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Abstract

Emotion Recognition systems can be used for autonomous tasks such as video gaming experiences, medical

diagnosis, adaptive education, and smart homes. Several biometric modalities, including face, hands, and

voice have been successfully used for emotion recognition tasks. Gait Emotion Recognition (GER) is an

emerging domain of research that is focused on identifying the emotional state of a person from gait biometric,

which represents the person’s manner of walking. In comparison to the other modalities, gait provides a

non-intrusive method to collect data remotely without an expert’s supervision. Moreover, unlike facial

expression-based emotion recognition, it does not require high-resolution data for inference. Early works in

GER produced limited feature sets and used classical machine learning methodologies to infer emotions, but

could not achieve high performance. This thesis proposes powerful architectures based on deep-learning to

accurately identify emotions from human gaits. The proposed Bi-Modal Deep Neural Network (BMDNN)

architecture utilizes robust handcrafted features that are independent of dataset size and data distribution.

The network is based on Long Short-Term Memory units and Multi-Layered Perceptrons to sequentially

process raw gait sequences and facilitate feature fusion with the handcrafted features. Lastly, the proposed

Bi-Modular Sequential Neural Network (BMSNN) has a low number of parameters and a low inference

time, hence making it suitable for deployment in real world applications. The proposed methodologies

were evaluated on the Edinburgh Locomotive MoCap Dataset and outperformed all recent state-of-the-art

methods.
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NB Näıve Bayes

RF Random Forest

DT Decision Tree

LR Linear Regression

ANN Artificial Neural Network

LMA Laban Movement Analysis

GA Genetic Algorithm

HOC Higher Order Crossing

PSD Power Spectral Density

FER Facial Emotion Recognition

CNN Convolutional Neural Network

FT Fourier Transform

POS Part Of Speech

SOM Self Organizing Maps

GCNN Graph Convolutional Neural Network

ADF Affective and Deep Features

HAPAM Hierarchical Attention Pooling and Affective Mapping

SGD Stochastic Gradient Descent

ADAM Adaptive Moment estimation

RMSprop Root Mean Square propagation

STGCN Spatial Temporal Graph Convolutional Network

STEP STGCN for Emotion Perception

ix



Chapter 1

Introduction

1.1 Motivation

Recognizing emotions of a person has fueled several human-related autonomous tasks [27]. For instance,

emotion recognition from gait has been adopted in smart home design for fall prevention, in disaster man-

agement during evacuation [59] and can be applied in medicine for detection and treatment of Parkinson’s

disease [201]. Gait Emotion Recognition (GER) can be beneficial for security and privacy as well [60, 157]. It

can be deployed to observe individuals for suspicious behavior at national or state borders [59] (Figure 1.1a).

It can also be used for developing emotionally aware robots [59] (Figure 1.1b) for medicine or smart homes.

Virtual reality and gaming experiences can potentially be curated according to the subject’s emotional state

[63].

(a) A camera on a lookout tower in Poland [42] (b) A Honda ASIMO robot at the Miraikan museum
of emerging science and innovation [119]

Figure 1.1: Areas of application for Gait Analysis and Emotion Recognition

Human emotions can be inferred through various biometric modalities, such as facial expressions [104],
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gait [186, 4, 3], hand gestures [65], voice tones [114], and text [184]. The phenomenon of expressing emotions

through human body movements has been observed from the early 1900s [31, 127, 41]. Although, using a

person’s facial expressions has been the prevalent emotion recognition method, gait-based emotion recog-

nition systems have started gaining popularity [59]. The increase in the number of research works being

conducted for gait emotion recognition can be attributed to the numerous benefits it provides over other

modalities. In comparison to other modalities, gait provides a non-intrusive way to remotely collect data

and to infer emotions from a distance.

1.2 Problem Statement

A person’s walk can be described by the sequence of their body joint positions over a period of time. In

the literature, this is referred to as the gait sequence of the person (see Figure 1.2). Every individual has a

certain uniqueness associated with their gait [137] which allows it to be used for person identification (termed

gait recognition). Gait also provides descriptive information about the emotional state of the subject [31].

This information can be recorded and processed to infer the emotion being experienced by the subject. This

is called Gait Emotion Recognition (GER). While there have been many works in gait recognition, GER had

not been studied till recently. GER works are applicable in a plethora of industries including video games,

medicine, and education. Hence, it is imperative to develop a methodology for identifying emotions from

gait effectively.

Figure 1.2: An example of human gait as sequence of body joint positions over time

The preliminary works of Gait Emotion Recognition (GER) relied on limited sets of features extracted

manually from the gait sequences. These feature sets were usually processed by a classical machine learning
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algorithm to infer the emotions [87, 176, 105]. The problem of exploring a limited set of features was

addressed by the recent works in the domain by adopting Deep Learning (DL) approaches. The deep neural

networks facilitated automatic feature extraction, selection, and classification. However, these models had a

high number of network parameters which resulted in slow processing of the emotions from gait. Moreover,

the previously proposed handcrafted features were discarded but a robust set of discriminating features was

not extracted by the DL methods.

As research progressed, various DL methods were proposed to address the above drawbacks. Graph and

pseudo-image-based methodologies benefited from inherent structural information of the human body but

failed to explore low-level features between vertices placed far away from each other. Some works based

on Recurrent Neural Networks (RNN) processed gaits as sequences to explore all dependencies but used

ineffective training methodologies or a sub-optimal network. This thesis proposes powerful neural networks

that process gaits sequentially and are trained on real gaits for emotion recognition. The following research

questions are addressed in this work:

1. Can an attenuated hybrid deep learning architecture be devised to achieve low inference time for gait

emotion recognition?

2. Can a deep learning architecture for gait-based emotion recognition be designed to identify distinctive

sequential and temporal features extracted from body joints?

3. Can a light deep learning architecture combining a sequential neural network and multi-layered per-

ceptrons be used to accurately recognize emotions from human gaits?

4. Can handcrafted features based on the geometric relationships between body joints be combined with

the deep learning architecture to further improve recognition performance and to make the architecture

resilient to class imbalance in the dataset?

5. Can domain-specific handcrafted features be fused with latent deep features to improve gait emotion

recognition performance?

6. How do the Laban Movement Analysis feature groups affect the performance of the proposed network?

1.3 Objectives

This thesis aims to develop a DL-based neural network trained on real human gaits to accurately infer

emotions from gait. Hence, the thesis aims to accomplish the following goals:
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1. The deep learning architecture must be designed to identify distinctive sequential and temporal features

extracted from body joints.

2. The deep learning architecture must incorporate dynamic handcrafted features based on the geometric

relationships between body joints to improve recognition performance.

3. The deep learning architecture must have fewer number of parameters to ensure low inference times

while ensuring high recognition performance.

4. The handcrafted features must be processed with latent deep features to improve gait emotion recog-

nition performance.

5. The deep learning architecture must be resilient to class imbalance in the dataset.

To accomplish the above goals, a novel sequential neural network based on Long Short Term Memory

(LSTM) and Multi Layered Perceptrons (MLP) will be introduced in this thesis.

1.4 Challenges and Limitations

The development of the desired GER system posed numerous challenges that were overcome during research:

1. Lack of data: One of the disadvantages of using DL methodologies is the high data requirement. Since

the domain of gait emotion recognition is fairly new, there is a lack of large emotionally labelled gait

datasets. This forced researchers to combine multiple datasets or even produce artificial gait sequences

to obtain samples for model training [20, 129, 144, 21].

2. Dataset Variance: Factors like the number of body joints recorded in the dataset, the positioning

of body markers in the motion capture suit, or the position of body joints detected by pose estimation

algorithms from a video can introduce unwanted noise to the dataset. Consequently, training a model

on such a dataset would result in a high variance model that learns features irrelevant to the task [124].

Hence the models would not perform well. The proposed model resolves this issue by eliminating the

requirement of large datasets. This is done by ensuring that the number of trainable parameters is

a fraction of what the recent state-of-the-art methods have. Additionally, the model utilizes robust

handcrafted features which limits the reliance of the model on a large number of data samples.

3. High Number of Parameters: The system is required to consolidate the information extracted

from the raw gait sequences and the handcrafted features. In Deep Neural Networks (DNN), higher

number of parameters can be used in a layer to produce more features at that stage, and more layers
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can be added to produce higher level features in later stages [132, 193]. However, the objective of this

research is to build a neural network capable of extracting high-level features from gait sequences while

keeping the number of parameters low. This issue was overcome by designing a tapered neural network.

The attenuated design ensured that the new layers being added had equal or lesser number of units.

The design also ensured that the information extracted by a layer in the network is represented using

smaller feature vectors in the subsequent layers; eventually leading the network to develop a condensed

high-level feature vector towards the end.

4. Feature sets: Previous works had explored handcrafted features to a limited extent [87, 175, 144, 20].

The features sets used were restricted to a handful of angle and distance measures using a few body

joints. They did not include crucial metrics that are beneficial for emotional analysis. This work uses

all Joint Relative Angles (JRA) and Joint Relative Distances (JRD) to ensure that all possible angle

and distance measures are considered while inferring emotions.

5. Class imbalance: The reliance on purely DL methodologies caused models to become susceptible to

distribution of the classes in the dataset. Models using data-driven approaches performed poorly for

under represented classes. In this thesis, the problem was mitigated with the help of robust discrim-

inating Laban Movement Analysis-based (LMA) handcrafted features. The handcrafted features are

calculated from defined functions unaffected by data distribution and hence provided robust informa-

tion about the subject’s motion.

6. Neural network development: Developing an effective Long Short Term Memory (LSTM) and

Multi Layered Perceptron (MLP) based neural network involved numerous iterations of designing,

testing and modifying the structure of the network. To prevent overfitting without compromising on

the high performance, various techniques such as kernel regularization and Batch Normalization were

applied.

1.5 Contributions

The thesis contributions can be outlined as follows:

1. A novel hybrid deep learning architecture is presented that utilizes Long Short-Term Memory (LSTM)

units followed by Multi-Layered Perceptrons (MLP) to extract a distinctive feature map from raw

gaits and recognize four emotions, namely happy, angry, sad, and neutral. (Published in IEEE 20th

International Conference on Cognitive Informatics & Cognitive Computing (ICCI* CC), 2021 [17])
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2. A novel Bi-Modular Sequential Neural Network (BMSNN) with significantly low number of parameters

compared to prior research is introduced. The network achieves the lowest inference time among recent

state-of-the-art deep learning-based GER methods. (Published in MDPI Sensors, 2022 [19])

3. The proposed BMSNN network utilizes geometric features Joint Relative Angle (JRA) and Joint Rel-

ative Distance (JRD) for Gait Emotion Recognition (GER). (Published in MDPI Sensors, 2022 [19])

4. A novel fusion of robust LMA-based domain-specific handcrafted features with latent features extracted

from a deep neural network is proposed. (Published in the 17th International Symposium on Visual

Computing (ISVC), 2022 [18])

5. A novel powerful Bi-Modal Deep Neural Network (BMDNN) to facilitate the combination and pro-

cessing of the handcrafted features with latent deep features is introduced. (Published in the 17th

International Symposium on Visual Computing (ISVC), 2022 [18])

6. An ablation study of the proposed BMDNN deep learning architecture to validate the performance

on an imbalanced dataset of real gait samples and the importance of the introduced feature fusion

is performed. A comprehensive analysis of GER performance with respect to different LMA-based

feature groups is also conducted. (Published in the 17th International Symposium on Visual Computing

(ISVC), 2022 [18])

The research presented in this thesis introduces methodologies that are superior to the previous works in

the domain. The proposed BMSNN architecture exhibits the highest overall emotion recognition performance

while inferring a gait sample within a fraction of the time taken by prior methods. Additionally, the

proposed BMDNN architecture outperforms the state-of-the-art methods, including BMSNN, in an overall

emotion recognition, and provides a robust method to infer emotions for each individual class, even if it is

underrepresented in the dataset. Moreover, the experimental results presented in Chapter 4, describe the

relation of Laban Movement Analysis with the model performance for each emotion class.

Hence, the thesis extends the work in the domain of Gait Emotion Recognition by providing a faster pro-

cessing technique that could enable mobile deployment, and processing on less powerful systems. Secondly,

it provides a more accurate method for identifying emotions to build reliable emotion recognition systems

that needs to identify rare occurrences. Finally, the exploration of the effects of Laban Movement Analysis

Features opens up the opportunities for the development of more informed emotionally aware robots, and

improves understanding of exhibited emotions for Human Computer Interactions (HCI).
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1.6 Thesis Outline

The remainder of the thesis is organized into the following sections. Chapter 2 provides an overview of the

previous work in this domain. First, various types of biometrics are discussed in terms of emotion recognition

systems. Next, the thesis describes the various emotion representation models in the literature and how the

ground truth can be defined for emotional gaits. Finally, the methods previously developed for gait emotion

recognition are explored. Chapter 3 describes the proposed methodologies and the intuitions behind the

design of the proposed architectures. Chapter 4 presents the results of extensive experimentation, involving

the development of the proposed deep neural network, its performance without crucial components, and its

performance in comparison to state-of-the-art methods. In Chapter 5, a summary of the contributions of

this thesis is provided along with the limitation and the future directions of this research work.
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Chapter 2

Literature Review

This section will provide an overview of the key concepts and the previous research works in the domain of

Gait Emotion Recognition (GER). Subsection 2.1 includes a discussion on the various types of biometrics and

their usage for emotion recognition tasks. Next, emotion representation models are described in Subsection

2.2. Preliminary works in the domain relied on manually selected handcrafted feature sets and classical

machine learning algorithms. Only recently, the methodology shifted towards deep learning methods to

address the shortcomings of the classical machine learning methods. Subsection 2.3 summarizes previous

approaches used for GER and highlights their advantages and disadvantages.

(a) Adaptive Rehabilitation [159] (b) Smart Homes [153]

Figure 2.1: Areas of application for an Emotion Recognition system
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2.1 Overview of Emotion Recognition Systems

Emotion recognition systems analyze and process data collected from one or more modalities to provide

important information for the interpretation of a subject’s emotional state [158]. This information is crucial

(a) A general framework for unimodal biometric sys-
tems

(b) A general framework for multi-modal biometric
systems

Figure 2.2: General frameworks for biometric systems
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for understanding human interactions with other humans or with computer systems. Moreover, numerous

biometric modalities are suitable for emotion recognition and have applications in industries like gaming,

education, advertisement, automotive industry, healthcare, and smart home design (Figure 2.1). Biometric

data can be used to identify the emotional state of a person [76]. Some physiological biometrics provide

a non-invasive way to collect data for identifying emotions. However, they can sometimes be intrusive

and might elicit hesitance. On the other hand, behavioral biometrics are collected remotely, and provide

a comfortable experience for the user. Social Behavioral Biometrics further ease the data acquisition by

observing online user behavior. Biometrics have been predominantly researched for user authentication and

identification systems, with very limited approaches for emotion recognition.

Based on the number of modalities utilized, a biometric system can be classified as one of two types:

Unimodal or Multimodal. Most biometric systems have a general framework that consists of four main

steps: collecting the required data, processing it to extract features, selecting all or a subset of the features,

and using the final feature set to classify emotions (see Figure 2.2a). Multimodal biometric systems, as the

name suggests, rely on two or more biometric modalities. To take advantage of different types of data, these

systems either merge the information derived from the modalities, or combine the classifications resulting

from each modality, or both. Hence, multimodal biometric systems contain additional fusion module (see

Figure 2.2b). For most biometrics, the early research revolved around optimizing feature extraction and

selection methods using classical machine learning. With the new trends, the works in biometric domain

slowly shifted to adopt Deep Neural Network (DNN) based methodologies.

2.1.1 Physiological Biometrics

Physiological Biometric traits refer to the subset of biometrics that are intrinsic properties of the human

body. Size and shape of the ear, print of the palm, shape and structure of the face, and fingerprints are

some of the commonly used physiological biometrics that barely change during the lifetime of a person [8].

Although the task of emotion recognition is highly associated with the behavior of the subject, there are

certain physiological biometrics that are capable of expressing emotion.

Electroencephalogram (EEG)

The electronic signals of a subject’s brain can be recorded through electrodes placed on their scalp. These

signals are representative of the brain activity of the person and hence can be used for emotion recognition.

In the early 2000s, statistical features were proposed to encapsulate the information of the EEG signals

[138, 169]. Later, the domain witnessed Discrete Wavelet Transform (DWT) based features [128], Higher
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Order Crossing (HOC) based features [136], and asymmetry index and power spectral density (PSD) based

features [108]. In 2011, the authors of [111] presented a fractal dimension based algorithm for recognizing

emotion through EEG in real-time. Recent works in the field have been directed towards using more features

than prior methods either through combining previously proposed features [106] or via Deep Neural Networks

(DNN) [163].

Electrocardiogram (ECG)

ECG is the process of measuring electrical signals of the heart using electrodes attached to the outer skin of

the subject’s thorax. ECG can be processed to extract relevant features including heart rate which varies

with emotions [49, 26]. Much like any other bio-signal, ECG can be used to extract basic statistical features

[90], DWT features [84], frequency domain features [179], or a combination of them all [187]. While most

studies focused on optimizing the feature extraction, works like [187, 188] proposed improvements to feature

selection methods. In the 2010, the domain witnessed further advancement in feature extraction methods

[1, 155, 32]. Research prior to 2017 utilized classical machine learning methods for final classifications. Deep

learning methodologies have only recently been incorporated for recognizing emotions using ECG [91].

Electrodermal Activity (EDA)

Electrodermal activity, also known as galvanic skin response (GSR), is another commonly used physiological

biometric for emotion recognition. This metric measures the conductivity of the skin of the subject which

is induced by the arousal elicited by emotions. Consisting of two main components: the Direct Current

(DC) level of the skin and the Skin Conductance Response (SCR), EDA metrics can be used to extract

features using statistical analysis [138, 95, 94]. Furthermore, it is often combined with other signal based

physiological biometrics like ECG and EMG [148, 68, 103, 130].

Electromyogram (EMG)

Measuring electrical activities from muscles can also be beneficial for emotion recognition. DWT-based

features extracted from EMG signals have been previously used to identify emotions [34, 200]. Most of the

research in emotion recognition from EMG typically uses it in combination with other metrics with classical

machine learning techniques [95, 94, 145, 97]; however, there has been some attempts based on deep neural

networks [190] that used only EMG.
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Blood Volume Pulse (BVP)

Blood Volume Pulse (BVP) refers to the amount of blood flowing through a vessel at a given time. BVP is

usually measured using a Photoplethysmogram (PPG). Like most other physiological traits, this biometric

has been predominantly used to produce statistical features for classification using classical machine learning

models [68, 93, 116].

Respiration

The variation in breathing can be indicative of the emotional state of a subject [74]. However, research using

this modality has been limited. Studies using respiration for emotion recognition systems have relied on

statistical metrics to extract features and on classical machine learning methods for classification [148, 66].

2.1.2 Behavioral Biometrics

Behavioral biometrics are defined as the characteristics, patterns, mannerisms and other properties of a

human activity [147]. A person’s voice tones, unique signature, banking activity, and visual auditory prefer-

ences fall under the category of behavioral biometrics. Behavioral biometrics such as gait, gestures, and voice

have been utilized for user authentication in the past [167]. Behavioral biometrics have certain advantages

over conventional physiological biometrics; they provide a non-obtrusive way of collecting biometric data,

that is difficult to circumvent, more acceptable, and can be integrated with existing technologies. More-

over, behavioral biometrics can be used on a regular basis for continuous authentication instead of explicit

authentication checks [156].

Facial Expressions

User identification through facial structures has been extensively researched and is used in the industry

today. Although the shapes and sizes of various facial features are physiological metrics, the changes in

those features are behavioral traits. Facial expressions have been shown to be a reliable and accurate source

for emotion recognition [96]. However, it requires specially recorded data such as 3D infrared images to

overcome pose and illumination based variations, or high frame-rate videos to capture micro emotions [96].

Figure 2.3 shows a few samples from the extended Cohn-Kanade Dataset for facial emotion recognition.

Facial Emotion Recognition (FER) systems usually rely on features derived from facial landmarks, which

are important points on the subjects face (such as tip of the nose, ends of the mouth, etc.). The authors

of [62] used geometric features consisting of the changes in the angles and distances between various facial

landmarks. Works like [71] used global appearance-based features while some studies [61] focused on combin-
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Figure 2.3: Samples from the extended Cohn-Kanade Dataset (CK+) [113])

ing individual regional facial features instead. Research combining geometric and appearance based features

were also published in the field [52, 61].

Deep learning-based works in FER primarily rely on Convolutional Neural Networks (CNN). The authors

of [25] studied a model trained to recognize facial emotions to establish that the domain could benefit from

Deep Neural Networks. Subsequently, many studies using CNN for temporal and geometric feature extraction

[86] and multi label training [198] were published. Sequential models were also used in combination with

CNNs to capture the temporal information more efficiently [48, 92, 39, 72, 67, 80].

Speech

Speech signals have been used in unimodal [162] and multimodal [7] user recognition systems and is another

biometric that facilitates identification of emotions in humans [24]. Features such as excitation signals

[191, 14], vocal tract features [161, 22], and prosodic features [182, 195] are representative of the emotional

state of the subject. Signal processing techniques such as Fourier Transform (FT) [161], and Mel-frequency

cepstral coefficients [131] are prevalent in the domain. Works such as [75, 24] have also attempted emotion

recognition using a combination of the features mentioned earlier. Figure 2.4 shows an example of a speech

spectrogram, which can be used to extract features for emotion recognition.

Until the mid 2010s, most works in the domain utilized explicit feature extraction methods and traditional

machine learning classifiers to identify emotions using those features [139, 131, 178]. However, in recent years,

the field has witnessed numerous works employing deep neural networks. Combinations of CNNs and RNNs

have been a popular approach [197, 171, 192]. Though not as popular, combinations of traditional machine

learning and deep learning methods were also explored by researchers [53, 166].
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Figure 2.4: A spectrogram of a speech signal uttering ”May we all learn a yellow lion roar” [12]

Eye

Various devices can acquire the data about the motions of the human eye [47, 40] (See Figure 2.5). This

behavioral information can be processed to identify users [55, 88] or infer their emotional state [172, 181]. The

authors analyzed various behavioral traits of the human eye for emotion recognition, such as fixation features

[172, 110], pupillary responses [11, 6], eye motion [146], and features based on predefined models [10]. Certain

physiological features derived from the eye, such as the pupil diameter [112, 134] and Electrooculography

(EOG) [181, 135] are also beneficial for eye based emotion recognition.

Figure 2.5: An example of real-time eye gaze detection using a webcam [40]
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Gait

Gait based person identification systems use one of two approaches: appearance-based and model-based

[107]. Appearance-based approaches disregarded the skeletal structure and processed the shape of the human

body to extract features (Figure 2.6). In contrast, model-based methodologies represented human gaits as

movements of the skeleton. The approaches used in gait-based user recognition system were similar to

some works on Gait Emotion Recognition (GER) [87, 45]. However, the researchers also identified novel

methods to extract or select emotion-relevant features. The authors of [133] identified the key features that

facilitate reconstruction of emotional gaits. [176] derived their feature set using auto-correlation matrices of

the degrees of freedom of body joints. In 2019, [3] proposed using Laban Movement Analysis for the task

with a Analysis of Variance (ANOVA) based feature selection method. The emotion recognition systems

based on gait exclusively relied on classical machine learning methods until recently.

Figure 2.6: An example of an extracted silhouette from a video frame of a gait sequence in the Casia-B
dataset [194]

Deep learning methodologies for GER typically use one of three types of networks on their own or

in combination: Graph Neural Networks (GNNs), Convolutional Neural Networks (CNN), and Recurrent

Neural Networks (RNN). CNNs and GNNs model gaits are rigid structures to benefit from the structure of

the human body and combine the information available in each node/pixel to extract spatial and/or temporal

features [20, 129]. On the other hand, RNNs processes gaits sequentially to extract spatial and temporal

features simultaneously [144, 21].

2.1.3 Social Behavioral Biometrics

Social behavioral biometrics is a branch of biometrics that is defined as a study of human behavior in a

social context [168]. Furthermore, the social interactions where these behaviors are observed can be either
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on-line or off-line, hence a behavioral biometric qualifies as a social-behavioral biometric if it is exhibited in

a social setting. Figure 2.7 lists the various scenarios where off-line and on-line Social Behavioral Biometrics

are observed. The field of social behavioral biometrics has recently gained popularity and has been proposed

for person identification [160, 173]. Social network behavior, textual conversation or commenting patterns,

and body movement in a social setting are some biometrics that fall in this domain. Online social behavioral

biometrics can facilitate continuous authentication for a user without being intrusive. Additionally, these

biometrics can be used for emotion recognition. For instance textual analysis, monitoring keystroke patterns,

and even user aesthetic preferences can be indicative of the emotion being experienced by the user.

(a) Application areas for Off-line SBB (b) Application areas for On-line SBB

Figure 2.7: Application areas of Social Behavioral Biometrics (SBB), adapted from [174]

Monitoring keystroke and mouse dynamics can be used for incorporating periodic user authentication

in existing devices without any additional hardware. Features associated with key strokes such as dwell

time, flight time, and other time difference metrics have been successfully used in identifying people [64, 33].

Similarly, features derived from mice such as pointer speed, and mouse clicks have also been employed for

user authentication [73, 58].

These keyboard and mouse features also contain information about the emotional state of the subject

[202, 51]. Most works used generalized key press features and classical machine learning methodologies, but

some works incorporated the information about the specific keys being pressed as well [177, 99]. In addition

to keystroke features, studies also collected data from mouse movements [202], touch screen parameters [99],

and pressure [115] for enhancing the emotion recognition accuracy.

Perhaps one of the most commonly used authentication methods, text is used readily in a variety of

applications [89]. However, it can also be analyzed for emotion recognition purposes. The process of inferring

emotion from textual data is called sentiment analysis [121]. Features used by text based emotion classifiers

can be broadly categorized as: word-level, phrase-level, and sentence-level features. The research focused on

features at a word-level at first [9, 165] but was soon extended to include information derived from sentences

[117, 126], the part-of-speech (POS) context [13], and characters and documents [35]. Some works also aimed
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to improve the classification methodologies for textual emotion recognition [142]. Finally, recent works have

eliminated feature extraction and selection steps by resorting to deep learning methodologies for sentiment

analysis [37].

2.2 Emotion Representation Models

Once the data for an emotion recognition system is collected, it is imperative to choose a suitable representa-

tion for the emotions. Human emotions are complex and can be described by a myriad of systems or schemes.

Over the years, several researchers have developed these systems that stem from careful analysis about what

constitutes an emotion. These systems can be broadly classified into: Discrete models, Dimensional Models,

and Componential Models.

2.2.1 Discrete Models

This class of emotion models is based on the idea of emotions existing as mutually exclusive categories.

The emotions, defined by most models, in this class may be divided further into finer emotions, but are not

proposed to be combined to form complex emotions. In [43], Darwin argued that humans developed emotions

as a result of evolution. While Ekman agreed that emotions root from evolution, he believed that emotions

can also be learned throughout the lifetime of a person [49]. Consequently, six emotions were defined as the

basic emotions: anger, disgust, fear, happiness, sadness, and surprise (see Figure 2.8a). A similar ideology

was used by Parrot, where he defined six emotion classes with further branches to capture more specific

emotional states. He proposed a tree structure for emotion models which described a total of 100 emotions

(refer to Figure 2.8b). Izard proposed 12 basic emotions that could not be further deconstructed, but could

be combined with each other to form more complex emotions [78] (Figure 2.8c).

The emotions presented by Ekman’s model were limited to emotions that can be expressed by facial

expressions [28]. Furthermore, discrete emotion models in general exclude complex emotions that exist

between two described emotion classes and emotional states with two or more emotions exhibited simulta-

neously. Despite these shortcomings, discrete emotion models are the most suitable and acceptable method

of representing emotions for computer applications and hence are used in this thesis.

2.2.2 Dimensional Models

Dimensional models assume that every emotion is composed of certain fundamental variable properties.

Russell proposed that these properties are Arousal and Valence, and that all emotions are the result of a
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(a) Discrete categories of emotions proposed by Ekman

(b) Parrot’s discrete emotion model

(c) The discrete emotions proposed by Izard

Figure 2.8: Discrete emotion representation models

varying degree of these two dimensions [149]. Arousal determines how intense an emotional stimulus is,

while the Valence refers to the pleasantness of the emotion. The 150 emotions in this model were described

as coordinates on the circumference of a circle defined by two axes representing arousal and valence (Figure

2.9a). This model was slightly modified by Scherer [152] to include coordinates within the described circle.

A similar approach was adopted by Whissell [183], who described various emotions with Activation and

Evaluation, synonymous with arousal and valence, as the two dimensions (Figure 2.9b). The two-dimensional

approaches were extended by introducing a third dimension of dominance by Mehrabian [122]. The third
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dimension of dominance, also referred to as potency or power, represents the amount of affect the emotion

has on a person. In other terms, it defines how much control a person has over a particular emotion. In

addition to potency, Fontaine et al. introduced a new dimension called unpredictability in 2007 [54].

(a) Russell’s circumplex model (b) Dimensional Emotion model proposed by
Whissell

Figure 2.9: Dimensional Emotion Models [28]

Dimensional representation of emotion allows overlapping of emotions and provides a continuous spectrum

that describes them. These models are fairly accurate representations of human emotions but unsuitable for

use in computing applications due to the ambiguous nature of emotional descriptions.

2.2.3 Componential Models

Emotion representation models that allow discrete emotions to be combined to form complex emotions are

categorized as componential models. One such model was proposed by Plutchik [140]. This hybrid model

considered eight discrete emotions, arranged in a color wheel to describe primary, secondary, tertiary, and

opposite emotions. In this model similar emotions were placed adjacently, opposite emotions were placed

at a 180° angle, and complex emotions were described as combinations of these basic emotions (Figure

2.10a). Plutchik’s model inspired an hourglass model that was defined using four independent properties

(Pleasantness, Attention, Sensitivity and Aptitude) of emotions [28]. This model defines emotions similar to

color theory and proposes that complex emotions can be represented as a combination of two or more basic

emotions (Figure 2.10b).

In comparison to dimensional representation models, discrete and componential representations have

limited emotional categories but provide clear interpretation for emotion recognition tasks. Componential
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(a) Plutchik’s Emotion model (b) The hourglass Emotion representation

Figure 2.10: Componential Emotion Models [28]

models only differ from discrete representations in terms of the composition of complex emotions, and hence

are also compatible for computational tasks.

2.3 Overview of Gait Emotion Recognition Systems

2.3.1 Gait Biometric and Gait Emotion Recognition

As established earlier, gait analysis can be beneficial for numerous industries such as security, medicine,

internet of things, robotics, disaster management, entertainment, advertising, education, virtual reality,

computer vision, affective computing, and assisted living [59]. Gait biometric is a unique trait that can be

used for user identification [125] in conditions where other biometric data is unavailable or unidentifiable, for

instance, surveillance footage. It can also be used to prevent illegal activities by monitoring person behavior

in public places. Additionally, it can be used in the healthcare industry in diagnosing chronic diseases

[85, 57, 83, 81]. Furthermore, gait analysis can benefit rehabilitation [201] and assisted living [154]. Robots

that can identify users [36], and are emotionally aware [129] can also be developed. Moreover, emotion

recognition has already been used to develop adaptive education and entertainment experiences [63], and

can be incorporated with virtual reality [118] applications. In addition to the variety of applications, gait,

as a biometric trait, provides significant advantages over other modalities:

1. Remote – A significant part of any biometric system is the acquisition of data. The collection of most

biometric traits such as face can only be recorded in close proximity. However, gait allows data to be
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collected and processed from a distance [186].

2. Non-intrusive – The collection of biometric data can be overwhelming for users and induce hesitance

towards such procedures [141]. Since gait can be recorded from a distance, it is less likely to cause

stress to the users.

3. No Expert Supervision required – Biometric traits, like EEG, usually require an expert to set

up the system for data collection, which might increase the time and cost required to collect data. In

contrast, gait data can be collected using normal cameras or depth-based sensors which do not require

significant expertise for operating.

4. Universal – Although gestures may have different interpretations depending on the observer [164],

walking is a universal action that is common for all ethnic backgrounds. Gait is a robust source that

has more consistent emotional interpretation [79].

5. Robust to data quality – Depending on the biometric data capturing techniques and conditions,

the recorded data might be of low resolution. This is problematic for modalities like face, which relies

heavily on the quality of the image, but gait emotion recognition can still be performed [186].

Gait based systems are compatible with various data collection methods. Platforms like Kistler force

plates [82] and infrared light barriers [100] have been used in prior research for collecting gait velocity.

Accelerometers in wrist bands can also be employed to record similar gait features [196, 143]. Additionally,

depth map sensors, such as Microsoft-Kinect-V2, capture information about the distance of the object from

the camera and provide a way of identifying body joint coordinates [102, 105]. However, the most accurate

method of recording the subject’s body structure is via motion capture systems [176, 45]. Systems like Vicon

or Xsens Motion Capture, require markers to be placed on various body joints of a person and record the

positions of these markers throughout the gait of that person. This thesis uses a dataset recorded using

Motion Capture systems since they provide the most accurate readings. However, special data acquisition

equipment is not a requirement for gait analysis. Video recordings of people walking can be simply analyzed

using appearance-based methods or processed using pose-estimation algorithms to identify body joints for

model-based approaches.

Once the data has been collected, it is processed to produce relevant features. Processing techniques

for gait analysis can be broadly categorized into: appearance-based, and model-based. Appearance-based

methodologies work on video data and derive visual features such as shape and area of the subject’s body.

These methods produced images, where each pixel captured the information about the silhouette [151],

amount of motion, [23] and/or the general posture of the subject throughout the gait [70]. Since these
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methodologies utilize visual features, they are sensitive to the subject’s clothing and environmental factors.

Hence, these approaches do not perform well under conditions where the subject wears baggy clothes or the

clothes and the background have identical colors. Moreover, they require a side view and high-resolution

video data to work.

On the other hand, model-based methods map the collected gait sequences to predefined skeletal struc-

tures. This representation is used to calculate gait parameters such as stride length and cadence [16], joint

angle and distance trajectories [180, 170]. Unlike appearance-based techniques this approach facilitates gait

analysis that is unaffected by view, pose, clothing, and most environmental changes. Preliminary works in

gait based user recognition systems used appearance-based methods and shifted to model-based methods

once the issues mentioned above were identified. However, since the advancements in gait emotion recogni-

tion have commenced recently, most works adopted model-based techniques. Consequently, these features

can be processed to identify emotions by classical machine learning algorithms or deep neural networks, that

are discussed in detail in the subsequent sub-sections.

2.3.2 Classical Machine Learning-Based Methods

Machine Learning can be defined as a system that emulates the human learning [50]. These work by analyzing

data and determining patterns in that data to identify rules for decision making. Systems based on machine

learning methods slightly modify themselves as they parse data. This process is referred to as the training

stage and is intended to be an equivalent of the human learning process. Similar to how humans gain

experience with practice, these systems tune themselves by repeatedly processing the input data. To ensure

that these algorithms develop a general scheme of rules rather than a set of rules specific to the training data

the systems’ performance is measured on unseen data, this stage is called testing. Classical machine learning

based methods refer to a subset of Machine Learning methods that require explicit feature extraction, which

are then processed by various algorithms. Some popular machine learning methods that belong to this class

are Support Vector Machines (SVM), Random Forest (RF), Näıve Bayes (NB), and Linear Regression [30].

Over the years, classical machine learning works in Gait Emotion Recognition (GER) have explored var-

ious data. One of the earliest works to automate identification of emotions from gaits used force platforms

and infrared light barriers to measure reaction forces and walking speed [82]. This work utilized Self Orga-

nizing Maps (SOM) for distinguishing between neutral, joyous, sad, and angry gaits. With the advent of

smart wearable devices, works like [196] and [143] developed methodologies for recognizing emotions from

accelerometers found in smart watches/bracelets. These works were based on statistical features derived

from acceleration and gyroscopic data. Furthermore, a mobile gait emotion recognition methodology was
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proposed [38] that used a pose estimation algorithm to generate 2D gait skeletons from a video. These

skeletons were used to produce statistical features and processed remotely on a server.

However, most methods relied on model-based gait depictions and focused on feature extraction and

feature selection improvements. The domain witnessed a trend of using Fourier Transform (FT) and Principal

Component Analysis (PCA) for generating frequency and phase features, and to reduce the dimension of

the feature set. A 2010 paper, published by Karg et al. [87], generated two sets of features: one containing

kinematic features, and one containing posture, frequency, and phase shift features. PCA and FT were used

to generate the second set, while both sets underwent PCA for dimension reduction. Venture et al. [175]

proposed feature sets based on degrees-of-freedom (DOF) of body joints instead, and used a similarity index

on PCA components for emotion classification. The DOF feature set and the similarity index calculation

were optimized in a subsequent publication [176]. Model-based research until 2014 was conducted using

Vicon motion capture data. However, in 2016, Li et al. [105] used data collected from a depth sensor,

Microsoft-Kinect-v2, to produce FT-based features for emotion classification. A similar work by the same

authors [102] also proposed using FT to produce frequency-domain and time-domain features. Both works

reduced the dimension of the final feature set using PCA.

Later works in the domain improved decision making modules using ensemble learning. In 2018, Ahmed

et al. [4] proposed a methodology that utilized Laban Movement Analysis for describing the emotional

movements of the subject. Unlike prior research work, this paper reduced the feature set using histogram

values and applied score and rank level fusion on four classifiers. In 2019, the work was improved with

the introduction of ten feature groups of emotion-relevant body movement features [3]. They also proposed

Analysis of Variants (ANOVA), Multivariate ANOVA (MANOVA), and Genetic Algorithm (GA) for the

feature selection module in this work.

Prior works on traditional machine learning methods applied commonly used machine learning classifiers.

Support Vector Machines (SVM), Näıve Bayes (NB), Random Forests (RF), and Decision Trees (DT) were

particularly popular in this domain. These methods highlighted the features important for recognizing

emotional gaits. Furthermore, these studies provided insights on various approaches that can be taken

while performing Gait Emotion Recognition (GER). However, these methods had some fundamental flaws.

Classical machine learning methods were only compatible with the type of features they were designed for.

For instance, methodologies that considered gaits as trajectories of body joints performed well with signal

processing features but not with statistical features. Some works attempted combination of different types

of feature, but were restricted by the abilities of classical machine learning models, which were accurate only

if the feature sets were small. As a result, researchers resorted to discarding certain features. Additionally,

these methods were not scalable and did not perform well with different data. Lastly, the methods worked
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on a handful of known and easily describable features. They could not exploit latent features that could

have resulted in a significant performance gain. These issues were mitigated with the transition to deep

learning-based methodologies.

2.3.3 Deep Learning-Based Methods

Overview of Deep Learning

Deep Learning is a subdomain of Machine Learning that achieves learning through Artificial Neural Networks

(ANN) [124]. These networks were originally inspired by the biological neuron-based processing in animals.

However, artificially simulated neural networks and biological neural networks have various differences. These

data structures allow flow of data in a specified manner and update the network’s parameters accordingly to

identify patterns more accurately. These networks typically contain several layers to facilitate this learning

process, hence the name deep learning [124]. Furthermore, this technique allows the feature extraction

and selection process to be automated. Each layer outputs a matrix of values calculated using non-linear

functions called activation functions. Stacks of such layers allow the network to develop more complex

functions as compared to the relatively simple functions learned by classical machine learning algorithms.

Therefore, these networks are well suited for complex tasks such as identifying emotions from gaits. The

recent boom in deep learning methodology can be accredited to the advancements in computation power,

and the increased availability of data [46]. Since the inception of the idea of neural networks [120], many

general neural network architectures have been developed catering to different processing needs. Multi-

Layered Perceptrons, known as vanilla neural networks [44], were developed as multi-purpose artificial neural

networks to process all kinds of data but are most well-suited for processing data as feature vectors similar to

traditional machine learning classifiers. Images have certain repeating patterns that can be more efficiently

processed by Convolutional Neural Networks (CNNs) using lesser number of parameters [5]. Similarly, Graph

Neural Networks (GNN) are built to effectively process graphical data using message passing [185]. Finally,

Recurrent Neural Networks (RNN) utilize the concept of a memory cell and exhibit high performance in

sequential or signal data processing tasks [109].

Multi Layered Perceptron

Linear regression, a classical machine learning classifier, is capable of learning a simple linear functional

relationship between various inputs (X) and an output variable (y) by estimating the values of θ and b,

Equation (2.1). This operation can be treated as one unit and can be stacked to learn more complex non-

linear functional dependencies by estimating the parameters (θ and b) for all units. Multi Layer Perceptrons
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are such networks that have an input layer to accept the input variables, at least one hidden layer to add

complexity, and an output layer to map the processed values to the output. The values of these parameters

can be initialized using a distribution, randomly, or as constants, and can be tuned using an optimizer.

Optimizers utilize loss functions that represent the poorness of the model performance using the current

values of the parameters. Once the loss has been calculated, optimizers modify the model parameters to

reduce the loss. This process is known as training and is repeated over several iterations (called epochs).

MLPs are suitable for processing vectors of data and, with enough data, outperform all classical machine

learning classifiers.

y = θX + b (2.1)

Convolutional Neural Network-Based Methods

Convolutional Neural Networks were developed to process images effectively. Processing a high resolution

image using Multi Layer Perceptron (MLP) would require a huge number of parameters that identify patterns

between all pixels. However, images have certain repeating patterns than can be identified once and detected

multiple times within the image. Some of these patterns can be simple curves, strokes and edges that occur

more than once in an image. This approach require significantly lesser parameters to perform the same task

in comparison to MLPs.

The mentioned idea is realized by using kernels (also called filters), which are learnable matrices that can

identify common features in the image. CNNs use these grids of values to align with a portion of the image,

and perform a dot product between the kernel and the selected portion of the image. This operation is

performed iteratively for other portions of the image until the entire image has been processed. The output

of the various dot product operations form a feature map. This map contains the information about the

presence or the absence of the pattern described in the kernel. The entire process of sliding the kernel window

and performing dot product operations to produce a feature map is called a convolution operation (see Figure

2.11). Usually, multiple kernels can be used on an image to detect several patterns, and the kernel values are

tuned during training to identify optimal patterns. In addition to the convolution operation, CNNs support

other operations such as pooling to downscale an image, and flattening to unravel a feature map into a

feature vector.

Sometimes CNNs are applied on matrices formed from non-image data sources, these matrices are referred

to as psuedo-image. In 2020, Narayanan et al. [129] proposed a representation of gait sequences as stacks of

pseudo-images. The coordinate values from each body joint, was placed into a matrix to form one pseudo-

image. They used a CNN architecture with 2D convolution layers and maxpooling layers to identify emotions
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from emotional gaits. Due to the lack of large datasets in the domain, the authors of this paper used a data

augmentation technique that calculated new gait sequences for various observation angles.

Figure 2.11: An example of a convolution operation

The architecture greatly benefited from the structured representation of gaits using psuedo-images, as

the kernels learned patterns with respect to the position of body joint values in the pseudo-image. CNNs

combine convolutionally extracted features hierarchically. Thus, low level features between coordinates that

are placed far away from each other are not explored. However, certain dependencies between distant joints

are crucial for GER, for instance, a slouched head and short steps might indicate sadness. Moreover, the

ability of CNNs to detect and identify recurring patterns was not fully exploited in this work. The architecture

processed pseudo gait images using 2D convolutional operations only. These operations were able to encode

the spatial information present in each frame of the sequence however temporal information across frames

was not extracted from the gaits. Hence, information corresponding to the change in a subject’s behavior

throughout the emotional gait was not captured efficiently. Lastly, data augmentation techniques results in

the model learning information specific to the dataset used and might not perform well on other datasets.

Graph Neural Network-Based Methods

Graph Neural Networks (GNN), sometimes referred to as Graph Convolutional Neural Networks (GCNN)

are adapted specifically to process graph data. In a conventional convolutional operation, the information

in a locality (of pixels) is combined using a kernel. This idea is extended in GNNs, where the information

in the locality of nodes is combined. Hence, the operations in a GNN are often compared to convolutional

operations.

Depending on the application, a node-level, edge-level, or a graph-level prediction might be required from

the inputted graphical structures. Each node and edge in a graph can contain descriptive feature vectors.
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Graph neural networks combines the information from these individual node and edge feature vectors to

form new representations for them. This can be done iteratively to combine information from nodes that

are not immediate neighbors. The process that facilitates this incorporation of information from node and

edge feature vectors is called message passing.

Figure 2.12: Message Passing computational graph (right) for the embedding of node 1 (hu) for a sample
graph input (left)

A message passing operation can be described in two steps: aggregating and updating, described in

Equation (2.2) where h<k>
u is the embedding of a node u at the kth step, and v represents a neighbouring node.

During aggregation, features from immediate neighbours (N(u)) of a node (u) are combined. Subsequently,

the node’s feature vector (also called a node’s embedding) is updated by combining its previous value (h<k>
u )

and the newly formed feature vector. The specific method for aggregation and updating depends on the

exact implementation of the GNN. It can range from simple mathematical functions such as addition and

multiplication to more sophisticated approaches like neural networks. The new embedding of a node (h<k+1>
u )

contains information about itself and its neighbours after one iteration of message passing (Figure 2.12). If

more message passing layers are used (more message passing iterations), each node embedding in the graph

contains information from farther nodes. The final embedding of the node can then be used for node-level

prediction, or embeddings from all nodes can be combined for graph-level predictions. For simplicity, the

message passing procedure for only node embeddings were described above, but the same process can be

described for producing new edge embeddings with each layer instead.
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h<k+1>
u = Update<k>(h<k>

u , Aggregate<k>(h<k>
v ,∀v ∈ N(u))) (2.2)

In the domain of Gait Emotion Recognition, many researchers view gait as a sequence of skeletal graph,

or sometimes simply a graph. These approaches utilize GNNs for processing gait. In 2018, Yan et al. [189]

proposed a Spatial Temporal Graph Convolutional Network (ST-GCN) that modelled the entire gait sequence

as one connected graph. Each frame consisted of a skeletal representation of a pose and the body joints in this

skeletal graph were connected to the the corresponding body joints in the skeletal graphs of the previous and

the next frame. The authors proposed three partitioning schemes for the graph convolutional operations:

unilabelling, distance partitioning, and spatial configuration. Although this method was introduced for

action recognition, it was modified for gait emotion recognition purposes by the authors of [20] in 2020

to create the ST-GCN for Emotion Perception model (STEP). This paper used an encoder-decoder based

networks, where the network was trained to re-produce the input. To construct the encoder, they added

a 2D average pooling layer and two parallel 2D convolution layer to the ST-GCN network. Similarly, the

decoder contained a de-convolution layer before the ST-GCN network. After the encoder-decoder network

was trained to reconstruct emotional gaits, the encoder was used in addition to a handful of affective features

to identify the emotional labels.

Similar to Convolutional Neural Networks (CNN), GNNs benefit from the inherent rigid structure of the

human body for gait analysis. However, this approach has certain flaws that are detrimental to the network

performance for GER tasks. The message passing operations in GNNs do not allow low level features to be

formed between nodes that are placed far away in the graphical structure. Furthermore, GNNs allow the

combination of node and edge embeddings, but the ST-GCN only considers node embeddings which ignores

the relations between the bones and the joints in the body. This demerit propagates to the STEP network

as well, which has additional shortcomings. To address the lack of data, the authors combined different

datasets collected under varying conditions. Moreover, they generated synthetic gaits from these datasets

to increase the number of samples. The amalgam of datasets was then used to train and test the network.

Hence, the dataset that was used in this research had undesired variation in the samples and gaits that were

not representative of real-world gaits. Moreover, since the train and test sets were derived from real and

synthetic gaits generated from models trained on those real gaits, the test set had some representation of

the training set. Hence, the success of this research was overestimated.
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Recurrent Neural Network-Based Methods

Recurrent Neural Networks were designed for sequential data processing. Time-series or signal data per-

taining to finance, language, music, etc. can be effectively processed by this technique. Similar to CNNs’

idea of sharing the learning throughout the whole image, RNNs share their learnings across a sequence. For

instance, the word ”not” should have a similar contextual meaning irrespective of its position in the sentence.

Figure 2.13: A flowchart describing the information processing in Recurrent Neural Networks

The sharing of information in Recurrent Neural Networks is achieved by processing data in time steps and

accepting information from previous time-steps. Activations for the current time step are produced using

previous time-steps’ activations (a<t−1>) and current information (X<t>). This calculation is described in

Equations (2.3) and (2.4), where g and g′ are activation functions. The processing of information in RNNs is

visualized in Figure 2.13. This method of processing data is effective for short sequences. There are multiple

weight matrix (Waa, Wax, Way) products required for processing long sequences. These weight matrices

usually have small values and repeated multiplications of such values cause the product to diminish over

time steps. Hence, vanilla recurrent neural networks are ineffective for processing long term dependencies

and are rarely used in literature.

a<t> = g(Waaa
<t−1> +WaxX

<t> + ba) (2.3)
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y<t> = g′(Waya
<t> + by) (2.4)

This issue is mitigated in Long-Short Term Memory (LSTM) units and Gated Recurrent Units (GRU),

by using a dedicated memory cell to hold information. In LSTMs, this memory cell vector is controlled by

an update gate (γu) and a forget gate (γf ). At each time step the old value of the memory cell (c<t−1>)

and a newly computed candidate value of the memory cell (c
′<t>) are considered to calculated the new

value (c<t>). This calculation is described in Equation (2.9). Additionally, an output gate (γo) governs the

activation of the unit, see Equation (2.10). The two gates to calculate a new memory cell value (c<t>) along

with an output gate to regulate the value passed on to the next step provide more control (Figure 2.14).

Figure 2.14: Visualized calculation of a general Long Short Term Memory unit

c′<t> = tanh(Wc[a
<t−1>, X<t>] + bc) (2.5)

γu = σ(Wu[a
<t−1>, X<t>] + bu) (2.6)

γf = σ(Wf [a
<t−1>, X<t>] + bf ) (2.7)
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γo = σ(Wo[a
<t−1>, X<t>] + bo) (2.8)

c<t> = γu ∗ c′<t> + γf ∗ c<t−1> (2.9)

a<t> = γo ∗ tanh(c<t>) (2.10)

In contrast, GRU’s have a relevance gate (γr) which is used to signify the importance of retaining the old

value of the memory cell, see Equation (2.11). While the gate describes the weightage of c′<t> and c<t−1>

during the calculation of the new value of the memory cell vector (c<t>), the value essentially depends

on only one update gate (γu). Moreover, GRU lacks the final activation facilitated by the output gate in

LSTMs. Hence, GRUs offer less control over the final activation values, in comparison to LSTM units. The

calculations of a typical Gated Recurrent Unit are visualized in Figure 2.15.

Figure 2.15: Visualized calculation of a Gated Recurrent Unit

c
′<t> = tanh(Wc[γr × c<t−1>, X<t> + bc]) (2.11)
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γu = σ(Wu[c
<t−1>, X<t> + bu]) (2.12)

γr = σ(Wr[c
<t−1>, X<t> + br]) (2.13)

c<t> = γu × c
′<t> + (1− γu)× c<t−1> (2.14)

Since the features in RNNs are calculated by performing dot product of the input data (X<t>) and a

weight matrix (Wax), all possible low-level features are explored. This mitigates the issues with models such

as GNNs and CNNs, that use a rigid structure to represent gaits. Moreover, sequential models are better

suited to extract temporal features from time-series data.

In 2019, Randhavane et al. [144] used a methodology similar to [20]. They used a LSTM based encoder-

decoder trained to reconstruct human gaits. The trained encoder from this network was used to produce

gait embeddings which were then aggregated with posture and movement features. The combined feature

set was passed to a Random Forest classifier to recognize emotions. This work is referred to as Affective and

Deep Features (ADF) in this thesis. In 2020, Bhattacharya et al. [21] used the encoder-decoder methodology

as well, with a few differences. The network trained to recreate gait sequences used Hierarchical Attention

Pooling and Affective Mapping (HAPAM) and was based on GRUs. The trajectories corresponding to each

body joint’s rotation throughout the gait were independently processed by two layers of GRU at first. Linear

layers were then employed to produce feature representations of the body joint rotation trajectories. These

representations were then combined using sum pooling layers to form segments of the human skeleton. For

instance, feature vectors corresponding to the trajectories of left shoulder, left elbow and left hand were

pooled to represent a feature vector for the entire left arm. These combined feature vectors were processed

linearly to form an embedding of the entire gait sequence. The decoder followed a similar approach in

reverse and used linear, GRU and unpooling layers to generate gait sequences. For classification, the authors

produced gait embeddings using the encoder, as described above, combined it with affective features and

used an MLP for mapping it to the output labels.

These works provided a base-line for recurrent neural network based methodologies for gait emotion

recognition; however they failed to reap all the benefits of using sequential deep learning models. The LSTM

network used in [144] was poorly designed and ineffective at producing gait embeddings. Additionally,

like the affective feature set used in [20], the posture and movement based features contained only a few

measurements. Lastly, the decision making module in this architecture was a Random Forest Classifier,
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which can be outperformed using a basic Artificial Neural Network (ANN). On the other hand, the work

published in [21] utilized an MLP classifier but had various other design flaws. One advantage RNNs offer

over CNNs and GNNs is the ability to explore low-level dependencies between distant body joints, but the

hierarchical approach adopted in this paper eliminates the possibility of capturing those spatial features.

Moreover, the network employed GRUs which offer a limited control over the memory cell. Hence, the

temporal features derived from the gaits are not optimal either. A demerit common with HAPAM [21] and

STEP [20] methodologies is that these models were trained on a dataset containing a mixture of real and

synthetic gaits made from those real gaits. Hence, most of the data used was not representative of the

real world and also exaggerated the performance of the network, since the test set contained synthetic gaits

built from a network trained on real gaits present in the training data. Both of the RNN based approaches

in this domain were devised by the same group of authors as the STEP [20] paper and used the same

encoder-decoder design. One major flaw with such an approach is that the network tunes its parameters

to capture information relevant for re-constructing the image. This information is then re-purposed for

emotion recognition. Hence, there is a misalignment between the objective of the research and the network

design. Furthermore, the affective feature set used in these researches works contain only a small number of

features. This characteristic was common with studies prior to 2010, since intensive computation tasks were

not feasible with older hardware and traditional classical machine learning methods. However, deep learning

networks are capable of handling larger feature sets on improved hardware. Hence, the affective feature sets

were also not optimal.

Concluding Remarks

Gait Emotion Recognition witnessed only a handful of works based on deep learning. All of these methods

relied on deep neural networks with a lot of parameters. Hence, they required large datasets to train on, which

led researchers to mix different datasets and use synthetic gaits. The large networks also required more time

to process a gait sequence. Furthermore, most recent methods proposed did not have architectures targeted

towards emotion recognition, which resulted in sub-optimal performance. Additionally, the limited affective

feature set used was introduced towards the end of their networks. The deep features and the affective

features were never processed together before classification. Hence, the classifiers had to rely on information

from the low level affective features. Moreover, the architectures did not fully exploit the advantages the

respective type of neural network had to offer. Hence, this thesis introduces a model that addresses the

shortcomings in the domain.
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Chapter 3

Proposed Bi-Modal Gait Emotion

Recognition Methodology

Since gait is a time-series data containing coordinates for each joint in the subject’s gait skeleton, it is

imperative to employ sequential data processing methods to extract temporal features. Furthermore, explo-

ration of spatial features exhibited by the gait skeleton in each frame is also important for processing gait

data. Hence, the deep learning architectures proposed in this thesis are made up of neural networks that are

proficient at processing sequential data to extract spatial as well as temporal gait features.

3.1 BMSNN Architecture for Gait Emotion Recognition

The proposed Bi-Modular Sequential Neural Network (BMSNN) utilizes Long Short Term Memory (LSTM)

units. These units explore low-level features in the temporal as well as the spatial dimension, by employing

memory cells to calculate features across frames and a weight matrix to extract features within a frame,

respectively. This addresses the fundamental issue with GNNs in gait recognition, where the low-level features

are computed only from neighbouring joints, while low-level features dependant on body-joints/graph-nodes

far away from one another (spatially or temporally) are unaccounted for.

Once the LSTM subnetwork produces the feature set, the features must be consolidated to obtain the

classification results. As discussed in the previous section, due to their ability to automatically extract and

select new discriminating features, Multi Layer Perceptrons (MLP) are a great choice for the selection of

latent features and for the subsequent classification. Therefore, the functionality of the MLP subnetwork is

twofold: feature extraction to produce a condensed feature set and mapping those features to the various
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emotion classes.

Figure 3.1: Architecture of the proposed Bi-Modular Sequential Neural Network

3.1.1 Deep Learning Architecture

The proposed Bi-Modular Sequential Neural Network (BMSNN) is comprised of two modules: the LSTM

subnetwork and the MLP subnetwork, as described in Figure 3.1. To address the first research question: ”Can

an attenuated hybrid deep learning architecture be devised to achieve low inference time for gait emotion

recognition?”, the overall architecture of the network has a tapered design. This produces a condensed

representation of the input by ensuring that the amount of information received is represented by a smaller

set of features towards the end. This is achieved through an architecture where the next layer has either

an equal or smaller number of units than the previous one. Such a design also ensures that the network

has a low number of parameters, since the number of units in each layer decreases with the depth of the

network. The second research question: ”Can a deep learning architecture for gait-based emotion recognition

be designed to identify distinctive sequential and temporal features extracted from body joints?”, is answered
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by implementing the first half of the network using sequential neural networks that can extract spatial and

temporal features effectively, and the second half of the network that is adept at identifying distinctive

features. Combined with the attenuated design requiring lesser parameters, the proposed network addresses

the third research question: ”Can a light deep learning architecture combining a sequential neural network

and multi-layered perceptrons be used to accurately recognize emotions from human gaits?”.

Unlike prior research, the network is trained with a categorical cross entropy loss for each of the emotion

classes, which ensures that network weights are trained specifically to extract features relevant for the task

of emotion recognition. The network accepts an input vector of size [T, (N ×C)+F ], where T is the number

of the time steps in each gait sequence, F is the size of the handcrafted feature set, N is the number of body

joints in the body skeleton, and C is the number coordinates for each body joint (thus, for an input of only

raw gait sequences, F = 0). This sequential gait input is processed by a three-layered LSTM subnetwork

containing 128, 64, and 64 LSTM units, respectively. All of these layers have a Hyperbolic Tangent (Tanh)

activation function to ensure that the negative activation values are not ignored while introducing non-

linearity. The resulting feature set of size 64 is passed onto the MLP subnetwork, which has three layers

with decreasing number of units (64, 32, and 32 ). Additionally, the activations of the first MLP layer

are batch normalized with a momentum of 0.1 that resulted in a robust performance across all classes of

emotions as shown in Chapter 4. This subnetwork is responsible for producing a denser set of 32 features

that is mapped to the four emotion classes, following which a Softmax activation is used to convert the scores

into probabilities. Lastly, the class with the highest probability value is chosen.

3.1.2 Leveraging Handcrafted Features

While using a purely deep learning approach has its advantages, in this thesis we demonstrate that it can be

further empowered by the previous knowledge from the problem domain. The data driven approach of deep

learning methodologies is highly influenced by the dataset used to train the deep learning network. This

characteristic can cause poor performance for classes in the dataset which do not have as many samples as

the other classes. The problem can be mitigated by avoiding relying solely on deep learning. Therefore,

the proposed architecture incorporates robust handcrafted gait features as well. This component of the

proposed system also addresses the fourth research question, ”Can handcrafted features based on the geo-

metric relationships between body joints be combined with the deep learning architecture to further improve

recognition performance and to make the architecture resilient to class imbalance in the dataset?”.

One way to make use of the sequential handcrafted features with a deep learning architecture is to

concatenate them with the output of the LSTM subnetwork before feeding them to the MLP subnetwork.
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This can be done by utilizing statistical values that hold information about the sequential data, for instance

the mean or the highest value of the series. Unfortunately, using such values ignores the latent features

present in that sequential data, and as such not practical. Therefore, the network is designed to accept

a feature set as its input, which contains two types of handcrafted features in addition to the raw gait

sequences. These features, along with the raw gait sequences, are used to produced higher level features in

the first half of the network which are then refined and classified into emotions by the second half of the

network.

To find the most suitable feature set for the model, combinations of four gait-specific handcrafted features

that demonstrated best performance in prior research for processing gait data are considered [2, 15]. The

features: Joint Relative Angles (JRAs), and Joint Relative Distances (JRDs), describe the geometric and

directional motions of a subject’s body joints [15]. All handcrafted features mentioned below are computed

for each frame in a gait sequence. Furthermore, all possible relative angles and distances are considered in

the proposed method to overcome the limitation of favoring only a few body joints.

(a) The Joint Relative Angle formed by the right
shoulder joint and right elbow joint

(b) The Joint Relative Distance between the left
shoulder joint and the left hip joint

Figure 3.2: Examples of the JRA and JRD Geometric Handcrafted Features
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Joint Relative Angles

The JRA between two body joints, A(x1, y1, z1) and B(x2, y2, z2), is the angle formed at the mid-Spine joint

S(x0, y0, z0) between the vectors S⃗A (vector from the mid-Spine joint to body joint A) and S⃗B (vector from

the mid-Spine joint to body joint B), (see Figure 3.2a). The angle is defined as the inverse Cosine of the

dot product of S⃗A and S⃗B over the product of the magnitude of the two vectors. Equation (3.1) describes

the calculation mathematically. The N − 1 body joints (excluding the mid-Spine joint) result in N − 1

vectors originating from the mid-Spine joint, which are used to calculate the
(
N−1
2

)
angles formed between

all possible pairs of vectors. Thus, the size of the JRA feature set is (T,
(
N−1
2

)
), where T is the number

of time steps in the gait sequence. This feature is representative of relative angular motions of the various

body joints. A stable joint that remains mostly stationary throughout the gait is required to be the relative

joint. Hence, the mid-Spine is chosen as the relative joint for all the features [15].

JRA(A,B) = cos−1

(
S⃗A · S⃗B

∥S⃗A∥∥S⃗B∥

)
(3.1)

Joint Relative Distances

Additionally, the JRD considers the relative motion of various body joints in terms of distance [2]. The

JRD between two points A(x1, y1, z1) and B(x2, y2, z2) is calculated as the euclidean distance between the

two joints, (see Figure 3.2b). The mathematical formula for this calculation is mentioned in Equation (3.2).

Similar to JRAs,
(
N
2

)
JRDs are calculated for all possible combinations of two joints in the body skeleton

for one frame of the gait sequence.

JRD(A,B) =
√
(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 (3.2)

Two more features, namely Joint Relative Triangle Areas (JRTAs) and Joint Relative Cosine Dissimilar-

ities (JRCDs), introduced in [15] were considered as a part of the input feature set. JRTAs can be calculated

for any three body joints A(x1, y1, z1), B(x2, y2, z2), and C(x0, y0, z0). It is described as half of the norm of

the cross product of A⃗B (the vector from point A to point B) and B⃗C (the vector from point B to point C),

as shown in Equation (3.3). Similarly, JRCDs can be described as the Cosine distance between two points

A⃗ and B⃗, as shown in Equation (3.4).

Ar(△ABC) =
∥A⃗B × B⃗C∥

2
(3.3)
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δcosine = 1−

(
A⃗ · B⃗

∥A⃗∥∥B⃗∥

)
(3.4)

However, on comparing the feature set of raw gait sequences with JRA and JRD and with JRTA and

JRCD, it was found that JRTA and JRCD do not affect the model precision. Hence, the final feature set

included raw gait sequences, JRAs and JRDs, of size [T, (N ×C)+
(
N−1
2

)
+
(
N
2

)
], where T is number of time

steps in a gait sequence, N is number of body joints for each time step, C is the number of coordinates for

each joint in a time step, and
(
N−1
2

)
and

(
N
2

)
are the sizes of the handcrafted feature set of JRA and JRD,

respectively.

This section first introduced the novel Bi-Modular Sequential Neural Network (BMSNN) architecture that

consists of the LSTM subnetwork and the MLP subnetwork. These subnetworks facilitate efficient extraction

and selection of sequential features that result in high emotion recognition performance, as will be shown in

Chapter 4. The performance is further increased by incorporating gait-specific geometric handcrafted features

(JRAs and JRDs). The architecture parameters such as the activation function, learning rate, batch size,

etc. were optimized as will be discussed in Chapter 4. The results demonstrate that the proposed novel

architecture surpasses all other recently developed deep-learning based methods for gait emotion recognition.

3.2 Improved BMDNN Architecture for Gait Emotion Recogni-

tion

While the previously described architecture proposes a novel fusion of deep features extracted using a se-

quential neural network and robusts handcrafted features, it can be further enhanced by incorporating a

broader set of latent deep features as seen in Figure 3.3. The stability and recognition performance are

further improved by incorporating domain-specific Laban Movement Analysis features to capture the dy-

namic structural properties of a subject’s body while walking. Information-rich LMA-based features are

fed to the MLP subnetwork to fuse with deep features which results in robustness and resilience to the

imbalanced dataset. The proposed improved architecture achieves remarkable precision scores across all

emotion classes and outperforms, in addition to previous architecture, all recent state-of-the-art methods.

Hence, the architecture presented in this section answers the fifth and the sixth questions, namely: ”Can

domain-specific handcrafted features be fused with latent deep features to improve gait emotion recognition

performance?” and ”How do the Laban Movement Analysis feature groups affect the performance of the

proposed network?”.

The Bi-Modal Deep Neural Network (BMDNN) consists of two updated modules. The LSTM-based
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Figure 3.3: Architecture of the proposed Bi-Modal Deep Neural Network

feature extraction module sequentially processes gait data to produce a rich feature vector. The MLP-

based decision module is responsible for combining and condensing the information extracted by the LSTM

subnetwork and the features calculated using LMA, and for mapping to the four emotion classes. Moreover,

the batch normalization layer in the MLP module ensures lower loss during training with fast and smooth

parameter updates.

3.2.1 Deep Learning Architecture

The input to the first module is a concatenated vector of size [T, (N × C) + F ], where T is the number of

frames of each gait sequence, N is the number of body joints, C is the number of coordinates for each body

joint, and F is the combined size of the angle and distance-based handcrafted features (JRAs and JRDs),

described in Section 3.1.2. The input to the second module consists of the latent deep features of size 64,

extracted from the first module, concatenated with the robust domain-specific LMA features. If the inputs

are not normalized, optimization of the model is skewed and produces too large or too small gradient values,

restricting optimal parameter updates. Moreover, since the input to the first module is gait data, normalizing

it through conventional pre-processing methods would distort the structure of the gait sequences. Hence, the

combined feature vector from both inputs is normalized by the network via the batch normalization layer in

the beginning of the MLP module.
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The first half of the network has two LSTM layers, each with 64 units, a Hyperbolic Tangent (Tanh)

activation, and a L2 regularizer with a penalty of 0.01. The regularizers penalize high weights and biases,

hence preventing overfitting. This improvement resulted in an increase in the system’s performance, as shown

in Chapter 4. The Tanh activation ensures that the negative values from the inputs are not ignored while

producing the activations. The second half of the architecture contains a batch normalization layer before the

two MLP layers, which improves the network’s precision for under-represented classes, as shown in Chapter

4. Each layer has 32 units with Tanh activations to ensure an overall tapered design for refining features.

The Tanh activation function was selected for both subnetworks via comparative experimentation with other

activation functions (see Chapter 4, Section 3). The second subnetwork combines the information from the

features extracted by the LSTM subnetwork with the LMA-based handcrafted features, to produce high-level

features. These high-level features are mapped to the four emotion classes using a Softmax activation.

Out of the commonly used optimizers, the model exhibited the best loss convergence with RMSprop (see

Chapter 4, Section 3). Similarly, 400 was found to be the optimal value for the number of training epochs

(further information on these experiments is provided in Chapter 4). Hence, the model parameters are

optimized using RMSprop optimizer with a momentum of 0.5, a rho of 0.3, and an epsilon of 1e− 7 for 400

epochs. Furthermore, the training is performed using an experimentally optimized batch size of 64 (refer to

Chapter 4) and a categorical cross-entropy loss function. As mentioned earlier, DNN-based approaches are

sensitive to the composition of the training data and might result in low performance for under-represented

emotion classes. Therefore to introduce more robustness, this thesis proposes a novel hybrid architecture

that integrates the domain-specific features.

3.2.2 Laban Movement Analysis Features

Laban Movement Analysis (LMA) [98] has been effective at discriminating emotions from body movements

[101]. Prior works have successfully identified emotions from human motion using LMA based features [77,

29]. However, no previous work in gait emotion recognition combined the powerful LMA based handcrafted

features with features extracted using a deep neural network. The domain has also not seen any work that

processes handcrafted and deep features together to derive more information rich features. Additionally, the

sensitivity of deep learning models toward the data distribution was not addressed previously.

To improve the performance of the model for emotion classes with low data representation, the proposed

method employs statistically cumulated handcrafted features that are resilient to unbalanced datasets. These

handcrafted features are based on the Laban Movement Analysis (LMA) [98] which provides a structural

description of the movement of a subject’s body using four groups: body, effort, shape, and space. These
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groups comprise of 17 features calculated in the temporal domain, i.e. the features are calculated for each

time frame of the gait sequence and have a combined size of (17, T ). The LMA features must be converted

to a one-dimensional vector to make it compatible for the MLP subnetwork. This flattening of the features is

performed by calculating histogram values on 100 bins, thus making the final feature set of shape (1700, 1).

The final feature set is concatenated with the latent deep features extracted from the LSTM subnetwork

(64, 1) to form the input vector for the MLP subnetwork.

Body Features

The Body feature group (Head Inclination Angle, Flex Angle, Abduction Angle, Knee Angle, Stride Angle,

Knee Stride Length, Foot Stride Length) describes the physical and structural characteristics of the body

using seven angle and distance measures. These features capture the information about the connections of

the body as it moves [56], are beneficial for emotion recognition [2] and can be calculated using formulae

using Equations (3.1) and (3.2) described in Subsection 3.1.2.

Effort Features

The Effort feature group (Kinetic Energy, Knee Average Velocity, Foot Average Velocity, Elbow Average

Velocity, Wrist Average Velocity) encapsulate the subtle intent behind the motion of a body by measuring

the energy/force put into the motion. This feature group describes the amount of expressiveness [101]. The

velocity of a particular joint at a time frame i can be calculated as the difference between the joint’s position

at the ith frame and the joint’s position at the i+ 1th frame, described in Equation (3.5). Additionally, the

Kinetic Energy at a given time frame i is calculated using Equation (3.6), where m is the mass of the joint

(m = 1), v is the velocity of the kth joint and N is the total number of the body joints.

V i
A = Ai+1 −Ai (3.5)

KEi =
1

2N

N∑
k=1

m.vi
2

k (3.6)

Shape Feature

The next movement component, Shape, contains a single feature: Density Index, which captures the progres-

sion of the body’s shape change with respect to time. The metric represents the variation of the body shape

throughout the gait, which indicates the smoothness/unevenness of the movements, linked to the comfort

level of the subject [150]. First, the centroid C of the body for each frame i is calculated according to
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Equation (3.7), where Jk is the vector containing the x, y, and z coordinates of the kth body joint, and N

is the total number of body joints. Finally, the Density Index (DI) is calculated as described in (3.8), where

Jkx is the x coordinate of the kth body joint.

Ci =
1

N

N∑
k=1

Jk (3.7)

DIi =
1

N

N∑
k=1

√
(Ci

x − J i
kx)

2 + (Ci
y − J i

ky)
2 + (Ci

z − J i
kz)

2 (3.8)

Space Features

The fourth category in LMA is Space (Whole Body Bounding Volume, Upper Body Bounding Volume,

Lower Body Bounding Volume, Spatial Symmetry Index), which delineates the way a subject makes use of

the surrounding space during a gait. The Spatial Symmetry Index is indicative of relaxation [123]. The

Bounding Volume (BV) is the product of dx, dy and dz (Equation (3.12)), which are distances calculated in

Equations (3.9), (3.10), and (3.11). Lastly, the Spatial Symmetry is calculated by computing the barycenter

of the skeletal body for each frame, and then using it to calculate the Symmetric Indices for each axis. The

Symmetric Index (SI) at a given time frame i for an axis w is defined in Equation (3.13), where LW, RW,

and BC represent the coordinates of the left wrist joint, the right wrist joint and the barycenter of the body.

Subsequently, the overall Symmetry Index is calculated according to Equation (3.14).

dx = max
k∈K

Jkx −min
k∈K

Jkx (3.9)

dy = max
k∈K

Jky −min
k∈K

Jky (3.10)

dz = max
k∈K

Jkz −min
k∈K

Jkz (3.11)

Bounding V olume = dx × dy × dz (3.12)

SIiw =
(LW i

w −BCi
w)− (RW i

w −BCi
w)

(LW i
w −BCi

w) + (RW i
w −BCi

w)
(3.13)
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SIi =
√
(SIix)

2 + (SIiy)
2 + (SIiz)

2 (3.14)

Table 3.1: Summarized description of the Laban Movement Analysis features

LMA
Feature
Group

Feature Name Description

Head Inclination Angle The angle formed at the Neck joint, by the Head joint and
the Base Spine joint

Flex Angle The average of the angles formed at the left and the right El-
bow joints, by the corresponding Shoulder and Wrist joints

Body

Abduction Angle The average of the angles formed at the left and the right
Shoulder joints, by the corresponding Elbow joints and the
Neck joint

Knee Angle The average of the angles formed at the left and the right
Knee joints, by the corresponding Hip and Ankle joints

Stride Angle The angle formed at the Base Spine joint, by the left and
right Ankle joints

Knee Stride Length The Euclidean distance between the left and right Knee
joints

Foot Stride Length The Euclidean distance between the left and right Ankle
joints

Kinetic Energy The square of the velocities of all the body joints

Effort

Knee Average Velocity The average of the velocities of the left and the right Knee
joints

Foot Average Velocity The average of the velocities of the left and the right Ankle
joints

Elbow Average Velocity The average of the velocities of the left and the right Elbow
joints

Wrist Average Velocity The average of the velocities of the left and the right Wrist
joints

Shape Density Index The sum of the distance between the centroid and each body
joints, divided by the number of body joints

Whole Body Bounding Volume The volume of the cuboid formed by the farthest body joint
coordinates in all three axes

Space

Upper Body Bounding Volume The volume of the cuboid formed by the upper body joint
coordinates (Head, Neck, left and right Elbows, Wrists, and
Shoulders) in all three axes

Lower Body Bounding Volume The volume of the cuboid formed by the upper body joint
coordinates (Base Spine, left and right Hips, Knees, and
Ankles) in all three axes

Spatial Symmetry Index The ratio of the difference and sum of the displacements of
the left and right wrist joints from the barycenter of the
body

This section introduced a Bi-Modal Deep Neural Network that improves on the BMSNN architecture

by introducing domain-specific and emotionally relevant Laban Movement Analysis-based features (Summa-
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rized in Table 3.1). This modification results in a remarkable improvement in the network precision that

outperforms the recent state-of-the-art methods as well as the proposed BMSNN architecture, as shown in

Chapter 4. The experiments presented in Chapter 4 justify the optimal values of the network and validate

the importance of the key components of the network through an ablation study. Furthermore, the effects

of various groups of the LMA features on the performance of the proposed BMDNN architecture are also

studied.

Alternate Network Configurations for the BMDNN

While developing the proposed architecture, alternative variations were experimented with. However, it was

found that when LMA features were processed sequentially in concatenation with JRAs, JRDs and raw gait

sequences by the LSTM subnetwork, the overall performance of the model decreased while its sensitivity

towards the dataset’s class distribution increased. This was caused due to the tendency of neural networks

to learn the biases in the dataset. A similar decrement in the overall performance was observed when the

JRAs and JRDs were passed alongside the LMA features to the MLP subnetwork. The reasons behind it

is threefold. Firstly, adding new features to the input of the MLP increased the vector size and hence the

network complexity which caused the network to start overfitting. Secondly, low-level metrics contained in

JRAs and JRDs were no longer being processed to form higher-level features. Lastly, the distinction in the

processing of the angular and distance metrics present in the LMA feature group and the geometric features

was lost, which led to similar feature being produced.

Inputting the JRAs and JRDs with the raw gait sequences allowed the network to sequentially produce

high-level features. Simultaneously, passing the higher-level LMA features directly to the MLP subnetwork

promoted resilience towards the class imbalance. Hence, the current configuration of the Bi-Modal Deep

Neural Network was optimal for Gait Emotion Recognition problem. The detailed experimentation on the

proposed network is presented in the next chapter.

3.3 Summary

The methodology proposes a novel bi-modal deep learning architecture to identify human emotion from gait.

The proposed architectures employ LSTM units to allow low-level feature extraction from all possible combi-

nations of body joint coordinate values in the spatial as well as the temporal domain. The developed BMSNN

and BMDNN architectures are trained using categorical cross-entropy loss to effectively distinguish between

various emotion classes. The BMSNN architecture presents a novel light design with fewer parameters that

outperforms the prior works while ensuring inference times that are a fraction of the comparators, as will
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be shown in the next chapter. The architectures proposed in this thesis incorporated, for the first time,

powerful JRAs and JRDs geometric features with Laban Movement Analysis features to create light-weight

architecture resilient to data imbalance for emotion recognition from gaits. The next section presents ex-

tensive experimentation that confirm that the proposed methodology outperforms all recent state-of-the-art

deep learning methods. Additionally, a discussion of each Laban Movement Analysis feature group’s affect

on the proposed BMDNN architecture’s performance is included.
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Chapter 4

Experimental Results

Various experiments were performed in this research for optimization, validation, and comparison purposes.

First, the hyper-parameter optimization was performed to fine-tune the model to ensure the highest emotion

recognition performance. Next, an ablation study was performed to demonstrate that all the elements of the

proposed architecture play a crucial role in recognizing emotion. Then, experiments on handcrafted features

and LMA were conducted. Finally, the proposed architecture was compared to the recent state-of-the-art

methods. This chapter describes the above-mentioned experiments and discusses the findings in detail.

4.1 Experimental Setup

To ensure that the proposed architecture learns optimal parameter values, both the precision and the

loss metrics were monitored for the Bi-Modal Deep Neural Network’s (BMDNN) training and validation

stages. The BMDNN model was trained using a categorical cross-entropy loss function. The loss function,

Lcategoricalcross−entropy, is described in Equation (4.1), where C is the total number of classes, ytruei is the

true label value for a class i, and ypredi is the network’s predicted value for class i.

Lcategoricalcross−entropy = −
C∑
i=0

ytruei log(ypredi ) (4.1)

After the model was trained successfully, micro and macro mean Average Precision were recorded to

measure the model’s ability to classify emotions correctly. The macro mAP is computed as the mean of all

individual class average precision scores (described in Equation ((4.2)), where APi is the average precision

for class i, and C is the total number of classes). Hence, macro mAP is a good metric to measure the model’s

resilience towards the imbalance in the dataset. Micro mAP considers each sample as a unique class. This
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metric is suitable for measuring the overall performance on an unbalanced datasets like the one used in this

research, since it considers the varied representation of classes in the dataset. The micro mAP measure is

defined as the global average of the Average Precision metrics. Hence, micro mAP measures the number

of samples classified correctly irrespective of their classes and macro mAP represents the model’s overall

performance with respect to all the classes [199].

macro mean Average Precision =
AP 1 +AP 2 + ...+APC

C
(4.2)

4.2 Dataset

All the experiments were run with a data split of 80:10:10 for training, validation and testing using a stratified

shuffling on a subset of the Edinburgh Locomotion MoCap Dataset (ELMD) [69]. This dataset was originally

collected by the researchers from the University of Edinburgh and later annotated by Bhattacharya et al. [21].

The dataset was collected to understand and recreate human locomotion, and hence contains gait sequences

with varying conditions: walks that are slow, fast, in different directions, non-linear, around obstacles, etc.

The modified ELMD dataset consists of 1835 gait sequences recorded for 4 seconds at 60 Hz. Thus, each

gait sequence in the dataset has 240 frames. Each gait sequence consists of 48 values which correspond to

3 coordinates of 16 body joints (see Figure 4.1 for details). While Gait Emotion Recognition (GER) can

be performed using gait skeletons with fewer number of body joints and/or lower dimensional coordinates,

having fewer amount of data points would be detrimental to the network’s performance. These gait sequences

were labelled by [21] into four categories of emotions: Angry, Happy, Sad, and Neutral. The labels were

generated by various participants on a crowd sourced website that provided ratings to each sequence based

on the emotions they perceived from that gait. This resulted in a dataset of 1835 gait sequences, with each

sequence consisting of 240 frames, and each frame containing 16×3 values. These 1835 gait sequences consist

of 1048 Angry gaits, 454 Happy gaits, 254 Sad gaits and 79 Neutral gaits.

ELMD is the benchmark dataset for emotion recognition research from gait. This dataset is very popular

since it is an emotionally-labelled gait data, which is not artificially synthesized and has a sufficient number

of samples for training a deep learning methodology. It has, however, an unequal number of class samples

corresponding to different emotions. In all of the prior research, higher precision values were observed for the

classes with more samples and vice-versa. However, a positive outcome of this attribute is that the dataset

allows for a clear identification of methods that are too susceptible to the class sample distribution.
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Figure 4.1: Modified gait skeleton joints from Edinburgh Locomotive MoCap Dataset

4.3 Hyperparameter Tuning Experiments

4.3.1 Optimizer Selection

In a nutshell, the optimizer of a neural network is responsible for updating the network’s trainable parameters

while ensuring that the overall network loss is reduced. There are a variety of optimizers available in the

domain of Deep Learning, each one offering a different way to utilize the loss function value to change the

network’s parameter values. This research considered four commonly used neural network optimizers for the

proposed BMDNN model: Adam, RMSprop, SGD, and AdaDelta.
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The network was unable to train properly with an AdaDelta optimizer as seen from the poor loss and

precision graphs in Figure 4.2a and 4.2b respectively, and the low precision scores in Table 4.1. A slight

improvement was seen with Stochastic Gradient Descent (SGD) optimizer, which provided a smooth learning

curve for the network but was unable to achieve a good performance, see Figure 4.3. On the other hand,

ADAptive Movement estimation (Adam) and Root Mean Square propagation (RMSprop) optimizers led to

steep training loss graphs, which showed a significant decrease in the network loss (Figures 4.4a and 4.5a).

Out of the two, RMSprop can be clearly identified to have had the best overall performance, followed by

Adam optimizer (see Table 4.1). Hence, RMSprop optimizer was selected as the optimizer for the model.

Table 4.1: Performance comparison of the proposed model for different optimizers

Optimizers Class AP
Angry

Class AP
Happy

Class AP
Sad

Class AP
Neutral

micro
mAP

macro
mAP

AdaDelta 0.52 0.22 0.18 0.08 0.25 0.25
SGD 0.94 0.58 0.23 0.08 0.58 0.46
Adam 0.99 0.93 0.95 0.91 0.97 0.94
RMSprop 0.99 0.95 0.97 0.91 0.98 0.96

(a) The loss values for the training and validation of
BMDNN with the AdaDelta optimizer

(b) The precision values for the training and validation
of BMDNN with the AdaDelta optimizer

Figure 4.2: The proposed BMDNN’s loss and precision graphs for the training and validation datasets with
the AdaDelta optimizer

4.3.2 Learning Rate Selection

The learning rate of a model regulates the magnitude of the weight updates and therefore, how fast the model

converges. A large learning rate would result in unstable parameter updates, and produce an untrained

model. This is generally depicted by an oscillating (or a rugged) loss curve since the model’s loss keeps

varying without gradually decreasing. Simultaneously, if the chosen learning rate is too small, the model
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(a) The loss values for the training and validation of
BMDNN with the SGD optimizer

(b) The precision values for the training and validation
of BMDNN with the SGD optimizer

Figure 4.3: The proposed BMDNN’s loss and precision graphs for the training and validation datasets with
the SGD optimizer

(a) The loss values for the training and validation of
BMDNN with the Adam optimizer

(b) The precision values for the training and validation
of BMDNN with the Adam optimizer

Figure 4.4: The proposed BMDNN’s loss and precision graphs for the training and validation datasets with
the Adam optimizer

will make minuscule changes to the network parameters. This will result in smooth loss curves; however,

the model will remain untrained after numerous epochs. Hence, an optimal learning rate ensures that the

network parameter updates result in a consistent and a sufficient amount of reduction in the model loss.

To determine an optimal value for this hyper parameter, the BMDNN model was trained on learning rates

ranging from 1e− 6 to 1e− 4. As seen in Table 4.2, the learning rate of 1e− 5 results in the best precision

of the model and hence was selected.
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(a) The loss values for the training and validation of
BMDNN with the RMSprop optimizer

(b) The precision values for the training and validation
of BMDNN with the RMSprop optimizer

Figure 4.5: The proposed BMDNN’s loss and precision graphs for the training and validation datasets with
the RMSprop optimizer

Table 4.2: Performance comparison of the proposed model for different learning rates

Learning Rates Class AP
Angry

Class AP
Happy

Class AP
Sad

Class AP
Neutral

micro
mAP

macro
mAP

1e-6 0.99 0.84 0.80 0.39 0.94 0.76
2e-6 0.99 0.88 0.86 0.74 0.96 0.87
4e-6 0.99 0.93 0.95 0.87 0.98 0.94
8e-6 0.99 0.96 0.94 0.81 0.98 0.93
1e-5 0.99 0.95 0.97 0.91 0.98 0.96
2e-5 0.99 0.90 0.94 0.86 0.97 0.93
4e-5 0.99 0.93 0.95 0.81 0.97 0.92
8e-5 0.99 0.92 0.95 0.84 0.97 0.93
1e-4 0.99 0.90 0.90 0.81 0.95 0.90

4.3.3 Batch Size Selection

Batch Size refers to the number of samples processed by the model to calculate the loss before the parameters

are updated. This hyper parameter dictates the regularization of the model. Too small batch sizes result

in the model fixating on only a few samples at a time while tuning its parameters. Hence, it results in an

unstable learning which translates to rough/rugged loss curves. In contrast, batch sizes that are too large

produce smooth loss curves but result in fewer updates within one epoch (training cycle) of the network.

Hence the number of updates required to properly train the model increases.

Various batch sizes ranging from 16 to 128 were used with the network to ensure that a sufficient number

of examples are processed by the network before updating its weights. Table 4.3 displays the various batch

sizes that were used to train the network and their effect on the model’s precision scores. Consecutively, a

batch size of 64 ensured that each class sample had appropriate representation in a batch and hence resulted
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in the highest mean average precision values, while avoiding overfitting to the data. This behaviour can be

observed as the high mAP value for a batch size of 64 in Table 4.3.

Table 4.3: Performance comparison of the proposed model for different batch sizes

Batch Sizes Class AP
Angry

Class AP
Happy

Class AP
Sad

Class AP
Neutral

micro
mAP

macro
mAP

16 0.99 0.92 0.95 0.91 0.97 0.94
32 0.99 0.94 0.96 0.89 0.98 0.95
64 0.99 0.95 0.97 0.91 0.98 0.96
128 0.99 0.94 0.96 0.83 0.97 0.93

4.3.4 Number of Epochs Selection

Each training cycle of a neural network involves processing a batch of training samples, calculating the

network loss, and finally updating the parameters of the network accordingly. These cycles are called epochs

and govern the amount of training a model undergoes. High number of epochs result in an over-trained model

that only performs well on the data that was used in training. Such a model is called an overfitted model

and is said to have a high variance, in the literature. Conversely, an under-trained model, that arises due to

a low number of training epochs, does not tune its parameters enough to fit the training data and performs

poorly irrespective of the dataset. This is also referred to as a model with high bias (or an underfitted

model). The balance between these two phenomena is referred to as bias-variance trade-off, and is necessary

to produce a model that is competent at recognizing patterns relevant to the problem but does not fixate on

the noise present in the training samples. In practice, a neural network’s training and validation loss curves

continue to decrease to a certain point after which the two diverge. Generally, this point is considered to be

representative of the optimal number of epochs. This practice is also known as early stopping, which refers

to stopping the training before the model starts overfitting.

Thus, to determine the optimal number of epochs the network was trained for 1000 epochs and the

training and validation losses were monitored. The model showed convergence shortly before the 400th

epoch as seen in Figure 4.6. Therefore, the number of epochs was set to 400.

4.4 Gait Emotion Recognition Experiments using BMDNN

Once the proposed BMDNN architecture’s configuration was finalized through hyper-parameter tuning ex-

periments, the network was used to perform an ablation study to validate the importance of its key elements.

The network was also used to study the effects of the distinct LMA feature groups and their role in identifying

the four emotions.
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(a) The loss curves for the training and validation of
BMDNN for 1000 epochs

(b) The precision curves for the training and validation
of BMDNN for 1000 epochs

Figure 4.6: The proposed BMDNN’s loss and precision graphs for the training and validation for 1000 epochs

4.4.1 Ablation Study

Each component of the neural network architecture is a crucial part of the proposed methodology. The

input of raw gait sequences, JRAs, and JRDs to the LSTM subnetwork provides low-level features to the

sequential network for producing higher-level features. The first subnetwork is responsible for condensing gait

features sequentially to produce the rich feature set. The LMA features further enhance the performance

by providing robust handcrafted features that make the model resilient to unbalanced data. Finally, the

MLP subnetwork is responsible to process the combined features from the deep extracted features and the

LMA-based handcrafted features, to produce high-level features for emotion recognition.

Effectiveness of Geometric Features

Classical machine learning approaches in the domain only explored a handful of features. Works based

on deep learning incorporated affective features, however, the feature sets were still limited. Hence, the

geometric features introduced for the proposed BMDNN architecture consider all possible angle and distance

measures between two joints. To reduce the size of the set and ensure that only informative features are

used for inference, the architecture exploits the ability of neural networks to automatically select and extract

features. The geometric features contribute relevant information to the latent deep feature set that is formed

using the information from body joint coordinates as well. This can be verified by the drop in the overall

performance of the model observed on removing the geometric features from the input of the LSTM module

(Table 4.4).
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Table 4.4: Ablation Study for the various components of the proposed methodology

Architecture Class AP
Angry

Class AP
Happy

Class AP
Sad

Class AP
Neutral

micro
mAP

macro
mAP

LSTM Subnetwork ✓

0.98 0.60 0.45 0.17 0.88 0.55
Geometric Features ×
MLP Subnetwork ×
LMA Features ×
LSTM Subnetwork ✓

0.98 0.67 0.50 0.26 0.89 0.60
Geometric Features ×
MLP Subnetwork ✓

LMA Features ×
LSTM Subnetwork ✓

0.99 0.87 0.82 0.61 0.95 0.82
Geometric Features ✓

MLP Subnetwork ×
LMA Features ×
LSTM Subnetwork ×

0.99 0.93 0.97 0.86 0.98 0.94
Geometric Features ×
MLP Subnetwork ✓

LMA Features ✓

LSTM Subnetwork ✓

0.99 0.88 0.86 0.52 0.95 0.81
Geometric Features ✓

MLP Subnetwork ✓

LMA Features ×
LSTM Subnetwork ✓

0.99 0.93 0.97 0.85 0.97 0.94
Geometric Features ×
MLP Subnetwork ✓

LMA Features ✓

LSTM Subnetwork ✓

0.99 0.95 0.97 0.91 0.98 0.96
Geometric Features ✓

MLP Subnetwork ✓

LMA Features ✓

Effectiveness of LMA Features

The handcrafted features built using Laban Movement Analysis provide robustness and result in a well

regularized model. These powerful features have never been used before for gait emotion recognition. Each

of the feature groups contribute distinct information to the proposed architecture. From Table 4.4, excluding

LMA feature groups results in a drastic decrease in the model precision for most emotions, reduction in the

model’s resilience towards data imbalance is observed as well. This experiment also serves as a validation for

development of BMDNN architecture, and its superior performance over initial BMSNN model without LMA

features. Performance of the model for emotion classes with lower data representation is affected strongly.
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Effectiveness of LSTM and MLP subnetworks

The LSTM and MLP subnetworks are crucial building blocks of the proposed methodology. The main func-

tion of the LSTM module is to produce information-rich deep features from raw gait sequences and the

geometric features (JRAs and JRDs). Since these low-level features are processed sequentially, information

from both the temporal as well as the spatial domain is explored to produce the latent deep feature set.

Further high-level features are extracted by the MLP module from this set. The MLP subnetwork also

facilitates the fusion of the deep features and the LMA features. This is done by processing them together

to extract powerful information which was never done before in the domain of GER.

The importance of these two subnetworks is validated by the results presented in Table 4.4. A decrease

in the model precision value by 0.02 for the Happy class and by 0.05 for Neutral class, is recorded when the

LSTM module is removed from the network. The effect is stronger with the removal of the MLP module from

the network. On doing so, the precision values across all emotion classes except Angry decrease significantly

and result in a macro mAP of 0.82.

4.4.2 Importance of LMA feature groups

The proposed method was trained and tested with different LMA feature groups to identify their impact on

the overall model performance. Though all the features were necessary to achieve the highest performance,

some feature groups were crucial for identifying certain emotions. Consequently, this experiment answered

the sixth research question: ”How do the Laban Movement Analysis feature groups affect the performance

of the proposed network?”.

As seen from Table 4.5, every LMA feature group was useful in the identification of Angry gaits. Fur-

thermore, the most contributing feature groups for the identification of Happy and Neutral gaits were Body

and Space features which contain angular, distance, and volumetric measures. This indicates that Happy

and Neutral gaits contained in the dataset can be distinguished from other emotional gaits by geometric

body positions and the space occupied by the subject during the gait. In contrast, Effort features proved

to be important for recognizing Sad gaits because kinetic energies and velocities of various joints effectively

capture the slower body movement of Sad emotions in comparison to other emotional gait. Another inter-

esting observation is that the model precision for the neutral class is 0.46 with just shape features (density of

the body joints); however, the model achieves a 0.91 precision with all the features combined, which is much

higher than any individual feature group’s precision. This indicates that the Shape feature group contributes

unique information.
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Table 4.5: Model performance with various LMA feature groups

Feature group
used with
BMDNN

Class AP
Angry

Class AP
Happy

Class AP
Sad

Class AP
Neutral

micro
mAP

macro
mAP

No LMA Features 0.99 0.88 0.86 0.52 0.95 0.81
Body Features 0.99 0.94 0.88 0.87 0.97 0.92
Effort Features 0.99 0.88 0.90 0.80 0.96 0.90
Shape Features 0.99 0.89 0.80 0.46 0.95 0.78
Space Features 0.99 0.90 0.88 0.87 0.97 0.91
All LMA Features 0.99 0.95 0.97 0.91 0.98 0.96

4.4.3 Performance Comparison with the BMSNN Architecture

The proposed Bi-Modal Deep Neural Network (BMDNN) architecture was a result of improvements made to

the Bi-Modular Sequential Neural Network (BMSNN). The BMSNN model utilized a dropout of 0.2 on the

second layer in the MLP network. This enabled the model to be less biased against the under-represented

classes, as seen in Table 4.6. In the BMDNN architecture this is achieved via L2 regularizers that keep

the weight and bias parameters of the networks small. This eradicates the neural network’s tendency to

update parameters drastically when the loss is high. Rather, the updates are gradual and hence result in

a stable learning. Another significant change made is the incorporation of the LMA features. In addition

to decreasing the model’s bias against under-represented classes, it improves the model’s overall precision

(refer to Table 4.5).

Table 4.6: Performance comparison of BMSNN and BMDNN

Architecture Con-
figuration

Class AP
Angry

Class AP
Happy

Class AP
Sad

Class AP
Neutral

micro
mAP

macro
mAP

BMSNN without
Dropout

0.99 0.83 0.54 0.51 0.92 0.72

BMSNN without
Batch Norm

0.99 0.90 0.84 0.46 0.96 0.80

BMSNN 0.99 0.91 0.90 0.65 0.97 0.86
BMDNN without L2
regularizers

0.99 0.92 0.94 0.87 0.98 0.93

BMDNN without
Batch Norm

0.99 0.95 0.93 0.81 0.98 0.92

BMDNN 0.99 0.95 0.97 0.91 0.98 0.96

The batch normalization layer was used in BMSNN to ensure further resilience to the class imbalance,

as shown in Table 4.6. This layer placed after the first MLP layer in BMSNN, has been moved to the

beginning of the MLP subnetwork in BMDNN. This enables the MLP subnetwork of BMDNN to normalize

the concatenated set of latent deep and LMA features before processing. Additionally, the first LSTM layer

and the first MLP layer were removed from the LSTM subnetwork and the MLP subnetwork of BMSNN,
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respectively. The removal of these layers did not result in any performance drop, but reduced the number

of parameters of the entire architecture which reduces the model’s susceptibility to high variance. The

improvements made to the BMSNN architecture resulted in an increase in BMDNN’s performance as seen

in Table 4.6.

4.4.4 Performance Comparison with the State-Of-The-Art Methods

The best configuration of the proposed architectures were compared with the most recent state-of-the-art

methods. The performances of Spatial Temporal Graph Convolutional Network (STGCN) [189], Affective

and Deep Features (ADF) [144], STGCN for Emotion Perceeption (STEP) [20], Hierarchical Attention

Pooling and Affective Mapping (HAPAM) [21], ProxEmo [129], and Bi-Modular Sequential Neural Network

(BMSNN) [19] were compared with the proposed methods. Implementations of the comparators used in this

work were done in Pytorch, and were provided by the respective authors via a publicly available GitHub

repository. Additionally, all comparative experiments were performed on the standard version of Google

Colaboratory Notebook which comprises of a Tesla K80 GPU with a 12 GB of GDDR5 VRAM, a dual-core

Intel Xeon @ 2 GHz CPU and a memory size of 13.3 GB. The data split for all methods was also kept

the same (80:10:10, for training, validation, and testing). Table 4.7 shows that the proposed architecture

outperforms all other methods across all classes.

Both of the proposed models: BMSNN [19] and BMDNN [18] outperform the state-of-the-art methods

in terms of micro mAP. The modifications made to the BMSNN architecture to produce BMDNN prove

successful. In comparison to the best prior method, ProxEmo, the proposed Bi-Modal Deep Neural Network

(BMDNN) architecture achieves an increase in the Average Precision by 10% for the Angry class, by 3.3%

for the Happy class, and by 3.2% for the Sad class. Furthermore, the micro and mean Average Precision

scores of 0.98 and 0.96 respectively, are also observed to be superior. Hence, the proposed BMDNN archi-

tecture outperforms the state-of-the-art methodologies in terms of overall precision, while maintaining high

performance in all emotion classes.

The highest scores achieved by the proposed BMDNN architecture are attributed to the powerful LSTM

and the MLP subnetworks. The high performance is also a result of the overall attenuated design of the

neural network, the normalization techniques, and the regularization techniques employed. Another major

contributing factor is the information-rich handcrafted features exploited by the BMDNN architecture.
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Table 4.7: Comparison of the proposed method with state-of-the-art methods

Methods Class AP
Angry

Class AP
Happy

Class AP
Sad

Class AP
Neutral

micro
mAP

macro
mAP

STEP (2020)[20] 0.22 0.52 0.30 0.12 0.29 0.27
ADF (2019)[144] 0.22 0.59 0.30 0.12 0.31 0.27
STGCN (2018)[189] 0.06 0.97 0.20 0.01 0.34 0.41
HAPAM (2020)[21] 0.97 0.66 0.40 0.18 0.60 0.88
ProxEmo (2020)[129] 0.90 0.92 0.94 0.94 0.92 0.93
Proposed BMSNN
(2022)

0.99 0.91 0.90 0.65 0.97 0.86

Proposed BMDNN
(2022)

0.99 0.95 0.97 0.91 0.98 0.96

4.4.5 Number of Parameters and Inference Time

The last metric that was used to compare the performances of the various GER methods was their respective

inference times for one gait sample. The implementation of the proposed Bi-Modular Neural Network

(BMSNN) and Bi-Modal Deep Neural Network (BMDNN) was achieved through Keras, while all other

methods were implemented using PyTorch. These experiments were run on the standard version of Google

Colaboratory Notebook which uses a Tesla K80 GPU with a 12 GB of GDDR5 VRAM, a dual-core Intel

Xeon @ 2 GHz CPU and a memory size of 13.3 GB. Each method was tested on the ELMD dataset.

The proposed Bi-Modular Sequential Neural Network (BMSNN) was observed to have the fastest infer-

ences among all comparators of less than 17 milliseconds. This can be accredited to the fact that it has

significantly fewer parameters in comparison to the other methods, as seen in Table 4.8.

Table 4.8: Comparison of number of parameters and inference time of the proposed methods with state-of-
the-art methods

Method Number of parameters Inference Time (in seconds)
HAPAM [21] 40,444,854 4.66× 10−2

STGCN [189] 2,628,290 2.17× 10−2

STEP [20] 717,987 4.82× 10−2

ProxEmo [129] 334,849 1.08× 10−1

ADF [144] 310,978 3.91× 10−2

Proposed BMSNN 295,940 1.63× 10−2

Proposed BMDNN 184,276 3.14× 10−1

4.4.6 Experiments on BML dataset

To further validate the findings of this research, a second dataset known as the Body Motion Library (BML)

dataset, was used. It was collected from 30 participants (15 male and 15 female). It was recorded for two

walks from each participant, for each emotion. Therefore, it contains 60 gaits for each emotion class. It was
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recorded as 3D coordinates for 15 body joints of participants of different age and gender groups, walking

along linear paths. The proposed system was pre-trained on the ELMD dataset and was validated on both

ELMD and BML datasets. These experiments served as an additional validation of the proposed architecture

to showcase its potency in gait emotion recognition.

The conclusions derived from the experiment on the importance of LMA feature groups were validated

on the BML dataset, which is a balanced dataset of a smaller size than ELMD (see Table 4.9). What is

impressive, is that from this dataset, exactly the same conclusions on the impact of the LMA features were

observed. All LMA features were found to be useful in recognizing Angry gaits for BML. Similarly, Body

and Space features were useful in recognizing Happy gaits. Finally, combining all LMA features resulted in

average precision scores higher than individual values. The only difference was the effect of Effort features

was more significant in recognizing Neutral gaits. Therefore, the findings of the experiment that explored

the importance of the various LMA feature groups for each emotion class was supported by two distinct

datasets.

Table 4.9: Model performance with various LMA feature groups on the BML dataset

Feature group
used with
BMDNN

Class AP
Angry

Class AP
Happy

Class AP
Sad

Class AP
Neutral

micro
mAP

macro
mAP

No LMA Features 0.72 0.94 0.76 0.95 0.83 0.84
Body Features 0.91 0.89 0.83 1 0.91 0.91
Effort Features 0.98 0.73 0.76 0.98 0.85 0.86
Shape Features 0.98 0.84 0.56 0.78 0.75 0.79
Space Features 0.98 0.91 0.75 0.81 0.88 0.86
All LMA Features 1 1 0.79 1 0.93 0.95

The proposed BMDNN’s overall performance was also validated on the second dataset. The same data

split of 80:10:10 with a stratified shuffling was used with the hyperparameter values optimized using ELMD.

As seen in Table 4.10, the proposed BMDNN achieved a high average precision score in each emotion class,

as well as high micro and macro mean average precision scores of 0.93 and 0.95, respectively. The formidable

performance on two distinct datasets further supports the precise emotion recognition capabilities of the

proposed BMDNN model.

Table 4.10: Model performance on the ELMD and BML datasets

Dataset Used Class AP
Angry

Class AP
Happy

Class AP
Sad

Class AP
Neutral

micro
mAP

macro
mAP

ELMD 0.99 0.95 0.97 0.91 0.98 0.96
BML 1 1 0.79 1 0.93 0.95

60



4.4.7 Summary

This chapter convincingly demonstrated that the performance of the proposed architecture is superior to

other emotion recognition methods. The hyper parameter tuning resulted in the final configuration of the

Bi-Modal Deep Neural Network (BMDNN). Following the hyperparameter tuning experiments, the section

presented the results of the ablation study that demonstrated the significance of the geometric handcrafted

features, Laban Movement Analysis features, and the deep neural network of the BMDNN architecture.

The final configuration of the proposed BMDNN architecture was used to compare its emotion recognition

performance with the previously designed BMSNN architecture and the state-of-the-art methods. While

the BMSNN proved to be the fastest method to infer a gait sample, the BMDNN architecture excelled at

emotion recognition by outperforming all previous methodologies in terms of micro and macro mean average

precision.

61



Chapter 5

Conclusion

5.1 Contribution Summary

Identifying emotions from gait is a new avenue in biometrics and has not witnessed much research. However,

gait analysis and emotion recognition systems play a significant role industries such as smart homes, security,

search and rescue, robotics, entertainment, and medicine. Some potential applications include behavioral

surveillance in public spaces, fall detection and prevention, adaptive rehabilitation/education/entertainment,

and identifying people in distress. The preliminary research consisted of works based on classical machine

learning algorithms that provided a proof of concept, but were unable to achieve high accuracies. Lately,

deep learning methodologies have been prevalent in the domain; however the methods published so far

were sub-optimal. Consequently, this research was conducted to contribute to the domain by developing a

powerful sequential neural network that harnesses the power of sequential deep neural networks and benefits

from robust domain-specific handcrafted features for identifying emotions from gaits.

Recent works attempted to approach Gait Emotion Recognition (GER) using Graph Neural Networks

and Convolutional Neural Networks. However, these works modelled gaits as rigid structures, which inhibited

the ability of deep neural networks to extract low-level features from distant graph nodes or image pixels.

A few methods employed Recurrent Neural Networks that explored all dependencies, but the implemented

deep learning models had ineffective network designs. Furthermore, most of the prior works learned to

reconstruct artificial gaits rather than learning features specific to emotion recognition. Hence, this thesis

proposes unique approaches of fusing latent deep features with the robust handcrafted features for recognizing

four classes of emotions from human gait sequences.

The proposed Bi-Modal Deep Neural Network (BMDNN) architecture uses delineating handcrafted fea-
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tures based on the four components of human motion: Body, Effort, Shape, and Space, based on the Laban

Movement Analysis. The novel fusion of these LMA features along with the deep features extracted from

the optimized neural network mitigates the performance drop for under-represented classes. As a result, the

proposed BMDNN architecture achieves a micro mean Average Precision of 0.98, and a macro mAP of 0.96

that outperforms all recent state-of-the-art methods, including BMSNN, on the ELMD dataset.

The results of this research were published in ICCI*CC’20 [17], Sensors [19] and ISVC’22 [18], and can

be summarized as follows:

1. Previous works used sub-optimal approaches and could not harvest the full potential of such neural

networks. Hence, this research proposed a novel hybrid deep learning architecture that utilized pow-

erful Long Short Term Memory units and a Multi Layered Perceptron to effectively train and predict

emotions from human gaits. The LSTM subnetwork sequentially extracted features that were mapped

to one of four emotions using a MLP.

2. The proposed Bi-Modular Sequential Neural Network (BMSNN) model was designed with a tapered

structure whose benefits are two-fold. Firstly, the attenuation forces the information to condense

towards the end of the network by reducing the feature representation size. Secondly, it results in

fewer network parameters unlike the networks used in other works. Hence, enabling the network to

achieve an inference time of less than 17 milliseconds, which is faster than any prior method.

3. The BMSNN architecture also incorporates geometric features that consist of all possible Joint Relative

Angles (JRAs) and Joint Relative Distances (JRDs). The network facilitates processing of raw gait

sequences and these geometric features together. This eliminates any issues stemming from using an

incomplete set of features in prior methods. Additionally, it enables extraction of relevant information

from various combinations of geometric features and raw gait data. This extension enables the model

to outperform prior methods with a micro mean Average Precision of 0.97.

4. The previous architecture was extended to include domain-specific robust Laban Movement Analysis

(LMA) features. These body, effort, shape and space features provided characteristic descriptions for

the gait samples that led to further increment in the model’s overall performance. Additionally, the

model’s sensitivity towards the class distribution of the dataset was drastically reduced. As a result,

the proposed Bi-Modal Deep Neural Network exhibited the highest macro mean Average Precision.

5. To accommodate the robust Laban Movement Analysis (LMA) features, another novel deep learning

network was developed using BMSNN’s architectural characteristics that were responsible for its high

performance. The proposed Bi-Modal Deep Neural Network featured an overall attenuated design.
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Additionally, BMDNN’s design allowed a combined processing of LMA features and latent deep features

to form higher-level features. The newly added batch-normalization layer normalized this combined

feature set for optimal processing. Finally, L2 bias and kernel regularizers were introduced to promote

regularization of the network parameters. These improvements lead to a significant increase in the

network performance, and the BMDNN architecture outperformed all prior state-of-the-art methods

with a micro mean Average Precision score of 0.98.

6. This thesis performed an ablation study to validate the importance of each component of the proposed

BMDNN architecture. A decrease in the model performance was observed when any of its components

were removed. Additional experiments were conducted to study the effects of various LMA features

on the network performance. It was found that all feature groups contribute distinctive information to

the comprehensive LMA feature set.

5.2 Future Research Directions

The problem of Gait Emotion Recognition has only recently started gaining popularity in biometric research.

Subsequently, only a handful of datasets have been created for the problem. The novel deep learning

methodologies proposed in this thesis were trained on the largest available dataset containing real-world gait

sequences.

As a result of being trained on the emotionally labelled Edinburgh Locomotive MoCap Dataset, the

proposed networks accept an input of 16 three-dimensional body joint coordinates. Furthermore, the dataset

is not an exhaustive set that contains all variations (sickness, carrying an item, etc.) of gait sequences for a

particular emotion. Hence, if the proposed methodologies are required to infer samples from a new dataset,

the networks will have to be fine-tuned or trained from scratch.

The ELMD was originally recorded to produce artificial human motions and hence did not ensure an equal

number of gaits for each emotion. The labels for perceived emotions were collected from a crowd-sourced

website afterwards. This, in turn causes the previous models to identify samples from highly-represented

classes with great precision but perform poorly for under-represented classes. This behavior was observed

clearly in most of the prior works. To remedy this problem, the proposed network utilized robust handcrafted

Laban Movement Analysis features that provide consistent emotion-relevant information for each gait sample.

In the future, data augmentation techniques can be employed to generate samples for the under-represented

classes to reduce the sensitivity of deep learning models towards the class distribution even further. Moreover,

with appropriate data, researchers can investigate methods that identify and prevent spoofing. In addition,
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having more datasets that contain diverse data on participants’ age, ethnicity, height and body type, would

be advantageous to develop further applications that can be deployed in the real-world.

Recent advances in deep learning have shown transformer networks to be proficient for processing long

sequences. Self-attention based processing has the potential to extract even more information from the gait

sequences. Hence, architectures based on such networks can be explored in the future. Another interesting

approach for future investigation involves fusing networks that extract spatial features with networks that

extract temporal features. Particularly, hierarchical deep learning models, that can process joint trajectories

independently and subsequently combine the learned features, can be used in tandem with graph neural

networks that process gaits structurally. Lastly, three-dimensional convolution on gaits embedded as images

can further facilitate the extraction of spatial and temporal features for gait emotion recognition.

5.3 Potential Applications

The findings of this research can benefit industries like robotics, medicine, disaster management, security,

entertainment, and education.

Emotion Recognition can be performed on-the-fly to develop emotionally-aware robots that adapt their

interactions with humans accordingly. Smart home designs can include such robots, or other devices to help

prevent and/or detect fall. This application will be particularly beneficial to nursing homes, rehabilitation

centers, and hospitals. Additionally, identifying stress, pain, and difficulty in walking can be used to curate

rehabilitation exercises to suit the comfort of the patient for a faster recovery. Similarly, physiological diseases

such as Parkinson’s disease can be diagnosed using gait analysis.

This work can also be adopted to detect panic in evacuation situations and used to notify disaster

management authorities. Moreover, the gait analysis performed in this work can be extended to detect

suspicious behavior in persons at international borders, public venues, and financial places of interest. Other

potential applications include providing an adaptive virtual reality entertainment experience by monitoring

the user’s frustration. This can also be used to modify the difficulty of an educational course to ensure the

student’s stress levels do not exceed the healthy amount. The solution presented in this thesis for improving

Gait Emotion Recognition performance may not only benefit the industries it can be applied to, but also

help to uncover new information about the intricate relations of body joint movements and the expressed

emotions.
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