
University of Calgary

PRISM Repository https://prism.ucalgary.ca

The Vault Open Theses and Dissertations

2018-04-26

Efficient Shared Memory Algorithms for

Bounding Space

Aghazadeh, Zahra

Aghazadeh, Z. (2018). Efficient Shared Memory Algorithms for Bounding Space (Doctoral

thesis, University of Calgary, Calgary, Canada). Retrieved from https://prism.ucalgary.ca. doi:10.11575/PRISM/31853

http://hdl.handle.net/1880/106567

Downloaded from PRISM Repository, University of Calgary

UNIVERSITY OF CALGARY

Efficient Shared Memory Algorithms for Bounding Space

by

Zahra Aghazadeh

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF DOCTOR OF PHILOSOPHY

GRADUATE PROGRAM IN COMPUTER SCIENCE

CALGARY, ALBERTA

April, 2018

© Zahra Aghazadeh 2018

Abstract

It is the state of the art that computer systems use multi-core architectures. In order to exploit

the benefits of parallelism, multiple processors have to cooperate and concurrently communicate

by executing operations on shared objects. It is challenging in shared memory algorithms to

deal with the inherent asynchrony of processes. To overcome this difficulty and to achieve high

efficiency, algorithm designers often assume unbounded space. This work focuses on designing

time-efficient shared memory algorithms while avoiding unbounded space.

One example is that of making shared objects writable: Many standard primitives (for instance,

compare-and-swap or fetch-and-add) do not provide a Write() operation that unconditionally

changes the object’s state to the one provided as a parameter. Adding Write() operations

without sacrificing efficiency is challenging if space is limited. We provide a space-efficient solution

for making synchronization primitives writable with optimal step complexity. A special case of

making an object writable is to augment non-resettable objects with Reset() operations. We

show how our general transformation can be improved to achieve optimal space implementations

of long-lived test-and-set objects with time-efficient Reset() operations.

Another example concerns the ABA problem: Even though a process retrieves the same

value twice in a row from a shared object, it is still possible that the value of the object has

changed multiple times. We investigate the time and space complexity of detecting ABAs in

shared memory algorithms for systems with bounded base objects. To that end, we propose a

new primitive called an ABA-detecting register, and we give an efficient implementation of this

type using asymptotically optimal number of bounded registers.

Finally we deal with a more general unbounded space problem: Many applications employ

the tagging technique, where shared objects get augmented with additional values, called tags.

Unbounded tags are mainly used in those applications, because bounding them is too compli-

cated and error prone. We introduce a new primitive that provides an abstraction for avoiding

ii

unbounded tags. Also, we propose optimally time-efficient implementations of this primitive

from bounded objects. In addition to straightforward applications that use tags directly, our

implementations can also often be used for memory reclamation.

Table of Contents

Abstract . ii
Table of Contents . iv
List of Figures . vi
1 Introduction . 1
2 Model . 10
2.1 General Definitions . 10

2.1.1 Shared Memory Model and Shared Objects 10
2.1.2 Schedule, Transcript and History . 12
2.1.3 Safety . 15
2.1.4 Progress Conditions . 17
2.1.5 Space and Step Complexity . 17

2.2 Definitions Specific to Our Linearizability Proofs 18
3 Related Research . 20
3.1 Augmenting Objects with Write() Operations 20
3.2 Test-and-Set . 21
3.3 Memory Management . 23
3.4 ABA Detection . 26
3.5 Tagging . 27
4 Writable Objects . 30
4.1 Results and Applications . 31

4.1.1 Multi-Word Registers . 33
4.1.2 Writable Compare-And-Swap and Fetch-And-Add 33
4.1.3 Long-Lived Test-And-Set . 34

4.2 Preliminaries . 35
4.2.1 Simple Implementation . 35
4.2.2 A Natural Template . 37
4.2.3 Using Hazard Pointers to Bound the Number of Memory Locations . . . 39

4.3 Wait-Free Implementation . 41
4.3.1 High Level Idea . 42
4.3.2 Detailed Description . 48

4.4 Analysis and Correctness . 53
4.4.1 Proof of Lemma 4.5 . 53
4.4.2 Correctness of the Proposed Implementation 58
4.4.3 Proof of Theorem 4.1 . 83

4.5 Optimal-Time Sequentially Resettable (k,b)-Array 83
4.5.1 The Implementation . 84
4.5.2 Proof of Lemma 4.2 . 85

5 ABA-Detecting Registers . 89
5.1 Results . 89
5.2 Optimal Constant-Time ABA-Detecting Register from Registers 93

5.2.1 Algorithm Description . 93
5.2.2 Proof of Theorem 5.1 . 96

iv

5.3 ABA-Detecting Register from a Single LL/SC/VL 103
5.3.1 Algorithm Description . 103
5.3.2 Proof of Theorem 5.3 . 104

5.4 LL/SC/VL from a Single Bounded CAS . 107
5.4.1 Algorithm Description . 107
5.4.2 Proof of Theorem 5.5 . 109

6 More Efficient Long-Lived Test-And-Set . 114
6.1 Results . 114
6.2 Base Algorithm . 117

6.2.1 High Level Idea . 118
6.2.2 Detailed Description of recycle() . 120

6.3 Long-lived Test-And-Set with Faster Reset . 123
6.3.1 Space-Optimal and Fast Long-Lived Test-And-Set 123
6.3.2 Long-Lived Test-And-Set with Constant Time Reset 126

6.4 Correctness of the Base Algorithm . 128
6.4.1 Proof of Lemma 6.6 . 129
6.4.2 Proof of Theorem 6.1 . 149

7 Taggable Objects . 150
7.1 Taggable Objects Specification . 151
7.2 Applications and Results . 155

7.2.1 Round-Based Algorithms. 156
7.2.2 Pointer Swinging . 156
7.2.3 Extended Specification and Memory Management 163
7.2.4 Results . 166

7.3 TRA and TLSA Implementations . 167
7.3.1 Managing Tags . 168
7.3.2 Reading and Writing in TRA . 170
7.3.3 Loading and Storing in TLSA . 175

7.4 Detailed Description of TRA and TLSA . 176
7.4.1 Managing Tags . 176
7.4.2 Reading and Writing in TRA . 178
7.4.3 Loading and Storing in TLSA . 181

7.5 Correctness of TLSA and TRA . 183
7.5.1 Modified Pseudocode of the TLSA and TRA Implementations 184
7.5.2 Transcript and Linearization Points . 187
7.5.3 Reservation Mechanism . 194
7.5.4 Properties of the LL() Operation . 202
7.5.5 Announced vs. Protected . 215
7.5.6 What Do Emp and Use Represent? . 223
7.5.7 GetFree() Returns a Free Tag . 225
7.5.8 Proof of Invariant 7.22 . 241
7.5.9 Proof of Linearizability . 243
7.5.10 Proof of Theorem 7.1 . 247

8 Summary and Future Work . 248
Index . 265

v

List of Figures and Illustrations

2.1 An example execution of an implemented queue with a possible linearization points
assignment . 16

4.1 An implementation is sequentially writable if every history on that object in which
no Write() call overlaps any other operation call is linearizable 31

4.2 A Sequentially Writable k-Word Register from k Single-Word Registers 34
4.3 Simple Implementation of a Writable Object 36
4.4 Writable Object Template . 37
4.5 Implementation of the Writable Object . 49
4.6 Illustration for the proof of Claim 4.20 . 68
4.7 Illustration for the proof of Claim 4.21, Part (a) 70
4.8 Illustration for the proof of Claim 4.22, Part (a) 71
4.9 Illustration for the proof of Claim 4.23 . 72
4.10 Illustration for the proof of (4.19) of Claim 4.25, Case 1 74
4.11 Illustration for the proof of (4.19) of Claim 4.25, Case 2.2 and if tW ′@14 < tE@35 76
4.12 Illustration for the proof of Claim 4.25, Part (b) 78
4.13 Illustration for the proof of Lemma 4.8, Case 1, Part (b) 79
4.14 Illustration for the proof of Lemma 4.8, Case 2, Part (b) 82
4.15 Implementation of a Sequentially Resettable (k,b)-Array 85

5.1 An ABA-detecting Register Implemented from Bounded Registers. 93
5.2 Implementation of an ABA-detecting Register from LL/SC/VL. 103
5.3 An LL/SC/VL Implementation from Bounded CAS. 108

6.1 Results on Randomized Long-Lived Test-And-Set 115
6.2 The implementation of TAS() and Reset() of the Long-Lived TAS 121
6.3 Recycle() Method of the Long-Lived Test-And-Set 122
6.4 Object Fi . 124
6.5 Test-and-set implementation by Giakkoupis and Woelfel (2012) 125

7.1 Specification of a TRA/TLSA object A . 154
7.2 SCU with Unbounded Memory . 158
7.3 SCU with Bounded Memory . 158
7.4 A k-Word Register Implementation . 160
7.5 A stack Implementation with Peek()in Constant Step Complexity 161
7.6 Managing Tags in (m,τ)-TRA and (m,τ)-TLSA Object 172
7.7 TWrite() and TRead() of an (m,τ)-TRA Object 173
7.8 Load and Store of an (m,τ)-TLSA Object . 174
7.9 Revised Implementation of an (m,n,τ)-TLSA Object 184
7.10 Additional Operations for Revised Implementation of an (m,τ)-TLSA and (m,n,τ)-

TRA . 185
7.11 Revised Implementation of an (m,τ)-TRA object 186

vi

Chapter 1

Introduction

With the exponential growth of information, it is now more than ever necessary to benefit from

the power of parallelism offered by distributed computing. As powerful as these systems can

be, designing an efficient distributed system that exploits the parallelism can be a tremendously

difficult job. The main challenges are dealing with asynchrony that is inherent in hardware, and

failures of processes.

In a shared memory system, processes communicate by executing operations on shared objects,

either provided by the hardware, or by a software layer. These shared objects allow programmers

to decompose larger tasks into smaller modules. Hence, having efficient implementations of tasks

that keep appearing in distributed algorithms is desirable. To achieve this, researchers have been

approaching this problem from different directions, for instance by

• developing more efficient implementations of known primitives,

• investigating the possibility and the complexity of implementing some primitives from

others,

• introducing new and meaningful primitives that can be used as building blocks for dis-

tributed algorithms, and

• proposing universal transformations of primitives into new ones with enhanced function-

ality or efficiency.

To overcome the challenges of implementing powerful shared objects, algorithm designers

often assume unbounded space, that is they use either an unbounded number of objects, or

objects that can store unbounded values.

1

Objectives. The goal of this thesis is to introduce new primitives and new general transfor-

mations using bounded space for common problems that have trivial solutions only if unbounded

space is available. Although obtaining such general transformations is intricate, once designed

and proved correct, they can be applied easily in a variety of contexts, provided that they work

in a “black box” fashion. This way the transformation builds a layer around the original input

implementation rather than altering its delicate inner mechanisms.

Writable Objects. The first problem that we consider is a general transformation to make an

object writable, that is augmenting the object with a Write() operation. A Write(x) changes

the value of the object to x regardless of the state of the object. A Reset() operation is a

special case of a Write(), which assigns an initial value to the implemented object. A simple

transformation that achieves this goal maintains an unbounded pool of objects of the input type,

as well as a pointer that identifies among these a designated “current” object. The Reset()

operation updates (or “swings”) this pointer to a new object in the pool, and all other operations

are applied on the designated object by first following the pointer. This transformation, while

simple and wait-free, uses unbounded space and is neither practical nor theoretically interesting.

In Chapter 4, we provide a transformation that makes any object writable provided that it

is possible to write to the object non-concurrently, while preserving bounded space and wait-

freedom. Our transformation uses a polynomially many (in number of processes) copies of the

original object and registers, and only increases the step complexity of operations on the object

by a constant additive term.

This transformation can be employed to augment existing interesting objects, such as compare-

and-swap, and fetch-and-add, with a Write() or a Reset() operation. Another immediate

application of this transformation is an implementation, with optimal step complexity, of a k-

word register from O(kn2) single-word registers, where n (throughout this thesis) represents the

number of processes.

2

More Efficient Long-Lived Test-And-Set. The specific characteristics of one particular ob-

ject, called test-and-set (TAS), allow us to achieve better transformations than the general trans-

formation of Chapter 4, in terms of step and space complexities. Test-and-set objects are standard

synchronization primitives that can, for example, be used to protect a critical section in a mutual

exclusion algorithm. This object stores a bit, which is initially 0. The one-time version allows

only one operation, TAS(), which atomically returns the value of the bit and sets it to 1. A

long-lived TAS object also provides a Reset() operation, which resets the bit. Only the process

whose TAS() call returns 0 is allowed to subsequently call Reset().

Chapter 6 presents two transformations of any one-time TAS object implemented from m

registers into a long-lived one. The resulting long-lived TAS object of the first transformation

uses O(m + n) registers, Reset() takes O(m) steps, and TAS() has asymptotically the same

step complexity as in the original one-time object. The second transformation improves the step

complexity of Reset() to O(1), but the space complexity increases to Θ(mn). For example,

applying the first transformation to the currently most space-efficient one-time TAS implementa-

tion (Giakkoupis, Helmi, Higham and Woelfel, 2015), we obtain a long-lived TAS object, where

Reset() calls require O(logn) steps in the worst case, and TAS() calls have O(log∗ n)1 ex-

pected step complexity against the oblivious adversary. The resulting object uses O(n) registers,

which is optimal due to the lower bound on the space requirement of mutual exclusion (Burns and

Lynch, 1993). The second transformation yields a long-lived TAS that uses O(n logn) registers,

Reset() runs in O(1) steps in the worst case, and TAS() has again O(log∗ n) expected step

complexity against the oblivious adversary.

Moreover, some additional fine-tuning applied to a specific one-time TAS implementation by

Giakkoupis and Woelfel (2012) and Alistarh and Aspnes (2011), allows us to create a long-lived

TAS object with asymptotically optimal space, and expected O(loglogn) step complexity for

both TAS() and Reset() against the oblivious adversary. Prior to these, no long-lived TAS

1log∗ n denotes the iterated logarithm of n, i.e., the number of times log2 must be applied iteratively until
the resulting value is at most 1.

3

implementation from O(n) registers was known, where all operations have sub-linear expected

step complexity.

An important part of all these implementations is an internal memory management technique

to bound the space by recycling “used” objects when they are no longer in use. Although similar,

each of them is specifically and differently tailored towards each of these applications. We exploit

the main idea of our recycling technique, and combine it with other ideas to offer solutions, in the

form of new primitives, to the following common problems that arise in algorithms with bounded

space.

ABA Detection. The first one is the ABA problem which is a commonly encountered, chal-

lenging problem in the design of space bounded algorithms: Even though a process retrieves the

same value twice in a row from a shared memory object, it is still possible that the value of the

object has changed multiple times between these two retrievals. Algorithms using registers or

compare-and-swap (CAS) objects seem to be especially susceptible. A CAS object stores a value

C, and provides two operations, Read() and CAS(). The Read() operation returns the value of

C. The CAS(x,y) operation changes the value of C to y and returns true if C = x immediately

prior to this operation. Otherwise, it leaves the object unchanged and returns false. A CAS()

call is successful if and only if it returns true. Often, CAS objects are used in the following way:

First, a process p reads the value x stored in the CAS object, then it performs some computation,

and finally it tries to propagate the result of the computation y by performing a CAS(x,y). The

idea is that if another process has already updated the value of the object, p’s CAS() should fail.

However, if multiple successful CAS() operations have occurred and the value of the object has

changed back to x, p’s CAS() might still succeed, possibly yielding inconsistencies.

Tagging, as introduced by IBM (1983), provides a simple solution for the ABA problem. This

involves augmenting an object with a tag, which is sometimes called a sequence number, that

gets incremented with every change in the value of the object. If tags never repeat, this technique

avoids the ABA problem. Therefore, theoretically, an infinite number of tags, and consequently,

4

base objects of unbounded size, are required. One may argue that, in practice, for reasonably

large base objects, a system will never run out of tags. However, this is unrealistic in cases

where the tag has to be stored together with other information in the same object. Alternatively,

in some cases, it is possible to store the tag in a separate object (Jayanti and Petrovic, 2003;

Michael, 2004c). However, this requires technically difficult algorithms and correctness proofs for

each such application. Moreover, it is often necessary to use the entire object space for data,

and then no space remains for tags. Some architectures like the IBM System/370 (IBM, 1983)

have a double-width CAS primitive, which allows one of two words to be used for storing tags.

But this primitive is not supported by most mainstream architectures (Michael, 2004a).

In contrast, load-link/store-conditional (LL/SC) objects do not suffer from the ABA problem.

This type provides two operations, LL() and SC(). The LL() operation returns the current value

of the object. The SC(x) operation may either fail, not change anything, and return false, or

succeed, write the value x to the object, and return true. An SC(x) operation by process p

succeeds if and only if no other SC() operation succeeded since p’s last LL(). An extended

specification also allows for a VL() (Verify-Link) operation, which does not change the state of

the object; it returns false if a successful SC() has been performed since the calling process’

last LL(), and true otherwise. LL/SC (or LL/SC/VL) objects can in almost all cases replace

CAS objects in algorithms, and are an effective way of avoiding the ABA problem. Unfortunately,

existing multiprocessor systems only provide weak versions of LL/SC that restrict programmers

severely in how they can use the objects (Moir, 1997), and hence they “offer little or no help

with preventing the ABA problem” (Michael, 2004a).

To study this problem more systematically, and investigate whether an LL/SC is necessary for

avoiding the ABA problem, Chapter 5 introduces a new primitive that encapsulates the essentials

to detect ABAs. This primitive is called an ABA-detecting register . It is similar to a normal

read/write register, except that it allows a process to detect an ABA with a read operation. More

specifically, this object provides two operations, DRead() and DWrite(). A process can write

5

to this object with a DWrite() operation. A DRead() by a process p returns the current value

of the object, as well as a bit that indicates whether a process executed a DWrite() call since

p’s last DRead(). Although an ABA-detecting register can easily be implemented from a single

unbounded register, Aghazadeh and Woelfel (2015) show that an obstruction-free implementation

of even a single-bit ABA-detecting register requires at least n− 1 bounded registers. In Chapter 5,

we provide a wait-free implementation of an ABA-detecting register from n+ 1 bounded registers,

with constant step complexity for both DRead() and DWrite() operations. This primitive can

significantly help algorithm designers to focus on the main goal rather than being concerned

about the ABA problem. In fact, this primitive is already used in our other constructions in this

dissertation (in Chapters 6 and 7).

Independent of this thesis, Aghazadeh and Woelfel (2015) also show that any implementation

of an ABA-detecting register, as well as an LL/SC object, from bounded CAS objects and registers,

has an n − 1 time-space tradeoff lower bound. This lower bound for LL/SC is asymptotically

tight for implementations with constant step complexity, as it matches the known upper bound by

Jayanti and Petrovic (2003). In Chapter 5, we show that a single bounded CAS object is enough

to implement an LL/SC/VL object with O(n) step complexity, which proves that this tradeoff

lower bound is also asymptotically tight for implementations with constant space complexity.

We also show that a single LL/SC/VL object is enough to implement an ABA-detecting

register, with constant step complexity. Therefore, an ABA-detecting register can also be im-

plemented with a single CAS object in O(n) steps, or with a CAS object and O(n) registers in

constant steps (using the implementation of LL/SC/VL object by Jayanti and Petrovic (2003)).

This also shows that the time-space tradeoff lower bound by Aghazadeh and Woelfel (2015) for

ABA-detecting registers is asymptotically tight for implementations with O(1) and with O(n)

step complexities.

Bounded Tagging. In Chapter 7, we turn our attention to a more general definition of tag-

ging, where registers or other shared objects get augmented with additional values, called tags.

6

Although one specific application of this technique could be to avoid the ABA problem, as it was

initially suggested by IBM (1983), this technique could be used in many different settings.

For instance, in many algorithms, processes proceed in rounds. When a process writes to

shared objects, it can augment its data value with a tag, which consists of the process’s current

round number and possibly process ID. Other processes can then use the tags read from shared

objects to distinguish whether the corresponding data values were written by a process in the

same or in different rounds. Each time a process starts a new round, it needs to find a new unique

tag that it can use throughout its round as an identifier of that round. In some applications, it is

important that tags are ordered, e.g. later rounds should have larger tags than earlier ones (Afek,

Gafni, Tromp and Vitányi, 1992; Lamport, 1974; Riany, Shavit and Touitou, 2001; Vitányi and

Awerbuch, 1986), while in others, the only requirement is that tags are unique (Aghazadeh and

Woelfel, 2014; Attiya and Rachman, 1998; Giakkoupis and Woelfel, 2014).

A standard technique for tagging could be as follows: To generate a new tag a process p

increments a local variable c, and then uses (p, c) as the tag. But in many algorithms this leads

to an unbounded number of tags, and thus shared base objects need to be able to store values

of unbounded size.

The problem of bounding tags is a special case of the bounded timestamp problem (Israeli and

Li, 1987), in which processes can repeatedly call an operation which returns a timestamp, in such

a way that the value of timestamps indicate the order they are received. While for tagging only

uniqueness is essential, a temporal order relation must be satisfied for timestamps. In all known

algorithms (for instance implementations by Dwork, Herlihy and Waarts (1993), Dolev and Shavit

(1997), Dwork and Waarts (1992), Haldar and Vitányi (2002), and Israeli and Pinhasov (1992)),

the operations to maintain bounded timestamps for n processes have step complexity at least

Ω(n). Moreover, any timestamp system requires 2n timestamps (Israeli and Li, 1987), and thus

they must be stored in objects of size at least n bits. This limits the number of processes that

can participate in algorithms relying on timestamp systems, especially if the timestamps need to

7

be stored in the same object as the data they are augmenting.

Several applications that use some specific variants of tagging rely on ad-hoc techniques to re-

cycle tags with only constant step complexity overhead. Examples are implementations of LL/SC

objects from CAS objects and registers (Anderson and Moir, 1995; Jayanti and Petrovic, 2003),

FIFO queues from CAS objects and registers (Tsigas and Zhang, 2001), our transformations that

augment objects with concurrent Write() or Reset() operations presented in Chapters 4 and 6,

and our ABA-detecting registers provided in Chapter 5. This suggests that tagging could be

easier to achieve than bounded timestamps.

To investigate this, we propose in Chapter 7 new primitives that capture the functionality

we expect from tagging. Those primitives maintain a bounded pool of tags and an array A.

Processes can obtain free tags from this pool. These tags can be stored alongside the data values

in entries of array A. Any process that reads a tag from an entry of A, automatically protects it

from being freed, until the process explicitly unprotects this tag. A process can store a tag that

it read from an entry of this array or received from the pool, in another entry of the taggable

array. When the tag is no longer needed, a process can release it, so that once no process has

this tag protected, it goes back to the pool.

The operations that processes use to store and retrieve (data,tag) pairs from these primitives

depend on the type of the array entries. In particular, we specify two variants of our types. We

introduce the type taggable register array (TRA), in which A is an array of registers, and the

type taggable LL/SC array (TLSA), in which A is an array of LL/SC objects.

In Chapter 7, we formally specify these types, and present an implementation of TRA from

registers, and an implementation of TLSA from LL/SC objects and registers. Each of those

implementations is wait-free, all operations have constant step complexity, shared base objects

have bounded size (typically it is logarithmic in the number of processes), and the number of

base objects used is bounded (typically polynomially in the number of processes).

These primitives can be used in many different applications, and could have a significant

8

impact on shared memory algorithm design and complexity analysis. For instance, they can be

employed to enable memory management for a large class of algorithms called single compare-

and-swap universal (SCU) (Alistarh, Censor-Hillel and Shavit, 2016). These primitives can also

take over the memory management of some concurrent data structures. However, to completely

enable memory management for most linked data structures, we need an extended version of our

primitives, as explained in details in Chapter 7. The resulting primitive can be used in the same

way for those data structures as other techniques like Hazard pointers by Michael (2004b) or

Pass-the-Buck by Herlihy, Luchangco and Moir (2002).

Chapter 2 overviews the model, definitions, and assumptions of this work, and Chapter 3

presents the related work. In Chapter 8, we provide a summary of results and techniques proposed

in this work, and outline some future directions that can be followed.

Contributions. In summary, the main contributions of this dissertation are as follows:

• Chapter 4: A general transformation to augment any object with a Write()/Reset()

operation, provided that it is possible to write to/reset the original object sequentially

(Aghazadeh, Golab and Woelfel, 2013, 2014).

• Chapter 5: Specification and an implementation (with asymptotically optimal space and

step complexities) of a new primitive called ABA-detecting register, which provides a

simple solution to the ABA problem (Aghazadeh and Woelfel, 2015).

• Chapter 6: Efficient transformations of any one-time test-and-set object to a long-lived

one, as well as an optimal space implementation of a long-lived test-and-set object (Ag-

hazadeh and Woelfel, 2014).

• Chapter 7: Specifications and efficient implementations of new primitives called taggable

LL/SC array and taggable register array as general solutions to the bounded tagging

problem (Aghazadeh and Woelfel, 2016).

9

Chapter 2

Model

2.1 General Definitions

This chapter provides the necessary definitions and assumptions that are used in this dissertation.

The definitions in this chapter are based on the work by Attiya and Welch (2004), Golab, Higham

and Woelfel (2011a,b), Herlihy and Shavit (2008), Herlihy and Wing (1990), and Woelfel (2017),

even though in some cases we slightly deviate from their original definitions to accommodate our

proofs.

2.1.1 Shared Memory Model and Shared Objects

We consider an asynchronous shared memory model with n processes with distinct IDs in

P= {0, . . . ,n− 1}. Processes communicate through shared data structures, called objects. Pro-

cesses are sequential, i.e. each process executes a sequence of operations on shared objects,

repeatedly invoking an operation and then receiving the associated response.

An object has a name and a type that specifies the behaviour of the object. A type T is

a quintuple (S, s0,O,R,δ), where S is a set of states, s0 ∈ S is the initial state, O is a set of

operations, and R is the set of responses. The set R contains a special value λ, which indicates

that the operation does not return anything. The transition function δ : S×O→ 2S×R defines the

behaviour of the object of type T, when processes execute operations sequentially. In this thesis,

we restrict ourselves to deterministic types, in which δ : S×O→ S×R. For a deterministic type

T = (S, s0,O,R,δ), if a process executes an operation Op ∈ O, when the object is in state s ∈ S,

then the operation returns the value r ∈ R and the state of the object changes to s′ ∈ S, if and

only if δ(s,Op) = (s′,r).

Most often, a more descriptive approach is used to describe the type of an object: In this

10

approach plain language is used, as opposed to an automaton description, to specify the value

that the object can store, as well as the operations it provides, and how these operations affect

the stored value in a sequential execution.

We call the shared objects that are provided by the system base objects. Some shared

objects are implemented from other base objects. Section 2.1.3 outlines what it means for an

implementation to be correct. In the following, we introduce the shared objects that are used or

implemented in this dissertation.

Read-Write Registers. A read-write register, or commonly called an atomic register, stores a

value (usually of size one-word) and provides two operations: A Read() operation returns the

current value of the object, and a Write(x) changes the value of the object to x. A k-word

register stores a value of size k-words, and a Read() operation returns the k words that are

currently stored in the object, and Write(x1, . . . , xk) takes k 1-word values and updates the

value of the object correspondingly. It is historically interesting to specify how many readers

can read from, and how many writers can write to a register. We distinguish between single-

writer single-reader (SWSR), single-writer multi-reader (SWMR), and multi-writer multi-reader

(MWMR) registers. In this work, we assume MWMR atomic registers are provided by the system.

Compare-and-Swap. A compare-and-swap (CAS) object stores a value, and supports two

operations: A Read() returns the value of the object, and a CAS(x,y) operation succeeds

and changes the value of the object to y if the current value of the object is x and returns

true, otherwise it fails and leaves the object unchanged and returns false. According to some

specifications, a CAS() always returns the prior value of the object. In this thesis, we assume

CAS() operations return only boolean values.

Load-Link/Store-Conditional. A load-linked/store-conditional (LL/SC) object stores a value

and provides two operations LL() and SC(). An LL() initiates a link to the object and returns

the current value of it. An SC(x) may either succeed and write value x to the object, or fail and

11

not change anything. A successful SC() call invalidates all the links processes hold to the object.

An SC(x) operation call succeeds if and only if the calling process has a valid link the object. In

other words, an SC(x) operation call by process p succeeds if and only if p previously executed

an LL() call and since then no other successful SC() call was performed. A boolean return value

of a SC() operation indicates if it succeeded. We assume initially no process has a valid link to

the object, and so an SC() call without an earlier LL() call by the same process fails.

A variant of this object is called load-link/store-conditional/validate (LL/SC/VL). This variant

supports one additional operation: VL() returns true if and only if the calling process holds a

valid link to the object.

Test-and-Set. A test-and-set (TAS) object stores a bit, which is initially 0. The one-time

version allows only one operation TAS(), which sets a bit to 1, and returns the previous value

of that bit. A long-lived TAS object also provides a Reset() operation, which resets the bit to

0 (and has no return value). We say a process wins a TAS() if that operation call returns 0,

otherwise it loses. Only the process that wins a TAS() operation call is allowed to subsequently

reset it (Afek, Gafni, Tromp and Vitányi, 1992).

Fetch-and-Add. A fetch-and-add (FAA) object stores a value, which is initially 0. This object

supports one operation FAA(x), which atomically returns the current value of the object and

adds x to it.

2.1.2 Schedule, Transcript and History

Processes execute shared memory operations on shared objects in the order determined by their

program. In randomized algorithms, processes can make random decisions using (private) coin

flips as a source of randomness. A schedule determines the order in which processes take turns in

executing their operations. In the case of randomized algorithms, the schedule is determined by

an adversary, in response to random choices made by processes. The strong adaptive adversary

makes scheduling decisions based on the entire past execution history including the results of

12

coin-flips. An oblivious adversary has to determine the entire schedule independently of random

decisions.

We model an execution of a concurrent shared memory system with a transcript, which is a

finite sequence of invocation and response events on base objects as well as implemented objects.

Let Λ be a transcript. A subsequence of the events of Λ is called a subtranscript of Λ. Each

invocation event in Λ has a distinct ID, and specifies which process is executing what operation

on which object. Each response event in Λ stores the ID of an invocation event in Λ as well as

an output of the operation call associated with that invocation. A response event matches an

invocation event if it stores the ID of that invocation event. An operation call in Λ is either a

pair consisting of an invocation and a matching response event in Λ, or just an invocation event

if that invocation does not have a matching response event in Λ. An operation call is atomic

if its invocation event is immediately followed by the matching response event in Λ. We say a

process executes a shared memory step, when it makes an atomic operation call.

Consider a transcript Λ by processes in P that contains invocation and response events of

operation calls on objects B1, . . . , Bk, for some integer k ≥ 1. We let Λ|P (Λ at P) denote the

subsequence of all events in Λ that are by processes in P ⊆ P. We similarly define subtranscript

Λ|B to be the subsequence of all events in Λ that are on objects of some set B ⊆ {B1, . . . , Bk}.

Let O be a set of operation calls in Λ. Then subtranscript Λ|O is the subsequence of all

invocation and response events of operation calls in O in Λ. For a singleton set {s}, we write

Λ|s instead of Λ|{s}.

For any p∈P, subtranscript Λ|p is well-formed if each response event in Λ|p matches exactly

one earlier invocation event, for each invocation event inv in Λ|p there is at most one matching

response event rsp, and one of the following is true:

• inv is immediately followed by rsp,

• inv is followed by an invocation event inv′, and if rsp appears in Λ|p, then a response

rsp′ that matches inv′ appears before rsp, or

13

• inv is the last event in Λ|p.

Transcript Λ is well-formed if Λ|p is well-formed for all p ∈ P. From now on, we assume all

transcripts are well-formed.

An operation call Op is pending in Λ if its invocation event has no matching response event in

Λ. Otherwise, it is complete in Λ. If all operation calls in Λ are complete, then Λ is a complete

transcript. For any transcript Λ, a completion of Λ is a (well-formed) transcript constructed

from Λ such that each pending operation is either removed, or a matching response is appended.

An operation call Op1 happens before (or precedes) an operation call Op2 in Λ if the response

event of Op1 appears before the invocation event of Op2 in Λ. Let
Λ→ be the relation over all

operation calls in Λ, such that Op1
Λ→Op2 if and only if Op1 happens before Op2 in Λ. Then for

any (well formed) transcript Λ, the relation
Λ→ is an irreflexive partial order, called the happens

before order. Operation calls Op1 and Op2 are concurrent (or they overlap) if neither of them

happens before the other one in Λ. An operation call is executed in isolation if it does not overlap

any other operation call. A transcript is sequential if no two operation calls are concurrent.

A well-formed history is a well-formed transcript Λ, where in Λ|p, for all p ∈ P, each invo-

cation event is either the last event, or is immediately followed by a matching response event. A

sequential history is one that starts with an invocation event, and every invocation event except

for possibly the last one is immediately followed by a matching response event. A sequential

specification for an object is a set of sequential histories for the object. A sequential history H

on objects B1, . . . , Bk, for some k ≥ 1, is valid if subhistory H|{Bi} belongs to the sequential

specification for object Bi, for all i ∈ {1, . . . ,k}.

A transcript Λ has an interpreted history Γ(Λ), defined as follows: As long as Λ contains an

invocation event inv by some process p, remove any event e from Λ such that e appears after

inv in Λ|p, and

(a) there is no matching response for inv, or

(b) there is a matching response for inv and e appears before that response event.

14

2.1.3 Safety

Informally, the safety criteria ensures that an implementation behaves as it is specified by its type.

The safety property that we work with is linearizability introduced by Herlihy and Wing (1990).

Let H be an arbitrary (well-formed) history. A sequential history S is a linearization of H if there

is a completion H′ of H, such that

(a) S contains the same events as H′,

(b) S is valid, and

(c) the happens before order of operation calls in H is preserved in S, that is if Op1
H→ Op2

then Op1
S→ Op2.

History H is linearizable if it has a linearization.

We can prove that a complete history H is linearizable, using linearization points, as described

below. Informally, a linearization point of an operation call is the point at which the operation

call seems to take effect. More specifically, we map each event e of history H to a non-negative

real number pt(e), such that it satisfies the following monotonicity requirement:

pt(e) < pt(e′), for any two events e and e′ in H, where e is immediately followed by e′. (2.1)

Any mapping satisfying the monotonicity requirement can be used. For example, if ei is the i-th

event in H, we can use pt(ei) = i. We think of pt(e) as the point in time at which event e occurs.

History H is linearizable if for each operation call Op, with invocation event inv and response

event rsp, there exists a point lin(Op) ∈ [pt(inv),pt(rsp)], such that the sequence of operation

calls in H ordered by their lin() points is a valid sequential history. In that case, lin(Op) is

called the chosen linearization point of operation call Op. Figure 2.1 shows an example execution

of an implemented shared queue object, and one possible assignment of linearization points. The

resulting sequential history obtained by ordering operations by their assigned linearization points

is valid, and so this execution is linearizable.

15

p:
Q.enq(1)

lin. pt.

Q.enq(3)

lin. pt.

Q.deq()

lin. pt.

returns 3

q:
Q.enq(2)

lin. pt.

Q.deq()

lin. pt.

returns 2

Q.deq()

lin. pt.

returns 1

Figure 2.1: An example execution of an implemented queue with a possible linearization points

assignment

An implemented object X is linearizable if for every transcript Λ obtained from executing

operations on X, Γ(Λ) is linearizable.

Linearizability is compositional :

Theorem 2.1. (Herlihy and Wing, 1990) A history H is linearizable if and only if H|x is lin-

earizable, for every object x.

The following is a well known property of linearizaility which follows from the definition of

linearization points and Theorem 2.1.

Theorem 2.2. If in a linearizable implementation, an atomic base object is replaced with a

linearizable one, then the resulting implementation is also linearizable.

These properties of linearizability make it the most commonly used correctness condition

compared to other existing correctness conditions, for instance sequential consistency (Lamport,

1979), which does not support composition. Linearizability allows programmers to design their

deterministic algorithms assuming atomic base objects are available, and later replace those base

objects with their linearizable implementations without changing the safety property of their

algorithm. It is important to mention that this does not extend to randomized algorithms (Golab,

Higham and Woelfel, 2011a,b).

16

2.1.4 Progress Conditions

Algorithm designers are interested in algorithms that provide some progress guarantees. The

strongest progress condition is wait-freedom. In a wait-free implementation, each process finishes

its operation call after executing a finite number of steps. This is an attractive progress condition,

because it guarantees that each process that is taking steps progresses.

An implementation of an object is lock-free if at least one process is guaranteed to finish

its operation call provided that there exists processes that take sufficiently many steps. In such

an implementation, some processes could starve. In an obstruction-free implementation, if at

any point during an operation call a process continues in isolation, then the process finishes its

operation call in a finite number of steps. Deadlock-freedom does not prevent processes from

blocking some other processes from progressing. A deadlock-free implementation guarantees that

at least one process finishes its operation call if all other processes that are concurrently accessing

the object take sufficiently many steps. In a starvation-free implementation, each process has to

eventually finish its operation call if all other processes that are concurrently accessing the object

take sufficiently many steps. A randomized implementation is randomized wait-free if for each

operation call by each process, the expected number of steps for the process to finish its operation

call is finite. A nondeterministic implementation satisfies nondeterministic solo-termination if at

any point during an operation call, it is possible for the calling process to finish its operation call

in isolation. For deterministic implementations, nondeterministic solo-termination is the same as

obstruction-freedom.

2.1.5 Space and Step Complexity

For an implemented object, the step complexity of an operation is the maximum number of shared

memory steps a process takes to finish that operation.

For randomized algorithms scheduled by some adversary A, the expected step complexity of

an operation is the worst case over all possible schedules generated by A of the expectation over

17

all possible random coin flips of the step complexity of that operation. The space complexity of

an implementation is the maximum number of base objects required for that implementation.

2.2 Definitions Specific to Our Linearizability Proofs

To prove that an implemented object X is linearizable, we show for each transcript Λ obtained

from executing operations on X, that Γ(Λ) is linearizable. To that end, we use the following

approach to define a mapping, pt, of events of Γ(Λ) to non-negative real numbers, which will

then allow us to define linearization points.

For our linearizability proofs, we will only encounter transcripts where the innermost operation

calls are either atomic or linearizable. If they are linearizable, we can replace each innermost non-

atomic operation call Op with an atomic one, that is executed at the linearization point of Op.

Therefore, we assume every innermost operation call in Λ is atomic.

Suppose Λ = (e1, e2, . . .). To define the mapping pt for Γ(Λ), we first define another mapping

pt′ for Λ by letting pt′(ei) = i. Next, for each operation call Op in Λ, we define a point tOp@inv

that corresponds to the invocation event of Op, and if the response event of Op is in Λ, a point

tOp@rsp that corresponds to the response event of this operation call, as follows. If Op is an

atomic operation call with invocation event inv, then we let tOp@inv = tOp@rsp = pt′(inv). If

Op is not atomic, then we first recursively determine tOp′@inv, where Op′ is the operation call

with the earliest invocation event following the invocation event of Op in Λ|p, and then we let

tOp@inv = tOp′@inv. If Op also has a response event in Λ, then we first recursively determine

tOp′@rsp, where Op′ is the operation call with the latest response event preceding the response

event of Op in Λ|p, and then we let tOp@rsp = tOp′@rsp. If Op does not respond in Λ, then we

let tOp@rsp = ∞. Therefore, for any completed operation call Op in Λ with invocation event inv

and response event rsp, we have

pt′(inv) ≤ tOp@inv ≤ tOp@rsp < pt′(rsp). (2.2)

For H = Γ(Λ), and any event e in H, let pt(e) = pt′(e). The monotonicity requirement

18

of (2.1) is satisfied for pt, because it is satisfied for pt′. Thus by (2.2), to prove linearizability of an

implemented object X, it suffices to find a point lin(Op)∈ [tOp@inv, tOp@rsp]⊆ [pt(inv),pt(rsp)],

and prove that ordering operation calls Op of Γ(Λ) based on their values lin(Op) creates a valid

sequential history.

In our linearizability proofs, we assume that at each point in time when a process executes an

atomic operation call on a shared object, it also executes all its following local steps (operations

on local variables) instantaneously, until it is poised to execute its next atomic operation call on a

shared object. We can make this assumption, because any intervening steps from other processes

cannot influence these local steps. We say an operation call Op by some process p completes in

some interval [t, t′] if [tOp@inv, tOp@rsp] ⊆ [t, t′].

We allow the following in our proofs, for any operation call Op by some process p, either

executed on an object or as a helper operation. Let ` be a line of code executed during Op.

If p executes exactly one atomic operation call Op′ on a shared object in line `, then we let

tOp@` = tOp′@inv. If p executes only operations on local variables in line `, we let tOp@` = tOp@inv

if ` is the first line in Op, and otherwise tOp@` = tOp@`−1. If p executes more than one atomic

operation call on a shared object in line ` of Op, then tOp@` is not defined. We say that p

executes line ` of operation call Op at point tOp@` if tOp@` is defined. Finally, we let tOp@` = ∞

if the execution of Op does not reach line `.

In our pseudocodes, by convention, we let shared variables and public operations of objects

start with an upper-case character, and local variables and internal operations start with a lower-

case character. We declare those local variables that have global scope in the code, but not the

temporary local variables.

19

Chapter 3

Related Research

3.1 Augmenting Objects with Write() Operations

The problem of augmenting a type with a Reset() or a Write() operation discussed in Chapter 4,

has, to the best of our knowledge, not been studied in general, but only for some specific types.

Alistarh and Aspnes (2011), Afek, Gafni, Tromp and Vitányi (1992), and Hoepman (1999) propose

implementations of long-lived test-and-set objects from one-time ones, as we describe in more

details later. Golab, Hadzilacos, Hendler and Woelfel (2012) consider writable implementations of

compare-and-swap (CAS) objects from atomic registers. Their approach augments a non-writable

CAS implementation with a Write() operation using pointer swinging and dynamically allocated

non-writable CAS base objects. The corresponding memory management technique, discussed in

Golab’s doctoral thesis, relies on a critical section (Golab, 2010), and hence cannot be used in

lock-free structures. Jayanti (1998) shows how to implement a CAS object that supports CAS(),

Read(), and Write() operations, from LL/SC/VL objects. This implementation has constant

step and space complexity.

Our results regarding multi-word atomic registers of Section 4.1.1 are related to wait-free

register constructions. The construction of single-writer multi-reader (SWMR) k-word registers

by Peterson (1983) requires Θ(kn) SWMR single-word registers and provides Θ(kn) worst-case

step complexity. Using stronger primitives than atomic registers, Larsson, Gidenstam, Ha, Pap-

atriantafilou and Tsigas (2008) propose an SWMR k-word atomic register implementation with

Θ(kn) space complexity and Θ(k + n) worst-case step complexity. In comparison, our con-

struction (see Corollary 4.4) is multi-reader multi-writer (MRMW), requires Θ(kn2) MRMW

single-word atomic registers, and has Θ(k) worst-case step complexity. This is the first imple-

mentation of k-word registers with optimal O(k) worst-case step complexity, and bounded space.

20

Zhu and Ellen (2015) build upon our multi-word register implementation to achieve an efficient

snapshot implementation from single-word registers. In a later work, Chen and Wei (2016) show

how to implement a single-writer k-bit register from O(nk/`) registers, each of size ` bits, with

O(k/`) step complexity. They show that the same step and space complexity can be achieved

for ` = Ω(logn) by a simple modification of our implementation.

3.2 Test-and-Set

Test-and-set (TAS) objects have many algorithmic applications, for example in mutual exclusion

and renaming algorithms (Alistarh, Aspnes, Censor-Hillel, Gilbert and Zadimoghaddam, 2011a;

Alistarh, Aspnes, Gilbert and Guerraoui, 2011b; Alistarh, Attiya, Gilbert, Giurgiu and Guerraoui,

2010; Buhrman, Panconesi, Silvestri and Vitányi, 2006; Eberly, Higham and Warpechowska-

Gruca, 1998; Kruskal, Rudolph and Snir, 1988; Panconesi, Papatriantafilou, Tsigas and Vitányi,

1998).

One-time test-and-set objects and registers can be used to implement two-process consensus

and vice versa, so it follows that there is no deterministic wait-free linearizable implementa-

tion of TAS objects from registers (Herlihy, 1991; Loui and Abu-Amara, 1987). A randomized

two-process long-lived TAS implementation with constant space and constant expected step

complexity, is given by Tromp and Vitányi (2002), and is used in almost all n-process TAS im-

plementations. The famous randomized one-time n-process TAS implementation by Afek, Gafni,

Tromp and Vitányi (1992) is based on a tournament tree consisting of two-process TAS objects.

This implementation uses O(n) registers, and the TAS() method takes O(logn) steps in ex-

pectation against a strong adaptive adversary. Their long-lived variant provides a constant time

Reset() method but increases the expected step complexity of the TAS() method to O(n), and

requires registers of size at least Ω(n). Alistarh, Attiya, Gilbert, Giurgiu and Guerraoui (2010)

proposed a one-time variant of that tournament tree in which the expected step complexity of

the TAS() method is logarithmic in the contention against the strong adaptive adversary. Their

21

construction needs O(n3) registers.

During the last couple of years, a series of papers focused on improving the time- and space-

complexities of one-time TAS implementations in weaker adversary models (Alistarh and Asp-

nes, 2011; Giakkoupis, Helmi, Higham and Woelfel, 2013, 2015; Giakkoupis and Woelfel, 2012).

In particular for weaker adversary models one-time TAS implementations with almost constant

step complexity are devised. Alistarh and Aspnes (2011) propose a TAS() method that has

O(loglogn) expected step complexity against the oblivious adversary, using O(n3) registers.

Following this work, Giakkoupis and Woelfel (2012) reduce the space to O(n) and provide an

adaptive version of the algorithm with an expected step complexity of O(loglogk) against the

oblivious adversary, where k is the contention. In fact, these double-logarithmic algorithms by

Alistarh and Aspnes (2011) and Giakkoupis and Woelfel (2012) achieve the claimed step com-

plexities even against the slightly stronger read-write oblivious adversary. Giakkoupis and Woelfel

(2012) also present an adaptive one-time TAS algorithm that has O(log∗ k) expected step com-

plexity against the oblivious (and also a slightly stronger location-oblivious) adversary, using O(n)

registers. Giakkoupis, Helmi, Higham and Woelfel (2013) show how to reduce the space com-

plexity of this object to O(
√

n) registers, while maintaining the expected step complexity of

O(log∗ n). Finally, the randomized implementation by Giakkoupis, Helmi, Higham and Woelfel

(2015) hits the asymptotically optimal space complexity of O(logn) (Styer and Peterson, 1989),

while TAS() calls require only O(log∗ n) steps in expectation.

However, research on efficient implementations of long-lived TAS objects has trailed behind.

In fact, prior to our work in Chapter 6, no long-lived construction was known, which achieves

O(n) space complexity, and at the same time provides TAS() and Reset() operations with

sub-linear expected step complexity. The space complexity of O(n) is asymptotically optimal as

implied by the Ω(n) lower bound for mutual exclusion by Burns and Lynch (1993).

A long-lived implementation of a TAS object using registers was first presented by Afek, Gafni,

Tromp and Vitányi (1992). Although their construction uses registers of unbounded size, they

22

suggest adopting a modified version of the Sequential Timestamps System (STSS) by Israeli and Li

(1987) to bound the size of registers used in this implementation. Their long-lived implementation

requires Θ(n) steps in expectation. Alistarh and Aspnes (2011) propose a simpler implementation

of long-lived TAS by using an infinite array of one-time TAS objects. They briefly mention that

the problem of infinite number of allocations can be resolved by “allowing the current winner to

deallocate the current instance in the Reset() procedure, and adding version numbers to shared

variables, so that processes executing a deallocated instance automatically return loser”. But

deallocating an instance of an implemented TAS object is no trivial task as one has to ensure

that no process is poised to access the TAS object that is about to be de-allocated. It is unclear

how to do this just with version numbers, and without having processes at least “announce” TAS

objects that they are about to access, similarly to the Hazard Pointers technique (Michael, 2004b).

Hoepman (1999) shows how to implement a long-lived TAS object from O(n) registers and n+ 1

one-time TAS objects, provided those TAS objects can be reset in a sequential execution. The

resulting TAS() method has, up to a constant additive term, the same step complexity as the

TAS() method on the one-time TAS object, and the Reset() method requires n steps in addition

to the number of steps it takes to sequentially reset the one-time TAS object.

3.3 Memory Management

The problem of memory management, which is of technical concern in our transformations, has

been studied in the context of dynamic data structures, leading to a variety of solutions. The

challenge is to decide when a shared object is no longer going to be accessed by processes, so

that the memory location associated with it can be reused.

In reference counting, the number of pointers or references held to a given object is recorded,

and an object may be reclaimed when the reference count reaches zero. There have been many

proposed techniques (Detlefs, Martin, Moir and Steele Jr., 2002; Ellen, Lev, Luchangco and Moir,

2007; Lee, 2010; Sundell, 2005; Valois, 1995), but they all use stronger primitives than registers,

23

such as double-word compare-and-swap and fetch-and-add. A problem with reference counting

is that reading one shared object by multiple processes can result in a potential contention for

increasing the reference count of that object. Moreover, reference counting in general deals poorly

with cyclic references, which occurs when two or more objects refer to each other.

The Hazard Pointers technique is targeted at general lock-free algorithms, and does not

require atomic read-modify-write primitives (Michael, 2004d). Object reclamation is wait-free

and requires expected amortized O(1) steps, but dereferencing a pointer safely is only lock-free.

Hazard pointers impose a fixed bound on the number of shared objects a given process can

reference, and memory allocation must be provided by the system when adopting this technique.

Each process uses a list of pointers to announce to other processes that it is accessing a particular

shared object (to indicate a “hazard”). To access an object, a process first writes the object’s

address to a hazard pointer, and then checks whether the object remains safe to access. If not,

the algorithm must give up or retry, and so as a result, this technique only achieves lock-freedom

rather than the stronger wait-freedom. To decide whether an object is recyclable, a process scans

the hazard pointers of all other processes, and frees those that do not appear as a hazard.

Concurrently and independently, Herlihy, Luchangco and Moir (2002) proposed a similar lock-

free technique called Pass-the-Buck, which uses compare-and-swap objects. This technique is

provided as a solution to the repeat offender problem, which captures a difficult race condition

between a process reclaiming a shared object and another process attempting to dereference a

pointer to that object. Herlihy, Luchangco, Martin and Moir (2005) show how this technique is

used to recycle memory in a lock-free queue implementation by Michael and Scott (1996).

Epoch-based reclamation (EBR) and quiescent-state-based reclamation (QSBR) are similar

in the sense that they reclaim memory once a grace period has passed. A grace period is an

interval [a,b], such that after point b, all objects removed before point a can be reclaimed (Hart,

McKenney, Brown and Walpole, 2007). For EBR, the execution is divided into epochs, and with

the invocation of each operation, the calling process reads and announces the current epoch. A

24

new epoch starts when all processes have announced the current one. With a new epoch, all

objects removed in the last epoch can be reclaimed (Fraser, 2004). A process reaches a quiescent

state when it does not hold any references to any objects. A grace period in QSBR is an interval

in which all processes reach at least one quiescent state. QSBR is used in Linux to implement

the Read-Copy-Update (RCU) method (McKenney and Slingwine, 1998). However, in both EBR

and QSBR, a failed process can block all other processes from reaching a grace period, and

so these techniques are inherently blocking and not fault-tolerant. Brown (2015) also proposes

a fault-tolerant epoch bases technique called DEBRA+, which uses signals in order to enable

processes to advance epochs. This technique also manages pools of memory blocks, and provides

(de-)allocation methods, which are not supported in techniques like Hazard Pointers (Michael,

2004b). However, DEBRA+ uses lock-free linked lists to achieve that, and therefore is not wait-

free, and its performance depends on the implementation of the list. The memory reclamation

technique proposed by Balmau, Guerraoui, Herlihy and Zablotchi (2016) combines the idea of

QSBR with Hazard Pointers, and uses timestamps to deal with slow or faulty processes.

Gidenstam, Papatriantafilou, Sundell and Tsigas (2009) proposed a lock-free memory recla-

mation method that combines aspects of reference counting and hazard pointers, and requires

both, fetch-and-add and compare-and-swap, primitives. Braginsky, Kogan and Petrank (2013)

use timestamps with a variant of Hazard Pointers to obtain memory management for linked

lists. Alistarh, Leiserson, Matveev and Shavit (2017) propose a memory reclamation technique

that uses modern operation system support for efficient signalling and copy-on-write to obtain a

snapshot of the memory. An automatic lock-free memory reclamation technique is presented by

Cohen and Petrank (2015) which works with data structures that are stored in normalized form.

Since in this work, we are dealing with bounding space, all our implementations depend on an

efficient reclamation technique. Applying any of these techniques in our transformations either

requires stronger primitives than atomic registers, or leads to larger step complexity. Hence, we

introduce our own ad-hoc memory reclamation scheme in Chapter 4, called recycling technique,

25

which is internally used in all our implementations. This technique which was inspired by Hazard

Pointers (Michael, 2004b), reclaims objects in constant step complexity, and uses only registers.

3.4 ABA Detection

The ABA problem was first reported by IBM (1983). The same report suggests a simple tagging

solution: a tag value is attached to the data value that can potentially suffer from the ABA

problem, and with every update of the data value, the tag is incremented. Theoretically, this

scheme can only detect ABA if unbounded shared objects are available. However, it is commonly

argued that this is not a practical concern with current hardware (Arbel-Raviv and Brown, 2017;

Michael, 2004c). Although often solutions for dealing with ABAs are based on tagging (Hendler,

Shavit and Yerushalmi, 2010; McKenney and Slingwine, 1998; Michael, 2002, 2004d; Michael and

Scott, 1996; Prakash, Lee and Johnson, 1991; Shann, Huang and Chen, 2000; Stone, 1990), there

are ad-hoc, application specific solutions to deal with ABAs (Tsigas and Zhang, 2001; Valois,

1995). Others suggest combining tagging and memory management techniques as alternatives

(Hendler, Shavit and Yerushalmi, 2010; Ladan-Mozes and Shavit, 2008).

Although LL/SC/VL can be used to prevent the ABA problem, the existing hardware provides

only a weaker version of this object, which restricts algorithm designers on how this object can be

used (Doherty, Herlihy, Luchangco and Moir, 2004; Michael, 2004c; Moir, 1997). For instance,

it is not possible to have nested or interleaving LL()/SC() calls (Michael, 2004a). To that

end, researchers have been proposing to implement LL/SC/VL objects from CAS objects and

registers. Such an implementation by Israeli and Rappoport (1994) uses shared objects of size

Ω(n) bits. This limits the number of processes concurrently running an application which uses

this implemented object. Implementations by Anderson and Moir (1995) and Moir (1997), have

constant step and space complexities, and store a version number along with the object value

to avoid ABAs. Jayanti and Petrovic (2003) argue that LL/SC/VL objects obtained from those

implementations can only store small values (16-24 bits on a 64-bit architecture). Jayanti and

26

Petrovic (2003) also improve those implementations by achieving a 64 bit LL/SC/VL from one

64-bit CAS object and O(n) registers, while maintaining constant step complexity. Michael

(2004c) implements an arbitrary size LL/SC/VL from 64-bit CAS objects and registers, with

constant amortized expected step complexity, and polynomial space complexity. These last two

implementations use sequence numbers that are stored in separate memory locations, and they

argue that it is “practically” impossible for the sequence numbers to repeat.

We introduce an implementation of a b-bit LL/SC/VL, for any b ∈N, from a single (b + n)-

bit CAS object, with O(n) step complexity. This is the first implementation that asymptotically

matches the time-space tradeoff discussed earlier at the point with only one base object. Our

implementation and the one by Jayanti and Petrovic (2003) show that the time-space tradeoff

lower bound by Aghazadeh and Woelfel (2015) for implementing an LL/SC object from bounded

CAS objects and registers is asymptotically tight for implementations with O(1) and with O(n)

step complexities.

3.5 Tagging

Considering tags as memory addresses, our taggable objects from Chapter 7 can be directly

used for memory reclamation in several algorithms, and allow certain operations to be wait-free,

where other memory reclamation techniques guarantee only lock-freedom. The core reason is

that retrieving the reference of a memory block and protecting it are separated into two distinct

operations. This is different from our taggable object implementation: Retrieving a tag from a

taggable register or taggable LL/SC object automatically protects the tag from being freed, and

is achieved through a wait-free operation with constant step complexity.

Our abstraction works best if only a fixed number of nodes need to be protected, such as the

root of a tree, or the top element of a stack. In the case of general linked data structures, where

any node may have to be protected (e.g. a linked list), our taggable objects do not achieve better

progress conditions than other memory reclamation techniques. (See also Section 7.2.3.)

27

Most memory reclamation techniques rely on the operating system to provide methods for

allocation and deallocation of memory blocks. The time and space complexity of those allocation

methods, or their progress guarantees, are not part of the analysis. Our taggable object imple-

mentation manages its own pool of tags, and does not rely on any external methods for memory

allocation. Consequently, progress is not dependent on the progress of the system’s memory

allocation layer. A disadvantage of our implementations may be that a sufficiently large pool of

shared objects needs to be preallocated. It is not hard to accommodate our implementations so

that the pool of tags is dynamically resized, if the system provides methods for memory allocation

and deallocation, but this is beyond the scope of this work.

As explained earlier, the problem of bounding tags is similar to bounded timestamping, how-

ever, timestamps must satisfy an additional temporal order relation. This functionality is costly:

Any timestamp system requires at least 2n timestamps (Israeli and Li, 1987), and thus objects of

size at least n bits are required. Also in all known algorithms, the step complexity of operations

to maintain bounded timestamps for n processes is at least Ω(n). Some solutions of bounded

concurrent timestamp systems are based on precedence graph (Dolev and Shavit, 1997; Israeli and

Pinhasov, 1992), while others (Dwork and Waarts, 1999; Haldar and Vitányi, 2002; Shikaripura

and Kshemkalyani, 2002) are based on the traceable use abstraction.

The traceable use abstraction introduced by Dwork and Waarts (1992, 1999) provides a

solution to bounded concurrent timestamp systems, and is semantically similar to our taggable

register array primitive. The goal of this abstraction is to make the values processes write

traceable. This means that each process, at any point in time, should be able to determine a

nontrivial superset of the set of its values currently in use. In this abstraction processes can only

write their values to single-writer registers.

The implementation provided by Dwork and Waarts (1999) for the traceable use abstraction

employs a hint mechanism that is similar to the one we use in this work, but simpler. To

synchronize between a reader and a writer, this implementation uses handshaking bits by Peterson

28

(1983) and Lamport (1986). Most operations in this implementation have at least linear step

complexity.

Our hint mechanism (from Chapters 4 and 7) utilizes some different techniques instead of

handshaking bits, to achieve constant step complexity for all operations. Our taggable abstraction

achieves the same functionalities as the traceable use abstraction, and yet is more general and

easier to be used. For instance, in the traceable use abstraction, processes can only write to

single writer registers, while in our implementations, values can be shared in multi-writer registers.

Moreover, in our taggable implementation, processes can hold references to the values that they

read as long as there is a bound on the total number of values that all processes have a reference.

But in the traceable use abstraction, as soon as a new read starts, all the old references are unsafe

to be used.

29

Chapter 4

Writable Objects

Consider a type T = (S, s0,O,R,δ) corresponding to a shared object. We call T writable if there

is a Write(s) operation in O that changes the state of the object to state s ∈ S, regardless of

its current state. A Write() operation returns nothing.

An implementation of a writable type is sequentially writable if every history on that object

is linearizable, provided that no Write() operation call overlaps any other operation call (see

Figure 4.1). We will denote a Write() operation of a sequentially writable object SW by

SWrite() to distinguish it from a Write() operation of a linearizable object WT of the same

type, and to emphasize that SW.SWrite() operation calls are not allowed to overlap with any

other operation call on SW.

Similarly, we say a type T = (S, s0,O,R,δ) is resettable if O includes a Reset() operation

that unconditionally changes the state of the object to its initial state s0. An implementation

is sequentially resettable if any history in which every Reset() call is executed in isolation is

linearizable. We denote a Reset() operation of a sequentially resettable object with SReset().

We will refer to an object as writable or resettable if it is a linearizable implementation of a

writable or resettable type, respectively.

Our aim is to augment objects with concurrent Write() operations, provided that it is

possible to write to the objects non-concurrently. More precisely, given a sequentially writable

implementation of a writable type T, we show how to implement a linearizable implementation of

type T. Throughout this thesis, n denotes the number of processes in the system, indexed from

0 to n− 1.

30

Write()

Figure 4.1: An implementation is sequentially writable if every history on that object in which no

Write() call overlaps any other operation call is linearizable

4.1 Results and Applications

Our main contribution is the following: Suppose we are provided with a sequentially writable

implementation, SW, of a writable type T. We show how to obtain a linearizable implementation

WT of type T using O(n2) instances of SW objects, and O(n2) additional registers, such that

the step complexity of all operations (including Write()) changes only by a constant additive

term from the corresponding operation on SW.

Our only assumption on SW is linearizability of executions in which Write() operation calls

are executed in isolation. The original object SW can either be provided by the system or be imple-

mented from other, arbitrary, base objects. Our transformation introduces only additional atomic

registers. Furthermore, any operation call in the transformed object, including the Write() calls

even when executed concurrently with any other operation calls, takes the same number of steps

(within an additive constant) as the corresponding operation call on SW. The transformation is

also deterministic and wait-free, and therefore preserves worst-case step complexity.

Theorem 4.1. Any sequentially writable object SW of a writable type can be transformed into a

linearizable object WT of the same type that uses O(n2) instances of SW and O(n2) registers,

each of size
(
2logn + O(1)

)
bits, such that each operation call on WT has, up to a constant

additive term, the same step complexity as the corresponding operation call on SW.

The transformation is provided in Section 4.3, and the theorem is proved in Section 4.4.2.

31

To obtain our transformation using a bounded pool of SW objects, we devise a novel memory

management mechanism inspired by Michael’s Hazard Pointer technique (Michael, 2004b). This

technique can be applied in other domains, such as memory reclamation in concurrent dynamic

data structures. In Chapter 7, a more elaborate version of this technique is used to develop a

general memory management framework.

Since a Reset() operation is a special case of a Write() operation, Theorem 4.1 also implies

that any sequentially resettable object can be transformed to a resettable one.

In general, for any object that is implemented from writable/resettable base objects

(e.g. atomic registers, writable CAS, etc), we can easily add a sequential write/reset

(SWrite()/SReset()) operation by writing to each base object the state that the base object

should have after the write/reset operation. The step complexity of such sequential write/reset

operation is the sum of step complexities of the write/reset operations on the base objects. Using

the result of Theorem 4.1, those sequentially writable/resettable objects can be transformed into

the ones that support concurrent write/reset operations.

Let (k,b)-Array denote a resettable type that stores an array S of size k, where each array

entry S[i] is of size b bits, for i ∈ {0, . . . ,k− 1}. This type supports three operations: Read(),

Write(), and Reset(). For each i ∈ {0, . . . ,k − 1}, operation Read(i) returns the value of

S[i], and operation Write(i, x) writes value x to S[i]. Since the type is resettable, a Reset()

operation resets S[i] to its initial value, for all i ∈ {0, . . . ,k− 1}. We prove in Section 4.5 that

we can implement a sequentially resettable (k,b)-Array, such that reading and writing to each

array entry, as well as resetting all array entries can be done in a constant number of steps.

Lemma 4.2. There is an implementation of a sequentially resettable (k,b)-Array, from k + 1

registers, each of size b+O(logk) bits, in which each Read(), Write() and SReset() operation

call has constant step complexity.

Therefore if an object is implemented only from k read/write registers of size b-bits, then we

can replace the registers with the sequentially resettable (k,b)-Array of Lemma 4.2. This way,

32

the object can be augmented with a sequential reset operation that has optimal step complexity:

Corollary 4.3. Any object O of some type T that is implemented from k atomic registers of size

b can be transformed into a sequentially resettable object S of the same type that uses k + 1

registers, each of size b + O(logk) bits, such that each S.SReset() requires only a constant

number of steps, and any other operation call on S has, up to a constant additive term, the same

step complexity as the corresponding operation call on O.

Our transformations have several interesting applications that we overview in the following.

4.1.1 Multi-Word Registers

We implement a sequentially writable k-word register from k single-word registers R[0], . . . , R[k−

1] as depicted in Figure 4.2. To write the value (x0, ..., xk−1), a process writes xi to R[i] for

i ∈ {0, . . . ,k− 1} in k consecutive write operation calls, and to read the k-word register, a process

reads all registers R[i], i ∈ {0, . . . ,k− 1}, and returns the k-tuple observed. It is obvious that

any history resulting from executing operations on this object is linearizable, provided that each

SWrite() operation call is not executed concurrently with any other operation call on the k-

word register. Applying the transformation of Theorem 4.1, we can obtain a linearizable k-word

register from O(k · n2) linearizable single-word registers, such that each k-word Read() and

Write() operation runs in O(k) steps (which is optimal).

Corollary 4.4. There is a linearizable implementation of a k-word register from O(k · n2) single-

word registers, such that each Read() and Write() operation of the k-word register takes O(k)

steps.

4.1.2 Writable Compare-And-Swap and Fetch-And-Add

Certain primitives, such as atomic compare-and-swap (CAS) or fetch-and-add (FAA), trivially

support sequential write operations. For example, to sequentially write the value v to a CAS

object, a process can first read its current value x, and then execute CAS(x,v). If both steps

33

shared: Array<register> R[k]

Operation SWrite(x0, . . . , xk−1)

1 for i = 0 to k− 1 do
2 R[i].Write(xi)

Operation Read()

3 for i = 0 to k− 1 do
4 xi := R[i].Read()

5 return (x0, . . . , xk−1)

Figure 4.2: A Sequentially Writable k-Word Register from k Single-Word Registers

are executed in isolation, they must succeed. Similarly, a sequential write of value v to FAA

object can be achieved by reading its current value x, and then adding v − x to it. Thus,

using our transformation, we can implement writable CAS and writable FAA objects from O(n2)

instances of (non-writable) CAS and FAA objects, respectively, and O(n2) registers, such that

each Write() or CAS() and FAA() operation has constant step complexity, respectively.

4.1.3 Long-Lived Test-And-Set

As another application, randomized one-time test-and-set (TAS) objects implemented from reg-

isters can be transformed to resettable (long-lived) ones. We will only give a high level overview

of this construction, since we obtain more time and space efficient constructions in Chapter 6.

Given any one-time TAS object implemented from a set R of registers, we can immediately

augment the object with a sequential reset operation to obtain a sequentially resettable TAS

object. To sequentially reset the one-time TAS, we simply write the initial value of each register of

R into that register. The step complexity of such a sequential reset operation is proportional to the

cardinality of R. Due to the space lower bound by Giakkoupis and Woelfel (2012), |R|= Ω(logn)

for any implementation of randomized wait-free one-time TAS from registers. Using the result

of Lemma 4.2, we can improve the step complexity of the sequential reset operation to O(1),

while using one additional register. Since Reset() is a special Write() operation, applying the

transformation of Theorem 4.1, we can then obtain a resettable (long-lived) TAS object (in which

any Reset() operation call can overlap other operation calls). This transformation increases the

number of registers by a factor of O(n2), and preserves the (asymptotic) step complexity of

TAS() and Reset() operations. Therefore, a TAS() operation on the resulting long-lived TAS

34

has asymptotically the same step complexity as in the one-time implementation, and a Reset()

operation requires only a constant number of steps.

Recently, very efficient randomized implementations of one-time TAS objects in the oblivi-

ous adversary model were given by Alistarh and Aspnes (2011), Giakkoupis, Helmi, Higham and

Woelfel (2013, 2015), and Giakkoupis and Woelfel (2012). For example, Giakkoupis, Helmi,

Higham and Woelfel (2015) present a randomized one-time TAS implementation from O(logn)

registers, in which the TAS() operation has O(log∗ n) expected step complexity against an

oblivious adversary. Applying the transformation described above to this randomized TAS imple-

mentations yields a long-lived TAS object that can be reset in constant worst-case steps, and the

TAS() operation has O(log∗ n) expected step complexity against the oblivious adversary. The

resulting implementation uses O(n2 · logn) registers.

In Chapter 6, we propose more efficient implementations of long-lived TAS objects.

4.2 Preliminaries

Let T be a writable type for which we have a sequentially writable implementation. In the

following, we refer to instances of this implementation as SW objects.

4.2.1 Simple Implementation

A straight-forward linearizable implementation WT of type T, which is wait-free but uses un-

bounded space follows. The pseudocode is given in Figure 4.3.

A shared register Ptr stores the index i of an entry of an array A of infinitely many SW objects.

The domain of array indices is partitioned into n sets I0, . . . , In−1, such that each process p owns

set Ip of array indices and the corresponding array entries A[i], i ∈ Ip. For example, we can let

the domain of indices of A be the set of all integers and Ip = {i ≥ 0 | i mod n = p}, for any

p ∈ {0, . . . ,n− 1}.

In a WT.Write(v) operation, the calling process chooses an index f that it owns and

35

shared:
Array<SW> A[0 . . . ∞]
int Ptr = 0
Operation Writep(v)

6 choose a new write-index f ∈ Ip that p has never chosen before
7 A[f].SWrite(v)
8 Ptr.Write(f)

Operation Execq(Oper,arg)

9 i := Ptr.Read()
10 ret val := A[i].Oper(arg)
11 return ret val

Figure 4.3: Simple Implementation of a Writable Object

that it has never chosen before, and writes v into A[f] by executing A[f].SWrite(v). In its

last step of its WT.Write(v) operation call, the process writes f into register Ptr. During

a WT.Exec(Oper,arg) operation call, where Oper(arg) is an operation on SW other than a

Write() operation, the calling process p reads the current index i stored in Ptr, and then it

executes Oper(arg) on A[i]. Finally, operation call WT.Exec(Oper,arg) by process p returns

the return value of p’s A[i].Oper(arg) call.

This way, each SWrite() operation call on an object A[j] is executed before j has ever been

stored in Ptr, and thus this operation call does not overlap with any other operation call on A[j].

Each Write() operation call that writes some index i into Ptr linearizes at the point when the

write to Ptr happens. Each Exec() operation call that reads some index i from Ptr linearizes

either when A[i].Oper(arg) linearizes, or when Ptr gets written for the first time after p’s read

of value i from Ptr, whichever comes earlier.

This example is simple, linearizable, and wait-free, however it requires a new SW object with

each Write() operation call of object WT: if an unbounded number of Write() operation calls

get executed, then this implementation requires an unbounded number of SW objects. Also

register Ptr has to store unbounded values.

To fix this problem, we first derive, in the remainder of this section, a template from this

36

example. We state in Lemma 4.5, a set of sufficient conditions, such that any algorithm following

this template and satisfying those conditions is linearizable. Then in Section 4.3, we propose a

wait-free linearizable implementation WT of type T from a finite number of SW objects and

registers, where each register stores O(logn) bits. This implementation follows our template.

Finally, in Section 4.4, we provide a proof of Lemma 4.5, and then show that WT satisfies the

requirements of that lemma. From that it follows that WT is linearizable.

4.2.2 A Natural Template

Figure 4.4 provides a template to implement a linearizable object WT of some writable type

T from sequentially writable objects of the same type. Our goal is then to specify a sufficient

condition for linearizability of any implementation following this template.

shared:
Array<SW> A[0 . . . m− 1]
int Ptr = ⊥

/* A and Ptr are only modified where indicated. */

Operation Writep(v)

...
choose an appropriate write-index
f ∈ Ip that is not in use
...
A[f].SWrite(v)
...
Ptr.Write(f , . . .)
...

Operation Execq(Op,arg)

...
read Ptr and then use the value to help
determine an appropriate exec-index i
...
ret val := A[i].Oper(arg)
...
return ret val

Figure 4.4: Writable Object Template

Similarly to our earlier example, the template uses an array A[0 . . . m− 1], m ∈N∪ {∞}, of

SW objects and a shared register Ptr that stores the index i of an array entry of A, and possibly

some additional information. We partition set {0, . . . ,m− 1} into n sets I0, . . . , In−1. Each index

i ∈ Ip and its corresponding array entry A[i] is owned by process p. An object A[i] is in use if and

37

only if the value of Ptr equals i. Let v0 be the initial value of type T. We initialize the variables

of this template by starting with register Ptr initialized to ⊥, and each entry of A initialized with

v0, and then having process 0 execute a Write(v0) operation. This initial Write() operation

call does not overlap any other operation call.

To execute a Write(v) operation, the calling process p first chooses an appropriate index

f ∈ Ip such that A[f] is not in use at the point of invocation of the Write() operation call

(what “appropriate” means, depends on the actual implementation). We call index f a write-

index. Then process p executes A[f].SWrite(v), and later it puts A[f] into use by writing f

(and possibly some augmenting information) to Ptr. If A[f ′] was in use immediately before A[f]

is put into use, for some index f ′ 6= f , then we say object A[f ′] gets retired at that point. These

are the only ways array A and Ptr can be changed by process p.

In an Exec(Oper,arg) operation E, the calling process q first determines an index i, which

must satisfy certain requirements (see Lemma 4.5 below). We call index i an exec-index. Then

process q calls A[i].Oper(arg), and returns the return value of that operation call. Process q can

only access A through this one operation, and it is not allowed to change Ptr. Implementations

following this template differ only in how the write- and exec-indices are chosen, and the additional

mechanisms needed to support these choices.

Lemma 4.5. An implementation of Write() and Exec() based on the template in Figure 4.4

is linearizable if it guarantees the following:

(C) For each Exec() operation call E that invokes an Oper() operation Op on A[i], for

any i, there is a point t∗ between the invocation of E and the invocation of Op, such that

(C1) A[i] is in use at point t∗, and

(C2) no SWrite() operation call on A[i] overlaps with interval [t∗, tOp@rsp].

A complete proof of this Lemma is given in Section 4.4.1. In Section 4.3, we propose a

wait-free implementation of a writable object from a bounded number of sequentially writable

38

objects of the same type, which follows this template, and satisfies the properties of this lemma

(as we prove in Section 4.4.2), and so is linearizable.

4.2.3 Using Hazard Pointers to Bound the Number of Memory Locations

In this section, we show what we can achieve if we use standard memory reclamation techniques

like Hazard Pointers by Michael (2004b), or Pass-the-Buck technique by Herlihy, Luchangco and

Moir (2002) to bound the number of sequentially writable objects of our simple implementation

described in Section 4.2.1. Even though the resulting implementation uses a bounded number of

sequentially writable objects, it guarantees only lock-freedom, and requires unbounded sequence

numbers which implies registers of unbounded size.

A common technique in shared memory algorithms is using an announce array . Each process

p informs other processes about the task it intends to perform by writing to a single-writer

multi-reader register Annc[p]. This technique was originally used by Herlihy (1988) in his wait-

free universal construction, where each process p announces the operation it intends to execute,

which allows other processes to “help” p finish its operation call in a wait-free manner. Hazard

Pointers, introduced by Michael (2004b), form an announce array in which processes announce

their possible accesses to shared memory locations.

The implementation described below is a straight-forward application of the Hazard Pointer

technique (Michael, 2004b) to our unbounded space implementation from Section 4.2.1. In

addition to showing the limitations of the Hazard Pointer technique (no wait-freedom and no

bound on the size of registers), this description also serves as an introduction to our wait-free

implementation in Section 4.3.

To bound the size of array A in our example from Section 4.2.1, we need to reuse, during

Write() operation calls, some of the previously used and then retired objects of A. The main

challenge is that during a Write() operation, the calling process p has to identify a write-index

f of an object A[f] (that was possibly in use previously but is now retired) such that no process

will access A[f] before object A[f] has been put back into use.

39

We use an array A of size n(2n + 1) of SW objects. Each process p owns the set

Ip = {i | 0≤ i < n(2n + 1) , i mod n = p} of 2n + 1 indices. Moreover, each process p keeps

track of a local sequence number ctrp, which increments modulo n with every Write() operation

call. Process p also maintains a local list usedlistp of indices that it cannot reuse yet. Register

Ptr now stores a pair (i, c), where i is an index of array A, and c is a sequence number used by

the algorithm to ensure that throughout any execution, the same value (i, c) does not get written

twice to Ptr during n consecutive Write() operations.

In an Exec(Oper,arg) operation call, a process q first reads a pair (i, c) from Ptr. Then it

announces index i by writing it to a single-writer multi-reader register Annc[q]. Array element

Annc[q] effectively acts as the hazard pointer process q holds, suggested by Michael (2004b).

After announcing its possible access of A[i], process q reads Ptr again. If Ptr has changed since q

read it for the first time during its Exec() call, q starts its Exec() operation call over. Otherwise,

it uses i as its exec-index, by calling A[i].Oper(arg) and returning the result.

To execute a Write(v) operation call, a process p first chooses a write-index f ∈ Ip that

is not in usedlistp. After that, p adds f to its usedlistp, executes A[f].SWrite(v), and then

it writes the pair (f ,ctrp) to Ptr. Next p increments its local sequence number ctrp modulo

n. If after this increment ctrp = 0, then p reads the entire announce array, and removes any

index from usedlistp that p did not read in this last scan of the announce array. Since this is

done once every n Write() operation calls by p, usedlistp can store at most 2n indices. Thus,

|Ip|= 2n + 1 guarantees that p can always find a write-index that it owns but is not in usedlistp

during a Write() operation call.

This implementation follows the template of Section 4.2.2. Now we argue that it also satisfies

the properties of Lemma 4.5, and so is linearizable. First, the announce array guarantees the

following: If the object corresponding to an index i ∈ Ip is in use at some point t, and Annc[q] = i

throughout the interval [t, t′] for some t′ > t, then process p will not choose i as a write-index

during interval [t, t′] , and, in particular, no A[i].SWrite() operation call will overlap with the

40

interval [t, t′].

Second, in an Exec(Oper,arg) operation call E, a process q only executes A[i].Oper(arg) if

it read the same value (i, c) from Ptr twice, and announced index i in-between those two reads.

This ensures that A[i] is in use at the point of the announcement. Choose t∗ to be this point, thus

satisfying condition (C1) of Lemma 4.5. Hence, process p, the owner of index i, will not choose i

as a write-index again until q has announced a different index (overwritten Annc[q] with a value

different from i), and this does not happen during E. Thus, it follows that the interval starting

with t∗ and ending with the response of q’s A[i].Oper(arg) operation call does not overlap with

any SWrite() operation call on A[i]. This satisfies condition (C2) of Lemma 4.5.

4.3 Wait-Free Implementation

Let T be a writable type, and assume we are equipped with sequentially writable objects of type T.

In the following, we refer to instances of this object as SW objects. We described a simple wait-

free implementation of type T in Section 4.2.1. It uses an unbounded number of SW objects,

and one register of unbounded size. Then we outlined how we can apply the Hazard Pointer

technique to bound the number of base objects, sacrificing wait-freedom, and still requiring

registers of unbounded size. It is challenging to bound the number of required base objects, and

the size of each register, while maintaining wait-freedom, even if we are not concerned about

the step complexity. We now propose a wait-free and linearizable implementation WT of type T

that uses O(n2) instances of SW and O(n2) registers of size O(logn). The step complexities of

the operations on the resulting object are at most a constant additive term more than the step

complexities of the corresponding operations on the sequentially writable object. The proposed

algorithm follows.

41

4.3.1 High Level Idea

Our implementation follows the template in Figure 4.4. The pseudo-code of the algorithm can

be found in Figure 4.5 on page 49. All claims referred to in this section appear in Section 4.4.

Process p’s main goal during its Write() operation call is to find a write-index f ∈ Ip of an

object A[f] that is currently not in use, and that no process will access before p puts it into use.

In an Exec(Oper,arg) operation, the calling process q has to identify an exec-index i and calls

A[i].Oper(arg) such that condition (C) of Lemma 4.5 is satisfied.

In this implementation, similar to the one in Section 4.2.3, we use an announce array A of

size n. During an Exec() operation call, process q reads a potential exec-index i from Ptr, and

then announces its intention to access the object A[i] by writing i to its designated array element

Annc[q]. Then process q has to ensure that its safe to access this object. In the implementation

of Section 4.2.3, process q reads Ptr again, and unless it reads the same index i from Ptr, it

does not access object A[i]. This is because reading the index, announcing it, and accessing the

corresponding object are separate shared memory steps, and so it is possible that it takes process

q a “long” time to execute all these steps, and therefore q’s announcement might not get seen

in time.

Achieving Wait-Freedom. A helping technique is typically used to assist in achieving wait-

freedom (Fatourou and Kallimanis, 2011; Herlihy, 1988, 1990, 1991; Kogan and Petrank, 2011,

2012; Plotkin, 1989; Timnat, Braginsky, Kogan and Petrank, 2012; Timnat and Petrank, 2014).

In this mechanism, faster processes help slower ones, by performing some work for them, in

addition to their own. Recently Censor-Hillel, Petrank and Timnat (2015) presented one possible

formal definition of a helping mechanism. In our implementation, we devise a new helping

mechanism, which allows each writer to provide an alternative exec-index called a “hint” to a

process q, which q uses instead of the one it first chose, in the event that q took too long to

make its announcement during an Exec() operation call.

More specifically, suppose p writes an index i ∈ Ip to Ptr at some point t. Our main idea,

42

which allows a wait-free implementation is that the owner, p, of index i, gives a deadline to any

process q that reads i from Ptr after t, to announce index i. If q announces i before this deadline,

then p guarantees that it sees q’s announcement of i, and it does not use i as a write-index again,

until q announces another object. However, if q does not announce i before that deadline, then q

will use an alternative exec-index j that p provides to q. In this case, process p guarantees that

A[j] was in use at some point during q’s Exec() call, and also p does not use j as a write-index

again until q’s Exec() call responds, so that conditions of Lemma 4.5 are satisfied.

To achieve those two guarantees, process p has to

(I) read the entire announce array after the deadline, and before it uses i as a write-index

again after t (that is the point when p writes i to Ptr), and

(II) provide an alternative exec-index, called a hint, to all other processes before the deadline.

Let q be a process that reads i from Ptr after p writes i to this register at t. We choose the

deadline for process q to announce index i, to be the first point after t, where p provides a hint

to q. Therefore, whenever process p writes an index i to Ptr at t, then p does not use i again

as a write-index until p reads the entire announce array after it provides a hint to all processes

individually.

Hint Mechanism. By (II), once p writes an index i into Ptr, it has to provide an alternative

exec-index, which we call a hint, to each process before the deadline for announcing i. This way

if a process q does not announce i before the deadline, then there is a hint available for q. A

hint j that is provided by process p to q has to be a valid exec-index, i.e. A[j] must have been in

use at some point during q’s current Exec() operation call, and also index j must not get reused

before q’s Exec() completes (so that the conditions of Lemma 4.5 are satisfied).

To achieve this, each process p employs a hint array H′p[0 . . . n− 1], and a single-writer multi-

reader register Sp. Register Sp stores a sequence number that p increments at the beginning

of every Exec() operation call. For now, assume the sequence number Sp is unbounded; We

43

will discuss later how to bound it. Array entry H′p[q] is used to store a hint that process p can

provide to process q during a Write() operation call.

Consider a Write() operation call by p with the write-index f , and suppose p wants to

provide a hint to process q during this operation call. To that end, p first reads q’s sequence

number Sq into a local variable s, then it checks whether H′p[q] already contains a pair (·, s). If

yes, then there is already a valid hint stored in H′p[q] that q might be using as its exec-index. So

p does not provide a new hint, and it only writes f into Ptr. Otherwise, p provides hint f with

sequence number s to process q by first putting object A[f] into use, and then writing the pair

(f , s) to H′p[q]. Process p must not use index f as a write-index again as long as a pair (f , ·) is

stored in H′p. Thus p scans hint array H′p with each scan of the announce array, and it avoids

choosing a write-index from indices that it finds in either of those two arrays.

During an Exec() operation call E, the calling process, q, first increments Sq. Let s∗ be the

value q writes to Sq during E. Then, q reads an index i ∈ Ip from Ptr, and announces this index.

In order to check if q made the announcement before the deadline for index i, it checks if there

is a hint from p, the owner of index i, with sequence number s∗ in H′p[q]. If yes, then q uses

the index in H′p[q] as its exec-index, and otherwise, process q knows that its announcement was

made before the deadline for i, and so it uses i as its exec-index.

Deamortization. By (I) and (II), after putting an object A[i] in use, p has to first provide a

hint to all other processes and then read the entire announce arrays before it can reuse index i.

This will result in executing Ω(n) steps per each Write() operation call. By allowing a bigger

set of indices, Ip, for each process p, we can have one deadline for every n objects that p puts into

use. This way it is enough to provide hints and then read the announce array every n Write()

operation calls, and so we can achieve a constant amortized step complexity. To achieve even

more efficient Write() operations, we deamortize this work over a sequence of 2n Write()

operation calls. Therefore, in each of its Write() operation calls, p provides a hint to one of the

processes in the system, and reads one element from the announce array Annc and the hint array

44

H′p in a round-robin fashion. Hence, once p puts an object A[i] into use, it takes this process n

Write() calls until it provides a hint to each process, and then another n Write() calls to read

the entire announce and hint arrays. Therefore, p does not use index i again as its write-index

until it executes at least 2n additional Write() operation calls since it last set Ptr = i.

Since it takes process p some time to read the entire array Annc, the information it reads

might be outdated. To deal with this, we benefit from the following observation: Even though

process p might read an outdated announcement from Annc[q], process q can only have updated

its announcement to indices of objects that were in use since p read Annc[q] last. Thus, any index

i ∈ Ip that p did not find in its last read of announce array entries Annc[0], . . . ,Annc[n− 1] and

hint array entries H′p[0], . . . , H′p[n− 1], and it did not write into Ptr during its last 2n Write()

calls is an appropriate write-index.

Why it Works. Consider an Exec() operation call E by some process q, and let Sq = s right

after q increments this variable at the beginning of E. We argue that if q invokes an A[i].Oper()

call during E, for some i ∈ Ip, the conditions of Lemma 4.5 are satisfied.

First Suppose q uses i as its exec-index, because it reads (i, s) from its hint array entry H′p[q],

for some p. Since q increments its sequence number at the beginning of E, process p must have

read s from Sq and written (i, s) to H′p[q] after q invokes E and before q reads H′p[q]. Therefore,

p must have also put A[i] into use at some point t∗ after the invocation of E and before q reads

H′p[q], hence condition (C1) is satisfied. Moreover, process p does not choose its write-index

from indices that are stored in entries of H′p and Annc. Thus, this process does not use i again

as a write-index in any subsequent Write() operation call, as long as the pair (i, s) remains in

H′p[q]. Process p does not change the value stored in H′p[q] until p reads a sequence number

other than s from Sq. Thus, H′p[q] = (i, s) at least until q’s operation call A[i].Oper() during E

responds. This implies that between t∗ and the response of q’s A[i].Oper() call, process p does

not use i as its write-index again, and therefore it does not execute any A[i].SWrite() operation

call in this interval. Hence, condition (C2) of Lemma 4.5 is also satisfied.

45

Next suppose q uses i as its exec-index because it reads i from Ptr, where i ∈ Ip, and some

pair (j, s′) from H′p[q] during E, where s′ 6= s. Condition (C1) is clearly satisfied, as q reads

Ptr = i between the invocation of E and the invocation of its A[i].Oper() operation call. Let

t be the point at which q reads index i from Ptr, and let t′ be the point when q announces

that index during E. Process p completes at most n− 1 Write() operation calls during [t, t′].

Because otherwise, p would have provided a hint with sequence number s to q in this interval.

This implies that q announces i before its deadline. Since p has to execute at least 2n Write()

operation calls after t and before it can use i as a write-index again, and it has completed fewer

than n of them during [t, t′], in its at least next n Write() operation calls after t′, process p

reads q’s announcement. Therefore, p cannot use i as its write-index, before q announces another

index, which can only happen after q’s current Exec() is completed. Thus, condition (C2) is

also satisfied in this case.

Bounding the Sequence Number. In order to bound the sequence number stored in Sq, we

increment Sq modulo 2n. This creates the following problem: Suppose q writes some value s to

Sq at the beginning of some Exec() call E, and later during E process q finds a pair (f , s) as

a hint in H′p[q]. If Sq is unbounded (and strictly increases with each Exec() call), then q can

ensure that process p, which wrote this pair to H′p[q], read value s from Sq and wrote f to Ptr

both during E, which guarantees condition (C1) of Lemma 4.5. But by incrementing Sq only

modulo 2n, this guarantee is lost.

To provide the same guarantee with bounded sequence numbers, we apply two tricks. First,

we maintain an additional hint array Hp[0 . . . n− 1] for every process p. Each time p wants to

provide its write-index f as a hint to q, this process writes to Hp[q] before writing f to Ptr,

and then it writes to H′p[q] after updating Ptr. Second, we ensure that during any sequence of

2n Exec() calls, process q resets each hint array entry Hr[q] and H′r[q], r ∈ {0, . . . ,n− 1}, by

writing (⊥,⊥) to it, at least once.

These two together ensure that if Sq has wrapped around since p read some value s from

46

this register, then at least one of Hp[q] and H′p[q] is reset to (⊥,⊥). Thus to prevent q from

using an outdated hint during an Exec() operation call E, this process only uses a hint f as its

exec-index, if it reads the same pair (f , s) from both Hp[q] and H′p[q], where s is the current

value of Sq. This way, our algorithm guarantees that (1) p wrote this pair to Hp[q] and H′p[q]

both during one Write() call, and (2) both writes to hint entries happen after q updates its

Sq at the beginning of E and before q reads them. Thus, the step in which p writes f to Ptr

also happens during the same interval, which guarantees condition (C1) of Lemma 4.5. See

Claim 4.25 for the full proof.

Memory Management. We equip our algorithm with a memory management technique that

allows a process p in each Write() operation call to recycle objects, i.e., to identify a write-

index f ∈ Ip such that no other process is concurrently using or is poised to use f as an exec-

index. Our technique is similar to that of Hazard Pointers (Michael, 2004b), but more efficient

with respect to step complexity: The deterministic version of the Hazard Pointers technique

has O(logn) amortized step complexity per recycled object, and the randomized version has

expected O(1) amortized step complexity. Our technique allows us to deterministically recycle

one object in constant worst-case time. We believe that the technique is interesting by itself. It

has already found other applications (Brown, Ellen and Ruppert, 2013, 2014; Ellen and Woelfel,

2013; Giakkoupis and Woelfel, 2014). Later in Chapter 7, we extend the ideas used here to a

stand-alone memory reclamation technique.

When a process p decides on a write-index f in a Write() operation call, it chooses one in

Ip that (1) is currently not announced, (2) is not stored in the hint arrays Hp and H′p, and (3)

has not been used as a write-index in any of p’s 2n preceding Write() operation calls. Process

p stores indices satisfying these properties in a local set freep.

To maintain freep, process p uses a helper operation recycle(). This operation is called

exactly once during every Write() operation call, and returns an index f that p owns and can be

used as a write-index for the calling Write() operation. We describe the recycle() operation

47

in more detail in Section 4.3.2.

4.3.2 Detailed Description

We now describe the Write() and Exec() operations of our writable object WT of type T

in detail. Pseudocode is given in Figure 4.5. Shared variables and public operations of the

writable and sequentially writable objects and registers start with an upper-case character, and

local variables and internal operations start with a lower-case character.

Figure 4.5 does not represent the initial state of the object, but rather the initial state is

obtained by starting with the initial state depicted in Figure 4.5, and then having process 0

execute a Write(v0) operation call, where v0 is the initial state of the type. Clearly, one may

easily obtain an implementation that does not require this assumption, by initializing all objects

and variables to the state they are in immediately after such an initial Write(v0) operation

call. We make this assumption to be compatible with the template of Section 4.2.2, and also to

avoid having different initial values for local variables of different processes in the pseudocode of

Figure 4.5.

We use a sufficiently large array A of instances of the sequentially writable object SW.

Let I denote the set of indices of A. Each process p owns a set Ip ⊆ I, of indices, where

Ip = {i ∈ I | i mod n = p}. We chose I = {0, . . . ,n(8n + 9)− 1}. With some additional care,

it may be possible to reduce the size of this set by a small constant factor. We did not attempt

to do so, in order to not distract from the core ideas of this algorithm. We assume a helper

operation owner(i), which returns for i ∈ I the process p, such that i ∈ Ip.

We use an announce array Annc[0 . . . n− 1], and for each process p there are two hint arrays

Hp[0 . . . n− 1] and H′p[0 . . . n− 1]. Only process p writes to register Annc[p], and only processes

p and q read from and write to Hp[q] and H′p[q]. Each element of Hp and H′p is initialized to

(⊥,⊥), and each element of Annc to ⊥. A shared register Ptr, which is initially ⊥, stores

the index of the object in use. For each process p, the shared register Sp stores a sequence

number. Each register needs to store at most O(n2) different values, and therefore registers of

48

shared:
Array<SW> A[0 . . . n(8n + 9)− 1] = (v0, . . . ,v0)
Array<int> Annc[0 . . . n− 1] = (⊥, . . . ,⊥)
int Ptr = ⊥
for i ∈ {0, . . . ,n− 1}:
Array<int,int> Hi[0 . . . n− 1] =

(
(⊥,⊥), . . . , (⊥,⊥)

)
Array<int,int> H′i [0 . . . n− 1] =

(
(⊥,⊥), . . . , (⊥,⊥)

)
int S0, . . . ,Sn−1 = −1

local:
Queue usedQp, anncQp, hintQp, hint′Qp
// 2n + 2 ⊥ values are initially in each queue

Set<int> freep = Ip

Array<int> cp[0 . . . 8n + 8] = (0, . . . ,0)
int lptrp = ⊥
int ctrp = 0

/* v0 is the initial value

of type T. The initial

state of the object is

obtained by starting with

all variables initialized

as depicted, and then

having process 0 execute

a Write(v0) operation.

I= {0, . . . ,n(8n + 9)− 1}
Ip = {i ∈ I | i mod n = p}
|Ip| = 8n + 9 */

Operation Writep(v)

12 f = recyclep()

13 A[f].SWrite(v)
14 s := Sctrp .Read()
15 (·,olds) := Hp[ctrp].Read()
16 (·,olds′) := H′p[ctrp].Read()
17 if s 6= olds ∨ s 6= olds′ then
18 Hp[ctrp].Write(f , s)
19 s′ := Sctrp .Read()
20 Ptr.Write(f)
21 H′p[ctrp].Write(f , s′)
22 else
23 Ptr.Write(f)

24 ctrp := (ctrp + 1) mod n

Operation recyclep()

25 f := freep.remove()
26 updateQp(usedQp, f)
27 a := Annc[ctrp].Read()
28 updateQp(anncQp, a)
29 (h, .) := Hp[ctrp].Read()
30 updateQp(hintQp, h)
31 (h′, .) := H′p[ctrp].Read()
32 updateQp(hint′Qp, h′)
33 return f

Operation Execq(Oper,arg)

34 x := (Sq.Read()+ 1) mod 2n
35 Sq.Write(x)
36 i := Ptr.Read()
37 Annc[q].Write(i)
38 p := owner(i)
39 (j, s) := Hp[q].Read()
40 (j′, s′) := H′p[q].Read()
41 if s = s′ = x ∧ j = j′ then
42 i := j

43 ret val := A[i].Oper(arg)
44 Hx mod n[q].Write(⊥,⊥)
45 H′x mod n[q].Write(⊥,⊥)
46 return ret val

Operation updateQp(Queue qu, int x)

47 if p = owner(x) then
48 cp[x] := cp[x] + 1
49 qu.enq(x)
50 else
51 qu.enq(⊥)
52 y := qu.deq()
53 if y 6= ⊥ then
54 cp[y] := cp[y]− 1
55 if cp[y] = 0 then freep.add(y)

Figure 4.5: Implementation of the Writable Object

49

size 2logn + O(1) bits suffice.

Our implementation provides, in addition to the operations Write() and Exec(), helper

operations recycle() and updateQ() that are used only internally and take care of memory

reclamation.

The Write() Operation. To execute Write(v), process p has to find a write-index f of a

free SW object in A, to which it can write using an SWrite() operation call, and that it can

then put into use. To do so, process p calls recycle() (line 12), which returns the index

f that p will subsequently use as a write-index. In line 13, p writes the value v to A[f], by

executing SWrite(v). Then in line 14, p reads the sequence number stored in Sctrp into a local

variable s. (Recall that ctrp is a local variable that gets incremented modulo n at the end of the

Write() operation call, and serves as a pointer to process q.) In lines 15–16, p reads the second

component of Hp[ctrp] and H′p[ctrp] into olds and olds′, respectively, to determine the sequence

numbers associated with the hints currently stored in those registers. If s = olds = olds′, then

that hint is valid for the process with identifier ctrp, and p does not need to provide a new hint.

Instead, it can simply put A[f] into use by writing f to Ptr (in line 23).

Otherwise, the current hint is not valid, so in lines 18–21 process p attempts to provide a

new hint to the process with identifier ctrp. First, p writes the value (f , s) into Hp[ctrp]. Then

p reads again the current sequence number of the process with identifier ctrp into s′, because

that value may have changed since p read it last. Next, p updates Ptr by writing value f into

it, and finally p writes (f , s′) into H′p[ctrp]. (For the sake of simplicity, we allow process p to

provide a hint to itself, when ctrp = p.)

At the end of the Write() operation call, in line 24, p increments the value of ctrp (modulo n).

This ensures that in n consecutive Write() operation calls, p attempts to provide one hint to

each process.

The Exec() Operation. Consider a call of Exec(Oper,arg) by process q. In lines 34–35,

process q first increments modulo 2n the value of its sequence number Sq. Then in lines 36–38,

50

q reads the index of the object that is in use from Ptr into a local variable i, announces i by

writing it into Annc[q], and determines the owner p of object A[i]. In lines 39–40, process q

reads the hint array entries Hp[q] and H′p[q] into (j, s) and (j′, s′), respectively. If it determines

that the hint is valid, i.e., (j, s) = (j, s′) where s is the last value q wrote into Sq, then q replaces

index i with j (lines 41–42). Now, i is the exec-index that q will use, and so in line 43, q

executes operation Oper(arg) on object A[i]. Finally, in lines 44–45 it writes (⊥,⊥) to registers

Hx mod n[q] and H′x mod n[q], where x is the current value of Sq, to prevent itself from using a

very old hint in future Exec() operation calls. The return value of this operation call is the value

returned from the execution of A[i].Oper(arg).

The recycle() and updateQ() Operations. Operation recycle() takes no input, and it

returns the index of an object that p owns and which it can use as a write-index. The recycle()

operation does not write to any shared objects. Most of the objects it uses are local to the calling

process, p. In particular, it uses four local queues usedQp, anncQp, hintQp, and hint′Qp, and

a local set data structure freep. We assume that the data structure freep provides the operations

add() and remove(), where freep.add(i) adds value i to freep, if i is not already in the set,

and freep.remove() removes one (arbitrary) element from freep and returns it. Since the domain

of values stored in freep is Ip, which is of size O(n), such a set data structure can be easily

implemented from an array and a linked list in O(n) space and with constant worst-case running

time per operation.

The queues keep track of indices that p cannot use as write-indices. Initially, each queue

contains 2n + 2 ⊥-values, and freep contains all indices in Ip. The algorithm maintains the

invariant that at each point, each index i ∈ Ip is either in one of p’s queues or it is in freep

(see Claim 4.13). A local counter array cp keeps track for each index i ∈ Ip, how many copies

of i appear in p’s queues (see Claim 4.12). Operation updateQp() maintains those queues and

counter array cp. First we explain the implementation of updateQ() and then we discuss how

recycle() works.

51

Operation updateQp() takes two inputs, one of p’s local queues qu and an index x, and

executes no operation on any shared object. Process p enqueues exactly one, and dequeues

exactly one element from qu in this operation call, hence the size of qu remains unchanged at

the end of this operation call. Process p modifies its queues only in this operation, and since

each of these queues initially contains 2n + 2 elements, the size of each remains 2n + 2 (see

Claim 4.11).

During this operation, process p checks whether x ∈ Ip (i.e. p owns x). If so, then p

increments cp[x] by one, and enqueues x into qu. Otherwise, it only enqueues ⊥ into qu (in

order to maintain the size of the queue unchanged at the end of each call of this operation).

Then p dequeues one element y from qu. If y is an index (i.e. it is not equal to ⊥), then it is

an index that p owns (see Claim 4.9), so p decrements cp[y] and checks if cp[y] = 0. If so, then

index y is not in any of p’s queues (see Claim 4.12), and p adds y to freep.

To execute recycle(), a process p first removes an arbitrary index f from freep in line 25.

(Claim 4.14 guarantees that there is at least one element in freep before p executes this line.)

Then it updates usedQp by executing updateQ(usedQp, f). Note that f must be in Ip (see

Claim 4.9), thus, p enqueues f into usedQp during this operation call. This implies that before p

puts object A[f] into use, it enqueues f into usedQp. Next process p reads Annc[ctrp], and the

first elements of Hp[ctrp] and H′p[ctrp] into a, h, and h′, and executes updateQ(anncQp, a),

updateQ(hintQp, h), and updateQ(hint′Qp, h′), respectively. (Again, for the sake of simplicity,

we allow p to read its own announcement and the hints p provided to itself. Even though this

is not necessary.) Hence, p enqueues indices from Ip that it reads during its lazy scan of Annc,

Hp, and H′p into its corresponding queues. With each execution of updateQ(), p also dequeues

one element from the corresponding queue.

Now we explain why any index in freep can be returned from recycle() to be used as a

write-index by p. (For a full proof see Section 4.4.) Suppose p dequeues y from a queue qu

during a recycle() operation call R, and let R0, . . . , R2n+1 be the last 2n + 2 recycle() calls

52

p executes before R. Then the implementation of updateQ() guarantees that this copy of y

was enqueued into qu during R0 (if qu = usedQ, this implies that y was the write-index of

the corresponding Write() operation call) and remained in qu throughout R1, . . . , R2n+1 (see

Claim 4.15). Process p then adds y to freep if no instance of y is in any of its queues. This

implies that y is not added to any of p’s queues during the current and the last 2n+ 1 recycle()

calls. Therefore, y is not used as a write-index during the current and the last 2n + 1 Write()

operation calls (i.e. 2n + 2 Write() operation calls), and was not read from Annc, Hp and H′p

during the last 2n + 2 recycle() operation calls. Therefore, any index in freep can be used as

a write-index for p.

4.4 Analysis and Correctness

In this section, we first prove the correctness of Lemma 4.5 from Section 4.2.2. This lemma states

that if an implementation based on the template in Figure 4.4 has some specific properties, then

it is linearizable. Then in Lemma 4.8, we show that the implementation of Figure 4.5 satisfies

those properties, and hence, is linearizable.

4.4.1 Proof of Lemma 4.5

Lemma 4.5 states that an implementation of an object WT based on the template given in

Figure 4.4 is linearizable if the implementation satisfies the following condition:

(C) For each Exec() operation call E that invokes an Oper() operation Op on A[i], for

any i, there is a point t∗ between the invocation of E and the invocation of Op, such that

(C1) A[i] is in use at point t∗, and

(C2) no SWrite() operation call on A[i] overlaps with interval [t∗, tOp@rsp].

The remainder of this section provides the complete proof of this lemma.

53

Consider any transcript Λ obtained from an implementation based on the template given in

Figure 4.4, such that it satisfies condition (C) of Lemma 4.5. To simplify the linearizability proof

of any transcript that starts from the initial state, we assume that the initial state is achieved by

initializing the shared variables Ptr = ⊥ and A[i] = v0, for all i, and executing a Write(v0) by

process 0 in isolation.

By (C2), no Oper() operation call on an object A[i] overlaps with any SWrite() operation

call on the same object. Moreover, only the process that owns i executes A[i].SWrite(). Hence,

no two SWrite() operation calls on A[i] overlap. Therefore, for any i

no A[i].SWrite() operation call overlaps any other operation call on A[i]. (4.1)

Consider an operation call M on object WT in Λ. Operation call M is matured if M is a

Write() call during which the calling process writes to Ptr, or if M is an Exec() call in which

an A[i].Oper() call, for some exec-index i, is invoked.

Let t0 denote the point when the execution of Λ starts. We associate a timestamp TSPtr(t)

with each point t, where TSPtr(t) = s, if in [t0, t] Ptr gets written s times. Thus,

TSPtr is a non-decreasing function. (4.2)

For a matured WT.Write() operation call M, executed by some process p, during which p

writes index i into Ptr, we let t(M) be the point immediately after p writes i to Ptr. For a matured

WT.Exec() operation call M, in which some A[i].Oper() operation call is invoked, for some

exec-index i, we let t(M) be the latest point between the invocation of M and the invocation

of A[i].Oper(), such that (C1) and (C2) are satisfied for t∗ = t(M). Hence by (C1), Ptr = i at

point t(M). For any matured operation call M, we assign a timestamp TS(M) = TSPtr(t(M)).

Therefore, for any matured Write() or Exec() operation call M by a process p, which either

54

writes i to Ptr or invokes an A[i].Oper() operation call respectively, we have

t(M) ∈ [tM@inv, tM@rsp],

Ptr = i at t(M), and

TS(M) = TSPtr(t(M)).

(4.3)

Claim 4.6. Let M1 and M2 be two distinct matured operation calls on WT in Λ, and suppose

some operation call Op1 on a sequentially writable object A[i1] is invoked during M1, and some

operation call Op2 on A[i2] is invoked during M2, for some i1 and i2. If TS(M1) = TS(M2),

then i1 = i2.

Proof. Assume w.l.o.g. that t(M1) precedes t(M2). According to (4.3), TS(M1) = TS(M2)

implies TSPtr(t(M1)) = TSPtr(t(M2)), so no process writes to Ptr between t(M1) and t(M2).

By (4.3), Ptr = i1 at t(M1) and Ptr = i2 at t(M2), hence, i1 = i2.

Let O` denote the set of all matured operation calls M on WT in Λ, where TS(M) = `, for

` ∈N. By Claim 4.6, there exists an index i`, such that all operation calls in O` use i` as their

exec-index or write-index. Let Λ` be the subsequence of Λ that contains only invocation and

response events of operation calls on the sequentially writable object A[i`] executed by operation

calls in O`. Subsequence Λ` is a history, and by (4.1), no A[i`].SWrite() overlaps any other

operation call on A[i`]. Therefore, there is a linearization S` of Λ`. (Note that S` is the empty

history if Λ contains no operation call M with TS(M) = `.)

Claim 4.7. For any ` ∈N and any non-empty history Λ`, any linearization S` of Λ` starts with

an SWrite() call and this is the only SWrite() in S`.

Proof. Consider a non-empty history Λ`. Let p be the process that owns i`, and let S`

be a linearization of Λ`. Suppose for the sake of contradiction, that there are two distinct

A[i`].SWrite() operation calls SW1 and SW2 in S`. Let W1 and W2 be the Write() op-

eration calls in which SW1, respectively, SW2 are executed. Since only the owner of i` can

55

execute an A[i`].SWrite() operation call, W1 and W2 are both executed by process p. So

we can assume w.l.o.g. that W1 happens before W2. By the definition of Λ`, operation calls

W1 and W2 are in O`, and therefore, TS(W1) = TS(W2) = `. By (4.3), this implies that

TSPtr(t(W1)) = TSPtr(t(W2)). However, TSPtr(t) denotes the number of writes to Ptr that

happen in the interval [0, t], and t(W1) and t(W2) are distinct points immediately after such

writes. This implies that TSPtr(t(W1)) < TSPtr(t(W2)). This is a contradiction as both W1 and

W2 have the same timestamp value. Therefore, there is at most one A[i`].SWrite() operation

call in S`.

Next, to conclude the proof, we show that any OP() call Op in S` must be preceded by

an SWrite() in S`. Since Λ` contains only operation calls on A[i`], Op also operates on the

same object. Moreover, Op must have been executed by some process q during an Exec()

operation call E. Operation call Op ∈ Λ`, and so by the definition of Λ`, we know that E ∈ O`,

so TS(E) = `.

Since t(E) is the latest point between the invocation of E and the invocation of Op, such

that (C1) is satisfied for t∗ = t(E), we have Ptr = i` at t(E) ∈ [tE@inv, tOp@inv]. This implies

that some process p (possibly p = q) writes index i` to Ptr at some point before t(E) during

some Write() operation call W, because Ptr is initially set to ⊥. Hence, Ptr = i` throughout

[t(W), t(E)], and therefore TSPtr(t(W)) = TSPtr(t(E)). We showed TS(E) = `, thus by (4.3)

we have

TS(W) = TS(E) = ` (4.4)

By the template, process p completes an A[i`].SWrite() operation call SW before it writes

i` to Ptr during W, and so before t(W). Since t(W) < t(E) and t(E) ∈ [tE@inv, tOp@inv], p

completes SW before the invocation of Op. By (4.4), we have W ∈ O`, and so SW ∈ Λ`.

Hence, SW linearizes before Op in Λ`, and therefore SW appears before Op in S`.

We construct a sequential history S from Λ as follows. Consider a timestamp value

` ∈N, and let k` be the number of operation calls in S`. If k` ≥ 1, then by Claim 4.7,

56

S` = SW`,Op`,1, ...,Op`,k`−1, where SW` is an A[i`].SWrite() operation call and Op`,j is the

j-th A[i`].Oper() operation call in S`, for j ∈ {1, . . . ,k` − 1}.

Let W` be the invocation event of the Write() call in which SW` is invoked, and a matching

response event. Also let E`,j be the invocation event of the Exec() operation call in which Op`,j

is invoked, and a matching response that has the same return value as Op`,j. Then we define

S = W1, E1,1, E1,2, . . . ,W2, E2,1, E2,2, . . . ,W3, E3,1, E3,2, . . . (4.5)

Operation calls SW` and Op`,j are in S`, which is a linearization of Λ`. Hence, W` and E`,k are

matured operation calls with their invocation events in O`. Therefore, TS(W`) = TS(E`,k) = `.

In the following, we prove that S is a linearization of a completion of Γ(Λ). First we show that

S contains all completed operation calls in Γ(Λ). Consider any operation call M that completes

in Γ(Λ), and so it completes in Λ. Then M is a matured operation call, and there is some value

` ∈N, where TS(M) = `. Hence, M ∈ O`, and by Claim 4.6, all operation calls in O` invoke

an operation on the same object A[i`], for some i`. Let Λ` be the subsequence of events in Λ

that contains only invocation and response events on object A[i`] executed during operation calls

in O`. Since M completes in Λ, its operation call Op on object A[i`] also completes in Λ and

therefore in Λ`. Thus, Op appears in the linearization S` of Λ`. Thus by the construction of S,

M appears in S.

Now, we prove the validity of S. If we append any valid sequential history on WT that starts

with a Write() operation to a valid sequential history on the same object, then we obtain a valid

sequential history, because a Write() call changes the state the object. So it is enough to show

that subsequence W`, E`,1, E`,2, . . . , E`,k`−1 of S, for any ` ∈N, is valid. By the construction of S,

the order of operation calls W`, E`,1, E`,2, . . . in S is the same as the order of their corresponding

operation calls SW`,Op`,1,Op`,2, ... on A[i`] in S`. Sequential history S` is a valid sequential

history, and the return value of each E`,j operation call is the same as the return value of its

corresponding operation call Op`,j on A[i], for any j ∈ {1, . . . ,k` − 1}. Therefore, subsequence

W`, E`,1, E`,2, . . . is valid, and so S is valid.

57

To prove that the happens before order of operations is preserved in S, consider two operation

calls M1 and M2 in Γ(Λ), such that M1 happens before M2 in Γ(Λ). We prove that M1

precedes M2 in S. Both M1 and M2 are matured. First suppose TS(M1) = TS(M2) = `. By the

construction of S, each of M1 and M2 invokes an operation on the same sequentially writable

object. Let Op1 and Op2 be the operations invoked by M1 and M2, respectively. Operation calls

M1 and M2 both have the same timestamp value `, and they both appear in S. Hence both Op1

and Op2 appear in S`, and therefore in Λ`. As M1 happens before M2 in Γ(Λ), and so in Λ,

operation Op1 also happens before Op2 in Λ`, and therefore Op1 precedes Op2 in S`. Thus by

the construction of S, M1 precedes M2 in S.

Now suppose TS(M1) 6= TS(M2). By (4.3), we have TS(M1) = TSPtr(t(M1)) and TS(M2) =

TSPtr(t(M2)), where t(M1) ∈ [tM1@inv, tM1@rsp] and t(M2) ∈ [tM2@inv, tM2@rsp]. Since M1 com-

pletes before M2 is invoked, t(M1) < t(M2). Thus by (4.2) and since TS(M1) 6= TS(M2), we

have TSPtr(t(M1)) = TS(M1) < TS(M2) = TSPtr(t(M2)). Therefore, by the construction of S,

M1 precedes M2 in S.

4.4.2 Correctness of the Proposed Implementation

In this section, we prove that our proposed wait-free implementation WT from instances of

sequentially writable object SW of the same type T is linearizable. For that, we show in Lemma 4.8

that our algorithm of Figure 4.5 satisfies the conditions of Lemma 4.5.

Notation and Definitions. Suppose process q executes A[i].Oper() in line 43 during an

Exec() operation call E, for some exec-index i. We say q obtains exec-index i directly if q does

not execute line 42 during E, and otherwise it obtains i indirectly.

In this pseudocode, we employ two helper operations recycle() and updateQ(). Since they

are only helper functions that can only be called from other operation calls on the object, their

invocations and responses do not appear in the transcript. During a recycle() operation, the

calling process executes several operation calls on atomic registers, as well as local variables. For

58

the ease of explanation and to be consistent to operation calls that appear in the transcript, we

define invocation point tR@inv, respectively response point tR@rsp, for any recycle() operation

call R, to be the points when the first, respectively last, atomic operation call during R is executed.

Similar to operation calls on objects, we say a recycle() call completes in an interval [t1, t2] if

[tR@inv, tR@rsp] ⊆ [t1, t2]. Operation updateQ() can be called in a recycle() operation R, and

contains only steps on local variables. So all its local steps are executed at the same point as

the latest preceding atomic operation call executed in R if there exists any, or at point tR@inv

otherwise.

Transcript Λ. Suppose Λ′ is an arbitrary transcript on object WT generated by executing

Write() and Exec() operation calls starting from the initial state. We consider instead a

transcript Λ that is obtained by prefixing Λ′ with a Write(v0) by process 0 on object WT as

initialized in Figure 4.5. Since the initial state of WT is obtained by such a Write(v0), in order

to prove linearizability of Γ(Λ′), it is enough to prove that Γ(Λ) is linearizable.

Lemma 4.8. Suppose some process q executes an Exec() operation call E in Λ, in which q in-

vokes an A[i∗].Oper() operation Op, for some i∗. Then there exists a point t∗ ∈ [tE@inv, tOp@inv],

such that:

(a) Ptr = i∗ at t∗, and

(b) no A[i∗].SWrite() operation call overlaps with interval [t∗, tOp@rsp].

In the remainder of this section, we prove this lemma for transcript Λ. This together with

Lemma 4.5 proves that our implementation is linearizable. To that end, we have to rely on several

claims that describe properties and invariants that hold in Λ.

All about Recycling In the following, we discuss properties of the helper operation recycle(),

and the local variables that it maintains. The first claim states that a process p can only store

indices it owns in its queues or in its set freep.

59

Claim 4.9. At any point and for any process p, the following statements are true.

(a) All values in anncQp, usedQp, hintQ, and hint′Qp are either ⊥ or indices owned by p,

(b) any value in freep and any value returned from a recycle() call by p is an index owned

by p, and

(c) p only writes indices that it owns to Ptr.

Proof. We prove each part separately.

Proof of Part (a). This statement is true at the beginning of any execution, because all queues

contain only ⊥ values. Process p can add an element to any of it queues only in lines 49 and 51.

In these two lines, p adds an index that it owns (see line 47), or a ⊥ value. Hence, the claim of

Part (a) is true.

Proof of Part (b). Since initially freep contains all indices that p owns and no recycle()

call has been executed, the claim of Part (b) is true at the beginning of any execution. Process

p can add an element to freep only in line 55, and it only adds an index that it removed from

one of its queues. By Part (a), p owns all (non-⊥) indices that are stored in its queues. Thus,

p only adds indices that it owns to freep, and so any value in set freep is owned by p. Moreover,

p’s recycle() call returns a value that is removed from freep, and since every value stored in

freep is owned by p, the claim holds.

Proof of Part (c). Process p can write an index f to Ptr only in line 20 or 23 during a Write()

operation call. Either of these can happen only if p’s latest preceding recycle() operation call in

line 12 returns f . By Part (b), any value returned from a recycle() call by p, and in particular

index f , must be an index owned by p. Therefore, the claim of Part (c) is true.

By the result of Claim 4.9, we get the following Corollary.

Corollary 4.10. For any process p and any index i∗ ∈ Ip, only p can execute an A[i∗].SWrite()

operation, and thus no two A[i∗].SWrite() operation calls can overlap.

60

Proof. A process only calls A[i∗].SWrite(), after a recycle() call that returned i∗. Hence

by Claim 4.9(b), only process p can execute an A[i∗].SWrite() operation. Since processes are

sequential, no two A[i∗].SWrite() operation calls can overlap.

The following three claims establish some invariants about the queues and array cp. First, we

show that at each point in time all queues have size 2n + 2, and the value stored in cp[i] is the

total number of copies of index i in those queues. We also show that every index i that is owned

by p is stored either in one of p’s queues or in freep.

Claim 4.11. At any point, each of the queues usedQp, anncQp, hintQp, and hint′Qp has size

exactly 2n + 2.

Proof. Each of p’s queues initially has 2n + 2 elements with value ⊥. These queues can only

be modified when p calls updateQ() during a recycle() operation call R in one of lines 26,

28, 30 and 32. The updateQ() operation contains no operation calls on any shared objects,

and so it is executed at the same point as the latest preceding atomic operation call, or with

the invocation of R if there is no preceding atomic call in R. Moreover, during this operation

call, process p enqueues exactly one element into one of its queues (line 49 or 51), and dequeues

exactly one element from the same queue (line 52). Thus, an updateQ() operation call by p

does not change the size of any of p’s queues.

Claim 4.12. For any process p, and any index i ∈ Ip, at any point, the value of cp[i] is the total

number of occurrences of index i in usedQp, anncQp, hintQp, and hint′Qp.

Proof. Fix some process p and an index i ∈ Ip. Initially, all of the queues contain only ⊥

elements, and cp[i] = 0, so the claim is true. Process p’s queues and the value stored in cp[i]

can be modified only during an updateQ() operation call by p, and all those steps are mapped

to the same point. During this operation call, if p enqueues an index i into one of its queues,

then and only then, it increments the value of cp[i] (lines 48–49). Similarly, if p dequeues an

61

index i from one of its queues, then and only then, it decrements the value of cp[i] (lines 52–54).

Hence, the claim holds.

Claim 4.13. Consider some process p, and any index i∗ ∈ Ip. At any point, i∗ ∈ usedQp ∪

anncQp ∪ hintQp ∪ hint′Qp ∪ freep.

Proof. Initially, all indices of Ip are in freep, and so i∗ ∈ freep at the beginning of the execution.

Only p can access p’s queues and freep. Suppose process p removes i∗ from freep at some

point t. This can only happen in line 25 of a recycle() call. At the same point, p executes its

updateQ(usedQp, i∗) operation call in line 26. Since process p owns index i∗, the if-condition in

line 47 of this operation call evaluates to true, and so p enqueues i∗ into usedQp in line 49. All

these steps are on p’s local variables, and so they all happen at t. Thus, an instance of i∗ is in

p’s queues right after this point.

Next suppose that process p removes the last instance of i∗ from its queues at some point t.

This can only happen in line 52 of an updateQ() operation call by p. By Claim 4.12, cp[i∗] = 0

when p executes lines 52–55. Thus p adds i∗ to freep in line 55. Since all these steps are on p’s

local variables, i∗ is in freep right after t.

In the following claim, we show that there is always at least one index in freep, when p

executes freep.remove() in line 25 of its recycle() call.

Claim 4.14. For any process p, |freep| ≥ 1 just before p executes line 25 of its recycle()

operation call.

Proof. Fix a process p, a recycle() operation call R by p, and let t be the point just before

p executes line 25 of R. By Claim 4.11, each of p’s queues, usedQp, anncQp, hintQp, and

hint′qp contains 2n + 2 elements at t. Thus, at this point there can be at most 8n + 8 distinct

indices of Ip in p’s queues. By Claim 4.13, each index i∗ ∈ Ip is in freep or in one of p’s queues

at t. Since |Ip| = 8n + 9, there is at least one index of Ip that is not in any of the queues, an

therefore in freep at this point.

62

In the following three claims, we discuss how and when an index gets added to one of p’s queues

or freep. More specifically in Claim 4.15, we show that once an index is added to one of p’s

queues, then it remains in that queue, and therefore, it cannot be added to freep, at least until

p has completed another 2n + 1 recycle() calls. Moreover in Claim 4.16, we show that when

some process p reads some index i from an entry of Annc, Hp, or H′p during a recycle() call,

then starting from that point, p only can add i to freep after it completes at least 2n + 1 more

recycle() calls, and after i is not anymore stored in Annc, Hp, and H′p, whichever is last. In

Claim 4.17 we use this to show that if p executes at least n recycle() calls during some interval

and one of Annc, Hp, and H′p holds some value i throughout the same interval, then p reads

index i from that register at some point during this interval and keeps it out of freep until the

end of this interval.

Claim 4.15. Consider a recycle() operation call R by some process p. Let R1, R2, . . . be the

recycle() calls that p executes after R, and let t′ = tR2n+2@inv if p invokes R2n+2 in Λ, and

t′ = ∞ otherwise. Also let qu be one of p’s queues usedQp, anncQp, hintQp, or hint′Qp. If p

enqueues i∗ ∈ Ip into qu at some point t during R, then

(a) that instance of i∗ does not get removed from qu throughout [t, t′), and

(b) process p does not add i∗ to freep throughout [t, t′).

Proof. By Claim 4.11, the size of each of p’s queues is 2n + 2. During each recycle()

operation call, p dequeues exactly one element from each of these queues (in lines 26, 28, 30

and 32). Therefore, when p enqueues index i∗ into qu during R, there are 2n + 2 elements in

front of that instance of i∗ in the queue. One element is dequeued during R, and the remaining

2n + 1 elements get dequeued during R1, . . . , R2n+1. Thus, after an instance of i∗ is enqueued

to qu at t, this instance of i∗ gets removed from qu during R2n+2, if p invokes 2n + 2 additional

recycle() calls after t, and otherwise it remains in qu until the end of Λ. This proves Part (a).

By Part (a), an instance of i∗ is in one of p’s queues throughout [t, t′), and so by Claim 4.12,

we have cp[i∗] ≥ 1, throughout this interval. Since p can only add index i∗ to freep in line 55

63

when cp[i∗] = 0, process p does not add i∗ to freep throughout [t, t′), so Part (b) follows.

Claim 4.16. Consider an index i∗ ∈ Ip, and a recycle() operation call R by some process p.

Let X denote either Annc[q], the first component of Hp[q], or the first component of H′p[q].

Suppose that at some point t during R, process p reads i∗ from X. Let R1, R2, . . . be the

recycle() calls that p executes after R, and let

(a) t′ = tR2n+2@inv, if p invokes R2n+2 in Λ, and t′ = ∞ otherwise, and

(b) t′′ be the first point after t at which the value of X is changed, and t′′ = ∞ if such a

point does not exist in Λ.

Then p does not add i∗ to freep throughout [t,max{t′, t′′}).

Proof. Suppose process p reads i∗ from X at point t during R. This happens either in line 27, 29,

or 31 of R, depending on whether X is Annc[q], or the first component of Hp[q] or of H′p[q].

In any of these cases, process p adds i∗ to one of its queues at the same point t as it calls

updateQ(·, i∗). By Claim 4.15 (b), p does not add i∗ to freep throughout [t, t′). So if t′′ ≤ t′,

the claim follows.

Now suppose that t′′ > t′. We show that p does not add i∗ to freep throughout [t′, t′′). For

the purpose of contradiction, assume p adds i∗ to freep at some point t2 ∈ [t′, t′′), and let t1

be the last point during [t, t2] at which p reads i∗ from X, during some recycle() operation

call. Since this happens at point t, such a point t1 exists in the interval [t, t2]. By the claim

assumption in Part (b), X = i∗ throughout [t, t′′), and thus

X = i∗ throughout [t1, t2]. (4.6)

During each Write() call, and thus once between every two recycle() calls, p increments

modulo n the value stored in ctrp, and it does not modify ctrp anywhere else. Therefore,

process p must complete fewer than n recycle() calls during [t1, t2], (4.7)

64

since otherwise p executes at least one complete recycle() call R∗ during [t1, t2], such that

ctrp = q at the invocation of R∗. Thus, by (4.6), p reads i∗ from X in R∗. This contradicts the

assumption that at point t1, process p reads i∗ from X for the last time before t2, and so (4.7)

is true.

At t1 process p reads i∗ from X, and then adds i∗ to one of its queues, (in either lines 27–28,

lines 29–30, or lines 31–32, depending on whether X is Annc[q], or the first component of Hp[q]

or of H′p[q]). Thus by Claim 4.15 (b), p does not add i∗ to freep after t1 until it completes

another 2n + 1 recycle() calls, which is by (4.7) some time after t2. This is a contradiction,

because we assumed that p adds i∗ to freep at t2.

Claim 4.17. Consider some processes p and q, and let X denote either Annc[q], or the first

component of Hp[q], or the first component of H′p[q]. Suppose X = i∗ throughout some interval

[t1, t2]. If p executes at least n recycle() calls R1, . . . , Rn during [t1, t2], then p does not add

i∗ to freep throughout [tRn@rsp, t2].

Proof. Process p increments ctrp modulo n once during each Write() operation call and thus

once between each two recycle() calls. Therefore, p completes at least one recycle() call

Rk, 1≤ k ≤ n, during [t1, t2], such that ctrp = q at the invocation of Rk. Thus process p reads

i∗ from X in line 27, line 29, or line 31 of Rk, depending on what X denotes. Then at the

same point during Rk, process p enqueues i∗ to one of its queues at some point t∗ ∈ [t1, tRk@rsp].

Therefore, by Claim 4.16, index i∗ does not get added to freep during the interval that starts at

t∗ and ends when the value stored in X changes for the first time after t∗. Thus, p does not add

i∗ to freep throughout [t∗, t2] and therefore p does not add i∗ to freep throughout [tRn@rsp, t2],

because t∗ < tRk@rsp < tRn@rsp.

Hint Mechanism Here we provide some claims about hints a process p provides to another

process q. In particular in Claim 4.18, we show that if the sequence number attached to the

latest hint provided to q by p is the same as the current value of Sq, then p does not provide a

new hint, since q might be using the provided hint as its exec-index.

65

Next, in Claim 4.19, we show that at each point when some process p is not in the process

of providing a hint, either Hp[q] or H′p[q] stores (⊥,⊥), or the first components of Hp[q] and

H′p[q] are equal, for any q.

Claim 4.18. Consider two processes p and q. Let t be a point when p has either no pending

Write() call, or its Write() call W is pending, but t /∈ [tW@14, tW@21). Also let t′ be the first

point after t, at which q writes to one of Hp[q], H′p[q], and Sq, and t′ = ∞ if such a point does

not exist. Suppose at point t, we have Hp[q] = (j1, s∗), H′p[q] = (j2, s∗), and Sq = s∗, for some

values j1, j2, s∗. Then process p writes to neither Hp[q] nor H′p[q] throughout (t, t′).

Proof. Suppose for the sake of contradiction that p writes to at least one of Hp[q] and H′p[q]

during (t, t′). Let X ∈
{

Hp[q], H′p[q]
}

be the register to which p writes first during this interval,

and let W ′ be the Write() call by p in which this happens. Then ctrp = q when p invokes

W ′, and p writes to X at some point t∗, where t∗ = tW ′@18 if X = Hp[q], and t∗ = tW ′@21 if

X = H′p[q]. So t∗ ∈ (t, t′). We have t < t∗ and by the claim assumption, t 6∈ [tW ′@14, tW ′@21).

Thus, t < tW ′@14.

Recall that only q can write to Sq, and only p and q can write to Hp[q] and H′p[q]. By the

claim assumption, Sq = s∗ throughout [t, t′), process q does not write to any of Hp[q] and H′p[q]

during (t, t′), and t∗ is the first point during this interval at which p writes to any of these variables.

Hence, Sq = s∗, Hp[q] = (j1, s∗), H′p[q] = (j2, s∗) throughout (t, t∗) and therefore throughout

[tW ′@14, t∗) (because t < tW ′@14). This implies that process p reads the same sequence number

s∗ from Sq at tW ′@14, and from the second component of Hp[q] at tW ′@15, and from the second

component of H′p[q] at tW ′@16. Thus, the if-condition in line 17 of W ′ evaluates to false, and p

does not execute lines 18–21 of W ′, which is a contradiction.

Claim 4.19. Consider two processes p and q. Let t be a point when p has either no pending

Write() call, or its Write() call W is pending, but t /∈ [tW@18, tW@21]. Then at t, either

Hp[q] = (⊥,⊥), or H′p[q] = (⊥,⊥), or the first components of Hp[q] and H′p[q] are equal.

66

Proof. Fix two processes p and q. Initially, we have Hp[q] = H′p[q] = (⊥,⊥), and so the claim

holds. Recall that only processes p and q can write to Hp[q] and H′p[q]. Process p only writes

to one of these two registers in lines 18 and 21, respectively, of a Write() operation call. By

the Write() implementation, if p writes some pair (j, s) to one of Hp[q] and H′p[q] during a

Write() call, it writes a pair (j, s′) to the other one during the same Write() call, where s and

s′ may or may not be equal. Process q only writes (⊥,⊥) to one of these two registers in lines 44

and 45, respectively, of its Exec() operation call. Thus, if p is not poised to execute lines 18–21,

there are two possible cases: Either the last writes to Hp[q] and H′p[q] were both by process p,

and thus the first components of Hp[q] and H′p[q] are equal, or the last write to at least one of

these two registers was by process q, and thus one of Hp[q] and H′p[q] stores value (⊥,⊥).

The following claim uses the results of both Claims 4.18 and 4.19. Later in the proof of

Lemma 4.8, we use this claim to show that if p completes at least n Write() operation calls

between the point that some process q reads an index i ∈ Ip from Ptr and the point right after

q announces this index, then q’s following if-condition in line 41 evaluates to true.

Claim 4.20. Consider a Write() operation call W by some process p, and let q be the value of

ctrp at tW@inv. Suppose E is an Exec() call by q, and W completes during (tE@35, tE@40]. Then

at tW@rsp, we have Hp[q] = H′p[q] = (j, s∗), for some j, where s∗ is the value q writes to Sq at

tE@35.

Proof. An illustration of this proof is depicted in Figure 4.6. Process q writes s∗ to Sq at tE@35,

and it does not write to Sq during time interval (tE@35, tE@40]. Therefore, since only q writes to

Sq, and it only writes non-⊥ values, we have

Sq = s∗ 6= ⊥ throughout [tW@inv, tW@rsp]. (4.8)

Only processes p and q can write to Hp[q] and H′p[q]. Process q does not write to either of

these two registers during time interval (tE@35, tE@40], hence

q does not write to either Hp[q] or H′p[q] throughout [tW@inv, tW@rsp]. (4.9)

67

p:
W

q:
E

Case 1: Hp[q] = (j1, s∗) and H′p[q] = (j2, s∗)

Case 2: Hp[q] or H′p[q] = (·, s 6= s∗)

tE@35

Sq := s∗

tE@40

Sq = s∗ and q does not write to Hp[q] and H′p[q]

Figure 4.6: Illustration for the proof of Claim 4.20

Now we consider the following two cases: First, consider the case in which Hp[q] = (j1, s∗)

and H′p[q] = (j2, s∗) at tW@inv, for some values j1 and j2. By (4.8), s∗ 6= ⊥, and therefore by

Claim 4.19, j1 must be equal to j2. Moreover by (4.8), Sq = s∗ at tW@inv. Hence, by Claim 4.18,

p does not write to either Hp[q] or H′p[q] between tW@inv and the point at which q writes to

either Sq, Hp[q], or H′p[q]. Hence by (4.8) and (4.9), Hp[q] = H′q[q] = (j, s∗) at the response

of W, where j = j1 = j2.

Next suppose that at tW@inv at least one of Hp[q] and H′p[q] stores some pair (·, s), where

s 6= s∗. Process p does not write to any of these two registers between the invocation and line 18

of W, and by (4.9), process q also does not write to them during the same interval. Hence, the

second component stored in at least one of Hp[q] and H′p[q] is s 6= s∗ when p reads it in line 15

or 16 of W. By (4.8), Sq 6= s when q reads Sq in line 14, and thus the if-condition in line 17

evaluates to true. So, p writes pair (j, s∗) to Hp[q] in line 18 and to H′p[q] in line 21 of W for

some value j. Process p does not modify the value stored in these two registers anymore during

W, and so Hp[q] = H′q[q] = (j, s∗) at tW@rsp.

Write Operation In the following section, we discuss all the invariants that hold for some

object A[i∗] that is put into use during a Write() operation call W by some process p. In

68

particular, in Claim 4.22, we prove that p completes at least 2n + 2 recycle() calls between

the point at which A[i∗] is in use and the next point at which p invokes an A[i∗].SWrite() call.

Moreover, p can only add i∗ to freep, after it completes 2n recycle() calls after the point at

which A[i∗] is in use.

To achieve that, we first prove that i∗ is in freep just before W is invoked. Then we show that

if p puts the same object A[i∗] into use again during a later Write() operation call W ′, then p

executes at least 2n + 2 recycle() calls between W and W ′ (see Claim 4.21 for more details).

Finally in Claim 4.23, we prove that while A[i∗] is in use, no A[i∗].SWrite() operation call

is pending.

Claim 4.21. Let W and W ′ be two distinct Write() operation calls by some process p, such

that W is executed before W ′ in Λ. Also let RW and RW ′ be the recycle() calls executed

during W and W ′, respectively, and R1, R2, . . . be the recycle() calls p execute after RW .

Suppose f = i∗ ∈ Ip at both tRW@rsp and tR′W@rsp, then

(a) p completes at least 2n + 2 recycle() calls during [tW@rsp, tW ′@inv).

(b) p adds i∗ to freep at some point during [tR2n+2@inv, tW ′@inv),

Proof. Since f = i∗ at tRW@rsp and tR′W@rsp, both operation calls RW and RW ′ must have

returned i∗. This implies that p removes i∗ from freep in line 25 of RW at tRW@inv = tW@inv and

in line 25 of RW ′ at tRW′@inv = tW ′@inv. Therefore,

i∗ ∈ freep just before tW@inv and tW ′@inv. (4.10)

Proof of Part (a). Since RW returns index i∗, this index is removed from freep and enqueued to

usedQp in lines 25–26 of RW at tRW@inv = tW@inv, as depicted in Figure 4.7. Let t′ = tR2n+2@inv

if p invokes R2n+2 in Λ, and t′ = ∞ otherwise. By Claim 4.15 (b), p does not add i∗ to freep

throughout [tW@inv, t′). Therefore,

i∗ /∈ freep throughout [tW@inv, t′). (4.11)

69

p:
WRW R1

. . .
R2n+2

tW@inv

i∗ := freep.remove()

usedQp.enq(i∗)

t′

i∗ /∈ freep

Figure 4.7: Illustration for the proof of Claim 4.21, Part (a)

By (4.10), index i∗ is in freep just before tW ′@inv > tW@inv. This in addition to (4.11) implies

that t′ < tW ′@inv < ∞, and so

t′ = tR2n+2@inv. (4.12)

Therefore, p invokes R2n+2 before it invokes W ′, and so it must complete this operation call

before W ′ as well. Since p invokes only one recycle() call during each Write() operation call,

R1 is invoked after W responds. Therefore, at least all 2n + 2 recycle() calls R1, . . . , R2n+2

complete during the interval that starts with the response of W and ends with the invocation of

W ′.

Proof of Part (b). By (4.11), (4.12), (4.10) and Part (a), index i∗ is not in freep throughout

[tW@inv, tR2n+2@inv), but it is in freep just before tW ′@inv > tR2n+2@inv. Thus, index i∗ must be

added to freep at some point during [tR2n+2@inv, tW ′@inv), and by Claim 4.9 (b), this must be

done by the owner of index i∗, process p.

Claim 4.22. Consider some process p. Suppose Ptr = i∗ ∈ Ip at some point t1, and process p

invokes an A[i∗].SWrite(x) call at a later point t2 > t1. Then

(a) p completes at least 2n + 2 recycle() calls during interval [t1, t2], and

(b) Let R2n+1 be p’s 2n + 1-st recycle() call after t1, then p adds i∗ to freep at some

point during [tR2n+1@inv, t2).

70

p:
W

Ptr := i∗

≤ 1 recycle() call by p t1

Ptr = i∗

≥ 2n + 2 recycle() calls by p

W ′recycle()

t2

A[i∗].SWrite(x)

Figure 4.8: Illustration for the proof of Claim 4.22, Part (a)

Proof. At point t1, index i∗ is stored in Ptr as depicted in Figure 4.8. The value of Ptr can only

change to i∗ during a Write() operation call by process p (see Claim 4.9(c)). Let W be the

Write() operation call during which p writes i∗ into Ptr for the last time before t1, and hence

p’s local variable f has value i∗ during W. Let W ′ be the Write() operation call in which p

invokes A[i∗].SWrite(x) at point t2 > t1, and thus p’s local variable f has value i∗ during W ′,

as well.

Process p invokes at most one recycle() call after W responds and before t1, because

otherwise if p invokes two recycle() calls during [tW@rsp, t1], then this process writes to Ptr at

least once during this interval, and since we assumed W is the last Write() operation call during

which p writes i∗ to Ptr before t1, the value of Ptr would not be equal to i∗ at t1.

By Claim 4.21(a), process p completes at least 2n + 2 recycle() calls during

(tW@rsp, tW ′@inv). Since p executes at most one recycle() call during (tW@rsp, t1),

p completes at least 2n + 1 recycle() calls during [t1, tW ′@inv), (4.13)

By the implementation, process p completes another recycle() call during [tRW′@inv, t2]. Hence

by (4.13), p completes at least 2n + 2 recycle() calls during [t1, t2]. This completes the proof

of Part (a).

Let R be the 2n + 2-nd recycle() call p invokes after tW@rsp. By Claim 4.21(b), process

p adds i∗ to freep at some point during [tR@inv, tW ′@inv) ⊆ [tR@inv, t2) (because tW ′@inv < t2).

Since p invokes at most one recycle() call during [tW@rsp, t1], operation call R is either the

2n + 2-nd or the 2n + 1-st recycle() call p invokes after t1. Therefore, tR@inv ≥ tR2n+1@inv.

71

Proof.

p:

t′

Ptr := i∗
S

t

Ptr = i∗

2n + 2 recycle() calls

no Ptr.Write()

p writes to Ptr at least 2n + 1 times �

Figure 4.9: Illustration for the proof of Claim 4.23

Hence, p adds i∗ to freep at some point during [tR2n+1@inv, t2), which proves Part (b).

Claim 4.23. Consider an index i∗ ∈ Ip. If Ptr = i∗ at some point t, then no A[i∗].SWrite()

operation call is pending at t.

By Claim 4.9 and Corollary 4.10, only process p can write i∗ to Ptr and execute

A[i∗].SWrite(). Suppose, for the sake of contradiction, that p executes an A[i∗].SWrite()

operation call S that is pending at t as depicted in Figure 4.9. Since Ptr = i∗ at t, process p

must have written i∗ to Ptr at some point prior to t. Let t′ be the last time before t at which p

writes i∗ to Ptr, thus

no process writes to Ptr during (t′, t]. (4.14)

Since S gets invoked before t and is pending at t, and also p does not write to Ptr during an

SWrite() operation call, point t′ occurs before the invocation of S.

By Claim 4.22(a), p completes at least 2n + 2 recycle() operation calls after t′ and before

the invocation of S. Hence, p completes at least 2n + 1 Write() operation calls between t′ and

the invocation of S. Process p writes to Ptr exactly once during each Write() call (in line 20

or 23), so p writes to Ptr at least 2n + 1 times after t′ and before the invocation of S, and thus

before t. This contradicts (4.14).

Exec Operation In the following two claims, we establish the main properties needed to prove

Lemma 4.8, when process q obtains an index indirectly during an Exec() call.

72

The next claim states that if during an Exec() call E, a process q reads identical hints from

Hp[q] and H′p[q] augmented with a sequence number s∗ that matches q’s current sequence

number, then those hints are provided by p during one Write() call. To prove this, we assume

for the purpose of contradiction that these hints are provided during two distinct Write() calls

W and W ′. We consider different cases of how W and W ′ are ordered compared to E, and we

show how each case leads to a contradiction. In particular, we show that either one of these hints

get overwritten before q reads it during E, or the same hint i∗ cannot be provided during both

of these operations, because i∗ is continuously stored in an entry of H or H′, and so it cannot

be added to Free to be chosen as a write-index again.

Claim 4.24. Consider an index i∗ ∈ Ip and an Exec() operation E by some process q. Suppose

q reads (i∗, s∗) from both Hp[q] and H′p[q] in line 39 respectively line 40 of E, where s∗ is the

value q writes to Sq in line 35 of E. Then there exists a Write() operation call by p during

which p writes (i∗, s∗) into Hp[q] and H′p[q] both for the last time before tE@40.

Proof. Process q reads (i∗, s∗) from both Hp[q] and H′p[q] at tE@39 and tE@40, respectively.

Therefore, process p must have previously written (i∗, s∗) to Hp[q] and H′p[q] during some

Write() call(s) in lines 18 and 21, respectively. We define W and W ′ as follows:

W is the last Write() call by p, such that tW@18 < tE@40 and

at tW@18, p writes (i∗, s∗) to Hp[q].
(4.15)

W ′ is the last Write() call by p, such that tW ′@21 < tE@40 and

at tW ′@21, p writes (i∗, s∗) to H′p[q].
(4.16)

Process q reads (i∗, s∗) from H′p[q] at tE@40, and since only p can write a non-(⊥,⊥) pair to

H′p[q],

H′p[q] = (i∗, s∗) throughout [tW ′@21, tE@40]. (4.17)

73

p:
W ′

tW′@21

H′p[q] := (i∗, s∗)

W

tW@18

Hp[q] := (i∗, s∗)

q:
E

tE@40

H′p[q] = (i∗, s∗)

2n + 2 recycle() calls

p does not add i∗ to freep before tW@inv �

Figure 4.10: Illustration for the proof of (4.19) of Claim 4.25, Case 1

Now we show that

if tW@18 < tE@39, then no process writes to Hp[q] throughout (tW@18, tE@39]. (4.18)

For the sake of contradiction, suppose one or more writes to Hp[q] occurs during (tW@18, tE@39].

The last of these writes must be a Write(i∗, s∗) call by p, because q reads (i∗, s∗) from Hp[q]

at tE@39. Thus p writes (i∗, s∗) to Hp[q] at some point during (tW@18, tE@39] ⊆ (tW@18, tE@40],

which contradicts (4.15).

To prove the claim, it is enough to show that

W = W ′. (4.19)

For the sake of contradiction, assume W 6= W ′. Operation calls W and W ′ are both executed by

process p, and so they are not overlapping. Therefore W gets executed either before W ′ or after

W ′.

Case 1. First suppose p executes W after W ′ as shown in Figure 4.10. This together with (4.15)

implies tW ′@21 < tW@18 < tE@40. Thus, [tW ′@rsp, tW@inv] ⊆ [tW ′@21, tE@40], and hence by (4.17)

we obtain

H′p[q] = (i∗, s∗) throughout [tW ′@rsp, tW@inv]. (4.20)

74

By (4.15) and (4.16), p’s local variable f has the same value i∗ during both W and W ′, thus,

Claim 4.21 applies. By Claim 4.21(a), p completes at least 2n+ 2 recycle() calls R1, . . . , R2n+2

during [tW ′@rsp, tW@inv]. Therefore by Claim 4.17 and (4.20), p does not add i∗ to freep through-

out [tRn@rsp, tW@inv]. This is a contradiction, because by Claim 4.21(b), process p adds i∗ to

freep at some point during [tR2n+2@inv, tW@inv) ⊆ [tRn@rsp, tW@inv].

Case 2. Now suppose p executes W before W ′. By (4.16) we have

tW@18 < tW ′@18 < tW ′@21 < tE@40. (4.21)

We consider the following cases:

Case 2.1: tW ′@18 < tE@39. Then by (4.21), tW@18 < tE@39. Thus, by (4.18), no process writes

to Hp[q] = (i∗, s∗) throughout (tW@18, tE@39]. This is a contradiction, because by (4.16), process

p provides a hint to q during W ′ and so p writes some pair to Hp[q] at tW ′@18 ∈ (tW@18, tE@39].

Case 2.2: tE@39 < tW ′@18. First suppose tE@35 < tW ′@14. By (4.16), p writes (i∗, s∗) to H′p[q]

at point tW ′@21. Thus, at tW ′@18, process p writes a pair (i∗, s) to Hp[q], where s is the value

p read from Sq at tW ′@14. Recall that we assumed tE@35 < tW ′@14, and so from (4.21), we

obtain tW ′@14 ∈ (tE@35, tE@40). Thus, we have s = s∗, i.e. p writes (i∗, s∗) to Hp[q] at tW ′@18.

According to (4.21), tW ′@18 ∈ (tW@18, tE@40). This contradicts (4.15).

Now suppose tW ′@14 < tE@35 as shown in Figure 4.11. By the assumption that W gets

executed before W ′, we have tW@18 < tW ′@14 < tE@35 < tE@39. Therefore, by (4.15) and (4.18),

we have

Hp[q] = (i∗, s∗) throughout [tW@18, tE@39]. (4.22)

Since tW@18 < tW@rsp and tW ′@inv < tW ′@14 < tE@35, we have

Hp[q] = (i∗, s∗) throughout [tW@rsp, tW ′@inv]. (4.23)

By (4.15) and (4.16), p’s local variable f has the same value i∗ during both W ′ and W,

thus, Claim 4.21 applies. By Claim 4.21(a), p completes at least 2n + 2 recycle() calls

75

p:
W

tW@18

Hp[q] := (i∗, s∗)
W ′

tW′@14

s := Sq

tW′@18

Hp[q] := (i∗, s)

tW′@21

H′p[q] := (i∗, s∗)

q:
E

tE@35

Sq := s∗

tE@39 tE@40

Hp[q] = (i∗, s∗)

2n + 2 recycle() calls

p does not add i∗ to freep before tW′@inv �

Figure 4.11: Illustration for the proof of (4.19) of Claim 4.25, Case 2.2 and if tW ′@14 < tE@35

R1, . . . , R2n+2 during [tW@rsp, tW ′@inv]. Therefore by Claim 4.17 and (4.23), p does not add i∗

to freep throughout [tRn@rsp, tW ′@inv]. This is a contradiction, because by Claim 4.21(b), process

p adds i∗ to freep at some point during [tR2n+2@inv, tW ′@inv) ⊆ [tRn@rsp, tW ′@inv].

By Claim 4.24, if a process q obtains an index i∗ indirectly during an Exec() call E, then,

there is a Write() call W by some process p in which p writes i∗ to both hint entries of q, at

some point during E, before q reads the second hint. Therefore p also writes this index to Ptr

during E. We show in the following claim, that W linearizes after q updates Sq during E. The

idea is that if p writes to Ptr before that, then Sq must have wrapped around since p provides

its first hint during W, however, then q must have reset the value stored in the first hint before

q reads it, which is a contradiction. Moreover, we prove that the value of the first hint does not

change before p writes to the second hint during W.

Claim 4.25. Consider an Exec() operation call E by some process q during which q write some

value s∗ to Sq in line 35. Suppose process q obtains some index i∗ ∈ Ip indirectly, and executes

A[i∗].Oper(args) during E. Then there exists a process p and a Write() operation call W by

p, such that W has the following properties:

76

(a) process p writes i∗ into Ptr at tW@20,

(b) tW@20, tW@21 ∈ [tE@35, tE@40], and

(c) Hp[q] = H′p[q] = (i∗, s∗) at tW@21.

Proof. Since q obtains i∗ indirectly, q reads (i∗, s∗) from both Hp[q] and H′p[q] in line 39

respectively line 40 of E. Thus by Claim 4.24, there is a Write() operation call W by p such

that

p writes (i∗, s∗) to Hp[q], respectively H′p[q], at tW@18, respectively tW@21, and (4.24)

tW@21 < tE@40, and (4.25)

p does not write (i∗, s∗) to Hp[q] during (tW@18, tE@40]. (4.26)

Since q reads (i∗, s∗) from Hp[q] at tE@39, by (4.26),

if tW@18 < tE@39, then no process writes to Hp[q] throughout (tW@18 < tE@39]. (4.27)

Proof of Part (a). By (4.24) and by the implementation, process p writes i∗ to Ptr in

line 20 of W at point tW@20.

Proof of Part (b). By (4.25), we have tW@20 < tW@21 < tE@40. Hence, it suffices to show

that tW@20 ≥ tE@35. By (4.24), process p writes the pair (i∗, s∗) to H′p[q] at tW@21, hence we

have,

Sq = s∗ at tW@19. (4.28)

Now suppose for the sake of contradiction that tW@20 < tE@35 as depicted in Figure 4.12.

This implies that tW@20 < tE@39, so (4.27) holds. In line 34 of Exec(), q reads and increments

modulo 2n the value stored in Sq, and in line 35, q writes the result to Sq, and Sq is not modified

77

p:
W

tW@18

Hp[q] := (i∗, s∗)

tW@19

s∗ := Sq

tW@20

Ptr := i∗

tW@21

H′p[q] := (i∗, s∗)

q:
E

tE@35

Sq := s∗

tE@39

no write to Hp[q]

≥ n Exec() calls by q

q writes (⊥,⊥) to Hp[q] �

Figure 4.12: Illustration for the proof of Claim 4.25, Part (b)

in any other operation. Thus just before tE@35, Sq 6= s∗. By the assumption tW@20 < tE@35 and

so tW@19 < tE@35, and thus by (4.28), q must have executed line 35 of Exec() operation 2n

times during time interval [tW@19, tE@35]. This implies that line 44 gets executed at least n times

by q during (tW@19, tE@35). Thus, at least once when q executes line 44, Sq mod n = p, and so

at least once process q writes the pair (⊥,⊥) into Hp[q] during (tW@19, tE@35), and therefore

during (tW@18,tE@39). This contradicts (4.27).

Proof of Part (c). By (4.24), H′p[q] = (i∗, s∗) at point tW@21. Now we show that Hp[q] =

(i∗, s∗) at the same point. Suppose for the purpose of contradiction that Hp[q] 6= (i∗, s∗) at

point tW@21. By (4.24), Hp[q] = (i∗, s∗) at point tW@18. This implies that some process (p

or q) writes to Hp[q] during (tW@18, tW@21]. Process p does not write to Hp[q] in lines 19–

21. Therefore, process q writes (⊥,⊥) to Hp[q] in line 44 of some Exec() call E′ at point

tE′@44 ∈ (tW@18, tW@21]. Both, E and E′ are executed by q, and tE′@44 ≤ tW@21, and thus

by (4.25), we have tE′@44 ≤ tE@40. Hence, E 6= E′ and E′ must be executed before E. Thus, we

have tW@18 < tE′@44 < tE@inv < tE@39. This contradicts (4.27), because tW@18 < tE@39, but q

writes (⊥,⊥) to Hp[q] at tE′@44 ∈ (tW@18, tE@39).

78

q:
E

tE@35

Sq := s∗

t∗ = tE@36

i∗ := Ptr

tE@37

Annc[q] := i∗

tE@39 tOp@rsp

Annc[q] = i∗

p:
≥ 2n + 2 recycle() calls

by (4.32) p invokes ≤ n recycle() calls p invokes ≥ n + 2 recycle() calls

S

p does not add i∗ to freep before tS@inv

this contradicts (4.31)

Figure 4.13: Illustration for the proof of Lemma 4.8, Case 1, Part (b)

Proof of Lemma 4.8 Utilizing all the results we obtain from these claims, we can finally prove

Lemma 4.8 (as repeated in the following).

Lemma 4.8. [Restated] Suppose some process q executes an Exec() operation call E in Λ,

in which q invokes an A[i∗].Oper() operation Op, for some i∗. Then there exists a point

t∗ ∈ [tE@inv, tOp@inv], such that:

(a) Ptr = i∗ at t∗, and

(b) no A[i∗].SWrite() operation call overlaps with interval [t∗, tOp@rsp].

Proof. Let p be the owner of index i∗. There are two cases depending on whether q obtains i∗

directly or indirectly.

Case 1: Process q obtains i∗ directly. This implies that q reads i∗ from Ptr at tE@36, and

then it writes i∗ to Annc[q] at point tE@37. Since this is the only write to Annc[q] during E,

Annc[q] = i∗, throughout [tE@37, tOp@rsp]. (4.29)

Let t∗ = tE@36, thus, t∗ ∈ [tE@inv, tOp@inv]. Hence Part (a) is true, and so it remains to show

Part (b). Assume for the sake of contradiction that there is an A[i∗].SWrite() operation call S

79

which overlaps with time interval [t∗, tOp@rsp] = [tE@36, tOp@rsp] as shown in Figure 4.13. Only

the owner of index i∗, process p, can execute an A[i∗].SWrite() call, and so S is executed by p.

By Claim 4.23, no A[i∗].SWrite() operation call can be pending at tE@36, thus, S gets invoked

at tS@inv ∈ (tE@36, tOp@rsp]. Since Ptr = i∗ at tE@36, by Claim 4.22

process p completes at least 2n + 2 recycle() calls during [tE@36, tS@inv], and (4.30)

let R2n+1 be the 2n + 1-st recycle() call by p after tE@36, then

p executes freep.add(i∗) at some point during [tR2n+1@inv, tS@inv) (4.31)

In the following, we first prove that

p invokes at most n recycle() calls during [tE@36, tE@39]. (4.32)

This together with (4.30) imply that tE@39 < tS@inv, and also that p invokes at least n + 2

recycle() calls during (tE@39, tS@inv). Then we show that this contradicts (4.31).

Suppose (4.32) is not true, i.e. p invokes more than n recycle() operation calls during

[tE@36, tE@39]. Process p invokes a Write() call with every invocation of a recycle() call, thus

this implies that p invokes more than n Write() calls during this interval, and so q completes

at least n Write() calls during this interval. In line 24 of each Write() operation call, p

increments ctrp modulo n, therefore, p completes at least one Write() operation call during

[tE@36, tE@39], such that ctrp = q at the invocation this Write() call. Let W ′ be the last such

Write() operation call during [tE@36, tE@39]. By Claim 4.20, Hp[q] = H′p[q] = (j, s∗) at the

response of W ′, for some value j, where s∗ is the value q writes to Sq at tE@35.

Since, Hp[q] = H′p[q] = (j, s∗) and Sq = s∗ at tW ′@rsp ∈ [tE@36, tE@39], by Claim 4.18 (using

t = tW ′@rsp) process p writes to neither Hp[q] nor H′p[q] between tW ′@rsp and the first point when

the value stored in Sq changes or q writes to Hp[q] or H′p[q]. Process q does not write to either

Hp[q] or H′p[q] during [tE@36, tE@40], and so it does not write to either Hp[q] or H′p[q] during

[tW ′@rsp, tE@40]. Moreover, the value stored in Sq does not change during the same interval.

80

Hence Claim 4.18 implies that p does not write to Hp[q] and H′p[q] throughout [tW ′@rsp, tE@40],

thus

Hp[q] = H′p[q] = (j, s∗) throughout [tW ′@rsp, tE@40]. (4.33)

Because tW ′@rsp ≤ tE@39, by (4.33) the pair q reads from both Hp[q] and H′p[q] at tE@39

and tE@40, respectively, is (j, s∗). Thus, the if-condition in line 41 of E evaluates to true, and

so q executes line 42. This is a contradiction, because we assumed q obtains i∗ directly. This

proves (4.32).

Thus by (4.32) and (4.30), p invokes at least n + 2 recycle() calls R1, . . . , Rn+2 during

(tE@39, tS@inv]. In the following, we show how this contradicts (4.31), and therefore, Part (b) is

proved to be correct for the case that q obtains i∗ directly.

By (4.29) Annc[q] = i∗ throughout (tE@39, tS@inv] ⊆ [tE@37, tOp@rsp]. Moreover, recycle()

calls R1, . . . , Rn all complete during (tE@39, tS@inv]. Thus by Claim 4.17, p does not add i∗ to

freep throughout [tRn@rsp, tS@inv]. By (4.32), p invokes at most n recycle() calls before R1,

and so tRn@rsp < tR2n+1@inv, where R2n+1 is the 2n + 1-st recycle() call by p after tE@36.

Therefore, p does not add i∗ to freep during [tR2n+1@inv, tS@inv], which contradicts (4.31).

Case 2: Process q obtains i∗ indirectly. Therefore, Claim 4.25 holds. By Claim 4.25 (a),

there exists a Write() operation call W by the owner of index i∗, process p, during which p

writes i∗ into Ptr at point tW@20. We prove Parts (a) and (b) for t∗ = tW@20. By Claim 4.25 (b),

tW@20 ∈ [tE@35, tE@40] ⊆ [tE@inv, tOp@inv], thus Part (a) is correct.

Since i∗ ∈ Ip, only process p can execute A[i∗].SWrite(). To prove Part (b), we assume for

the sake of contradiction that there is an A[i∗].SWrite() operation call S by p which overlaps

with time interval [tW@20, tOp@rsp] as shown in Figure 4.14. By Claim 4.23, no A[i∗].SWrite()

operation call can be pending at point tW@20, and p does not invoke any SWrite() during

[tW@20, tW@rsp]. Thus, S is invoked at some point after tW@rsp and before tOp@rsp, i.e.

tS@inv ∈ (tW@rsp, tOp@rsp]. (4.34)

81

q:
E

tE@35

Sq := s∗

tE@40 tOp@rsp

p:
W

tW@20

Ptr := i∗

t∗

S

≥ 2n + 2 recycle() calls

Hp[q] = (i∗, s∗) by (4.37)

enqueues i∗ to hintQp

⇒ i∗ /∈ freep until tS@inv

this contradicts (4.36)

Figure 4.14: Illustration for the proof of Lemma 4.8, Case 2, Part (b)

Since Ptr = i∗ at tW@20, by Claim 4.22 and because p does not execute any recycle() calls

between line 20 and the response of W, we can conclude that

process p completes at least 2n + 2 recycle() calls R1, . . . , R2n+2

during interval [tW@rsp, tS@inv) ⊆ [tW@20, tS@inv), and

(4.35)

p executes freep.add(i∗) at some point during [tR2n+1@inv, tS@inv) (4.36)

In the following, we first show that

Hp[q] = H′p[q] = (i∗, s∗) throughout [tW@21, tS@inv], (4.37)

where s∗ is the value q writes to Sq at point tE@35. Next we show how this contradicts (4.36),

and so the correctness of Part (b) is established.

Now we prove that (4.37) is true. By Claim 4.25 (c), we have Hp[q] = H′p[q] = (i∗, s∗)

at tW@21. Moreover, q writes s∗ to Sq at tE@35, and it does not change this value before

E responds. Hence, Sq = s∗ throughout [tE@35, tE@40], and so Sq = s∗ at tW@21, because by

Claim 4.25 (b), tW@21 ∈ [tE@35, tE@40]. Therefore, by Claim 4.18, process p does not write to

82

either Hp[q] or H′p[q], in the interval between tW@21 and the point at which q writes to any of

Hp[q], H′p[q], and Sq. Process q writes to neither Hp[q] nor H′p[q] during [tE@35, tOp@rsp], and

Sq = s∗ throughout the same interval. Therefore q does not write to any of these three registers

during (tW@21, tOp@rsp] ⊆ [tE@35, tOp@rsp]. So Claim 4.18 implies that p also does not write to

any of Hp[q] and H′p[q] during (tW@21, tOp@rsp]. Hence, Hp[q] = H′p[q] = (i∗, s∗) throughout

[tW@21, tOp@rsp]. By (4.34), we have [tW@21, tS@inv] ⊆ [tW@21, tOp@rsp], and so (4.37) follows.

Now consider the first n recycle() calls R1, . . . , Rn of (4.35), executed by p during

[tW@rsp, tS@inv). By (4.37), Hp[q] = (i∗, s∗) throughout the same interval. Therefore by

Claim 4.17, p does not add i∗ to freep during [tRn@rsp, tS@inv]. So p does not add i∗ to freep

during [tR2n+1@inv, tS@inv], which contradicts (4.36).

4.4.3 Proof of Theorem 4.1

Our implementation of Section 4.3 follows the template of Figure 4.4, and so by Lemmas 4.5

and 4.8, it provides a linearizable implementation of any writable type T from instances of se-

quentially writable object of the same type and registers. Each Write() and Exec(Oper,arg)

operation call on the resulting object executes a constant number of steps in addition to one

SWrite() and Oper() call, respectively, executed on an instance of a sequentially writable ob-

ject of the same type. Given the size of the data structures depicted in Figure 4.5 and the result

of Claims 4.11 and 4.14, it follows that our implementation requires 2n2 + 2n+ 1 shared registers

and n(8n + 9) instances of SW object. Each register needs to store at most O(n2) different

values, and therefore the registers used for this implementation are of size 2logn + O(1) bits.

This completes the proof of Theorem 4.1.

4.5 Optimal-Time Sequentially Resettable (k,b)-Array

Recall that the resettable type (k,b)-Array stores an array S of size k, and each array entry

S[i] stores a b-bit value, for i ∈ {0, . . . ,k − 1}. This type supports three operations: Read(),

83

Write(), and Reset(). For each i ∈ {0, . . . ,k − 1}, a Read(i) returns the value of the i-th

entry of the array, and a Write(i, x) writes value x to S[i]. A Reset() operation resets S[i] to

its initial value, for all i ∈ {0, . . . ,k− 1}.

A straightforward way to implement a sequentially resettable (k,b)-Array from k registers is

to write the initial value of the register into each array element during the SReset() operation.

(Recall that an SReset() is a Reset() operation that has to be executed in isolation in order

to guarantee the linearizability of the object.) However, the step complexity of such SReset()

operation is proportional to the size of the array. This section provides a sequentially resettable

implementation of this object from k + 1 registers, such that each operation requires a constant

number of steps. In this section, we assume ⊥ denotes the initial value of a register.

4.5.1 The Implementation

In this implementation, processes share a register Ver, which stores a version number, and an

array A[0 . . . k− 1] of registers, where each array entry A[i] stores a pair. First we explain the

implementation assuming Ver is an unbounded register. To execute an S.SReset(), i.e. to

sequentially reset the entire array S, a process simply reads and increments the version number

stored in Ver. Because SReset() is constrained to not overlap any other operation, these two

steps of this operation do not overlap any other operation calls, and so SReset() correctly

increments the value stored in Ver. To execute a Write(i, x) operation, the calling process reads

ver from Ver and then writes pair (x,ver) into A[i]. To return the value of the i-th element of S

in a Read(i), the calling process reads the pair (x,v) stored in A[i], and then it checks whether

v is the same version number as the one stored in Ver. If yes, then it returns x, and otherwise,

it returns the initial value of the register.

In order to bound register Ver, we increment the version number modulo k during each

S.SReset() operation call. However, this can cause the following problem. Suppose a process

reads some value (·,v) from a register A[i], i ∈ {0, . . . ,k− 1} and then checks that v is the value

of Ver. This process cannot distinguish between the case that a process wrote to A since the last

84

shared
int Ver = 0
Array<register> A[0, . . . ,k− 1] =

(
(⊥,⊥), · · · , (⊥,⊥)

)
Operation SReset()

56 v := (Ver.Read()+ 1) mod k
57 Ver.Write(v)
58 A[v].Write(⊥,⊥)

Operation Read(i)

59 (x,v) := A[i].Read()
60 ver := Ver.Read()
61 if v 6= ver then x := ⊥
62 return x

Operation Write(i, x)

63 ver := Ver.Read()
64 A[i].Write(x,ver)

Figure 4.15: Implementation of a Sequentially Resettable (k,b)-Array

time Ver = v, or the value stored in Ver has wrapped around at least once since the last write to

A[i]. To avoid this problem, we ensure that during any sequence of k consecutive S.SReset()

executions, each register in A is actually reset once. We achieve this by resetting one register of

A in each SReset() operation call, thus ensuring that all registers of A are reset after every k

consecutive S.SReset() operation calls. This implementation is depicted in Figure 4.15.

4.5.2 Proof of Lemma 4.2

This section provides a proof for Lemma 4.2 (as repeated in the following).

Lemma 4.2 (Restated). There is an implementation of a sequentially resettable (k,b)-Array, from

k + 1 registers, each of size b + O(logk) bits, in which each Read(), Write() and SReset()

operation call has constant step complexity.

Consider the implementation of Figure 4.15. Each operation consists of a constant number

of shared steps. Moreover, this implementation uses k + 1 registers, and each register stores at

most O(logk) bits in addition to the data value it stores. Hence to prove this lemma, it is enough

85

to show that any transcript Λ obtained by executing operations implemented as in Figure 4.15

is linearizable, provided no SReset() call overlaps any other operation call in Λ.

We define a linearization point lin(Op) for each operation call Op in Γ(Λ) by their lin-

earization points. If Op is a Read() call, then we let lin(Op) = tOp@inv = tOp@59. If Op is a

Write() call, then we let lin(Op) = tOp@rsp = tOp@64. Finally, for an SReset() call Op, we let

lin(Op) = tOp@rsp. Clearly, for any operation call Op, we have lin(Op) ∈ [tOp@inv, tOp@rsp].

Let SΛ be the sequential history obtained from ordering operation calls in Γ(Λ). To prove

that SΛ is valid, it is enough to show that for any Read(i∗) operation call R,

(a) if no Write(i∗, ·) call proceeds R in SΛ, then R returns ⊥,

(b) otherwise, let W = Write(i∗, xW) be the last Write(i∗, ·) operation call that precedes

R in SΛ, then

(b1) if there is no SReset() call between W and R in SΛ, then R returns xW , and

(b2) R returns ⊥, otherwise.

Proof of Part (a). If no Write(i∗, ·) call appears before R in SΛ, then no process executes

line 64 for i = i∗. Therefore, Part (a) immediately follows, because initially A[i∗] = (⊥,⊥) and

has not changed, and Ver≥ 0, and so the if-condition in line 61 of R evaluates to true.

Proof of Part (b). Now suppose W = Write(i∗, xW) is the last Write(i∗, ·) call before R in

SΛ. Then Parts (b1) and (b2) follow from the following claim.

Let p be the process that executes W, and let (xW ,vW) be the pair that p writes to A[i∗]

in line 64 of W, for some vW . Also let q be the process that executes R. No S.SReset() call

overlaps any other operation calls in Λ, therefore

no S.SReset() operation call overlaps W or R. (4.38)

86

Proof of Part (b1). First suppose no S.SReset() operation call appears between W and R in

SΛ. Therefore by (4.38), no S.SReset() operation call overlaps interval [tW@inv, tR@rsp]. Oper-

ation call W is the last S.Write(i∗, ·) call that precedes R in SΛ, so no process executes line 64

during [tW@rsp, tR@inv] = [tW@64, tR@60]. Thus the value of A[i∗] does not change throughout

this interval. Hence

q reads (xW ,vW) 6= (⊥,⊥) from A[i∗] in line 60 of R. (4.39)

Moreover, as the value stored in Ver only changes during an S.SReset() operation call,

and no S.SReset() operation call overlaps interval [tW@inv, tR@rsp], Ver stores the same value

throughout this interval. Recall that p writes (xW ,vW) to A[i∗] in W, thus, p reads vW from

Ver in line 63 of W. Thus, Ver = vW throughout [tW@inv, tR@rsp], and in particular when p reads

this variable in line 60 of R. Thus, when q evaluates the if-condition in line 61 of R, its local

variable ver has value vW , and so because of (4.39) the if-condition evaluates to false. Therefore,

operation call R returns x = xW .

Proof of Part (b2). Next suppose that an S.SReset() operation call appears between W and

R in SΛ. Let Rs be the last such S.SReset() call, hence by (4.38), Rs is the last S.SReset()

call that completes during [tW@rsp, tR@inv]. Since the value of Ver can only change during an

SReset() operation call,

process q reads v∗ from Ver in line 60 of R, (4.40)

where v∗ 6= ⊥ is the value written to Ver in line 57 of Rs. By the assumption, W is the last

S.Write(i∗, ·) call that precedes R in SΛ, and (xW ,vW) is the pair written to A[i∗] during this

operation call. Therefore when q reads some pair (xR,vR) from A[i∗] in line 59 of R, either

vR = ⊥ if a process writes (⊥,⊥) to A[i∗] in an SReset() call during interval [tW@rsp, tR@inv],

or vR = vW otherwise. If vR = ⊥, then by (4.40), vR 6= v∗, and so the if-condition of line 61

evaluates to true. Thus, R returns ⊥.

87

Now suppose vR = vW , hence, no process writes (⊥,⊥) to A[i∗] throughout [tW@rsp, tR@inv].

If vR = vW 6= v∗, then the if-condition is satisfied, and R returns ⊥. Finally, we show that it is

not possible that vR = vW = v∗, by assuming for the sake of contradiction that vR = vW = v∗.

Operation call Rs completes during [tW@rsp, tR@inv]. The value of Ver is incremented to v∗ in

Rs at some point during interval [tW@rsp, tR@inv]. Moreover, since p writes (xW ,vW) to A[i∗]

in W, it must have read vW = v∗ in line 63 of W, and by (4.40), process q also reads v∗ from

Ver in line 60 of R. Thus, the value stored in Ver wraps around during [tW@rsp, tR@inv]. This

implies that k SReset() operation calls complete during this interval, and therefore, line 58 gets

executed for all v ∈ {0, . . . ,k− 1}. Therefore, some process writes (⊥,⊥) to A[i∗] at some point

during [tW@rsp, tR@inv], which is a contradiction.

This concludes the proof of Part (b), therefore SΛ is a linearization of Λ.

88

Chapter 5

ABA-Detecting Registers

5.1 Results

To investigate the complexity of detecting or preventing ABAs, we define a natural object,

the ABA-detecting register . It supports two operations, DRead() and DWrite(). Operation

DWrite(x) writes value x to the register, and returns nothing. Operation DRead() by process p

returns, in addition to the value of the register, a Boolean flag, which is true if and only if some

process executed a DWrite() since p’s last DRead() operation call or since the beginning of

the execution, whichever is later. We distinguish between single-writer ABA-detecting registers,

where only one dedicated process is allowed to call DWrite(), and multi-writer ones that don’t

have this restriction.

A wait-free ABA-detecting register can be implemented from registers. Therefore, they are

weaker with respect to wait-freedom than CAS or LL/SC. Using a single unbounded register with

an unbounded tag that gets changed whenever some process writes to it, it is trivial to obtain

an ABA-detecting register with constant step complexity. But if we restrict ourselves to bounded

base objects, the situation is completely different.

In Section 5.2, we propose an implementation of an ABA-detecting register that uses n + 1

bounded registers, and each operation requires a constant number of steps. More specifically,

Theorem 5.1. There is a linearizable wait-free implementation of a multi-writer b-bit ABA-

detecting register from n + 1 registers, each of size (b + 2logn +O(1)) bits with constant step

complexity.

The number of registers used in this implementation is optimal (up to a constant additive

89

term) based on the lower bound by Aghazadeh and Woelfel (2015)1. They show that any imple-

mentation of a single-writer ABA-detecting register in a system with n processes and bounded

registers, requires at least n− 1 registers, even if the implementation satisfies only nondetermin-

istic solo-termination (the non-deterministic variant of obstruction-freedom), which is a progress

condition strictly weaker than wait-freedom.

Based on their lower bounds, the availability of CAS is of little help in terms of time-space

tradeoff: For wait-free implementations from CAS objects and registers, there is a time-space

tradeoff that is linear in n (Aghazadeh and Woelfel, 2015). The same asymptotic time-space

tradeoff can be obtained, if the base objects support arbitrary conditional read-modify-write

operations as defined by Fich, Hendler and Shavit (2006). Each conditional operation can be

simulated by a single operation on a writable CAS object. For that reason, Aghazadeh and

Woelfel (2015) state their lower bound for implementations from conditional read-modify-write

operations in terms of writable CAS base objects. A summary of their lower bounds is provided

here:

Theorem 5.2. (Aghazadeh and Woelfel, 2015) Any linearizable implementation of a single-writer

1-bit ABA-detecting register from m base objects satisfies:

(a) m ≥ n − 1, if the base objects are bounded registers, and the implementation satisfies

nondeterministic solo-termination,

(b) m ≥ (n− 1)/t, if the the base objects are bounded CAS objects and registers, and the

implementation is deterministic and wait-free with worst-case step complexity at most t,

and

(c) m≥ (n− 1)/(2t), if the base objects are bounded writable CAS objects, and the imple-

mentation is deterministic and wait-free with worst-case step complexity at most t.

The requirement that base objects are bounded is necessary for these lower bounds, because,

1 The lower bound results in this publication should not be considered contributions to this thesis. Therefore
proofs of the lower bounds are omitted here.

90

as mentioned earlier, an ABA-detecting register can be trivially obtained by augmenting a normal

register with an unbounded tag.

In Section 5.3, we build an ABA-detecting register from a single LL/SC/VL object of the

same size, and we prove the following.

Theorem 5.3. There is an implementation of an ABA-detecting register from a single LL/SC/VL

object of the same size, such that each DRead() and DWrite() operation requires at most two

shared memory steps.

Thus, by reduction we obtain the same lower bound as the one stated in Theorem 5.2 for

implementations of single-bit LL/SC/VL objects. Unfortunately, for that reduction the VL()

operation is needed, and at least we do not know how to obtain a similarly efficient ABA-

detecting register from an LL/SC object that does not support VL(). However, Aghazadeh and

Woelfel (2015) discuss that their lower bound proofs of Theorem 5.2 can be easily modified to

accommodate LL/SC objects:

Corollary 5.4. (Aghazadeh and Woelfel, 2015) Any linearizable implementation of a single bit

LL/SC object from m bounded base objects satisfies

(a) m ≥ (n− 1)/t, if the the base objects are bounded CAS objects and registers, and the

implementation is deterministic and wait-free with worst-case step complexity at most t,

and

(b) m≥ (n− 1)/(2t), if the base objects are bounded writable CAS objects, and the imple-

mentation is deterministic and wait-free with worst-case step complexity at most t.

A linear space lower bound (corresponding to Part (a) of Theorem 5.2) for nondeterministic

solo-terminating implementations of LL/SC from (even unbounded) registers follows from the

fact that LL/SC objects are perturbable (Jayanti, Tan and Toueg, 2000).

As in Theorem 5.2, the assumption that base objects are bounded is necessary, because there

is an implementation of an LL/SC/VL object from a single unbounded CAS object with constant

91

step complexity (Moir, 1997). The time-space tradeoff of Corollary 5.4(a) is asymptotically

tight for implementations with constant step complexity, as it matches known upper bounds by

Jayanti and Petrovic (2003). In Section 5.4, we show that it is also asymptotically tight for

implementations using a single CAS object:

Theorem 5.5. A single bounded CAS object of size b + n bits suffices to implement a bounded

LL/SC/VL object of size b bits with O(n) step complexity.

This in addition to Theorem 5.3 gives us the following result:

Corollary 5.6. A single bounded CAS object suffices to implement a bounded multi-writer ABA-

detecting register with O(n) step complexity.

Our upper bounds suggest that bounded CAS objects (and in fact any conditional read-modify-

write operations) are not more helpful than bounded registers with respect to ABA detection. On

the other hand, ABA detection is difficult only if base objects are bounded. The lower bounds

of Aghazadeh and Woelfel (2015) clearly indicate that ABA detection is inherently difficult, even

if bounded conditional read-modify-write primitives such as (writable) CAS objects are available.

(For those lower bounds, it does not matter how large that bound on the size of the base object

is, as long as it is finite.) Therefore, other common primitives that provide a solution to the ABA

problem would most likely be as difficult to obtain as those that use LL/SC. Even though some

of the results may be intuitive and not surprising, they give rigorous explanations of what makes

ABA-detection difficult. Moreover, lower bounds of Aghazadeh and Woelfel (2015) also confirm

that researchers will not be surprised in the future by finding better algorithms than the existing

ones.

Our new ABA-detecting register has already been used in other algorithms (Aghazadeh and

Woelfel, 2016). In Chapters 6 and 7, we demonstrate two different applications of this object.

92

shared:
register X = (⊥,⊥)
register Annc[0 . . . n− 1] = (⊥, . . . ,⊥)

Operation DWritep(x)

1 s := getSeq()

2 X.Write(x, s)

Operation getSeqp()

3 a := Annc[ctrp].Read()
4 if a ∈ Ip then
5 anncQp.enq(a)
6 else
7 anncQp.enq(⊥)
8 anncQp.deq()
9 ctrp := (ctrp + 1) mod n

10 choose arbitrary s ∈ Ip \ (anncQp ∪ usedQp)

11 usedQp.enq(s)
12 usedQp.deq()
13 return s

local (to each process p):
Boolean bp = false

Queue usedQp, anncQp // n + 1 ⊥ values

are initially in each queue

int ctrp = 0

Operation DReadq()

14 (x, s) := X.Read()
15 a := Annc[q].Read()
16 Annc[q].Write(s)
17 (x′, s′) := X.Read()
18 if s = a then
19 ret := (x,bq)
20 else
21 ret := (x,true)

22 if (x, s) = (x′, s′) then
23 bq := false

24 else
25 bq := true

26 return ret

Figure 5.1: An ABA-detecting Register Implemented from Bounded Registers.

5.2 Optimal Constant-Time ABA-Detecting Register from Registers

In this section, a linearizable implementation of an ABA-detecting register from n + 1 bounded

registers with constant step complexity is provided. This implementation uses two more registers

than the lower bound by Aghazadeh and Woelfel (2015) stated in Theorem 5.2 (a).

The main idea of the algorithm is similar to the one used in the multi-layered construction

of LL/SC/VL from CAS by Jayanti and Petrovic (2003), which itself is a modified version of the

implementations by Anderson and Moir (1995) and Moir (1997). In the following, we discuss the

implementation. A complete correctness proof is provided in Section 5.2.2.

5.2.1 Algorithm Description

Suppose each process p owns a set of sequence numbers Ip. In the naive approach

Ip = {i |i ≥ 0∧ i mod n = p}, and a shared unbounded register X is used to store a pair (x, s),

93

where x is the data value stored in the ABA-detecting register, and s is a sequence number. Each

time a process p executes a DWrite() call, it increments the last sequence number it used by n

and stores it alongside the data value in X. Hence, if a process reads (x, s) and (x, s′) from X

in two consecutive DRead() operations, for s 6= s′, then it knows that there was a DWrite() in

between.

In our implementation, we avoid using unbounded sequence numbers, as explained in the fol-

lowing. We use a bounded register X, and we let Ip = {i | 0≤ i < 2n(n + 1) ∧ i mod n = p}.

As in Section 4.3, each process, q, announces the last sequence number it reads from X by writing

it into Annc[q]. Register X is initialized to (⊥,⊥) and all entries of Annc are initialized to ⊥.

The pseudocode for this algorithm is depicted in Figure 5.1.

During a DWrite(x) operation call, the calling process p writes (x, s) to X, where s is a

sequence number in Ip. Moreover, for any s∗ ∈ Ip and any process q, our algorithm maintains

the following invariant:

(?) If X = (·, s∗) at some point t, and Annc[q] = s∗ throughout [t, t′], for

some t′ ≥ t, then p does not write (·, s∗) into X during (t, t′].

We say such sequence number s∗ is properly announced by q throughout [t, t′].

To maintain (?), a process writes some sequence number s into X only if it reads the entire

announce array when X does not store sequence number s anymore, and it does not find s in

any entry of this array. The DWrite() operation uses a helper function getSeq() to find such

sequence number s. To achieve constant step complexity, similar to the recycle() operation of

Section 4.3, in a sequence of n consecutive getSeq() calls process p scans through the entire

announce array, reading one array entry with each getSeq() call. It then returns a sequence

number that p has not used in its preceding n DWrite() operation calls, and which it has not

found in any array entry of Annc, when it read that entry last. The DWrite() operation call

linearizes at the point when p writes to X.

During DRead() call R, the calling process q reads some pair (x, s) from X, and writes s into

Annc[q]. Process q has two tasks during this operation,

94

(I) ensures that s is properly announced, or remembers that it failed to do so, and

(II) decides a correct return value for its DRead() call.

If q ensures that s is properly announced during this DRead() call, then (?) guarantees that the

owner of s does not reuse this sequence number as long as s is stored in Annc[q], so in particular,

until q announces a sequence number during its next DRead() call. This is very helpful, when p

has to decide the return value of R, as described later.

First we explain how q performs task (I). Imagine p could read s from X and announce it in

one atomic step, then s would be immediately properly announced. But since this is not feasible,

we employ the following idea. After q reads (x, s) from X and writes s to Annc[q], process q

reads X again into (x′, s′). If q reads the same pair in both of those reads, i.e. (x, s) = (x′, s′),

then q knows that at the point of its second read, X = (x, s) and Annc[q] = s. Thus, s is properly

announced from that point until q announces another sequence number, so (I) is achieved in this

case. Now suppose (x, s) 6= (x′, s′). Then q cannot ensure that s was properly announced at

some point during R. So q remembers this by setting a local boolean variable bq to true. (This

bit is always set to false at the invocation of each DRead() call by q.) So task (I) is done.

It is important to point out that when q reads different pairs from X, process q witnesses

a write to X in between those reads of X. So while doing task (I), either q ensures that s is

properly announced at the second read of X, or it witnesses a write to X, and sets bq to true.

In the former case, R linearizes at the second read of X, which is at the response of R, and in

the latter case, R linearizes at the first read of X, which is at the invocation of R. Thus, our

algorithm maintains the following invariant for each DRead() call R by q that linearizes at some

point lin(R).

bq = true at tR@rsp, if and only if a DWrite() linearizes during (lin(R), tR@rsp]. (5.1)

To perform task (II), process q has to choose a pair (x∗, g∗) as the return value for its

DRead() call, R. Process q chooses x∗ to be the value that it reads from the first component of

95

X at its linearization point. That is x∗ = x, if lin(R) = tR@inv, and x∗ = x′, if lin(R) = tR@rsp.

It is interesting to point out that in the second case, since q reads the same pair from X in its

both reads of X, x∗ = x′ = x.

The only remaining job for q is to determine the value of g∗. Let R′ be q’s last DRead() call

prior to R. If bq = true, then by (5.1), a DWrite() has linearized during (lin(R′), tR′@rsp], and

so during (lin(R′), lin(R)]. So q chooses g∗ = true= bq.

If bq = false, then q has ensured that the sequence number, a, that q announced during R′,

was properly announced at lin(R′). Thus, (?) guarantees that the owner of sequence number

a does not write a again into X between lin(R′) and the point at which q announces another

sequence number. So if s = a, then q announces the same sequence number during R, and

so a = s remains properly announced until at least the response of R′. So reading the same

sequence number as a during R implies that no write to X occurs during [lin(R′), tR@rsp), and

so no DWrite() linearizes during [lin(R′), lin(R)). Thus, q returns g∗ = false = bq. Now

suppose s 6= a. As we discussed a is properly announced at lin(R′) in this case. So X = (·, a)

at lin(R′), and since q reads X = (·, s) at tR@inv, the value of X must have changed during

[lin(R′), tR@inv). Therefore, a DWrite() has linearizes during [lin(R′), lin(R)), so q chooses

g∗ = true.

5.2.2 Proof of Theorem 5.1

Consider the implementation of the ABA-detecting register in Figure 5.1. Each operation re-

quires a constant number of steps. Register X stores a sequence number in addition to the

data, and registers of Annc store only a sequence number. The sequence number is from set

{0, . . . ,2n(n + 1)− 1}. So if the data is at most b bits, then it is enough to have registers of

size b + 2logn + O(1) bits. Hence, to complete the proof of Theorem 5.1, we show that the

implementation of Figure 5.1 is linearizable.

Consider a transcript Λ obtained by processes executing DRead() and DWrite() operation

calls on an ABA-detecting register as implemented in Figure 5.1. We define a point lin(Op) for

96

each operation call Op in H = Γ(Λ). If Op is a DWrite() operation call, then we let lin(Op) =

tOp@2. If Op is a DRead() operation call by some process q, then we define lin(Op) = tOp@14

if bq = true at tOp@rsp, and otherwise lin(Op) = tOp@17. Clearly, for any operation call Op, we

have lin(Op) ∈ [tOp@inv, tOp@rsp]. To show that lin(Op) is a linearization point for Op, we need

to show that the history SH obtained by ordering all operation calls in H by these lin() points is

valid. For that, we first prove the following auxiliary observations and claims. In the rest of this

section, for ease of explanation, we call lin(Op) the linearization point of Op.

The following observation says that, at any point, the size of each local queue a process

maintains is n + 1. This is used to show, in Claim 5.8, that if some process p reads its sequence

number s from Annc[q], for some q, then p keeps a copy of s in anncQp as long as Annc[q] = s.

Moreover using this observation, Claim 5.9 proves that p executes n getSeq() calls between any

two getSeq() calls that return the same sequence number s ∈ Ip.

Observation 5.7. At any point and for any process p, each of the queues usedQp and anncQp

has size exactly n + 1.

Proof. Each of p’s queues initially has n + 1 elements with value ⊥. These queues are only

modified during a getSeq() call G by p. Operation call G contains only local steps and one

atomic operation call. Hence all steps in this operation call are mapped to point tG@inv = tG@rsp.

During G, process p enqueues exactly one element to anncQp in lines 4–7, and one element to

usedQp in line 11. Also p dequeues exactly one element from anncQp in line 8, and one from

usedQp in line 12. Thus, the size of each of p’s queues is always n + 1.

Claim 5.8. Consider a getSeq() call G by some process p. Suppose p reads s∈ Ip from Annc[q]

at tG@3, and let t be the first point after t at which the value of Annc[q] 6= s, and t = ∞ if such

a point does not exist in Λ. Then a copy of s remains in anncQp throughout [tG@3, t).

Proof. Assume for the sake of contradiction that p dequeues the last copy of s from anncQp

at some point t′ ∈ [tG@3, t). Let t∗ be the last point during [tG@3, t′] at which p reads Annc[q].

97

Since this happens at point tG@3, such a point t∗ exists in this interval. By the claim assumption,

Annc[q] = s throughout [tG@3, t), and thus

Annc[q] = s throughout [t∗, t′]. (5.2)

Process p reads the entire array Annc during any n consecutive getSeq() calls. Hence,

p completes fewer than n getSeq() calls during [t∗, t′], (5.3)

since otherwise, t∗ would not be the last time p reads Annc[q] during this interval.

According to (5.2), process p reads sequence number s from Annc[q] at t∗. Therefore at

the same point, this process adds a copy of s to anncQp in lines 4–5. Process p dequeues

exactly one element from anncQp during each getSeq() call, thus by Observation 5.7, once p

enqueues a copy of s into anncQp at t∗, this copy remains in this queue until p completes at

least another n getSeq() call after this point. Therefore by (5.3), this copy of s remains in

anncQp throughout [t∗, t′]. This contradicts the assumption that p dequeues the last copy of s

from anncQp at t′.

Claim 5.9. Consider two getSeq() operation calls G1 and G2 by some process p, where G1 is

invoked before G2. If both G1 and G2 return the same sequence number s ∈ Ip, then p completes

at least n getSeq() calls between G1 and G2.

Proof. Before process p returns sequence number s from G1, it enqueues a copy of s into its

usedQp in line 11. In every getSeq() call only one element gets dequeued (in line 12). Hence by

Observation 5.7, this copy of s remains in usedQp during G1, and the next n getSeq() calls that

p executes after G1. According to line 10, p chooses s as the return value of its getSeq() call

again when no copy of s is stored in any of its queues. Thus, p completes at least n getSeq()

calls after G1 and before G2.

The following claim uses the results of Claims 5.8 and 5.9 to prove that Property (?) holds.

98

Claim 5.10. Consider a sequence number s ∈ Ip. Suppose X = (x, s) at some point t, and

Annc[q] = s throughout [t, t′], for some t′ ≥ t, some process q, and some value x. Then, process

p does not write (x′, s) into X during (t, t′], for any value of x′.

Proof. Since X = (x, s) at t, p must have written this pair to X before t in a DWrite(x) call

W. Let G be the getSeq() operation call that p completes before t in line 1 of W. Suppose

for the sake of contradiction that p writes (x′, s) to X during (t, t′] in line 2 of some DWrite()

operation call W ′, for some value x′. Let G′ be the getSeq() call that p completes before t′ in

line 1 of W ′. Thus, both G and G′ return s.

By Claim 5.9, p completes at least n getSeq() operation calls during (tG@rsp, tG′@inv). Let

G1, . . . , Gn be the first n getSeq() calls that p invokes during (tG@rsp, tG′@inv), in this order.

Process p can invoke at most one getSeq() call during (tG@rsp, t], because otherwise the value

of X would be overwritten before t. Hence, only G1 can get invoked during (tG@rsp, t]. Therefore,

all G2, . . . , Gn, G′ complete during (t, t′]. (5.4)

Process p increments its local variable ctrp by 1 modulo n during each getSeq() call.

Therefore, ctrp = q at the invocation of one getSeq() call G′′ ∈ {G2, . . . , Gn, G′}. By the

assumption, Annc[q] = s throughout [t, t′]. Thus by (5.4), p reads s from Annc[q] in line 3

of G′′. By Claim 5.8, a copy of s remain in anncQp throughout [tG′′@3, t′]. Therefore, any

getSeq() operation call by p that executes line 10 during this interval cannot return s. By (5.4),

tG′@10 ∈ [tG′′@3, t′]. Hence, G′ does not return s, which is a contradiction.

Recall that SH is the sequential history that is obtained by ordering all operation calls in

H = Γ(Λ) by their linearization points. Let t0 denote the point at which Λ starts. By our

definition of lin(), a DWrite(x) operation call by some process p linearizes at the point p

writes (x, ·) to X. Let R0 be the first DRead() call by some process q in Λ, and let R be any

subsequent DRead() call by this process. Also let (x0, g0) and (x, g) be the return values of R0

and R, respectively. To prove validity of SH, it is enough to show that

99

(a) X = (x, ·) and X = (x0, ·) at lin(R) and lin(R0), respectively,

(b) g0 = true, if and only if a DWrite() call linearizes during [t0, lin(R0)), and

(c) g = true, if and only if a DWrite() call linearizes during [lin(R′), lin(R)), where R′ is

the last DRead() call by q before R.

Because the first component of the return value of a DRead() call R is the same as the

first component of the pair that the calling process reads from X in line 14 of R, Claim 5.11 in

the following shows that Part (a) is true. Claim 5.12 shows that Part (b) holds. Claims 5.13

and 5.14 uses results of Claims 5.10 and 5.11 to show that Part (c) is also true. Therefore, SH

is a linearization of H.

Claim 5.11. Suppose q reads some pair (x, s) from X in line 14 of a DRead() operation call R.

Then X = (x, s) at lin(R).

Proof. If bq = true at tR@rsp, then lin(R) = tR@14, and so the claim follows immediately. Now

suppose bq = false at tR@rsp, and so lin(R) = tR@17. Thus, the if-condition in line 22 of R

evaluates to true. This implies that q reads the same pair (x, s) from X in both line 14 and

line 17 of R, and so the claim is true.

Claim 5.12. Let R be the first DRead() operation call by some process q in Λ. Then R returns

(⊥,false), if no DWrite() call linearizes throughout [t0, lin(R)), and otherwise, it returns

(·,true).

Proof. Since a DWrite() linearizes when the calling process writes to X, we need to show that

R returns (⊥,false), if no process writes to X throughout [t0, lin(R)), and otherwise, it returns

(·,true). Operation call R is the first DRead() call by q, so

q reads Annc[q] = ⊥ in line 15 of R. (5.5)

First suppose q reads (⊥,⊥) from X in line 14 of R. This implies that no process writes to

X throughout [t0, tR@14), because no process writes ⊥ to the second component of X. Thus by

100

(5.5), the if-condition in line 18 evaluates true, and R returns (⊥,bq) = (⊥,false). Unless q

reads the same pair (⊥,⊥) from X in line 17, then lin(R) = tR@14, and so the claim is true for

this case. If q reads (⊥,⊥) from X in line 17, then no process writes to X throughout [t0, tR@17),

and since lin(R) = tR@17 in this case, the claim follows.

Next suppose that q reads some pair (x, s) 6= (⊥,⊥) from X in line 14 of R. Hence, a process

writes to X during [t0, tR@14), and so during interval [t0, lin(R)), because lin(R) is either tR@14

or tR@17. By (5.5), the if-condition in line 18 evaluates false, and R returns (x,true). Thus the

claims follows.

Claim 5.13. Consider two consecutive DRead() operation calls R1 and R2 by some pro-

cess q. Suppose R2 returns some pair (·,false). Then no DWrite() call linearizes throughout

[lin(R1), lin(R2)].

Proof. Operation call R2 returns (·,false), therefore,

the if-condition in line 18 of R2 evaluates to true, and bq = false at tR2@inv. (5.6)

Process q does not change the value stored in bq during [tR1@rsp, tR2@inv]. Thus by (5.6),

bq = false at tR1@rsp. (5.7)

Thus by definition of lin(), we have

lin(R1) = tR1@17. (5.8)

Let (x1, s1) and (x2, s2) be the pairs that process q reads from X in line 14 of R1, respectively

R2. Since the value of Annc[q] is only modified in line 16 of a DRead() operation call by q,

Annc[q] = s1 throughout [tR1@16, tR2@15], and so q reads s1 from this register in line 15 of R2.

Therefore by (5.6), s1 = s2.

By Claim 5.11, the value of the second component of X is s1 = s2 at both lin(R1) and

lin(R2). Therefore, either no process writes to X throughout [lin(R1), lin(R2)], and so the

101

claim follows, or the owner of s1 writes this sequence number to the second component of X at

some point during this interval. In the following, we show that the latter case is not possible.

Process q writes s1 = s2 to Annc[q] at both tR1@16 and tR2@16, and since Annc[q] is not

changed elsewhere, we have

Annc[q] = s1 = s2 throughout [tR1@16, tR2@rsp]. (5.9)

According to (5.7), the if-condition in line 22 of R1 evaluates to true. Thus, q reads the pair

(x1, s1) from X at tR1@17. By (5.9), we have Annc[q] = s1 throughout [tR1@17, tR2@rsp], and so by

Claim 5.10, the owner of sequence number s1 does not write (·, s1) to X during [tR1@17, tR2@rsp],

and so by (5.8) during [lin(R1), lin(R2)].

Claim 5.14. Consider two consecutive DRead() operation calls R1 and R2 by some pro-

cess q. Suppose R2 returns some pair (·,true). Then a DWrite() call linearizes during

[lin(R1), lin(R2)].

Proof. Operation R2 returns (·,true), therefore either the if-condition in line 18 of R2 evaluates

to true and bq = true at tR2@inv, or the same if-condition evaluates to false.

Suppose that the former happens. Process q’s local variable bq does not change during

[tR1@rsp, tR2@inv]. Thus, bq = true at tR1@rsp, and so lin(R1) = tR1@14. This also implies that

the if-condition in line 22 of R1 evaluates to false. Hence, q reads different pairs from X in line 14

and line 17 of R1. Therefore, a process writes to register X and so a DWrite() call linearizes

during [tR1@14, tR1@17] ⊆ [lin(R1), lin(R2)].

Next suppose the latter happens, i.e. the if-condition in line 18 of R2 evaluates to false

and so R2 returns in line 21. Let (x1, s1) and (x2, s2) be the pairs q reads from X in line 14

of R1, respectively R2. Register Annc[q] can only be modified by q and only in line 16 of a

DRead() operation call, so Annc[q] = s1 throughout (tR1@16, tR2@15], and so q reads s1 from

this register in line 15 of R2. Since the if-condition in line 18 of R2 evaluates to false, s1 6=

s2. By Claim 5.11, X = (x1, s1) at lin(R1), but X = (x2, s2) 6= (x1, s1) when q reads this

102

shared:
LL/SC X =3

/* ⊥ is the initial value of the

ABA-detecting register and 3 is a

value that no process writes to this

register. */

Operation DWritep(x)

27 X.LL()
28 X.SC(x)

local (to each process p):
oldp

Operation DReadp()

29 if X.VL() then
30 return (oldp,false)

31 oldp := X.LL()
32 if oldp =3 then
33 oldp = ⊥
34 return (oldp,false)

35 return (oldp,true)

Figure 5.2: Implementation of an ABA-detecting Register from LL/SC/VL.

register at tR2@14. Thus, some process writes to X and so a DWrite() call linearizes during

[lin(R1), tR2@14] ⊆ [lin(R1), lin(R2)].

5.3 ABA-Detecting Register from a Single LL/SC/VL

This section provides a simple implementation of an ABA-detecting register from a single

LL/SC/VL object.

5.3.1 Algorithm Description

This algorithm uses one LL/SC/VL object X as depicted in Figure 5.2. Let D be the set of all

possible values that a process can write to the implemented ABA-detecting register through a

DWrite() call, and let ⊥ ∈ D be the initial value of this ABA-detecting register. We initialize

object X with a value 3 that is not in D, to identify whether any DWrite() has linearized before

any process’ first DRead() call. Each process p maintains a local variable oldp that stores the

return value of its last DRead() call.

During a DWrite(x) call W, the calling process executes an X.LL() call followed by an

X.SC(s) call (lines 27 and 28). If this SC() call succeeds, then the value of X changes to x, and

W linearizes in line 28. Otherwise, another process must have executed a successful X.SC() call

between lines 27–28 of W. Then W linearizes just before that successful SC() call.

103

During each DRead() call R, the calling process p checks if it has a valid link to X by

executing an X.VL() (line 29). If p’s X.VL() call in line 29 returns true, then R is not p’s

first DRead() operation call, and no successful X.SC() call has happened since p’s last X.LL()

call during an earlier DRead() operation call. In this case, p just returns the same value as the

one that was returned in its last DRead() call. This value is stored in oldp. That DRead() call

linearizes at the VL() call in line 29.

If p’s X.VL() call (in line 29) returns false, then p does not hold a valid link to X, so it

initiates a new link and updates its local variable oldp by executing an X.LL() (line 31). If no

DWrite() call has linearized before this point, then p reads 3 which is the value initially stored in

X. Therefore in lines 32–34, p updates oldp and returns the initial value ⊥ of the ABA-detecting

register and false. Otherwise, p has to return the value it loads from X in line 31 paired with

true, to indicate that the value of the ABA-detecting register has changed since its last DRead()

call. In both cases, that DRead() call linearizes at the LL() call executed in line 31.

5.3.2 Proof of Theorem 5.3

The implementation of an ABA-detecting register provided in Figure 5.2 uses only one LL/SC/VL

object, and each DWrite() and DRead() operation call executes only at most two operations on

the LL/SC/VL object. Hence to prove Theorem 5.3, it remains to show that the implementation

in Figure 5.2 is linearizable.

Consider a transcript Λ obtained from executing DWrite() and DRead() operations on the

implemented ABA-detecting register, and let H = Γ(Λ). Also let t0 denote the point at which Λ

starts. As discussed in the algorithm description, we define a linearization point lin(Op) for each

operation call Op∈ {DWrite(),DRead()} in H: A DWrite() operation call W with a successful

SC() call in line 28 linearizes with that successful SC() call, i.e. lin(W) = tW@28. If the SC()

call during W fails, then lin(W) is the point immediately before the first successful SC() that

gets executed after tW27. Such a successful SC() must occur during [tw@27, tW@28], because p’s

SC() call in line 28 fails. For a DRead() operation call R, lin(R) = tR@29 if it returns in line 30,

104

and otherwise lin(R) = tR@31.

The linearization point of each operation call is between the invocation and the response

of that operation call. Hence, it is enough to show that the sequential history SH obtained by

ordering operation calls in H by their linearization points is valid.

Every DWrite() operation call linearizes either at or immediately before the point of some

successful X.SC() call. Therefore, at any point the value of X is equal to the value of the

DWrite() operation call that linearized last. Sequential history SH is valid, if every DRead()

operation call R in SH by some process p which returns some pair (x, g), satisfies the following.

(a) If there is no DWrite() call before R in SH, then x = ⊥ and g = false

(b) Otherwise,

(b1) X = x at lin(R), and

(b2) g = true if R is the first DRead() call by p, and (otherwise)

(b3) g = true if and only if a DWrite() call linearizes between the linearization point

of the last preceding DRead() call by p and lin(R).

Fix a DRead() operation call R by p that returns some pair (x, g), and let S′H be the prefix of

SH which ends just before the invocation event of R. We show that if S′H is valid, then (S′H, R)

is also valid.

Proof of Part (a). If no DWrite() call linearizes before the linearization point of R, then no

process executes a successful X.SC() call and so X = 3 throughout [t0, lin(R)]. First assume

that R is the first DRead() call by p in SH. This implies that p does not hold a valid link

to X, hence, the if-condition in line 29 of R fails. Therefore, lin(R) = tR@31. Since X = 3

throughout [t0, lin(R)], p’s if-condition in line 32 evaluates to true, and p sets oldp = ⊥ and

returns (⊥,false) which proves Part (a). Next, assume that R is not the first DRead() call by

p in SH. Since there is no successful X.SC() call throughout [t0, lin(R)], p has a valid link since

105

the linearization point of its first DRead() call. Moreover, p does not change the value of oldp

after it writes ⊥ to this variable during its first DRead() call. Therefore, p returns oldp = ⊥

paired with false in line 30.

Proof of Part (b). First suppose that R is the first DRead() call by p. Therefore, p does

not hold a valid link to X when it executes line 29 of R, and so the if-condition in this line fails.

Thus, p loads the current value of X into oldp in line 31. Since a DWrite() has linearized before

lin(R) = tR@31, oldp 6= 3, and so p returns the value it loads from X at lin(R) paired with

true. This proves Parts (b1) and (b2) for this case.

Next assume that R is not the first DRead() call by p. Let R′ be the last DRead() call that

p executes before R, in which p executes an X.LL() call in line 31. (R′ may not be the last

preceding DRead() call by p before R.) Such a DRead() call exists because p always executes

line 31 in its first DRead() call, and R is not the first DRead() call by p. Process p only changes

the value of oldp during a DRead() which executes an X.LL() call in line 31, so

the value of oldp does not change throughout (lin(R′), lin(R)). (5.10)

First suppose g = false. Since a DWrite() linearizes before R, p cannot load 3 from X in

line 31 of R. So R must return in line 30, and lin(R) = tR@29. Thus p has a valid link to X at

lin(R). This implies that this link has not changed since lin(R′) and so no successful X.SC()

has been executed throughout [lin(R′), lin(R)]. Thus, no DWrite() operation call linearizes

throughout [lin(R′), lin(R)], and so between the linearization point of the last preceding DRead()

call before R in SH and lin(R), which proves Part (b3), if g = false. Since no DWrite()

linearizes between R′ and R, but a DWrite() linearizes before R, it must have linearized before

R′ as well. Therefore, by induction hypothesis Part (b1), and because oldp at lin(R′) is the

return value of R′, we have

X = oldp at lin(R′) = tR′@31. (5.11)

The value of X does not change during [lin(R′), lin(R)]. Hence, Part (b1) for this case follows

106

from (5.10) and (5.11).

Next suppose that g = true. Then R returns in line 35, and lin(R) = tR@31. Part (b1)

immediately follows because x = oldp is the value that p loads from X at lin(R). Moreover, p’s

X.VL() call in line 29 must have returned false, therefore an X.SC() call must have been executed

during [lin(R′), tR@29]⊆ [lin(R′), lin(R)]. Therefore, a DWrite() must have linearized between

the linearization point of the last preceding DRead() call by p in SH and lin(R), which proves

Part (b3) for this case. This concludes the proof of Theorem 5.3.

5.4 LL/SC/VL from a Single Bounded CAS

This section presents a wait-free implementation of LL/SC/VL from a single bounded CAS object.

The implementation has O(n) step complexity, and thus, by Corollary 5.4, is optimal with respect

to time-space tradeoff. The pseudo-code is presented in Figure 5.3 and correctness proofs can

be found in Section 5.4.2.

5.4.1 Algorithm Description

This implementation uses only one CAS object X. This object stores a pair (x, a), where x

represents the value of the implemented LL/SC/VL object, and a is an n-bit string. The p-th

bit of a, ap, is used to indicate whether p holds a valid link to the LL/SC/VL object. More

specifically,

ap = 1, if and only if an SC() operation call has linearized

since the linearization point of p’s last LL() call.

(5.12)

To maintain (5.12), during an SC() call, in addition to change the value of x, process p tries

to set all bits of a to 1, and during an LL() call, p tries to reset ap. This is done by executing

an X.CAS() call. However, this call may fail, because some other process q executes a successful

X.CAS() call to either change the values of x and a during a successful SC() call, or to reset aq

during an LL() call. The idea is that p makes at most n attempts until its CAS() succeeds. If p’s

107

shared:
CAS X = (⊥,2n − 1)
// ap represents the p-th bit of the second component of X.

Operation SCp(x)

36 for i := 1 to n do
37 (y, a) := X.Read()
38 if ap = 1 then // if p’s link is not valid

39 return false

40 if X.CAS((y, a), (x,2n − 1)) then // try to change the value and set all bits

41 return true

// a successful SC() has linearized since the beginning of this operation call

42 return false

Operation VLp()

43 (x, a) := X.Read()
44 if ap = 0 then // if p’s link is valid

45 return true

46 else
47 return false

Operation LLp()

48 (x, a) := X.Read()
49 if ap = 0 then return x ; // if p’s link is valid

50 for i := 1 to n do
51 (x′, a′) := X.Read()
52 if X.CAS((x′, a′), (x′, a′ − 2p)) then // try to reset p’s bit

53 return x′

// a successful SC() has linearized since line 48

54 return x

Figure 5.3: An LL/SC/VL Implementation from Bounded CAS.

CAS() fails n times, then X must have changed n times while p’s attempts fail. Since a process

only changes X during an LL() call if its bit is not already 0, at most n− 1 of those changes of

X can be due to a successful CAS() executed in an LL() operation call. Therefore, at least one

of those changes is because of a successful CAS() on X executed in an SC() operation. Thus, p

can linearize just before that successful SC() call linearizes, and ensure that (5.12) is satisfied.

With this idea, our implementation is as follows. During an SC(x) call, if p reads 1 from ap,

it returns false immediately, and linearizes at this read. Otherwise, p makes at most n attempts

108

to write (x,2n − 1) into X by executing a CAS() call. With the first successful CAS() call,

p’s operation linearizes, and p returns true. If p’s CAS() fails n times, then a successful SC()

linearizes while p makes those n failed attempts. Thus, p’s operation linearizes just before that

successful SC() call and returns false.

Similarly, during a LL() call, p reads X. If it reads 0 from ap and x from the first component

of X during an LL() call, it returns x, and linearizes at this read. Otherwise, it executes at most

n X.CAS() calls to reset ap, and with the first successful attempt, its operation linearizes, and p

returns the last value it read from the first component of X. If p fails all n times, then p returns

the first value it read from X during its current LL() call, and linearizes at that X.Read().

Moreover, p’s bit, which is now set because of that successful SC() call, indicates that p does

not hold a valid link.

Operation VL() is simple: process p checks whether ap is set, and if yes, it returns false,

otherwise it returns true. This operation linearizes with the only read of X.

5.4.2 Proof of Theorem 5.5

Consider the LL/SC/VL object implemented form a single CAS object as given in Figure 5.3.

Each operation requires at most O(n) CAS() operation calls. So to prove Theorem 5.5, it is

enough to show that this implementation is linearizable. In the rest of this section, we call p-th

bit of the second component of X as p’s bit.

Let Λ be a transcript that is obtained by executing LL(), SC(), and VL() operation calls on

the LL/SC/VL object of Figure 5.3. Also let t0 denote the point at which Λ starts. We define

a linearization point lin(Op) for each operation call Op ∈ {LL(),SC(),VL()} in H = Γ(Λ), as

follows. For an SC() operation call S, we define lin(S) = tS@rsp. Hence, for a successful SC()

operation call S, lin(S) is the point at which its CAS() in line 40 succeeds. For a VL() operation

call V, we define lin(V) = tV@inv = tV@rsp. For an LL() operation call L, if L returns in either

line 49 or line 54, we let lin(L) be the point at which the calling process reads X in line 48 of L,

so lin(L) = tL@inv. If L returns in line 53, then lin(L) = tL@rsp is the point at which its CAS()

109

call in line 52 succeeds. The linearization point of each operation call is between its invocation

and its response. So it only remains to show that the sequential history SH obtained by ordering

operation calls in H by their linearization points is valid.

The first component of the pair stored in X only changes to some value x at the linearization

point of a successful SC(x) call. Thus to prove that SH is valid, we need to show that

(a) if an LL() call L returns x, then X = (x, ·) at lin(L),

(b) an SC() call S succeeds, if and only if there is no successful SC() call that linearizes

during [lin(L), lin(S)], where L is the last LL() call by the same process before S (and

S fails, if there is no such operation call L), and

(c) a VL() call V returns true, if and only if there is no successful SC() call that linearizes

during [lin(L), lin(V)], where L is the last LL() call by the same process before V (and

V returns false, if there is no such operation call L).

By definition of the linearization point for an LL() operation call, (a) follows immediately.

All process’s bits in X are initially 1, and only a LL() by some process p can change p’s bit to 0.

Hence, if an SC() or VL() call is not preceded by an LL() call by the same process in Λ, then

by implementation, this operation call correctly returns false in line 39 or line 47, respectively.

Claim 5.17 in the following proves (b), for an SC() call that is preceded by an LL() operation

call by the same process. Similarly, Claim 5.18 proves (c), for a VL() call that is preceded by an

LL() operation call by the same process. These two claims use the result of Claims 5.15 and 5.16

that are discussed first.

Claim 5.15. Consider some process p that executes the for-loop in lines 36–41 of an SC() or

lines 50–53 of an LL() call. If all n CAS() calls during this for loop fail, then a successful SC()

call linearizes while p is executing this for-loop.

Proof. Consider a for-loop executed in lines 36–41 of an SC(), respectively lines 50–53 of an

LL(), call by p. Let I denote the interval that starts and ends with this for-loop. Also let

110

C1, . . . ,Cn be the CAS() calls that p executes in this for-loop (in line 40, respectively 52), and

let Ri be the Read() operation call p executes just before Ci (in line 37, respectively 51), for

i ∈ {1, . . . ,n}. Operation Ci fails if and only if a process executes a successful CAS() operation

call in line 40 or 52, between p’s Ri and Ci. Since all C1, . . . ,Cn fail,

at least n CAS() operation calls executed in line 40 or 52 succeed during I. (5.13)

A process q only executes a CAS() operation call in line 52, if its bit in X is 1, and if this

CAS() call succeeds, it resets q’s bit in the second component of X to 0. Hence, each of these n

bits can change to 0 at most once, before some CAS() call in line 40 by some process succeeds to

change that bit to 1. Since none of p’s CAS() operation calls during I succeeds, at most n− 1

successful CAS() calls are executed in line 52 during I. Therefore by (5.13), at least one CAS()

call that is executed in line 40 of an SC() call succeeds during I. Thus, one SC() call linearizes

during this interval.

Claim 5.16. Consider some LL() operation call L by some process p. Process p’s bit in X is

set at tL@rsp, if and only if some successful SC() operation call linearizes during [lin(L), tL@rsp].

Proof. Suppose p’s bit in X is set at tL@rsp. If L returns in line 49, then p’s bit in X is not

set when p reads X in line 48 at lin(L). This bit is only set when a CAS() call succeeds during

an SC() operation call. Hence, a successful SC() operation call linearizes during [lin(L), tL@rsp].

If L returns in line 54, then all n CAS() calls that p executes during its for-loop in lines 50–53

fail. Therefore by Claim 5.15, a successful SC() operation call linearizes while p is executing its

for-loop. Since lin(L) = tL@48, this successful SC() call linearizes during [lin(L), tL@rsp]. It is

not possible that L returns in line 53, because this implies that p’s last CAS() call in line 52 of

L must have been successful, and so p’s bit in X must have changed to 0 at lin(L) = tL@rsp.

Next, we show that if p’s bit in X is 0 at tL@rsp, then

p’s bit in X is 0 throughout [lin(L), tL@rsp]. (5.14)

111

This implies that no successful SC() linearizes throughout [lin(L), tL@rsp], because all processes’

bits in X change to 1 when a CAS() call in line 40 of an SC() operation call succeeds at the

linearization point of that SC() call.

To prove (5.14), first suppose L returns in line 49. Therefore, p’s bit is 0 when p reads X

in line 48 at lin(L). This bit can only be changed to 0 by p and only in line 52, which is not

executed during L in this case. Hence, (5.14) follows. If L returns in line 53, p’s last CAS() call

in line 52 of L must have succeeded to change p’s bit to 0 at lin(L) = tL@rsp. So (5.14) is true.

It is not possible that L returns in line 54 if p’s bit in X is 0 at tL@rsp, because this only happens

if p’s bit in X is 1 when p reads X in line 48 of L, and all n CAS() calls that p executes to

change this bit to 0 in line 52 also fail.

Claim 5.17. Consider an SC() operation call S by some process p, and let L be the last preceding

LL() call by p. Operation call S is successful, if and only if no successful SC() call linearizes

during [lin(L), lin(S)].

Proof. First suppose that S is successful, and so it returns in line 41. This implies that an

X.CAS() operation call C executed in line 40 of S succeeds at lin(S). Let t be the last time p

reads X in line 37 of S before C. Process p reads value 0 from its bit when it reads X at t. The

value of this bit does not change during [t, lin(S)], because C is successful. Moreover, p’s bit

can only change to 0 in line 52 of an LL() operation call by p, hence,

p’s bit in X is 0 throughout [tL@rsp, lin(S)]. (5.15)

Therefore, no successful SC() linearizes throughout [tL@rsp, lin(S)], as otherwise the value of p’s

bit would change to 1. Finally, by (5.15) and Claim 5.16, no successful SC() operation call lin-

earizes during [lin(L), tL@rsp]. Hence, no successful SC() linearizes throughout [lin(L), lin(S)].

Next suppose that S is not successful. First consider the case that S returns in line 39. Let

t be the last time p reads X in line 37 before lin(S) = tS@rsp. Hence, p reads 1 from its bit

in X at t. Depending on the value of p’s bit in X at tL@rsp < t, there are two cases: If p’s

112

bit is 0 at tL@rsp, then some process sets this bit with a successful CAS() at the linearization

point of a successful SC() operation call during (tL@rsp, t] ⊆ [lin(L), lin(S)]. Otherwise, if

p’s bit is 1 at tL@rsp, then by Claim 5.16, a successful SC() operation call linearizes during

[lin(L), tL@rsp] ⊆ [lin(L), lin(S)].

The final case is when S returns in line 42. This implies that all n CAS() operation calls of

p during S fail. Thus by Claim 5.15, a successful SC() operation call linearizes while p executes

this for-loop, and so during [lin(L), lin(S)], because lin(S) = tS@rsp.

Claim 5.18. Consider a VL() operation call V by some process p, and let L be the last preceding

LL() call by p. Operation call V returns true, if and only if no successful SC() call linearizes

during [lin(L), lin(V)].

Proof. First suppose that V returns true. Hence, p reads value 0 from its bit in X in line 43 of

V at lin(V). This bit can only be reset in line 52 of an LL() operation call by p, hence,

p’s bit is 0 throughout [tL@rsp, lin(V)]. (5.16)

Therefore, no successful SC() linearizes throughout [tL@rsp, lin(V)], as otherwise the value of

p’s bit in X would change to 1. Moreover by (5.16) and Claim 5.16, no successful SC() oper-

ation call linearizes during [lin(L), tL@rsp]. Therefore, no successful SC() linearizes throughout

[lin(L), lin(V)].

Next suppose that V returns false. Therefore, p’s bit in X is 1 when p reads X in line 43 of V

at lin(V). If p’s bit is 0 at tL@rsp, then some process sets this bit with a successful CAS() at the

linearization point of a successful SC() operation call during (tL@rsp, lin(V)]⊆ [lin(L), lin(V)].

If p’s bit is 1 at tL@rsp, then by Claim 5.16, a successful SC() operation call linearizes during

[lin(L), tL@rsp] = [lin(L), lin(V)].

113

Chapter 6

More Efficient Long-Lived Test-And-Set

This chapter provides several space- and time-efficient implementations of randomized long-lived

test-and-set (TAS) objects from registers. These results are obtained from general transformations

of randomized one-time TAS implementations e.g. the ones by Alistarh and Aspnes (2011),

Giakkoupis, Helmi, Higham and Woelfel (2013, 2015), and Giakkoupis and Woelfel (2012) into

long-lived TAS implementations.

6.1 Results

We present three transformations of one-time TAS objects into long-lived ones. Figure 6.1

previews existing long-lived TAS implementations, and some examples of the ones that we can

achieve with transformations introduced in this chapter.

Our base construction, in Section 6.2, transforms any one-time TAS object implemented from

m registers into a long-lived one that uses O(n+m) registers while preserving the asymptotic step

complexity of TAS(), and providing an implementation of Reset() with O(m) worst-case step

complexity. This transformation is deterministic, so the resulting long-lived TAS implementation

is randomized if and only if the original one-time TAS is randomized.

Theorem 6.1. Any one-time TAS object O implemented from m registers, each of size b bits,

can be transformed into a long-lived TAS object L with the following properties:

• L uses O(n + m) registers, each of size max{dlog(2n + m + 2)e,b} bits,

• L.TAS() has asymptotically the same (expected) step complexity as O.TAS(), and

• L.Reset() has worst-case step complexity O(m).

114

One-Time TAS Long-Lived TAS

Step Complexity Num. of Size of Applying Step Complexity of Num. of Size of

Reference of TAS() Registers Registers Transformation TAS() Reset() Registers Registers Adversary

Afek et al.
(1992)

O(logn) exp. O(n) Θ(logn) Afek et al.
(1992)

O(n) exp. O(1) O(n) Θ(n) Adaptive

Hoepman (1999) O(logn) exp. O(n) O(n2) Θ(logn) Adaptive

Giakkoupis
et al. (2015)

O(log∗ n) exp. O(logn) Θ(logn)
Theorem 4.1 and
Lemma 4.2

O(log∗ n) exp. O(1) O(n2 logn) Θ(logn)
Oblivious

Corollary 6.2 O(log∗ n) exp. O(logn) exp. O(n) Θ(logn)

Corollary 6.5 O(log∗ n) exp. O(1) O(n logn) Θ(logn)

Giakkoupis
and Woelfel
(2012)

O(loglogn) exp. O(n) Θ(logn) Theorem 6.3 O(loglogn) exp. O(loglogn) exp. O(n) Θ(logn) Oblivious

Figure 6.1: Results on Randomized Long-Lived Test-And-Set

115

Giakkoupis, Helmi, Higham and Woelfel (2015) present a randomized implementation of a

one-time TAS object with O(log∗ n) expected step complexity, that uses Θ(logn) registers, each

of size O(logn). Applying the transformation of Theorem 6.1 to this object yields:

Corollary 6.2. There is an implementation of a long-lived TAS from O(n) registers, each of

size Θ(logn) bits, where TAS() has O(log∗ n) expected step complexity, and Reset() has

worst-case step complexity O(logn) against the oblivious adversary.

The space complexity of O(n) is optimal based on the lower bound on the space requirement

of mutual exclusion (Burns and Lynch, 1993). While Reset() calls of the long-lived TAS imple-

mentation of Corollary 6.2 are significantly slower than TAS() calls, this may still be reasonable in

applications where Reset() operations may be executed less frequently than TAS() operations.

Our second transformation, in Section 6.3.1, uses the base construction with some additional

ideas that are particularly tailored to a one-time TAS implementation by Giakkoupis and Woelfel

(2012), in which TAS() calls require O(loglogn) steps in expectation. This enables us to

reduce the step complexity of Reset() to O(loglogn) in expectation, while maintaining the

optimal O(n) space requirement. However, the step complexity bound of TAS() is increased to

O(loglogn) in expectation compared to that achieved in Corollary 6.2.

Theorem 6.3. There is an implementation of a long-lived TAS from O(n) registers, each of

size Θ(logn) bits, such that TAS() and Reset() have O(loglogn) expected step complexity

against the oblivious adversary.1

These are the first implementations of a long-lived TAS object with O(n) space complexity

and sub-linear step complexity for both TAS() and Reset().

In our third transformation in Section 6.3.2, we combine the idea of long-lived TAS by Hoep-

man (1999) with our recycling technique as well as the technique from Section 4.5, which allows

a process to sequentially reset multiple registers in O(1) steps. The resulting implementation has

1The step complexity bound even holds for the stronger read-write oblivious adversary model used in (Gi-
akkoupis and Woelfel, 2012).

116

constant step complexity for Reset(), and preserves the asymptotic step complexity of TAS()

calls. However, we lose the space optimality by requiring Θ(n · m) registers, where m is the

number of registers used to implement the one-time TAS object.

Theorem 6.4. Any one-time TAS object O implemented from m registers, each of size O(logn)

bits, can be transformed into a long-lived TAS object L with the following properties:

• L uses O(n ·m) registers, each of size O(logn) bits,

• L.TAS() has, up to a constant additive term, the same (expected) step complexity as

O.TAS(), and

• L.Reset() has constant worst-case step complexity.

Currently, the most space-efficient published randomized wait-free one-time TAS implemen-

tation uses O(logn) registers, each of size O(logn), and has step complexity O(log∗ n) (Gi-

akkoupis, Helmi, Higham and Woelfel, 2015). Applying Theorem 6.4 to this construction yields

the following.

Corollary 6.5. There is an implementation of a long-lived TAS from O(n logn) registers, each of

size Θ(logn) bits, such that TAS() has O(log∗ n) expected step complexity against the oblivious

adversary, and Reset() requires O(1) steps in the worst case.

On the other hand, a lower bound by Styer and Peterson (1989) shows that any deadlock-free

one-time TAS object requires at least Ω(logn) registers, so the space complexity of a deadlock-

free long-lived TAS object obtained from a direct application of Theorem 6.4 cannot go below

Ω(n logn).

6.2 Base Algorithm

This section describes our basic transformation of any one-time TAS object O, implemented from

registers, into a long-lived TAS object L. Later sections of this chapter provide other constructions

that build on the techniques introduced here.

117

6.2.1 High Level Idea

Our construction of L from O is simplified by exploiting two properties of long-lived test-and-set.

(I) Any L.TAS() that overlaps with an L.Reset() can safely return 1, and be linearized

before that L.Reset().

Of course the construction must ensure that such an L.TAS() does not interfere with the over-

lapping L.Reset(). Also, no two L.Reset() operations can overlap, because L.Reset() is only

invoked by a process that has won an L.TAS() operation and has not subsequently executed an

L.Reset().

(II) Once a L.Reset() has been invoked there cannot be another invocation of L.Reset()

without an intervening L.TAS() that wins.

Let R0 to Rm−1 be the registers that implement O. Also let IB be a set of indices. Our

construct uses a pool of registers, B, of size IB, and an array, Ptr, of size m, where each entry

Ptr[i] is an index in IB. Register B[b] is in use whenever Ptr[i] = b, for some i ∈ {0, . . . ,m− 1}.

If the entire Ptr array could be updated atomically and |IB| were infinite, then a solution would

be immediate: Each L.Reset() would atomically change each entry Ptr[i], for i ∈ {0, . . . ,m− 1},

to an index f , such that B[f] has never been in use. The implementation of L.TAS() is the same

as O.TAS(), except that each read or write of register Ri is implemented by the same operation

on the register B[Ptr[i]]. By properties (I) and (II), L.TAS() calls executing an operation on a

register that is not currently in use, could safely return 1 and halt; those executing on registers

that are in use would compete to win or lose.

Linearizable Reset. Our first goal is to maintain this correctness while removing the atomicity

of the Reset(). The construction employs a single bit ABA-detecting register C. An L.Reset()

operation call begins with a C.DWrite(1) call. It then, one at a time, writes indices of registers in

B that have never been in use into the Ptr array. Finally it sets C back to 0 with a C.DWrite(0)

118

call. Each L.TAS() operation T is modified to execute a C.DRead() at the beginning, and after

each read or write on Ptr or on B. If the first C.DRead() returns (1, ·), then T overlaps with

an L.Reset(). Otherwise, if a subsequent C.DRead() returns (·,true), then an L.Reset()

operation has begun since T was invoked. In either case T returns 1 and halts. As long as neither

of these conditions cause T to lose, it continues to compete to win on the current set of registers

from B as indicated in the Ptr array.

Bounding the Space. Now we describe how to reduce the infinite pool of registers, B, to only

a small finite pool of registers. Various memory reclamation techniques (Braginsky, Kogan and

Petrank, 2013; Gidenstam, Papatriantafilou, Sundell and Tsigas, 2009; Herlihy, Luchangco and

Moir, 2002; Michael, 2004b) can be used to bound the space. However, if they are used directly

without any additional techniques, they increase the step complexity or they may even break the

wait-freedom of the implementation. Also, for most memory reclamation techniques, such as the

ones by Herlihy et al. (2002), Gidenstam et al. (2009), and Braginsky et al. (2013), stronger

primitives such as CAS and FAA are required. Here we use a technique that is time-efficient and

uses only registers.

Our idea for memory reclamation builds on the recycling technique of Chapter 4, but we

modify that technique for this specific application to reduce the required space. Because no two

L.Reset() calls overlap, all sequential data structures used for recycling can be shared among

different processes (as opposed to being local to each process), because they will be accessed only

sequentially. The resulting long-lived implementation only requires O(n+m) more registers than

the one-time TAS implementation (as opposed to O(n2 + m), for the more general technique

in Chapter 4).

Our implementation now uses array B of size |IB| = 2n + m + 1, and an announce array

Annc of size n. Each process p announces the index of an entry of B that it is about to access

(read or write) during an L.TAS() call, by writing the index into Annc[p]. Moreover, p also

executes a C.DRead() after each announcement, and if it receives (·,true) then it returns 1

119

immediately. During an L.Reset(), the calling process replaces the index stored in each entry

Ptr[i], i ∈ {0, . . . ,m− 1}, with an index f ∈ IB, such that B[f] is currently not in use and is not

announced.

We show that any step that a process p takes during an L.TAS() call T after the invocation

of an overlapping L.Reset() call R is not going to affect the remaining operation calls: The

only case that p can erroneously affect the object is if p writes to some register B[f] after the

resetter puts this register into use during R. Now, every second step by p in T is a C.DRead()

call. Thus, p executes at most one other operation after the invocation of R, and before it sees

the change in C and returns 1. Therefore, p writes to B[f] only if it announces index f before R

is invoked. However, the resetter would see p’s announcement of f , and it would not put B[f]

into use again before p announces another object. Thus, it is not possible that p writes to B[f]

after the resetter puts this register into use during R.

Figure 6.2 shows the implementation of the TAS() and Reset() operations of long-lived

implementation L of TAS. Helper function recycle() is called from an L.Reset() operation

call and it provides the memory reclamation functionality of this implementation, as described in

more details in the following. The pseudocode for the recycle() implementation is provided in

Figure 6.3. The correctness proof of the base algorithm including the memory management part

is provided in Section 6.4.

6.2.2 Detailed Description of recycle()

The memory management of this implementation is mainly done in the recycle() operation.

This operation takes an index that is about to be replaced with another index in an entry of Ptr,

and returns the index of a register that is currently not in use and is not announced.

In a naive implementation of the recycle() operation, processes would read the entire

Annc and Ptr arrays in each recycle() call. In order to achieve constant step complexity for

recycle(), processes distribute the work of scanning Annc over n recycle() calls similar to the

deamortization technique of Chapter 4, and avoid scanning Ptr altogether, as described below.

120

shared
Array<register> B[0 . . . 2n + m] = (⊥, . . . ,⊥)
Array<int> Ptr[0 . . . m− 1] = (0, . . . ,m− 1)
Array<int> Annc[0 . . . n− 1] = (⊥, . . . ,⊥)
ABA-detecting register C = 0

Operation Resetp()

1 C.DWrite(1)
2 for j = 0 to m− 1 do
3 f := recycle(Ptr[j].Read())
4 B[f].Write(⊥)
5 Ptr[j].Write(f)

6 C.DWrite(0)

Operation TASp()

7 if (1, ·) := C.DRead() then return 1
Execute the one-time TAS()
implementation, but replace every read
of Ri with RRead(i), and every write of
x to Ri with RWrite(i, x).

Operation RRead(i)

8 b := Ptr[i].Read()
9 if (·,true) = C.DRead() then return 1

10 Annc[p].Write(b)
11 if (·,true) = C.DRead() then return 1
12 ret := B[b].Read()
13 if (·,true) = C.DRead() then return 1
14 return ret

Operation RWrite(i)

15 b := Ptr[i].Read()
16 if (·,true) = C.DRead() then return 1
17 Annc[p].Write(b)
18 if (·,true) = C.DRead() then return 1
19 B[b].Write()
20 if (·,true) = C.DRead() then return 1

Figure 6.2: The implementation of TAS() and Reset() of the Long-Lived TAS

The implementation of our recycle(), shown in Figure 6.3, uses a shared set and two shared

queues. The set data structure supports the operations add(x) which adds an element x to it,

and remove() which removes and returns an arbitrary element from the set. Each shared queue

supports, in addition to the standard operations enq() and deq(), an operation contains(`)

which returns true if element ` is in the queue and false otherwise. Since recycle() is called

only during L.Reset() operation calls (that do not overlap), all these data structures are accessed

sequentially. Moreover, since the domain of elements stored in these queues is a bounded set, a

contains() operation with constant step complexity can be easily provided by using a register

for each element of the domain that keeps track of the number of times the element occurs in

the queue (similar to the implementation in Chapter 4). Therefore, sequential implementations

with constant worst-case step complexity are used for the data structures of this operation.

Set Free stores indices in IB among which a process can choose an arbitrary one to return

121

shared
Queue<int> RetQ[n] = (⊥, . . . ,⊥)
Queue<int> AnnQ[n] = (⊥, . . . ,⊥)
Set<int> Free = {m, · · · ,2n + m}
Array<Boolean> Use[0 . . . 2n + m] // first m elements are 1, the rest 0

int Inx = 0

Operation recyclep(int `)

21 Use[`] := 0
22 RetQ.enq(`)
23 a := Annc[Inx]
24 AnnQ.enq(a)
25 Inx := (Inx + 1) mod n
26 y0 := AnnQ.deq()
27 y1 := RetQ.deq()
28 for j = 0 to 1 do
29 if yj 6= ⊥ then
30 if ¬Use[yj] ∧ ¬AnnQ.contains(yj)∧ ¬RetQ.contains(yj) then
31 Free.add(yj)

32 f := Free.remove()
33 Use[f] := 1
34 return f

Figure 6.3: Recycle() Method of the Long-Lived Test-And-Set

from a recycle() operation. Our algorithm also guarantees that the set is never empty (see

Claim 6.15 of Section 6.4). AnnQ keeps track of the last n elements found in the announce

array during the last n recycle() operations. The queue RetQ stores the last n indices that

are replaced by another index in an entry of Ptr. Initially, both queues contain n elements ⊥,

and the algorithm ensures that the length of each queue is n before and after each recycle()

operation (see Claim 6.10 of Section 6.4). Finally, a boolean array Use[0 . . . 2n + m] is used to

indicate for each index ` ∈ IB whether the corresponding register B[`] is in use or not.

Now consider a recycle(`) call by a process p that is about to replace index ` in an entry

of Ptr with another index. First, in line 21, the process resets the flag Use[`] to indicate that

register B[`] will not be in use anymore, once p executes line 5 after the current recycle()

call terminates. Then, in line 22, process p enqueues ` into RetQ. After that in lines 23–25,

122

p reads Annc[Inx] into a local variable a, where Inx is a shared register incremented modulo n

with every recycle() operation, and then p enqueues a to AnnQ. Next p dequeues an element

y0 from AnnQ and an element y1 from RetQ (in lines 26–27), and thus restores the length of

both queues to n. In lines 28–31, p checks whether each register B[yj] is in use (by testing the

flag Use[yj]) or whether an instance of yj still appears in one of the queues, for j ∈ {0,1}. If

any of these conditions is true, then either yj was found announced or B[yj] was in use at some

point since the last scan of the announce array begun. Thus p only adds yj to Free if none of

those conditions is met. Finally, process p removes an arbitrary element f from Free, sets the flag

Use[f] to indicate that B[f] will be in use when p executes line 5 after the current recycle()

call terminates, and returns f (lines 32–34).

6.3 Long-lived Test-And-Set with Faster Reset

With the base algorithm of Section 6.2, the Reset() operation of the resulting long-lived TAS

object takes O(m) steps in the worst case, where m is the number of registers required to

implement the one-time TAS object used in this transformation. Choosing the currently most

space efficient one-time TAS implementation (Giakkoupis, Helmi, Higham and Woelfel, 2015),

the Reset() takes O(logn) steps in the worst case. In this section, we propose two implemen-

tations with improved step complexity for Reset(): One achieves asymptotically optimal space

requirement and sub logarithmic expected step complexity for both TAS() and Reset(), and

another transforms any one-time TAS implementation from registers to a long-lived one, such

that Reset() has constant step complexity in the worst case.

6.3.1 Space-Optimal and Fast Long-Lived Test-And-Set

To improve the expected step complexity of the Reset() implementation, we elaborately apply

a variant of the base algorithm of Section 6.2 to a specific one-time TAS implementation by

Giakkoupis and Woelfel (2012), which in turn is based on an algorithm by Alistarh and Aspnes

123

sift()

k

≤ 1 < k

≤ fi(k) < k in exp.

win

undecided

lose

Figure 6.4: Object Fi

(2011). The shared data structure used in their implementation can be viewed as having n special

randomized objects F1, . . . , Fn and n randomized 2-process TAS objects T1, . . . ,Tn. Object Ti can

be implemented from constant number of registers in constant expected step complexity against

the strong adaptive adversary (Tromp and Vitányi, 2002). Object Fi, as shown in Figure 6.4,

supports an operation sift(), which each process can call at most once (before the object is

reset), and which returns one of lose, win, or undecided. We say a process wins, loses, or

is undecided at object Fi. The implementation guarantees that not all processes lose Fi, and

if only one process calls Fi.sift(), then that process wins Fi. Moreover, the i-th object Fi

is instantiated with some chosen parameter, which is a function fi, and guarantees that if k

processes call Fi.sift(), then in expectation at most fi(k) < k of them are undecided. Each

object Fi is implemented from a constant number of registers and a sift() call has constant

worst-case step complexity.

As shown in Figure 6.5, we can imagine that the objects F1, . . . , Fn form a path “down” and

the 2-process TAS objects T1, . . . ,Tn form a path “up”. A process p walks the path down,

executing sift() operations on each object Fi that it visits. After each sift() operation call

on an object Fi (starting with F1) a process decides how to proceed based on the return value: If

124

F1

enter

loseT1lose

winner

F2 loseT2lose

...
...

Fn loseTnlose

undecidedwin

undecidedwin

win undecided

Figure 6.5: Test-and-set implementation by Giakkoupis and Woelfel (2012)

p is undecided at Fi, then it proceeds to object Fi+1. If it loses Fi, then it loses the entire TAS()

operation call, and does not take any further steps. Finally, if p wins Fi, then p switches to the

path “up”, more precisely, it executes a TAS() operation call on the TAS object Ti. Whenever

process p loses a TAS() call on some object Ti, it also immediately loses the implemented TAS()

operation call, i.e., it returns 1. If it wins a TAS() call on some object Ti, then it continues to

walk up the path by calling Ti−1.TAS() if i > 1, and if i = 1, then p wins the implemented TAS()

and thus returns 0.

The functions fi, 1 ≤ i ≤ n, satisfy fi(k) = O(
√

k), and therefore, in expectation only ap-

proximately k1/2i
processes reach object Fi. The smallest index i∗, such that no process reaches

object Fi∗ has expectation E[i∗] =O(loglogn). This yields the desired expected step complexity

of O(loglogn) for any TAS() call (Giakkoupis and Woelfel, 2012).

Before applying the transformation of Section 6.2 to this one-time TAS implementation, we

first slightly modify this implementation: We add n shared registers L1, . . . , Ln, which are initially

125

⊥. During a TAS() operation call, when a process wants to access Fi for the first time in that

call, it first has to write a non-⊥ value to Li.

Now we transform the modified object into a long-lived one using the algorithm of Section 6.2.

Recall that in the resulting Reset() implementation, a process first writes 1 into C, and then it

replaces all registers of the TAS() implementation whose indices are stored in Ptr with recycled

ones. At the end of the Reset() operation call, the process writes 0 into C. Recall also that no

process which executes a TAS() operation call can access more than one register of the TAS()

implementation once a concurrent Reset() call is invoked. (This is shown in Corollary 6.18 in

Section 6.4.) Hence, suppose that at the point when value 1 is written into C at the beginning

of a Reset() call, exactly registers L1, . . . , L` have non-⊥ values. Then it is not possible that

any object Fj, Tj, or Lj+1, for j > `, will be accessed by any process before C is written again at

the end of that Reset() call.

Hence to implement Reset() operation, it suffices to replace the registers used in F1, . . . , F`,

T1, . . . ,T`, and L1, . . . , L`+1 with recycled ones. In particular, during a Reset() call the resetter

can read registers L1, L2, . . . , until it finds the first one, L`+1, with value ⊥. Then it only replaces

those registers with recycled ones that need to be replaced, which can be done in O(`) steps,

because each of F1, . . . , Fn and T1, . . . ,Tn is implemented from a constant number of registers.

As proved by Giakkoupis and Woelfel (2012), the expected value of ` is O(loglogn). Thus, we

obtain a long-lived TAS object from O(n) registers, where the step complexity of both TAS()

and Reset() is O(loglogn) in expectation. This proves Theorem 6.3.

6.3.2 Long-Lived Test-And-Set with Constant Time Reset

To construct a long-lived TAS object such that a Reset() call requires only constant time in the

worst case, one can apply the result of Theorem 4.1 from Chapter 4 to an existing one-time TAS

implementation. However, the space complexity of such implementation is O(n2 ·m), where m is

the space requirement of the original one-time TAS implementation. Here, we show how we can

achieve an implementation of Reset() with constant step complexity, using O(n ·m) registers.

126

Hoepman (1999) suggested the following straight-forward transformation of a one-time TAS

object into an (inefficient) long-lived one. It is assumed that the one-time TAS object supports

a safe reset() operation, which resets the TAS object, provided it does not overlap with any

other operation calls on that object. (This is the same as our concept of a sequentially resettable

TAS object.) Processes share an array A[0 . . . n] of one-time TAS objects and one register Ptr,

which stores an index i ∈ {0, . . . ,n} to the one-time TAS object A[i] that is in use. To execute

a TAS(), a process reads index i from Ptr, announces that index, and reads Ptr again. If the

value stored in Ptr changes between those two reads, then the process returns 1, and otherwise,

it executes A[i].TAS(). To reset the long-lived TAS object, a process reads all indices announced

by other processes, and chooses an index j ∈ {0, . . . ,n} that is not announced and such that the

value of Ptr is not j. Then it resets the one-time TAS object A[j] by executing safe reset().

Finally, the process “swings the pointer” by writing j into Ptr.

The two components that make this Reset() call inefficient are reading the announce array

during each Reset() call, and sequentially resetting the one-time TAS object. We augment tech-

niques introduced earlier in this work (in Section 6.2.2 and Section 4.5) to this simple algorithm

to achieve a Reset() implementation with optimal step complexity of O(1). In particular, the

first idea is to use the recycling technique proposed in Section 6.2.2 to choose the index of the

next one-time TAS to put into use during a Reset() call in constant number of steps, instead of

reading the entire announce array in O(n) steps as suggested by Hoepman (1999). This change

requires a Θ(n) additional one-time TAS objects. Our second idea is to use the result of the

implementation of Section 4.5. With this idea, given any one-time TAS object implemented from

registers, we can obtain a sequentially resettable TAS with one additional register, such that the

sequential reset, that is safe reset(), takes O(1) steps in the worst case (see Corollary 4.3).

Augmenting these modules to the simple “swinging the pointer” technique allow a long-

lived TAS implementation from any one-time TAS implemented from registers. The resulting

implementation uses O(n) instances of the one-time TAS object. The TAS() operation on the

127

long-lived object requires a constant number of additional steps, and Reset() has O(1) step

complexity in the worst case. This shows how Theorem 6.4 is obtained.

6.4 Correctness of the Base Algorithm

Consider the long-lived TAS implementation L of Figures 6.2 and 6.3 obtained from a one-time

TAS implementation. We say a transcript is permissible on L if it can arise from a sequence of

L.TAS() and L.Reset() operation calls, where L.Reset() can be invoked only by a process that

has won an L.TAS() call and not subsequently called L.Reset().

Our main lemma proves that the interpreted history of any permissible transcript on L, in

which no two Reset() calls overlap, has a linearization, with some specific properties:

Lemma 6.6. For any permissible transcript Λ∗ on L, in which no two Reset() calls overlap,

history H = Γ(Λ∗) has a linearization S, satisfying:

(a) all complete Reset() calls in H linearize at their responses, and

(b) if H contains a pending Reset(), then it is the last operation call to linearize.

The lengthy proof of this lemma is deferred to Section 6.4.1. Assuming that this lemma holds,

we now show in Lemma 6.7 that no two Reset() calls can overlap in any permissible transcript

on L. Therefore, Lemmas 6.6–6.7 together prove linearizability of any permissible transcript

obtained from the long-lived TAS implementation L of Figures 6.2 and 6.3.

Lemma 6.7. In any permissible transcript on L, no two Reset() calls overlap.

Proof. Suppose for the sake of contradiction that there are overlapping Reset() calls in a

permissible transcript Λ on L. Let E1 by p1 and E2 by p2 be some Reset() calls that overlap

each other, where p1 6= p2. Suppose E1 is invoked before E2, and no two Reset() calls overlap

before the invocation of E2. Let Λ′ be the longest prefix of Λ in which no two Reset() calls

128

overlap. This implies that Λ′ ends just before the invocation of E2. Then E1 is pending in

transcript Λ′. By Lemma 6.6, Λ′ has a linearization S, such that

E1 is the last operation call in S. (6.1)

Since Λ is a permissible transcript, and process p2 invokes the Reset() operation E2 in Λ

immediately after the prefix Λ′ of Λ completes, p2’s last operation call in Λ′ is a TAS() call M2

that returns 0 before Λ′ ends. Then p2’s last operation call in S is also M2. Since S is a valid

sequential history on a TAS object, if there is a Reset() call after M2 in S, then the first such

Reset() call must be also by p2. However, M2 is p2’s last operation call in S, and by (6.1)

Reset() call E1 by process p1 appears after M2 in S. This is a contradiction since we showed

p1 6= p2.

Lemmas 6.6–6.7 imply that any permissible history on L is linearizable.

Corollary 6.8. Any permissible history on L is linearizable.

6.4.1 Proof of Lemma 6.6

Assume Λ∗ is a permissible transcript on L in which no two Reset() calls overlap. We assume

w.l.o.g. (for the purpose of proving linearizability) that Λ∗ is finite: Suppose Λ∗ is infinite but

Γ(Λ∗) is not linearizable. Then there must be a finite prefix of Λ∗, such that the interpreted

history of that prefix is not linearizable. Therefore, it suffices to prove for every finite prefix that

its interpreted history is linearizable.

Also assume that Λ∗ contains k ≥ 0 Reset() operation calls E1, . . . , Ek, such that tEi@inv <

tEi+1@inv, for i ∈ {1, . . . ,k− 1}. Moreover, assume all except possibly Ek complete in Λ∗. If Ek

is pending at the end of Λ∗, we let Ek run to completion (which is possible because Reset() is

wait-free), and Λ denote the resulting transcript, and otherwise we let Λ = Λ∗. In the rest of

this section, we prove Γ(Λ) has a linearization, and so Γ(Λ∗), which is a prefix of Γ(Λ), also

has a linearization.

129

Recall that a C.DWrite(1) call and a C.DWrite(0) call are executed as the first step following

the invocation and as the last step preceding the response of each Reset() call Ei, respectively.

Let t0 be the starting point of Λ. Also for i ∈ {1, . . . ,k}, let t2i−1 denote the point at which

the C.DWrite(1) call of Ei is executed, and t2i be the point at which the C.DWrite(0) of

Ei is executed. (For the purpose of the linearizability proofs, we assume C is atomic. This

assumption can be made without loss of generality because replacing atomic base objects with

linearizable ones preserves linearizability of the implemented objects.) Therefore, t2i−1 = tEi@inv

and t2i = tEi@rsp, for i ∈ {1, . . . ,k}. Finally let t2k+1 be an arbitrary point after all operation calls

in Λ have ended, or t2k+1 = ∞ if Λ is not complete. Since no two Reset() calls overlap in Λ,

we have tEi@rsp < tEi+1@inv, for all i ∈ {1, . . . ,k− 1}, and so

t0 < t1 < · · · < t2k < t2k+1. (6.2)

Therefore, for i ∈ {1, . . . ,k}, and j ∈ {0, . . . ,2k}, we have

(a) C = 0 at t0,

(b) value 1 gets written to C at t2i−1,

(c) value 0 gets written to C at t2i, and

(d) no process writes to C during (tj, tj+1).

Thus, we can conclude the following.

Observation 6.9. Let t be any point in time. Then C = 1 at t if and only if there is an index

i ∈ {1, . . . ,k}, such that t ∈ [t2i−1, t2i).

In order to prove Lemma 6.6, we need to prove several claims. First, we show that at any

point in time when no process is executing lines 22–27 of a recycle() call, each of RetQ and

AnnQ stores n elements.

130

Claim 6.10. Let t be a point at which either a process executes a recycle() operation call

E and t 6∈ [tE@24, tE@27], or no process executes a recycle() operation call. Then each of the

queues RetQ and AnnQ has size exactly n.

Proof. Each of these queues initially has n elements. During lines 22–27 of each recycle()

operation call, one element is enqueued to each of RetQ and AnnQ in lines 22 and 24, respectively,

and one element is dequeued from each of those queues in lines 26 and 27. As no two recycle()

operation calls overlap, the size of each queue is exactly n, when a process finishes line 27.

Moreover, these queues are not modified anywhere else, hence, the size of queues RetQ and

AnnQ are exactly n whenever no recycle() operation call is pending in lines 22–27.

Next, we examine what happens once an index is enqueued to one of RetQ or AnnQ.

Claim 6.11. Suppose a process enqueues an index b ∈ IB into one of the queues RetQ or AnnQ

at some point t during a recycle() operation call R. Let t′ be the point right after n − 1

recycle() calls following R completed, or t′ = ∞ if this does not happen in Λ. Then no process

adds b to Free throughout [t, t′).

Proof. By Claim 6.10, the size of each of the queues RetQ and AnnQ is n just before t. Both

RetQ or AnnQ are only modified in a recycle() call. During a recycle() operation call, a

process dequeues one element from each of these queues (lines 26–27). Therefore, if a copy of

index b is enqueued into a queue at time t during R, then this copy remains in the same queue

during R and the following at least n− 1 recycle() operation calls, and so throughout [t, t′),

because no two recycle() calls overlap. An index b can only get added to Free in line 31 of a

recycle() call if no instance of b is in any of these queues and Use[b] = 0. Hence, any time

line 29 gets executed for yj = b during [t, t′), the if-condition evaluates to false and so index b

does not get added to Free.

Using Claim 6.11, we now show that if a process reads an index from Annc[p], for some p,

then that index is not added to Free until the value of Annc[p] changes.

131

Claim 6.12. Suppose some process reads b ∈ IB from Annc[p] at some point t1 during a

recycle() operation call, for some p. Let t2 be the first point after t1 at which Annc[p] 6= b,

or t2 = ∞ if such a point does not exist. Then, no process adds b to Free throughout [t1, t2).

Proof. Assume for the sake of contradiction that at some point t ∈ [t1, t2], some process adds b

to Free in line 31 of some recycle() call R. Let t′ ∈ [t1, t2] be the last point before t at which

some process reads b from Annc[p] during some Reset() call R′. Since a process reads b from

Annc[p] at t1, such a point t′ exists in this interval. Therefore at t′, a process executes line 23

of R′, and it then enqueues b into AnnQ in line 24 (recall that no two Reset() calls overlap).

Thus by Claim 6.11, index b can only be added to Free after at least n − 1 recycle() calls

that follow R′ complete. This implies that n− 1 recycle() calls complete after R′ and before

R, since we assumed some process adds b to Free in line 31 of R. Hence, lines 23–25 of the

recycle() operation get executed at least n times after R′ and before line 31 of R and so during

(t′, t). Since in each recycle() call, Inx gets incremented modulo n in line 25 and does not get

modified anywhere else, line 23 of recycle() gets executed at least once when Inx = p during

(t′, t). Therefore, index b is read from Annc[p] in that time, because Annc[p] = b throughout

(t′, t) ⊆ [t1, t2]. This contradicts the assumption that this happens at point t′ for the last time

before t.

Next in Claim 6.13, we state some invariants about the relation between Ptr, Use, and Free.

Using Claim 6.13, we show, in Claim 6.14, that there are at most m indices b ∈ IB, such that

Use[b] = 1, just before a recycle() call is invoked. For both Claim 6.13 and Claim 6.13, we

assume that Free is never empty when a process is poised to remove an index from this set in

line 32. Later in the proof of Claim 6.15, we show that this is in fact true.

Claim 6.13. Consider some indices b ∈ IB and j ∈ {0, . . . ,m− 1}. Suppose Free 6= ∅ when a

process is poised to execute line 32. Then at any point, if Ptr[j] = b, then all of the following

are true.

132

(a) Ptr[j′] 6= b, for any j′ ∈ {0, . . . ,m− 1} \ {j},

(b) either Use[b] = 1 or a process is poised to execute one of lines 22–33 or 4-5, and

(c) b /∈ Free.

Proof. Initially, Free = {m, . . . ,2n + m}, and for any j ∈ {0, . . . ,m − 1}, Ptr[j] = j and

Use[j] = 1. Thus, the claim holds at t0.

Now consider some point t > t0, such that at least one step is executed in [t0, t). Let p be

the process taking the last step prior to t (such a step exists because t 6= t0). Moreover, assume

Claim 6.13 is true throughout [t0, t). (6.3)

We show that Claim 6.13 is also true at t.

Case 1. Suppose that at t, for some j1 ∈ {0, . . . ,m− 1}, process p writes b into Ptr[j1] in line 5

of a Reset() call E, and one of properties (a)-(c) is untrue. Also let R be the last recycle()

call p executes in line 3 prior to t. Since p writes index b into Ptr[j1] at t,

recycle() call R returns b. (6.4)

First we show that (a) holds at t. Suppose not, then there is an index j2 ∈ {0, . . . ,m− 1} \

{j1}, such that Ptr[j2] = b at t. No Reset() call overlaps E, and process p does not write to

Ptr[j2] during [tR@inv, t], therefore,

Ptr[j2] = b throughout [tR@inv, t]. (6.5)

By (6.4), R returns b, and so p removes b from Free at tR@32. Thus, b ∈ Free right before tR@32.

However, by (6.3) and (6.5), property (c) holds just before tR@32, and so, b /∈ Free at that point,

which is a contradiction.

Now we prove that (b) and (c) hold at t. By (6.4), R returns b, and so p removes b from

Free in line 32, and writes 1 into Use[b] in line 33 of R. No Reset() call overlaps E, and process

p does not add any index to Free during [tR@32, t], and it does not change the value of Use[b]

during [tR@33, t]. Therefore, Use[b] = 1 and b /∈ Free at t, and so both (b) and (c) hold at t.

133

Case 2. Next, suppose that p’s last step before t is a step other than writing b into an entry

of Ptr. Suppose

Ptr[j] = b at t. (6.6)

Since property (a) is true before t, and Ptr remains unchanged, (a) is also true at t. Hence,

suppose that one of properties (b) and (c) is untrue at t. If p’s step is a write of 0 into Use[b],

then p executes line 21 just before t, and so at t, process p is poised to execute line 22. Thus,

property (b) holds. Hence, in its step right before t, p either executes line 5 (and writes b′ 6= b

to Ptr[j∗], j∗ ∈ {0, . . . ,m− 1} \ {j}), or it adds b to Free.

Case 2.1. Consider the case that at t, process p finishes executing line 5 of some iteration j∗

of the loop of some Reset() call E, and property (b) does not hold. Thus,

Use[b] = 0 at t. (6.7)

Let t′ be the last point at which p is poised to execute line 3 prior to t. No Reset() call

overlaps E, so no process other than p can write to an entry of Ptr during [t′, t]. Since p’s last

step prior to t is not a write of b into an entry of Ptr, p writes some index b′ 6= b to Ptr[j∗] at

t. Process p does not write to any other entry of Ptr during [t′, t]. Thus, by (6.6),

Ptr[j] = b throughout [t′, t] and j 6= j∗. (6.8)

By (6.3) and (6.8), properties (a) and (b) imply that

Ptr[j∗] 6= b and Use[b] = 1 at t′. (6.9)

According to (6.7), Use[b] = 0 at t, hence by (6.9) and since no Reset() call overlaps E, p

writes 0 to Use[b] during [t′, t], and it can do so only in line 21 of R. This implies that R is a

recycle(b) call. Thus by line 3, Ptr[j∗] = b at t′. This contradicts (6.9).

Case 2.2. Suppose that in its step right before t, p adds b to Free in line 31 of a recycle()

call R. Thus, Use[b] = 0 when p reads this value in line 30 of R prior to t. Let t′ be the point

134

at which p is poised to execute line 21 of R. By (6.6), Ptr[j] = b at t. Moreover, p does not

write to any entry of Ptr during [t′, t], and no Reset() overlaps the current Reset() call of p

during which R is executed. So Ptr[j] = b at t′ as well. Therefore, by (6.3), property (b) implies

that Use[b] = 1 at t′. Hence, p writes 0 to Use[b] at some point during [t′, t], and p can only

do so in line 21 of R. Thus, in line 22 of R, p enqueues a copy of b to RetQ. By Claim 6.11,

no process adds b to Free during R. This contradicts the assumption that p adds b to Free in

line 31 of R.

Claim 6.14. Suppose Free 6= ∅ when a process is poised to execute line 32. Then just before

the invocation of a recycle() call, there are at most m indices b ∈ IB, such that Use[b] = 1.

Proof. Initially, there are m indices b ∈ IB, such that Use[b] = 1. Since Use is only modified

during a recycle() call, the claim holds just before the invocation of the first recycle() call

in Λ. During each recycle(b) call, Use[b] is set to 0 in line 21, and one entry of Use is set to

1 in line 33. Thus, it is enough to show that for any b ∈ IB, Use[b] = 1 just before a process

writes 0 into Use[b] in line 21 of a recycle(b) call.

Consider a recycle(b) call R by some process p, for some b ∈ IB. By line 3, just before p

executes line 21 of R, Ptr[j] = b, for some j ∈ {0, . . . ,m− 1}. Thus by Claim 6.13(b), Use[b] = 1

at that point.

Now, we prove that Free contains at least one index, when a process is poised to remove an

element from this set.

Claim 6.15. At any point, for any process p, and any index b ∈ IB, the following holds.

(a) If p is poised to execute line 32, then there is at least one index in Free, and

(b) either p is poised to execute one of lines 22–31 or line 33, or Use[b] = 1, or b ∈ RetQ∪

AnnQ∪ Free.

Proof. Initially, for any index b ∈ {0, . . . ,m− 1}, we have Use[b] = 1, and for any index b ∈

IB \ {0, . . . ,m− 1}, we have b ∈ Free. So the claim holds at t0.

135

Suppose for some point t > t0,

properties (a) and (b) are true throughout [t0, t). (6.10)

Case 1. First we prove that at t, property (a) is still true. Suppose at t, some process p becomes

poised to execute line 32 of some recycle() call R, while Free is empty. Let t′ be the point at

which p becomes poised to execute line 21 of R for the last time before t. By (6.10), property

(b) holds at t′. Thus, for each index b ∈ IB, either Use[b] = 1, or b ∈ RetQ∪AnnQ∪ Free at t′.

By Claim 6.10, each of RetQ and AnnQ contains n elements at t′. According to (6.10), property

(a) holds at any point before t. Therefore, by Claim 6.14, there are at most m indices b ∈ IB,

such that Use[b] = 1 at at any point before t, and so at t′. Hence, since |IB| = 2n + m + 1,

there is at least one index of IB that is in Free at that point. Since only in line 32 an element

can be removed from Free, and no process executes that line throughout [t′, t), no element gets

removed from Free during that interval. Thus, there is at least one index in Free at t.

Case 2. Next we prove that at t, property (b) holds. Suppose not, then no process is poised

to execute any of lines 22–31 or line 33, and there is an index b ∈ IB, such that

Use[b] = 0 and b /∈ RetQ∪AnnQ∪ Free, at t. (6.11)

Property (b) cannot get invalidated right after modifying RetQ and AnnQ, or writing 0 to Use[b],

or removing an element from Free, because a process becomes poised to execute one of lines

lines 22–31 and line 33. Thus, there is some process p, such that at t, p finishes executing either

line 31, or line 33.

Case 2.1. Suppose p finishes executing line 31 of some recycle() call R at t. Let t′ < t be

the point at which p is poised to execute line 21 of R. By (6.10), property (b) holds at t′, and

so at that point either Use[b] = 1 or b ∈ RetQ∪AnnQ∪ Free.

First assume Use[b] = 0 at t′. Thus, b ∈ RetQ ∪ AnnQ ∪ Free. By (6.11) and since no

recycle() call overlaps R, process p must dequeue the last instance of b from one of the

136

queues or removes b from Free during [t′, t). Process p does not remove any index from Free

during this interval, thus p dequeues the last instance of b in the queues from one of them in

line 26 or line 27 of R. Use[b] = 0 at t′, and it does not change before t, thus the if-condition

in line 30 of R evaluates to true for b, and so p adds b to Free in line 31 before t. This index

remains in Free until at least t, which contradicts (6.11).

If Use[b] = 1 at t′, then by (6.11) and since no recycle() call overlaps R, process p writes

0 into Use[b] at some point during [t′, t] and it can do so only in line 21 of R. Then in line 22

of R, p enqueues a copy of b into RetQ. By Claim 6.10, this instance of b remains in the queue,

until line 27 has been executed n times after that. Since no recycle() call overlaps R, line 27

is executed only once during [tR@22, t]. Thus, an instance of b is in RetQ at t, which contradicts

(6.11).

Case 2.2. Suppose p finishes executing line 33 of a recycle() call R at t. Let t′ be a point

when p is poised to execute line 32 of R. By (6.10), properties (a) and (b) hold at t′. Thus,

there is at least one index in Free at t′, and either Use[b] = 1 or b ∈ RetQ∪AnnQ∪ Free. The

queues RetQ and AnnQ are not affected by p’s steps in lines 32–34, and thus do not change in

[t′, t]. Moreover, if the index that p removes from Free in line 32 of R is not b, then Use[b] does

not change. Thus, either Use[b] remains equal to 1, or b remains in RetQ ∪AnnQ ∪ Free at t.

This contradicts (6.11). If p removes b from Free in line 32 of R, then it also sets Use[b] to 1

in line 33, and so Use[b] = 1 at t, which contradicts (6.11).

We now discuss what happens after an index some process writes an index b into an entry of

Ptr. Recall that by Claim 6.13, if Ptr[i] = b, then b is not in Free.

Claim 6.16. Suppose at some point t, no Reset() call is pending and Ptr[j] = b ∈ IB, for some

j ∈ {0, . . . ,m− 1}. If there is a point t′ at which b ∈ Free for the first time after t, then

(a) a Reset() call is invoked during (t, t′), and

137

(b) at least n recycle() calls complete during [tE′@inv, t′], where E′ is the first Reset() call

that is invoked after t.

Proof. By Claim 6.15(a) and Claim 6.13(c), we have

b /∈ Free at t, (6.12)

but it is assumed that b ∈ Free at t′. Thus, some process adds b to Free during a Reset() call

at some point during (t, t′). This Reset() call is invoked during (t, t′), because no Reset() call

is pending at t. Therefore Part (a) follows.

According to (6.12), b /∈ Free at t, and by the claim assumption b is in Free at t′ for the first

time after t. This implies that at t, some process p adds b to Free in line 31 of a recycle()

call R. Thus, Use[b] = 0 when p executes the if-condition in line 30 for the last time before t.

By Claim 6.15(a) and Claim 6.13(b), and since no Reset() call is pending at t, Use[b] = 1 at

that point. Thus, some process writes 0 to Use[b] in line 21 of a recycle(b) call R′ at some

point during (t, t′). In line 22 of R′, index b is enqueued to RetQ and therefore, by Claim 6.11,

index b can only be added to Free after at least n− 1 recycle() calls following R′ complete.

Therefore, at least n recycle() calls complete during [tR′@inv, t′]. Operation call R′ is invoked

after t and in a Reset() call. Since no Reset() call is pending at t, and by the assumption, E′

is the first Reset() call invoked after t, we have tR′@inv > tE′@inv. Thus, at least n recycle()

calls complete during [tE′@inv, t′], and so Part (b) also holds.

The following claim shows that if a process executes a C.DRead() call during a TAS() opera-

tion call while a Reset() is pending, then the TAS() call immediately returns 1 before executing

any further operations on a shared variable.

Claim 6.17. Consider a TAS() operation call M by some process p, and let i ∈ {1, . . . ,k}.

Suppose at some point t ∈ [t2i−1, t2i), process p executes a C.DRead() call during M. Then

immediately after the DRead(), M returns with value 1.

138

Proof. Process p can execute C.DRead() in line 7 of M or during an RRead() or an RWrite()

call executed in M in one of lines 9, 11, 13, 16, 18 and 20. First suppose process p executes

line 7 of M at t. Then by Observation 6.9, p reads (1, ·) at t, and so the if-condition in line 7

evaluates to true and p immediately returns value 1.

Now suppose p executes C.DRead() in one of lines 9, 11, 13, 16, 18 and 20 of an RRead()

or an RWrite() call executed in M at t ∈ [t2i−1, t2i). Let t′ be the last time p executes a

C.DRead() call before t2i−1 during M. Such a point t′ exists, because p must have executed the

C.DRead() call in line 7 of M before t2i−1, since otherwise, as we just showed, M would have

returned 1 before t. Hence t2i−1 ∈ (t′, t). By the definition of t2i−1, some process executes a

C.DWrite(0) call at t2i−1 = tEi@inv = tEi@1. Therefore, the C.DRead() call executed at t must

return (·,true), indicating a C.DWrite() has happened since the preceding C.DRead() call at

t′. Thus, the if-condition following the DRead() of C at t evaluates to true, and p immediately

returns 1.

Corollary 6.18. After a Reset() call is invoked by some process during a TAS() call by process

p, p executes at most one operation on B before its TAS() completes.

Proof. Consider some TAS() call M by some process p, and suppose the i-th Reset() call Ei

in Λ is invoked at tEi@inv = t2i−1 during the execution of M, for some i ∈ {0, . . . ,m− 1}. As p

executes C.DRead() after and before accessing an entry of B, and by Claim 6.17, p can access

at most one register of B after the invocation of Ei and before p reads C again when it detects

the overlapping Reset() call, and returns 1.

Using Claims 6.12 and 6.16, the following claim prove an important property of our algorithm:

If a process is about to access a register B[b] during a TAS() call, then B[b] has not been reset

since the invocation of the current TAS() call. Equivalently, this claim shows that if a process is

about to reset a register B[b], then this register is not going to be accessed until it is in use again.

The idea is that if a process p is about to access B[b], then no Reset() call is invoked before

139

the point at which p announces b, because otherwise p would detect the overlapping Reset()

call when it reads C after announcing b. Moreover, if an element of Ptr has value b when some

process p announces b, then the next n recycle() calls will not add b to Free and during those

n recycle() calls some process reads p’s announcement of index b, and so register B[b] does

not get reset until p changes its announcement.

Claim 6.19. Consider a TAS() operation call M by p, and some index b ∈ IB. Suppose process

p executes B[b].Read() or B[b].Write() at some point t during M. Then no process writes ⊥

to B[b] in line 4 of a Reset() call during interval [tM@inv, t].

Proof. Suppose p executes B[b].Read() or B[b].Write() during an RRead(), respectively,

an RWrite() operation call Op in M. Thus, p must have read b from Ptr[i], for some

i ∈ {0, . . . ,m− 1}, at an earlier point during Op (in line 8, respectively, line 15 of Op).

Let ta be the point at which p writes b into Annc[p] during Op, that is ta = tOp@10 if Op is

an RRead(), and ta = tOp@17 if Op is an RWrite() operation call. Then p does not overwrite

this value until some time after t. Therefore,

Annc[p] = b throughout [ta, t]. (6.13)

Process p accesses B[b] at t, thus neither of the if-conditions of Op executed before t (in

lines 9 and 11 if Op is an RRead(), and in lines 16 and 18 if Op is an RWrite()) evaluates to true.

Moreover, C must have value 0 at tM@7. Therefore, C = 0 throughout [tM@7, ta] = [tM@inv, ta].

Hence, no Reset() is pending at the invocation of M and no Reset() gets invoked after the

invocation of M and before ta, i.e.

no Reset() call overlaps [tM@inv, ta]. (6.14)

Thus, no process writes ⊥ to B[b] in line 4 of a Reset() call during [tM@inv, ta]. In the rest of

this proof we show that

no process writes ⊥ to B[b] in line 4 of a Reset() call during (ta, t], (6.15)

140

which completes the proof of this claim.

To prove (6.15), we show that

b /∈ Free throughout (ta, t]. (6.16)

To see why this is enough, suppose that (6.16) is true, but (6.15) is not. Then a process writes

⊥ to B[b] in line 4 of a Reset() call E during (ta, t]. Hence, a recycle() call R executed

during E must return b. By (6.14), E is invoked after ta, and so R is also invoked after ta.

However by (6.16), when line 32 of R is executed, b /∈ Free, and so R does not return b. This is

a contradiction.

Proof of (6.16). By (6.14), no process changes the value stored in Ptr[i] between the point

at which p reads Ptr during Op and ta. Thus,

Ptr[i] = b at ta. (6.17)

Therefore, by Claim 6.15(a) and Claim 6.13(c), b /∈ Free at ta. Next, we show that no process

adds b to Free during (ta, t]. Suppose for the sake of contradiction that at some point t∗ ∈ (ta, t]

some process adds b to Free for the first time after ta. Then by (6.17), (6.14), and Claim 6.16(a)

a Reset() call is invoked between (ta, t∗). Let E′ be the first Reset() call executed during this

interval. By (6.14),

ta < tE′@inv < t∗ < t. (6.18)

Moreover, by Claim 6.16(b), at least n recycle() calls complete during [tE′@inv, t∗].

Now consider the first n of these at least n recycle() calls. By line 25, Inx gets incremented

modulo n during each recycle() call. Therefore, there is a recycle() call Rr among these n

recycle() calls, such that Inx = p at the invocation of Rr. By (6.13) and (6.18), Annc[p] = b

throughout [tE′@inv, t∗] ⊆ [ta, t]. Therefore, a process reads b from Annc[p] during Rr at some

point tr ∈ [tE′@inv, t∗]. By Claim 6.12, index b does not get added to Free throughout [tr, t],

because by (6.13) Annc[p] does not change in that interval. Thus no process adds b to Free at

t∗ ∈ [tr, t]. This is a contradiction.

141

Recall the definition of points t0, t1, . . . , t2k+1 discussed on page 130. For any i ∈ {0, . . . ,k},

let Ii denote time interval [t2i, t2i+1), and let Oi be the set of all TAS() operation calls M in Λ,

such that tM@inv ∈ Ii. Moreover, for i ∈ {1, . . . ,k}, let Fi be the set of all TAS() operation calls

M in Λ, such that tM@inv ∈ [t2i−1, t2i). We let Bi denote the set of all registers that are in use

(pointed by Ptr) during time interval Ii, for i ∈ {0, . . . ,k}. Since the values stored in array Ptr

only change during interval (t2i−1, t2i) of a Reset() operation call Ei, for i ∈ {1, . . . ,k}, Bi is

the set of all registers whose indices are written to an entry of Ptr during Reset() call Ei, and

B0 is the set of all registers that are in use initially.

In the following three claims, we establish some properties regarding these sets. In particular,

Claim 6.20 states that any TAS() call M returns 1 provided that M ∈ Fi, or M is in Oi and

responds after Ei+1 is invoked (i.e. after t2i+1). Next in Claim 6.21, we show that during Ii only

operations in Oi access registers of Bi, and these operations do not access any other registers of

B. Claim 6.22 says that right after Ei responds at t2i, all registers of Bi are in their initial states.

Claim 6.20. Consider some TAS() operation call M in Λ,

(a) if M ∈ Fi, for some i ∈ {1, . . . ,k}, then M returns 1, without executing any operation

call on any register of B, and

(b) if M ∈ Oi, for some i ∈ {0, . . . ,k}, and tM@rsp > t2i+1, then M returns 1.

Proof. Let p be the process that executes operation call M. First suppose M ∈ Fi. Thus, we

have tM@inv ∈ [t2i−1, t2i). Process p executes a C.DRead() call at tM@inv (in line 7). Therefore,

by Claim 6.17, p returns 1 at tM@inv. Hence, p executes no operation on any register of B, which

proves Part (a).

Now suppose M ∈ Oi, and tM@rsp > t2i+1. That is tM@inv < t2i+1 < tM@rsp. By the imple-

mentation, p executes C.DRead() at tM@inv, and during the remainder of M after each operation

call on a shared object other than C. Hence, at least one C.DRead() call is executed before t2i+1

and at least one C.DRead() call is executed after t2i+1 during M. Since a C.DWrite() is ex-

142

ecuted at t2i+1, the first C.DRead() that is executed after t2i+1 returns (·,true), and so M

immediately returns 1.

Claim 6.21. Let p be a process and M an operation call by p in which p accesses a register

B[j], for some j ∈ IB, at point t ∈ Ii, for i ∈ {0, . . . ,k}. Then B[j] ∈ Bi if and only if M ∈ Oi.

Proof. We first show that

M is a TAS() call. (6.19)

No Reset() call is invoked before t1, hence no process accesses any register of B in a Reset()

call during I0 = [t0, t1). Now assume that i ∈ {1, . . . ,k}. By definition, Ii = [t2i, t2i+1) and so

if i < k, then Ii = [tEi@rsp, tEi+1@inv), and if i = k, then Ii = [tEk@rsp, t2k+1). In both cases, the

only Reset() call in which a process takes any shared memory step during Ii = [t2i, t2i+1) is Ei,

and that is only at t2i = tEi@rsp. However, the last shared memory step of a Reset() call is not

accessing any register of B. Therefore, no process accesses any register of B in a Reset() call

during Ii.

Suppose B[j] ∈ Bi, then we prove that M ∈ Oi. According to (6.19), M is a TAS() call.

Now suppose for the sake of contradiction that M /∈ Oi. Therefore, tM@inv /∈ [t2i, t2i+1). Since

p accesses B[j] in M during interval [t2i, t2i+1), thus tM@inv < t2i, and i > 0.

First suppose that tM@inv ∈ [t2i−1, t2i), and therefore, by definition, we have M ∈ Fi. Then,

by Claim 6.20(a), M returns 1 before p executes any operations on any register of B, which is a

contradiction. Now, suppose that tM@inv < t2i−1. By Claim 6.19, no process writes ⊥ into B[j]

in line 4 of a Reset() call during [tM@inv, t], because p accesses B[j] during M at point t. Since

tM@inv < t2i−1 and t2i < t, we have [t2i−1, t2i] ⊆ [tM@inv, t]. Thus,

no process writes ⊥ into B[j] in line 4 of a Reset() call during [t2i−1, t2i]. (6.20)

Since B[j] ∈ Bi, by definition, index j is written to an entry of Ptr in Reset() call Ei. However,

before that, in line 5 of Ei, register B[j] is reset in line 4 at some point during (tEi@inv, tEi@rsp) =

(t2i−1, t2i). This contradicts (6.20).

143

Next suppose that M ∈ Oi, then we prove that B[j] ∈ Bi. Suppose not. Process p must

read index j from Ptr at some point t′ ∈ (tM@inv, t]. Since B[j] /∈ Bi, B[j] is not in use during

Ii = [t2i, t2i+1). Thus, p must read j from Ptr before t2i, hence, we have t′ < t2i. Therefore,

tM@inv < t2i. This is a contradiction, because M ∈ Oi, and thus tM@inv ∈ [t2i, t2i+1).

Claim 6.22. For all i ∈ {0, . . . ,k}, at point t2i, all registers in Bi are in their initial states.

Proof. All registers are in their initial states at t0, so the claim is true for i = 0. Now fix some

i ∈ {1, . . . ,k}. Suppose for the sake of contradiction that there is a register B[j] ∈ Bi, such that

B[j] is not in its initial state at point t2i = tEi@rsp. Since B[j] ∈ Bi, index j is written into an

entry of Ptr during Reset() operation call Ei. By the implementation, before that, in line 5 of

an iteration of the loop in Ei, the calling process writes ⊥ into B[j] in line 4 of the same iteration

of the loop in Ei. Let tr be the point at which that B[j].Write(⊥) is executed during Ei. Since

the loop of Ei is executed in (t2i−1, t2i),

tr ∈ (t2i−1, t2i). (6.21)

Register B[j] is not in its initial state at t2i, only if some process p writes a non-⊥ value to B[j]

at some point during (tr, t2i). Process p can only write a non-⊥ value to register B[j] in line 19

of an RWrite() call Op executed during a TAS() call M. Let tOp@19 be the first point at which

p writes to register B[j] during (tr, t2i). Thus, we have

tOp@19 ∈ (tr, t2i). (6.22)

By (6.21) and (6.22), we have t2i−1 < tOp@19 < t2i.

At point tOp@18, process p executes a C.DRead() call. If tOp@18 ∈ [t2i−1, tOp@19)⊆ [t2i−1, t2i),

then by Claim 6.17, M returns 1 at tOp@18. This contradicts the assumption that p writes to

B[j] at tOp@19 > tOp@18. Therefore, tOp@18 < t2i−1. This implies that

tM@inv < t2i−1. (6.23)

144

By our assumption, process p writes to register B[j] at point tOp@19, thus by Claim 6.19, no pro-

cess writes ⊥ into B[j] in line 4 of a Reset() call during [tM@inv, tOp@19], which by contains (6.23)

during [t2i−1, tOp@19]. This is a contradiction, because a process executes a B[j].Write(⊥) call

in line 4 of Ei at tr and by (6.21) and (6.22), tr ∈ [t2i−1, tOp@19).

Let Λi be the subtranscript of Λ that contains only events that occur during interval Ii, for

i ∈ {0, . . . ,k}.

Claim 6.23. History Γ(Λi|Oi) has a linearization Si of a one-time TAS object, such that Si

contains all operation calls in Oi.

Proof. Let Ti be the subsequence of Λ that contains all invocation and response events of TAS()

operation calls in Oi executed during Ii (i.e. Γ(Λi|Oi)) as well as all operation calls on registers

of B executed in those TAS() calls during Ii (i.e. (Λi|Oi)|B). We first show that Ti is a transcript

that can be obtained from the one-time TAS object O, where each register Rj is replaced with

B[Ptr[j]], for j ∈ {0, . . . ,m− 1}.

By Observation 6.9, C = 0 throughout Ii. Therefore, each time a process executes C.DRead()

from some TAS() operation call during this interval, its following if-condition evaluates to false.

Thus, no TAS call that responds in this transcript returns in any of lines 7, 9, 11, 13, 16, 18 and 20.

By Claim 6.21, operation calls in Oi access only registers of B that are in Bi, and according to

Claim 6.22, all registers of Bi are in their initial state at the beginning of Ii. By Claim 6.15(a) and

Claim 6.13(a), B[Ptr[j]] 6= B[Ptr[j′]], for any two distinct indices j, j′ ∈ {0, . . . ,m− 1}, at any

point during this transcript. Moreover, no Reset() call overlaps Ii, and so no process changes

the value stored in an entry of Ptr in this transcript. Thus, Ti is a transcript that can be obtained

from executing TAS() calls on O, where each Rj is replaced with B[Ptr[j]], for j ∈ {0, . . . ,m− 1}.

Let S′i be the linearization of Γ(Ti). Note that S′i 6= ∅, for i ∈ {0, . . . ,k− 1}, because Ei is

executed by the process whose TAS() call completes during Ii, and so at least that call appears

in S′i. If S′k = ∅ and Ok 6= ∅, then no TAS() call in Ok completes during Ik = [t2k, t2k+1), so

145

they do not complete in Λ. In this case, we add the invocation event of the TAS() call with

earliest invocation in Ok to S′k, followed by a matching response with return value 0.

We construct a sequential history Si from S′i, and prove that Si is a linearization of Γ(Λi|Oi)

that contains all operation calls in Oi: First all operation calls in S′i are added to Si in the same

order as they appear in S′i, and then all operation calls in Oi that do not appear in S′i are added

in the order of their response events.

All operation calls in Oi are invoked in Ii. Sequential history S′i is a linearization of Γ(Ti),

and so it contains all operation calls in Oi that are invoked and respond during Ii, and it may

contain some operation calls in Oi that are invoked but do not respond during Ii. This implies

that S′i, and thus Si contains all complete operation calls in Γ(Λi|Oi). In addition to those, we

add all operation calls in Oi that do not appear in S′i to Si. Hence, Si contains all operation calls

in Oi (and no other operation calls).

To prove that Si is a valid history on a one-time TAS object, we need to show that only the

first operation call in Si responds 0, and all other operation calls return 1. As S′i is a linearization

of a history on a one-time TAS object, the first TAS() call that appears in S′i returns 0, and

all other operation calls in S′i return 1. (In the case that the linearization of Γ(Tk) is empty,

we create S′i so that it contains only one successful TAS() call.) All other operation calls in Si

(those that are not in S′i) are the ones that are in Oi, but do not complete during Ii. According

to Claim 6.20(b), all such operation calls return 1. Thus Si is valid.

Finally, for the following reasons the happens before order of operation calls in Γ(Λi|Oi) is

preserved in Si. First, S′i is a linearization of Γ(Ti), and so it preserves the happens before order

of operation calls. Second, all operation calls that we add to Si that are not in S′i are pending at

t2i+1, and so adding them after operation calls in S′i and according to the order of their response

time preserves the happens before order of operation calls. In the case that the linearization

of Γ(Tk) is empty, all operation calls in Oi are pending at t2k+1, therefore they can be ordered

arbitrarily in Si.

146

We can now complete the proof of Lemma 6.6. For convenience, we restate it here.

Lemma 6.6 (Restated). For any permissible transcript Λ∗ on L, in which no two Reset() calls

overlap, history H = Γ(Λ∗) has a linearization S, satisfying:

(a) all complete Reset() calls in H linearize at their responses, and

(b) if H contains a pending Reset(), then it is the last operation call to linearize.

Recall that we assume that Λ∗ contains k Reset() calls E1, . . . , Ek, and all of them except

possibly the last one complete in Λ∗. Also recall that we assumed that if Ek is pending at the

end of Λ∗, we let Ek run to completion (which is possible because Reset() is wait-free), and Λ

denote the resulting transcript, and otherwise we let Λ = Λ∗. Thus, it is enough to prove that

Γ(Λ) has a linearization, because then Γ(Λ∗), which is a prefix of Γ(Λ), also has a linearization.

We construct a sequential history S from H = Γ(Λ) as follows: For each i ∈ {0, . . . ,k}, let

Si be the linearization of Γ(Λi|Oi) that contains all operation calls in Oi, By Claim 6.23, such a

linearization exists. We add all operation calls in S0 to S in the same order as they appear in S0.

Next, for i from 1 to k, we repeat the following steps. We append all operation calls in Fi to S,

ordered by their response time, and then we append Reset() call Ei, followed by all operation

calls in Oi, as they appear in Si.

Next we prove that S is a linearization of H. Recall that for each i ∈ {0, . . . ,k}, Oi is the

set of all TAS() operation calls invoked in Ii = [t2i, t2i+1), and for i ∈ {1, . . . ,k}, Fi is the set

of all TAS() calls invoked in [t2i−1, t2i). Since
(⋃

0≤i≤k[t2i, t2i+1)
)
∪
(⋃

1≤i≤k[t2i−1, t2i)
)

covers

the entire duration of H, the set of operations in
(⋃

0≤i≤kOi
)
∪
(⋃

1≤i≤kFi
)

contains all TAS()

calls in H. Therefore by the construction, sequential history S contains all TAS() and Reset()

calls in H.

The happens before order of operations is violated if we have tM1@rsp < tM2@inv for two

operation calls M1 and M2 in H, but M2 precedes M1 in S. By definition of Oi and Fi, we have

147

inv(O0) < inv(F1) < rsp(E1) < inv(O1) < inv(F2) < rsp(E2) <

inv(O2) < · · · < inv(Ok−1) < inv(Fk) < rsp(Ek) < inv(Ok),
(6.24)

where Oi ∈ Oi and Fi ∈ Fi, for i ∈ {1, . . . ,k}. Consider two operation calls M1 and M2 in H,

such that tM1@rsp < tM2@inv. The happens before order of M1 and M2 is preserved in S, because,

(a) if M1, M2 ∈ Oi, for some i ∈ {0, . . . ,k}, then they are ordered based on their order in Si

which preserves the happens before order of operation calls in Γ(Λi|Oi),

(b) if M1, M2 ∈ Fi, for some i ∈ {0, . . . ,k}, then they are ordered by their response time,

(c) if M1 and M2 are both Reset() calls, then they do not overlap and they appear in S in

the same order as in Λ,

(d) otherwise, by (6.24) and the construction of S, M1 precedes M2 in S.

For each i ∈ {0, . . . ,k}, sequential history Si is a valid history on a one-time TAS object, thus the

first TAS() operation call in Si returns 0, and all other operation calls in Si return 1. Moreover,

by Claim 6.20(a) all operation calls in Fi return 1. Therefore, in S, the first TAS() operation call

and each TAS() operation call that immediately follows a Reset() call return 0, and all other

TAS() calls return 1. Thus, history S is a valid history on a long-lived TAS object. Hence, S is

a linearization of H.

For any i ∈ {1, . . . ,k}, any TAS() call that is invoked before tEi@rsp = t2i is in(⋃
0≤j<iOj

)
∪
(⋃

1≤j≤iFj
)

, and therefore appears before Ei in S, for any i ∈ {1, . . . ,k}. Thus,

S can be obtained from H by assigning appropriate linearization points, where each Reset() call

is linearized at its response. This proves Part (a) of Lemma 6.6.

Moreover, if Ek is pending in Λ∗, then the response of Ek is the last event in Λ. Therefore,

Ok is empty, because no TAS() call is invoked after Ek in Λ. Thus by the construction of S, Ek

appears last in S in this case, which proves Part (b) of Lemma 6.6. This concludes the proof of

Lemma 6.6.

148

6.4.2 Proof of Theorem 6.1

Consider a one-time TAS implementation O from m registers, and let L be the long-lived TAS

implementation of Figures 6.2 and 6.3 that is obtained from O. By Corollary 6.8, L is lineariz-

able. To implement B, Ptr, Annc, and data structures of the recycle() operation, O(n + m)

registers are used. The ABA-detecting register C can be implemented from O(n) registers (see

Theorem 5.1 of Chapter 5). Each register of L stores a value in {0, . . . ,2n + m} ∪ {⊥}, or a

value that a register of O is required to hold, which by the assumption is at most b bits. Thus,

O(n + m) registers, each of size max{log(2n + m + 2),b} bits, suffice to implement L from O.

A TAS() operation call of L executes all steps of a TAS() call of O, and with each of those

steps it incurs constant additional steps, hence, it has asymptotically the same step complexity.

Finally, a Reset() operation call of L includes m repetitions of a constant number of steps, and

so it requires O(m) steps in the worst case.

149

Chapter 7

Taggable Objects

Many shared memory algorithms benefit from a standard technique called tagging, where registers

or other shared objects get augmented with additional values, called tags. In a system, with

resources of unbounded size, a process can generate a new tag by incrementing a local variable

c, and then using its id and value c as the tag. Some applications of tagging are ABA detection,

implementation of concurrent data structures, and memory management. Researchers have been

introducing ad-hoc techniques to enable bounded tagging for their algorithms.

This chapter presents a systematic investigation of the tagging problem, by introducing new

types that maintain a fixed finite pool of tags. A process can efficiently find a free tag from that

pool and communicate it to other processes by storing it in a shared object. Other processes can

obtain references to tags by reading them from shared objects, and later release those references

via a dedicated operation. The main safety property provided by our abstraction is that whenever

a process obtains a new tag from the pool, then immediately before that the tag was free, that

is, no process had a reference to it and it is not stored in elsewhere than in the pool. New

tags can be taken from the pool infinitely many times, as long as the algorithm that uses this

abstraction guarantees that the number of tags to which processes have references, is bounded

by some parameter τ that is much smaller than the size of the pool.

Often, tags need to augment other data that is written to objects. We present two types, that

mainly differ in what operations can be used to store or retrieve (data,tag) pairs. In the first type,

called taggable register array (TRA), these operations are reads and writes. The second type,

called taggable LL/SC array (TLSA), supports load-linked/store-conditional (LL/SC) operations.

We provide a specification of these types in Section 7.1 followed by simple applications to motivate

them in Section 7.2. We present an implementation of TLSA from LL/SC objects and registers,

150

and an implementation of TRA from registers in Section 7.3. Each of those implementations is

wait-free, all operations have constant step complexity, shared base objects have bounded size

(typically it is logarithmic in the number of processes), and the number of base objects used is

bounded (typically polynomially in the number of processes). Finally in Section 7.5, we prove

that both implementations are correct.

7.1 Taggable Objects Specification

This section provides a formal specification of two types, taggable register array (TRA) and

taggable LL/SC array (TLSA). Each of these is instantiated by two parameters, m and τ, and

maintains an array A[0 . . . m− 1] of size m. The parameter τ is, roughly, a bound on the number

of tags that can be simultaneously referenced by processes (a formal definition will be provided

below). To specify the values of the parameters m and τ, we will sometimes write (m,τ)-TRA and

(m,τ)-TLSA. The tags come from the domain T = {0, . . . ,∆(m,n,τ)− 1}, for some function

∆ :N→N that is specified based on the implementation of the type. (In our implementations,

∆ = O(m2n6 + n2τ2 + mn4τ); see Section 7.2.4 for more details.) The components of the array

A behave essentially as registers for TRA, and as LL/SC objects for TLSA, but they provide

additional functionality. Each array component can be used to store data augmented with a tag,

and a retrieval of a (data,tag) pair from one array component automatically prevents the retrieved

tag from being freed.

In the following, we give a specification of the types TLSA and TRA. In particular, we describe

how the objects behave if their operations are executed only sequentially. Both types support the

operations GetFree() and Release().

(S1) Operation GetFree() returns a free tag g from pool T, and as a result g is active.

We will define later precisely what it means that a tag is free.

(S2) Operation Release(g) takes as parameter a tag g that is active, and as a result g is

inactive.

151

(Even when a tag has been released, it may not be free because other processes may still need

access to it, as explained below.) Thus, a tag is active if a GetFree() returned g and was not

followed by a Release(g).

Once a tag has become active through a GetFree() operation, processes can augment it

with data values, and communicate the resulting (data,tag) pairs via the shared objects of array

A. In case of type TRA, this is done with the operations TWrite() and TRead(). Specifically,

(S3a) operation TWrite(i, (x, g)) writes the pair (x, g) consisting of a data value x and a tag

g to A[i], and

(S4a) operation TRead(i) returns the pair stored in A[i].

Similarly, in case of type TLSA, tags can be stored in and retrieved from A using operations

TLL() and TSC() that behave like LL() and SC() operations on LL/SC objects:

(S3b) Operation TSC(i, (x, g)) attempts to write the pair (x, g) to A[i], and returns a boolean

value indicating whether the write succeeded or not (if it does not succeed, A[i] remains

unchanged). Operation TSC(i, (x, g)) by p succeeds if and only if p previously executed

TLL(i), and since then no other successful TSC(i, ·) operation was performed.

(S4b) Operation TLL(i) returns the current pair stored in A[i].

As a result of a TLL() or a TRead() that returns a pair (x, g), a process has tag g protected,

and can from then on safely use that tag. (The meaning of safe is explained later.) Since multiple

TLL() or TRead() operations may return the same tag, a tag may be protected multiple times.

We define a function Protected(g, p) that counts the number of times tag g is protected by p.

A process protects a tag if Protected(g, p) = k ≥ 1.

(S5) If Protected(g, p) = k before a TLL() or TRead() operation call by p that returns tag g,

then Protected(g, p) = k + 1 after this operation call.

152

(S6) If Protected(g, p) = k before an Unprotect(g) call by p, then Protected(g, p) = k− 1

after this operation call.

(The constraints on the use of these types, which are being introduced later, will prevent

Protected(g, p) from becoming negative.)

The goal of these operations is that access to tags is always safe, in the sense that no process

could be poised to use a tag g, when a GetFree() operation call returns g. To make this precise,

we distinguish between free and occupied tags.

A tag g is occupied if

• it is active; or

• some process protects it; or

• a pair (·, g) is stored in some element of array A.

A tag g is called free if it is not occupied. The safety property guaranteed by types TLSA

and TRA is that just before a GetFree() operation returns a tag, that tag is free (as stated

in (S1)). A summary of TRA and TLSA specifications is provided in Figure 7.1.

Safety can, of course, only be ensured if processes access tags properly. Any algorithm using

these primitives must satisfy the following constraints in order for the primitive to behave as in

its specification. In particular, for any process p,

(C1) when p calls Unprotect(g), p protects tag g,

(C2) when p calls Release(g), g is active, and

(C3) when p calls TSC(·, (·, g))) or TWrite(·, (·, g))), g is occupied.

Moreover, in order to not run out of free tags, the algorithm using an (m,τ)-TRA or an

(m,τ)-TLSA must ensure that

(C4) there are never more than τ tags active or protected (where τ < ∆(m,n,τ)).

153

Free(g)
De f
≡ ¬Occupied(g)

Occupied(g)
De f
≡ Active(g) ∨ Protected(g) ∨ Stored(g)

Active(g)
De f
≡ tag g is active

Protected(g)
De f
≡ ∃p ∈ {0, . . . ,n− 1} : Protected(g, p) > 0

Stored(g)
De f
≡ ∃i ∈ {0, . . . ,m− 1} : A[i] = (·, g)

Operation GetFree()

Precondition: ∃g : Free(g).
Postcondition: Active(g), and returns g.

Operation Release(g)

Precondition: Active(g).
Postcondition: ¬Active(g).

Operation Unprotect(g)

Precondition: Protected(g, p) = k ≥ 1.
Postcondition: Protected(g, p) = k− 1.

Operation TReadp(i)

Precondition: A[i] = (x, g), and
Protected(g, p) = k ≥ 0.
Postcondition: Protected(g, p) = k + 1,
and returns (x, g).

Operation TLLp(i)

Precondition: A[i] = (x, g), and
Protected(g, p) = k ≥ 0.
Postcondition: Protected(g, p) = k + 1,
p has a valid link to A[i], and returns (x, g).

Operation TWritep(i, (x, g))

Precondition: Occupied(g).
Postcondition: A[i] = (x, g) and
Stored(g).

Operation TSCp(i, (x, g))

Precondition 1: Occupied(g), and p has a
valid link to A[i].
Postcondition 1: A[i] = (x, g), Stored(g),
invalidates all processes’ links, and returns
true.
Precondition 2: Occupied(g), and p does
not have a valid link to A[i].
Postcondition 2: Returns false.

Figure 7.1: Specification of a TRA/TLSA object A

154

Processes can achieve (C4) by releasing and unprotecting sufficiently many tags. For example,

in one of the applications presented in the following section, we choose τ = n, because at any

point each process can have at most one tag protected or active.

Note that Release(g) is the counterpart of GetFree(), and Unprotect(g) is the coun-

terpart of TRead() or TLL(). But if a process begins to protect a tag g as a result of a

TRead() or TLL() operation call, it needs to call Unprotect(g) itself, while any process can

call Release(g) for an in-use tag g, no matter which process received g from a GetFree()

call. This property will allow us later (in Section 7.2.3) to design an extension of this type that

can replace other memory reclamation techniques, such as Hazard Pointers (Michael, 2004b) or

Pass-the-Buck (Herlihy, Luchangco and Moir, 2002), for list based data structures.

For the ease of description, in the rest of this chapter (unless it is said otherwise and except

for the proofs), we adopt the following conventions. First we ignore the data values that are

augmented by tags when storing or loading them from taggable arrays. Moreover, an (m,τ)-

TLSA or (m,τ)-TRA object X for m = 1 maintains a taggable array of size 1. Therefore, the first

parameter of all operation calls on X is always 0. Hence, we omit that parameter if it is clear from

the context that we refer to such an object with m = 1. So for example, if X is a (1,τ)-TLSA

object, we write X.TLL() instead of X.TLL(0), X.TSC(g) instead of X.TSC(0, (·, g)), and X

instead of X[0].

7.2 Applications and Results

To illustrate the advantages of our abstraction, we first describe some simple applications in

Sections 7.2.1 and 7.2.2. Then, we extend the specification of taggable objects in Section 7.2.3,

so that it can be used as a memory management scheme for linked data structures. Section 7.2.4

gives a summary of the results.

155

7.2.1 Round-Based Algorithms.

In a recent mutual exclusion algorithm (Giakkoupis and Woelfel, 2014), processes make multiple

attempts to enter the critical section. In each such attempt, a process p increments a round

number, c, and when it writes to some objects, it writes pairs of the form (x, c). (For simplicity,

the algorithm uses a CAS object, which as argued in the paper, can be replaced by registers

without affecting the efficiency of the mutual exclusion algorithm.) The only purpose of writing

round numbers is that if some other process reads different pairs, say (x, c) and (x′, c′) written

by p, then it can decide by comparing c and c′, whether those pairs were written by p in the

same or in different rounds. The temporal order relation between rounds is irrelevant. Since

there is no bound on the number of attempts a process makes, correctness can only be ensured

with this implementation if unbounded registers are used to store the round numbers. Therefore,

the authors describe an ad-hoc way of recycling round numbers in that particular algorithm, but

no detailed correctness proof is given. With our abstraction, this becomes trivial: We can use

an (m,τ)-TRA object, where m is the number of registers that need to store round numbers in

the algorithm, and τ = cn, for a large enough integer c. At the beginning of a round, a process

calls GetFree(), and uses the returned tag, g, as its round number. During the round, it uses

the operations TWrite() and TRead() provided by the TRA object whenever it wants to write

or read a value from a register that may store a round number (tag). Once a process does not

need the tag value g that it read from an element of the taggable array, it unprotects tag g with

an Unprotect(g) call, and at the end of the round it releases its own round number by calling

Release(g).

7.2.2 Pointer Swinging

Many shared memory algorithms are based on the following template: There is a pointer X, that

points to a block of objects that store the current state of the data structure. A process may

modify the data structure as follows: First it allocates a new block, B, of objects. Then it reads

156

X and the data structure from the block pointed to by X, computes the new state of the data

structure, and writes the new state to B. Finally, the process tries to change X so that it points

to B. If this attempt fails, then the process has to start over.

When X is a CAS (or an LL/SC) object, the algorithm that uses this approach belongs

to an algorithmic class called single compare-and-swap universal (SCU) (Alistarh, Censor-Hillel

and Shavit, 2016). This provides a simple transformation of any sequential data structure to a

concurrent lock-free one. Many lock-free data structures (Clements, Kaashoek and Zeldovich,

2012; Michael and Scott, 1996), and the read-copy-update (RCU) mechanism employed by the

Linux kernel (McKenney and Slingwine, 1998) belong to this class.

Some algorithms based on the template above need only a register for X. Examples are the

implementation of a CAS object from name consensus and registers (Golab, Hadzilacos, Hendler

and Woelfel, 2012), and constructions to augment a wide class of objects with wait-free reset or

write operations (Aghazadeh, Golab and Woelfel, 2013, 2014; Aghazadeh and Woelfel, 2014), as

discussed in Chapters 4 and 6.

Under the assumption that there are an unbounded number of blocks available, implementing

such algorithms is trivial. However, implementations in bounded space are not straightforward,

and it is not surprising that a significant amount of the technical work in those constructions is

devoted to ad-hoc memory reclamation.

Our taggable array types provide an abstraction that allows an elegant solution to the memory

reclamation problem encountered in those algorithms: For X we use either a TRA or a TLSA

object. Each tag g is associated with a block B[g] of memory, and X stores a tag that is an

index of the current block. To “allocate” a new block, a process calls GetFree() to obtain an

index g′ of a free block. After successfully updating X to g′, the process calls Release(g′)

to indicate that it is not using block B[g′] anymore. The safety property of the taggable array

primitive guarantees that no GetFree() returns an index to an occupied block, that is, one that

a process may be about to change. In the following, we provide an example to show how a TLSA

157

// X is LL/SC object.

// B is an array of unbounded size.

Operation Update(x)

1 g′ := an index into B that has never been used
2 repeat
3 g := X.LL()
4 b := B[g]
5 Determine new state from b and x; write to B[g′]
6 until X.SC(g′)
7 return b

Operation Read()

8 g := X.LL()
9 b := B[g]

10 return b

Figure 7.2: SCU with Unbounded Memory

// X is a (1,2n)-TLSA object.

// B is an array of size ∆(1,n,2n).

Operation Update(x)

11 g′ := X.GetFree()
12 repeat
13 g := X.TLL()
14 b := B[g]
15 Determine new state from b and x; write to B[g′]
16 X.Unprotect(g)
17 until X.TSC(g′)
18 X.Release(g′)
19 return b

Operation Read()

20 g := X.TLL()
21 b := B[g]
22 X.Unprotect(g)
23 return b

Figure 7.3: SCU with Bounded Memory

can be used to implement a general SCU algorithm, and another example in which a TRA is used

to implement a k-word register.

Single Compare-and-Swap Universal. We can imagine an SCU algorithm which implements

a lock-free data structure to include two main operations: Update() and Read(). Any operation

that modifies the object can be implemented using a lock-free Update(x) operation. Update(x)

modifies the object based on some parameter x (e.g. x can be (Insert,10) for a tree data

structure in order to insert a node with key value 10), and returns its previous value. Any

read-only operation can be implemented using the wait-free Read() operation, which returns the

object’s value. Figure 7.2 depicts a general SCU algorithm if unbounded memory is available.

158

Any Read() operation linearizes with the load of X, and an Update() call linearizes with the

successful X.SC() call.

Memory reclamation for SCU can be achieved with techniques such as Hazard Pointer

(Michael, 2004b) or Pass-the-Buck (Herlihy, Luchangco and Moir, 2002). However applying these

techniques makes the Read() operation lock-free, because overlapping Update() calls may force

a reader to repeat the steps of its Read() call infinitely many times. Moreover, memory allocation

must be provided by the system when adopting these techniques.

Figure 7.3 presents a solution with bounded memory using a (1,2n)-TLSA, in which the

Update() is still lock-free, but the Read() operation is wait-free. In this implementation τ = 2n.

Since each process can have at most two tags either protected or active while its Update(x)

or Read() operation is pending, and none otherwise, constraint (C4) is satisfied. Moreover, a

process only calls Unprotect(g) if it protects g, and Release(g) if the tag is active. Finally,

TSC(g) is only called when g is active. Hence, the algorithm of Figure 7.3 also satisfies all

(C1)-(C3). Thus, the safety property of TLSA ensures that when a GetFree() returns some

tag g′ at some point, then g′ is not occupied at that point. Therefore, no other process has a

pending operation in which it has loaded tag g′ from X or received g′ from a GetFree() at this

point.

Multi-Word Registers. Another example of the pointer swinging technique is the linearizable

k-word register implementation in Figure 7.4 from single-word registers and a (1,n)-TRA object.

As we will show in Section 7.3, a (1,n)-TRA object can be constructed from polynomially many

single-word registers such that all operations on the TRA object have constant step complexity.

Therefore, each operation of Figure 7.4 executes k steps on single-word registers and at most 3

steps on the TRA object. Hence, this implementation has asymptotically optimal step complexity

O(k), and the space requirement is polynomial in n and k. A more space efficient solution that

uses only O(n2k) single-word registers and has O(k) step complexity was given in Chapter 4.

That algorithm is quite involved; the purpose of our example here is to show that the problem

159

// X is a (1,n)-TRA object.

// Bi for i ∈ {1, . . . ,k} is an array of ∆(1,n,n) single-word registers.

Operation Write(x1, . . . , xk)

24 g := X.GetFree()
25 for j = 1, . . . ,k do
26 Bj[g] := xj

27 X.TWrite(g)
28 X.Release(g)

Operation Read()

29 g := X.TRead()
30 for j = 1, . . . ,k do
31 xj := Bj[g]

32 X.Unprotect(g)
33 return (x1, . . . , xk)

Figure 7.4: A k-Word Register Implementation

has an almost trivial solution, when developed using our TRA abstraction.

The Read() operation linearizes with its X.TRead() call, and the Write() operation linearizes

with its X.TWrite() call. In this implementation, τ = n. Since at each point, exactly one tag is

protected or active per each pending Read() or Write() operation call, condition (C4) is satis-

fied. Moreover, conditions (C1)-(C3) are also satisfied, because a process calls Unprotect(g)

only when it protects g, and calls Release(g) and Write(g) only when tag g is active. Thus

the safety property of TRA guarantees that when a GetFree() call executed during a Write()

operation W returns g′, this tag is not protected, or active, or stored in X. Therefore, no process

accesses the registers corresponding to tag g′ after this point and before g′ is written to X at

the linearization point of W.

Stack Implementations. Another example is that of a stack implementation with a wait-free

Peek() operation. Michael (2004b) applied his Hazard Pointer technique to a lock-free stack

implementation based on the IBM FreeList algorithm (IBM, 1983). The Peek() operation in the

implementation by Michael (2004b) is lock-free. Because reading and announcing the index of

the top node are two separate steps, so overlapping Push() and Pop() operations may force the

process to keep repeating these steps infinitely many times. Therefore, it cannot easily be made

wait-free. We can replace Hazard Pointers by using a TLSA object Top to store the address of

the top element of the stack. As a result, a Top.TLL() operation not only returns a reference to

that top element, it also protects it. This way, as we show in the following, it is straight-forward

160

// Top is a (1,k + n)-TLSA object.

// Node is an array of ∆(1,n,k + n) nodes.

// Initially, Top stores tag 0, which represents the bottom of the stack and will never

be freed.

Operation Push(x)

34 new := Top.GetFree()
35 Node[new].Data := x
36 while true do
37 t := Top.TLL()
38 Node[new].Next := t
39 Top.Unprotect(t)
40 if Top.TSC(new) then return

Operation Peek()

41 t := Top.TLL()
42 if t = 0 then
43 Top.Unprotect(t)
44 return “empty stack”

45 data := Node[t].Data
46 Top.Unprotect(t)
47 return data

Operation Pop()

48 while true do
49 t := Top.TLL()
50 if t = 0 then
51 Top.Unprotect(t)
52 return “empty stack”

53 next := Node[t].Next
54 if Top.TSC(next) then
55 data := Node[t].Data
56 Top.Unprotect(t)
57 Top.Release(t)
58 return data
59 else
60 Top.Unprotect(t)

Figure 7.5: A stack Implementation with Peek() in Constant Step Complexity

to obtain a wait-free Peek() operation.

Figure 7.5 shows a stack implementation based on the IBM FreeList algorithm (IBM, 1983).

Here we assume that the number of elements that can be stored in the stack is bounded by some

value k− 1, but this assumption is not in the original algorithm and the one with Hazard Pointers

(Michael, 2004b). This implementation uses a (1,k + n)-TLSA object Top, and an array Node of

∆(1,n,k + n) nodes is used, where each node stores a data item Data and a next pointer Next.

The Push() and Pop() algorithms are based on the ones given by Michael (2004b), but instead

of protecting the top element with Hazard Pointers, this element is automatically protected by

the TLSA object Top.

Initially, a dummy node Node[0] (the node corresponding to tag 0) is stored in the list, which

represents the bottom of the stack. This tag always remains active, and will never be freed. In

order to push a new node into the stack, a process p calls GetFree() to get a tag corresponding

161

to a free node. Then p loads the tag t corresponding to the current top of the stack, by executing

Top.TLL(), and writes it into the next pointer of the new node. Process p then unprotects t,

because p is not going to read from or write to the node with index t before it starts another

operation. Finally, process p tries to swing the pointer, by writing the new tag into Top with a

Top.TSC() operation. If that TSC() succeeds, p’s Push() operation is complete, and it linearizes

with this successful TSC() call. Otherwise, another process modified Top, and so p repeats all

the steps starting from Top.TLL() operation until its TSC() succeeds.

To pop from the stack, a process p loads tag t that corresponds to the top node by executing

Top.TLL(). If the stack is empty, then p reads 0. Hence, since p is not going to access Node[0]

before it starts another operation, it unprotects this tag, and returns “empty stack”. In this

case, this operation linearizes with the last TLL() call. Otherwise, process p reads tag next

corresponding to the next node in the stack from Node[t].Next. Then, p tries to write next into

Top, in order to swing the pointer to the second top element in the stack. If it succeeds, then

it unprotects and releases tag t (which corresponds to the old top node), and returns the data

value stored in Node[t]. This way, once no process is protecting t anymore, t can be reused. This

successful TSC() call is the linearization point of this Pop() operation. If p’s TSC() fails, then

some other process must have updated the top element of the stack, so p unprotects t (because

its earlier TLL() operation which returned t also makes p protect this tag), and starts over.

Recall that Top.TLL() not only returns the tag value stored in Top, but it also protects this

tag. As a result, it is now easy to implement a wait-free Peek() operation: Process p reads and

protects the index (tag value) t of the top node of the stack in one step by executing Top.TLL().

If t = 0, then p returns “empty stack”, and if not, P returns the data value stored in Node[t]. In

either case, p also has to unprotect t before it returns, because p is not going to read from or

write to the node at index t, before reading Top again. The Peek() operation linearizes with its

TLL() call.

In this implementation, τ = k+ n, and that satisfies condition (C4), for the following reasons:

162

First, only tags that correspond to nodes that are currently stored in the stack are active. Hence,

at most k tags (including 0) are active. Also, each process can protect at most one tag and only

while it has a pending operation. Therefore, in total at most k + n tags are active or protected.

Moreover, when a process p calls Unprotect(g) (in lines 39, 43, 46, 51, 56 and 60), its last

Top.TLL() call has returned g, and no Unprotect(g) has followed since that Top.TLL() call.

Thus, g is protected by p when this process calls Unprotect(g), so (C1) is satisfied. A process

obtains tag g by loading Top before it calls Release(g). So g is the tag corresponding to the

node on top of the stack when Release(g) is called. Since any tag that corresponds to a node

in the stack is active, g is active when Release(g) is called, so (C2) is satisfied. Similarly, a

process calls TSC(g) if it reads g either from Top, or from Next of the node whose tag is stored in

Top, which corresponds to a node in the stack. Therefore, g is occupied while a process executes

a TSC(g). Thus, (C3) is also satisfied. Hence, the safety property of TLSA ensures that when

GetFree() returns g, no process accesses the node that corresponds to g, before g is written to

Top, and so not before the node is added to the stack.

In this example, we only need to protect the top node of the stack, that is, the head of the

linked list that implements the stack. However, for a general linked data structure, to read a

node N, the process needs to protect the tag corresponding to N, as well as any tag(s) stored

in N which represent node(s) referenced by N. In the following section, we explain how we can

extend our specification to enable memory management for such data structures.

7.2.3 Extended Specification and Memory Management

With the specification described in Section 7.1, our taggable objects cannot easily be used for

memory reclamation in linked data structures. Consider a linked list implementation for instance.

A natural way to attempt to use our primitives would be to maintain a taggable array X of

size m, and to associate a tag with every node that may be used in the list. This way, with a

GetFree() operation, we get a tag corresponding to a free node. Let Node[u] denote the node

corresponding to tag u.

163

For a process p to search in the list, it reads some tag from the head pointer which is an entry

of the taggable array X. Then p walks through the list by following Next pointers. Suppose p

reads some tag v from Node[u].Next, but before p reads Node[v].Next, another process removes

Node[v]. Process p does not have v protected, so v may be freed and possibly reused in another

part of the list.

To tackle cases like this, ideally we would like to ensure that by reading v from Node[u].Next,

tag v becomes automatically protected. We can achieve this with our taggable array primitive

only if each node is a component of the taggable array X. Thus, the total number of nodes in

the system must be the same as the size, m, of the taggable array X. Since we already assumed

that each node corresponds to a tag, number of tags in the system, ∆(m,n,τ), is also the same

as the size, m, of the taggable array. But at least with our implementation of taggable arrays,

this is not possible, because the size of the tag domain, ∆(m,n,τ), is much larger than m.

To deal with this problem, it is possible to extend our types, so that our objects can be used

in a similar way as Hazard Pointer (Michael, 2004b) and Pass-the-Buck (Herlihy, Luchangco and

Moir, 2002) for linked data structures. To do that, we introduce two operations: Protect() and

CancelProtect(), and we allow tags that are active to be communicated to other processes

not only through the taggable array X, but also through other objects in the system. Before we

formally specify these operations, we go back to our linked list example, to motivate their formal

specification. Suppose again that p reads v from Node[u].Next. Then the process immediately

calls Protect(v). The hope is that this Protect() call actually protects this tag. The difficulty

is that the read of v from Node[u].Next and the Protect(v) call are not executed in one atomic

step. So it is possible that another process removes Node[v] from the list before p manages to

call Protect(v). We do not know any way of implementing Protect() in such a way that

it has a return value that indicates if the call was executed early enough or not, and so if the

Protect() call was successful or not. However, we provide the following guarantee on when a

Protect(g) call successfully protects g (a formal statement comes later): If g is occupied at

164

a point at or after the execution of Protect(g) by p, then p protects tag g from this point

onwards. In our linked list example, after reading v from Node[u].Next and calling Protect(v),

process p would read Node[u].Next again. If it reads the same tag v, then v is occupied at the

point of the second read, and so it is guaranteed that p now protects v. Thus, p can now read

Node[v].Next knowing that v is protected.

However, this comes at a price. A process cannot use the taggable array after a Protect(g)

call, if it is unsure whether g was occupied at some point at or after its Protect(g) call. For

that reason, we allow a process to cancel the potentially unsuccessful Protect(g) call, before

executing any other operation on the taggable array. A process can do that by executing a

CancelProtect(g) operation. So in our example, after process reads Node[u].Next for the

second time, if it reads the same tag v, then it proceeds with the rest of its operation, otherwise,

it calls CancelProtect(g).

Now we formally define our extension to TRA and TLSA types (as originally specified

on page 151). The extended specification has two additional operations, Protect() and

CancelProtect(), each takes as argument a tag g, and returns nothing, and has the following

properties.

(S7) A Protect(g) call executed by process p at point t succeeds and increments the value

of Protected(g, p), at the first point at or after t, at which tag g is occupied, and before

p has called CancelProtect(g), if such a point exists. A Protect(g) call by p gets

cancelled by a subsequent CancelProtect(g) call by p.

(S8) Protected(g, p) = k after a CancelProtect(g) call, if Protected(g, p) = k immediately

before the last Protect(g) call by p preceding this CancelProtect(g).

In order to ensure the safety property, that is, that a GetFree() returns a free tag, in the

extended TLSA and TRA types, the following constraints must be met by the algorithm that uses

the TRA or the TLSA object:

165

(C5) After a Protect(g) call by p, process p is not allowed to execute any operation other

than CancelProtect(g) on the TRA or TLSA object until either that Protect(g) call

succeeded, or has been cancelled by p.

(C6) Process p can execute CancelProtect(g) only after a Protect(g) call by p and before

p executes any other operation on the TRA or TLSA object.

(C7) If a process p calls Protect(g), then g must have been occupied at some point since

p’s preceding Protect() call or the beginning of the execution, whichever comes last.

Constraint (C7) is required in order to ensure implementations with bounded space, because

otherwise a process could prevent another process to find a free tag infinitely many times. It

is often straightforward to guarantee this condition for linked data structures. One option is to

ensure the following invariant for any node Node[g] (the node that corresponds to tag g): “If

Node[g] stores a tag g′ (e.g., g′ could be the address of the next node following Node[g] in a

linked list) and g is occupied, then g′ is also occupied.” Then, assuming a process p protects

g whenever it reads any fields of Node[g], Property (C7) is achieved by calling Protect(g′)

immediately after reading g′ from Node[g]: At the point of that read, g′ is occupied because g

is, and this read is followed by Protect(g′) call.

This invariant will be naturally satisfied for typical implementations of linked data structures:

To create a new node, a process would call GetFree(), and only when it removes a node with an

address corresponding to a tag g from the data structure, the process would call Release(g).

So any node reachable in a data structure is active, and so is occupied.

7.2.4 Results

We present in Section 7.3 implementations of extended taggable LL/SC and extended taggable

register arrays with each operation having constant step complexity, and using bounded space.

In the remainder of Chapter 7, when we refer to type TRA or TLSA, we mean the extended

specification of that type, as discussed in Section 7.2.3. All our results and proofs hold for this

166

extended specification, but presumably better space bounds could be achieved for the restricted

specification.

Theorem 7.1. Let M(m,n,τ) and ∆(m,n,τ) be sufficiently large polynomials. For each integer

b, there are linearizable implementations of type (m,τ)-TRA from M(m,n,τ) registers and of

type (m,τ)-TLSA from M(m,n,τ) registers and LL/SC objects, such that each operation has

constant step complexity, each taggable array entry stores a b-bit value in addition to a tag, and

the base objects have size O(b + log(∆(m,n,τ))) bits.

In Section 7.5.10, we show that the following upper bounds hold for M and ∆:

M(m,n,τ) = O(mn5 + n3τ), and (7.1)

∆(m,n,τ) = O(m2n6 + n2τ2 + mn4τ). (7.2)

(We believe that it is possible to reduce these values, but doing so would make the algorithms

more complicated.) For instance, for τ = O(n) and m ≥ 1, we have ∆(m,n,τ) = O(m2n6).

An LL/SC object can be implemented from a single compare-and-swap (CAS) object and O(n)

registers, in such a way that each LL() and each SC() operation has constant step complexity

(Jayanti and Petrovic, 2003). Therefore, we can implement a TLSA object from CAS objects

and registers.

In the following two sections, we describe the implementations of TLSA and TRA objects.

Section 7.5 provides correctness proofs for both implementations.

7.3 TRA and TLSA Implementations

This section presents a high level explanation of the main ideas in our implementations of ex-

tended TRA and TLSA types. A more detailed description is provided in Section 7.4. These

algorithms consist of two parts: the first is organizing and managing tags (Section 7.3.1), and

167

the second is reading/loading and writing/storing (data,tag) pairs into elements of the taggable

array (Sections 7.3.2 and 7.3.3).

7.3.1 Managing Tags

The part that is responsible for dealing with tags in both TRA and TLSA implementations is

provided in Figure 7.6. Tags are partitioned into βn blocks b0, . . . ,bβn−1, and each block contains

δ tags. Thus, ∆(m,n,τ) = δ · β · n. Each block is owned by exactly one of the n processes, and

each process owns β blocks.

A process’ GetFree() call always returns a tag that this process owns. The algorithm ensures

that when a process returns the first free tag of some block bi in a GetFree() operation, then not

only is that tag free, but all tags in that block are. During its next δ− 1 GetFree() operation

calls the process returns only tags from block bi, and with every such operation call it executes

a constant amount of work to move toward identifying a new block that contains only free tags.

We now explain how a process finds such a block.

To enable faster identification of free tags from (potentially) occupied ones, the second idea is

that instead of checking each tag individually, we aggregate each process’ information of a whole

block into two numbers. For this purpose, two ABA-detecting register arrays, each of size βn,

are utilized for each process p: Actp is MWMR, and Empp is SWMR. Process p increments the

value of Actp[i] during its GetFree() call that returns tag g ∈ bi; in a Release(g) operation

call, it decrements Actp[i]. Therefore, the algorithm maintains the invariant that ∑n−1
p=0 Actp[i] is

the total number of tags in block bi that are active (except while registers Act0[i], . . . ,Actn−1[i]

are being reset, as later descried).

The value of Empp[i] gets incremented in a Protect(g) call by p and gets decremented in

Unprotect(g) and CancelProtect(g) calls by p. We say a tag g is employed k times by

process p at some point t if that process called Unprotect(g) and CancelProtect() together

` times for some value ` ≥ 0, and Protect(g) k + ` times before t. Operations Protect()

and Unprotect() are not only used as external operations, but as sub-routines for all other

168

operations. These operations are called in such a way that it is ensured that

if p protects tag g, then g is employed at least once by p, and (7.3)

if g is stored in A, then g is employed at least once by some process. (7.4)

However, a tag g that is employed at least once is not necessarily protected or stored in A, but a

process might have decided to conservatively employ tag g, until the process can certainly decide

about the state of g.

Let E(i) = ∑n−1
p=0(Empp[i] + Actp[i]). The value of E(i) is at least (because tags can be

employed multiple times) the total number of tags in block bi that are employed or active. So by

(7.3) and (7.4), if at least one tag in block bi is occupied, then E(i) > 0. Thus, our algorithm

maintains the invariant that

if E(i) =
n−1

∑
p=0

(Empp[i] + Actp[i]) = 0, then all tags in block bi are free. (7.5)

In a GetFree() operation, in order to find a block that contains only free tags, it suffices for

process p to find an index i such that it owns bi and E(i) = 0. Process p checks if E(i) = 0

using O(n) steps as follows: It reads the ABA-detecting registers Emp0[i], . . . ,Empn−1[i] and

Act0[i], . . . ,Actn−1[i], and computes the sum of their values in sump. Then, p reads these ABA-

detecting registers again, and uses the boolean values returned by DRead() operations to ensure

that none of the register values has changed; essentially this is a double collect as in the standard

snapshot implementation (Afek, Attiya, Dolev, Gafni, Merritt and Shavit, 1993). If sump = 0

and no register had changed in the second collect, then there was a point at which E(i) = 0, and

thus at that point all tags in bi were free.

Our implementation guarantees that among the β blocks owned by process p, there is always

at least one block bi, such that E(i) = 0 throughout the interval during which p is looking for

a block with free tags. As a result it takes O(nβ) steps to find a free block. We distribute this

work over O(nβ) of p’s GetFree() operations, during each of which a constant number of the

169

required steps get executed. A sufficiently large block size of δ = 2βn + n guarantees that p

finds a new block with E(i) = 0 before it runs out of tags in its current block.

So far, each process p only needs to increment or decrement “its own” ABA-detecting registers

Empp[i] or Actp[i]. Therefore, reading the current value and incrementing it is done without any

interruption from other processes.

A problem is that even when E(i) = 0, each individual register Actq[i] can be positive or

negative, even though we always have ∑n−1
q=0 Actq[i]≥ 0: Process q may have decreased the value

of Actq[i] when releasing a tag from bi, while a different process p originally obtained that tag

from a GetFree() operation during which it incremented Actp[i]. To stop the values of those

registers from growing very large over time, p resets all registers Actq[i], q ∈ {0, . . . ,n− 1},

to 0, once it determines E[i] = 0, by executing n DWrite() operations throughout n GetFree()

operation calls. The fact that all tags of block bi are free guarantees that no other process

concurrently accesses any of those registers, while they are being reset.

7.3.2 Reading and Writing in TRA

A register A is used to store the value of the object. To execute a TRead() operation R on the

TRA object, a process must perform two tasks:

(I) It has to identify a tag that is stored in A at some point t during R (t will be the

linearization point of R), and

(II) it has to ensure that this tag is employed from point t onwards.

The second task is required, because of (7.3), and the fact that this process protects g one

additional time starting from the linearization point of R.

To achieve these, the exact same hint mechanism of Chapter 4 and its deamortization tech-

nique are used. What we get is the following. There are two hint arrays, and each process p

maintains two counters, hCtrp and ReadCtrp. The value of hCtrp indicates to which process

p is going to provide hint next, and p increments it modulo n with each TWrite() call. The

170

value of ReadCtrp is incremented by one during each TRead() call by p. (Suppose for now that

this counter is unbounded. The same approach as in Chapter 4 is used to bound this counter.)

During p’s TWrite() call, p ensures that the process with id q = hCtrp, has a hint from p that

is augmented with the current value of ReadCtrq.

Since p deamortizes the work of providing hints to all other processes into n TWrite() calls,

it has to ensure that any tag that p writes to A during its last n TWrite() calls, as well as any

tags that is stored in hint arrays and is written by p are employed. For that, p maintains a local

queue which keeps track of all those tags, and it ensures that each tag in the queue is employed.

Suppose q reads tag g from A during R, and p is the process which wrote this value to A.

The hint mechanism ensures that

(a) either p has provided a tag g′ as a hint to q (and so A = g′) at some point during R,

and p has g′ employed at least until q invokes another TRead(), or

(b) p has tag g employed until q reads the hint array.

To identify which of (a) and (b) hold during R, process q reads the hints provided from p. If the

hints are the same and are augmented with the current value of ReadCtrq, then (a) holds. So q

returns g′, and by (a), A = g′ at some point t during this call, and t is the linearization point of

R. Otherwise (b) holds, and q returns tag g that it reads from A. This operation lienarizes at

the read of A. Thus, (I) is guaranteed.

Now we explain how q guarantees (II). Process q calls Protect(g) right after its read of g

from A. If it decides to return the hint tag g′, then it calls Protect(g′) and Unprotect(g).

This way, by (a) and (b) the return value of R is employed at first by p, and then by q starting

from the point at which A = g′, which is the linearization point of R.

The pseudocode for TRead() and TWrite() is provided in Figure 7.7.

171

// Tag domain T = {0, . . . ,nβδ− 1}
// β = mn(2n + 5) + τ + 3n + 1
// δ = 2nβ + n

shared:
∀p ∈ [n]: ABA-detecting register Empp[nβ]

∀p ∈ [n]: ABA-detecting register Actp[nβ] = 0

local to process p, and with global scope:
int tagp = pβ− 1
int ρp = 0, jp = 0
int sump = 0
boolean sum′p = false

int empp[nβ] = {0, . . . ,0}

Operation GetFreep()

61 tagp++

62 (x, f) := Empρp mod n[pβ + jp].DRead()

63 (x′, f ′) := Actρp mod n[pβ + jp].DRead()
64 if ρp < n then sump := sump + x + x′

65 if n ≤ ρp < 2n then sum′p := sum′p ∨ f ∨ f ′

66 (ρp++) mod 3n
67 if ρp = 2n ∧ (sump 6= 0∨ sum′p = true) then

68 sump := 0; sum′p := false; ρp := 0
69 (jp++) mod β

70 else if 2n ≤ ρp < 3n then
71 Actρp mod n[pβ + jp].DWrite(0)
72 else if ρp = 0 then
73 tagp := (pβ + jp)× δ
74 (jp++) mod β

75 u := Actp[btagp/δc].DRead()
76 Actp[btagp/δc].DWrite(u + 1)
77 return tagp

Operation Protectp(g)

78 empp[bg/δc]++
79 Empp[bg/δc].DWrite(empp[bg/δc])

Operation Unprotectp(g)

80 empp[bg/δc]--
81 Empp[bg/δc].DWrite(empp[bg/δc])

Operation CancelProtectp(g)

82 empp[bg/δc]--
83 Empp[bg/δc].DWrite(empp[bg/δc])

Operation Releasep(g)

84 u := Actp[bg/δc].DRead()
85 Actp[bg/δc].DWrite(u− 1)

Figure 7.6: Managing Tags in (m,τ)-TRA and (m,τ)-TLSA Object

172

shared:
register A[m]
register H[m][n][n]
register H′[m][n][n]
∀p ∈ [n]: register ReadCtrp[m]

local to process p, and with global scope:
boolean togglep[m][n] = 0
int hCtrp[m] = 0
Queue rsrvQp[m] (initially contains 2n+4 elements
of value ⊥)

Operation TWritep(i, (x, g))

86 q := hCtrp[i]
87 c := ReadCtrq[i].Read()
88 Protect(g)
89 (x1, g1, c1,b1) := H[i][p][q].Read()
90 (x2, g2, c2,b2) := H′[i][p][q].Read()
91 updateQ(i, g)
92 b := togglep[i][q]
93 if c 6= c1 ∨ (x1, g1, c1,b1) 6= (x2, g2, c2,b2) then
94 H[i][p][q].Write(x, g, c,b)
95 c′ := ReadCtrq[i].Read()
96 A[i].Write(x, g, p)
97 H′[i][p][q].Write(x, g, c′,b)
98 else
99 Protect(g1)

100 updateQ(i, g1)

101 A[i].Write(x, g, p)

102 togglep[i][q] := 1− b
103 (hCtrp[i]++) mod n

Operation updateQp(i, g)

104 rsrvQp[i].enq(g)
105 g′ := rsrvQp[i].deq()
106 if g′ 6= ⊥ then Unprotect(g′)

Operation TReadp(i)

107 c := (ReadCtrp[i].Read()+ 1) mod 2n
108 H[i][c mod n][p].Write(⊥,⊥,⊥,⊥)
109 H′[i][c mod n][p].Write(⊥,⊥,⊥,⊥)
110 ReadCtrp[i].Write(c)
111 (x, g,q) := A[i].Read()
112 retv := (x, g)
113 Protect(g)
114 (x1, g1, c1,b1) := H[i][q][p].Read()
115 (x2, g2, c2,b2) := H′[i][q][p].Read()
116 if c = c1 ∧ (x1, g1, c1,b1) = (x2, g2, c2,b2) then
117 retv := (x1, g1)
118 Unprotect(g)
119 Protect(g1)

120 return retv

Figure 7.7: TWrite() and TRead() of an (m,τ)-TRA Object

173

shared:
LL/SC A[m]
LL/SC H[m][n]

local to process p, and with global scope:
boolean f lagp[m] = 0
int hCtrp[m] = 0
queue rsrvQp[m] (initially contains 2n+4 ele-
ments of value ⊥)

Operation TSCp(i, (x, g))

121 q := hCtrp[i]
122 if f lagp[i] = 1 then return false

123 Protect(g)
124 (x′, g′, p′) := H[i][q].LL()
125 if A[i].SC(x, g)= false then
126 Unprotect(g)
127 return false

128 updateQ(i, g)
129 if (x′, g′, p′) = (⊥,⊥,⊥) then
130 H[i][q].SC(x, g, p)
131 else if p′ = p then
132 Protect(g′)
133 updateQ(i, g′)

134 (hCtrp[i]++) mod n
135 return true

Operation updateQp(i, g)

136 rsrvQp[i].enq(g)
137 g′ := rsrvQp[i].deq()
138 if g′ 6= ⊥ then Unprotect(g′)

Operation TLLp(i)

139 f lagp[i] = 0
140 repeat
141 H[i][p].LL()
142 until H[i][p].SC(⊥,⊥,⊥)
143 retv := (x, g) := A[i].LL()
144 Protect(g)
145 (x′, g′, p′) := H[i][p].LL()
146 if (x′, g′, p′) 6= (⊥,⊥,⊥) then
147 retv := (x′, g′)
148 Unprotect(g)
149 (x′′, g′′) := A[i].LL()
150 if (x′′, g′′) 6= (x′, g′) then
151 f lagp[i] := 1

152 Protect(g′)

153 return retv

Figure 7.8: Load and Store of an (m,τ)-TLSA Object

174

7.3.3 Loading and Storing in TLSA

In this implementation, A is an LL/SC object. Similar to TRA, to execute a TLL() operation

R on the TLSA object, a process p must accomplish both (I) and (II). In addition, it must be

ensured that

(III) q holds a valid link to the TLSA object if and only if no TSC() call has linearized since

the linearization point of q’s last TLL() call.

To achieve these, we again employ the idea of hint mechanism of Chapter 4. However, the

availability of LL/SC objects allows a simpler implementation of the hint technique: Instead of

using 2n registers for the hints that other processes provide to each process q, one LL/SC object

is used. Process q resets this register to ⊥ at the beginning of each TLL() call. So if q later

reads a non-⊥ value from this hint entry, then this hint is surely provided at some point during

q’s ongoing TLL() call. During a TSC(g) call by p, it only provides g as a hint to the process

with id q = hCtrp, if p first loads ⊥ from the hint register for q, and then it successfully changes

the value of A via an A.SC(g) call.

The rest of the hint mechanism is the same as the one from TRA implementation. Therefore,

if q reads tag g from A during R, then there is some process p, such that (a) and (b) are true

for p.

Now consider a TLL() call R by q in which q loads some value g from its hint entry. R

returns g if g 6= ⊥, and otherwise it returns the value it loads from A. To show (I)-(III), we

first define the linearization point of each operation. An unsuccessful TSC() call linearizes at its

response. A successful TSC() linearizes at its successful A.SC() call. The linearization point of

a TLL() call R by p that returns the value that p loads from A is that A.LL() call, so (I) is true

for this case. Moreover in this case, p has a valid link to TLSA if and only if p holds a valid link

to A. Now suppose R returns the hint value g. Process p executes a second A.LL() call after it

decides that it is going to return g. If the value it loads from A is g again, then R linearizes at

this point, so (I) follows. However, if it does not read g from A, p knows that A = g at an earlier

175

point t (by (a)), but now is not. So a successful TSC() must have linearized since t. Process p

remembers this by setting a boolean register f lagp, that was reset at the beginning of its TLL()

call. Operation R then linearizes at t, and so (I) is maintained. As a result, we conclude that no

matter where R linearizes,

p has a valid link to the TLSA object if and only if

p holds a valid link to A and f lagp 6= 1.

(7.6)

Thus, to guarantee (III), it is enough that during a TSC() call, p first reads f lagp, and returns

false immediately if f lagp = 1, and only otherwise it executes an A.SC(). Finally, (a) and (b)

ensure that some process p has the return value of R employed at least up to the point that q

employs this value during R, and so (II) follows.

7.4 Detailed Description of TRA and TLSA

In this section, we provide a more detailed description of the implementation of TRA and TLSA

provided in Figures 7.6–7.8. Recall that for ease of explanation, we describe the code for (1,τ)-

TRA and (1,τ)-TLSA objects, and we use X, instead of X[0], for any array X that its first

dimension has m elements. The pseudocode and proofs, however, are for the general taggable

arrays of size m.

7.4.1 Managing Tags

The domain of tags T = {0, . . . ,∆(m,n,τ)− 1} is partitioned into β · n blocks b0, . . . ,bβn−1, and

β = mn(2n + 5) + τ + 3n + 1. Each block contains δ = 2βn + n tags. Block bi contains tags

i · δ, . . . , i · δ + δ− 1 and is owned by process bi/βc.

The GetFree() Operation. During this operation, process p has to perform two main tasks:

progress with finding a block with free tags, and prepare a tag to be returned. A local variable

tagp keeps track of the tag that p’s last GetFree() operation returned. Let c = btagp/δc be

176

the index of the block to which tagp belongs. In line 61, process p increments tagp. For the

reasons that we discuss later, p always switches to a new block before it runs out of tags in its

current block, bc. So after line 61, the value of tagp is the next free tag in block bc. Before

this process returns this tag, in lines 75 and 76, p increments Actp[c] to indicate that the tag

it returns is now active. This is done by executing a DRead() followed by a DWrite(). These

two steps are executed without an overlapping modification of Actp[c], because process p only

returns tags that it owns, so p owns block bc, and so only p writes to Actp[c]. The GetFree()

operation linearizes with the write to Actp[c].

Recall that our algorithm maintains the invariant that if E(i) = ∑n−1
p=0(Empp[i] +Actp[i]) = 0,

then all tags in block bi are free (see Claim 7.23). The rest of the operation is devoted to

performing a constant number of steps of the work required for finding a new free block, that is,

a block bi for which E(i) = 0. Variable jp keeps track of the block that p is currently checking

whether it is free. More precisely, the block being checked has index i = pβ + jp. Variable

ρp mod n indicates the process whose variables Empρp mod n[i] and Actρp mod n[i] are being read

and summed up in this GetFree() call. Over time, each of those variables needs to be read twice

to perform a double collect on all these registers, and, if bi is identified as a free block, then the

variables Act0[i], . . . ,Actn−1[i] need to be reset. Therefore, ρp takes values in {0, . . . ,3n− 1}.

In lines 62–63, p uses DRead() to read Empρp mod n[pβ + jp] and Actρp mod n[pβ + jp]. If

ρp < n, then this is the first time p reads those variables during the current double collect, so it

sums up the returned values in line 64 into a local variable sump. If n ≤ ρp < 2n, then this is

the second time that p is reading those variable during the current double collect, so it adds the

flags returned from the DRead operations to its local variable sum′p in line 65. Recall that each

flag is false if the corresponding value has not changed since the previous read, and otherwise

it is true. After that p increments ρp modulo 3n in line 66.

If ρp = 2n after the increment, then p has completed its double collect. So if sump 6= 0 or

sum′p 6= false, then p has witnessed that E(i) > 0 at some point (see Claim 7.27(b)), and so

177

the process prepares to move on to check a new block in its subsequent GetFree() calls. (It is

possible for p to determine that E(i) 6= 0 before ρp = 2n, but in this implementation, for the sake

of simplicity, we did not try to make this part efficient.) To that end, p increments jp mod β,

and resets ρp, sump, and sum′p in lines 68–69. Otherwise, if sump = 0 and sum′p = true, then

p has witnessed that E(i) = 0 at some point during its double collect (see Claim 7.27(a)). Hence

the process identified a block bi whose all tags are free. The algorithm ensures once all tags of a

block are free, they all remain free until the first tag of this block is returned from a GetFree()

operation (see Claim 7.24). In this case, in line 71 of this and the next n− 1 GetFree() calls,

while 2n ≤ ρp < 3n, p resets Act0[i], . . . ,Actn−1[i]. If ρp = 0, then p has made 3n GetFree()

calls that dealt with block bi, for i = pβ + jp, and thus it identified bi as free and reset all

processes’ Act variables of that block. Hence, the GetFree() operation returns the first tag,

(pβ + jp) · δ, from block bi. Therefore, p sets tagp to that value in line 73. In line 74 process

p then increments jp modulo β so that it begins its search for another free block in its next

GetFree() call. Finally in line 77, process p returns tag tagp (after updating the corresponding

entry of Actp).

Protect(), Unprotect(), CancelProtect(), and Release(). For a tag g ∈ bi, operation

Protect(g) by p only increments the value of SWMR ABA-detecting register Empp[i] by 1,

while Unprotect(g) and CancelProtect(g) by p decrement the value stored in this register

by 1. In operation Release(g), process p decrements Actp[i], using a DRead() followed by a

DWrite(). Only p and the owner of block bi can write to Actp[i]. The algorithm ensures that

the owner does not do so, while p executes Release(g) (see Claim 7.32).

7.4.2 Reading and Writing in TRA

Register A stores the value of the TRA object, and two register arrays H and H′ are used, where

H[p][q] and H′[p][q] represent the hint process p provides to process q, for p,q ∈ {0, . . . ,n− 1}.

Only processes p and q read from and write to H[p][q] and H′[p][q].

178

The TWrite() Operation. Consider a TWrite(g) operation W by p. To guarantee Property

(b) (from page 171), process p has to ensure that once it writes a tag g into A, this tag remains

employed for p’s next n TWrite() calls, so that p either provides a hint or finds an up-to-date

hint for each process. For that, process p enqueues tag g into a local queue, called rsrvQp, by

calling updateQ(g). This tag remains in this queue for at least the next n TWrite() calls by

p. The algorithm ensures that any tag stored in this queue is employed, by calling Protect(g)

before enqueuing tag g, and calling Unprotect(g′) after dequeuing tag g′ from this queue. So

p executes Protect(g) and updateQ(g) in lines 88 and 91 as this process is about to write g

into A.

In each TWrite() call, process p chooses a different process (in a round robin fashion) whose

id is stored in p’s local variable hCtrp, and tries to provide a hint to that process. Let q be the

value stored in hCtrp at the beginning of W (line 86). Process p, in line 87, reads the current

value c of ReadCtrq, which is the counter that process q increments modulo 2n once in every

TRead() call q executes. Then p reads H[p][q] and H′[p][q] in lines 89 and 90. Process only

provides a hint to q, if the values it reads from H[p][q] and H′[p][q] do not match, or the counter

value augmented to those hints is not c (line 93). In this case, in lines 94–97, just before it writes

to A, the writer p provides g as a hint to q by writing g, c, as well as the current value b of

its local register toggle[q] to H[p][q]. toggle[q] is a local register that p toggles during each

TWrite() call in which hCtrp = q, and is used to help process q to distinguish hints provided

from q in different TWrite() calls. (In Chapter 4, we use queues that are twice as large as used

in place of using this register.) Then p writes g and its own id to A, reads ReadCtrq again into

c′, and writes (g, c′,b) into H′[p][q]. Recall from Chapter 4, that we use the second hint array

to avoid using unbounded values for ReadCtrq.

Now suppose that p reads (g1, c,b1) from both H[p][q] and H′[p][q], for some g1 and b1.

This means there is already an up-to-date hint for q from p. Process p has to ensure that g1

remains employed at least until hCtrp = q again, and so during p’s next n TWrite() calls. For

179

that reason, p employs g1 by calling Protect(g1), and enqueues g1 into rsrvQp by calling

updateQ(g1) (lines 99 and 100). Then p writes g and its own id to A in line 101. Finally,

p toggles the bit stored in toggle[q] and increments its counter hCtrp modulo n (lines 102

and 103). This operation always linearizes at the point p writes g into A.

The TRead() Operation. During a TRead() operation by some process p, the process in-

crements its counter ReadCtrp modulo 2n. As ReadCtrp is a single writer register, in order to

increment this counter, process p reads some value c′ from its ReadCtrp in line 107, and writes

c = (c′ + 1) mod 2n into the same register in line 110. But just before it updates the value

of ReadCtrp to c, process p resets the value stored in H[c mod n][p] and H′[c mod n][p] by

writing (⊥,⊥,⊥) into those registers in lines 108 and 109. This is to ensure that each hint entry

of H[0 . . . n− 1][p] gets reset once in every n TRead() calls by p, which prevents p from using

an outdated hint.

Then in line 111, this process reads some tag g from A and the id q of the process which

wrote this value. Process p employs g by calling Protect(g), and reads both H[q][p] and

H′[q][p] (in lines 113–115). If p reads different values from these two registers, or the counter

value augmented to one of them is not c, then p knows that q has not executed n TWrite() calls

after it wrote g to A, as otherwise, q would have made sure that p would have an up-to-date

hint (see Claim 7.15). So tag g must have been continuously employed from the point A = g

and until p read the hint registers. Thus, p returns tag g in this case. This operation linearizes

at the point p reads g from A.

If both H[q][p] and H′[q][p] contain (g1, c,b1), for some g1 and b1, then p has a hint that

is provided from q since p incremented its ReadCtrp in line 110 (see Claim 7.14). Therefore in

lines 117–120, p chooses g1 as its return value, and calls Protect(g1). Before p returns g1, it

calls Unprotect(g), because g is not the return value of this operation anymore in this case.

This operation linearizes at the point at which q wrote g1 to A, which is guaranteed to be at

some point during p’s ongoing TRead() call.

180

7.4.3 Loading and Storing in TLSA

In this implementation, A is a LL/SC object that stores the value of the TLSA object. A hint is

provided to process q in H[q], where H is an array of LL/SC objects of size n.

The TSC() Operation. At the beginning of a TSC(g) operation by p on the TLSA object,

process p first checks its local variable f lagp, and if that is set, it returns false immediately

(line 122). This is because p in its last TLL() call has witnessed a change of the value stored

in A since the linearization point of that operation. Thus, p does not hold a valid link to the

object. Otherwise, since p is about to make an attempt to write g into A, it employs g by calling

Protect(g) in line 123. Then, in line 124, process p loads H[q], where q is the value stored in

p’s local register hCtrp and indicates the process to which p may provide a hint in this TSC()

operation. (hCtrp changes in a round robin fashion with each of p’s TSC() calls in line 134.)

Then an attempt is made to store g into A using an A.SC(g) operation (line 125). If that

attempt fails, then p unemploys g again by calling Unprotect(g) and returns false to indicate

that its TSC() on the TLSA object failed (lines 126–127). If A.SC(g) call succeeds, then the

point when this successfully happens will be the linearization point of p’s TSC() operation on the

TLSA object. Then p calls updateQ(g) in line 128. During this operation, p enqueues g into its

local queue rsrvQ. The implementations of TSC() and updateQ() ensure that after this point,

g remains in the queue, and so employed, throughout p’s next n + 1 successful TSC() operations

(see Claim 7.9).

Then p makes an attempt to provide g as a hint to process q, if H[q] does not already

contain a hint. That is, g gets stored into H[q] if and only if H[q] = (⊥,⊥) when p loaded it

earlier, and H[q] has not changed since then (lines 129–130). If H[q] already contains a hint, g′,

previously provided by p, then p calls Protect(g′) followed by updateQ(g′) to ensure that the

hint remains employed for another n successful TSC() operations by p (lines 131–133). (If the

current hint was provided by p′ 6= p, then p′ ensures that this tag remains protected.) This is to

guarantee that any hint provided by p remains employed as long as it is stored in H. Finally, p

181

increments hCtrp modulo n and returns true (lines 134–135).

The TLL() Operation. During a TLL() operation L on the TLSA object, process p first resets

f lagp in line 139. This is because p has to ensure that f lagp is only 1 if p does not succeed to

make a valid link to object A at the linearization point of this operation. In lines 140–142, process

p resets H[p] by repeating H[p].LL() and H[p].SC(⊥,⊥) operations, until an H[p].SC(⊥,⊥)

succeeds. Since any other process will only change the value of H[p] when its value is (⊥,⊥),

p needs at most two attempts to reset H[p] (see the proof of Claim 7.14). Then p executes an

A.LL() operation to obtain a tag g, and since g is tentatively the return value of this operation,

p employs g by calling Protect(g) (lines 143–144). After that p reads H[p] in line 145. If

H[p] = (⊥,⊥), then no process provided a hint to p since p reset H[p] at the beginning of

L. In particular, this is true for the process q that stored tag g in A prior to p’s A.LL(). This

implies that q has executed at most n− 1 complete and successful TSC() operation calls since

then, because in n consecutive successful TSC() operation calls, q attempts to provide a hint to

every process (see Claim 7.15(a)). Since tag g remains employed throughout n successful TSC()

operation calls by q, following the one in which q stored it into A, tag g is still employed by q when

p reads (⊥,⊥) from H[p]; specifically, it has been continuously employed starting from the point

when p read g from A until p employed g itself prior to reading H[p] (see Claim 7.15(b)-(c)).As

a result, p can return g from its TLL() operation call in line 153. In this case, the linearization

point of L is when q loads g from A in line 143.

Now suppose that H[p] contains a pair (g′, p′) 6= (⊥,⊥) when p loads it in line 145. Then

it is ensured that, during a successful TSC(g′) operation S′, process p′ must have executed

an H[p].LL() and a subsequent successful H[p].SC(g′, p′) operation that stored g′ into A (in

line 125). This must have happened after p reset H[p] in line 142, and before it loaded (g′, p′)

from H[p] in line 145 of L (see Claim 7.14(a)-(b)). Thus, L can return tag g′. Moreover, process

p′ ensures that g′ remains employed as long as the pair (g′, p′) remains in H[p], and only p can

reset that LL/SC object. Hence, p can now simply call Protect(g′) in line 152 and be sure that

182

g′ has continuously been employed since the point p′ wrote g′ into A. Since L will not return

tag g, p also calls Unprotect(g) in line 148.

Now p has to decide the value of f lagp, and based on that, the linearization point of R is

determined. Process p knows that at the linearization point of S′, A= g′, and g′ has continuously

been employed since then. But p also has to ensure that either p holds a valid link to A starting

from a point that A = g′, or f lagp must be set to false. For that, process p loads A one more

time after it has decided to use hint g′ (line 149). If the value of A is equal to g′, then p does

not set f lagp, and L will linearize at the point of p’s last load of A (line 149), when the value

is g′. If the value of A is not equal to g′, then p sets the local flag f lagp (lines 150–151), and

linearizes at the point at which p′ wrote g′ to A at the linearization point of S′. The fact that A

does not contain g′ implies that a successful TSC() must have linearized since the linearization

point of L. This will force p’s next TSC() operation to fail immediately (line 122).

7.5 Correctness of TLSA and TRA

In the following section, we give the correctness proof of the TLSA and TRA implementations.

As both proofs are similar with only minor differences, we combine the correctness proofs for both

implementations as much as possible. To that end, unless it is clearly mentioned, each statement

applies to both implementations. However, if the two correctness proofs require different argu-

ments, then we either clearly mention which implementation we are considering, or we use the

following notation: To differentiate between arguments for the TLSA vs TRA implementation, we

distinguish between them using different colors and brackets. Blue text in double square brackets,

[], refers only to the TLSA implementation, and plum colored text in angled brackets, <>, refers

only to the TRA implementation. For example, statement “if H is a history on TLSA, then H

satisfies property X, and if H is a history on TRA, then it satisfies property Y” could be expressed

as “If H is a history on [TLSA]<TRA>, then H satisfies property [X]<Y>”.

183

shared:
LL/SC A[m]
LL/SC H[m][n]

Operation TSCp(i, (x, g))

154 q := hCtrp[i]
155 if f lagp[i] = 1 then return false

156 reserve(g)
157 (x′, g′, p′) := H[i][q].LL()
158 if A[i].SC(x, g)= false then
159 unreserve(g)
160 return false

161 updateQ(i, g)
162 if (x′, g′, p′) = (⊥,⊥,⊥) then
163 H[i][q].SC(x, g, p)
164 else if p′ = p then
165 reserve(g′)
166 updateQ(i, g′)

167 (hCtrp[i]++) mod n
168 return true

local to process p, and with global scope:
boolean f lagp[m] = 0
int hCtrp[m] = 0
queue rsrvQp[m] (initially contains 2n+4 ele-
ments of value ⊥)
Operation TLLp(i)

169 f lagp[i] = 0
170 repeat
171 H[i][p].LL()
172 until H[i][p].SC(⊥,⊥,⊥)
173 retv := (x, g) := A[i].LL()
174 announce(g)
175 (x′, g′, p′) := H[i][p].LL()
176 if (x′, g′, p′) 6= (⊥,⊥,⊥) then
177 retv := (x′, g′)
178 unannounce(g)
179 (x′′, g′′) := A[i].LL()
180 if (x′′, g′′) 6= (x′, g′) then
181 f lagp[i] := 1

182 announce(g′)
183 return retv

Figure 7.9: Revised Implementation of an (m,n,τ)-TLSA Object

7.5.1 Modified Pseudocode of the TLSA and TRA Implementations

In order to accommodate the proofs, we change the pseudocode of Figures 7.6–7.8 to

the one in Figures 7.9–7.11. The modifications, as explained in the following, do not

change the behaviour of the algorithm. First, to distinguish whether an entry of Emp

is modified in a [TLL()]<TRead()> or in other operations, we introduce four new opera-

tions, reserve(g), unreserve(g), announce(g), and unannounce(g). New operations

reserve(g) and announce(g) are the same as Protect(g) in the original algorithm, and

operations unreserve(g) and unannounce(g) are the same as Unprotect(g) of the original

algorithm. In the modified pseudocode, operations Protect(g) and Unprotect(g) simply call

announce(g) respectively unannounce(g). Moreover, we let operation [TLL()]<TRead()> call

announce(g) and unannounce(g), and [TSC()]<TWrite()> (and therefore updateQ()) call

184

// Tag domain T = {0, . . . ,nβδ− 1}
// β = mn(2n + 5) + τ + 3n + 1
// δ = 2nβ + n
shared:
∀p ∈ [n]: ABA-detecting register Empp[nβ]

∀p ∈ [n]: ABA-detecting register Actp[nβ] = 0

Operation GetFreep()

184 tagp++

185 (x, f) := Empρp mod n[pβ + jp].DRead()

186 (x′, f ′) := Actρp mod n[pβ + jp].DRead()
187 if ρp < n then sump := sump + x + x′

188 if n ≤ ρp < 2n then sum′p := sum′p ∨ f ∨ f ′

189 (ρp++) mod 3n
190 if ρp = 2n ∧ (sump 6= 0∨ sum′p = true) then

191 sump := 0; sum′p := false; ρp := 0
192 (jp++) mod β

193 else if 2n ≤ ρp < 3n then
// σ(p, pβ + jp) += Actρp mod n[pβ + jp]

194 Actρp mod n[pβ + jp].DWrite(0)
195 else if ρp = 0 then
196 tagp := (pβ + jp)× δ
197 (jp++) mod β

198 u := Actp[btagp/δc].DRead()
199 Actp[btagp/δc].DWrite(u + 1)
200 return tagp

Operation Releasep(g)

201 u := Actp[bg/δc].DRead()
202 Actp[bg/δc].DWrite(u− 1)

Operation updateQp(i, g)

203 rsrvQp[i].enq(g)
204 g′ := rsrvQp[i].deq()
205 if g′ 6= ⊥ then unreserve(g′)

local to process p, and with global scope:
int tagp = pβ− 1
int ρp = 0, jp = 0
int sump = 0
boolean sum′p = false

int empp[nβ] = {0, . . . ,0}

Operation Protectp(g)

206 announce(g)

Operation Unprotectp(g)

207 unannounce(g)

Operation CancelProtectp(g)

208 unannounce(g)

Operation reservep(g)

209 empp[bg/δc]++
210 Empp[bg/δc].DWrite(empp[bg/δc])

Operation unreservep(g)

211 empp[bg/δc]--
212 Empp[bg/δc].DWrite(empp[bg/δc])

Operation announcep(g)

213 empp[bg/δc]++
214 Empp[bg/δc].DWrite(empp[bg/δc])

Operation unannouncep(g)

215 empp[bg/δc]--
216 Empp[bg/δc].DWrite(empp[bg/δc])

Figure 7.10: Additional Operations for Revised Implementation of an (m,τ)-TLSA and
(m,n,τ)-TRA

185

shared
register A[m]
register H[m][n][n]
register H′[m][n][n]
∀p ∈ [n]: register ReadCtrp[m]

Operation TWritep(i, (x, g))

217 q := hCtrp[i]
218 c := ReadCtrq[i].Read()
219 reserve(g)
220 (x1, g1, c1,b1) := H[i][p][q].Read()
221 (x2, g2, c2,b2) := H′[i][p][q].Read()
222 updateQ(i, g)
223 b := togglep[i][q]
224 if c 6= c1 ∨ (x1, g1, c1,b1) 6= (x2, g2, c2,b2)

then
225 H[i][p][q].Write(x, g, c,b)
226 c′ := ReadCtrq[i].Read()
227 A[i].Write(x, g, p)
228 H′[i][p][q].Write(x, g, c′,b)
229 else
230 reserve(g1)

231 updateQ(i, g1)

232 A[i].Write(x, g, p)

233 togglep[i][q] := 1− b
234 (hCtrp[i]++) mod n

local to process p, and with global scope:
boolean toggle[m][n] = 0
int hCtrp[m] = 0
queue rsrvQp[m] (initially contains 2n+4 ele-
ments of value ⊥)

Operation TReadp(i)

235 c := (ReadCtrp[i].Read()+ 1) mod 2n
236 H[i][c mod n][p].Write(⊥,⊥,⊥,⊥)
237 H′[i][c mod n][p].Write(⊥,⊥,⊥,⊥)
238 ReadCtrp[i].Write(c)
239 (x, g,q) := A[i].Read()
240 retv := (x, g)
241 announce(g)
242 (x1, g1, c1,b1) := H[i][q][p].Read()
243 (x2, g2, c2,b2) := H′[i][q][p].Read()
244 if c = c1 ∧ (x1, g1, c1,b1) = (x2, g2, c2,b2)

then
245 retv := (x1, g1)
246 unannounce(g)
247 announce(g1)

248 return retv

Figure 7.11: Revised Implementation of an (m,τ)-TRA object

reserve(g) and unreserve(g), instead of Protect(g) respectively Unprotect(g).

The second change is that we introduce a new variable σ(p, x), for each process p and each

block bx that p owns. When process p resets the value of Actq[x], for some q, in line 194 of a

GetFree() operation, we add the current value of Actq[x] to the value stored in σ(p, x). The only

purpose of this variable is to provide an invariant in our proofs for the sum σ(p, x)+∑n−1
q=0 Actq[x].

Obviously, none of these changes affects the behaviour of the algorithm. From now on, we

only use the modified pseudocode presented in Figures 7.9–7.11

186

7.5.2 Transcript and Linearization Points

Consider any transcript Λ generated by the implementation of type [TLSA]<TRA> presented in

[Figure 7.9]<Figure 7.11> and Figure 7.10, and let Λ start at time 0. We assume without loss

of generality that Λ is complete. If not, we can let all incomplete operations run to completion

(note that these operations are wait-free), and a linearization of the interpretation of the resulting

complete transcript is also a linearization of Γ(Λ).

Let H = Γ(Λ). In the following, we assign a point lin(M) to each operation M in H on

the [TLSA]<TRA> object. We let L(H) be the sequential history obtained from H, by ordering

all operations M in H according to their lin(M) values. We associate each operation M in H

with the same time t at which lin(M) occurs in Λ. By construction, the time associated with

an operation increases strictly with the position of the operation in L(H). Later in this section,

we prove that lin(M) is in fact the linearization point of M, and L(H) is a linearization of H.

[If M is an unsuccessful TSC(i, ·) operation (i.e. M returns false in any of lines 155 and 160),

we define lin(M) = tM@rsp. If M is a successful TSC(i, (x, g)) operation (i.e. M returns true

in line 168), lin(M) is the point at which the calling process successfully executes A[i].SC(x, g)

at tM@158.]<If M is a TWrite(i, (x, g)) operation, we define lin(M) to be the point at which

the calling process writes (x, g) into A[i]. I.e. lin(M) is either tM@227 or tM@232 depending on

whether the if-condition in line 224 evaluates to true or false.>

Now suppose M is a [TLL(i)]<TRead(i)> operation by some process p. Operation M is direct

if p’s if-condition in [line 176]<line 244> of M evaluates to false, and is indirect otherwise. For

a direct [TLL(i)]<TRead(i)> operation M, we define lin(M) =[tL@173]<tL@239>, i.e., the point

when p [loads]<reads> the value of A[i]. Now suppose M is an indirect [TLL(i)]<TRead(i)>.

Let (x, g) be the return value of M, and let S be a [TSC(i, (x, g))]<TWrite(i, (x, g))> operation

by some process q during which q writes [(x, g)]<(x, g,q)> into A[i] during M — we prove

later (see Claim 7.14 on p. 203) that such a [TSC(i, (x, g))]<TWrite(i, (x, g))> exists. In this

case [and if p sets f lagp[i] in line 181 of M], we let lin(M) = lin(S) [and otherwise, we let

187

lin(M) = tM@179].

If M is a GetFree() operation, then we let lin(M) = tM@rsp = tM@199. If M is a Release()

operation, then lin(M) = tM@rsp = tM@202. Finally, we define lin(M) = tM@inv = tM@rsp, for

M ∈ {Protect(),Unprotect(),CancelProtect()}.

Definition of Free and Occupied in a Transcript. We define the terms “active”, “pro-

tected”, “occupied”, and “free” in a canonical way for transcript Λ, by inheriting the properties

from L(H) = L(Γ(Λ)). For example, tag g becomes active at point lin(G), where G is a

GetFree() operation that returns g (and is executed by the owner of this tag), and it becomes

inactive at lin(Re), where Re is the next Release(g) by any process.

Consider a Protect(g) call P by some process q. Let t` be the linearization point of q’s next

operation call on the [TLSA]<TRA> object or t` = ∞ if such a point does not exist. Suppose

there is a point in [lin(P), t`), such that g is occupied at that point, and let t∗ be the first such

point. Then P succeeds at t∗. A Protect(g) call P is effective at t if P succeeds before t,

and if an operation gets invoked in Λ|q during [lin(P), t], then the first such operation is not a

CancelProtect() call. For any point t during Λ, any process q, and any tag g,

• let α(q, g, t) denote the number of [TLL()]<TRead()> operations by q with return value

(·, g) that are linearized during [0, t],

• let θ(q, g, t) represent the number of Protect(g) calls by q that are effective at t, and

• let γ(q, g, t) represent the number of Unprotect(g) calls by q that are linearized during

[0, t].

Then Protected(g, p) at t is α(q, g, t) + θ(q, g, t) − γ(q, g, t). Process q protects tag g if q

protects g at least once.

A tag is occupied at point t if it is protected by some process, active, or stored in an element

of A, and is free otherwise.

188

A Good Transcript. A transcript Λ is good if it satisfies all of the following for any tag g and

any process p.

(G1) For any Unprotect(g) operation U by p in Λ, process p protects g throughout

[tU@inv, lin(U)),

(G2) for any Release(g) operation Re in Λ, tag g is active throughout [tRe@inv, lin(Re)),

(G3) for any [TSC(·, (·, g))]<TWrite(·, (·, g))> operation S in Λ, tag g is occupied throughout

[tS@inv, lin(S)),

(G4) suppose p executes an operation call M on the [TLSA]<TRA> object right after it executes

a Protect(g) call P, then either tag g is occupied at some point during [lin(P), tM@inv),

or M is a CancelProtect(g),

(G5) in Λ|p, any CancelProtect(g) appears only immediately after a Protect(g), and

(G6) suppose p executes a Protect(g) call P, then g must have been occupied at some point

during [t, tP@inv), where t is lin(P′) and P′ is p’s last Protect() call if such a call exists,

or otherwise t = 0.

Claim 7.2. Let Λ be a good transcript, and H = Γ(Λ). Then for any point t, any tag g, and

any process p,

(a) tag g is active at t in L(H) if and only if g is active at t in Λ,

(b) Protected(g, p) = k at t in L(H) if and only if Protected(g, p) = k at t in Λ, and

(c) tag g is occupied at t in L(H) if and only if g is occupied at t in Λ.

Proof. Suppose tag g becomes active at some point t in Λ. Then there exists a GetFree()

operation M in Λ that returns g, and t = lin(M). Operation M appears at point t in L(H).

Thus, g becomes active at point t in L(H). Next, suppose tag g becomes inactive at some point

t in Λ. Then there exists a Release(g) operation M in Λ, such that t = lin(M). Operation

189

M appears at point t in L(H). Therefore, g becomes inactive at point t in L(H). This proves

part (a). With essentially the similar arguments, it is easy to see that (b) and (c) are also true.

Claim 7.3. If Λ is not a good transcript, then H = Γ(Λ) has a linearization.

Proof. Since Λ is not a good transcript, there is an operations call in Λ that does not satisfy

one of properties (G1)-(G6) of the good transcript. Let M, executed by some process p, be the

first such operation call, and let t be the first point during M such that the subtranscript Λt of Λ

before this point is a good transcript. In the following, we show how to obtain a sequential history

SH from L(H) such that SH is a linearization of H. The main idea is to shift the linearization

point of the offending operation M, in such a way that in the resulting sequential history SH,

one of the constraints (C1)-(C7) is not satisfied. As a result, SH is trivially valid.

Suppose at point t in Λ, one of properties (G1), (G2), and (G3) is not satisfied. Then for

some tag g, at point t ∈ [tM@inv, lin(M)), p does not protect g and M is an Unprotect(g)

call, or g is not active and M is a Release(g) call, or g is not occupied and M is a

[TSC(·, (·, g))]<TWrite(·, (·, g))> call. By Claim 7.2 for Λt, at point t in L(H), p does not

protect g and M is an Unprotect(g) call, or tag g is not active and M is a Release(g) call,

or g is not occupied and M is a [TSC(·, (·, g))]<TWrite(·, (·, g))> call. We let SH be the same

sequential history as L(H), except that in SH, we let M linearize at point t, which is a point

during the execution of M. Therefore at point t in SH, or tag g is not protected when p executes

its Unprotect(g) call M, tag g is not active when p executes its Release(g) call M, or g is

not occupied when p executes its [TSC(·, (·, g))]<TWrite(·, (·, g))> call M. Hence, (C1), (C2),

or (C3) is violated for operation M in SH, and so SH is valid.

Next suppose at point t, (G4) is violated. Then for some tag g, M is a Protect(g) call, and

throughout [lin(M), tM′@inv), g is not occupied, where M′ 6= CancelProtect(g) is the next

operation invoked in Λ|p after M. Thus t = tM′@inv. By Claim 7.2, g is not occupied throughout

[lin(M), t) in L(H). We construct SH exactly in the same way as L(H), except that we let

190

M′ linearize at t = tM′@inv. Thus in SH, p executes its Protect(g) call M at lin(M), and its

next operation call is M′ at t, and g is not occupied throughout [lin(M), t). Thus, M does not

succeed, and it is also not followed by a CancelProtect(g) call by p. This violates (C5), and

so SH is valid.

Suppose at point t, property (G5) is not satisfied. Then for some tag g, M is a

CancelProtect(g) call, and the operation call M′ that precedes M in Λ|p is not a Protect(g)

call. Since both M and M′ are operation calls by p, they do not overlap, and so M ap-

pears before M′ in L(H). We let SH = L(H), and then in this history process p executes its

CancelProtect(g) call M after its operation call M′, which is not a Protect(g) call. Hence,

constraint (C6) is not satisfied and so SH is valid.

Finally, suppose at point t, property (G6) is violated. Then for some tag g, M is a Protect(g)

call, t = tM@inv, and g is not occupied throughout [t∗, t), where t∗ is lin(M′) and M′ is p’s last

Protect(g) call before M if such a call exists, or otherwise t∗ = 0. By Claim 7.2, tag g is not

occupied throughout [t∗, t) in L(H). We construct SH in the same way as L(H), except that

we linearize M at t = tM@inv. If Λ contains a Protect(g) call M′ by p before M, then in SH,

tag g is not occupied at any point between M′ and M. If M′ does not exists in Λ, then in SH,

g is not occupied at any point before the execution of M. Hence, (C7) is not satisfied, and so

SH is valid.

Linearizability Proof Sketch. In order to prove linearizability of the implementation of

[TLSA]<TRA> presented in [Figure 7.9]<Figure 7.11> and Figure 7.10, we consider a transcript Λ

that is obtained from an execution of this implementation. If Λ is not good, then by Claim 7.3,

the interpretation of Λ has a linearization. If Λ is a good transcript, we show that ordering

operations M by lin(M) yields a valid sequential history (see Lemma 7.33 for more details).

To that end, it is required to show that lin(M) is a point during [tM@inv, tM@rsp], for any

operation M. This immediately follows from the definition of lin(M) if M is not an indirect

[TLL()]<TRead()> operation. In Claim 7.14, we show that if M is an indirect [TLL()]<TRead()>

191

operation, then lin(M) is during [tM@inv, tM@rsp].

Lemma 7.4 below implies that for any good transcript Λ, L(Γ(Λ)) is valid, as we explain

after the lemma statement.

Lemma 7.4. If Λ is a good transcript, then

(a) the value of A[i] changes to (x, g) at some point t if and only if t = lin(S), where S is

a [successful TSC(i, (x, g))]<TWrite(i, (x, g))> in Λ,

(b) if a [TLL(i)]<TRead(i)> operation L in Λ returns (x, g), then A[i] = (x, g) at lin(L),

(c) if a GetFree() operation G in Λ returns g, then g is not occupied immediately before

lin(G) in Λ, and

(d) [a TSC(i, ·) operation S succeeds in Λ if and only if there is no successful TSC(i, ·)

operation S′, such that lin(S′) ∈ (lin(L), lin(S)), where L is the last TLL(i) by the

same process before S in Λ.]

As a result of this theorem, we can show the following.

Corollary 7.5. For every good transcript Λ, L(Γ(Λ)) is a valid sequential history.

Proof. We show that each of properties (S1)-(S8) is satisfied for L(Γ(Λ)). Property (S2)

immediately follows Claim 7.2 and the definition of active in a transcript. Property (S1) is

ensured by Claim 7.2, the same definition for active, and Lemma 7.4(c). Property (S3a) follows

from Part (a), and (S3b) is ensured by Parts (a) and (d) of the same lemma. Properties (S4a)

and (S4b) follow from Part (b). The definition of when a tag is protected in a transcript and

Claim 7.2 immediately guarantees (S5) and (S6). That definition also implies that a Protect(g)

call by some process p only increases the number of times tag g is protected by p, if that call

succeeds before p’s next operation call on the object linearizes, and only if that operation is

not a CancelProtect(g) call. Thus, (S7) follows. Now consider a Protect(g) call P by p,

and assume p’s next operation is a CancelProtect(g) call C. The definition of when a tag is

192

protected in a transcript implies that the number of times tag g is protected by p before lin(P)

is the same as after C is invoked, and C also does not change the number of times tag g is

protected by p. Thus, by Claim 7.2, (S8) follows.

To prove Lemma 7.4, we need to establish some guarantees of the algorithm for any good

transcript Λ, as it comes in the following. For ease of explanation, from now on we call lin(M)

the linearization point of operation M.

More Definitions. As explained earlier, in order to distinguish between Empp[x] being modified

in a [TSC()]<TWrite()> operation and when it being modified in a [TLL()]<TRead()> or a

Protect()/Unprotect() operation, we introduced operations reserve()/unreserve() and

announce()/unannounce().

Consider a point t, a process p, and a tag g. At t, tag g is reserved k times by p for

the i-th element of the taggable array, if there is an integer ` such that in [0, t), process p

executed reserve(g) (from a [TSC(i, ·)]<TWrite(i, ·)>) k + ` times, and unreserve(g) (from

a [TSC(i, ·)]<TWrite(i, ·)>) ` times. The number of times that tag g is reserved by p for the

i-th element of the taggable array at each point in time is denoted by Rsrv(g, p, i). Tag g is

announced k times by process p at point t if there is an integer ` such that in [0, t), process p

executed announce(g) k + ` times and unannounce(g) ` times. This number is denoted by

Annc(g, p).

Tag g is reserved by p for the i-th element of the taggable array, if Rsrv(g, p, i) > 0, and

g is reserved by p, if there is some i ∈ {0, . . . ,m− 1}, such that Rsrv(g, p, i) > 0. Similarly,

tag g is announced by p, if Annc(g, p) > 0. A tag g is reserved, if there is a process p, and

an index i, such that Rsrv(g, p, i) > 0, and g is announced if there is a process p, such that

Annc(g, p) > 0. Finally, for a block bx, we let NumOfActive(x) denote the number of tags in

block bx that are active.

193

Consider a block bx that is owned by p. We say block bx is free, whenever

σ(p, x) +
n−1

∑
q=0

Actq[x] = 0, and

∀q ∈ {0, . . . ,n− 1} : Empq[x] = 0

(7.7)

We later prove (in Claim 7.23) that whenever a block is free, then all tags in that block are free.

Consider an interval I that starts when p executes line 185 for ρp = 0 and ends at the first

point when it increments ρp to 2n in line 189. It follows immediately from lines 190–197 that

variable jp does not change throughout I. Hence, during I, process p reads (in lines lines 185

and 186) all array entries of Empz[pβ + jp] and Actz[pβ + jp] for z ∈ {0, . . . ,n − 1} twice.

Therefore, we call I a search interval of block bx by p, where x = pβ + jp.

Now consider an interval I′ that starts when p executes line 194 for ρp = 2n, and ends at

the first point when it increments ρp to 0 in line 189. Again from lines 190–197, it follows that

variable jp does not change throughout I′. During this interval p writes 0 into all array entries

Actz[pβ + jp] for z ∈ {0, . . . ,n− 1} (in line 194). Therefore, we call I′ a cleaning interval of

block bx by p, where x = pβ + jp. Note that in line 196 of a GetFree() operation by p during

which a cleaning interval of bx by p ends, p changes the value of the tag that it is about to

return to the first tag of block bx.

7.5.3 Reservation Mechanism

Let p be a process and g∗ a tag. In Claim 7.6 below, we show that if p’s queue rsrvQp[i] contains

k copies of g∗, for some i ∈ {0, . . . ,m− 1}, then Rsrv(g∗, p, i)≥ k. Moreover, in Claim 7.7, we

show that if at some point Rsrv(g∗, p, i) = k and p is not poised to execute [lines 156–160 of a

TSC(i, ·)]<lines 219–221 of a TWrite(i, ·)>, then rsrvQp[i] contains k copies of g∗ at this point.

Invariant 7.8 states that rsrvQ(g∗, p, i) is always at least 0, for any process p, any tag g∗, and

any i ∈ {0, . . . ,m− 1}.

194

Claim 7.6. If p’s local queue rsrvQp[i] contains k copies of g∗, for some i ∈ {0, . . . ,m− 1},

then Rsrv(g∗, p, i) ≥ k.

Proof. Let Λ be a transcript on an object T, where T is either of type TLSA or of type TRA.

Case I: T is of type TLSA. Process p calls reserve(g∗) and unreserve(g∗) only in a

TSC() operation. Moreover, Rsrv(g∗, p, i) denotes the number of times tag g∗ is reserved by p

for the i-th element of the taggable array. Therefore, we consider only TSC(i, ·) operations by

p. Let S and S′ be the set of all successful respectively unsuccessful TSC(i, ·) operations that p

invokes before t.

During an unsuccessful TSC(i, ·), process p can execute reserve(g∗) only in line 156, how-

ever this is followed by an unreserve(g∗) operation in line 159. Moreover, process p does not

modify its local queue rsrvQp[i] during an unsuccessful TSC(i, ·). Hence,

if p calls reserve(g∗) `1 times in operations in S′ during [0, t], then p calls

unreserve(g∗) at most `1 times in operations in S′ during this interval.

(7.8)

During each successful TSC(i, ·), process p can execute reserve(g∗) in lines 156 and 165.

If p calls reserve(g∗) in line 156 (similarly line 165), then it calls an updateQ(i, g∗) in line 161

(respectively line 166). During each updateQ(i, g∗), p enqueues a copy of g∗ into rsrvQp[i] (in

line 203). Assume p enqueues k + `2 copies of g∗ into rsrvQp[i] during [0, t]. Then

p calls reserve(g∗) at least k + `2 times in operations in S during [0, t]. (7.9)

Since p’s local queue rsrvQp[i] contains k copies of g∗ at t, process p dequeued `2 copies

of g∗ from rsrvQp[i] during [0, t]. Process p only dequeues elements from rsrvQp[i] in line 204

of an updateQ(i, ·). Right after p dequeues g∗ in line 204, it calls unreserve(g∗) in line 205.

Therefore,

p calls unreserve(g∗) at most `2 times in operations in S during [0, t]. (7.10)

195

By (7.8), (7.9) and (7.10), we conclude that during interval [0, t], process p calls reserve(g∗)

at least k + `1 + `2 times and unreserve(g∗) at most `1 + `2 times in operations in S′ and S,

and so Rsrv(g∗, p, i) ≥ k + `1 + `2 − (`1 + `2) = k at t.

Case II: T is of type TRA. Process p only calls reserve(g∗) and unreserve(g∗) in a

TWrite() operation. Moreover, Rsrv(g∗, p, i) denotes the number of times tag g∗ is reserved by

p for the i-th element of the taggable array. Therefore, we consider only TWrite(i, ·) operations

by p. Let S be the set of all TWrite(i, ·) operations that p invokes before t.

During each TWrite(i, ·), process p can execute reserve(g∗) in line 219 and line 230. If p

calls reserve(g∗) in line 219 (similarly line 230), then it immediately calls an updateQ(i, g∗)

in line 222 (respectively line 231). During each updateQ(i, g∗), p enqueues a copy of g∗ into

rsrvQp[i] (in line 203). Assume p enqueues k + ` copies of g∗ into rsrvQp[i] during [0, t], for

some ` ≥ 0. Then

p calls reserve(g∗) at least k + ` times in operations in S during [0, t]. (7.11)

As p’s local queue rsrvQp[i] contains k copies of g∗ at t, p dequeued ` copies of g∗ from

rsrvQp[i] during [0, t]. Process p only dequeues elements from rsrvQp[i] in line 204 of an

updateQ(i, ·). Right after p dequeues g∗ in line 204, it calls unreserve(g∗) in line 205.

Therefore,

p calls unreserve(g∗) at most ` times in operations in S during [0, t]. (7.12)

By (7.11) and (7.12), we conclude that Rsrv(g∗, p, i) ≥ k + `− ` = k at t.

Claim 7.7. Suppose Rsrv(g∗, p, i) = k at some point t, for some i ∈ {0, . . . ,m− 1}, and p is

not poised to execute [lines 156–160 of a TSC(i, ·)]<lines 219–221 of a TWrite(i, ·)> operation

when p’s local variable g has value g∗. Then, p’s local queue rsrvQp[i] contains at least k copies

of g∗ at this point.

Proof. Let Λ be a transcript on an object T, where T is either of type TLSA or of type TRA.

196

Case I: T is of type TLSA. Since Rsrv(g∗, p, i) = k at point t, there exists an integer `, such

that during [0, t], process p calls reserve(g∗) in TSC(i, ·) operations in total k + ` times, and

unreserve(g∗) in total ` times.

At point t, process p is not poised to execute lines 156–160 of a TSC(i, ·) operation when

p’s local variable g has value g∗. Therefore each execution of reserve(g∗) by p called during

[0, t] in an unsuccessful TSC(i, ·) is followed by an execution of unreserve(g∗) prior to t.

Operations reserve(g∗) and unreserve(g∗) can only be called in a TSC() operation call.

Therefore, there exist integers `1 and `2, where `1 + `2 = `, and during [0, t], process p calls

(a) reserve(g∗) `1 times in line 156 of an unsuccessful TSC(i, ·),

(b) unreserve(g∗) `1 times in line 159 of an unsuccessful TSC(i, ·),

(c) reserve(g∗) k + `2 times in line 156 or line 165 of a successful TSC(i, ·), and

(d) unreserve(g∗) `2 times in line 205 of an updateQ(i, ·) called in a successful TSC(i, ·).

This implies as we explain in the following, that during [0, t], process p enqueues exactly k + `2

copies of g∗ into p’s queue rsrvQp[i] and dequeues exactly `2 copies of g∗ from this queue.

Queue rsrvQp[i] is local to p and is only modified during a successful TSC(i, ·) operation by

p. Process p is not poised to execute lines 156–160 of a TSC(i, ·) at t. Thus during [0, t], each

time p calls reserve(g∗) (in line 156, respectively line 165) in a successful TSC(i, ·) operation,

it also calls updateQ(g∗) (in line 161, respectively immediately in line 166). Thus during this

interval, with every call of reserve(g∗) in a successful TSC(i, ·) operation, p enqueues g∗ into

its queue rsrvQp[i]. Moreover during [0, t], each call of unreserve(g∗) (in line 205 of an

updateQ(i, ·) called) in a successful TSC(i, ·) is immediately preceded by p dequeuing a copy

of g∗ from its queue rsrvQp[i] (in line 204). Therefore, Parts (c)-(d) imply that p’s queue

rsrvQp[i] contains exactly k copies of g∗ at t.

Case II: T is of type TRA. Since Rsrv(g∗, p, i) = k at t, there exists an integer `, such that

during [0, t], process p calls reserve(g∗) in TWrite(i, ·) operations in total k + ` times, and

197

unreserve(g∗) in total ` times.

Queue rsrvQp[i] is local to p and is only modified during a TWrite(i, ·) operation by p.

At point t, process p is not poised to execute lines 219–221 of a TWrite(i, ·) operation when

p’s local variable g has value g∗. Therefore during [0, t], each execution of reserve(g∗) by p

called (in line 219, respectively line 230) is followed by an execution of updateQ(g∗) (in line 222,

respectively line 231). Thus with every call of reserve(g∗) call during [0, t], p enqueues a copy

of g∗ into its queue rsrvQp[i]. Hence, p enqueues k + ` copies of g∗ to rsrvQp[i] during [0, t].

Moreover during [0, t], each call of unreserve(g∗) by p (in line 205) of an updateQ(i, ·) called)

in a TWrite(i, ·) operation is immediately preceded by p dequeuing a copy of g∗ from its queue

rsrvQp[i] (in line 204). Thus, p dequeues ` copies of g∗ from its queue rsrvQp[i] during [0, t].

Therefore, p’s queue rsrvQp[i] contains exactly k copies of g∗ at t.

Invariant 7.8. At each point in time Rsrv(g∗, p, i) ≥ 0.

Proof. Suppose that the invariant holds throughout [0, t) for some t, and at t process p takes

one step. We show that the invariant holds right after t. The invariant can only become false, if

p executes the atomic operation unreserve(g∗) at t, and as a result Rsrv(g∗, p, i) changes to a

negative value. Process p calls unreserve(g∗) [either in line 159 of an unsuccessful TSC(i, ·) op-

eration S, or] in line 205 of an updateQ(i, ·) operation U called from a [TSC(i, ·)]<TWrite(i, ·)>.

[First consider the case that at t, process p executes unreserve(g∗) in line 159 of S. By

the implementation, p has executed a reserve(g∗) in line 156 of S, and since we assumed

Rsrv(g∗, p, i) ≥ 0 before t, and therefore before line 156 of S, we have Rsrv(g∗, p, i) > 0 right

after p executes line 156 of S. The value of Rsrv(g∗, p, i) does not change after this point until

p executes unreserve(g∗) in line 159 of S at t. Thus, we have Rsrv(g∗, p, i)≥ 0 right after t.

Next consider the case that at t, process p executes unreserve(g∗) in line 205 of U called

from a TSC(i, ·)]. At the same point t, process p dequeus g∗ from rsrvQp[i] in line 204

of U. Thus, right before t, rsrvQp[i] contains a copy of tag g∗. By Claim 7.6, we have

Rsrv(g∗, p, i) > 0 right before t. Thus after executing unreserve(g∗) at point t, we have

198

Rsrv(g∗, p, i) ≥ 0.

Next we prove that when Rsrv(g∗, p, i)> 0, then the tag remains reserved until p has executed

n + 1 additional successful TSC(i, ·) operations.

Claim 7.9. Let OP represent the set of all [successful TSC(i, ·)]<TWrite(i, ·)> operations, for

some i ∈ {0, . . . ,m− 1}, by some process p in Λ. Also let S0 be an operation in OP, during which

p executes reserve(g∗) at some point t. If OP contains n + 1 operations S1, . . . ,Sn+1 that

p executes after S0, then Rsrv(g∗, p, i) > 0 throughout [t, tSn+1@rsp], and otherwise throughout

[t,∞).

Proof. At point t, process p executes reserve(g∗) in either [line 156 or line 165]<line 219

or line 230> of S0. Then it executes updateQ(i, g∗) in [line 161 respectively line 166]<line 222

respectively line 231> of S0, at some later point t′ > t. (Operation updateQ(i, g∗) contains

only one shared memory step.) [Note that since S0 is a successful TSC(i, ·) operation, p does

not execute unreserve(g∗) during [t, t′).] Invariant 7.8 implies that Rsrv(g∗, p, i) ≥ 0 right

before t. Therefore throughout [t, t′), Rsrv(g∗, p, i) > 0.

Now we prove that Rsrv(g∗, p, i)> 0 throughout [t′, tSn+1@rsp] if OP contains n+ 1 operations

S1, . . . ,Sn+1 that p executes after S0, and otherwise, throughout [t′,∞]. Initially rsrvQp[i]

contains 2n + 4 elements. During each updateQ(i, ·) with one atomic operation, one element is

enqueued and one element is dequeued from rsrvQp[i] (lines 203 and 204). This queue is not

modified in any other operation. Hence, the size of rsrvQp[i] is always 2n + 4.

During each operation in OP, process p calls updateQ(i, ·) once in [line 161]<line 222>, and

it might call it for the second time in [line 166]<line 231>. [During an unsuccessful TSC(i, ·) it

does not call updateQ() at all.] Thus, at least one and at most two elements get dequeued from

rsrvQp[i] during every operations in OP[, and the queue is not modified during an unsuccessful

TSC(i, ·)]. Hence, once p enqueues g∗ into rsrvQp[i] at t′, g∗ remains in the queue until p

completes Sn+1, if OP contains n + 1 operations S1, . . . ,Sn+1 that p executes after S0, and

199

otherwise, throughout [t′,∞]. Thus, by Claim 7.6, Rsrv(g∗, p, i) > 0 throughout [t′, tSn+1@rsp],

if such operations S1, . . . ,Sn+1 exist, and otherwise throughout [t′,∞].

Next, we use Claim 7.9 to show that as long as a tag is stored in a register (Corollary 7.10)

or a process has a tag provided as a hint (Claim 7.11), that tag is reserved.

Corollary 7.10. If A[i] = (x∗, g∗) at some point t, then there exists a process p, such that

Rsrv(g∗, p, i) > 0 at t.

Proof. Since A[i] = (x∗, g∗) at t, at some point t′ for the last time before t, some process p

executes [a successful A[i].SC(x∗, g∗) in line 158 of a successful TSC(i, ·)]<an A[i].Write(x∗, g∗)

either in line 227 or line 232 of a TWrite(i, ·)> operation call S. Thus, p does not complete

another [a successful TSC(i, ·)]<TWrite(i, ·)> call during [t′, t], since otherwise, the value of

A[i] would change. At [tS@156 < t′]<tS@219 < t′>, process p executes reserve(g∗). Thus by

Claim 7.9, Rsrv(g∗, p, i) > 0 throughout [t′, t].

Claim 7.11. Consider two processes p and q, and let OP represent the set of all [successful

TSC(i, ·)]<TWrite(i, ·)> operations by p. Let S0 be an operation in OP, during which p writes

[(x∗, g∗, p) into H[i][q] in line 163]<(x∗, g∗, c∗,b∗) into H[i][p][q] in line 225> at some point t.

<Moreover, assume that p writes (x∗, g∗, c∗,b∗) into H′[i][p][q] in line 228 of S0>. Suppose at

point t′ [the value stored in H[i][q] changes]<p writes to either H[i][p][q] or H′[i][p][q]> for the

first time after t. Then Rsrv(g∗, p, i) > 0 throughout [t, t′].

Proof. We have [t = tS0@163]<t = tS0@225>. During S0, process p must have executed

reserve(g∗) in [line 156]<line 219> at some point before t. If OP contains fewer than n + 1

operations executed by p after S0, then by Claim 7.9, we have Rsrv(g∗, p, i) > 0 throughout

[t,∞] and so the claim follows. Otherwise, let S1,S2, . . . be the operations in OP that p executes

after S0 in this order. Then by Claim 7.9, we have

Rsrv(g∗, p, i) > 0 throughout [[tS0@156, tSn+1@rsp]]<[tS0@219, tSn+1@rsp]>. (7.13)

200

Assume for the sake of contradiction that Rsrv(g∗, p, i) ≤ 0 for the first time during at

some point t∗ ∈ [t, t′]. That is, at t∗, process p executes unreserve(g∗) [in line 159 of a

TSC(i, (·, g∗)), or] in line 205 of an updateQ() operation called from an operation in OP. We

have Rsrv(g∗, p, i) > 0 throughout [t, t∗), and by (7.13) also throughout [tS0@156, tSn+1@rsp] ⊇

[t, tSn+1@rsp]. Hence, t∗ > tSn+1@rsp.

[First assume that at t∗, process p executes unreserve(g∗) in line 159 of a TSC(i, (·, g∗)) op-

eration S. Then Rsrv(g∗, p, i) = 1 right before t∗ = tS@159. Moreover, p executes reserve(g∗)

in line 156 of S, thus, Rsrv(g∗, p, i) = 0 right before tS@156. As tS@156 < tS@159 = t∗ and

Rsrv(g∗, p, i) > 0 throughout [t, t∗), we have tS@156 ≤ t = tS0@163 ≤ tS@159. This is a contra-

diction as both S and S0 are TSC(i, ·) operations by p.]

Suppose that at t∗, process p executes unreserve(g∗) in line 205 of an updateQ(i, g)

operation called from an operation S in OP. Recall that t∗ > tSn+1@rsp. Thus, S is invoked

after Sn+1 responds. I.e., S = Sj+n+1, for some j > 0. Consider operations Sj+1, . . . ,Sj+n.

(By definition, they are all operations in OP.) Process p increments its local variable hCtrp[i]

modulo n during each operation in OP (in [line 167]<line 234>), so p’s local variable hCtrp[i] = q

at the invocation of Sj′ , where j′ ∈ {j + 1, . . . , j + n}. Note that 1 < j + 1 ≤ j′ ≤ j + n, so

Sj′ gets invoked after tS1@inv and responds before tSj+n+1@inv and so before t∗ ≤ t′. By the

assumption of the claim, [the value of H[i][q] does not change throughout [t, t′) = [tS0@163, t),

so p loads (x∗, g∗, p) 6= (⊥,⊥,⊥) from H[i][q] in line 157 of Sj′]<p does not write to H[i][p][q]

or H′[i][p][q] during (t, t′), so its if-condition in line 224 of Sj′ evaluates to false and p execute

lines 230–232 during Sj′>. Therefore, p executes reserve(g∗) in [line 165]<line 230> of Sj′ .

By Claim 7.9 (substituting Sj′ for S0 in that claim), we have Rsrv(g∗, p, i) > 0 throughout

[[tSj′@165, tSj′+n+1@rsp]]<[tSj′@230, tSj′+n+1@rsp]>. Therefore Rsrv(g∗, p, i) > 0 at least throughout

[[tSj+n@165, tSj+n+2@rsp]]<[tSj+n@230, tSj+n+2@rsp]> and therefore throughout the execution of Sj+n+1

that comprises t∗, which is a contradiction.

201

7.5.4 Properties of the LL() Operation

The following observation shows that although the TLL() operation of the TLSA object has a

repeat-until loop, it only requires a constant number of steps.

Observation 7.12. The repeat-until loop in lines 170–172 of any TLL(i) operation terminates

after at most two iterations.

Proof. Suppose for the sake of contradiction that some process q executes line 172 more than

twice during a TLL(i) operation L. This implies that q’s H[i][q].SC() operation in line 172

fails at least twice during L. Therefore, two other H[i][q].SC() operations sc1 by p1 and sc2

by p2 succeed during the interval that starts when q executes H[i][q].LL() in line 171 for the

first time during L and ends when q executes H[i][q].SC(⊥,⊥,⊥) in line 172 for the second

time during L. Since only process q /∈ {p1, p2} can execute an SC() on H[i][q] during a TLL(i)

operation, pj, j ∈ {1,2} executes scj in line 163 of a TSC(i, ·) operation. Assume w.l.o.g. that

sc1 is executed before sc2, and let Sj be the TSC(i, ·) operation during which pj executes scj in

line 163. Both, sc1 and sc2, are successful SC() operations on H[i][q], therefore sc1 cannot be

executed between the H[i][q].LL() operation in line 157 of S2 and sc2. Thus, p1 executes sc1

before the H[i][q].LL() operation in line 157 of S2. Since only process q can write (⊥,⊥,⊥)

to H[i][q], and it does not do so between sc1 and sc2, and also the value p1 writes to H[i][q]

in sc1 is (·, ·, p1) 6= (⊥,⊥,⊥), the H[i][q].LL() operation in line 157 of S2 reads some non-⊥

values. Hence, the if-condition in line 162 of S2 evaluates to false and so line 163 of S2 does

not get executed, which is a contradiction.

Now we state and prove some properties of indirect [TLL()]<TRead()> operations, that

is, those that return a value that was provided as a hint. More specifically, we show that if

some [TLL(i)]<TRead(i)> operation by process p returns a pair (x∗, g∗), which p obtained as

a hint, then some process p′ wrote [(x∗, g∗)]<(x∗, g∗, p′)> to A[i] at some point during p’s

202

[TLL(i)]<TRead(i)> operation. Moreover, tag g∗ is reserved starting from the point at which p′

writes to A[i] until the [TLL(i)]<TRead(i)> operation responds.

Claim 7.13. Let q∗ be a process and b∗ ∈ {0,1}, and let S1 and S2 be two TWrite(i, ·)

operations by some process p, such that S1 is invoked before S2. Suppose at the invocation of

both S1 and S2, hCtrp[i] = q∗ and togglep[i][q∗] = b∗. Then during (tS1@rsp, tS2@inv), process

p executes at least one TWrite(i, ·) operation, at the invocation of which hCtrp[i] = q∗.

Proof. Process p toggles the value of togglep[i][q∗] and increments the value of hCtrp[i]

(modulo n) in lines 233–234 of S1. These local variables are not modified elsewhere. Thus,

at the response of S1, hCtrp[i] = q∗ + 1(modn) and toggle[i][q∗] = 1 − b∗. Moreover,

toggle[i][q∗] = b∗ at the invocation of S2. Thus, p toggles the value of this register, after

the response of S1 and before the invocation of S2.

The value of toggle[i][q∗] is only modified in line 233 of a TWrite(i, ·) call by p, and only

when hCtrp[i] = q∗. Therefore, p must execute at least one TWrite(i, ·) operation call between

the response of S1 and the invocation of S2 such that hCtrp[i] = q∗ just before p executes

line 233 and so at the invocation of this operation call.

Claim 7.14. Consider an indirect [TLL(i)]<TRead(i)> operation L by some pro-

cess p, which returns some value (x∗, g∗). Then some process p′ executes a

[TSC(i, (x∗, g∗))]<TWrite(i, (x∗, g∗))> operation S, such that

(a) process p′ [successfully executes A[i].SC(x∗, g∗) in line 158]<writes (x∗, g∗, p) to A[i] in

line 227> of S,

(b) [lin(S) = tS@158 ∈ [tL@inv, tL@175]]<lin(S) = tS@227 ∈ [tL@238, tL@243]>,

(c) Rsrv(g∗, p′, i) > 0 throughout [[tS@158, tL@rsp]]<[tS@227, tL@rsp]>, and

(d) let α be the value of Annc(g∗, p) at point tL@inv, then Annc(g∗, p) = α + 1, throughout

[[tL@182, tL@rsp]]<[tL@247, tL@rsp]>.

Proof. Let Λ be a transcript on an object T, where T is either of type TLSA or of type TRA.

203

Case I: T is of type TLSA. Since L is an indirect TLL() that returns (x∗, g∗), and so

the if-condition in line 176 of L evaluates to true, p must have read (x∗, g∗, p′) 6= (⊥,⊥,⊥)

from H[i][p] in line 175 of L, for some process p′. That process p′ must have executed a

successful H[i][p].SC(x∗, g∗, p′) in line 163 of a TSC(i, (x∗, g∗)) operation S, such that H[i][p] =

(x∗, g∗, p′) throughout [tS@163, tL@175]. This implies

tS@163 < tL@175 (7.14)

When H[i][p] stores a non-⊥ value, only process p can change the value stored in this variable

(in line 172 of a TLL(i)), and it does not do so during [tL@175, tL@rsp]. Moreover, due to the

LL() operation in line 157 and the if-condition in line 162, no process can execute a successful

H[i][p] in line 163, when the value of H[i][p] is not (⊥,⊥,⊥). Thus,

H[i][p] = (x∗, g∗, p′) throughout [tS@163, tL@rsp]. (7.15)

Consider again operation S during which p′ executes a successful H[i][p].SC(x∗, g∗, p′) in

line 163. Process p′ must have executed a successful A[i].SC(x∗, g∗) in line 158 of S, and

this proves Part (a). Operation S is a successful TSC(), so lin(S) = tS@158. Moreover by

(7.14), tS@158 < tS@163 ≤ tL@175. So to complete the proof of Part (b), we need to show that

tS@158 ≥ tL@inv.

Process p′ executes a successful H[i][p].SC(x∗, g∗, p′) in line 163 of S. Hence by line 162,

the value stored in H[i][p] is (⊥,⊥,⊥) when p′ executes line 157 of S and

no process writes to H[i][p] during [tS@157, tS@163). (7.16)

Now, assume for the sake of contradiction that tS@158 < tL@inv. Process p writes (⊥,⊥,⊥) to

H[i][p] at some point during [tL@inv, tL@175] ⊆ [tS@158, tL@175]. However, this contradict (7.15)

and (7.16), and so Part (b) follows.

Process p′ executes a successful A[i].SC(x∗, g∗) at tS@158. At tS@156 < tS@158, process

p executes reserve(g∗). Thus by Claim 7.9, Rsrv(g∗, p′, i) > 0 starting at tS@156 until it

204

completes n + 1 additional successful TSC(i, ·) operations, and so throughout [tS@158, tS@rsp].

Moreover, by (7.15) and Claim 7.11, Rsrv(g∗, p, i) > 0 throughout [tS@163, tL@rsp], and this

completes the proof of Part (c).

To prove Part (d), recall that p reads (x∗, g∗, p′) from H[i][p] in line 175 of L, so it executes

announce(g∗) in line 182 of L. Moreover, if p executes announce(g) in line 174 of L, for some

g, then it also executes unannounce(g) in line 178 of L. As p does not call announce() and

unannounce() anywhere else during L, Annc(g∗, p) is one larger throughout [tL@182, tL@rsp]

than at tL@inv.

Case II: T is of type TRA. Let c∗ be the value p writes to ReadCtrp[i] in line 238 of L.

Thus,

ReadCtrp[i] = c∗ throughout [tL@238, tL@rsp]. (7.17)

Since the if-condition in line 244 evaluates to true and L returns (x∗, g∗), p must have

read (x∗, g∗, c∗,b∗) 6= (⊥,⊥,⊥,⊥), for some value of b∗ ∈ {0,1}, from both H[i][p′][p] and

H′[i][p′][p] in line 242 respectively line 243 of L, for some p′ ∈ {0, . . . ,n− 1}. Recall that only

process p′ (in line 225 and line 228 of a TWrite(i, ·)) and process p (in line 236 and line 237 of

a TRead(i)) can write to H[i][p′][p] or H[i]′[p′][p], and the only value p can write to one of

those variables is (⊥,⊥,⊥,⊥). Thus, process p′ must have written (x∗, g∗, c∗,b∗) to H[i][p′][p]

and H′[i][p′][p] at some time before tL@242 respectively tL@243.

Let S and S′ be TWrite(i, ·) operations by process p′, such that:

at tS@225, process p′ writes (x∗, g∗, c∗,b∗) to H[i][p′][p]

for the last time before tL@243, and

(7.18)

at tS′@228, process p′ writes (x∗, g∗, c∗,b∗) to H′[i][p′][p]

for the last time before tL@243.

(7.19)

(We intentionally choose S such that tS@225 happens before tL@243 but not necessarily before

tL@242.)

205

Process p reads (x∗, g∗, c∗,b∗) from H′[i][p′][p] at tL@243, thus by (7.19), we have

H′[i][p′][p] = (x∗, g∗, c∗,b∗) throughout [tS′@228, tL@243]. (7.20)

Moreover, p reads (x∗, g∗, c∗,b∗) from H[i][p′][p] at tL@242. By (7.18), we have

if tS@225 < tL@242, then H[i][p′][p] = (x∗, g∗, c∗,b∗) throughout [tS@225, tL@242]. (7.21)

Now we prove that S = S′. Suppose not. By (7.18) and (7.19), p′ writes (x∗, g∗, c∗,b∗) into

H[i][p′][p] in line 225 of S and the same quadruple into H′[i][p′][p] in line 228 of S′. This

implies that hCtrp′ [i] = p and toggle[i][p] = b∗ at the invocation of both S and S′. Thus by

Claim 7.13,

during (min(tS@rsp, tS′@rsp),max(tS@inv, tS′@inv)), p′ executes at least

one TWrite(i, ·) operation, at the invocation of which hCtrp′ [i] = p.

(7.22)

Let S∗1 , . . . ,S∗k be the TWrite(i, ·) operation calls executed between S and S′, such that

hCtrp′ [i] = p at the invocation of S∗1 , . . . ,S∗k . By (7.22), k ≥ 1.

Case II.1: Suppose S happens before S′. By (7.19), this implies that tS@225 < tS′@228 < tL@243.

First we prove that

tS@225 < tL@242. (7.23)

Suppose for the sake of contradiction that tS@225 ≥ tL@242. Then tS′@218 > tL@242, because S

happens before S′. This in addition to (7.19) implies that tS′@218 ∈ [tL@242, tL@243]. So by (7.17),

p′ reads c∗ from ReadCtrp[i] in line 218 of S′. Thus, p′ writes the same quadruple (x∗, g∗, c∗,b∗)

to H[i][p′][p] in line 225 of S′ as it writes to H′[i][p′][p] in line 228 (by (7.19)). However, this

is a contradiction, since by (7.18) process p′ writes (x∗, g∗, c∗,b∗) to H[i][p′][p] for the last time

before tL@243 during S (which happens before S′). Hence, (7.23) is true.

Next, we prove that

tS′@inv < tL@238 (7.24)

206

If tS′@inv > tL@238, then by (7.19), tS′@inv ∈ [tL@238, tL@rsp]. Thus by (7.17), p′ reads c from

ReadCtrp[i] in line 218 of S′ at tS′@inv = tS′@218. Therefore, since by (7.19), p′ writes

(x∗, g∗, c∗,b∗) to H′[i][p′][p] at tS′@228, p′ also writes the same quadruple to H[i][p′][p] at

tS′@225. This contradicts (7.18), because by (7.23) and the assumption that S happens before

S′, tS′@225 ∈ [tS@225, tL@242]. So (7.24) follows.

Now consider again operations S∗1 , . . . ,S∗k that all complete during [tS@rsp, tS′@inv]. By (7.24),

we have tS′@inv < tL@238 < tL@242. Thus,

operations S∗1 , . . . ,S∗k all complete during [tS@225, tL@242]. (7.25)

Case II.1-1: First suppose that during at least one operation S∗j , j ∈ {1, . . . ,k}, the if-condition

in line 224 evaluates to true. Thus p′ writes to H[i][p′][p] and H′[i][p′][p] (in lines 225–228)

of S∗j . By (7.25), S∗j completes during [tS@225, tL@242]. Thus, p′ writes to H[i][p′][p] in line 225

of S∗j during [tS@225, tL@242]. Process p′ cannot write (x∗, g∗, c∗,b∗) to H[i][p′][p] during this

interval, because this would contradict (7.18). Hence, p′ writes a different value to H[i][p′][p]

in line 225 of S∗j during [tS@225, tL@242] This is a contradiction to (7.21) and (7.23).

Case II.1-2: Now suppose that in all S∗1 , . . . ,S∗k , the if-condition in line 224 evaluates to false.

Fix an arbitrary integer j ∈ {1, . . . ,k}. By the choice of S∗1 , . . . ,S∗k , at the invocation of S∗j ,

hCtrp′ [i] = p. Therefore, p′ reads H[i][p′][p] and H′[i][p′][p] in lines 220–221 of S∗j . But

since the if-condition in line 224 of S∗j evaluates to false, p′ reads the same quadruple from

both H[i][p′][p] and H′[i][p′][p] in lines 220–221 of S∗j . By (7.21) and (7.23), H[i][p′][p] =

(x∗, g∗, c∗,b∗) throughout [tS@225, tL@242], and so by (7.25) throughout the execution of S∗j .

Thus, p′ reads (x∗, g∗, c∗,b∗) from both H[i][p′][p] and H′[i][p′][p] in lines 220–221 of S∗j .

Moreover, since the if-condition in line 224 of S∗j evaluates to false, p′ reads c∗ from ReadCtrp[i]

in line 218 of S∗j . Hence

ReadCtrp[i] = c∗ at tS∗j @218. (7.26)

Operation S∗j completes during [tS@rsp, tS′@inv], and so by (7.24), before point tL@238, at which

207

p increments (modulo 2n) the value stored in ReadCtrp[i] to c∗. Therefore by (7.26), the value

of ReadCtrp[i] wraps around during [tS∗j @218, tL@238]. Since process p increments ReadCtrp[i]

modulo 2n only in line 238 of each TRead(i) operation call, and this variable is not modified

elsewhere, p must execute line 238 at least 2n times during [tS∗j @218, tL@238]. Thus, p executes

lines 236–237 at least 2n− 1 times during the same interval, and in particular at least once when

its local variable c mod n has value p′. Hence, p writes (⊥,⊥,⊥,⊥) to H[i][p′][p] at some

point during [tS∗j @218, tL@238] ⊆ [tS@rsp, tL@238]. This contradicts (7.21) and (7.23).

Case II.2: Now assume S′ happens before S. Thus by (7.18), tS′@228 < tS@225 < tL@243. In

the following, we show that

tS@inv ≥ tL@238. (7.27)

Assume for the sake of contradiction that tS@inv < tL@238. By (7.18), process p writes

(x∗, g∗, c∗,b∗) to H[i][p′][p] in line 225 of S. Thus, p′ reads c∗ from ReadCtrp[i] at

tS@218 = tS@inv. At tL@238 > tS@inv, p increments (modulo 2n) the value stored in ReadCtrp[i]

to c∗. Since process p increments ReadCtrp[i] modulo 2n only in line 238 of each TRead(i)

operation call, and this variable is not modified elsewhere, p must execute line 238 at least 2n

times during [tS@inv, tL@238]. Thus, p executes lines 236–237 at least 2n− 1 times during the

same interval, and in particular at least once when its local variable c mod n has value p′. Hence,

p writes (⊥,⊥,⊥,⊥) to H′[i][p′][p] at some point during [tS@inv, tL@238], and since S′ happens

before S, during [tS′@228, tL@238]. This contradicts (7.20). Thus, (7.27) follows.

Now consider again operations S∗1 , . . . ,S∗k that all complete during [tS′@rsp, tS@inv]. By (7.18),

we have tS′@228 < tS′@rsp < tS@inv < tS@225 < tL@243. Thus,

operations S∗1 , . . . ,S∗k all complete during [tS′@228, tL@243]. (7.28)

Case II.2-1: Suppose that during at least one operation S∗j , j ∈ {1, . . . ,k}, the if-condition

in line 224 evaluates to true. Thus p′ writes to H[i][p′][p] and H′[i][p′][p] (in lines 225–228)

of S∗j . By (7.28), operation S∗j completes during [tS′@228, tL@243]. However, p′ does not write

208

(x∗, g∗, c∗,b∗) to H′[i][p′][p] during S∗j , as this would contradict (7.19). Then p′ writes a

different quadruple, which contradicts (7.20).

Case II.2-2: Now suppose that in all S∗1 , . . . ,S∗k , the if-condition in line 224 evaluates to false.

By the choice of S∗k , at the invocation of S∗k , hCtrp′ [i] = p. Therefore, process p′ reads H[i][p′][p]

and H′[i][p′][p] in lines 220–221 of S∗k . But since the if-condition in line 224 of S∗k evaluates to

false, p′ reads the same quadruple from both H[i][p′][p] and H′[i][p′][p] in lines 220–221 of S∗k .

By (7.20), H′[i][p′][p] = (x∗, g∗, c∗,b∗) throughout [tS′@228, tL@243], and so by (7.28) throughout

the execution of S∗k . Thus, p′ reads (x∗, g∗, c∗,b∗) from both H[i][p′][p] and H′[i][p′][p] in

lines 220–221 of S∗k .

Now we show that the value of H[i][p′][p] remains equal to (x∗, g∗, c∗,b∗) throughout

[tS∗k @220, tS@220]. Only process p and p′ can write to H[i][p′][p]. Process p′ does not write

to H[i][p′][p] after S∗k and before tS@220, because S∗k is the last TWrite(i, ·) call before S, at

the invocation of which hCtrp′ [i] = p. Since p can only reset the value of this register, sup-

pose for the sake of contradiction that p writes (⊥,⊥,⊥,⊥) to H[i][p′][p] in line 236 of a

TRead(i) operation L′, such that tL′@236 ∈ [tS∗k @220, tS@220]. By (7.28), tS′@228 < tS∗k @220, and

by (7.18), tS@225 < tL@243. Thus, tL′@236 ∈ [tS′@228, tL@243]. This contradicts (7.20). Therefore,

H[i][p′][p] = (x∗, g∗, c∗,b∗) at tS@220.

Moreover, by (7.18), tS@221 < tL@243, so by (7.20), H′[i][p′][p] = (x∗, g∗, c∗,b∗) at tS@221 ∈

[tS′@228, tL@243]. By (7.18), p′ writes (x∗, g∗, c∗,b∗) to H[i][p′][p] in line 225 of S, thus, p′

reads c∗ from ReadCtrp[i] in line 218 of S. Therefore, the if-condition in line 224 of S evaluates

to false, and so p′ does not write to H[i][p′][p] during S, which contradicts (7.18). This

completes the proof for S = S′.

209

Proof of Part (a). As we just proved S = S′, i.e. there exist a TWrite(i, ·) operation S, such

that

during S, process p′ writes (x∗, g∗, c∗,b∗) to H[i][p′][p] and H′[i][p′][p]

at tS@225 resp. tS@228 for the last time before tL@243.

(7.29)

And therefore, p′ writes (x∗, g∗, p) to A[i] in line 227 of S.

Proof of Part (b). As p′ writes to A[i] in line 227 of S, we have lin(S) = tS@227. By (7.29),

we know tS@228 < tL@243, therefore we have:

tS@227 < tL@243 (7.30)

Next we prove that tS@226 ≥ tL@238, and therefore tS@227 > tL@238, which completes the proof

of Part (b).

Suppose for the sake of contradiction that tS@226 < tL@238. Recall that p′ writes

(x∗, g∗, c∗,b∗) to H′[i][p′][p] in line 228 of S′. Hence, p′ must read c∗ from ReadCtrp[i] at

tS@226. Thus, ReadCtrp[i] = c∗ at both tS@226 and tL@238, but not just before tL@238, and recall

that we assumed tS@226 < tL@238. Process p increments ReadCtrp[i] modulo 2n in line 238 of

each TRead(i) operation. Thus, p must execute line 238 at least 2n times during [tS@226, tL@238].

In particular, p must execute line 236 at least n times during that interval, and specifically at least

once when its local variable c mod n = p. Therefore, p writes (⊥,⊥,⊥,⊥) to H[i][p′][p] at

least once during [tS@226, tL@238]. As p reads (x∗, g∗, c∗,b∗) from H[i][p′][p] at tL@242, p′ must

write this value to H[i][p′][p] at some point during [tS@226, tL@242], which contradicts (7.29).

Proof of Part (c). By (7.29), we know that p′ writes (x∗, g∗, c∗,b∗) to both H[i][p′][p] and

H′[i][p′][p] during S. Let S∗ be the first TWrite(i, ·) operation after S by p′ during which p′

writes to H[i][p′][p] and H′[i][p′][p] at tS∗@225 respectively tS∗@228. Moreover, by Part (b), we

know tS@rsp > tS@227 > tL@238, and therefore tS∗@inv > tL@238.

Note that after S, process p′ only writes to H[i][p′][p] and H′[i][p′][p], if either it reads

ReadCtrp[i] 6= c∗, or p resets H[i][p′][p] or H′[i][p′][p]. Neither the value of ReadCtrp[i]

210

changes nor p resets any of H[i][p′][p] and H′[i][p′][p] during (tL@238, tL@rsp] and so during

[tS∗@inv, tL@rsp]. Thus, tS∗@225 > tL@rsp.

By Claim 7.11, we know that Rsrv(g∗, p′, i) > 0 throughout [tS@225, tS∗@225]. Thus,

Rsrv(g∗, p′, i) > 0 throughout [tS@227, tL@rsp] ⊆ [tS@225, tS∗@225].

Proof of Part (d). Recall that p reads (x∗, g∗, c∗,b∗) from H[i][p′][p] in line 242 of L, so

it executes announce(g∗) in line 247 of L. Moreover, if p executes announce(g) in line 241

of L, for some g, then it also executes unannounce(g) in line 246 of L. As p does not call

announce() and unannounce() anywhere else during L, Annc(g∗, p) is one larger throughout

[tL@247, tL@rsp] than at tL@inv.

In the previous claim, we discussed about the case in which a [TLL()]<TRead()> returns a

value that was provided as a hint. Next we consider a [TLL(i)]<TRead(i)> operation by some

process p which returns some value (x∗, g∗) that the process reads from A[i], i.e. when the

[TLL(i)]<TRead(i)> is direct. In the following claim, we show that in this case tag g∗ is reserved

until Annc(g∗, p) is incremented during p’s [TLL(i)]<TRead(i)> operation, in addition to some

other properties of a direct [TLL(i)]<TRead(i)>.

Claim 7.15. Consider a direct [TLL(i)]<TRead(i)> operation L by some process p, which returns

some pair (x∗, g∗). Then the following is true for some process p′.

(a) Process p′ completes fewer than n [successful TSC(i, ·)]<TWrite(i, ·)> operations during

[[tL@173, tL@175]]<[tL@239, tL@242]>,

(b) Rsrv(g∗, p′, i) > 0 throughout [[tL@173, tL@175]]<[tL@239, tL@242]>, and

(c) let α be the value of Annc(g∗, p) at point tL@inv, then Annc(g∗, p) = α + 1, throughout

[[tL@174, tL@rsp]]<[tL@241, tL@rsp]>.

Proof. Let Λ be a transcript on an object T, where T is either of type TLSA or of type TRA.

Operation L is a direct [TLL()]<TRead()> with return value (x∗, g∗). Thus, process p must

211

read [(x∗, g∗)]<(x∗, g∗, p′), for some p′ ∈ {0, . . . ,n− 1}> from A[i] in [line 173]<line 239> of

L. Therefore, some process p′ must have previously [executed a successful A[i].SC(x∗, g∗) in

line 158 of some TSC(i, (x∗, g∗))]<written (x∗, g∗, p′) to A[i] in line 227 or line 232) of some

TWrite(i, (x∗, g∗))> operation S.

<Let c∗ be the value p writes to ReadCtrp[i] at tL@238. As p does not change this value

during the remaining of its TRead(i) operation, we have

ReadCtrp[i] = c∗ throughout [tL@239, tL@243]. (7.31)

Moreover, by the pseudocode,

p does not write to H[i][p′][p] and H′[i][p′][p] throughout [tL@239, tL@243]. (7.32)

>

Proof of Part (a) if T is of type TLSA. Consider process p′, and suppose for the sake of

contradiction that p′ completes at least n successful TSC(i, ·) operations during [tL@173, tL@175].

Since p′ increments its local variable hCtrp′ [i] modulo n during each successful TSC(i, ·) opera-

tion, hCtrp′ [i] = p at the invocation of at least one of these successful TSC(i, ·) operations. Let

S′ be the first such TSC(i, ·) operation by p′. Thus,

[tS′@inv, tS′@rsp] ⊆ [tL@173, tL@175]. (7.33)

Next, we show that there exist x, g and q, such that

H[i][p] = (x, g,q) 6= (⊥,⊥,⊥) throughout [tS′@rsp, tL@rsp]. (7.34)

Then since by (7.33), tS′@rsp ≤ tL@175, and so [tL@175, tL@rsp] ⊆ [tS′@rsp, tL@rsp], (7.33) implies

that H[i][p] = (x, g,q) 6= (⊥,⊥,⊥) at point tL@175. However, since L is a direct TLL() opera-

tion, p’s if-condition in line 176 of L evaluates to false, and so p reads (⊥,⊥,⊥) from H[i][p]

at tL@175. This is a contradiction, and so Part (a) follows.

212

Now, we prove (7.34). Note that any process other than p can only change the value stored

in H[i][p] from (⊥,⊥,⊥) to a non-⊥ value, and process p can write (⊥,⊥,⊥) to H[i][p] only

during a TLL(i) operation. Process p does not write (⊥,⊥,⊥) to H[i][p] during [tL@173, tL@rsp].

By (7.33), S′ completes during [tL@173, tL@175]. Thus to prove (7.34), it suffices to show that

H[i][p] has some non-⊥ value at some point during S′. (7.35)

If p′ writes to H[i][p] during S′, then it must write a non-⊥ value to H[i], and (7.35)

follows. Hence, suppose process p′ does not write to H[i][p] during S′. As S′ is a successful

TSC(i, ·), either the if-condition in line 162 evaluates to false or the it evaluates to true

but the H[i][p].SC() operation in line 163 fails. In the case that the if-condition evaluates

to false, H[i][p] already stores some value (x, g,q) 6= (⊥,⊥,⊥) when p′ reads it at tS′@157.

Otherwise, p′’s H[i][p].SC() operation fails because another process, q, successfully executes an

SC() operation on H[i][p] in (tS′@157, tS′@163)⊆ [tL@173, tL@175] (by 7.33), and so q 6= p. Thus,

q writes some non-⊥ value to H[i][p] at some point during S′. Hence, (7.35) follows.

Proof of Part (a) if T is of type TRA. Suppose for the sake of contradiction that p′

completes at least n TWrite(i, ·) operations during [tL@239, tL@242]. Since p′ increments its local

variable hCtrp′ [i] modulo n during each TWrite(i, ·) operation, hCtrp′ [i] = p at the invocation

of at least one of these TWrite(i, ·) operations. Let W ′ be the first such TWrite(i, ·) operation.

Thus,

[tW ′@inv, tW ′@rsp] ⊆ [tL@239, tL@242]. (7.36)

So by (7.31) we know that

p′ reads c∗ from ReadCtrp[i] in line 218 of W ′. (7.37)

In the following, first we show that there exist x, g, and b, such that

H[i][p′][p] = H′[i][p′][p] = (x, g, c∗,b) at tW ′@rsp. (7.38)

213

Suppose process p′ writes to neither H[i][p′][p] nor H′[i][p′][p] during W ′. This implies that the

if-condition in line 224 of W ′ evaluates to false. Since by (7.37), p′ reads c∗ from ReadCtrp[i] in

line 218 of W ′, process p′ reads (x, g, c∗,b) from both, H[i][p′][p] and H′[i][p′][p], in lines 220

and 221, respectively, for some x, g, and b. By the case assumption, p′ does not write to

H[i][p′][p] and H′[i][p′][p] during W ′, and by (7.32) p does not write to these variables during

W ′. Thus, H[i][p′][p] = H′[i][p′][p] = (x, g, c∗,b) at tW ′@rsp.

Now suppose that p′ writes to H[i][p′][p] and H′[i][p′][p] during W ′. By (7.37), p′ reads c∗

from ReadCtrp[i] in line 218 and in line 226. Therefore, p′ writes (x, g, c∗,b) to both H[i][p′][p]

and H′[i][p′][p] in lines 225–228 of W ′, for some x, g, and b. Process p′ does not write

to H[i][p′][p] during (tW ′@225, tW ′@rsp], and not to H′[i][p′][p] during (tW ′@228, tW ′@rsp]. By

(7.32), process p also does not write to these variables during W ′, thus we have H[i][p′][p] =

H′[i][p′][p] = (x, g, c∗,b) at tW ′@rsp. Therefore, (7.38) follows.

After W ′, process p′ does not write to H[i][p′][p] and H′[i][p′][p] as long as H[i][p′][p] =

H′[i][p′][p] = (x, g, c∗,b) and ReadCtrp[i] = c∗. Other than process p′, only process p can

write to H[i][p′][p] and H′[i][p′][p]. By (7.32), p does not write to those registers during

[tL@239, tL@243]. By (7.31), ReadCtrp[i] = c∗ throughout that interval. Thus, neither p′ nor p

writes to H[i][p′][p] and H′[i][p′][p] in (tW ′@rsp, tL@243]. Therefore by (7.38), H[i][p′][p] =

H′[i][p′][p] = (x, g, c∗,b) throughout [tW ′@rsp, tL@243] and therefore throughout [tL@242, tL@243],

because according to (7.36), tW ′@rsp ≤ tL@242. This implies that p′ reads (x, g, c∗,b) from

H[i][p′][p] and H′[i][p′][p] in line 242 respectively line 243 of L, and hence the if-condition in

line 244 evaluates to true. This contradicts the assumption that L is direct.

Proof of Part (b). We discussed at the beginning of this proof that process p′ writes

[(x∗, g∗)]<(x∗, g∗, p′)> to A[i] [in line 158]<either in line 227 or in line 232> of S at at

some point t, such that [t < tL@173]<t < tL@239>, and no process writes to A[i] during

[(t, tL@173]]<(t, tL@239]>. Thus, at [tL@173]<tL@239> process p′ has not completed a [success-

ful TSC(i, ·)]<TWrite(i, ·)> operation following S, as otherwise the value stored in A[i] would

214

change [in line 158]<either in line 227 or in line 232>. By Part (a), p′ completes fewer

than n [successful TSC(i, ·)]<TWrite(i, ·)> operations during [[tL@173, tL@175]]<[tL@239, tL@242]>.

Thus, p′ completes at most n [successful TSC(i, ·)]<TWrite(i, ·)> operations during

[[tS@rsp, tL@175]]<[tS@rsp, tL@242]>. Let t′ be the point when p′ finishes its n + 1-th [successful

TSC(i, ·)]<TWrite(i, ·)> operation after S, and t′ = ∞ if p′ executes fewer than n+ 1 [successful

TSC(i, ·)]<TWrite(i, ·)> operations after S. Thus, we have [t′ > tL@175]<t′ > tL@242>.

As p′ writes [(x∗, g∗)]<(x∗, g∗, p′)> to A[i] during S, it also executes reserve(g∗)

in [line 156]<line 219> of S. Thus, by Claim 7.9, Rsrv(g∗, p′, i) > 0 throughout

[[tS@156, t′]]<[tS@219, t′)>. As [tS@158 < tL@173 and tL@175 < t′]<tS@219 < t < tL@239 and tL@242 <

t′>, Rsrv(g∗, p′, i) > 0 throughout [[tL@173, tL@175]]<[tL@239, tL@242]>.

Proof of Part (c). Process p reads [(x∗, g∗)]<(x∗, g∗, p′)> from A[i] in [line 173]<line 239>

of L, thus it executes announce(g∗) in [line 174]<line 241> of L. Moreover, since L is a direct

operation, the if-condition in [line 176]<line 244> evaluates to false, and so p does not call

unannounce(g∗) during L, and announce(g∗) at not point other than in [line 174]<line 241>.

Thus, after this point Annc(g∗, p) is one larger than at tL@inv until L responds, and so (c)

follows.

7.5.5 Announced vs. Protected

Let p be a process and g∗ a tag. Claim 7.16 states that number of times p has tag g∗ protected

is at least Annc(g∗, p), unless p is at some specific points in the execution. Claim 7.17 says that

for a completed operation M, Annc(g∗, p) is the same right before and right after M, if M is not

a [TLL()]<TRead()> operation by p with return value g∗, a Protect(g∗), an Unprotect(g∗),

or a CancelProtect(g∗). Using this together with Claim 7.14 and Claim 7.15, we show that

if at some point a process has completed in total more Protect(g∗) and [TLL()]<TRead()>

operations with return value (·, g∗) than Unprotect(g∗) calls, then Annc(g∗, p) > 0 at that

point (see Claim 7.18). Invariant 7.19 is that Annc(g∗, p) is always at least 0. Finally, Claim 7.20

215

states the relation between protected, announced, and reserved.

Claim 7.16. For tag g∗, any process p, and any point t, one of the following is true.

(a) Protected(g∗, p) ≥ Annc(g∗, p), or

(b) Protected(g∗, p) ≥ Annc(g∗, p)− 1, and either p is poised to execute [line 175 or 178

of a TLL(·)]<line 242, 243 or 246 of a TRead(·)> operation, where p’s local variable g

has value g∗, or p’s last step on the [TLSA]<TRA> object was a Protect(g∗) call that

did not succeed at or before t.

Proof. Initially, no tag is protected or announced by p, i.e., Protected(g∗, p) = 0 and

Annc(g∗, p) = 0. So Part (a) at t = 0.

Now suppose that there is a point t, such that the claim holds throughout [0, t). In the rest

of this proof, for any point t∗, let P≺t∗ , respectively P�t∗ , denote the value of Protected(g∗, p)

immediately before, respectively immediately after, t∗. Similarly, let A≺t∗ , respectively A�t∗ ,

denote the value of Annc(g∗, p) immediately before, respectively immediately after, t∗.

Case 1. First suppose that Part (a) holds immediately before t, and at t, either Annc(g∗, p) in-

creases, or Protected(g∗, p) decreases. The former can happen only if p executes announce(g∗)

in [line 174 or 182 of a TLL()]<line 241 or 247 of a TRead()> operation, or line 206 of a

Protect(g∗) (this will be covered by Cases 1.1-1.3 below). The latter happens if at t, process p

executes Unprotect(g∗), or a CancelProtect(g∗) after p’s last Protect(g∗) call succeeded

(Case 1.4 below).

Case 1.1 Consider the case in which p executes [line 174 of a TLL()]<line 241 of a TRead()>

operation L at t. As p only executes announce(g∗) once between the invocation and the point

immediately after t, we have A�t = A≺tL@inv + 1. The claim holds throughout [0, t), and so

at tL@inv. Process p is not poised to execute [line 175 or 178]<line 242, 243 or 246> at the

invocation of L. Moreover, since we are considering a good transcript, by property (G4), if p’s

216

last operation call before L is a Protect(g∗) call, then that call must have succeeded before L is

invoked (as otherwise p would have to call a CancelProtect() before L). Thus, Part (a) holds

at tL@inv. I.e., P≺tL@inv ≥ A≺tL@inv . Process p does not call Unprotect(g) during [tL@inv, t],

thus, P�t ≥ P≺tL@inv . Therefore, P�t ≥ P≺tL@inv ≥ A≺tL@inv = A�t − 1. Moreover, p is poised to

execute [line 175]<line 242> immediately after t. Thus, Part (b) is true, and so the claim holds

for this case.

Case 1.2. Now suppose that process p executes [line 182 of a TLL()]<line 247 of a TRead()>

operation L at t. For some tag g, process p executes announce(g), unannounce(g) and

announce(g∗) in [lines 174, 178 and 182]<lines 241, 246 and 247> of L respectively. Thus,

A�t = A≺tL@inv + 1. With the same argument as in Case 1.1, P≺tL@inv ≥ A≺tL@inv . Operation

L is an indirect [TLL()]<TRead()> call with return value (·, g∗), and it linearizes at some point

during [[tL@inv, tL@175]]<[tL@238, tL@243]> (by def of lin() and Claim 7.14(b)) [or at tL@179].

Thus, Protected(g∗, p) increases at some point during [tL@inv, t), i.e. P�t = P≺tL@inv + 1. Hence,

P�t = P≺tL@inv + 1≥ A≺tL@inv + 1 = A�t, and so the claim holds for this case.

Case 1.3. Suppose that process p executes line 206 of a Protect(g∗) operation P at t. Then

p also executes announce(g∗) at t, so A�t = A≺t + 1. Since it is assumed that Part (a) holds

immediately before t, we have P≺t ≥ A≺t. If P succeeds at t, then Protected(g∗, p) increases

by 1 at t, and hence P�t = P≺t + 1≥ A≺t + 1 = A�t, and so Part (a) holds immediately after

t. If P does not succeed at t, then P�t = P≺t ≥ A≺t = A�t − 1. But since p just finished a

Protect(g∗) call that did not succeed before t, then Part (b) holds immediately after t.

Case 1.4. Next suppose that Protected(g∗, p) decreases. This implies that at t, process p

executes Unprotect(g∗) or a CancelProtect(g∗) that is called because the process did not

know that its last Protect(g∗) call succeeded. Hence, we have P�t = P≺t − 1 and P≺t ≥ A≺t.

Note that Unprotect(g∗) and CancelProtect(g∗) both consist of only one shared memory

step and that is writing to an entry of Emp during unannounce(g∗). Thus, immediately after t

217

we have A�t = A≺t − 1. Therefore, P�t = P≺t − 1≥ A≺t − 1 = A�t, and so the claim holds.

Case 2. Now suppose that Part (b) holds immediately before t, and at t process p executes

[line 175 or 178]<line 242, 243 or 246> (this is covered in Cases 2.1-2.2 below), or p takes one

step while p’s last Protect(g∗) call did not succeed at or before t (Case 2.3 below), or the value

of Protected(g∗, p) or Annc(g∗, p) changes, such that immediately after t, p is still poised to

execute [line 175 or 178]<line 242, 243 or 246>, or p’s last step on the [TLSA]<TRA> object was

a Protect(g∗) call that did not succeed at or before t (Case 2.4 below).

Case 2.1. Suppose that at t, process p executes [line 175 of a TLL()]<line 242 or line 243 of

a TRead()> operation L, where p’s local variable g has value g∗.

First suppose L is a direct [TLL()]<TRead()> operation. Process p executes announce(g∗)

exactly once during [tL@inv, t], thus, A�t = A≺tL@inv + 1. This operation linearizes at

[tL@173]<tL@239> which is during [tL@inv, t], so P�t = P≺tL@inv + 1. The claim holds throughout

[0, t), and so at the invocation of L. With the same argument as in Case 1.1, P≺tL@inv ≥ A≺tL@inv .

Therefore, P�t = P≺tL@inv + 1≥ A≺tL@inv + 1 = A�t, and so the claim is true for this case.

Now suppose L is an indirect [TLL()]<TRead()> operation. By executing [line 175]<line 242

or line 243>, Annc(g∗, p) does not change, so A�t = A≺t. Operation L may linearize with

return value (·, g∗) at t (see Claim 7.14), thus P�t ≥ P≺t. Since it is assumed that Part (b)

holds immediately before t, P≺t ≥ A≺t − 1. Thus, P�t ≥ P≺t ≥ A≺t − 1 = A�t − 1. Moreover,

as L is an indirect operation, p’s next shared memory step immediately after t is executing

[line 178]<line 242 respectively line 246>. Thus, Part (b) is true, and so the claim holds for this

case.

Case 2.2. Suppose that at t, process p executes [line 178 of a TLL()]<line 246 of a TRead()>

operation L, where p’s local variable g has value g∗. Therefore, A�t = A≺t − 1. Opera-

tion L linearizes at some point during [[tL@inv, tL@175]]<[tL@238, tL@243]> (by def of lin() and

Claim 7.14(b)) [or at tL@179]. Thus, the number of times tag g∗ is protected by p does not

218

change at [t = tL@178]<t = tL@246>, which means P�t = P≺t. Since it is assumed that Part (b)

holds immediately before t, P≺t ≥ A≺t − 1, therefore, P�t = P≺t ≥ A≺t − 1 = A�t, and so

Part (a) is true immediately after t, hence the claim holds at this point.

Case 2.3. Next suppose that p’s last step on the [TLSA]<TRA> object is a Protect(g∗) call

that does not succeed at or before t, and at t, process p takes one step on the [TLSA]<TRA> ob-

ject. As we are considering only good transcripts, by property (G4), process p must execute

CancelProtect(g∗) call C at t. This operation consists of only one shared memory step and

that is calling unannounce(g∗). Hence A�t = A≺t− 1. Since p’s last Protect(g∗) call before

t does not succeed and so does not increment Protected(g∗, p), C also does not change the

value of Protected(g∗, p), and so we have P�t = P≺t. By the case assumption, P≺t ≥ A≺t − 1,

so we have P�t = P≺t ≥ A≺t − 1 = A�t, and therefore Part (a) is true immediately after t.

Case 2.4. Suppose that at t, the value of Protected(g∗, p) or Annc(g∗, p) changes, and

immediately after t the following holds.

Either p is poised to execute one of [lines 175 and 178]<lines 242, 243 and 246>.

where p’s local variable g has value g∗, or p’s last step before t on the [TLSA]<TRA>

object is a Protect(g∗) call that does not succeed at or before t.

(7.39)

Since Part (b) holds immediately before t, (7.39) also holds immediately before t.

The value of Protected(g∗, p) or Annc(g∗, p) can only change if p takes a shared memory

step on the [TLSA]<TRA> object. If p executes [line 175]<line 242 or 243> at t, then p is poised

to execute [line 178]<line 243 respectively 246> immediately after t. However, this step does not

change the value of Protected(g∗, p) or Annc(g∗, p). If p executes [line 178]<line 246>, then

(7.39) does not hold immediately after t. If p’s last step on the [TLSA]<TRA> object before t

is a Protect(g∗) call that did not succeed at or before t, then p’step on this object at t must

be a CancelProtect(g∗) operation, because of property (G4) of a good transcript. Therefore,

(7.39) does not hold immediately after t. Hence, this case cannot happen.

219

Claim 7.17. Consider some tag g∗ and some process p. Let OP represent the set of all

Protect(g∗), Unprotect(g∗), CancelProtect(g∗) and [TLL(·)]<TRead(·)> operations with

return value (·, g∗), all executed by p in Λ. For an operation M /∈ OP, if Annc(g∗, p) = k just

before the invocation of M, then Annc(g∗, p) = k at the response of M.

Proof. The value of Annc(g∗, p) changes only when p calls announce(g∗) or unannounce(g∗).

Process p calls announce(g∗) and unannounce(g∗) only during an operation in OP, or during a

[TLL(·)]<TRead(·)> operation with some return value (·, g′) 6= (·, g∗). Since M /∈ OP, the value

of Annc(g∗, p) can only change during M, if M is a [TLL(·)]<TRead(·)> operation that does

not return (·, g∗).

Suppose M is a direct [TLL(·)]<TRead(·)> operation, that does not return (·, g∗). The

only way that p can change the value of Annc(g∗, p) during M is if p calls announce(g∗) in

[line 174]<line 241> of M. But p does not do so, because otherwise M would return (·, g∗).

Next suppose that M is an indirect [TLL(·)]<TRead(·)> operation that returns some value

(x′, g′) 6= (·, g∗) which it reads from [H[i][p] in line 175]<both H[i][p][q] and H′[i][p][q],

for some q, in lines 242 and 243>. Since g′ 6= g∗, p’s execution of announce(g′) in

[line 182]<line 247> of M does not change the value of Annc(g∗, p). Moreover, if process p calls

announce(g∗) in [line 174]<line 241> of M, then and only then it executes unannounce(g∗)

in [line 178]<line 246> of M, because M is an indirect [TLL(·)]<TRead(·)> operation. Thus,

Annc(g∗, p) = k at the response of M.

Claim 7.18. Let t be a point in time at which p has no pending operation call on the

[TLSA]<TRA> object. Then Protected(g, p) = Annc(g, p) > 0 at t.

Proof. By Claim 7.14 and Claim 7.15, Annc(g, p) is one larger at the response of any

[TLL()]<TRead()> operation with return value (·, g) than at the invocation of this opera-

tion. Each Protect(g) by p increases the value of Annc(g, p) by 1, and each Unprotect(g)

and CancelProtect(g) decreases the value of Annc(g, p) by 1. By Claim 7.17 the value of

Annc(g, p) is the same at the invocation and at the response of any other operation.

220

Moreover, any Protect(g) call by p that is not effective at t, is immediately followed the

invocation of a CancelProtect(g) call in Λ|p before t. Since no operation is pending at t, the

number of CancelProtect(g) calls by p that are completed before t is the same as the number

of Protect(g) calls by p that are completed before t and are not effective at t.

Thus, the value of Annc(g, p) at t is the total number of operation calls M by p that

are completed before t, where M is either a [TLL()]<TRead()> with return value (·, g), or a

Protect(g) call that is effective at t, minus the number of Unprotect(g) calls by p that are

completed before t. Thus, since no operation by p is pending at t,

Annc(g, p) = α(p, g, t) + θ(p, g, t)− γ(p, g, t) at t, (7.40)

which is the same as Protected(g, p).

Invariant 7.19. At each point in time Annc(g∗, p) ≥ 0.

Proof. Suppose that for some point t, the invariant holds throughout [0, t), and at t, some

process takes one step. We show that the invariant holds right after t. Since only p change the

value of Annc(g∗, p), the invariant can only become false, if at point t process p executes an

unannounce(g∗) call, and this call changes the value of Annc(g∗, p) to a negative value. Process

p calls unannounce(g∗) either in [line 178]<line 246> of an indirect [TLL()]<TRead()> opera-

tion, or in line 207 of an Unprotect(g∗) operation, or in line 208 of an CancelProtect(g∗)

operation.

First consider the case that at t, process p executes unannounce(g∗) in [line 178]<line 246> of

an indirect [TLL()]<TRead()> operation L. By the implementation, p executes an announce(g∗)

operation in [line 174]<line 241> of L, and since we assumed Annc(g∗, p) ≥ 0 at any point

before t, we have Annc(g∗, p) > 0 right after p executes [line 174]<line 241> of L. The

value of Annc(g∗, p) does not change after this point until p executes unannounce(g∗) in

[line 178]<line 246> of L at t. Thus, we have Annc(g∗, p) ≥ 0 right after t.

Next consider the case that at t, process p executes unannounce(g∗) in line 207 of an

Unprotect(g∗) call U. Since Λ is a good transcript, process p protects tag g right before the

221

invocation of U. Operation call U consists of only one shared memory step, and so p protects tag

g right before t. Thus, by Claim 7.18, Annc(g∗, p) > 0 just before t, and so Annc(g∗, p) ≥ 0

right after t.

Finally consider the case that at t, process p executes unannounce(g∗) in line 208

of a CancelProtect(g∗) operation C. In a good transcript, a process p can only call

CancelProtect(g∗) after a Protect(g∗) call and before it executes any other operation on

the [TLSA]<TRA> object. Let P be p’s last Protect(g∗) call before C. As Annc(g∗, p)≥ 0 at

any point before t, and therefore right before operation P is executed, we have Annc(g∗, p)> 0

right after P. Process p does not execute any operation on the [TLSA]<TRA> object after P

and before C. Thus, Annc(g∗, p) > 0 right before C is executed and so right before t. Hence,

we have Annc(g∗, p) ≥ 0 right after t.

Claim 7.20. For any tag g∗, any process p, and any point t, if at t, Protected(g∗, p)> 0, then

g∗ is announced or reserved at t.

Proof. If at point t, process p has no pending operation on the [TLSA]<TRA> object, then by

Claim 7.18, Annc(g∗, p) > 0 at t. Now suppose p has a pending operation call M at point t,

and g is protected at t. Note that each of Protect(), Unprotect(), and CancelProtect()

operations consists of one shared memory step, and so p’s execution cannot be pending during

any of these operations.

Case 1. First consider the case in which tag g is not protected by p at the invocation of

M. Since g∗ is protected at t, and since M is not a Protect(g∗) call, then M must be a

[TLL()]<TRead()> operation with return value (·, g∗), and lin(M) < t.

Case 1.1. Suppose M is a direct [TLL()]<TRead()> operation with return value (·, g∗). There-

fore, [lin(M) = tM@173]<lin(M) = tM@239>. By Claim 7.15(b), some process p has tag g∗ re-

served throughout [[tM@173, tM@175]]<[tM@239, tM@242]>. By Claim 7.15(c), Annc(g∗,q) is one

larger at any point during [[tM@174, tM@rsp]]<[tM@241, tM@rsp]> than at tM@inv. By Invariant 7.19,

222

Annc(g∗,q) is always at least 0 and so at the invocation of M. Hence, we have Annc(g∗,q)> 0

throughout [[tM@174, tM@rsp]]<[tM@241, tM@rsp]>. Therefore the claim follows for this case.

Case 1.2. Next suppose M is an indirect [TLL()]<TRead()> operation. By Claim 7.14, there

exists a [TSC()]<TWrite()> operation S by some process p such that p has tag g∗ reserved

throughout [[tS@158, tM@rsp]]<[tW@227, tR@rsp]>. Moreover, in this case lin(M) is [either tS@158

or tM@179]<tS@227>. [By the same claim we know that tS@158 ≤ tM@175, therefore, lin(M) ≥

tS@158]. Hence, tag g∗ is reserved throughout [lin(M), tM@rsp], and so at t.

Case 2. Now consider the case in which tag g is protected at the invocation of M. We

show that Annc(g∗, p)> 0 throughout [tM@inv, tM@inv], and so at t, which proves the claim for

this case. By Claim 7.18, Annc(g∗, p) > 0 just before the invocation of M. So Annc(g∗, p)

can only become 0, if p executes an unannounce(g∗) call during M. Since M is not an

Unprotect() or a CancelProtect() call, then M must be a [TLL()]<TRead()> operation, in

which p executes unannounce(g∗) in [line 178]<line 246>. However, this process must have

executed announce(g∗) in [line 174]<line 241> of M, and so Annc(g∗, p) > 1 just before p

executes [line 178]<line 246> during M. Thus, Annc(g∗, p)> 0 throughout [tM@inv, tM@inv].

7.5.6 What Do Emp and Use Represent?

The following invariant describes the relation between Emp, Annc, Rsrv. Particularly, it shows

that for any process q and any block bx, we have Empq[x]> 0 if and only if there is a process q

and a tag g ∈ bx, such that Annc(g,q) > 0 or Rsrv(g,q, i) > 0 for some i ∈ {0, . . . ,m− 1}.

Invariant 7.21. For every block bx and any process q the following holds.

Empq[x] =
m−1

∑
i=0

∑
g∈bx

Rsrv(g,q, i) + ∑
g∈bx

Annc(g,q).

Proof. First we show that the statement holds at the beginning of the transcript at time 0.

Initially no process has any tag announced or reserved, and so both Rsrv(g,q, i) and Annc(g,q)

223

have value 0, for any tag g, and any object A[i]. Moreover, Empq[x] = 0, for all blocks bx. Thus,

the invariant holds at 0.

Now suppose that the invariant holds throughout [0, t), for some t. We show that if at t the

value of Empq[x], Annc(g,q), or Rsrv(g,q, i) changes, for some g ∈ bx and i ∈ {0, . . . ,m− 1},

then the invariant holds right after that point. Only process q can write to Empq[x], and it does

so only during its reserve(g) (line 210), unreserve(g) (line 212), announce(g) (line 214),

and unannounce(g) (line 216), for some g ∈ bx. Each of these operations consists of one

shared memory step in which Empq[x] gets modified. Thus by definition of Annc(g,q) and

Rsrv(g,q, i), whenever the value of Empq[x] is modified, the value of either Annc(g,q) or

Rsrv(g,q, i) gets modified as well, for some g ∈ bx and i ∈ {0, . . . ,m− 1}. Thus if at point t,

process q increments Empq[x] in line 210 of a reserve(g) or line 214 of an announce(g), then

and only then Rsrv(g,q, i) respectively Annc(g,q) are incremented as well. Similarly, if at t,

process q decrements Empq[x] in line 212 of a unreserve(g) or line 216 of an unannounce(g),

then and only then Rsrv(g,q, i) respectively Annc(g,q) are decremented.

The next invariant describes how Act an NumOfActive are related. Moreover, it shows that

σ(p, x) has value 0 if p is not during a cleaning interval of bx.

Invariant 7.22. For every block bx owned by some process p the following holds.

σ(p, x) +
n−1

∑
q=0

Actq[x] = NumOfActive(x), and

σ(p, x) = 0 at any point t that is not during a cleaning interval of bx.

We defer the proof of this invariant to the end of this section (page 242). Most of the following

claims prove some properties of the transcript assuming that Invariant 7.22 holds during a fixed

prefix of the transcript. Later, in order to prove that this invariant holds throughout the transcript,

we show that it holds at the beginning of any transcript, and if the invariant holds at any prefix

of the transcript, then it also holds right after a process takes one more shared memory step. To

224

do so, we can use the properties proved in the following claims given the invariant holds during

the prefix.

7.5.7 GetFree() Returns a Free Tag

In this section, we assume in each claim that Invariant 7.22 holds in a clearly specified prefix

of Λ. Having that in mind, we first (in Claim 7.23) show that when a block is free (see (7.7)

on page 194), then all tags of that block are free. In Claim 7.24, we argue that once a tag is

free, it remains free until it is returned from a GetFree() operation. Observation 7.26 states the

properties of an ABA-detecting register. Claim 7.25 and Claim 7.27 discuss about what we know

before and after a search interval. In Claim 7.28 and Claim 7.29, we show that all tags of a block

by are free starting from the point when a cleaning interval of by starts and until the first tag of

this block is returned from a GetFree() operation. In Corollary 7.30, we mention an immediate

result of Claim 7.29 which will help us later to prove Invariant 7.22. Finally Claim 7.31 puts all

these results together to show that a tag that is returned by a GetFree() operation is free right

before this GetFree() operation linearizes.

Claim 7.23. Let bx be a block that p owns and t be a point in time, such that Invariant 7.22

holds throughout [0, t]. If bx is free at t, then

(a) no tag of bx is active, announced, or reserved at t, and

(b) all tags of bx are free at t.

Proof. Recall that a block bx is free if σ(p, x) + ∑n−1
q=0 Actq[x] = 0, and ∀q ∈ {0, . . . ,n− 1} :

Empq[x] = 0. Thus by Invariants 7.8–7.21, no tag of bx is announced or reserved at this point.

Moreover, by Invariant 7.22 no tag of bx is active at t, and so Part ((a)) follows. By Claim 7.20

and Corollary 7.10, if a tag is not reserved or announced by any process, then it is not protected

or stored in any element of A. Thus, no tag of bx is active, protected, or stored in an element of

A at t, and so this proves Part ((b)).

225

In the following, we show that once a tag becomes free, it remains free until the process which

owns the tag returns it from a GetFree().

Claim 7.24. Let g∗ be a tag that some process p owns. Suppose g∗ is free at some point t1,

and let t2 be the first point after t1 at which a GetFree() by p returns g∗, and t2 = ∞ if p does

not execute any following GetFree() which returns g∗. Then g∗ is free throughout [t1, t2).

Proof. Suppose for the sake of contradiction that at some point during [t1, t2) tag g∗ becomes

occupied. Let t be the first such point. I.e. at point t, a process either makes g∗ active, protects

it, or writes it to an element of A. This implies that

g∗ is free throughout [t1, t). (7.41)

Case 1. First assume that at t, process p makes tag g∗ active. I.e. at t, a GetFree() operation

by p which returns g∗ linearizes. By the definition of linearization points, that is when the

GetFree() operation by p returns g∗. However, by the assumption, no GetFree() operation by

p returns g∗ throughout [t1, t2) and therefore not at t. This is a contradiction.

Case 2. Next suppose that at t, some process q writes tag g∗ to A[i], for some 0≤ i < m.

This can be done only in [line 158 of a successful TSC(i, (·, g∗))]<line 227 or line 232 of a

TWrite(i, (·, g∗))> operation S by q. Note that for a [successful TSC()]<TWrite()> operation

S, we have [lin(S) = tS@158]<lin(S) = tS@227 or tS@232>, thus t = lin(S). Since we are consid-

ering only good transcripts, g∗ must be occupied throughout [tS@inv, lin(S)] = [tS@inv, t], which

contradicts (7.41).

Case 3. Now suppose at t, tag g∗ becomes protected, i.e. a [TLL(i)]<TRead(i)> operation L

by some process q with return value (x∗, g∗) linearizes at t, for some 0 ≤ i < m and some x∗.

If L is a direct [TLL(i)]<TRead(i)>, then by definition lin(L) =[tL@173]<tL@239>, and q reads

[(x∗, g∗)]<(x∗, g∗, ·)> from A[i] at t = lin(L). Thus, A[i] =[(x∗, g∗)]<(x∗, g∗, ·)> right before t,

which contradicts (7.41). [If L is an indirect TLL(i) and q’s if-condition in line 180 evaluates to

226

false, then lin(L) = tL@179 which is the point when q reads the return value of L from A[i]. Thus,

A[i] = (x∗, g∗) right before t, which contradicts (7.41).] If L is an indirect [TLL(i) and q’s if-

condition in line 180 evaluates to true]<TRead(i)>, then lin(L) is the point at which some process

writes [(x∗, g∗)]<(x∗, g∗, ·)> to A[i] during a [successful TSC(i, (x∗, g∗))]<TWrite(i, (x∗, g∗))>

(and by Claim 7.14 such a point exists). With the same arguments as in Case 2 this yields a

contradiction as well.

Case 4. Finally, suppose that at t, a Protect(g∗) call by some process q succeeds. Since Λ

is a good transcript, g∗ is occupied at right before t. This contradicts (7.41).

Next we show that just before some process p starts a search interval, its local variables sump

and sum′p are reset to 0 and false, respectively.

Claim 7.25. For each process p, sump = 0 and sum′p = false at the beginning of each of its

search interval.

Proof. Consider some search interval by p that starts at some point t. We have ρp = 0 when

a search interval starts in line 185 of a GetFree() operation. Thus, ρp = 0 at t. The value of

p’s local variable ρp can only change in two places; It gets incremented modulo 3n in line 189

of each GetFree() operation and it is reset in line 191 of a GetFree() operation during which

the if-condition in line 190 evaluates to true.

Initially sump = 0 and sum′p = false. Thus, if t happens during the first GetFree() by p,

then the claim holds. Now consider the last GetFree() operation G that p executes before t.

First suppose that the value of ρp changes to 0 for the last time before t in line 191 of G. At

the same point, p writes 0 to sump and false to sum′p (line 191 of G). As neither sump nor

sum′p is modified between this point and t, the claim follows for this case.

Now suppose that the last time the value of ρp changes to 0 before t is in line 189 of G. This

implies that p has completed 3n− 1 GetFree() operations before G during which it did not reset

the value of ρp, but only incremented this value. Thus, there are 3n− 1 GetFree() operations

227

G1, . . . , G3n−1 that p executes before G, such that in line 189 of Gi process p increments ρp to i,

for i ∈ {0, . . . ,3n− 1}. Consider G2n, and recall that p does not reset ρp during this operation.

Thus, the if-condition in line 190 evaluates to false. As ρp = 2n right after p executes line 189

of G2n at some point t′, this implies that we have sump = 0 and sum′p = false when p checks

the if-condition in line 190 of G2n at t′. Now we prove that the value of sump and sum′p do not

change throughout [t′, t], and so the claim follows. This is because, these two variables can only

get modified in line 187 if 0 ≤ ρp < n, in line 188 if n ≤ ρp < 2n, and in line 191. However,

none of these happens after t′ during G2n, G2n+1, . . . , G3n−1, G, and before t, and so the value of

sump and sum′p remains 0, respectively, false throughout [t′, t].

This observation reminds us of the properties of an ABA-detecting register which is introduced

and implemented in Chapter 5. This will be used later in Claim 7.27.

Observation 7.26. Let X be a multi-reader multi-writer ABA-detecting register. If p executes

two consecutive X.DRead() operations at t1 and t2 > t1, such that it reads (·,false) at t2, then

no process executes X.DWrite() operations throughout [t1, t2].

Proof. This follows from the definition of an ABA-detecting register as defined in (Aghazadeh

and Woelfel, 2015).

Now using Observation 7.26, we show that depending on the value of sump and sum′p at the

end of a search interval I of some block bx by p, we can decide whether bx is free at some point

during I.

Claim 7.27. Let I be a search interval of some block bx that p owns, and suppose Invariant 7.22

holds from point 0 until the end of I.

(a) If sump = 0 and sum′p = false at the end of I, then block bx is free at some point during

this search interval, and

(b) if sump 6= 0 or sum′p 6= false at the end of I, then block bx is not free at some point

during this search interval.

228

Proof. During a search interval of bx, process p reads each Emp0[x], . . . ,Empn−1[x] and

Act0[x], . . . ,Actn−1[x] twice. Let (xq, ·) and (x′q, ·) be the value p reads from Empq[x] and

Actq[x], respectively, in its first read, and (·, fq) and (·, f ′q) be the value p reads from Empq[x]

and Actq[x], respectively, in its second read, for q ∈ {0, . . . ,n− 1}. Recall that by Claim 7.25,

we have sump = 0 and sum′p = false at the beginning of each search interval. Thus, by the

implementation at the end of this search interval of bx, we have sump = ∑n−1
q=0 (xq + x′q), and

sum′p = f0 ∨ f ′0 ∨ f1 ∨ f ′1 ∨ · · · ∨ fn−1 ∨ f ′n−1.

Note that by Invariants 7.8–7.21 we can conclude that

at any point Empq[x] ≥ 0 for all q ∈ {0, . . . ,n− 1}. (7.42)

Moreover, NumOfActive(x) represents the number of tags of block bx that are active at each

point, which is always a non-negative value. By Invariant 7.22, we have σ(p, x) = 0 during I,

and so by the same Invariant, we have

n−1

∑
q=0

Actq[x] ≥ 0 during I. (7.43)

Suppose sum′p = false at the end of I. By Observation 7.26, this implies that no process

wrote to Empq[x] (similarly to Actq[x]) and so Empq[x] = xq (similarly Actq[x] = x′q) during

the interval that starts when p reads Empq[x] (respectively Actq[x]) for the first time and ends

when p reads it for the second time during I. Thus there is a point t during search interval I

(more specifically, after reading all Emp0[x], . . . ,Empn−1[x] and Act0[x], . . . ,Actn−1[x] for the

first time and before reading them for the second time) at which Empq[x] = xq and Actq[x] = x′q

for any q ∈ {0, . . . ,n− 1}.

Now suppose that in addition to sum′p = false, we have sump = 0 at the end of I,

i.e. sump = ∑n−1
q=0 (xq + x′q) = 0 at the end of this interval, thus at t we have ∑n−1

q=0 (Empq[x] +

Actq[x]) = 0. Hence by (7.42) and (7.43), we have Empq[x] = 0 and ∑n−1
q=0 Actq[x] = 0 at t, for

all q ∈ {0, . . . ,n− 1}. By Invariant 7.22, σ(p, x) = 0 throughout I and so at t, hence we can

conclude that bx is free at this point. This completes the proof of Part (a).

229

To prove Part (b), first suppose sum′p = false but sump 6= 0 at the end of I, i.e. sump =

∑n−1
q=0 (xq + x′q) 6= 0. Thus at t, we have ∑n−1

q=0 (Empq[x] + Actq[x]) 6= 0. This implies by (7.42)

and (7.43) that either there exists a q∈ {0, . . . ,n− 1}, such that Empq[x] 6= 0, or ∑n−1
q=0 Actq[x] 6=

0 at t. By Invariant 7.22, σ(p, x) = 0 throughout I and so at t. Hence, we can conclude that bx

is not free at this point.

Finally suppose that sum′p 6= false at the end of I. By Observation 7.26, there is a q ∈

{0, . . . ,n− 1}, such that either the value of Empq[x] or Actq[x] changes between the first and the

second read of that value. If the value of Empq[x] changes, then by (7.42) Empq[x]> 0 at some

point during I, and so bx is not free at some point during this interval. If the value of Actq[x]

changes, then ∑n−1
q=0 Actq[x] 6= 0 at some point during this interval. Since by Invariant 7.22, we

have σ(p, x) = 0 throughout I, therefore bx is not free at some point during this interval.

Consider a search interval of some block by that is immediately followed by a cleaning interval

of the same block, and let t be a point after the beginning of this cleaning interval. In the

following, we prove that if no tag of by is returned from a GetFree() starting from the beginning

of the search interval until t, then all tags of by are free throughout the interval that starts at

the beginning of the cleaning interval and ends at t.

Claim 7.28. Consider some block by owned by process p. Suppose some cleaning interval of by

starts at t f , and Invariant 7.22 holds throughout [0, t f]. Let ts ≤ t f be the beginning of the last

search interval of by before t f , and t any point after t f . If no GetFree() operation by p returns

a tag in by during [ts, t], then all tags of by are free throughout [t f , t].

Proof. At t f , process p executes line 194 for ρp = 2n. Thus by the implementation, we have

sump = 0 and sum′p = false at t f . Note that t f is the end of a search interval of by by p, thus

by Claim 7.27, block by is free at some point t′ ∈ [ts, t f). Therefore, by Claim 7.23, all tags of

by are free at t′. Finally, by Claim 7.24, all tags of by remain free throughout [t′, t], and hence

throughout [t f , t].

230

Next we show that when p’s GetFree() returns the first tag of a block by at some point ty,

then process p must have executed a cleaning interval of by before ty, such that all tags of by

are free throughout the interval that starts at the beginning of this cleaning interval and ends at

ty.

Claim 7.29. Let tx be a point at which p returns the first tag of block bx, and let ty be the

first point after tx at which p returns the first tag of a different block by 6= bx. Also, let t f be

the beginning of the cleaning interval of by that p starts during [tx, ty) (if there is no cleaning

interval during [tx, ty), then t f = ty). Assume Invariant 7.22 holds throughout [0, t f].

(a) There exists at least one block bw 6= bx that p owns, such that bw is free throughout

[tx, ty).

(b) If G is the GetFree() by p from which the first tag of by is returned at ty, then p

executes line 196 during G.

(c) t f < ty (i.e. p starts a cleaning interval of by at t f ∈ [tx, ty)).

(d) The cleaning interval that starts at t f ends before ty.

(e) All tags of by are free throughout [t f , ty).

Proof. We prove each part separately.

Proof of Part (a). First we show that

at most mn(2n + 5) + τ + n of p’s blocks contain

tags that are active, announced or reserved at tx.

(7.44)

Let s be the number of processes that are poised to execute [lines 156–160 of a

TSC(i, ·)]<lines 219–221 of a TWrite(i, ·)> operation at tx. Also let ` be the number of pro-

cesses that are poised to execute [line 175 or 178 of a TLL()]<line 242, 243 or 246 of a TRead()>

operation at tx, or their last step on the [TLSA]<TRA> object was a Protect() call that has

not succeeded before or at tx

231

By Claim 7.16, if tag g∗ is announced by some process q at some point t, and q is not poised

to execute [line 175 or 178 of a TLL()]<line 242, 243 or 246 of a TRead()> operation, where q’s

local variable has value g∗, or q’s last step on the [TLSA]<TRA> object was a Protect(g∗) call

that has not succeeded before or at t, then g∗ is protected by q. Thus the number of announced

tags is equal to the number of protected tags plus `. Recall that all processes together can have

at most τ tags active or protected. Thus, at most τ + ` tags can be active or announced by all

processes together at tx.

Moreover, we know by Claim 7.7 that if a tag is reserved by some process q and q is not

poised to execute [lines 156–160 of a TSC(i, ·)]<lines 219–221 of a TWrite(i, ·)> operation, then

a copy of the tag is stored in some queue rsrvQq[i], for some i ∈ {0, . . . ,m− 1}. Hence the

number of reserved tags is bounded by the number of tags in all processes’ queues, plus the

number of processes that are poised to execute [lines 156–160 of a TSC(i, ·)]<lines 219–221 of a

TWrite(i, ·)> operation. Process q’s local queue rsrvQq[i], for i ∈ {0, . . . ,m− 1}, has initially

2n + 4 elements, and during each updateQ(i, ·) one element is enqueued and one element is

dequeued from rsrvQq[i]. Hence, the size of rsrvQq[i] is 2n + 4 if q is not in the process of

updating its queue, and 2n + 5 otherwise. Thus, at most m(2n + 5) tags can be in process q’s

queues, and so in total nm(2n + 5) of p’s tags can be in all queues of all processes. Also s tags

can be reserved but not in any of process’ queues, because s processes can be poised to execute

[lines 156–160 of a TSC(i, ·)]<lines 219–221 of a TWrite(i, ·)> operation at tx. Hence in total,

nm(2n + 5) + s of p’s tags can be reserved at tx. Since s + ` ≤ n, the claim in (7.44) follows.

Next, we prove that

∃w ∈ {pβ, . . . , (p + 1)β− 1} ∧ w 6= x : s.t. bw satisfies

the free condition throughout [tx, ty).
(7.45)

And so Part (a) follows.

As p owns β = mn(2n + 5) + τ + 3n + 1 tags, by (7.44) at least 2n + 1 of p’s blocks have

no tags active, announced, or reserved at tx. By Invariant 7.21 and Invariant 7.22 (as it holds at

232

tx < t f), this implies that there exists a set B∗ of 2n + 1 blocks that p owns, such that for each

bz ∈ B∗

σ(p,z) +
n−1

∑
q=0

Actq[z] = 0 and ∀q ∈ {0, . . . ,n− 1} : Empq[z] = 0 at tx. (7.46)

Let bz be some block in B∗. We show that

σ(p,z) +
n−1

∑
q=0

Actq[z] = 0 throughout [tx, ty). (7.47)

Proof of (7.47): We need to show that the value of σ(p,z) + ∑n−1
q=0 Actq[z] does not change

during [tx, ty). Suppose for the sake of contradiction that at some point during [tx, ty), some

process changes the value of σ(p,z) + ∑n−1
q=0 Actq[z], and let t be the first such point. This value

can change in lines 199 and 202. Note that the value of σ(p,z) + ∑n−1
q=0 Actq[z] does not change

in line 194, because we assume that at the same point when the value of Actq[z] is reset to 0 by

p, for some q, the current value of Actq[z] gets added to σ(p,z), and so the sum remains the

same.

First suppose that at t, some process executes line 202 of a Release(g∗) operation Re,

such that g∗ ∈ bz. Since we consider good transcripts, then g∗ must be active right before

lin(Re) = tRe@202 = t. By (7.46) and Invariant 7.22 at tx, no tags of bz is active at tx. Thus,

the owner of block bz, process p, must have made g∗ ∈ bz active at some point during [tx, t).

Tag g∗ becomes active when p’s GetFree() operation returns g∗, so p’s GetFree() returns g∗

at some point during [tx, t). This is a contradiction, as we assumed p only returns tags of block

bx during [tx, ty) and hence during [tx, t).

Next suppose that process p executes line 199, for some tagp = g∗ ∈ bz. This implies that

at t, process p returns g∗. However, this contradicts the assumption that p only returns tags of

block bx throughout [tx, ty), and therefore at t. This completes the proof of (7.47).

Next we prove that there exist one block bw in B∗, such that

Empq[w] = 0 for all q ∈ {0, . . . ,n− 1} throughout [tx, ty). (7.48)

233

Equations (7.47) and (7.48) prove (7.45) and so the claim follows.

Proof of (7.48): Here we show that each process q modifies Empq of at most two blocks

in B∗ throughout [tx, ty), and as |B∗| = 2n + 1, by (7.46) there is one block bw ∈ B∗ such

that Empq[w] = 0 for all q ∈ {0, . . . ,n− 1} throughout this interval. Suppose for the sake of

contradiction that some process q modifies Empq of at least three blocks bi, bj, and bk of B∗

(bi 6= bj 6= bk) during [tx, ty). Let ti, tj, and tk be the first points during [tx, ty) at which process

q modifies Empq[i], Empq[j], and Empq[k], respectively, and assume w.l.o.g. that ti < tj < tk.

Therefore, by (7.46), Empq[`] = 0 throughout [tx, t`) for ` ∈ {i, j,k}. By Invariants 7.8–7.21,

we know that

no tag of block bk is announced or reserved during [tx, tk). (7.49)

Moreover, by Invariants 7.8–7.21, at any point Empq[i] ≥ 0, Empq[i] ≥ 0, and Empq[k] ≥ 0.

Thus,

q increases the value of Empq[`] at t`, for any ` ∈ {i, j,k}. (7.50)

Process q can only increment Empq[`] in lines [156, 165, 174, 182]<219, 230, 241, 247>, or

206. In the following, we first show that

q cannot execute any of lines [156, 165, 174, 182]<219, 230, 241, 247> at t`,

where ` ∈ {j,k}.
(7.51)

Next, we show that

q cannot execute line 206 at both tj and tk. (7.52)

Hence, (7.51) and (7.52) together contradict (7.50), and thus that completes the proof of (7.48).

This in addition to (7.47) proves (7.45), and so the claim follows.

Before we prove (7.51) and (7.52), note that by (7.46) and Invariant 7.22 at tx, no tags of b`

is active at tx, for ` ∈ {j,k}. Process p’s GetFree() operations only return tags of bx /∈ B∗ (and

so bx 6= b`) throughout [tx, ty). Thus no tag of block b` is active during [tx, ty) and so during

[tx, t`], because t` ∈ [tx, ty). Moreover, by (7.49) no tag of block b` is announced or reserved

234

during [tx, t`). Hence by Corollary 7.10 and Claim 7.20, no tag of block b` is protected or stored

in an element of A throughout [tx, t`). Thus,

no tag of block b` is active, protected, or stored in an element of A

throughout [tx, t`), where ` ∈ {j,k}.
(7.53)

Now to prove (7.51), suppose for the sake of contradiction that q executes line [156, 165,

174, or 182]<219, 230, 241, or 247> at t` for some g∗, where ` ∈ {j,k}, and g∗ ∈ b`. We show

how each of these cases can yield a contradiction.

Case 1. t` =[tS@156]<tS@219>, where S is a [TSC(·, (·, g∗))]<TWrite(·, (·, g∗))> by q. Recall

that in a good transcript tag g∗ is occupied (i.e. g∗ is either active, protected, or is stored in

an element of A) throughout [tS@inv, lin(S)). However, this contradicts (7.53), as tS@inv ≤ t` <

lin(S).

Case 2. t` =[tS@165]<tS@230>, where S is a [TSC(·, ·)]<TWrite(·, ·)> by q, for g′ = g∗. In

this case, process q must have read [(x∗, g∗,q) from H[i][hCtrq[i]] at tS@157]<the same value

(x∗, g∗, c∗,b∗) from both H[i][q][hCtrq[i]] and H[i][q][hCtrq[i]] at tS@220 and tS@220, respec-

tively>. This implies that q has previously written this value and has not yet changed it. Therefore,

g∗ is reserved at [tS@157]<tS@220> (by Claim 7.11). Since (7.49) says that no tag of b` is re-

served during [tx, t`), we have [tS@157]<tS@220>< tx. Therefore, [tS@157]<tS@220>< tx < ti <

t` =[tS@165]<tS@230>. By (7.50) this implies that during [(tS@157, tS@165)]<(tS@220, tS@230)>, pro-

cess q increments Empq[i]. However this is a contradiction as q does not increment Empq[b] for

any b during this interval.

Case 3. t` =[tL@174]<tL@241>, where L is a [TLL(·)]<TRead(·)> by q, for g = g∗. Then,

process q must have read [(·, g∗)]<(·, g∗, ·)> from A[i] at [tL@173]<tL@239>. By Corol-

lary 7.10, g∗ is reserved at [tL@173]<tL@239>. This in addition to (7.49) implies that

[tL@173]<tL@239>< tx, and so [tL@173]<tL@239>< tx < ti < t` =[tL@174]<tL@241>. Therefore dur-

ing [(tL@173, tL@174)]<(tL@239, tL@241)>, process q increments Empq[i] (see (7.50)), which is a

235

contradiction.

Case 4. t` =[tL@182]<tL@247>, where L is a [TLL(·)]<TRead(·)> by q, for g′ = g∗. Process

q must have read [(·, g∗, ·) from H[i][q] in line 175]<the same value (x∗, g∗, c∗,b∗) from both

H[i][q′][q] and H[i][q′][q], for some q′, in lines 242–243> of L, and so by Claim 7.11, tag g∗

is reserved at [tL@175]<tL@242>. Since no tag of b` is reserved during [tx, t`) by (7.49), we have

[tL@175]<tL@242>< tx < ti < t` =[tL@182]<tL@247>. Therefore, (7.50) requires q to increment

Empq[i] during [(tL@175, tL@182)]<(tL@242, tL@247)>, which is a contradiction.

This completes the proof of (7.51).

Now, we prove (7.52). Suppose for the sake of contradiction that q executes line 206 for

some gj and gk at tj and tk, respectively, where gj ∈ bj and gk ∈ bk. Recall that in a good

transcript, when q executes Protect(gk), tag gk must have been occupied at some point since

q’s last Protect() call. Process q’s last Protect() call before tk cannot be before tj, as we

assumed that q executes Protect(gj) at tj. However, by (7.53), no tag of block bk is occupied

throughout [tx, tk) and so throughout [tj, tk). This is a contradiction.

Proof of Part (b). As G returns the first tag of block by, we have tagp = yδ at the response

of G. Process p increments the value of tagp in line 184 of each GetFree() operation. It can

also change it to (pβ + jp)δ in line 196 of a GetFree() operation in case the if-condition in

line 195 is satisfied. Suppose Part (b) does not hold, then the last time p modified tagp before

ty is in line 184 of G. Hence, tagp = yδ− 1 just before it executes line 184 of G. Note that p

writes a multiple of δ to tagp in line 196. Thus, p does not execute this line during the last δ− 1

GetFree() operations G1, . . . , Gδ−1 that it executes before G as well as during G. This implies

that each time p evaluates the if-condition in line 195 of each of {G1, . . . , Gδ−1} ∪ G, we have

ρp 6= 0. I.e.

ρp 6= 0 when p executes line 195 of any operation in {G1, . . . , Gδ−1} ∪ G. (7.54)

Note that by the implementation, p returns tags of block bx starting from tx and until before

236

G returns, and so tagp belongs to block bx until p increments it during G after which tagp

belongs to by. As each block contains δ tags, all δ− 1 GetFree() operations by p before G

(i.e. {G1, . . . , Gδ−1}) return tags of block bx and therefore

G1 gets invoked after tx. (7.55)

Process p increments (modulo 3n) the value of its local ρp in line 189 of each GetFree()

operation, and resets it to 0 in line 191 of a GetFree() when the if-condition in line 190 evaluates

to true. Now we show that

p executes lines 191–192 during every 2n consecutive operations in {G1, . . . , Gδ−n}. (7.56)

Suppose not, then since p increments ρp (modulo 3n) during each GetFree() operation,

there is a GetFree() operation G′ ∈ {G1, . . . , Gδ−n}, such that ρp = 2n at the response of G′.

Then, after executing n− 1 additional GetFree() operation, p executes a GetFree() operation

G′′ ∈ {G1, . . . , Gδ−1} ∪ G, such that ρp = 3n− 1 at the invocation of G′′, and so ρp = 0 when

p executes line 195 of G′′ (because p increments ρp in line 189 of G′′), which contradicts (7.54)

and so (7.56) follows.

Now we show that

t f > tGδ−n@rsp. (7.57)

By (7.56) when p evaluates the if-conditions of lines 190–197 while ρp = 2n during

{G1, . . . , Gδ−n}, p resets this value to 0. Thus, p does not execute line 194 for ρp = 2n during

these operations, and so no cleaning interval starts during {G1, . . . , Gδ−n}. The statement of

(7.56) also implies that ρp ∈ {1, . . . ,2n} when p evaluates the if-conditions of lines 190–197

during {G1, . . . , Gδ−n}. Therefore, no cleaning interval ends during these operations. Moreover,

no cleaning interval starts after tx and before G1 (note that by (7.55) we have tx < tG1@inv).

This is because as we discussed it cannot end after the invocation of G1, and if it ends during

a GetFree() operation before the invocation of G1, then p returns the first tag of a different

237

block than bx in that operation, which is not the case, as by the assumption p only returns tags

of bx throughout [tx, ty). So (7.57) follows.

Now we show how the assumption that p does not execute line 196 of G yields a contradiction.

The value of jp can only change in line 192 and line 197 of a GetFree() operation. Recall that

by (7.54), p does not execute line 197 during {G1, . . . , Gδ−1} ∪ G. Thus, by (7.56) during

operations in {G1, . . . , Gδ−n} the value of G changes only in line 192 of every 2n consecutive

operations in this set of operations. Note that when p executes lines 191–192 its search interval

just ends, and then in its next GetFree() it starts a new search interval, and the search interval

continues for another 2n GetFree() operations. Therefore, after completing all operations in

{G1, . . . , Gδ−n}, p completes b(δ− n)/2nc = β search intervals and jp is incremented modulo

β before the beginning of each of these search intervals (line 192). I.e. p completes a search

interval for each block that it owns (recall that p owns β blocks). Moreover, by (7.56), p finds

either sump 6= 0 or sum′p 6= false at the end of each of these search intervals. As Invariant 7.22

holds throughout [0, t f] and by (7.57) t f is after the response of Gδ−n, we can apply Claim 7.27.

Hence, none of β blocks that p owns is free throughout the interval that starts when G1 gets

invoked and ends by the response of Gδ−n. However, by Part (a), process p owns a block bw

(possibly w = y), such that bw is free throughout [tx, ty), and by (7.55) and (7.57) throughout

the interval that starts with the invocation of G1 and ends with the response of Gδ−n. This is a

contradiction.

Proof of Parts (c), (d), and (e). To prove Part (c), we first show that there is a point

t f < ty at which p starts a cleaning interval of by, and a point ts < t f at which p starts the last

search interval of by before t f .

Let j∗p be the value of jp when p executes line 196 during G, i.e. y = pβ + j∗p. By Part (b),

ρp = 0 when p executes line 196 during G. As ρp gets incremented modulo 3n in line 189 of each

GetFree(), we have ρp = 3n− 1 at the invocation of G. Process p can only reset the value

of ρp in line 191 of a GetFree() operation when the if-condition in line 190 evaluates to true.

238

Since ρp = 3n− 1 at the invocation of G, p executes 3n− 1 consecutive GetFree() operations

G0, . . . , G3n−2 right before G during which p does not reset ρp (in line 191), and ρp = k at the

invocation of Gk, for k ∈ {0, . . . ,3n− 2}. I.e. for any k ∈ {0, . . . ,3n− 2}, we know that

p’s if-condition in line 190 of Gk evaluates to false, (7.58)

and

ρp = k at the invocation of Gk. (7.59)

By (7.58), p does not change the value of jp in line 192 of any of G0, . . . , G3n−2. Moreover,

by (7.59), ρp 6= 0 in line 195 of any of G0, . . . , G3n−2, and so p does not change the value of jp

in line 197 of any of G0, . . . , G3n−2. I.e.

jp = j∗p throughout [tG0@inv, tG@197). (7.60)

Consider operation G0, and recall that by (7.59), ρp = 0 at the invocation of this operation.

Thus, p starts a search interval of by = bpβ+j∗p in line 185 of G0 (because by (7.60), we have

jp = j∗p during this operation). Thus, we let ts be tG0@185. Process p increments ρp during each

G0, . . . , G3n−2 (line 189). This search interval ends when p increments its ρp to 2n in line 189

of G2n−1. By (7.58), in its next step p executes line 194 of G2n−1 for jp = j∗p, and so it starts

a cleaning interval of by = bpβ+j∗p . Hence, we let t f be tG2n−1@194, and so ts < t f < ty. This

cleaning interval ends when p increments ρp to 0 in line 189 of G and therefore before ty, which

proves Part (d).

To finish the proof of Part (c), it only remains to show that tx < t f . In order to do so, we

show tx < ts = tG0@185. Let G′ be the GetFree() operation during which p returns the first tag

of bx at tx. By Part (b), p executes line 196 during G′. Thus, ρp = 0 at the response of G′,

and ρp = 3n− 1 at the invocation of this operation. Recall that ρp = 3n− 1 at the invocation

of G, and ρp = k at the invocation of G0, . . . , G3n−2 (by (7.59)), which are the last 3n − 2

GetFree() operations that p executes before G. Thus, p completes G′ before G0, . . . , G3n−2,

and so tx < ts = tG0@185.

239

To prove Part (e), note that process p’s GetFree() operations only return tags of bx through-

out [tx, ty), and so throughout [ts, ty) (because tx < ts). Thus, by Claim 7.28 all tags of by are

free at throughout [t f , ty), and so Part (e) follows.

The following result comes immediately from Claim 7.29 and will be used later to prove

Invariant 7.22.

Corollary 7.30. Let by be a block owned by some process p, and t f the point at which p starts

a cleaning interval of by. If Invariant 7.22 holds throughout [0, t f], then all tags of by are free

during this cleaning interval.

Proof. By definition, any cleaning interval of by ends in line 189 of a GetFree() operation by p

during which p returns the first tag of by. Thus by Claim 7.29 (e), all tags of bx are free starting

from t f until just before the first tag of bx is returned, and so throughout the cleaning interval.

Using the results of Claim 7.23 to Claim 7.29, we can now prove the following.

Claim 7.31. Consider a GetFree() operation G by some process p that returns g∗ and suppose

Invariant 7.22 holds throughout [0, tG@199). Then tag g is free just before lin(G).

Proof. Let by be the block to which tag g∗ belongs. By definition lin(G) = tG@199 = tG@rsp.

If p returns g∗ from G, its local variable tagp = g∗ at lin(G). Process p modifies its local tagp

in two ways: it increments tagp in line 184 of each GetFree() operation, and it may set tagp

to the first tag of a block in line 196 of a GetFree() operation. Thus, when p returns tag g∗

at lin(G), it must have returned the first tag of block by at some point ty ≤ lin(G), and p

does not return g∗ from a GetFree() operation during [ty, lin(G)). By Claim 7.29 all tags of

by are free right before ty, and so if ty = lin(G), then the claim follows. If ty < lin(G), then by

Claim 7.24, tag g∗ is free throughout [ty, lin(G)) and so right before lin(G).

240

7.5.8 Proof of Invariant 7.22

Before we prove Invariant 7.22, we need to show one more property of the algorithm and that

is the following. The value of Actp[x] does not change between the read and the write of this

variable in lines 201–202 and lines 198–199.

Claim 7.32. Consider some process p is executing lines 198–199 of a GetFree() operation G,

or lines 201–202 of a Release() operation Re for Actp[x]. Let Invariant 7.22 hold through-

out [0, tG@199) respectively [0, tG@202). Then, the value of Actp[x] does not change during

[tG@198, tG@199) and [tG@201, tG@202) respectively.

Proof. The value of Actp[x] can only be modified by two processes, process p and the owner q

(possibly q = p) of block bx, where q = bx/βc; If p 6= q, then process p can change the value

of Actp[x] only in line 202 of a Release() operation, and q can change the value of the same

variable (Actp[x]) in line 194 of a GetFree(). Otherwise, if p = q (i.e. p is the owner of block

bx), then only p can change the value stored in Actp[x] and this can be done in line 202 of a

Release(), and in line 194 and line 199 of a GetFree() operation.

First suppose that p = q, i.e. p is the owner of bx. Thus, no other process can change the

value of Actp[x] while p is executing lines 198–199 of a GetFree() operation, or lines 201–202

of a Release() operation, and so the claim follows.

Next suppose that p 6= q, i.e. p is not the owner of bx. Suppose for the sake of contradiction

that the claim does not hold. Since p is not the owner of block bx, it cannot execute lines 198–

199 of a GetFree() operation for Actp[x]. Thus, p executes lines 201–202 of a Release(g∗)

operation Re, such that g∗ ∈ bx, but the value of Actp[x] changes during [tG@201, tG@202). This

must be because q (the owner of bx) is executing line 194 of a GetFree() operation during

this interval. Hence, [tG@201, tG@202) overlaps with a cleaning interval I of bx by q. As I starts

before tG@202, and so Invariant 7.22 holds starting from point 0 and until at leastthe beginning

of this cleaning interval, by Corollary 7.30, all tags of bx are free throughout I. However, this is

241

a contradiction because we are considering only good transcripts, and so tag g∗ must be active

throughout [tRe@inv, lin(Re)] = [tRe@201, tRe@202].

Now we can finally prove Invariant 7.22 (as repeated in the following).

Invariant 7.22 (Restated). For every block bx owned by some process p the following holds.

σ(p, x) +
n−1

∑
q=0

Actq[x] = NumOfActive(x), and (7.61)

σ(p, x) = 0 at any point t that is not during a cleaning interval of bx. (7.62)

Proof. As no tag is active at the beginning, and σ(p, x) and Actq[x] are initialized to 0, for all

processes q, the invariant holds at time 0. Now assume for the sake of contradiction that the

invariant holds throughout [0, t), for some t, and at t some process takes one step such that the

invariant does not hold right after t.

First suppose that (7.61) does not hold right after t. This implies that at t some process

changes the value of σ(p, x), Actq[x], or NumOfActive(x), for some q. The value of σ(p, x),

Actq[x], or NumOfActive(x) can change only in line 202, line 194 or line 199.

Consider the case in which process q executes line 202 of a Release(g∗) operation Re at

t = tRe@202, for g∗ ∈ bx. As the invariant holds just before t, by Claim 7.32, the value of Actq[x]

gets decremented in line 202 at t. In a good transcript, tag g∗ must be active right before

lin(Re) = tRe@202 = t. Moreover g∗ becomes inactive right after lin(Re) = t. Hence, the value

of NumOfActive(x) gets decremented by one at t. As the value of σ(p, x) does not change at

t, this implies that (7.61) holds right after t, which is a contradiction.

Next suppose that at t, process p executes line 194 for ρp mod n = q and pβ + jp = x.

This implies that the current value of Actq[x] gets added to σ(p, x), and p writes 0 to Actq[x].

Hence, σ(p, x) + ∑n−1
q=0 Actq[x] remains unchanged right after this point, and so (7.61) remains

true right after t, which is a contradiction.

242

Finally consider the case in which the value of Actp[x] changes in line 199 of a GetFree()

operation G by p, i.e. t=tG@199. Let g∗ be the return value of G, then g∗ ∈ bx. The invariant

holds just before t, hence by Claim 7.32, the value of Actp[x] gets incremented in line 199 at

t. Moreover at point lin(G) = tG@199 = t, tag g∗ is returned from G and therefore, G becomes

active. By Claim 7.31 tag g∗ is free, and so not active right before t. Thus the value of

NumOfActive(x) gets incremented by one at t. The value of σ(p, x) does not change at t,

therefore (7.61) holds right after t, which is a contradiction. This completes the proof of (7.61)

Next suppose that (7.62) does not hold right after t. Note that σ(p, x) only changes during

a cleaning interval of bx. Thus, t must be the end of a cleaning interval of bx, and let t f be the

point at which this cleaning interval starts. I.e. σ(p, x) 6= 0 right after the end of this cleaning

interval at t.

By Corollary 7.30, all tags of bx are free throughout [t f , t], which implies that none of them is

active (i.e. NumOfActive(x) = 0) throughout this interval. Right before the cleaning interval of

bx starts at t f , the invariant holds and so we have σ(p, x) = 0. Moreover, NumOfActive(x) = 0.

Thus by (7.61), we have
n−1

∑
q=0

Actq[x] = 0 right before t f . (7.63)

As all tags of bx are free throughout [t f , t], no process executes line 202 or line 199 during this

interval, and so the value of Actq[x], for q ∈ {0, . . . ,n− 1}, can only change in line 194 by p.

Each time p writes 0 to Actq[x], for q ∈ {0, . . . ,n− 1}, the current value of Actq[x] gets added

to σ(p, x). Thus, the value of σ(p, x) at the end of this cleaning interval (i.e. at t) is the same

as the value of ∑n−1
q=0 Actq[x] right before the beginning of this search interval (i.e. right before

t f), which by (7.63) is 0. This is a contradiction.

7.5.9 Proof of Linearizability

Now we can prove Lemma 7.4 (from p. 192), as restated in the following for convenience.

Lemma 7.4 (Restated). If Λ is a good transcript, then

243

(a) the value of A[i] changes to (x, g) at some point t, if and only if t = lin(S), where S is

a [successful TSC(i, (x, g))]<TWrite(i, (x, g))> in Λ,

(b) if a [TLL(i)]<TRead(i)> operation L in Λ returns (x, g), then A[i] = (x, g) at lin(L),

(c) if a GetFree() operation G in Λ returns g, then g is not occupied immediately before

lin(G) in Λ, and

(d) [a TSC(i, ·) operation S succeeds in Λ, if and only if there is no successful TSC(i, ·)

operation S′, such that lin(S′) ∈ (lin(L), lin(S)), where L is the last TLL(i) by the

same process before S in Λ.]

Proof. We prove each part separately.

Proof of Part (a). The value stored in A[i] changes to (x, g) only in [line 158 of a successful

TSC(i, (x, g))]<line 227 or line 232 of a TWrite(i, (x, g))> operation, which by definition is the

linearization point of that operation. Moreover, [a TSC(i, (x, g)) operation S by some process p

returns true only in line 168. This implies that p’s A[i].SC(x, g) in line 158 of S succeeds, and so

the value of A[i] changes to (x, g) at the linearization point of this operation.]<a TWrite(i, (x, g))

operation always linearizes either in line 227 or line 232 depending on whether the if-condition in

line 224 evaluates to true or false, and that is the point at which the value of A[i] changes to

(x, g).>

Proof of Part (b). Let q be the process that executes L. First suppose L is a direct

[TLL()]<TRead()>. As L returns (x∗, g∗), q must have read [(x∗, g∗)]<(x∗, g∗, ·)> from A[i]

in line 173 of L at lin(L) =[tL@173]<tL@239>. Now, suppose L is an indirect [TLL()]<TRead()>.

By Claim 7.14, there exists a [TSC(i, (x∗, g∗))]<TWrite(i, (x∗, g∗))> operation S by some process

p during which p successfully writes [(x∗, g∗)]<(x∗, g∗, p)> to A[i] at lin(S). In this case [and if q

sets f lagq[i] in line 181 of L], then lin(L) = lin(S), and so A[i] has value [(x∗, g∗)]<(x∗, g∗, p)>

at lin(L). [If L is indirect and q does not set the flag, then process q reads the return value of

L, (x∗, g∗), from A[i] at tL@179 = lin(L).]

244

Proof of Part (c). By Claim 7.31, tag g∗ is free and so not occupied right before lin(G) =

tG@199 = tG@rsp.

Proof of Part (d). Let p be the process which executes S. Note that process p changes the

value of its local variable f lagp[i] only during a TLL(i) operation, and more specifically, it sets it

to false at the beginning of each TLL(i) and sets it to true only if its if-condition in line 180

evaluates to true. Thus,

f lagp[i] = 1 at the invocation of S if and only if p sets f lagp[i] in line 181 of L. (7.64)

First suppose S succeeds (i.e. it returns true in line 168). Then, we have f lagp[i] 6= 1 at the

invocation of S, and by (7.64) p does not set f lagp[i] in line 181 of L. Thus, lin(L) = tL@173 if

L is a direct TLL(), and lin(L) = tL@179 if L is an indirect TLL(). Moreover, as S returns true,

by definition, lin(S) is when p successfully executes A[i].SC() in line 158. Thus no process

executes a successful A[i].SC() operation between p’s last A[i].LL() and lin(S). Process p only

executes A[i].LL() in lines 173 and 179 of a TLL(i), hence the last A[i].LL() that p executes

before S is at tL@173 = lin(L) if L is a direct TLL(), or is at tL@179 = lin(L) if L is an indirect

TLL(). This completes the proof of this case.

Now suppose S does not succeed, i.e. it returns false either in line 155 or line 160. First

assume S returns in line 155, so f lagp[i] = 1 at the invocation of S. By (7.64), p sets f lagp[i]

to true in line 181 of L. I.e. (x′, g′) 6= (x′′, g′′) when p executes 180 of L, where (x′, g′, ·)

is the value p reads from H[i][p] in line 175, and (x′′, g′′) is the value p reads from A[i] in

line 179 of L. As p executes line 181 during L, lin(L) is the point when some process writes

(x′, g′) to A[i] at some point before tL@175 (by Claim 7.14 such a point exists). Moreover,

A[i] = (x′′, g′′) 6= (x′, g′) at tL@179. Thus, by Part (a) some successful TSC(i, ·) has changed

the value of A[i] after lin(L) and before tL@179. Hence, a successful TSC(i, ·) linearizes at some

point during [lin(L), tL@179] ⊆ [lin(L), lin(S)].

Next assume S returns in line 160. So f lagp[i] 6= 1 at the invocation of S, and so by (7.64),

p does not set f lagp[i] in line 181 of L. Thus, lin(L) = tL@173 if L is a direct TLL(), and

245

lin(L) = tL@179 if L is an indirect TLL(). Moreover, since S returns in line 160, p’s A[i].SC()

in line 158 of S fails. So some process executes a successful A[i].SC() operation between p’s

last A[i].LL() and lin(S) = tL@rsp. As p only executes A[i].LL() in lines 173 and 179 of a

TLL(i), the last A[i].LL() that p executes before S is at tL@173 = lin(L) if L is direct, or is at

tL@179 = lin(L) if L is indirect. Hence, some process executes a successful A[i].SC() operation

during [lin(L), lin(S)].

Lemma 7.33. The implementation of [TLSA]<TRA> as provided in [Figure 7.9]<Figure 7.11>

and Figure 7.10 is linearizable.

Proof. Consider a transcript Λ obtained from the implementation of [TLSA]<TRA> given in

[Figure 7.9]<Figure 7.11> and Figure 7.10. Let H = Γ(Λ), and L(H) be the sequential history

obtained from H, by ordering all operations M in H according to their lin(M) values. If Λ is

not a good transcript, then by Claim 7.3, H has a linearization, which proves the claim.

Now suppose Λ is a good transcript. By Corollary 7.5 the sequential history obtained by

mapping each operation M in H to its lin(M) is valid. So it just remains to show that lin(M)

is between the invocation and the response of M, i.e. lin(M) ∈ [tM@inv, tM@rsp].

If M is any of [TSC()]<TWrite()>, GetFree(), Release(), Unprotect(), and

CancelProtect(), then this follows immediately from the definition of lin(M), which as-

signs this point to a line of the code of M. Now consider a [TLL()]<TRead()> operation

M by some process q which returns (x∗, g∗). If M is a direct operation (i.e. q’ if-condition in

[line 176]<line 244> evaluates to false), then lin(M) =[tM@173]<tM@239>∈ [tM@inv, tM@rsp]. If

M is an indirect operation (i.e. q’ if-condition in [line 176]<line 244> evaluates to true), then by

Claim 7.14, there exists a [successful TSC()]<TWrite()> operation S by some process p during

which p writes [(x∗, g∗)]<(x∗, g∗, p)> to A[i] at lin(S). In this case [and if q sets f lagq[i] in

line 181 of M], lin(M) = lin(S), and by Claim 7.14(b), lin(S) ∈ [tM@inv, tM@rsp]. [If M is

indirect and q does not set the flag, then lin(M) = tM@179 ∈ [tM@inv, tM@rsp].]

246

7.5.10 Proof of Theorem 7.1

By Lemma 7.33, both proposed implementations of TRA and TLSA are linearizable. By Observa-

tion 7.12 the loop in the TLL() operation ends in a constant number of steps. Hence, it follows

immediately from the pseudocode that all operations of both implementations have constant step

complexity.

The number of blocks we use for each process is β, and so the total number of blocks

is nβ, where β = mn(2n + 5) + τ + 3n + 1 = O(mn2 + τ). Each block contains δ tags,

where δ = 2βn + n. Hence, the total number of tags is ∆(m,n,τ) = nβδ = nβ(2βn + n) =

O(m2n6 + n2τ2 + mn4τ).

The implementation of TLSA uses O(mn) shared LL/SC objects. Moreover, the number

of shared registers used in both TLSA and TRA is dominated by the number of ABA-detecting

registers in array Emp, which is O(n2β). By Theorem 5.1, each ABA-detecting register can be

implemented with O(n) read-write registers. Thus, the total number of shared objects TLSA

and TRA use is M(m,n,τ) = O(n3β) = O(mn5 + n3τ).

Each register of arrays Emp and Act needs to store log(mn + τ) bits, and each [LL/SC

object in array A, as well as H[i]]<register in array A, as well as H[i][j] and H′[i][j]> need to

store only O(log(∆(m,n,τ))) bits in addition to the data they need to store. All other registers

need at most O(log(∆(m,n,τ))) many bits. This concludes the proof of Theorem 7.1.

247

Chapter 8

Summary and Future Work

In this work, we presented multiple transformations as well as implementations of new primitives

in the standard shared memory model. These implementations empower algorithm designers with

additional or stronger tools to tackle problems that do not have trivial solutions using bounded

space, and could have a considerable impact on the design and complexity analysis of shared

memory algorithms. The proofs for most of our implementations are very technical, but once

obtained, the resulting objects can be easily employed in a variety of contexts in a black box

fashion.

Selected Techniques. The algorithms of Chapters 4 and 7 benefit from reclaiming objects

once it is ensured that no process will access those objects. However, asynchrony makes this

task quite challenging, because there is no bound on how far behind a process may be compared

to other processes in the system. In particular, it is not always known to other processes which

object a process is about to access in its next step. Therefore, reclaiming any object may cause

unsafe access of a memory space.

A common way to deal with this problem is using the general announcement technique: After

a process p reads the address x of an object O[x] from a register X, it announces value x by

writing it into an announce array entry. The purpose of this technique is to let other processes

know that p is about to access this object. So before any process tries to reclaim an object,

it has to ensure no process currently has this object announced. Since it may take process p

too long to announce x, in most existing memory reclamation solutions, such as Hazard Pointers

(Michael, 2004b), to ensure a safe access to object O[x], process p has to read register X again.

The process only proceeds to access object O[x] if X still holds value x. Otherwise, the process

has to start over, because the memory at address x may have been reclaimed. This technique

248

for memory reclamation can lead to an unbounded number of restarts of a process’s operation.

Instead of starting over, in Chapters 4 and 7, we devise a helping technique called hint

mechanism, that allows a wait-free derefrencing: Some process helps process p by providing an

alternative object, called a hint, that process p can access safely, in case it takes process p too

long to make its announcement. Process p uses a hint over the value it reads from X only if it

can ensure that the hint was provided since it started its current operation call. Our algorithm

guarantees that either such a hint is available for p, or process p’s announcement was timely,

that is the location x it intends to access has not been reclaimed.

To achieve both linearizability and safety, the process that provides the hint has to ensure that

the hint is indeed stored in X at some point during p’s current operation call, and moreover, no

process reclaims the hint object as long as process p could possibly access this object. Depending

on what base objects are available, the hint technique is implemented differently. When using only

registers as base objects, a sequence number is employed to synchronize between the provider

and receiver of the hint. We bound the value of this sequence number in an adhoc manner by

resetting the hints with some calculated frequency and deliberately maintaining a second copy of

each hint. Using LL/SC as base objects, processes synchronize by allowing the receiver of the

hint to reset a LL/SC object to indicate the start of its operation. Then a hint is only provided

if the LL/SC object stores the initial value. In both cases, each process has to keep track of

the hints it currently has provided and that can potentially still be used by other processes as

non-reclaimable.

Another component of announcement technique requires that a process reads an entire array

of size n to reclaim one object. Earlier research (Michael, 2004b) reduced the cost by reading the

announce array once for every O(n) reclaimed objects, to achieve a low amortized step complexity.

In this work, we reduce the low amortized to worst case constant step complexity by proposing

a deamortization technique. Each process is responsible for a set of objects, and it utilizes local

data structures of polynomial size (in n) to keep track of those objects that the process finds

249

non-reclaimable at each point. The same technique is used for providing and maintaining hints,

as well.

We also use the announcement technique to design an ABA-detecting register from bounded

registers in Chapter 5. However, with a careful comparison of the value of the object before and

after the announcement and during the previous DRead() operation, the process can decide the

return value of its current DRead() call.

In the main algorithm of Chapter 6, we observe that any TAS() call that overlaps a Reset()

operation call can immediately return 1 (and lose). We use an ABA-detecting 1-bit register to

indicate whether a Reset() call is pending. Thus, processes keep reading this register after

executing every shared memory step, and they decide based on the value they read to either

continue competing or just lose their TAS() call. Moreover, since only the winner of a TAS() call

can execute a Reset() operation, by allowing each Reset() call to linearize at its response, we

can ensure that no two Reset() calls can overlap. These two ideas together allow us to obtain

long-lived TAS implementations with improved step and space complexity than the ones we can

achieve with the general transformation of Chapter 4.

In Chapter 7, in addition to the announcement and helping techniques, we use an information

aggregation technique. The aggregated information helps the processes to decide about a big

block of tags, rather than dealing with each tag individually. Although this significantly improves

the step complexity of the implementation, it increases the number of tags used and so the space

requirement of this implementation. ABA-detecting registers and a double collect approach (Afek,

Attiya, Dolev, Gafni, Merritt and Shavit, 1993) are used to scan the information that all processes

maintain.

Results and future directions. Our general transformation for augmenting objects with a

concurrent Write() operation, works for any writable type, provided that there is an implemen-

tation that supports non-concurrent writes. This transformation adds only a constant number of

steps overhead, and uses polynomially many instances of the original object. To the best of our

250

knowledge this is the first such general transformation from bounded space with constant step

complexity.

We also introduced several efficient implementations of long-lived test-and-set objects from

registers. As one of the results, we obtained the first long-lived test-and-set implementation

that has optimal (linear) space complexity, and at the same time yields sub-logarithmic expected

step complexity for both, TAS() and Reset() operations (against the oblivious adversary). Our

techniques heavily rely on the property that only the winner of a TAS() call can reset the object.

It would be interesting to research whether similar techniques can be applied to obtain other

long-lived objects from one-time ones, or whether restricted forms of Write() operations can

be implemented more space efficiently than the ones presented in Chapter 4. Another research

direction might be to improve the combined space used by multiple long-lived TAS objects. It is

conceivable that instead of a multiplicative overhead in the space, one can achieve k randomized

wait-free long-lived TAS objects from O(k + n) one-time ones.

All our transformations are wait-free, and in our examples they are applied to wait-free im-

plementations, and the resulting objects are also wait-free. We believe that our transformations

preserve all progress conditions. It would be interesting to prove that this is in fact the case.

In general, it would be worthwhile to specify what kind of transformations preserve the progress

condition of the original objects.

Moreover, this work suggests a new primitive, an ABA-detecting register, which provides a

simple and efficient solution to the ABA problem, without incurring a step complexity overhead

beyond a constant additive term. Using this object, algorithm designers can focus on finding

solutions for their main problem without being concerned about ABAs.

This work provides the first study on the complexity of tagging, and showed that tags can be

bounded with only constant time overhead. Using our taggable object abstraction for memory

reclamation can, in some cases, lead to wait-free read-only operations, where other memory

reclamation techniques yield only lock-freedom. We see it as an important contribution of this

251

work to present a useful abstraction, and provide building blocks that can be easily reused.

We show that our new primitives have efficient implementations with constant step complexity.

Even though the space requirement of our implementations is polynomial (in several parameters,

including the number of processes), it may be too high for practical use. The main goal of this

research is not to provide a finished practical system, but to simplify future attempts to find

solutions with bounded space for algorithmic problems, by using the primitives presented here,

and do not have to find ad-hoc solutions for bounding tags. Also, we believe this is the beginning

of a new line of research to find more space efficient implementations of this useful abstraction.

252

Bibliography

Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt and N. Shavit (1993). Atomic snapshots of

shared memory. Journal of the ACM, vol. 40, pp. 873–890.

Y. Afek, E. Gafni, J. Tromp and P. Vitányi (1992). Wait-free test-and-set (extended abstract). In

Proceedings of the 6th International Workshop on Distributed Algorithms (WDAG), pp. 85–94.

Z. Aghazadeh, W. Golab and P. Woelfel (2013). Brief announcement: resettable objects and

efficient memory reclamation for concurrent algorithms. In Proceedings of the 32nd ACM

Symposium on Principles of Distributed Computing (PODC), pp. 322–324.

Z. Aghazadeh, W. Golab and P. Woelfel (2014). Making objects writable. In Proceedings of the

33rd ACM Symposium on Principles of Distributed Computing (PODC), pp. 385–395.

Z. Aghazadeh and P. Woelfel (2014). Space- and time-efficient long-lived test-and-set objects. In

Proceedings of 18th International Conference On Principles Of DIstributed Systems (OPODIS),

pp. 404–419.

Z. Aghazadeh and P. Woelfel (2015). On the time and space complexity of ABA prevention and

detection. In Proceedings of the 34th ACM Symposium on Principles of Distributed Computing

(PODC), pp. 193–202.

Z. Aghazadeh and P. Woelfel (2016). Upper bounds for boundless tagging with bounded objects.

In Proceedings of the 30th International Symposium on Distributed Computing (DISC), pp.

442–457.

D. Alistarh and J. Aspnes (2011). Sub-logarithmic test-and-set against a weak adversary. In

Proceedings of the 25th International Symposium on Distributed Computing (DISC), pp. 97–

109.

253

D. Alistarh, J. Aspnes, K. Censor-Hillel, S. Gilbert and M. Zadimoghaddam (2011a). Optimal-

time adaptive strong renaming, with applications to counting. In Proceedings of the 30th ACM

Symposium on Principles of Distributed Computing (PODC), pp. 239–248.

D. Alistarh, J. Aspnes, S. Gilbert and R. Guerraoui (2011b). The complexity of renaming.

In Proceedings of the 52nd Annual IEEE Symposium on Foundations of Computer Science

(FOCS), pp. 718–727.

D. Alistarh, H. Attiya, S. Gilbert, A. Giurgiu and R. Guerraoui (2010). Fast randomized test-

and-set and renaming. In Proceedings of the 24th International Symposium on Distributed

Computing (DISC), pp. 94–108.

D. Alistarh, K. Censor-Hillel and N. Shavit (2016). Are lock-free concurrent algorithms practically

wait-free? Journal of the ACM, vol. 63, pp. 31:1–31:20.

D. Alistarh, W. M. Leiserson, A. Matveev and N. Shavit (2017). Forkscan: Conservative memory

reclamation for modern operating systems. In Proceedings of the 12th European Conference

on Computer Systems (EuroSys), pp. 483–498.

J. H. Anderson and M. Moir (1995). Universal constructions for multi-object operations. In

Proceedings of the 14th ACM Symposium on Principles of Distributed Computing (PODC),

pp. 184–193.

M. Arbel-Raviv and T. Brown (2017). Reuse, don’t recycle: Transforming lock-free algorithms

that throw away descriptors. ArXiv e-prints, vol. abs/1708.01797.

J. Aspnes, M. Herlihy and N. Shavit (1994). Counting networks. Journal of the ACM, vol. 41,

pp. 1020–1048.

H. Attiya and O. Rachman (1998). Atomic snapshots in o(n log n) operations. SIAM Journal on

Computing, vol. 27, pp. 319–340.

254

H. Attiya and J. Welch (2004). Distributed Computing: Fundamentals, Simulations and Advanced

Topics. John Wiley & Sons.

O. Balmau, R. Guerraoui, M. Herlihy and I. Zablotchi (2016). Fast and robust memory reclama-

tion for concurrent data structures. In Proceedings of the 28th ACM Symposium on Parallel

Algorithms and Architectures (SPAA), pp. 349–359.

A. Braginsky, A. Kogan and E. Petrank (2013). Drop the anchor: lightweight memory manage-

ment for non-blocking data structures. In Proceedings of the 25th ACM Symposium on Parallel

Algorithms and Architectures (SPAA), pp. 33–42.

T. Brown, F. Ellen and E. Ruppert (2013). Pragmatic primitives for non-blocking data structures.

In Proceedings of the 32th ACM Symposium on Principles of Distributed Computing (PODC),

pp. 13–22.

T. Brown, F. Ellen and E. Ruppert (2014). A general technique for non-blocking trees. In

Proceedings of the 19th ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming (PPOPP), pp. 329–342.

T. A. Brown (2015). Reclaiming memory for lock-free data structures: There has to be a better

way. In Proceedings of the 34th ACM Symposium on Principles of Distributed Computing

(PODC), pp. 261–270.

H. Buhrman, A. Panconesi, R. Silvestri and P. Vitányi (2006). On the importance of having an

identity or, is consensus really universal? Distributed Computing, vol. 18, pp. 167–176.

J. Burns and N. Lynch (1993). Bounds on shared memory for mutual exclusion. Information and

Computation, vol. 107, pp. 171–184.

K. Censor-Hillel, E. Petrank and S. Timnat (2015). Help! In Proceedings of the 34th ACM

Symposium on Principles of Distributed Computing (PODC), pp. 241–250.

255

T. Z. Chen and Y. Wei (2016). Step optimal implementations of large single-writer registers. In

Proceedings of 20th International Conference On Principles Of DIstributed Systems (OPODIS),

pp. 32:1–32:16.

A. Clements, F. Kaashoek and N. Zeldovich (2012). Scalable address spaces using RCU bal-

anced trees. In Proceedings of the 17th International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS), pp. 199–210.

N. Cohen and E. Petrank (2015). Automatic memory reclamation for lock-free data structures.

In Proceedings of ACM SIGPLAN International Conference on Object-Oriented Programming,

Systems, Languages, and Applications, (OOPSLA), pp. 260–279.

D. Detlefs, P. Martin, M. Moir and G. Steele Jr. (2002). Lock-free reference counting. Distributed

Computing, vol. 15, pp. 255–271.

S. Doherty, M. Herlihy, V. Luchangco and M. Moir (2004). Bringing practical lock-free synchro-

nization to 64-bit applications. In Proceedings of the 23rd ACM Symposium on Principles of

Distributed Computing (PODC), pp. 31–39.

D. Dolev and N. Shavit (1997). Bounded concurrent time-stamping. SIAM Journal on Computing,

vol. 26, pp. 418–455.

C. Dwork, M. Herlihy and O. Waarts (1993). Bounded round numbers. In Proceedings of the

12th ACM Symposium on Principles of Distributed Computing (PODC), pp. 53–64.

C. Dwork and O. Waarts (1992). Simple and efficient bounded concurrent timestamping or

bounded concurrent timestamp systems are comprehensible! In Proceedings of the 24th

Annual ACM Symposium on Theory of Computing (STOC), pp. 655–666.

C. Dwork and O. Waarts (1999). Simple and efficient bounded concurrent timestamping and the

traceable use abstraction. Journal of the ACM, vol. 46, pp. 633–666.

256

W. Eberly, L. Higham and J. Warpechowska-Gruca (1998). Long-lived, fast, waitfree renaming

with optimal name space and high throughput. In Proceedings of the 12th International

Symposium on Distributed Computing (DISC), pp. 149–160.

F. Ellen, Y. Lev, V. Luchangco and M. Moir (2007). Snzi: scalable nonzero indicators. In

Proceedings of the 26th ACM Symposium on Principles of Distributed Computing (PODC),

pp. 13–22.

F. Ellen and P. Woelfel (2013). An optimal implementation of fetch-and-increment. In Proceed-

ings of the 27th International Symposium on Distributed Computing (DISC), pp. 284–298.

P. Fatourou and N. D. Kallimanis (2011). A highly-efficient wait-free universal construction. In

Proceedings of the 23rd ACM Symposium on Parallel Algorithms and Architectures (SPAA),

pp. 325–334.

F. E. Fich, D. Hendler and N. Shavit (2006). On the inherent weakness of conditional primitives.

Distributed Computing, vol. 18, pp. 267–277.

K. Fraser (2004). Practical lock-freedom. PhD thesis, University of Cambridge.

G. Giakkoupis, M. Helmi, L. Higham and P. Woelfel (2013). An O(
√

n) space bound for

obstruction-free leader election. In Proceedings of the 27th International Symposium on Dis-

tributed Computing (DISC), pp. 46–60.

G. Giakkoupis, M. Helmi, L. Higham and P. Woelfel (2015). Test-and-set in optimal space.

In Proceedings of the 47th Annual ACM Symposium on Theory of Computing (STOC), pp.

615–623.

G. Giakkoupis and P. Woelfel (2012). On the time and space complexity of randomized test-

and-set. In Proceedings of the 31th ACM Symposium on Principles of Distributed Computing

(PODC), pp. 19–28.

257

G. Giakkoupis and P. Woelfel (2014). Randomized mutual exclusion with constant amortized RMR

complexity on the DSM. In Proceedings of the 55th Annual IEEE Symposium on Foundations

of Computer Science (FOCS), pp. 504–513.

A. Gidenstam, M. Papatriantafilou, H. Sundell and P. Tsigas (2009). Efficient and reliable lock-

free memory reclamation based on reference counting. IEEE Transactions on Parallel and

Distributed Systems, vol. 20, pp. 1173–1187.

W. Golab (2010). Constant-RMR Implementations of CAS and Other Synchronization Primitives

Using Read and Write Operations. PhD thesis, University of Toronto.

W. Golab, V. Hadzilacos, D. Hendler and P. Woelfel (2012). RMR-efficient implementations of

comparison primitives using read and write operations. Distributed Computing, vol. 25, pp.

109–162.

W. Golab, L. Higham and P. Woelfel (2011a). Linearizable implementations do not suffice for

randomized distributed computation. In Proceedings of the 43rd Annual ACM Symposium on

Theory of Computing (STOC), pp. 373–382.

W. Golab, L. Higham and P. Woelfel (2011b). Linearizable implementations do not suffice for

randomized distributed computation. ArXiv e-prints, vol. abs/1103.4690.

S. Haldar and P. M. B. Vitányi (2002). Bounded concurrent timestamp systems using vector

clocks. Journal of the ACM, vol. 49, pp. 101–126.

T. E. Hart, P. E. McKenney, A. D. Brown and J. Walpole (2007). Performance of memory

reclamation for lockless synchronization. Journal of Parallel and Distributed Computing, vol. 67,

pp. 1270–1285.

D. Hendler, N. Shavit and L. Yerushalmi (2010). A scalable lock-free stack algorithm. Journal

of Parallel and Distributed Computing, vol. 70, pp. 1–12.

258

M. Herlihy (1988). Impossibility and universality results for wait-free synchronization. In Pro-

ceedings of the 7th ACM Symposium on Principles of Distributed Computing (PODC), pp.

276–290.

M. Herlihy (1990). A methodology for implementing highly concurrent data structures. In

Proceedings of the 2nd ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming (PPOPP), pp. 197–206.

M. Herlihy (1991). Wait-free synchronization. ACM Transactions on Programming Languages

and Systems, vol. 13, pp. 124–149.

M. Herlihy, V. Luchangco, P. A. Martin and M. Moir (2005). Nonblocking memory management

support for dynamic-sized data structures. ACM Transactions on Computer Systems, vol. 23,

pp. 146–196.

M. Herlihy, V. Luchangco and M. Moir (2002). The repeat offender problem: A mechanism for

supporting dynamic-sized, lock-free data structures. In Proceedings of the 16th International

Symposium on Distributed Computing (DISC), pp. 339–353.

M. Herlihy and N. Shavit (2008). The art of multiprocessor programming. Morgan Kaufmann.

M. Herlihy and J. Wing (1990). Linearizability: A correctness condition for concurrent objects.

ACM Transactions on Programming Languages and Systems, vol. 12.

J.-H. Hoepman (1999). Long-lived test-and-set using bounded space. Technical Report, University

of Twente.

IBM (1983). IBM system/370 extended architecture, principles of operation. Technical Report,

IBM. Publication No. SA22-7085.

A. Israeli and M. Li (1987). Bounded time-stamps. In Proceedings of the 28th Annual IEEE

Symposium on Foundations of Computer Science (FOCS), pp. 371–382.

259

A. Israeli and M. Pinhasov (1992). A concurrent time-stamp scheme which is linear in time and

space. In Proceedings of the 6th International Workshop on Distributed Algorithms (WDAG),

pp. 95–109.

A. Israeli and L. Rappoport (1994). Disjoint-access-parallel implementations of strong shared

memory primitives. In Proceedings of the 13th ACM Symposium on Principles of Distributed

Computing (PODC), pp. 151–160.

P. Jayanti (1998). A complete and constant time wait-free implementation of CAS from LL/SC

and vice versa. In Proceedings of the 12th International Symposium on Distributed Computing

(DISC), pp. 216–230.

P. Jayanti and S. Petrovic (2003). Efficient and practical constructions of LL/SC variables. In

Proceedings of the 22nd ACM Symposium on Principles of Distributed Computing (PODC),

pp. 285–294.

P. Jayanti, K. Tan and S. Toueg (2000). Time and space lower bounds for nonblocking imple-

mentations. SIAM Journal on Computing, vol. 30, pp. 438–456.

A. Kogan and E. Petrank (2011). Wait-free queues with multiple enqueuers and dequeuers. In

Proceedings of the 16th ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming (PPOPP), pp. 223–234.

A. Kogan and E. Petrank (2012). A methodology for creating fast wait-free data structures.

In Proceedings of the 17th ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming (PPOPP), pp. 141–150.

C. Kruskal, L. Rudolph and M. Snir (1988). Efficient synchronization on multiprocessors with

shared memory. ACM Transactions on Programming Languages and Systems, vol. 10, pp.

579–601.

260

E. Ladan-Mozes and N. Shavit (2008). An optimistic approach to lock-free FIFO queues. Dis-

tributed Computing, vol. 20, pp. 323–341.

L. Lamport (1974). A new solution of dijkstra’s concurrent programming problem. Communica-

tions of the ACM, vol. 17, pp. 453–455.

L. Lamport (1979). How to make a multiprocessor computer that correctly executes multiprocess

programs. IEEE Transactions on Computers, vol. 28, pp. 690–691.

L. Lamport (1986). On interprocess communication. part I: basic formalism. Distributed Com-

puting, vol. 1, pp. 77–85.

A. Larsson, A. Gidenstam, P. H. Ha, M. Papatriantafilou and P. Tsigas (2008). Multiword atomic

read/write registers on multiprocessor systems. ACM Journal of Experimental Algorithmics,

vol. 13.

H. Lee (2010). Fast local-spin abortable mutual exclusion with bounded space. In Proceedings of

14th International Conference On Principles Of DIstributed Systems (OPODIS), pp. 364–379.

M. Loui and H. Abu-Amara (1987). Memory requirements for agreement among unreliable

asynchronous processes. Advances in Computing Research, vol. 4, p. 31.

P. E. McKenney and J. Slingwine (1998). Read-copy update: Using execution history to solve

concurrency problems. In Proceedings of the 10th IASTED International Conference on Parallel

and Distributed Computing and Systems (PDCS), pp. 509–518.

M. Michael (2002). High performance dynamic lock-free hash tables and list-based sets. In

Proceedings of the 14th ACM Symposium on Parallel Algorithms and Architectures (SPAA),

pp. 73–82.

M. Michael (2004a). ABA prevention using single-word instructions. Technical Report, IBM T.

J. Watson Research Center.

261

M. Michael (2004b). Hazard pointers: Safe memory reclamation for lock-free objects. IEEE

Transactions on Parallel and Distributed Systems, vol. 15, pp. 491–504.

M. Michael (2004c). Practical lock-free and wait-free LL/SC/VL implementations using 64-bit

CAS. In Proceedings of the 18th International Symposium on Distributed Computing (DISC),

pp. 144–158.

M. Michael (2004d). Scalable lock-free dynamic memory allocation. In Proceedings of the 25th

ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI),

pp. 35–46.

M. Michael and M. L. Scott (1996). Simple, fast, and practical non-blocking and blocking

concurrent queue algorithms. In Proceedings of the 15th ACM Symposium on Principles of

Distributed Computing (PODC), pp. 267–275.

M. Moir (1997). Practical implementations of non-blocking synchronization primitives. In Pro-

ceedings of the 16th ACM Symposium on Principles of Distributed Computing (PODC), pp.

219–228.

A. Panconesi, M. Papatriantafilou, P. Tsigas and P. Vitányi (1998). Randomized naming using

wait-free shared variables. Distributed Computing, vol. 11, pp. 113–124.

G. Peterson (1983). Concurrent reading while writing. ACM Transactions on Programming

Languages and Systems, vol. 5, pp. 46–55.

S. A. Plotkin (1989). Sticky bits and universality of consensus. In Proceedings of the 8th ACM

Symposium on Principles of Distributed Computing (PODC), pp. 159–175.

S. Prakash, Y. Lee and T. Johnson (1991). A non-blocking algorithm for shared queues using

compare-and-swap. In Proceedings of the International Conference on Parallel Processing

(ICPP), pp. 68–75.

262

Y. Riany, N. Shavit and D. Touitou (2001). Towards a practical snapshot algorithm. Theoretical

Computer Science, vol. 269, pp. 163–201.

C. Shann, T. Huang and C. Chen (2000). A practical nonblocking queue algorithm using compare-

and-swap. In Proceedings of the 7th International Conference on Parallel and Distributed

Systems (ICPADS), pp. 470–475.

N. Shavit and A. Zemach (1996). Diffracting trees. ACM Transactions on Computer Systems,

vol. 14, pp. 385–428.

V. Shikaripura and A. D. Kshemkalyani (2002). A simple, memory-efficient bounded concur-

rent timestamping algorithm. In Proceedings of the 13th Annual International Symposium on

Algorithms and Computation (ISAAC), pp. 550–562.

J. M. Stone (1990). A simple and correct shared-queue algorithm using compare-and-swap. In

Proceedings of Supercomputing, pp. 495–504.

E. Styer and G. Peterson (1989). Tight bounds for shared memory symmetric mutual exclusion

problems. In Proceedings of the 8th ACM Symposium on Principles of Distributed Computing

(PODC), pp. 177–192.

H. Sundell (2005). Wait-free reference counting and memory management. In Proceedings of

19th International Parallel and Distributed Processing Symposium (IPDPS).

S. Timnat, A. Braginsky, A. Kogan and E. Petrank (2012). Wait-free linked-lists. In Proceedings

of 16th International Conference On Principles Of DIstributed Systems (OPODIS), pp. 330–

344.

S. Timnat and E. Petrank (2014). A practical wait-free simulation for lock-free data structures.

In Proceedings of the 19th ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming (PPOPP), pp. 357–368.

263

J. Tromp and P. Vitányi (2002). Randomized two-process wait-free test-and-set. Distributed

Computing, vol. 15, pp. 127–135.

P. Tsigas and Y. Zhang (2001). A simple, fast and scalable non-blocking concurrent FIFO queue

for shared memory multiprocessor systems. In Proceedings of the 13th ACM Symposium on

Parallel Algorithms and Architectures (SPAA), pp. 134–143.

J. Valois (1995). Lock-free linked lists using compare-and-swap. In Proceedings of the 14th ACM

Symposium on Principles of Distributed Computing (PODC), pp. 214–222.

P. M. B. Vitányi and B. Awerbuch (1986). Atomic shared register access by asynchronous hard-

ware (detailed abstract). In Proceedings of the 27th Annual IEEE Symposium on Foundations

of Computer Science (FOCS), pp. 233–243.

P. Woelfel (2017). Algorithms for distributed computation. CPSC 561/661 Lecture Notes.

L. Zhu and F. Ellen (2015). Atomic snapshots from small registers. In Proceedings of 19th

International Conference On Principles Of DIstributed Systems (OPODIS), pp. 17:1–17:16.

264

Index

A

ABA problem . 4, 26

ABA-detecting register .5, 89, 118, 168

announce array . 39, 94, 119, 248

C

compare-and-swap (CAS) . 4, 11, 20

D

deadlock-free . 17

deamortization . 44, 120, 170, 249

F

fetch-and-add (FAA) .12

H

helping . 42, 249

history . 14

L

linearizability . 15

load-linked/store-conditional (LL/SC) .5, 11, 26, 107

lock-free . 17

M

multi-word register . 20, 33, 159

N

nondeterministic solo-termination . 17

265

O

obstruction-free . 17

R

resettable . 30

sequentially .30

S

starvation-free . 17

T

taggable

LL/SC array (TLSA) . 8, 150, 151

register array (TRA) .8, 150, 151

test-and-set (TAS) . 3, 12, 21, 34, 114

transcript . 13

W

wait-free . 17

randomized .17

writable . 30

sequentially .30

266

