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Abstract

An effective computational methodology based on a multibody approach has
been proposed for analyzing and simulating granular systems. Each particle in the
system is treated as an independent body. A 3-D model of a granular system consisting
of interconnected spheres is treated as a multibody system with variable topology and
one-sided constraints between the spheres. The motion of this system is governed by a
set of nonlinear algebraic and differential equations. Two formulations (Lagrangian and
Newton-Euler) and two solvers (Runge-Kutta and Iterative) are discussed. It is shown
numerically for a 2-D model that a combination of the Newton-Euler formalism and an
iterative method maintains the accuracy of the fourth order Runge-Kutta solver while
substantially reducing CPU time.

The accuracy and efficiency are achieved by integrating the error control into the
iterative process. Two levels of error control are introduced: one based on satisfying the
position and velocity constraints and another on satisfying the emergy conservation
requirement. An adaptive time step based on the rate of convergence at the previous
time step is introduced which also reduces the simulation time. The efficiency and
accuracy is investigated for plane problems: a physically unstable vertical stack of disks,
muitibody pendulums and a falling chain.

Some methodological aspects of the simulations have been investigated and new

algorithms dealing with the storage and updating of system topology data, handling of



collision events, application of variable time step technique, et al. have been developed.
A FORTRAN program implementing these methods and algorithms has been written.

An application to the problem of jamming in a two-phase flow has been
investigated. It is shown that there is a critical particle density above which a jam
always takes place and a minimal density below which jam occurrence is not likely. The
range between these two densities is the transition zone which requires further
investigation. The results of this simulation agree qualitatively with the physical

experiments.
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Chapter 1
INTRODUCTION

1.1 A Historical Review of Granular Dynamics
1.1.1 Origin of Granular amics and Continuum Model

The area of granular dynamics has a relatively short history, starting essentially
after the Second World War in the area of molecular dynamics and expanding
progressively over the past two decades. Granular matter, often referred to as the "fifth
state of matter”, is used in applications ranging from pharmaceutical to the construction
of buildings and for this reason, has been studied extensively in many disciplines.

Modemn industrial materials may be classified as powders or granular solids. The
category "granular solids" may also include materials that occur naturally in vast
quantities. Granular materials are also found in many industrially important operations
and processes. Thus in addition to complex flows such as chute flow, hopper discharge,
pneumatic conveying and surface avalanches, granular materials are regularly subjected
to compaction, segregation, granulation, fines production, fluidization and so on. Some
particulate materials, most typically sand, have been the target of both experimental and
theoretical investigations since the *50s (Bagnold, 1954, 1966; Brown and Richards,

1970).

Granular models are also used to describe many physical systems, such as soils,

1



2
sand, grain, rock, pills, broken ice, et al. It is instructive to define granular materials in

terms of their physical features. Table (1.1) categorizes granular media based on size.

Table 1.1  Dimensions of various granular media

Granular Particle size | Number of
Media (m) molecules
molecule 107° 1
soot particle 10® 10°
dust, powder 106 10"
sand 10° 102
gravel 10 10%

For matter with a small size (< 10® m), the thermal energy at room temperature
is more important than gravitational energy. This type of matter is not within the scope
of this research. Common granular materials are those with large sizes (> 10 m), such
as grain, sand, coal, pellets, and solid particles, et al. An important property of granular
materials is that they can flow through hoppers or pipes in a gravity field and each
particle has its own physical characteristics, such as shape, size, weight, et al.

Research and development in granular materials dynamics, sometimes called
particle dynamics, is based on powder mechanics, but it is different from powder
mechanics in both methods and theories. Beginning as early as one hundred years ago,
powder mechanics had been developed according to three fundamental principles. They

are: the principle of dilatancy, mobilization of friction and minimum energy of flowing
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granules. Most of the mathematical models used in early research were based on a
continuum model only. Correspondingly, partial differential equations were used to
describe such systems.

Bagnold (1954) investigated a one-dimensional flow of uniformly dispersed
granular materials in fluid under shear. Besides considering the effect of particle
interaction, he assumed a constant kinetic energy density and no relative velocity
between the fluid and the solid particles. He concluded that in such instances the solid-
liquid system could be treated as a liquid medium, and continuum theory could be
applied.

Two basic approaches to the modelling of the mechanical behaviour of granuiar
materials appeared in the '70s. The first approach was based on microscopic theory,
referred to as particulate theory. This approach considers an ensemble of particles of
finite size, and attempts to deduce the laws governing the mechanical behaviour of the
entire system. Bagnold’s model belongs to this approach.

The second approach is referred to as the macroscopic approach of Jenkins and
Cowin (1979) and is based on considering the granular material as a continuous
medium. This approach can more readily provide quantitative results, but it loses the
concept of individual solid particles and cannot incorporate inter-particle interactions.
Both approaches can be applied only to systems that are at, or near to, the closely
packed state.

Most researchers have combined the two approaches into a so-called mixed

approach (Kanatani, 1979; Ogava, et al.; 1980 and Ackermann and Shen, 1982). Among



4
them, Kanatani proposed a micropolar continuum theory for the flow of closely packed
granular materials. He set up quantitative equations based on conservation of mass,
linear momentum, angular momentum and energy. By analogy to turbulent flow, Ogave
et al., (1980) noted the importance of the fluctuation velocities of the particles which
inevitably results from collisions among the particles. Ogave et al., (1980) assumed that
a fraction of the particles adhered to the spheres with the remainder reflecting off them
with a loss of energy during the collisions. They then proceeded to determine the total
rate of change of fluctuation energy by averaging over all possible collisions.
Ackermann and Shen (1982) devised a similar model including the effect of the
interstitial fluid and the mechanical properties of the solid particles on the rate of change
of fluctuation energy. They considered that the rate of dissipation of fluctuation energy
depends on the frequency of inter-particle collisions.

Later models which appeared in the *80s, were based on the kinetic theory of
gasses (Lun, et al., 1984). The kinetic theory for rapid granular flows developed by
Jenkins and Richman (1985) provides a system of transport equations for the mean
velocity u, the mean density p and the granular temperature 7, which is a measure of
the kinetic energy per unit mass associated with velocity fluctuations. The macro
physical feature for the whole system can be obtained based on the three balance
equations for mass, linear momentum and fluctuation energy. These can be represented

as the following

p +Vipu) =0 (L.1)
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pu =V-P +pg (1.2)

pT = -V-qg +r(P-Vu) -y (1.3)

where an overdot indicates the time derivative. In the equations above, P is the stress
tensor; g is the body force per unit mass; ¢ is the flux of fluctuation energy and vy is the
rate of energy dissipation in inelastic collisions per unit volume.

These balance equations can never be neglected when a continuum model is used
though they may take a different form in some papers. It remains to be determined
whether a continuum model is justified when one or more spatial dimensions of the
problem are measured in terms of a small number of grain diameters. Shear flows
(Hanes and Inman, 1985; Savage, 1984) are often only a few to a few tens of grains
thick. In a collision model, substantial shear across a relatively small number of grain
diameters is a direct consequence of grain inelasticity (Haff, 1983; Hui and Jaff, 1986).
Thin shear zones are also predicted by constitutive models incorporating the effect of
frictional contacts (Johnson and Jackson, 1987). Indeed, it is in granular fluids that one
has perhaps the clearest microscopic view of the origin of one kind of shear band. Until

the '90s, some researchers, such as Babic (1993), still used kinetic theory to solve the

problem of granular flow.

1.1.2 Discrete Model and Computer Simulation

So far, the models we have discussed are all continuum models. In the research

of granular dynamics, continuum models are not suitable for analyzing loosely packed
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systems or systems with non-homogenous dispersion of solid bodies. Moreover, these
models cannot be used to analyze processes in which identification of critical areas of
solid body accumulation or predictions of jamming are essential. Considering the
disadvantages of continuum models and the difficulties in application, a new approach
to the modelling of such systems based on discrete analysis was proposed by Cundall
and Strack (1979). Perhaps the first attempts at discrete modelling of granular systems
were done by Cundall (1971). In this approach, each solid particle or rigid body in the
system is looked at as an individual entity. The interactions among the particles depend
on their physical properties rather than on averaging procedures, as is the case in
continuum models. Following the discrete models, the Discrete Element Method (DEM)
appeared and it has been utilized in granular dynamical systems. Especially with the
rapid growth of computer power, this method has widely developed in the area of
granular dynamics and the computer simulation of granular systems. The DEMs will be
discussed in detail in Chapter 2.

In studies of granular dynamics, the discrete model, including the DEM
algorithm, has been utilized and improved for granular systems by many people since
it was first developed by Cundall. One of its main advantages is that it has a very
simple mathematical model and is computationally efficient. This method, however, does
not describe a real system accurately enough. In other words, this model needs a very
short time step for a system with a high density of particles.

Other recent approaches for simulating discrete granular systems are based on

Cundall’s model and the DEM. Campbell and Brennan (1985a,b) and Campbell (1989)
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have also studied steady state rapid shear flow of rough particles in both two and three
dimensions. In two-dimensional chute flow simulations, Campbell and Brennan (1985a)
identify a high-temperature, low-density zone next to the base of the chute. They note
that two-dimensional simulation results depend strongly on system parameters such as
friction coefficients.

Baxter and Behringer (1990) have developed a cellular automaton to simulate the
flow of irregular particles from a wedge-shaped hopper. Cellular automata are discrete,
lattice-based models with simple evolution rules. Cellular automata can be used to
describe complex behaviour in extended systems and they have significant computational
advantages for simulating many interacting particles in systems with complex geometry.

Gutt and Haff (1990) and Fitt and Wilmott (1992) have also used cellular
automata to model granular flows including steady chute flow, flow down a vertical
channel and particle size segregation. It is clear that lattice-based models make powerful
representations of flowing granular systems over a range of dynamic regimes and that
their development to include three dimensions, isotropy, disorder and particle properties
(such as coordination and shape) are valuable areas for future research.

Since the Cundall model was proposed, discrete models have developed into
many branches according to various specific applications. One of the applications is ice
mechanics (Hopkins, et al., 1985 and Loset, 1994).

Another use of discrete mechanics is to study in detail system behaviour at the
level of the individual grain or of a few individual grains, i.e., at scales that are
obliterated by the averaging necessary to generate the partial differential equations.

Studies of mixing of sediments caused by fluid traction, see (Jiang and Haff, 1993) or
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of the development of sedimentary stratigraphy (Forrest and Haff, 1992) reveal

interesting details of the process and structure relevant to the very small scales, e.g., a
few particle diameters are often important for geological interpretation or environmental
remedy. The studies of granular microstructure (Campbell and Brennan, 1985b; Hopkins
and Louge, 1990 and Walton et al., 1991) involving the existence of clumps and chains
of small groups of particles may also begin to inform us of ways in which assumptions
of molecular kinetic theory might be relaxed.

Methods based on computer simulation provide alternative approaches to
problems in discrete mechanics. One method is to model a collection of particles as a
system of hard spheres (Campbell and Brennan, 1985b; Haff and Werner, 1987). In the
hard sphere model, when a contact between two particles is detected, the relative
velocity of the two colliding particles is transformed so as to conserve the total two-
particle momentum. Another method is to model particles as soft spheres. The first
discrete element model with the soft-particle approach was developed by Cundall and
Strack (1979).

Although there are several different approaches in the application of discrete
models and DEMs, the basic modelling principle is still based on Cundall’s model.
There were no essential distinctions among these approaches until a different approach
to discrete analysis was postulated by Vinogradov (1985), and further developed by
Springer (1989) and Wierzba (1991).

In the new approach used in (Vinogradov, 1985), rigid bodies are approximated

by disks and the whole system is treated as a muitibody dynamics system while the
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mathematical formulation is based on Lagrangian dynamics. In such a system, the
equations of motion are derived in terms of generalized coordinates which are the
direction angles between two disks. Such approach leads to a set of Differential
Algebraic Equations (DAEs) based on the system topology. It is important to note that
the differential equations in the above system are coupled.

The advantage of such a model is that it describes accurately the mechanics of
granular materials including momentum transfer, friction force, et al. The disadvantage
of this method, however, is the need to solve a nonlinear system of coupled differential
algebraic equations. Besides the numerical difficulties associated with DAEs, there are
other computer-intensive calculations, such as handling collisions and constraints,
updating the topology and relevant physical parameters.

The multibody dynamics model of a granular system with variable topology is
a remarkable innovation in the study of granular dynamics. The challenge of applying
a multibody dynamics approach to a granular system comprised of a large number of
particles is computational, i.e., the simulations shouid be done in a reasonable time
while maintaining the desired accuracy of results. Although there is extensive experience
in this area in machine dynamics, it cannot be applied directly to a granular system
because, first of all, machines are systems with fixed topology while granular systems
are systems with variable topology. Secondly, granular systems may have internal
degrees of freedom due to sliding between the particles and, third, granular system are
relatively large. As in machine dynamics, both the formulation of equations and of the

equation solver affect the efficiency and accuracy of the simulation in a granular system.
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A FORTRAN program developed by Springer (1989) and Wierzba (1991) was

used to simulate the movement of ice blocks in an open river channel. This program can
also be used for the simulation of an arbitrary planar multibody system in which the
bodies are modelled by disks. The mode] used in this program is simple and suitable for
simulation of granular materials. However, the method for the analysis and handling of
various eveants (e.g., collisions and new disk generation) is complicated. In the numerical
solution, the traditional Runge-Kutta method and matrix operations, which are
computationally expensive and need a large amount of storage space, were employed.

Obviously the size of a granular system was limited by the capacity of the computer and

CPU time constraints.
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1.2 Objectives of Research

Granular materials dynamics is currently one of the most active fields in applied
mechanics. As with any growing field, it is expanding into a number of subfields. The
most active subfields are: modelling, governing equations formulation, solution methods,
computational methods, graphical representations and applications. In a specific
application, almost all subfields above will be involved. In order to implement computer
simulation of a granular material system, one can use different methods from respective
subfields. The combinations of these methods can lead to different ways of achieving
our objective, which is finding the most efficient computer simulation of a large-scale
granular system.

When a multibody dynamics model is used for granular systems, the accuracy
can be greatly improved. However, it requires a more complicated mathematical model
and additional requirements for computer time and storage space. Efficiency is a major
problem in computer simulations of granular materials as multibody systems and it is
the main focus of this thesis.

In considering a larger size system with variable topology, a dynamical data
structure was introduced by Sun, et al., (1994). This was the first step for improving
computational efficiency. The improvements included: governing equations based on a
Newton-Euler approach and formulated in the decoupled form of first and second order
derivatives; a mixed iterative scheme to solve the governing differential equations and

error control and correction techniques based on physical conditions such as geometric
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constraints and energy conservation. These methods not only improve the accuracy of
solutions but also eliminate violations of both velocities and positions.
The objective of the present research is to find more efficient algorithms and
computational methods for simulations of granular materials as muitibody systems.
In theory such subjects as topological description and updating of the system,
derivation of equations of motion, random generation of particles, events handling and
error control are investigated numerically. More specifically, the following topics are
investigated:
¢)) The efficiency of the iterative scheme in numerical solution of equations
of motion for a granular system of large size.
2) The use of geometrical constraints and the energy conservation for error
correction and control.
A3) Dynamic data storage and updating in an array form.
“4) The elimination of matrix expressions and operations in system data
storage and generation of equations of motion.

5 The improvement of methods of events handling.
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1.3 Organization of Text

A general review of the subject of granular dynamics and a brief introduction to
this thesis is given in Chapter 1.

In Chapter 2, the subject of modelling of granular systems will be discussed in
detail, including assumptions and suggested approaches. In addition, the graph analysis
and associated matrices are given as preliminaries for later applications.

The governing equations of motion of the system will be given in Chapter 3 for
two approaches: Lagrangian and Newton-Euler. However, only the Newton-Euler
approach will be discussed in detail because the Lagrangian approach can be found in
the literature.

Some special topics, such as various action forces, collision events and random
generation of initial conditions will be discussed in Chapter 4.

An ijterative method used for solving the equations of motion will be discussed
in detail in Chapter 5. This is a customized algorithm which incorporates error
correction into the iterative cycles. The flowcharts for these algorithms are also given
in this chapter.

In Chapter 6, several simple and specific applications are given as examples to
test our new algorithms. The obtained results are compared with those obtained by
classical numerical methods with controlled accuracy. A FORTRAN program
incorporating developed algorithms is briefly discussed. Known experimental results are

used to validate this program.
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Finally, the conclusions and recommendations are given in Chapter 7.
Some derivations of major formulations can be found in the appendix. In
addition, the FORTRAN program for the simulation of granular materials in a straight

pipe with a rough wall is also given in Appendix E.



Chapter 2

MATHEMATICAL MODELLING OF
GRANULAR SYSTEMS

2.1 Introduction

A mathematical model represents a complicated physical system and its validity
should be checked against physical system behaviours. Generally, two types of models
are used in dynamical studies of granular-type materials: one describing the material as
a continuum; and another describing it as a discrete system. In this thesis, we will
discuss discrete models.

Our purpose is to simplify the discrete model so that it can be used efficiently
to describe granular systems. If the currently available models and solvers for multibody
systems, such as Nastran and ANSYS, are used for computer simulations of granular
materials, the size of the system will be limited by the computer capacity and the
computational speed will be limited by the computer’s CPU speed. Although large
computers are available, it is not an economical way for us to solve a simple granular
system.

Besides accuracy, computational efficiency is an important factor which should
be considered in computer simulations of granular systems. With reference to the old

model and algorithm (Springer, 1989) and (Wierzba, 1991), the related assumptions and

15
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approaches have to be revised for improvement of computational efficiency. This will
also be discussed in this chapter.

The main features of granular systems are their large scale and the variable
topology of the configuration structure. In order to express the topology efficiently, a
graph and associated matrices are introduced in the derivation of the equations of
motion. The graph and its associated matrices are not new concepts and have been used
for multibody systems with a certain topology (Roberson and Schwertassek, 1988).

The advantages of utilizing matrices in topology description are not only because
simplicity and clarity, but also easier updating. On the other hand, because matrices take
more storage space and computational time, they reduce computational efficiency in
simulations of granular systems. In this and the following chapters, matrices are still
used to express equations of motions. The algorithms in the new simulation program are

not based, however, on matrix operations.
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2.2 Discrete Models
2.2.1 Distinct Element Method

Some mechanical systems are composed of physically distinct elements the
number of which is relatively small so that their description as a continuum is not
warranted. Alternatively, some systems though large in number cannot be linked to
macroscopic behaviour through presently known or constitutive laws. If interaction
forces between individual elements are known or can be estimated and modelled, then
the behaviour of these elements or particles can be studied by solving the Newton
equations of motion for each particle in the group simultaneously. This method is called
the distinct element method (DEM).

In describing the above dynamic behaviour numerically, time steps are taken over
which velocities and accelerations are assumed to be constant. The DEM is based on the
idea that the time step chosen may be so small that during a single time step
disturbances cannot propagate from any disk further than its immediate neighbours. Then
the resultant forces on any disk are determined exclusively by its interaction with the
disk with which it 1s in contact. The resulting overiap of the displaced particie with the
neighbours is translated into some internal forces, which are treated as external during
the next time step for the body which was motionless. The interactions are thus one-to-
one (as in molecular dynamics). The DEM approach takes into account the variability
of the system density, the internal degrees of freedom, the irregular shapes of the

particles and various particle properties. This approach has been modified and used in
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many applications. The literature is very extensive and the reader is referred to recent
reviews in this area for more details (Savage, 1995; Barker, 1994 and Haff, 1994).

The DEM is a simple algorithm for granular dynamics, which can be applied to
a large-size system without the need for an excessive memory and complicated
calculations. Many improvements of the original DEM algorithm have been made by
Walton and Braun (1986), Rothenburg and Bathurst (1992) and Borja and Wren (1995).
However, the basic assumptions in all models remain the same.

Since the DEM explicitly integrates Newton's second law for every particle, an
idealized sample in quasi-static experiments must be loaded at a slow enough rate for
inertial effects to be negligible. In fact, even with an extremely slow rate of loading,
DEM still uses inertial effects to predict the future position of each particle since the
particle displacements are calculated based on the bounces and collisions that they make
with other particles.

Moreover, the DEM (Cundall model) looks like a model of molecular dynamics
in which the particles (molecules) are always separated and the interactions are one-to-
one. The looser the system is, the better results the DEM should give. In a closely
packed system almost all particles may form into clusters and behave as quasi-rigid
bodies during some time interval. In this case, the results by the DEM could be
erroneous. The reason is that the effect of simplifications of the DEM has never been
investigated in the field of granular dynamics. However, these simulations may be
important in problems dealing with local phenomena, local instabilities, the timing of

the nonsteady processes, problems of particles jamming.
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2.2.2 Multibody Dynamics Model
Muitibody dynamics, as a branch of dynamics, has grown rapidly since the ’60s.

The task of multibody dynamics is the analysis and prediction of the dynamic behaviour
and performance of physical systems, very often comprising a large number of
components, also called bodies or segments, acting together as a single entity. To
analyze and study such systems, the various components must be identified and their
physical properties determined. Once the characteristics of individual components are
known, a mathematical model is constructed which represents an idealization of the
actual physical system. For the same physical system it is possible to construct a number
of mathematical models. The most desirable is the simplest model that retains the
essential features of the actual physical system.
When granular systems are described as multibody systems, several choices have
to be made in defining the methodology, such as:
(1)  the dynamical formalism,
2) the set of dependent variables,
(3)  the method for describing the system topology and mechanical properties
of the system bodies and their interconnections,
(4) the frame of reference with respect to which the system motion is
described, and

(5 a description of the system’s initial configuration.
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Obviously, the multibody dynamics method is 2 more accurate algorithm than
DEM in the description of a granular system because it satisfies the constraint
requirements explicitly. It is, however, more complicated and computationally expensive.
This is probably why it is not used in granular mechanics.

Apparently, many dynamical systems of granular materials cannot be completely
described as a continuum. In addition, it is impossible to investigate the physical
behaviour of every particle in a granular system and simulate their dynamics process
using macro parameters of the system. Therefore, the discrete model should be adopted
as the basic mathematical model of granular systems. Although computers are becoming
more and more powerful in both computing speed and memory space, the size of the
system is still limited, especially in computer simulations. Hence, the existing discrete
models for multibody systems need to be improved so as to be suitable for granular-type

materials.
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2.3 Assumptions and Approaches

Many granular-type materials can be represented by a two-dimensional model
with regularly shaped particles, such as a disk or rectangle. A spherical model can be
used for a three-dimension system (Vinogradov, 1992).

In a multibody system, each body has its geometrical parameters (length, width),
physical parameters (density, mass, inertia, variable internal and external forces) and
state parameters (position, velocity, angular velocity). Some of them are constants and
several of them are variables. All of these can be used in granular materials systems.
First of all, the shape of bodies can be a simple sphere in a 3-D case or a disk in a 2-D
case. Then only one geometrical parameter, radius, for each body is introduced. In
addition, the angular inertia of particles is neglected because the angular position of each
particle is considered to be not important.

A granular system, depending on how complicated it is, can comprise some
bodies, boundaries and clusters of interconnected bodies. Also, the boundaries can be
considered as bodies whose velocities are zero and masses are infinitely large.

In taking into account the assumptions above, a point-mass truss model that was

used for a multibody system (Wierzba, 1991) can be employed for a granular system.

2.3.1 Point-mass Truss System

The basic assumptions of a point-mass truss system are:

(1) each body or particle in the system consists of one point mass,
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(2)  connections between two point masses are weightless rigid links,
(3)  each centre of the point mass is an ideal joint without friction torque, and
(CY) external forces act directly on the point masses.

From assumption (3), it can be deduced that the links are loaded by only axial

forces.

2.3.2 Formulation of Constraints

There are various kinds of constraints in multibody systems, as for example, in
robots or mechanisms. However the constraints in granular systems are different since
they are one-sided constraints between bodies and bodies and boundaries. In a broad
sense, the boundary can also be thought of as a group of bodies or particles with a finite
or infinite radius and an infinite mass. As mentioned above, the radii of boundaries can
be infinite (for a straight line) or negative (for a concavity). So there is only one type

of constraint which can be expressed mathematically as

|r, - rJ.[ =c; @2.1)

n " 20 (2.2)

where 7; is the position vector of ith body; c; is a constant and the v;” denotes a velocity
component of ith body in the normal direction (parallel to the link). Equations (2.1) and
(2.2) are, respectively, position and velocity constraint conditions.

When a point-mass truss system is used, the links can take both compressive and

tensile forces which are so-called constraint forces, denoted here by ¥y, , where i and j
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are the indexes of particles. Two forces are equal and apposite in their actions on
particles i and j. They act along the centre line of particles ¢ and j. If the constraint force
is tensile then y; > 0, and if it is compressive then ¥; < 0 . In granular materials the
constraint disappears if the reaction force ; is positive. Thus the condition that the link

exists between the particles i and j is

Y; <0 (2.3)

Figure (2.1) illustrates a typical example of a granular system and its

corresponding mathematical model.
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(a) physical domain

Q .

(b) corresponding point-mass truss model

Figure 2.1 A typical example of a granular system using multibody dynamics model



2.3.3 Generalized Constraints and Overconstrained Systems

If a body is in contact with other bodies or boundaries, its motion is restricted
in the normal direction. This restriction is called here the general constraint.

In a coupled multibody system, if the topology of the system is a tree-like one,
then the system can be solved in generalized coordinates (Vinogradov, 1993a). In this
case the constraints are imposed without their explicit formulation, and then the number
of generalized coordinates is equal to the number of degrees of freedom of the system.

When the topology of the system has a circuit or a closed-loop, then a constraint
equation is written in an explicit form (Vinogradov, 1993a). Those extra coordinates,
which need to be determined by additional constraint equations, are called here the
generalized constraints so as to distinguish them from the general constraints.

For a system in which all bodies are coupled and the number of bodies is N,
(excluding the number of boundaries N)), the conditions for a system without generalized
constraints are: 1) N, 21 and 2) N, = N, - N;+ 1. Where N, is number of links.If N,
> N, - Ny + 1 or N> 1, then generalized constraints exist, and their number N, can be

determined by

N =N -N 2.1

The overconstrained system is one in which all algebraic equations to describe
the generalized constraints are linearly dependent. In the constrained system, the

overconstraints occur only if
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N, > 2N, -3 2.2)

Note, that N includes N, if these bodies are connected with the boundaries.

These different constraints can be illustrated clearly by Figure (2.2) as follows

(a) A system with a generalized constraint (b) An overconstrained system

Figure 2.2 Examples of constraints

In Figure (2.2a), the number of bodies N, = 6 and the number of links N, = 7,
so the number of generalized constraints is N, = 7 - |1 = 1. In Figure (2.2b), the N, = 7
and N, = 12, which satisfy the Equation (2.2), therefore it is an overconstrained system.
The overconstrained system does not have internal degrees of freedom. Thus the
motion of bodies belonging to it are functionally dependent, which means that such a
system behaves as a rigid body. For such systems, a concept of a Quasi-Rigid-Body

(QRB) was introduced by Vinogradov and Springer (1990).



2.4 Topology and Associated Matrices

A granular system is a system with variable topology. In computer simulations,
significant computer time is spent on updating the equations of motion because the
equations are topology dependent.

To create a computer-oriented general dynamical formalism for granular systems,
one must devise a means for telling the computer how the system is connected.
Therefore, a data structure that can be used to keep track of interconnected bodies must
be chosen and it must be done in a way that can be implemented easily on a computer.

A simple geometrical expression of topology is a graph which shows the
interconnection between the bodies and boundaries. Associated with the graph, a matrix

or pointer array can be employed as a mathematical form of topology.

2.4.1 Graph Analysis of Topology

A graph that can summarize a lot of information is a very useful tool in many
fields of science and technology. Let us consider a simple graph in which there are only
two kinds of elements: points and lines. A point, also called vertex, can be an isolated
point in space or one on the end of lines. A line is said to connect or join the two
vertices. In other words, a line must be associated with two vertices.

When such a graph is used to represent a topology for a granular system, each
particle can be described by a point in the graph and the connection between the

particles is expressed by lines. In considering regular shapes and no overlap for all
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particles, the further limitation for the corresponding graph is that all lines on the graph

are straight lines with direction.
Figure (2.1) shows an example of a simple graph. The circled numbers from
0,1,2, ... N, are used to denote the vertices and the numbers without a circle (1,2, .... N,)

are used to denote lines.

(a) A circuit graph (b) A tree graph

Figure 2.3 Examples of graphs

Such a graph can be used to describe the topology of the granular system no
matter what the planar multidisk system or spacial multisphere system is.

According to the constraints requirements, a graph can be classified as follows:
Tree Graph
Definition: In a graph, if after any one of the lines is removed and the graph falls into

two separate pieces, then this graph is called a tree graph, or open loop.



29

For N lines there are N+1 vertices in a tree graph. It is convenient to designate
one vertex as a reference point in analysis of a tree graph. Any point or vertex can be
designate as a reference point, which is also called the root of the tree, and its number
can be denoted as 0.

The simplest tree graph has one point (root). A planar system with N bodies and
a tree like topology has N degrees of freedom.

Circuit Graph

Definition: If in a tree graph one or more lines are added while the number of vertices
is unchanged, then the tree graph is transformed into a circuit graph, also called a
closed loop.

The simplest circuit graph consists of 3 points and at least three lines. The
number of degrees of freedom of a planar system with N bodies and a closed loop-like
topology is less than N. Figure 2.2. shows a circuit graph and a tree graph.

An arbitrary graph comprises tree branches and loops. Such a graph can represent

a topological structure of a granular system.

2.4.2 Matrices Associated with a Graph

A graph is described by a matrix which is defined in terms of vertices and their
connections. There are two matrices associated with a graph which are interdependent.

(1) Path matrix
For a tree like graph, assume the Otk vertex is the root (reference point), a path

matrix can be represented by
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P=I[P] 23)
in which each component P; has the following meaning:

(a) P; = 1 if the direction from i to j is the same as from the root to the

vertex j;
(b) P; = -1 if the direction from i to j is opposite to that from the root to the
vertex J;

©) P;=0if i and j are not on the same path from the root.

When a path matrix is used to present a tree-like graph, a reference point, i.e.,
the "root" needs to be identified. Since any point can be used as a reference point, the
path matrix has many different forms for a tree like graph. Moreover, a path matrix can
not completely represent a circuit graph.

(2) Incidence matrix
For an arbitrary graph whether it is a tree or a circuit, or whether it is composed

of multi trees or multi circuits, a matrix associated with this graph can be represented
by
E = [E) (2.4)

where each component E; has the following meaning:
(a) E;; = -1 if the direction of vth line points towards the ith vertex;
(b)  E;; = 1 if the direction of vth line is in the direction opposite to the ith

vertex;

(c) E;;= 0if i and j are not connected.
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The matrix E with N, rows and N, columns is called the incidence matrix

(Roberson and Schwertassek, 1988).

The columns of the incidence matrix correspond to a line in a graph and the two
non-zero elements identify the vertices on this line. An arbitrary graph has a unique
incidence matrix.

For the Figure (2.2)a the incidence matrix is

1 0 0 01 0O
-1 1 0 0 0 0 O
0 -1 0 0 0 0 O
E=[0 0 -1 1 -1 0 0 (25)
0 01 0 0 -10
0O 0 0 -1 0 0 1
0 0 0 0 0 1 -1
and the path matrix for Figure (2.2)b is
110000
010000
P=000-10-1 (2.6)
000010
001 1 11
000 0 0 -1]
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(3) Relationship between the two matrices
The relationship between the path matrix and the incidence matrix can be,

according to (Roberson and Schwertassek, 1988), expressed as

EP = -1 @7
where E is N, by N, matrix representing a tree-like topology and I is a unit matrix.
Note, that E can represent a closed-loop topology, while P cannot. Also, the sign in
Equation (2.7) may be different in some books and papers, such as (Ju, 1989),

depending on the convention adopted.
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2.5 Summary
A discrete mathematical model has been discussed in this chapter. In considering

the features of a granular system and through corresponding simplifications, the point-
mass system can be used as a basic model of a granular system.

The constraint requirements are very important in the mathematical modelling
of granular systems. Here the simplest constraints requirements are formulated. Some
concepts dealing with constraints will be discussed in later chapters.

Due to topological variability of granular systems, graph theory is used to
describe it. Two associated matrices, incidence and path, have been discussed here. They

will be used in the next chapter to describe different formulations of the dynamics

equations.



Chapter 3

EQUATIONS OF MOTION

3.1 Introduction

In this chapter two formulations of the equations of motion are used: Lagrangian
and Newton-Euler formulations. There are essential distinctions in the form of these
equations. The former have been used widely in multibody dynamics systems, the latter
were seldom used because there are additional unknowns in the equations. Since the
Newton-Euler equations can give us more advantages in numerical calculation, they will
be used in the following chapters and their derivation will be given in this chapter in
detail.

Because the derivation of the equations of motion is based on the topology of
system while the topology is described by the associate matrix E or P, the expression
of the equations of motion will be in matrix form in this chapter. In addition, some
diverse and complicated processes for the derivation of equations are omitted in some

sections and put in the appendix instead.

34
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3.2 Coordinate System

A mathematical model is usually dependant on a set of specific coordinates.
Proper selection of the coordinates allows one to obtain simpler expressions for
positions, velocities and accelerations and faster aigorithms in the derivation of the
governing equations. Apparently, the use of a set of rectangular Cartesian coordinates
is a simple and direct way to simulate granular systems.

In order to get a simple form of the equations of motion, most people often use
generalized coordinates in analysis of dynamics.

In a planar granular system, direction angles of centre lines of connected disks
are considered as generalized coordinates. The position of each body in space can aiso
be determined by angles in a spherical coordinate system. In order to describe a physical
system conveniently, relative coordinates are often used. However, a promising area for
improving computational efficiency is to use absolute coordinates. This has been
discussed by Huston, et al., (1994).

Absolute coordinates measure the position and orientation of the bodies of the
system in space as opposed to measuring the position and orientation relative to

adjoining bodies. Two kinds of coordinates are shown in Figure (3.1)
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(a) Relative angles (b) Absolute angles

Figure 3.1 Relative and absolute coordinates

According to the results of Huston, et al, (1994), the principal advantage of using
absolute coordinates is simplicity of the resulting equations leading to more efficient and
more accurate numerical solution and the advantage of relative coordinates is only their
intuitive description of the physical system. Hence, absolute coordinates are chosen here
in the derivation and solutions of the governing equations. In addition, rectangular
coordinates are also used to derive another form of the equation of motion, which can

give simple and explicit integral expressions.
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3.3 Lagrange Equations

3.3.1 Lagrangian Approach
The equations of motion can be derived by the standard Lagrange function which

is defined as
L=T-V G.1)

where T is the total kinetic energy of the system and V is its corresponding

potential energy. The equations of motion are then obtained by

d oL _ dL
—_—-— - = =0 32
dt g, dq, (32

If the system is not conservative, (for example, there are friction forces and some
time-varying forces in the system), the right side will be the corresponding forces rather

than zero. In addition, There is another form of Lagrange equations which is presented

as
d 0T dT
—_—— = 0. 33
% 9o (33)

where Q. is generalized force acting on the ith body. The equations of motion derived
by the equation above are called Lagrange equations here. The detailed procedure of
derivation for planar and spacial systems can be found in (Springer, 1989) and
(Vinogradov, 1992) respectively.

Assuming there is a multibody system with N bodies and the topology of this
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system is represented by a path matrix P, ( P = [p;] ), then the equations of motion
could be, with reference to (Springer, 1989) and (Vinogradov,1993a), written as

):(g Py P;m;)cos(9,-0) L6, + E(); P.p,m,)sin(0-8)16° = 0, (34
7

J

If the components of external forces acting on the kth body are f,, and f,, , then Q, can

be presented as

Qc‘ = ‘Sme,-(zpu xk) ¥ cosei(zpikf;-k) (3.5
k k
where i = 1,2...N, and m, is the mass of the kth body and /; is the length of the jth link
and O, is the generalized coordinate. éj and éj are respectively the first and second
derivative of 6. If the topology of the system is tree-like or called an open loop, and
the number of independent variables is N,, then the Equation (3.4) is a set of pure
ordinary differential equations. Otherwise, the equations become a set of algebraic
differential equations, which will be discussed in the next section.
Equations of motion, i.e., Equations (3.4) and (3.5) can also be written in a
matrix form as following
AL{8,} +BL{6}} = (0.} (3.6)

where
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A =CPMPT'C+SPMP'S 3.7
B =SPMPT'C-CPMP*S (3.8)

and
{Q} = -SPM{]ZJ.} +CPM[];J.} (3.9)

In the equations above, the notations in braces are a set of arrays. The bold
letters identify matrices. M, L, S and C are all diagonal matrices of order N, xN, (note

that the N, is equal to N, for a system with a tree-like topology) and are defined as,

respectively
m_ 0
0 . 0
M=l ™ (3.10)
-O 0O .. m -
[ . 0
L .0
L = 2 (3.11)
L 00 IN' J NxN,

and



cos@, O 0
0 cos6, . 0
C =
0
] 0 cos BN’_ .
sin, O
S - 0 sin6,
| 0 o . smGN'- o,

Equations (3.10)~(3.13) can also be written in the following simple forms

M =dial(m)  j=12,.N,

b
L = dial (1)

S = dial(sin®,) } i=12,..N,
C = dial(cos8,)

3.3.2 An Example

(3.12)

(3-13)

(3.14)

A specific application of these equations of motion in matrix form can be

illustrated via the following example which Assumes a simple planar system with a

fixed boundary and three disks [shown in Figure (3.2)a). and its corresponding point-

mass truss system [shown in Figure (3.2)b].



(a) A three-disk system

(b) Corresponding point-mass truss system
Figure 3.2 A three-disk system

In this example the path matrix P is

41
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3.15)

and

=) 3
1<) =)
& =
o o .~
(=T B -
SO o

(3.16)

sin@, 0 0 cos®, O 0
S=| 0 sinB, O C=| 0 cosb, O
0 0 sin6, 0 0 cos6,

The external forces are

(£,} =(0.,0,0)
3.17)

{f;} =(-mg, -mg, -mg)
Substituting Equations (3.15)-(3.17) into Equations (3.6)-(3.9) gives

(m, +m,+m )L, 8, +m,Lcos(8,-8,)8, + ml,cos(8,-8,)8;+

mzlzsin(el-ez)ei +m,lssin(9,—93)ﬁi = (m,+m,+m,)gcosb,
(3-18)

m,l,cos(8,-0,)8, + m,1,8, +m,Lsin(8,-0)8; = -m,gcose,

ml,cos(8,-0,)0, + m, L0, +m,lsin(8,-0)8; = -m,gcose,
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3.3.3 Handling of Constraints

The equations of motion for a system with an open-loop topology is a set of
second order differential equations. If the topology has a closed loop, the path matrix
will not be able to describe it. For each loop a cut is necessary and a constraint equation

is formulated. It introduces a new unknown, an internal force, and results in a modified

Lagrangian equations

AL{6}+BL{6]} = {Q,} -GT(LA} (3-19)
where A is Lagrangian multipliers, G is usually called the constraint Jacobian matrix

and its components are
9¢
G =__°2% (3.20)
[+ 43 aei

and ¢, is the ath constraint equation with variables 6,(i=1, 2, ... N, ), ie.

$,(0,.6,,..6,) =0 «=1,2,..N (3.21)

The governing equations of motion are given by Equations (3.19) and (3.21),

which are called Differential Algebraic Equations (DAEs).



3.4 Newton-Euler Equations

3.4.1 Newton-Euler Approach and Equation Formulation

The equations of motion can also be obtained in terms of the so-called Newton-
Euler approach, which has been developed by J. Wittenburg. There is a detailed
discussion in (Wittenburg, 1977).

In our model, all point-masses act upon each other by massless rods with only
axial forces. These axial forces are represented as a set of components of the vector Y

as the following

(Y=Y ¥ ¥5 - V0T (3.22)

Let us consider a rod with an index v and with two point-masses m; and m;,

shown as Figure (3.3).

A
Y
T
X_»n
o X’

Figure 3.3 A single link with point-masses i and j
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The magnitude of the force acting on the rod v is represented by v,. If this force
is tensile then y > 0; otherwise ¥ < 0. Applying Newtonian laws of motion in local

generalized coordinates, we have the following

m.a; =¥, cos®,-6)+7v,+fy (3.23)
m.a, =Y, sin@,-0) +f, (3.24)
and
ma; = -y, +7Y, cos(®,-0) + fy (3.25)
m.a; = -¥,sin(8,-6,) + f; (3.26)
where

a;":  acceleration of point-mass m; in the n direction of the rod v;

a,:  acceleration of point-mass m; in the T direction of the rod v;

fi:  component of external force on point-mass m; in the n direction of the rod
Vi

fi»:  component of external force on point-mass m; in the T direction of the
rod v;

where n indicates the direction along the rod from i to j, and 1 is perpendicular to it,

as shown in the Figure (3.3).

In the inertial reference kinematic system, the accelerations of two point-masses

should satisfy the following equations
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m(ay -az) = -m,1 0 (3:27)
m.(a; -a,) =ml8, (3.28)

Eliminating a.", a,", @;," and a,° in Equations (3.23)~(3.28) gives

n

16 = -ﬁcos(ev—eu) +(-1_+.l.)7v —&cos(ev—ew)ﬂfi-f_j") (3.29)
. m m

m, m; mj ; m, ;

18, = -Y*sin(8,-0,) - sin(0 -6 - (L~ - (3.30)
m' m- - -
i g . L

For each link in the system, we can obtain a pair of equations as above. If the
number of links is N,, then the total number of equations will be N,. The first derivative
and the second derivative of the generalized coordinate 0; will be decoupled for every
equation through the internal force parameter ; .

All of these equations in a component form, using the inductive method and the

concept of the incidence matrix E can be written as follows

L{6]} = H{y,}+{F} (3.31)
L{6} = K(y,} -{F} (3.32)
(F'} =CE™™{f } + SETM{f } (3.33)
(F'}) =-SE™™™(f,} +CE™™™(f} (3.34)

where it is assumed that the number of bodies is N, (index j) and the number of links
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is N, (index i).
Note: in Equations (3.33) and (3.34), f,; and f; are respectively x and y components of
the external forces. E is the incidence matrix of the order N,xN,, M is a diagonal matrix
of the order N xN, and L, C and S are all diagonal matrices of the order N,xN.,.

If we define

V =EM'E (3.35)

then the components of matrix H and K will be

H.

Yy

V,;cos(8,-6,) (3.36)

, = V,sin(6,-6)) (3.37)

Since V is symmetric, it can be shown that H is also symmetric and K is anti-

symmetric. In addition, using the trigonometric identities

cos(ax~B) = cosacosP +sinasinf

(3.38)
sin(ac-P) = sinacosP - cosaesinf
the matrices H and K can also be represented in another matrix form
H=CE"M'EC +SETM'ES (3.39)
K=SE™EC-CE™™'ES (3.40)

The Equations (3.31) and (3.32) describe the system motion and they are in a
decoupled form. If the system has a tree-like topology, then using the relationship the

between incidence and path matrices EP = -I, [see Equation (2.7)], Equations (3.31) and
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(3.32) can be converted into a coupled Lagrange form, which is exactly the form

obtained by using a Lagrangian approach (Vinogradov, 1993a). The proof can be found

in Appendix A.

Now, let us consider the example shown in Figure (3.2). The corresponding

incidence matrix for the system topology is

E=|0 -1 O
0O 0 -1
and the equations of motion are
19' RARE —Zcos(6,-0,) -_cos(e -9,) + gsin®@,
I ml ml
2 m. -+
L6 = -Yicos(,-0) + T2y~ Y3 0508, -0))
ml 2 ml
1,6, = -ﬁcos(es-el) +12.cos(93-9,) + m[+m373
m, m, * “mm,

and

16, =Y —Zsin(@,-8,) - _.sm(e -6,) - gcos0,

ml
< Yy
L,o, = -—sin(9,-0)) + __sm(e -9,
1 ml
L8, = -1
50, = ~—sin(0, 9)+___sm(6 -6,)
ml ml

(3.41)

(3.42)

(3.43)

These equations are the Newton-Euler form of equations of motion, also simply
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called Newton-Euler equations or Newton-Euler formulations. Those equations from the
Lagrange approach are called Lagrangian equations or Lagrangian formulations in this

thesis.

3.4.2 Newton-Euler Equations in Rectangular Coordinates

For each component in matrices C and S, we have

X X, —X,
cos@ =_" =-_~_J
' l\v' lV
(3.44)
Y —y.
sing, = —* = -2 %
IV lV

so the C and S matrices can be expressed as

C = L diag(X,)
(3.45)
S = L™ diag(Y))
or
C = L'diag(E™{x,})
(3.46)

S = L diag(E™{y}})
The left hand side of Equation (3.31) can also be expressed in the rectangular

coordinates system

L{6") = LUET({£}} +{3]) (3.47)

where X, Y are relative coordinates and x, y are absolute coordinates. Their relationship
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can be represented by

(X} = -E"(x)
(3.48)
(Y} = -E7{y,}
and so are the velocities
(X} = -ET(%)
(3.49)
(¥} = -ET{y,}

In order to obtain the reaction forces 7, the equations of motion of the system

can be written directly in rectangular coordinates as follows

M{x} = EC(y.}+{f;} (3.50)

M{5)} = ES{y,} + (£} @3.51)

Correspondingly, the equation (3.31) in rectangular coordinates can be written as
H{y,} = L"ET({%"} + (37D - (F") (3.52)
It is necessary to point out that Equation (3.52) can be obtained Jirectly, rather

than from Equation (3.31). Let us consider the constraint relations

(X2} +{¥*} = (L} (3.53)

after differentiating twice we have

(XX )+ (Y7} +«(X})+{¥} = 0 (3.54)

multiplying by L™ gives
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C(X}+S(F}+LYX}+{¥’) =0 (3.55)

Utilizing the available relations, i.e., Equations (3.46), (3.48)~(3.51), we can easily obtain
Equation (3.52), which is a proof of validity of the constraint equations.

So far we have two different forms of Newton-Euler Equations. One in
generalized coordinate angles and another in rectangular coordinates. They are,
respectively, Equations (3.31)~(3.34) and Equations (3.50)~(3.52).

Introducing the internal reaction forces as parameters can cause the first and
second order derivatives to be decoupled. Although the number of variables and
equations increases for the Equations (3.50)~(3.52), the equations become simpier.
Therefore, the amount of computing work is unchanged. One problem that needs to be
pointed out is that if the number of variables in the equations of motion is in excess of
the number of degree of freedom, violations of results can occur. How to handle this

problem will be discussed in the later chapter.

3.4.3 Newton-Euler Equations with Constraints

The Newton-Euler equations are based on the incidence matrix E. The incidence
matrix can be used to describe either an open-loop topology or a closed-loop topology,
so topology does not affect the form of the equations, (i.e., the differential equations are
of the second order for an arbitrary topology).

It must be pointed out that if the system is over-constrained, then the matrix H

will become singular, which means that the solutions of equations of motion will not
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exist.

The over-constrained system represents a cluster behaviour as a QRB (Quasi-
Rigid-Body). If this is the case, then the system should be treated along the lines
discussed in (Vinogradov and Springer, 1990) and (Wierzba and Vinogradov, 1991).

In the present thesis the concept of a QRB is not considered in numerical
applications due to the limited objectives of the investigation. The complete governing

equations, however, are given in the following for the sake of completeness.
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3.5 Several Extended Forms of Newton-Euler Equations

3.5.1 Dynamics Equations of a Multi-Rigid-Body System

The point-mass system is not suitable for a rigid body system if the effect of
body size cannot be neglected. It occurs when some particles form a cluster behaving
as a QRB. Clusters such as this are over-constrained systems.

Now let us consider a system with three QRBs of the type described in

(Vinogradov 1993b), shown in Figure (3.4).

Figure 3.4 A multi-rigid-body model

Several matrices, L, , C, and S, are introduced to describe the system geometry
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and positions. They are

C, =I[C,] = [E;r,cosy,] (3.56)
S, = [S,;]1 = [E;r,siny,] (357
L =(L]=[IE;|L] (3.58)

where superscript & (1,2 ...) is from 1 to the maximum number of contact bodies. Those
point to which the r; pointed are the centres of disks (in QRB) that are connecting with
the external disks. The r and [ in the equations above are scalars and they can be
determined from the geometric configuration of the system. See (Vinogradov and
Springer, 1990) and (Wierzba and Vinogradov, 1991).

In order to demonstrate clearly the meaning of the components of the matrices
above, an example will be given based on the system shown in Figure (3.4). In this

example, the new auxiliary matrices are

~r,CosY,  r,CosY, r;COoSVY,,
C = 0 =r, COS\,, 0
0 0 =r;, COS Y,

=r, sy, rpSmy,, rsinyg,

S, = 0 —r,, siny,, 0 (3.59)
0 0 -r, siny,,
lll llz ll3
L =|0 L, O

0 0 I,
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And the matrix L is correspondingly

)

0

L= 0 ll2+122

0 0 ll3 * 133

0 0
0 (3.60)

Where the number of variables y; is the same as the number of bodies (QRBs).
Because there is only a constant difference between y; and \;, the y; should be

correspondingly upgraded as soon as the y; is determined.

The Newton-Euler equations for a system of bodies with arbitrary shapes are as

follows

L{6]} = H{y;}+K{Y[}-C, (¥} -S, (W} + (F."} (3.61)
L(8} = K{y[}-H{Y{}+S,/ (¥} -C, (W} - (F} (3.62)
LW} = =S, (7} - (L <CRlri} + (M) (3.63)

The derivations of these equations can be found in Appendix B.

Note that Equations (3.31) and (3.32) are a particular case of the system
represented by Equations (3.61)~(3.63), if in the latter y disappears.

In the case of absence of any slip between the bodies, the kinematic relations can

be expressed in the form

L{G‘.} = L,{\Vj} (3.64)
In the Equations (3.61)~(3.64), the y is the self rotation angle of the body, I, is the

inertia matrix, M, is the external moment vector acting on each body, and C, and S,
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are as follows
C,=CC+SS o C/=CCT+S5S (3.65)

S,=SC-CS o S =CS"-5C (5.66)

The reaction force 7y is split into two parts. One is the normal reaction force
along the [ direction; another is the tangential force perpendicular to the ! direction,
where /; is the link vector.

The final form of the equations of motion for a2 general system can be obtained
from Equations (3.61)~(3.64), in which the second order derivatives of 8 and ¥ will be
decoupled. Note:

(1) if slips occur, the kinematics relations, i.e. Equation (3.64), are invalid.
However, the reaction forces in this case are known and therefore the system of
equations is closed;

(2) the Equations (3.61)~(3.63) are not the decoupled form of equations of
motion, but they can be obtained by substituting Equation (3.63) into Equations (3.61)
and (3.62).

Moreover, the Lagrangian form of equations of motion for an open loop system

can be found in (Vinogradov, 1993b).
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3.5.2 Equations of Motion for a Multi-Rigid-Body System with Link Connectors

Assume an ideal interface between the bodies, and the reaction forces act only

in the normal direction. In this case, the interface can be modelled by a link connector.

See Figure (3.5).

>

o X

Figure 3.5 Two rigid bodies with a link connector

where C is the centre of mass and r; is the vector with directions from C; to local link
point. The normal contact force acts along the link. In actual situations, the link

connectors can take only compressive forces.
In dynamic equations, i.e., Equations (3.61)~(3.64), let {y} = {Y;} and {Yy*} =

{0}, then these equations become

L{6]} = H{y,}-C,]{(¥}}-S, (W} +{F} (3.67)
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L{8} = K(v.}+S,/ (¥} -C, (¥} - {F} (3.68)
I (w} = -S (1.} +{M,} (3.69)

Utilizing Equation (3.69), we can rewrite Equations (3.67) and (3.68) as

L{6]} = (H+H,)(1,}+{F"}-C,/ (W} - S,/ L' (M} (3.70)
L{8,} = (K+K,)){Y,} -~ {F }+S,/ (¥} -C/ L, (M} (3.71)
where
H,=S,/1,'S, (3.72)
K,=C/IL,'C, (.73)

Equations (3.70), (3,71), and (3.69) are the equations of motion with the

decoupled form on the second derivative.

3.5.3 Equations of Motion for a Multi-Rigid-Body System with Revolute Joints

Most multi-rigid-body systems have revolute joints. For example, in a

manipulator the connections between the bodies are by revolute joints. See Figure (3.6).
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Figure 3.6 Two rigid bodies with a revolute joint

This kind of system can be considered as a special case of the system mentioned
above. If the length of the link becomes zero in the above system, the link connector
is transformed into a revolute joint. Therefore, the equations of motion can be directly
derived from Equations (3.61), (3.62) and (3.63).

Clearly, when the length of each rod [ becomes zero, the corresponding angle 6
disappears. However, the reaction forces between the bodies still exist. Assuming the
length of rod  is very close to zero, then the 0 still has meaning. Let the reaction force

¥ be divided into two parts, Y, and ¥,, which can be determined by

{1.) = C{v;} (3.74)

(1.} = S{1,} (3.75)

Let [ be zero in the Equations (3.70) and (3.71), which gives



60
(V+H) (Y} -D, {1} = ETM(f,}-ST LM} -CT (v} B.76)

-D,{Y, }+(V+K) {1} = ETMM[}+C L' M, } -8, (y;}  GTD

where
D, =5/1I,'C, (3.78)
D, = C/L'S, (3.79)
Equations (3.76) and (3.77) can also be written in a matrix form
_ _eTy! _,T
(V+H,) -D, |[[{v,} ) ST -C'|[M,} . {B;} (3.80)
D, (V-K)|\(v,.}| | -st| ()] |(B.)
where

8.1] [E’M" o | 380
(B} o EM|{f}
Using Equations (3.74) and (3.75), the Equation (3.69) can be written as

I{y} = =S, (v} +C, {1} « (M} (3.82)

Equations (3.80), (3.81) and (3.82) are the Newton-Euler Equations for a multi-
rigid-body system with hinge joints. Note that these equations can also be directly
derived from the dynamics equations, i.e., Equations (3.61)~(3.64), in terms of the

following relations
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{(vi} = Cly,.} +S{y,;} (3.83)
{(vi} = -S{y.}+Clv,) (3.84)

3.5.4 Equations of Motion in Spatial Coordinates
A granular system in 3-D is often treated as multisphere system. An example of

a multisphere system is shown in Figure (3.7).

X

Figure 3.7 A simple multisphere system comprising 3 balls

In the paper by Vinogradov (1992), the equations of motion were derived based
on Lagrangian equations and the path matrix is used to represent the topology of the

system. Here, we will give the Newton-Euler Equations for a 3-D multisphere system.



The details of derivation are in Appendix C.
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If © and ¢ are the generalized coordinates, the equations of motion can be given

in the form
L({61+SHOD) = H, {v,}+{F.)
L({$,} -S,C,(6;}) = K, (v} - (F’}
LS, (8} +2LC,(6,8,) = KS,{v,}- (F}
where
H,=C,VC,+S,HS,
K, =S, VC,-C,HS,
and

(F"} = S,CE™M"(f,} +S,SE™™(f,;} + CETM{f}
{F?} = C,SE™M{f,;} + C,CE™™M{f,} - S,ETM"'{ [}

(F?} = -SE™™(f,} + CETM*(f,}}
Equations (3.86)~(3.88) can also be represented in matrix form as
{(F"}| |s,c s, C, EM* o o |[{f}

(F?}|=|Cc,s C,C -5, | o EM™M*' o |{f}
{F}} -§ C O ¢ 0 E™™'||{f;}

(3.85)

(3.86)

(3.87)

(3.88)

(3.89)

(3.90)

3.91)

3.92)

(3.93)
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Similarly, for 3-D rectangular coordinates, the Newton-Euler equations are

H,{y)} = L ET({%7} + {y’}+ {&’)) - {F} (3.94)
M{z} = ES,C{y.}+ (£} (3.95)
M{y} = ES,S{y,}+ (£} (3.96)
M(z} = EC,{v,} + {£,;} 3.97)

In addition, Equation (3.93) can also be directly obtained through the constraint
equations if a derived differentiated form are used. The specific procedure is similar as
that mentioned in Section 3.4.2.

The equations in 2-D can be obtained in a particular case if we let z = Const. and
¢ = w2, (ie, S, = I and C, = 0). In addition, when the system has a tree-like
topology, the Lagrangian equation for a muitisphere system can be obtained directly
from Equations (3.85)~(3.88) by eliminating reaction forces ¥. The component form of
the equations is the same as in the Lagrangian approach (Vinogradov, 1992).



3.6 Summary
In this chapter the equations of motion for a granular system were given for two

formulations: Lagrangian and Newton-Euler. As well, the Newton-Euler equations were
discussed in detail with various forms of the equations discussed.

For purpose of comparison, the Lagrangian equations used for multibody systems
are given here in a similar matrix form. An obvious distinction is that the reaction forces
are presented in the Newton-Euler equations explicitly.

In computer simulations, the reaction forces must be known during the
integration so that the variability of the system topology can be monitored. That is why
we prefer to use the Newton-Euler form of equations of motion. In addition, they
decouple second derivatives and thus, as it will be shown, make simulations more
efficient.

In summary, the Lagrangian formulation gives the minimum number of
equations. This form of equations can easily be obtained through mapping on a data
structure. The characteristic feature of the Lagrangian formalism that negatively affects
its numerical efficiency is that the second derivatives in the differential equations are
coupled. On the other hand, the Newton-Euler formalism leads to a larger number of
equations because the internal forces are additional unknowns. However, the second

derivatives in this case are uncoupled. Thus it is not straightforward which formuiation

is more computationally advantageous.



Chapter 4

SOME ASPECTS OF METHODOLOGY
OF COMPUTER SIMULATION

4.1 Introduction

In a computer simulation program for granular systems, we must meet two
objectives. One is to use a mathematical model as close to the actual system as possible.
The other objective is to make it computationally efficient. In this chapter, we will
address both of these objectives.

Since a granular dynamics system is a system with variable topology and since
equations of motion depend on the topological structure of the system, the storage and
updating of the topological data will affect the computational efficiency directly.
Therefore, a new handling of topology will be introduced in Section 4.2.

The handling of driving forces and their effective description is very important
in computer simulations and this will be discussed in Section 4.3. These forces are
gravitational forces, drag forces, friction forces, and impact forces.

In a dense granular system, collisions occur very frequently. The handling of
these collision events takes significant CPU time. Hence, in Section 4.4, we will
introduce a new method to handle collision events so as to improve the efficiency of

computer simulation.

65
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The generation of disks with random size, position and time interval must yield

some specific distribution density. The method, presented in (Wierzba, 1991), is called
sampling and it has two disadvantages. One is its complexity. Another is its restriction
of particles density. In Section 4.5, a simple generation technique will be introduced
which can give a high particles density distribution of granular particles in a known

generation area.
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4.2 Topological Data Updating

Granular dynamical systems have a topological structure which is variable in
time. Usually matrices are used to describe the system topology. Consequently, the
equations of motion are also expressed in a matrix form. Certainly, a matrix expression
is simple and clear. However, matrix calculations require additional computer time due
formation of matrices and operation on them.

Matrices describing system topology are usually sparse. Obviously, it is not
economical to store the zero components and to use them in computations. The way to
improve the computational efficiency is to apply a one- dimensional array to replace a
diagonal matrix and to use a multi-dimensional array to replace a block-diagonal matrix
in the generation of equations of motion and topological data updating.

In the incidence matrix E, each column has no more than two elements. They
are used to represent the beginning and the end of a link. When a body is interfaced
with an obstruction or a boundary, the corresponding column has only one element. So
an array with two rows can be used to represent an incidence matrix completely. For
instance, if the incidence matrix E is of order N,xN,, the corresponding array A is of
order 2xN.. Let us consider the example in Section 3.3.2. The incidence matrix in this

case is
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E=|0 -1 0 @D
o 0 -1
and the corresponding array is
-1 11
A, = 4.2)
1 23

In the array, each column denotes a link. The first row represents the numbers
of bodies located at the beginning of the link and the second row represents the numbers
of bodies located at the end of the {ink. The negative number denotes the obstructions
or boundaries.

An array representation, instead of a matrix one, can reduce not only computer
storage space but also computational time. However, this expression can be inefficient
if a path matrix P is used, because the latter is not a banded matrix in general. That is
one of the reasons why we use the incidence matrix and the Newton-Euler equations in
computer simulations.

The equations of motion can also be stored in an array so as to avoid
unnecessary muitiplication of zero components. In the array, the number of columns is
equal to that of Ag, while the number of rows depends on the maximum number of
neighbouring bodies. In other words, the number of rows can be determined by the
number of bodies interfacing a given body.

In a planar multidisk system, if all of the disks are of the same size or close to

the same size, this number should be 6. In a spatial multisphere system, if all of the
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spheres are of the same size or close to the same size, the number should be 12. If the
sizes of bodies in a system vary, the maximum number of rows can be obtained in terms
of the maximum and minimum sizes of bodies in the system. Let N, be the maximum
possible number of contacts in the planar multidisk system, then it can be found from
N, = INT[E.] (4.3)
o

where INT [ ] is the conversion integer function and & is defined by

r_.
singg = ™ ___ 4.4)
r. +r

mn max

In Equation (4.4) r,, and r,,, are the minimum and maximum radii of disks in the
system, respectively. If r,, = 7., then & = /6 and we have that N, = 6. The proof

of Equation (4.3) can easily be obtained from Figure (4.1).

R=00"=r +r,,

—~

AIOIBI . 2aR

L
o

=z
]
R X

Figure 4.1 Illustration of the maximum coordination number in a multidisk system
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In a spatial multisphere system N, can be determined approximately by

N = INT [.%(E:_E_).] 4.5)
" E

where E is the spherical excess of the triangle i.e. E=A + B + C - &, where A, B, and
C are the angles of the triangle on a spherical surface. The definition of the spherical
excess of the triangle can aiso be found in the spherical geometry section of any

mathematics handbook, such as (Zwillinger, 1996). In our problem, E can be determined

from

1 ' 3o (4.6)

tan—FE = | tan—2 tan’®
rual e e

where « can still be obtained from Equation (4.4). Only r,;, and r,,, are respectively the
minimum and maximum radii of spheres in the system.
To prove Equation (4.5) requires reference to spherical geometry and can be
done in a similar manner to the proof of Equation (4.3). Please refer to Appendix D.
Note that E is measured in radians in Equation (4.5), and also because the

interstices between the disks are irregular, the obtained N, may be greater than the

actual value.

Let us assume that r_, = r.,,, then & = /6 and in this case N, = 13. In fact,
the maximum number for this situation is 12. Although there is still space left when 12
similar size spheres are used, it is not possible to have any more spheres. In any case,
using the maximum row number which is determined by Equation (4.5) provides a

degree of safety.
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Hence, the size of the array describing the topology is variable. It depends on

the dimensions of the system and on the maximum and minimum sizes of the bodies in
the system. Obviously, the use of an array can greatly save the storage space and avoid

unnecessary operations, thereby greatly improving the efficiency of computer simulation.
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4.3 Variable External Forces

In a granular system there are acting external forces and induced internal forces.
The external forces, in general, are gravitational forces when a system is in a gravity
field and drag forces when a system is in a fluid field. Gravitational forces are potential
forces and are time independent. The friction and impact forces are internal forces.

These forces are non-conservative and time dependent.

4.3.1 Gravitational and Drag Forces
Every body in a granular system will be acted upon by the gravitational force

as long as the system is located in a gravitational field. The gravitational force acting

on the ith body is given by

F,=mg 4.7
where m;, is the mass of the ith body and g is the gravitational acceleration.

The gravitational force must be considered if it is the dominant force for the
motion of a multibody system. When a multibody system is carried by a fluid, the drag
force must be determined since it is a driving force. In general, the latter is proportional
to the square of the relative velocity of the body with respect to the fluid. If u, denotes

the velocity vector of the body mass centre and u, the velocity vector of the fluid at that

point, then the drag force is
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1
F, = 5P A,C,C, (uy~uy)uy~u,| (4.8)

where p is the fluid density, A, is the projected area of the body and C, is the non-
dimensional drag coefficient. It is necessary to point out that C, is not a constant but

a function of the Reynolds number Re. Re is defined by

d
Re = 20 4.9)

v
where u, is the velocity of flow, v is the kinematic viscosity of fluid and d is the size
of the body. Actually, C,, depends on the shape of the body, roughness of the solid
surface and the viscosity of the fluid, and is found experimentally. C, in Figure (4.8)
is another parameter which is called here the attenuation coefficient. In (Wierzba, 1991),
the drag forces acting on each disk are not affected by the neighbouring disks. However,
their influence causes errors, especially in the system with a dense distribution of
particles. Here we will make corrections to eliminate this kind of error.

Before introducing the attenuation coefficient, C,, of drag force, let us introduce

the shadow factor k which is defined as the ratio

h.
k.= 2L 4.10)
2r;

where h; is the shadowed part of disk j caused by disk i. For a single disk or the disk
not in a shadow, k = 1. For a disk located in the flow shadow of neighbouring disk(s),

which can be illustrated in Figure (4.2), k < 1. From Figure (4.2) we can find
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h; = (r,+r,)(1 - sin8 ) 4.11)

|

v

Figure 4.2 Ilustration of the concept of reduction of
drag force for two disks in a flow

If more than one disk is in contact with disk i then

k=_LY%»n (4.12)

7 2,,jk Jk

and the coefficient C, for the disk j is defined by

1-k kl <1 (4.13)

J

Aj 0 k1

Note that C, is always greater than zero for the existence of shadow. If k; > I,

which means that the disk j is fully shadowed, C, is equal to zero, as in Equation (4.13).
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In addition, k should be determined in each direction. Here C, is given only in the x

direction. The component of C, for y direction can easy be obtained in a similar way.

4.3.2 Friction Forces

A friction force between two rigid bodies can be produced only if they have a
relative motion in the tangential direction. Because of the assumption that the rotation
of each body is not considered, the relative velocity between the two bodies can be

substituted by the relative velocity of the mass centre of the two bodies. See Figure

(4.3).
T n
S
. N .
Y r; Y
Oi
J fu
T A S\ %
I 0. [
0. x> 0, x>
r r;

Figure 4.3 Friction force between two disks

Generally, the friction force is proportional to the normal force y; between the
two bodies and its direction is always perpendicular to the latter. Its specific direction
can be determined by the relative velocity between the two disks. The friction force

between disks i and j can be given in the form
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frij = SGN( v: .vjt )"Yij for Yij <0 (4.14)
On disk i the friction forces in X and Y direction are respectively
i = Y SGN(%, - % )py,;sind,
! (4.15)

[y = Y SGN(J, -y, ny ;cosb,
7

where u is the coefficient of friction and SGN () used here is a special sign function

that is defined as
1 X>€
SGN(x) = fé‘. |x|<e (4.16)
-1 xX<-¢

where € is the minimum allowance value, or the 1/e is the slope. See the solid line in

Figure (4.4).
I
LY = ™

/ Used
f’
0 V-V

Modified

—T . Standard

Figure 4.4 Several different friction models
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In the Figure (4.4), the dotted line represents the ideal dry friction model,

mathematically defined as

SGN(x) =10 x=0 4.17)

In order to avoid the discontinuity at zero, some authors, such as Threlfall (1978)
and Rooney and Deravi (1982), used a modified model. See the broken line in Figure
(4.4).

The friction force is a passive force which is proportional to the reaction force
v, according to Equation (4.14). If the reaction force ; on a disk is very large, then the
friction force is also large and can be larger than the resultant of external forces acting
on the disk. The direction of velocity of this disk may be changed during a time step,
which resuits in a friction force with an opposite direction in the next time step. And
so forth, it is just like a vibration. In order to avoid this case, a restriction to the friction

force acting on each disk should given in the form

fmrxi = :;';E' * Ef:n
(4.18)

mv
fmryi = % +Ef;-i

where Zf,; and Zf,; are the sum of total forces, except the friction force, acting on the

disk i in x and y direction respectively, and A is the time step.
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If the friction force is less than this limitation value, it will obey Equation (4.15).

Otherwise, its quantity will be determined by Equation (4.18). The relationship between
the magnitudes of a friction force and reaction force can be seen in Figure (4.5). Note

that f,, is not a constant. It has a different values for different disks and at different

times.

Figure 4.5 Relationship between friction force and reaction force

The limit on friction forces can result in a stable process when a granular system
is close to a packed state. If this is not the case, this limitation can be omitted in
simulations of a granular system.

Since the friction force is a function of the reaction force, its computation is a
part of the iterative cycle in the simulation program, which means that the friction forces
are updated in every iteration cycle. The detailed iterative procedure will be discussed

in the next chapter.



79

4.4 Impact
In a moving multibody granular system collisions between the bodies and

between the bodies and boundaries occur frequently. During a collision, there is always
a pair of equivalent impact forces which act respectively on the two bodies that
participate in a collision. A collision is an instantaneous event compared to the time-
scale of motion. However, impact forces in a granular system can make changes in the
state of motion and the topological structure of the system. It is these changes that we
are concerned with. Our focus is to handle the collision events correctly rather than how
to find those impact forces.

Let us consider a simple collision between two single disks and assume that the
velocities before and after the collision are identified by indexes 1 and 2. The velocities
of disks i and j which participate in a collision should satisfy Newton’s collision rule,
which is

ﬂ— n_- n_
Vip —Vp = —e(v; -y

) 4.19)
where 0 < ¢ < 1 is called the kinetic coefficient of restitution. The superscript n denotes
the normal direction of velocities and subscripts i, j and 1, 2 denote, respectively, the
disk’s numbers and the time index before and after the collision.

If the collision occurs between two sub-systems, according t(; (Brach, 1991), a
set of collision equations needs to be set up in the form

where

T the kinetic energy of the system;
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ar| _|9T | _p i=1.2,.N (4.20)
%), %),

q; the velocities associated with the generalized coordinates;

P, the generalized forces;

N the number of independent coordinates.

Obviously, at least N equations must be formulated and solved, which consumes
CPU time and data storage space. Actually, the handling of collision events during the
computer simulation takes even more time than solving the equations of motion of the
system. In order to improve the efficiency of the computer simulation, a completely new
method of handling collision events is used in this study.

The handling of collision events includes three parts: (1) identifying the events;
(2) updating the system topology and (3) comrecting the velocities. The system topology
is checked once at the end of the time step. All new overlaps (not including the position
errors for each link) will be identified. If the velocities of disks with overlap are larger
than the allowance for velocity violation, then the overlaps are handled as collisions.
Otherwise, they are corrected as a violation of the position constraint.

In the computer simulation program, the handling of collision events is done
together with the velocity error correction once for each simulation time step. The
velocity for each body is found independently. However, they have to obey the velocity

constraint conditions for two bodies in contact, namely
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o " =0 4.21)

If this condition is not satisfied, i.e., the right side of Equation (4.21) is not equal
to zero, corrections have to be done. The method of error correction is to introduce a
virtual reaction force between disks i and j that brings the velocity error to zero.

When velocity errors exist, the Equation (4.21) is

v' -y =m, (4.22)
We can set a limiting parameter 1), such that
In,;l <0, (4.23)

where 11, is the maximum allowable velocity violation error which is used as a threshold
determining the occurrence of collision. Usually the absolute value of velocity errors is
much less than n,.

If a collision occurs between disks i and j, 1|; must be positive as an indication
that two particles approach each other before the collision. If n; < n,,, then it is handled
as a velocity violation error, i.e., it is regarded as a new link just formed. If n; > n,,

then it is handled as a general collision event and for a given coefficient of restitution

e we have

n,ij = (]_+e)‘n‘_j (4.24)

After correcting velocity according to n)";, the disks i and j will have a relative velocity
-en; that is it will obey Newton’s collision law. From Equation (4.24) it can also

deduced that if ¢ = 0, i.e., a perfectly plastic impact, then a new link is formed and its
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velocity violation error will be corrected.
When most of the bodies in the system are interconnected, the correction of
velocity violation errors and velocity corrections due to collisions in the system can be
implemented by solving a set of linear equations. In a planar multidisk system the linear

equations are as follows

H{sv} = (n,} (4.25)

and the corresponding corrections of the velocities in the x and y directions are

{6x} =MT'EC{dv,}
(4.26)

(8y,} = M'ES{3v,}

The detailed derivation of Equations (4.25) and (4.26) will be given in the next

chapter.
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4.5 Random Generation of Initial Conditions

It is difficult and unnecessary to give artificially the specific sizes and positions
of all particles as initial conditions for a granular system. The generation of initial
conditions, also called the sampling technique, has been mentioned in (Wierzba, 1991)
However, due to the complexity of the sampling technique and the difficulties of high
density generation one can not use directly this sampling method in a granular system.

In the model by Wierzba (1991), the distribution errors of the generation of disks
in either size or position, have to satisfy the error function with a Gaussian distribution.
Thus the generation problem becomes more complicated.

The generation have been simplified here. All random distributions are arbitrary
according to the random generator which can give unlimited random numbers between

0 and 1. The generated physical quantities x are in terms of

x(i) = x, + (x - x_ )Ran(i) (4.27)

provided the minimum and maximum of x are known. Here x could be radii, positions
or velocities of the particles and Ran(i) is a random number generation function.
High density generation with random arrangement is one of the new sampling
techniques that has been used in the computer simulation. The random sizes and
positions generation is simple and easy if the densities are low. When the density
becomes high, the generation method used in (Wierzba, 1991) will take much more

computational time.

The new method here adopts a planar generation area, instead of line generation
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for a planar system. If the required generation density is not very high, the distribution
of positions for each particle is random. If overlaps happen, they will be handled as
position errors and corrected in the next time step. Obviously the higher the generation
density is, the more regular is their arrangement. When the required generation density
tends to its limit, each particle has a fixed reference base point. If all of the particies are
the same size, these base points will be arranged regularly and their interval is according

to the size of particles. See the cross signs in the following figure.

Generation Area

bucpoms | ®®©®®®
Pamc:gle ce area+ @ @ @
@ + @ @ O

Figure 4.6 High density particle generation

In Figure (4.6) the cross signs indicate the base points, while the particle centres
are located in the shadow area based on those base points and a function of a random
number. If x and y are random, the particle centre will be in a rectangular area; if ~ and
0 are random then it will be in a circle. The size of the particle can also be determined

by a random generation function. The results of the generation are shown in the right

hand side of Figure (4.6).
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4.6 Summary
The contents in this chapter briefly deal with some technical problems in

simulations, (except those with respect to the equations of motion and numerical
methods) and provide corresponding solutions. All of these have been implemented in
the computer simulation program and have been verified using specific examples.

The method of storing and updating topological data is briefly addressed in
Section 4.2. In order to decrease storage space, two formulas for estimating the
minimum requirement for row number for an array is given for both the 2-D and 3-D
cases.

In this chapter we also discussed how to identify effectively the drag forces and
the friction forces on disks. The introduction of the coefficient C, allows us to make the
computational model more realistic, which is very important for a granular system
located in a flow field.

The method of handling impacts among the disks is presented in Section 4.4.
This method allows us to handle all impacts only once in a time step, thus the required
computational time is decreased.

The random generation of disks according to size, position, and time can be done
in a different way. The method proposed here is simple and suitable for the generation
of a high density disk distribution.

Among the methods and techniques discussed in this chapter, two are important

for the efficiency of simulations: (1) the use of arrays; and (2) handling of collision
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events. The former can save computer storage space and while the latter makes collision
problems simple and can save computational time. It is due to the use of these new
methods and techniques in granular system simulations that the presented approach is

not only original but also effective.



Chapter S
NUMERICAL METHODS

5.1 Introduction

The equations of motion for a multibody system, whether based on Newton-Euler
or Lagrangian Equations, are a set of second order nonlinear Ordinary Differential
Equations (ODEs). The problem is an initial value problem for the ODEs, for which
there is no alternative to a numerical solution. The accuracy of the solution and
convergence of equations will directly influence the entire simulation result. Besides, the
computational time of the simulation of a granular system should be taken into account
because the computer’s CPU time will be greatly increased if the number of equations
is large.

In order to simulate a granular system efficiently, an iterative method based on
the Newton-Euler equations is developed. The main iteration scheme adopts classical
Gauss-Seidel iteration. In addition, numerical integral and error correction are performed
in each iterative cycle.

Since this type of numerical method is for our specific equations and has not
been used before, it will be discussed in some detail. The specific iterative scheme is
given in the flowchart. The correction equations for position, velocity and energy are

also given. Numerical tests can be found in the next chapter.

87
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5.2. Selection and Comparison of Numerical Methods
5.2.1 Single-step and Muitistep Method

First of all, we tested various numerical methods to solve a set of ODEs. The
model used in the test is a multibody pendulum which is shown in Figure (5.1). The
numerical methods such as Runge-Kutta, Adams’, Gear’s, and Bulirsch-Stoer
extrapolation method were tested. All of these methods have library subroutines (IMSL)
available. The results show that the Adams’ method is the fastest and the Runge-Kutta
method is the most accurate. And these two methods are compared in Table (5.1), in
which errors are based on the violation of the energy conservation principle. It can be
seen by Table (5.1) that the differences in efficiency are not significant between these
methods.

Since the library routines include a variable time step option, the programs for
the single step (Runge-Kutta) method and multistep (Adams’) method with a fixed time
step were also used for test purpose and results showed very little difference. It can thus
be concluded that both the single step and the mulitistep method have aimost the same
efficiency in the solution of ODEs.

When considering a system with a variable topology, a single step integration
method should be chosen so as to keep the same accuracy and computational efficiency
for each time step. If the system has a fixed topology, use of the multistep method can

save computational time. Comparison of the two methods can be seen in Table (S.1).
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Figure 5.1 A multibody pendulum with N bodies

5.22 La e Equations and Newton-Euler Equations
The second portion of our test is to see if there are different efficiencies for the
different equations of motion. The results of Lagrange equations and Newton-Euler

equations can be found in Table (5.1).



Table 5.1 Comparison of CPU times and errors for different
dynamic formulations and numerical methods

Lagrange Equations Newton-Euler Equations

Number | Adams’ Method R-K Method Adams’ Method R-K Method

of
Bodies Times Relative Times Relative Times Relative Times Relative
(sec) Errors (sec) Errors (sec) Errors (sec) Errors

N=100 613 | 1.7x10* 1010 | 4.4x10° 475 | 22x10° 761 | 22x10°

N=200 4703 | 1.4x10* 10388 | 5.8x10° 3832 | 13x10? 8322 | 1.7x10°

N=400 65878 | 2.5x10* | 138,892 | 4.3x10° 54,759 | 8.0x10* | 117.604 | 1.6x10°

Newton-Euler equations can give us shorter CPU times than Lagrangian
equations. However, the amount saved will be decreased from 25% at N=100 to 15%
at N=400. This result is still not ideal.

Regardless of which type of equations of motion are employed, the procedure
of solution can always be divided into two steps: the first is to solve a set of linear
algebraic equations so as to get the equations with the explicit second order derivatives;
the second is to solve the ODEs. It should be noted that when the classical fourth-order
Runge-Kutta method is used, the solution of linear equations has to be computed at least
4 times in a single time step. On the other hand, the multistep method (Adams’ method)
only requires to calculate once in a single time step. It can also utilize the results which
have been obtained in the preceding calculations to improve the results. Hence this

method can obviously reduce calculation time. However, the multistep method requires
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more storage space and is not suitable for a system with variable topology. It is

necessary for us to search for a more efficient numerical method.

5.2.3 Iterative Methods

Under some specific conditions an iterative method can give solutions to linear
equations effectively. The advantage in computational speed will be very significant
especially for a large number of equations and a coefficient matrix with a large number
of zero elements. It has been found through many numerical tests that only the Newton-
Euler equations can be efficiently solved by an iterative method. The reason is very
simple: the matrices A in Equation (3.6) and H in Equation (3.31) have different

features. A is almost a full matrix and H is a sparse matrix.



92

5.3 Mixed Iteration
5.3.1 Gauss-Seidel Iteration

Computational efficiency is greatly improved by using the iterative method for
solving a large set of linear equations. Here the Gauss-Seidel method is adopted as the

basic iterative process for accelerating convergence. If we have a set of linear equations

Hiy} = {b,) (5.1
then its Gauss-Seidel iterative form is

]

Th = BT HY - Y ) (5:2)
- Fl

W il

where superscript k is the iteration index and n is the number of equations, H is a
matrix and {b} is a vector. The elements in both of them are constant.

The difference in our problem is that the elements in both H and {b} are
functions of time, rather than constants. They need to be identified in time. Hence an

integral operation is put into the iteration.

5.3.2 Mixed Iteration Scheme

In the equations of motion, the coefficients are functions of variables that are a
functions of time. In considering this factor, the integral calculation should be put into

the iterations so that the variables can be obtained and be used for updating the

coefficients.
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After m iterations the convergence of Yy is checked. The value of m from
numerical tests could be chosen between 10 and 20. The less it is, the worse the
computational accuracy will be and the larger it is, the longer the computational time
requirement will be.

Since both linear equations and differential equations are solved in an iterative
cycle, it is called here a mixed iterative scheme. A flowchart describing this iterative
scheme is shown below [see Figure (5.2) on the next page].

When this iterative scheme is used to solve equations of motion, the advantage
in terms of computational time is very remarkable but the accuracy is decreased
correspondingly. In order to improve accuracy, extra computations, such as using
multistep formula or the high order Runge-Kutta formulas need to be made. These
formulas can easily be introduced and implemented in the mixed iteration, but these
numerical tests have not given us significant results yet. As usual, the increase of

accuracy must be paid the price for increased computational time.
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Figure 5.2 A flowchart of the mixed iterative scheme
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5.3.3 Convergence Conditions

The convergence of the solution is dependent upon many factors. In our mixed
iteration the conditions of convergence can be considered from two aspects. One is the
convergent condition for the linear equations Equation (5.1). Another is the convergence

condition for the integral formula.

According to relevant theory of numerical solution, if there is a linear system
such as
A{x) = (b (5-3)

and the corresponding iterative formula is

{x}"' = B(x}+{c} 4
the sufficient condition for convergence will be [l B ll < 1, i.e.,
(1B} =max(Y [B,) <! (5.5)
Isjsm =}
For Equation (5.1) the convergence condition can be written as
|H,| > Y |H,l (5.6)

izl (=)

This is only a sufficient condition, not a necessary condition. Moreover, in mixed
iterations the integral calculations are also made, and the coefficients of matrix H are
updated by new iterative results during each iterative cycle, even though these changes

are very small.
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There are two main reason why numerical solutions are affected when this
iterative scheme is used. One is local truncation and round off errors in integral
calculation; the other is global errors from the accumulation of local errors. In order to
decrease global errors, we have to control local errors. Otherwise, they can accumulate
rapidly bringing about a divergent numerical process.

Theoretically, the smaller the time step used in the mixed iterations is, the more
accurate the numerical results are. This is may not be true because of computer round
off errors. Furthermore, a smaller time step will lead to a longer calculation time which
is inefficient. How to choose a proper time step is a complicated question because of
the complexity of our dynamics system. This problem involves the size of the system,
the accuracy requirement, the number of particles in contact and their configuration.
Therefore, the time step should remain fixed during the whole calculation. This problem

will be discussed in the following section.

5.3.4 Variable Time Step Algorithm

The technique of using a variable time step in numerical integration is very
important. It has been used in many standard subroutines. Usually, the control of the
time step is based on relative errors. Extra calculations are necessary for determining
these errors. In the mixed iteration, the time step can be controlled by the number of
iterations. In this way, without extra computations, the computational efficiency could

probably be improved. The corresponding flowchart is shown on the next page.
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Figure §.3 A variable time step algorithm
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5.4 Violation Corrections

The mixed iterative scheme can attain third order accuracy, i.e., O(%°) in velocity
and O(h*) in position, which is only less one order than the classical Runge-Kutta
method. Violations exist only in a system with constraints. So-called violations are a
kind of error which can be measured. In our problem, the computational errors are
relative and the constraint violations are absolute.

The violations of results can be seen in the graphics. For instance, two connected
disks could overlap or be separated in numerical results. Although velocity violations
cannot be discovered in graphics, their existence will directly increase the position
violations.' The existence and correction of two kinds of errors is illustrated in Figure

(5.4).

t=t t=t+h
with position corections

no velocity  with velocity
corrections corrections

comrections  corrections

(2 - (D
p 08 &
e @ 0 @ 12 G v
0 O

@) (b) (©) d) (e)

no position

Figure 5.4 Illustration of position and velocity errors
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If these violations are gradually accumulated without any corrections, they will
make the iterative procedure longer and possibly even make the iterative results
divergent until there is a complete crash. On the contrary, the correction of violation
errors can improve the calculation accuracy and accelerate the numerical convergence.
For this reason we put this capability into the iterative cycle. Some numerical results can
be seen in the next chapter.

Violations are usually used to evaluate the accuracy of the numerical method, as
in (Borri, et al., 1992). If the numerical method is accurate and the simulation time is
not long, the violations needn’t be corrected at all. Otherwise, the violations in both
position and velocity will become large with time until they exceed the allowance. In
this cases, they must be corrected.

In the simulation of a granular system, overlap between particles is not allowed.
To overcome this difficulties one method is to introduce a "spring with damping”
between two overlapping particles, such as in (Loset, 1994) and (Langston et al. 1994).
The introduced spring force was acted between the two particles and its amount was
proportional to the overlap. This method is applicable if the granular system is sparse,
resulting a molecular dynamics model. By this method, the results of simulation depend
on the computational accuracy. In addition, the equilibrium state of the system would
be impossible or only maintainable over a short time if this method were used.

In a constrained system, errors in numerical results lead to violations of
constraints. There are various ways of correcting these errors. For example, one based

on the least-squares method, can be employed for the error corrections. The method
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which is used here is based on finding corrective forces which restore positions and
velocities satisfying the corresponding constraint equations. The specific procedure is
as follows:

Firstly, calculate the position and velocity of each particle whether it is
connected with other particles or isolated. Secondly, check the violations of constraints
for each pair of disks. Finally, find a corrective force for each pair of disks which

eliminates (with a prescribed tolerance) the constraint violations.

5.4.1 Position Correction

The relative coordinates of the particles should, provided the link exits, satisfy

the following relation

(xa} +{¥2} = (L]} 5.7)
where X, and Y, are ideal values. However, if Equation (5.7) is violated, then the error

A is equal to

(A} = (X +Y))"?) - (L) (5.8)

Let the X and Y components of the position error vector be 8X and 8Y, and they satisfy

(X} = (X} +{8X;}
(5.9
(Y} = (¥} +{3Y)
By substituting Equation (5.9) into Equation (5.8) and leaving out the higher order

terms, we obtain
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-L(X_{8X} + ¥ (8Y}) = (A} (5.10)
The error 8X and dY are due to errors in individual disks positions, and the relationship
between the two follows from Equation (3.48). Taking into account that X; and Y, are
very closed to X ; and Y; in Equation (3.45) for any pair of disks, Equation (5.10) can

be written in the following form
CE™{dx} + SE™(8y,} = {4/} 5.11)

where {A;} is position error vector. The first four terms of the Taylor’s expansion in

time for a disk position can be expressed as

2r¢,6+rh2 (5.12)

where r = (x, y)" and the third order derivative of position in the fourth term is an
average value. In considering of the position and its derivatives are constant during the

iterations, we can obtain
S5r = %hZSF (5.13)

The x and y components of increments in the RHS of Equation (5.13) are found from

Equation (3.50) and (3.51) taking into account that external forces are assumed to be

constant during the time step. Then Equation (5.13) are transformed into the following
{5x} = _;.th“ETC{syi}

(5.14)
(8y,} = _é.hZM-'Efs (5y,}
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By substituting Equation (5.14) into Equation (5.11), which gives
(C’E’M“EC«»SE'M"ES){_é.hz&yi} = (A} (5.15)
If we denote
{%hz&yi} = (3L) (5.16)

then we can obtain the correction equations for the positions as follows

H{3l} = {4} 617
Equation (5.17) is solved for {8/}, and then position corrections are found from

Equations (5.14) taking into account Equation (5.16), i.e.

(8x,} = MAEC{81)
(5.18)

{8y,} = MES (3L}

5.4.2 Velocity Correction
Similarly, the directions of relative velocities should be perpendicular to the

centre line. The requirement which follows from the constraint equations, i.e., Equation

(3.53). The latter equation after differentiation can be written in the form

C{X,}+S{V,} =0 (5.19)

where X, and Y, are ideal values. If Equation (5.19) is not satisfied, then
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C(X,}+S(Y¥,) = {n,) (5.20)
where {1);} is a velocity error vector. We can represent the X and ¥ components of the

velocity error vector as the following form

(X} = (X}+(8X,}
(5.21)
{Y,} = {Y}+{8Y,}
and then substitute Equation (5.21) into Equation (5.20) and apply Equation (5.19) The

result is
-C{8X,} - S{37,} = (n}} (5.22)
From Equation (3.49) the relationship between the relative and absolute velocity
increments can be found and used in Equation (5.22) to obtain the following result
CE™{dx} + SE™{(dy,} = (n,} (5.23)

Considering again the first three terms of the Taylor’s expansion for velocities

Fe=b 2 h (5.24)
2
The velocity increments are
5F = _;.h &7 (5.25)

The x and y components of increments in the RHS of Equation (5.25) can be found as
before, from Equations (3.50) and (3.51), and after their substitution into Equation

(5.25), the latter become
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(51} = %hM"EC{Syi}

(5.26)
(83} = 2hMES (57}
By substituting Equation (5.26) into Equation (5.23) we obtain
(CETM™EC + SETM'ES) {_;.h 5y} = {n} (5.27)
If we denote

(5h87) = (8v,) (5.28)

then we can obtain the correction equations of velocities in the form
H{dv} = (n} (5.29)

From the latter {dv;} is found, and then the velocity corrections are found from

Equation (5.26) taking into account notations in Equation (5.28)

{81} = MEC{dv,}
(5.30)

(8y,} = MES {8v,}

5.4.3 Velocity Correction by Energy Conservation Law

The above correction of velocities makes changes only in the normal directions
of relative velocities. When connected bodies meet velocity constraint conditions, all of
the bodies in the system should satisfy an energy conservation condition. In other words,

the changes of system kinetic energy should be equal to the work done by total external
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forces according to the energy conservation and conversion law. Because positions
usually have a higher order accuracy than velocities, the work done in a small time step

can be used for correction of velocities. If energy is conserved, we have

%z: m(£2+ 9., - _;.2 mi2+yD, - w), = 0 (531)

The first and second terms in Equation (5.31) are respectively the kinetic energy
of the system at time r+h and ¢, and the third term is the sum of work done by the
external forces. If the right hand side in the equation above is not equal to zero

(assumed to be &), because of computational errors, i.e.,

%E ’ni(x.i2 +.}.’i2)t.;, - %E "li(‘ti2 +};i2), - E (Wi)h =€ (5'32)
For t+h, let

(%} = (%} + (3%}

f i i (5.33)
(9, = (3} + {85}

Substituting Equation (5.33) into Equation (5.32) and eliminating high order

terms, we have

-Y m(x 8% +y,8y),, =¢€ (5.34)
We assume that the velocity error is proportional to the velocity magnitude and the

proportionality is the same for all disks, i.e.

(8%} = k()

(8y,) = k(y,}

(5.35)
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where k is a constant of proportion. Substituting Equation (5.35) into Equation (5.34),
and considering that (x,y,),,, and (x, y),,, are negligibly different we can obtain
_ 4

E mi(£i2+Yi2)

Consequently the correction equations of velocity based on the energy conservation are

k = (5.36)

(85} = ~——= (%}
Y. m(i7+y7) 537
3y} = - — Y
! 2 m;(ii.+y-i2)

Note:

(1) The velocity correction changes the direction of the velocity vector, while
the correction on based on energy conservation changes the magnitude
of velocity. Therefore, the two corrections are independent of each other.

2) The corrections of positions after collisions is done at the end of the
iterations for the time interval A.

3 Corrections based on energy conservation in nonconservative systems can
be implemented if a dissipative work can be accurately determined during

each time step.
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5.5 Summary

In this chapter we have discussed the numerical methods which were used for
solving the equations of motion and we have given a comparison of results by those
methods. In order to improve computational efficiency, a mixed iterative scheme which
is aimed at our specific equations of motion was introduced and developed. With respect
to accuracy, correction of the position and the velocity violation as well as correction
of energy conservation violation were used for reducing the system global error during
each time step.

The solution in traditional numerical methods is a pure mathematical problem,
but here physical conditions were involved and used as grounds for improving accuracy.
The new results after correction were used to feed back into the iterative cycle to
accelerate convergence, or were used directly as new initial values for the next time
step. Although this correction or control technique requires more calculations during the
solution of the equations of motion, its effect is not only to improve computational

accuracy but also to save computational time, which will be seen in the next chapter.



Chapter 6

APPLICATIONS AND ANALYSIS OF EFFICIENCY

6.1 Intreduction

Because there are no analytical solutions to most dynamics problems, a direct
and simple way to verify the efficiency of a numerical method is to apply it to various
dynamics problems and compare the numerical results and the required CPU times. A
combination of the Lagrangian formulism and classical Runge-Kutta methods will still
be used here as a benchmark for comparisons.

The efficiency of computer simulation is affected by many factors such as system
size, time step of integration, error tolerance and error control. The main factors we will
take into account here are the system size, error tolerance and error control. The
computational efficiency and a parametric study are performed for three simple and
typical examples.

To implement the developed numerical methods and techniques presented in
early chapters, a computer simulation program has been written. The program allows a
user, through a choice of system parameters, to model virtually any two-dimensional
granular system. Here this computer simulation program is used for three granular
system examples and the results of simulation are compared with those of relevant
physical experiments.
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6.2 Multibody Pendulum Problems

As the first example a multibody pendulum problem described in Chapter 5 is
considered. It is found that the computational efficiency is highest when the Newton-
Euler equations are solved by the mixed iterative method. The efficiency increases with
the system size {see the Figure (6.1)]. The total length of the pendulum was 3m, the

initial angles from the vertical was 30°.

/7 "lark.dat" ——
"nerk.dat® -+~— -
"neit.dat" -o---

"neitc.dat” —— |

CPU Time (sec)

0 50 100 150 200 250 300
Number of Bodies in the Systems

Figure 6.1 CPU time for different system sizes and numerical methods
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In the figure above, some notations have the following meaning:

"lark.dat": Lagrangian formalism and Runge-Kutta solver,

"nerk.dat”: = Newton-Euler formalism and Runge-Kutta solver,

"neit.dat": Newton-Euler formalism and iterative solver with error correction,

“neitc.dat":  Newton-Euler formalism and iterative solver with integrated error

control.

Violations of both position and velocity need to be corrected at each time step.
Usually, an increase in accuracy requires more computational time. But, as it will be
shown, by using an iterative method, we can not only increase the accuracy but also
decrease the number of iterations and thus save computational time. The following
figure provides results which present the relationship between CPU time and error

tolerance for the iterative solver with or without corrections.
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Tolerance of Iteration

Figure 6.2 CPU time vs. error tolerance for N = 50

Where the meaning of data files is as follows:
"wc.h10": with error corrections at the end of iterations and & = 0.001 sec,
"wcc.h10":  with integrated error control and & = 0.001 sec,
"wcc.h0S":  with integrated error control and A = 0.0005 sec.

The accuracies of computations can be seen in Figures (6.3) and (6.4).
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Figure 6.3 Phase diagram without error correction and control for N = 50

where the "lark.dat”, in this and the following figures, identifies the results obtained by
Lagrangian formalism and Runge-Kutta solver (the benchmark), the "nc.002" identifies

the results obtained by Newton-Euler formalism and mixed iterative method without any

correction for TOL=0.002 and #=0.0005 sec.
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Figure 6.4 Phase diagram with error correction for N = 50

where "wc1.003" identifies the results obtained by Newton-Euler formalism and mixed

iterative method with correction for TOL=0.003 and A=0.001 sec.
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Figure 6.5 Phase diagram with error correction and control for N = 50

where "wc1.003" identifies the results obtained by Newton-Euler formalism and mixed
iterative method with correction for TOL=0.005 and h=0.001 sec.

When error correction is integrated into the iterations, the accuracy is further
improved. At the same time, the CPU time becomes less, which means that the
integrated error control accelerates the convergence of the iterative process.

From Figures (6.3), (6.4), and (6.5) we can see that the integrated error control
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in the iterative scheme allows us to increase accuracy for larger tolerance TOL and time
step A. This is important since choosing the TOL and # becomes less critical to the
problem of convergence.

The effect of the TOL on the CPU time and convergence is investigated in detail

in the following two figures for different numbers of bodies.

1000 1] LS L
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o
g 600 .
[0]
£ Y
'—.
T 400 | X .
o .
Y
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o I S ........................................ 5
0 T . : i
0 0.0002 0.0004 0.0006 0.0008
Tolerance of lteration

Figure 6.6 CPU time vs. error tolerance for N = 100

where:
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"nc100.h05": no error correction and control (N=100, #=0.0005 sec),
"wc100.h05": with corrections only (N=100, £=0.0005 sec),
"wecel00.h05": with corrections and control (N=100, #/=0.0005 sec),
"weccl00.h10": with corrections and control (N=100, #=0.001 sec).
zom L LI 1 L
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Figure 6.7 CPU time vs. error tolerance for N = 150

where:

"wc150.h05™: with corrections only (N=150, A=0.0005 sec),
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"wcel50.h05™: with corrections and control (N=150, #=0.0005 sec),

"wcel50.h10": with corrections and control (V=150, /=0.001 sec).

Note that if there are no error corrections, a correct solution can be obtained for
a large size system (N=150) only for very small error tolerances.

Therefore, error corrections are very important in numerical simulations in
general. In particular, when they are integrated into the iterative cycle, they allow us to
accelerate the convergence of iterations and at the same time improve the accuracy of

results.
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6.3 Falling Chain Problems

This is another problem test which has been solved by different numerical
methods (Kamman and Huston, 1984; Mello, 1989 and Borri, et al., 1992). Two kinds
of models are used here for the solution of this problem: One is a multi-rigid-body
model in which the initial momentum of each body needs to be taken into account. The
other is the point-mass model in which the masses are concentrated at the joints and the
inertia of links is ignored.

For the first model, the chain is composed of fifteen identical rigid bars
connected by spherical joints and acted upon by gravity. The two ends of the chain are
grounded by means of two spherical joints. The configuration of this system and its

initial position are shown in Figure (6.8).

Figure 6.8 A falling chain with 15 links

Besides Lagrangian formulism, the Newton-Euler formulism for a multi-rigid-

body system is used for the governing equations. The form of equations has been given
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in Section 3.5.2 of Chapter 3.

In a constrained system, the equations of motion using Lagrangian formulism are
a modification to the Lagrangian equations (refer to Equations (3.19)]. This system has
13 degrees of freedom and two Lagrangian multipliers are needed. So two algebraic
equations based on constraint relations need to be set up.

When using the Newton-Euler formula for a multi-rigid-body system, we do not
need to consider the algebraic constraint equations because the constraint relationships
(derivative form) are integrated into the equations. The constraint problem does not
change the form of equations of motion. Here we still use generalized coordinates, so
the number of internal force parameters is 2x14=28, and the number of integration
variables is 15. Both equations of motion use the Runge-Kutta solver without the
violation constraints.

The two different formulations of the governing equations give us aimost the
same results [see Figure(6.9)]. The first reflection point occurs at time ¢ = 0.47 sec and
the second point at ¢ = 0.68 sec. These results are in complete agreement with those
presented by Kamman & Huston (1984); Mello (1989) and Borri et al., (1992). Note that

each rod has the same mass and a length of one foot.
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Figure 6.9 Vertical position time history of centre link (rigid body model)

In Figure (6.9), the "ne.dat" is the result based on the Newton-Euler formula and
the "la.dat" is the result based on the Lagrangian formula.

A point-mass model is adopted here, i.e., a chain which is composed of fifteen
massless rigid bars connected by fourteen spherical joints. All of the joints are mass
points with the same mass and the whole system is acted upon by gravity. The
configuration of the system and its initial position are the same as in a multibody model

shown in the Figure (6.8). The number of degrees of freedom for this system is still 13
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although the system model has changed. There is no difference between the results when
the Lagrangian or the Newton-Euler formulation is used. However, we used rectangular
coordinates for the Newton-Euler formulism, so the number of internal force parameters
is 15, and the number of integration variables is 2x14=28. Meanwhile, for an iterative
method, an error control was used to obtain numerical results. All these results for two
different formulas and solvers are shown in Figure (6.10)

In this system, the distance between two fixed suspended points is 3 metres, i.e
3/ = 1 m rather than [ = 1 ft taken in (Kamman and Huston, 1984) and (Mello, 1989).
Moreover, relative displacement is used to represent vertical displacement, which is

equal to the vertical displacement divided by the distance between two suspended points.
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Figure 6.10 Relative vertical position time history of centre link (point-mass model)

In Figure (6.10) the "neit.wc" indicates the results based on the Newton-Euler
formulation and mixed iterative method with full error control (in position, velocity and
energy); the "neit" indicates the results based on Newton-Euler equations and mixed
iterative method. The suffix "nc" means without any corrections and controls and the
suffix "wc" means with all error controls; the "lark.dat” indicates the results based on

the Lagrangian formulation and Runge-Kutta solver, which is used as a benchmark for
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comparisons.

From Figure (6.10) it can be seen that the iterative method with all error
corrections has a higher accuracy. The question people might ask is which kind of

correction is more important. The answer can be found in Figure (6.11).

o L) LS L
“neit.pv" —
“neit.en”
0.1 + "neit.wc" - .

Relative Position of Middle Point of Chain

"0 0.5 1 15 2
Time (sec)

Figure 6.11 Relative vertical position time history of centre link
(point-mass model) using different error controls

In Figure (6.11) the suffix "pv" means the resuits obtained by position and
velocity error control. The suffix "en" means the results obtained by energy error control

and the suffix "wc" means the results obtained by all of those error controls.
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Obviously, position and velocity corrections play an important role in all error
corrections. Is this true for all dynamics problems? To answer, let us consider the next

example.
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6.4 Unstable Problem for Vertical Stack of Disks

This is a simple and typical unstable dynamics problem which can be used for
verification of accumulation of computational errors and evaluation of numerical
methods, such as in (Wierzba, 1991).

The test model is still the point-mass truss system [see Figure (6.12)].

K 3 S

L L'

—_— —

(a) Initial Position (b) Losing Stability

Figure 6.12 Instability test for N disks

Here is an assumption that the instability occurs when A 2 0.1%, where A is
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determined by

L - Ll (6.1)

A=
L

In this example the number of disk N was varied from 10 to 60, while L = 3m.
The results indicating the times to keep the system stable vs. different number of disks

are shown in Figure (6.13). Also , the effect of different error control mechanisms is

shown in the Figure.

10 LS .: L4 L3 L4 T
3 “sta.n¢” —-—
“sta.pv" ——
“sta.en” -o--
8 I "sta.wg' —x— -
5
Q <
A B
> 6 F : -
= 8
=t
S
(7]
S 4+ - i
o i
a X,
2 -
0
0 10 20 30 40 50 60

Number of Disks

Figure 6.13 Time to instability vs. number of disks
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In Figure (6.13) the meaning of suffixes is the same as that mentioned above.

In this physically unstable problem, energy error correction and control is very
important especially when the system is not large. For this example the position and
velocity violation corrections appear to be useless and they may even have a negative
effect. This result requires additional investigations.

After comparisons of many computational results, it can be found that if a system
is a moving one, then correction in velocity is most important in three types of error
corrections (position, velocity and energy); if a system is close to a static one, then
energy correction becomes most efficient. Although position correction is not significant,
it cannot be eliminated because of the geometric and topological structure of the system.
Hence, the choice of comrections is based on the state of the system. For a complicated

granular system whose state is not known in advance, all of the error corrections should

be utilized.
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6.5 Jamming problem of solid particles in a straight pipe

This is a real granular materials dynamics system which is completely different
from the examples above. Not only does it have a large size but also a variable
topology. In computer simulations of this system, almost all aspects discussed above are

important. It is an overall verification of the general simulation program.

6.5.1 Physical Modei of the System

Particles carried by a fluid in a channel interact with each other and with the
boundaries. This interaction results in a loss of kipetic energy and thus reductions in
particle velocities. If the rate of particle supply remains the same, then the fraction of
particles in a given volume, where speed reduction takes piace, will increase. If the
inflow exceeds outflow then the net balance will grow until the particle density reaches
its maximum, which will correspond to a complete stagnation or a flow jam.

It is a discrete system which comprises isolated particles and clusters. All of the
particles were modelled by rigid disks with different radii. At the beginning, the disks
were uniformly distributed in the area which is called the Generation Area (see Figure
(6.14)]. Disks with velocities the same as the flow gradually move into a Buffer Area
where they acquire the velocity of the corresponding potential fluid. The buffer area is
needed to allow sufficient number of disks to maintain a potential flow distribution of
velocities before mixing due to interactions with the boundaries starts. From the buffer

area the disks enter the real pipe with corrugated boundaries, i.e., Control Area. New
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disks are generated in the process of simulation, while the disks leaving the control area

are discarded.
Generation  Buffer Control Area _
, : : — S\ b
T a = |
D Vm
—L L, —se L. .

Figure 6.14 A schematic diagram of simulation area

6.5.2 Numerical Results

Some numerical results have been published in (Sun and Vinogradov 1996a,
1996b, and 1996¢) and (Vinogradov and Sun, 1996), which will not be given in detail.
However, the following results obtained here are based on the different size of particles.

Numerical simulations were carried out for the following channel and disk
geometries: D = 0.4 m, d = (0.040 and 0.068) m, L; = 1.25D, Ly = 0.5D, L. = 3.75D,
a = 0.125D, b = 0.05D, r = 0.1D. The coefficient of friction was p = 0.3, and the
coefficient of restitution e = 0.7. The maximum velocity at the centre of the channel was
v,, = 1.5v, where v is the mean velocity corresponding to a given discharge and it varied

in numerical experiments from v = 0.025 m/sec to v = 0.10 m/sec.
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The simulations were carried out on the IBM-RS6000 computer. There was no

limit on the number of disks. Those out of the control area were discarded and new ones
were generated as long as the simulation was running. The simulation run was stopped
when the buffer area was full, i.e., when the discharge was zero or close to zero, which
was the sign of a jam in the pipe. For a typical run with a number of disks over 400
(average radius is 0.02 m, v= 0.025 nmvsec), the CPU time was about 20 minutes while
the real time was about 45 minutes. If average radius of disks is 0.034 m and v=0.05
nv/sec, then total number of the disks during the simulation is not over 200 and the CPU
time was about 1 minute, while the real time was about 4 minutes. The numerical
experiment results for the two cases are plotted in Figures (6.15) in relative surface

density - Froude number. The Froude number is defined by

F =_2 (6.2)
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Figure 6.15 Relative densities of particles resulting in a flow jam
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In the top of Figure, the dotted line represents no jam; the rigid line represents
jam and the numbers in brackets indicate the time to jam initiation. The results for the
average radius r,= 0.020 m are shown in the upper part; the results for the average
radius r,= 0.034 m are shown in the lower part of the Figure (6.15). Between the two
lines, the initiation of a jam is uncertain and the faster the flow velocity is the wider the
area of uncertainty.

It is seen that where the relative size of the disks is d/D = 0.1 and 0.17 and the
relative size of the wall roughness b/D = 0.05, the boundary between the no-jam and
certain-jam areas is almost a vertical line (or transition zone). Although these results
could not be checked quantitatively against the experimental data, since in (Ettema,
1989) the initiation of a jam is associated with the volume discharge of the spheres, the
experimental data indicates that for a relatively large particle size (in experiments it was
d/D = 0.02) the no-jam-certain-jam boundary is almost a vertical line. Similar results are
obtained for relatively large blocks in a curved channel (Urroz and Ettema, 1994). It is
also of interest to note that the time to the beginning of the onset of jamming depends
on the initial flow velocity, namely, it is almost in inverse proportion to the latter.

The results of simulations for the systems with different size are shown in

Figures (6.16a), (6.16b) and Figures (6.17a), (6.17b).
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Figure 6.16a Simulations of a two-phase granular flow (large particles)
in a straight pipe (from the beginning)




134

1= 22U 1= 230

Figure 6.16b Simulations of a two-phase granular flow (large particles
in a straight pipe (before jamming)
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Figure 6.17a Simulations of a two-phase granular flow (small particles)

in a straight pipe (from the beginning)
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Figure 6.17b Simulations of a two-phase granular flow (small particles)
in a straight pipe (before jamming)
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6.6 Summary

Three typical examples and a specific granular system are discussed in this
chapter. The examples are used to test different numerical methods and some parameters
in the corresponding methods. The advantages of the iterative method are very
significant in terms of the computational speed. The improvement of accuracy is
achieved through error corrections and controls in each iterative cycle. This control
technique allowed us to further improve computational efficiency.

In this chapter, we also investigated the influences and effects of error
corrections in different dynamics system.

The application of the computer simulation program is an actual verification of
methods proposed in the earlier chapters. In this program, none of the matrices was

used. Both computational time and storage space were greatly saved.



Chapter 7
CONCLUSIONS AND RECOMMENDATIONS

7.1. Conclusions
A general methodology for simulating the dynamics of systems has been
developed. A simplified multibody dynamics model has been introduced based on the
Newton-Euler approach. A novel integrative scheme for solving the governing equations
has been developed, which allowed significant improvement in the computational
efficiency of simulations. An error correction algorithm integrated into the iterative cycle
has been developed. This algorithm not only improved the accuracy of results but also
accelerated the convergence of iterations. In short, the methodology makes it possible
to analyze the dynamics of granular systems using a multibody model without need for
a supercomputer.
The main accomplishments of the present investigation can be summarized as
follows:
03] A physically correct discrete model in 2D and 3D granular dynamics
simulations has been introduced.
) The topology of the system is described by the incidence matrix which
allows updating of the topological data and equations of motion in a

scalar rather than a matrix form. The latter resulted in savings of both
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computational time and storage space.
A customized algorithm based on splitting the iterative process in two
coupled branches: one for unknown internal forces, and another for
unknown positions, has been developed. This algorithm has proved to be
very efficient for large size systems.
An algorithm for error corrections in position, velocity and energy has
been developed and made a part of the iterative scheme, which
accelerated the convergence and improved the accuracy of results.
A methodology of handling events (such as collisions, break up or
joining of particles, generation of new particles) has been presented. This
new methodology allows improved efficiency, in terms of CPU time, of
simulations of large systems.
A FORTRAN program implementing the methodology and algorithms
has been developed, tested and successfully implemented on a digital

computer.
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7.2. Recommendations

The following tasks and investigations may be carried out as an extension of the

present work:

¢y

()

(3)

C)

(5)

A more rigorous treatment of quasi-rigid-bodies, which may lead to both
better accuracy and more efficient simulations, should be investigated.
Slip between particles in contact should be .taken into account and the
rotational energy of an individual disk or sphere should be considered.
The effect of the fluid velocity field can be included in the calculation
of the drag forces on particles.

The problems of stability and convergence for the iterative scheme
requires a more rigorous mathematical investigation.

A dynamic storage space in the current computer simulation program can
be implemented by using a FORTRAN 90 compiler or the entire program
can be converted into another language, such as Pascal or C++, to utilize
more efficiently dynamic data management capabilities of these
languages. In addition, a graphical interface can be used to output the
data directly onto the screen. Then it will be possible to realize a real

time simulation for a small size granular system.
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Appendices

Appendix A

On the Identity of Lagrange and Newton-Euler Equations
for the System with a Tree-like Topology

From the Equations (3.7) and (3.8), we have

A, = U;cos(6,-9)) (A.1)
B‘.j =U; sin(Gi-Oj) (A.2)

where
U=PMPT (A.3)

these equations are similar to the Equations (3.35)~(3.37). Now let Equation (3.31) be

multiplied by matrix B and Equation (3.32) be multiplied by matrix A which gives
BL{®;} = BH(Y,} +B(F"} (A4)

AL{8.} = AK(v,} - A{F} (A.5)
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Add Equation (A.4) and Equation (A.5), then LHS of the result is equal to the
LHS of Equations (3.6). In the RHS, the v disappears because of BH + AK = 0. This
can be proved by the component form as follows:

First of all, let us use the simple notations

c; = cosb,
(A.6)
s, = sin@,
so we have
cos(G‘.-ej) = (¢ + s‘.sj)
(A7)
sm(e,.-ej) = (5,¢; - c‘.sl.)
Substitute Equations (A.7) into Equations (A.1), (A.2) and (3.36),(3.37), gives
[BH], = EB H,, E(cc $,C;% 5,5,5,6;— €,6,C, ;= 5,5,C,5) Uy, (A.8)

n n
- = - - A9
[AK]{.I. 2 AK, hz (5,C,5,C;~ C;5,€,C;+ S,€,5,S; ;5,55 U,V (A.9)
k=1 I

Equations (A.8) plus Equations(A.9) and note that ¢’ + s> = 1, which gives

(BH]; +[AK]; = 3 (s, +cs) U,V (A.10)
k=1

or
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(BH], + [AK], = sin(®,-6)Y" U, V, (A.11)
k=1

and note that UV = I from the Equation (2.7), i.e.,

s (L
; ¥y = { 0 izk (A.12)
and
i =0 i=j
sinC®, e"){ #0 ik (A.13)
From the Equations (A.12) and (A.13), we can obtain
[BH], +[AK]; = sin(0,-0,))_ U,V, =0 (A.14)
k={
that is
BH +AK =0 (A.15)

Moreover, according to the Equations (3.33), (3.34) and (3.7), (3.8), through the

simple operations of matrices and note that C* + §* = I, which gives

B{F"}-A{F} = -SP{f,}+CP(f,} = {Q} (A.16)
So far, we have proved that the Newton-Euler Equations can be converted into
the Lagrange Equations when EP = -I. Similarly, the Lagrange Equations can also be
converted into the Newton-Euler Equations if parameters y are introduced. Therefore,

the two equations are identical for a system with a tree-like topology.



Appendix B

Derivation of the Newton-Euler Equations
for the Irregular Body System

Let us consider a sub-system of two bodies connected with a link, which is

shown in Figure (B.1).

0 x>

Figure B.1. A planar system with two linked rigid bodies

Note that the direction angle of vector r is y, which is not shown in the Figure.
Its signs is positive if it goes anti-clockwise from the x to r direction; negative if it goes
clockwise from x to r. There is coastant difference for all y in the same body.

In this case, the internal force ¥y is divided into two parts, the length of link is
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also divided into two parts, as shown in the Figure. Moreover, f is the external force and
M, is the external moment.
Apply the rigid body dynamics equations to body i and j, we have
[,'q?,' = 'Y:”usm(\{/,-;‘9,)‘Y:f,25iﬂ(\lf,-;‘ev)“7: [{,;“",-,COS(W,-,‘G,,)] + (B 1)
+Yo[l-rycos(y,-0)]+ M,
Ly, = y,r,sin(y,-8,)-v,r,sin(y,-8,)+Y; [l ~r,cos(y,-0,)] + B2)

*ull,;-r,c08(y,-8,)1 + M,
In addition, according to Newton’s law we have the dynamics equations in the

normal direction
m.a, = -Y,cos(8,-6,) + v, - v,sin(8,-8,) + f (B.3)
m.a; = ~Y;+y.cos(8,-6,) +y,sin(,~0, )+ fr (B.4)
in the tangential direction
m.a; = v,sin(0,-8,) - Y. cos(8,-0) + v, + f; (B.5)
(B.6)

m, a, = -v.,sin(@,-6 ) - Y.cos(6,-6,) -y, +f,

From the Equations (B.3)~(B.6), we have
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".al _Y_'icos(e -0,)- (._ _)y‘, .Y_cos(e -0,)+

aj‘, “a,’v =
i mt J mJ‘ (B 7)
ksm(e -0 )+i’.sm(9 -0 )+(£v.- '-f-w-
m, m; mj m,
a,-a, = .Y.".cos(e -6,)- (.."T _)7,, kcos(e -0,)-
m, m, m.
i ¢ 7 J (B.S)
Esm(e -0, )-L’.sm(ﬂ -6,)+ ('_f’l’.—fl)
m( m] mj m‘.
g -ay = ~1,62+,r,sin(0,-y,) - W}r,cos(8,-y,,) - ©9)
=W, 7SI 0, -¥,;) + ¥, 7, c08(6,-y,)
a,-a; = lv§v+l]’}ar,2cos(6v—wa)+\ilzarasin(9v-\]!‘2)- (B.10)

Wy, rcos(0,~y,) - \p’z, ,sin(0 ~y,)
So the RHS of Equation (B.7) is equal to the RHS of Equation (B.9), Equation

(B.8) is equal to the RHS of Equation (B.10) and by applying the inductive method we
can obtain the matrix form of these equations

~(CVC+SVS) {17} -(SVC-CVS) (i} + (F"} = B
= -L{6;} - (SC,"-CS,"){¥,}- (CC,T+SS,) (¥}

(SVC-CVS){v!}-(CVC+SVS)(7*}-(F} = B.12)
= L{8,} +(CC,T+S8S,"){,}-(SC,"-CS,") {¥}}
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From the Equation (B.1) or the Equation (B.2), we have

v

Iy} = ~S,C-CS) Y]} +[L+(C,C+S, )y} +{M,} (B13)

Making the further simplification to the Equations (B.11)~(B.13), Equations

(3.61)~(3.63) can be obtained.



Appendix C

Derivation of the Newton-Euler Equations in a 3-D System

Let us consider a sub-system of two bodies (mass-points) connected with a link,

which is shown in the Figure (C.1).

Figure C.1 A spatial system with two connected particles

Where a fixed reference frame (X, Y, Z) and a moving frame (e,, e,, €;) are

employed. If the acceleration of point-mass i is known, the acceleration of the point-

mass j can be determined by
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a; = a,+ OXr+20Xv +QXQOXr (C.1)
where
® = Ocosp e, -Osind e, +d e, (C2)
@ = (Bcosp -09sind )e, - (O sing +66cosp e, + e, (C3)
v=0 (C4)
r=le (C.5)

Therefore, we have

a -a, = DOXFr +20XV +OXOXF =
Pl e .- C-6
= ~(1¢* +167sin’ )e, + (16 -16°siné cosd )e, + (C.6)

+(1§sing +21pBcost e,

From Equation (C.6), we can obtain the relative acceleration between point-mass

i and j on the 3 directions (e, , e, , e;) as following

a" -a" = -(16°+16’sin%) (C.7)
a’ -a’ = 1§ -16"sin¢ cosd (C8)
a’ -a® = 1§sing +21¢ G costd (C.9)

In addition, we can obtain the following equations by Newton’s Second Law in

the 3 directions:
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In the direction of e,, the movement of the point-mass / and j obey

(1)
m.a, = -y [cosd cosd,+sing cos(8,-0 )sind 1+7v,+f, (C.10)
m.a; = -y, +¥,[cosd cosd, +sing cos(8, -6, )sing ]+f;  (CLD)
@) In the direction of e,, the movement of the point-mass i and j obey
m.ag = Y, [cos sing - cosd cos(@,-0 )sind ]+ fo (C.12)
m.a; = y,[~-cos,sing, +cosp,cos®,-6,)sind ]+ f3 (C.13)
3) In the direction of e,, the movement of the point-mass i and j obey
m.a; = Y, sin(®,-6,)sing, + fo (C.14)
m.a, = -y, sin(@, -8 )sing_+ f, (C.15)

J

where f." is the component of external force acting on the point-mass i in the direction

of e,, f.,? is the component of external force in the direction of e, and f.? is the

component of external force in the direction e; .
From the Equation (C.10) and (C.11), we can get the expression of a,” - a,,”,

then substitute it into the Equation (C.7), which gives
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16> +10%sin% = —.Y_"cosq)vcosqyu -( i-r»_l_)‘yv -l:costpvcosd)w -
m, m. m m,

' J

(C.16)
Y. Y fo f

—-——sin¢ cos(8,-6,)sin¢, -—Zsin cos(8,-0 )sin¢ + (-2
A m. ]

i J i mf

Applying the inductive method we can easily get its matrix form
L({$;}+S;{6]}) = [C,VC,+S,(CVC+SVS)S,1{y,} -{F"} (CID
Here Equation (C.17) is Equation (3.85). Similarly, from Equations (C.12),

(C.13) and (C.8), we can get Equation (3.86); From Equations (C.14), (C.15) and (C.9),

we can get Equation (3.87).



Appendix D

Estimation of the Maximum Coordination
Number in a Multisphere System

Let us consider a sub-system of two bodies (mass-points) connected with a link,

which is shown in the Figure (D.1).

Figure D.1 lustration of a multisphere system

When a sphere with a radius r,,, is surrounded by spheres with radii r,,;, (see the
left hand side of the figure), a spherical surface with radius R will form (see the right

hand side of the figure), where

R =00'=(r, +r )cosx (D.1)

and @ can be determined by

158



159

_ min (D.2)

rmu * rruin

sin =
On this spherical surface, according to the relevant spherical geometry principle,
each circle area A, is
A, = 2ntR*(1-cosa) (D.3)
and the area of the spherical triangle A, is
A = ER? (D4)
where E is the spherical excess of the triangle i.e.

E=/A+ZB+/ZC-T (D.5)

Assuming there are N, triangles in the whole spherical surface (4nR?), i.e.

N A =4nR? (D.6)
or
N =A% ®.7)
E
The relationship of A;and 4, is
n +E
D.8
A =284 -_3 4 0-8)

where the sum of 3 angles is & + E, and since these angles are same, each of them is

(t + E) / 3. Now let us calculate the percentage of the all spherical area A, in the area

of triangle A,
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L=_ (D.9)

where N, is the number of spheres with radii r,,;,- From the Equations (D.8) and (D.9)

we can obtain

4 +FE 4x - 2(t +E) (D.10)
i 2 E E

In the Standard Mathematical Tables and Formulae (Zwillinger, 1996), E has

been given in the form

1 | s 1 1 1 (D.11)
tan—E = |tan_tan_(s -a)tan_(s—-b)tan—_(s -
y \J 3 2( ) 2(s ) 2(5 c)
where a, b, c represent the sides of the triangle (in radian measure), and
_a+b+c (D.12)

2

In our problem, a = b = ¢ = 20, hence s = 3o, hence the Equation (D.11) is

simplified as
|
tan_l..E = J tanzg tan® & (D-13)
4 2 2

So the Equations (4.5) and (4.6) have been proved.

Note that the estimation of N, can be obtained by different ways. This is only a

simple form.



Appendix E

A FORTRAN Program for Simulations of a Granular System

C****ttt*!******t***t**f’**Q***ttii******ttfﬁt***t***tk******f****t******

(o4 MAIN PROGRAM
o e e e
C Using the mixed iterative method to solve a constrained multibody
C dynamics system (jamming problem of granular two phase flow in a
Cc straight pipe)
C ______
PARAMETER (N=5000,M=3000,K=10,KC=80,DEN=1.1)
CHARACTER FILE*8, INPF*8,0UTF*8,WD*4
DIMENSION XRB(M)},XB(M),YB(M),XDB(M), YDB(M)
DIMENSION DF (N),DL(N),DX(M),DY(M),DV(N) ,DFV(N)
DIMENSION XDD(M),YDD(M),FX(M),FY(M),F(N), FT(N),B(N), RX(M),6 RY (M)
DIMENSION X1(M),Y1(M),XD1(M),YD1(M),XDD1 (M), YDDL (M), FX1 (M), FYL(M)
COMMON /TOPO/ IB(N),IE(N),IBB(N,K),IEE(N,K) KB(N),KE(N)
COMMON /PARALl/ XCR(KC),XC(KC),YC(KC) ,XR(M),X(M),Y (M), XD(M),¥YD(M)
COMMON /PARA2/ C(N),S(N),XM(M),XL(N)
C_ - -—
C Open a data file (.inp) and read data from the file
C- -
GOTO 6
5 PRINT*, "File not found*
6 PRINT*, "Enter name of data file (no extension) :*
READ(*, " (A8) ") FILE
DO 8 I=1,8
IF (FILE(I:I).EQ." ") THEN
NCE=I-1
GOTO 9
ENDIF
8 CONTINUE
9 INPF=FILE(1:NCH)//".inp"

OUTF=FILE(1l:NCH)//" .plt"
OPEN (1,FILE=INPF,STATUS="OLD", ERR=5)
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10

11

12

13

14

OPEN (2,FILE=0UTF)

READ(1, " (Ad4)") WD
IF (WD.EQ."REM") GOTO 10
IF (WD.EQ."PARA") THEN

READ(1, " (A4}")} WD

IF (WD.EQ."END") GOTO 10

BACKSPACE 1

READ (1.,*) X0,XEND,XIN,DH,VX,VY,TH,FMAX, E, U, TOL

GOTO 11

ELSE IF (WD.EQ."RAND") THEN

READ(1,"(A4}") WD

IF (WD.EQ."END") GOTO 10
BACKSPACE 1

READ (1,*) IG,ISEED,RI,XT.YI
GOTO 12

ELSE IF (WD.EQ."DISK") THEN

NBB=0

READ (1,"(A4)") WD

IF (WD.EQ."END"} GOTO 10

BACKSPACE 1

READ (1.*) I,XRB(I),XB(I),YB(I),XDB(I),YDB(I)
NEB=NBB+1

GOTO 13

ELSE IF (WD.EQ."ROOT") THEN

NC=0

READ (1,"(A4)") WD

IF (WD.EQ."END") GOTO 15
BACKSPACE 1

READ (1,*) I.XCR(I},XC(I),YC(I)
NC=NC+1

GOTO 14

ENDIF
CONTINUE
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PI=4.0*ATAN(1.0)
NB=0

RG=1

L=0



=X0
H=50.0*DH
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- -

0 n

Conditional Randomization of Disks

- ———

18

17

18

IF (IG.EQ.l1l) THEN

DO 17 I=1,NBEBB
XB(I)=XB(I)-0.5*XI+XI*RAN(ISEED)
YB(I)=YB(I}~0.5*YI+YI*RAN(ISEED)
XRB(I)=XRB(I)-0.5*RI+RI*RAN(ISEED)

CONTINUE '

ENDIF

P0=0.0

DO 18 I=1,NEB
PO=PO+PI*XRB(I)*XRB(TI)

CONTINUE

PO=P0/2000.

PRINT*, PO

19

DO 19 I=1,NBB
XR(NB+I)=XRB(I)
X (NB+I)=XB(I)
Y(NB+I)=YB(TI)}
XD (NB+I)=XDB(I)
YD(NB+I)=YDB(I}
XM(NB+I)=1.333333*DEN*PI*XR(NB+I)**3
CONTINUE
NB=NB+NBB

DO 20 I=1,NB
X1(I)=X(I)
Y1(I)=Y(I)
XD1(I}=XD(I)
YD1 (I)}=¥D(I)

CONTINUE

- - —_—— R

Checking disks overlap

CALL PEVENT (NC,NB,NL, IFLAG, IB, IE,XL,DL)
IF (IFLAG.EQ.1) THEN
PRINT*, * Disks overlap !*
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c PRINT®*, * Please check initial position !*
c PRINT*, "Overlap happened between disk *,IC,"and *.J
c PRINT*, SS
c ENDIF
C_ -——
C Initialize topology data
c ———
CALL TOPOLOGY(NL)
CALL DRAG(NB,NL,VX,VY,FX,FY)
C
C_._._. -
c Checking initial velocity violation if links exist
G e e e e e e e e e e
IF (IG.EQ.1) GOTO 22
DO 21 I=1,NL
I¥ (IB(I).LT.0) THEN
DV(I)=XD(IE(I))*C(I)+YD{(IE(I))*S(I)
ELSE
DV(I)=(XD(IE(I))-XD(IB(I))}*C(I)+(YD(IE(I))-¥YD(IB(I)))*S(I)
ENDIF
IF (ABS(DV(I)).GT.0.1l) THEN
PRINT*, * Initial velocity wviolation !*
PRINT*, ™ Please check initial velocity !*
PRINT*, "Velocity violation between disks *,IB(I), "and *,IE(TI)
PRINT*, "Overlap = *,DV(I}
ENDIF
21 CONTINUE
o4
c - e e e e
C Considering external force on each body and composing vector B
C _____________
Cc
22 DO 23 I=1,NL

IF (IB(I).LT.0) THEN
B(I)=(XD(IE(I))**2+YD(IE(I))**2)/XL(I}+

& C(I)*FX(IE(I))/XM(IE(I))+S(I)*FY(IE(I))/XM(IE(I))
ELSE
B(I)=((XD(IE(I))-XD(IB(I)))**2+(YD(IE(I))-YD(IB(I}))**2)/XL(I)+
& (FX(IE(I))/XM(IE(I))-FX(IB(I))/XM(IB(I)))*C(I)+
& (FY(IE(I)}/XM(IE(I))-FY(IB(I))/XM(IB(I))})*S(I)

ENDIF
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23 CONTINUE

C
C Solving initial reaction force in each link by iterative method
C
25 NT=0
CALL ITERAT(NL.B,F)
W=1.5

DO 26 I=1,NL
F(I)=W*F(I)+(1.0-W)*FT(I)
IF (ABS(F(I)).LT.TOL) GOTO 26
ERR=ABS((F(I)-FT(I))/F(I))
IF (ERR.GT.TOL) NT=1
FT(I)=F(I)

26 CONTINUE
IF (NT.EQ.1l) GOTO 25

C
C e
C Computing initial accelerations for each body
C _________________
CALL MULT(NB,NL,F,XDD1, YDD1l)
C
30 L=0

31 CONTINUE
CALL DRAG(NB,NL,VX,VY, FX1,6FY1l)
NT=0

L=L+1
DO 32 I=1,NL
IF (IB(I).LT.0) THEN
B(I)=(XD(IE(I))**2+YD(IE(I))**2)/XL(I)+
& C(I)*FX1(IE(I))/XM(IE(I))+S(I)*FYL(IE(I))/XM(IE(I))
ELSE
B(I)=((XD(IE(I))-XD(IB(I)))**2+(YD(IE(I))-¥YD(IB(I)))**2)/XL(I)
& +(FX1(IE(I))}/XM(IE(I))-FX1(IB(I))/XM(IB(I)})*C(I)
& +(FYL(IE(I))/XM(IE(I))-FY1(IB(I))/XM(IB(I)))*S(I)
ENDIF

C Solving reaction force in each link, new position and velocity
o of each body by iterative method with a variable time step




33

34

35

36
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CALL ITERAT(NL,B,F)

DO 34 I=1,NL
AF=ABS(F(I))
IF ((AF.GT.1.0E22).OR. (L.GT.500)) THEN
F(I)=0.0
DO 33 J=1,NB
X(J)=X1(J)
Y (J)=Y1(J)
XD (J)=XD1(J)
YD (J)=YD1(J)
CONTINUE
H=H-DH
IF (H.GT.DH) GOTO 30
PRINT*, *Please reduce the minimum time step DH"
PRINT*, L, H, F(I}.I
STOP
ENDIF
IF (AF.LT.TOL) GOTO 34
ERR=ABS((F(I)-FT(I))}/F(I})
IF (ERR.GT.TOL) NT=1
CONTINUE

Do 35 I=1,NL
IF (IB(I).LT.0) THEN
DV(I)=XD(IE(I)})*C(I)+YD(IE(I}}*S(I)
ELSE
DV(I)=(XD(IE(I))-XD(IB(I)))*C(I}+(YD(IE(I))-YD(IB(I)}))*S(I)
ENDIF
CONTINUE

DO 37 I=1,NL
IF ((F(I).GT.FMAX).OR. (ABS(DV(I}).GT.0.1)) THEN

DO 36 J=I,NL-1
F(J)=F(J+1)
FT(J)=FT(J+1)
XL(J)=XL(J+1)
IB(J)=IB(J+1)
IE(J)=IE(J+1)

CONTINUE

IB(NL)=0



37

38

IE(NL)=0
NL=NL-1
CALL TOPOLOGY (NL)
ENDIF
CONTINUE

CALL MULT(NB,NL,F,XDD,YDD)

DO 38 I=1,NB
XDD(I)=XDD(I}+FX1(I)/XM(I)
YDD(I)=YDD(I)+FY1(I)/XM(I)
RX(I)=0.0
RY(I)=0.0

CONTINUE

C-
C

C=-=—-

39

41

42
43

44

45

Determining friction forces

DO 39 I=1,NL
IF (F(I).LT.0.0) THEN

RX(IE(I))=RX(IE(I))+ABS(F(I)*S(I))*U/XM(IE(I))

RY(IE(I))}=RY(IE(I))+ABS(F(I)*C(I))*U/XM(IE(I))

IF (IB(I).LT.0.0) THEN
RX(IE(I))=RX(IE(I))+ABS(F(I)*S(I))*2.0*U/XM(IE(I))
RY(IE(I))=RY(IE(I))+ABS(F(I)*C(I))*2.0*U/XM(IE(I))

ELSE

RX(IB(I))=RX(IB(I))+ABS(F(I)*S(I))*U/XM(IB(I))

RY(IB(I))=RY(IB(I))+ABS(F(I)*C(I))*U/XM(IB(I))

ENDIF

ENDIF
CONTINUE

DO 53 I=1,NL
IF (IB(I).LT.0) THEN

IF (XD(IE(I)))41,43.42
XDD(IE(I))=XDD(IE(I))+RX(IE(I))
GOTO 43
XDD(IE(I))=XDD(IE(I))-RX(IE(I))
CONTINUE
IF (YD(IE(I))) 44.46,45
YDD(IE(T)})}=YDD(IE(I})+RY(IE(I})
GOTO 46
YDD(IE(I))=YDD(IE(I))-RY(IE(I))
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46

47

48

49

S0

51

52

53
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CONTINUE

ELSE
IF(XD(IE(I))-XD(IB(I)}) 47,49,48
XDD(IE(I))=XDD(IE(I))+RX(IE(I))
XDD(IB(I))=XDD(IB(I))-RX(IB(I))
GOTO 49
XDD(IE(I})=XDD(IE(I)})-RX(IE(I))
XDD(IB(I))=XDD(IB(I))+RX(IB(I))
CONTINUE
IF(YD(IE(I))-YD(IB(I))) 50,52,51
YDD(IE(I)})=YDD(IE(I))+RY(IE(I))
YDD(IB(I))=YDD(IB(I))-RY(IB(I))
GOTO 52
YDD(IE(I))=YDD(IE(X))-RY(IE(I))}
YDD(IB(I))=YDD(IB(I))+RY(IB(I))
CONTINUE

ENDIF

CONTINUE

DO 54 I=1,NB
X(I})=X1(I)+HE*XD1(I)+H*H*(2.0*XDD1(I)+XDD(I))/6.0
Y(I)=Y1(I)+H*YD1(I)+H*H*(2.0*YDD1(I)+¥YDD(I)}/6.0
XD(I)=XD1(I)+0.5*H*(XDD1(I)+XDD(I))
YD(I)=YD1(I)+0.5*H*(YDD1(I)+¥YDD(I))

CONTINUE

Position correction

60

61

DO 60 I=1,NL
IF (IB(I).LT.0) THEN
DL(I)=SQRT ((X(IE(I))-XC(-IB(I)))**2+(Y(IE(I)}-YC(-IB(I)))**2)

-XL(I)

ELSE
DL(I)=SQRT((X(IE(I))-X(IB(I)})**2+(Y(IE(I))}-Y(IB(I)})**2)-XL(I)
ENDIF

CONTINUE

DO 61 J=1,5
CALL ITERAT(NL,DL,DF)
CONTINUE



CALL MULT(NB,NL,DF,DX,DY)

DO 62 I=1,NB
X(I)=X(I)+DX(I)
Y(I)=Y(I)+DY(I)
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62 CONTINUE
c
o] Velocity correction
c -
DO 63 I=1,NL
IF (IB(I).LT.0) THEN
DV({I)=XD(IE(I))*C(I)+¥YD(IE(I))*S(I)
ELSE
DV(I)=(XD(IE(I})-XD(IB(I)))}*C(I)+(YD(IE(I))-¥YD(IB(I}})*S(I)
ENDIF
63 CONTINUE
C
DO 64 J=1,5
CALL ITERAT(NL,DV,DFV)
64 CONTINUE
C
CALL MULT(NB,NL,DFV,DX, DY)
C
DO 65 I=1,NB
XD(I)=XD(I)+DX(I)
YD(I)=YD(I)+DY(I)
65 CONTINUE
C —— ——— — " i e b S - T L o - > 4 e ek i T . S o -
C Energy correction
C———- - - ——— — " - - —— ————— -
EK=0.0
EK1=0.0
DO 66 I=1,NB
EK=EK+0.5*XM(XI)* (XD(I)**2+YD(I)**2)
ER1=EK1+0.5*XM(I) * (XD1(I)**2+YD1(I)**2)
66 CONTINUE
C
CALL DRAG(NB,NL,VX,VY,FX, FY)
c

DW=0.0
DO 67 I=1,NB
DW=DW+0 .5* (FX1(I)+FX(I))*(X(I)-X1(I))+



67

68

69

0.S*(FYL(I)+FY(I))*(Y(I)-Y1(I})
CONTINUE

DE=EK-EK1-DW

SuM=0.0

DO 68 I=1,NB

=SUM+XM(I) * (XD(I) **2+YD(I) **2)

CONTINUE

DO 69 I=1,NB
XD(I)=XD(I)-XD(I)*DE/SUM
YD(I)=YD(I)-YD(I)*DE/SUM

CONTINUE
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70

C—r——-

Checking and handling of collisions

C

IF (NT.EQ.1.AND.L.LT.200) THEN
Do 70 I=1,NL
FT(I)=F(I)
CONTINUE
GOTO 31
ENDIF

CALL PEVENT (NC,NB,NL, IFLAG, IB, IE, XL,DL)
CALL TOPOLOGY (NL)
DO 71 I=1,NL
IF (IB(I).LT.0) THEN
C(I)=(X(IE(I))-XC(-IB(I)))/XL(I)
S(I)=(Y(IE(I))-YC(-IB(I)))/XL(I)
ELSE
C(I)=(X(IE(I))-X(IB(I}))/XL(I)
S(I)=(Y(IE(I))-Y(IB(I))})/XL(I)
ENDIF
CONTINUE

—

Position Correction

——— e

Do 72 J=1,5
CALL ITERAT(NL,DL,DF)
CONTINUE
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CALL MULT (NB,NL,DF,DX,DY)
DO 73 I=1,NB
X(I)=X(I)+DX(I)
Y(I)=Y(I)+DY (I}
CONTINUE

Velocity correction and collision handling

74

75

76

- —— ——————— T — ——— — . 4 2. T

——————

e - > o ——— T — o ——— {2

IFV=0
DO 74 I=1,NL
IF (IB(I).LT.0) THEN
DV(I)=XD(IE(I))*C(I)+¥D(IE(I))*S(I)
ELSE
DV(I)=(XD(IE(I))-XD(IB(I)))*C(I)+(YD(IE(T))-¥D(IB(I)))*S(I)
ENDIF
CONTINUE

DO 75 I=1,NL
IF (ABS(DV(I)).GT.0.1) THEN
IF (DV(I).LT.0.0) DV{(I)=(1.+E)*DV(I)
IF (DV(I).GE.0.0) DV(I)=0.0
ELSE
DV(I)=0.0
ENDIF
CONTINUE

po 76 J=1,5
CALL ITERAT(NL,DV,DFV)
CONTINUE

CALL MULT(NB,NL,DFV,DX, DY)

Do 77 1=1,NB
XD(TI)=XD(I)+DX(I)
YD(I)=YD(I)+DY(I)

CONTINUE

—— e . — — ——— — ———
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C
IF (L.LT.20) H=H+DH
IF ((L.GT.90).AND.(H.GT.DH)) H=H-DH
(o4
C-
C Output to screen and a plot file
C_._
C
IF (XT.LT. (KT*XIN}) GOTO 91
(o

WRITE (6,90) XT, X(1},Y(1),XD(1),¥D(1)
90 FORMAT (1X,F6.2,2X,4F7.3)

o
WRITE (2,*) XT,NB
WRITE (2,*) (X(I),I=1,NB)
WRITE (2,*) (¥ (I),I=1,NB)
WRITE (2,*) (XR(I),I=1,NB)
KT=KT+1

C

91 IF (XT.GT.XEND) GOTO 99
IF (XT.LT.(50./VX)*KG) GOTO 96
KG=KG+1
DO 94 I=1,NB

IF (X{(I).GT.150.) THEN

92 DO 83 J=I,NB-1

XM(JT)=XM(J+1)
XR(J)=XR (J+1)
X(J)=X(J+1)
Y(J)=¥(J+1)
XD(J)=XD(J+1)
YD (J}=YD{J+1)

93 CONTINUE
NB=NB-1
IF (X(I).GT.150.) GOTO 92
ENDIF
94 CONTINUE
Cmm——— -— - -
C Checking Jamming
Cm———- — ——— ——————— e ————— -

JAM=0
DO 95 I=1,NB
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IF (X(I).LT.-21.) THEN
PRINT*,PO," ---- JAMMING !!! ----
STOP
ENDIF
95 CONTINUE
GOTO 16

96 DO 97 I=1,NB
X1(I})=X(I)
Y1(I)=Y(I)
XD1(I}=XD(I)
YD1(I)=YD(I)
XDD1(I)=XDD(I)
¥YDD1(I)=¥YDD(I)

97 CONTINUE

GOTO 30
99 END
C*i’t****ti**f*tf**'kt******t***f******t*****Q’*t'k*********t****t*t****t****
C SUBROUTINES
C e e e e e e e e e i . e e e
C Subroutine for position events
lod - - - e ————— e

SUBROUTINE PEVENT (NC,NB,NL, IFLAG, IB, IE,XL,DL)

PARAMETER (N=5000, M=3000, K=10, KC=80)

DIMENSION IB(N),IE(N),XL(N),DL(N)

COMMON /PARA1/ XCR(KC),XC(KC),YC(KC} XR(M),X(M),Y (M)}, XD(M),YD(M)
KL=1

KN=NL

IFLAG=0

DO 131 I=1,NC
DO 130 J=1,NB
SL=XCR(I)+XR(J)
§S=SQRT ( (X(J) -XC(I))**2+ (Y (J)-¥YC(I))**2)-SL
IF (SS.LT.0.0001) THEN
IB(KL)=-I
IE(KL)=J
XL (KL)=SL
DL (KL) =SS
=KL+1
IF (SS.LT.-0.001) IFLAG=1l
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ENDIF
130 CONTINUE
131 CONTINUE

DO 133 I=1,NB-1
DO 132 J=I+1,NB
SL=XR(I)+XR(J)
SS=SQRT ( (X(J) -X(I))**2+(Y(J)-¥(I))**2)-SL
IF (SS.LT.0.0001) THEN
IB(KL)=I
IE(KL)=J
XL (KL)=SL
DL (KL) =SS
KL=KL+1
IF (SS.LT.-0.001) IFLAG=1l
ENDIF
132 CONTINUE
133 CONTINUE
NL=KL-1
IF (NL.NE.KN) IFLAG=1
140 RETURN

C ________ -
C Subroutine for setting up topology data structure

C —_—
SUBROUTINE TOPOLOGY (NL)
PARAMETER (N=5000,K=10)
COMMON /TOPO/ IB(N),IE(N),IBB(N,K),IEE(N,K),KB(N),6KE(N)

IF (NL.EQ.O0) RETURN
DO 220 I=1,NL
KB(I)=0
KE(I)=0
po 210 J=1,NL
IF(IB(I).EQ.IB(J)) THEN
IF(I.NE.J) THEN
KB(I)=KB(I)+1
IBB(I,KB(I))}=-J
ENDIF
ENDIF
IF(IB(I).EQ.IE(J)) THEN
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IF(I.NE.J) THEN
KB(I)=KB(I)+1
IBB(I,KB(I))=J

ENDIF
ENDIF
C
IF(IE(I).EQ.IE(J)} THEN
IF(I.NE.J) THEN
KE(I)=KE(I)+1
IEE(I,KE(I))=-J
ENDIF
ENDIF
IF(IE(I).EQ.IB(J)} THEN
IF(I.NE.J) THEN
KE(I)=KE(TI}+1
IEE(I,RE(I))=J
ENDIF
ENDIF
210 CONTINUE
220 CONTINUE
END
C--__ - ———— ————— ———————— ——
(o4 Subroutine for iterative scheme based on topology data structure
C - . o - — ——————— —— —— > T . > T " A1 T T o = . o e e

SUBROUTINE ITERAT(NL,B,Z)
PARAMETER (N=5000,M=3000,K=10)
DIMENSION B(N),Z(N)
COMMON /TOPO/ IB(N),IE(N),IBB(N,K),IEE(N,K),KB(N),KE(N)
COMMON /PARA2/ C(N),S(N),XM(M), XL(N)
DO 340 RX=1,10
DO 330 I=1,NL
TMP=B (I)
IF (IB(I).LT.0) GOTO 310
DO 300 J=1,KB(I)
IF (IBB(I,J).LT.0) THEN
IJ=-IBB(I,J)
TMP=TMP-Z (IJ)} *(C(I) *C(IJ)+S(I) *S(IJ))/XM(IB(I))
ELSE
IJ=IBB(I,J)
=TMP+Z (IJ) * (C(I) *C(IJ)+S(I)*S(IJ)) /XM(IB(I))
ENDIF



300
310

320

330
340
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CONTINUE
DO 320 J=1,KE(I)
IF (IEE(I,J).LT.0) THEN
IJ=~-1EE(I,J)
TMP=TMP-Z (IJ) * (C(I) *C(IJ) +S(I) *S(IJ}) /XM(IE(I))
ELSE
IJ=IEE(I.J)
TMP=TMP+Z (IJ) * (C(I) *C(IJ)+S(I) *S(IJ)} /XM(IE(I))
ENDIF
CONTINUE

IF {IB(I).-LT.0) THEN
Z(I)=XM(IE(I))*TMP
ELSE
Z(I)=TMP*XM(IB(I))*XM(IE(I))/(XM(IB(I})+XM(IE(I))})
ENDIF
CONTINUE
CONTINUE
RETURN
END

Subroutine for calculating X=M"~(-1)*E*C*F and Y=M"(-1)*E*S*F

—————_——— - —— S — — ——— T > 1 > s o S

400

410

420

SUBROUTINE MULT(NB,NL,F,X,Y)

PARAMETER (N=5000,M=3000,K=10)

DIMENSION F(N).X(M),¥(M)

COMMON /TOPO/ IB(N),IE(N),IBB(N,K),IEE(N,K),KB(N),KE(N}

COMMON /PARA2/ C(N},S(N),XM(M),XL(N)

DO 400 I=1,NB
X(1)=0.0
Y(I)=0.0

CONTINUE

DO 420 I=1,NL
IF (IB(I).LT.0) GOTO 410
X(IB(I))=X(IB(I))+F(I)*C(I)/XM(IB(I))
Y(IB(I))=Y(IB(I))+F(X)*S(I)/XM(IB(I))
CONTINUE
X(IE(I))=X(IE(I))-F(I)*C(I)/XM(IE(I))
Y(IE(I))=Y(IE(I)})-F(I)*S({I)/XM(IE(I))

CONTINUE

RETURN



C-——=
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END

Subroutine for calculating drag force on each body

SUBROUTINE DRAG (NB,NL,VX,VY,FX, FY)

PARAMETER (N=5000,M=3000,K=10,KC=80,CD=0.05,RHO=1-0)

DIMENSION FX(M),FY(M),DKX(M},DKY (M)

COMMON /TOPO/ IB(N).IE(N),IBB(N,K),IEE(N,K),KB(N),KE(N)

COMMON /PARALl/ XCR(KC),XC(KC),YC(KC)rXRiM).X{H),Y(M).XD(M),YD(M)
COMMON /PARA2/ C(N),S(N),XM(M),XL(N)

PI=4.0*ATAN(1.0)
DO 500 I=1,NL
IF (IB(I).LT.Q) THEN
C(I)=(X(IE(I})-XC(~IB(I)))/XL(I)
S(I)=(Y(IE(I))-YC(~-IB(I)))/XL(I)
ELSE
C(I)=(X(IE(I))-X(IB(I)))/XL(I)
S(I)=(Y(IE(I))-Y(IB(I)))/XL(I)
ENDIF
CONTINUE

DO 510 I=1,NB
DKX(I)=1.0
DKY(I)=1.0

CONTINUE

DO 520 I=1,NL
IF (IB(I).LT.0.0) THEN
DKX (IE(I))=ABS(S(I))
DKY (IE(I))=ABS(C(I))
GOTO 520
ENDIF

IF (((VX-XD(IB(I)))*C(I)).LT.0.0) THEN
DEKX(IB(I))=0.5*(1.0+ABS(S(I)})
—0.5*(1.0-ABS(S(I)})*XR(IE(I})/XR(IB(I))}
ENDIF
IF (((VX-XD(IE(I)))}*C(I)).GT.0.0) THEN
DKX(IE(I))}=0.5*(1.0+ABS(S(I}})
—0.5*(1.0-ABS(S(I)))*XR(IB(I))/XR(IE(I)})



520

530

ENDIF
IF {(((VY-YD(IB(I)))*S(I)).LT.0.0) THEN
DKY(IB(I})=0.5*(1.0+ABS(C(I)})

& -0.5*(1.0-ABS(C(I)))*XR(IE(I))/XR(IB(I))

ENDIF
IF (((VY-YD(IE(I)))*S(I)).GT.0.0) THEN
DKY(IE(I))=0.5*(1.0+ABS(C(I})))

& -0.5*(1.0-ABS(C(I)))*XR(IB(I))/XR(IE(I})

ENDIF
CONTINUE
DO 530 I=1,NB
IF(DRX(I).LT.0.1) DKX(I)=0.1
IF(DKY(I).LT.0.1l) DKY(I)=0.1
VR=VX
IF (X(I).GT.-10.0) THEN
VR=VX*(1.5-0.00375*Y(I) **2)
ENDIF
FX(I)=-CD*PI*XR(I)*XR(I)*(XD(I)-VR)*ABS(XD(I)-VR)*DKX(I)
FY(I)=~CD*PI*XR(I)*XR(I)*(YD(I}-VY)*ABS(YD(I)-VY)*DKY(I)
CONTINUE
RETURN
END

C-~-~
C
Commm—

600

Function of random number generation
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FUNCTION RAN (IDUM)
PARAMETER (M=714026,IA=1366,IC=150899,RM=1.0/M)
DIMENSION IR(97)
DATA IFF /0/
IF ((IDUM.LT.0).OR.(IFF.EQ.0)) THEN
IFF=1
IDUM=MOD (IC-IDUM, M)
DO 600 J=1,97
IDUM=MOD (IA*IDUM+IC, M)
IR(J)=IDUM
CONTINUE
IDUM=MOD (IA*IDUM+IC, M)
I¥Y=IDUM
ENDIF
JIJ=1+(97*IY) /M
IF ((J.GT.97).0OR.(J.LT.1)) PAUSE
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IY=IR(J)
RAN=IY*RM
IDUM=MOD (IA*IDUM+IC, M)
IR(J)=IDUM
RETURN
END
c -
c End of Program (July, 1996)

Ct*tttttt*t****t*tt**t********'*********t***t***#********t**********tt***
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An Example of Input Files

REM
REM Start, BEnd, Min.step, Vx, Vy, Thick, Fmax, E, U, TOL

PARA

0.0 500.0 1.0 0.00005 5.0 0.0 2.5 0.0 0.7 0.3 0.00001
END PARA

REM IG, ISEED, RI, X1, YI

RAND

1 2 0.0 0.1 0.02
END RAND
DISK
1 3.37 -21.0 -12.0 5.0 0.0
2 3.32 -21.0 -4.0 5.0 0.0
3 3.35 ~21.0 4.0 5.0 0.0
4 3.40 -21.0 12.0 5.0 .0
5 3.31 -28.5 16.0 5.0 6.0
6 3.42 -28.5 8.0 5.0 0.0
7 3.34 -28.5 0.0 5.0 0.0
8 3.38 -28.5 -8.0 5.0 0.0
9 3.32 -28.5 -16.0 5.0 0.0
10 3.41 -36.0 -12.0 5.0 g.0
i1 3.35 -36.0 -4.0 5.0 0.0
12 3.40 -36.0 4.0 5.0 0.0
13 3.31 -36.0 12.0 5.0 0.0
14 3.37 -43.5 i6.0 5.0 0.0
15 3.40 -43.5 8.0 5.0 0.0
16 3.38 -43.5 0.0 5.0 0.0
17 3.36 -43.5 -8.0 5.0 0.0
18 3.35 -43.5 -16.0 5.0 0.0
19 3.37 -51.0 -12.0 5.0 0.0
20 3.39 -51.0 -4.0 5.0 0.0
21 3.34 -51.0 4.0 5.0 0.0
22 3.36 -51.0 12.0 5.0 0.0
23 3.33 -58.5 16.0 5.0 0.0
24 3.40 -58.5 8.0 5.0 0.0
25 3.28 -58.5 0.0 5.0 0.0
26 3.40 -58.5 -8.0 5.0 0.0
27 3.35 -58.5 -16.0 5.0 0.0
28 3.32 -66.0 -12.0 5.0 0.0
29 3.38 -66.0 -4.0 5.0 0.0
30 3.35 -66.0 4.0 5.0 8.0
31 3.40 -66.0 12.0 5.0 0.0
END DISK
REM
ROOT
1 180.0 -20.0 -200.0
2 180.0 -20.0 200.0
3 3.5 5.0 -23.0
4 3.5 5.0 23.0
5 14.5 10.0 -35.0
6 14.5 10.0 35.0
7 3.8 15.0 -23.0
8 3.8 15.0 23.0
9 14.2 20.0 -35.0
10 14.2 20.0 35.0
11 4.0 25.0 -23.0
12 4.0 25.0 23.0
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