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Abstract 

This research is aimed at analyzing the equations governing large amplitude 

in-plane forced vibrations of an extensible Euler-Bernoulli beam under transversal 

excitation. The axial displacement of the beam is taken into account as well as the 

transversal motion, rotary inertia terms and damping forces. 

Employing Galerkin mode shape expansion method and expanding the non-linear 

terms into Taylor series, the non-linear partial differential equations (PDEs) of motion 

are approximated by a set of coupled ordinary differential equations (ODEs). The 

effect of higher order terms in Taylor series expansion and also effect of including 

higher order mode shapes in Galerkins method are studied. The static behavior, free 

(non-linear) vibrations and forced vibrations of an elastic extensible beam are studied 

and the results are compared with those obtained from previous simplified derivations 

published by other researchers. 

Employing the Lyapunov exponent measure, we find the relationship between 

excitation parameters and chaotic vibrations of the beam. We find that the simplified 

models exhibit significantly different chaotic behavior in comparison with the more 

accurate model proposed in this thesis. 
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Nomenclature 

A Cross-sectional area of the beam 

A Amplitude of excitation 

A Nondimension amplitude of excitation 

ce Parameter defined by Eq. (4.2) 

cd Damping coefficient per unit length of the beam 

C Nondimension 0d 

Total elongation of the beam 

B Modulus of elasticity 

e Elongation 

e Parameter defined by Eq. (3.28) 

Strain 

Average strain 

H X component of internal forces 

?- Nondimension H 

I Area moment of inertia of the beam 

J Mass moment of inertia of the beam 

J Axial force due to elongation of the beam 

k1 Mas radius of gyration 

,y Nondimension k1 
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ic Curvature 

L Length of the beam 

A Nondimension external axial force 

M Bending moment 

M I Nondimension it/I 

Slenderness ratio 

P Internal normal force 

P0 External axial force 

P Extensible beam buckling load 

PO Euler Buckling load 

Q Shear force 

p Mass density per length of the beam 

q1 Axial displacement of the beam 

q2 Transversal displacement of the beam 

e Slope of a curve 

S Length of a curve 

a Normal stress 

T Kinetic energy 

t Time 

T Nondimension t 

u Nondimension qi 

V Y component of internal forces 
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V Potential energy 

V Nondimension V 

V. Potential energy due to axial stress 

Vb Potential energy due to bending 

V Nondimension q2 

W0 Work done by conservative forces 

W. Work done by nonconservative forces 

w Displacement of the base of the beam 

w Frequency of excitation 

Nondimension w 

(X, Y) Axes in Lagrangian coordinates 

(X*, Y*) Axes in Eulerian coordinates 

(x, y) lJndeformed position of a point of the beam 

(x*) y*) Deformed position of a point of the beam 

Nondimension x 
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Chapter 1 

Introduction and Literature Review 

1.1 Applications 

Buckled beam structures under dynamic loading are frequently encountered in various 

engineering applications. The beams are designed either to prevent buckling, e.g. civil 

structures such as bridges or buildings, or to buckle for their functionality, e.g. MEMS 

[32], suspension systems [38], optical measuring systems [44]. 

Buckled beams are bistable structures, with a two-well potential. Their nonlin-

ear properties are exploited in actuator design, e.g. MEMS micropumps, switches, 

memory cells to produce relatively high displacements and forces with low actuation 

energies[18, 29]. Another advantage of such structures is that they can apply contact 

forces without the need for continued actuation power [31]. 

Recently a lot of attention has been drawn to applications of buckled beams in en-

ergy harvesting devices, e.g. in [31, 36, 18, 20, 3, 17]. Energy harvesting has emerged 

as an important new topic with the goal of fabricating devices that can generate 

electrical power by exploiting ambient vibrational energy. Bistability, together with 

its nonlinear properties, make the buckled beams ideal structures to extract energy 

from ambient vibrations [20, 33, 23]. 

One aspect of the design process of buckled beams for the aforementioned appli-

cations is the dynamic response of these structures under a variety of excitations. A 

significant amount of insight can be gained by investigating the mathematical model 

of a buckled beam. The more accurate the mathematical model is, the closer we are 
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to the actual problem. 

1.2 Mathematical Models 

A simple model that can be used to derive the governing equations of an axially loaded 

(buckled) beam is depicted in Fig. (1.1). The beam has mass density per length of 

the beam p, length L, cross-sectional area A, area moment of inertia I, mass moment 

of inertia J and modulus of elasticity E. It is statically loaded by an axial force 

P0. In the literature the buckled beam with different boundary conditions such as 

clamped-clamped or pinned-pinned with movable or immovable (axially restrained) 

ends has been studied. 

In this research one end of the beam is assumed to be fixed and axially restrained, 

the other end, at which the external axial force is applied, can freely move in the 

horizontal direction. The beam has 2D motion, axial and transverse. The axial 

displacement is denoted by q and the transverse displacement by q2. Both q and q 

are functions of the spatial coordinate x and time t, i.e. q qi (x, t) and q q (x, t). 

Thus q and q2 are suitable generalized coordinates for describing the motion of this 

beam. Note that in general, if the plane cross-sections of the beam does not remain 

plane and perpendicular to the neutral axis during the vibration more generalized 

coordinates are needed to describe the motion of the beam. 

The beam may experience transverse excitation, by means of the base excitation. 

A distributed damping force can also be included in the beam model. All physical 

properties are constant along the beam span. The material is isotropic and homoge-

neous. 
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L, A, E, I 

Figure 1.1: A schematic representation of an axially loaded buckled beam 

1.2.1 Beam Theories 

There exist four main beam theories for the investigation of beam vibrations. The four 

theories are the Euler-Bernoulli, Rayleigh, Shear and Timoshenko [11]. Here, a brief 

history of the development of the Euler-Bernoulli theory, which is most frequently 

used in the literature for deriving the equations of beam vibrations, is presented. In 

this thesis the Euler-Bernoulli theory is employed as well. 

Euler-Bernoulli Theory 

It was recognized by the early researchers that the bending effect is the single most 

important factor in the transverse vibration of a beam. The Euler-Bernoulli theory 

includes the strain energy due to the bending and the kinetic energy due to the trans-

verse displacement. The Euler-Bernoulli theory dates back to the 18th century. Jacob 

Bernoulli (1654-1705) first discovered that the curvature of an elastic beam at any 

point is proportional to the bending moment at that point. Later, Jacob Bernoulli's 

theory was accepted by Leonhard Euler (1707-1783) in his investigation of the shape 

of elastic beams under various loading conditions. Many advances on the elastic 

curves were made by Euler. The Euler-Bernoulli beam theory, sometimes called the 

classical beam theory is the most commonly used because it is simple and provides 
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reasonable engineering approximations for many problems [11]. 

1.2.2 Beam Equations 

Researchers have used different approaches and assumptions to model beams. In 

particular vibrations of beams were studied with various degrees of generality. Some 

of the important assumptions that have been made in deriving the equations are as 

follows 

(1) The amplitude of vibrations is small 

(2) Axial displacement of the beam is neglected 

(3) Extensibility of the beam is neglected 

(4) Rotary inertia is neglected 

As a result, several models exist in the literature for describing the motion of 

buckled beams. The simplest equation, for the undamped free vibration of a beam, 

which can be derived based on Euler-Bernoulli theory is 

pq2,tt + Elq2,xxxx + Poq2,, = 0 

In the above equations q2,tt 2q2 

8t2 q2,xx a and q2,xxxx = a Detailed 
- 

derivations for the above equation can be found in text books by Meirovitch [22], Rao 

[34] and Virgin [42]. In this model it is assumed that no axial displacement of the 

elements of the beam take place, i.e. q = 0. This case typically exists when both 

ends of the beams have either the "fixed" or "pinned" constraints and their relative 

distance in the axial direction remains constant regardless of the transverse shape, i.e. 

the beam is axially restrained . In this derivation no internal axial force is considered. 

A more accurate model can be derived based on the above equation by taking 

into account the internal axial force. This force is generated due to the extension or 
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stretching of the beam midplane. Eq. (1.1) is rewritten as 

/ 
IL '\P q2,tt + P0 + ( - EA  q22dx I ) = 0 (1.2) 

The result is an integro-partial differential equation for the transverse direction, 

q2. Henceforth this equation is referred to the .LD Extensible model. Detailed deriva-

tions for the above equation are shown in Chapter 2. This equation was probably 

first proposed by Woinowsky-Krieger (1950) for the vibration of buckled beams [45]. 

In deriving this equation assumptions (1), (2) and (4) shown on the preceding are 

applied. 

Another important derivation is the equation describing vibration of an inexten-

sible elastic beam. Alturi (1973) was the first to derive and study the equation for 

vibration of inextensible beams [2]. The inextensibilty assumption is valid when at 

least one end of the beam has the "free" or "guided" constraint. In this model, al-

though a two dimensional motion of the beam is considered, but because the beam is 

assumed to be inextensible the axial and transverse displacements are related to each 

other and hence only one generalized coordinate is needed to describe to motion of 

the system. The equation for vibration of inextensible elastic beam has been refined 

by Noijen et al. (2007) in [28], including higher order terms. The result is 

p q2,tt + EIq, q2(1 + + 4 q2,xq2,xxx 

(1 + q)) + (i + q + + Poq2, = 0 (1.3) 

A detailed derivation of the above equation is shown in Chapter 2. In deriving this 

equation assumptions (3) and (4) are applied. Henceforth this equation is referred to 

as the Inextensible model. 

As can be seen from both 1D extensible and inextensible models, the equations 

are in terms of only one generalized coordinate, q. By taking into account the exten-
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sibility and axial displacement together, another model, referred in this thesis as .2D 

extensible model is derived. The equations for 2D extensible beam are two coupled 

partial differential equations in terms of q1 and q. It is also possible to include the 

rotary inertia terms in these equations as well. A detailed derivation of 2D extensible 

model is shown in Chapter 2. Atanackovic (1994) has derived the equations governing 

free vibration of 2D extensible beam [5]. 

The intention in this work is to analyze the large amplitude forced vibrations, 

especially chaotic vibrations of an extensible elastic beam, including the axial dis-

placement as well as rotary inertia terms, i.e. releasing assumptions (1), (2), (3) and 

(4). 

1.3 Solving The Beam Equations 

As discussed in the previous section, the dynamics of buckled beams, for 1D exten-

sible, inextensible and 2D extensible models, is governed by nonlinear partial differ-

ential equations in space and time. The closed form solutions for these equations are 

unknown and, consequently, one seeks approximate solutions of the original problem. 

Two common approaches to obtain approximate solutions of partial differential 

equations involve (1) numerical methods, and (2) analytical methods. In the numeri-

cal methods (e.g. finite differences, finite elements) one replaces the original equations 

by a set of nonlinear algebraic equations, which can be solved by using a variety of 

techniques. In the analytical methods direct techniques, such as the perturbation or 

discretization techniques are used. In the discretization technique a solution of the 

partial differential equations of a buckled beam is assumed to be the product of two 

functions. One is a function of time only, and the other one is a function of space. 
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The discretization techniques involve different methods such as the weighted residuals 

(e.g. Galerkin, collocation, least squares) or variational methods (e.g. Rayleigh-Ritz) 

[7] 

In the beam studies, the Galerkin discretization method is widely used and usually 

the mode shapes of the beam are used as the known functions of space. This method 

is also called "Galerkin mode shape expansion method". In this research the Galerkin 

discretization method is discussed in detail in Chapter 4 and used for approximating 

the partial differential equations of the investigated system. The result is a set of 

nonlinear coupled ordinary differential equations. 

1.3.1 Nonlinear Systems and Chaos 

One of the main differences between linear and nonlinear systems is the existence of 

chaotic behavior in the latter. Chaos in dynamical system is associated with the class 

of motions whose responses feature a sensitive dependence upon the initial conditions. 

It has been proven that chaos can exist in deterministic system, i.e. systems with 

no random or unpredictable inputs or parameters. In chaotic systems long term 

prediction becomes impossible, since small differences in initial conditions can produce 

great differences in the final output. The existence of chaotic or unpredictable motions 

in classical mechanics was first pointed out by Poincaré [26]. 

There are different techniques of identifying chaos in dynamical systems such as 

the Fourier spectrum, Poinca ,Zé maps, Lyapunov exponents, Melnikov function and 

fractal dimensions. The Poincaré map is a qualitative method and the Lyapunov 

exponent is a quantitative measure of identifying chaos. Both methods have been 

employed in this work to study chaos. 
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1.3.2 Literature Review 

During the past few decades significant research has been performed on the nonlinear 

vibrations of buckled beams. The 1D extensible beam model, Eq. (1.2), has been 

extensively used in the literature to study the vibration of elastic beams since 1950. 

The free vibration of 1D extensible beam has been studied by a couple of researchers, 

such as Burgreen (1951) and McDonald (1955) [4, 19]. The forced vibration of this 

model has been studied in [6, 41, 24]. 

In the past three decades, the effort of researchers has shifted to nonlinear dy-

namics of buckled beams. Holmes (1979) investigated the stability of the motion of a 

buckled beam and its phase space portraits using the 1D extensible model [12]. Moon 

(1980) and Holmes and Moon (1983) investigated chaotic motions of buckled beams 

under external harmonic excitations. They used a single-mode approximation to pre-

dict the onset of these chaotic motions [25, 13]. The effect of higher modes on the 

chaotic motion of a buckled beam was studied in [39]. Reynolds and Dowell (1996) 

studied the chaotic motion of a buckled beam under a harmonic excitation using a 

multi-mode Galerkin discretization. They used Melnikov theory in their analysis [35]. 

Lestari and Hanagud (2001) presented exact solutions to the nonlinear free vibra-

tions of 1D extensible buckled beams using elliptic functions [15]. Emam and Nayfeh 

(2004) investigated nonlinear dynamics of a buckled beam under excitation. They 

found that using a single-mode approximation leads to quantitative and qualitative 

errors in the static and dynamic conditions [8]. Nayfeh and Emam (2008) have re-

cently found an exact solution for the post-buckling configurations of 1D extensible 

buckled beams [27]. 

A few other works have dealt with modeling the dynamic behavior of beams with-
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out considering extensibility, as in the inextensible model, Eq. (1.3). As mentioned 

earlier Alturi (1973) was the first to derive the equations governing the vibrations of 

an inextensible beam. He recognized that the first mode of inextensible beams ex-

hibits a softening nonlinearity in contrast with that of 1D extensible beams that are 

of the hardening type and concluded that axial inertia is the dominant nonlinearity 

in inextensible beams. Mei et al. (1985) found a similar non-linearity of softening 

type in their investigation by employing FEM [21]. Lacarbonara and Yabuno (2006) 

experimentally studied the free vibrations of the inextensible model and compare 

the results with 1D extensible model [14]. Noijen et al. (2007) studied the chaotic 

vibrations of inextensible beam considering higher order modes in Galerkin method 

[28]. 

The free vibrations of undamped 2D extensible beam have been studied in [5] 

using the single mode Galerkin method. The exact solution for the post-buckling 

configurations of 2D extensible buckled beams was proposed in [16]. 

1.4 Contributions 

The goal of this research is to find an accurate model for studying nonlinear vibra-

tions and chaos in a buckled beam. It has been shown in this thesis that earlier works 

are not general enough for this purpose. In this thesis the equations governing the 

large amplitude in-plane forced vibrations of a damped 2D extensible beam under 

transverse excitation are derived. Employing the Galerkin mode shape expansion 

method and expanding the non-linear terms into Taylor series, the non-linear par-

tial differential equations (PDEs) of motion are approximated by a set of ordinary 

differential equations (ODEs). The effect of higher order terms in Taylor series ex-

pansion and also effect of including higher order mode shapes in Galerkin's method 
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are studied. The free nonlinear vibrations of 2D extensible beam is studied and the 

results are compared with those obtained from 1D extensible and inextensible models. 

Employing numerical calculation of largest Lyapunov exponent and Poincaré map, 

the possibility of chaotic responses of forced vibrations of 2D extensible elastic beams 

is investigated. The results for chaotic vibration are compared with those obtained 

from 1D extensible and inextensible models. 

1.5 Organization 

In Chapter 2, I derive the equations governing the large amplitude forced vibrations 

of a damped extensible Euler-Bernoulli beam under transverse excitation. The axial 

displacement of the beam is taken into account as well as the transverse motion and 

rotary inertia terms. First, relevant aspects of calculus of variations are reviewed. 

The different types of coordinate systems and basic equations of the beam problem 

are also reviewed. By employing the Lagrangian mechanics, the equations describing 

the motion of an elastic beam are derived. An alternative approach based on the 

Newtonian framework is investigated and the general system of equations associated 

with boundaiy conditions is derived. Previous derivations, based on different assump-

tions are disscussed. The derived equations are expressed in a nondimentionalized 

form. 

In Chapter 3, the equation of the 2D elastic extensible beam for the static case 

is derived. The buckling load and the equilibrium paths when the beam buckles are 

investigated. The results are compared with the static behavior of the 1D extensible 

and inextensible models. 

Chapter 4 is concerned with beam dynamics. First the linearized equations of 2D 

extensible elastic beam are studied. Based on the linearized equations the expressions 
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for natural frequencies and mode shape of the beam are derived. Employing the 

Galerkin mode shape expansion method and expanding the non-linear terms into 

a Taylor series, the non-linear partial differential equations (PDEs) of motion are 

approximated by a set of ordinary differential equations (ODEs). The effect of higher 

order terms in Taylor series expansion and also effect of including higher order mode 

shapes in Galerkin's method are studied. The Galerkin method is also employed to 

approximate the PDEs of 1D extensible and inextensible beam models. 

In Chapter 5, the free nonlinear vibrations of an extensible elastic beam are stud-

ied. The effect of external axial load, the slenderness ratio and the rotary inertia on 

the natural frequency of the beam is investigated. Also the configuration of resonance 

curve is studied for different system parameters. The results are compared with those 

obtained from 1D extensible and inextensible models. 

In Chapter 6, by numerical calculation of largest Lyapunov exponent, the possi-

bility of chaotic responses of forced vibrations of 2D extensible elastic beams is inves-

tigated. The chaotic behavior is investigated for different amplitudes and frequencies 

of excitation. The results are compared with those obtained from 1D extensible and 

inextensible models. 

In Chapter 7 conclusions and suggestions for future works are presented. 
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Chapter 2 

Formulation of The Problem 

In this chapter the derivations of equations governing the large amplitude forced vi-

brations of a damped extensible Euler-Bernoulli beam under transverse excitation is 

studied. The axial displacement of the beam is taken into account as well as the 

transverse motion and rotary inertia terms. First, relevant aspects of calculus of vari-

ations are reviewed. The different types of coordinate systems and basic equations 

of the beam problem are also reviewed. By employing the Lagrangian framework, 

the equations describing the motion of an elastic beam are derived. An alternative 

approach based on the Newtonian framework is investigated and the general system 

of equations associated with boundary conditions is derived. Previous derivations, 

based on different assumptions are disscussed. The derived equations are expressed 

in a nondimentionalized form. 

2.1 Problem Statement 

I consider a straight simply supported beam of length L, cross-sectional area A, 

area moment of inertia I, mass moment of inertia J and modulus of elasticity B. 

It is statically loaded by an axial force Po, as shown in Fig. (2.1). One end of 

the beam is fixed and axially restrained, the other end at which the external axial 

force is applied can freely move in horizontal direction. In studying the vibrations of 

buckled beams, the axial force Po is chosen to exceed the lowest buckling load, P4,., 

of the beam. The beam is modeled according to the Euler-Bernoulli's hypothesis, i.e. 
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plane cross-sections of the beam, remain plane and perpendicular to the neutral axis 

before and after deformation. It is also assumed that the plane cross-sections do not 

change their shape and area. The beam has 2D motion, axial and transverse. The 

axial displacement is denoted by q and the transverse displacement by q2. Both q 

and q2 are functions of the spatial coordinate x and time t, i.e. q1 q, (x, t) and 

q q (x, t). The beam may experience transverse excitation, by means of base 

excitation. Furthermore, a damping distributed force may be acting on the beam. 

All physical properties are constant along the beams span. The material is isotropic 

and homogeneous. 

LA,E,I 

  —P/UU\u 0 (t) 

Figure 2.1: A schematic representation of the beam under study 

Equations governing the extensible beam motion are derived in Lagrangian and 

Newtonian framework. In the following an introduction to calculus of variations, 

which is the foundation of Lagrangian framework, is presented. 

2.2 Calculus of Variations 

Calculus of variations (CV) is concerned primarily with extremizing functionals, as 

opposed to ordinary calculus which deals with functions. Functionals are generally 

functions of other functions. They are often formed as definite integrals involving un-

known functions and their derivatives. The interest is in extremal functions that make 
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the functional attain a maximum or minimum value. An example simple functional 

in terms of one independent variable t, and a function q(t) is 

12 

1(q) = I F (t, q, qt, qtt) dt (2.1) 
Jt1 

where q q(t) , qt and qtt . Functionals involving higher-order deriva-

tives and several independent variables can also be dealt with. The objective of 

CV is to chodse a function (t), called an extremal, so as to minimize or maximize 

(extremize) the functional. Note that here it is assumed that the variations of q in 

the endpoints are zero. In other words, CV is concerned with finding functions that 

extremize integrals whose integrands contain these functions. 

The application of CV is often associated with solving problems of continuum 

mechanics. The functionals whose extreme values are sought involve some form of the 

system energy. For example, many of the phenomena governing the elastic distortion 

of bodies can be described by employing the principle of minimum potential energy 

[9]. 

By using CV it can be shown that the necessary condition for q(t) to extremize 

1(q) shown in Eq. (2.1) is [9] 

3F(.) d I 8F(.)I d2 [aF(.)] 5qt  + dt  0 (2.2) 

Equation (2.2) is known as the Euler-Lagrange equation and is the differential 

equation that q(t) must satisfy. 

In the case of time dependent distributed parameter systems there are two or more 

independent variables. The functionals reflect this are shown in the following example 

involving the time t and a spatial coordinate x as independent variables. 
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2.2.1 General Functionals 

The Euler-Lagrange equations for functionals characterizing the investigated beams 

can be derived by proceeding in a similar manner as for the functional in the above 

example (Eq. (2.1)). The involved function, F(.), depends upon two independent 

variables and their derivatives up to and including the second order. For such a case, 

the functional has the form 

1(q) = fa F(t)x,q,qt,qx,qt ,qtt,q) dx dt 
J  

(2.3) 

where Q is the domain in which the function F(.) is extremized and q = q(x, t) 

qx - - 

= atex 

a , 92 a2 ty 
xx = R2 and qt 

The obtained Euler-Lagrange equation is [9] 

_ 5 1(•)1 a [,,F(.)] [,,F(.)] +ô2 DF(.) 15F) Sq at I Sq j 5x 5q at2  Oq  atax aqt. 3x2 Sq - 

(2.4) 

The above equation can also be extended for the case that I I(q1, q). In this 

case we will have two sets of equations. The functional is in the form of: 

I(qi, q) = f fn F(.) dx dt (2.5) 

where F(.) F(t, x, qi, q2, qi,t, q2,t, qi,x, q2,x, qi,tx, q2,tx, qi,tt, q2,tt) qi,xx, q2,xx). The 

corresponding Euler-Lagrange sets of equations are [9] 

DF(.) a faF(.) a [aF(.)1a 1 DF(.)1 52 

8q at L Dq,t ax Dq j St2 L Dq,tt j 8tDx [aF(.)] 8q,t  8x2 
=0, i=1,2 

(2.6) 

which indirectly define the sought functions q, (x, t) and q2 (x, t). The function 

F(.) involved in this research is derived in the following. 
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2.3 Preliminaries 

2.3.1 Coordinate Systems 

In continuum mechanics one usually has a choice between two sets of coordinate sys-

tems to describe the position of material points: one set for the undeformed body 

(Lagrangian coordinates) and the other set for the deformed body (Eulerian coordi-

nates) [37]. The deformation of a point is described by the relation of the coordinates 

of the same material point in the undeformed and deformed states. Let (X, Y) repre-

sent the Lagrangian coordinates, and (X*, Y*) the Eulerian coordinates. I use (x, y) 

to show the undeformed position of the point and (x*, y*) as the deformed position 

of the point as shown in Fig. (2.2). Then, a displacement of the point is defined as 

q, (X) t) = - x and q2 (x, t) = - V. These may be expressed in either set of the 

coordinates and hence the whole problem may be formulated in terms of one or the 

other set of coordinates. In this thesis the Lagrangian representation is chosen, so 

that the coordinate of a point always refers to the undeformed body which is rep-

resented by X. The undeformed and deformed infinitesimal element of the beam is 

drawn. 'A'is the material point of the beam in its undeformed state and A* 'is the 

material point in deformed state. 

According to Fig. (2.2) 

x*=x+ql y = y+q2 (2.7) 

For a beam with initial undeformed position overlapping the X-axis and experi-

encing motion in the (X, Y) plane Y = 0. Hence 

X = x + q, y = q or : dx* = dx + dq1, dy* = dq2 (2.8) 
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dx 

Figure 2.2: An element of the beam before and after deformation 

2.3.2 Basic Relationships 

An important variable for solving the beam problem is strain of the beam. The 

elongation of an infinitesimal element of the beam is defined as 

e — ds — dx (2.9) 

where ds is the length of the infinitesimal element after deformation (see Fig. (2.2) 

and (2.3)). The strain of this element is 

e ds 
(x) = - = - - 1 

dx dx 

From Figs. (2.2) and (2.3) it follows that 

(2.10) 

ds = /(dx*)2 + (dy*)2 (2.11) 
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Figure 2.3: Infinitesimal clement of the beam 

Furthermore, using Eq. (2.8) I have 

ds = (dx + dqi)2 + (dq2)2 (1 + qi,x)2 + q dx (2.12) 

where q1, and q2,x . Finally, from Eq. (2.10) and (2.12), the strain is 

defined as a function of the independent variables 

f(x) = + dqi)2 + (dq2)2 = (1 + q,,)2 + (q2,x)2 - 1 (2.13) 

Two additional equations are readily derived by inspecting Figs. (2.2) and (2.3) and 

employing the equations derived up to now. They will be useful when solving the 

beam problem either by using Lagrangian or Newtonian framework. They are 

COS  — dx* - l+qi,x -  l+qi,x  - l+qi,x 
- ds - TX - (1 + qi,)2 + (q2,x )2 - 1 + E 

and 

dy* 
sin 0 - 

ds 
- dx -  q2,x  q2,x 
----

(1 + qi,x)2 + (q2,x)2 = 1 + c 

(2.14) 

(2.15) 
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2.3.3 Beam Curvature 

The curvature of a planar curve is defined as [1] 

dO 

ds (2.16) 

Where 0 is the slope angle of the tangent at any point on the curve, and s is the arc 

length of the curve measured from an arbitrary starting point. From the geometry of 

the beam problem defined in Fig. (2.3) and by using the expression for y, Eq. (2.8), 

and ds, Eq. (2.12), I have 

d . 

0(x) = arcsin y* - = arcsin   q  
ds 

Taking derivative of the above equation with respect to x yields 

dO - (1 + -  

dx - [(1 + q1,)2 + (q2,)2}2 

Substituting Eq. (2.11) and (2.18) into Eq. (2.16) yields 

(1 + q1,)q2, - ql,xxq2,x  ic(x) = 
[(1 + + 

The above equation is the accurate, nonlinear expression of the beam curvature. 

Henceforth I consider two specific cases, which correspond to the distinctive types of 

beam constraints. 

Case 1: q1(x) = 0 

No axial displacement of the elements of the beam take place. This case typically 

exists when both ends of the beams have either the "fixed" or "pinned" constraints 

and their relative distance in the axial direction remains constant regardless of the 

transverse shape. The expression for strain and curvature becomes 

(2.17) 

(2.18) 

(2.19) 

= V I + (q,)2 - 1 (2.20) 
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K1 (X) = q2,xx 

3 

[1 + (q)2] 
(2.21) 

Case : e(x) = 0 

Inextensible beams-this case typically exists when at least one end of the beam has 

the "free" or "guided" constraint. According to Eq. (2.13) the axial displacement is 

a function of the transverse shape q2 (x) 

qj,x =  V1  - (q2,)2 - 1 (2.22) 

and a simplified expression for curvature is obtained 

X2 (X) --  q2,x  (2.23) 
- (q) 2  

Note that all the above derived equations are in Lagrangian coordinates, for a curve 

defined by y' (x*) (Eulerian description), one has the familiar expression of curvature 

Ox*2 

[1+ (Z)2] 22 

2.3.4 Constitutive Equations 

(2.24) 

For a linearly elastic material the following two uncoupled constitutive equations may 

be used. The first is [16] 

P = EAc (2.25) 
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where P is the component of internal force in the direction of the beam axis, E is 

Young's modulus, A is the cross-sectional area and 6 is the axial strain. The second 

constitutive equation, that connects the bending moment M with the curvature of 

the beam axis in the deformed state, is [16] 

dO 
M = —El = —EI(1 + €)ic (2.26) 

dx 

2.4 Deriving the Equation of Beam Motion Using Lagrangian mechan-

ics 

The derivations in this section are based on the Hamilton's minimum action principle. 

Here the action is defined as [10] 

t2 

j(T—v+w)dt 
tl 

(2.27) 

Where T is the kinetic energy, V is the potential energy and W,- is the work of the 

non-conservative forces. 

2.4.1 Kinetic Energy 

The kinetic energy of the differential element under consideration is given by 

dT = 1 p [(qi,t) 2 + (q2,t + Wt) 2 + k9] dx (2.28) 

where qi,t q2,t , Ot and wt . p is the mass density per length 

of the beam, k1 is the mass radius of gyration of a section of the beam about the 

axis through the center of gravity perpendicular to the plane of motion, w is the 

displacement of the base in vertical direction. Integrating the above equation over 

the length of the beam yields 

T(qi, q) = 1 22 1L [(q, 't)2 + (q2,t + Wt) 2 + k8] dx (2.29) 
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2.4.2 Potential Energy 

The total potential energy of the beam can be defined in terms of the strain energy 

and the work done by conservative forces. The potential strain energy consists of two 

components: the elastic strain energy due to axial stress and the elastic energy in 

pure bending, which are [16] 

and 

Va = I Pedx 

fo 
LVb=Mdx dx 

(2.30) 

(2.31) 

The only conservative force present on the system is the external axial force Po. The 

corresponding work done is 

or 

since q1(0) = 0. 

W=Poqi(L) 

rL W = JPoq1,dx 
0  

2.4.3 Work of Nonconservative Forces 

(2.32) 

(2.33) 

A non-conservative force acting on the beam in this research is the distributed viscous 

damping force. The work done by this force is computed as 

pL 

Cd q2,t dx (2.34) 
0 

where Cd is the damping coefficient per unit length of the beam. 
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2.5 Equations of Motion 

Substituting the kinetic energy expression, Eq. (2.29), and the potential energy, Eqs. 

(2.30) and (2.31) into (2.27) I get 

= 1t2 fT 

F(.)dxdt (2.35) 

where 

F(.) = p [(qi,t)2 + (q2,t + Wt)2 + kO] - [M 22 dO + Pdx E] + Poqi, - Cd q2,t (2.36) 

By substituting the above equation into the Euler-Lagrange equation obtained 

from the calculus of variations, Eq. (2.6) one can get the two sets of partial differential 

equations of motion in terms of q and q2. 

2.6 Derivations Based on the Newtonian Framework 

Alternatively, the beam equations can be derived also based on the Newtonian frame-

work. Consider the free body diagram of an element of the beam shown in Fig. (2.4). 

In this figure P P(x, t) is the total axial force, Q Q(x, t) is the shear force and 

M M(x, t) is the moment acting on the element. q is the distributed damping 

force. The second Newton's law for force components in horizontal (X) and vertical 

(Y) direction yields respectively 

p (q2,t+w t)dx = (P+dP) cos(O+dO) - P cos 0— (Q+dQ) sin(0+d0) +Q sin 0— cdq2, 

(2.37) 

and 

p qi,dx = (P + dP) sin(0 + dO) - P sin 0 + (Q + dQ) cos(O + dO) - Q cos 0 (2.38) 
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Y 

Q 

x + dx 

q IQ +dQM+dM P+dP 

9+ dO 

9+ dO 

X 

Figure 2.4: Free body diagram for an element of the beam 

Taylor series expansion of the functions sin 9 and cos 9 

sin(O+dO) = sinO+cosOdO+Q(d9)2 

cos(O+dO) = c0s9—sin9d0+O(dO)2 

allows to rewrite Eq. (2.37) and (2.38) as 

p qi,tt —P sin O dO — + Cos  dP — 
dx dx 

dO . dQ 
- QcosO— - sin 0— 

dx dx 

dO . dP 
p q2,tt = P cos O— +smO— - 

dx dx 
• dO dQ Q sm0— + cos 0— 

dx dx 

Following the Euler-Bernouli beam model, I add the moment equation 

- (M + dM) + M + (Q + dQ)ds = pkO 

(2.39) 

(2.40) 

(2.41) 

(2.42) 
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Simplifying and ignoring the infinitesimals of higher order [30] yields 

dM 2 dx 
Q = (-- +pk1O) ds --- 

Using Eqs. (2.12) and (2.13) I can rewrite the above equation as 

1  
dx Q = ( +Pk9tt) l+E(qi,q2) 

(2.43) 

(2.44) 

By substituting the expressions for sin(9) and cos (9) developed earlier, Eqs. (2.14) 

and (2.15), and the equation for derivative of 0 with respect to x, Eq. (2.18), and 

the moment-curvature relation, Eq. (2.26), and also the constitutive equation for 

the internal normal force, P, applying on the element, Eq. (2.25), and the above 

equation, Eq. (2.44), into Eqs. (2.40) and (2.41) one can obtain the same equations 

as those that can be derived by employing the Lagrangian framework. The derived 

equations will be in terms of the two generalized coordinates, q1 and q. 

Another approach, which is proposed in [5], is to find a system of equations that 

finally describe the motion of a beam in terms of other two independent variables, 

one related to axial displacement qi and the other one related to 0. The advantage 

is that for the static case the equations reduce to a simple second order ODE in 

terms of 0, and the exact solution of this ODE can be expressed in terms of elliptical 

integrals [16]. Note that as shown in Eq. (2.17), 0 is a function of q and q2 when 

the Euler-Bernoulli hypothesis is used, whereas in the Timoshenko hypothesis, where 

shear strain exists, three independent functions, e.g. q, q2 and 0 are needed to define 

the motion of the beam. Following the procedure proposed in [5] one can draw the 

free body diagram of the beam as shown in Fig. (2.5). 

Here H and V are the X and Y component of the internal force and q is the 

damping force (q = cdq2,tdx). The following equations can be derived from the free 
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Y 

x x + dx 

H+dH 

x 

Figure 2.5: Alternative free body diagram for the beam element 
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body diagram 

p qi,tt = 

P q2,tt = Va, cdq2,t - PWtt 

where 

Ma, = V Cos 0 dx -- - I-I sin 0 dx - - Pk0tt 

(.)a, . The last equation above can be written as (See Eq. (2.10)) 

Ma, = V Cos 0(l+) - I-I sin 0(l+€) - pk6) 

(2.45) 

(2.46) 

Furthermore, the normal force P can be expressed in terms of H, V and 0. Using the 

constitutive equation for P, Eq. (2.25), yields 

H cos 0 + V sin 0 

BA 

Also using Eqs. (2.14) and (2.15) and the above equation I get 

and 

H cos 0 + V sin 0  
qi,a,=(1+ BA )cos0-1 

H cos 0 + V sin 0  
q,a, = (1+ )sinO BA  

In summary I have the following system of equations 

Ha, = p qi,tt, 

Va, = P q2,tt + cdq2,t + PWtt, 

H cos 0 + V sin 0  
Ma, = (1 + BA )(Vcos0 - H sinG) - pki 

H cos 0 + V sin 0  
qi,a,=(1+ BA )Cos 0-1, 

H cos 0 + V sin 0 
q2,a,=(1+ BA ) sin 0, 

M 

(2.47) 

(2.48) 

(2.49) 

(2.50) 
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The boundary conditions for the beam under study are 

qi(t,x = 0) = 0, 

M(t,x = 0) = 0, 

q2(t,x = 0) = 0, 

H(t,x = L) = —Fo, 

M(t,x = L) = 0, 

q2(t,x = L) = 0 (2.51) 

Before I consider the specific aspects of the derived equations, the utility of non-

dimensionalizing the equations is mentioned. Non-dimensionalization is useful be-

cause it reduces the number of parameters and allows a more consistent comparison 

of behavior. One can introduce the non-dimensional quantities as 

(H + P0)L2 v - yE2 - ML 
El ' EI' iT 

/AL2 

C = Cd 
L2 
PEI  

q2 
V_ E , 

c=w 

- El' 

pL4 

El El 

- EA  

L 

r=t 
El 

pL4' 

(2.52) 

Here Q and A are the non-dimensionalized frequency and amplitude of vibration and 

w is the base excitation which is assumed to be harmonic. (Wtt A cos(wt)). 

Substituting the non-dimensionalized quantities into Eq. (2.50) yileds 

= VTT + Cu,- + Acos(clr), 

= V(i+ (—A +)cosO+VsinO) Cos 0 

(—A + 1) cos 0 + V sin 0) sin  - (1+ (—A+9-t) cos 0+V sin 0  

)c0s0—(1 - 

(—A+7-1)c050+V sin 0 
= (1 + )sin0 

'U , 2 

= —M (2.53) 
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And the boundary conditions change to 

= 0) = 0, 7-1(r, 6 = 1) = 0, 

M(T,=0)=0, M(r,=i)=0, 

v(r, = 0) = 0, v(T, = 1) = 0, V('r, = 1) = 0 (2.54) 

The system of Eqs. (2.53) with the associated boundary conditions, Eqs. (2.54), 

and given initial conditions describe the motion of an extensible 2D Euler-Bernoulli 

beam. The damping forces, excitation forces, rotary inertia terms and axial displace-

ment of the beam as well as transverse displacement are included in this system of 

equations. Similar results have been obtained in [5] for the free vibration of un-

damped extensible beam. Note that the above equations are exact, i.e. they contain 

no approximation whatsoever concerning the magnitude of displacement. The only 

assumptions here are that (i) normal sections remain plane, undistorted and normal 

to the axis of the beam after deformation (shear effects are neglected) and (ii) the two 

constitutive equations, Eqs. (2.25) and (2.26), are adopted for the internal normal 

axial force and the bending moment. 

2.7 Previous Derivations 

The vibration of an elastic beam were studied with various degrees of approximations 

for a long time. Here I present summarized derivations of the equations of beam 

motion for two important assumptions which have been used frequently for studying 

the nonlinear behavior of beams, namely the equations for (i) inextensible beam and 

(ii) 1D extensible beam. 

Case 1: 1D extensible beam 
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In this case the beam is assumed to experience midplane stretching, but the axial 

motion and rotary inertia terms are ignored. Here I follow the procedure presented in 

[7]. The average strain assumption is applied for calculation of the potential energy 

due to the axial forces. The average strain () for a beam is 

(2.55) 

where A is the total elongation of the beam and has the following relationship 

with the strain () 
= fL eldx 

The strain of the beam is given by Eq. (2.20) and it is approximated as 

(2.56) 

61(x) = (• j + (q2,x)2 - (2.57) 

Hence, the total elongation of the beam is 

= 1L 61dX = f L 22,xdx (2.58) 

Considering the average strain assumption, the potential energy due to an external 

axial force (P0) will be equal to the work done by the axial force multiplied by the 

displacement A, which is the total elongation of the beam 

Vao = —POL. 

The potential energy due to internal axial force is 

where (J) is the internal axial force due to elongation of the beam 

= EA = EA A = EA f 61dX 

(2.59) 

(2.60) 

(2.61) 
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Hence, for an axial external compressive applied force, the potential energy due 

to axial stress is 

V. Vao + Vai = - (EA L P. - L feldx)  fo 61dX 

Substituting Eq. (2.58), one gets 

V. (92)= - (P. - EA IL (q,)2dm) IL (q2,)2dx 
2 4L Jo 

(2.62) 

(2.63) 

The beam curvature for extensible beam (Eq. (2.21)) can be approximated by 

using the binomial series 

q2,xx (2.64) 

So, the relationship between the beam curvature and bending moment can be 

expressed as 

M = EI,c1 EIq2, (2.65) 

The potential energy of bending is 

Vb(q2) = EI I q21xx 2 2 IL dx (2.66) 

By using Eqs. (2.63), (2.66), considering the damping force and Lagrangian frame-

work, one can derive the equation describing the motion of a 1D extensible beam as 

[7] 

P q2,Lt + cdq2,t + A cos(wt) + EIq2,xxxx + (0 -  EA  fL q2d) q2, = 0 (2.67) 

with the following boundary condition for a simply supported beam 

q2(x = 0,t) = q2(x = L, t) = 0 

q2,xx (x = 0,t) = q2,xx (x = L, t) = 0 (2.68) 
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Note that due to ignoring the q generalized coordinate, only one differential 

equation has been obtained. Again, by introducing the following non-dimensionalized 

quantities 

C = Cd 

AL2 
V_-jj 

L2 

P0L2  
El' =x/L, r=t 

one can rewrite the 1D extensible beam equation as 

El 

pL4' 

(2.69) 

v + CV, + Acos(t) + v + - 12 v / vde = 0 (2.70) 
Jo 

and the boundary conditions change to 

v(e = 0,r) = v(e = 1,r) = 0, 

= 0,r) =v,( = 1,r) = 0 (2.71) 

Case 2: Inextensible beam (e = 0) 

In [28] the equation of motion for an inextensible beam is derived, with a small error 

in their derivation which will be discussed at the end of this section. As stated earlier, 

under the inextensibilty condition, Eq. (2.22), q is a function of q. This relationship 

is simplified as follows [28] 

12 
qi,x — q2, (2.72) 

Hence, the potential energy due to axial force, Eq. (2.32) can be expressed as 

Va(q2) = —PO fqdx (2.73) 
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The expression for the bending moment of an inextensible beam, Eq. (2.26), 

becomes 

M = EIij 2 (2.74) 

where '2 is the curvature of an inextensible beam. As discussed before in section 

2.3.3, the curvature expression for the inextensible beam is Eq. (2.23) and after 

expansion, it is written as 

(2.75) 

The energy due to bending is written as 

Vb = El j ic22dx = EI f (L (i + q + dx (2.76) 

Using Eq. (2.76) and (2.73), the expression for kinetic energy and damping force, 

and using the Lagrangian mechanics, one can obtain the equation for motion of an 

inextensible beam in terms of q2 [28] 

P q2U + cdq2,t + A cos(t) + EIq2, ( 2'.. (i + q) + (i + -Iq22'•) 

+ EIq2 (i + q + q) + P0q, = 0 (2.77) 

Although Eq. (2.76) is obtained from Eq. (2.75), but the order of magnitude of 

the neglected terms in these two equations are not the same. In Eq. (2.75) the terms 

with order higher than q are ignored, but in Eq. (2.76) the q term exists. If 

one is interested to keep up to fourth order terms in (2.76), then Eq. (2.75) should 

include these terms as well 

(2.78) 
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Now by inserting Eq. (2.78) into (2.76) I get the correct equation for Vb 

Vb (q2) = EI f (q (1 + q + q)) d  

Finally using the corrected form of Vb yields 

P q2,tt + 

(2.79) 

cdq2,t + A cos(wt) + EIq2, (1 + 6q) + (1 + 2q)) 

+ EIq2, (1 + q + q) + Poq2, = 0 (2.80) 

with the boundary conditions given by Eq. (2.68). 

the non-dimensionaized format of the inextensible beam equation is 

0 

(2.81) 

with the boundary conditions defined by Eq. (2.71). 
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Chapter 3 

Static Solution 

The goal in this chapter is to derive the equations of a 2D elastic extensible beam 

for the static case, find the buckling load and the equilibrium paths when the beam 

buckles. The results are also compared with the static behavior of the 1D extensible 

and inextensible beam. 

3.1 Static Equations 

The general equations of motion for a 2D extensible beam is derived in Chapter 2, 

Eq. (2.53). For the static case, these equations are 

Ve=O, 

Me =V(1+ (—A+7-1) cos O+Vsin  ) cos 0 

+ (—A + 7-1) cos 0 + V sinO  
) sin 0 - 

(—A+7-1) cos 0--I--V sin 0)0( A 
2 Cos  

VC= (1+ (_A+71) cos 0+V sin 0) sin O 

(3.1) 

with the boundary conditions 

7-1(=i)=O, V(=1)=v(=1)=O, 

M(e=O)=o, M(=i)=o, 

u(=O)=O, v(=O)=O (3.2) 
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The first two equations with the associated boundary conditions yield 

= 0, 

(3.3) 

Substituting the above equations into Eq. (3.1) results 

= A(1—  - cosG)sinO 

A 
= (1— 2 -Cos ) Cos O— (1— —i) 

= (1— cos 0) sin  

(3.4) 

(3.5) 

(3.6) 

= —M (3.7) 

By combining Eqs. (3.4) and (3.7) obtains 

k +A(1— A—cosO) sin O = 0 

From Eq. (3.2) the boundary conditions for the above equation are 

G=o)=O, O=1)=O 

(3.8) 

(3.9) 

To summarize, the static problem is defined by a second order ordinary differential 

equation, Eq. (3.8), with the above boundary conditions. Equations (3.5) and (3.6) 

relates the axial and transversal displacement to 9. Our interest in the static case is 

to find the transversal displacement. Comparing Eq. (3.8) and (3.6) yields 

9+Av=0 (3.10) 
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So 

1 
V(0 = —O+c1 (3.11) 

At the beam ends both the transversal deflection and the moment are zero, so 

that c1 = 0. Identical results have been obtained in [16] with a different technique 

(and notations). The goal is now to find a slope O() such that it corresponds to 

an equilibrium deformed position of the beam. Once 9(e) is found, Eq. (3.11) can 

be used to compute the transversal displacement. It can be noticed that a trivial 

solution O() = 0 exists, i.e. the fundamental solution, however what is interesting 

here is to find a nontrivial solution corresponding to a deformed equilibrium position 

of the beam. 

Static Equation, Alternative Derivations 

The equation for the inextensible and 1D extensible beam can be easily obtained by 

dropping the inertia and damping terms in Eqs. (2.81) and (2.70) respectively. One 

can write the 1D extensible beam static equation as 

1 
v + Av - A2  I vd = 0 

Jo 

and the boundary conditions 

v(=0)=v(e=1)=0, 

v(=0)=v(.=1)0 

For the inextensible beam, the following equation is obtained 

(3.12) 

(3.13) 

ve(4(1 + 6v) + 4vv(1 + 2v)) + v(1 + v + v) + Av 0 (3.14) 

with the (same) boundary conditions (as) defined in Eq. (3.13). 
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3.1.1 The Buckling Load 

Before discussion on the nontrivial solutions for the 2D extensible beam, the properties 

of the fundamental solutions are studied. It turns out that it is sufficient to consider 

the linearized problem around 0 = 0 when the fundamental path is analyzed [16]. 

Based on this analysis one can find the buckling load and eigenmodes of the beam. 

A linearization of Eq. (3.8) yields 

(3.15) 

From the above equation and the associated boundary conditions, Eq. (3.9), it follows 

that the eigenfunctions are given as 

0. (e) =c,  COS (nire), n=1,2,3,... (3.16) 

where c, coefficients are arbitrary. Insertion of Eq. (3.16) into Eq. (3.15) yields 

((n)2 + A(1 - )) Cn cos (n) =0 (3.17) 

Or 

(n)2 + A(1 - ) =0 

must hold in general. From the above equation one can find the expression for the 

buckling load . The solution to this second-order equations is given by 

Acr  4m2ir2) (3.19) 

The above equation shows the dependency of the buckling load on the slenderness 

ratio of the beam, p. Based on classical Euler-Bernoulli beam theory, either for 

the inextensible beam or 1D extensible beam, one can derive the expression for the 

buckling load as [27, 28] 

ci= 2PE (3.20) 
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where 

7r 2_E1 

L2 (3.21) 

is the Euler buckling load. The above equations can be rewritten in terms of the 

non-dimensionalized parameter A as 

and 

Acr = nAB (3.22) 

= 
(3.23) 

Interestingly, in contrast to the inextensible or 1D extensible case, for the 2D exten-

sible beam only a limited number of buckling loads exist and their value depend on 

the slenderness of the beam [16]. Furthermore, Eq. (3.19) shows that for n = 1 when 

u < 2ii- no real solutions (buckling loads) exist, implying that for short beams buck-

ling never occurs. A physical interpretation of this could be that the shortening of 

the beam compensates the increase of the load that much that buckling never occurs 

[16]. In Fig. (3.1) the ratio of buckling load for 2D extensible (for n = 1) to 'E 

versus slenderness ratio ,.t is plotted. This figure shows that for large values of p, the 

buckling load of 2D extensible beam reaches the Euler buckling load. 

3.2 Equilibrium Paths 

In [16] the exact solution of Eq. (3.8) is obtained in terms of elliptic integrals. The 

procedure is as follows. First Eq. (3.8) is multiplied by O, so that it becomes 

ee+0A(1 — -cose)sinO = U 

which can be written as 

d (102 — A cos 0 + A Cos, 
0) =0 

d2 

(3.24) 

(3.25) 
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Figure 3.1: Buckling load of a 2D extensible beam 
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where it is immediately integrable. At the ends of a simply supported beam, 0 is 

unknown, whereas 0 = 0. Integration of the above equation and letting a be the 

unknown slope at the ends of the beam, it follows that 

Therefore 

0 = 2 Acos0_± a 2 Cos  A 
—cos a 22 2 

- e)(h2 - sin 2 + e(h4 - sin 40 4 

where the positive root is chosen and 

A 
e = -) 

h = sin. 

In order to simplify the notation, a new variable q is defined as 

sing 
sin = 

sin 

(3.26) 

(3.27) 

(3.28) 

(3.29) 

Since it is known that 9 will have n + 1. extreme values (See Eq. (3.16)), the new 

variable 0 is expected to vary from - to nir - from one end of the beam to the 

other end. Using this variable, Eq. (3.27) can be rewritten as 

= 2h cos V1-  e + h2e(1 + sin 2 ) (3.30) 

The left hand side of this equation can be written as 

dqd9 2h cos q 
= dciçb = h2sin2 

Combining this equation with Eq. (3.30) yields 

(3.31) 

= (1— h2 sin 20)(1 —  e + h2e(1 + sin2 )) (3.32) 
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The above equation can be integrated to yield 

f d  
Jo (1_h2 sin 2)(1_e+h2e(1+ sin 2)2n 

The above integral on the left side of equation can be reduced to an elliptic integral 

by the substitution of variables 

sin 2=  (1—e--eh2) sin 2 b  
1—e+2eh2 - eh2sin2?i 

with this substitution Eq. (3.33) becomes [16] 

(3.33) 

(3.34) 

,Lt\/ i: nd'çb -  n  I  1+eh2  

2 Jo 1_e+2eh2_h2(1+ eh2) sin2 - 1_e+2eh2 Vl_e+2eh2) 

(3.35) 

Where the integral in the above equation is a complete elliptic integral of the 

first kind, K(k) and its values are tabulated. For a given e and p, h and hence the 

unknown slope at the beam ends can be calculated. Having this value as the initial 

condition for Eq. (3.8) the expression for O() at equilibrium can be derived. Having 

this expression one can find the transversal displacement, v(e) and hence the equilib-

rium path. 

Equilibrium Path, Alternative Derivations 

The equilibrium path for a 1D extensible and inextensible beam can be obtained from 

numerical solution of Eq. (3.12) and Eq. (3.14). In [27] the exact solution of Eq. 

(3.12) has been derived. Figure (3.2) compares the equilibrium path of 2D extensible, 

1D extensible and inextensible beam for the slenderness ratio y = 10. In Fig. (3.3) 

the difference between the exact solution of a 2D extensible beam and 1D extensi-

ble/Inextensble beam are depicted. Results show that there is always a good match 

between the 2D extensible and inextensible beam results, however the 1D extensible 
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model is not accurate for predicting the shape of beams with large p. By increasing 

the differences between the results of these three different models increase. 

0.1 

0.08 

0.06 

0.04 

0.02 

0 

_0.02o 

— 1D Extensible 
--- Inextensible 
—2D Extensible 

0.2 0.4 10.6 0.8 1 

Figure 3.2: Equilibrium path for a buckled beam, p = 10, A = 1.01A 

Also in Fig. (3.4), the maximum deflection of the beam versus different axial 

forces, i.e. different values of A, for ji = 150 are plotted. Again the results of 

inextensible and 2D extensible model are very close. By increasing the external 

applied force the difference between results of these three models rapidly increases. 
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Figure 3.3: Difference between the exact solution of 2D extensible beam and (a) 1D 
Extensible and (b)Inextensible beam 
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—21D Extensible Beam 
- - - Inextensible Beam 
- - -1 D Extensible 

1.08 1.1 

Figure 3.4: Load-paths for 2D extensible, 1D extensible and inextensible beam, 
ii, = 150 
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Chapter 4 

Dynamic Solution 

This chapter is concerned with beam dynamics. First the linearized equations of 2D 

extensible elastic beam are investigated. Based on the linearized equations the ex-

pressions for natural frequencies and mode shape of the beam are derived. Employing 

the Galerkin mode shape expansion method and expanding the non-linear terms into 

a Taylor series, the non-linear partial differential equations (PDEs) of motion are 

approximated by a set of ordinary differential equations (ODEs). The effect of higher 

order terms in the Taylor series expansion as well as the effect of including higher 

order mode shapes in Galerkin's method are studied. The same approach is employed 

to approximate the PDEs of ID extensible and inextensible beam models. 

4.1 Linearized Equations 

The general equations describing the motion of a forced 2D extensible elastic beam 

with damping have been derived in Chapter 2, Eqs. (2.53) and (2.54). For small 7-1, 

V, M, u, v and 0, and for undamped free vibration of the beam (C = 0, A = 0), one 

can linearize the non-linear equations as [5] 

UTT, V = VT.,-, 

= Va - - 

v=a9, 0=—M (4.1) 



or 

where 

A 

A 2 

From Eqs. (4.1) it follows that 

= 

06 
UTT 

U.,- - /J2Ue = 0 

Also the derivative of third equation in (4.1) can be expressed as 

or 

= Va - AcO - 

= v71.c - Ac( !v) - y2(' )v 

Ce 

&2 1 
= 

which can be re-written as 

v1a - Ac( !v) - y2(1 )v 

+ v-a2 - Aciv - = 0 

50 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

In summary, for small displacements, the differential equations describing the axial 

and transversal vibration are 

- = 0, 

ve + v.,-a2 - Aav - 0 

From the boundary conditions, Eqs. (2.54) one obtains 

(4.8) 

u('r,=0)=0, u(r,=1)=0, 

v(r,=0)= 0, V(-F, = 1)=0, v(r,=0) =0, v(r,= 1)=0 

(4.9) 
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As can be observed from Eqs. (4.8), the two differential equations are decoupled. 

The solution of system (4.8), (4.9) is assumed in the form 

u(, T) = U() sin(wir + qi), 

v(6, -r) = V()sin(w2T-i--çb2) (4.10) 

Where w1 and w2 are the frequencies of axial and transversal vibrations and 01 and 

'2 are constants. Substituting Eqs. (4.10) into Eqs. (4.8) yields 

U() + []2U() = 0, 

Ve() + ([w2]2 - )a) V() - [w2c]2V(e) 0 (4.11) 

Considering the boundary conditions, Eqs. (4.9), the solution of the above equa-

tions can be obtained as [5] 

2n-.-1 7r6l 
= C1 sin  2 

V(e) =C2  sin [n'ire], m— 1,2,3,... (4.12) 

where CIn and 02n are constatns. Here U() and V() are the mode shapes for the 

axial and transversal vibration of the beam respectively. For n = 1 the corresponding 

frequencies are [5] 

pir 

/ 2_ 
= j -2  aA 

V 
(4.13) 

which are the natural frequencies for the first mode axial and transversal vibration 

of a 2D extensible elastic beam. 
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4.2 Nonlinear Equations 

The next step is to find a solution for the non-linear equations of a 2D extensible 

beam, i.e. Eqs. (2.53) and (2.54), which are nonlinear PDEs in space and time. These 

PDEs and associated boundary conditions form an initial boundary-value problem. 

In general, the exact or closed-form solutions for this class of problems are not known. 

Consequently, one seeks approximate solutions of the original problem. This requires 

firstly approximating the non-linear terms by Taylor series expansion and secondly 

converting the PDEs into more manageable low-order sets of ODEs. The nonlineari-

ties in the beam equations are in terms of sinusoidal functions. 

The effect of including higher order Taylor series terms on the maximum deflection of 

the static beam are investigated and results are shown in Figs. (4.1) and (4.2). In Fig. 

(4.1) for A = 1.5A and different p, the maximum deflection of the beam in static 

case obtained from the exact solution and Taylor series expansions are compared. In 

Fig. (4.2) for p = 10 and different A results are compared. These figures show that 

as increases, an error of Taylor series expansion decreases. Furthermore for a larger 

A one gets larger errors by using Taylor series expansion. Accordingly, for the range 

of p and A (p < 1000, A < 1.1A,.), using 5th order Taylor series expansion should 

guarantee the error of static deflection to be less that 0.01%. Henceforth I use 

order Taylor series expansion in approximations. 

4.2.1 Galerkin Method 

There are two classes of approximate solutions of initial boundary-value problems: 

numerical methods and analytical methods. Numerical methods (e.g., finite differ-

ences, finite elements, and boundary elements) replace the initial boundary-value 

problem by a set of nonlinear algebraic equations, which are solved by using a variety 
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Figure 4.1: The error in calculation of maximum deflection (between Taylor series 
approximation and exact non-linear terms), A = 1.5A. 
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Figure 4.2: The error in calculation of maximum deflection (between Taylor series 
approximation and exact non-linear terms), ,u = 10 

of techniques. Analytical methods can be divided into two categories: direct and 

discretization techniques. For weakly nonlinear systems, direct techniques, such as 

perturbation methods, are used to solve the nonlinear partial differential equations 

with associated boundary conditions. If, for example, q(x, t) denote the dependent 

variable of a PDE, in discretization method, one assumes the solution in the form [7] 

N 

q(x,t) = E  cb(x)y(t) (4.14) 
n=1 

where N is an integer. Then, one either assumes the temporal functions y(t) 

time discretization, or the spatial functions (x) space discretization. With time 

discretization, the y(t) are usually taken to be harmonic and the method is called 

the method of harmonic balance. The result is a set of nonlinearly coupled ODEs, 

in space, for the (x). With space discretization, the (x) are assumed and used 
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in a variational or weighted-residual method. The result is a set of nonlinear coupled 

ODES, in time, for the y(t). In the method of weighted residuals (e.g., Galerkin, 

collocation, least squares) one works directly with the differential equations and asso-

ciated boundary conditions. In the variational methods (e.g., Rayleigh-Ritz), one uses 

a functional related to the differential equations and associated boundary conditions 

and works with the problem in a weak form. The functional is defined as an operator 

that maps a function into a scalar or a functional is a function of functions, such as 

the integration operator. Variational methods are not applicable to all problems and 

thus lack generality [7]. 

4,2.2 Case I: First Mode Shape Expansion 

For our specific problem I use the Galerkin discretization method. The vibrational 

mode shapes are considered as known spatial functions (mode shape expansion) and I 

obtain a set of ODES for the temporal functions, y (t). The vibrational mode shapes 

for a 2D extensible beam are expressed in Eqs. (4.12). Using these mode shapes, one 

can assume 

= 

M(,r) = 

n=1 

N 

n=1 

N 

12n_1 1 
cos L 2 , V(, T) = 

M n (T) sin [nir], 

=> 'v(T) sin [n1r], 
m=1 

N 

N 

n=1 

N 

n=1 

V(r) cos [nir], 

1 2n— 
un(r) sin L 2 
O(T) cos [n-x6] 

(4.15) 

The first approximation to the solution of nonlinear equations is to set N = 1 in 
the above equations, i.e. using only the first mode shape expansion. By expanding 

the nonlinear terms into 5th order of Taylor series and substituting Eqs. (4.15) into 
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(2.53), integrating the equations over the length of the beam and for the first mode 

shape expansion, one obtains 

7-11(r) = 2 
7t 

V1 (T) = —vi,(r) - - Cv1,(r), 
M 1(-r) = u1(r)V1(r) + Vi(r)a + AV1(T) - i(T)Vi(Y) - 

It It 'it It 

1 02 (T ) 
Ui(T) = —O(r) [1 - O16 1(r)] + [. - 

1074 I + —7-11 () [_ O15 1(r) + 

+ -Vi(r)Oi(r) [1 - O(r) + 
12 1 

7 2 214  
vfr) = 01 (-F) [Ce (1+ (r) + 020 i(r)) + Ui(T) (i + O45 1 (r) + 4725 

Oi(r) = 
It 

(4.16) 

where fl(r) = —Acos(r) is the excitation force. In simplified form, Eqs. (4.16) 

can be expressed as 

A1e1,(r) + B1U1,TT(T) = E1, 

A201,TT(r) + B2ui,.,_,-(r) = E2 

(4.17) 
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where 

A1 = + 
11• 

B 1L 
1 - -2 

1 
= Xvi() - 701 (T) 

-; - - -C {Lui,(r) + CA, (01 , 

A2 = Q0, (T) (1 - 
2/2 27r 2 1 ) I 

B2=  .LO1(r) (1_O(T)) (1 g i oi(r)), r 

= - U1(T) - O(r) + O(r) -  1 MO1(T) - - f1(T)Oi(T) (1 - 

2,u2ir 4i 

- 2 2UU1(r 102 (T)  [Lul,T(r) + O1,T (T)] 

(4.18) 

In the above equations 

(4.19) 

where a is defined in Eq. (4.2). Also in Eqs. (4.17), vi (r) is given by the fifth equation 

in (4.16). I have defined vi,(r) = O,(7-) + Lu1,(r) and v1,(r) = O1,(r) + 

Lu1,(,r) + M, where 7 01 

= [a (1+ 1 02 (T) + O(T)) +u(r) (1+ O(r) + 

L = (r) [1 + 9r) + 

r 

L = Oifr),()a [1+ O(r)] + 14 428 ' + 2 

2 
+ - Ui, r(T)Oi,(T) + ui(r)O1(r)o,(r) (4.20) 

As can been seen from Eqs. (4.17), the final approximated equations are two second 

order ODEs. These equations have been obtained by employing the Taylor series 
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expansion and the fist mode shape expansion. In general, by considering N number 

of the mode shapes, one gets the final ODEs in the form of 

RVIT = E (4.21) 

where R is a 2N x 2N matrix of coeffiecients, E is a 2N column vector and 

V = {01(r) 02(r) ... &pr(r) u(r) u2(r) ... uN (y)}T (4.22) 

For N = 1, the equations are in the form of Eqs. (4.17). Here I derive the 

equations for the N = 2 case as well and in the next section I study the effect of 

including higher order modes in Galerkin mode shape expansion method. 

4.2.3 Case II: First & Second Mode Shape Expansion 

By expanding the nonlinear terms into 5' order of Taylor series and substituting Eqs. 

(4.15), (N = 2), into (2.53), integrating the equations over the length of the beam 
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for the undamped case one obtains 

2 

712(T) = 2 
3ir 

= -vl,TT(T) - 

1 
V2 (T) = 

2'ir 

Mi(T) = ui(T)V1(T) + + vi (r) -T  35 

Lel (T) +  2(T)V2(T) 
ir 15 21 55 

- gu2(i)V1(r) + ui(r)V2(r) + gU2(T)V2(T) 

M2 (T) = — TO 27r 15 u2(r)V2(r) + cEV2 + Av2(r) + 14 92(T)V2(T) 

1 
- - G2,7 (T) +  

2ir 

- u2(r)Vi(r) + 70 

fli(r)v2(r) + 712(T)V1(T) 
T) 26 3 35 7 

+ ui(r)V1(r), 
10 

u(r) 28 —G2(r) 2A  - (1 + 2-9 4 ' ) I 
117 0 2(7-) 

+ -7ti(r) [1_ (02(,r) + O(r)) + (e) +04 (r))VA 2 ] 

56  r 2142 
+ 15T22 L'- 

124 2 ( 2A 1 152 248 
- 37 2 92(T) 1 - + ,222(T) (Vi(T) + 

+91 (-r)02(r){— 152  ( 2A\ - --7L,(r)(1— 9(r) - 

1052 7r/.t2 

- - - fl 2 ' 2(T) (1— 12() - O(T) - 16  O1(r)O2r))} 

152 
+ 10522V2(T)&,(r) 22 9(r)2(T) (i - 
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U2 (T) = 63201(T) (1 - 3 ir 
7 2A\) + 2 2(T) (1_ (02 (-r) + 

+ 8 92 
22V1(r)91(r) +  4957r202 (T) (i - 2A\ 

88 184  
+ 1357r2 A 2 (V2(r)91(r) + Vi(1-)2('7-)) 49522V2(r) 2(i-) 

+ 1(T)O2(r){_g ( 88 1 - 2A 

- 2() (1_ 1 02 (_r) - 02 (,T) - 

3ir 

-  712 () (i_ (02 (,T) + 02 (,T)) 
37r/,t2  

260 A 
693 7r2 ft 2 ) } 

+ l62 2 (T) (O(r) + 04 (T)) - 6121(T)01(T) (i_ O(r)), 

vi (-r) = 1(T){!a (i + (r) + 835 2 (r)) 

11 211 
+ Ui(T) + g9(r)) -  5 91 U2 (r) (1 + O(r)) } 

+ 02 (7) 1 1(T) + 55 2(T) + gu2(T)Ol(T)O2(T) 

V2(Y) = O2(r){-a (1_ (r) + + U2 (T) ( - 182 01(T)) 

+ 13 ui(r)} + Oi(T) (—Ui(T) -  9 U2(r)) 
70 10 T4 

+ 0(r) 13 93 770  13 (_u1(T) - U2 (-r) - 70 U2(T)01(T)0(T), 

0i(T) = 

02(T) = -M2(T) 

(4.23) 
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In simplified form, Eqs. (4.23) can be expressed in the form of Eq. (4.21) with 

A1 B1 G1 D1 

A2 B2 C12 1)2 

A3 B3 C3 

A4 B4 C4 D4 

E={E1 E2 E3 E4 IT 

where 

V = {Oi('r) 02(r) u1() u2(r)}T 

A1 = ! + 21r1], 
'ir 

B1 =! [c 121 + Q22F1] — 
7r 3 7r 

=! [Liiz1 + L21r1] 8 208 — - Vi(T) + V2 (r), 
157r lO5ir 

=! [L121 + Z22r1] — 8 -vi(-r 112 ) V2 (7 ), 
ir 2lir 135ir 

= _[! (&z + 2r1) + Av2(r) 
7r 3 

24 — p 02 (T) + --fi(r) ( 15 u1(r) + 

A2= + 4'y2 r] + --, 
It 3ir 

B2 = {i2z2 + Q22r2], 
It 

C2 = I[L11 + L21F2] 176 - vi(r) - 32 
It lO5ir 63ir 

= [L12 + L22F2 16 ] + Vi(T) - 32 
It 1357 165 

E2 = —[ (1'2 + R2F2) - AV, + irOi(r) 

fr) (370 

176 16  
+f' -16 a+ u1fr) 

lO5ir2  

(4.24) 
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A3 = ¶ 3 /j2 + Q21P3], 

1 

B3 = 73 A 2 [123 + Q22F3], 

C3 = [L11 z.3 + L21F3] + ---72 U2 (i + + 02 (,F)) - 

+ jO1(r)O2(r) (1 - O(r) - (r) - 

32 [L12t3 + L221'3] + 3 202 02 1(r) (i - 

+ 31r201(T)02(T) (1_ O2 3 (r) - 9(8 2 r) - 
16 ) ) 

E3 = -[ (J13 + R2r3) + u(i-) - 28 (i - 2A)  O('r) 

152  2A) 
l05lr201(T)O2(7) (i - 
2A) ( 224 

+fi(r) -9i(r)+ 
15 

A4 = 32 [11z4 + Q2,r4l, 

B4 = 32 [124 + 022r4l, 

= 32 [L114 + L21F4} + 322&1(T) (i - 9IT A (r)) 

+  I - (r) - S - 

8 2 16 

D4 = [L124 + L22F4] + 70 A 92 (1+ (9(r) + O(r)) - + 

+ 

6848 608 '\ 

--0(T) - ioe2(T)945 1 )] 

01 +  - + U(T)) - 

2 / / ,f. 3,, 9 , - SS 3 
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E4 = —[ (14 + R2F4) U2(T) - 4 ( - 2,1)  O(r) 

- 135 88 201(r)02(r) (i - 0 + 49522 (r) - - 

2A\ 92  2 (i 2X) 260 ). 

352 
+ ,2fi(r) 63 135 02 (T)) 

(_ 32 0,( ,T) 
- 

(4.25) 

I have defined vi,(r) = + Q12O2,(r) + L11u1,(r) + L12u2,('r) + ] i 

and v2,77('r) = Q2101,rr(r) + Q2202,rr(T) + .t21u1,(T) + L22u2,(r) + R2, where 

( 11 211 
ii = !a [i + + 35  + ui(T) 35 + 1155 ' 

1 206 
U2 (T) (1_ 9(r)) + 

- 22 1 9 103 
Q12 = —9l(r)92(r)c + u1(r) + gu2(r) + u2(T)O(T), 

35ir  385 
111 211 2 1 1 
35 + gUi(r)] + 21 

112 = -  Oi(r) [1+ O(r)] + 02 (T) + 103 2 

22 422 2 
= gui,r(T)&i,r(r) + 11O(i)ui55 1 ,(r)Oi,(r) - 

— g0(T)u2,r(T)O1,r(Y) + 412 Oi(r)O2(r)u2,(r)91,(r) + -01(T)9(r)a 
57r 1 

422 206 
+ Ul(T)ol(T)eT(Y) - u2(T)Ol(T)9(r) + U2(T)O2(T)0(T) 

385 1 
2 18 206 2 

+ 21 u1,(r) 92,(r) + gU2,r(T)O2,r(T) + 385 Ol(r)u2r(T)O(r) 

412 44 22 
+ gU2(T)Ol(T)Ol,-(T)92,r (T) + -O2(T)O1,(T)O2,(T) + 

35r 35ir 
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13 
Q21 = ---01(r)82(r) - u(r) (1 + 0(r)) 

571 

9 279 2 17 
U  13 02(_r) 
2 60 (- 14- 0770 1(T) - 91 01(r)02(r) - 70 2 

022 = 0' - (i - 0(r) + 0(r)) + 13 u(r) 
271 70 

(10 

7 17 2 13 
+U2(Y) - - g01(r)02(r)), 

13 21 = 10  (r) (1 - 063 1(r) + 0i  

(19 93 2 17 13 
L22 = -oi(r) + 0i(r)) - 02(r) - 01(r)92(r) + 

14 770 10 (182 70 
1 13 - 0 fr)ul,T(1-)0l,T(T) - 

34 - O1(r)02(r)u2,(r)0l,(r) - 1302 - 385 1 
13 279 - U1(T)01(T)0,5 1 (T) - g?L2(T)01(T)0,r(T) -a02(T)0(r) 

17 13 7 - U2(T)02(T)0l2(T) + gul,r(r)92,r(r) - 
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13 27 
- gU2(T) 0l(T) 02r (Y) + — a02('r)022 (T) 

3571 

R2= 
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Also in Eqs. (4.25), the following expressions are used 

2 6 
= + U2 (-r), 

15 7 
7 1 13 

F1U2(T) —--a — ui(T), 
15 37r 105 

44 4 
u1(r) — 2(r), 

3ir 105ir l5ir 

"2 = u1(r) + 
63 55 

A3 56 1712 152 
= 01 ('r) + 15 g-Oi(r) 

105 
F3 = 76 01  - - 124 -2(r), 

63 
A4 8 Oi 88 = —(r) - 02 63 T3-5 

44 92 
F4 = —Oi(T) + 495 02( -) 

(4.26) 

4.3 The Effect of Including Higher Order Mode Shapes 

In previous sections I derived the approximated equations governing the vibration of 

an extensible elastic beam considering either the first mode shape or the first and 

second mode shapes in Galerkin's method. Inclusion of more mode shapes leads to 

more accurate solution. However, this needs working with higher order ODEs with 

more complicated terms. In this section I compare the numerical solution of the 

final ODEs obtained for Case I, N = 1 and Case II, N = 2 in Galerkin mode shape 

expansion, i.e. Eqs. (4.17) and (4.24) respectively. The numerical solution is obtained 

by using the Runge-Kutta method. The simulation is performed for the undamped 

free vibration of a beam with different i and A. The time history of maximum 

transversal deflection of the beam Vmax are compared and results are shown in Figs. 

(4.3), (4.4), (4.6) and (4.7). In all figures the black line represents the simulation 

results for Case I and the grey line represents the results for Case II. Numerical 
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simulations show that for a fixed A, by increasing the slenderness ratio, the difference 

between Case I and II decreases (See Figs. (4.3), (4.4)). Figure (4.4) shows that even 

for a long period of time, there is always a very good match between Case I and II 

for large p. The frequency difference between Case I and II for A = 0 and different 

values of ;i is shown in Fig. (4.5). Also results show that for a fixed j by increasing 

A one gets similar results from both Case I and II (See Figs. (4.6), (4.7)). 

0.04 

0.02 

-0.02 

-0.01k 

I f I 
1 2 3 4 5 

Time (t) 

Figure 4.3: Dynamics of maximum transversal deflection of the beam in Case I and 
Case II, ,u = 10, A = 0 

Dynamic Solution, Alternative Derivations 

By employing the Galerkin's method one can also approximate the PDEs of 1D 

extensible model, Eq.(2.70) and inextensible model, Eq. (2.81) by a second order 

differential equations. For both cases the transversal deflection are expressed as [28, 7] 

v(r) sin [nir] (4.27) 
n=1 
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Figure 4.6: Dynamics of maximum transversal deflection of the beam in Case I and 
Case II, p = 10, A = 5 
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Figure 4.7: Dynamics of maximum transversal deflection of the beam in Case I and 
Case II, y = 10, ,\ = 9 

Considering the first mode shape expansion, N = 1, substituting the above equation 

into the partial differential equations governing the vibration of 1D extensible beam 

and integrating over the length of the beam, one obtains 

fi(r) vl,TT (r) + Cv1,(r) + ir2(A - 7r2)vi(r) - 1 4 2 t v13 (r) + 0 (4.28) 

And from Eq. (2.81), inextensible model one gets 

v1,TT(T)+Cv1,T(T)+( - )vl(T)_ l623(r) 3 8 v(r) + 0 (4.29) 
2 32 7r 

In the next chapters I study the free and forced vibration of different models of the 

beam by solving the ODEs obtained in this chapter for 2D extensible model, Eq. 

(4.17), 1D extensible model, Eq. (4.28) and inextensible model, Eq.(4.29). 
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Chapter 5 

Free Vibrations 

Free nonlinear vibrations of an extensible elastic beam are studied in this chapter. 

The effect of external axial load, which corresponds to A, the slenderness ratio, , 

and the rotary inertia, corresponding to y, on the natural frequency of the beam is 

investigated. Also the configuration of resonance curve is studied for different system 

parameters. The results are compared with those obtained for 1D extensible and 

inextensible models. 

5.1 Free Vibrations of Extensible Beams 

Presented results of numerical simulations of the 2D extensible beam equations are 

obtained by using the Rung-Kutta 7th & 8th order method (See Appendix A). In all 

simulations the beam is assumed to be undamped and without excitation, (C = 0 

and f, (T) = 0 in Eqs. (4.24)). Figure (5.1) shows the maximum axial, u(-r), and 

transversal, v(i-) displacement for A = 9 and different j. For these values the beam 

remains not buckled. Results show that the amplitude of vibration in the axial 

direction is small (about 10 % of transversal amplitude of vibration). The frequency 

of the axial vibration is twice as large as the frequency of vibration in the transversal 

direction. The vibrations in transversal direction is around the straight position of the 

beam and the small vibrations in the axial direction is around the constant initial axial 

position. As M increases, the frequencies of vibrations in both directions decrease. 

In Fig. (5.2), the influence of the parameter A, which corresponds to the axial 

force, on the transversal vibration of the beam is shown. For small values of A, the 
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Figure 5.1: Axial and transversal displacements versus time 

p.=103 

beam is not buckled and the vibrations in the transversal direction is around the 

straight beam position. When the axial force becomes equal to the buckling load, 

A = Ac., the beam (is no longer straight) buckles. This is an equilibrium position 

and the frequency of vibration at this position is zero. Increasing the axial force 

further increases the buckling of the beam and vibrations are now centered around 

the buckled shape. For simulations in this part, 4u = 10 is used. For this value of 

the first buckling load is A. = 11.10219 (See Eq. (3.19)). 

In Fig. (5.3), the influence of A on the natural frequency of transversal vibrations 

for different values of p is depicted. Results show that, for the unbuckled beam, the 

larger A results in smaller frequency of vibration. At A = A. the natural frequency 

is zero and for the buckled beam the larger A results in larger frequency of vibration. 

For = 10 the buckling load is shown in the figure as A.,2. For p = 100 A = 9.879 

and for p = 1000 A. = 9.869 and both are represented as A.,1 in Fig. (5.3). 

Similarly, Fig. (5.4) shows the variations of natural frequency for different models 

with p = 1000. As can be observed from this figure, the variations of natural frequency 

for different values of A in 10 extensible and inextensible models is qualitatively 
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Figure 5.2: Transversal vibration for p = 10 and different values of A 

similar to the variations of natural frequency in 2D slender (large /L) extensible model 

The effect of rotary inertia on the natural frequency of transversal vibrations is 

depicted in Fig. (5.5). Results show that for the unbuckled and buckled beam, by 

increasing 'y, which represents the mass moment of inertia of the beam, the natural 

frequency decreases. Also numerical solutions show that the natural frequency of 

unbuckled beam is always larger than that of the buckled beam. The same trend is 

observed for beams with a large p. 

The natural frequency of the nonlinear vibrations depends on the initial conditions 

and hence the natural frequency changes as the amplitude of vibrations increases. 

The relationship between natural frequency and amplitude of vibration can be shown 
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Figure 5.3: Influence of axial force, A, on the natural frequency of transversal vibra-
tions 

with a curve named backbone curve [43]. The backbone curve is an important tool in 

the understanding the nonlinear resonance curve and defines the natural frequency 

as a function of the amplitude of response of the system without damping. For a 

linear oscillator the backbone curve is a vertical line at w = w, in the frequency-

amplitude diagram, where wn is the natural frequency. For a nonlinear systems the 

backbone curve may either lean to the right (hardening nonlinearity) or to the left 

(softening nonlinearity). In Fig. (5.6) the resonance curve of a nonlinear system 

with hardening nonlinearity and also a system with softening nonlinearity and the 

associated backbone curves are shown. In this figure w1 is the natural frequency of 

vibration for very small amplitudes. 

In Fig. (5.7) the backbone curve for different values of i and for the unbuckled 

beam, A = 0 are plotted. Results show that a short beam (small ), exhibits softening 
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curve for the free undamped vibrations and (b) the resonance curve for forced damped 
system with hardening and softening nonlinearity 

nonlinearity. For slender beams (large ,t4, hardening nonlinearity is observed. The 

softening type of nonlinearity in the simply supported beams was first recognized 

by Alturi [2]. He showed that the first mode of beams with one free end exhibits a 

softening nonlinearity and concluded that axial inertia is the dominant nonlinearity 

in these beams. For a short beam the axial deformation and inertia effects are more 

pronounced than in a slender one. Hence, according to Alturi's investigation, one 

expects the softening nonlinearity for the beam with small /2 and the result in Fig. 

(5.7) verifies that. However by increasing the slenderness ratio the effect of axial 

inertia terms will reduce and eventually leads to a situation in which the beam exhibits 

hardening nonlinearity. The 1D extensible model exhibits hardening nonlinearity and 

the inextensible model exhibits softening nonlinearity for different slenderness ratios 

[40]. Numerical simulations are also performed for the buckled extensible short beam 
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(p = 10, A = 11.2) and slender beam (p = 100, A = 9.9). Results show that the same 

trend as shown in Fig. (5.7) exists for the buckled beam, i.e. short beam exhibits 

softening type of nonlinearity and slender beam has hardening nonlinearity. 
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Figure 5.7: Amplitude versus natural frequency for different slenderness ratios, A = 0 

In summary, numerical results show that for the unbuckled 2D extensible beam, 

an increase of the axial force, A, decreases natural frequency. At A = A, the natural 

frequency is zero and for the buckled beam the larger A results in larger frequency 

of vibration. The variations of natural frequency for different axial forces in 1D 

extensible and inextensible models are similar to variations of natural frequency in 2D 

slender (large p) beams. Furthermore, for the unbuckled and buckled 2D extensible 

beam, an increase of the rotary inertia term, decreases the natural frequency. The 

rotary inertia effect is not considered in 1D extensible and inextensible models. Also 

results show that a short (small p) 2D extensible unbuckled/buckled beam exhibits 
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softening nonlinearity while in a slender (large j) beam hardening nonlinearity is 

observed. The 1D extensible model exhibits hardening nonlinearity only and the 

inextensible model exhibits softening nonlinearity only. 
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Chapter 6 

Forced Vibrations and Chaos 

The possibility of chaotic responses in forced vibrations of 2D extensible elastic beams 

is investigated in this chapter by numerical calculation of the largest Lyapunov ex-

ponent. The chaotic behavior is investigated for different amplitudes and frequencies 

of excitation. The results are compared with those obtained for 1D extensible and 

inextensible models. 

6.1 Lyapunov Exponents 

For investigating the forced vibrations and chaos in motion of elastic extensible beams 

I consider the spectrum of Lyapunov exponents, which has proven to be one of the 

most useful dynamical diagnostics for chaotic systems. Lyapunov exponents are the 

average exponential rates of divergence or convergence of nearby orbits in the phase 

space. Since nearby orbits correspond to nearby identical states, exponential orbital 

divergence means that orbits whose initial differences are very small will soon behave 

quite differently and predictive ability is rapidly lost. Any system containing at least 

one positive Lyapunov exponent is defined to be chaotic, with the magnitude of the 

exponent reflecting the time scale on which system dynamics become unpredictable 

[46]. 

For systems whose equations of motion are explicitly known one can calculate 

the Lyapunov exponents numerically. In this part I calculate the largest Lyapunov 

exponent (LLE) based on the algorithm proposed in [46]. The system with positive 

LLE is chaotic and the system with zero LLE exhibits regular behavior for the 
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defined initial conditions. For the simulations in this part the equations obtained 

from first mode shape expansion of 2D extensible model, Eq. (4.17), 1D extensible, 

Eq. (4.28), and inextensible model, Eq. (4.29), are used. 

In Fig. (6.1) the dynamics of LLE for the unforced undamped 2D elastic buckled 

beam (Eq. (4.17)). The test parameters are as follows: C = 0, f'fr) = 0, .\ = 11.15, 

= 10, 'y = 0 and initial conditions [0.01 0 - 0.00025 o]T) is shown. Behavior of 

the beam is regular in this case and hence the LLE eventually converges to zero. 

0.6  

0.5 

-0.1   
0 500 1000 1500 

Figure 6.1: Dynamics of largest Lyapunov exponent for a beam with regular behavior 

In Fig. (6.2) the dynamics of LLE for an elastic undamped extensible buckled 

beam (C = 0, A = 11.15, u = 10, 'y = 0) with chaotic behavior is depicted. The value 

of LLE eventually converges to a positive value (= 0.144) which indicates that the 

system is chaotic. For numerical simulation the following values are used: Amplitude 
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of excitation, A = 0.024, frequency of excitation, Q = 2.5, and initial conditions, 

[0.01 0 - 0.00025 0]T 
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Figure 6.2: Dynamics of largest Lyapunov exponent for a beam with chaotic behavior 

In Fig. (6.3) the variations of LLE for a specific buckled beam with t = 10, 

A = 11.15, 'y = 0, A = 0.024 and fixed initial condition, [0.01 0 - 0.00025 01T, 

and for different frequencies of excitations are shown. Results show that for a fixed 

amplitude of excitation, by increasing the frequency of excitation the LLE increases 

and it has the maximum value near the natural frequency of vibration. Beyond this 

maximum point, increasing the excitation frequency results in a reduction of LLE 

and for Q > 5 it is zero, i.e. the beam features regular behavior. 

Figure (6.4) shows the values of LLE for a fixed excitation frequency, Q = 0.05, 

and different amplitudes of excitation. The system parameters are the same as those 

used for obtaining the results shown in Fig. (6.3). Results show that for a fixed 
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excitation frequency, by increasing the amplitude of excitation the LLE increases 

and its value eventually saturates. 
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Figure 6.3: Largest Lyapunov exponent versus frequency of excitation for a 2D ex-
tensible beam 

In Fig. (6.5), LLE for ID extensible and inextensible models are shown. Here 

the system parameters and initial conditions, for v(r) and v,(-T), [0.0028 0], are the 

same as those used for calculating LLE for 2D extensible beam (Fig. (6.3)). Results 

show that for a wider range of excitation frequency, in comparison with 2D extensible 

model, the system behaves chaotically. For example at Q = 5 the 2D extensible 

model has zero LLE and hence shows regular behavior, while the other two models, 

1D extensible and inextensible, have positive LLE and therefore it has chaotic motion. 

The time history of maximum transverse displacement for the three different beam 

models are shown in Fig. (6.6). Clearly, the 1D extensible and inextensible models 

feature chaotic pattern in time history of transverse displacement while 2D extensible 
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Figure 6.4: Largest Lyapunov exponent versus amplitude of excitation for a 2D ex-
tensible beam 

model has regular pattern. 

One can also study the chaotic behavior of 1D extensible and inextensible models 

by employing the Poincar map. The dimension of equations for forced vibrations 

of 1D extensible or inextensible beam is three and hence the Poincar6 2D map can 

be shown for these models. Note the for the 2D extensible model, and for the first 

mode shape expansion, the dimension of the system is five and Poinca'ré map with 

one Poincaré surface is not applicable for studying chaos in this model. In Fig. (6.7) 

the Poincaré map of inextensible and 1D extensible models for Q = 5, A = 0.024 

are depicted. As shown in Fig. (6.5) the system for initial conditions [0.0028 0] has 

chaotic vibrations. The Poincaré maps also show that this initial condition is in the 

chaotic region. 

Numerical results show that different models, i.e. 2D extensible, 1D extensible and 
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Figure 6.5: Largest Lyapunov exponent versus frequency of excitation for a 1D ex-
tensible and inextensible model 

inextensible models, exhibits different forced vibrations behavior. The most accurate 

model, i.e. 2D extensible beam, for a short buckled beam and at a specific amplitude 

and frequency of vibrations (A = 0.024 and Q = 5) has regular behavior, while 

the simplified models, i.e. inextensible and 1D extensible beams, exhibits chaotic 

behavior. The simulations are also performed for a slender buckled beam with u = 

400, ). = 9.9, C = 0 and 'y = 0. For A = 0.024 and = 1.5 and the initial conditions 

[0.1 0 - 0.0025 0] (or [0.0318 0] for the inextensible and 1D extensible case), 

the 2D extensible and the inextensible models have a positive LLB and hence the 

beam motions is chaotic in both models. In contrast, the 1D extensible beam has 

zero LLE and has periodic vibrations with a high frequency. The time history of the 

three models for this case are compared in Fig. (6.8). 

In summary, numerical results show that for a fixed amplitude of excitation and 

in the 2D extensible model, by increasing the frequency of excitation the largest Lya-



85 

-r 

0 

ID Extensible 

Inextensible 

2D Extensible 

Figure 6.6: Time history of transverse displacement for different beam models, p = 10 
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Figure 6.7: Poincaré map of 1D extensible and inextensible models 

0.3 

punov exponent (LLE) increases and it has the maximum value near the natural 

frequency of vibration. Beyond this maximum point, increasing the excitation fre-

quency results in reduction of LLE and finally it reaches zero, i.e. the system has 

regular behavior. Furthermore, for a fixed excitation frequency and in the 2D exten-

sible model, by increasing the amplitude of excitation the LLE increases and its value 

eventually saturates. Also for a fixed amplitude of excitation, the 1D extensible and 

inextensible models have chaotic behavior in a wider range of excitation frequency 

(in comparison with 2D extensible model). Results show that different models, i.e. 

2D extensible, 1D extensible and inextensible models, exhibits quite different forced 

vibrations behavior. The most accurate model, i.e. 2D extensible model has regular 

behavior for a small value of u and at a specific amplitude and frequency of vibra-

tion, while the simplified models, i.e. inextensible and 1D extensible, exhibits chaotic 

behavior. In another case the 2D extensible and the inextensible models have chaotic 

vibration while the 1D extensible beam has periodic vibration. 
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Chapter 7 

Conclusions and Future Work 

In this thesis the equations governing large amplitude in-plane forced vibrations of a 

2D extensible Euler-Bernoulli beam under transverse excitation are analyzed. Em-

ploying Galerkin mode shape expansion method and expanding the non-linear terms 

into Taylor series, these non-linear partial differential equations (PDEs) of motion are 

approximated by a set of coupled ordinary differential equations (ODEs). The static 

behavior, free (nonlinear) vibration and chaotic vibration of 2D extensible beam are 

analyzed and the results are compared with those obtained from previous simplified 

derivations, i.e. 1D extensible and inextensible models. The main conclusions of this 

research are as follows. 

Static analysis: 

(i) An increase in slenderness ratio, j.t, or in axial load, A, increases the difference 

between the results of 2D extensible model with the results of 1D extensible and in-

extensible models. 

(ii) Higher order Taylor series expansions of the nonlinear terms lead to a more accu-

rate postbuckling path than lower order approximations in 2D extensible model. The 

influence of 6 1 order terms and higher on postbuckling equilibrium points is limited. 

Therefore, in this research, 5th approximation has been used. 

(iii) The error between using exact nonlinear terms and approximated (Taylor series) 

nonlinear terms decreases for larger values of slenderness ratio, or smaller axial 

load, A. 

Dynamic analysis: 
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(i) The partial differential equations governing vibration of 2D extensible beams are 

approximated using (I) first mode shape expantion and (II) first and second mode 

shape expansions. Results show that the single mode expansion (Case I) usually used 

in Galerkin methods may lead to incorrect conclusions under some conditions, espe-

cially for a beam with small A and p. Therefore, the second and higher order mode 

shapes should be included in Galerkin method. 

(ii) For the unbuckled 2D extensible beam, an increase of the axial force, A, decreases 

natural frequency. At A = A, the natural frequency is zero and for the buckled beam 

the larger A results in larger frequency of vibration. The variations of natural fre-

quency for different axial forces in 1D extensible and inextensible models are similar 

to variations of natural frequency in 2D slender (large jt) beams. 

(iii) For the unbuckled and buckled 2D extensible beam, an increase of the rotary 

inertia term, decreases the natural frequency. The rotary inertia effect is not consid-

ered in 1D extensible and inextensible models. 

(iv) For a fixed amplitude of excitation and in the 2D extensible model, by increasing 

the frequency of excitation the largest Lyapunov exponent (LLE) increases and it has 

the maximum value near the natural frequency of vibration. Beyond this maximum 

point, increasing the excitation frequency results in reduction of LLE and finally it 

reaches zero, i.e. the system has regular behavior. 

(v) For a fixed excitation frequency and in the 2D extensible model, by increasing 

the amplitude of excitation the LLE increases and its value eventually saturates. 

(vi) For a fixed amplitude of excitation, the 1D extensible and inextensible models 

have chaotic behavior in a wider range of excitation frequency (in comparison with 

2D extensible model). 

(vii) Different models, i.e. 2D extensible, 1D extensible and inextensible models, ex-
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hibits quite different forced vibrations behavior. The most accurate model, i.e. 2D 

extensible model has regular behavior for a small value of u and at a specific am-

plitude and frequency of vibration, while the simplified models, i.e. inextensible and 

1D extensible, exhibits chaotic behavior. In another case the 2D extensible and the 

inextensible models have chaotic vibration while the 1D extensible beam has periodic 

vibration. 

This research is concerned only with mathematical models. Future works can be 

performed on experiments to validate the numerical results obtained in this thesis. 

Different beams with different slenderness ratios are needed to validate the results, 

for example three beams with p = 10, y = 100 and M = 1000 can be used. The 

experimental set-up could consist of a uniform beam supported by hinges made of 

radial bearings. One of the bearings should be rigidly clamped to the base and the 

other one should be mounted on top of a linear bearing, which permits one end of 

the beam to move in axial direction. The external force should be applied at this 

end. This set-up can be mounted at the beam ends to linear bearings permitting 

transverse base excitations. The transverse sinusoidal excitation could be controlled 

by an electromagnetic shaker. Laser sensors are needed to measure the axial and 

transverse displacements of the beam and also the base excitation. 
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Appendix A 

Runge-Kutta 711 and 8" order 

Let an initial value problem be specified as a set of first-order differential equations 

= f(y,t), y(to) = Yo (A.1) 

Where y represents a vector. The Runge-Kutta 7th and 8th order method for this 

problem is given by the following equations 

where 

k3 

k4 

k5 

k7 

k5 

k9 

k10 

Yn+i = Yn + h(k1c1 + k6c6 + k7c7 + k8c8 + kgcg + k10c10 + kc11) 

= 

= f(y + k1h4,t + h4), 

f(y +'(k, b3i  + k2b32)h, t, + ash), 

= f(y + (1c1 b41 + k3b43)h,t + a4h), 

= f(y + (k1 b51 + k3 b53 + k4b54)h,t + ash), 

f(y + (k1b61 + k4b64 + k5b65)h,t + a6h), 

= f(y + (k1b71 + k4b74 + k5b75 + k6b76)h,t + a7h), 

(A.2) 

= f(y + (k1b51 + k5b85 + k6b56 + k7b87)h,t + ash), 

= f(y + (k1b91 + k4b94 + k5b95 + k6b96 + k7b97 + k5b95)h, t,- + a9h), 

= f(y + (k1b10_1 + k4b10_4 + k5b105 + k6b10_6 + k7b10_7 + k5b10_5 + k9b10_9)h 

)tn + aioh), 
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k11 = f(y + (k1b111 + k4b11 .. 4 + k5b11_5 + k6b11_6 + k7b11_7 + k8b11_8 + k9b11_9 

+ k1ob11_10)h),t + h), 

k12 = f(y + (k1b12_1 + k4b12_4 + k5b12_5 + k6b12_6 + k7b12_7 + k8b12_8 + k9b12_9 

+ k1ob12_10)h),t + a12h), 

k13 = f(y + (k1b13_1 + k4b13_4 + k5b13_5 + k6b13_6 + k7b13_7 + k8b13._8 + k9b13_9 

+ k10b13_10) + k12b13_12)h, t + h), 

and 

Cl = 

c9 = 

a2 = 

a5 = 

a3 

13 

288' 
1701 

14080' 

C6 = 

Cl0 = 

32 2401 
125' C8 12375' 
2401 19 
19200' ll = 450 

1 1 1 

2 1 6 
a7=, 

1 2 2 1 
a10=, al2=, 
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b31 

b51 

b64 

b75 

b86 

b95 

b10_1 

b10_7 

b11_4 

b11_8 

b12_4 

b12_8 

b13_5 = 

and 

5 
72' 
106 

125' 
8 

33' 
—64125 

26411 
—2 

15' 
1325 

504 
—23834  

180075' 
—183 

7000' 
—20032  

5225 
—1029  

4180 
40448 

280665' 
98 

225' 
—38144 

11935 
4704 

8525' 

1 
b32 = 

—408 
b53=  125' 

b65 125 = 

528 
60720  

b76 = 26411' 
61 

6720' 

b96 = 
—41792 

b87 = 

b10_4 

b10_8 

b11_5 

25515 
—77824 

1980825 
8 

- 11' 
456485  

= 80256 
1701 

b11_9 = 14-08, 

—1353775  
b12_5 = 1197504 

1 
b12_9 = 

2354425  

b13_5 = 458304' 
9477  

b13_9 = 10912' 

1 
b41 = 

352 

125' 

b71 
—13893 

- 

b54 

b12_10 = 
11664' 
—84046 

b11_6 = 7125 
5145 

= 2432' 
17662 

b31 = 

26411 
37 

392' 
= 17176 

b97= 145800' 

25515' 
20237 

b10_5 = 633864 
—636635 

-9A 
b10..9 = 

—42599 

=__ 
515, 

3773 

= 

1,13-10 = 

a2h. 

16275 
—1029 

992 

b13..1 = 8680 

673309 

b43 = 

b61 = 1 

39936  
b74 = 26411' 

1 
b55 625 = 

—47104 
1,94 = 25515 

4312 

6075' 
254048  

300125' 
12733 

7600 
339227 

912000' 
—27061 

b98 

b10_6 = 

b11_1 = 

= 

= 

204120' 
-717 

b12_7 =   
1166400' 
11203 

b13_7 1636800' 

b13_12 = 341' 

In the above equations h is the step size and the error in each step will be: 

729 

error = e1k1 + e6k6 + e7k7 + e8k3 + e9k9 + e10k10 + e11k11 + e12k12 + 613k13 (A.3) 
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where 

P-1 

29 

213 

—6600 - —135168 - —14406 - 57624 
= 3168000' 86 - 3168000' - 3168000' e8 - 3168000' 

54675 —396165 —133760 437400 
ell = 3168000' 3168000' 

136400 

3168000 

210 = 3168000' 812 = 3168000' 
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