a
baseline that will be used for the interface to the PSP forms.

Figure 17 provides the main PSP Manager window. A button is included for
switching the timer on and off. A second button is used to toggle interruption mode. The
phase list and available cycles are set up in the two pick lists. The timer can move to the

next phase by clicking on “next phase”. The timer can be moved to any other phase by

79
selecting the phase and clicking on “go to phase”. The remaining buttons provide access
to the forms required by PSP.

A problem is noted that clicking on “Go To Phase” must follow a selection of a
new phase and cycle in order for the new phase to be timed. Taking an action when the
phase is actually changed in the list can alleviate this problem. However, this can cause
extraneous entries in the Time Recording Log if the user selects a wrong phase or cycle
and corrects it. The delete functionality in the time recording log can be used to remove
such entries.

The Help Menu contains one command called “About”, which displays a message
box describing the PSP Manager.

The History Menu has two commands:

e Past Projects: This command brings up the list of past projects for publishing

purposes (Requirement 4.9.3.10).

e Career Report: This command publishes a spreadsheet report summarizing

the accumulation of PSP data for all completed projects.

The layout of the three remaining menus is provided in four Tables. Table 8
covers the File menu. Table 9 covers the Project menu. Table 10 covers the Logs sub-

menu of the Process menu. Table 11 covers the History menu.

E’EPSP Manages - 2 New Project EE]E

Start l Ihterruntl i

Phase -lPIanning vl Go To Phase |
cyete- [i ~] NextPhasenOrder

Detocts | - Timaiog] - TestCases|

 Eetmated metm:5|
- [Rovows]| toswes]

T

Figure 18. PSP Manager’s main window.

' Command

Open Project

Purpose

Brings up the list of current projects in a window
such that a project can be opened. New projects

can be created in this window.

Requirements

Fultilled

80

Close Project

Closes the current project.

Finish Marks the current project as complete. The project | 4.9.3.9
Project is moved to the past project list and the user’s

career metrics are updated.
Save Saves the current state of the programmer profile 4.11.39
Programmer | Allows the user to edit his name, supervisor, and 4.11.3.7
Properties programming environment.
Exit. Quits PSP Manager, stopping the timer, closing the

current project, and saving the programmer profile.

Table 8. File Menu Contents.

Command

Purpose

Shortcuts

81

Requirements

Fulfilled -

Phases for the

Project

Brings up a window for the
phase list for the current
project. A phase may be

changed at the project level.

Plan Summary

Brings up the Plan
Summary window,
covering the project name
and estimates of phase level

metrics.

None

4.93.5.

Logs

Serves as a sub menu to
access the project related

data forms.

None

None

Planned Metrics

Brings up the list of user
metrics with the planned

values for the project.

“Planned
Metrics” button in

main window.

453.2.

Actual Metrics

Brings up the list of user
metrics with the actual

values for the proiect.

“Actual Metrics”
button in main

window.

4.5.33

Table 9. Project Menu layout.

Com

mand

Brings up the project’s

- Purpose

‘Shortcuts

82

Requirements

Fulfilled

Logs: Time Control-T or “Time | 4.3.3.14,4.3.3.16
Time Recording Log. Log” button on
main window
Logs: Defects Brings up the project’s | Control-D or 445.1,4452.
Defect Recording Log | “Defects” button on
main window
Logs: Issues Brings up the project’s | Control-I or 4.6.3.1,4.6.3.2.
Issue Recording Log “Issues’ button on
main window
Logs: Test Cases Brings up the list of test | “Test Cases” button | 4.8.3.1.

cases in the project. on main window.

Table 10. Menu commands for the Logs sub-menu of the Process menu.

Command ~Purpose Requirements

| ‘ B . Fulfilled
Phases Open the master list of pases in the process |
Defect Types Opens the list of user’s defect types. 4.43.1.
Metrics Opens the master list of user metrics. 45.3.1.
PIP Opens the list of process improvement proposal | 4.10.3.1

forms.

Check Lists Opens the user’s checklists. 4.7.3.1.

Table 11. Process Menu Layout.

83

Lists are used to organize PSP data, making the layout of the User interface
revolve around the ability to perform operations on lists. Figure 19 shows an example of

a list manager.

g Test Cases

1 Hlegalinput case
12 Minimum allowed value case.
- 13 Average case.

Addnew| Delete| [Edt] Publish| close

Figure 19. List Manager for Test Cases.

Many requirements specified in the Requirements elicitation specify the addition,
deletion, and modification of components of the user’s project and process. The List
Manager contains five common buttons:

e Add new adds a new instance of a PSP class to the list being managed.

e Delete deletes the selected instance of a PSP class.

e Edit allows the user to edit the contents of the selected instance. A dialog
specific to the class of that instance will appear. Changes in the dialog may be
accepted or canceled.

e Publish allows for this data to be published to a user readable format.

o (Close closes the window.

84
Each list manager window will be specialized to manage a list of instances of one
PSP class. If a list requires additional operations, additional buttons will be available on

the window that manages that type of list.

S5.7. Summary.

This chapter provided a top down overview of the design of PSP Manager, which was
based on the requirements elicited in Chapter 4. This design shows the relationship
between the PSP data items. The chapter included a standard for the layout of the
published spreadsheets, the user interface, and the list management techniques available
to the user.

While all the components of the PSP Manager appeared at the design level, some

of the components are more easily discussed at an implementation level in chapter 6.

85

Chapter 6. Implementation.

In Chapter 5, the layout of PSP Manager was discussed. The implementation level
provides a more detailed description of how the tool will operate.

This chapter provides the key components of the implementation of the PSP
Manager classes. Of specific interest will be how the PSP data elements are organized
into its various lists. The chapter takes a brief look at each of the lists and the queries
required of each list. The chapter will also take a look into the implementation of the
class DeltaTime. the building of the Plan Summary, the publication of results, and how
the programmer profile is written to disk.

The tool and its user interface were developed using Borland J-Builder version 1.0
on an IBM PC clone. The compiled code will be combined into one archive file to

support portability between platforms.

6.1. The list classes.

Proper organization of the PSP data will make the PSP Manager code maintainable and
allow the application to be efficient. The PSP data consists of many different types of
data including log entries, times, test cases, metrics, and issues.

Each PSP data instance will be organized into a list that exclusively handles
instances of that class. This is required because each PSP data list has operations that are
specific for that type. In Tables 12 and 13, the list classes are shown with the instances
that they can handle.

The functions common for each list class are listed below. Additional methods
sensitive to a specific list may be added.

e add(instance).

e delete(instance).

e size().

86

e at (int): This method returns the instance at the given index. The list is
indexed from O to size () less 1.

e seekForString(String): Each of the classes managed by a list has a
method toString () which returns the string representation of an instance.
The method seekForString returns the object that produced the given
string as the result of calling its toString method. An exception is thrown if no

such instance is found.

List Class - -Class whose instances are Purpose

handled by this list
PSPPhaseNameList PSPPhaseName This class manages the
phases in the

Programmer’s process.

TimeRecordingLog TimeRecordingLogEntry | This class implements the

Time Recording Log

DefectRecordingLog ; PSPDefect This class implements the

Defect Recording Log

DefectTypelist DefectType This class manages a list

of user defect types

IssueRecordinglLog | Issue This class implements the

Issue Tracking Log

UserMetricList UserMetric This class manages the
list of user defined

metrics

Table 12. List classes and the instances they handle.

87

List Class . : . Class whose instances are Purpose

handled by this fist

PhaseVector PhaseValue This class implemets a
list of metrics designated
by a phase name. The
values for these metrics

are derived from logs.

PIPList PIP This class implements the
list of Process

Improvement Proposals

ListOfPastProjects | PastProject This class manages the

user’s past projects.

ListOfProjects PSPProject This class manages the

user’s current projects

CheckList CheckItem This class implements a
checklist.
CheckListManager CheckList This class manages all of

the user checklists.

TestCaselist TestCase This class manages the

Test cases for a project.

Table 13. Additional list classes in PSP Manager.

In C++ these lists could be implemented using templates. The limitations of Java
force us to implement each of the lists explicitly. A base list class that implements add,
delete, size, at, and seek could have been implemented. Specialization classes for each
PSP data storage class could also have been written, however the base class would have
to store objects under the Object class name rather than the actual class name. Under that

strategy, objects would have to be type cast to their proper class names before use.

88
6.1.1. PSPPhaseNameList / PSPPhaseName.

PSPPhaseNameList is the class that manages the process phases. An instance of this
list stores the user’s process in the profile. It is copied as the phase list when the user
creates a project. Specific functions are required for the phase list. They are as follows:

e startingPhaseName ()

¢ endingPhaseName ()

e nextPhaseName (PSPPhaseName)

e previousPhaseName (PSPPhaseName)

e clone(): This method allows PSPPhaseNameList to create a copy of
itself. The result is a deep clone where each phase name in the list is copied.

¢ moveUp (PSPPhaseName): The given phase is moved up one position in
the list. This method returns a void.

e moveDown (PSPPhaseName): The given phase is moved down one

position in the list. This method returns a void.

6.1.2. TimeRecordinglog / TimeRecordingLogEntry.

The TimeRecordingLog class manages a list of instances of
TimeRecordingLogEntry. The contents of the Time Recording Log entry were
shown in Chapter 2 (Table 3). The date of the entry is determined by extracting the date
from the start attribute of the entry as the entry was initialized on this date. PSP
Manager assigns a unique identifier to each instance of TimeRecordingLogEntry
for the purposes of searching.

TimeRecordingLog requires additional functionality such that queries can be
made on the amount of time spent. The Plan Summary window provides three queries,
which are made self-explanatory by their method names.

e getTimeForPhase (PSPPhaseName) returns the total time recorded in

the log for the given phase

e getTotalTime () returns the total time recorded in the log.

89

e publish() converts the time recording log into a report.

6.1.3. DefectTypeList / DefectType.

The DefectTypelList manages the user’s defect categories. Defect Types are
discussed in Chapter 2. The DefectTypelList must assure that no two instances of
DefectType in the list have the same identification string.

Through the exception handling capabilities in Java, identifiers for new defect
types can be computed. To determine an ID for a sub-type an existing defect type, a
whole number is concatenated to the ID of the defect that is to be sub-typed. PSP
Manager starts with 1 and increases this number until the defect type is added to the list.
Assigning an ID to a new defect type requires the identification of the lowest whole

number that is not already in the list.

6.1.4. DefectRecordingLog / PSPDefect.

The DefectRecordinglLog, class manages the defects found in a project. The design
of the defect recording log is shown in Chapter 2 (Table 4). PSP Manager automatically
assigns unique identifiers to each defect.

Three queries can be placed on the Defect Recording Log in the same way as the
Time Recording Log. While the size of the list determines the total defect count, the Plan
Summary window will request for a defect report by phase. In addition, the user may
request a publishing of the Defect Recording Log.

Defect fix time is accumulated as the Defect is being edited. A
GregorianCalendar instance is created to log the time of the opening of the editor
window with another being created when the defect is saved. A DeltaTime is
computed from the GregorianCalendar instances and added to £ixTime when the
defect instance is updated.

The following three queries will be performed on the Defect Recording Log.

90
getDefectsInjectedForPhase (PSPPhaseName) returns the total
defects injected in the given phase.
getDefectsRemovedForPhase (PSPPhaseName) returns the total
defects removed in the given phase.

publish () :converts the Defect Recording Log into a report.

6.1.5. Checklist Management.

A user will have many checklists in his process, and each checklist will consist of many

items. This leads to a tree structure that is diagrammed in Figure 20.

PSP defines three classes for checklist management.

CheckItem to represent a single check point.

CheckList: associates many CheckItem instances with a
PSPPhaseName.

CheckListManager manages all of the checklists for the user. Checklists
are automatically added as new phases are introduced. A checklist cannot be
deleted if there are any projects that involve the phase associated with the

checklist.

CheckListManager CheckList Checkitem

Figure 20. Checklist relationships in PSP Manager.

6.1.6. IssueRecordingLog / Issue.

The class IssueRecordingLog manages a list of instances of the class Issue.

Since the entire IssueRecordinglog is usually published in one report, a publish ()

method has been added to IssueRecordingLog class. The date and phase resolution

fields will remain empty until the user marks the issue as resolved.

91
6.1.7. TestCaselList / TestCase.

Each instance of PSPProject contains an instance of TestCaseList that stores the
test cases for the project. The test cases are all combined into one report which can be

published through the publish () method in class TestCaseList.

6.1.8. PIPList / PIP.

The programmer profile contains an instance of PIPList that is used to store the
programmer’s process improvement proposals. They can be accessed at any time PSP
Manager is running. PIP forms are not to be confused with project issues. It is assumed
that each problem is associated with one suggested solution. Since PIP form in PSP is
published individually the publish () method for PIP forms will be in the PIP class
instead of the PIPList class. The user can select PIP instances to publish in the

PIPList manager window and click on the publish button.

6.2. The DeltaTime class.

DeltaTime will store time spans to a precision of seconds, presenting them in the
format HH:MM:SS. Time spans can be found in the Plan Summaries, the Time
Recording Log, and the fix time of PSPDefect instances. The timer also uses it to

accumulate interruption time.

6.3. The creation of a new project.

A new instance of PSPProject is created based on the contents of the process stored in the
programmer profile. The phase list for a new project is copied from the programmer
profile. This phase list is then the basis for developing instances of PhaseVector to store
time and defect data from the data logs. Two copies of the metrics plan are created from
the programmer profile for storing planned and actual metrics. To collect data, space is

allocated for instances of TimeRecordinglLog, DefectRecordingLog,

92

IssueRecordinglLog and TestCaseList. The project will refer to the

programmer profile for checklists and defect types.

6.4. Conversion of a PSPProject into a PastProject.

When the user declares a project as finished, it is converted into an instance of

PastProject. The PastProject will provide the following queries such that

historical analyses can be used towards the estimation of future projects (Humphrey,

1995a)..

getEstimatedTime () returns the estimated total project time in minutes.
getActualTime () returns the actual total project time in minutes.
getEstimatedSize () returns the estimated official size of the project.
getActualSize () returns the actual official size of the project.

publish () will provide a complete report on the project.

6.5. Building the Plan Summary.

E%; Project Plan Summary B [=] E3

Project Name | Time |[Defects injected]. Defects Removed |

Plém Actual
Tetw - Jo .]o
Phase’-:. Plannirig,~- IU rc
NextPhase_' F‘raw’ous phasel .

- Cancell ok| - Publishl -

Figure 21. Plan Summary window.

93
The Plan Summary window (shown as Figure 21) can be summoned at any time by
selecting “Plan Summary” from the “Project” menu. The Plan summary has two
purposes: to maintain the project’s identification data and to allow the user to estimate the
time and defects by the phase.

The Plan Summary window consists of four panels. The Project Name panel is
for the project name details while the other three panels are used to collect estimates of
the time, defects injected, and defects removed respectively. Only the estimate for each
phase can be edited. The other fields in the panel are there for comparison. Clicking on
“Next Phase” or “Previous Phase” will move the estimation panel through the phases.

The Plan Summary window uses copies of the actual project estimate instances of
PhaseVector in the project. This allows changes to be discarded if required. Clicking on

Publish will create the Plan Summary as a Microsoft Excel spreadsheet.

6.6. Publishing.

The PSP Manager will provide two types of report. There are the PSP forms such as the
Time Recording Log and spreadsheet reports such as the Plan Summary window. All
reports will be created as text files on disk. Table 14 provides the default file names for
the naming of the report files. A helper application can be opened to read, edit and save
these files. Spreadsheet reports will use the comma as the delimiting character. When
this type of text file is opened in the package, the user will be queried by the spreadsheet

as to how to import the text.

“Type of file. File name format.

Printable text report Username.projectname.formtype.txt

Microsoft Excel ready text delimited | Username.projectname.formtype.xls.txt

spreadsheet.

Table 14. File naming standards.

94

6.7. Saving the Programmer Profile to disk.

Java provides a persistence model through the Serializable interface. Instances of a

class that implement Serializable can be written to an output stream (Flanagan,

1997). In the case of PSP, all PSP data is persistent. Saving a persistent object to a file is

a three-step process.

An output file is be opened by creating a FileOutputStream. Its
constructor requires the name of file to be opened for writing.

The output file is converted to an instance of ObjectOutputStream.
Passing the FileOutputStream as the sole argument to its constructor
makes an instance of this class.

The object is written to the disk by calling cos.writeObject (target),

where oos is the instance of ObjectOutputStream created in step 2.

The writeObject method does a recursive traversal of the target object. As

Programmer stores all the PSP data related to the user, it is the only object that must be

written to the disk.

Loading the object from a file on disk takes on a similar three-step process.

The input file is be opened by creating a FileInputStream. Its
constructor requires the name of file to be opened for reading.

The resulting stream is converted to an instance of ObjectInputStream.
The object is read from the disk by calling ois.readObject (), where
ois is the instance of ObjectInputStream created in step 2. This
returns an instance of Object that can be type cast to an instance of the

Programmer class.

The loading of the file can encounter possible error conditions. The file may not

be found, the contents of the file may have been tampered with, or the file opened may

not contain a Serializable Java object.

95

This strategy leads to a brittle persistence model, which lacks versioning and
upgrade support. A persistent Java object in a file may not be usable when changes are
made to the definition of the classes represented in that object. While the object is
readable, the Java virtual machine may not be able to type cast the result to fit the
changed class. When this happens, a ClassCastException is thrown bearing a

message that a local class may have been changed.

6.8. Summary.

This chapter has provided a detailed report on the implementation of the PSP Manager
automated PSP support tool. The tool was implemented as a Java stand-alone application
using the Borland J-Builder development environment.

PSP data was organized in lists. Each list of PSP data has its own unique queries
that can be asked. Absolute times are stored as an instance of GregorianCalendar.
Time spans are stored in instances of DeltaTime. The creation of a project was also
discussed. The chapter wraps up with how the PSP Manager will write files to disk.

In Chapter 7, the effectiveness of PSP Manager will be evaluated.

96

Chapter 7. Evaluation of the implementation.

The chapter will evaluate the PSP Manager implementation. There are three key fronts
on which the tool will be evaluated.

The first step will be to go back to the requirements in Chapter 4 and see if every
one of them has been fulfilled. If one of the requirements has not been fulfilled, it is
necessary to discuss why it was not.

A second evaluation process is made available courtesy of the Software
Engineering Institute. This department at Carnegie Mellon University in Pittsburgh,
Pennsylvania, USA is responsible for the PSP. They have published a guideline for
developing automated support for the PSP (SEI, 1996). The PSP Manager will be
compared to these guidelines.

The third evaluation is to look at the critical review of the PSP support tools
evaluated in chapter 3 and see how this tool has covered shortcomings of the other
support tools.

The results of the evaluation will be the basis for the conclusion in the next
chapter, where it will be determined if the aim, objectives, and key tasks denoted in

Chapter 1 were successfully fulfilled.

7.1. Fulfillment of the requirements.

The first step in the evaluation is to determine if the requirements elicited in Chapter 4
have been fulfilled. The evaluation of the requirements will be aided by referring to each

uniquely numbered requirement in Chapter 4.

97
7.1.1. Phase Management.

It was determined that the PSP Manager required the management of a list of available
phases. PSP Manager uses the Java Vector class to maintain the ordering of the phases
(4.2.2.1). The phase names can be moved within the vector (4.2.2.7 and 4.2.2.8). If an
attempt is made to add a duplicate phase name to the list, an exception is thrown
(4.2.2.2). If a phase is renamed, the new name is checked against the rest of the list. Ifa
match is found, the change is not accepted. If the match represents the actual instance
being changed (this is the case when phase X is renamed to phase X), no change is made.

The user interface that manipulates the list assures the list is in the proper order
through refreshing the list on every update (4.2.2.3). When a phase is added to the list
(4.2.2.4), it is added to the end of the list. It is up to the user to rename it and move it into
position. A phase can be deleted from the list by highlighting it and clicking on “delete”
(4.2.2.5). Using the rename (4.2.2.6) button, the phase can be renamed.

Based on the analysis of the requirements, it is concluded that
PSPPhaseNameList, its methods and its user interface provide complete fulfillment

of the requirements for phase management.

7.1.2. Timing requirements.

Time recording log entries are automatically created as the user stops the timer (4.3.2.1).
All fields specified in Requirement 4.3.2.2 are supported in the Time Recording Log
entry edit facility.

Interruption time is tracked in the timer as an instance of DeltaTime.
Interruption time is initialized to zero when the timer is started. As a disruption is ended,
the time of the disruption is computed and added to the total interruption time for the task
(4.3.2.3). The user interfaces allows the user to request the Time Recording Log at any

time in the project. (4.3.2.4) Entries can be edited (4.3.2.5) or deleted (4.3.2.6).

98
It is therefore concluded that the classes DeltaTime, TimeRecordingLog
and TimeRecordingLogEntry combined with the design of the user interface

provide complete requirements of the timing component of PSP Manager.

7.1.3. Defect Type Management Requirements.

Access to defect types is done through the user interface (4.4.2.1). A delete method in
DefectTypeList fulfills Requirement 4.4.2.2. Requirement 4.4.2.3 is fulfilled through an
editing facility in the user interface.

The next available whole number that is not used in the list will be set as the
identification number of a new defect type (4.4.2.4). When a defect type is assigiied a
subtype, a sub-type number is appended to the identification number of the defect to be
sub-typed. This constitutes the identification number of the new defect (4.4.3.5). Both
cases of adding defect types were successfully tested.

This concludes that the DefectType and DefectTypeList classes along

with the user interface fulfill all defect type management requirements.

7.1.4. The Defect Recording Log Requirements.

The Defect Recording Log is accessible throughout the user interface (4.4.4.1). The edit
facility supports all required fields in the defect (4.4.4.2 and 4.44.5). The Defect
Recording Log has both add (4.4.4.3) and delete (4.4.4.4) methods. A defect may either
be fixed or saved without fixing through the user interface (4.4.4.6).

All methods of the PSPDefect and DefectRecordingLog were
successfully tested. It is concluded that the classes PSPDefect and

DefectRecordingLog fulfill all requirements for defect management.

7.1.5. User Metric management requirements.

The user interface provides access to the user’s metrics plan at the project plan, project

actual and career level (4.5.2.1, 4.5.2.2, and 4.5.2.3). While each data item is stored as a

99
double precision floating point number, each real number in a metric can be converted to
an integer or DeltaTime instance when required (4.5.2.4).

Two edit facilities are provided for a user metric. One facility edits the metric’s
name, type and measurement unit (4.5.2.5). The second facility controls the value of a
metric (4.5.2.6) as well as its spreadsheet formula. The computation of Metrics from the
Time and Defect Recording Log data is done through the PhaseVector class (4.5.2.7).
As they are required, project relevant instances of the PhaseVector class are
automatically updated.

Formulae and numbers in the metrics plan can be published in a Microsoft Excel
readable format. (4.5.2.8). When the spreadsheet is opened, formulae are automatically
computed.

The User has an official size metric. One is marked as such in the default
programmer profile (4.5.2.9). The current official size metric can not be taken off the list,
however it can be changed (4.5.2.10 and 4.5.2.11).

All methods and use cases were successfully tested and it is concluded the classes
PhaseVector, PhaseValue, UserMetric, and UserMetricList fulfill the

requirements for the PSP Metrics Plan.

7.1.6. Issue Recording Requirements.

The log of issues is available through the user interface (4.6.1.1). All fields of the issue
are included in the edit facility (4.6.1.2). The user may add (4.6.1.3), delete (4.6.1.4), and
edit (4.6.1.5) any issue in the log. The edit facility allows the user to resolve an issue or
mark it as outstanding (4.6.1.6).

All use cases and object methods were successfully tested. It is therefore

concluded that the requirements for issue management were fulfilled.

100

7.1.7. Requirements for reviews.

Access to checklists was made available through a menu command (4.7.2.1). A checklist
is automatically created whenever a new phase is introduced into either a project or the
overall process (4.7.2.2). Check items may be added (4.7.2.3), deleted (4.7.2.4), or edited
(4.7.2.5). A publish command is available for checklists (4.7.3.6).

All use cases were successfully tested and it is concluded the requirements for
checklist management were fulfilled. However, there is a concern. A CheckList
instance cannot be deleted at the time a phase is deleted. This is because there are
instances of the phase list at both the project and process level. It is essential to assure
that the phase is not in the process or in any current project before deleting a checklist. It
is more viable to delete a Checklist instance automatically to prevent the user error of

deleting the wrong checklist.

7.1.8. Test Case Requirements.

The TestCaseList instance for the current project is managed through a user interface
that is accessible through the Project menu (4.8.2.1), complete with add (4.8.2.3), delete
(4.8.2.4), and edit (4.8.2.5) facilities. Each test contains a state variable that shows
whether the test is successful, unsuccessful, or incomplete (4.8.2.2).

The classes and their methods were successfully tested and therefore it is
concluded that the classes TestCaseList and TestCase fulfill the requirements for

the Test Case management component of PSP Manager.

7.1.9. PSP Project Requirements.

Requirements 4.9.2.1 through 4.9.2.5 are fulfilled through instance variables in the
PSPProject. The Plan Summary window can be opened at any time (4.9.2.6). When the
plan summary is opened, new PhaseVector instances are created with up to date time and

defect data (4.9.2.7, 4.9.2.8). Through the use of copies of the original estimate vectors

101
in the Plan Summary, any changes in the estimates are discarded if the “cancel” button is
pressed on the Plan Summary.

Updating the “To Date” vectors in the programmer profile is a part of the “Finish
Project” task (4.9.2.9). A publish method in the resulting historical project makes a
complete publication of the project data forms (4.9.3.11).

Therefore, it is concluded that the PSPProject class fulfills the requirements

for data storage of the PSP project.

7.1.10. Process Improvement Proposal (PIP) requirements.

The PIP and PIPList classes were successfully tested. This component manages a list
of instances that contain text information. A user interface and edit facility was created to

fulfill all five of these requirements.

7.1.11. The Programmer Profile Requirements.

The user is assigned a programmer profile that was made persistent through
implementing Serializable (4.11.2.1). Two vectors were maintained for the
programmer’s projects: one for the current projects and one for the past projects
(4.11.2.2). The user has a master personal process consisting of a master list of phases,
checklists, and defect types (4.11.2.3). The user has a facility to maintain PIP forms
(4.11.2.4). Three PhaseVector instances are used to maintain the career time and
defect metrics (4.11.2.5). The user can store his master metrics plan as part of his profile.
The values and formulae of the metrics are used for to store career to date data (4.11.2.6).
Personal information on language, name and supervisor is stored (4.11.2.7).

All tests passed and it is concluded that the Programmer class successfully

fulfills the requirements for the Programmer Profile.

102
7.1.12. Miscellaneous Requirements.

Four additional requirements were elicited for two purposes: publishing and platform
independence. They are listed as follows:

If a form is publishable, the interface to manage that form will include a publish
button (4.12.1.3). The Plan Summary and Career Report will be spreadsheets (4.12.1.1).
The remaining reports will use straight text files for creating reports (4.12.1.2).

Requirement 4.12.2.1 is fulfilled within the limitations of the Java programming
language. Command line platforms cannot support the graphics required of the PSP
Manager. It requires a graphical user interface as a platform. It is difficult to make the
spreadsheet component platform independent. There are many spreadsheet packages
available. However, not all of these forms may be able to read the comma delimited text
based spreadsheet produced by PSP Manager. The formula language for each
spreadsheet value is different. The latter problem can be fixed through adjustments in the
formulae in the user metric list. It is assumed that Microsoft Excel will be the
spreadsheet package used.

This concludes that all four external requirements and constraints were fulfilled.

Since no problems were found, it is concluded that the requirements elicited in

Chapter 4 of this thesis were fulfilled by the PSP Manager implementation.

7.2. Meeting the SEI framework.

The Software Engineering Institute in Pittsburgh, Pennsylvania is responsible for the
administration and promotion of the PSP. It has published a guideline for the automated
support for the PSP (SEI, 1996). This guideline provides recommendations for the
requirements elicitation phase of the PSP tool development life cycle.

The analysis of PSP Manager against the SEI specification will be completed
through taking key statements from the specification and explaining how the PSP

Manager covers these statements.

103

7.2.1. End-user customization.

The SEI suggests that some end user customization may be built into the software. They
specify examples of customization such as the renaming of programming phases or the
development of defect types (SEI, 1996).

The PSP Manager provides end user customization in four ways. The phase list
may be expanded and phases may be renamed or deleted. Defect types can be added and
deleted. Checklists can be customized to the user’s preference through additions and
deletions. Metrics in the PSP metrics plan can be adjusted for the user’s own practice.

The SEI recommends that the user get a full understanding of the PSP and its
framework before making changes to it to support a personalized software process. Since
PSP Manager starts the user with a default PSP profile, the user can use the PSP Manager
for his first PSP project after the course.

7.2.2. Statements on Data privacy.

The SEI specifies that it is important that a person’s PSP data is private with the ability to
provide public access to completed forms. It is important that the programmer profile
remain secure. While the programmer profile is a binary file on disk, it can be copied by
anyone who has access. An assumption has been made for the purposes of PSP Manager.
It is assumed that the user will use the security features provided by the hardware,
network and operating system for protecting his programmer profile.

Through the use of the publish interface, text files and spreadsheets can be
developed. These files and spreadsheets can then be copied or moved to in the user’s

public domain, FTP, or world wide web directory.

7.2.3. Duplication of Data.

The SEI recommends that PSP data is automatically copied among forms, eliminating the

need to copy data twice.

104

The forms in PSP Manager are automatically updated as they are required.
However there is one problem that must be addressed. When PSP Manager publishes a
spreadsheet, metrics that are computed by a spreadsheet formula filled by copying the
formula to the spreadsheet file. However, PSP Manager has no communication with the
spreadsheet package. When the spreadsheet is opened for the first time, the results are
not automatically copied back to the PSP Manager metrics. It is up to the user to enter
them into the project’s metric list before declaring the project finished.

There are three strategies that can alleviate this problem. If PSP Manager strictly
adopts the original metrics plan of PSP, the formulae can be hard coded into the
implementation. However, forcing one metrics plan limits the user’s ability to customize
a personal process. Some key metrics required by the user may not be in the standard
PSP, and some users may find a number of the metrics in the standard PSP as useless.
Since customization is a key theme in PSP Manager this strategy is not viable.

The other alternative is to design a specific formula language within PSP
Manager. Similarly, a framework can be derived for the Java application to communicate
with the Spreadsheet package to retrieve the calculated values of formulated metrics.

Both of these options can be treated as an option for future development.

7.2.4. Users can operate in any phase they think is appropriate.

Even though the layout of the PSP implies an ordering of the phases, the SEI suggests the
user be given the ability to operate in the phase of his choice. Phase A may naturally
happen before phase B. However the system cannot block the user from performing in
phase B if there are no time recording log entries for phase A.

The PSP Manager addresses this statement through the timer’s interface. The user
can choose which phase and cycle he works in at any time from a picklist and choose “Go

To Phase”.

105
7.2.5. On-line help.

The SEI recommends adequate on-line help be made available with the PSP support tool.
“Adequate” can be viewed as ambiguous in this context. Each software engineer
has his or her own notion of what is adequate. While there is no explicit help file in PSP
Manager, the user interface for PSP Manager is made self explanatory through proper
wording of the menu files. In addition, each user-defined string in newly created
instances of PSP classes is initialized with a help string, showing the user where to place
his data. While these concepts hold true for every graphical user interface, many
applications still use help files and windows. Since PSP Manager does not have an

explicit help facility, it is concluded this requirement is not fulfilled.

7.2.6. Header information.

The SEI recommends that header information be inserted when any form is generated.
The header includes the programmer’s name, the date, the project number, and the project
name. For some forms the programmer’s supervisor and programming language are
included.

Each instance of a PSP data form template belongs to either a PSP Project or a
Programmer. When any PSP data form or template is published to text or spreadsheet,
the header information is collected from the project and programmer classes and inserted

at the top of the text file.

7.2.7. Availability of the Log forms.

The SEI recommends four forms should be user-accessible at all times during the
development process: the Time Recording Log, the Defect Recording Log , the Process
Improvement Proposal, and the Issue Recording Log.

PSP Manager conforms to this statement as shown in Table 15.

106
7.2.8. Phase and Time Recording.

The SEI states that the PSP support system needs a means to record which phase

the user is in (the end-user supplies phase information to the system), and to measure the

corresponding elapsed times spent in the phase

Form required by SE1 " ' Menu Selection.

Time Recoring Log Project-Logs-Time Recording Log
Defect Recording Log Project-Logs-Defect Recording Log
Issue Recording Log Project-Logs-Issue Recording Log
Process Improvement Proposal Process-Process Improvement Proposals

Table 15. PSP Manager’s instant access to Log Data.

This statement is fulfilled through the timer device. The timer automatically fills
out the Time Recording Log as the timer is operated. The user through his selection from
the phase picklist supplies the phase information. Timing is done through a start-stop-

interrupt state machine.

7.2.9. Project Planning.

The SEI supplies a statement regarding estimation of tasks. *“To perform a
programming task, the PSP requires that historical data are available (to predict
productivity, defect injection/removal rates and code size).” (SEI, 1996).

This statement promotes the PROBE method (Humphrey, 1995a) for the
estimation of software size. PROBE takes two inputs: an estimate of the size of a new
program and the user’s historical database. A regression analysis is done on the historical
database to yield a projected size estimate for the new.

While the PSP Manager implements the historical database through the
PastProject and ListOfPastProjects classes, PROBE is not explicitly stated

as a requirement in Chapter 4. PROBE has been considered as an optional requirement

107
that is to be considered for future work. Another consideration is that not every
programmer may be comfortable in using PROBE. Therefore, when PROBE is available
in any automated PSP support tool, there should be no obligation to use it.

PROBE is a useful tool when it is used in the default PSP process with at least
three past projects (Humphrey, 1995a). However PROBE can become useless when a
customized process has been fitted to PSP Manager. PROBE uses the metric called New
and Changed Lines of Code as the unit of size measurement. If a programmer is to
change the official size metric, an adjustment or mathematical model may be required to
make PROBE effective.

PROBE relies specifically on a linear correlation between the estimated program
size and actual final program size. Regardless of how a user measures his program size,
if he can establish this linear relationship for his metrics, then PROBE would be
effective. Without this linear correlation, PROBE will produce an ineffective projected
estimate and a large limit on the error of estimation. If linear correlation is not effective,

the user may investigate correlation at a quadratic, exponential or higher level.

7.2.10. Enhanced Issues.

The SEI suggests enhancing Issues in the Issue Recording Log through adding a
Resolution Phase. The PSP Manager actually added two fields to the Issue class. In
addition to the resolution phase, PSP Manager added an additional string to describe how

the issue was resolved.

7.2.11. High Level Design.

High level design covers the development of design documents. At a personal level, the
layout of design documents is dependent on the standards of the programmer involved.

In chapter 4, an assumption was made that external software development tools
are available for the development of system designs. Under this assumption, the

programmer would not use the four design templates in PSP (Operational Scenario, Logic

108
Specification, State Specification, and Functional Specification). A user should not be
required to take a design document and change it to fit the PSP templates.

Modem software design tools can cover the PSP design templates. The Unified
Modeling Language (UML) provides an excellent example. The State Diagram, Use Case
Diagram, and Sequence Diagram in UML provide a graphical representation of a design
that cannot be done using the State Specification, Logic Specification, Operational
Specification, and Functional Specification templates in PSP.

Even though all developers do not use UML, there are other CASE tools as well
as design tools that serve as a suitable replacement for the PSP design forms. For these
reasons, the PSP design templates were not considered as requirements for PSP Manager.
However, they can be considered as future extensions that a user should not be obligated
to use.

The design review is supported through a separate phase and checklist. Check
items are supplied for the design review in the default PSP profile, however the user may
change them. Test cases can be developed at this time through use of the Test Report

Template.

7.2.12. Development.

The SEI provides the following steps for development.
e Module Design
e Module Design Review
e Coding
e Develop Test Cases.
e Review Code.
e Compile
e Test

e Recycle

109

The Module Design and its review progress similarly to the high-level design
phase. Design at a module level is required for large programs but may not be required
for small programs (SEI, 1996).

During the development and testing phases, the main interaction with the PSP
Manager is the timing steps. Test cases can be added to the test cases previously
developed in the high level design through partial completion of the test report templates.
If defects are found, the Defect Recording Log can be updated.

A project can be recycled using PSP 3 and the incremental model of software
development. A project is recycled if the product produced at the end of the PSP phase
ordering requires additional functionality. The number of cycles can be set in the Plan
Summary form. The default number of cycles is 1.

For some projects, a cycle may not constitute a complete iteration of the phase
list. If this is the case, some phase and cycle combinations will not be covered and will

show zero time in the time log.

7.2.13. Post Mortem.

The purpose of the Post Mortem phase is to summarize the program and compute the
metrics required based on data in the Time Recording Log, the Defect Recording Log,
and the size data. The SEI provides a PSP Spreadsheet similar to the one being published
by the PSP Manager.

The user asks the tool to publish the Plan Summary spreadsheet. The summary is
published and the spreadsheet package is opened such that the result can be imported. It
is up to the user to port these results back to the project. The user declares the project as
finished so that the career data is updated. It is assumed that the user keeps the completed

spreadsheets for publishing purposes.

110
7.2.14. Summary of SEI Requirements.

It is concluded that the PSP Manager supports a subset of the requirements as set out in
the SEI guidelines for PSP automated support. The SEI requirements that were fulfilled
by PSP Manager covered the basic workflow of PSP.

PSP Manager provides a transparent data collection that can be accessed
throughout the development process. PSP Manager was found to have a detailed level of
user customization. It gives the user the flexibility to perform in any phase he feels
comfortable with. The user has full access to every form through either a menu selection
or button. Timing is done dynamically with the automatic creation of the Time
Recording Log. Additional fields were added to the Issue Recording Log and Test
Report Template forms.

The main drawback of PSP Manager is the need to copy metric data from a
completed spreadsheet into the appropriate metric values in the Programmer profile.

A number of components were not covered because they may not be used in a
customized personal software development process. The design templates of PSP are not
included in PSP Manager under the assumption each programmer has his own external
design tools. PROBE was not specifically covered in PSP Manager because it was found
that PROBE may not be suitable when the user makes a change to the size measurement

proxies.

7.3. Comparison to the other PSP Support Tools.

In Chapter 2 of this thesis, four automated support tools that support PSP were
introduced. They are Timelog, Timmie, PSP Studio and psptool 0.6. In Chapter 3 of the
thesis, their advantages and disadvantages were discussed. This section is dedicated to
seeing if PSP Manager successfully covered disadvantages of the tools while maintaining
the advantages. Three of the four tools (psptool 0.6, Timelog, and PSP Studio) will be
covered. Timmie is not covered since it is not specifically geared to automate the

execution of PSP.

111
7.3.1. Comparison to psptool.

The main problem with psptool (Wolesley, 1997) was that the Time Recording Log and
Defect Recording Log was not editable without complicated file manipulation. It is
important to make data editable in event a mistake was done. The PSP Manager
alleviated this problem through making this data editable. This was completed through
the development of editing dialog boxes for both data types. Access to the defect dialog
is standard for all defects. While the actual timer details cannot be edited, the Time
Recording Log entries can be edited. Access to the time recording log entry dialog box is
optional for each entry.

A historical analysis is made easier in PSP Manager through the PastProject
class. A past project can be published or simply queried for the relationship between the
estimates and actual values of total size and total elapsed time. With psptool, you must
manipulate files to get at data from the past projects.

PSP Manager supports many outstanding projects at a time, while psptool only
supports one outstanding project.

Since PSP Manager stores all projects in one programmer profile under unique
identifiers, there is no risk of clobbering old projects by using the same name as a new
project. Since psptool stores each project in a separate file, there is a risk of a clobbered
file when a new project is named the same as an old project. The psptool does not query
the user of this problem using an “are you sure” dialog.

PSP Manager does not force to user to base estimates of time and defects based on
previous “To Date” percentages for setting estimates. This is not possible in psptool.
Through avoiding use of the “To Date” methods, the user can specifically allocate the
time more specifically to tasks.

Finally, PSP Manager provides text reports or spreadsheets for all PSP data forms,

compared to no reports from psptool.

112

7.3.2. Comparison to Timelog.

Timelog (Clemens, 1997) only covers the Time Recording Log component of the PSP
process. Full support of PSP goes well beyond just recording time.

Like Timelog, PSP Manager is a Java application that is platform independent.
While Timelog supports multiple processes, PSP Manager provides limited support for
multiple processes. PSP Manager maintains a master process that is applied to newly
created projects. The master process can be changed between new projects.

The main problem with Timelog is that the timing is confusing compared to PSP
Manager. Timelog uses two “Now” buttons to fill the start and stop time fields with time
data. A third button (add) must be clicked to add the entry to the log. Interruptions are
dynamically timed. PSP Manager uses the time component of GregorianCalendar
instances to log the start and end time, computing the time span automatically.

PSP Manager does not inspect time strings until it is necessary to do so. If an
illegal time string is found, the user is notified such that he can fix it. Restoring the old
time in the case of Timelog causes a total loss of work, even if it could have been fixed
with a couple of keystrokes.

Like psptool, Timelog does not print reports. The Time Recording Log in PSP

Manager is publishable to a text file.

7.3.3. Comparison to PSP Studio.

In comparing PSP Studio (Henry, 1997) to PSP Manager, two issues are raised: the issue
of end user customization and the target population.

The PSP Studio seems to be designed for those who are taking the course. [t
supports all seven levels of PSP from PSPO to PSP3. PSP Studio also supports all the
available PSP forms and implements dynamic timing. It is specifically targeted to people
taking the PSP course as well as the instructors.

PSP Manager is designed to use the PSP as a baseline to develop one’s own

personal software development process. Its target population is engineers who have

113
already taken the PSP course. Since it is assumed that the target users of the system have
taken the PSP course, they will take one version of the PSP process and make
modifications to it.

PSP Studio requires a Microsoft Windows platform. It is not platform
independent. Even if you use Windows, the organization of the forms is difficult to
navigate. PSP Manager makes navigation of PSP data forms simpler through a main
window that provides simple access to every PSP data item. PSP Manager includes
shortcut buttons to the most important PSP forms. The PSP Studio has a toolbar, but it
requires buttons for the key PSP tasks such as toggling the timer on and off, changing
phases, and creating new defects.

The main reason that more established engineers would prefer to use PSP
Manager over PSP Studio is the fact that PSP Manager allows the user to customize the
tool to his or her own development process. The PSP Studio requires the user to follow
the PSP to the letter. It supports the customization of defect types only. This is not
viable for established engineers, who already have their own metrics plan, phases, and
checklists. Also, they may not use some of the PSP features like PROBE and the design
templates. They want a support tool that can be fitted to their practice. The PSP Manager
provides the users with this functionality. It allows the user to implement process
changes and improvements in the process as opposed to proposing solutions. Check lists
are available for every phase because some users have processes that use checklists

consistently.

7.4. Problems: Data quality.

One of the major concerns in collecting PSP data is the assuring the quality of the data.
Disney and Johnson performed an investigation into PSP data quality and found a number
of problems that could be encountered (Disney and Johnson, 1998).

The investigation covered hand collection and calculation of PSP data. While

many of the problems specified by Disney and Johnson can be alleviated by automated

114
support, there are still some problems that could arise in the data collected by PSP
Manager.

e Errors in Time Recording Log Entries.

e The cumulative fix time for defects removed in a phase is greater than the total

time spent in that phase.

Since the time of each state change in the timer must be recorded dynamically, the
start time is always before the stop time in each entry. The worst case here is that the
stop time of an entry can be the start time of another entry (when the phase is changed
while the timer is running). Similarly, interruptions can only happen between the start
and stop times of the entry. This makes it impossible for an interruption time to be larger
than the delta time.

Therefore, the problem of overlapping Time Recording Log entries is impossible
in PSP Manager until the user starts editing the entries. The user can inject a defect in an
entry in two ways. First, he can set the start or stop time to be between two other entries.
A more serious problem evolves when the interruption time is be edited to be larger than
the time difference between the two times. The result is a negative delta time, which
implies time saved in a phase! While both cases are physically impossible, the latter
problem must be prevented because it has a severe effect on the Time in Phase
component of the Plan Summary. Checking for overlaps after an edit is possible, but
expensive for a large project with a large Time Recording Log.

It is possible in PSP Manager that the defect fix time for all defects removed in a
given phase may exceed the total time spent in that phase. While there is no specific
analysis of defect fix time in PSP Manager, it is important to be aware of the cause of this
problem, which is the opening of defects when the timer is not running. Defect fix times
are not tied to the timer but to the life span of the defect windows. This could cause a
problem in three ways. First, the user could be interrupted when fixing a defect.
Secondly, the user could forget a defect is open. Third, if a defect is saved as unfixed,

time to fix that defect is not accumulated until that defect is opened again, even if a fix is

115
suddenly discovered for that defect. This problem may be fixed in two ways. First, the
user can be asked enter the fix time explicitly. However the user’s estimate of a defect
fix time is subjective. The other alternative is to have the timer dispatch events to the

defect editing windows as its state changes.

7.5. Summary.

This chapter provided an evaluation of the implementation of PSP Manager. The
evaluation was performed on three fronts. First, the tool was evaluated against the
requirements elicited in Chapter 4. Second, it was compared with the SEI guideline for
PSP automated support. Third, it was compared to three PSP support tools currently
available.

It was found that all the requirements elicited in Chapter 4 were fulfilled. Some
problems were identified when PSP Manager was compared to the SEI guidelines for
PSP automation. Problems were found in regards to the usage of PROBE, the usage of
design templates, the lack of on line help, and the transferability of results from a
spreadsheet to the PSP Manager classes. These problems are related to the customization
component of PSP Manager and could have been alleviated through having PSP Manager
make the user follow the default PSP. However implementing the tool to follow the
default PSP would violate the customizability of the PSP as requested in section 7.2.1.

It was found that PSP Manager provided coverage for the disadvantages of
psptool, PSP Studio, and Timelog, although it was found that some of the advantages
were compromised to alleviate the disadvantages.

The chapter wrapped up with a comment on data quality and two problems that

will require functional extensions to PSP Manager.

116

Chapter 8. Conclusion and Future Directions of Work.

This thesis was focused on the development of software tool support for a customized
personal software development process. This chapter wraps up the thesis by determining
how PSP Manager fulfilled the key tasks, objectives, and primary aim identified in
Chapter 1.

A top down approach was used to identify the aim and research objectives of the
thesis in Chapter 1. The objectives were further decomposed into key tasks that were
required. The conclusion will proceed from the bottom up and evaluate how the tasks

were completed.

8.1. Fulfillment of the key tasks.

In Chapter 1, four key tasks were identified from the objectives.
e Key Task 1: The problems and challenges of the PSP must be identified such
that the motivation to implement automated support for PSP is recognized.
o Key Task 2: Strengths and weaknesses of existing PSP support tools must be
identified.
¢ Key Task 3: The newly developed tool should overcome shortcomings of the
existing PSP support tools.
e Key Task 4: The effectiveness of using PSP Manager to execute the PSP
process must be determined.
The first key task was to determine why automated support for PSP was needed.
This was identified in the literature review during Chapter 2. In addition, the SEI
provided motivation to build automated support for the PSP (SEI, 1996). They were
already identified in Chapter 1.
The second key task was covered through chapter 3, which included an analysis of

four tools that could be used to support PSP. Three of the tools explicitly implemented

117
one or more PSP forms while a fourth could be adjusted to work with the timing of PSP.
All four tools were found to have strengths and weaknesses.

The third key task was covered in Chapter 4. The critical review of the PSP
support tools provided the foundation for the development of PSP Manager. The
strengths and weaknesses of the tools identified in Chapter 3 were determined to identify
requirements for PSP Manager. The requirements served as the basis on which the PSP
Manager was designed and implemented.

PSP Manager overcame the shortcomings of psptool in several ways. First, its
edit facility alleviates the high cost of making a mistake with psptool. The project
management component of PSP Manager uses [D numbers to assure that a project is
deleted only through the authority of the user. It also supports the user entry of time and
defect estimates that psptool does not support.

PSP Manager supports more PSP activities than psptool, Timelog, and Timmie.
Unlike Timmie, the user does require an external script or tool to manipulate the PSP
Manager data.

Unlike PSP Studio, PSP Manager automatically provides the user with a checklist
consisting of items. The user may alter the check items to conform to his practice. PSP
Manager also provides shortcut buttons for the key tasks of PSP that are lacking in PSP
Manager.

The fourth key task was challenging. Because of time constraints, a user study
was not conducted. As compared to executing the PSP on paper, use of the PSP Manager
for executing the default PSP hopes to reduce overhead cost in the following ways.

e A form in PSP Manager can be brought up on demand. This is quicker than

sorting through PSP paperwork.

e The time tracking was done through an automatic timer, eliminating the need

for a timepiece and time calculations.

e Either PSP Manager or the spreadsheet automatically does the calculations.

Time and defect data are automatically accumulated through queries on the

118
logs. This saves a lot of time in the post mortem phase. PSP Manager
eliminates the need to count and tally time and defect entries. It also
eliminates the need to hand calculate the many metrics required by PSP.

e If there is an error found in the data, the PSP Manager lets the user make the
correction. All corrections are automatically projected through the forms. A
correction under hand execution of PSP would be time consuming in
comparison as metrics and forms would have to be edited.

e The PSP Manager reduces redundancy by making data available to all forms.
This prevents the need to copy data by hand.

e The PSP Manager’s Test Case facility makes test planning easier through
managing the Test Report templates. Having the entire list of test cases handy
in the facility makes the user assured that all test cases are completed before
the project is finished. Test plans may be done by hand using many Test
Report templates, which can be difficult to sort through.

e The tool was found to mitigate inconvenience to the user because it could fit
on the computer’s graphical desktop with the development environments of
the user. The user can easily switch between the environment and the PSP
Manager. Performing PSP on paper forces the user to “go out of the way” to
record data.

The customization facilities of PSP Manager allow the user to adjust the PSP
defect types, phases, checklists, and metrics to their own practice, showing their own
problems and their own improvement suggestions. After starting with the default PSP, it
is natural that a user will wish to change the process specification to make it more
personalized. Adjusting the PSP on paper is difficult because changes have to be
reflected in new forms. In the best case, forms are saved on a word processor and printed

as needed.

119
8.2. Fulfillment of the objectives.

Chapter 1 identified three objectives for PSP Manager.

e Objective 1. To provide a software tool that provides automated support for

the Personal Software Process.

e Objective 2. To provide mechanisms that allow a user to adapt the tool to his

personal software process.

e Objective 3. To make the components of this software tool (except the

spreadsheet component) platform independent.

Based on the analysis of the key tasks, it is easy to see how the objectives are
fulfilled.

Objective 1 was fulfilled with the following limitations. PROBE was identified
as a future non-obligatory component as some engineers are not comfortable with the
PROBE estimation method. Similarly, the PSP design templates were declared as a
future non-obligatory component based on the assumption that external software design
tools were available for the user.

The default programmer profile supplies the phase names, check items, defect
types, and metrics that confirm to the specifications of the Personal Software Process
(Humphrey, 1995a). This conforms to Objective 1.

Objective 2 is fulfilled through providing the user functionality to change his or
her PSP phases, defect types, checklists, and user metrics. Changes in defect types and
checklists show in all the projects immediately while changes in the master phase list and
user metrics show in the next new project. Phases and metrics can be changed at a
project level.

Objective 3 is fulfilled by using Java as the development language and archiving
the complete list of class byte code files into one file that can be added to a system’s

CLASSPATH environment variable. The spreadsheet is designed using Microsoft Excel

120
formulae, but can be adjusted to another spreadsheet language by adjusting the formulae

accordingly.

8.3. Fulfillment of the aim.

The aim was identified in Chapter 1 as follows.
e Aim: To provide a software tool that provides automated support for the
execution of a customized personal software development process using the
Personal Software Process as a baseline in developing such a custom process.
It can be concluded that this aim was successfully fulfilled. First, PSP Manager
runs in the same environment as the development environment. The user simply has to
switch to the PSP Manager to record a time entry, interruption, or defect. Secondly, the
tool uses the Personal Software Process as a baseline in developing a user’s personal
software development process. When PSP Manager starts up, a persistent programmer
profile is created based on the specification for the Personal Software Process
(Humphrey, 1995a). The tool uses the notion of phases and defect types in the same way
as the PSP. The user may change the PSP specification by adjusting the phases to fit his
process. In addition, the individual user can adjust the lists of defect types and check
items that correspond to common problems. The user can also add his or her specific
metrics to the PSP Metrics plan. Similarly, these items can be re-worded or deleted from
the process. This indicates the tool supports a customized personal software development

process.

8.4. Future directions of Work.

8.4.1. PSP Research.

Based on the experience encountered in this thesis, it will be important to scale the PSP
beyond the actual production of software products. The following ideas provide

examples as to how the PSP can be enhanced in this way.

121

e The requirements stage is key part of any software project. It is probably the most
important component of the project (MacAulay, 1996). However, the negotiation
of requirements is not a phase in the PSP. A problem with including the
requirements as a phase in PSP is the uncertainty surrounding the time line of this
stage. It is difficult to estimate this time. It would make sense to identify a
relationship between time in the requirements phase and the measurements of the
actual product including size and development time.

e Software documentation should be counted as a PSP phase as the development of
user manuals and on line help are key tasks in software development.

e The PSP Plan Summary Form contains an extra phase in the "Defects Removed”
table called "After Development.” (Humphrey, 1995a) "After Development" is not
considered a phase. It can be upgraded to a post development phase to
accommodate maintenance. It is difficult to estimate the time for maintenance.

e For team projects, the PSP can be used as a baseline to develop a set of generally
accepted software standards and metrics that is to be used by the entire team.
Humpbhrey is currently working on the "Team Software Process (TSP)," which is
expected to apply PSP methods to the team environment. The TSP also addresses
the CMM key practice areas of training, requirements management, quality
assurance, and inter group coordination.

e The PROBE method of estimation needs to be extended beyond the Lines of Code
measurement unit. Relationships between size estimates and actual size
measurements of different size units must be identified through the use of
mathematical models. PROBE looks for a linear regression between estimated

and actual size.

8.4.2. Introduction into Industry

Engineers admit they would take the PSP course for their own benefit. One software
engineer confessed "This is not for the company, it's for me" (Humphrey 1995c). The

122
personal benefits realized by individual engineers will be propagated to the company
through higher quality work products and an increased level of confidence in the newly
trained engineer.

A company may provide PSP training to the entire team. However, they may
view the introduction of the PSP methods as a risk. It takes a strong commitment from
management and employees alike. It also requires a significant amount of resources
(Humphrey, 1995a). With such a cost, the company's instinct is the expectation of a
major benefit. Even though PSP is being used in industry, there are no publications on
the effects of its application in real life project. Companies will be reluctant to introduce
the PSP methods to their employees until such a report is released.

The Software Engineering Institute has developed the PSP Strategic Initiative
(Software Engineering Institute, 1996b) which provides a plan to diffuse the PSP
practices through the software industry. It is still up to each individual company to

decide whether to accept this challenge.

8.4.3. The future of PSP Automated Support.

The development of the PSP Manager provides these opportunities for future research.

One research idea is to determine what environments would be best served by
automated support tools. With the demand for automated support originating in the
academic community, automated support tools like PSP Manager should be tested in the
academic environment as soon as possible. It is important to note differences between
performing the PSP using such support as opposed to performing the PSP with pen and
paper.

Current research into PSP based methodologies include the One-Person Project
and the Team Software Process (TSP). As these processes get put into use, demand will
exist to develop automated support for both of them. Since the PSP is the basis for both
the One-Person Project and TSP, principles used for automating in PSP can be applied to

automated support for both processes. For the One-Person Process, the key point will be

123
whether or not existing PSP support tools such as PSP Manager can be used “as is” or
extended to support it. For the TSP, a distributed (preferably web based) system will be
required to automate it, as it is a team-based process. The key point becomes how the
individual members can be combined into the team data. It is possible that components

of PSP Manager can be reused in a web-based automaton of TSP.

8.5. Summary.

This chapter summarizes the research that was performed in this thesis. The conclusion
shows how the key tasks, objectives and aim of the research were met. It was found that
the implementation of PSP Manager fulfilled the aim of providing a tool to provide
automated support for a customized personal process using PSP as the baseline for
development.

If someone has previously performed PSP by hand in the past, the PSP Manager
tool will provide an appreciation for the overhead cost of performing the PSP. Once a
person has a feel for the default PSP, he can use PSP Manager to develop a personal
software development process using the phase-based structure of the PSP. He can
develop his own phases and metrics as well as defect types and checklists and have
project summaries published in the same format as the PSP forms.

In the end, it is up to the individual software engineer to use a specific software
development process or a specific tool. Many engineers may be drawn away from PSP
with its high overhead cost. Many users receive a bad impression of the PSP because of
its paperwork. With the availability of automated support tools like PSP Manager that
can cut this overhead cost, it is hoped that more engineers outside the academic

environment will be eager to learn and use the Personal Software Process.

124

References

Bagert, .D. J. (1997) A Comprehensive Integrated Three-Semester Software Engineering
Sequence. Frontiers in Education (FIE), 1997 21st Annual Conference on. Los
Alamitos, California: The Institute of Electrical and Electronics Engineers.

http://fairway.ecn.purdue.edu/~fie/fie97/papers/1148.pdf

Boehm, B. W. Software Engineering Economics. Englewood Cliffs, NJ: Prentice
Hall.

Clemens, C. (1997). Timelog. Sankt Augustin, Germany: Multimedia Applications in
Tele-co-operation, German National Research Center for Information Technology.

http://mats.gmd.de:8080/clemens/java/timelog/index.html

Flanagan, D. (1997). Java in a Nutshell. Cambridge: O’Reilly & Associates.

Frankovich, J. F. (1997). The One Person Project Software Process. Masters thesis.

Calgary, AB: University of Calgary.
http://www .cpsc.ucalgary.ca/~johnf/SENG/thesis/thesis.htm

Hayes, W. and Over, J.W. (1997). The Personal Software Process: An Empirical
Study on the Impact of PSP on Individual Engineers. Technical Report
CMU/SEI-97-TR-001. Software Engineering Institute. Pittsburgh, PA: Camegie
Mellon University.

Henry, J. (ed.). (1997) Personal Software Process Studio. Johnson City, Tennessee.
Department of Computer Science, East Tennessee State University.

http://www-cs.etsu-tn.edu/softeng/psp/index.htm

125

Hilburn, T. and Towhidnejad, M (1997). Integrating the Personal Software Process
across the Undergraduate Curriculum. Frontiers in Education (FIE), 1997 21st
Annual Conference on. Los Alamitos, California. The Institute of Electrical and

Electronics Engineers.

Humphrey, W. S. (1989). Managing the Software Process. Reading, MA: Addison-
Wesley.

Humphrey, W. S. (1995a). A Discipline for Software Engineering. Reading, MA:
Addison-Wesley.

Humphrey, W. S. (1995b). The Personal Process in Software Engineering. Proceedings
of the Third International Conference on the Software Process, Reston, VA,

October 10-11, 1994, pp. 69-77.

Humphrey, W. S. (1995c) The Personal Software Process. Overview, Practice, and
Results. Software Process Improvement Forum. Jan.-Feb. 1995, pp. 8-10.
Pittsburgh, PA: Research Access Incorporated.

Humphrey, W. S. (1996a). Using a Defined and Measured Personal Software Process.
[EEE Software 13(5), 77-88

Humphrey, W. S. (1996b). A Personal Commitment to Software Quality. American
Programmer 7(12), 2-12.

Humphrey, W. S. (1997). Introduction to the Personal Software Process. Reading,
MA. Addison-Wesley-Longman.

Humphrey, W. S. (1998). Why Don’t They Practice What We Preach? SEI Article.
Pittsburgh, PA: Software Engineering Institute, Camegie Mellon University.

http://www .sei.cmu.edw/publications/articles/sources/practice.preach/index.html

Institute for Program Structures and Data Organization (1997). Timmie. Karlsruhe,
Germany. University of Karlsruhe.
http://wwwipd.ira.uka.de/%7Egramberg/PSP/#timmie

Leabo, D. A. (1968). Basic Statistics. Homewood, IL: Richard D Irwin Inc.

Lederer, A. L. and Prasad, J (1998). A Causal Model for Software Cost Estimating Error.
IEEE Transactions in Software Engineering, 24(2), 137-147.

MacAulay, L. A. (1996) Requirements Engineering. New York. Springer - Verlag.

Paulk, M., Curtis B. Chrissis, M. and Weber, C. (1993). Capability Maturity Model for
Software Version 1.1. Technical Report CMU/SEI-93-TR-24. Pittsburgh, PA:
Software Engineering Institute, Carnegie Mellon University.

Scacchi, W. (1987). Models of Software Evolution: Life Cycle and Process.
Technical Report SEI-CM-10-1.0. Pittsburgh, PA: Software Engineering Institute,

Carnegie Mellon University.

Smith, M. R. (1997). Parachuting Software Engineering Practices into the Hostile
Environment of a 4th Year Final Term. Frontiers in Education (FIE), 1997 21st
Annual Conference on. Los Alamitos, California. The Institute of Electrical and

Electronics Engineers. http://fairway.ecn.purdue.edu/~fie/fie97/papers/1364.pdf

127

Software Engineering Institute (1996a) A Specification for Automated Support for the
PSP. Pittsburgh, PA: Camegie Mellon University. http://www.sei.cmu.edu/pspAuto

Software Engineering Institute (1998). Why Use the PSP - Overview. Pittsburgh, PA:
Carnegie Mellon University. http:/www.sei.cmu.edu/activities/psp/ WhyPSP.htm

Succi, G. C. and Benedicenti, L. A Framework to Analyze the Impact of Code Reuse on
Productivity. Calgary, Alberta: The University of Calgary.

Wolesley, A. (1997). psptool 0.6. Doncaster, Australia. TQC Software Pty. Ltd. 1997.
http://www.neoso ft.com/tcl/ ftparchive/sorted/math/psptool0.5p 1/

Williams, L. A. (1997). Adjusting the Instruction of the Personal Software Process to
Improve Student Participation. Frontiers in Education (FIE), 1997 21st Annual

Conference on. Los Alamitos, California: The Institute of Electrical and Electronics

Engineers. http://fairway.ecn.purdue.edu/~fie/fie97/papers/1305 .pdf

128

Appendix A. Contents of the Default Programmer
Profile.

The purpose of this Appendix is to document the contents of the Default Programmer
Profile to be implemented by PSP Manager. This profile provides the Programmer with
the original phases, defect types, check items, and metrics provided by the Personal
Software Process in the book “A Discipline for Software Engineering” (Humphrey,
1995a). It is allocated to a new instance of the Programmer class when it is first
created. The Programmer may modify it to meet the needs of his personal software
development process.

The checklists are developed on the assumption that C or C++ will be used as the
programming language. The programmer may edit these items to adapt the checklists to

the language or development environment they are using.

A.l. Phases.

The Default Programmer Profile shall contain the following PSP phases:
e Planning
e Design
e Design Review
e Code
o Code Review
e Compile
o Test

s Post-Mortem.

A.2. Phase Metrics.

The Default Profile shall maintain the following metrics for each of these phases in order

to accumulate the Programmer’s career totals.

e Total Time spent in phase To Date.

e Total Defects injected in phase To Date.

e Total Defects removed in phase To Date.

A.3. Programmer Defined Metrics.

129

The Default Profile shall include the user-defined metrics in Tables 16 and 17.

Metric Name _
New and Changed Size (Official
Size Metric)

Measurement Unit

LOC

Source

Computed by spreadsheet. |

Base Program Size LOC User entered.
Deleted Components LOC User entered.
Added Components LOC Computed by spreadsheet
Modified Components LOC User Entered
Reused Components LOC User entered.
Total program size LOC Measured and entered by
user.

Total Defect Density Defects per KLOC Computed by spreadsheet.
Test Defect Density Defects per KLOC Computed by spreadsheet.
Productivity LOC Per Hour. Computed by spreadsheet.
Yield (ratio of test defects to total | Ratio. Computed by spreadsheet.
defects)
Cost Performance Index (ratio of | Ratio Computed by spreadsheet.
planned time to actual time).

Table 16. Metrics Plan for PSP.

130

Metric Name Measurement Unit Source

Cost of Quality - Appraisal | Ratio | Computed by spreadsheet.
(percentage of total time spent in

reviews).

Cost of Quality - Failure (percentage | Ratio Computed by spreadsheet.
of total time spent in compiling and

testing).

Appraisal Failure Ratio Ratio Computed by spreadsheet.
Defects removed per hour in design | Defects per hour Computed by spreadsheet.
review.

Defects removed per hour in code | Defects per hour Computed by spreadsheet.
review.

Defects removed per hour in | Defects per hour Computed by spreadsheet.
compile.

Defects removed per hour in test. Defects per hour Computed by spreadsheet.
Defect Removal Leverage - Design | Ratio Computed by spreadsheet.

Review to Test

Defect Removal Leverage - Code | Ratio Computed by spreadsheet.

Review to Test

Defect Removal Leverage - Compile | Ratio Computed by spreadsheet.

to Test

Table 17. The PSP Metrics Plan (continued)

A.4 Defect Types.

The Default Programmer Profile shall include the following Defect Types, stored under

the given identification numbers.

p—t
.

© 0 N AW N

131
Documentation
Syntax
Package
Assignment
Interface
Checking
Data
Function

System

10. Environment

A.S Design Review Checklist.

The Default Programmer Profile shall store the following check items as the

Programmer’s checklist for the Design Review phase.

All required inputs are furnished.

All specified outputs are produced.

All required includes are stated.

All stacks, queues, lists operate in the proper sequence.
Recursion unwinds properly.

All loops are initialized, incremented and terminated properly.

Proper operation is ensured for the entire range of possible values of each

variable.

Out of bounds and overflow conditions are guarded against.

"Impossible conditions" are ensured as absolutely impossible.

Incorrect input is handled correctly.

Functions, procedures, and objects are fully understood and properly used.
Externally referenced abstractions are precisely defined.

Special names and types are clear and specifically defined.

132

e The scopes of variables and parameters are self evident or defined.

¢ All named objects are used within their declared scopes.

e The design conforms to all applicable design standards.

A.6 Code Review Check List.

The Default Profile shall store the following check items as the check list for the Code

Review phase.

The code implements the entire design document.

Any and all includes are complete.

Parameters and variables are properly initialized when the program starts up.
All loops are initialized properly.

All function parameters are initialized properly.

Function call formats are verified.

Spelling and name usage is checked.

All strings are terminated by the null character.

Pointers are initialized as null.

Pointers are deleted only after a memory allocation is made to it.
Memory allocated to new pointers is freed after use.

The output conforms to the required format.

Begin and end statements are properly matched.

The use of logic operators is verified.

Ensure all parentheses and square brackets are matched.

Each line is checked to conform to syntax.

Each line is checked for proper punctuation.

The code conforms to all applicable coding standards.

Files are properly declared, opened and closed.

133
Appendix B. Design of the Spreadsheet Reports.

The purpose of this Appendix is to provide a sample of the two spreadsheet reports
developed by PSP Manager. Two types of reports will be generated.

The Career Report (Table 18) publishes the programmer’s overall history for all
projects that have been completed. The time and defect data are accumulated over the
historical projects. A metric called the “To Date Percentage” is used to determine the
proportion of the programmer’s total time that is spent in each phase. In the Career
Report, metrics with user supplied values are accumulated over projects while the
formulae are automatically computed by the spreadsheet.

The Project Plan Summary (Table 19) publishes the PSP data for one specific

project. Each metric is assigned a planned and actual value,

134

$S5$69°0 189, - ofidwo) 1ya

TTOLGY'S 159, - MAIADY 3p0)) Y

$T896¢%'1 159, - MaIADY uBisoq TYd

9£9£98°C 1S9, - INOH 124 §199§2Q

S68386'1 .o:nEoU - INOH 19(S193jo(J

g9l *MIADY 9p0)) - INOH 19d $100)2(

14 *MIIADY cm_muo - INOH 194 $199)2C

6£9€46'0 oney asn|iey - fesieaddy - Anend jo 1509

LY6£9°61 ainjie, - Ayjend) Jo 150

LSTES'8I jestesddy - Angend jo iso)

16L6T°61 Auanonpolg

ddadAz] PIIA

L68Y9°0C *dZIS J1Un 194 5139j3(159],

0 0 0 0 8ITSS'LI [ss§ |worOW-I1sod pEPL'TE] "9Z1S JiUN 124 $103§0([el0],

956561 ¥4 0 0 yTSI6'El {oby 159, §02¢ 071 [®10],

bobbbyy |0 0 0 szeveL's |18l afidwo) L101 9po) Jo saur paduey) pue MaN
MIIADY

£9999'99 06 0 0 0089t°01 _ |I€€ 2poD d D071 PAYIPON

1PLObL0 |l 08 801 6LOSL'ET {ISL opo) 019 D01 pasnay
MIIADY

65¢6S°TI LI 0 0 91S¥90°'8 [sS¢T ugisog L8 201 PpPPY

0 0 SLLLL'LL T gvelzel [siv ugisag 9y 2071 paRg

0 0 Teeeeee e £0SSOE'L |1€T Sujuueg OLL ozig weiBoig aseg
00! SEl 001 g€l 001 411 TV.LOL

% aegoll aeqgol| % e ol Aegol| 9 9dedoljaedol MieA Jdaie) WeN LR 195N
paAowdy s193§9(paoalu] syoogaQg osuy U] awng, asuyd
86/L1/3 g
_ eaep| :a8enSueq

DBl oSy audno) ajeQq dweN

uoday 19218 dSd

Table 18. PSP Career Report.

135

p1LSSTYIL'S i0/AlQH 159 -oidwo) - TId
EECECEEEE’] i0/ALQH 159140 - Tid
EEEECEEEE’| i0/AIQH 159140 - TId
Sl 0 189, Ut paAolay $193J2(
1LS8THILS'S [0 ajidwo)) ut paaoway s199Joq
£viLsseyil |zl MIIADY IPOD) Ul paAoway s19943
< SL't MIIAY :w_muo Ul paAOWY §133j9Qq
£8€901580°1 8018018011 oney 4-v - 00D
Ly 6ySTLEL'S] amjieg - 00D
is TT6£0860°0T jestesddy - 0D
LLOET6IL0T _|C1¥6TSET8I AnAnonpoid
$'L8 001 PIRIA
106L9SYETL |0 Aisua(g 199J0(159,
LE 0¢ 150d| IZEVSOL'86 [SSEGIPLL 96 Ausuag 199)2a
I 0y LT 159L]6€1 81l Jmiog,
| L 01 ajidwop| g 79 paduey) pue moN
4 S {4 §T :fo) 24 61 palipON
| S Iy 0§ apoD |8y 8t pasnay
1 1 0 91 ajLs £y pappy
l 6E I udisoq|ye 1€ paRRg
61 Sl ue|d|(gg 8¢ aseg
8 9 9 144 0T TVIOL
|enjoy us|d |enoy ue|d enjoy ue(d anBA [endy| anfeA pajewnsyg weN LA 195
paAOwIdY $19)0Qg pa1aly] s19950Qq aseyd waun] aseyd
86804S aeg Vi aweN 109fo1d
VAVI| 28enduu piepuslg Jloquunp 19fosg
Jainepy| :lonnnsug audno) [OUBN

Amsunung ueld 19afo1d dSd

Table 19. PSP Project Plan Summary.

IMAGE EVALUATION
TEST TARGET (QA-3)

33
LEEE

13
t EEEEFTITE

|

8l

m
I
Il

6

|

14

125

150mm

one: 716/482-0300
716/288-5989

<
11111

